Parrilla, Marta; León-Lobera, Fernando; Lillo, Concepción; Arévalo, Rosario; Aijón, José; Lara, Juan Manuel; Velasco, Almudena
2016-01-01
The mammalian central nervous system (CNS) is unable to regenerate. In contrast, the CNS of fish, including the visual system, is able to regenerate after damage. Moreover, the fish visual system grows continuously throughout the life of the animal, and it is therefore an excellent model to analyze processes of myelination and re-myelination after an injury. Here we analyze Sox10+ oligodendrocytes in the goldfish retina and optic nerve in controls and after two kinds of injuries: cryolesion of the peripheral growing zone and crushing of the optic nerve. We also analyze changes in a major component of myelin, myelin basic protein (MBP), as a marker for myelinated axons. Our results show that Sox10+ oligodendrocytes are located in the retinal nerve fiber layer and along the whole length of the optic nerve. MBP was found to occupy a similar location, although its loose appearance in the retina differed from the highly organized MBP+ axon bundles in the optic nerve. After optic nerve crushing, the number of Sox10+ cells decreased in the crushed area and in the optic nerve head. Consistent with this, myelination was highly reduced in both areas. In contrast, after cryolesion we did not find changes in the Sox10+ population, although we did detect some MBP- degenerating areas. We show that these modifications in Sox10+ oligodendrocytes are consistent with their role in oligodendrocyte identity, maintenance and survival, and we propose the optic nerve head as an excellent area for research aimed at better understanding of de- and remyelination processes. PMID:27149509
Astrocytes as gate-keepers in optic nerve regeneration--a mini-review.
García, Dana M; Koke, Joseph R
2009-02-01
Animals that develop without extra-embryonic membranes (anamniotes--fish, amphibians) have impressive regenerative capacity, even to the extent of replacing entire limbs. In contrast, animals that develop within extra-embryonic membranes (amniotes--reptiles, birds, mammals) have limited capacity for regeneration as adults, particularly in the central nervous system (CNS). Much is known about the process of nerve development in fish and mammals and about regeneration after lesions in the CNS in fish and mammals. Because the retina of the eye and optic nerve are functionally part of the brain and are accessible in fish, frogs, and mice, optic nerve lesion and regeneration (ONR) has been extensively used as a model system for study of CNS nerve regeneration. When the optic nerve of a mouse is severed, the axons leading into the brain degenerate. Initially, the cut end of the axons on the proximal, eye-side of the injury sprout neurites which begin to grow into the lesion. Simultaneously, astrocytes of the optic nerve become activated to initiate wound repair as a first step in reestablishing the structural integrity of the optic nerve. This activation appears to initiate a cascade of molecular signals resulting in apoptotic cell death of the retinal ganglion cells axons of which make up the neural component of the optic nerve; regeneration fails and the injury is permanent. Evidence specifically implicating astrocytes comes from studies showing selective poisoning of astrocytes at the optic nerve lesion, along with activation of a gene whose product blocks apoptosis in retinal ganglion cells, creates conditions favorable to neurites sprouting from the cut proximal stump, growing through the lesion and into the distal portion of the injured nerve, eventually reaching appropriate targets in the brain. In anamniotes, astrocytes ostensibly present no such obstacle since optic nerve regeneration occurs without intervention; however, no systematic study of glial involvement has been done. In fish, vigorously growing neurites sprout from the cut axons and within a few days begin to re-enervate the brain. This review offers a new perspective on the role of glia, particularly astrocytes, as "gate-keepers;" i.e., as being permissive or inhibitory, by comparison between fish and mammals of glial function during ONR.
The influence of L-acetylcarnitine on reinnervation of the oculomotor nerve.
Pettorossi, V E; Draicchio, F; Fernandez, E; Pallini, R
1993-01-01
In guinea-pigs the oral administration of L-acetylcarnitine (L-AC) markedly favours the process of reinnervation of the oculomotor nerve sectioned at intracranial level. The gains of the horizontal and vertical vestibulo-ocular reflexes (HVOR, VVOR) were taken into consideration in testing the functional recovery of the nerve. As a consequence of the drug administration, 24 weeks after the operation the gains of the treated animals were higher than those of the controls. Reduction of misalignments of the stimulus-response orientation was also observed in treated animals as compared to the controls. This suggests that L-AC potentiates motor reinnervation by enhancing the nerve-growing processes and favouring a better consolidation of the appropriate neuromuscular synapses. The increased gain, and the improvement of the alignment in ocular responses, due to L-AC would allow for an increase of visual function during head movement by optimizing gaze stability.
Corrales, C. Eduardo; Pan, Luying; Li, Huawei; Liberman, M. Charles; Heller, Stefan; Edge, Albert S.B.
2007-01-01
Hearing loss in mammals is irreversible because cochlear neurons and hair cells do not regenerate. To determine whether we could replace neurons lost to primary neuronal degeneration, we injected EYFP-expressing embryonic stem cell–derived mouse neural progenitor cells into the cochlear nerve trunk in immunosuppressed animals 1 week after destroying the cochlear nerve (spiral ganglion) cells while leaving hair cells intact by ouabain application to the round window at the base of the cochlea in gerbils. At 3 days post transplantation, small grafts were seen that expressed endogenous EYFP and could be immunolabeled for neuron-specific markers. Twelve days after transplantation, the grafts had neurons that extended processes from the nerve core toward the denervated organ of Corti. By 64–98 days, the grafts had sent out abundant processes that occupied a significant portion of the space formerly occupied by the cochlear nerve. The neurites grew in fasciculating bundles projecting through Rosenthal’s canal, the former site of spiral ganglion cells, into the osseous spiral lamina and ultimately into the organ of Corti, where they contacted hair cells. Neuronal counts showed a significant increase in neuronal processes near the sensory epithelium, compared to animals that were denervated without subsequent stem cell transplantation. The regeneration of these neurons shows that neurons differentiated from stem cells have the capacity to grow to a specific target in an animal model of neuronal degeneration. PMID:17013931
Neurofibromatosis is a genetic disorder of the nervous system. It mainly affects how nerve cells form and ... tumors to grow on nerves. You can get neurofibromatosis from your parents, or it can happen because ...
Intraoperative cranial nerve monitoring.
Harper, C Michel
2004-03-01
The purpose of intraoperative monitoring is to preserve function and prevent injury to the nervous system at a time when clinical examination is not possible. Cranial nerves are delicate structures and are susceptible to damage by mechanical trauma or ischemia during intracranial and extracranial surgery. A number of reliable electrodiagnostic techniques, including nerve conduction studies, electromyography, and the recording of evoked potentials have been adapted to the study of cranial nerve function during surgery. A growing body of evidence supports the utility of intraoperative monitoring of cranial nerve nerves during selected surgical procedures.
Rodrigues, J M; Luís, A L; Lobato, J V; Pinto, M V; Faustino, A; Hussain, N Sooraj; Lopes, M A; Veloso, A P; Freitas, M; Geuna, S; Santos, J D; Maurício, A C
2005-01-01
Entubulation repair of peripheral nerve injuries has a lengthy history. Several experimental and clinical studies have explored the effectiveness of many biodegradable and non-degradable tubes with or without addition of molecules and cells. The main objective of the present study was to develop an economical and also an easy way for culturing a neural cell line which is capable of growing, differentiating and producing locally nerve growth factors, that are otherwise extremely expensive, inside 90 PLA/10 PLG nerve guides. For this purpose the authors have chosen the N1E-115 cell line, a clone of cells derived from mouse neuroblastoma C-1300 with the perspective of using this differentiated cellular system to cover the inside of 90 PLA/10 PLG nerve guides placed to bridge a nerve gap of 10 mm in the rat sciatic nerve experimental model. The N1E-115 cells proliferate in normal culture medium but undergo neuronal differentiation in response to DMSO. Upon induction of differentiation, proliferation of N1E-115 cells ceases, extensive neurite outgrowth is observed and the membranes become highly excitable. While it is known that Ca2+ serves as an important intracellular signal for cellular various processes, such as growth and differentiation, be toxic to cells and be involved in the triggering of events leading to excitotoxic cell death in neurons. The [Ca2+]i in non-differentiated N1E-115 cells and after distinct periods of differentiation, have been determined by the epifluorescence technique using the Fura-2-AM probe. The results of this quantitative assessment, revealed that N1E-115 cells which undergo neuronal differentiation for 48 hours in the presence of 1.5% DMSO are best qualified to be used to cover the interior of the nerve guides since the [Ca2+]i was not found to be elevated indicating thus that the onset the cell death processes was not occurred.
Tenascin-C in peripheral nerve morphogenesis.
Chiquet, M; Wehrle-Haller, B
1994-01-01
The extracellular matrix (ECM) molecule tenascin/cytotactin (TN-C) is expressed at a high level by satellite (glial precursor) cells in developing peripheral nerves of the chick embryo; synthesis of its mRNA peaks at the time period when axonal growth is maximal. When offered as a substrate in vitro, TN-C mediates neurite outgrowth by both motor and sensory neurons. The ability to grow neurites on TN-C is developmentally regulated: sensory neurons from 4-day chick embryos (the stage at which peripheral nerves start to develop) grow immediately and rapidly, whereas neurons from older embryos respond with a long delay. A TN-C domain responsible for this activity is located within the C-terminal (distal) portion of TN-C subunits. Integrin receptors seem to be involved on peripheral neurites because their growth on TN-C is completely blocked by antibodies to beta 1 integrins. In striking contrast to neuronal processes, nerve satellite cells can attach to a TN-C substrate but are completely inhibited in their migratory activity. Artificial substrate borders between tenascin and fibronectin or laminin act as selective barriers that allow neurites to pass while holding up satellite cells. The repulsive action of TN-C on satellite cells is similar to that observed for other cell types and is likely to be mediated by additional TN-C domains. In view of these data, it is surprising that mice seem to develop normally without a functional TN-C gene. TN-C is likely to be redundant, that is, its dual action on cell adhesion is shared by other molecules.(ABSTRACT TRUNCATED AT 250 WORDS)
Wlaszczuk, Adam; Marcol, Wiesław; Kucharska, Magdalena; Wawro, Dariusz; Palen, Piotr; Lewin-Kowalik, Joanna
2016-11-01
The influence of different kinds of nerve guidance conduits on regeneration of totally transected rat sciatic nerves through a 7-mm gap was examined. Five different types of conduits made of chitosan and poly(D,L-lactide-co-glycolide) (PLGA) were constructed and tested in vivo. We divided 50 animals into equal groups of 10, with a different type of conduit implanted in each group: chitosan sponge core with an average molecular mass of polymer (Mv) of 287 kDa with 7 channels in a PLGA sleeve, chitosan sponge core with an Mv of 423 kDa with 7 channels in a PLGA sleeve, chitosan sponge core (Mv, 423 kDa) with 13 channels in a PLGA sleeve, chitosan multifilament yarn in a PLGA sleeve, and a PLGA sleeve only. Seven weeks after the operation, we examined the distance covered by regenerating nerve fibers, growing of nerves into the conduit's core, and intensity and type of inflammatory reaction in the conduit, as well as autotomy behavior (reflecting neuropathic pain intensity) in the animals. Two types of conduits were allowing nerve outgrowth through the gap with minor autotomy and minor inflammatory reactions. These were the conduits with chitosan multifilament yarn in a PLGA sleeve and the conduits with 13-channel microcrystalline chitosan sponge in a PLGA sleeve. The type of chitosan used to build the nerve guidance conduit influences the intensity and character of inflammatory reaction present during nerve regeneration, which in turn affects the distance crossed by regenerating nerve fibers, growing of the nerve fibers into the conduit's core, and the intensity of autotomy in the animals. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Acellular Nerve Allografts in Peripheral Nerve Regeneration: A Comparative Study
Moore, Amy M.; MacEwan, Matthew; Santosa, Katherine B.; Chenard, Kristofer E.; Ray, Wilson Z.; Hunter, Daniel A.; Mackinnon, Susan E.; Johnson, Philip J.
2011-01-01
Background Processed nerve allografts offer a promising alternative to nerve autografts in the surgical management of peripheral nerve injuries where short deficits exist. Methods Three established models of acellular nerve allograft (cold-preserved, detergent-processed, and AxoGen® -processed nerve allografts) were compared to nerve isografts and silicone nerve guidance conduits in a 14 mm rat sciatic nerve defect. Results All acellular nerve grafts were superior to silicone nerve conduits in support of nerve regeneration. Detergent-processed allografts were similar to isografts at 6 weeks post-operatively, while AxoGen®-processed and cold-preserved allografts supported significantly fewer regenerating nerve fibers. Measurement of muscle force confirmed that detergent-processed allografts promoted isograft-equivalent levels of motor recovery 16 weeks post-operatively. All acellular allografts promoted greater amounts of motor recovery compared to silicone conduits. Conclusions These findings provide evidence that differential processing for removal of cellular constituents in preparing acellular nerve allografts affects recovery in vivo. PMID:21660979
Xin, Long; Xu, Weixing; Yu, Leijun; Fan, Shunwu; Wang, Wei; Yu, Fang; Wang, Zhenbin
2017-05-12
Growth of nerve fibers has been shown to occur in a rabbit model of intravertebral disc degeneration (IVD) induced by needle puncture. As nerve growth may underlie the process of chronic pain in humans affected by disc degeneration, we sought to investigate the factors underlying nerve ingrowth in a minimally invasive annulotomy rabbit model of IVD by comparing the effects of empty disc defects with those of defects filled with poly(lactic-co-glycolic acid)/fibrin gel (PLGA) plugs. New Zealand white rabbits (n = 24) received annular injuries at three lumbar levels (L3/4, L4/5, and L5/6). The discs were randomly assigned to four groups: (a) annular defect (1.8-mm diameter; 4-mm depth) by mini-trephine, (b) annular defect implanted with a PLGA scaffold containing a fibrin gel, (c) annular puncture by a 16G needle (5-mm depth), and (d) uninjured L2/3 disc (control). Disc degeneration was evaluated by radiography, MRI, histology, real-time PCR, and analysis of proteoglycan (PG) content. Nerve ingrowth into the discs was assessed by immunostaining with the nerve marker protein gene product 9.5. Injured discs showed a progressive disc space narrowing with significant disc degeneration and proteoglycan loss, as confirmed by imaging results, molecular and compositional analysis, and histological examinations. In 16G punctured discs, nerve ingrowth was observed on the surface of scar tissue. In annular defects, nerve fibers were found to be distributed along small fissures within the fibrocartilaginous-like tissue that filled the AF. In discs filled with PLGA/ fibrin gel, more nerve fibers were observed growing deeper into the inner AF along the open annular track. In addition, innervations scores showed significantly higher than those of punctured discs and empty defects. A limited vascular proliferation was found in the injured sites and regenerated tissues. Nerve ingrowth was significantly higher in PLGA/fibrin-filled discs than in empty defects. Possible explanations include (i) annular fissures along the defect and early loss of proteoglycan may facilitate the ingrowth process and (ii) biodegradable PLGA/fibrin gel may promote adverse growth of nerves and blood vessels into deeper parts of injured disc. The rabbit annular defect model of disc degeneration appears suitable to investigate the effects of nerve ingrowth in relation to pain generation.
Schwannomatosis of Cervical Vagus Nerve.
Abdulla, Faheem Ahmed; Sasi, M P
2016-01-01
Cervical vagal schwannoma is a rare entity among lesions presenting as a neck mass. They are usually slow-growing benign lesions closely associated with the vagus nerve. They are usually solitary and asymptomatic. Multiple schwannomas occurring in patients without neurofibromatosis (NF) are rare and have recently been referred to as schwannomatosis. Here, we present a case of a neck mass that had imaging features suggestive of vagal schwannoma and was operated upon. Intraoperatively, it was discovered to be a case of multiple vagal cervical schwannoma, all directly related to the right vagus nerve, and could be resected from the nerve in toto preserving the function of the vagus nerve. Final HPR confirmed our pre-op suspicion of vagal schwannomatosis.
Schwannomatosis of Cervical Vagus Nerve
Sasi, M. P.
2016-01-01
Cervical vagal schwannoma is a rare entity among lesions presenting as a neck mass. They are usually slow-growing benign lesions closely associated with the vagus nerve. They are usually solitary and asymptomatic. Multiple schwannomas occurring in patients without neurofibromatosis (NF) are rare and have recently been referred to as schwannomatosis. Here, we present a case of a neck mass that had imaging features suggestive of vagal schwannoma and was operated upon. Intraoperatively, it was discovered to be a case of multiple vagal cervical schwannoma, all directly related to the right vagus nerve, and could be resected from the nerve in toto preserving the function of the vagus nerve. Final HPR confirmed our pre-op suspicion of vagal schwannomatosis. PMID:27807496
Rodrigues, J M; Luís, A L; Lobato, J V; Pinto, M V; Lopes, M A; Freitas, M; Geuna, S; Santos, J D; Maurício, A C
2005-01-01
Entubulation repair of peripheral nerve injuries has a lengthy history. Several experimental and clinical studies have explored the effectiveness of many biodegradable and non-degradable tubes with or without addition of molecules and cells. The main objective of the present study was to develop an economical and also an easy way for culturing a neural cell line which was capable of growing, differentiating and producing locally nerve growth factors that are otherwise extremely expensive, inside 90 PLA/10 PLG nerve guides. For this purpose the authors have chosen the N1E-115 cell line, a clone of cells derived from mouse neuroblastoma C-1300 with the perspective of using this differentiated cellular system to cover the inside of 90 PLA/10 PLG nerve guides placed to bridge a gap in the rat sciatic nerve experimental model. The N1E-115 cells proliferate in normal culture medium but undergo neuronal differentiation in response to DMSO. Upon induction of differentiation, proliferation of N1E-115 cells ceases, extensive neurite outgrowth is observed and the membranes become highly excitable. While it is known that Ca2+ serves as an important intracellular signal for various cellular processes, such as growth and differentiation. It is also known that can be toxic to cells and is involved in the triggering of events leading to excitotoxic cell death in neurons. The [Ca2+]i in non-differentiated N1E-115 cells and after distinct periods of differentiation, have been determined by the epifluorescence technique using the Fura-2-AM probe. The results of this quantitative assessment revealed that N1E-115 cells which undergo neuronal differentiation for 48 hours in the presence of 1.5% DMSO are best qualified to be used to cover the interior of the nerve guides since the [Ca2+]i was not found to be elevated indicating thus that the onset the cell death processes was not occurred.
Reliability of the nerve conduction monitor in repeated measures of median and ulnar nerve latencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington, I A
According to the Bureau of Labor Statistics, carpal tunnel syndrome (CTS), one of the most rapidly growing work-related injuries, cost American businesses up to $10 billion dollars in medical costs each year (1992). Because conservative therapy can be implemented and CTS is more reversible in it early stages, early detection will not only save industry unnecessary health care costs, but also prevent employees from experiencing debilitating pain and unnecessary surgery. In response to the growing number of cases of CTS, many companies have introduced screening tools to detect early stages of carpal tunnel syndrome. Neurotron Medical (New Jersey) has designedmore » a portable nerve conduction monitor (Nervepace S-200) which measures motor and sensory nerve latencies. The slowing of these latencies is one diagnostic indicator of carpal tunnel syndrome. In this study, we determined the reliability of the Nervepace Monitor in measure ulnar and median nerve latencies during repeated testing. The testing was performed on 28 normal subjects between the ages of 20 and 35 who had no prior symptoms of CTS. They were tested at the same time each day for three consecutive days. Nerve latencies between different ethnic groups and genders were compared. Results show that there was no significant daily variation of the median motor and lunar sensory latencies or the median sensory latencies. No significant differences of latencies was observed among ethnic groups; however, a significant difference of latencies between male and female subjects was observed (p<0.05).« less
Different effects of astrocytes and Schwann cells on regenerating retinal axons.
Campbell, Gregor; Kitching, Juliet; Anderson, Patrick N; Lieberman, A Robert
2003-11-14
Following a crush injury of the optic nerve in adult rats, the axons of retinal ganglion cells, stimulated to regenerate by a lens injury and growing within the optic nerve, are associated predominantly with astrocytes: they remain of small diameter (0.1-0.5 microm) and unmyelinated for > or = 2 months after the operation. In contrast, when the optic nerve is cut and a segment of a peripheral nerve is grafted to the ocular stump of the optic nerve, the regenerating retinal axons are associated predominantly with Schwann cells: they are of larger diameter than in the previous experiment and include unmyelinated axons (0.2-2.5 microm) and myelinated axons (mean diameter 2.3 microm). Thus, the grafted peripheral nerve, and presumably its Schwann cells, stimulate enlargement of the regenerating retinal axons leading to partial myelination, whereas the injured optic nerve itself, and presumably its astrocytes, does not. The result points to a marked difference of peripheral (Schwann cells) and central (astrocytes) glia in their effect on regenerating retinal axons.
[Compression of the sciatic nerve in uremic tumor calcinosis].
García, S; Cofán, F; Combalia, A; Casas, A; Campistol, J M; Oppenheimer, F
1999-02-01
Tumoral calcinosis is an uncommon and benign condition characterized by the presence of slow-growing calcified periarticular soft tissue masses of varying size. They are usually asymptomatic and nerve compression is rare. We describe the case of a 54-year-old female patient on long-term hemodialysis for chronic renal failure presenting sciatica in the left lower limb secondary to an extensive uremic tumoral calcinosis that affected the hip and thigh. The pathogenesis of uremic tumoral calcinosis as well as the treatment and clinical outcome are analyzed. The uncommon nerve compression due to tumoral calcinosis are reviewed. In conclusion, uremic tumoral calcinosis is a not previously reported infrequent cause of sciatic nerve compression.
Cui, Yi; Yao, Yao; Zhao, Yannan; Xiao, Zhifeng; Cao, Zongfu; Han, Sufang; Li, Xing; Huan, Yong; Pan, Juli; Dai, Jianwu
2018-05-01
Numerous studies have focused on the development of novel and innovative approaches for the treatment of peripheral nerve injury using artificial nerve guide conduits. In this study, we attempted to bridge 3.5-cm defects of the sciatic nerve with a longitudinally oriented collagen conduit (LOCC) loaded with human umbilical cord mesenchymal stem cells (hUC-MSCs). The LOCC contains a bundle of longitudinally aligned collagenous fibres enclosed in a hollow collagen tube. Our previous studies showed that an LOCC combined with neurotrophic factors enhances peripheral nerve regeneration. However, it remained unknown whether an LOCC seeded with hUC-MSCs could also promote regeneration. In this study, using various histological and electrophysiological analyses, we found that an LOCC provides mechanical support to newly growing nerves and functions as a structural scaffold for cells, thereby stimulating sciatic nerve regeneration. The LOCC and hUC-MSCs synergistically promoted regeneration and improved the functional recovery in a dog model of sciatic nerve injury. Therefore, the combined use of an LOCC and hUC-MSCs might have therapeutic potential for the treatment of peripheral nerve injury. Copyright © 2018 John Wiley & Sons, Ltd.
Retinotopic and temporal organization of the optic nerve and tracts in the adult goldfish.
Bunt, S M
1982-04-10
In order to investigate the role of the different factors controlling the pathways and termination sites of growing axons, selected optic fibers were traced from the eye to the tectum in adult goldfish either by filling them with HRP, or by severing a group of fibers and tracing their degeneration in 2 micrometers plastic sections stained with toluidine blue. Some fish received more than one lesion and others received both lesions and HRP applications. Two major rearrangements of the optic fibers were identified, one at the exit from the eye, the other within the optic tracts. Near the eye the optic fibers appear to be guided by the conformation of the underlying tissue planes that they encounter. The most recently added fibers, from the peripheral retina, grow over the vitread surface of the older fibers toward the blood vessel in the center of the optic nerve head. Behind the eye the fibers follow this blood vessel until it leaves the side of the optic nerve, and the fibers from peripheral retina are left as a single group on the ventral edge of the optic nerve cross section. As a consequence of this pattern of fiber growth the fibers form an orderly temporal sequence in the optic nerve, with the oldest fibers from the central retina on one side of the nerve and the youngest from peripheral retina on the other. In addition, the fibers are ordered topographically at right angles to this central-to-peripheral axis, with fibers from ventral retina on each edge of the nerve, dorsal fibers in the center, and nasal and temporal fibers in between. This arrangement of the optic fibers continues with only a little loss of precision up to the optic tracts. A more radical fiber rearrangement, seemingly incompatible with the fibers simply following tissue planes occurs within the optic tracts. Each newly arriving set of fibers grows over the surface of the optic tracts so that the older fibers come to lie deepest in the tracts. This segregation of fibers of different ages ensures that the rearrangement is limited to each layer of fibers. The abrupt reorganization of the fibers occurs as the tracts split around the nucleus rotundus to form the brachia of the optic tracts. The fibers are then arranged with temporal fibers nearest the nucleus rotundus and nasal fibers on the opposite edges of the brachia. From this point the fibers grow out over the tectal surface to their termination sites with only minimal rearrangements. Therefore the optic fiber rearrangements show evidence of several different sorts of constraints acting on the fibers at separate points in the optic pathway, each contributing to the final orderly arrangement of the fibers on the optic tectum.
Dual pathology proximal median nerve compression of the forearm.
Murphy, Siun M; Browne, Katherine; Tuite, David J; O'Shaughnessy, Michael
2013-12-01
We report an unusual case of synchronous pathology in the forearm- the coexistence of a large lipoma of the median nerve together with an osteochondroma of the proximal ulna, giving rise to a dual proximal median nerve compression. Proximal median nerve compression neuropathies in the forearm are uncommon compared to the prevalence of distal compression neuropathies (eg Carpal Tunnel Syndrome). Both neural fibrolipomas (Refs. 1,2) and osteochondromas of the proximal ulna (Ref. 3) in isolation are rare but well documented. Unlike that of a distal compression, a proximal compression of the median nerve will often have a definite cause. Neural fibrolipoma, also called fibrolipomatous hamartoma are rare, slow-growing, benign tumours of peripheral nerves, most often occurring in the median nerve of younger patients. To our knowledge, this is the first report of such dual pathology in the same forearm, giving rise to a severe proximal compression of the median nerve. In this case, the nerve was being pushed anteriorly by the osteochondroma, and was being compressed from within by the intraneural lipoma. This unusual case highlights the advantage of preoperative imaging as part of the workup of proximal median nerve compression. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Pre-implanted Sensory Nerve Could Enhance the Neurotization in Tissue-Engineered Bone Graft.
Wu, Yan; Jing, Da; Ouyang, Hongwei; Li, Liang; Zhai, Mingming; Li, Yan; Bi, Long; Guoxian, Pei
2015-08-01
In our previous study, it was found that implanting the sensory nerve tract into the tissue-engineered bone to repair large bone defects can significantly result in better osteogenesis effect than tissue-engineered bone graft (TEBG) alone. To study the behavior of the preimplanted sensory nerve in the TEBG, the TEBG was constructed by seeding bone mesenchymal stem cells into β-tricalcium phosphate scaffold with (treatment group) or without (blank group) implantation of the sensory nerve. The expression of calcitonin gene-related peptide (CGRP), which helps in the healing of bone defect in the treatment group was significantly higher than the blank group at 4, 8, and 12 weeks. The expression of growth-associated protein 43 (GAP43), which might be expressed during nerve healing in the treatment group, was significantly higher than the blank group at 4 and 8 weeks. The nerve tracts of the preimplanted sensory nerve were found in the scaffold by the nerve tracing technique. The implanted sensory nerve tracts grew into the pores of scaffolds much earlier than the vascular. The implanted sensory nerve tracts traced by Dil could be observed at 4 weeks, but at the same time, no vascular was observed. In conclusion, the TEBG could be benefited from the preimplanted sensory nerve through the healing behavior of the sensory nerve. The sensory nerve fibers could grow into the pores of the TEBG rapidly, and increase the expression of CGRP, which is helpful in regulating the bone formation and the blood flow.
NASA Astrophysics Data System (ADS)
Stoyanova, Irina I.; van Wezel, Richard J. A.; Rutten, Wim L. C.
2013-12-01
Artificial nerve guidance channels enhance the regenerative effectiveness in an injured peripheral nerve but the existing design so far has been limited to basic straight tubes simply guiding the growth to bridge the gap. Hence, one of the goals in development of more effective neuroprostheses is to create bidirectional highly selective neuro-electronic interface between a prosthetic device and the severed nerve. A step towards improving selectivity for both recording and stimulation have been made with some recent in vitro studies which showed that three-dimensional (3D) bifurcating microchannels can separate neurites growing on a planar surface and bring them into contact with individual electrodes. Since the growing axons in vivo have the innate tendency to group in bundles surrounded by connective tissue, one of the big challenges in neuro-prosthetic interface design is how to overcome it. Therefore, we performed experiments with 3D bifurcating guidance scaffolds implanted in the sciatic nerve of rats to test if this new channel architecture could trigger separation pattern of ingrowth also in vivo. Our results showed that this new method enabled the re-growth of neurites into channels with gradually diminished width (80, 40 and 20 µm) and facilitated the separation of the axonal bundles with 91% success. It seems that the 3D bifurcating scaffold might contribute towards conveying detailed neural control and sensory feedback to users of prosthetic devices, and thus could improve the quality of their daily life.
Myers, C M; Whitington, P M; Ball, E E
1990-01-01
Intracellular dye fills have been used to reveal the pattern of embryonic growth of each of the four neurons which innervate the extensor tibiae muscle (ETi) of the hind leg of the locust. The growth cone of the slow extensor tibiae motoneuron (SETi), the first of the four neurons to leave the central nervous system, pioneers nerve 3 (N3). The fast extensor motoneuron (FETi), the next neuron to grow out, follows earlier outgrowing motoneurons into the periphery in nerve 5 (N5) and then rejoins SETi in N3. As it transfers from N5 to N3, it is transiently dye-coupled to the Tr1 pioneer neuron which spans the gap between the two nerves. It then follows SETi onto the ETi muscle in the femur. The common inhibitory neuron and the dorsal unpaired median neuron (DUMETi) follow SETi and FETi in nerves 3B2 and 5B1, respectively. SETi's growth cone requires almost twice as long to reach ETi as those of the three later motoneurons, all of which follow preexisting neural pathways. At least three of the four developing motoneurons form one or more axon branches not found in the adult. These branches may occur (1) at segmental boundaries; (2) where the nerve, which the growth cone is following, itself branches or the growth cone encounters another nerve; or (3) when the axon continues to grow beyond its target muscle. These findings contrast with the apparent absence of inappropriate axon branches in another developing locust neuromuscular system and during the innervation of zebrafish myotomes, but resemble in some ways the transient production of inappropriate axonal branches reported for embryonic leech motoneurons.
Development and Functional Organization of the Cranial Nerves in Lampreys.
Pombal, Manuel A; Megías, Manuel
2018-04-16
Lampreys, together with hagfishes, are the only extant representatives of the oldest branch of vertebrates, the agnathans, which are the sister group of gnathostomes; therefore, studies on these animals are of great evolutionary significance. Lampreys exhibit a particular life cycle with remarkable changes in their behavior, concomitant, in part, with important modifications in the head and its musculature, which might influence the development of the cranial nerves. In this context, some cranial nerves such as the optic nerve and the ocular motor nerves, which develop slowly during an extremely long larval period lasting more than five years, have been more thoroughly investigated; however, much less experimental information is available about others, such as the facial or the hypoglossal nerves. In addition, the possible existence of a "true" accessory nerve in these animals is still a matter of conjecture. Although growing in last decades, investigations on the physiology of the lamprey cranial nerves is scanty. This review focuses on past and recent findings that have contributed to characterize the anatomical organization of the cranial nerves in lampreys, including their components and nuclei, and their relations in the brain; in addition, comments on their development and functional role are also included. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Foss, Nina
2002-02-01
The nature of nerves is the subject of a growing and dynamic body of anthropological research. The term nerves is often conceptualized as hard to define. Its meaning carries ambiguities, inconsistencies, and variation, although it is connected to reactions to the hardships of life. In the West, it is often associated with psychiatric problems. In this study, the researcher unveiled peoples' pragmatic use of the term nerves through diverse social settings in a coastal community in Northern Norway. The term was connected to psychological or psychiatric problems, privacy, and stigma, but had the capacity to communicate a continuum from normal emotional problems to severe mental illness. This study also showed the effect of the term in encounters between patients and professional health workers.
Neuro-immune lessons from an annelid: The medicinal leech.
Tasiemski, Aurélie; Salzet, Michel
2017-01-01
An important question that remains unanswered is how the vertebrate neuroimmune system can be both friend and foe to the damaged nervous tissue. Some of the difficulty in obtaining responses in mammals probably lies in the conflation in the central nervous system (CNS), of the innate and adaptive immune responses, which makes the vertebrate neuroimmune response quite complex and difficult to dissect. An alternative strategy for understanding the relation between neural immunity and neural repair is to study an animal devoid of adaptive immunity and whose CNS is well described and regeneration competent. The medicinal leech offers such opportunity. If the nerve cord of this annelid is crushed or partially cut, axons grow across the lesion and conduction of signals through the damaged region is restored within a few days, even when the nerve cord is removed from the animal and maintained in culture. When the mammalian spinal cord is injured, regeneration of normal connections is more or less successful and implies multiple events that still remain difficult to resolve. Interestingly, the regenerative process of the leech lesioned nerve cord is even more successful under septic than under sterile conditions suggesting that a controlled initiation of an infectious response may be a critical event for the regeneration of normal CNS functions in the leech. Here are reviewed and discussed data explaining how the leech nerve cord sensu stricto (i.e. excluding microglia and infiltrated blood cells) recognizes and responds to microbes and mechanical damages. Copyright © 2016 Elsevier Ltd. All rights reserved.
Loverde, Joseph R.; Pfister, Bryan J.
2015-01-01
Elongation of nerve fibers intuitively occurs throughout mammalian development, and is synchronized with expansion of the growing body. While most tissue systems enlarge through mitosis and differentiation, elongation of nerve fibers is remarkably unique. The emerging paradigm suggests that axons undergo stretch as contiguous tissues enlarge between the proximal and distal segments of spanning nerve fibers. While stretch is distinct from growth, tension is a known stimulus which regulates the growth of axons. Here, we hypothesized that the axon stretch-growth process may be a natural form of injury, whereby regenerative processes fortify elongating axons in order to prevent disconnection. Harnessing the live imaging capability of our axon stretch-growth bioreactors, we assessed neurons both during and following stretch for biomarkers associated with injury. Utilizing whole-cell patch clamp recording, we found no evidence of changes in spontaneous action potential activity or degradation of elicited action potentials during real-time axon stretch at strains of up to 18% applied over 5 min. Unlike traumatic axonal injury, functional calcium imaging of the soma revealed no shifts in free intracellular calcium during axon stretch. Finally, the cross-sectional areas of nuclei and cytoplasms were normal, with no evidence of chromatolysis following week-long stretch-growth limited to the lower of 25% strain or 3 mm total daily stretch. The neuronal growth cascade coupled to stretch was concluded to be independent of the changes in membrane potential, action potential generation, or calcium flux associated with traumatic injury. While axon stretch-growth is likely to share overlap with regenerative processes, we conclude that developmental stretch is a distinct stimulus from traumatic axon injury. PMID:26379492
Lynch, Kyle J; Skalli, Omar; Sabri, Firouzeh
2018-04-20
Externally applied electrical stimulation (ES) has been shown to enhance the nerve regeneration process and to influence the directionality of neurite outgrowth. In addition, the physical and chemical properties of the substrate used for nerve-cell regeneration is critical in fostering regeneration. Previously, we have shown that polyurea-crosslinked silica aerogels (PCSA) exert a positive influence on the extension of neurites by PC-12 cells, a cell-line model widely used to study neurite extension and electrical excitability. In this work, we have examined how an externally applied electric field (EF) influences the extension of neurites in PC-12 cells grown on two substrates: collagen-coated dishes versus collagen-coated crosslinked silica aerogels. The externally applied direct current (DC) bias was applied in vitro using a custom-designed chamber containing polydimethysiloxane (PDMS) embedded copper electrodes to create an electric field across the substrate for the cultured PC-12 cells. Results suggest orientation preference towards the anode, and, on average, longer neurites in the presence of the applied DC bias than with 0 V DC bias. In addition, neurite length was increased in cells grown on silica-crosslinked aerogel when compared to cells grown on regular petri-dishes. These results further support the notion that PCSA is a promising material for nerve regeneration.
Dobrenis, Kostantin; Gauthier, Laurent R; Barroca, Vilma; Magnon, Claire
2015-02-15
The hematopoietic growth factor granulocyte colony-stimulating factor (G-CSF) has a role in proliferation, differentiation and migration of the myeloid lineage and in mobilizing hematopoietic stem and progenitor cells into the bloodstream. However, G-CSF has been newly characterized as a neurotrophic factor in the brain. We recently uncovered that autonomic nerve development in the tumor microenvironment participates actively in prostate tumorigenesis and metastasis. Here, we found that G-CSF constrains cancer to grow and progress by, respectively, supporting the survival of sympathetic nerve fibers in 6-hydroxydopamine-sympathectomized mice and also, promoting the aberrant outgrowth of parasympathetic nerves in transgenic or xenogeneic prostate tumor models. This provides insight into how neurotrophic growth factors may control tumor neurogenesis and may lead to new antineurogenic therapies for prostate cancer. © 2014 UICC.
N-cadherin expression in palisade nerve endings of rat vellus hairs.
Kaidoh, Toshiyuki; Inoué, Takao
2008-02-01
Palisade nerve endings (PNs) are mechanoreceptors around vellus hairs of mammals. Each lanceolate nerve ending (LN) of the PN is characterized by a sensory nerve ending symmetrically sandwiched by two processes of type II terminal Schwann cells (tSCIIs). However, the molecular mechanisms underlying the structural organization of the PN are poorly understood. Electron microscopy showed that adherens junctions appeared to adhere to the sensory nerve ending and tSCII processes, so we examined the location of the N-cadherin adhesion system in PNs of rat vellus hairs by using immunoelectron microscopy. N-cadherin localized near both ends of the cell boundary between sensory nerve ending and tSCII processes, which corresponded to the sites of adherens junctions. We further found cadherin-associated proteins, alpha- and beta-catenins, at the linings of adherens junctions. Three-dimensional reconstruction of immunoelectron microscopic serial thin sections showed four linear arrays of N-cadherin arranged longitudinally along the LN beneath the four longitudinal borders of two tSCII processes. In contrast, sensory nerve fibers just proximal to the LNs formed common unmyelinated nerve fibers, in which N-cadherin was located mainly at the mesaxon of type I terminal Schwann cells (tSCIs). These results suggest that the four linear arrays of N-cadherin-mediated junctions adhere the sensory nerve ending and tSCII processes side by side to form the characteristic structure of the LN, and the structural differences between the LNs and the proximal unmyelinated nerve fibers possibly are due to the difference in the pattern of N-cadherin expression between sensory nerve endings and tSCII or tSCI processes. (c) 2007 Wiley-Liss, Inc.
Gooris, Peter J J; Zijlmans, Jan C M; Bergsma, J Eelco; Mensink, Gertjan
2014-07-01
Spontaneous paresthesia of the mental nerve is considered an ominous clinical sign. Mental nerve paresthesia has also been referred to as numb chin syndrome. Several potentially different factors have been investigated for their role in interfering with the inferior alveolar nerve (IAN) and causing mental nerve neuropathy. In the present case, the patient had an elongated calcified styloid process that we hypothesized had caused IAN irritation during mandibular movement. This eventually resulted in progressive loss of sensation in the mental nerve region. To our knowledge, this dynamic irritation, with complete recovery after resection of the styloid process, has not been previously reported. Copyright © 2014 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Nishio, Shoji; Fukunishi, Shigeo; Fukui, Tomokazu; Fujihara, Yuki; Okahisa, Shohei; Takeda, Yu; Yoshiya, Shinichi
2017-06-23
In association with the growing interests in pain management, several modalities to control postoperative pain have been proposed and examined for the efficacy in the recent studies. Various modes of peripheral nerve block have been proposed and the effectiveness and safety have been examined for each of those techniques. We have described our clinical experiences, showing that continuous femoral nerve block could provide a satisfactory analgesic effect after total hip arthroplasty (THA) procedure. In this study, we compared the effectiveness and safety of continuous femoral nerve block with and without sciatic nerve blockade on pain control after THA. Forty patients scheduled for THA were included in the study and randomly divided into 2 groups. Postoperative analgesic measure was continuous femoral nerve block alone, while the identical regimen of continuous femoral nerve block was combined with sciatic nerve block. The amount of postoperative pain was evaluated in the immediate postoperative period, 6 hours, and 12 hours after surgery. Moreover, postoperative complications as well as requirement of supplemental analgesics during the initial 12 hours after surgery were reviewed in the patient record. The obtained study results showed that the supplemental sciatic nerve blockade provided no significant effect on arrival at the postoperative recovery room, while the NRS pain score was significantly reduced by the combined application of sciatic nerve blockade at 6 and 12 hours after surgery. In the investigation of postoperative analgesiarelated complications, no major complication was encountered without significant difference in complication rate between the groups.
1989-06-01
regenerating optic nerve CNS - Central nervous system FCS - Fetal calf serum Galc - Galactocerebroside G AP - Glial fibriliary acidic protein NGF...nent confinment of the casualty to a wheel chair. Laceration in the upper spinal cord leads to paralysis of the four limbs and a cut in the optic...of microtiter plates in Dulbecco’s modified Eagle medium (DVIEM) containing 10% fetal calf serum (FCS). When the cells reached confluency the medium
2011-01-01
affinity for metal, and increased thermostability compared to P. furiosus prolidase, Pf prol (PF1343). To obtain a better enzyme for OP nerve agent...decontamination and to investigate the structural factors that may influence protein thermostability and thermoactivity, randomly mutated Ph1prol enzymes ...Introduction Pyrococcus horikoshii and Pyrococcus furiosus are both hyper- thermophilic archaea, growing optimally at 98 –100◦C that were isolated from a
A photon-driven micromotor can direct nerve fibre growth
NASA Astrophysics Data System (ADS)
Wu, Tao; Nieminen, Timo A.; Mohanty, Samarendra; Miotke, Jill; Meyer, Ronald L.; Rubinsztein-Dunlop, Halina; Berns, Michael W.
2012-01-01
Axonal path-finding is important in the development of the nervous system, nerve repair and nerve regeneration. The behaviour of the growth cone at the tip of the growing axon determines the direction of axonal growth and migration. We have developed an optical-based system to control the direction of growth of individual axons (nerve fibres) using laser-driven spinning birefringent spheres. One or two optical traps position birefringent beads adjacent to growth cones of cultured goldfish retinal ganglion cell axons. Circularly polarized light with angular momentum causes the trapped bead to spin. This creates a localized microfluidic flow generating an estimated 0.17 pN shear force against the growth cone that turns in response to the shear. The direction of axonal growth can be precisely manipulated by changing the rotation direction and position of this optically driven micromotor. A physical model estimating the shear force density on the axon is described.
Iatrogenic trigeminal post-traumatic neuropathy: a retrospective two-year cohort study.
Klazen, Y; Van der Cruyssen, F; Vranckx, M; Van Vlierberghe, M; Politis, C; Renton, T; Jacobs, R
2018-06-01
With the growing demand for dental work, trigeminal nerve injuries are increasingly common. This retrospective cohort study examined 53 cases of iatrogenic trigeminal nerve injury seen at the Department of Oral and Maxillofacial Surgery, University Hospitals of Leuven between 2013 and 2014 (0.6% among 8845 new patient visits). Patient records were screened for post-traumatic trigeminal nerve neuropathy caused by nerve injury incurred during implant surgery, endodontic treatment, local anaesthesia, tooth extraction, or specifically third molar removal. The patients ranged in age from 15 to 80years (mean age 42.1years) and 68% were female. The referral delay ranged from 1day to 6.5years (average 10months). The inferior alveolar nerve (IAN) was most frequently injured (28 cases), followed by the lingual nerve (LN) (21 cases). Most nerve injuries were caused during third molar removal (24 cases), followed by implant placement (nine cases) and local anaesthesia injuries (nine cases). Pain symptoms were experienced by 54% of patients suffering IAN injury, compared to 10% of patients with LN injury. Persistent neurosensory disturbances were identified in 60% of patients. While prevention remains the key issue, timely referral seems to be a critical factor for the successful treatment of post-traumatic neuropathy. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Patterning of sympathetic nerve activity in response to vestibular stimulation
NASA Technical Reports Server (NTRS)
Kerman, I. A.; McAllen, R. M.; Yates, B. J.
2000-01-01
Growing evidence suggests a role for the vestibular system in regulation of autonomic outflow during postural adjustments. In the present paper we review evidence for the patterning of sympathetic nerve activity elicited by vestibular stimulation. In response to electrical activation of vestibular afferents, firing of sympathetic nerves located throughout the body is altered. However, activity of the renal nerve is most sensitive to vestibular inputs. In contrast, high-intensity simultaneous activation of cutaneous and muscle inputs elicits equivalent changes in firing of the renal, superior mesenteric and lumbar colonic nerves. Responses of muscle vasoconstrictor (MVC) efferents to vestibular stimulation are either inhibitory (Type I) or are comprised of a combination of excitation and inhibition (Type II). Interestingly, single MVC units located in the hindlimb exhibited predominantly Type I responses while those located in the forelimb and face exhibited Type II responses. Furthermore, brachial and femoral arterial blood flows were dissociated in response to vestibular stimulation, such that brachial vascular resistance increased while femoral resistance decreased. These studies demonstrate that vestibulosympathetic reflexes are patterned according to both the anatomical location and innervation target of a particular sympathetic nerve, and can lead to distinct changes in local blood flow.
Retrospective case series of the imaging findings of facial nerve hemangioma.
Yue, Yunlong; Jin, Yanfang; Yang, Bentao; Yuan, Hui; Li, Jiandong; Wang, Zhenchang
2015-09-01
The aim was to compare high-resolution computed tomography (HRCT) and thin-section magnetic resonance imaging (MRI) findings of facial nerve hemangioma. The HRCT and MRI characteristics of 17 facial nerve hemangiomas diagnosed between 2006 and 2013 were retrospectively analyzed. All patients included in the study suffered from a space-occupying lesion of soft tissues at the geniculate ganglion fossa. Affected nerve was compared for size and shape with the contralateral unaffected nerve. HRCT showed irregular expansion and broadening of the facial nerve canal, damage of the bone wall and destruction of adjacent bone, with "point"-like or "needle"-like calcifications in 14 cases. The average CT value was 320.9 ± 141.8 Hu. Fourteen patients had a widened labyrinthine segment; 6/17 had a tympanic segment widening; 2/17 had a greater superficial petrosal nerve canal involvement, and 2/17 had an affected internal auditory canal (IAC) segment. On MRI, all lesions were significantly enhanced due to high blood supply. Using 2D FSE T2WI, the lesion detection rate was 82.4 % (14/17). 3D fast imaging employing steady-state acquisition (3D FIESTA) revealed the lesions in all patients. HRCT showed that the average number of involved segments in the facial nerve canal was 2.41, while MRI revealed an average of 2.70 segments (P < 0.05). HRCT and MR findings of facial nerve hemangioma were typical, revealing irregular masses growing along the facial nerve canal, with calcifications and rich blood supply. Thin-section enhanced MRI was more accurate in lesion detection and assessment compared with HRCT.
Chandra, Piyush; Purandare, Nilendu; Shah, Sneha; Agrawal, Archi; Rangarajan, Venkatesh
2017-01-01
Primary optic nerve sheath meningiomas (ONSM) are rare, benign and slow growing tumor involving the intra-orbital/intra-canalicular segment of the optic nerve. Untreated, they can potentially lead to visual deterioration. Magnetic resonance (MR) is the gold standard imaging modality for diagnosing the entity. Often, a clinical dilemma exists to narrow the differential diagnosis of an enhancing intra-orbital mass on MR. Molecular imaging provides a high degree of precision in diagnosing meningioma in view of relatively high levels of somatostatin receptor expression by these tumors. The following case demonstrates the potential clinical utility of somatostatin receptor SPECT using 99m Tc- labeled HYNIC-TOC in clinical diagnosis of ONSM.
Katori, Y; Yamamoto, M; Asakawa, S; Maki, H; Rodríguez-Vázquez, J F; Murakami, G; Abe, S
2012-01-01
In adults, the lateral pterygoid muscle (LPM) is usually divided into the upper and lower heads, between which the buccal nerve passes. Using sagittal or horizontal sections of 14 fetuses and seven embryos (five specimens at approximately 20–25 weeks; five at 14–16 weeks; four at 8 weeks; seven at 6–7 weeks), we examined the topographical relationship between the LPM and the buccal nerve. In large fetuses later than 15 weeks, the upper head of the LPM was clearly discriminated from the lower head. However, the upper head was much smaller than the lower head in the smaller fetuses. Thus, in the latter, the upper head was better described as an ‘anterior slip’ extending from the lower head or the major muscle mass to the anterior side of the buccal nerve. The postero-anterior nerve course seemed to be determined by a branch to the temporalis muscle (i.e. the anterior deep temporal nerve). At 8 weeks, the buccal nerve passed through the roof of the small, fan-like LPM. At 6–7 weeks, the LPM anlage was embedded between the temporobuccal nerve trunk and the inferior alveolar nerve. Therefore, parts of the LPM were likely to ‘leak’ out of slits between the origins of the mandibular nerve branches at 7–8 weeks, and seemed to grow in size during weeks 14–20 and extend anterosuperiorly along the infratemporal surface of the prominently developing greater wing of the sphenoid bone. Consequently, the topographical relationship between the LPM and the buccal nerve appeared to ‘change’ during fetal development due to delayed development of the upper head. PMID:22352373
Immunocytochemical analysis of P2X2 in rat circumvallate taste buds.
Yang, Ruibiao; Montoya, Alana; Bond, Amanda; Walton, Jenna; Kinnamon, John C
2012-05-23
Our laboratory has shown that classical synapses and synaptic proteins are associated with Type III cells. Yet it is generally accepted that Type II cells transduce bitter, sweet and umami stimuli. No classical synapses, however, have been found associated with Type II cells. Recent studies indicate that the ionotropic purinergic receptors P2X2/P2X3 are present in rodent taste buds. Taste nerve processes express the ionotropic purinergic receptors (P2X2/P2X3). P2X2/P2X3(Dbl-/-) mice are not responsive to sweet, umami and bitter stimuli, and it has been proposed that ATP acts as a neurotransmitter in taste buds. The goal of the present study is to learn more about the nature of purinergic contacts in rat circumvallate taste buds by examining immunoreactivity to antisera directed against the purinergic receptor P2X2. P2X2-like immunoreactivity is present in intragemmal nerve processes in rat circumvallate taste buds. Intense immunoreactivity can also be seen in the subgemmal nerve plexuses located below the basal lamina. The P2X2 immunoreactive nerve processes also display syntaxin-1-LIR. The immunoreactive nerves are in close contact with the IP(3)R3-LIR Type II cells and syntaxin-1-LIR and/or 5-HT-LIR Type III cells. Taste cell synapses are observed only from Type III taste cells onto P2X2-LIR nerve processes. Unusually large, "atypical" mitochondria in the Type II taste cells are found only at close appositions with P2X2-LIR nerve processes. P2X2 immunogold particles are concentrated at the membranes of nerve processes at close appositions with taste cells. Based on our immunofluorescence and immunoelectron microscopical studies we believe that both perigemmal and most all intragemmal nerve processes display P2X2-LIR. Moreover, colloidal gold immunoelectron microscopy indicates that P2X2-LIR in nerve processes is concentrated at sites of close apposition with Type II cells. This supports the hypothesis that ATP may be a key neurotransmitter in taste transduction and that Type II cells release ATP, activating P2X2 receptors in nerve processes.
Shon, Hyun-Chul; Park, Ji-Kang; Kim, Dong-Soo; Kang, Sang-Woo; Kim, Kook-Jong; Hong, Seok-Hyun
2018-01-01
The supracondylar process is a beak-shaped bony process on the anteromedial aspect of the distal humerus. The ligament of Struthers is a fibrous band extending from the tip of the process to the medial epicondyle. The median nerve and brachial artery pass under the ligament of Struthers and consequently can be compressed, causing supracondylar process syndrome. As a rare cause of proximal median nerve entrapment, supracondylar process syndrome is triggered when the median nerve is located in the superficial or deep layer of the ligament of Struthers as a result of anatomical variation. The supracondylar process can be easily detected on X-ray images obtained in oblique views but may not be identified in only anteroposterior or lateral views. In this article, we present 2 cases of supracondylar process syndrome and describe the process of diagnosis and treatment and results of a literature review.
Wang, Hongkui; Zhu, Hui; Guo, Qi; Qian, Tianmei; Zhang, Ping; Li, Shiying; Xue, Chengbin; Gu, Xiaosong
2017-01-01
Peripheral nervous system owns the ability of self-regeneration, mainly in its regenerative microenvironment including vascular network reconstruction. More recently, more attentions have been given to the close relationship between tissue regeneration and angiogenesis. To explore the overlap of molecular mechanisms and key regulation molecules between peripheral nerve regeneration and angiogenesis post peripheral nerve injury, integrative and bioinformatic analysis was carried out for microarray data of proximal stumps after sciatic nerve transection in SD rats. Nerve regeneration and angiogenesis were activated at 1 day immediately after sciatic nerve transection simultaneously. The more obvious changes of transcription regulators and canonical pathways suggested a phase transition between 1 and 4 days of both nerve regeneration and angiogenesis after sciatic nerve transection. Furthermore, 16 differentially expressed genes participated in significant biological processes of both nerve regeneration and angiogenesis, a few of which were validated by qPCR and immunofluorescent staining. It was demonstrated that STAT3, EPHB3, and Cdc42 co-expressed in Schwann cells and vascular endothelial cells to play a key role in regulation of nerve regeneration and angiogenesis simultaneously response to sciatic nerve transection. We provide a framework for understanding biological processes and precise molecular correlations between peripheral nerve regeneration and angiogenesis after peripheral nerve transection. Our work serves as an experimental basis and a valuable resource to further understand molecular mechanisms that define nerve injury-induced micro-environmental variation for achieving desired peripheral nerve regeneration. PMID:29085283
Wang, Hongkui; Zhu, Hui; Guo, Qi; Qian, Tianmei; Zhang, Ping; Li, Shiying; Xue, Chengbin; Gu, Xiaosong
2017-01-01
Peripheral nervous system owns the ability of self-regeneration, mainly in its regenerative microenvironment including vascular network reconstruction. More recently, more attentions have been given to the close relationship between tissue regeneration and angiogenesis. To explore the overlap of molecular mechanisms and key regulation molecules between peripheral nerve regeneration and angiogenesis post peripheral nerve injury, integrative and bioinformatic analysis was carried out for microarray data of proximal stumps after sciatic nerve transection in SD rats. Nerve regeneration and angiogenesis were activated at 1 day immediately after sciatic nerve transection simultaneously. The more obvious changes of transcription regulators and canonical pathways suggested a phase transition between 1 and 4 days of both nerve regeneration and angiogenesis after sciatic nerve transection. Furthermore, 16 differentially expressed genes participated in significant biological processes of both nerve regeneration and angiogenesis, a few of which were validated by qPCR and immunofluorescent staining. It was demonstrated that STAT3, EPHB3, and Cdc42 co-expressed in Schwann cells and vascular endothelial cells to play a key role in regulation of nerve regeneration and angiogenesis simultaneously response to sciatic nerve transection. We provide a framework for understanding biological processes and precise molecular correlations between peripheral nerve regeneration and angiogenesis after peripheral nerve transection. Our work serves as an experimental basis and a valuable resource to further understand molecular mechanisms that define nerve injury-induced micro-environmental variation for achieving desired peripheral nerve regeneration.
de Luca, A C; Fonta, C M; Raffoul, W; di Summa, P G; Lacour, S P
2018-03-01
Adipose-derived stem cells (ASC) are becoming one of the most exploited cells in peripheral nerve repair. They are fast-growing and able to protect neurons from apoptosis; they can reduce post-injury latency and the risk of muscle atrophy. This study evaluates laminin-loaded fibrin gel as an ASC-carrying scaffold for nerve repair. In vitro, ASC retained their proliferative activity but showed significant increase in proliferation rate when encapsulated in gels with low laminin concentrations (i.e., 1 μg/mL). We observed a linear decrease of ASC proliferation rate with increasing laminin concentration from 1 to 100 μg/mL. We next examined the effect of the ASC-carrying fibrin gels on in vitro dorsal root ganglia (DRG) neurite extension, then in vivo sciatic nerve regeneration in adult rats. The ASC-carrying gel was embedded in 15-mm-long, 1.5-mm-diameter polydimethylsiloxane regenerative conduits for in vivo evaluation. At 8-week post implantation, robust regeneration was observed across the long gap. Taken together, these results suggest ASC-carrying gels are a potential path to improve the efficacy of nerve regeneration through artificial guidance conduits and electrode nerve interfaces. Copyright © 2017 John Wiley & Sons, Ltd.
Bagnol, D; Herbrecht, F; Julé, Y; Jarry, T; Cupo, A
1993-09-22
The aim of the present study was to analyze changes in the enkephalin immunoreactivity of sympathetic prevertebral ganglia coeliac plexus and inferior mesenteric ganglion) and intestinal tract (myenteric plexus and external muscle layers) in cats 2 days after left thoracic splanchnic nerve ligation, using radioimmunoassay and immunohistochemical techniques. Specific polyclonal antibodies directed against methionine- and leucine-enkephalin were used. The nerve ligation led to a considerable increase in the enkephalin immunoreactivity in the cranial part of the ligated nerves. This finding confirms the presence, in the cat, of an enkephalin output originating from thoracic spinal structures which are probably enkephalin-containing preganglionic neurons. In prevertebral ganglia the nerve ligation induced a marked decrease in the enkephalin immunoreactivity, which was probably due to the interruption of thoracic enkephalin efferents projecting towards both the coeliac plexus and the inferior mesenteric ganglion. In the digestive tract, the nerve ligation depressed the methionine-enkephalin immunoreactivity only in the gastro-duodenal region, and had no effect on the ileo-colonic region. The results of the present study add to the growing evidence that the sympathetic nervous system is involved in regulating the enteric enkephalinergic innervation, which is probably involved in controlling the intestinal motility.
Jin, Yu; Kong, Jian
2017-01-01
Transcutaneous Vagus Nerve Stimulation (tVNS) on the auricular branch of the vagus nerve has been receiving attention due to its therapeutic potential for neuropsychiatric disorders. Although the mechanism of tVNS is not yet completely understood, studies have demonstrated the potential role of vagal afferent nerve stimulation in the regulation of mood and visceral state associated with social communication. In addition, a growing body of evidence shows that tVNS can activate the brain regions associated with Autism Spectrum Disorder (ASD), trigger neuroimmune modulation and produce treatment effects for comorbid disorders of ASD such as epilepsy and depression. We thus hypothesize that tVNS may be a promising treatment for ASD, not only for comorbid epilepsy and depression, but also for the core symptoms of ASD. The goal of this manuscript is to summarize the findings and rationales for applying tVNS to treat ASD and propose potential parameters for tVNS treatment of ASD. PMID:28163670
Schwannoma of the descending loop of the hypoglossal nerve: Case report.
Illuminati, Giulio; Pizzardi, Giulia; Pasqua, Rocco; Palumbo, Piergaspare; Vietri, Francesco
2017-01-01
Schwannomas of the descending loop of the hypoglossal nerve are very rare. They are slow-growing tumors that may masquerade a carotid body tumor. A 60-year-old female was referred for a latero-cervical mass appearing as a chemodectoma at CT-scan. At operation, a 2cm mass arising from the descending loop of the hypoglossal nerve was resected en bloc with the loop itself and a functional lymphadenectomy was associated. Post-operative course was uneventful and the patient is free from disease recurrence at one year follow-up. En bloc resection remains the real curative treatment of Schwannomas, ensuring unlimited freedom from disease, although causing functional impairment which may be significant. Nonetheless recurrence should be prevented as, beside requiring reintervention, it may harbor a malignant evolution towards sarcoma. Schwannomas of the descending lop of the hypoglossal nerve may masquerade a chemodectoma of the carotid bifurcation and can be curatively resected without any functional impairment. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
The nerve supply of the lumbar intervertebral disc.
Edgar, M A
2007-09-01
The anatomical studies, basic to our understanding of lumbar spine innervation through the sinu-vertebral nerves, are reviewed. Research in the 1980s suggested that pain sensation was conducted in part via the sympathetic system. These sensory pathways have now been clarified using sophisticated experimental and histochemical techniques confirming a dual pattern. One route enters the adjacent dorsal root segmentally, whereas the other supply is non-segmental ascending through the paravertebral sympathetic chain with re-entry through the thoracolumbar white rami communicantes. Sensory nerve endings in the degenerative lumbar disc penetrate deep into the disrupted nucleus pulposus, insensitive in the normal lumbar spine. Complex as well as free nerve endings would appear to contribute to pain transmission. The nature and mechanism of discogenic pain is still speculative but there is growing evidence to support a 'visceral pain' hypothesis, unique in the muscloskeletal system. This mechanism is open to 'peripheral sensitisation' and possibly 'central sensitisation' as a potential cause of chronic back pain.
A comparison of organophosphate degradation genes and bioremediation applications.
Iyer, Rupa; Iken, Brian; Damania, Ashish
2013-12-01
Organophosphates (OPs) form the bulk of pesticides that are currently in use around the world accounting for more than 30% of the world market. They also form the core for many nerve-based warfare agents including sarin and soman. The widespread use and the resultant build-up of OP pesticides and chemical nerve agents has led to the development of major health problems due to their extremely toxic interaction with any biological system that encounters them. Growing concern over the accumulation of OP compounds in our food products, in the soils from which they are harvested and in wastewater run-off has fuelled a growing interest in microbial biotechnology that provides cheap, efficient OP detoxification to supplement expensive chemical methods. In this article, we review the current state of knowledge of OP pesticide and chemical agent degradation and attempt to clarify confusion over identification and nomenclature of two major families of OP-degrading enzymes through a comparison of their structure and function. The isolation, characterization, utilization and manipulation of the major detoxifying enzymes and the molecular basis of degradation of OP pesticides and chemical nerve agents are discussed as well as the achievements and technological advancements made towards the bioremediation of such compounds. © 2013 John Wiley & Sons Ltd and Society for Applied Microbiology.
Zucker, Robert S.
1974-01-01
1. Experiments were conducted to test the hypothesis that facilitation of transmitter release in response to repetitive stimulation of the exciter motor axon to the crayfish claw opener muscle is due to an increase in the amplitude or duration of the action potential in presynaptic terminals. No consistent changes were found in the nerve terminal potential (n.t.p.) recorded extracellularly at synaptic sites on the surface of muscle fibres. 2. Apparent changes in n.t.p. are attributed to three causes. (i) Some recordings are shown to be contaminated by non-specific muscle responses which grow during facilitation. (ii) Some averaged n.t.p.s exhibit opposite changes in amplitude and duration which suggest a change in the synchrony of presynaptic nerve impulses at different frequencies. (iii) Some changes in n.t.p. are blocked by γ-methyl glutamate, an antagonist of the post-synaptic receptor, which suggests that these changes are caused by small muscle movements. 3. The only change in n.t.p. believed to represent an actual change in the intracellular signal is a reduction in n.t.p. amplitude to the second of two stimuli separated by a brief interval. 4. Tetra-ethyl ammonium ions increase synaptic transmission about 20% and prolong the n.t.p. about 15%. This result suggests that an increase in n.t.p. large enough to increase transmission by the several hundred per cent occurring during facilitation would be detected. 5. The nerve terminals are electrically excitable, and most synaptic sites have a diphasic or triphasic n.t.p., which suggests that the motor neurone terminals are actively invaded by nerve impulses. 6. When nerve impulses are blocked in tetrodotoxin, depolarization of nerve terminals increases the frequency of miniature excitatory junctional potentials (e.j.p.s), and a phasic e.j.p. can be evoked by large, brief depolarizing pulses. Responses to repetitive or paired depolarizations of constant amplitude and duration exhibit a facilitation similar to that of e.j.p.s evoked by nerve impulses. 7. It is concluded that facilitation in the crayfish claw opener is not due to a change in the presynaptic action potential, but is due to some change at a later step in the depolarization—secretion process. PMID:4153766
Zucker, R S
1974-08-01
1. Experiments were conducted to test the hypothesis that facilitation of transmitter release in response to repetitive stimulation of the exciter motor axon to the crayfish claw opener muscle is due to an increase in the amplitude or duration of the action potential in presynaptic terminals. No consistent changes were found in the nerve terminal potential (n.t.p.) recorded extracellularly at synaptic sites on the surface of muscle fibres.2. Apparent changes in n.t.p. are attributed to three causes.(i) Some recordings are shown to be contaminated by non-specific muscle responses which grow during facilitation.(ii) Some averaged n.t.p.s exhibit opposite changes in amplitude and duration which suggest a change in the synchrony of presynaptic nerve impulses at different frequencies.(iii) Some changes in n.t.p. are blocked by gamma-methyl glutamate, an antagonist of the post-synaptic receptor, which suggests that these changes are caused by small muscle movements.3. The only change in n.t.p. believed to represent an actual change in the intracellular signal is a reduction in n.t.p. amplitude to the second of two stimuli separated by a brief interval.4. Tetra-ethyl ammonium ions increase synaptic transmission about 20% and prolong the n.t.p. about 15%. This result suggests that an increase in n.t.p. large enough to increase transmission by the several hundred per cent occurring during facilitation would be detected.5. The nerve terminals are electrically excitable, and most synaptic sites have a diphasic or triphasic n.t.p., which suggests that the motor neurone terminals are actively invaded by nerve impulses.6. When nerve impulses are blocked in tetrodotoxin, depolarization of nerve terminals increases the frequency of miniature excitatory junctional potentials (e.j.p.s), and a phasic e.j.p. can be evoked by large, brief depolarizing pulses. Responses to repetitive or paired depolarizations of constant amplitude and duration exhibit a facilitation similar to that of e.j.p.s evoked by nerve impulses.7. It is concluded that facilitation in the crayfish claw opener is not due to a change in the presynaptic action potential, but is due to some change at a later step in the depolarization-secretion process.
2017-07-01
AWARD NUMBER: W81XWH-15-2-0026 TITLE: Clinical Evaluation of Decellularized Nerve Allograft with Autologous Bone Marrow Stem Cells to Improve...of Decellularized Nerve Allograft with 5a. CONTRACT NUMBER Autologous Bone Marrow Stem Cells to Improve Peripheral Nerve 5b. GRANT NUMBER W81XWH...commercially available decellularized processed peripheral nerve allograft scaffold (Avance® Nerve Graft, AxoGen, Alachua FL) with autologous bone marrow
Kaidoh, T; Inoué, T
2000-05-15
Hair follicles have a longitudinal set of sensory nerve endings called palisade nerve endings (PN). We examined the junctional structures between the PN and outer root sheath (ORS) cells of hair follicles in the rat external ear. Transmission electron microscopy of serial thin sections showed that the processes of the ORS cells penetrated the basal lamina of the hair follicle, forming intercellular junctions with the PN (PN-ORS junctions). Two types of junctions were found: junctions between nerve endings and ORS cells (N-ORS junctions) and those between Schwann cell processes and ORS cells (S-ORS junctions). The N-ORS junctions had two subtypes: 1) a short process or small eminence of the ORS cell was attached to the nerve ending (type I); or 2) a process of the ORS cell was invaginated into the nerve ending (type II). The S-ORS junctions also had two subtypes: 1) a short process or small eminence of the ORS cell was abutted on the Schwann cell process (type I); or 2) a process of the ORS cell was invaginated into the Schwann cell process (type II). Vesicles, coated pits, coated vesicles, and endosomes were sometimes seen in nerve endings, Schwann cells, and ORS cells near the junctions. Computer-aided reconstruction of the serial thin sections displayed the three-dimensional structure of these junctions. These results suggested that the PN-ORS junctions provided direct relationships between the PN and ORS in at least four different patterns. The discovery of these junctions shows the PN-ORS relationship to be closer than previously realized. We speculate that these junctions may have roles in attachment of the PN to the ORS, contributing to increases in the sensitivity of the PN, and in chemical signaling between the PN and ORS.
Cruzat, Andrea; Hamrah, Pedram; Cavalcanti, Bernardo M.; Zheng, Lixin; Colby, Kathryn; Pavan-Langston, Deborah
2016-01-01
Purpose To study corneal reinnervation and sensation recovery in Herpes zoster Ophthalmicus (HZO). Methods Two patients with HZO were studied over time with serial corneal esthesiometry and laser in vivo confocal microscopy (IVCM). A Boston keratoprosthesis (B-KPro) type 1 was implanted and the explanted corneal tissues were examined by immunofluorescence histochemistry for βIII-tubulin to stain for corneal nerves. Results The initial central corneal IVCM performed in each patient, showed a complete lack of the subbasal nerve plexus, which was in accordance with severe loss of sensation (0 of 6 cm) measured by esthesiometry. When IVCM was repeated 2 years later prior to undergoing surgery, Case 1 showed a persistent lack of central subbasal nerves and sensation (0 of 6). In contrast, Case 2 showed regeneration of the central subbasal nerves (4,786 µm/mm2) with partial recovery of corneal sensation (2.5 of 6 cm). Immunostaining of the explanted corneal button in Case 1 showed no corneal nerves while Case 2, showed central and peripheral corneal nerves. Eight months after surgery, IVCM was again repeated in the donor tissue around the B-KPro in both patients, to study innervation of the corneal transplant. Case 1 showed no nerves, while Case 2 showed new nerves growing from the periphery into the corneal graft. Conclusions We demonstrate that regaining corneal innervation and function is possible in patients with HZO as shown by corneal sensation, IVCM, and ex-vivo immunostaining, indicating zoster neural damage is not always permanent and it may recover over an extended period of time. PMID:26989956
Ho, Karen; Melanson, Michel; Desai, Jamsheed A
2012-09-01
Lyme disease caused by the spirochete Borrelia burgdorferi is a multisystem disorder characterized by three clinical stages: dermatologic, neurologic, and rheumatologic. The number of known Lyme disease-endemic areas in Canada is increasing as the range of the vector Ixodes scapularis expands into the eastern and central provinces. Southern Ontario, Nova Scotia, southern Manitoba, New Brunswick, and southern Quebec are now considered Lyme disease-endemic regions in Canada. The use of field surveillance to map risk and endemic regions suggests that these geographic areas are growing, in part due to the effects of climate warming. Peripheral facial nerve palsy is the most common neurologic abnormality in the second stage of Lyme borreliosis, with up to 25% of Bell palsy (idiopathic peripheral facial nerve palsy) occurring due to Lyme disease. Here we present a case of occult bilateral facial nerve palsy due to Lyme disease initially diagnosed as Bell palsy. In Lyme disease-endemic regions of Canada, patients presenting with unilateral or bilateral peripheral facial nerve palsy should be evaluated for Lyme disease with serologic testing to avoid misdiagnosis. Serologic testing should not delay initiation of appropriate treatment for presumed Bell palsy.
Electrophysiology of Cranial Nerve Testing: Trigeminal and Facial Nerves.
Muzyka, Iryna M; Estephan, Bachir
2018-01-01
The clinical examination of the trigeminal and facial nerves provides significant diagnostic value, especially in the localization of lesions in disorders affecting the central and/or peripheral nervous system. The electrodiagnostic evaluation of these nerves and their pathways adds further accuracy and reliability to the diagnostic investigation and the localization process, especially when different testing methods are combined based on the clinical presentation and the electrophysiological findings. The diagnostic uniqueness of the trigeminal and facial nerves is their connectivity and their coparticipation in reflexes commonly used in clinical practice, namely the blink and corneal reflexes. The other reflexes used in the diagnostic process and lesion localization are very nerve specific and add more diagnostic yield to the workup of certain disorders of the nervous system. This article provides a review of commonly used electrodiagnostic studies and techniques in the evaluation and lesion localization of cranial nerves V and VII.
Rinker, Brian D; Ingari, John V; Greenberg, Jeffrey A; Thayer, Wesley P; Safa, Bauback; Buncke, Gregory M
2015-06-01
Short-gap digital nerve injuries are a common surgical problem, but the optimal treatment modality is unknown. A multicenter database was queried and analyzed to determine the outcomes of nerve gap reconstructions between 5 and 15 mm with processed nerve allograft. The current RANGER registry is designed to continuously monitor and compile injury, repair, safety, and outcomes data. Centers followed their own standard of care for treatment and follow-up. The database was queried for digital nerve injuries with a gap between 5 and 15 mm reporting sufficient follow-up data to complete outcomes analysis. Available quantitative outcome measures were reviewed and reported. Meaningful recovery was defined by the Medical Research Council Classification (MRCC) scale at S3-S4 for sensory function. Sufficient follow-up data were available for 24 subjects (37 repairs) in the prescribed gap range. Mean age was 43 years (range, 23-81). Mean gap was 11 ± 3 (5-15) mm. Time to repair was 13 ± 42 (0-215) days. There were 25 lacerations, 8 avulsion/amputations, 2 gunshots, 1 crush injury, and 1 injury of unknown mechanism. Meaningful recovery, defined as S3-S4 on the MRCC scales, was reported in 92% of repairs. Sensory recovery of S3+ or S4 was observed in 84% of repairs. Static 2PD was 7.1 ± 2.9 mm (n = 19). Return to light touch was observed in 23 out of 32 repairs reporting Semmes-Weinstein monofilament outcomes (SWMF). There were no reported nerve adverse events. Sensory outcomes for processed nerve allografts were equivalent to historical controls for nerve autograft and exceed those of conduit. Processed nerve allografts provide an effective solution for short-gap digital nerve reconstructions. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Sonographic identification of peripheral nerves in the forearm
Jackson, Saundra A.; Derr, Charlotte; De Lucia, Anthony; Harris, Marvin; Closser, Zuheily; Miladinovic, Branko; Mhaskar, Rahul; Jorgensen, Theresa; Green, Lori
2016-01-01
Background: With the growing utilization of ultrasonography in emergency medicine combined with the concern over adequate pain management in the emergency department (ED), ultrasound guidance for peripheral nerve blockade in ED is an area of increasing interest. The medical literature has multiple reports supporting the use of ultrasound guidance in peripheral nerve blocks. However, to perform a peripheral nerve block, one must first be able to reliably identify the specific nerve before the procedure. Objective: The primary purpose of this study is to describe the number of supervised peripheral nerve examinations that are necessary for an emergency medicine physician to gain proficiency in accurately locating and identifying the median, radial, and ulnar nerves of the forearm via ultrasound. Methods: The proficiency outcome was defined as the number of attempts before a resident is able to correctly locate and identify the nerves on ten consecutive examinations. Didactic education was provided via a 1 h lecture on forearm anatomy, sonographic technique, and identification of the nerves. Participants also received two supervised hands-on examinations for each nerve. Count data are summarized using percentages or medians and range. Random effects negative binomial regression was used for modeling panel count data. Results: Complete data for the number of attempts, gender, and postgraduate year (PGY) training year were available for 38 residents. Nineteen males and 19 females performed examinations. The median PGY year in practice was 3 (range 1–3), with 10 (27%) in year 1, 8 (22%) in year 2, and 19 (51%) in year 3 or beyond. The median number (range) of required supervised attempts for radial, median, and ulnar nerves was 1 (0–12), 0 (0–10), and 0 (0–17), respectively. Conclusion: We can conclude that the maximum number of supervised attempts to achieve accurate nerve identification was 17 (ulnar), 12 (radial), and 10 (median) in our study. The only significant association was found between years in practice and proficiency (P = 0.025). We plan to expound upon this research with an additional future study that aims to assess the physician's ability to adequately perform peripheral nerve blocks in efforts to decrease the need for more generalized procedural sedation. PMID:27904260
2016-07-01
AWARD NUMBER: W81XWH-15-2-0026 TITLE: Clinical Evaluation of Decellularized Nerve Allograft With Autologous Bone Marrow Stem Cells To Improve...5b. GRANT NUMBER W81XWH-15-2-0026 CClinical Evaluation of Decellularized Nerve Allograft With Autologous Bone Marrow Stem Cells To Improve...co- treatments of a commercially available decellularized processed peripheral nerve allograft scaffold (Avance® Nerve Graft, AxoGen, Alachua FL) with
Natural history of idiopathic abducens nerve paresis in a young adult.
Hussaindeen, Jameel Rizwana; Mani, Revathy; Rakshit, Archayeeta; Ramasubramanian, Srikanth; Vittal Praveen, Smitha
2016-01-01
The natural history of idiopathic abducens nerve paresis and the role of conservative management such as vision training during the recovery process is not well documented in the literature to the best of our knowledge. This case report presents the natural recovery process of idiopathic abducens nerve paresis in a young adult and the role of vision therapy in the recovery process. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.
Mottaghitalab, Fatemeh; Farokhi, Mehdi; Zaminy, Arash; Kokabi, Mehrdad; Soleimani, Masoud; Mirahmadi, Fereshteh
2013-01-01
As a contribution to the functionality of nerve guide conduits (NGCs) in nerve tissue engineering, here we report a conduit processing technique through introduction and evaluation of topographical, physical and chemical cues. Porous structure of NGCs based on freeze-dried silk/single walled carbon nanotubes (SF/SWNTs) has shown a uniform chemical and physical structure with suitable electrical conductivity. Moreover, fibronectin (FN) containing nanofibers within the structure of SF/SWNT conduits produced through electrospinning process have shown aligned fashion with appropriate porosity and diameter. Moreover, fibronectin remained its bioactivity and influenced the adhesion and growth of U373 cell lines. The conduits were then implanted to 10 mm left sciatic nerve defects in rats. The histological assessment has shown that nerve regeneration has taken places in proximal region of implanted nerve after 5 weeks following surgery. Furthermore, nerve conduction velocities (NCV) and more myelinated axons were observed in SF/SWNT and SF/SWNT/FN groups after 5 weeks post implantation, indicating a functional recovery for the injured nerves. With immunohistochemistry, the higher S-100 expression of Schwann cells in SF/SWNT/FN conduits in comparison to other groups was confirmed. In conclusion, an oriented conduit of biocompatible SF/SWNT/FN has been fabricated with acceptable structure that is particularly applicable in nerve grafts. PMID:24098649
Nerve injuries of the upper extremity and hand
Dahlin, Lars B.; Wiberg, Mikael
2017-01-01
A nerve injury has a profound impact on the patient’s daily life due to the impaired sensory and motor function, impaired dexterity, sensitivity to cold as well as eventual pain problems. To perform an appropriate treatment of nerve injuries, a correct diagnosis must be made, where the injury is properly classified, leading to an optimal surgical approach and technique, where timing of surgery is also important for the outcome. Knowledge about the nerve regeneration process, where delicate processes occur in neurons, non-neuronal cells (i.e. Schwann cells) and other cells in the peripheral as well as the central nervous systems, is crucial for the treating surgeon. The surgical decision to perform nerve repair and/or reconstruction depends on the type of injury, the condition of the wound as well as the vascularity of the wound. To reconnect injured nerve ends, various techniques can be used, which include both epineurial and fascicular nerve repair, and if a nerve defect is caused by the injury, a nerve reconstruction procedure has to be performed, including bridging the defect using nerve-grafts or nerve transfer techniques. The patients must be evaluated properly and regularly after the surgical procedure and appropriate rehabilitation programmes are useful to improve the final outcome. Cite this article: EFORT Open Rev 2017;2. DOI: 10.1302/2058-5241.2.160071. Originally published online at www.efortopenreviews.org PMID:28630754
Park, Hyun Jun; Kim, Tae Nam; Baek, Seung Ryong; Lee, Kyung Min; Choi, Kyung-Un; Park, Nam Cheol
2016-09-01
Traumatic neuroma is a reactive process caused by the regeneration of an injured nerve that usually forms a nodular proliferation of small nerve bundles. Penile traumatic neuroma is rare; only a few cases related to circumcision have been reported. To report on a case of traumatic neuroma in the penis after selective dorsal neurotomy (SDN) to treat premature ejaculation. The penile traumatic neuroma was successfully removed by excision and confirmed by histopathology. A 55-year-old man who had had several painless, slow-growing nodules on his penis for 2 years presented to our hospital. He had no history of genital trauma, urinary tract infection, or penile surgery, except SDN to treat premature ejaculation. The nodules were excised and the final diagnosis was traumatic neuroma. No recurrence has been detected during 1 year of follow-up. The main complications of SDN are recurrence of premature ejaculation, pain or paresthesia on the glans penis, and erectile dysfunction. However, no traumatic neuroma has been reported as a complication. We report that a traumatic neuroma can occur after SDN. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Technique for laparoscopic autonomic nerve preserving total mesorectal excision.
Breukink, S O; Pierie, J P E N; Hoff, C; Wiggers, T; Meijerink, W J H J
2006-05-01
With the introduction of total mesorectal excision (TME) for treatment of rectal cancer, the prognosis of patients with rectal cancer is improved. With this better prognosis, there is a growing awareness about the quality of life of patients after rectal carcinoma. Laparoscopic total mesorectal excision (LTME) for rectal cancer offers several advantages in comparison with open total mesorectal excision (OTME), including greater patient comfort and an earlier return to daily activities while preserving the oncologic radicality of the procedure. Moreover, laparoscopy allows good exposure of the pelvic cavity because of magnification and good illumination. The laparoscope seems to facilitate pelvic dissection including identification and preservation of critical structures such as the autonomic nervous system. The technique for laparoscopic autonomic nerve preserving total mesorectal excision is reported. A three- or four-port technique is used. Vascular ligation, sharp mesorectal dissection and identification and preservation of the autonomic pelvic nerves are described.
Odat, Haitham; Alawneh, Khaled; Al-Qudah, Mohannad
2018-01-01
Jugular paragangliomas are slow growing highly vascular tumors arising from jugular paraganglia. The gold standard of treatment is complete surgical resection. Pre-operative embolization of these highly vascular tumors is essential to reduce intra-operative bleeding, allow safe dissection, and decrease operative time and post-operative complications. Onyx (ethylene-vinyl alcohol copolymer) has been widely used as permanent occluding material for vascular tumors of skull base because of its unique physical properties. We present the case of a 33-year-old woman who had left-sided facial nerve paralysis after Onyx embolization of jugular paraganglioma. The tumor was resected on the next day of embolization. The patient was followed up for 30 months with serial imaging studies and facial nerve assessment. The facial verve function improved from House–Brackmann grade V to grade II at the last visit. PMID:29518926
Odat, Haitham; Alawneh, Khaled; Al-Qudah, Mohannad
2018-03-07
Jugular paragangliomas are slow growing highly vascular tumors arising from jugular paraganglia. The gold standard of treatment is complete surgical resection. Pre-operative embolization of these highly vascular tumors is essential to reduce intra-operative bleeding, allow safe dissection, and decrease operative time and post-operative complications. Onyx (ethylene-vinyl alcohol copolymer) has been widely used as permanent occluding material for vascular tumors of skull base because of its unique physical properties. We present the case of a 33-year-old woman who had left-sided facial nerve paralysis after Onyx embolization of jugular paraganglioma. The tumor was resected on the next day of embolization. The patient was followed up for 30 months with serial imaging studies and facial nerve assessment. The facial verve function improved from House-Brackmann grade V to grade II at the last visit.
[Experimental testing of Pflüger's reflex hypothesis of menstruation in late 19th century].
Simmer, H H
1980-07-01
Pflüger's hypothesis of a nerve reflex as the cause of menstruation published in 1865 and accepted by many, nonetheless did not lead to experimental investigations for 25 years. According to this hypothesis the nerve reflex starts in the ovary by an increase of the intraovarian pressure by the growing follicles. In 1884 Adolph Kehrer proposed a program to test the nerve reflex, but only in 1890, Cohnstein artificially increased the intraovarian pressure in women by bimanual compression from the outside and the vagina. His results were not convincing. Six years later, Strassmann injected fluids into ovaries of animals and obtained changes in the uterus resembling those of oestrus. His results seemed to verify a prognosis derived from Pflüger's hypothesis. Thus, after a long interval, that hypothesis had become a paradigma. Though reasons can be given for the delay, it is little understood, why experimental testing started so late.
Butler, R N; Lewis, M I; Hoffman, E; Whitehead, E D
1994-10-01
In the medical evaluation of older men with erectile dysfunction, obtain a detailed history to determine whether the dysfunction is organic or psychogenic. Determine if there are underlying pathologic processes--most notably vascular diseases--or other factors responsible for the dysfunction, such as medications or nerve or arterial damage from surgery. Lifestyle changes in mid-life (regular exercise, a low-fat diet, and smoking cessation) increase a man's chances of remaining potent as he grows older. Treatments for impotence include injection therapy, vacuum devices, and implants. Each therapy has advantages and disadvantages, and the informed patient plays an important role in choosing the therapy that is right for him.
ERIC Educational Resources Information Center
Steinweg, Sue Byrd; Griffin, Harold C.; Griffin, Linda W.; Gingras, Happy
2005-01-01
The eyes of premature infants are especially vulnerable to injury after birth. A serious complication is called retinopathy of prematurity (ROP), which is abnormal growth of the blood vessels in an infant's eye. Retinopathy of prematurity develops when abnormal blood vessels grow and spread throughout the retina, which is the nerve tissue at the…
Pathologic Remodeling of Endoneurial Tubules in Human Neuromas.
Karsy, Michael; Palmer, Cheryl A; Mahan, Mark A
2018-01-18
Laminins are extracellular matrix proteins that participate in endoneurial tubule formation and are important in the regeneration of nerves after injury. They act as scaffolds to guide nerves to distal targets and play a key role in neurite outgrowth. Because there is evidence that laminin architecture affects nerve regeneration, we evaluated endoneurial tubules by examining the laminin structure in clinical samples from patients with nerve injuries. In a retrospective review of eight nerve injury cases, we evaluated nerve histology in relation to clinical history and injury type. The immunohistochemical delineation of the laminin structure in relationship with the neuroma type was performed. Five cases of upper-trunk stretch injuries-four from childbirth injury and one from a motorcycle accident-and three cases of nerve laceration leading to neuroma formation were examined. In the upper-trunk stretch injuries, avulsed nerves demonstrated no neuroma formation with a linear laminin architecture and a regular Schwann cell arrangement, but increased fibrous tissue deposition. For neuromas-in-continuity after a stretch injury, laminin immunohistochemistry demonstrated a double-lumen laminin tubule, with encapsulation of the Schwann cells and axonal processes. Nerve laceration leading to stump neuroma formation had a similar double-lumen laminin tubule, but less severe fibrosis. In nerve injuries with regenerative capacity, endoneurial tubules become pathologically disorganized. A double-lumen endoneurial tubule of unclear significance develops. The consistency of this pattern potentially suggests a reproducible pathophysiologic process. Further exploration of this pathophysiologic healing may provide insight into the failure of programmed peripheral nerve regeneration after injury.
Surgical anatomy of the styloid muscles and the extracranial glossopharyngeal nerve.
Prades, J M; Gavid, M; Asanau, A; Timoshenko, A P; Richard, C; Martin, C H
2014-03-01
The purpose of the study was to determine the relationships between the extracranial glossopharyngeal (IX) nerve and the muscles of the styloid diaphragm. In humans, the IX nerve is a hidden retrostyloid nerve which plays a critical role notably in swallowing and has to be preserved during infratemporal fossa and parapharyngeal spaces surgical procedures. In ten adult heads from cadavers (20 sides) fixed in formalin, dissection of the extracranial IX nerve was performed under operating microscope with special attention given to the relationships between this nerve and the styloid muscles of the styloid diaphragm. The three styloid muscles delimit three triangular intermuscular intervals which were each thoroughly explored. Different osseous landmarks were investigated for easy nerve location. The styloid process (SP) is the main superior osseous landmark for the three muscles of the styloid diaphragm. The stylohyoid muscle (SHM) is anteromedially located to the posterior belly of the digastric muscle. The styloglossus muscle (SGM) is medial and anterior to the SHM. The stylopharyngeal muscle (SPM) is the most vertical and medial of the three styloid muscles. It courses from the medial surface of the SP in a deep plane hidden between the SHM and the SGM. The extracranial IX nerve turns around the SPM superiorly with a vertical segment posterior to the SPM and inferiorly with a horizontal segment lateral to the SPM. The meeting point of the two segments of the IX nerve is about 10 mm anteriorly located from the transverse process of the atlas. The external carotid artery and some of its branches lie in contact with the lateral side of the IX nerve. Such relationships between the extracranial IX nerve, the styloid muscles and the transverse process of the atlas should be appreciated by clinician who treats patients with stylohyoid complex syndromes and by the surgeon for the parapharyngeal spaces approach.
Tu, Yiji; Chen, Zenggan; Hu, Junda; Ding, Zuoyou; Lineaweaver, William C; Dellon, A Lee; Zhang, Feng
2018-04-25
This article investigates the role of chronic nerve compression in the progression of diabetic peripheral neuropathy (DPN) by gene expression profiling. Chronic nerve compression was created in streptozotocin (STZ)-induced diabetic rats by wrapping a silicone tube around the sciatic nerve (SCN). Neurological deficits were evaluated using pain threshold test, motor nerve conduction velocity (MNCV), and histopathologic examination. Differentially expressed genes (DGEs) and metabolic processes associated with chronic nerve compression were analyzed. Significant changes in withdrawal threshold and MNCV were observed in diabetic rats 6 weeks after diabetes induction, and in DPN rats 4 weeks after diabetes induction. Histopathologic examination of the SCN in DPN rats presented typical changes of myelin degeneration in DPN. Function analyses of DEGs demonstrated that biological processes related to inflammatory response, extracellular matrix component, and synaptic transmission were upregulated after diabetes induction, and chronic nerve compression further enhanced those changes. While processes related to lipid and glucose metabolism, response to insulin, and apoptosis regulation were inhibited after diabetes induction, chronic nerve compression further enhanced these inhibitions. Our study suggests that additional silicone tube wrapping on the SCN of rat with diabetes closely mimics the course and pathologic findings of human DPN. Further studies are needed to verify the effectiveness of this rat model of DPN and elucidate the roles of the individual genes in the progression of DPN. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Structural parameters of collagen nerve grafts influence peripheral nerve regeneration.
Stang, Felix; Fansa, Hisham; Wolf, Gerald; Reppin, Michael; Keilhoff, Gerburg
2005-06-01
Large nerve defects require nerve grafts to allow regeneration. To avoid donor nerve problems the concept of tissue engineering was introduced into nerve surgery. However, non-neuronal grafts support axonal regeneration only to a certain extent. They lack viable Schwann cells which provide neurotrophic and neurotopic factors and guide the sprouting nerve. This experimental study used the rat sciatic nerve to bridge 2 cm nerve gaps with collagen (type I/III) tubes. The tubes were different in their physical structure (hollow versus inner collagen skeleton, different inner diameters). To improve regeneration Schwann cells were implanted. After 8 weeks the regeneration process was monitored clinically, histologically and morphometrically. Autologous nerve grafts and collagen tubes without Schwann cells served as control. In all parameters autologous nerve grafts showed best regeneration. Nerve regeneration in a noteworthy quality was also seen with hollow collagen tubes and tubes with reduced lumen, both filled with Schwann cells. The inner skeleton, however, impaired nerve regeneration independent of whether Schwann cells were added or not. This indicates that not only viable Schwann cells are an imperative prerequisite but also structural parameters determine peripheral nerve regeneration.
Traditional Japanese medicines inhibit compound action potentials in the frog sciatic nerve.
Matsushita, Akitomo; Fujita, Tsugumi; Ohtsubo, Sena; Kumamoto, Eiichi
2016-02-03
Traditional Japanese (Kampo) medicines have a variety of clinical effects including pain alleviation, but evidence for a mechanism for their pain relief has not yet been elucidated fully. Considering that Kampo medicine contains many plant-derived chemicals having an ability to inhibit nerve action potential conduction, it is possible that this medicine inhibits nerve conduction. The purpose of the present study was to know how various Kampo medicines affect nerve conduction. We examined the effects of Kampo and crude medicines on compound action potentials (CAPs) recorded from the frog sciatic nerve by using the air-gap method. Daikenchuto, rikkosan, kikyoto, rikkunshito, shakuyakukanzoto and kakkonto concentration-dependently reduced the peak amplitude of the CAP. Among the Kampo medicines, daikenchuto was the most effective in inhibiting CAPs. Daikenchuto is composed of three kinds of crude medicine, Japanese pepper, processed ginger and ginseng radix. When the crude medicines were tested, Japanese pepper and processed ginger reduced CAP peak amplitudes, while ginseng radix hardly affected CAPs. Moreover, there was an interaction between the Japanese pepper and processed ginger activities in such that one medicine at low but not high concentrations increased the extent of the inhibition by the other one that was co-applied. Kampo medicines have an ability to inhibit nerve conduction. This action of daikenchuto is due to Japanese pepper and processed ginger but not ginseng radix, probably through an interaction between Japanese pepper and processed ginger in a manner dependent on their concentrations. Nerve conduction inhibition could contribute to at least a part of Kampo medicine's clinical effects such as pain alleviation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Henry, Kenneth S.; Heinz, Michael G.
2013-01-01
People with sensorineural hearing loss have substantial difficulty understanding speech under degraded listening conditions. Behavioral studies suggest that this difficulty may be caused by changes in auditory processing of the rapidly-varying temporal fine structure (TFS) of acoustic signals. In this paper, we review the presently known effects of sensorineural hearing loss on processing of TFS and slower envelope modulations in the peripheral auditory system of mammals. Cochlear damage has relatively subtle effects on phase locking by auditory-nerve fibers to the temporal structure of narrowband signals under quiet conditions. In background noise, however, sensorineural loss does substantially reduce phase locking to the TFS of pure-tone stimuli. For auditory processing of broadband stimuli, sensorineural hearing loss has been shown to severely alter the neural representation of temporal information along the tonotopic axis of the cochlea. Notably, auditory-nerve fibers innervating the high-frequency part of the cochlea grow increasingly responsive to low-frequency TFS information and less responsive to temporal information near their characteristic frequency (CF). Cochlear damage also increases the correlation of the response to TFS across fibers of varying CF, decreases the traveling-wave delay between TFS responses of fibers with different CFs, and can increase the range of temporal modulation frequencies encoded in the periphery for broadband sounds. Weaker neural coding of temporal structure in background noise and degraded coding of broadband signals along the tonotopic axis of the cochlea are expected to contribute considerably to speech perception problems in people with sensorineural hearing loss. PMID:23376018
[Morphologic changes during neuroplastic nerve restoration].
Bakalski, E P; Rozhkov, E N
1976-06-01
The dynamics of ultrastructural changes in plastic recovery of the function of the additional nerve by the anterior branch of the second cervical nerve was studied. The nerve cells at the level of the donor-nerve were found to be highly reactive and plastic. It was established that in the process of heterogenic regeneration of the nerve the most substantial changes in neuronal structures were observed during the first two months. The cysterns of the endoplasmic network remained dilated for a long time after platic operation with might be related with the increased protein metabolism in the neuron.
Pathologic Remodeling of Endoneurial Tubules in Human Neuromas
Karsy, Michael; Palmer, Cheryl A
2018-01-01
Background: Laminins are extracellular matrix proteins that participate in endoneurial tubule formation and are important in the regeneration of nerves after injury. They act as scaffolds to guide nerves to distal targets and play a key role in neurite outgrowth. Because there is evidence that laminin architecture affects nerve regeneration, we evaluated endoneurial tubules by examining the laminin structure in clinical samples from patients with nerve injuries. Methods: In a retrospective review of eight nerve injury cases, we evaluated nerve histology in relation to clinical history and injury type. The immunohistochemical delineation of the laminin structure in relationship with the neuroma type was performed. Results: Five cases of upper-trunk stretch injuries—four from childbirth injury and one from a motorcycle accident—and three cases of nerve laceration leading to neuroma formation were examined. In the upper-trunk stretch injuries, avulsed nerves demonstrated no neuroma formation with a linear laminin architecture and a regular Schwann cell arrangement, but increased fibrous tissue deposition. For neuromas-in-continuity after a stretch injury, laminin immunohistochemistry demonstrated a double-lumen laminin tubule, with encapsulation of the Schwann cells and axonal processes. Nerve laceration leading to stump neuroma formation had a similar double-lumen laminin tubule, but less severe fibrosis. Conclusions: In nerve injuries with regenerative capacity, endoneurial tubules become pathologically disorganized. A double-lumen endoneurial tubule of unclear significance develops. The consistency of this pattern potentially suggests a reproducible pathophysiologic process. Further exploration of this pathophysiologic healing may provide insight into the failure of programmed peripheral nerve regeneration after injury. PMID:29560300
Pena, J D; Mello, P A; Hernandez, M R
2000-05-01
The purpose of this study was to identify elastic microfibrillar components fibrillin-1 and fibrillin-2 in optic nerve heads of adult normal and glaucomatous subjects, in cultured optic nerve head astrocytes (type 1B astrocytes), as well as fibrillin-1 in fetal optic nerve heads. To characterize synthesis and gene expression of microfibrillar proteins in human optic nerve heads and cultured type 1B astrocytes, light microscopy immunohistochemistry, in situ hybridization, and RT-PCR or Northern blots were performed. Our results demonstrated that fibrillin-1 was associated with blood vessels, astrocytes in the glial columns and cribriform plates, and with astrocyte processes in the nerve bundles in all samples. In glaucomatous optic nerves there was enhanced fibrillin-1 immunoreactivity, especially surrounding blood vessels. Fibrillin-2 was localized primarily to blood vessels in all samples, without qualitative differences between normal and glaucomatous samples. In fetal optic nerve heads fibrillin-1 mRNA was localized to glial cells and to the blood vessel walls. In adult optic nerve heads, there was little fibrillin-1 mRNA as detectable by in situ hybridization and RT-PCR. There was no detectable upregulation of fibrillin-1 mRNA in glaucoma. In cultured type 1B astrocytes, fibrillin-1 staining was mostly pericellular. There was little fibrillin-2 immunoreactivity. In conclusion, astrocytes from the optic nerve head deposit elastic microfibrillar components in situ and in vitro, with a predominance of fibrillin-1. Upregulation of fibrillin-1 mRNA was not observed in glaucoma, suggesting that increased transcription may occur early in the disease process. Cultures of type 1B astrocytes from the optic nerve head provides a useful model to study mechanisms regulating the interactions of elastin and the microfibrils in optic nerve head astrocytes.
Tubbs, R Shane; Fries, Fabian N; Kulwin, Charles; Mortazavi, Martin M; Loukas, Marios; Cohen-Gadol, Aaron A
2016-10-01
Chronic postoperative neuralgias and headache following retrosigmoid craniotomy can be uncomfortable for the patient. We aimed to better elucidate the regional nerve anatomy in an effort to minimize this postoperative complication. Ten adult cadaveric heads (20 sides) were dissected to observe the relationship between the lesser occipital nerve and a traditional linear versus modified U incision during retrosigmoid craniotomy. Additionally, the relationship between these incisions and the occipital artery were observed. The lesser occipital nerve was found to have two types of course. Type I nerves (60%) remained close to the posterior border of the sternocleidomastoid muscle and some crossed anteriorly over the sternocleidomastoid muscle near the mastoid process. Type II nerves (40%) left the posterior border of the sternocleidomastoid muscle and swung medially (up to 4.5cm posterior to the posterior border of the sternocleidomastoid muscle) as they ascended over the occiput. The lesser occipital nerve was near a midpoint of a line between the external occipital protuberance and mastoid process in all specimens with the type II nerve configuration. Based on our findings, the inverted U incision would be less likely to injure the type II nerves but would necessarily cross over type I nerves, especially more cranially on the nerve at the apex of the incision. As the more traditional linear incision would most likely transect the type I nerves and more so near their trunk, the U incision may be the overall better choice in avoiding neural and occipital artery injury during retrosigmoid approaches. Copyright © 2016 Elsevier Ltd. All rights reserved.
Surgical Anatomy of the Cervical Part of the Hypoglossal Nerve.
Kariuki, Brian Ngure; Butt, Fawzia; Mandela, Pamela; Odula, Paul
2018-03-01
Iatrogenic injuries to cranial nerves, half of which affect the hypoglossal nerve, occur in up to 20% of surgical procedures involving the neck. The risk of injury could be minimized by in-depth knowledge of its positional and relational anatomy. Forty-one hypoglossal nerves were dissected from cadaveric specimens and positions described in relation to the internal carotid artery (ICA), external carotid artery (ECA), carotid bifurcation, mandible, hyoid bone, mastoid process, and the digastric tendon. The distance of the nerve from where it crossed the ICA and ECA to the carotid bifurcation was 29.93 (±5.99) mm and 15.19 (±6.68) mm, respectively. The point where it crossed the ICA was 12.24 (±3.71) mm superior to the greater horn of hyoid, 17.16 (±4.40) mm inferior to the angle of the mandible, and 39.08 (±5.69) mm from tip of the mastoid. The hypoglossal nerve loop was inferior to the digastric tendon in 73% of the cases. The hypoglossal nerves formed high loops in this study population. Caution should be exercised during surgical procedures in the neck. The study also revealed that the mastoid process is a reliable fixed landmark to locate the hypoglossal nerve.
Strauss, G; Strauss, M; Lüders, C; Stopp, S; Shi, J; Dietz, A; Lüth, T
2008-10-01
PROBLEM DEFINITION: The goal of this work is the integration of the information of the intraoperative EMG monitoring of the facial nerve into the radiological data of the petrous bone. The following hypotheses are to be examined: (I) the N. VII can be determined intraoperatively with a high reliability by the stimulation-probe. A computer program is able to discriminate true-positive EMG signals from false-positive artifacts. (II) The course of the facial nerve can be registered in a three-dimensional area by EMG signals at a nerve model in the lab test. The individual items of the nerve can be combined into a route model. The route model can be integrated into the data of digital volume tomography (DVT). (I) Intraoperative EMG signals of the facial nerve were classified at 128 measurements by an automatic software. The results were correlated with the actual intraoperative situation. (II) The nerve phantom was designed and a DVT data set was provided. Phantom was registered with a navigation system (Karl Storz NPU, Tuttlingen, Germany). The stimulation probe of the EMG-system was tracked by the navigation system. The navigation system was extended by a processing unit (MiMed, Technische Universität München, Germany). Thus the classified EMG parameters of the facial route can be received, processed and be generated to a model of the facial nerve route. The operability was examined at 120 (10 x 12) measuring points. The evaluation of the examined algorithm for classification EMG-signals of the facial nerve resulted as correct in all measuring events. In all 10 attempts it succeeded to visualize the nerve route as three-dimensional model. The different sizes of the individual measuring points reflect the appropriate values of Istim and UEMG correctly. This work proves the feasibility of an automatic classification of an intraoperative EMG signal of the facial nerve by a processing unit. Furthermore the work shows the feasibility of tracking of the position of the stimulation probe and its integration into amodel of the route of the facial nerve (e. g. DVT). The rediability, with which the position of the nerve can be seized by the stimulation probe, is also included into the resulting route model.
Best multimodal analgesic protocol for total knee arthroplasty.
Webb, Christopher A J; Mariano, Edward R
2015-01-01
Total knee arthroplasty is one of the most commonly performed operations in the USA. As with any elective joint surgery, the primary goal includes functional restoration that is not limited by pain. The use of peripheral nerve blocks for patients undergoing knee arthroplasty has resulted in decreased pain scores, improved early ambulation and decreased time to achieve hospital discharge criteria. Concern has been raised over the potential risks of femoral nerve block, and there has been growing support for the adductor canal block. It is the author's opinion that when not contraindicated, intraoperative neuraxial anesthesia combined with a continuous adductor canal block and a multimodal medication regimen for postoperative pain control is the best analgesic protocol for knee arthroplasty.
OCT image segmentation of the prostate nerves
NASA Astrophysics Data System (ADS)
Chitchian, Shahab; Weldon, Thomas P.; Fried, Nathaniel M.
2009-08-01
The cavernous nerves course along the surface of the prostate and are responsible for erectile function. Improvements in identification, imaging, and visualization of the cavernous nerves during prostate cancer surgery may improve nerve preservation and postoperative sexual potency. In this study, 2-D OCT images of the rat prostate were segmented to differentiate the cavernous nerves from the prostate gland. Three image features were employed: Gabor filter, Daubechies wavelet, and Laws filter. The features were segmented using a nearestneighbor classifier. N-ary morphological post-processing was used to remove small voids. The cavernous nerves were differentiated from the prostate gland with a segmentation error rate of only 0.058 +/- 0.019.
Peripheral nerve regeneration with conduits: use of vein tubes
Sabongi, Rodrigo Guerra; Fernandes, Marcela; dos Santos, João Baptista Gomes
2015-01-01
Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the complexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the autologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent loss of function. Tubolization techniques have been developed to bridge nerve gaps and have been extensively studied in numerous experimental and clinical trials. The use of a conduit intends to act as a vehicle for moderation and modulation of the cellular and molecular ambience for nerve regeneration. Among several conduits, vein tubes were validated for clinical application with improving outcomes over the years. This article aims to address the investigation and treatment of segmental nerve injury and draw the current panorama on the use of vein tubes as an autogenous nerve conduit. PMID:26170802
Peripheral nerve regeneration with conduits: use of vein tubes.
Sabongi, Rodrigo Guerra; Fernandes, Marcela; Dos Santos, João Baptista Gomes
2015-04-01
Treatment of peripheral nerve injuries remains a challenge to modern medicine due to the complexity of the neurobiological nerve regenerating process. There is a greater challenge when the transected nerve ends are not amenable to primary end-to-end tensionless neurorraphy. When facing a segmental nerve defect, great effort has been made to develop an alternative to the autologous nerve graft in order to circumvent morbidity at donor site, such as neuroma formation, scarring and permanent loss of function. Tubolization techniques have been developed to bridge nerve gaps and have been extensively studied in numerous experimental and clinical trials. The use of a conduit intends to act as a vehicle for moderation and modulation of the cellular and molecular ambience for nerve regeneration. Among several conduits, vein tubes were validated for clinical application with improving outcomes over the years. This article aims to address the investigation and treatment of segmental nerve injury and draw the current panorama on the use of vein tubes as an autogenous nerve conduit.
Morphological study of the innervation pattern of the rabbit sinoatrial node
NASA Technical Reports Server (NTRS)
Roberts, L. A.; Slocum, G. R.; Riley, D. A.
1989-01-01
The pattern of sinoatrial (SA) node innervations in rabbit was elucidated using a newly developed highly reproducible cholinesterase/silver impregnation staining procedure which made it possible to delineate large nerves, fine processes, and ganglion cells. The SA node and dominant pacemaker sites were identified by microelectrode recording. A generalized pattern of innnervation was recognized, which includes a large ganglionic complex inferior to the SA node; two or more moderately large nerves traversing the SA node parallel to the crista terminalis; nerves entering the intercaval region from the septum, the superior vena cava, and the inferior vena cava to impinge on the SA node; and a fine network of nerve processes, which was particularly dense in the SA node. From the location and distribution of the nerves and ganglionic branches, it can be inferred that the neural network in the intercaval region is capable of performing complex modulatory and integrative functions among the structures within this region.
Concentration Dependent Actions of Glucocorticoids on Neuronal Viability and Survival
Ábrahám, István M; Meerlo, Peter; Luiten, Paul GM
2006-01-01
A growing body of evidence based on experimental data demonstrates that glucocorticoids (GCs) can play a potent role in the survival and death of neurons. However, these observations reflect paradoxical features of GCs, since these adrenal stress hormones are heavily involved in both neurodegenerative and neuroprotective processes. The actual level of GCs appears to have an essential impact in this bimodal action. In the present short review we aim to show the importance of concentration dependent action of GCs on neuronal cell viability and cell survival in the brain. Additionally, we will summarize the possible GC-induced cellular mechanisms at different GC concentrations providing a background for their effect on the fate of nerve cells in conditions that are a challenge to their survival. PMID:18648635
Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals
NASA Astrophysics Data System (ADS)
Pelot, N. A.; Behrend, C. E.; Grill, W. M.
2017-08-01
Objective. There is growing interest in electrical neuromodulation of peripheral nerves, particularly autonomic nerves, to treat various diseases. Electrical signals in the kilohertz frequency (KHF) range can produce different responses, including conduction block. For example, EnteroMedics’ vBloc® therapy for obesity delivers 5 kHz stimulation to block the abdominal vagus nerves, but the mechanisms of action are unclear. Approach. We developed a two-part computational model, coupling a 3D finite element model of a cuff electrode around the human abdominal vagus nerve with biophysically-realistic electrical circuit equivalent (cable) model axons (1, 2, and 5.7 µm in diameter). We developed an automated algorithm to classify conduction responses as subthreshold (transmission), KHF-evoked activity (excitation), or block. We quantified neural responses across kilohertz frequencies (5-20 kHz), amplitudes (1-8 mA), and electrode designs. Main results. We found heterogeneous conduction responses across the modeled nerve trunk, both for a given parameter set and across parameter sets, although most suprathreshold responses were excitation, rather than block. The firing patterns were irregular near transmission and block boundaries, but otherwise regular, and mean firing rates varied with electrode-fibre distance. Further, we identified excitation responses at amplitudes above block threshold, termed ‘re-excitation’, arising from action potentials initiated at virtual cathodes. Excitation and block thresholds decreased with smaller electrode-fibre distances, larger fibre diameters, and lower kilohertz frequencies. A point source model predicted a larger fraction of blocked fibres and greater change of threshold with distance as compared to the realistic cuff and nerve model. Significance. Our findings of widespread asynchronous KHF-evoked activity suggest that conduction block in the abdominal vagus nerves is unlikely with current clinical parameters. Our results indicate that compound neural or downstream muscle force recordings may be unreliable as quantitative measures of neural activity for in vivo studies or as biomarkers in closed-loop clinical devices.
Modeling the response of small myelinated axons in a compound nerve to kilohertz frequency signals.
Pelot, N A; Behrend, C E; Grill, W M
2017-08-01
There is growing interest in electrical neuromodulation of peripheral nerves, particularly autonomic nerves, to treat various diseases. Electrical signals in the kilohertz frequency (KHF) range can produce different responses, including conduction block. For example, EnteroMedics' vBloc ® therapy for obesity delivers 5 kHz stimulation to block the abdominal vagus nerves, but the mechanisms of action are unclear. We developed a two-part computational model, coupling a 3D finite element model of a cuff electrode around the human abdominal vagus nerve with biophysically-realistic electrical circuit equivalent (cable) model axons (1, 2, and 5.7 µm in diameter). We developed an automated algorithm to classify conduction responses as subthreshold (transmission), KHF-evoked activity (excitation), or block. We quantified neural responses across kilohertz frequencies (5-20 kHz), amplitudes (1-8 mA), and electrode designs. We found heterogeneous conduction responses across the modeled nerve trunk, both for a given parameter set and across parameter sets, although most suprathreshold responses were excitation, rather than block. The firing patterns were irregular near transmission and block boundaries, but otherwise regular, and mean firing rates varied with electrode-fibre distance. Further, we identified excitation responses at amplitudes above block threshold, termed 're-excitation', arising from action potentials initiated at virtual cathodes. Excitation and block thresholds decreased with smaller electrode-fibre distances, larger fibre diameters, and lower kilohertz frequencies. A point source model predicted a larger fraction of blocked fibres and greater change of threshold with distance as compared to the realistic cuff and nerve model. Our findings of widespread asynchronous KHF-evoked activity suggest that conduction block in the abdominal vagus nerves is unlikely with current clinical parameters. Our results indicate that compound neural or downstream muscle force recordings may be unreliable as quantitative measures of neural activity for in vivo studies or as biomarkers in closed-loop clinical devices.
Simões, Gustavo F; Benitez, Suzana U; Oliveira, Alexandre L R
2014-01-01
Background G-CSF has been shown to decrease inflammatory processes and to act positively on the process of peripheral nerve regeneration during the course of muscular dystrophy. Aims The aims of this study were to investigate the effects of treatment of G-CSF during sciatic nerve regeneration and histological analysis in the soleus muscle in MDX mice. Methods Six-week-old male MDX mice underwent left sciatic nerve crush and were G-CSF treated at 7 days prior to and 21 days after crush. Ten and twenty-one days after surgery, the mice were euthanized, and the sciatic nerves were processed for immunohistochemistry (anti-p75NTR and anti-neurofilament) and transmission electron microscopy. The soleus muscles were dissected out and processed for H&E staining and subsequent morphologic analysis. Motor function analyses were performed at 7 days prior to and 21 days after sciatic crush using the CatWalk system and the sciatic nerve index. Results Both groups treated with G-CSF showed increased p75NTR and neurofilament expression after sciatic crush. G-CSF treatment decreased the number of degenerated and regenerated muscle fibers, thereby increasing the number of normal muscle fibers. Conclusions The reduction in p75NTR and neurofilament indicates a decreased regenerative capacity in MDX mice following a lesion to a peripheral nerve. The reduction in motor function in the crushed group compared with the control groups may reflect the cycles of muscle degeneration/regeneration that occur postnatally. Thus, G-CSF treatment increases motor function in MDX mice. Nevertheless, the decrease in baseline motor function in these mice is not reversed completely by G-CSF. PMID:25328849
Maturana, Luiz G; Pierucci, Amauri; Simões, Gustavo F; Vidigal, Mateus; Duek, Eliana A R; Vidal, Benedicto C; Oliveira, Alexandre L R
2013-01-01
The purpose of this study was to investigate the influence of implanting collagen with a supramolecular organization on peripheral nerve regeneration, using the sciatic nerve tubulization technique. For this purpose, adult female Sprague Dawley rats were divided into five groups: (1) TP – sciatic nerve repaired with empty polyethylene tubular prothesis (n = 10), (2) TPCL – nerve repair with empty polycaprolactone (PCL) tubing (n = 8), (3) TPCLF – repair with PCL tubing filled with an implant of collagen with a supramolecular organization (n = 10), (4) AG – animals that received a peripheral nerve autograft (n = 8), and (5) Normal nerves (n = 8). The results were assessed by quantification of the regenerated fibers, nerve morphometry, and transmission electron microscopy, 60 days after surgery. Immunohistochemistry and polarization microscopy were also used to analyze the regenerated nerve structure and cellular elements. The results showed that the AG group presented a larger number of regenerated axons. However, the TPCL and TPCLF groups presented more compact regenerated fibers with a morphometric profile closer to normal, both at the tube midpoint and 2 mm distal to the prosthesis. These findings were reinforced by polarization microscopy, which indicated a better collagen/axons suprastructural organization in the TPCLF derived samples. In addition, the immunohistochemical results obtained using the antibody anti-p75NTR as a Schwann cell reactivity marker demonstrated that the Schwann cells were more reactive during the regenerative process in the TPCLF group as compared to the TPCL group and the normal sciatic nerve. Altogether, the results of this study indicated that the implant of collagen with a supramolecular organization positively influenced and stimulated the regeneration process through the nerve gap, resulting in the formation of a better morphologically arranged tissue. PMID:24381812
Yetiser, Sertac
2018-06-08
Three patients with large intratemporal facial schwannomas underwent tumor removal and facial nerve reconstruction with hypoglossal anastomosis. The surgical strategy for the cases was tailored to the location of the mass and its extension along the facial nerve. To provide data on the different clinical aspects of facial nerve schwannoma, the appropriate planning for management, and the predictive outcomes of facial function. Three patients with facial schwannomas (two men and one woman, ages 45, 36, and 52 years, respectively) who presented to the clinic between 2009 and 2015 were reviewed. They all had hearing loss but normal facial function. All patients were operated on with radical tumor removal via mastoidectomy and subtotal petrosectomy and simultaneous cranial nerve (CN) 7- CN 12 anastomosis. Multiple segments of the facial nerve were involved ranging in size from 3 to 7 cm. In the follow-up period of 9 to 24 months, there was no tumor recurrence. Facial function was scored House-Brackmann grades II and III, but two patients are still in the process of functional recovery. Conservative treatment with sparing of the nerve is considered in patients with small tumors. Excision of a large facial schwannoma with immediate hypoglossal nerve grafting as a primary procedure can provide satisfactory facial nerve function. One of the disadvantages of performing anastomosis is that there is not enough neural tissue just before the bifurcation of the main stump to provide neural suturing without tension because middle fossa extension of the facial schwannoma frequently involves the main facial nerve at the stylomastoid foramen. Reanimation should be processed with extensive backward mobilization of the hypoglossal nerve. Georg Thieme Verlag KG Stuttgart · New York.
Morphological evidence for local microcircuits in rat vestibular maculae
NASA Technical Reports Server (NTRS)
Ross, M. D.
1997-01-01
Previous studies suggested that intramacular, unmyelinated segments of vestibular afferent nerve fibers and their large afferent endings (calyces) on type I hair cells branch. Many of the branches (processes) contain vesicles and are presynaptic to type II hair cells, other processes, intramacular nerve fibers, and calyces. This study used serial section transmission electron microscopy and three-dimensional reconstruction methods to document the origins and distributions of presynaptic processes of afferents in the medial part of the adult rat utricular macula. The ultrastructural research focused on presynaptic processes whose origin and termination could be observed in a single micrograph. Results showed that calyces had 1) vesiculated, spine-like processes that invaginated type I cells and 2) other, elongate processes that ended on type II cells pre- as well as postsynaptically. Intramacular, unmyelinated segments of afferent nerve fibers gave origin to branches that were presynaptic to type II cells, calyces, calyceal processes, and other nerve fibers in the macula. Synapses with type II cells occurred opposite subsynaptic cisternae (C synapses); all other synapses were asymmetric. Vesicles were pleomorphic but were differentially distributed according to process origin. Small, clear-centered vesicles, approximately 40-60 nm in diameter, predominated in processes originating from afferent nerve fibers and basal parts of calyces. Larger vesicles approximately 70-120 nm in diameter having approximately 40-80 nm electron-opaque cores were dominant in processes originating from the necks of calyces. Results are interpreted to indicate the existence of a complex system of intrinsic feedforward (postsynaptic)-feedback (presynaptic) connections in a network of direct and local microcircuits. The morphological findings support the concept that maculae dynamically preprocess linear acceleratory information before its transmission to the central nervous system.
NASA Technical Reports Server (NTRS)
Riley, Danny A.; Sanger, James R.; Matloub, Hani S.; Yousif, N. John; Bain, James L. W.
1988-01-01
Carbonic anhydrase (CA) and cholinesterase (CE) histochemical staining of rabbit spinal nerve roots and dorsal root ganglia demonstrated that among the reactive myeliated axons, with minor exceptions, sensory axons were CA positive and CE negative whereas motor axons were CA negative and CE positive. The high specificity was achieved by adjusting reaction conditions to stain subpopulations of myelinated axons selectively while leaving 50 percent or so unstained. Fixation with glutaraldehyde appeared necessary for achieving selectivity. Following sciatic nerve transection, the reciprocal staining pattern persisted in damaged axons and their regenerating processes which formed neuromas within the proximal nerve stump. Within the neuromas, CA-stained sensory processes were elaborated earlier and in greater numbers than CE-stained regenerating motor processes. The present results indicate that histochemical axon typing can be exploited to reveal heterogeneous responses of motor and sensory axons to injury.
Tasaki, Atsushi; Nimura, Akimoto; Mochizuki, Tomoyuki; Yamaguchi, Kumiko; Kato, Ryuichi; Sugaya, Hiroyuki; Akita, Keiichi
2015-09-01
The configuration of suprascapular notch was previously analysed from the anteroposterior viewing. However, the approach direction of the suprascapular nerve (SSN) to the inlet of the suprascapular notch is consistently craniocaudal and mediolateral. We propose a new method to observe the suprascapular notch according to the running course of the SSN. We reviewed the anatomic characteristics of the suprascapular notch in relation to the nerve. In 30 formalin-fixed cadaveric shoulders, the morphology of the suprascapular notch and the attachments of the superior transverse scapular ligament (STSL) were examined from both the anteroposterior and the nerve approach direction. The dimensions of the opening of the SSN passage were measured. By observing from the nerve approach direction, the inlet of the suprascapular notch was recognized to be a space-bordered by the medial wall of the coracoid process, the deep fascia of subscapularis, and the STSL. The STSL formed a sheet-like structure, which ran parallel to the nerve and also to the deep fascia of subscapularis. The attachment of the ligament to the coracoid process was located at the posteromedial corner rather than the medial side. Based on the present study, the space between the STSL and deep fascia of the subscapularis formed the space for the nerve to run through. As a clinical implication, this new method to assess the suprascapular notch in the nerve approach direction might develop the imaging techniques for evaluation of SSN entrapment.
Ultrasound Nomograms of the Fetal Optic Nerve Sheath Diameter.
Haratz, Karina Krajden; Melcer, Yaakov; Leibovitz, Zvi; Feit, Hagit; Kerman-Sagie, Tally; Lev, Dorit; Ginath, Shimon; Gindes, Liat; Moron, Antonio Fernandes; Malinger, Gustavo
2018-06-07
To construct prenatal age-specific reference intervals for sonographic measurements of the optic nerve sheath diameter (ONSD) during gestation in normal fetuses. Prospective cross-sectional study of fetuses assessed in antenatal ultrasound units between 2010 and 2014. The examination was based on a technique for the sonographic assessment of ONSD previously published by our group. The mean values and SDs of the ONSD were modeled as a function of the gestational week by curve estimation analysis based on the highest adjusted R2 coefficient. Repeatability tests were performed to assess intraobserver variability and interobserver agreement. During the study period 364 healthy fetuses were enrolled. The mean values for the ONSD varied from 0.6 mm at 15 - 16 weeks to 2.8 mm at 37 - 38 weeks. The ONSD grows in a linear fashion throughout gestation, with a quadratic equation providing an optimal fit to the data (adjusted R2 = 0.957). Sonographic age-specific references for the fetal ONSD are presented. This data may assist in the decision-making process in fetuses with a suspected increase in intracranial pressure, or anomalies affecting the development of optic stalks, such as optic hypoplasia and septo-optic dysplasia. © Georg Thieme Verlag KG Stuttgart · New York.
HIRASAWA, Shun; SHIMIZU, Miki; MARUI, Yuumi; KISHIMOTO, Miori; OKUNO, Seiichi
2014-01-01
We designed a new method of measuring the length of the ulnar nerve and determining standard values for F-wave parameters of the ulnar nerve in clinically normal beagles. Nerve length must be precisely measured to determine F-wave latency and conduction velocity. The length of the forelimb has served as the length of the ulnar nerve for F-wave assessments, but report indicates that F-wave latency is proportional to the length of the pathway traveled by nerve impulses. Therefore, we measured the surface distance from a stimulus point to the spinous process of the first thoracic vertebra (nerve length 1) and the anterior horn of the scapula (nerve length 2) as landmarks through the olecranon and the shoulder blade acromion. The correlation coefficients between the shortest F-wave latency and the length of nerves 1, 2 or the forelimb were 0.61, 0.7 and 0.58. Nerve length 2 generated the highest value. Furthermore, the anterior horn of the scapula was easily palpated in any dog regardless of well-fed body. We concluded that nerve length 2 was optimal for measuring the length of the ulnar nerve. PMID:25649942
Barghash, Z; Larsen, J O; Al-Bishri, A; Kahnberg, K-E
2013-12-01
The aim of this study was to evaluate the degeneration and regeneration of a sensory nerve and a motor nerve at the histological level after a crush injury. Twenty-five female Wistar rats had their mental nerve and the buccal branch of their facial nerve compressed unilaterally against a glass rod for 30s. Specimens of the compressed nerves and the corresponding control nerves were dissected at 3, 7, and 19 days after surgery. Nerve cross-sections were stained with osmium tetroxide and toluidine blue and analysed using two-dimensional stereology. We found differences between the two nerves both in the normal anatomy and in the regenerative pattern. The mental nerve had a larger cross-sectional area including all tissue components. The mental nerve had a larger volume fraction of myelinated axons and a correspondingly smaller volume fraction of endoneurium. No differences were observed in the degenerative pattern; however, at day 19 the buccal branch had regenerated to the normal number of axons, whereas the mental nerve had only regained 50% of the normal number of axons. We conclude that the regenerative process is faster and/or more complete in the facial nerve (motor function) than it is in the mental nerve (somatosensory function). Copyright © 2013 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Ugrenović, Sladjana; Jovanović, Ivan; Vasović, Ljiljana; Kundalić, Braca; Čukuranović, Rade; Stefanović, Vladisav
2016-06-01
Myelinated nerve fibers suffer from different degrees of atrophy with age. The success of subsequent regeneration varies. The aim of this research was to analyze myelinated fibers of the human sciatic nerve during the aging process. Morphometric analysis was performed on 17 cases with an age range from 9 to 93 years. The outer and inner diameter of 100 randomly selected nerve fibers was measured in each of the cases evaluated, and the g-ratio (axonal diameter/outer diameter of the whole nerve fiber) of each was calculated. Scatter plots of the diameters and g-ratios of the analyzed fibers were then analyzed. Nerve fibers of each case were classified into three groups according to the g-ratio values: group I (g-ratio lower than 0.6), group II (g-ratio from 0.6 to 0.7) and group III (g-ratio higher than 0.7). Afterwards, nerve fibers of group II were further classified into small and large subgroups. The percentages of each group of nerve fibers were computed for each case and these values were used for correlational and bivariate linear regression analysis. The percentage of myelinated nerve fibers with large diameter and optimal g-ratio of the sciatic nerve declines significantly with age. This is accompanied by a simultaneous significant increase in the percentage of small myelinated fibers with g-ratio values close to 1 that occupy the upper left quadrant of the scatter plot. It can be concluded that aging of the sciatic nerve is associated with significant atrophy of large myelinated fibers. Additionally, a significant increase in regenerated nerve fibers with thinner myelin sheath is observed with age, which, together with the large myelinated fiber atrophy, might be the cause of the age-related decline in conduction velocity. A better understanding of the changes in aging peripheral nerves might improve interpretation of their pathological changes, as well as comprehension of their regeneration in individuals of different age.
Observations on the bony bridging of the jugular foramen in man.
Dodo, Y
1986-02-01
The anatomical nature and pattern of incidence of bony bridging of the jugular foramen was investigated using 64 fetal crania aged nine months to term and 222 adult crania of Japanese. In addition, the region of the jugular foramen of an adult cadaver was carefully dissected in order to clarify the relationship between the cranial nerves passing through the jugular foramen and the intrajugular processes of the jugular foramen. The general conclusions concerning the anatomical nature of the bony bridging of the jugular foramen were as follows. (1) The intrajugular process of the temporal bone is situated posterior to the triangular depression (as described in Gray's Anatomy) of the petrous part. (2) The bony bridging of the jugular foramen is established by the contact of the intrajugular process of the temporal bone with the bony process of the occipital bone projecting either from just above the hypoglossal canal (Type I) or from posterior to the hypoglossal canal (Type III). (3) If both the processes of the occipital bone reach the intrajugular process of the temporal bone simultaneously, the jugular foramen is divided into three compartments. (4) In the case of Type I bridging, the anteromedial compartment transmits the glossopharyngeal nerve, while the posterolateral compartment gives passage to the vagus nerve, the accessory nerve and the internal jugular vein. (5) In the case of Type II bridging, the anteromedial compartment contains the glossopharyngeal, vagus and accessory nerves, and the posterolateral compartment transmits the internal jugular vein. (6) When tripartite division of the jugular foramen occurs, the anteromedial compartment transmits the glossopharyngeal nerve, the middle compartment contains the vagus and accessory nerves, and the posterolateral compartment transmits the internal jugular vein. Concerning the pattern of incidence of jugular foramen bridging in the Japanese fetal and adult cranial series, this is similar to that of the bony bridging of the hypoglossal canal. The fact that almost all the cases of bridging of the jugular foramen are already established by the end of fetal development must serve as a strong indication that this trait can be used effectively for anthropological population studies.
[Regeneration and repair of peripheral nerves: clinical implications in facial paralysis surgery].
Hontanilla, B; Vidal, A
2000-01-01
Peripheral nerve lesions are one of the most frequent causes of chronic incapacity. Upper or lower limb palsies due to brachial or lumbar plexus injuries, facial paralysis and nerve lesions caused by systemic diseases are one of the major goals of plastic and reconstructive surgery. However, the poor results obtained in repaired peripheral nerves during the Second World War lead to a pessimist vision of peripheral nerve repair. Nevertheless, a well understanding of microsurgical principles in reconstruction and molecular biology of nerve regeneration have improved the clinical results. Thus, although the results obtained are quite far from perfect, these procedures give to patients a hope in the recuperation of their lesions and then on function. Technical aspects in nerve repair are well established; the next step is to manipulate the biology. In this article we will comment the biological processes which appear in peripheral nerve regeneration, we will establish the main concepts on peripheral nerve repair applied in facial paralysis cases and, finally, we will proportionate some ideas about how clinical practice could be affected by manipulation of the peripheral nerve biology.
NASA Astrophysics Data System (ADS)
Bohórquez, Jorge; Özdamar, Özcan; Morawski, Krzysztof; Telischi, Fred F.; Delgado, Rafael E.; Yavuz, Erdem
2005-06-01
A system capable of comprehensive and detailed monitoring of the cochlea and the auditory nerve during intraoperative surgery was developed. The cochlear blood flow (CBF) and the electrocochleogram (ECochGm) were recorded at the round window (RW) niche using a specially designed otic probe. The ECochGm was further processed to obtain cochlear microphonics (CM) and compound action potentials (CAP).The amplitude and phase of the CM were used to quantify the activity of outer hair cells (OHC); CAP amplitude and latency were used to describe the auditory nerve and the synaptic activity of the inner hair cells (IHC). In addition, concurrent monitoring with a second electrophysiological channel was achieved by recording compound nerve action potential (CNAP) obtained directly from the auditory nerve. Stimulation paradigms, instrumentation and signal processing methods were developed to extract and differentiate the activity of the OHC and the IHC in response to three different frequencies. Narrow band acoustical stimuli elicited CM signals indicating mainly nonlinear operation of the mechano-electrical transduction of the OHCs. Special envelope detectors were developed and applied to the ECochGm to extract the CM fundamental component and its harmonics in real time. The system was extensively validated in experimental animal surgeries by performing nerve compressions and manipulations.
Tumors Presenting as Multiple Cranial Nerve Palsies
Kumar, Kishore; Ahmed, Rafeeq; Bajantri, Bharat; Singh, Amandeep; Abbas, Hafsa; Dejesus, Eddy; Khan, Rana Raheel; Niazi, Masooma; Chilimuri, Sridhar
2017-01-01
Cranial nerve palsy could be one of the presenting features of underlying benign or malignant tumors of the head and neck. The tumor can involve the cranial nerves by local compression, direct infiltration or by paraneoplastic process. Cranial nerve involvement depends on the anatomical course of the cranial nerve and the site of the tumor. Patients may present with single or multiple cranial nerve palsies. Multiple cranial nerve involvement could be sequential or discrete, unilateral or bilateral, painless or painful. The presentation could be acute, subacute or recurrent. Anatomic localization is the first step in the evaluation of these patients. The lesion could be in the brain stem, meninges, base of skull, extracranial or systemic disease itself. We present 3 cases of underlying neoplasms presenting as cranial nerve palsies: a case of glomus tumor presenting as cochlear, glossopharyngeal, vagus and hypoglossal nerve palsies, clivus tumor presenting as abducens nerve palsy, and diffuse large B-cell lymphoma presenting as oculomotor, trochlear, trigeminal and abducens nerve palsies due to paraneoplastic involvement. History and physical examination, imaging, autoantibodies and biopsy if feasible are useful for the diagnosis. Management outcomes depend on the treatment of the underlying tumor. PMID:28553221
Sánchez, M; Yoshioka, T; Ortega, M; Delgado, D; Anitua, E
2014-05-01
Peroneal nerve palsy in traumatic knee dislocations associated with multiple ligament injuries is common. Several surgical approaches are described for this lesion with less-than-optimal outcomes. The present case represents the application of plasma rich in growth factors (PRGF) technology for the treatment of peroneal nerve palsy with drop foot. This technology has already been proven its therapeutic potential for various musculoskeletal disorders. Based on these results, we hypothesized that PRGF could stimulate the healing process of traumatic peroneal nerve palsy with drop foot. The patient was a healthy 28-year-old man. He suffered peroneal nerve palsy with drop foot after multiple ligament injuries of the knee. PRGF was prepared according to the manufactured instruction. Eleven months after the trauma with severe axonotmesis, serial intraneural infiltrations of PRGF were started using ultrasound guidance. The therapeutic effect was assessed by electromyography (EMG), echogenicity of the peroneal nerve under ultrasound (US) and manual muscle testing. Twenty-one months after the first injection, not complete but partial useful recovery is obtained. He is satisfied with walking and running without orthosis. Sensitivity demonstrates almost full recovery in the peroneal nerve distribution area. EMG controls show complete reinnervation for the peroneus longus and a better reinnervation for the tibialis anterior muscle, compared with previous examinations. Plasma rich in growth factors (PRGF) infiltrations could enhance healing process of peroneal nerve palsy with drop foot. This case report demonstrates the therapeutic potential of this technology for traumatic peripheral nerve palsy and the usefulness of US-guided PRGF. V.
Wanna, George B; Sweeney, Alex D; Carlson, Matthew L; Latuska, Richard F; Rivas, Alejandro; Bennett, Marc L; Netterville, James L; Haynes, David S
2014-12-01
To evaluate tumor control following subtotal resection of advanced jugular paragangliomas in patients with functional lower cranial nerves and to investigate the utility of salvage radiotherapy for residual progressive disease. Case series with planned chart review. Tertiary academic referral center. Patients who presented with advanced jugular paragangliomas and functional lower cranial nerves were analyzed. Primary outcome measures included extent of resection, long-term tumor control, need for additional treatment, and postoperative lower cranial nerve function. Twelve patients (mean age, 46.2 years; 7 women, 58.3%) who met inclusion criteria were evaluated between 1999 and 2013. The mean postoperative residual tumor volume was 27.7% (range, 3.5%-75.0%) of the preoperative volume. When the residual tumor volume was less than 20% of the preoperative volume, no tumor growth occurred over an average of 44.6 months of follow-up (P < .01). Four tumors (33.3%) demonstrated serial growth at a mean of 23.5 months following resection, 2 of which were treated with salvage stereotactic radiotherapy providing control through the last recorded follow-up. No patient experienced permanent postoperative lower cranial neuropathy as a result of surgery. Subtotal resection of jugular paragangliomas with preservation of the lower cranial nerves is a viable management strategy. If more than 80% of the preoperative tumor volume is resected, the residual tumor seems less likely to grow. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2014.
Too much of a good thing? Cardiac vagal tone's nonlinear relationship with well-being.
Kogan, Aleksandr; Gruber, June; Shallcross, Amanda J; Ford, Brett Q; Mauss, Iris B
2013-08-01
Parasympathetic regulation of heart rate through the vagus nerve--often measured as resting respiratory sinus arrhythmia or cardiac vagal tone (CVT)--is a key biological correlate of psychological well-being. However, recent theorizing has suggested that many biological and psychological processes can become maladaptive when they reach extreme levels. This raises the possibility that CVT might not have an unmitigated positive relationship with well-being. In line with this reasoning, across 231 adult participants (Mage = 40.02 years; 52% female), we found that CVT was quadratically related to multiple measures of well-being, including life satisfaction and depressive symptoms. Individuals with moderate CVT had higher well-being than those with low or high CVT. These results provide the first direct evidence of a nonlinear relationship between CVT and well-being, adding to a growing body of research that has suggested some biological processes may cease being adaptive when they reach extreme levels. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Neuropil threads occur in dendrites of tangle-bearing nerve cells.
Braak, H; Braak, E
1988-01-01
Transparent Golgi preparations counterstained for Alzheimer's neurofibrillary changes rendered possible the demonstration of neuropil threads in defined cellular processes. Only dendrites of tangle-bearing cortical nerve cells were found to contain neuropil threads. Processes of glial cells as well as axons present in the material were devoid of neuropil threads.
Applied anatomy of the lingual nerve: relevance to dental anaesthesia.
Tan, Vui Leng; Andrawos, Alice; Ghabriel, Mounir N; Townsend, Grant C
2014-03-01
(1) to classify the external morphology of the lingual nerve and investigate any relationship between its external and internal morphology, (2) to explore the fascicular structure, nerve tissue density and capillary density of the lingual nerve, and (3) to provide an anatomical explanation as to why adverse clinical outcomes more commonly affect the lingual nerve following local dental anaesthesia. Where possible, comparisons were made between the lingual and inferior alveolar nerves. The lingual and inferior alveolar nerves were examined in 23 hemi-sectioned heads macroscopically and microscopically 2mm above the lingula. The lingual nerve was also examined in the regions of the third and second molars. Specimens underwent histological processing and staining with Haematoxylin & Eosin, Masson's Trichrome, anti-GLUT-1 and anti-CD 34. The lingual nerve became flatter as it traversed through the pterygomandibular space. There was an increase in the connective tissue and a decrease in nerve tissue density along the lingual nerve (p<0.001). At 2mm above the lingula, the lingual nerve was uni-fascicular in 39% of cases, whilst the inferior alveolar nerve consistently had more fascicles (p<0.001). The lingual nerve fascicles had thicker perineurium but the endoneurial vascular density was not significantly different in the two nerves. The greater susceptibility of lingual nerve dysfunction during inferior alveolar nerve blocks may be due to its uni-fascicular structure and the thicker perineurium, leading to increased endoneurial pressure and involvement of all axons if oedema or haemorrhage occurs due to trauma. Copyright © 2013 Elsevier Ltd. All rights reserved.
Hinder, Lucy M; Park, Meeyoung; Rumora, Amy E; Hur, Junguk; Eichinger, Felix; Pennathur, Subramaniam; Kretzler, Matthias; Brosius, Frank C; Feldman, Eva L
2017-09-01
Treating insulin resistance with pioglitazone normalizes renal function and improves small nerve fibre function and architecture; however, it does not affect large myelinated nerve fibre function in mouse models of type 2 diabetes (T2DM), indicating that pioglitazone affects the body in a tissue-specific manner. To identify distinct molecular pathways regulating diabetic peripheral neuropathy (DPN) and nephropathy (DN), as well those affected by pioglitazone, we assessed DPN and DN gene transcript expression in control and diabetic mice with or without pioglitazone treatment. Differential expression analysis and self-organizing maps were then used in parallel to analyse transcriptome data. Differential expression analysis showed that gene expression promoting cell death and the inflammatory response was reversed in the kidney glomeruli but unchanged or exacerbated in sciatic nerve by pioglitazone. Self-organizing map analysis revealed that mitochondrial dysfunction was normalized in kidney and nerve by treatment; however, conserved pathways were opposite in their directionality of regulation. Collectively, our data suggest inflammation may drive large fibre dysfunction, while mitochondrial dysfunction may drive small fibre dysfunction in T2DM. Moreover, targeting both of these pathways is likely to improve DN. This study supports growing evidence that systemic metabolic changes in T2DM are associated with distinct tissue-specific metabolic reprogramming in kidney and nerve and that these changes play a critical role in DN and small fibre DPN pathogenesis. These data also highlight the potential dangers of a 'one size fits all' approach to T2DM therapeutics, as the same drug may simultaneously alleviate one complication while exacerbating another. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Chapman, G B; Tarboush, R; Eagles, D A; Connaughton, V P
2009-08-01
The distribution and ultrastructural features of peripheral nerve processes in the extra-retinal layers of the eyes of the zebrafish, Danio rerio (Hamilton), were investigated using light and transmission electron microscopy. A comparative study of the quality of preservation provided by three different fixation procedures revealed no consistently striking general differences. However, somewhat subjectively, the fixative containing Millonig's buffer did consistently provide better fixation of myelin. Overall, nerve processes, depending on the site studied, were distributed as either (1) bundles (in the choroid near the optic nerve head and in the choroid adjacent to the limbus), (2) linear arrays (in the junction between the sclera and cartilage and in the choroid adjacent to the retina) or (3) individual units (in the choroid under the cartilage or in the sclera). Both myelinated and unmyelinated processes were identified in these locations. Myelinated processes usually contained both neurofilaments and neurotubules, but a few apparently contained only neurofilaments. Unmyelinated processes usually contained mainly neurotubules, but a few apparently contained only neurofilaments. Taken together, these findings indicate innervation of extra-retinal structures, as seen in zebrafish, is highly conserved among vertebrates, further supporting the use of zebrafish as a model for the vertebrate visual system.
Mechanobiological dysregulation of the epidermis and dermis in skin disorders and in degeneration
Ogawa, Rei; Hsu, Chao-Kai
2013-01-01
During growth and development, the skin expands to cover the growing skeleton and soft tissues by constantly responding to the intrinsic forces of underlying skeletal growth as well as to the extrinsic mechanical forces from body movements and external supports. Mechanical forces can be perceived by two types of skin receptors: (1) cellular mechanoreceptors/mechanosensors, such as the cytoskeleton, cell adhesion molecules and mechanosensitive (MS) ion channels, and (2) sensory nerve fibres that produce the somatic sensation of mechanical force. Skin disorders in which there is an abnormality of collagen [e.g. Ehlers–Danlos syndrome (EDS)] or elastic (e.g. cutis laxa) fibres or a malfunction of cutaneous nerve fibres (e.g. neurofibroma, leprosy and diabetes mellitus) are also characterized to some extent by deficiencies in mechanobiological processes. Recent studies have shown that mechanotransduction is crucial for skin development, especially hemidesmosome maturation, which implies that the pathogenesis of skin disorders such as bullous pemphigoid is related to skin mechanobiology. Similarly, autoimmune diseases, including scleroderma and mixed connective tissue disease, and pathological scarring in the form of keloids and hypertrophic scars would seem to be clearly associated with the mechanobiological dysfunction of the skin. Finally, skin ageing can also be considered as a degenerative process associated with mechanobiological dysfunction. Clinically, a therapeutic strategy involving mechanoreceptors or MS nociceptor inhibition or acceleration together with a reduction or augmentation in the relevant mechanical forces is likely to be successful. The development of novel approaches such as these will allow the treatment of a broad range of cutaneous diseases. PMID:23672502
Shor, Natalia; Amador, Maria Del Mar; Dormont, Didier; Lubetzki, Catherine; Bertrand, Anne
2017-04-01
Multiple sclerosis (MS) is a chronic disorder that affects the central nervous system myelin. However, a few radiological cases have documented an involvement of peripheral cranial nerves, within the subarachnoid space, in MS patients. We report the case of a 36-year-old female with a history of relapsing-remitting (RR) MS who consulted for a subacute complete paralysis of the right III nerve. Magnetic resonance imaging (MRI) examination showed enhancement and thickening of the cisternal right III nerve, in continuity with a linear, mesencephalic, acute demyelinating lesion. Radiological involvement of the cisternal part of III nerve has been reported only once in MS patients. Radiological involvement of the cisternal part of V nerve occurs more frequently, in almost 3% of MS patients. In both situations, the presence of a central demyelinating lesion, in continuity with the enhancement of the peripheral nerve, suggests that peripheral nerve damage is a secondary process, rather than a primary target of demyelination.
Anatomy and Neurophysiology of Cough
Canning, Brendan J.; Chang, Anne B.; Bolser, Donald C.; Smith, Jaclyn A.; Mazzone, Stuart B.; Adams, Todd M.; Altman, Kenneth W.; Barker, Alan F.; Birring, Surinder S.; Blackhall, Fiona; Bolser, Donald, C.; Boulet, Louis-Philippe; Braman, Sidney S.; Brightling, Christopher; Callahan-Lyon, Priscilla; Canning, Brendan; Chang, Anne Bernadette; Coeytaux, Remy; Cowley, Terrie; Davenport, Paul; Diekemper, Rebecca L.; Ebihara, Satoru; El Solh, Ali A.; Escalante, Patricio; Feinstein, Anthony; Field, Stephen K.; Fisher, Dina; French, Cynthia T.; Gibson, Peter; Gold, Philip; Grant, Cameron; Harding, Susan M.; Harnden, Anthony; Hill, Adam T.; Irwin, Richard S.; Kahrilas, Peter J.; Keogh, Karina A.; Lane, Andrew P.; Lewis, Sandra Zelman; Lim, Kaiser; Malesker, Mark A.; Mazzone, Peter; Mazzone, Stuart; Molasiotis, Alex; Murad, M. Hassan; Newcombe, Peter; Nguyen, Huong Q.; Oppenheimer, John; Prezant, David; Pringsheim, Tamara; Restrepo, Marcos I.; Rosen, Mark; Rubin, Bruce; Ryu, Jay H.; Smith, Jaclyn; Tarlo, Susan M.; Turner, Ronald B.; Vertigan, Anne; Wang, Gang; Weir, Kelly
2014-01-01
Bronchopulmonary C-fibers and a subset of mechanically sensitive, acid-sensitive myelinated sensory nerves play essential roles in regulating cough. These vagal sensory nerves terminate primarily in the larynx, trachea, carina, and large intrapulmonary bronchi. Other bronchopulmonary sensory nerves, sensory nerves innervating other viscera, as well as somatosensory nerves innervating the chest wall, diaphragm, and abdominal musculature regulate cough patterning and cough sensitivity. The responsiveness and morphology of the airway vagal sensory nerve subtypes and the extrapulmonary sensory nerves that regulate coughing are described. The brainstem and higher brain control systems that process this sensory information are complex, but our current understanding of them is considerable and increasing. The relevance of these neural systems to clinical phenomena, such as urge to cough and psychologic methods for treatment of dystussia, is high, and modern imaging methods have revealed potential neural substrates for some features of cough in the human. PMID:25188530
The naming of the cranial nerves: a historical review.
Davis, Matthew C; Griessenauer, Christoph J; Bosmia, Anand N; Tubbs, R Shane; Shoja, Mohammadali M
2014-01-01
The giants of medicine and anatomy have each left their mark on the history of the cranial nerves, and much of the history of anatomic study can be viewed through the lens of how the cranial nerves were identified and named. A comprehensive literature review on the classification of the cranial names was performed. The identification of the cranial nerves began with Galen in the 2nd century AD and evolved up through the mid-20th century. In 1778, Samuel Sömmerring, a German anatomist, classified the 12 cranial nerves as we recognize them today. This review expands on the excellent investigations of Flamm, Shaw, and Simon et al., with discussion of the historical identification as well as the process of naming the human cranial nerves. Copyright © 2013 Wiley Periodicals, Inc.
Effects of Morphology Constraint on Electrophysiological Properties of Cortical Neurons
NASA Astrophysics Data System (ADS)
Zhu, Geng; Du, Liping; Jin, Lei; Offenhäusser, Andreas
2016-04-01
There is growing interest in engineering nerve cells in vitro to control architecture and connectivity of cultured neuronal networks or to build neuronal networks with predictable computational function. Pattern technologies, such as micro-contact printing, have been developed to design ordered neuronal networks. However, electrophysiological characteristics of the single patterned neuron haven’t been reported. Here, micro-contact printing, using polyolefine polymer (POP) stamps with high resolution, was employed to grow cortical neurons in a designed structure. The results demonstrated that the morphology of patterned neurons was well constrained, and the number of dendrites was decreased to be about 2. Our electrophysiological results showed that alterations of dendritic morphology affected firing patterns of neurons and neural excitability. When stimulated by current, though both patterned and un-patterned neurons presented regular spiking, the dynamics and strength of the response were different. The un-patterned neurons exhibited a monotonically increasing firing frequency in response to injected current, while the patterned neurons first exhibited frequency increase and then a slow decrease. Our findings indicate that the decrease in dendritic complexity of cortical neurons will influence their electrophysiological characteristics and alter their information processing activity, which could be considered when designing neuronal circuitries.
A micro-scale printable nanoclip for electrical stimulation and recording in small nerves.
Lissandrello, Charles A; Gillis, Winthrop F; Shen, Jun; Pearre, Ben W; Vitale, Flavia; Pasquali, Matteo; Holinski, Bradley J; Chew, Daniel J; White, Alice E; Gardner, Timothy J
2017-06-01
The vision of bioelectronic medicine is to treat disease by modulating the signaling of visceral nerves near various end organs. In small animal models, the nerves of interest can have small diameters and limited surgical access. New high-resolution methods for building nerve interfaces are desirable. In this study, we present a novel nerve interface and demonstrate its use for stimulation and recording in small nerves. We design and fabricate micro-scale electrode-laden nanoclips capable of interfacing with nerves as small as 50 µm in diameter. The nanoclips are fabricated using a direct laser writing technique with a resolution of 200 nm. The resolution of the printing process allows for incorporation of a number of innovations such as trapdoors to secure the device to the nerve, and quick-release mounts that facilitate keyhole surgery, obviating the need for forceps. The nanoclip can be built around various electrode materials; here we use carbon nanotube fibers for minimally invasive tethering. We present data from stimulation-evoked responses of the tracheal syringeal (hypoglossal) nerve of the zebra finch, as well as quantification of nerve functionality at various time points post implant, demonstrating that the nanoclip is compatible with healthy nerve activity over sub-chronic timescales. Our nerve interface addresses key challenges in interfacing with small nerves in the peripheral nervous system. Its small size, ability to remain on the nerve over sub-chronic timescales, and ease of implantation, make it a promising tool for future use in the treatment of disease.
Wrong-site nerve blocks: A systematic literature review to guide principles for prevention.
Deutsch, Ellen S; Yonash, Robert A; Martin, Donald E; Atkins, Joshua H; Arnold, Theresa V; Hunt, Christina M
2018-05-01
Wrong-site nerve blocks (WSBs) are a significant, though rare, source of perioperative morbidity. WSBs constitute the most common type of perioperative wrong-site procedure reported to the Pennsylvania Patient Safety Authority. This systematic literature review aggregates information about the incidence, patient consequences, and conditions that contribute to WSBs, as well as evidence-based methods to prevent them. A systematic search of English-language publications was performed, using the PRISMA process. Seventy English-language publications were identified. Analysis of four publications reporting on at least 10,000 blocks provides a rate of 0.52 to 5.07 WSB per 10,000 blocks, unilateral blocks, or "at risk" procedures. The most commonly mentioned potential consequence was local anesthetic toxicity. The most commonly mentioned contributory factors were time pressure, personnel factors, and lack of site-mark visibility (including no site mark placed). Components of the block process that were addressed include preoperative nerve-block verification, nerve-block site marking, time-outs, and the healthcare facility's structure and culture of safety. A lack of uniform reporting criteria and divergence in the data and theories presented may reflect the variety of circumstances affecting when and how nerve blocks are performed, as well as the infrequency of a WSB. However, multiple authors suggest three procedural steps that may help to prevent WSBs: (1) verify the nerve-block procedure using multiple sources of information, including the patient; (2) identify the nerve-block site with a visible mark; and (3) perform time-outs immediately prior to injection or instillation of the anesthetic. Hospitals, ambulatory surgical centers, and anesthesiology practices should consider creating site-verification processes with clinician input and support to develop sustainable WSB-prevention practices. Copyright © 2017 Elsevier Inc. All rights reserved.
Correlative CT and anatomic study of the sciatic nerve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pech, P.; Haughton, V.
1985-05-01
Sciatica can be caused by numerous processes affecting the sciatic nerve or its components within the pelvis including tumors, infectious diseases, aneurysms, fractures, and endometriosis. The CT diagnosis of these causes of sciatica has not been emphasized. This study identified the course and appearance of the normal sciatic nerve in the pelvis by correlating CT and anatomic slices in cadavers. For purposes of discussion, the sciatic nerve complex is conveniently divided into three parts: presacral, muscular, and ischial. Each part is illustrated here by two cryosections with corresponding CT images.
Engineering Bi-Layer Nanofibrous Conduits for Peripheral Nerve Regeneration
Zhu, Yiqian; Wang, Aijun; Patel, Shyam; Kurpinski, Kyle; Diao, Edward; Bao, Xuan; Kwong, George; Young, William L.
2011-01-01
Trauma injuries often cause peripheral nerve damage and disability. A goal in neural tissue engineering is to develop synthetic nerve conduits for peripheral nerve regeneration having therapeutic efficacy comparable to that of autografts. Nanofibrous conduits with aligned nanofibers have been shown to promote nerve regeneration, but current fabrication methods rely on rolling a fibrous sheet into the shape of a conduit, which results in a graft with inconsistent size and a discontinuous joint or seam. In addition, the long-term effects of nanofibrous nerve conduits, in comparison with autografts, are still unknown. Here we developed a novel one-step electrospinning process and, for the first time, fabricated a seamless bi-layer nanofibrous nerve conduit: the luminal layer having longitudinally aligned nanofibers to promote nerve regeneration, and the outer layer having randomly organized nanofibers for mechanical support. Long-term in vivo studies demonstrated that bi-layer aligned nanofibrous nerve conduits were superior to random nanofibrous conduits and had comparable therapeutic effects to autografts for nerve regeneration. In summary, we showed that the engineered nanostructure had a significant impact on neural tissue regeneration in situ. The results from this study will also lead to the scalable fabrication of engineered nanofibrous nerve conduits with designed nanostructure. This technology platform can be combined with drug delivery and cell therapies for tissue engineering. PMID:21501089
Parkinson disease affects peripheral sensory nerves in the pharynx.
Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Nyirenda, Themba; Adler, Charles H; Shill, Holly A; Caviness, John N; Samanta, Johan E; Sue, Lucia I; Beach, Thomas G
2013-07-01
Dysphagia is very common in patients with Parkinson disease (PD) and often leads to aspiration pneumonia, the most common cause of death in PD. Current therapies are largely ineffective for dysphagia. Because pharyngeal sensation normally triggers the swallowing reflex, we examined pharyngeal sensory nerves in PD patients for Lewy pathology.Sensory nerves supplying the pharynx were excised from autopsied pharynges obtained from patients with clinically diagnosed and neuropathologically confirmed PD (n = 10) and healthy age-matched controls (n = 4). We examined the glossopharyngeal nerve (cranial nerve IX), the pharyngeal sensory branch of the vagus nerve (PSB-X), and the internal superior laryngeal nerve (ISLN) innervating the laryngopharynx. Immunohistochemistry for phosphorylated α-synuclein was used to detect Lewy pathology. Axonal α-synuclein aggregates in the pharyngeal sensory nerves were identified in all of the PD subjects but not in the controls. The density of α-synuclein-positive lesions was greater in PD patients with dysphagia versus those without dysphagia. In addition, α-synuclein-immunoreactive nerve fibers in the ISLN were much more abundant than those in cranial nerve IX and PSB-X. These findings suggest that pharyngeal sensory nerves are directly affected by pathologic processes in PD. These abnormalities may decrease pharyngeal sensation, thereby impairing swallowing and airway protective reflexes and contributing to dysphagia and aspiration.
Perceptual consequences of disrupted auditory nerve activity.
Zeng, Fan-Gang; Kong, Ying-Yee; Michalewski, Henry J; Starr, Arnold
2005-06-01
Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. In contrast, the disrupted neural activity significantly impairs timing related perception, such as pitch discrimination at low frequencies, temporal integration, gap detection, temporal modulation detection, backward and forward masking, signal detection in noise, binaural beats, and sound localization using interaural time differences. These perceptual consequences are the opposite of what is typically observed in cochlear-impaired subjects who have impaired intensity perception but relatively normal temporal processing after taking their impaired intensity perception into account. These differences in perceptual consequences between auditory neuropathy and cochlear damage suggest the use of different neural codes in auditory perception: a suboptimal spike count code for intensity processing, a synchronized spike code for temporal processing, and a duplex code for frequency processing. We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique contribution of neural synchrony to sensory perception but also provide guidance for translational research in terms of better diagnosis and management of human communication disorders.
Sensory Nerve Induced Inflammation Contributes to Heterotopic Ossification
Salisbury, Elizabeth; Rodenberg, Eric; Sonnet, Corinne; Hipp, John; Gannon, Francis H.; Vadakkan, Tegy J.; Dickinson, Mary E.; Olmsted-Davis, Elizabeth A.; Davis, Alan R.
2012-01-01
Heterotopic ossification (HO), or bone formation in soft tissues, is often the result of traumatic injury. Much evidence has linked the release of BMPs (bone morphogenetic proteins) upon injury to this process. HO was once thought to be a rare occurrence, but recent statistics from the military suggest that as many as 60% of traumatic injuries, resulting from bomb blasts, have associated HO. In this study, we attempt to define the role of peripheral nerves in this process. Since BMP2 has been shown previously to induce release of the neuroinflammatory molecules, substance P (SP) and calcitonin gene related peptide (CGRP), from peripheral, sensory neurons, we examined this process in vivo. SP and CGRP are rapidly expressed upon delivery of BMP2 and remain elevated throughout bone formation. In animals lacking functional sensory neurons (TRPV1−/−), BMP2-mediated increases in SP and CGRP were suppressed as compared to the normal animals, and HO was dramatically inhibited in these deficient mice, suggesting that neuroinflammation plays a functional role. Mast cells, known to be recruited by SP and CGRP, were elevated after BMP2 induction. These mast cells were localized to the nerve structures and underwent degranulation. When degranulation was inhibited using cromolyn, HO was again reduced significantly. Immunohistochemical analysis revealed nerves expressing the stem cell markers nanog and Klf4, as well as the osteoblast marker osterix, after BMP2 induction, in mice treated with cromolyn. The data collectively suggest that BMP2 can act directly on sensory neurons to induce neurogenic inflammation, resulting in nerve remodeling and the migration/release of osteogenic and other stem cells from the nerve. Further, blocking this process significantly reduces HO, suggesting that the stem cell population contributes to bone formation. PMID:21678472
Hsu, Shan-Hui; Chan, Shan-Ho; Chiang, Chih-Ming; Chen, Clayton Chi-Chang; Jiang, Ching-Fen
2011-05-01
The performance of an asymmetric conduit made of microporous polylactic acid (PLA) in promoting the long-term peripheral nerve regeneration across a 20-mm-long sciatic nerve gap was evaluated by a rabbit sciatic nerve transection model. Magnetic resonance imaging (MRI) was employed to monitor the nerve regeneration process. The extents of nerve regeneration and conduit degradation were quantified by image analysis. Functional and histological analyses were followed to assess nerve reinnervation. MR images showed that the transected nerve was connected at about 4 months. The diameter of the regenerated nerve continued to increase while the conduit was gradually degraded. The conduit was completely degraded in 18 months. The degradation kinetics in vivo was estimated based on MR images. The functional recovery after 18 months was ∼82% based on electrophysiology. The extension range of the operated limb was slowly recuperated to ∼81% at 18 months. Histology showed that nerve bundles were self-assembled after 16-18 months, but the morphologies were still different from those of normal sciatic nerve. This was the first work on the long-term evaluation of peripheral nerve regeneration in a rabbit model, and the first to report the use of MRI to obtain the real-time images of regenerated nerve in a biomaterial conduit as well as to define the degradation rate of the conduit in vivo. The platform established in this study serves to evaluate the regeneration of larger-diameter (>3-mm) nerve across a long-gap bridged by a conduit. Copyright © 2011 Elsevier Ltd. All rights reserved.
Variant Inferior Alveolar Nerves and Implications for Local Anesthesia
Wolf, Kevin T.; Brokaw, Everett J.; Bell, Andrea; Joy, Anita
2016-01-01
A sound knowledge of anatomical variations that could be encountered during surgical procedures is helpful in avoiding surgical complications. The current article details anomalous morphology of inferior alveolar nerves encountered during routine dissection of the craniofacial region in the Gross Anatomy laboratory. We also report variations of the lingual nerves, associated with the inferior alveolar nerves. The variations were documented and a thorough review of literature was carried out. We focus on the variations themselves, and the clinical implications that these variations present. Thorough understanding of variant anatomy of the lingual and inferior alveolar nerves may determine the success of procedural anesthesia, the etiology of pathologic processes, and the avoidance of surgical misadventure. PMID:27269666
A bioinspired flexible organic artificial afferent nerve
NASA Astrophysics Data System (ADS)
Kim, Yeongin; Chortos, Alex; Xu, Wentao; Liu, Yuxin; Oh, Jin Young; Son, Donghee; Kang, Jiheong; Foudeh, Amir M.; Zhu, Chenxin; Lee, Yeongjun; Niu, Simiao; Liu, Jia; Pfattner, Raphael; Bao, Zhenan; Lee, Tae-Woo
2018-06-01
The distributed network of receptors, neurons, and synapses in the somatosensory system efficiently processes complex tactile information. We used flexible organic electronics to mimic the functions of a sensory nerve. Our artificial afferent nerve collects pressure information (1 to 80 kilopascals) from clusters of pressure sensors, converts the pressure information into action potentials (0 to 100 hertz) by using ring oscillators, and integrates the action potentials from multiple ring oscillators with a synaptic transistor. Biomimetic hierarchical structures can detect movement of an object, combine simultaneous pressure inputs, and distinguish braille characters. Furthermore, we connected our artificial afferent nerve to motor nerves to construct a hybrid bioelectronic reflex arc to actuate muscles. Our system has potential applications in neurorobotics and neuroprosthetics.
2012-01-01
Background In spite of its high clinical relevance, the relationship between disc degeneration and low back pain is still not well understood. Recent studies have shown that genome-wide gene expression studies utilizing ontology searches provide an efficient and valuable methodology for identification of clinically relevant genes. Here we use this approach in analysis of pain-, nerve-, and neurotrophin-related gene expression patterns in specimens of human disc tissue. Control, non-herniated clinical, and herniated clinical specimens of human annulus tissue were studied following Institutional Review Board approval. Results Analyses were performed on more generated (Thompson grade IV and V) discs vs. less degenerated discs (grades I-III), on surgically operated discs vs. control discs, and on herniated vs. control discs. Analyses of more degenerated vs. less degenerated discs identified significant upregulation of well-recognized pain-related genes (bradykinin receptor B1, calcitonin gene-related peptide and catechol-0-methyltransferase). Nerve growth factor was significantly upregulated in surgical vs. control and in herniated vs. control discs. All three analyses also found significant changes in numerous proinflammatory cytokine- and chemokine-related genes. Nerve, neurotrophin and pain-ontology searches identified many matrix, signaling and functional genes which have known importance in the disc. Immunohistochemistry was utilized to confirm the presence of calcitonin gene-related peptide, catechol-0-methyltransferase and bradykinin receptor B1 at the protein level in the human annulus. Conclusions Findings point to the utility of microarray analyses in identification of pain-, neurotrophin and nerve-related genes in the disc, and point to the importance of future work exploring functional interactions between nerve and disc cells in vitro and in vivo. Nerve, pain and neurotrophin ontology searches identified numerous changes in proinflammatory cytokines and chemokines which also have significant relevance to disc biology. Since the degenerating human disc is primarily an avascular tissue site into which disc cells have contributed high levels of proinflammatory cytokines, these substances are not cleared from the tissue and remain there over time. We hypothesize that as nerves grow into the human annulus, they encounter a proinflammatory cytokine-rich milieu which may sensitize nociceptors and exacerbate pain production. PMID:22963171
Side to Side Supercharging Allograft
Side-to-side grafting between the PNA and regional in situ nerve trunks may be able to increase the effective critical length of the PNA. Nerve tissue...and provides an effective scaffolding system but depends on in situ Schwann cell migration to support axon regeneration. Though this process appears...loss and retraction can result in segmental gaps requiring some form of grafting. Autologous nerve grafting is associated with potential donor
Iwanaga, Joe; Fisahn, Christian; Alonso, Fernando; DiLorenzo, Daniel; Grunert, Peter; Kline, Matthew T; Watanabe, Koichi; Oskouian, Rod J; Spinner, Robert J; Tubbs, R Shane
2017-04-01
Distal branches of the C1 nerve that travel with the hypoglossal nerve have been well investigated but relationships of C1 and the hypoglossal nerve near the skull base have not been described in detail. Therefore, the aim of this study was to investigate these small branches of the hypoglossal and first cervical nerves by anatomic dissection. Twelve sides from 6 cadaveric specimens were used in this study. To elucidate the relationship among the hypoglossal, vagus, and first and cervical nerve, the mandible was removed and these nerves were dissected under the surgical microscope. A small branch was found to always arise from the dorsal aspect of the hypoglossal nerve at the level of the transverse process of the atlas and joined small branches from the first and second cervical nerves. The hypoglossal and C1 nerves formed a nerve plexus, which gave rise to branches to the rectus capitis anterior and rectus capitis lateralis muscles and the atlanto-occipital joint. Improved knowledge of such articular branches might aid in the diagnosis and treatment of patients with pain derived from the atlanto-occipital joint. We believe this to be the first description of a branch of the hypoglossal nerve being involved in the innervation of this joint. Copyright © 2017 Elsevier Inc. All rights reserved.
[Gene Therapy for Inherited RETINAL AND OPTIC NERVE Disorders: Current Knowledge].
Ďuďáková, Ľ; Kousal, B; Kolářová, H; Hlavatá, L; Lišková, P
The aim of this review is to provide a comprehensive summary of current gene therapy clinical trials for monogenic and optic nerve disorders.The number of genes for which gene-based therapies are being developed is growing. At the time of writing this review gene-based clinical trials have been registered for Leber congenital amaurosis 2 (LCA2), retinitis pigmentosa 38, Usher syndrome 1B, Stargardt disease, choroideremia, achromatopsia, Leber hereditary optic neuropathy (LHON) and X-linked retinoschisis. Apart from RPE65 gene therapy for LCA2 and MT-ND4 for LHON which has reached phase III, all other trials are in investigation phase I and II, i.e. testing the efficacy and safety.Because of the relatively easy accessibility of the retina and its ease of visualization which allows monitoring of efficacy, gene-based therapies for inherited retinal disorders represent a very promising treatment option. With the development of novel therapeutic approaches, the importance of establishing not only clinical but also molecular genetic diagnosis is obvious.Key words: gene therapy, monogenic retinal diseases, optic nerve atrophy, mitochondrial disease.
Observations on the bony bridging of the jugular foramen in man.
Dodo, Y
1986-01-01
The anatomical nature and pattern of incidence of bony bridging of the jugular foramen was investigated using 64 fetal crania aged nine months to term and 222 adult crania of Japanese. In addition, the region of the jugular foramen of an adult cadaver was carefully dissected in order to clarify the relationship between the cranial nerves passing through the jugular foramen and the intrajugular processes of the jugular foramen. The general conclusions concerning the anatomical nature of the bony bridging of the jugular foramen were as follows. (1) The intrajugular process of the temporal bone is situated posterior to the triangular depression (as described in Gray's Anatomy) of the petrous part. (2) The bony bridging of the jugular foramen is established by the contact of the intrajugular process of the temporal bone with the bony process of the occipital bone projecting either from just above the hypoglossal canal (Type I) or from posterior to the hypoglossal canal (Type III). (3) If both the processes of the occipital bone reach the intrajugular process of the temporal bone simultaneously, the jugular foramen is divided into three compartments. (4) In the case of Type I bridging, the anteromedial compartment transmits the glossopharyngeal nerve, while the posterolateral compartment gives passage to the vagus nerve, the accessory nerve and the internal jugular vein. (5) In the case of Type II bridging, the anteromedial compartment contains the glossopharyngeal, vagus and accessory nerves, and the posterolateral compartment transmits the internal jugular vein. (6) When tripartite division of the jugular foramen occurs, the anteromedial compartment transmits the glossopharyngeal nerve, the middle compartment contains the vagus and accessory nerves, and the posterolateral compartment transmits the internal jugular vein. Concerning the pattern of incidence of jugular foramen bridging in the Japanese fetal and adult cranial series, this is similar to that of the bony bridging of the hypoglossal canal. The fact that almost all the cases of bridging of the jugular foramen are already established by the end of fetal development must serve as a strong indication that this trait can be used effectively for anthropological population studies. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 11 PMID:3693042
Eltony, Sohair A; Abdelhameed, Sally Y
2017-04-01
Abnormal vision has been reported by 3% of patients treated with sildenafil citrate (Viagra). Although many men use Viagra for an extended period for treatment of erectile dysfunction, the implications of the long term-daily use of it on the retina and optic nerve are unclear. To investigate the effect of chronic daily use of sildenafil citrate in a dose equivalent to men preferred therapeutic dose on the histology of the retina and optic nerve of adult male rat. Eighteen adult male Wistar rats were equally divided into three groups. Group I: control. Group II: treated with sildenafil citrate orally (10mg/kg/day) for 8 weeks. Group III (withdrawal): treated as group II and then left for 4 weeks without treatment. Specimens from the retina and optic nerve were processed for light and electron microscopy. In sildenafil citrate treated group, the retina and optic nerve revealed vacuolations and congested blood capillaries with apoptotic endothelial and pericytic cells, and thickened basal lamina. Caspase-3 (apoptotic marker) and CD31 (endothelial marker) expression increased. Glial cells revealed morphological changes: Müller cells lost their processes, activated microglia, astrocytic clasmatodendrosis, degenerated oligodendrocytes surrounded by disintegrated myelin sheathes of the optic nerve fibers. The retina and optic nerve of the withdrawal group revealed less vacuolations and congestion, and partial recovery of the glial cells. Chronic treatment with sildenafil citrate (Viagra) caused toxic effect on the structure of the retina and optic nerve of the rat. Partial recovery was observed after drug withdrawal. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yilmaz, Zehra; Ucer, Cemal; Scher, Edwin; Suzuki, Jon; Renton, Tara
2016-10-01
Dental implant-related iatrogenic trigeminal nerve (TG) injuries are proportionally increasing with dental implant surgery. This study, which is presented in greater detail over a series of articles, assessed the experience of implant-related TG nerve injuries among UK dentists. Incidence and cause of inferior alveolar nerve (IAN), mental nerve (MN), and lingual nerve (LN) injuries, together with preoperative assessment and the consent process, are presented in this article. A survey was distributed among 405 dentists attending an Association of Dental Implantology congress in the United Kingdom, of which 187 completed the survey. Most responding dentists were full-time general practitioners. Implant dentistry training was predominately through industry-organized courses. Eighty dentists encountered implant-related IAN injuries, whereas 8 encountered LN injuries. Inaccurate radiological identification of the IAN/MN and their anatomical variations (48%) were seen to be the most frequent cause of TG injuries. Disclosure of the relative risk and benefits of alternative implant treatment strategies as part of the informed consent process was not deemed to be essential by 47 (25%) of the participants. Inadequate radiological assessment was the most common cause of TG nerve injury. The use of small field of view cone beam computer tomography (CBCT) is therefore recommended when placing implants in the posterior mandible. Implant surgeons should acquire evidence-based skills in the prevention, diagnosis, and management of TG nerve injury as well as specific training on justification and interpretation of CBCT scans.
Altered central nervous system processing of baroreceptor input following hindlimb unloading in rats
NASA Technical Reports Server (NTRS)
Moffitt, J. A.; Schadt, J. C.; Hasser, E. M.
1999-01-01
The effect of cardiovascular deconditioning on central nervous system processing of baroreceptor afferent activity was evaluated following 14 days of hindlimb unloading (HU). Inactin-anesthetized rats were instrumented with catheters, renal sympathetic nerve electrodes, and aortic depressor nerve electrodes for measurement of mean arterial pressure, heart rate, renal sympathetic nerve activity (RSNA), and aortic depressor nerve activity (ADNA). Baroreceptor and baroreflex functions were assessed during infusion of phenylephrine and sodium nitroprusside. Central processing of baroreceptor afferent input was evaluated by linear regression relating RSNA to ADNA. The maximum baroreflex-elicited increase in RSNA was significantly reduced in HU rats (122 +/- 3.8 vs. 144 +/- 4.9% of baseline RSNA), whereas ADNA was not altered. The slope (-0.18 +/- 0.04 vs. -0.40 +/- 0.04) and y-intercept (121 +/- 3.2 vs. 146 +/- 4.3) of the linear regression relating increases in efferent RSNA to decreases in afferent ADNA during hypotension were significantly reduced in HU rats. There were no differences during increases in arterial pressure. Results demonstrate that the attenuation in baroreflex-mediated increases in RSNA following HU is due to changes in central processing of baroreceptor afferent information rather than aortic baroreceptor function.
A micro-scale printable nanoclip for electrical stimulation and recording in small nerves
NASA Astrophysics Data System (ADS)
Lissandrello, Charles A.; Gillis, Winthrop F.; Shen, Jun; Pearre, Ben W.; Vitale, Flavia; Pasquali, Matteo; Holinski, Bradley J.; Chew, Daniel J.; White, Alice E.; Gardner, Timothy J.
2017-06-01
Objective. The vision of bioelectronic medicine is to treat disease by modulating the signaling of visceral nerves near various end organs. In small animal models, the nerves of interest can have small diameters and limited surgical access. New high-resolution methods for building nerve interfaces are desirable. In this study, we present a novel nerve interface and demonstrate its use for stimulation and recording in small nerves. Approach. We design and fabricate micro-scale electrode-laden nanoclips capable of interfacing with nerves as small as 50 µm in diameter. The nanoclips are fabricated using a direct laser writing technique with a resolution of 200 nm. The resolution of the printing process allows for incorporation of a number of innovations such as trapdoors to secure the device to the nerve, and quick-release mounts that facilitate keyhole surgery, obviating the need for forceps. The nanoclip can be built around various electrode materials; here we use carbon nanotube fibers for minimally invasive tethering. Main results. We present data from stimulation-evoked responses of the tracheal syringeal (hypoglossal) nerve of the zebra finch, as well as quantification of nerve functionality at various time points post implant, demonstrating that the nanoclip is compatible with healthy nerve activity over sub-chronic timescales. Significance. Our nerve interface addresses key challenges in interfacing with small nerves in the peripheral nervous system. Its small size, ability to remain on the nerve over sub-chronic timescales, and ease of implantation, make it a promising tool for future use in the treatment of disease.
Automatic analysis for neuron by confocal laser scanning microscope
NASA Astrophysics Data System (ADS)
Satou, Kouhei; Aoki, Yoshimitsu; Mataga, Nobuko; Hensh, Takao K.; Taki, Katuhiko
2005-12-01
The aim of this study is to develop a system that recognizes both the macro- and microscopic configurations of nerve cells and automatically performs the necessary 3-D measurements and functional classification of spines. The acquisition of 3-D images of cranial nerves has been enabled by the use of a confocal laser scanning microscope, although the highly accurate 3-D measurements of the microscopic structures of cranial nerves and their classification based on their configurations have not yet been accomplished. In this study, in order to obtain highly accurate measurements of the microscopic structures of cranial nerves, existing positions of spines were predicted by the 2-D image processing of tomographic images. Next, based on the positions that were predicted on the 2-D images, the positions and configurations of the spines were determined more accurately by 3-D image processing of the volume data. We report the successful construction of an automatic analysis system that uses a coarse-to-fine technique to analyze the microscopic structures of cranial nerves with high speed and accuracy by combining 2-D and 3-D image analyses.
Rustemi, Oriela; Cester, Giacomo; Causin, Francesco; Scienza, Renato; Della Puppa, Alessandro
2016-06-01
Ophthalmic artery aneurysms with medial and superior projection in exceptionally rare cases can split the optic nerve. Treatment of these aneurysms is challenging, because the aneurysm dome is hidden from the optic nerve, rendering its visualization and clipping confirmation difficult. In addition, optic nerve function should be preserved during surgical maneuvers. Preoperative detection of this growing feature is usually missing. We illustrate the first case of indocyanine green videoangiography (ICG-VA) application in an optic penetrating ophthalmic artery aneurysm treatment. A 57-year-old woman presented with temporal hemianopsia, slight right visual acuity deficit, and new onset of headache. The cerebral angiography detected a right ophthalmic artery aneurysm medially and superiorly projecting. The A1 tract of the ipsilateral anterior cerebral artery was elevated and curved, being suspicious for an under optic aneurysm growth. Surgery was performed. Initially the aneurysm was not visible. ICG-VA permitted the transoptic aneurysm visualization. After optic canal opening, the aneurysm was clipped and transoptic ICG-VA confirmed the aneurysm occlusion. ICG-VA showed also the slight improvement of the optic nerve pial vascularization. Postoperatively, the visual acuity was 10/10 and the hemianopsia did not worsen. The elevation and curve of the A1 tract in medially and superiorly projecting ophthalmic aneurysms may be an indirect sign of under optic growth, or optic splitting aneurysms. ICG-VA transoptic aneurysm detection and occlusion confirmation reduces the surgical maneuvers on the optic nerve, contributing to function preservation. Copyright © 2016 Elsevier Inc. All rights reserved.
MELANOPHORE BANDS AND AREAS DUE TO NERVE CUTTING, IN RELATION TO THE PROTRACTED ACTIVITY OF NERVES
Parker, G. H.
1941-01-01
1. When appropriate chromatic nerves are cut caudal bands, cephalic areas, and the pelvic fins of the catfish Ameiurus darken. In pale fishes all these areas will sooner or later blanch. By recutting their nerves all such blanched areas will darken again. 2. These observations show that the darkening of caudal bands, areas, and fins on cutting their nerves is not due to paralysis (Brücke), to the obstruction of central influences such as inhibition (Zoond and Eyre), nor to vasomotor disturbances (Hogben), but to activities emanating from the cut itself. 3. The chief agents concerned with the color changes in Ameiurus are three: intermedin from the pituitary gland, acetylcholine from the dispersing nerves (cholinergic fibers), and adrenalin from the concentrating nerves (adrenergic fibers). The first two darken the fish; the third blanches it. In darkening the dispersing nerves appear to initiate the process and to be followed and substantially supplemented by intermedin. 4. Caudal bands blanch by lateral invasion, cephalic areas by lateral invasion and internal disintegration, and pelvic fins by a uniform process of general loss of tint equivalent to internal disintegration. 5. Adrenalin may be carried in such an oil as olive oil and may therefore act as a lipohumor; it is soluble in water and hence may act as a hydrohumor. In lateral invasion (caudal bands, cephalic areas) it probably acts as a lipohumor and in internal disintegration (cephalic areas, pelvic fins) it probably plays the part of a hydrohumor. 6. The duration of the activity of dispersing nerves after they had been cut was tested by means of the oscillograph, by anesthetizing blocks, and by cold-blocks. The nerves of Ameiurus proved to be unsatisfactory for oscillograph tests. An anesthetizing block, magnesium sulfate, is only partly satisfactory. A cold-block, 0°C., is successful to a limited degree. 7. By means of a cold-block it can be shown that dispersing autonomic nerve fibers in Ameiurus can continue in activity for at least 6½ hours. It is not known how much longer they may remain active. So far as the duration of their activity is concerned dispersing nerve fibers in this fish are unlike other types of nerve fibers usually studied. PMID:19873231
Large Extremity Peripheral Nerve Repair
2015-10-01
rapid biodegradation in vivo that would compromise their function as nerve wrap sealants during the regeneration process. Outcomes of rodent studies of... biodegradation of candidate photochemical nerve wrap biomaterials. (Months 1-10) Task 1a. Regulatory approval of use of human tissue by Partners (MGH) IRB and...crosslinking with EDC/NHS to make the crosslinked HAM that should resist biodegradation in vivo. A chemical crosslinking system (EDC (1-ethyl-3-(3
Histochemical discrimination of fibers in regenerating rat infraorbital nerve
NASA Technical Reports Server (NTRS)
Wilke, R. A.; Riley, D. A.; Sanger, J. R.
1992-01-01
In rat dorsal root ganglia, histochemical staining of carbonic anhydrase (CA) and cholinesterase (CE) yields a reciprocal pattern of activity: Sensory processes are CA positive and CE negative, whereas motor processes are CA negative and CE positive. In rat infraorbital nerve (a sensory peripheral nerve), we saw extensive CA staining of nearly 100% of the myelinated axons. Although CE reactivity in myelinated axons was extremely rare, we did observe CE staining of unmyelinated autonomic fibers. Four weeks after transection of infraorbital nerves, CA-stained longitudinal sections of the proximal stump demonstrated 3 distinct morphological zones. A fraction of the viable axons retained CA activity to within 2 mm of the distal extent of the stump, and the stain is capable of resolving growth sprouts being regenerated from these fibers. Staining of unmyelinated autonomic fibers in serial sections shows that CE activity was not retained as far distally as is the CA sensory staining.
Microfasciculation: a morphological pattern in leprosy nerve damage.
Antunes, Sérgio L G; Medeiros, Mildred F; Corte-Real, Suzana; Jardim, Márcia R; Nery, José A da Costa; Hacker, Mariana A V B; Valentim, Vânia da Costa; Amadeu, Thaís Porto; Sarno, Euzenir N
2011-01-01
To study Microfasciculation, a perineurial response found in neuropathies, emphasizing its frequency, detailed morphological characteristics and biological significance in pure neural leprosy (PNL), post-treatment leprosy neuropathy (PTLN) and non-leprosy neuropathies (NLN). Morphological characteristics of microfascicles were examined via histological staining methods, immunohistochemical expression of neural markers and transmission electronmicroscopy. The detection of microfasciculation in 18 nerve biopsy specimens [12 PNL, six PTLN but not in the NLN group, was associated strongly with perineurial damage and the presence of a multibacillary inflammatory process in the nerves, particularly in the perineurium. Immunoreactivity to anti-S100 protein, anti-neurofilament, anti-nerve growth receptor and anti-myelin basic protein immunoreactivity was found within microfascicles. Ultrastructural examination of three biopsies showed that fibroblast-perineurial cells were devoid of basement membrane despite perineurial-like NGFr immunoreactivity. Morphological evidence demonstrated that multipotent pericytes from inflammation-activated microvessels could be the origin of fibroblast-perineurial cells. A microfasciculation pattern was found in 10% of leprosy-affected nerves. The microfascicles were composed predominantly of unmyelinated fibres and denervated Schwann cells (SCs) surrounded by fibroblast-perineurial cells. This pattern was found more frequently in leprosy nerves with acid-fast bacilli (AFB) and perineurial damage while undergoing an inflammatory process. Further experimental studies are necessary to elucidate microfascicle formation. © 2011 Blackwell Publishing Limited.
Pascual-Font, Arán; Cubillos, Luis; Vázquez, Teresa; McHanwell, Steve; Sañudo, José R; Maranillo, Eva
2016-05-01
It has been generally accepted that the branches of the internal branch of the superior laryngeal nerve to the interarytenoid muscle are exclusively sensory. However, some experimental studies have suggested that these branches may contain motor axons, and therefore that the interarytenoid muscle is supplied by both the superior and recurrent laryngeal nerves. The aim of this work was to determine whether motor axons to the interarytenoid muscles are present in both laryngeal nerves. Basic research. Twelve human internal branches of the superior laryngeal nerve were dissected, and its branches to the interarytenoid muscle were removed and processed for choline-acetyltransferase immunohistochemistry, a method not used previously in studying the nerve fiber composition of the laryngeal nerves. The internal branch of the superior laryngeal nerve divided into two to five branches to the interarytenoid muscle. All branches contained motor axons, with the proportion of motor axons varying from 6% to 31%. The present study confirms that the internal branch of the superior laryngeal nerve provides a motor innervation to the interarytenoid muscles. N/A. Laryngoscope, 126:1117-1122, 2016. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Crook, J. J.; Brouillard, C. B. J.; Irazoqui, P. P.; Lovick, T. A.
2018-04-01
Objective. Neuromodulation of autonomic nerve activity to regulate physiological processes is an emerging field. Vagal stimulation has received most attention whereas the potential of modulate visceral function by targeting autonomic nerves within the abdominal cavity remains under-exploited. Surgery to locate intra-abdominal targets is inherently more stressful than for peripheral nerves. Electrode leads risk becoming entrapped by intestines and loss of functionality in the nerve-target organ connection could result from electrode migration or twisting. Since nociceptor afferents are intermingled with similar-sized visceral autonomic fibres, stimulation may induce pain. In anaesthetised rats high frequency stimulation of the pelvic nerve can suppress urinary voiding but it is not known how conscious animals would react to this procedure. Our objective therefore was to determine how rats tolerated chronic implantation of cuff electrodes on the pelvic nerve, whether nerve stimulation would be aversive and whether nerve-bladder functionality would be compromised. Approach. We carried out a preliminary de-risking study to investigate how conscious rats tolerated chronic implantation of electrodes on the pelvic nerve, their responsiveness to intermittent high frequency stimulation and whether functionality of the nerve-bladder connection became compromised. Main results. Implantation of cuff electrodes was well-tolerated. The normal diurnal pattern of urinary voiding was not disrupted. Pelvic nerve stimulation (up to 4 mA, 3 kHz) for 30 min periods evoked mild alerting at stimulus onset but no signs of pain. Stimulation evoked a modest (<0.5 °C) increase in nerve temperature but the functional integrity of the nerve-bladder connection, reflected by contraction of the detrusor muscle in response to 10 Hz nerve stimulation, was not compromised. Significance. Chronic implantation of cuff electrodes on the pelvic nerve was found to be a well-tolerated procedure in rats and high frequency stimulation did not lead to loss of nerve functionality. Pelvic nerve stimulation has development potential for normalizing voiding dysfunction in conscious rats.
Zhu, Shu; Ge, Jun; Liu, Zhongyang; Liu, Liang; Jing, Da; Ran, Mingzi; Wang, Meng; Huang, Liangliang; Yang, Yafeng; Huang, Jinghui; Luo, Zhuojing
2017-01-01
Circadian rhythm (CR) plays a critical role in the treatment of several diseases. However, the role of CR in the treatment of peripheral nerve defects has not been studied. It is also known that the pulsed electromagnetic fields (PEMF) can provide a beneficial microenvironment to quicken the process of nerve regeneration and to enhance the quality of reconstruction. In this study, we evaluate the impact of CR on the promoting effect of PEMF on peripheral nerve regeneration in rats. We used the self-made “collagen-chitosan” nerve conduits to bridge the 15-mm nerve gaps in Sprague-Dawley rats. Our results show that PEMF stimulation at daytime (DPEMF) has most effective outcome on nerve regeneration and rats with DPEMF treatment achieve quickly functional recovery after 12 weeks. These findings indicate that CR is an important factor that determines the promoting effect of PEMF on peripheral nerve regeneration. PEMF exposure in the daytime enhances the functional recovery of rats. Our study provides a helpful guideline for the effective use of PEMF mediations experimentally and clinically. PMID:28360885
Shkarubo, Alexey Nikolaevich; Chernov, Ilia Valerievich; Ogurtsova, Anna Anatolievna; Moshchev, Dmitry Aleksandrovich; Lubnin, Andrew Jurievich; Andreev, Dmitry Nicolaevich; Koval, Konstantin Vladimirovich
2017-02-01
Intraoperative identification of cranial nerves is crucial for safe surgery of skull base tumors. Currently, only a small number of published papers describe the technique of trigger electromyography (t-EMG) in endoscopic endonasal removal of such tumors. To assess the effectiveness of t-EMG in preventing intraoperative cranial nerve damage in endoscopic endonasal surgery of skull base tumors. Nine patients were operated on using the endoscopic endonasal approach within a 1-year period. The tumors included large skull base chordomas and trigeminal neurinomas localized in the cavernous sinus. During the surgical process, cranial nerve identification was carried out using monopolar and bipolar t-EMG methods. Assessment of cranial nerve functional activity was conducted both before and after tumor removal. We mapped 17 nerves in 9 patients. Third, fifth, and sixth cranial nerves were identified intraoperatively. There were no cases of postoperative functional impairment of the mapped cranial nerves. In one case we were unable to get an intraoperative response from the fourth cranial nerve and observed its postoperative transient plegia (the function was normal before surgery). t-EMG allows surgeons to control the safety of cranial nerves both during and after skull base tumor removal. Copyright © 2016 Elsevier Inc. All rights reserved.
Morphological changes in neurons of the hind limb reflex arc during long term immobilization
NASA Technical Reports Server (NTRS)
Tkachenko, Z. Y.
1980-01-01
Twelve adult rabbits were immobilized for 9 to 31 days, followed by histological study of the nerve processes of lumbar vertebra 7 and sacral vertebra 1, the sciatic nerve and the motor endings of the thigh muscles. In the spinal ganglia, dystrophic changes of increasing severity with immobilization time were found, including pericellular edema, vacuolized neuroplasm, pycnotic changes, cytolysis and destruction. Chromatophilic matter decreased and was partly bleached, and amitotic division occurred. A portion of the sciatic nerve fibers were argentophilic, and some fragmentary decomposition occurred. Considerable dystrophic changes occurred in the motor nerve endings.
Types of neural guides and using nanotechnology for peripheral nerve reconstruction
Biazar, Esmaeil; Khorasani, MT; Montazeri, Naser; Pourshamsian, Khalil; Daliri, Morteza; T, Mostafa Rezaei; B, Mahmoud Jabarvand; Khoshzaban, Ahad; K, Saeed Heidari; Jafarpour, Mostafa; Roviemiab, Ziba
2010-01-01
Peripheral nerve injuries can lead to lifetime loss of function and permanent disfigurement. Different methods, such as conventional allograft procedures and use of biologic tubes present problems when used for damaged peripheral nerve reconstruction. Designed scaffolds comprised of natural and synthetic materials are now widely used in the reconstruction of damaged tissues. Utilization of absorbable and nonabsorbable synthetic and natural polymers with unique characteristics can be an appropriate solution to repair damaged nerve tissues. Polymeric nanofibrous scaffolds with properties similar to neural structures can be more effective in the reconstruction process. Better cell adhesion and migration, more guiding of axons, and structural features, such as porosity, provide a clearer role for nanofibers in the restoration of neural tissues. In this paper, basic concepts of peripheral nerve injury, types of artificial and natural guides, and methods to improve the performance of tubes, such as orientation, nanotechnology applications for nerve reconstruction, fibers and nanofibers, electrospinning methods, and their application in peripheral nerve reconstruction are reviewed. PMID:21042546
Hierarchical models for epidermal nerve fiber data.
Andersson, Claes; Rajala, Tuomas; Särkkä, Aila
2018-02-10
While epidermal nerve fiber (ENF) data have been used to study the effects of small fiber neuropathies through the density and the spatial patterns of the ENFs, little research has been focused on the effects on the individual nerve fibers. Studying the individual nerve fibers might give a better understanding of the effects of the neuropathy on the growth process of the individual ENFs. In this study, data from 32 healthy volunteers and 20 diabetic subjects, obtained from suction induced skin blister biopsies, are analyzed by comparing statistics for the nerve fibers as a whole and for the segments that a nerve fiber is composed of. Moreover, it is evaluated whether this type of data can be used to detect diabetic neuropathy, by using hierarchical models to perform unsupervised classification of the subjects. It is found that using the information about the individual nerve fibers in combination with the ENF counts yields a considerable improvement as compared to using the ENF counts only. Copyright © 2017 John Wiley & Sons, Ltd.
A multiparametric assay for quantitative nerve regeneration evaluation.
Weyn, B; van Remoortere, M; Nuydens, R; Meert, T; van de Wouwer, G
2005-08-01
We introduce an assay for the semi-automated quantification of nerve regeneration by image analysis. Digital images of histological sections of regenerated nerves are recorded using an automated inverted microscope and merged into high-resolution mosaic images representing the entire nerve. These are analysed by a dedicated image-processing package that computes nerve-specific features (e.g. nerve area, fibre count, myelinated area) and fibre-specific features (area, perimeter, myelin sheet thickness). The assay's performance and correlation of the automatically computed data with visually obtained data are determined on a set of 140 semithin sections from the distal part of a rat tibial nerve from four different experimental treatment groups (control, sham, sutured, cut) taken at seven different time points after surgery. Results show a high correlation between the manually and automatically derived data, and a high discriminative power towards treatment. Extra value is added by the large feature set. In conclusion, the assay is fast and offers data that currently can be obtained only by a combination of laborious and time-consuming tests.
Demyelination of vestibular nerve axons in unilateral Ménière's disease.
Spencer, Robert F; Sismanis, Aristides; Kilpatrick, Jefferson K; Shaia, Wayne T
2002-11-01
We conducted a study to determine whether vestibular nerves in patients with unilateral Ménière's disease whose symptoms are refractory to medical management exhibit neuropathologic changes. We also endeavored to determine whether retrocochlear abnormalities are primary or secondary factors in the disease process. To these ends, we obtained vestibular nerve segments from five patients during retrosigmoid (posterior fossa) neurectomy, immediately fixed them, and processed them for light and electron microscopy. We found that all five segments exhibited moderate to severe demyelination with axonal sparing. Moreover, we noted that reactive astrocytes produced an extensive proliferation of fibrous processes and that the microglia assumed a phagocytic role. We conclude that the possible etiologies of demyelination include viral and/or immune-mediated factors similar to those seen in other demyelinating diseases, such as multiple sclerosis and Guillain-Barré syndrome. Our findings suggest that some forms of Ménière's disease that are refractory to traditional medical management might be the result of retrocochlear pathology that affects the neuroglial portion of the vestibular nerve.
Neural stem cells promote nerve regeneration through IL12-induced Schwann cell differentiation.
Lee, Don-Ching; Chen, Jong-Hang; Hsu, Tai-Yu; Chang, Li-Hsun; Chang, Hsu; Chi, Ya-Hui; Chiu, Ing-Ming
2017-03-01
Regeneration of injured peripheral nerves is a slow, complicated process that could be improved by implantation of neural stem cells (NSCs) or nerve conduit. Implantation of NSCs along with conduits promotes the regeneration of damaged nerve, likely because (i) conduit supports and guides axonal growth from one nerve stump to the other, while preventing fibrous tissue ingrowth and retaining neurotrophic factors; and (ii) implanted NSCs differentiate into Schwann cells and maintain a growth factor enriched microenvironment, which promotes nerve regeneration. In this study, we identified IL12p80 (homodimer of IL12p40) in the cell extracts of implanted nerve conduit combined with NSCs by using protein antibody array and Western blotting. Levels of IL12p80 in these conduits are 1.6-fold higher than those in conduits without NSCs. In the sciatic nerve injury mouse model, implantation of NSCs combined with nerve conduit and IL12p80 improves motor recovery and increases the diameter up to 4.5-fold, at the medial site of the regenerated nerve. In vitro study further revealed that IL12p80 stimulates the Schwann cell differentiation of mouse NSCs through the phosphorylation of signal transducer and activator of transcription 3 (Stat3). These results suggest that IL12p80 can trigger Schwann cell differentiation of mouse NSCs through Stat3 phosphorylation and enhance the functional recovery and the diameter of regenerated nerves in a mouse sciatic nerve injury model. Copyright © 2016 Elsevier Inc. All rights reserved.
Reconstruction of an Extensive Midfacial Defect Using Additive Manufacturing Techniques.
Fernandes, Nelson; van den Heever, Jacobus; Hoogendijk, Christiaan; Botha, Sarel; Booysen, Gerrie; Els, Johan
2016-10-01
Malignant peripheral nerve sheath tumors are extremely rare tumors arising in peripheral nerves. Only 17 cases involving the trigeminal nerve have ever been reported. These tumors have a very poor prognosis and very high rates of recurrence and metastases. Their recommended treatment involves complete tumor resection followed by radiation. This can be problematic in the head and neck region. We present a clinical case involving a 33-year-old female patient presenting with a slow-growing, exophytic mass of the anterior maxilla. Incisional biopsy and subsequent histological examination revealed a diagnosis of a malignant peripheral nerve sheath tumor. Surgical resection involved a complete maxillectomy, rhinectomy, and resection of the upper lip and aspects of the left and right cheeks. Reconstruction of the subsequent defect incorporated the placement of four zygomatic oncology implants to aid in retention of a facial prosthesis. These implants, however, were subsequently lost; and an anatomical model of the hard tissues was manufactured via 3D printing. This model was used to design and manufacture a titanium frame (customized implant) for the patient. The frame was then fixated and secured intraoperatively with 21 cortical screws. A maxillary denture and silicone facial prosthesis were also made to fit onto this frame. This is the first known case where additive manufacturing, via the use of rapid prototyping and 3D printing, was employed to manufacture a facial prosthesis. © 2016 by the American College of Prosthodontists.
Learning to live with a hand nerve disorder: A constructed grounded theory.
Ashwood, Mark; Jerosch-Herold, Christina; Shepstone, Lee
2017-11-29
Grounded theory. The broader perspective of health offered by the World Health Organization's International Classification of Functioning, Disability and Health has had a significant bearing on how we view the measurement of health outcomes after surgical or therapy interventions for peripheral nerve disorders affecting the hand. The value of the patient's perspective is now recognized and outcomes which reflect this are being advocated in the clinical management and support of this population. This qualitative study sought to explore the lived experience of a hand nerve disorder and in particular the impact on body structure/function, activities, and participation. In depth, one-to-one interviews with 14 people with a range of hand nerve disorders were conducted. Constructivist grounded theory methods were used to collect and analyze the data. Patients were also given the option of taking photographs to visually represent what it is like to live with a nerve disorder, to bring with them for discussion during the interview. The impact of hand nerve disorders forms part of a wider narrative on adaptation. A process of "struggling" and then "overcoming" was experienced. This was followed by an interior aspect of adaptation described as "accepting." This gave rise to participants "transforming," being changed as a result of the journey that they had been on. This study provides an explanatory theory on the adaptive process following a hand nerve disorder which may inform future patient-therapist interactions. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Bayesian analysis of the kinetics of quantal transmitter secretion at the neuromuscular junction.
Saveliev, Anatoly; Khuzakhmetova, Venera; Samigullin, Dmitry; Skorinkin, Andrey; Kovyazina, Irina; Nikolsky, Eugeny; Bukharaeva, Ellya
2015-10-01
The timing of transmitter release from nerve endings is considered nowadays as one of the factors determining the plasticity and efficacy of synaptic transmission. In the neuromuscular junction, the moments of release of individual acetylcholine quanta are related to the synaptic delays of uniquantal endplate currents recorded under conditions of lowered extracellular calcium. Using Bayesian modelling, we performed a statistical analysis of synaptic delays in mouse neuromuscular junction with different patterns of rhythmic nerve stimulation and when the entry of calcium ions into the nerve terminal was modified. We have obtained a statistical model of the release timing which is represented as the summation of two independent statistical distributions. The first of these is the exponentially modified Gaussian distribution. The mixture of normal and exponential components in this distribution can be interpreted as a two-stage mechanism of early and late periods of phasic synchronous secretion. The parameters of this distribution depend on both the stimulation frequency of the motor nerve and the calcium ions' entry conditions. The second distribution was modelled as quasi-uniform, with parameters independent of nerve stimulation frequency and calcium entry. Two different probability density functions for the distribution of synaptic delays suggest at least two independent processes controlling the time course of secretion, one of them potentially involving two stages. The relative contribution of these processes to the total number of mediator quanta released depends differently on the motor nerve stimulation pattern and on calcium ion entry into nerve endings.
Giusti, Guilherme; Lee, Joo-Yup; Kremer, Thomas; Friedrich, Patricia; Bishop, Allen T; Shin, Alexander Y
2016-02-01
Processed nerve allografts have become an alternative to repair segmental nerve defects, with results comparable with autografts regarding sensory recovery; however, they have failed to reproduce comparable motor recovery. The purpose of this study was to determine how revascularizaton of processed nerve allograft would affect motor recovery. Eighty-eight rats were divided in four groups of 22 animals each. A unilateral 10-mm sciatic nerve defect was repaired with allograft (group I), allograft wrapped with silicone conduit (group II), allograft augmented with vascular endothelial growth factor (group III), or autograft (group IV). Eight animals from each group were sacrificed at 3 days, and the remaining animals at 16 weeks. Revascularization was evaluated by measuring the graft capillary density at 3 days and 16 weeks. Measurements of ankle contracture, compound muscle action potential, tibialis anterior muscle weight and force, and nerve histomorphometry were performed at 16 weeks. All results were normalized to the contralateral side. The results of capillary density at 3 days were 0.99% ± 1.3% for group I, 0.33% ± 0.6% for group II, 0.05% ± 0.1% for group III, and 75.6% ± 45.7% for group IV. At 16 weeks, the results were 69.9% ± 22.4% for group I, 37.0% ± 16.6% for group II, 84.6% ± 46.6% for group III, and 108.3% ± 46.8% for group IV. The results of muscle force were 47.5% ± 14.4% for group I, 21.7% ± 13.5% for group II, 47.1% ± 7.9% for group III, and 54.4% ± 10.6% for group IV. The use of vascular endothelial growth factor in the fashion used in this study improved neither the nerve allograft short-term revascularization nor the functional motor recovery after 16 weeks. Blocking allograft vascularization from surrounding tissues was detrimental for motor recovery. The processed nerve allografts used in this study showed similar functional motor recovery compared with that of the autograft. © 2014 Wiley Periodicals, Inc.
Novel drug delivering conduit for peripheral nerve regeneration
NASA Astrophysics Data System (ADS)
Labroo, Pratima; Shea, Jill; Edwards, Kyle; Ho, Scott; Davis, Brett; Sant, Himanshu; Goodwin, Isak; Gale, Bruce; Agarwal, Jay
2017-12-01
Objective. This paper describes the design of a novel drug delivery apparatus integrated with a poly lactic-co-glycolic acid (PLGA) based nerve guide conduit for controlled local delivery of nerve growth factor (NGF) and application in peripheral nerve gap injury. Approach. An NGF dosage curve was acquired to determine the minimum in vitro concentration for optimal neurite outgrowth of dorsal root ganglion (DRG) cells; PLGA based drug delivery devices were then designed and tested in vitro and in vivo across 15 mm rat sciatic nerve gap injury model. Main results. The drug delivery nerve guide was able to release NGF for 28 d at concentrations (0.1-10 ng ml-1) that were shown to enhance DRG neurite growth. Furthermore, the released NGF was bioactive and able to enhance DRG neurite growth. Following these tests, optimized NGF-releasing nerve conduits were implanted across 15 mm sciatic nerve gaps in a rat model, where they demonstrated significant myelination and muscle innervation in vivo as compared to empty nerve conduits (p < 0.05). This drug delivery nerve guide can release NGF for extended periods of time and enhance axon growth in vitro and in vivo and has the potential to improve nerve regeneration following a peripheral nerve injury. Significance. This integrated drug delivering nerve guide simplifies the design process and provides increased versatility for releasing a variety of different growth factors. This innovative device has the potential for broad applicability and allows for easier customization to change the type of drugs and dosage of individual drugs without devising a completely new biomaterial-drug conjugate each time.
A novel rat model of brachial plexus injury with nerve root stumps.
Fang, Jintao; Yang, Jiantao; Yang, Yi; Li, Liang; Qin, Bengang; He, Wenting; Yan, Liwei; Chen, Gang; Tu, Zhehui; Liu, Xiaolin; Gu, Liqiang
2018-02-01
The C5-C6 nerve roots are usually spared from avulsion after brachial plexus injury (BPI) and thus can be used as donors for nerve grafting. To date, there are no appropriate animal models to evaluate spared nerve root stumps. Hence, the aim of this study was to establish and evaluate a rat model with spared nerve root stumps in BPI. In rupture group, the proximal parts of C5-T1 nerve roots were held with the surrounding muscles and the distal parts were pulled by a sudden force after the brachial plexus was fully exposed, and the results were compared with those of sham group. To validate the model, the lengths of C5-T1 spared nerve root stumps were measured and the histologies of the shortest one and the corresponding spinal cord were evaluated. C5 nerve root stump was found to be the shortest. Histology findings demonstrated that the nerve fibers became more irregular and the continuity decreased; numbers and diameters of myelinated axons and thickness of myelin sheaths significantly decreased over time. The survival of motoneurons was reduced, and the death of motoneurons may be related to the apoptotic process. Our model could successfully create BPI model with nerve root stumps by traction, which could simulate injury mechanisms. While other models involve root avulsion or rupturing by distal nerve transection. This model would be suitable for evaluating nerve root stumps and testing new therapeutic strategies for neuroprotection through nerve root stumps in the future. Copyright © 2017. Published by Elsevier B.V.
On the terminology of cranial nerves.
Simon, František; Marečková-Štolcová, Elena; Páč, Libor
2011-10-20
The present contribution adopts various points of view to discuss the terminology of the twelve nervi craniales. These are paired nerves and have dual names, terms with Roman ordinal numerals, i.e., the nerves are numbered in the top-to-bottom direction, and descriptive historical names. The time of origin and motivation behind the investigated terms are determined. The majority of terms come from the 17th and 18th centuries. The motivation behind most of them is (a) nerve localization, as this is in conformity with anatomical nomenclature in general, (b) nerve function, and rarely (c) nerve appearance. The occurrence of synonymous names and variants is also a focus of attention. In several cases, reference is made to the process called terminologization, meaning when a certain expression acquires technical meaning and the characteristic/feature of the term. Copyright © 2011 Elsevier GmbH. All rights reserved.
A fully-automatic fast segmentation of the sub-basal layer nerves in corneal images.
Guimarães, Pedro; Wigdahl, Jeff; Poletti, Enea; Ruggeri, Alfredo
2014-01-01
Corneal nerves changes have been linked to damage caused by surgical interventions or prolonged contact lens wear. Furthermore nerve tortuosity has been shown to correlate with the severity of diabetic neuropathy. For these reasons there has been an increasing interest on the analysis of these structures. In this work we propose a novel, robust, and fast fully automatic algorithm capable of tracing the sub-basal plexus nerves from human corneal confocal images. We resort to logGabor filters and support vector machines to trace the corneal nerves. The proposed algorithm traced most of the corneal nerves correctly (sensitivity of 0.88 ± 0.06 and false discovery rate of 0.08 ± 0.06). The displayed performance is comparable to a human grader. We believe that the achieved processing time (0.661 ± 0.07 s) and tracing quality are major advantages for the daily clinical practice.
Thermally Drawn Fibers as Nerve Guidance Scaffolds
Koppes, Ryan A.; Park, Seongjun; Hood, Tiffany; Jia, Xiaoting; Poorheravi, Negin Abdolrahim; Achyuta, Anilkumar Harapanahalli; Fink, Yoel; Anikeeva, Polina
2016-01-01
Synthetic neural scaffolds hold promise to eventually replace nerve autografts for tissue repair following peripheral nerve injury. Despite substantial evidence for the influence of scaffold geometry and dimensions on the rate of axonal growth, systematic evaluation of these parameters remains a challenge due to limitations in materials processing. We have employed fiber drawing to engineer a wide spectrum of polymer-based neural scaffolds with varied geometries and core sizes. Using isolated whole dorsal root ganglia as an in vitro model system we have identified key features enhancing nerve growth within these fiber scaffolds. Our approach enabled straightforward integration of microscopic topography at the scale of nerve fascicles within the scaffold cores, which led to accelerated Schwann cell migration, as well as neurite growth and alignment. Our findings indicate that fiber drawing provides a scalable and versatile strategy for producing nerve guidance channels capable of controlling direction and accelerating the rate of axonal growth. PMID:26717246
Downie, Laura E; Naranjo Golborne, Cecilia; Chen, Merry; Ho, Ngoc; Hoac, Cam; Liyanapathirana, Dasun; Luo, Carol; Wu, Ruo Bing; Chinnery, Holly R
2018-06-01
Our aim was to compare regeneration of the sub-basal nerve plexus (SBNP) and superficial nerve terminals (SNT) following corneal epithelial injury. We also sought to compare agreement when quantifying nerve parameters using different image analysis techniques. Anesthetized, female C57BL/6 mice received central 1-mm corneal epithelial abrasions. Four-weeks post-injury, eyes were enucleated and processed for PGP9.5 to visualize the corneal nerves using wholemount immunofluorescence staining and confocal microscopy. The percentage area of the SBNP and SNT were quantified using: ImageJ automated thresholds, ImageJ manual thresholds and manual tracings in NeuronJ. Nerve sum length was quantified using NeuronJ and Imaris. Agreement between methods was considered with Bland-Altman analyses. Four-weeks post-injury, the sum length of nerve fibers in the SBNP, but not the SNT, was reduced compared with naïve eyes. In the periphery, but not central cornea, of both naïve and injured eyes, nerve fiber lengths in the SBNP and SNT were strongly correlated. For quantifying SBNP nerve axon area, all image analysis methods were highly correlated. In the SNT, there was poor correlation between manual methods and auto-thresholding, with a trend towards underestimating nerve fiber area using auto-thresholding when higher proportions of nerve fibers were present. In conclusion, four weeks after superficial corneal injury, there is differential recovery of epithelial nerve axons; SBNP sum length is reduced, however the sum length of SNTs is similar to naïve eyes. Care should be taken when selecting image analysis methods to compare nerve parameters in different depths of the corneal epithelium due to differences in background autofluorescence. Copyright © 2018 Elsevier Ltd. All rights reserved.
A study of axonal degeneration in the optic nerves of aging mice
NASA Technical Reports Server (NTRS)
Johnson, J. E., Jr.; Philpott, D. E.; Miquel, J.
1978-01-01
The optic nerves of C57BL/6J mice ranging from 3 to 30 months were examined by electron microscopy. At all ages investigated, optic nerve axons contained enlarged mitochondria with abnormal cristae. With increasing age, a large number of necrotic axons were observed and were in the process of being phagocytized. The abnormal mitochondria may represent preliminary changes that eventually lead to necrosis of the axon.
BRANCHING PATTERNS OF INDIVIDUAL SYMPATHETIC NEURONS IN CULTURE
Bray, D.
1973-01-01
The growth of single sympathetic neurons in tissue culture was examined with particular regard to the way in which the patterns of axonal or dendritic processes (here called nerve fibers), were formed. The tips of the fibers were seen to advance in straight lines and to grow at rates that did not vary appreciably with time, with their position in the cell outgrowth, or with the fiber diameter. Most of the branch points were formed by the bifurcation of a fiber tip (growth cone), apparently at random, and thereafter remained at about the same distance from the cell body. It seemed that the final shape of a neuron was the result of the reiterated and largely autonomous activities of the growth cones. The other parts of the cell played a supportive role but, apart from this, had no obvious influence on the final pattern of branches formed. PMID:4687915
Mosiński, Eliasz; Kikowski, Łukasz; Irzmański, Robert
Introduction: Oculomotor nerve palsy is an eye condition resulting from damage to the third cranial nerve or a branch thereof. Third nerve damage weakens the muscles innervated by the nerve . Also adversely affect the fourth and sixth nerve , causing impairment of their activity. Rehabilitation third nerve palsy is rarely described in the available literature . The whole process is very difficult , but the effects of physiotherapy is very beneficial for the patient. The aim:The assessment of the influence of the outpatient rehabilitation on the patient's condition after a three-month treatment and the use of physical therapy. Material and methods:Case studies of the 38-yerar-old patient after having operated a big aneurism of the left ICA, which was clipped. After the procedure, the III, IV and VI cranial nerves were deeply impaired and the amnesic aphasia occurred. The patient started the rehabilitation a month after the incident. To assess the process of rehabilitation, the own movement examination of the eyeball was implemented. Active and passive exercises, Tigger Point therapy, kinesiotaping, laser and electrostimulation were inserted. Results: The significant improvement of the eyeball movement has been proved on the basis of the same own examination. A physiotherapy has had a positive influence on the speech disorder, namely amnesic aphasia, and after the month of the rehabilitation it has been completely removed. The positive influence of the rehabilitation, which has been pointed out, is clinically essential. Conclusions: Obtained results have not been described in literature yet, that is why it is essential to widen further research and emphasise the importance of the rehabilitation, which is rarely implemented in an intense way in such medical conditions.
Fu, Michael C; Hendel, Michael D; Chen, Xiang; Warren, Russell F; Dines, David M; Gulotta, Lawrence V
2017-12-01
Radial nerve injury is a rare but clinically significant complication of revision shoulder arthroplasty and fixation of native and periprosthetic proximal humeral fractures. Understanding of the anatomic relationship between the radial nerve as it enters the humeral spiral groove and anterior shoulder landmarks in a deltopectoral approach is necessary to avoid iatrogenic radial nerve injury. Eight forequarter cadaveric specimens were dissected through a deltopectoral approach. Distances between the radial nerve entry into the proximal spiral groove and the coracoid process, distal lesser tuberosity/inferior subscapularis insertion, superior latissimus insertion, and inferior latissimus insertion were measured. Means, standard deviations, and ranges were determined for each distance. The radial nerve entry into the proximal spiral groove averaged 133.1 mm (range, 110.3-153.0 mm) from the coracoid process, 101.9 mm (range, 76.5-124.3 mm) from the distal lesser tuberosity/inferior subscapularis insertion, 81.0 mm (range, 63.4-101.5 mm) from the superior latissimus insertion, and 39.6 mm (range, 25.5-55.4 mm) from the inferior latissimus insertion. The proximal spiral groove was distal to the inferior latissimus insertion in all specimens. The risk of iatrogenic injury to the radial nerve at the spiral groove may be minimized through proper identification and protection or avoidance of circumferential fixation. However, if encircling fixation with cerclage cables is necessary, instrumentation proximal to the inferior edge of the latissimus dorsi insertion may reduce the risk of radial nerve injury. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
[Applied anatomy of facial recess and posterior tympanum related to cochlear implantation].
Zou, Tuanming; Xie, Nanping; Guo, Menghe; Shu, Fan; Zhang, Hongzheng
2012-05-01
To investigate the related parameters of temporal bone structure in the surgery of cochlear implantation through facial recess approach so as to offer a theoretical reference for the avoidance of facial nerve injury and the accurate localization. In a surgical simulation experiment, twenty human temporal bones were studied. The correlation parameters were measured under surgical microscope. Distance between suprameatal spine and short process of incus was (12.44 +/- 0.51) mm. Width from crotch of chorda tympani nerve to stylomastoid foramen was (2.67 +/- 0.51) mm. Distance between short process of incus and crotch of chorda tympani nerve was (15.22 +/- 0.83) mm. The location of maximal width of the facial recess into short process of incus, crotch of chorda tympani nerve were (6.28 +/- 0.41) mm, (9.81 +/- 0.71) mm, respectively. The maximal width of the facial recess was (2.73 +/- 0.20) mm. The value at level of stapes and round window were (2.48 +/- 0.20 mm) and (2.24 +/- 0.18) mm, respectively. Distance between pyramidalis eminence and anterior round window was (2.22 +/- 0.21) mm. Width from stapes to underneath round window was (2.16 +/- 0.14) mm. These parameters provide a reference value to determine the position of cochlear inserting the electrode array into the scale tympani and opening facial recess firstly to avoid potential damage to facial nerve in surgery.
A rational approach to the management of chronic migraine.
Evans, Randolph W
2013-01-01
About 2% of the adult population has chronic migraine with only 20% diagnosed with this disorder. Those with medication overuse may improve with withdrawal of overuse medications. The intravenous dihydroergotamine regimen usually produces short-term benefit for those with medically refractory chronic migraine. OnabotulinumtoxinA and topiramate have shown efficacy in large placebo-controlled randomized trials. Sodium valproate, gabapentin, tizanidine, amitriptyline, fluoxetine, zonisamide, and possibly memantine may be alternative or possibly combined treatment options but with lesser levels of evidence supporting their use. Preliminary evidence suggests that nerve blocks might be beneficial. Acupuncture, biofeedback, relaxation therapy, and cognitive behavioral therapy might be of benefit. Surgical treatments including bariatric and deactivation of trigger points are of growing interest but not appropriate for most sufferers. Occipital nerve stimulation is a promising treatment with ongoing studies defining its use. © 2013 American Headache Society.
Historic origin of the "Arcade of Struthers".
De Jesus, Ramon; Dellon, A Lee
2003-05-01
John Struthers wrote in 1848 and 1854 about sites of compression of the median nerve from axilla to elbow. He is best known for describing the rare median nerve entrapment by a ligament from a supracondylar process extending to the medial humeral epicondyle. In 1973, observation of ulnar nerve entrapment associated with a midshaft humeral fracture and subsequent anatomic dissections led to the creation of the term "Arcade of Struthers." Review of Struthers' original writings fails to identify either the use of word "arcade" or description of ulnar nerve compression. Review of published anatomic dissections identifies variations in the origin of the medial head of the triceps, not described by Struthers, that may cause failure of an anterior transposition of the ulnar nerve. Continued use of the term "Arcade of Struthers" is historically incorrect.
Zhou, Haiying; Yan, Ying; Ee, Xueping; Hunter, Daniel A; Akers, Walter J; Wood, Matthew D; Berezin, Mikhail Y
2016-12-01
Peripheral nerve injury evokes a complex cascade of chemical reactions including generation of molecular radicals. Conversely, the reactions within nerve induced by stress are difficult to directly detect or measure to establish causality. Monitoring these reactions in vivo would enable deeper understanding of the nature of the injury and healing processes. Here, we utilized near-infrared fluorescence molecular probes delivered via intra-neural injection technique to enable live, in vivo imaging of tissue response associated with nerve injury and stress. These initially quenched fluorescent probes featured specific sensitivity to hydroxyl radicals and become fluorescent upon encountering reactive oxygen species (ROS). Intraneurally delivered probes demonstrated rapid activation in injured rat sciatic nerve but minimal activation in normal, uninjured nerve. In addition, these probes reported activation within sciatic nerves of living rats after a stress caused by a pinprick stimulus to the abdomen. This imaging approach was more sensitive to detecting changes within nerves due to the induced stress than other techniques to evaluate cellular and molecular changes. Specifically, neither histological analysis of the sciatic nerves, nor the expression of pain and stress associated genes in dorsal root ganglia could provide statistically significant differences between the control and stressed groups. Overall, the results demonstrate a novel imaging approach to measure ROS in addition to the impact of ROS within nerve in live animals. Copyright © 2016 Elsevier Inc. All rights reserved.
Sun, Fei; Zhou, Ke; Mi, Wen-juan; Qiu, Jian-hua
2011-11-01
Natural biological conduits containing seed cells have been widely used as an alternative strategy for nerve gap reconstruction to replace traditional nerve autograft techniques. The purpose of this study was to investigate the effects of a decellularized allogeneic artery conduit containing autologous transdifferentiated adipose-derived stem cells (dADSCs) on an 8-mm facial nerve branch lesion in a rat model. After 8 weeks, functional evaluation of vibrissae movements and electrophysiological assessment, retrograde labeling of facial motoneurons and morphological analysis of regenerated nerves were performed to assess nerve regeneration. The transected nerves reconstructed with dADSC-seeded artery conduits achieved satisfying regenerative outcomes associated with morphological and functional improvements which approached those achieved with Schwann cell (SC)-seeded artery conduits, and superior to those achieved with artery conduits alone or ADSC-seeded artery conduits, but inferior to those achieved with nerve autografts. Besides, numerous transplanted PKH26-labeled dADSCs maintained their acquired SC-phenotype and myelin sheath-forming capacity inside decellularized artery conduits and were involved in the process of axonal regeneration and remyelination. Collectively, our combined use of decellularized allogeneic artery conduits with autologous dADSCs certainly showed beneficial effects on nerve regeneration and functional restoration, and thus represents an alternative approach for the reconstruction of peripheral facial nerve defects. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit.
Kalbermatten, D F; Kingham, P J; Mahay, D; Mantovani, C; Pettersson, J; Raffoul, W; Balcin, H; Pierer, G; Terenghi, G
2008-06-01
Peripheral nerve injury presents with specific problems of neuronal reconstructions, and from a clinical viewpoint a tissue engineering approach would facilitate the process of repair and regeneration. We have previously used artificial nerve conduits made from bioresorbable poly-3-hydroxybutyrate (PHB) in order to refine the ways in which peripheral nerves are repaired and reconnected to the target muscles and skin. The addition of Schwann cells (SC) or differentiated mesenchymal stem cells (dMSC) to the conduits enhances regeneration. In this study, we have used a matrix based on fibrin (Tisseel) to fill optimally the nerve-conduits with cells. In vitro analysis showed that both SC and MSC adhered significantly better to PHB in the presence of fibrin and cells continued to maintain their differentiated state. Cells were more optimally distributed throughout the conduit when seeded in fibrin than by delivery in growth medium alone. Transplantation of the nerve conduits in vivo showed that cells in combination with fibrin matrix significantly increased nerve regeneration distance (using PGP9.5 and S100 distal and proximal immunohistochemistry) when compared with empty PHB conduits. This study shows the beneficial combinatory effect of an optimised matrix, cells and conduit material as a step towards bridging nerve gaps which should ultimately lead to improved functional recovery following nerve injury.
Ginanneschi, Federica; Filippou, Georgios; Giannini, Fabio; Carluccio, Maria A; Adinolfi, Antonella; Frediani, Bruno; Dotti, Maria T; Rossi, Alessandro
2012-12-01
In hereditary neuropathy with liability to pressure palsies (HNPP), the increase in distal motor latencies (DMLs) is often out of proportion to the slowing of conduction velocities, but the pathophysiological mechanism is still unclear. We used a combined electrophysiological and ultrasonographic (US) approach to provide insight into this issue. Twelve HNPP subjects underwent extensive electrophysiological studies and US measurements of the cross-sectional area (CSA) of several peripheral nerves. US nerve enlargement was only observed in the carpal tunnel, Guyon's canal, the elbow and the fibular head. We did not observe US abnormalities at sites where nerve entrapment is uncommon. An increase in DMLs was observed regardless of US nerve enlargement. The increased nerve CSA only in common sites of entrapment likely reflected the well-documented nerve vulnerability to mechanical stress in HNPP. No morphometric changes were seen in the distal nerve segments where compression/entrapment is unlikely, despite the fact that the DMLs were increased. These data suggest that factors other than mechanical stress are responsible for the distal slowing of action potential propagation. We speculate that a mixture of mechanical insults and an axon-initiated process in the distal nerves underlies the distal slowing and/or conduction failure in HNPP. © 2012 Peripheral Nerve Society.
Parkinson Disease Affects Peripheral Sensory Nerves in the Pharynx
Mu, Liancai; Sobotka, Stanislaw; Chen, Jingming; Su, Hungxi; Sanders, Ira; Nyirenda, Themba; Adler, Charles H.; Shill, Holly A.; Caviness, John N.; Samanta, Johan E.; Sue, Lucia I.; Beach, Thomas G.
2013-01-01
Dysphagia is very common in patients with Parkinson’s disease (PD) and often leads to aspiration pneumonia, the most common cause of death in PD. Unfortunately, current therapies are largely ineffective for dysphagia. As pharyngeal sensation normally triggers the swallowing reflex, we examined pharyngeal sensory nerves in PD for Lewy pathology. Sensory nerves supplying the pharynx were excised from autopsied pharynges obtained from patients with clinically diagnosed and neuropathologically confirmed PD (n = 10) and healthy age-matched controls (n = 4). We examined: the glossopharyngeal nerve (IX); the pharyngeal sensory branch of the vagus nerve (PSB-X); and the internal superior laryngeal nerve (ISLN) innervating the laryngopharynx. Immunohistochemistry for phosphorylated α-synuclein was used to detect potential Lewy pathology. Axonal α-synuclein aggregates in the pharyngeal sensory nerves were identified in all of the PD subjects but not in the controls. The density of α-synuclein-positive lesions was significantly greater in PD subjects with documented dysphagia compared to those without dysphagia. In addition, α-synuclein-immunoreactive nerve fibers in the ISLN were much more abundant than those in the IX and PSBX. These findings suggest that pharyngeal sensory nerves are directly affected by the pathologic process of PD. This anatomic pathology may decrease pharyngeal sensation impairing swallowing and airway protective reflexes, thereby contributing to dysphagia and aspiration. PMID:23771215
Yan, Yuhui; Shen, Feng-Yi; Agresti, Michael; Zhang, Lin-Ling; Matloub, Hani S; LoGiudice, John A; Havlik, Robert; Li, Jifeng; Gu, Yu-Dong; Yan, Ji-Geng
2017-09-01
Peripheral nerve injury can have a devastating effect on daily life. Calcium concentrations in nerve fibers drastically increase after nerve injury, and this activates downstream processes leading to neuron death. Our previous studies showed that calcium-modulating agents decrease calcium accumulation, which aids in regeneration of injured peripheral nerves; however, the optimal therapeutic window for this application has not yet been identified. In this study, we show that calcium clearance after nerve injury is positively correlated with functional recovery in rats suffering from a crushed sciatic nerve injury. After the nerve injury, calcium accumulation increased. Peak volume is from 2 to 8 weeks post injury; calcium accumulation then gradually decreased over the following 24-week period. The compound muscle action potential (CMAP) measurement from the extensor digitorum longus muscle recovered to nearly normal levels in 24 weeks. Simultaneously, real-time polymerase chain reaction results showed that upregulation of calcium-ATPase (a membrane protein that transports calcium out of nerve fibers) mRNA peaked at 12 weeks. These results suggest that without intervention, the peak in calcium-ATPase mRNA expression in the injured nerve occurs after the peak in calcium accumulation, and CMAP recovery continues beyond 24 weeks. Immediately using calcium-modulating agents after crushed nerve injury improved functional recovery. These studies suggest that a crucial time frame in which to initiate effective clinical approaches to accelerate calcium clearance and nerve regeneration would be prior to 2 weeks post injury. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Department of Defense Chemical and Biological Defense Program. Volume I: Annual Report to Congress
2002-04-01
The M21 RSCAAL is an automatic scanning, passive infrared sensor that detects nerve ( GA , GB, and GD) and blister (H and L) agent vapor clouds based on...Point Detection GA - tabun, a nerve agent System GAO - General Accounting Office IPE - Individual Protective Equipment GAS - Group A Streptococcus...IPR - In-Process Review GB - sarin , a nerve agent IPT - Integrated Product Team GC - gas chromatography IR&D - Independent Research & Development GD
Huang, Jie; Ni, Zhongge; Finch, Philip
2017-09-01
Varicella zoster virus reactivation can cause permanent histological changes in the central and peripheral nervous system. Neural inflammatory changes or damage to the dorsal root ganglia sensory nerve fibers during reactivation can lead to postherpetic neuralgia (PHN). For PHN of the first division of the fifth cranial nerve (ophthalmic division of the trigeminal ganglion), there is evidence of inflammatory change in the ganglion and adjacent ocular neural structures. First division trigeminal nerve PHN can prove to be difficult and sometimes even impossible to manage despite the use of a wide range of conservative measures, including anticonvulsant and antidepressant medication. Steroids have been shown to play an important role by suppressing neural inflammatory processes. We therefore chose the trigeminal ganglion as an interventional target for an 88-year-old woman with severe ophthalmic division PHN after she failed to respond to conservative treatment. Under fluoroscopic guidance, a trigeminal ganglion nerve block was performed with lidocaine combined with dexamethasone. A retrobulbar block with lidocaine and triamcinolone settled residual oculodynia. At 1-year follow-up, the patient remained pain free and did not require analgesic medication. To our knowledge, this is the first reported case of ophthalmic division PHN successfully treated with a combination of trigeminal ganglion and retrobulbar nerve block using a local anesthetic agent and steroid for central and peripheral neural inflammatory processes. © 2016 World Institute of Pain.
Li, Yiqing; Andereggen, Lukas; Yuki, Kenya; Omura, Kumiko; Yin, Yuqin; Gilbert, Hui-Ya; Erdogan, Burcu; Asdourian, Maria S.; Shrock, Christine; de Lima, Silmara; Apfel, Ulf-Peter; Zhuo, Yehong; Hershfinkel, Michal; Lippard, Stephen J.; Benowitz, Larry
2017-01-01
Retinal ganglion cells (RGCs), the projection neurons of the eye, cannot regenerate their axons once the optic nerve has been injured and soon begin to die. Whereas RGC death and regenerative failure are widely viewed as being cell-autonomous or influenced by various types of glia, we report here that the dysregulation of mobile zinc (Zn2+) in retinal interneurons is a primary factor. Within an hour after the optic nerve is injured, Zn2+ increases several-fold in retinal amacrine cell processes and continues to rise over the first day, then transfers slowly to RGCs via vesicular release. Zn2+ accumulation in amacrine cell processes involves the Zn2+ transporter protein ZnT-3, and deletion of slc30a3, the gene encoding ZnT-3, promotes RGC survival and axon regeneration. Intravitreal injection of Zn2+ chelators enables many RGCs to survive for months after nerve injury and regenerate axons, and enhances the prosurvival and regenerative effects of deleting the gene for phosphatase and tensin homolog (pten). Importantly, the therapeutic window for Zn2+ chelation extends for several days after nerve injury. These results show that retinal Zn2+ dysregulation is a major factor limiting the survival and regenerative capacity of injured RGCs, and point to Zn2+ chelation as a strategy to promote long-term RGC protection and enhance axon regeneration. PMID:28049831
Li, Yiqing; Andereggen, Lukas; Yuki, Kenya; Omura, Kumiko; Yin, Yuqin; Gilbert, Hui-Ya; Erdogan, Burcu; Asdourian, Maria S; Shrock, Christine; de Lima, Silmara; Apfel, Ulf-Peter; Zhuo, Yehong; Hershfinkel, Michal; Lippard, Stephen J; Rosenberg, Paul A; Benowitz, Larry
2017-01-10
Retinal ganglion cells (RGCs), the projection neurons of the eye, cannot regenerate their axons once the optic nerve has been injured and soon begin to die. Whereas RGC death and regenerative failure are widely viewed as being cell-autonomous or influenced by various types of glia, we report here that the dysregulation of mobile zinc (Zn 2+ ) in retinal interneurons is a primary factor. Within an hour after the optic nerve is injured, Zn 2+ increases several-fold in retinal amacrine cell processes and continues to rise over the first day, then transfers slowly to RGCs via vesicular release. Zn 2+ accumulation in amacrine cell processes involves the Zn 2+ transporter protein ZnT-3, and deletion of slc30a3, the gene encoding ZnT-3, promotes RGC survival and axon regeneration. Intravitreal injection of Zn 2+ chelators enables many RGCs to survive for months after nerve injury and regenerate axons, and enhances the prosurvival and regenerative effects of deleting the gene for phosphatase and tensin homolog (pten). Importantly, the therapeutic window for Zn 2+ chelation extends for several days after nerve injury. These results show that retinal Zn 2+ dysregulation is a major factor limiting the survival and regenerative capacity of injured RGCs, and point to Zn 2+ chelation as a strategy to promote long-term RGC protection and enhance axon regeneration.
Schwann cells induce cancer cell dispersion and invasion
Deborde, Sylvie; Lyubchik, Anna; Zhou, Yi; He, Shizhi; McNamara, William F.; Chernichenko, Natalya; Lee, Sei-Young; Barajas, Fernando; Chen, Chun-Hao; Bakst, Richard L.; Vakiani, Efsevia; He, Shuangba; Hall, Alan; Wong, Richard J.
2016-01-01
Nerves enable cancer progression, as cancers have been shown to extend along nerves through the process of perineural invasion, which carries a poor prognosis. Furthermore, the innervation of some cancers promotes growth and metastases. It remains unclear, however, how nerves mechanistically contribute to cancer progression. Here, we demonstrated that Schwann cells promote cancer invasion through direct cancer cell contact. Histological evaluation of murine and human cancer specimens with perineural invasion uncovered a subpopulation of Schwann cells that associates with cancer cells. Coculture of cancer cells with dorsal root ganglion extracts revealed that Schwann cells direct cancer cells to migrate toward nerves and promote invasion in a contact-dependent manner. Upon contact, Schwann cells induced the formation of cancer cell protrusions in their direction and intercalated between the cancer cells, leading to cancer cell dispersion. The formation of these processes was dependent on Schwann cell expression of neural cell adhesion molecule 1 (NCAM1) and ultimately promoted perineural invasion. Moreover, NCAM1-deficient mice showed decreased neural invasion and less paralysis. Such Schwann cell behavior reflects normal Schwann cell programs that are typically activated in nerve repair but are instead exploited by cancer cells to promote perineural invasion and cancer progression. PMID:26999607
Kim, Ki-Hyun; Hwangbo, Gak; Kim, Seong-Gil
2015-04-01
[Purpose] The purpose of this study was to access the effect of weight bearing exercise (treadmill exercise) and non-weight-bearing exercise (swimming exercise) on gait in the recovery process after a sciatic nerve crush injury. [Subjects and Methods] Rats were randomly divided into a swimming group (n=3) with non-weight-bearing exercise after a sciatic nerve crush and a treadmill group (n=3) with weight bearing exercise after a sciatic nerve crush. Dartfish is a program that can analyze and interpret motion through video images. The knee lateral epicondyle, lateral malleolus, and metatarsophalangeal joint of the fifth toe were marked by black dots before recording. [Results] There were significant differences in TOK (knee angle toe off) and ICK (knee angle at initial contact) in the swimming group and in TOK, ICA (ankle angle at initial contact), and ICK in the treadmill group. In comparison between groups, there were significant differences in TOA (ankle angle in toe off) and ICA at the 7th day. [Conclusion] There was no difference between weight bearing and non-weight-bearing exercise in sciatic nerve damage, and both exercises accelerated the recovery process in this study.
High aspect ratio template and method for producing same for central and peripheral nerve repair
NASA Technical Reports Server (NTRS)
Sakamoto, Jeff S. (Inventor); Chan, Christina (Inventor); Tuszynski, Mark Henry (Inventor); Mehrotra, Sumit (Inventor); Gros, Thomas (Inventor)
2011-01-01
Millimeter to nano-scale structures manufactured using a multi-component polymer fiber matrix are disclosed. The use of dissimilar polymers allows the selective dissolution of the polymers at various stages of the manufacturing process. In one application, biocompatible matrixes may be formed with long pore length and small pore size. The manufacturing process begins with a first polymer fiber arranged in a matrix formed by a second polymer fiber. End caps may be attached to provide structural support and the polymer fiber matrix selectively dissolved away leaving only the long polymer fibers. These may be exposed to another product, such as a biocompatible gel to form a biocompatible matrix. The polymer fibers may then be selectively dissolved leaving only a biocompatible gel scaffold with the pores formed by the dissolved polymer fibers. The scaffolds may be used in, among other applications, the repair of central and peripheral nerves. Scaffolds for the repair of peripheral nerves may include a reservoir for the sustained release of nerve growth factor. The scaffolds may also include a multifunctional polyelectrolyte layer for the sustained release of nerve growth factor and enhance biocompatibility.
Hoekstra, Luke A.; Moroz, Leonid L.; Heyland, Andreas
2012-01-01
Understanding of the echinoderm nervous system is limited due to its distinct organization in comparison to other animal phyla and by the difficulty in accessing it. The transparent and accessible, apodid sea cucumber Leptosynapta clarki provides novel opportunities for detailed characterization of echinoderm neural systems. The present study used immunohistochemistry against FMRFamide and histamine to describe the neural organization in juvenile and adult sea cucumbers. Histaminergic- and FMRFaminergic-like immunoreactivity is reported in several distinct cell types throughout the body of L. clarki. FMRFamide-like immunoreactive cell bodies were found in the buccal tentacles, esophageal region and in proximity to the radial nerve cords. Sensory-like cells in the tentacles send processes toward the circumoral nerve ring, while unipolar and bipolar cells close to the radial nerve cords display extensive processes in close association with muscle and other cells of the body wall. Histamine-like immunoreactivity was identified in neuronal somatas located in the buccal tentacles, circumoral nerve ring and in papillae distributed across the body. The tentacular cells send processes into the nerve ring, while the processes of cells in the body wall papillae extend to the surface epithelium and radial nerve cords. Pharmacological application of histamine produced a strong coordinated, peristaltic response of the body wall suggesting the role of histamine in the feeding behavior. Our immunohistochemical data provide evidence for extensive connections between the hyponeural and ectoneural nervous system in the sea cucumber, challenging previously held views on a clear functional separation of the sub-components of the nervous system. Furthermore, our data indicate a potential function of histamine in coordinated, peristaltic movements; consistent with feeding patterns in this species. This study on L. clarki illustrates how using a broader range of neurotransmitter systems can provide better insight into the anatomy, function and evolution of echinoderm nervous sytems. PMID:22970182
A morphological comparison of the extraforaminal ligament between the cervical and thoracic regions.
Nonthasaen, Pawaree; Nasu, Hisayo; Kagawa, Eiichiro; Akita, Keiichi
2018-05-01
The current study was conducted to clarify the morphology of the extraforaminal ligament (EFL) at the cervicothoracic junction and to compare the attachment of the EFL and the positional relation between the EFL and the spinal nerves, additionally to clarify the details within the connecting bundles at the cervicothoracic junction. The EFLs from the 4th cervical to the 4th thoracic vertebrae were dissected in 56 sides of 28 Japanese cadavers (11 males, 17 females). The range of age was 62.0-99.0 years. In addition, connecting bundles were analyzed by histological examination. Ventral to the spinal nerve, the capsulotransverse ligament (CTL), transforaminal ligament (TFL) and the ligament between the 7th cervical vertebra and the 1st rib were attached to the transverse process and rib. The EFL ventral to the 1st thoracic nerve was not observed in all sides. Dorsal to the spinal nerve, the anterior part of the superior costotransverse ligament (ASCL) and the ligament homologous to the ASCL were attached to the transverse process and rib. The superior radiating ligament (SRL) and the ligament homologous to the SRL were identified. The connecting bundles identified between the 7th cervical and the 1st thoracic nerve were histologically confirmed to consist of nerves and vessels. The EFLs at the cervicothoracic junction were found to be homologous. The connecting bundles were observed between the 7th cervical and the 1st thoracic nerve. Interestingly, the 1st thoracic level alone might be a unique level at the cervicothoracic junction.
Anatomical study of phrenic nerve course in relation to neck dissection.
Hamada, Tomohiro; Usami, Akinobu; Kishi, Asuka; Kon, Hideki; Takada, Satoshi
2015-04-01
The present study sought to clarify the course of the phrenic nerve and its correlation with anatomical landmarks in the neck region. We examined 17 cadavers (30 sides). In each, the phrenic nerves was dissected from the lateral side of the neck, and its position within the triangle formed by the mastoid process and sternal and acromial ends of the clavicle was determined. The point where the phrenic nerve arises in the posterior triangle was found to be similar to the point where the cutaneous blanches of the cervical plexus emerge at the middle of the posterior border of the sternocleidomastoid muscle. In the supraclavian triangle, the phrenic nerve crosses the anterior border of the anterior scalene muscle near Erb's point where the superficial point is 2-3 cm superior from the clavicle and posterior border of the sternocleidomastoid muscle. The phrenic nerve arises in the posterior triangle near the nerve point, then descends to the anterior surface of the anterior scalene muscle in the supraclavian triangle. It is necessary to be aware of the supraclavian triangle below Erb's point during neck dissection procedures.
Vit, Jean-Philippe; Ohara, Peter T; Bhargava, Aditi; Kelley, Kanwar; Jasmin, Luc
2008-04-16
Growing evidence suggests that changes in the ion buffering capacity of glial cells can give rise to neuropathic pain. In the CNS, potassium ion (K+) buffering is dependent on the glia-specific inward rectifying K+ channel Kir4.1. We recently reported that the satellite glial cells that surround primary sensory neurons located in sensory ganglia of the peripheral nervous system also express Kir4.1, whereas the neurons do not. In the present study, we show that, in the rat trigeminal ganglion, the location of the primary sensory neurons for face sensation, specific silencing of Kir4.1 using RNA interference leads to spontaneous and evoked facial pain-like behavior in freely moving rats. We also show that Kir4.1 in the trigeminal ganglion is reduced after chronic constriction injury of the infraorbital nerve. These findings suggests that neuropathic pain can result from a change in expression of a single K+ channel in peripheral glial cells, raising the possibility of targeting Kir4.1 to treat pain in general and particularly neuropathic pain that occurs in the absence of nerve injury.
Vit, Jean-Philippe; Ohara, Peter T.; Bhargava, Aditi; Kelley, Kanwar; Jasmin, Luc
2008-01-01
Growing evidence suggests that changes in the ion buffering capacity of glial cells can give rise to neuropathic pain. In the CNS, potassium ion (K+) buffering is dependent on the glia-specific inward rectifying K+ channel Kir4.1. We recently reported that the satellite glial cells (SGCs) that surround primary sensory neurons located in sensory ganglia of the peripheral nervous system also express Kir4.1 while the neurons do not. In the present study we show that in the rat trigeminal ganglion, the location of the primary sensory neurons for face sensation, specific silencing of Kir4.1 using RNA interference leads to spontaneous and evoked facial pain-like behavior in freely moving rats. We also show that Kir4.1 in the trigeminal ganglion is reduced following chronic constriction injury of the infraorbital nerve. These findings suggests that neuropathic pain can result from a change in expression of a single K+ channel in peripheral glial cells, raising the possibility of targeting Kir4.1 to treat pain in general, and particularly neuropathic pain that occurs in the absence of nerve injury. PMID:18417695
Nesbit, Steven C.; Van Hoof, Alexander G.; Le, Chi C.; Dearworth, James R.
2015-01-01
Few laboratory exercises have been developed using the crayfish as a model for teaching how neural processing is done by sensory organs that detect light stimuli. This article describes the dissection procedures and methods for conducting extracellular recording from light responses of both the optic nerve fibers found in the animal’s eyestalk and from the caudal photoreceptor located in the ventral nerve cord. Instruction for ADInstruments’ data acquisition system is also featured for the data collection and analysis of responses. The comparison provides students a unique view on how spike activities measured from neurons code image-forming and non-image-forming processes. Results from the exercise show longer latency and lower frequency of firing by the caudal photoreceptor compared to optic nerve fibers to demonstrate evidence of different functions. After students learn the dissection, recording procedure, and the functional anatomy, they can develop their own experiments to learn more about the photoreceptive mechanisms and the sensory integration of modalities by these light-responsive interneurons. PMID:26557793
Visualization of spiral ganglion neurites within the scala tympani with a cochlear implant in situ
Chikar, Jennifer A.; Batts, Shelley A.; Pfingst, Bryan E.; Raphael, Yehoash
2009-01-01
Current cochlear histology methods do not allow in situ processing of cochlear implants. The metal components of the implant preclude standard embedding and mid-modiolar sectioning, and whole mounts do not have the spatial resolution needed to view the implant within the scala tympani. One focus of recent auditory research is the regeneration of structures within the cochlea, particularly the ganglion cells and their processes, and there are multiple potential benefits to cochlear implant users from this work. To facilitate experimental investigations of auditory nerve regeneration performed in conjunction with cochlear implantation, it is critical to visualize the cochlear tissue and the implant together to determine if the nerve has made contact with the implant. This paper presents a novel histological technique that enables simultaneous visualization of the in situ cochlear implant and neurofilament – labeled nerve processes within the scala tympani, and the spatial relationship between them. PMID:19428528
Visualization of spiral ganglion neurites within the scala tympani with a cochlear implant in situ.
Chikar, Jennifer A; Batts, Shelley A; Pfingst, Bryan E; Raphael, Yehoash
2009-05-15
Current cochlear histology methods do not allow in situ processing of cochlear implants. The metal components of the implant preclude standard embedding and mid-modiolar sectioning, and whole mounts do not have the spatial resolution needed to view the implant within the scala tympani. One focus of recent auditory research is the regeneration of structures within the cochlea, particularly the ganglion cells and their processes, and there are multiple potential benefits to cochlear implant users from this work. To facilitate experimental investigations of auditory nerve regeneration performed in conjunction with cochlear implantation, it is critical to visualize the cochlear tissue and the implant together to determine if the nerve has made contact with the implant. This paper presents a novel histological technique that enables simultaneous visualization of the in situ cochlear implant and neurofilament-labeled nerve processes within the scala tympani, and the spatial relationship between them.
Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images
Ramaswamy, Gomathy; Lombardo, Marco; Devaney, Nicholas
2014-01-01
Glaucoma is the leading cause of preventable blindness in the western world. Investigation of high-resolution retinal nerve fiber layer (RNFL) images in patients may lead to new indicators of its onset. Adaptive optics (AO) can provide diffraction-limited images of the retina, providing new opportunities for earlier detection of neuroretinal pathologies. However, precise processing is required to correct for three effects in sequences of AO-assisted, flood-illumination images: uneven illumination, residual image motion and image rotation. This processing can be challenging for images of the RNFL due to their low contrast and lack of clearly noticeable features. Here we develop specific processing techniques and show that their application leads to improved image quality on the nerve fiber bundles. This in turn improves the reliability of measures of fiber texture such as the correlation of Gray-Level Co-occurrence Matrix (GLCM). PMID:24940551
Registration of adaptive optics corrected retinal nerve fiber layer (RNFL) images.
Ramaswamy, Gomathy; Lombardo, Marco; Devaney, Nicholas
2014-06-01
Glaucoma is the leading cause of preventable blindness in the western world. Investigation of high-resolution retinal nerve fiber layer (RNFL) images in patients may lead to new indicators of its onset. Adaptive optics (AO) can provide diffraction-limited images of the retina, providing new opportunities for earlier detection of neuroretinal pathologies. However, precise processing is required to correct for three effects in sequences of AO-assisted, flood-illumination images: uneven illumination, residual image motion and image rotation. This processing can be challenging for images of the RNFL due to their low contrast and lack of clearly noticeable features. Here we develop specific processing techniques and show that their application leads to improved image quality on the nerve fiber bundles. This in turn improves the reliability of measures of fiber texture such as the correlation of Gray-Level Co-occurrence Matrix (GLCM).
Facial nerve paralysis secondary to occult malignant neoplasms.
Boahene, Derek O; Olsen, Kerry D; Driscoll, Colin; Lewis, Jean E; McDonald, Thomas J
2004-04-01
This study reviewed patients with unilateral facial paralysis and normal clinical and imaging findings who underwent diagnostic facial nerve exploration. Study design and setting Fifteen patients with facial paralysis and normal findings were seen in the Mayo Clinic Department of Otorhinolaryngology. Eleven patients were misdiagnosed as having Bell palsy or idiopathic paralysis. Progressive facial paralysis with sequential involvement of adjacent facial nerve branches occurred in all 15 patients. Seven patients had a history of regional skin squamous cell carcinoma, 13 patients had surgical exploration to rule out a neoplastic process, and 2 patients had negative exploration. At last follow-up, 5 patients were alive. Patients with facial paralysis and normal clinical and imaging findings should be considered for facial nerve exploration when the patient has a history of pain or regional skin cancer, involvement of other cranial nerves, and prolonged facial paralysis. Occult malignancy of the facial nerve may cause unilateral facial paralysis in patients with normal clinical and imaging findings.
Li, Shuo; Guo, Rui-Jun; Liang, Xiao-Ning; Wu, Yue; Cao, Wen; Zhang, Zhen-Ping; Zhao, Wei; Liang, Hai-Dong
2016-01-01
Bell's palsy is a form of temporary facial nerve paralysis that occurs primarily in young adults. Previously, various methods were used to assess outcomes in facial nerve disease. The aim of the present study was to characterize the main branches of the normal and abnormal facial nerve using high-frequency ultrasonography (HFUS). A total of 104 healthy volunteers, 40 patients with acute onset of Bell's palsy and 30 patients who underwent 3-month routine therapy for Bell's palsy disease were included in the study. The healthy volunteers and patients were selected for HFUS examination and VII nerve conduction. The results showed significant differences in nerve diameter, echogenicity, delitescence and amplitude in different groups. Statistically significant correlations were identified for severity grading in one of the experimental groups during HFUS examinations. In conclusion, HFUS as a complementary technique paired with neural electrophysiology may establish the normal values of facial nerve. Additionally, HFUS was beneficial in the process of evaluation and prognosis of Bell's palsy disease.
Rapid, automated mosaicking of the human corneal subbasal nerve plexus.
Vaishnav, Yash J; Rucker, Stuart A; Saharia, Keshav; McNamara, Nancy A
2017-11-27
Corneal confocal microscopy (CCM) is an in vivo technique used to study corneal nerve morphology. The largest proportion of nerves innervating the cornea lie within the subbasal nerve plexus, where their morphology is altered by refractive surgery, diabetes and dry eye. The main limitations to clinical use of CCM as a diagnostic tool are the small field of view of CCM images and the lengthy time needed to quantify nerves in collected images. Here, we present a novel, rapid, fully automated technique to mosaic individual CCM images into wide-field maps of corneal nerves. We implemented an OpenCV image stitcher that accounts for corneal deformation and uses feature detection to stitch CCM images into a montage. The method takes 3-5 min to process and stitch 40-100 frames on an Amazon EC2 Micro instance. The speed, automation and ease of use conferred by this technique is the first step toward point of care evaluation of wide-field subbasal plexus (SBP) maps in a clinical setting.
Tokuyama, Minami A; Xu, Cindy; Fisher, Rebecca E; Wilson-Rawls, Jeanne; Kusumi, Kenro; Newbern, Jason M
2018-01-15
Peripheral nerves exhibit robust regenerative capabilities in response to selective injury among amniotes, but the regeneration of entire muscle groups following volumetric muscle loss is limited in birds and mammals. In contrast, lizards possess the remarkable ability to regenerate extensive de novo muscle after tail loss. However, the mechanisms underlying reformation of the entire neuromuscular system in the regenerating lizard tail are not completely understood. We have tested whether the regeneration of the peripheral nerve and neuromuscular junctions (NMJs) recapitulate processes observed during normal neuromuscular development in the green anole, Anolis carolinensis. Our data confirm robust axonal outgrowth during early stages of tail regeneration and subsequent NMJ formation within weeks of autotomy. Interestingly, NMJs are overproduced as evidenced by a persistent increase in NMJ density 120 and 250 days post autotomy (DPA). Substantial Myelin Basic Protein (MBP) expression could also be detected along regenerating nerves indicating that the ability of Schwann cells to myelinate newly formed axons remained intact. Overall, our data suggest that the mechanism of de novo nerve and NMJ reformation parallel, in part, those observed during neuromuscular development. However, the prolonged increase in NMJ number and aberrant muscle differentiation hint at processes specific to the adult response. An examination of the coordinated exchange between peripheral nerves, Schwann cells, and newly synthesized muscle of the regenerating neuromuscular system may assist in the identification of candidate molecules that promote neuromuscular recovery in organisms incapable of a robust regenerative response. Copyright © 2017 Elsevier Inc. All rights reserved.
Deficient "sensory" beta synchronization in Parkinson's disease.
Degardin, A; Houdayer, E; Bourriez, J-L; Destée, A; Defebvre, L; Derambure, P; Devos, D
2009-03-01
Beta rhythm movement-related synchronization (beta synchronization) reflects motor cortex deactivation and sensory afference processing. In Parkinson's disease (PD), decreased beta synchronization after active movement reflects abnormal motor cortex idling and may be involved in the pathophysiology of akinesia. The objectives of the present study were to (i) compare event-related synchronization after active and passive movement and electrical nerve stimulation in PD patients and healthy, age-matched volunteers and (ii) evaluate the effect of levodopa. Using a 128-electrode EEG system, we studied beta synchronization after active and passive index finger movement and electrical median nerve stimulation in 13 patients and 12 control subjects. Patients were recorded before and after 150% of their usual morning dose of levodopa. The peak beta synchronization magnitude in the contralateral primary sensorimotor (PSM) cortex was significantly lower in PD patients after active movement, passive movement and electrical median nerve stimulation, compared with controls. Levodopa partially reversed the drop in beta synchronization after active movement but not after passive movement or electrical median nerve stimulation. If one considers that beta synchronization reflects sensory processing, our results suggest that integration of somaesthetic afferences in the PSM cortex is abnormal in PD during active and passive movement execution and after simple electrical median nerve stimulation. Better understanding of the mechanisms involved in the deficient beta synchronization observed here could prompt the development of new therapeutic approaches aimed at strengthening defective processes. The lack of full beta synchronization restoration by levodopa might be related to the involvement of non-dopaminergic pathways.
Leschinger, Tim; Hackl, Michael; Zeifang, Felix; Scaal, Martin; Müller, Lars Peter; Wegmann, Kilian
2017-01-01
The purpose of the study was to evaluate the position of the subscapular nerves relative to surgical landmarks during exposure and to analyze the pattern of innervation of the subscapularis to avoid injury during anterior shoulder surgery. 20 embalmed human cadaveric shoulder specimens were used in the study. The muscular insertions of the subscapular nerves were marked and their closest branches to the musculotendinous junction and the coracoid process were measured in horizontal and vertical distances. In addition, the innervation pattern of each specimen was documented. 14/20 specimens showed an innervation of the subscapularis with an upper, middle and lower subscapular nerve branch. Even though the nerve branches were in average more than 2 cm medial to the musculotendinous junction, minimal distances of 1.1-1.3 cm were found. The mean vertical distance as measured from the medial base of the coracoid to the nerve innervation point into the muscle was 0.7 cm for the upper nerve branch, 2.2 cm for the middle nerve branch and 4.4 cm for the lower nerve branch. The subscapularis has a variable nerve supply, which increases the risk of muscle denervation during open shoulder surgery. Dissection or release should be avoided at the anterior aspect of the subscapularis muscle more than 1 cm medial to the musculotendinous junction. In approaches with a horizontal incision of the subscapularis, splitting should be performed at a vertical distance of 3.2-3.6 cm to the coracoid base to avoid iatrogenic subscapular nerve injuries.
Intraneural Platelet-Rich Plasma Injections for the Treatment of Radial Nerve Section: A Case Report
García de Cortázar, Unai; Padilla, Sabino; Lobato, Enrique; Delgado, Diego; Sánchez, Mikel
2018-01-01
The radial nerve is the most frequently injured nerve in the upper extremity. Numerous options in treatment have been described for radial nerve injury, such as neurolysis, nerve grafts, or tendon transfers. Currently, new treatment options are arising, such as platelet-rich plasma (PRP), an autologous product with proved therapeutic effect for various musculoskeletal disorders. We hypothesized that this treatment is a promising alternative for this type of nerve pathology. The patient was a healthy 27-year-old man who suffered a deep and long cut in the distal anterolateral region of the right arm. Forty-eight hours after injury, an end-to-end suture was performed without a microscope. Three months after the surgery, an electromyogram (EMG) showed right radial nerve neurotmesis with no tendency to reinnervation. Four months after the trauma, serial intraneural infiltrations of PRP were conducted using ultrasound guidance. The therapeutic effect was assessed by manual muscle testing and by EMG. Fourteen months after the injury and 11 months after the first PRP injection, functional recovery was achieved. The EMG showed a complete reinnervation of the musculature of the radial nerve dependent. The patient remains satisfied with the result and he is able to practice his profession. Conclusions: PRP infiltrations have the potential to enhance the healing process of radial nerve palsy. This case report demonstrates the therapeutic potential of this technology for traumatic peripheral nerve palsy, as well as the apt utility of US-guided PRP injections. PMID:29382110
Solitary giant neurofibroma of the mental nerve: a trauma-related lesion?
da Rosa, Marina R P; Ribeiro, André Luis Ribeiro; de Menezes, Sílvio A F; Pinheiro, João J V; Alves-Junior, Sérgio M
2013-05-01
Neurofibroma is a benign neoplasm derived from peripheral nerves whose etiology is still unclear. It may present as a solitary lesion or be associated with other diseases such as neurofibromatosis type I and II syndrome. This paper aims to report an extremely rare case of a solitary giant neurofibroma of the mental nerve whose etiology was related to a local trauma. A 14-year-old female patient presented an extensive left facial mass with a size of 7 × 5 × 4 cm, located between the teeth 33 and 37 in the mandible region. It has begun to grow 3 months after a local trauma. Imaging studies were suggestive of a soft-tissue lesion, with minimal bone changes and maintaining the integrity of the mandibular canal and mental foramen. Histopathological tests showed spindle cells with undulated and hyperchromatic nuclei, and sparse cytoplasm in a stroma composed of dense fibrous connective tissue. Immunohistochemistry revealed positive expression for the proteins S-100 and vimentin, confirming the diagnosis of neurofibroma. The patient underwent surgical removal of the lesion by intraoral approach and evolved with an excellent cosmetic result and no signs of recurrence after 2 years of follow up. We report a rare case of solitary giant neurofibroma whose etiology was related to a local trauma. To our knowledge, this is the first report of a mental nerve neurofibroma. Although the etiology remains unclear, we suggest the investigation of local trauma as a possible etiologic factor for solitary neurofibromas of the jaw.
NASA Astrophysics Data System (ADS)
Gan, Li; Zhao, Lei; Zhao, Yanteng; Li, Ke; Tong, Zan; Yi, Li; Wang, Xiong; Li, Yinping; Tian, Weiqun; He, Xiaohua; Zhao, Min; Li, Yan; Chen, Yun
2016-10-01
Objective. The objective of this work was to develop nerve guidance conduits from natural polymers, cellulose and soy protein isolate (SPI), by evaluating the effects of cellulose/SPI film-based conduit (CSFC) and cellulose/SPI sponge-based conduit (CSSC) on regeneration of nerve defects in rats. Approach. CSFC and CSSC with the same chemical components were fabricated from cellulose and SPI. Effects of CSSC and CSFC on regeneration of the defective nerve were comparatively investigated in rats with a 10 mm long gap in sciatic nerve. The outcomes of peripheral nerve repair were evaluated by a combination of electrophysiological assessment, Fluoro-Gold retrograde tracing, double NF200/S100 immunofluorescence analysis, toluidine blue staining, and electron microscopy. The probable molecular mechanism was investigated using quantitative real-time PCR (qPCR) analysis. Main results. Compared with CSFC, CSSC had 2.69 times higher porosity and 5.07 times higher water absorption, thus ensuring much higher permeability. The nerve defects were successfully bridged and repaired by CSSC and CSFC. Three months after surgery, the CSSC group had a higher compound muscle action potential amplitude ratio, a higher percentage of positive NF200 and S100 staining, and a higher axon diameter and myelin sheath thickness than the CSFC group, showing the repair efficiency of CSSC was higher than that of CSFC. qPCR analysis indicated the mRNA levels of nerve growth factor, IL-10, IL-6, and growth-associated protein 43 (GAP-43) were higher in the CSSC group. This also indicated that there was better nerve repair with CSSC due to the higher porosity and permeability of CSSC providing a more favourable microenvironment for nerve regeneration than CSFC. Significance. A promising nerve guidance conduit was developed from cellulose/SPI sponge that showed potential for application in the repair of nerve defect. This work also suggests that nerve guidance conduits with better repair efficiency could be developed through structure design and processing optimization.
Cervical extraforaminal ligaments: an anatomical study.
Arslan, Mehmet; Açar, Halil İbrahim; Cömert, Ayhan
2017-12-01
The purpose of this study was to elucidate the anatomy and clinical importance of extraforaminal ligaments in the cervical region. This study was performed on eight embalmed cadavers. The existence and types of extraforaminal ligaments were identified. The morphology, quantity, origin, insertion, and orientation of the extraforaminal ligaments in the cervical region were observed. Extraforaminal ligaments could be divided into two types: transforaminal ligaments and radiating ligaments. It was observed that during their course, transforaminal ligaments cross the intervertebral foramen ventrally. They usually originate from the anteroinferior margin of the anterior tubercle of the cranial transverse process and insert into the superior margin of the anterior tubercle of the caudal transverse process. The dorsal aspect of the transforaminal ligaments adhere loosely to the spinal nerve sheath. The length, width and thickness of these ligaments increased from the cranial to the caudal direction. A single intervertebral foramen contained at least one transforaminal ligament. A total of 98 ligaments in 96 intervertebral foramina were found. The spinal nerves were extraforaminally attached to neighboring anterior and posterior tubercle of the cervical transverse process by the radiating ligaments. The radiating ligaments consisted of the ventral superior, ventral, ventral inferior, dorsal superior and dorsal inferior radiating ligaments. Radiating ligaments originated from the adjacent transverse processes and inserted into the nerve root sheath. The spinal nerve was held like the hub of a wheel by a series of radiating ligaments. The dorsal ligaments were the thickest. From C2-3 to C6-7 at the cervical spine, radiating ligaments were observed. They developed particularly at the level of the C5-C6 intervertebral foramen. This anatomic study may provide a better understanding of the relationship of the extraforaminal ligaments to the cervical nerve root.
van der Lans, Milou; Benito, Cristina; Wagstaff, Laura J.
2017-01-01
There is consensus that, distal to peripheral nerve injury, myelin and Remak cells reorganize to form cellular columns, Bungner's bands, which are indispensable for regeneration. However, knowledge of the structure of these regeneration tracks has not advanced for decades and the structure of the cells that form them, denervated or repair Schwann cells, remains obscure. Furthermore, the origin of these cells from myelin and Remak cells and their ability to give rise to myelin cells after regeneration has not been demonstrated directly, although these conversions are believed to be central to nerve repair. Using genetic lineage-tracing and scanning-block face electron microscopy, we show that injury of sciatic nerves from mice of either sex triggers extensive and unexpected Schwann cell elongation and branching to form long, parallel processes. Repair cells are 2- to 3-fold longer than myelin and Remak cells and 7- to 10-fold longer than immature Schwann cells. Remarkably, when repair cells transit back to myelinating cells, they shorten ∼7-fold to generate the typically short internodes of regenerated nerves. The present experiments define novel morphological transitions in injured nerves and show that repair Schwann cells have a cell-type-specific structure that differentiates them from other cells in the Schwann cell lineage. They also provide the first direct evidence using genetic lineage tracing for two basic assumptions in Schwann cell biology: that myelin and Remak cells generate the elongated cells that build Bungner bands in injured nerves and that such cells can transform to myelin cells after regeneration. SIGNIFICANCE STATEMENT After injury to peripheral nerves, the myelin and Remak Schwann cells distal to the injury site reorganize and modify their properties to form cells that support the survival of injured neurons, promote axon growth, remove myelin-associated growth inhibitors, and guide regenerating axons to their targets. We show that the generation of these repair-supportive Schwann cells involves an extensive cellular elongation and branching, often to form long, parallel processes. This generates a distinctive repair cell morphology that is favorable for the formation of the regeneration tracks that are essential for nerve repair. Remyelination, conversely, involves a striking cell shortening to form the typical short myelin cells of regenerated nerves. We also provide evidence for direct lineage relationships between: (1) repair cells and myelin and Remak cells of uninjured nerves and (2) remyelinating cells in regenerated nerves. PMID:28904214
Gomez-Sanchez, Jose A; Pilch, Kjara S; van der Lans, Milou; Fazal, Shaline V; Benito, Cristina; Wagstaff, Laura J; Mirsky, Rhona; Jessen, Kristjan R
2017-09-13
There is consensus that, distal to peripheral nerve injury, myelin and Remak cells reorganize to form cellular columns, Bungner's bands, which are indispensable for regeneration. However, knowledge of the structure of these regeneration tracks has not advanced for decades and the structure of the cells that form them, denervated or repair Schwann cells, remains obscure. Furthermore, the origin of these cells from myelin and Remak cells and their ability to give rise to myelin cells after regeneration has not been demonstrated directly, although these conversions are believed to be central to nerve repair. Using genetic lineage-tracing and scanning-block face electron microscopy, we show that injury of sciatic nerves from mice of either sex triggers extensive and unexpected Schwann cell elongation and branching to form long, parallel processes. Repair cells are 2- to 3-fold longer than myelin and Remak cells and 7- to 10-fold longer than immature Schwann cells. Remarkably, when repair cells transit back to myelinating cells, they shorten ∼7-fold to generate the typically short internodes of regenerated nerves. The present experiments define novel morphological transitions in injured nerves and show that repair Schwann cells have a cell-type-specific structure that differentiates them from other cells in the Schwann cell lineage. They also provide the first direct evidence using genetic lineage tracing for two basic assumptions in Schwann cell biology: that myelin and Remak cells generate the elongated cells that build Bungner bands in injured nerves and that such cells can transform to myelin cells after regeneration. SIGNIFICANCE STATEMENT After injury to peripheral nerves, the myelin and Remak Schwann cells distal to the injury site reorganize and modify their properties to form cells that support the survival of injured neurons, promote axon growth, remove myelin-associated growth inhibitors, and guide regenerating axons to their targets. We show that the generation of these repair-supportive Schwann cells involves an extensive cellular elongation and branching, often to form long, parallel processes. This generates a distinctive repair cell morphology that is favorable for the formation of the regeneration tracks that are essential for nerve repair. Remyelination, conversely, involves a striking cell shortening to form the typical short myelin cells of regenerated nerves. We also provide evidence for direct lineage relationships between: (1) repair cells and myelin and Remak cells of uninjured nerves and (2) remyelinating cells in regenerated nerves. Copyright © 2017 Gomez-Sanchez et al.
Adaptive Optics Optical Coherence Tomography in Glaucoma
Dong, Zachary M.; Wollstein, Gadi; Wang, Bo; Schuman, Joel S.
2016-01-01
Since the introduction of commercial optical coherence tomography (OCT) systems, the ophthalmic imaging modality has rapidly expanded and it has since changed the paradigm of visualization of the retina and revolutionized the management and diagnosis of neuro-retinal diseases, including glaucoma. OCT remains a dynamic and evolving imaging modality, growing from time-domain OCT to the improved spectral-domain OCT, adapting novel image analysis and processing methods, and onto the newer swept-source OCT and the implementation of adaptive optics (AO) into OCT. The incorporation of AO into ophthalmic imaging modalities has enhanced OCT by improving image resolution and quality, particularly in the posterior segment of the eye. Although OCT previously captured in-vivo cross-sectional images with unparalleled high resolution in the axial direction, monochromatic aberrations of the eye limit transverse or lateral resolution to about 15-20 μm and reduce overall image quality. In pairing AO technology with OCT, it is now possible to obtain diffraction-limited resolution images of the optic nerve head and retina in three-dimensions, increasing resolution down to a theoretical 3 μm3. It is now possible to visualize discrete structures within the posterior eye, such as photoreceptors, retinal nerve fiber layer bundles, the lamina cribrosa, and other structures relevant to glaucoma. Despite its limitations and barriers to widespread commercialization, the expanding role of AO in OCT is propelling this technology into clinical trials and onto becoming an invaluable modality in the clinician's arsenal. PMID:27916682
Luo, Lihua; Gong, Wenrong; Zhou, Yi; Yang, Lin; Li, Daokun; Huselstein, Celine; Wang, Xiong; He, Xiaohua; Li, Yinping; Chen, Yun
2015-01-01
To evaluate the in vitro cytocompatibility of cellulose/soy protein isolate composite membranes (CSM) with Schwann cells and in vivo toxicity to animals. A series of cellulose/soy protein isolate composite membranes (CSM) were prepared by blending, solution casting and coagulation process. The cytocompatibility of the CSM to Schwann cells were evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and by direct cells culture of Schwann cells on the surfaces of the CSM, respectively. The in vivo toxicity of the CSM to animals were also evaluated by acute toxicity testing, skin sensitization testing, pyrogen testing and intracutaneous stimulation testing, respectively, according to the ISO 10993 standard. The MTT assay showed that the cell viability of Schwann cells cultured in extracts from the CSM was higher than that from the neat cellulose membrane without containing SPI component. The direct cells culture indicated that the Schwann cells could attach and grow well on the surface of the CSM and the incorporation of SPI into cellulose contributed to improvement of cell adhesion and proliferation. The evaluations of in vivo biological safety suggested that the CSM showed no acute toxicity, no skin sensitization and no intracutaneous stimulation to the experimental animals. The CSM had in vitro cytocompatibility with Schwann cells and biological safety to animals, suggesting potential for the applications as nerve conduit for the repair of nerve defect.
El-Tantawi, Gihan A Younis; Imam, Mohamed H; Morsi, Tamer S
2015-01-01
Diaphragmatic weakness in chronic obstructive pulmonary disease (COPD) is ascribed to hyperinflation-induced diaphragm shortening as well as impairment in cellular and subcellular structures. Although phrenic neuropathy is known to cause diaphragmatic weakness, phrenic neuropathy is rarely considered in COPD. This work aimed at assessing phrenic nerve conduction in COPD and its relation to radiographic hyperinflation and pulmonary function. Forty COPD patients were evaluated. Radiographic parameters of lung hyperinflation were measured on postero-anterior and lateral chest x-ray films. Flow volume loop parameters were obtained from all patients. Motor conduction study of the phrenic nerves was performed and potentials were recorded over the xiphoid process and the ipsilateral 7th intercostal space. Twenty-seven healthy subjects were enrolled as controls. Parameters of phrenic nerve conduction differed significantly in patients compared to controls. Phrenic nerve abnormalities were detected in 17 patients (42.5%). Electrophysiological measures correlated with diaphragmatic angle of depression on lateral view films and with lung height on postero-anterior films. They did not correlate with the flow volume loop data or disease severity score. Phrenic nerve conduction abnormality is an appreciated finding in COPD. Nerve stretching associated with diaphragmatic descent can be a suggested mechanism for nerve lesion. The presence of phrenic neuropathy may be an additional contributing factor to diaphragmatic dysfunction in COPD patients.
Badia, Jordi; Raspopovic, Stanisa; Carpaneto, Jacopo; Micera, Silvestro; Navarro, Xavier
2016-01-01
The selection of suitable peripheral nerve electrodes for biomedical applications implies a trade-off between invasiveness and selectivity. The optimal design should provide the highest selectivity for targeting a large number of nerve fascicles with the least invasiveness and potential damage to the nerve. The transverse intrafascicular multichannel electrode (TIME), transversally inserted in the peripheral nerve, has been shown to be useful for the selective activation of subsets of axons, both at inter- and intra-fascicular levels, in the small sciatic nerve of the rat. In this study we assessed the capabilities of TIME for the selective recording of neural activity, considering the topographical selectivity and the distinction of neural signals corresponding to different sensory types. Topographical recording selectivity was proved by the differential recording of CNAPs from different subsets of nerve fibers, such as those innervating toes 2 and 4 of the hindpaw of the rat. Neural signals elicited by sensory stimuli applied to the rat paw were successfully recorded. Signal processing allowed distinguishing three different types of sensory stimuli such as tactile, proprioceptive and nociceptive ones with high performance. These findings further support the suitability of TIMEs for neuroprosthetic applications, by exploiting the transversal topographical structure of the peripheral nerves.
An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival
Tang, Zhongshu; Zhang, Shuihua; Lee, Chunsik; Kumar, Anil; Arjunan, Pachiappan; Li, Yang; Zhang, Fan; Li, Xuri
2011-01-01
Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result. PMID:21540827
A 3D-engineered porous conduit for peripheral nerve repair
Tao, Jie; Hu, Yu; Wang, Shujuan; Zhang, Jiumeng; Liu, Xuan; Gou, Zhiyuan; Cheng, Hao; Liu, Qianqi; Zhang, Qianqian; You, Shenglan; Gou, Maling
2017-01-01
End-to-end neurorrhaphy is the most commonly used method for treating peripheral nerve injury. However, only 50% of patients can regain useful function after treating with neurorrhaphy. Here, we constructed a 3D-engineered porous conduit to promote the function recovery of the transected peripheral nerve after neurorrhaphy. The conduit that consisted of a gelatin cryogel was prepared by molding with 3D-printed moulds. Due to its porous structure and excellent mechanical properties, this conduit could be collapsed by the mechanical force and resumed its original shape after absorption of normal saline. This shape-memory property allowed a simply surgery process for installing the conduits. Moreover, the biodegradable conduit could prevent the infiltration of fibroblasts and reduce the risk of scar tissue, which could provide an advantageous environment for nerve regeneration. The efficiency of the conduits in assisting peripheral nerve regeneration after neurorrhaphy was evaluated in a rat sciatic nerve transected model. Results indicated that conduits significantly benefitted the recovery of the transected peripheral nerve after end-to-end neurorrhaphy on the static sciatic index (SSI), electrophysiological results and the re-innervation of the gastrocnemius muscle. This work demonstrates a biodegradable nerve conduit that has potentially clinical application in promoting the neurorrhaphy. PMID:28401914
Innervation of taste buds revealed with Brainbow-labeling in mouse.
Zaidi, Faisal N; Cicchini, Vanessa; Kaufman, Daniel; Ko, Elizabeth; Ko, Abraham; Van Tassel, Heather; Whitehead, Mark C
2016-12-01
Nerve fibers that surround and innervate the taste bud were visualized with inherent fluorescence using Brainbow transgenic mice that were generated by mating the founder line L with nestin-cre mice. Multicolor fluorescence revealed perigemmal fibers as branched within the non-taste epithelium and ending in clusters of multiple rounded swellings surrounding the taste pore. Brainbow-labeling also revealed the morphology and branching pattern of single intragemmal fibers. These taste bud fibers frequently innervated both the peripheral bud, where immature gemmal cells are located, and the central bud, where mature, differentiated cells are located. The fibers typically bore preterminal and terminal swellings, growth cones with filopodia, swellings, and rounded retraction bulbs. These results establish an anatomical substrate for taste nerve fibers to contact and remodel among receptor cells at all stages of their differentiation, an interpretation that was supported by staining with GAP-43, a marker for growing fibers and growth cones. © 2016 Anatomical Society.
The role of oxidative stress in organophosphate and nerve agent toxicity
Pearson, Jennifer N.; Patel, Manisha
2016-01-01
Organophosphate nerve agents exert their toxicity through inhibition of acetylcholinesterase. The excessive stimulation of cholinergic receptors rapidly causes neuronal damage, seizures, death, and long-term neurological impairment in those that survive. Owing to the lethality of organophosphorus agents and the growing risk they pose, medical interventions that prevent organophosphate toxicity and the delayed injury response are much needed. Studies have shown that oxidative stress occurs in models of subacute, acute, and chronic exposure to organophosphate agents. Key findings of these studies include alterations in mitochondrial function and increased free radical–mediated injury, such as lipid peroxidation. This review focuses on the role of reactive oxygen species in organophosphate neurotoxicity and its dependence on seizure activity. Understanding the sources, mechanisms, and pathological consequences of organophosphate-induced oxidative stress can lead to the development of rational therapies for treating toxic exposures. PMID:27371936
Arm Nerve Conduction Velocity (NCV), Brain NCV, Reaction Time, and Intelligence.
ERIC Educational Resources Information Center
Reed, T. Edward; Jensen, Arthur R.
1991-01-01
Correlations among peripheral nerve conduction velocity (NCV), brain NCV, simple and choice reaction times, and a standard measure of intelligence were investigated for 200 male college students. No correlation was found between any arm NCV and the intelligence score. Neurophysiological bases of human information processing and intelligence are…
Remodeling of peripheral nerve ensheathment during the larval-to-adult transition in Drosophila.
Subramanian, Aswati; Siefert, Matthew; Banerjee, Soumya; Vishal, Kumar; Bergmann, Kayla A; Curts, Clay C M; Dorr, Meredith; Molina, Camillo; Fernandes, Joyce
2017-10-01
Over the course of a 4-day period of metamorphosis, the Drosophila larval nervous system is remodeled to prepare for adult-specific behaviors. One example is the reorganization of peripheral nerves in the abdomen, where five pairs of abdominal nerves (A4-A8) fuse to form the terminal nerve trunk. This reorganization is associated with selective remodeling of four layers that ensheath each peripheral nerve. The neural lamella (NL), is the first to dismantle; its breakdown is initiated by 6 hours after puparium formation, and is completely removed by the end of the first day. This layer begins to re-appear on the third day of metamorphosis. Perineurial glial (PG) cells situated just underneath the NL, undergo significant proliferation on the first day of metamorphosis, and at that stage contribute to 95% of the glial cell population. Cells of the two inner layers, Sub-Perineurial Glia (SPG) and Wrapping Glia (WG) increase in number on the second half of metamorphosis. Induction of cell death in perineurial glia via the cell death gene reaper and the Diptheria toxin (DT-1) gene, results in abnormal bundling of the peripheral nerves, suggesting that perineurial glial cells play a role in the process. A significant number of animals fail to eclose in both reaper and DT-1 targeted animals, suggesting that disruption of PG also impacts eclosion behavior. The studies will help to establish the groundwork for further work on cellular and molecular processes that underlie the co-ordinated remodeling of glia and the peripheral nerves they ensheath. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1144-1160, 2017. © 2017 Wiley Periodicals, Inc.
Contemporary solutions for the treatment of facial nerve paralysis.
Garcia, Ryan M; Hadlock, Tessa A; Klebuc, Michael J; Simpson, Roger L; Zenn, Michael R; Marcus, Jeffrey R
2015-06-01
After reviewing this article, the participant should be able to: 1. Understand the most modern indications and technique for neurotization, including masseter-to-facial nerve transfer (fifth-to-seventh cranial nerve transfer). 2. Contrast the advantages and limitations associated with contiguous muscle transfers and free-muscle transfers for facial reanimation. 3. Understand the indications for a two-stage and one-stage free gracilis muscle transfer for facial reanimation. 4. Apply nonsurgical adjuvant treatments for acute facial nerve paralysis. Facial expression is a complex neuromotor and psychomotor process that is disrupted in patients with facial paralysis breaking the link between emotion and physical expression. Contemporary reconstructive options are being implemented in patients with facial paralysis. While static procedures provide facial symmetry at rest, true 'facial reanimation' requires restoration of facial movement. Contemporary treatment options include neurotization procedures (a new motor nerve is used to restore innervation to a viable muscle), contiguous regional muscle transfer (most commonly temporalis muscle transfer), microsurgical free muscle transfer, and nonsurgical adjuvants used to balance facial symmetry. Each approach has advantages and disadvantages along with ongoing controversies and should be individualized for each patient. Treatments for patients with facial paralysis continue to evolve in order to restore the complex psychomotor process of facial expression.
Andersen, Natalia D.; Srinivas, Shruthi; Piñero, Gonzalo; Monje, Paula V.
2016-01-01
We herein developed a protocol for the rapid procurement of adult nerve-derived Schwann cells (SCs) that was optimized to implement an immediate enzymatic dissociation of fresh nerve tissue while maintaining high cell viability, improving yields and minimizing fibroblast and myelin contamination. This protocol introduces: (1) an efficient method for enzymatic cell release immediately after removal of the epineurium and extensive teasing of the nerve fibers; (2) an adaptable drop-plating method for selective cell attachment, removal of myelin debris, and expansion of the initial SC population in chemically defined medium; (3) a magnetic-activated cell sorting purification protocol for rapid and effective fibroblast elimination; and (4) an optional step of cryopreservation for the storage of the excess of cells. Highly proliferative SC cultures devoid of myelin and fibroblast growth were obtained within three days of nerve processing. Characterization of the initial, expanded, and cryopreserved cell products confirmed maintenance of SC identity, viability and growth rates throughout the process. Most importantly, SCs retained their sensitivity to mitogens and potential for differentiation even after cryopreservation. To conclude, this easy-to-implement and clinically relevant protocol allows for the preparation of expandable homogeneous SC cultures while minimizing time, manipulation of the cells, and exposure to culture variables. PMID:27549422
Gierthmuehlen, Mortimer; Freiman, Thomas M; Haastert-Talini, Kirsten; Mueller, Alexandra; Kaminsky, Jan; Stieglitz, Thomas; Plachta, Dennis T T
2013-01-01
The development of neural cuff-electrodes requires several in vivo studies and revisions of the electrode design before the electrode is completely adapted to its target nerve. It is therefore favorable to simulate many of the steps involved in this process to reduce costs and animal testing. As the restoration of motor function is one of the most interesting applications of cuff-electrodes, the position and trajectories of myelinated fibers in the simulated nerve are important. In this paper, we investigate a method for building a precise neuroanatomical model of myelinated fibers in a peripheral nerve based on images obtained using high-resolution light microscopy. This anatomical model describes the first aim of our "Virtual workbench" project to establish a method for creating realistic neural simulation models based on image datasets. The imaging, processing, segmentation and technical limitations are described, and the steps involved in the transition into a simulation model are presented. The results showed that the position and trajectories of the myelinated axons were traced and virtualized using our technique, and small nerves could be reliably modeled based on of light microscopy images using low-cost OpenSource software and standard hardware. The anatomical model will be released to the scientific community.
Gierthmuehlen, Mortimer; Freiman, Thomas M.; Haastert-Talini, Kirsten; Mueller, Alexandra; Kaminsky, Jan; Stieglitz, Thomas; Plachta, Dennis T. T.
2013-01-01
The development of neural cuff-electrodes requires several in vivo studies and revisions of the electrode design before the electrode is completely adapted to its target nerve. It is therefore favorable to simulate many of the steps involved in this process to reduce costs and animal testing. As the restoration of motor function is one of the most interesting applications of cuff-electrodes, the position and trajectories of myelinated fibers in the simulated nerve are important. In this paper, we investigate a method for building a precise neuroanatomical model of myelinated fibers in a peripheral nerve based on images obtained using high-resolution light microscopy. This anatomical model describes the first aim of our “Virtual workbench” project to establish a method for creating realistic neural simulation models based on image datasets. The imaging, processing, segmentation and technical limitations are described, and the steps involved in the transition into a simulation model are presented. The results showed that the position and trajectories of the myelinated axons were traced and virtualized using our technique, and small nerves could be reliably modeled based on of light microscopy images using low-cost OpenSource software and standard hardware. The anatomical model will be released to the scientific community. PMID:23785485
Three-Dimensional Analysis of the Fundus of the Human Internal Acoustic Canal.
Schart-Morén, Nadine; Larsson, Sune; Rask-Andersen, Helge; Li, Hao
Documentation of the nerve components in the internal acoustic canal is essential before cochlea implantation surgery. Interpretations may be challenged by wide anatomical variations of the VIIIth nerve and their ramifications. Malformations may further defy proper nerve identification. Using microcomputed tomography, we analyzed the fundus bone channels in an archival collection of 113 macerated human temporal bones and 325 plastic inner molds. Data were subsequently processed by volume-rendering software using a bony tissue algorithm. Three-dimensional reconstructions were made, and through orthogonal sections, the topographic anatomy was established. The technique provided additional information regarding the anatomy of the nerve foramina/channels of the human fundus region, including variations and destinations. Channel anastomosis were found beyond the level of the fundus. A foramen of the transverse crest was identified. Three-dimensional reconstructions and cropping outlined the bone canals and demonstrated the highly variable VIIIth nerve anatomy at the fundus of the human inner acoustic canal. Myriad channel interconnections suggested an intricate system of neural interactive pathways in humans. Particularly striking was the variable anatomy of the saccule nerve channels. The results may assist in the preoperative interpretation of the VIIIth nerve anatomy.
Extracranial Facial Nerve Schwannoma Treated by Hypo-fractionated CyberKnife Radiosurgery.
Sasaki, Ayaka; Miyazaki, Shinichiro; Hori, Tomokatsu
2016-09-21
Facial nerve schwannoma is a rare intracranial tumor. Treatment for this benign tumor has been controversial. Here, we report a case of extracranial facial nerve schwannoma treated successfully by hypo-fractionated CyberKnife (Accuray, Sunnyvale, CA) radiosurgery and discuss the efficacy of this treatment. A 34-year-old female noticed a swelling in her right mastoid process. The lesion enlarged over a seven-month period, and she experienced facial spasm on the right side. She was diagnosed with a facial schwannoma via a magnetic resonance imaging (MRI) scan of the head and neck and was told to wait until the facial nerve palsy subsides. She was referred to our hospital for radiation therapy. We planned a fractionated CyberKnife radiosurgery for three consecutive days. After CyberKnife radiosurgery, the mass in the right parotid gradually decreased in size, and the facial nerve palsy disappeared. At her eight-month follow-up, her facial spasm had completely disappeared. There has been no recurrence and the facial nerve function has been normal. We successfully demonstrated the efficacy of CyberKnife radiosurgery as an alternative treatment that also preserves neurofunction for facial nerve schwannomas.
Sonoanatomy of sensory branches of the ulnar nerve below the elbow in healthy subjects.
Kim, Ki Hoon; Lee, Seok Jun; Park, Byung Kyu; Kim, Dong Hwee
2018-04-01
We identify sensory branches of the ulnar nerve-palmar ulnar cutaneous nerve (PUCN), dorsal ulnar cutaneous nerve (DUCN), and superficial sensory branch-using ultrasonography. In 60 forearms of 30 healthy adult volunteers, the origin and size of the PUCN, DUCN, and superficial sensory branch were measured by ultrasonography. The relative pathway of the DUCN to the ulnar styloid process was also investigated. The PUCN was observed in 47 forearms (78%), and the DUCN was observed in all forearms. Average distances from the pisiform to the origin of the PUCN and DUCN were 11.9 ± 1.4 and 7.0 ± 1.0 cm, respectively. Superficial and deep divisions split 0.9 ± 0.3 cm distal to the pisiform. Cross-sectional areas of the PUCN, DUCN, and superficial sensory branch were 0.3 ± 0.1, 1.5 ± 0.5, and 3.9 ± 1.0 mm 2 , respectively. Sensory branches of the ulnar nerve can be visualized by ultrasonography, helping to differentiate ulnar nerve injury originating at either wrist or elbow. Muscle Nerve 57: 569-573, 2018. © 2017 Wiley Periodicals, Inc.
Gidron, Yori; Kupper, Nina; Kwaijtaal, Martijn; Winter, Jobst; Denollet, Johan
2007-12-01
The current understanding of the pathophysiology of atherosclerosis leading to coronary artery disease (CAD) emphasizes the role of inflammatory mediators. Given the bidirectional communication between the immune and central nervous systems, an important question is whether the brain can be "informed" about and modulate CAD-related inflammation. A candidate communicator and modulator is the vagus nerve. Until now, the vagus nerve has received attention in cardiology mainly due to its role in the parasympathetic cardiovascular response. However, the vagus nerve can also "inform" the brain about peripheral inflammation since its paraganglia have receptors for interleukin-1. Furthermore, its efferent branch has a local anti-inflammatory effect. These effects have not been considered in research on the vagus nerve in CAD or in vagus nerve stimulation trials in CAD. In addition, various behavioural interventions, including relaxation, may influence CAD prognosis by affecting vagal activity. Based on this converging evidence, we propose a neuroimmunomodulation approach to atherogenesis. In this model, the vagus nerve "informs" the brain about CAD-related cytokines; in turn, activation of the vagus (via vagus nerve stimulation, vagomimetic drugs or relaxation) induces an anti-inflammatory response that can slow down the chronic process of atherogenesis.
Korsak, A; Chaikovsky, Yu; Sokurenko, L; Likhodiievskyi, V; Neverovskyi, A
2016-02-01
A new experimental model for tissues connection at peripheral nerve injury site in form of tissues welding was designed. In current study we investigated motoneuron state 1, 3, 6 and 12 weeks after peripheral nerve injury and surgical repair with high-frequency electrosurgical technology. Spinal cord sections was stained by Nissl method and observed with light microscopy. We found that postoperative period in animals from experimental groups characterized by qualitative changes in neurons from spinal motor centers that can be interpreted as compensatory processes as response to alteration. In animals from group with high-frequency electrosurgical technology usage stabilization processes passes more quickly comparatively to animals with epineural sutures. High-frequency electrosurgical technology usage provides less harmful effects on motoneurons than epineural suturing.
Stathopoulou, Thaleia-Rengina; Pinelas, Rui; Haar, Gert Ter; Cornelis, Ine; Viscasillas, Jaime
2018-05-01
Otitis externa is a painful condition that may require surgical intervention in dogs. A balanced analgesia protocol should combine systemic analgesic agents and local anaesthesia techniques. The aim of the study was to find anatomical landmarks for the great auricular and the auriculotemporal nerves that transmit nociceptive information from the ear pinna and to develop the optimal technique for a nerve block. The study consisted of two phases. In phase I, one fox cadaver was used for dissection and anatomical localization of the auricular nerves to derive landmarks for needle insertion. Eight fox cadavers were subsequently used to evaluate the accuracy of the technique by injecting methylene blue bilaterally. In phase II findings from phase I were applied in four Beagle canine cadavers. A block was deemed successful if more than 0.6 cm of the nerve's length was stained. Successful great auricular nerve block was achieved by inserting the needle superficially along the wing of the atlas with the needle pointing towards the jugular groove. For the auriculotemporal nerve block the needle was inserted perpendicular to the skin at the caudal lateral border of the zygomatic arch, close to the temporal process. The overall success rate was 24 out of 24 (100%) and 22 out of 24 (91%) for the great auricular and the auriculotemporal nerves, respectively, while the facial nerve was stained on three occasions. Our results suggest that it is feasible to achieve a block of the auricular nerves, based on anatomical landmarks, without concurrently affecting the facial nerve. © 2018 The Authors. Veterinary Medicine and Science Published by John Wiley & Sons Ltd.
Wide-awake Anesthesia No Tourniquet Trapeziometacarpal Joint Prosthesis Implantation.
Müller, Camillo Theo; Christen, Thierry; Heidekruger, Paul I; Lamouille, Jessie; Raffoul, Wassim; McKee, Daniel; Lalonde, Donald H; Durand, Sébastien
2018-04-01
Wide awake local anesthesia no tourniquet (WALANT) hand surgery is a rapidly growing in popularity. WALANT has been used by hand surgeons when operating on bones, tendons, ligaments, nerve entrapments. We offer a case report of the first case in the literature describing WALANT technique when performing trapeziometacarpal joint arthroplasty with prosthesis implantation. We offer technical points on how to perform this procedure and the advantages that are associated with using WALANT for prosthesis arthroplasty.
Totten, Ryan K; Kim, Ye-Seong; Weston, Mitchell H; Farha, Omar K; Hupp, Joseph T; Nguyen, SonBinh T
2013-08-14
An Al(porphyrin) functionalized with a large axial ligand was incorporated into a porous organic polymer (POP) using a cobalt-catalyzed acetylene trimerization strategy. Removal of the axial ligand afforded a microporous POP that is catalytically active in the methanolysis of a nerve agent simulant. Supercritical CO2 processing of the POP dramatically increased the pore size and volume, allowing for significantly higher catalytic activities.
Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring.
Mueller, Matthias; de la Oliva, Natalia; Del Valle, Jaume; Delgado-Martínez, Ignacio; Navarro, Xavier; Stieglitz, Thomas
2017-12-01
Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes. We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation. The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds. Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.
[Experimental study on co-culture of salivary adenoid cystic carcinoma cells and ganglia].
Gu, Ling; Bu, Rong-fa; Wang, Dong-sheng; E, Ling-ling; Zhu, Guo-xiong
2012-01-01
To construct the co-culture models of salivarya denoid cystic carcinoma (SACC) cells and dorsal root ganglia (DRG) of chickens and investigate the promotive effects of SACC on neural tissue. Glass-base culture dish was adopted to construct co-culture model of SACC-83 cells and DRG. SACC-83 cells were seeded in the medium pore with DRG around them. Outgrowth of neuronal processes was observed. Then DRG was cultured in the conditioned medium of SACC-83, with the groups of conditioned medium of MC3T3-E1 and HGF, the group of cell lysis buffer, the groups of serum-free medium and serum-plus medium as the controls. Outgrowth of neuronal processes was also recorded and compared with control groups. In the co-culture model of tumor and neuronal tissue, SACC-83 cells produced a suitable microenvironment in which neuronal processes remarkably grow. Neuronal processes of most DRG displayed growth tendency toward SACC. The group of conditioned medium from SACC-83 manifested obvious promotive effects on DRG. Co-culture model of tumor and neuronal tissue was successfully constructed, with which the promotive effects of tumor on outgrowth of neuronal processes could be observed. So hypothesized that SACC could secrete some neurotrophic factors to guide peripheral nerves gemmating and to trigger the cascade of the neural invasion in succession.
Pujol, Rémy; Pickett, Sarah B.; Nguyen, Tot Bui; Stone, Jennifer S.
2014-01-01
Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here, we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell’s base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells range in shape, size, and branching, with the longest processes extending 3–4 hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Further, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network amongst type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3–6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells, and they suggest type II hair cells may directly communicate with each other, which has not been described in vertebrates. PMID:24825750
Pujol, Rémy; Pickett, Sarah B; Nguyen, Tot Bui; Stone, Jennifer S
2014-10-01
Sensory receptors in the vestibular system (hair cells) encode head movements and drive central motor reflexes that control gaze, body movements, and body orientation. In mammals, type I and II vestibular hair cells are defined by their shape, contacts with vestibular afferent nerves, and membrane conductance. Here we describe unique morphological features of type II vestibular hair cells in mature rodents (mice and gerbils) and bats. These features are cytoplasmic processes that extend laterally from the hair cell base and project under type I hair cells. Closer analysis of adult mouse utricles demonstrated that the basolateral processes of type II hair cells vary in shape, size, and branching, with the longest processes extending three to four hair cell widths. The hair cell basolateral processes synapse upon vestibular afferent nerves and receive inputs from vestibular efferent nerves. Furthermore, some basolateral processes make physical contacts with the processes of other type II hair cells, forming some sort of network among type II hair cells. Basolateral processes are rare in perinatal mice and do not attain their mature form until 3-6 weeks of age. These observations demonstrate that basolateral processes are significant signaling regions of type II vestibular hair cells and suggest that type II hair cells may directly communicate with each other, which has not been described in vertebrates. © 2014 Wiley Periodicals, Inc.
Sarabia-Estrada, Rachel; Bañuelos-Pineda, Jacinto; Osuna Carrasco, Laura P; Jiménez-Vallejo, Salvador; Jiménez-Estrada, Ismael; Rivas-Celis, Efrain; Dueñas-Jiménez, Judith M; Dueñas-Jiménez, Sergio H
2015-07-01
Transection of peripheral nerves produces loss of sensory and/or motor function. After complete nerve cutting, the distal and proximal segment ends retract, but if both ends are bridged with unaltered chitosan, progesterone-impregnated chitosan, or silicone tubes, an axonal repair process begins. Progesterone promotes nerve repair and has neuroprotective effects thwarting regulation of neuron survival, inflammation, and edema. It also modulates aberrant axonal sprouting and demyelination. The authors compared the efficacy of nerve recovery after implantation of progesterone-loaded chitosan, unaltered chitosan, or silicone tubes after sciatic nerve transection in rats. After surgical removal of a 5-mm segment of the proximal sciatic nerve, rats were implanted with progesterone-loaded chitosan, unaltered chitosan, or silicone tubes in the transected nerve for evaluating progesterone and chitosan effects on sciatic nerve repair and ipsilateral hindlimb kinematic function, as well as on gastrocnemius electro-myographic responses. In some experiments, tube implantation was performed 90 minutes after nerve transection. At 90 days after sciatic nerve transection and tube implantation, rats with progesterone-loaded chitosan tubes showed knee angular displacement recovery and better outcomes for step length, velocity of locomotion, and normal hindlimb raising above the ground. In contrast, rats with chitosan-only tubes showed reduced normal raising and pendulum-like hindlimb movements. Aberrant fibers coming from the tibial nerve innervated the gastrocnemius muscle, producing electromyographic responses. Electrical responses in the gastrocnemius muscle produced by sciatic nerve stimulation occurred only when the distal nerve segment was stimulated; they were absent when the proximal or intratubular segment was stimulated. A clear sciatic nerve morphology with some myelinated fiber fascicles appeared in the tube section in rats with progesterone-impregnated chitosan tubes. Some gastrocnemius efferent fibers were partially repaired 90 days after nerve resection. The better outcome in knee angle displacement may be partially attributable to the aberrant neuromuscular synaptic effects, since nerve conduction in the gastrocnemius muscle could be blocked in the progesterone-impregnated chitosan tubes. In addition, in the region of the gap produced by the nerve resection, the number of axons and amount of myelination were reduced in the sciatic nerve implanted with chitosan, progesterone-loaded chitosan, and silicone tubes. At 180 days after sciatic nerve sectioning, the knee kinematic function recovered to a level observed in control rats of a similar age. In rats with progesterone-loaded chitosan tubes, stimulation of the proximal and intratubular sciatic nerve segments produced an electromyographic response. The axon morphology of the proximal and intratubular segments of the sciatic nerve resembled that of the contralateral nontransected nerve. Progesterone-impregnated chitosan tubes produced aberrant innervation of the gastrocnemius muscle, which allowed partial recovery of gait locomotion and could be adequate for reinnervating synergistic denervated muscles while a parent innervation is reestablished. Hindlimb kinematic parameters differed between younger (those at 90 days) and older (those at 180 days) rats.
ERIC Educational Resources Information Center
Reed, T. Edward
1993-01-01
Results with 54 mice confirm that increased stimulation or usage, as would be provided by environmental enrichment (EE), increases peripheral nerve conduction velocity. These results suggest a role at the physiological level for EE (or deprivation) in affecting measured intelligence. (SLD)
Rapid prototyping of a double-layer polyurethane-collagen conduit for peripheral nerve regeneration.
Cui, Tongkui; Yan, Yongnian; Zhang, Renji; Liu, Li; Xu, Wei; Wang, Xiaohong
2009-03-01
A new technique for preparing double-layer polyurethane (PU)-collagen nerve conduits for peripheral nerve repair via a double-nozzle, low-temperature, deposition manufacturing (DLDM) system has been developed. The DLDM system is based on a digital prototyping approach, and uses a combination of thermally induced phase separation and freeze-drying. With this system, two kinds of biomaterials with different properties can be combined to produce scaffold structures with good biocompatibility in the inner layer and with the desired mechanical strength protruded by the outer. The forming precision is high, the wall thickness can be controlled, and a tight connection between the two layers can be achieved. The effects of changing the processing parameters and the material temperature on the structure of the scaffolds have been investigated. Additionally, the effect of material concentration on the mechanical strength and hydrophilic properties of the scaffolds has also been studied. Ideal peripheral nerve repair conduits, comprising an outer microporous layer of PU and internal oriented filaments of collagen, have been manufactured through optimizing the processing parameters and the biomaterial concentrations.
D'Antonio, Maurizio; Droggiti, Anna; Feltri, M Laura; Roes, Jürgen; Wrabetz, Lawrence; Mirsky, Rhona; Jessen, Kristján R
2006-08-16
During development, Schwann cell numbers are precisely adjusted to match the number of axons. It is essentially unknown which growth factors or receptors carry out this important control in vivo. Here, we tested whether the type II transforming growth factor (TGF) beta receptor has a role in this process. We generated a conditional knock-out mouse in which the type II TGFbeta receptor is specifically ablated only in Schwann cells. Inactivation of the receptor, evident at least from embryonic day 18, resulted in suppressed Schwann cell death in normally developing and injured nerves. Notably, the mutants also showed a strong reduction in Schwann cell proliferation. Consequently, Schwann cell numbers in wild-type and mutant nerves remained similar. Lack of TGFbeta signaling did not appear to affect other processes in which TGFbeta had been implicated previously, including myelination and response of adult nerves to injury. This is the first in vivo evidence for a growth factor receptor involved in promoting Schwann cell division during development and the first genetic evidence for a receptor that controls normal developmental Schwann cell death.
A historical perspective on the role of sensory nerves in neurogenic inflammation.
Sousa-Valente, João; Brain, Susan D
2018-05-01
The term 'neurogenic inflammation' is commonly used, especially with respect to the role of sensory nerves within inflammatory disease. However, despite over a century of research, we remain unclear about the role of these nerves in the vascular biology of inflammation, as compared with their interacting role in pain processing and of their potential for therapeutic manipulation. This chapter attempts to discuss the progress in understanding, from the initial discovery of sensory nerves until the present day. This covers pioneering findings that these nerves exist, are involved in vascular events and act as important sensors of environmental changes, including injury and infection. This is followed by discovery of the contents they release such as the established vasoactive neuropeptides substance P and CGRP as well as anti-inflammatory peptides such as the opioids and somatostatin. The more recent emergence of the importance of the transient receptor potential (TRP) channels has revealed some of the mechanisms by which these nerves sense environmental stimuli. This knowledge enables a platform from which to learn of the potential role of neurogenic inflammation in disease and in turn of novel therapeutic targets.
Rosenberg, Yvonne J.; Walker, Jeremy; Jiang, Xiaoming; Donahue, Scott; Robosky, Jason; Sack, Markus; Lees, Jonathan; Urban, Lori
2015-01-01
Although recent innovations in transient plant systems have enabled gram quantities of proteins in 1–2 weeks, very few have been translated into applications due to technical challenges and high downstream processing costs. Here we report high-level production, using a Nicotiana benthamiana/p19 system, of an engineered recombinant human acetylcholinesterase (rAChE) that is highly stable in a minimally processed leaf extract. Lyophylized clarified extracts withstand prolonged storage at 70 °C and, upon reconstitution, can be used in several devices to detect organophosphate (OP) nerve agents and pesticides on surfaces ranging from 0 °C to 50 °C. The recent use of sarin in Syria highlights the urgent need for nerve agent detection and countermeasures necessary for preparedness and emergency responses. Bypassing cumbersome and expensive downstream processes has enabled us to fully exploit the speed, low cost and scalability of transient production systems resulting in the first successful implementation of plant-produced rAChE into a commercial biotechnology product. PMID:26268538
Rosenberg, Yvonne J; Walker, Jeremy; Jiang, Xiaoming; Donahue, Scott; Robosky, Jason; Sack, Markus; Lees, Jonathan; Urban, Lori
2015-08-13
Although recent innovations in transient plant systems have enabled gram quantities of proteins in 1-2 weeks, very few have been translated into applications due to technical challenges and high downstream processing costs. Here we report high-level production, using a Nicotiana benthamiana/p19 system, of an engineered recombinant human acetylcholinesterase (rAChE) that is highly stable in a minimally processed leaf extract. Lyophylized clarified extracts withstand prolonged storage at 70 °C and, upon reconstitution, can be used in several devices to detect organophosphate (OP) nerve agents and pesticides on surfaces ranging from 0 °C to 50 °C. The recent use of sarin in Syria highlights the urgent need for nerve agent detection and countermeasures necessary for preparedness and emergency responses. Bypassing cumbersome and expensive downstream processes has enabled us to fully exploit the speed, low cost and scalability of transient production systems resulting in the first successful implementation of plant-produced rAChE into a commercial biotechnology product.
NASA Astrophysics Data System (ADS)
Sharma, Anup Dutt
Peripheral nerve regeneration is a complex biological process responsible for regrowth of neural tissue following a nerve injury. The main objective of this project was to enhance peripheral nerve regeneration using interdisciplinary approaches involving polymeric scaffolds, stem cell therapy, drug delivery and high content screening. Biocompatible and biodegradable polymeric materials such as poly (lactic acid) were used for engineering conduits with micropatterns capable of providing mechanical support and orientation to the regenerating axons and polyanhydrides for fabricating nano/microparticles for localized delivery of neurotrophic growth factors and cytokines at the site of injury. Transdifferentiated bone marrow stromal cells or mesenchymal stem cells (MSCs) were used as cellular replacements for lost native Schwann cells (SCs) at the injured nerve tissue. MSCs that have been transdifferentiated into an SC-like phenotype were tested as a substitute for the myelinating SCs. Also, genetically modified MSCs were engineered to hypersecrete brain- derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) to secrete therapeutic factors which Schwann cell secrete. To further enhance the regeneration, nerve growth factor (NGF) and interleukin-4 (IL4) releasing polyanhydrides nano/microparticles were fabricated and characterized in vitro for their efficacy. Synergistic use of these proposed techniques was used for fabricating a multifunctional nerve regeneration conduit which can be used as an efficient tool for enhancing peripheral nerve regeneration.
The role of undifferentiated adipose-derived stem cells in peripheral nerve repair.
Zhang, Rui; Rosen, Joseph M
2018-05-01
Peripheral nerve injuries impose significant health and economic consequences, yet no surgical repair can deliver a complete recovery of sensory or motor function. Traditional methods of repair are less than ideal: direct coaptation can only be performed when tension-free repair is possible, and transplantation of nerve autograft can cause donor-site morbidity and neuroma formation. Cell-based therapy delivered via nerve conduits has thus been explored as an alternative method of nerve repair in recent years. Stem cells are promising sources of the regenerative core material in a nerve conduit because stem cells are multipotent in function, abundant in supply, and more accessible than the myelinating Schwann cells. Among different types of stem cells, undifferentiated adipose-derived stem cell (uASC), which can be processed from adipose tissue in less than two hours, is a promising yet underexplored cell type. Studies of uASC have emerged in the past decade and have shown that autologous uASCs are non-immunogenic, easy to access, abundant in supply, and efficacious at promoting nerve regeneration. Two theories have been proposed as the primary regenerative mechanisms of uASC: in situ trans-differentiation towards Schwann cells, and secretion of trophic and anti-inflammatory factors. Future studies need to fully elucidate the mechanisms, side effects, and efficacy of uASC-based nerve regeneration so that uASCs can be utilized in clinical settings.
Macrophage-Mediated Glial Cell Elimination in the Postnatal Mouse Cochlea
Brown, LaShardai N.; Xing, Yazhi; Noble, Kenyaria V.; Barth, Jeremy L.; Panganiban, Clarisse H.; Smythe, Nancy M.; Bridges, Mary C.; Zhu, Juhong; Lang, Hainan
2017-01-01
Hearing relies on the transmission of auditory information from sensory hair cells (HCs) to the brain through the auditory nerve. This relay of information requires HCs to be innervated by spiral ganglion neurons (SGNs) in an exclusive manner and SGNs to be ensheathed by myelinating and non-myelinating glial cells. In the developing auditory nerve, mistargeted SGN axons are retracted or pruned and excessive cells are cleared in a process referred to as nerve refinement. Whether auditory glial cells are eliminated during auditory nerve refinement is unknown. Using early postnatal mice of either sex, we show that glial cell numbers decrease after the first postnatal week, corresponding temporally with nerve refinement in the developing auditory nerve. Additionally, expression of immune-related genes was upregulated and macrophage numbers increase in a manner coinciding with the reduction of glial cell numbers. Transient depletion of macrophages during early auditory nerve development, using transgenic CD11bDTR/EGFP mice, resulted in the appearance of excessive glial cells. Macrophage depletion caused abnormalities in myelin formation and transient edema of the stria vascularis. Macrophage-depleted mice also showed auditory function impairment that partially recovered in adulthood. These findings demonstrate that macrophages contribute to the regulation of glial cell number during postnatal development of the cochlea and that glial cells play a critical role in hearing onset and auditory nerve maturation. PMID:29375297
Holland, G R
1987-08-01
Gap junctions are numerous in the odontoblast layer of the dental pulp and may link sensory axons to odontoblasts. If these junctions do link axons and odontoblasts, they, together with the axons, should disappear after cutting the pulpal nerves centrally. Under general anesthesia the inferior alveolar nerve on one side of two young adult cats was sectioned. Under general anesthesia the animals were perfused with fixative 56 hours later and the coronal dental pulp prepared for electron microscopy. Ultrathin sections were examined from the level of the pulpal cornu and levels approximately one, two, and three mm below this. The incidence of cell processes and gap junctions was measured at different distances from the pulp predentin junction, and operated and control sides compared. The odontoblast layer at the level of the cornu differed from elsewhere in having, on the control side, a greater density of cell processes and gap junctions and in having clearly recognizable axons approaching to within 5 to 10 micron of the predentin. The only statistically significant changes after nerve section occurred in this layer and consisted of a decline in the incidence of cell processes and of gap junctions that link one cell process to another. There was no significant difference between the operated and control sides in the number of gap junctions linking cell processes to recognizable cell bodies. The odontoblast layer in the pulpal cornu contained substantial numbers of unsheathed axons, many presumably en route to the dentin. These axons may participate in gap junctions that link them to other cell processes, possibly even other axons.(ABSTRACT TRUNCATED AT 250 WORDS)
Micropuncture and pressure assisted Schwann cell seeding of nerve allograft.
Isaacs, Jonathan; Richards, Nathan; McMurtry, John; Mallu, Satya; Patel, Gaurangkumar; Thompson, Matthew; Yager, Dorne
2017-08-01
Tissue processing to create immunotolerant nerve allograft removes neurosupportive cells. Few strategies have been described for implanting new cells into the graft to support axonal regeneration. Micropuncture of the nerve allograft surface combined with immersion into a pressurized cell-rich solution to potentiate the introduction of viable Schwann cells (SC) into processed nerve allograft. Allografts were used to repair rodent sciatic nerve defects. At 3, 7, and 21days, grafts were harvested, stained for SCs, and analyzed using total cross sectional area (CSA) occupied by SCs to quantify SC presence. At days 3 and 7, SC CSA was significantly greater for the injection group compared to all other groups. At day 21, SC CSA for the injection group (0.2252%±0.2730) was significantly greater compared to following groups: pressurized-punctured (0.0653%±0.0934), nonpressurized-nonpunctured (0.0607%±0.0709), punctured-control (0.0246%±0.0398), and nonpunctured-control (0.0126%±0.0151). A significant decrease in percent CSA occupied by SCs from day 3 to day 21 was noted in nonpressurized-punctured group (p=0.0106), pressurized-nonpunctured group (p=0.0477), and injection group (p=0.0010). Most studies have used small caliber hypodermic needles to inject the cells into grafts. Despite a presumed decrease in cell viability over the three weeks of the study, the large initial inoculum achieved by injection technique results in higher levels of final SC seeding in acellular nerve allograft compared with bathing techniques with or without micropuncture or pressurization. Copyright © 2017 Elsevier B.V. All rights reserved.
Chucair-Elliott, Ana J.; Carr, Meghan M.; Carr, Daniel J. J.
2017-01-01
Herpes simplex virus type 1 (HSV-1) is a leading cause of neurotrophic keratitis (NTK). NTK is characterized by decreased corneal sensation from damage to the corneal sensory fibers. We have reported on the regression of corneal nerves and their function during acute HSV-1 infection. That nerve loss is followed by an aberrant process of nerve regeneration during the latent phase of infection that lacks functional recovery. We recently showed the elicited immune response in the infected cornea, and not viral replication itself, is part of the mechanism responsible for the nerve degeneration process after infection. Specifically, we showed infected corneas topically treated with dexamethasone (DEX) significantly retained both structure and sensitivity of the corneal nerve network in comparison to mice treated with control eye drops, consistent with decreased levels of proinflammatory cytokines and reduced influx of macrophages and CD8+ T cells into the cornea. This study was undertaken to analyze the long-term effect of such a localized, immunosuppressive paradigm (DEX drops on the cornea surface during the first 8 d of HSV-1 infection) on the immune system and on corneal pathology. We found the profound immunosuppressive effect of DEX on lymphoid tissue was sustained in surviving mice for up to 30 d postinfection (p.i.). DEX treatment had prolonged effects, preserving corneal innervation and its function and blunting neovascularization, as analyzed at 30 d p.i. Our data support previously reported observations of an association between the persistent presence of inflammatory components in the latently infected cornea and structural and functional nerve defects in NTK. PMID:28115476
Crosslinking of micropatterned collagen-based nerve guides to modulate the expected half-life.
Salvatore, L; Madaghiele, M; Parisi, C; Gatti, F; Sannino, A
2014-12-01
The microstructural, mechanical, compositional, and degradative properties of a nerve conduit are known to strongly affect the regenerative process of the injured peripheral nerve. Starting from the fabrication of micropatterned collagen-based nerve guides, according to a spin-casting process reported in the literature, this study further investigates the possibility to modulate the degradation rate of the scaffolds over a wide time frame, in an attempt to match different rates of nerve regeneration that might be encountered in vivo. To this aim, three different crosslinking methods, that is, dehydrothermal (DHT), carbodiimide-based (EDAC), and glutaraldehyde-based (GTA) crosslinking, were selected. The elastically effective degree of crosslinking, attained by each method and evaluated according to the classical rubber elasticity theory, was found to significantly tune the in vitro half-life (t1/2 ) of the matrices, with an exponential dependence of the latter on the crosslink density. The high crosslinking efficacy of EDAC and GTA treatments, respectively threefold and fourfold when compared to the one attained by DHT, led to a sharp increase of the corresponding in vitro half-lives (ca., 10, 172, and 690 h, for DHT, EDAC, and GTA treated matrices, respectively). As shown by cell viability assays, the cytocompatibility of both DHT and EDAC treatments, as opposed to the toxicity of GTA, suggests that such methods are suitable to crosslink collagen-based scaffolds conceived for clinical use. In particular, nerve guides with expected high residence times in vivo might be produced by finely controlling the biocompatible reaction(s) adopted for crosslinking. © 2014 Wiley Periodicals, Inc.
The almost-invisible perineurioma.
Restrepo, Carlos E; Amrami, Kimberly K; Howe, Benjamin M; Dyck, P James B; Mauermann, Michelle L; Spinner, Robert J
2015-09-01
Intraneural perineurioma is a rare, benign slow-growing lesion arising from the perineurial cells that surrounds the peripheral nerve fibers. Typically it presents during childhood and young adulthood as a motor mononeuropathy. MRI plays an essential role in the diagnosis and localization of the lesion, which appears as a fusiform enlargement of the nerve fascicles that enhances intensely with gadolinium. Despite the typical clinical and radiological features, intraneural perineurioma remains largely underdiagnosed because of the lack of familiarity with this entity, but also as a result of technical limitations with conventional MRI that is typically performed as a screening test over a large field of view and without contrast sequences. The purpose of this article is to present the pitfalls and pearls learned from years of experience in the diagnosis and management of this relatively rare condition. Clinical suspicion and detailed neurological examination followed by high-quality electrophysiological studies (EPS) must lead to an adequate preimaging localization of the lesion and narrowing of the imaging area. The use of high-resolution (3-T) MRI combined with gadolinium administration will allow adequate visualization of the internal anatomy of the nerve and help in differentiating other causes of neuropathy. In cases where the lesion is not recognized but clinical suspicion is high, possible errors must be assessed, including the EPS localization, area of imaging, MRI resolution, and slice thickness.
Tian, Lingling; Prabhakaran, Molamma P; Hu, Jue; Chen, Menglin; Besenbacher, Flemming; Ramakrishna, Seeram
2016-09-01
Electrospun nanofibrous nerve implants is a promising therapy for peripheral nerve injury, and its performance can be tailored by chemical cues, topographical features as well as electrical properties. In this paper, a surface modified, electrically conductive, aligned nanofibrous scaffold composed of poly (lactic acid) (PLA) and polypyrrole (Ppy), referred to as o-PLAPpy_A, was fabricated for nerve regeneration. The morphology, surface chemistry and hydrophilicity of nanofibers were characterized by Scanning Electron Microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle, respectively. The effects of these nanofibers on neuronal differentiation using PC12 cells were evaluated. A hydrophilic surface was created by Poly-ornithine coating, which was able to provide a better environment for cell attachment, and furthermore aligned fibers were proved to be able to guide PC12 cells grow along the fiber direction and be beneficial for neurite outgrowth. The cellular response of PC12 cells to pulsed electrical stimulation was evaluated by NF 200 and alpha tubulin expression, indicating that electrical stimulation with a voltage of 40mV could enhance the neurite outgrowth. The PC12 cells stimulated with electrical shock showed greater level of neurite outgrowth and smaller cell body size. Moreover, the PC12 cells under electrical stimulation showed better viability. In summary, the o-PLAPpy_A nanofibrous scaffold supported the attachment, proliferation and differentiation of PC12 cells in the absence of electrical stimulation, which could be potential candidate for nerve regeneration applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Anneken, John H.; Angoa-Pérez, Mariana; Kuhn, Donald M.
2016-01-01
Methylone, 3,4-methylenedioxypyrovalerone (MDPV), and mephedrone are psychoactive ingredients of ‘bath salts’ and their abuse represents a growing public health care concern. These drugs are cathinone derivatives and are classified chemically as β-ketoamphetamines. Because of their close structural similarity to the amphetamines, methylone, MDPV, and mephedrone share most of their pharmacological, neurochemical, and behavioral properties. One point of divergence in their actions is the ability to cause damage to the CNS. Unlike methamphetamine, the β-ketoamphetamines do not damage dopamine (DA) nerve endings. However, mephedrone has been shown to significantly accentuate methamphetamine neurotoxicity. Bath salt formulations contain numerous different psychoactive ingredients, and individuals who abuse bath salts also coabuse other illicit drugs. Therefore, we have evaluated the effects of methylone, MDPV, mephedrone, and methamphetamine on DA nerve endings. The β-ketoamphetamines alone or in all possible two-drug combinations do not result in damage to DA nerve endings but do cause hyperthermia. MDPV completely protects against the neurotoxic effects of methamphetamine while methylone accentuates it. Neither MDPV nor methylone attenuates the hyperthermic effects of methamphetamine. The potent neuroprotective effects of MDPV extend to amphetamine-, 3,4-methylenedioxymethamphetamine-, and MPTP-induced neurotoxicity. These results indicate that β-ketoamphetamine drugs that are non-substrate blockers of the DA transporter (i.e., MDPV) protect against methamphetamine neurotoxicity, whereas those that are substrates for uptake by the DA transporter and which cause DA release (i.e., methylone, mephedrone) accentuate neurotoxicity. PMID:25626880
Baker, Austin T; Homewood, Tyler J; Baker, Terry R
2018-06-09
Cervical Sympathetic Chain Schwannomas (CSCS) of the carotid sheath are rare neoplasms that can be misdiagnosed on imaging. The following case documents a rare incident of a misdiagnosed CSCS with unusual outcomes of permanent Horner's syndrome and facial pain. A 36-year-old female presented with a slow-growing neck mass. CT and MRI led to a preoperative diagnosis of vagus nerve schwannoma (VNS). However, surgical treatment revealed the mass to be involved with the cervical sympathetic chain rather than the vagus nerve. The diagnosis was corrected to CSCS and the nerve was resected with the mass. The patient presented postoperatively with Horner's syndrome and severe facial pain. These symptoms persisted despite two years of medical management. Studies indicate that imaging trends used for distinction between VNS and CSCS show inconsistencies in making preoperative diagnoses. Recent literature reveals helpful criteria for improving diagnostic standards that assist with preoperative patient counseling. In addition, postoperative outcomes, such as temporary, asymptomatic Horner's syndrome are common in CSCS. The following case report exemplifies the difficulties in diagnosis and addresses the unique complications of facial pain and permanent Horner's syndrome. This case report examines postoperative outcomes and improves clinician awareness of the potential for misdiagnosis of a rare neoplasm and the recently improved diagnostic measures, providing for higher quality preoperative counseling. Future research is recommended to confirm and improve diagnostic guidelines and accuracy. Additional studies may focus on evaluating the effects of incorrect preoperative diagnosis on postoperative complication rates. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Hossain-Ibrahim, Mohammed K; Rezajooi, Kia; Stallcup, William B; Lieberman, Alexander R; Anderson, Patrick N
2007-01-01
Background The chondroitin sulphate proteoglycan NG2 blocks neurite outgrowth in vitro and has been proposed as a major inhibitor of axonal regeneration in the CNS. Although a substantial body of evidence underpins this hypothesis, it is challenged by recent findings including strong expression of NG2 in regenerating peripheral nerve. Results We studied axonal regeneration in the PNS and CNS of genetically engineered mice that do not express NG2, and in sex and age matched wild-type controls. In the CNS, we used anterograde tracing with BDA to study corticospinal tract (CST) axons after spinal cord injury and transganglionic labelling with CT-HRP to trace ascending sensory dorsal column (DC) axons after DC lesions and a conditioning lesion of the sciatic nerve. Injury to these fibre tracts resulted in no difference between knockout and wild-type mice in the ability of CST axons or DC axons to enter or cross the lesion site. Similarly, after dorsal root injury (with conditioning lesion), most regenerating dorsal root axons failed to grow across the dorsal root entry zone in both transgenic and wild-type mice. Following sciatic nerve injuries, functional recovery was assessed by analysis of the toe-spreading reflex and cutaneous sensitivity to Von Frey hairs. Anatomical correlates of regeneration were assessed by: retrograde labelling of regenerating dorsal root ganglion (DRG) cells with DiAsp; immunostaining with PGP 9.5 to visualise sensory reinnervation of plantar hindpaws; electron microscopic analysis of regenerating axons in tibial and digital nerves; and by silver-cholinesterase histochemical study of motor end plate reinnervation. We also examined functional and anatomical correlates of regeneration after injury of the facial nerve by assessing the time taken for whisker movements and corneal reflexes to recover and by retrograde labelling of regenerated axons with Fluorogold and DiAsp. None of the anatomical or functional analyses revealed significant differences between wild-type and knockout mice. Conclusion These findings show that NG2 is unlikely to be a major inhibitor of axonal regeneration after injury to the CNS, and, further, that NG2 is unlikely to be necessary for regeneration or functional recovery following peripheral nerve injury. PMID:17900358
Multispectral photoacoustic imaging of nerves with a clinical ultrasound system
NASA Astrophysics Data System (ADS)
Mari, Jean Martial; West, Simeon; Beard, Paul C.; Desjardins, Adrien E.
2014-03-01
Accurate and efficient identification of nerves is of great importance during many ultrasound-guided clinical procedures, including nerve blocks and prostate biopsies. It can be challenging to visualise nerves with conventional ultrasound imaging, however. One of the challenges is that nerves can have very similar appearances to nearby structures such as tendons. Several recent studies have highlighted the potential of near-infrared optical spectroscopy for differentiating nerves and adjacent tissues, as this modality can be sensitive to optical absorption of lipids that are present in intra- and extra-neural adipose tissue and in the myelin sheaths. These studies were limited to point measurements, however. In this pilot study, a custom photoacoustic system with a clinical ultrasound imaging probe was used to acquire multi-spectral photoacoustic images of nerves and tendons from swine ex vivo, across the wavelength range of 1100 to 1300 nm. Photoacoustic images were processed and overlaid in colour onto co-registered conventional ultrasound images that were acquired with the same imaging probe. A pronounced optical absorption peak centred at 1210 nm was observed in the photoacoustic signals obtained from nerves, and it was absent in those obtained from tendons. This absorption peak, which is consistent with the presence of lipids, provides a novel image contrast mechanism to significantly enhance the visualization of nerves. In particular, image contrast for nerves was up to 5.5 times greater with photoacoustic imaging (0.82 +/- 0.15) than with conventional ultrasound imaging (0.148 +/- 0.002), with a maximum contrast of 0.95 +/- 0.02 obtained in photoacoustic mode. This pilot study demonstrates the potential of photoacoustic imaging to improve clinical outcomes in ultrasound-guided interventions in regional anaesthesia and interventional oncology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hemmert, Andrew C.; Otto, Tamara C.; Wierdl, Monika
Organophosphorus (OP) nerve agents are potent toxins that inhibit cholinesterases and produce a rapid and lethal cholinergic crisis. Development of protein-based therapeutics is being pursued with the goal of preventing nerve agent toxicity and protecting against the long-term side effects of these agents. The drug-metabolizing enzyme human carboxylesterase 1 (hCE1) is a candidate protein-based therapeutic because of its similarity in structure and function to the cholinesterase targets of nerve agent poisoning. However, the ability of wild-type hCE1 to process the G-type nerve agents sarin and cyclosarin has not been determined. We report the crystal structure of hCE1 in complex withmore » the nerve agent cyclosarin. We further use stereoselective nerve agent analogs to establish that hCE1 exhibits a 1700- and 2900-fold preference for the P{sub R} enantiomers of analogs of soman and cyclosarin, respectively, and a 5-fold preference for the P{sub S} isomer of a sarin analog. Finally, we show that for enzyme inhibited by racemic mixtures of bona fide nerve agents, hCE1 spontaneously reactivates in the presence of sarin but not soman or cyclosarin. The addition of the neutral oxime 2,3-butanedione monoxime increases the rate of reactivation of hCE1 from sarin inhibition by more than 60-fold but has no effect on reactivation with the other agents examined. Taken together, these data demonstrate that hCE1 is only reactivated after inhibition with the more toxic P{sub S} isomer of sarin. These results provide important insights toward the long-term goal of designing novel forms of hCE1 to act as protein-based therapeutics for nerve agent detoxification.« less
Amado, Sandra; Rodrigues, Jorge M; Luís, Ana L; Armada-da-Silva, Paulo A S; Vieira, Márcia; Gartner, Andrea; Simões, Maria J; Veloso, António P; Fornaro, Michele; Raimondo, Stefania; Varejão, Artur S P; Geuna, Stefano; Maurício, Ana C
2010-02-11
Peripheral nerves possess the capacity of self-regeneration after traumatic injury but the extent of regeneration is often poor and may benefit from exogenous factors that enhance growth. The use of cellular systems is a rational approach for delivering neurotrophic factors at the nerve lesion site, and in the present study we investigated the effects of enwrapping the site of end-to-end rat sciatic nerve repair with an equine type III collagen membrane enriched or not with N1E-115 pre-differentiated neural cells. After neurotmesis, the sciatic nerve was repaired by end-to-end suture (End-to-End group), end-to-end suture enwrapped with an equine collagen type III membrane (End-to-EndMemb group); and end-to-end suture enwrapped with an equine collagen type III membrane previously covered with neural cells pre-differentiated in vitro from N1E-115 cells (End-to-EndMembCell group). Along the postoperative, motor and sensory functional recovery was evaluated using extensor postural thrust (EPT), withdrawal reflex latency (WRL) and ankle kinematics. After 20 weeks animals were sacrificed and the repaired sciatic nerves were processed for histological and stereological analysis. Results showed that enwrapment of the rapair site with a collagen membrane, with or without neural cell enrichment, did not lead to any significant improvement in most of functional and stereological predictors of nerve regeneration that we have assessed, with the exception of EPT which recovered significantly better after neural cell enriched membrane employment. It can thus be concluded that this particular type of nerve tissue engineering approach has very limited effects on nerve regeneration after sciatic end-to-end nerve reconstruction in the rat.
2010-01-01
Peripheral nerves possess the capacity of self-regeneration after traumatic injury but the extent of regeneration is often poor and may benefit from exogenous factors that enhance growth. The use of cellular systems is a rational approach for delivering neurotrophic factors at the nerve lesion site, and in the present study we investigated the effects of enwrapping the site of end-to-end rat sciatic nerve repair with an equine type III collagen membrane enriched or not with N1E-115 pre-differentiated neural cells. After neurotmesis, the sciatic nerve was repaired by end-to-end suture (End-to-End group), end-to-end suture enwrapped with an equine collagen type III membrane (End-to-EndMemb group); and end-to-end suture enwrapped with an equine collagen type III membrane previously covered with neural cells pre-differentiated in vitro from N1E-115 cells (End-to-EndMembCell group). Along the postoperative, motor and sensory functional recovery was evaluated using extensor postural thrust (EPT), withdrawal reflex latency (WRL) and ankle kinematics. After 20 weeks animals were sacrificed and the repaired sciatic nerves were processed for histological and stereological analysis. Results showed that enwrapment of the rapair site with a collagen membrane, with or without neural cell enrichment, did not lead to any significant improvement in most of functional and stereological predictors of nerve regeneration that we have assessed, with the exception of EPT which recovered significantly better after neural cell enriched membrane employment. It can thus be concluded that this particular type of nerve tissue engineering approach has very limited effects on nerve regeneration after sciatic end-to-end nerve reconstruction in the rat. PMID:20149260
Joeng, Eui Soo; Jeong, Young Cheol; Park, Bum Jun; Kang, Seok; Yang, Seung Nam
2016-01-01
Objective To evaluate the risk of phrenic nerve injury during ultrasound-guided stellate ganglion block (US-SGB) according to sonoanatomy of the phrenic nerve, and determine a safer posture for needle insertion by assessing its relationship with surrounding structure according to positional change. Methods Twenty-nine healthy volunteers were recruited and underwent ultrasound in two postures, i.e., supine position with the neck extension and head rotation, and lateral decubitus position. The transducer was placed at the anterior tubercle of the C6 level to identify phrenic nerve. The cross-sectional area (CSA), depth from skin, distance between phrenic nerve and anterior tubercle of C6 transverse process, and the angle formed by anterior tubercle, posterior tubercle and phrenic nerve were measured. Results The phrenic nerve was clearly identified in the intermuscular fascia layer between the anterior scalene and sternocleidomastoid muscles. The distance between the phrenic nerve and anterior tubercle was 10.33±3.20 mm with the supine position and 9.20±3.31 mm with the lateral decubitus position, respectively. The mean CSA and skin depth of phrenic nerve were not statistically different between the two positions. The angle with the supine position was 48.37°±27.43°, and 58.89°±30.02° with the lateral decubitus position. The difference of angle between the two positions was statistically significant. Conclusion Ultrasound is a useful tool for assessing the phrenic nerve and its anatomical relation with other cervical structures. In addition, lateral decubitus position seems to be safer by providing wider angle for needle insertion than the supine position in US-SGB. PMID:27152274
Joeng, Eui Soo; Jeong, Young Cheol; Park, Bum Jun; Kang, Seok; Yang, Seung Nam; Yoon, Joon Shik
2016-04-01
To evaluate the risk of phrenic nerve injury during ultrasound-guided stellate ganglion block (US-SGB) according to sonoanatomy of the phrenic nerve, and determine a safer posture for needle insertion by assessing its relationship with surrounding structure according to positional change. Twenty-nine healthy volunteers were recruited and underwent ultrasound in two postures, i.e., supine position with the neck extension and head rotation, and lateral decubitus position. The transducer was placed at the anterior tubercle of the C6 level to identify phrenic nerve. The cross-sectional area (CSA), depth from skin, distance between phrenic nerve and anterior tubercle of C6 transverse process, and the angle formed by anterior tubercle, posterior tubercle and phrenic nerve were measured. The phrenic nerve was clearly identified in the intermuscular fascia layer between the anterior scalene and sternocleidomastoid muscles. The distance between the phrenic nerve and anterior tubercle was 10.33±3.20 mm with the supine position and 9.20±3.31 mm with the lateral decubitus position, respectively. The mean CSA and skin depth of phrenic nerve were not statistically different between the two positions. The angle with the supine position was 48.37°±27.43°, and 58.89°±30.02° with the lateral decubitus position. The difference of angle between the two positions was statistically significant. Ultrasound is a useful tool for assessing the phrenic nerve and its anatomical relation with other cervical structures. In addition, lateral decubitus position seems to be safer by providing wider angle for needle insertion than the supine position in US-SGB.
Reflex regulation of airway sympathetic nerves in guinea-pigs
Oh, Eun Joo; Mazzone, Stuart B; Canning, Brendan J; Weinreich, Daniel
2006-01-01
Sympathetic nerves innervate the airways of most species but their reflex regulation has been essentially unstudied. Here we demonstrate sympathetic nerve-mediated reflex relaxation of airway smooth muscle measured in situ in the guinea-pig trachea. Retrograde tracing, immunohistochemistry and electrophysiological analysis identified a population of substance P-containing capsaicin-sensitive spinal afferent neurones in the upper thoracic (T1–T4) dorsal root ganglia (DRG) that innervate the airways and lung. After bilateral vagotomy, atropine pretreatment and precontraction of the trachealis with histamine, nebulized capsaicin (10–60 μm) evoked a 63 ± 7% reversal of the histamine-induced contraction of the trachealis. Either the β-adrenoceptor antagonist propranolol (2 μm, administered directly to the trachea) or bilateral sympathetic nerve denervation of the trachea essentially abolished these reflexes (10 ± 9% and 6 ± 4% relaxations, respectively), suggesting that they were mediated primarily, if not exclusively, by sympathetic adrenergic nerve activation. Cutting the upper thoracic dorsal roots carrying the central processes of airway spinal afferents also markedly blocked the relaxations (9 ± 5% relaxation). Comparable inhibitory effects were observed following intravenous pretreatment with neurokinin receptor antagonists (3 ± 7% relaxations). These reflexes were not accompanied by consistent changes in heart rate or blood pressure. By contrast, stimulating the rostral cut ends of the cervical vagus nerves also evoked a sympathetic adrenergic nerve-mediated relaxation that were accompanied by marked alterations in blood pressure. The results indicate that the capsaicin-induced reflex-mediated relaxation of airway smooth muscle following vagotomy is mediated by sequential activation of tachykinin-containing spinal afferent and sympathetic efferent nerves innervating airways. This sympathetic nerve-mediated response may serve to oppose airway contraction induced by parasympathetic nerve activation in the airways. PMID:16581869
'This diagnosis can be extremely scary'.
Newton-Snow, Tamsin
2017-01-18
Neurofibromatosis type 2 (NF2) is a rare genetic disorder that occurs in an estimated one in 35,000 people. The condition is often life-limiting and involves tumours growing on the nervous system, typically on the hearing nerves, brain and spine. While the tumours are mainly benign, they can lead to hearing loss, deafness and problems with balance and mobility. Most patients will need surgery or other treatments for NF2-related brain or spinal cord tumours at some point in their lives.
Li, Rui; Sun, Le; Fang, Ai; Li, Peng; Wu, Qian; Wang, Xiaoqun
2017-11-01
The development of a cerebral organoid culture in vitro offers an opportunity to generate human brain-like organs to investigate mechanisms of human disease that are specific to the neurogenesis of radial glial (RG) and outer radial glial (oRG) cells in the ventricular zone (VZ) and subventricular zone (SVZ) of the developing neocortex. Modeling neuronal progenitors and the organization that produces mature subcortical neuron subtypes during early stages of development is essential for studying human brain developmental diseases. Several previous efforts have shown to grow neural organoid in culture dishes successfully, however we demonstrate a new paradigm that recapitulates neocortical development process with VZ, OSVZ formation and the lamination organization of cortical layer structure. In addition, using patient-specific induced pluripotent stem cells (iPSCs) with dysfunction of the Aspm gene from a primary microcephaly patient, we demonstrate neurogenesis defects result in defective neuronal activity in patient organoids, suggesting a new strategy to study human developmental diseases in central nerve system.
Arthroscopic Management of Elbow Osteoarthritis.
Kroonen, Leo T; Piper, Samantha L; Ghatan, Andrew C
2017-08-01
The incidence of osteoarthritis in the general population is low, but it can be seen in manual laborers, throwing athletes, and people dependent on crutches and wheelchairs. Patients often complain of pain at the terminal extents of motion, and imaging shows osteophyte formation at the tips of the coronoid and olecranon processes as well as thickening of the bone between the coronoid and the olecranon fossae. Recent advances in arthroscopic instrumentation and techniques have led to a growing interest in the arthroscopic treatment of elbow osteoarthritis. This article provides a review of basic arthroscopic elbow anatomy and the most common procedures, including diagnostic arthroscopy, loose body removal, and arthroscopic osteocapsular and ulnohumeral arthroplasty. As techniques advance, there might be interest in further procedures including arthroscopic-assisted interpositional arthroplasty. Although complications such as persistent drainage and nerve injury are frequently mentioned with elbow arthroscopy, the actual incidence of such complications remains low. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Bailey, Ryan; Kaskutas, Vicki; Fox, Ida; Baum, Carolyn M; Mackinnon, Susan E
2009-11-01
To explore the relationship between upper extremity nerve damage and activity participation, pain, depression, and perceived quality of life. A total of 49 patients with upper extremity nerve damage completed standardized measures of activity participation, pain, depression, and quality of life. We analyzed scores for all subjects and for 2 diagnostic groups: patients with compressive neuropathy and patients with nerve injury (laceration, tumor, and brachial plexus injury), and explored predictors of overall quality of life. Participants had given up 21% of their previous daily activities; greater activity loss was reported in patients with nerve injury. Pain was moderate and 39% had signs of clinical depression. Physical and psychological quality of life ratings were below the norms. Activity loss was strongly associated with higher levels of depression and lower physical and psychological quality of life. Higher depression scores correlated strongly with lower overall quality of life. Greater pain correlated moderately with higher depression scores and weakly with quality of life; no statistical relationship was found between pain and physical quality of life. Activity participation and depression predicted 61% of the variance in overall quality of life in patients with nerve damage. The results of this study suggest that hand surgeons and therapists caring for patients with nerve compression and nerve injury should discuss strategies to improve activity participation, and decrease pain and depression, to improve overall effect on quality of life throughout the recovery process. Depression screening and referral when indicated should be included in the overall treatment plan for patients with upper extremity nerve damage. Prognostic IV.
Giannessi, Elisabetta; Coli, Alessandra; Stornelli, Maria Rita; Miragliotta, Vincenzo; Pirone, Andrea; Lenzi, Carla; Burchielli, Silvia; Vozzi, Giovanni; De Maria, Carmelo; Giorgetti, Margherita
2014-11-01
The aim of this study was to investigate the ability of suturable platelet-rich plasma (PRP) membrane to promote peripheral nerve regeneration after neurotmesis and neurorraphy. A total of 36 rats were used: 32 animals underwent surgery and were split in two groups. An interim sacrifice was performed at 6 weeks postsurgery and final sacrifice at 12 weeks; four animals did not sustain nerve injury and served as control. Clinical, electromyographic (EMG), gross, and histological changes were assessed. The EMG signal was evaluated for its amplitude and frequency spectrum. Number of regenerating fibers, their diameter, and myelin thickness were histologically analyzed. Both EMG parameters showed a significant (p < 0.05) effect of treatment at 6 and 12 weeks postsurgery. At 6 weeks, the fiber density was statistically different between treated and untreated animals with a higher observed density in treated nerves. No difference in fiber density was observed at 12 weeks postsurgery. The distribution of fiber diameters showed an effect at 12 weeks when only the sections of the nerves sutured with PRP showed fibers with diameters greater than 6 µm. Our data show that the application of a PRP fibrin membrane around the neurorraphy improves the nerve regeneration process in a rat sciatic nerve model. The use of PRP as a suturable membrane could perform an action not only as a source of bioactive proteins but also as a nerve guide to hold the scar reaction and thus improve axonal regeneration. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Buchaim, Rogerio Leone; Andreo, Jesus Carlos; Barraviera, Benedito; Ferreira Junior, Rui Seabra; Buchaim, Daniela Vieira; Rosa Junior, Geraldo Marco; de Oliveira, Alexandre Leite Rodrigues; de Castro Rodrigues, Antonio
2015-04-01
The purpose of this study was to assess whether the adhesive permits the collateral repair of axons originating from a vagus nerve to the interior of a sural nerve graft, and whether low-level laser therapy (LLLT) assists in the regeneration process. Study sample consisted of 32 rats randomly separated into three groups: Control Group (CG; n=8), from which the intact sural nerve was collected; Experimental Group (EG; n=12), in which one of the ends of the sural nerve graft was coapted to the vagus nerve using the fibrin glue; and Experimental Group Laser (EGL; n=12), in which the animals underwent the same procedures as those in EG with the addition of LLLT. Ten weeks after surgery, the animals were euthanized. Morphological analysis by means of optical and electron microscopy, and morphometry of the regenerated fibers were employed to evaluate the results. Collateral regeneration of axons was observed from the vagus nerve to the interior of the autologous graft in EG and EGL, and in CG all dimensions measured were greater and presented a significant difference in relation to EG and EGL, except for the area and thickness of the myelin sheath, that showed significant difference only in relation to the EG. The present study demonstrated that the fibrin glue makes axonal regeneration feasible and is an efficient method to recover injured peripheral nerves, and the use of low-level laser therapy enhances nerve regeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.
Generation and Long-term Maintenance of Nerve-free Hydra.
Tran, Cassidy M; Fu, Sharon; Rowe, Trevor; Collins, Eva-Maria S
2017-07-07
The interstitial cell lineage of Hydra includes multipotent stem cells, and their derivatives: gland cells, nematocytes, germ cells, and nerve cells. The interstitial cells can be eliminated through two consecutive treatments with colchicine, a plant-derived toxin that kills dividing cells, thus erasing the potential for renewal of the differentiated cells that are derived from the interstitial stem cells. This allows for the generation of Hydra that lack nerve cells. A nerve-free polyp cannot open its mouth to feed, egest, or regulate osmotic pressure. Such animals, however, can survive and be cultured indefinitely in the laboratory if regularly force-fed and burped. The lack of nerve cells allows for studies of the role of the nervous system in regulating animal behavior and regeneration. Previously published protocols for nerve-free Hydra maintenance involve outdated techniques such as mouth-pipetting with hand-pulled micropipette tips to feed and clean the Hydra. Here, an improved protocol for maintenance of nerve-free Hydra is introduced. Fine-tipped forceps are used to force open the mouth and insert freshly killed Artemia. Following force-feeding, the body cavity of the animal is flushed with fresh medium using a syringe and hypodermic needle to remove undigested material, referred to here as "burping". This new method of force-feeding and burping nerve-free Hydra through the use of forceps and syringes eliminates the need for mouth-pipetting using hand-pulled micropipette tips. It thus makes the process safer and significantly more time efficient. To ensure that the nerve cells in the hypostome have been eliminated, immunohistochemistry using anti-tyrosine-tubulin is conducted.
Recent Advances in the Development of Chromophore-Based Chemosensors for Nerve Agents and Phosgene.
Chen, Liyan; Wu, Di; Yoon, Juyoung
2018-01-26
The extreme toxicity and ready accessibility of nerve agents and phosgene has caused an increase in the demand to develop effective systems for the detection of these substances. Among the traditional platforms utilized for this purpose, chemosensors including surface acoustic wave (SAW) sensors, enzymes, carbon nanotubes, nanoparticles, and chromophore based sensors have attracted increasing attention. In this review, we describe in a comprehensive manner recent progress that has been made on the development of chromophore-based chemosensors for detecting nerve agents (mimic) and phosgene. This review comprises two sections focusing on studies of the development of chemosensors for nerve agents (mimic) and phosgene. In each of the sections, the discussion follows a format which concentrates on different reaction sites/mechanisms involved in the sensing processes. Finally, chemosensors uncovered in these efforts are compared with those based on other sensing methods and challenges facing the design of more effective chemosensors for the detection of nerve agents (mimic) and phosgene are discussed.
Endodontic-related facial paresthesia: systematic review.
Alves, Flávio R; Coutinho, Mariana S; Gonçalves, Lucio S
2014-01-01
Paresthesia is a neurosensitivity disorder caused by injury to the neural tissue. It is characterized by a burning or twinging sensation or by partial loss of local sensitivity. Paresthesia related to endodontic treatment can occur because of extravasation of filling material or the intracanal dressing, as a consequence of periapical surgery or because of periapical infection. A literature review of paresthesia in endodontics was undertaken, with a view to identifying and discussing the most commonly affected nerves, the diagnostic process and the treatment options. Among reported cases, the most commonly affected nerves were those passing through the jaw: the inferior alveolar nerve, the mental nerve and the lingual nerve. To diagnose paresthesia, the endodontist must carry out a complete medical history, panoramic and periapical radiography, and (in some cases) computed tomography, as well as mechanoceptive and nociceptive tests. To date, no specific treatment for endodontic-related paresthesia has been described in the literature, since the problem may be related to a variety of causes.
Stenberg, Lena; Stößel, Maria; Ronchi, Giulia; Geuna, Stefano; Yin, Yaobin; Mommert, Susanne; Mårtensson, Lisa; Metzen, Jennifer; Grothe, Claudia; Dahlin, Lars B; Haastert-Talini, Kirsten
2017-07-18
Delayed reconstruction of transection or laceration injuries of peripheral nerves is inflicted by a reduced regeneration capacity. Diabetic conditions, more frequently encountered in clinical practice, are known to further impair regeneration in peripheral nerves. Chitosan nerve guides (CNGs) have recently been introduced as a new generation of medical devices for immediate peripheral nerve reconstruction. Here, CNGs were used for 45 days delayed reconstruction of critical length 15 mm rat sciatic nerve defects in either healthy Wistar rats or diabetic Goto-Kakizaki rats; the latter resembling type 2 diabetes. In short and long-term investigations, we comprehensively analyzed the performance of one-chambered hollow CNGs (hCNGs) and two-chambered CNGs (CFeCNGs) in which a chitosan film has been longitudinally introduced. Additionally, we investigated in vitro the immunomodulatory effect provided by the chitosan film. Both types of nerve guides, i.e. hCNGs and CFeCNGs, enabled moderate morphological and functional nerve regeneration after reconstruction that was delayed for 45 days. These positive findings were detectable in generally healthy as well as in diabetic Goto-Kakizaki rats (for the latter only in short-term studies). The regenerative outcome did not reach the degree as recently demonstrated after immediate reconstruction using hCNGs and CFeCNGs. CFeCNG-treatment, however, enabled tissue regrowth in all animals (hCNGs: only in 80% of animals). CFeCNGs did further support with an increased vascularization of the regenerated tissue and an enhanced regrowth of motor axons. One mechanism by which the CFeCNGs potentially support successful regeneration is an immunomodulatory effect induced by the chitosan film itself. Our in vitro results suggest that the pro-regenerative effect of chitosan is related to the differentiation of chitosan-adherent monocytes into pro-healing M2 macrophages. No considerable differences appear for the delayed nerve regeneration process related to healthy and diabetic conditions. Currently available chitosan nerve grafts do not support delayed nerve regeneration to the same extent as they do after immediate nerve reconstruction. The immunomodulatory characteristics of the biomaterial may, however, be crucial for their regeneration supportive effects.
Graham, James B; Muir, David
2016-01-01
The success of peripheral nerve regeneration is highly dependent on the regrowth of axons within the endoneurial basal lamina tubes that promote target-oriented pathfinding and appropriate reinnervation. Restoration of nerve continuity at this structural level after nerve transection injury by direct repair and nerve grafting remains a major surgical challenge. Recently, biological approaches that alter the balance of growth inhibitors and promoters in nerve have shown promise to improve appropriate axonal regeneration and recovery of peripheral nerve function. Chondroitin sulfate proteoglycans (CSPGs) are known inhibitors of axonal growth. This growth inhibition is mainly associated with a CSPG's glycosaminoglycan chains. Enzymatic degradation of these chains with chondroitinase eliminates this inhibitory activity and, when applied in vivo, can improve the outcome of nerve repair. To date, these encouraging findings were obtained with chondroitinase ABC (a pan-specific chondroitinase). The aim of this study was to examine the distribution of CSPG subtypes in rodent, rabbit, and human peripheral nerve and to test more selective biological enzymatic approaches to improve appropriate axonal growth within the endoneurium and minimize aberrant growth. Here we provide evidence that the endoneurium, but not the surrounding epineurium, is rich in CSPGs that have glycosaminoglycan chains readily degraded by chondroitinase C. Biochemical studies indicate that chondroitinase C has degradation specificity for 6-sulfated glycosaminoglycans found in peripheral nerve. We found that chondroitinase C degrades and inactivates inhibitory CSPGs within the endoneurium but not so much in the surrounding nerve compartments. Cryoculture bioassays (neurons grown on tissue sections) show that chondroitinase C selectively and significantly enhanced neuritic growth associated with the endoneurial basal laminae without changing growth-inhibiting properties of the surrounding epineurium. Interestingly, chondroitinase ABC treatment increased greatly the growth-promoting properties of the epineurial tissue whereas chondroitinase C had little effect. Our evidence indicates that chondroitinase C effectively degrades and inactivates inhibitory CSPGs present in the endoneurial Schwann cell basal lamina and does so more specifically than chondroitinase ABC. These findings are discussed in the context of improving nerve repair and regeneration and the growth-promoting properties of processed nerve allografts.
Samuelsson, Kristin; Osman, Ayman A. M.; Angeria, Maria; Risling, Mårten; Mohseni, Simin; Press, Rayomand
2016-01-01
Twenty-five percent of polyneuropathies are idiopathic. Microangiopathy has been suggested to be a possible pathogenic cause of chronic idiopathic axonal polyneuropathy (CIAP). Dysfunction of the autophagy pathway has been implicated as a marker of neurodegeneration in the central nervous system, but the autophagy process is not explored in the peripheral nervous system. In the current study, we examined the presence of microangiopathy and autophagy-related structures in sural nerve biopsies of 10 patients with CIAP, 11 controls with inflammatory neuropathy and 10 controls without sensory polyneuropathy. We did not find any significant difference in endoneurial microangiopathic markers in patients with CIAP compared to normal controls, though we did find a correlation between basal lamina area thickness and age. Unexpectedly, we found a significantly larger basal lamina area thickness in patients with vasculitic neuropathy. Furthermore, we found a significantly higher density of endoneurial autophagy-related structures, particularly in patients with CIAP but also in patients with inflammatory neuropathy, compared to normal controls. It is unclear if the alteration in the autophagy pathway is a consequence or a cause of the neuropathy. Our results do not support the hypothesis that CIAP is primarily caused by a microangiopathic process in endoneurial blood vessels in peripheral nerves. The significantly higher density of autophagy structures in sural nerves obtained from patients with CIAP and inflammatory neuropathy vs. controls indicates the involvement of this pathway in neuropathy, particularly in CIAP, since the increase in density of autophagy-related structures was more pronounced in patients with CIAP than those with inflammatory neuropathy. To our knowledge this is the first report investigating signs of autophagy process in peripheral nerves in patients with CIAP and inflammatory neuropathy. PMID:27662650
Big Data and Machine Learning in Plastic Surgery: A New Frontier in Surgical Innovation.
Kanevsky, Jonathan; Corban, Jason; Gaster, Richard; Kanevsky, Ari; Lin, Samuel; Gilardino, Mirko
2016-05-01
Medical decision-making is increasingly based on quantifiable data. From the moment patients come into contact with the health care system, their entire medical history is recorded electronically. Whether a patient is in the operating room or on the hospital ward, technological advancement has facilitated the expedient and reliable measurement of clinically relevant health metrics, all in an effort to guide care and ensure the best possible clinical outcomes. However, as the volume and complexity of biomedical data grow, it becomes challenging to effectively process "big data" using conventional techniques. Physicians and scientists must be prepared to look beyond classic methods of data processing to extract clinically relevant information. The purpose of this article is to introduce the modern plastic surgeon to machine learning and computational interpretation of large data sets. What is machine learning? Machine learning, a subfield of artificial intelligence, can address clinically relevant problems in several domains of plastic surgery, including burn surgery; microsurgery; and craniofacial, peripheral nerve, and aesthetic surgery. This article provides a brief introduction to current research and suggests future projects that will allow plastic surgeons to explore this new frontier of surgical science.
Rapid prototyping of flexible intrafascicular electrode arrays by picosecond laser structuring
NASA Astrophysics Data System (ADS)
Mueller, Matthias; de la Oliva, Natalia; del Valle, Jaume; Delgado-Martínez, Ignacio; Navarro, Xavier; Stieglitz, Thomas
2017-12-01
Objective. Interfacing the peripheral nervous system can be performed with a large variety of electrode arrays. However, stimulating and recording a nerve while having a reasonable amount of channels limits the number of available systems. Translational research towards human clinical trial requires device safety and biocompatibility but would benefit from design flexibility in the development process to individualize probes. Approach. We selected established medical grade implant materials like precious metals and Parylene C to develop a rapid prototyping process for novel intrafascicular electrode arrays using a picosecond laser structuring. A design for a rodent animal model was developed in conjunction with an intrafascicular implantation strategy. Electrode characterization and optimization was performed first in saline solution in vitro before performance and biocompatibility were validated in sciatic nerves of rats in chronic implantation. Main results. The novel fabrication process proved to be suitable for prototyping and building intrafascicular electrode arrays. Electrochemical properties of the electrode sites were enhanced and tested for long-term stability. Chronic implantation in the sciatic nerve of rats showed good biocompatibility, selectivity and stable stimulation thresholds. Significance. Established medical grade materials can be used for intrafascicular nerve electrode arrays when laser structuring defines structure size in the micro-scale. Design flexibility reduces re-design cycle time and material certificates are beneficial support for safety studies on the way to clinical trials.
Renno, Waleed M; Benov, Ludmil; Khan, Khalid M
2017-11-01
OBJECTIVE This study examined the capacity of the major polyphenolic green tea extract (-)-epigallocatechin-3-gallate (EGCG) to suppress oxidative stress and stimulate the recovery and prompt the regeneration of sciatic nerve after crush injury. METHODS Adult male Wistar rats were randomly assigned to one of 4 groups: 1) Naïve, 2) Sham (sham injury, surgical control group), 3) Crush (sciatic nerve crush injury treated with saline), and 4) Crush+EGCG (sciatic nerve crush injury treated with intraperitoneally administered EGCG, 50 mg/kg). All animals were tested for motor and sensory neurobehavioral parameters throughout the study. Sciatic nerve and spinal cord tissues were harvested and processed for morphometric and stereological analysis. For the biochemical assays, the time points were Day 1, Day 7, Day 14, and Day 28 after nerve injury. RESULTS After sciatic nerve crush injury, the EGCG-treated animals (Crush+EGCG group) showed significantly better recovery of foot position and toe spread and 50% greater improvement in motor recovery than the saline-treated animals (Crush group). The Crush+EGCG group displayed an early hopping response at the beginning of the 3rd week postinjury. Animals in the Crush+EGCG group also showed a significant reduction in mechanical allodynia and hyperalgesia latencies and significant improvement in recovery from nociception deficits in both heat withdrawal and tail flick withdrawal latencies compared with the Crush group. In both the Crush+EGCG and Crush groups, quantitative evaluation revealed significant morphological evidence of neuroregeneration according to the following parameters: mean cross-sectional area of axons, myelin thickness in the sciatic nerve (from Week 4 to Week 8), increase of myelin basic protein concentration and gene expression in both the injured sciatic nerve and spinal cord, and fiber diameter to axon diameter ratio and myelin thickness to axon diameter ratio at Week 2 after sciatic nerve injury. However, the axon area remained much smaller in both the Crush+EGCG and Crush groups compared with the Sham and Naïve groups. The number of axons per unit area was significantly decreased in the Crush+EGCG and Crush groups compared with controls. Sciatic nerve injury produced generalized oxidative stress manifested as a significant increase of isoprostanes in the urine and decrease of the total antioxidant capacity (TAC) of the blood from Day 7 until Day 14. EGCG-treated rats showed significantly less increase of isoprostanes than saline-treated animals and also showed full recovery of TAC levels by Day 14 after nerve injury. In spinal cord tissue analysis, EGCG-treated animals showed induced glutathione reductase and suppressed induction of heme oxygenase 1 gene expression compared with nontreated animals. CONCLUSIONS EGCG treatment suppressed the crush-induced production of isoprostanes and stimulated the recovery of the TAC and was associated with remarkable alleviation of motor and sensory impairment and significant histomorphological evidence of neuronal regeneration following sciatic nerve crush injury in rats. The findings of this study suggest that EGCG can be used as an adjunctive therapeutic remedy for nerve injury. However, further investigations are needed to establish the antioxidative mechanism involved in the regenerative process after nerve injury. Only upregulation of glutathione reductase supports the idea that EGCG is acting indirectly via induction of enzymes or transcription factors.
Current Status and Future Directions of Botulinum Neurotoxins for Targeting Pain Processing
Pellett, Sabine; Yaksh, Tony L.; Ramachandran, Roshni
2015-01-01
Current evidence suggests that botulinum neurotoxins (BoNTs) A1 and B1, given locally into peripheral tissues such as skin, muscles, and joints, alter nociceptive processing otherwise initiated by inflammation or nerve injury in animal models and humans. Recent data indicate that such locally delivered BoNTs exert not only local action on sensory afferent terminals but undergo transport to central afferent cell bodies (dorsal root ganglia) and spinal dorsal horn terminals, where they cleave SNAREs and block transmitter release. Increasing evidence supports the possibility of a trans-synaptic movement to alter postsynaptic function in neuronal and possibly non-neuronal (glial) cells. The vast majority of these studies have been conducted on BoNT/A1 and BoNT/B1, the only two pharmaceutically developed variants. However, now over 40 different subtypes of botulinum neurotoxins (BoNTs) have been identified. By combining our existing and rapidly growing understanding of BoNT/A1 and /B1 in altering nociceptive processing with explorations of the specific characteristics of the various toxins from this family, we may be able to discover or design novel, effective, and long-lasting pain therapeutics. This review will focus on our current understanding of the molecular mechanisms whereby BoNTs alter pain processing, and future directions in the development of these agents as pain therapeutics. PMID:26556371
ARM-based visual processing system for prosthetic vision.
Matteucci, Paul B; Byrnes-Preston, Philip; Chen, Spencer C; Lovell, Nigel H; Suaning, Gregg J
2011-01-01
A growing number of prosthetic devices have been shown to provide visual perception to the profoundly blind through electrical neural stimulation. These first-generation devices offer promising outcomes to those affected by degenerative disorders such as retinitis pigmentosa. Although prosthetic approaches vary in their placement of the stimulating array (visual cortex, optic-nerve, epi-retinal surface, sub-retinal surface, supra-choroidal space, etc.), most of the solutions incorporate an externally-worn device to acquire and process video to provide the implant with instructions on how to deliver electrical stimulation to the patient, in order to elicit phosphenized vision. With the significant increase in availability and performance of low power-consumption smart phone and personal device processors, the authors investigated the use of a commercially available ARM (Advanced RISC Machine) device as an externally-worn processing unit for a prosthetic neural stimulator for the retina. A 400 MHz Samsung S3C2440A ARM920T single-board computer was programmed to extract 98 values from a 1.3 Megapixel OV9650 CMOS camera using impulse, regional averaging and Gaussian sampling algorithms. Power consumption and speed of video processing were compared to results obtained to similar reported devices. The results show that by using code optimization, the system is capable of driving a 98 channel implantable device for the restoration of visual percepts to the blind.
Ghasemi-Mobarakeh, Laleh; Prabhakaran, Molamma P; Morshed, Mohammad; Nasr-Esfahani, Mohammad Hossein; Baharvand, Hossein; Kiani, Sahar; Al-Deyab, Salem S; Ramakrishna, Seeram
2011-04-01
Among the numerous attempts to integrate tissue engineering concepts into strategies to repair nearly all parts of the body, neuronal repair stands out. This is partially due to the complexity of the nervous anatomical system, its functioning and the inefficiency of conventional repair approaches, which are based on single components of either biomaterials or cells alone. Electrical stimulation has been shown to enhance the nerve regeneration process and this consequently makes the use of electrically conductive polymers very attractive for the construction of scaffolds for nerve tissue engineering. In this review, by taking into consideration the electrical properties of nerve cells and the effect of electrical stimulation on nerve cells, we discuss the most commonly utilized conductive polymers, polypyrrole (PPy) and polyaniline (PANI), along with their design and modifications, thus making them suitable scaffolds for nerve tissue engineering. Other electrospun, composite, conductive scaffolds, such as PANI/gelatin and PPy/poly(ε-caprolactone), with or without electrical stimulation, are also discussed. Different procedures of electrical stimulation which have been used in tissue engineering, with examples on their specific applications in tissue engineering, are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.
Nerve injuries in orthopaedics: is there anything more we need to tell our patients?
Ek, Eugene T; Yu, Emma P; Chan, Jason T; Love, Bruce R
2005-03-01
Perioperative nerve injuries are uncommon in most elective orthopaedic operations. However, despite the low incidence, patients tend to be most unforgiving when this complication occurs. The present study aims to determine the adequacy of the consent process, and seeks to identify deficiencies. All elective patients who experienced a perioperative nerve palsy between 1996 and 2003 were retrospectively identified. A telephone questionnaire assessed recall of the consent and risks discussed. Patients were asked what they would have liked to have been advised, and whether this would affect their decision for operation. Twenty-four of the 32 patients were contacted. From the questionnaire, 66.7% recalled discussing the risks of the operation. 66.7% would have liked to have discussed, in particular, risk of nerve palsy at time of consent. However, 83.3% of patients, knowing fully the risk of nerve injury, would still have proceeded with the operation. Of the 24 cases, only three had documentation of the risks discussed during consent. The need to adequately provide informed consent for nerve dysfunction is present. The present study demonstrates a dilemma between the provision of information and the creation of fear in the minds of recipients of surgery.
Gonçalves, C; Ribeiro, J; Pereira, T; Luís, A L; Mauricio, A C; Santos, J D; Lopes, M A
2016-08-01
Peripheral nerve regeneration is a serious clinical problem. Presently, there are several nerve tube-guides available in the market, however with some limitations. The goal of this work was the development of a biomaterial with high electrical conductivity to produce tube-guides for nerve regeneration after neurotmesis injuries whenrver an end-to-end suture without tension is not possible. A matrix of poly(vinyl alcohol) (PVA) was used loaded with the following electrical conductive materials: COOH-functionalized multiwall carbon nanotubes (MWCNTs), poly(pyrrole) (PPy), magnesium chloride (MgCl2 ), and silver nitrate (AgNO3 ). The tube-guide production was carried out by a freezing/thawing process (physical crosslinking) with a final annealing treatment. After producing the tube-guide for nerve regeneration, the physicochemical characterization was performed. The most interesting results were achieved by loading PVA with 0.05% of PPy or COOH- functionalized CNTs. These tubes combined the electrical conductivity of carbon nanotubes (CNTs) and PPy with the biocompatibility of PVA matrix, with potential clinical application for nerve regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1981-1987, 2016. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Shin, Jun Geun; Hwang, Ho Sik; Eom, Tae Joong; Lee, Byeong Ha
2017-01-01
We have employed Fourier-domain optical coherence tomography (FD-OCT) to achieve corneal nerve imaging, which could be useful in surgical planning and refractive surgery. Because the three-dimensional (3-D) images of the corneal nerves were acquired in vivo, unintentional movement of the subject during the measurement led to imaging artifacts. These artifacts were compensated for with a series of signal processing techniques, namely realigning A-scan images to flatten the boundary and cross-correlating adjacent B-scan images. To overcome the undesirably large signal from scattering at the corneal surface and iris, volume rendering and maximum intensity projections were performed with only the data taken in the stromal region of the cornea, which is located between 200 and 500 μm from the corneal surface. The 3-D volume imaging of a 10×10 mm2 area took 9.8 s, which is slightly shorter than the normal tear breakup time. This allowed us to image the branched and threadlike corneal nerve bundles within the human eye. The experimental results show that FD-OCT systems have the potential to be useful in clinical investigations of corneal nerves and by minimizing nerve injury during clinical or surgical procedures.
Hsu, Hsiu-Yun; Kuo, Li-Chieh; Kuan, Ta-Shen; Yang, Hsiu-Ching; Su, Fong-Chin; Chiu, Haw-Yen; Shieh, Shyh-Jou
Case-controlled cohort study. Sensory function is difficult to observe during nerve regeneration processes. Traditional sensory tests are limited to identifying the level of functioning hand sensation for sensory stimulus is given passively to the cutaneous surface of the hand. To examine the outcome changes in the manual tactile test (MTT), Semmes-Weinstein monofilament (SWM) and 2-point discrimination (2PD) tests for patients with nerve repair and to investigate the concurrent validity of MTT by comparing it with the results of traditional tests. Fifteen patients with nerve injury of the upper limbs were recruited, along with 15 matched healthy controls. The MTT, SWM, and 2PD tests were used to examine the sensory status of the subjects. Three subtests (barognosis, roughness differentiation, and stereognosis) in MTT showed that the patients improved with time. A moderate and mild correlation was found between the MTT and 2PD results and between the barognosis and SWM results. The MTT provides practical and functional perspectives on detecting nerve progression during the courses of degeneration and regeneration. IV. Copyright © 2016 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Identification of the effects of peripheral nerves injury on the muscle control - A review
NASA Astrophysics Data System (ADS)
Cabaj, Anna; Zmyslowski, Wojciech
2011-01-01
Impairment of motor function following peripheral nerve injury is a serious clinical problem. Generally nerve injury leads to erroneous control of muscle activity that results in gait and voluntary movement abnormalities followed by muscle atrophy. This article presents a review of studies on the effects of peripheral nerve injury on the motor system performed on animal models. We focused our attention on the results that are fundamental for better understanding of the degenerative and regenerative processes induced by nerve injury as well as of the mechanisms of structural changes in neuronal networks controlling movement. Quoted results are also important for clinical applications because they allow to develop new diagnostic and therapeutic techniques that can be used after nerve injury inducing motor deficits. However, till now no efficient therapy inducing satisfactory recovery was found. There is still a need to continue an advanced basic research directed to develop effective therapies. Thus the aim of this review is to compare the results of recent studies performed on various animal models in order to propose new methods for identification of mechanisms responsible for muscle deficits and propose targets for new pharmacological therapies.
Necrotizing sialometaplasia of the parotid gland associated with facial nerve paralysis.
Haen, P; Ben Slama, L; Goudot, P; Schouman, T
2017-02-01
Necrotizing sialometaplasia is a benign inflammatory lesion involving most frequently the minor salivary gland of the hard palate. Involvement of the parotid gland is rare, involvement of the parotid gland associated with facial palsy is exceptional. A 56-year-old male patient with Marfan syndrome presented with swelling and inflammation of the left parotid gland associated with progressively complete facial nerve paralysis. CT scan and MRI showed a parotid collection with hyper signal of the nearest tissues associated with erosion of the styloid process. A malignant tumor was suspected. The histological examination of a biopsy showed a lobulocentric process with necrosis, squamous metaplasia, and inflammation. The immunohistochemical examination supported a final diagnosis of necrotizing sialometaplasia. Necrotizing sialometaplasia of the parotid gland associated with facial nerve paralysis presents like a malignant neoplasm, both clinically and histologically. Only advanced immunohistochemical examination can really confirm the diagnosis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Optic nerve gliomas: role of Ki-67 staining of tumour and margins in predicting long-term outcome.
Yeung, Sonia N; White, Valerie A; Nimmo, Michael; Rootman, Jack
2011-08-01
Although optic nerve gliomas (ONGs) are generally slow-growing with a good prognosis, factors for identifying cases that may pursue a more aggressive course are not well established. The authors investigated cell proliferation markers for prognostic significance in a series of resected ONGs. Twelve cases of resected ONG were identified out of a total of 38 examined at the authors' institution between 1981 and 2008. Clinical data were reviewed. Ki-67 and p53 immunohistochemical staining was performed on the tumour mass and the proximal resection margin. All of the tumours were low-grade pilocytic astrocytomas. Six patients were suspected to have histologically positive proximal resection margins. Ki-67 labelling indices (LI) ranged from 0.3% to 5.9% (mean 2.4%) for the tumour mass and from 0 to 2.1% (mean 0.9%) for the proximal resection margins. One patient had evidence of progression 25 months after subtotal surgical resection. The Ki-67 LI of the proximal resection margin in this case was similar to the main tumour value. The other six patients with histologically negative proximal resection margins all had lower relative proliferation indices at the resection margin when compared with the tumour mass and are currently stable with no evidence of progression. Routine histological examination of resection margins may be difficult to interpret in the setting of reactive gliosis. A resection margin with a Ki-67 LI similar to the tumour bulk value may have an adjunctive role in identifying cases with the potential for growth thereby facilitating the decision-making process for future management and surveillance.
Identification of greater occipital nerve landmarks for the treatment of occipital neuralgia.
Loukas, M; El-Sedfy, A; Tubbs, R S; Louis, R G; Wartmann, C H T; Curry, B; Jordan, R
2006-11-01
Important structures involved in the pathogenesis of occipital headache include the aponeurotic attachments of the trapezius and semispinalis capitis muscles to the occipital bone. The greater occipital nerve (GON) can become entrapped as it passes through these aponeuroses, causing symptoms of occipital neuralgia. The aim of this study was to identify topographic landmarks for accurate identification of GON, which might facilitate its anaesthetic blockade. The course and distribution of GON and its relation to the aponeuroses of the trapezius and semispinalis capitis were examined in 100 formalin-fixed adult cadavers. In addition, the relative position of the nerve on a horizontal line between the external occipital protuberance and the mastoid process, as well as between the mastoid processes was measured. The greater occipital nerve was found bilaterally in all specimens. It was located at a mean distance of 3.8 cm (range 1.5-7.5 cm) lateral to a vertical line through the external occipital protuberance and the spinous processes of the cervical vertebrae 2-7. It was also located approximately 41% of the distance along the intermastoid line (medial to a mastoid process) and 22% of the distance between the external occipital protuberance and the mastoid process. The location of GON for anaesthesia or any other neurosurgical procedure has been established as one thumb's breadth lateral to the external occipital protuberance (2 cm laterally) and approximately at the base of the thumb nail (2 cm inferior). This is the first study proposing the use of landmarks in relation to anthropometric measurements. On the basis of these observations we propose a target zone for local anaesthetic injection that is based on easily identifiable landmarks and suggest that injection at this target point could be of benefit in the relief of occipital neuralgia.
Yamamoto, Michiro; Okui, Nobuyuki; Tatebe, Masahiro; Shinohara, Takaaki; Hirata, Hitoshi
2011-01-01
The regenerative process of the perineurium and nerve function were examined using an in vivo model of perineurium resection in the rat sciatic nerve. Our hypothesis is that the regenerative process of the perineurium can be demonstrated by immunolabeling for tenascin-C and alpha smooth muscle actin after microsurgical resection of the perineurium in vivo. A total of 38 Lewis rats were used. Eight-week-old animals were assigned to one of two groups: the epi-perineurium removal group or the sham group. Under operative microscopy, the sciatic nerve was dissected from surrounding tissues at the thigh level from the ischial tuberosity to the fossa poplitea. The epi-perineurium was carefully removed by cutting circumferentially and stripping distally for 15 mm. For CatWalk® dynamic gait analysis, only right sciatic nerves underwent surgery; the left sciatic nerves were left intact. For pathological and electrophysiological tests, both the right and left sciatic nerves underwent surgery. Analysis of data was performed at each time interval with a two-group t-test. P < 0.05 was considered statistically significant. After resection of a 15-mm section of the epi-perineurium, immediate endoneurial swelling occurred in the outer portion and spread into the central portion. Although demyelination and axonal degeneration were found in the swollen area, remyelination and recovery of electrophysiological function were seen after regeneration of the perineurium. An immunohistological and electron microscopic study revealed that the perineurium regenerated via fusion of the residual interfascicular perineurium and endoneurial fibroblast-like cells of mesenchymal origin. CatWalk gait analysis showed not only motor paresis but also neuropathic pain during the early phases of this model. PMID:21265831
Autonomic regulation. i-NANC/e-NANC.
Widdicombe, J G
1998-11-01
The excitatory and inhibitory nonadrenergic/noncholinergic (e-NANC, i-NANC) systems have been extensively studied. The terms excitatory and inhibitory apply to airway smooth muscle, but the neurotransmitters also act on other targets-blood vessels, glands, the epithelium-where individual actions may be the opposite. Thus, the nomenclature is unsatisfactory. Of the dozen or more putative NANC transmitters, criteria to establish their roles have been met only for vasoactive intestinal polypeptide (VIP), nitric oxide (NO), and substance P/neurokinin A (SP/NKA). VIP and NO co-localize in vagal motor nerves, but they are also found in sympathetic and sensory nerves. In general they have similar actions on target tissues, and their relative importance may vary with species. SP/NKA, released from sensory nerves, is thought to mediate neurogenic inflammation, a process that may include airway smooth muscle contraction, at least in rodents. The evidence for neurogenic inflammation in humans is weak. On the motor side, and also possibly on the sensory, different nerves seem to contain different selections of neurotransmitters, but it is not known if there are different motor controls for these nerves. Cotransmission presents a major conceptual and experimental problem, since the two or more transmitters may give opposite instructions to the target tissue. Inevitably most of the studies on the NANC systems are on isolated rodent tissues, and although quantitative, they indicate little of what happens in vivo, and certainly not in humans. The cocktail of mediators that must be released from nerves and associated cells in airway tissues during pathophysiologic processes may refresh physiologists, but little is known about the concentrations of the ingredients or about the strength of their actions and their interactions on different target tissues in the mucosa.
ERIC Educational Resources Information Center
Reyes, Fredy D.; Mozzachiodi, Riccardo; Baxter, Douglas A.; Byrne, John H.
2005-01-01
In a recently developed in vitro analog of appetitive classical conditioning of feeding in "Aplysia," the unconditioned stimulus (US) was electrical stimulation of the esophageal nerve (En). This nerve is rich in dopamine (DA)-containing processes, which suggests that DA mediates reinforcement during appetitive conditioning. To test this…
Unsuspected reason for sciatica in Bertolotti's syndrome.
Shibayama, M; Ito, F; Miura, Y; Nakamura, S; Ikeda, S; Fujiwara, K
2011-05-01
Patients with Bertolotti's syndrome have characteristic lumbosacral anomalies and often have severe sciatica. We describe a patient with this syndrome in whom standard decompression of the affected nerve root failed, but endoscopic lumbosacral extraforaminal decompression relieved the symptoms. We suggest that the intractable sciatica in this syndrome could arise from impingement of the nerve root extraforaminally by compression caused by the enlarged transverse process.
Anan, Mitsuhiro; Nagai, Yasuyuki; Fudaba, Hirotaka; Kubo, Takeshi; Ishii, Keisuke; Murata, Kumi; Hisamitsu, Yoshinori; Kawano, Yoshihisa; Hori, Yuzo; Nagatomi, Hirofumi; Abe, Tatsuya; Fujiki, Minoru
2014-08-01
Third nerve palsy (TNP) caused by a posterior communicating artery (PCoA) aneurysm is a well-known symptom of the condition, but the characteristics of unruptured PCoA aneurysm-associated third nerve palsy have not been fully evaluated. The aim of this study was to analyze the anatomical features of PCoA aneurysms that caused TNP from the viewpoint of the relationship between the ICA and the skull base. Forty-eight unruptured PCoA aneurysms were treated surgically between January 2008 and September 2013. The characteristics of the aneurysms were evaluated. Thirteen of the 48 patients (27%) had a history of TNP. The distance between the ICA and the anterior-posterior clinoid process (ICA-APC distance) was significantly shorter in the TNP group (p<0.01), but the maximum size of the aneurysms was not (p=0.534). Relatively small unruptured PCoA aneurysms can cause third nerve palsy if the ICA runs close to the skull base. Copyright © 2014 Elsevier B.V. All rights reserved.
INCOMPLETE REPAIR OF RETINAL STRUCTURE AFTER VITRECTOMY WITH INTERNAL LIMITING MEMBRANE PEELING.
Hisatomi, Toshio; Tachibana, Takashi; Notomi, Shoji; Nakatake, Shunji; Fujiwara, Kohta; Murakami, Yusuke; Ikeda, Yasuhiro; Yoshida, Shigeo; Enaida, Hiroshi; Murata, Toshinori; Sakamoto, Taiji; Sonoda, Koh-Hei; Ishibashi, Tatsuro
2017-08-01
To examine retinal changes after vitrectomy with internal limiting membrane (ILM) peeling, we used a cynomolgus monkey model and focused on surgical damages of ILM peeling for long observational period of 3 years. Vitrectomy was performed followed by ILM peeling similar to clinical settings in humans. Ultrastructural changes of the retina were investigated by light, transmission, and scanning electron microscopy at 3 months and 3 years after ILM peeling. Ultrastructural study showed that the ILM peeled area was still clearly recognized after 3 years. The Müller cell processes covered most of the retina; however, the nerve fiber layer was partly uncovered and exposed to the vitreous space. The arcuate linear nerve fiber bundles were observed as comparable with dissociated optic nerve fiber layer appearance. Small round retinal surface defects were also observed around macula, resembling the dimple sign. Forceps-related retinal thinning was also found on the edge of ILM peeling, where we started peeling with fine forceps. The ultrastructural studies showed that most of ILM peeling area was covered with glial cells during wound healing processes. Retinal changes were found comparable with dissociated optic nerve fiber layer appearance or dimple sign, which were clinically observed with optical coherence tomography.
Sun, Hong-Hong; Wang, Dong; Zhang, Qiu-Juan; Bai, Zhi-Lan; He, Ping
2013-01-01
To investigate the diffusion characteristics of water of optic nerve and optic radiation in healthy adults and its related factors by diffusion tensor imaging (DTI) at 3T. A total of 107 healthy volunteers performed head conventional MRI and bilateral optic nerve and optic radiation DTI. The primary data of DTI was processed by post-processing software of DTI studio 2.3, obtaining fractional anisotropy value, mean diffusivity value, principal engine value, orthogonal engine value by measuring, and analyzed by the SPSS13.0 statistical software. The bilateral optic nerve and optic radiation fibers presented green color in directional encoded color (DEC) maps and presented high signal in fractional anisotropy (FA) maps. The FA value of the left optic nerve was 0.598±0.069 and the right was 0.593±0.065; the mean diffusivity (MD) value of the left optic nerve was (1.324±0.349)×10(-3)mm(2)/s and the right was (1.312±0.350)×10(-3)mm(2)/s; the principal engine value (λ‖) of the left optic nerve was (2.297±0.522)×10(-3)mm(2)/s and the right was (2.277±0.526)×10(-3)mm(2)/s; the orthogonal engine value (λ⊥) of the left optic nerve was (0.838±0.285)×10(-3)mm(2)/s and the right was (0.830±0.280)×10(-3)mm(2)/s; the FA value of the left optic radiation was 0.636±0.057 and the right was 0.628±0.056; the mean diffusivity (MD) value of the left optic radiation was (0.907±0.103)×10(-3)mm(2)/s and the right was (0.889±0.125)×10(-3)mm(2)/s; the principal eigenvalue (λ‖) of the left optic radiation was (1.655±0.210)×10(-3)mm(2)/s and the right was (1.614±0.171)×10(-3)mm(2)/s; the orthogonal enginvalue (λ⊥) of the left optic radiation was (0.531±0.103)×10(-3)mm(2)/s and the right was (0.524±0.152)×10(-3)mm(2)/s. There was no obvious difference between the FA, MD, λ‖, λ⊥ of the bilateral optic radiation and the bilateral optic nerve (P>0.05) and no obvious difference between male and female group. The FA, MD, λ‖, λ⊥ of the bilateral optic radiation and the bilateral optic nerve had no obvious correlations to the age. DTI is sensitive to the optic nerve and radiation and the relevant DTI parameters of the optic nerve and radiation are established preliminarily in this study.
Wu, Di; Murashov, Alexander K.
2013-01-01
MicroRNAs (miRNAs) are small, non-coding RNAs that function as key post-transcriptional regulators in neural development, brain function, and neurological diseases. Growing evidence indicates that miRNAs are also important mediators of nerve regeneration, however, the affected signaling mechanisms are not clearly understood. In the present study, we show that nerve injury-induced miR-431 stimulates regenerative axon growth by silencing Kremen1, an antagonist of Wnt/beta-catenin signaling. Both the gain-of-function of miR-431 and knockdown of Kremen1 significantly enhance axon outgrowth in murine dorsal root ganglion neuronal cultures. Using cross-linking with AGO-2 immunoprecipitation, and 3′-untranslated region (UTR) luciferase reporter assay we demonstrate miR-431 direct interaction on the 3′-UTR of Kremen1 mRNA. Together, our results identify miR-431 as an important regulator of axonal regeneration and a promising therapeutic target. PMID:24167472
Spinal Nerve Root Haemangioblastoma Associated with Reactive Polycythemia
Law, Eric K. C.; Lee, Ryan K. L.; Griffith, James F.; Siu, Deyond Y. W.; Ng, Ho Keung
2014-01-01
Haemangioblastomas are uncommon tumours that usually occur in the cerebellum and, less commonly, in the intramedullary spinal cord. The extramedullary spinal canal is an uncommon location for these tumours. Also haemangioblastoma at this site is not known to be associated with polycythemia. We present the clinical, imaging, and histological findings of an adult patient with extramedullary spinal haemangioblastoma and reactive polycythemia. Radiography and computed tomography (CT) revealed a medium-sized tumour that most likely arose from an extramedullary spinal nerve root. This tumour appeared to be slow growing as evidenced by the accompanying well-defined bony resorption with a sclerotic rim and mild neural foraminal widening. Magnetic resonance imaging revealed prominent flow voids consistent with tumoural hypervascularity. CT-guided biopsy was performed. Although preoperative angiographic embolisation was technically successful, excessive intraoperative tumour bleeding necessitated tumour debulking rather than complete tumour resection. Histology of the resected specimen revealed haemangioblastoma. Seven months postoperatively, the patients back pain and polycythemia have resolved. PMID:25431722
Concise Review: Tissue-Engineered Skin and Nerve Regeneration in Burn Treatment
Blais, Mathieu; Parenteau-Bareil, Rémi; Cadau, Sébastien
2013-01-01
Burns not only destroy the barrier function of the skin but also alter the perceptions of pain, temperature, and touch. Different strategies have been developed over the years to cover deep and extensive burns with the ultimate goal of regenerating the barrier function of the epidermis while recovering an acceptable aesthetic aspect. However, patients often complain about a loss of skin sensation and even cutaneous chronic pain. Cutaneous nerve regeneration can occur from the nerve endings of the wound bed, but it is often compromised by scar formation or anarchic wound healing. Restoration of pain, temperature, and touch perceptions should now be a major challenge to solve in order to improve patients' quality of life. In addition, the cutaneous nerve network has been recently highlighted to play an important role in epidermal homeostasis and may be essential at least in the early phase of wound healing through the induction of neurogenic inflammation. Although the nerve regeneration process was studied largely in the context of nerve transections, very few studies have been aimed at developing strategies to improve it in the context of cutaneous wound healing. In this concise review, we provide a description of the characteristics of and current treatments for extensive burns, including tissue-engineered skin approaches to improve cutaneous nerve regeneration, and describe prospective uses for autologous skin-derived adult stem cells to enhance recovery of the skin's sense of touch. PMID:23734060
Potassium Fluxes in Desheathed Frog Sciatic Nerve
Hurlbut, William P.
1963-01-01
Desheathed frog (R. pipiens) sciatic nerves were soaked in Na-deficient solutions, and measurements were made of their Na and K contents and of the movements of K42. When a nerve is in Ringer's solution, the Na fluxes are equal to the K fluxes, and about 75 per cent of the K influx is due to active transport. The Na content and the Na efflux are linearly related to the Na concentration of the bathing solution, while the K content and the K fluxes are not so related. When a nerve is in a solution in which 75 per cent of the NaCl has been replaced by choline chloride or sucrose, the active K influx exceeds the active Na efflux, and the K content is maintained. When a nerve is soaked in a solution that contains Li, the K42 uptake is inhibited, and the nerve loses K and gains Li. When a Li-loaded nerve recovers in a Li-free solution, K is taken up in exchange for Li. This uptake of K requires Na in the external solution. It is concluded that the active transports of K and of Na may be due to different processes, that an accumulation of K occurs only in exchange for an intracellular cation, which need not be Na, and that Na plays a specific, but unknown, role in K transport. PMID:14043000
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, J.P.; Fenton, M.R.
1991-03-15
This study was designed to assess the effects of diets high in fish and corn oil on peripheral nerve metabolism in streptozotocin (STZ) induced diabetic rats. A type I diabetic state was induced in female Sprague-Dawley rats by injection of STZ. Animals were divided into three dietary groups; normal rat chow, high corn oil diet and high fish oil diet. After 4 weeks animals were analyzed for nerve conduction velocity, bled and then sacrificed. Sciatic nerves were removed, processed and several biochemical parameters determined. Plasma zinc levels were elevated in the STZ normal chow group compared to non-diabetic controls. Bothmore » corn oil and fish oil diets tended to eliminate the rise in plasma zinc. Differences in subcellular distribution of zinc in sciatic nerves were also observed. Normal chow STZ animals displayed a 20% decrease in nerve conduction velocity compared to control. Dietary supplementation with either fish or corn oil seemed to ameliorate these effects. Biochemical analysis of Na{sup +}-K{sup +}-ATPase and protein kinase C revealed a decrease in activity in normal chow animals compared to control groups. Again, dietary intervention with either fish or corn oil seemed to return these activities back to normal. The results suggest a link between zinc metabolism and peripheral nerve metabolism which can be modified by dietary intervention.« less
Natural Occurring Silks and Their Analogues as Materials for Nerve Conduits.
Radtke, Christine
2016-10-20
Spider silk and its synthetic derivatives have a light weight in combination with good strength and elasticity. Their high cytocompatibility and low immunogenicity make them well suited for biomaterial products such as nerve conduits. Silk proteins slowly degrade enzymatically in vivo, thus allowing for an initial therapeutic effect such as in nerve scaffolding to facilitate endogenous repair processes, and then are removed. Silks are biopolymers naturally produced by many species of arthropods including spiders, caterpillars and mites. The silk fibers are secreted by the labial gland of the larvae of some orders of Holometabola (insects with pupa) or the spinnerets of spiders. The majority of studies using silks for biomedical applications use materials from silkworms or spiders, mostly of the genus Nephila clavipes . Silk is one of the most promising biomaterials with effects not only in nerve regeneration, but in a number of regenerative applications. The development of silks for human biomedical applications is of high scientific and clinical interest. Biomaterials in use for biomedical applications have to meet a number of requirements such as biocompatibility and elicitation of no more than a minor inflammatory response, biodegradability in a reasonable time and specific structural properties. Here we present the current status in the field of silk-based conduit development for nerve repair and discuss current advances with regard to potential clinical transfer of an implantable nerve conduit for enhancement of nerve regeneration.
Chernov, Andrei V.; Dolkas, Jennifer; Hoang, Khang; Angert, Mila; Srikrishna, Geetha; Vogl, Thomas; Baranovskaya, Svetlana; Strongin, Alex Y.; Shubayev, Veronica I.
2015-01-01
To shed light on the early immune response processes in severed peripheral nerves, we performed genome-wide transcriptional profiling and bioinformatics analyses of the proximal (P, regenerating) and distal (D, degenerating) nerve stumps on day 1 in the sciatic nerve axotomy model in rats. Multiple cell death-related pathways were activated in the degenerating D stump, whereas activation of the cytoskeletal motility and gluconeogenesis/glycolysis pathways was most prominent in the P stump of the axotomized nerve. Our bioinformatics analyses also identified the specific immunomodulatory genes of the chemokine, IL, TNF, MHC, immunoglobulin-binding Fc receptor, calcium-binding S100, matrix metalloproteinase, tissue inhibitor of metalloproteinase, and ion channel families affected in both the P and D segments. S100a8 and S100a9 were the top up-regulated genes in both the P and D segments. Stimulation of cultured Schwann cells using the purified S100A8/A9 heterodimer recapitulated activation of the myeloid cell and phagocyte chemotactic genes and pathways, which we initially observed in injured nerves. S100A8/A9 heterodimer injection into the intact nerve stimulated macrophage infiltration. We conclude that, following peripheral nerve injury, an immediate acute immune response occurs both distal and proximal to the lesion site and that the rapid transcriptional activation of the S100a8 and S100a9 genes results in S100A8/A9 hetero- and homodimers, which stimulate the release of chemokines and cytokines by activated Schwann cells and generate the initial chemotactic gradient that guides the transmigration of hematogenous immune cells into the injured nerve. PMID:25792748
Sakaue, Yuko; Bellier, Jean-Pierre; Kimura, Shin; D'Este, Loredana; Takeuchi, Yoshihiro; Kimura, Hiroshi
2014-01-01
Cholinergic structures in the arm of the cephalopod Octopus vulgaris were studied by immunohistochemistry using specific antisera for two types (common and peripheral) of acetylcholine synthetic enzyme choline acetyltransferase (ChAT): antiserum raised against the rat common type ChAT (cChAT), which is cross-reactive with molluscan cChAT, and antiserum raised against the rat peripheral type ChAT (pChAT), which has been used to delineate peripheral cholinergic structures in vertebrates, but not previously in invertebrates. Western blot analysis of octopus extracts revealed a single pChAT-positive band, suggesting that pChAT antiserum is cross-reactive with an octopus counterpart of rat pChAT. In immunohistochemistry, only neuronal structures of the octopus arm were stained by cChAT and pChAT antisera, although the pattern of distribution clearly differed between the two antisera. cChAT-positive varicose nerve fibers were observed in both the cerebrobrachial tract and neuropil of the axial nerve cord, while pChAT-positive varicose fibers were detected only in the neuropil of the axial nerve cord. After epitope retrieval, pChAT-positive neuronal cells and their processes became visible in all ganglia of the arm, including the axial and intramuscular nerve cords, and in ganglia of suckers. Moreover, pChAT-positive structures also became detectable in nerve fibers connecting the different ganglia, in smooth nerve fibers among muscle layers and dermal connective tissues, and in sensory cells of the suckers. These results suggest that the octopus arm has two types of cholinergic nerves: cChAT-positive nerves from brain ganglia and pChAT-positive nerves that are intrinsic to the arm.
Boelens, Oliver B; Maatman, Robert C; Scheltinga, Marc R; van Laarhoven, Kees; Roumen, Rudi M
2017-03-01
Most patients with chronic back pain suffer from degenerative thoracolumbovertebral disease. However, the following case illustrates that a localized peripheral nerve entrapment must be considered in the differential diagnosis of chronic back pain. We report the case of a 26-year-old woman with continuous excruciating pain in the lower back area. Previous treatment for nephroptosis was to no avail. On physical examination the pain was present in a 2 x 2 cm area overlying the twelfth rib some 4 cm lateral to the spinal process. Somatosensory testing using swab and alcohol gauze demonstrated the presence of skin hypo- and dysesthesia over the painful area. Local pressure on this painful spot elicited an extreme pain response that did not irradiate towards the periphery. These findings were highly suggestive of a posterior version of the anterior cutaneous nerve entrapment syndrome (ACNES), a condition leading to a severe localized neuropathic pain in anterior portions of the abdominal wall. She demonstrated a beneficial albeit temporary response after lidocaine infiltration as dictated by an established diagnostic and treatment protocol for ACNES. She subsequently underwent a local neurectomy of the involved superficial branch of the intercostal nerve. This limited operation had a favorable outcome resulting in a pain-free return to normal activities up to this very day (follow-up of 24 months).We propose to name this novel syndrome "posterior cutaneous nerve entrapment syndrome" (POCNES). Each patient with chronic localized back pain should undergo simple somatosensory testing to detect the presence of overlying skin hypo- and dysesthesia possibly reflecting an entrapped posterior cutaneous nerve.Key words: Chronic pain, back pain, posterior cutaneous nerve entrapment, peripheral nerve entrapment, surgical treatment for pain, anterior cutaneous nerve entrapment.
Liu, Xiaoming; Zhao, Xuan; Lou, Jian; Wang, Yingwei; Shen, Xiaofang
2013-02-01
Cyclooxygenase (COX)-2 antagonist is widely used for intravenous postoperative pain relief. Recent studies reported COX-2 in the spinal dorsal horn could modulate spinal nociceptive processes. Epidural parecoxib in rats showed no neurotoxicity. These findings suggested applying a COX-2 antagonist directly to the central or peripheral nerve might provide better analgesia. We therefore determined: (1) whether the addition of parecoxib to ropivacaine injected locally on the nerve block affected the sensory and motor block times of the brachial plexus nerve block; and (2) whether parecoxib injected locally on the nerve or intravenously had a similar analgesic adjuvant effect. We conducted a randomized controlled trial from January 2009 to November 2010 with 150 patients scheduled for elective forearm surgery, using a multiple-nerve stimulation technique. Patients were randomly allocated into one of three groups: Group A (n = 50) received ropivacaine 0.25% alone on the brachial plexus nerve; Group B (n = 50) received ropivacaine together with 20 mg parecoxib locally on the nerve block; and Group C (n = 50) received 20 mg parecoxib intravenously. We recorded the duration of the sensory and motor blocks, and the most severe pain score during a 24-hour postoperative period. Parecoxib added locally on the nerve block prolonged the motor and sensory block times compared with Group A. However, parecoxib injected intravenously had no such effect. Pain intensity scores in Group B were lower than those in Groups A and C. Parecoxib added to ropivacaine locally on the nerve block prolonged the duration of the axillary brachial plexus blockade and relieved postoperative pain for patients having forearm orthopaedic surgery. Level I, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.
Jadhao, Arun G; Biswas, Saikat P; Bhoyar, Rahul C; Pinelli, Claudia
2017-04-01
Nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) enzymatic activity has been reported in few amphibian species. In this study, we report its unusual localization in the medulla oblongata, spinal cord, cranial nerves, spinal nerves, and ganglions of the frog, Microhyla ornata. In the rhombencephalon, at the level of facial and vagus nerves, the NADPH-d labeling was noted in the nucleus of the abducent and facial nerves, dorsal nucleus of the vestibulocochlear nerve, the nucleus of hypoglossus nerve, dorsal and lateral column nucleus, the nucleus of the solitary tract, the dorsal field of spinal grey, the lateral and medial motor fields of spinal grey and radix ventralis and dorsalis (2-10). Many ependymal cells around the lining of the fourth ventricle, both facial and vagus nerves and dorsal root ganglion, were intensely labeled with NADPH-d. Most strikingly the NADPH-d activity was seen in small and large sized motoneurons in both medial and lateral motor neuron columns on the right and left sides of the brain. This is the largest stained group observed from the caudal rhombencephalon up to the level of radix dorsalis 10 in the spinal cord. The neurons were either oval or elongated in shape with long processes and showed significant variation in the nuclear and cellular diameter. A massive NADPH-d activity in the medulla oblongata, spinal cord, and spinal nerves implied an important role of this enzyme in the neuronal signaling as well as in the modulation of motor functions in the peripheral nervous systems of the amphibians. Copyright © 2017 Elsevier B.V. All rights reserved.
Axonal regeneration through acellular muscle grafts
HALL, SUSAN
1997-01-01
The management of peripheral nerve injury remains a major clinical problem. Progress in this field will almost certainly depend upon manipulating the pathophysiological processes which are triggered by traumatic injuries. One of the most important determinants of functional outcome after the reconstruction of a transected peripheral nerve is the length of the gap between proximal and distal nerve stumps. Long defects (> 2 cm) must be bridged by a suitable conduit in order to support axonal regrowth. This review examines the cellular and acellular elements which facilitate axonal regrowth and the use of acellular muscle grafts in the repair of injuries in the peripheral nervous system. PMID:9034882
Petraitiene, Viktorija; Pauza, Dainius H; Benetis, Rimantas
2014-06-01
The disbalance between adrenergic (sympathetic) and cholinergic (parasympathetic) cardiac inputs facilitates cardiac arrhythmias, including the lethal ones. In spite of the fact that the morphological pattern of the epicardiac ganglionated subplexuses (ENsubP) has been previously described in detail, the distribution of functionally distinct axons in human intrinsic nerves was not investigated thus far. Therefore, the aim of the present study was to quantitatively evaluate the distribution of tyrosine hydroxylase (TH)- and choline acetyltransferase (ChAT)-positive axons within intrinsic nerves at the level of the human heart hilum (HH), since they are of pivotal importance for determining proper treatment options for different arrhythmias. Tissue samples containing the intrinsic nerves from seven epicardiac subplexuses were obtained from nine human hearts without cardiac pathology and processed for immunofluorescent detection of TH and ChAT. The nerve area was measured and the numbers of axons were counted using microphotographs of nerve profiles. The densities of fibres were extrapolated and compared between subplexuses. ChAT-immunoreactive (IR) fibres were evidently predominant (>56%) in nerves of dorsal (DRA) and ventral right atrial (VRA) ENsubP. Within both left (LC) and right coronary ENsubP, the most abundant (70.9 and 83.0%, respectively) were TH-IR axons. Despite subplexal dependence, ChAT-IR fibres prevailed in comparatively thinner nerves, whereas TH-IR fibres in thicker ones. Morphometry showed that at the level of HH: (i) LC subplexal nerves were found to be the thickest (25 737 ± 4131 μm(2)) ones, whereas the thinnest (2604 ± 213 μm(2)) nerves concentrated in DRA ENsubP; (ii) the density of ChAT-IR axons was highest (6.8 ± 0.6/100 μm(2)) in the ventral left atrial nerves and lowest (3.2 ± 0.1/100 μm(2)) in left dorsal ENsubP and (iii) the density of TH-IR fibres was highest (15.9 ± 2.1/100 μm(2)) in LC subplexal nerves and lowest (4.4 ± 0.3/100 μm(2)) in VRA nerves. (i) The principal intrinsic adrenergic neural pathways in the human heart proceed via both coronary ENsubP that supply cardiac ventricles and (ii) the majority of cholinergic nerve fibres access the human heart through DRA and VRA ENsubP and extend towards the right atrium, including the region of the sinuatrial node. © The Author 2013. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
Ma, Qiufu; Anderson, David J.
2000-01-01
The proneuronal gene neurogenin 1 (ngn1) is essential for development of the inner-ear sensory neurons that are completely absent in ngn1 null mutants. Neither afferent, efferent, nor autonomic nerve fibers were detected in the ears of ngn1 null mutants. We suggest that efferent and autonomic fibers are lost secondarily to the absence of afferents. In this article we show that ngn1 null mutants develop smaller sensory epithelia with morphologically normal hair cells. In particular, the saccule is reduced dramatically and forms only a small recess with few hair cells along a duct connecting the utricle with the cochlea. Hair cells of newborn ngn1 null mutants show no structural abnormalities, suggesting that embryonic development of hair cells is independent of innervation. However, the less regular pattern of dispersal within sensory epithelia may be caused by some effects of afferents or to the stunted growth of the sensory epithelia. Tracing of facial and stato-acoustic nerves in control and ngn1 null mutants showed that only the distal, epibranchial, placode-derived sensory neurons of the geniculate ganglion exist in mutants. Tracing further showed that these geniculate ganglion neurons project exclusively to the solitary tract. In addition to the normal complement of facial branchial and visceral motoneurons, ngn1 null mutants have some trigeminal motoneurons and contralateral inner-ear efferents projecting, at least temporarily, through the facial nerve. These data suggest that some neurons in the brainstem (e.g., inner-ear efferents, trigeminal motoneurons) require afferents to grow along and redirect to ectopic cranial nerve roots in the absence of their corresponding sensory roots. PMID:11545141
Is the External Branch of the Superior Laryngeal Nerve Dispensable in Thyroid Surgery?
Wahba, Basim; Sasaki, Clarence T.
2016-01-01
Background: There is growing evidence that the external branch of the superior laryngeal nerve (eSLN) participates in thyroarytenoid (TA) contraction, but little data quantify its role in vocal cord adduction. Injury to the eSLN, such as in thyroid surgery, is difficult to diagnose and likely underappreciated. It is the authors' belief that eSLN injury contributes to aspiration by depriving its contribution to the laryngeal plexus. The goal of this study was to measure the glottic closing force (GCF) from eSLN stimulation in a porcine model. Methods: The recurrent laryngeal nerve (RLN) and eSLN were identified bilaterally in four porcine necks. Bilateral RLNs and eSLNs were stimulated simultaneously to obtain a control GCF using a pressure transducer placed in the glottis. Subsequently, bilateral eSLNs were stimulated and the GCF measured to quantify its percent contribution to the control value. Results: Stimulation of the RLNs and the eSLNs each led to TA muscle contraction and a measureable GCF in all four porcine necks. The control GCF was 1000.1 mmHg, while the eSLN mediated CGF was 800 mmHg. The percentage GCF attributable to the eSLN was thus 800/1000 = 80%. Conclusions: Reflex glottic closure is one of the most important mechanisms for the prevention of aspiration during deglutition. The biomechanical quantification of glottic closure can be shown as the GCF. This study has shown that the eSLN contributes in a significant way to the GCF in a porcine model, a finding that has not been quantified to the best of the authors' knowledge. Therefore, greater focus should be placed on preserving this nerve in thyroid surgery. PMID:26528734
ERIC Educational Resources Information Center
Yuan, Qi; Mutoh, Hiroki; Debarbieux, Franck; Knopfel, Thomas
2004-01-01
Synapses formed by the olfactory nerve (ON) provide the source of excitatory synaptic input onto mitral cells (MC) in the olfactory bulb. These synapses, which relay odor-specific inputs, are confined to the distally tufted single primary dendrites of MCs, the first stage of central olfactory processing. Beta-adrenergic modulation of electrical…
Mabe, Abigail M; Hoard, Jennifer L; Duffourc, Michelle M; Hoover, Donald B
2006-10-01
Neurturin (NRTN) is a neurotrophic factor required during development for normal cholinergic innervation of the heart, but whether NRTN continues to function in the adult heart is unknown. We have therefore evaluated NRTN expression in adult mouse heart and the association of NRTN receptors with intracardiac cholinergic neurons and nerve fibers. Mapping the regional distribution and density of cholinergic nerves in mouse heart was an integral part of this goal. Analysis of RNA from adult C57BL/6 mouse hearts demonstrated NRTN expression in atrial and ventricular tissue. Virtually all neurons in the cardiac parasympathetic ganglia exhibited the cholinergic phenotype, and over 90% of these cells contained both components of the NRTN receptor, Ret tyrosine kinase and GDNF family receptor alpha2 (GFRalpha2). Cholinergic nerve fibers, identified by labeling for the high affinity choline transporter, were abundant in the sinus and atrioventricular nodes, ventricular conducting system, interatrial septum, and much of the right atrium, but less abundant in the left atrium. The right ventricular myocardium contained a low density of cholinergic nerves, which were sparse in other regions of the working ventricular myocardium. Some cholinergic nerves were also associated with coronary vessels. GFRalpha2 was present in most cholinergic nerve fibers and in Schwann cells and their processes throughout the heart. Some cholinergic nerve fibers, such as those in the sinus node, also exhibited Ret immunoreactivity. These findings provide the first detailed mapping of cholinergic nerves in mouse heart and suggest that the neurotrophic influence of NRTN on cardiac cholinergic innervation continues in mature animals.
Supraorbital keyhole surgery for optic nerve decompression and dura repair.
Chen, Yuan-Hao; Lin, Shinn-Zong; Chiang, Yung-Hsiao; Ju, Da-Tong; Liu, Ming-Ying; Chen, Guann-Juh
2004-07-01
Supraorbital keyhole surgery is a limited surgical procedure with reduced traumatic manipulation of tissue and entailing little time in the opening and closing of wounds. We utilized the approach to treat head injury patients complicated with optic nerve compression and cerebrospinal fluid leakage (CSF). Eleven cases of basal skull fracture complicated with either optic nerve compression and/or CSF leakage were surgically treated at our department from February 1995 to June 1999. Six cases had primary optic nerve compression, four had CSF leakage and one case involved both injuries. Supraorbital craniotomy was carried out using a keyhole-sized burr hole plus a small craniotomy. The size of craniotomy approximated 2 x 3 cm2. The optic nerve was decompressed via removal of the optic canal roof and anterior clinoid process with high-speed drills. The defect of dura was repaired with two pieces of tensa fascia lata that were attached on both sides of the torn dural defect with tissue glue. Seven cases with optic nerve injury included five cases of total blindness and two cases of light perception before operation. Vision improved in four cases. The CSF leakage was stopped successfully in all four cases without complication. As optic nerve compression and CSF leakage are skull base lesions, the supraorbital keyhole surgery constitutes a suitable approach. The supraorbital keyhole surgery allows for an anterior approach to the skull base. This approach also allows the treatment of both CSF leakage and optic nerve compression. Our results indicate that supraorbital keyhole operation is a safe and effective method for preserving or improving vision and attenuating CSF leakage following injury.
Morrison, Brett M.; Tsingalia, Akivaga; Vidensky, Svetlana; Lee, Youngjin; Jin, Lin; Farah, Mohamed H.; Lengacher, Sylvain; Magistretti, Pierre J.; Pellerin, Luc; Rothstein, Jeffrey D.
2014-01-01
Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence and MCT1 tdTomato BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves in MCT1 heterozygous null mice are crushed and peripheral nerve regeneration quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21 days in wild-type mice to greater than 38 days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42 days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42 days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4 weeks and tibial mixed sensory and motor nerve at 3 weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly through failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush. PMID:25447940
Morrison, Brett M; Tsingalia, Akivaga; Vidensky, Svetlana; Lee, Youngjin; Jin, Lin; Farah, Mohamed H; Lengacher, Sylvain; Magistretti, Pierre J; Pellerin, Luc; Rothstein, Jeffrey D
2015-01-01
Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous null mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21 days in wild-type mice to greater than 38 days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42 days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42 days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4 weeks and tibial mixed sensory and motor nerve at 3 weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush. Copyright © 2014 Elsevier Inc. All rights reserved.
Neuromodulation of chronic headaches: position statement from the European Headache Federation
2013-01-01
The medical treatment of patients with chronic primary headache syndromes (chronic migraine, chronic tension-type headache, chronic cluster headache, hemicrania continua) is challenging as serious side effects frequently complicate the course of medical treatment and some patients may be even medically intractable. When a definitive lack of responsiveness to conservative treatments is ascertained and medication overuse headache is excluded, neuromodulation options can be considered in selected cases. Here, the various invasive and non-invasive approaches, such as hypothalamic deep brain stimulation, occipital nerve stimulation, stimulation of sphenopalatine ganglion, cervical spinal cord stimulation, vagus nerve stimulation, transcranial direct current stimulation, repetitive transcranial magnetic stimulation, and transcutaneous electrical nerve stimulation are extensively published although proper RCT-based evidence is limited. The European Headache Federation herewith provides a consensus statement on the clinical use of neuromodulation in headache, based on theoretical background, clinical data, and side effect of each method. This international consensus further gives recommendations for future studies on these new approaches. In spite of a growing field of stimulation devices in headaches treatment, further controlled studies to validate, strengthen and disseminate the use of neurostimulation are clearly warranted. Consequently, until these data are available any neurostimulation device should only be used in patients with medically intractable syndromes from tertiary headache centers either as part of a valid study or have shown to be effective in such controlled studies with an acceptable side effect profile. PMID:24144382
Fingolimod promotes blood-nerve barrier properties in vitro.
Nishihara, Hideaki; Maeda, Toshihiko; Sano, Yasuteru; Ueno, Maho; Okamoto, Nana; Takeshita, Yukio; Shimizu, Fumitaka; Koga, Michiaki; Kanda, Takashi
2018-04-01
The main effect of fingolimod is thought to be functional antagonism of lymphocytic S1P1 receptors and the prevention of lymphocyte egress from lymphoid tissues, thereby reducing lymphocyte infiltration into the nervous system. However, a growing number of reports suggest that fingolimod also has a direct effect on several cell types in the nervous system. Although we previously reported that fingolimod enhances blood-brain barrier (BBB) functions, there have been no investigations regarding the blood-nerve barrier (BNB). In this study, we examine how fingolimod affects the BNB. An immortalized human peripheral nerve microvascular endothelial cell line (HPnMEC) was used to evaluate BNB barrier properties. We examined tight junction proteins and barrier functions of HPnMECs in conditioned medium with or without fingolimod-phosphate and blood sera from patients with typical chronic inflammatory demyelinating polyneuropathy (CIDP). Incubation with fingolimod-phosphate increased levels of claudin-5 mRNA and protein as well as TEER values in HPnMECs. Conversely, typical CIDP sera decreased claudin-5 mRNA/protein levels and TEER values in HPnMECs; however, pretreatment with fingolimod-phosphate inhibited the effects of the typical CIDP sera. Fingolimod-phosphate directly modifies the BNB and enhances barrier properties. This mechanism may be a viable therapeutic target for CIDP, and fingolimod may be useful in patients with typical CIDP who have severe barrier disruption.
Helmers, Kristin M; Irwin, Kent E
2009-12-01
: Neurofibromatosis is a group of genetic disorders that affect the development and growth of nerve cell tissues. These disorders include tumors of myelin-producing supportive cells that grow on nerves and can cause changes in bone formation, skin integrity, and nerve transmission. Common musculoskeletal impairments associated with neurofibromatosis type 1 (NF 1) include cervical pain, muscle weakness, muscle stiffness, headaches, and postural deviations. : This case study describes successful physical therapy management and outcomes for cervical pain and headaches in a 17-year-old girl with a 16-year history of NF 1. Difficulties in driving, studying, lifting, and participating in recreational activities were all associated with the patient's pain, decreased cervical range of motion, decreased scapular strength, and postural deviations. : Physical therapy interventions included posture training, dynamic shoulder/scapular strengthening, cervical stabilization, stretching, ultrasound, interferential current, and a progressive home exercise program. : By the end of 13 weeks (20 sessions) of physical therapy, the patient was completely pain free, demonstrated increased cervical range of motion, and had improvements in scapular strength. She returned to full and unrestricted recreational activities, driving, studying, and household chores. Furthermore, scores on the Neck Disability Index improved from 44 of 50 (complete disability) to 2 of 50 (no disability). : Physical therapy may be a viable option for conservative management of musculoskeletal dysfunction and functional limitations resulting from NF 1.
Radiotherapy for Vestibular Schwannomas: A Critical Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Erin S., E-mail: murphye3@ccf.or; Suh, John H.
2011-03-15
Vestibular schwannomas are slow-growing tumors of the myelin-forming cells that cover cranial nerve VIII. The treatment options for patients with vestibular schwannoma include active observation, surgical management, and radiotherapy. However, the optimal treatment choice remains controversial. We have reviewed the available data and summarized the radiotherapeutic options, including single-session stereotactic radiosurgery, fractionated conventional radiotherapy, fractionated stereotactic radiotherapy, and proton beam therapy. The comparisons of the various radiotherapy modalities have been based on single-institution experiences, which have shown excellent tumor control rates of 91-100%. Both stereotactic radiosurgery and fractionated stereotactic radiotherapy have successfully improved cranial nerve V and VII preservation tomore » >95%. The mixed data regarding the ideal hearing preservation therapy, inherent biases in patient selection, and differences in outcome analysis have made the comparison across radiotherapeutic modalities difficult. Early experience using proton therapy for vestibular schwannoma treatment demonstrated local control rates of 84-100% but disappointing hearing preservation rates of 33-42%. Efforts to improve radiotherapy delivery will focus on refined dosimetry with the goal of reducing the dose to the critical structures. As future randomized trials are unlikely, we suggest regimented pre- and post-treatment assessments, including validated evaluations of cranial nerves V, VII, and VIII, and quality of life assessments with long-term prospective follow-up. The results from such trials will enhance the understanding of therapy outcomes and improve our ability to inform patients.« less
Patterns of fast synaptic cholinergic activation of neurons in the celiac ganglia of cats.
Niel, J P; Clerc, N; Jule, Y
1988-12-01
Fast nicotinic transmission was studied in vitro in neurons of isolated cat celiac ganglia. In the absence of nerve stimulation, neurons could be classified into three types: silent neurons, synaptically activated neurons, and spontaneously discharging neurons. In all three types, fast synaptic activation could be obtained in single neurons by stimulating with a single pulse both the splanchnic nerves or one of the peripheral nerves connected to the ganglia. During repetitive nerve stimulation, a gradual depression of the central and peripheral fast nicotinic activation occurred, which was not affected by phentolamine plus propranolol, domperidone, atropine, or naloxone. Repetitive nerve stimulation was followed by a long lasting discharge of excitatory postsynaptic potentials and action potentials that decreased gradually with time. This discharge, which was probably due to presynaptic or prejunctional facilitation of acetylcholine release from cholinergic terminals, was reduced by the application of phentolamine plus propranolol, domperidone, or atropine and increased with naloxone. The existence of the mechanisms described in this study reflects the complexity of the integrative processes at work in neurons of the cat celiac ganglia that involve fast synaptic cholinergic activation.
Functional nerve disorders in the athlete's foot, ankle, and leg.
Baxter, D E
1993-01-01
Although neuropathies in the athlete's foot, ankle, and leg are uncommon, they are often underdiagnosed, primarily because of the complex interplay of causative factors. The physician should be aware of the possible occurrence of these neuropathies, and should be familiar with the anatomy and course of the nerves. Often, the problem only occurs during functional activity and cannot be demonstrated during the routine static examination. Other problems should also be considered when there is the possibility of a nerve compression syndrome. Metabolic processes, such as diabetes or abuse of alcohol, can certainly cause neuropathies. A double crush syndrome or pain from a higher source should also be considered. Finally, if surgery is done for chronic problems, only the area of constriction should be released, without interfering with the nerve itself. Release the fascia but leave the perineural fat intact. If instability is a factor, the joint should also be stabilized.
Motor-commands decoding using peripheral nerve signals: a review
NASA Astrophysics Data System (ADS)
Hong, Keum-Shik; Aziz, Nida; Ghafoor, Usman
2018-06-01
During the last few decades, substantial scientific and technological efforts have been focused on the development of neuroprostheses. The major emphasis has been on techniques for connecting the human nervous system with a robotic prosthesis via natural-feeling interfaces. The peripheral nerves provide access to highly processed and segregated neural command signals from the brain that can in principle be used to determine user intent and control muscles. If these signals could be used, they might allow near-natural and intuitive control of prosthetic limbs with multiple degrees of freedom. This review summarizes the history of neuroprosthetic interfaces and their ability to record from and stimulate peripheral nerves. We also discuss the types of interfaces available and their applications, the kinds of peripheral nerve signals that are used, and the algorithms used to decode them. Finally, we explore the prospects for future development in this area.
Xu, Wenjing; Zhao, Zhe; Zhao, Bin; Wang, Yu; Peng, Jiang; Zhang, Li; Chen, Jifeng; Lu, Shibi
2011-10-01
Bone marrow mesenchymal stem cells (BMSCs), as replacement cells of Schwann cells, can increase the effect of peripheral nerve repair. However, it has not yet reached any agreement to add the appropriate number of seeded cells in nerve scaffold. To investigate the effect of different number of BMSCs on the growth of rat dorsal root ganglia (DRG). Three 4-week-old Sprague Dawley (SD) rats (weighing 80-100 g) were selected to isolate BMSCs, which were cultured in vitro. Three 1- to 2-day-old SD rats (weighing 4-6 g) were selected to prepare DRG. BMSCs at passage 3 were used to prepare BMSCs-fibrin glue complex. According to different number of BMSCs at passage 3 in fibrin glue, experiment was divided into group A (1 x 10(3)), group B (1 x 10(4)), group C (1 x 10(5)), and group D (0, blank control), and BMSCs were co-cultured with rat DRG. The axon length of DRG, Schwann cell migration distance, and axon area index were quantitatively evaluated by morphology, neurofilament 200, and Schwann cells S-100 immunofluorescence staining after cultured for 48 hours. Some long cell processes formed in BMSCs at 48 hours; migration of Schwann cells and axons growth from the DRG were observed, growing in every direction. BMSCs in fibrin glue had the biological activity and could effect DRG growth. The axon length of DRG and Schwann cell migration distance in groups A, B, and C were significantly greater than those in group D (P < 0.05). The axon length of DRG and Schwann cell migration distance in group C were significantly less than those in group B (P < 0.05), but there was no significant difference between group A and group C, and between group A and group B (P > 0.05). The axon area index in groups A and B was significantly greater than that in group D (P < 0.05), but there was no significant difference between group C and group D (P > 0.05); there was no significant difference in groups A, B, and C (P > 0.05). In vitro study on DRG culture experiments is an ideal objective neural model of nerve regeneration. The effect of different number of BMSCs in fibrin glue on the growth of DRG has dose-effect relationship. It can provide a theoretical basis for the appropriate choice of the BMSCs number for tissue engineered nerve.
Ultra-high field upper extremity peripheral nerve and non-contrast enhanced vascular imaging
Raval, Shailesh B.; Britton, Cynthia A.; Zhao, Tiejun; Krishnamurthy, Narayanan; Santini, Tales; Gorantla, Vijay S.; Ibrahim, Tamer S.
2017-01-01
Objective The purpose of this study was to explore the efficacy of Ultra-high field [UHF] 7 Tesla [T] MRI as compared to 3T MRI in non-contrast enhanced [nCE] imaging of structural anatomy in the elbow, forearm, and hand [upper extremity]. Materials and method A wide range of sequences including T1 weighted [T1] volumetric interpolate breath-hold exam [VIBE], T2 weighted [T2] double-echo steady state [DESS], susceptibility weighted imaging [SWI], time-of-flight [TOF], diffusion tensor imaging [DTI], and diffusion spectrum imaging [DSI] were optimized and incorporated with a radiofrequency [RF] coil system composed of a transverse electromagnetic [TEM] transmit coil combined with an 8-channel receive-only array for 7T upper extremity [UE] imaging. In addition, Siemens optimized protocol/sequences were used on a 3T scanner and the resulting images from T1 VIBE and T2 DESS were compared to that obtained at 7T qualitatively and quantitatively [SWI was only qualitatively compared]. DSI studio was utilized to identify nerves based on analysis of diffusion weighted derived fractional anisotropy images. Images of forearm vasculature were extracted using a paint grow manual segmentation method based on MIPAV [Medical Image Processing, Analysis, and Visualization]. Results High resolution and high quality signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]—images of the hand, forearm, and elbow were acquired with nearly homogeneous 7T excitation. Measured [performed on the T1 VIBE and T2 DESS sequences] SNR and CNR values were almost doubled at 7T vs. 3T. Cartilage, synovial fluid and tendon structures could be seen with higher clarity in the 7T T1 and T2 weighted images. SWI allowed high resolution and better quality imaging of large and medium sized arteries and veins, capillary networks and arteriovenous anastomoses at 7T when compared to 3T. 7T diffusion weighted sequence [not performed at 3T] demonstrates that the forearm nerves are clearly delineated by fiber tractography. The proper digital palmar arteries and superficial palmar arch could also be clearly visualized using TOF nCE 7T MRI. Conclusion Ultra-high resolution neurovascular imaging in upper extremities is possible at 7T without use of renal toxic intravenous contrast. 7T MRI can provide superior peripheral nerve [based on fiber anisotropy and diffusion coefficient parameters derived from diffusion tensor/spectrum imaging] and vascular [nCE MRA and vessel segmentation] imaging. PMID:28662061
Role of the autonomic nervous system in tumorigenesis and metastasis
Magnon, Claire
2015-01-01
Convergence of multiple stromal cell types is required to develop a tumorigenic niche that nurtures the initial development of cancer and its dissemination. Although the immune and vascular systems have been shown to have strong influences on cancer, a growing body of evidence points to a role of the nervous system in promoting cancer development. This review discusses past and current research that shows the intriguing role of autonomic nerves, aided by neurotrophic growth factors and axon cues, in creating a favorable environment for the promotion of tumor formation and metastasis. PMID:27308436
Role of the autonomic nervous system in tumorigenesis and metastasis.
Magnon, Claire
2015-01-01
Convergence of multiple stromal cell types is required to develop a tumorigenic niche that nurtures the initial development of cancer and its dissemination. Although the immune and vascular systems have been shown to have strong influences on cancer, a growing body of evidence points to a role of the nervous system in promoting cancer development. This review discusses past and current research that shows the intriguing role of autonomic nerves, aided by neurotrophic growth factors and axon cues, in creating a favorable environment for the promotion of tumor formation and metastasis.
Basics of Elbow Arthroscopy Part I: Surface Anatomy, Portals, and Structures at Risk.
Camp, Christopher L; Degen, Ryan M; Sanchez-Sotelo, Joaquin; Altchek, David W; Dines, Joshua S
2016-12-01
As our knowledge and technology advance, the indications for elbow arthroscopy continue to grow rapidly. During this expansion, a number of new portals have been described and reported using variable nomenclature and location descriptions. Accordingly, a comprehensive review of these portals is warranted. Given the concern for potential iatrogenic injury to surrounding neurovascular structures, a discussion of these critical nerves and vessels is also timely. In this work, we review pertinent surface anatomy; portal nomenclature, locations, and utility; and review distances to the nearest structures at risk.
Wang, Huqing; Fan, Jiaxin; Chen, Mengyi; Yao, Qingling; Gao, Zhen; Zhang, Guilian; Wu, Haiqin; Yu, Xiaorui
2017-08-01
Erythropoietin (EPO) may protect the nervous system of animals against aging damage, making it a potential anti-aging drug for the nervous system. However, experimental evidence from natural aging nerve cell models is lacking, and the efficacy of EPO and underlying mechanism of this effect warrant further study. Thus, the present study used long-term cultured primary nerve cells to successfully mimic the natural aging process of nerve cells. Starting on the 11th day of culture, cells were treated with different concentrations of recombinant human erythropoietin (rhEPO). Using double immunofluorescence labeling, we found that rhEPO significantly improved the morphology of long-term cultured primary nerve cells and increased the total number of long-term cultured primary cells. However, rhEPO did not improve the ratio of nerve cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure nerve cell activity and showed that rhEPO significantly improved the activity of long-term cultured primary nerve cells. Moreover, Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) double immunofluorescence labeling flow cytometry revealed that rhEPO reduced the apoptotic rate of long-term cultured primary nerve cells. Senescence-associated β-galactosidase (SA-β-gal) immunohistochemistry staining showed that rhEPO significantly reduced the aging rate of long-term cultured primary nerve cells. Immunochemistry revealed that rhEPO enhanced intracellular superoxide dismutase (SOD) activity and glutathione (GSH) abundance and reduced the intracellular malondialdehyde (MDA) level. In addition, this effect depended on the dose, was maximized at a dose of 100 U/ml and was more pronounced than that of vitamin E. In summary, this study finds that rhEPO protects long-term cultured primary nerve cells from aging in a dose-dependent manner. The mechanism of this effect may be associated with the enhancement of the intracellular anti-oxidant capacity. These findings provide a theoretical basis to further the anti-aging mechanism of EPO in the nervous system, and they provide experimental evidence at the cellular level for the clinical application of EPO to protect the nervous system from aging.
A polarization measurement method for the quantification of retardation in optic nerve fiber layer
NASA Astrophysics Data System (ADS)
Fukuma, Yasufumi; Okazaki, Yoshio; Shioiri, Takashi; Iida, Yukio; Kikuta, Hisao; Ohnuma, Kazuhiko
2008-02-01
The thickness measurement of the optic nerve fiber layer is one of the most important evaluations for carrying out glaucoma diagnosis. Because the optic nerve fiber layer has birefringence, the thickness can be measured by illuminating eye optics with circular polarized light and analyzing the elliptical rate of the detected polarized light reflected from the optic nerve fiber layer. In this method, the scattering light from the background and the retardation caused by the cornea disturbs the precise measurement. If the Stokes vector expressing the whole state of polarization can be detected, we can eliminate numerically the influence of the background scattering and of the retardation caused by the cornea. Because the retardation process of the eye optics can be represented by a numerical equation using the retardation matrix of each component and also the nonpolarized background scattering light, it can be calculated by using the Stokes vector. We applied a polarization analysis system that can detect the Stokes vector onto the fundus camera. The polarization analysis system is constructed with a CCD area image sensor, a linear polarizing plate, a micro phase plate array, and a circularly polarized light illumination unit. With this simply constructed system, we can calculate the retardation caused only by the optic nerve fiber layer and it can predict the thickness of the optic nerve fiber layer. We report the method and the results graphically showing the retardation of the optic nerve fiber layer without the retardation of the cornea.
Non-Recurrent Laryngeal Nerve.
Buła, Grzegorz; Mucha, Ryszard; Paliga, Michał; Koziołek, Henryk; Niedzielski, Zbigniew; Gawrychowski, Jacek
2015-07-01
The aim of the study was to assess the frequency of non-recurrent laryngeal nerves (Non-RLN). A total of 6110 patients were operated in our hospital between 1 January 2005 and 31 December 2013 for various goiters (5429) and various types of hyperparathyroidism (618). Laryngeal nerve was exposed during operation in 1700 patients from superior aperture of the chest to superior aperture of the larynx. Identification process of RLN was started with dissecting inferior thyroid artery (ITA) and its junction with the nerve. Then main trunk of the nerve was exposed backwards till the region of superior aperture of the chest together with the end portion till the nerve outlet to the larynx. In the group of 1700 patients, RLN was exposed bilaterally in 1400 (82.4%) and unilaterally in 300 (17.6%). In the group of 3100 dissected RLNs the course of RLN was observed on the right side in 1710 patients and on the left in 1390. Irreversible nature RLN was shown in four cases (0.1%) - four women (02%) aged 42-55 (mean 49.3) - three operated for non-toxic nodular goiter and one for primary hyperparathyroidism. Each time the Non-RLN was seen on the right side. The other patients manifested recurrent character RLN. Moreover, interstitial course of RLN was found on the left side in one man. Non recurrent laryngeal nerve is a rare anatomical variation, occurring more frequently on the right side. Surgeon during surgery of the thyroid and parathyroid glands should be aware of its existence to avoid damage.
MAY, OLIVIA L.; ERISIR, ALEV; HILL, DAVID L.
2008-01-01
The terminal fields of nerves carrying gustatory information to the rat brainstem show a remarkable amount of expansion in the nucleus of the solitary tract (NTS) as a result of early dietary sodium restriction. However, the extent to which these axonal changes represent corresponding changes in synapses is not known. To identify the synaptic characteristics that accompany the terminal field expansion, the greater superficial petrosal (GSP), chorda tympani (CT), and glossopharyngeal (IX) nerves were labeled in rats fed a sodium-restricted diet during pre- and postnatal development. The morphology of these nerve terminals within the NTS region where the terminal fields of all three nerves overlap was evaluated by transmission electron microscopy. Compared to data from control rats, CT axons were the most profoundly affected. The density of CT arbors and synapses quadrupled as a result of the near life-long dietary manipulation. In contrast, axon and synapse densities of GSP and IX nerves were not modified in sodium-restricted rats. Furthermore, compared to controls, CT terminals displayed more instances of contacts with postsynaptic dendritic protrusions and IX terminals synapsed more frequently with dendritic shafts. Thus, dietary sodium restriction throughout pre- and postnatal development had differential effects on the synaptic organization of the three nerves in the NTS. These anatomical changes may underlie the impact of sensory restriction during development on the functional processing of taste information and taste-related behaviors. PMID:18366062
May, Olivia L; Erisir, Alev; Hill, David L
2008-06-01
The terminal fields of nerves carrying gustatory information to the rat brainstem show a remarkable amount of expansion in the nucleus of the solitary tract (NTS) as a result of early dietary sodium restriction. However, the extent to which these axonal changes represent corresponding changes in synapses is not known. To identify the synaptic characteristics that accompany the terminal field expansion, the greater superficial petrosal (GSP), chorda tympani (CT), and glossopharyngeal (IX) nerves were labeled in rats fed a sodium-restricted diet during pre- and postnatal development. The morphology of these nerve terminals within the NTS region where the terminal fields of all three nerves overlap was evaluated by transmission electron microscopy. Compared to data from control rats, CT axons were the most profoundly affected. The density of CT arbors and synapses quadrupled as a result of the near life-long dietary manipulation. In contrast, axon and synapse densities of GSP and IX nerves were not modified in sodium-restricted rats. Furthermore, compared to controls, CT terminals displayed more instances of contacts with postsynaptic dendritic protrusions and IX terminals synapsed more frequently with dendritic shafts. Thus, dietary sodium restriction throughout pre- and postnatal development had differential effects on the synaptic organization of the three nerves in the NTS. These anatomical changes may underlie the impact of sensory restriction during development on the functional processing of taste information and taste-related behaviors.
Limb lengthening and peripheral nerve function—factors associated with deterioration of conduction
2013-01-01
Background and purpose Limb lengthening is performed for a diverse range of orthopedic problems. A high rate of complications has been reported in these patients, which include motor and sensory loss as a result of nerve damage. We investigated the effect of limb lengthening on peripheral nerve function. Patients and methods 36 patients underwent electrophysiological testing at 3 points: (1) preoperatively, (2) after application of external fixator/corticotomy but before lengthening, and (3) after lengthening. The limb-length discrepancy was due to a congenital etiology (n = 19), a growth disturbance (n = 9), or a traumatic etiology (n = 8). Results 2 of the traumatic etiology patients had significant changes evident on electrophysiological testing preoperatively. They both deteriorated further with lengthening. 7 of the 21 patients studied showed deterioration in nerve function after lengthening, but not postoperatively, indicating that this was due to the lengthening process and not to the surgical procedure. All of these patients had a congenital etiology for their leg-length discrepancy. Interpretation As detailed electrophysiological tests were carried out before surgery, after surgery but before lengthening, and finally after completion of lengthening, it was possible to distinguish between the effects of the operation and the effects of lengthening on nerve function. The results indicate that the etiology, site (femur or tibia), and nerve (common peroneal or tibial) had a bearing on the risk of nerve injury and that these factors had a far greater effect than the total amount of lengthening. PMID:24171677
Real time imaging of peripheral nerve vasculature using optical coherence angiography
NASA Astrophysics Data System (ADS)
Vasudevan, Srikanth; Kumsa, Doe; Takmakov, Pavel; Welle, Cristin G.; Hammer, Daniel X.
2016-03-01
The peripheral nervous system (PNS) carries bidirectional information between the central nervous system and distal organs. PNS stimulation has been widely used in medical devices for therapeutic indications, such as bladder control and seizure cessation. Investigational uses of PNS stimulation include providing sensory feedback for improved control of prosthetic limbs. While nerve safety has been well documented for stimulation parameters used in marketed devices, novel PNS stimulation devices may require alternative stimulation paradigms to achieve maximum therapeutic benefit. Improved testing paradigms to assess the safety of stimulation will expedite the development process for novel PNS stimulation devices. The objective of this research is to assess peripheral nerve vascular changes in real-time with optical coherence angiography (OCA). A 1300-nm OCA system was used to image vasculature changes in the rat sciatic nerve in the region around a surface contacting single electrode. Nerves and vasculature were imaged without stimulation for 180 minutes to quantify resting blood vessel diameter. Walking track analysis was used to assess motor function before and 6 days following experiments. There was no significant change in vessel diameter between baseline and other time points in all animals. Motor function tests indicated the experiments did not impair functionality. We also evaluated the capabilities to image the nerve during electrical stimulation in a pilot study. Combining OCA with established nerve assessment methods can be used to study the effects of electrical stimulation safety on neural and vascular tissue in the periphery.
Bortolami, R; Calzà, L; Lucchi, M L; Giardino, L; Callegari, E; Manni, E; Pettorossi, V E; Barazzoni, A M; Lalatta Costerbosa, G
1991-04-26
The peripheral territories of sheep trigeminal neurons which send their central process to the brainstem through the oculomotor nerve were investigated by the use of fluorescent tracers in double-labeling experiments. For this purpose Diamidino yellow (DY) injection into the oculomotor nerve was combined with Fast blue (FB) injection either into the extraocular muscles (EOMs), or the cornea, or the superior eyelid. Double-labeled DY + FB cells were found in the ophthalmic region of the trigeminal ganglion in addition to single-labeled DY or FB cells. The DY and DY + FB-labeled trigeminal cells were analysed immunocytochemically for their content of substance P (SP)-, calcitonin gene-related peptide (CGRP)-, and cholecystokinin-8 (CCK-8)-like. All single-labeled DY cells showed SP-, CGRP- or CCK-8-like immunoreactivity. Double-labeled DY + FB neurons innervating the EOMs were immunoreactive for each of the three peptides, whereas double-labeled neurons supplying the cornea were only CGRP-like positive. The findings suggest that, in the sheep, trigeminal neurons which send their process centrally through the oculomotor nerve supply the EOMs, the cornea, and the superior eyelid and contain neuropeptides which are usually associated with pain sensation.
The design of and chronic tissue response to a composite nerve electrode with patterned stiffness.
Freeberg, M J; Stone, M A; Triolo, R J; Tyler, D J
2017-06-01
As neural interfaces demonstrate success in chronic applications, a novel class of reshaping electrodes with patterned regions of stiffness will enable application to a widening range of anatomical locations. Patterning stiff regions and flexible regions of the electrode enables nerve reshaping while accommodating anatomical constraints of various implant locations ranging from peripheral nerves to spinal and autonomic plexi. Introduced is a new composite electrode enabling patterning of regions of various electrode mechanical properties. The initial demonstration of the composite's capability is the composite flat interface nerve electrode (C-FINE). The C-FINE is constructed from a sandwich of patterned PEEK within layers of pliable silicone. The shape of the PEEK provides a desired pattern of stiffness: stiff across the width of the nerve to reshape the nerve, but flexible along its length to allow for bending with the nerve. This is particularly important in anatomical locations near joints or organs, and in constrained compartments. We tested pressure and volume design constraints in vitro to verify that the C-FINE can attain a safe cuff-to-nerve ratio (CNR) without impeding intraneural blood flow. We measured nerve function as well as nerve and axonal morphology following 3 month implantation of the C-FINE without wires on feline peripheral nerves in anatomically constrained areas near mobile joints and major blood vessels in both the hind and fore limbs. In vitro inflation tests showed effective CNRs (1.93 ± 0.06) that exceeded the industry safety standard of 1.5 at an internal pressure of 20 mmHg. This is less than the 30 mmHg shown to induce loss of conduction or compromise blood flow. Implanted cats showed no changes in physiology or electrophysiology. Behavioral signs were normal suggesting healthy nerves. Motor nerve conduction velocity and compound motor action potential did not change significantly between implant and explant (p > 0.15 for all measures). Axonal density and myelin sheath thickness was not significantly different within the electrode compared to sections greater than 2 cm proximal to implanted cuffs (p > 0.14 for all measures). We present the design and verification of a novel nerve cuff electrode, the C-FINE. Laminar manufacturing processes allow C-FINE stiffness to be configured for specific applications. Here, the central region in the configuration tested is stiff to reshape or conform to the target nerve, while edges are highly flexible to bend along its length. The C-FINE occupies less volume than other NCEs, making it suitable for implantation in highly mobile locations near joints. Design constraints during simulated transient swelling were verified in vitro. Maintenance of nerve health in various challenging anatomical locations (sciatic and median/ulnar nerves) was verified in a chronic feline model in vivo.
The design of and chronic tissue response to a composite nerve electrode with patterned stiffness
NASA Astrophysics Data System (ADS)
Freeberg, M. J.; Stone, M. A.; Triolo, R. J.; Tyler, D. J.
2017-06-01
Objective. As neural interfaces demonstrate success in chronic applications, a novel class of reshaping electrodes with patterned regions of stiffness will enable application to a widening range of anatomical locations. Patterning stiff regions and flexible regions of the electrode enables nerve reshaping while accommodating anatomical constraints of various implant locations ranging from peripheral nerves to spinal and autonomic plexi. Approach. Introduced is a new composite electrode enabling patterning of regions of various electrode mechanical properties. The initial demonstration of the composite’s capability is the composite flat interface nerve electrode (C-FINE). The C-FINE is constructed from a sandwich of patterned PEEK within layers of pliable silicone. The shape of the PEEK provides a desired pattern of stiffness: stiff across the width of the nerve to reshape the nerve, but flexible along its length to allow for bending with the nerve. This is particularly important in anatomical locations near joints or organs, and in constrained compartments. We tested pressure and volume design constraints in vitro to verify that the C-FINE can attain a safe cuff-to-nerve ratio (CNR) without impeding intraneural blood flow. We measured nerve function as well as nerve and axonal morphology following 3 month implantation of the C-FINE without wires on feline peripheral nerves in anatomically constrained areas near mobile joints and major blood vessels in both the hind and fore limbs. Main Results. In vitro inflation tests showed effective CNRs (1.93 ± 0.06) that exceeded the industry safety standard of 1.5 at an internal pressure of 20 mmHg. This is less than the 30 mmHg shown to induce loss of conduction or compromise blood flow. Implanted cats showed no changes in physiology or electrophysiology. Behavioral signs were normal suggesting healthy nerves. Motor nerve conduction velocity and compound motor action potential did not change significantly between implant and explant (p > 0.15 for all measures). Axonal density and myelin sheath thickness was not significantly different within the electrode compared to sections greater than 2 cm proximal to implanted cuffs (p > 0.14 for all measures). Significance. We present the design and verification of a novel nerve cuff electrode, the C-FINE. Laminar manufacturing processes allow C-FINE stiffness to be configured for specific applications. Here, the central region in the configuration tested is stiff to reshape or conform to the target nerve, while edges are highly flexible to bend along its length. The C-FINE occupies less volume than other NCEs, making it suitable for implantation in highly mobile locations near joints. Design constraints during simulated transient swelling were verified in vitro. Maintenance of nerve health in various challenging anatomical locations (sciatic and median/ulnar nerves) was verified in a chronic feline model in vivo.
Kapsimali, Marika; Barlow, Linda A.
2012-01-01
Taste buds are found in a distributed array on the tongue surface, and are innervated by cranial nerves that convey taste information to the brain. For nearly a century, taste buds were thought to be induced by nerves late in embryonic development. However, this view has shifted dramatically. A host of studies now indicate that taste bud development is initiated and proceeds via processes that are nerve-independent, occur long before birth, and governed by cellular and molecular mechanisms intrinsic to the developing tongue. Here we review the state of our understanding of the molecular and cellular regulation of taste bud development, incorporating important new data obtained through the use of two powerful genetic systems, mouse and zebrafish. PMID:23182899
Micromachined three-dimensional electrode arrays for transcutaneous nerve tracking
NASA Astrophysics Data System (ADS)
Rajaraman, Swaminathan; Bragg, Julian A.; Ross, James D.; Allen, Mark G.
2011-08-01
We report the development of metal transfer micromolded (MTM) three-dimensional microelectrode arrays (3D MEAs) for a transcutaneous nerve tracking application. The measurements of electrode-skin-electrode impedance (ESEI), electromyography (EMG) and nerve conduction utilizing these minimally invasive 3D MEAs are demonstrated in this paper. The 3D MEAs used in these measurements consist of a metalized micro-tower array that can penetrate the outer layers of the skin in a painless fashion and are fabricated using MTM technology. Two techniques, an inclined UV lithography approach and a double-side exposure of thick negative tone resist, have been developed to fabricate the 3D MEA master structure. The MEAs themselves are fabricated from the master structure utilizing micromolding techniques. Metal patterns are transferred during the micromolding process, thereby ensuring reduced process steps compared to traditional silicon-based approaches. These 3D MEAs have been packaged utilizing biocompatible Kapton® substrates. ESEI measurements have been carried out on test human subjects with standard commercial wet electrodes as a reference. The 3D MEAs demonstrate an order of magnitude lower ESEI (normalized to area) compared to wet electrodes for an area that is 12.56 times smaller. This compares well with other demonstrated approaches in literature. For a nerve tracking demonstration, we have chosen EMG and nerve conduction measurements on test human subjects. The 3D MEAs show 100% improvement in signal power and SNR/√area as compared to standard electrodes. They also demonstrate larger amplitude signals and faster rise times during nerve conduction measurements. We believe that this microfabrication and packaging approach scales well to large-area, high-density arrays required for applications like nerve tracking. This development will increase the stimulation and recording fidelity of skin surface electrodes, while increasing their spatial resolution by an order of magnitude or more. Although biopotential electrode systems are not without their challenges, the non-invasive access to neural information, along with the potential for automation with associated electronic and software development, is precisely what makes this technology an excellent candidate for the next generation in diagnostic, therapeutic, and prosthetic devices.
Alvarado, Sebastian; Tajerian, Maral; Millecamps, Magali; Suderman, Mathew; Stone, Laura S; Szyf, Moshe
2013-04-18
Peripheral nerve injury can have long-term consequences including pain-related manifestations, such as hypersensitivity to cutaneous stimuli, as well as affective and cognitive disturbances, suggesting the involvement of supraspinal mechanisms. Changes in brain structure and cortical function associated with many chronic pain conditions have been reported in the prefrontal cortex (PFC). The PFC is implicated in pain-related co-morbidities such as depression, anxiety and impaired emotional decision-making ability. We recently reported that this region is subject to significant epigenetic reprogramming following peripheral nerve injury, and normalization of pain-related structural, functional and epigenetic abnormalities in the PFC are all associated with effective pain reduction. In this study, we used the Spared Nerve Injury (SNI) model of neuropathic pain to test the hypothesis that peripheral nerve injury triggers persistent long-lasting changes in gene expression in the PFC, which alter functional gene networks, thus providing a possible explanation for chronic pain associated behaviors. SNI or sham surgery where performed in male CD1 mice at three months of age. Six months after injury, we performed transcriptome-wide sequencing (RNAseq), which revealed 1147 differentially regulated transcripts in the PFC in nerve-injured vs. control mice. Changes in gene expression occurred across a number of functional gene clusters encoding cardinal biological processes as revealed by Ingenuity Pathway Analysis. Significantly altered biological processes included neurological disease, skeletal muscular disorders, behavior, and psychological disorders. Several of the changes detected by RNAseq were validated by RT-QPCR and included transcripts with known roles in chronic pain and/or neuronal plasticity including the NMDA receptor (glutamate receptor, ionotropic, NMDA; grin1), neurite outgrowth (roundabout 3; robo3), gliosis (glial fibrillary acidic protein; gfap), vesicular release (synaptotagmin 2; syt2), and neuronal excitability (voltage-gated sodium channel, type I; scn1a). This study used an unbiased approach to document long-term alterations in gene expression in the brain following peripheral nerve injury. We propose that these changes are maintained as a memory of an insult that is temporally and spatially distant from the initial injury.
Reichenbach, A
1987-01-01
Rabbit retinal glia was studied by light microscopy of both stained sections of frozen retinae and enzymatically isolated cells. In the vast majority of this tissue, except for a small region around the optic nerve head, the glia consists solely of radial glia, i.e. Müller cells whose morphology was found to depend markedly on their topographic localization within the retina. Müller cells in the periphery are short and have thick vitreal processes bearing a single large endfoot. Central Müller cells are long and slender; through the thickening nerve fibre layer they send vitreal processes which are subdivided into several fine branches ending with multiple small endfeet. Müller cells in the retinal centre are far more closely packed than those in the periphery; everywhere, however, a constant ratio of Müller cells: neurons of about 1:15 was found, except for the juxta-optic nerve head region where this ratio is slightly reduced. Where the central retina reaches a thickness requiring Müller cell lengths of more than 130 micron, additional non-radial glial cells occur within the nerve fibre layer. The majority of these cells seem to be astrocytes. Their number per retinal area increases with the thickening of both the whole retina and the nerve fibre layer. The occurrence of these non-radial glial cells leads to an enhancement of the glia:neuron index in the retinal centre. Possible mechanisms of physiological control of gliogenesis are discussed.
Peripheral Neuropathy in Spinocerebellar Ataxia Type 1, 2, 3, and 6.
Linnemann, Christoph; Tezenas du Montcel, Sophie; Rakowicz, Maryla; Schmitz-Hübsch, Tanja; Szymanski, Sandra; Berciano, Jose; van de Warrenburg, Bart P; Pedersen, Karine; Depondt, Chantal; Rola, Rafal; Klockgether, Thomas; García, Antonio; Mutlu, Gurkan; Schöls, Ludger
2016-04-01
Spinocerebellar ataxias (SCAs) are characterized by autosomal dominantly inherited progressive ataxia but are clinically heterogeneous due to variable involvement of non-cerebellar parts of the nervous system. Non-cerebellar symptoms contribute significantly to the burden of SCAs, may guide the clinician to the underlying genetic subtype, and might be useful markers to monitor disease. Peripheral neuropathy is frequently observed in SCA, but subtype-specific features and subclinical manifestations have rarely been evaluated. We performed a multicenter nerve conduction study with 162 patients with genetically confirmed SCA1, SCA2, SCA3, and SCA6. The study proved peripheral nerves to be involved in the neurodegenerative process in 82 % of SCA1, 63 % of SCA2, 55 % of SCA3, and 22 % of SCA6 patients. Most patients of all subtypes revealed affection of both sensory and motor fibers. Neuropathy was most frequently of mixed type with axonal and demyelinating characteristics in all SCA subtypes. However, nerve conduction velocities of SCA1 patients were slower compared to other genotypes. SCA6 patients revealed less axonal damage than patients with other subtypes. No influence of CAG repeat length or biometric determinants on peripheral neuropathy could be identified in SCA1, SCA3, and SCA6. In SCA2, earlier onset and more severe ataxia were associated with peripheral neuropathy. We proved peripheral neuropathy to be a frequent site of the neurodegenerative process in all common SCA subtypes. Since damage to peripheral nerves is readily assessable by electrophysiological means, nerve conduction studies should be performed in a longitudinal approach to assess these parameters as potential progression markers.
Morphometric analysis of the working zone for endoscopic lumbar discectomy.
Min, Jun-Hong; Kang, Shin-Hyuk; Lee, Jang-Bo; Cho, Tai-Hyoung; Suh, Jung-Keun; Rhyu, Im-Joo
2005-04-01
Our study's purpose was to analyze the working zone for the current practice of endoscopic discectomy at the lateral exit zone of the intervertebral foramen (IVF) and to define a safe point for clinical practice. One hundred eighty-six nerve roots of the lumbar IVFs of cadaveric spines were studied. Upon lateral inspection, we measured the distance from the nerve root to the most dorsolateral margin of the disc and to the lateral edge of the superior articular process of the vertebra below at the plane of the superior endplate of the vertebra below. The angle between the root and the plane of the disc was also measured. The results showed that the mean distance from the nerve root to the most dorsolateral margin of the disc was 3.4 +/- 2.7 mm (range 0.0-10.8 mm), the mean distance from the nerve root to the lateral edge of the superior articular process of the vertebra below was 11.6 +/- 4.6 mm (range 4.1-24.3 mm), and the mean angle between the nerve root and the plane of the disc was 79.1 degrees +/- 7.6 degrees (range 56.0-90.0 degrees ). The values of the base of the working zone have a wide distribution. Blind puncture of annulus by the working cannula or obturator may be dangerous. The safer procedure would be the direct viewing of the annulus by endoscopy before annulotomy; the working cannula should be inserted into the foramen as close as possible to the facet joint.
Brachial plexus endoscopic dissection and correlation with open dissection.
Lafosse, T; Masmejean, E; Bihel, T; Lafosse, L
2015-12-01
Shoulder endoscopy is evolving and becoming extra-articular. More and more procedures are taking place in the area of the brachial plexus (BP). We carried out an anatomical study to describe the endoscopic anatomy of the BP and the technique used to dissect and expose the BP endoscopically. Thirteen fresh cadavers were dissected. We first performed an endoscopic dissection of the BP, using classical extra-articular shoulder arthroscopy portals. Through each portal, we dissected as many structures as possible and identified them. We then did an open dissection to corroborate the endoscopic findings and to look for damage to the neighboring structures. In the supraclavicular area, we were able to expose the C5, C6 and C7 roots, and the superior and middle trunks in 11 of 13 specimens through two transtrapezial portals by following the suprascapular nerve. The entire infraclavicular portion of the BP (except the medial cord and its branches) was exposed in 11 of 13 specimens. The approach to the infraclavicular portion of the BP led directly to the lateral and posterior cords, but the axillary artery hid the medial cord. The musculocutaneous nerve was the first nerve encountered when dissecting medially from the anterior aspect of the coracoid process. The axillary nerve was the first nerve encountered when following the anterior border of the subscapularis medially from the posterior aspect of the coracoid process. Knowledge of the endoscopic anatomy of the BP is mandatory to expose and protect this structure while performing advanced arthroscopic shoulder procedures. Copyright © 2015 SFCM. Published by Elsevier Masson SAS. All rights reserved.
Evidence for crustacean cardioactive peptide-like innervation of the gut in Locusta migratoria.
Donini, Andrew; Ngo, Caroline; Lange, Angela B
2002-11-01
Hindguts from female Vth instar larvae, young adults (1-2 days) and old adults (>10 days) are equally sensitive to the crustacean cardioactive peptide (CCAP), with changes in contraction occurring at a threshold concentration of 10(-9)M and maximal responses observed at concentrations ranging between 10(-7) and 5x10(-6)M. An immunohistochemical examination of the gut of Locusta migratoria with an antiserum raised against CCAP revealed an extensive network of CCAP-like immunoreactive processes on the hindgut and posterior midgut via the 11th sternal nerve arising from the terminal abdominal ganglion. Anterograde filling of the 11th sternal nerve with neurobiotin revealed extensive processes and terminals on the hindgut. Retrograde filling of the branch of the 11th sternal nerve which innervates the hindgut with neurobiotin revealed two bilaterally paired cells in the terminal abdominal ganglion which co-localized with CCAP-like immunoreactivity. Results suggest that a CCAP-like substance acts as a neurotransmitter/neuromodulator at the locust hindgut.
de Oliveira Martins, Daniel; Martinez dos Santos, Fabio; Evany de Oliveira, Mara; de Britto, Luiz R.G.; Benedito Dias Lemos, José
2013-01-01
Abstract Nerve-related complications have been frequently reported in dental procedures, and a very frequent type of occurrence involves the inferior alveolar nerve (IAN). The nerve injury in humans often results in persistent pain accompanied by allodynia and hyperalgesia. In this investigation, we used an experimental IAN injury in rats, which was induced by a Crile hemostatic clamp, to evaluate the effects of laser therapy on nerve repair. We also studied the nociceptive behavior (von Frey hair test) before and after the injury and the behavioral effects of treatment with laser therapy (emitting a wavelength of 904 nm, output power of 70 Wpk, a spot area of ∼0.1 cm2, frequency of 9500 Hz, pulse time 60 ns and an energy density of 6 J/cm2). As neurotrophins are essential for the process of nerve regeneration, we used immunoblotting techniques to preliminarily examine the effects of laser therapy on the expression of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). The injured animals treated with laser exhibited an improved nociceptive behavior. In irradiated animals, there was an enhanced expression of NGF (53%) and a decreased BDNF expression (40%) after laser therapy. These results indicate that BDNF plays a locally crucial role in pain-related behavior development after IAN injury, increasing after lesions (in parallel to the installation of pain behavior) and decreasing with laser therapy (in parallel to the improvement of pain behavior). On the other hand, NGF probably contributes to the repair of nerve tissue, in addition to improving the pain-related behavior. PMID:23190308
Lange-Maia, Brittney S; Newman, Anne B; Jakicic, John M; Cauley, Jane A; Boudreau, Robert M; Schwartz, Ann V; Simonsick, Eleanor M; Satterfield, Suzanne; Vinik, Aaron I; Zivkovic, Sasa; Harris, Tamara B; Strotmeyer, Elsa S
2017-10-01
Age-related peripheral nervous system (PNS) impairments are highly prevalent in older adults. Although sensorimotor and cardiovascular autonomic function have been shown to be related in persons with diabetes, the nature of the relationship in general community-dwelling older adult populations is unknown. Health, Aging and Body Composition participants (n=2399, age=76.5±2.9years, 52% women, 38% black) underwent peripheral nerve testing at the 2000/01 clinic visit. Nerve conduction amplitude and velocity were measured at the peroneal motor nerve. Sensory nerve function was assessed with vibration detection threshold and monofilament (1.4-g/10-g) testing at the big toe. Symptoms of lower-extremity peripheral neuropathy were collected by self-report. Cardiovascular autonomic function indicators included postural hypotension, resting heart rate (HR), as well as HR response to and recovery from submaximal exercise testing (400m walk). Multivariable modeling adjusted for demographic/lifestyle factors, medication use and comorbid conditions. In fully adjusted models, poor motor nerve conduction velocity (<40m/s) was associated with greater odds of postural hypotension, (OR=1.6, 95% CI: 1.0-2.5), while poor motor amplitude (<1mV) was associated with 2.3beats/min (p=0.003) higher resting HR. No associations were observed between sensory nerve function or symptoms of peripheral neuropathy and indicators of cardiovascular autonomic function. Motor nerve function and indicators of cardiovascular autonomic function remained significantly related even after considering many potentially shared risk factors. Future studies should investigate common underlying processes for developing multiple PNS impairments in older adults. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhou, Zhang-ling; Li, Cheng-xin; Jiang, Yue-bo; Zuo, Cong; Cai, Yun; Wang, Rui
2012-09-01
To assess and grade facial nerve dysfunction according to the extent of facial paralysis in the clinical course of acupuncture treatment for Bell's palsy, and to observe the interrelationship between the grade, the efficacy and the period of treatment, as well as the effect on prognosis. The authors employed the House-Brackmann scale, a commonly used evaluation scale for facial paralysis motor function, and set standards for eye fissure and lips. According to the improved scale, the authors assessed and graded the degree of facial paralysis in terms of facial nerve dysfunction both before and after treatment. The grade was divided into five levels: mild, moderate, moderately severe, severe dysfunction and complete paralysis. The authors gave acupuncture treatment according to the state of the disease without artificially setting the treatment period. The observation was focused on the efficacy and the efficacy was evaluated throughout the entire treatment process. Fifty-three cases out of 68 patients with Bell's palsy were cured and the overall rate of efficacy was 97%. Statistically significant differences (P<0.01) were perceived among the efficacy of five levels of facial nerve dysfunction. Efficacy was correlated with the damage level of the disease (correlation coefficient r=0.423, P<0.01). The course of treatment also extended with the severity of facial nerve dysfunction (P<0.01). Differences exist in patients with Bell's palsy in terms of severity of facial nerve dysfunction. Efficacy is reduced in correlation with an increase in facial nerve dysfunction, and the period of treatment varies in need of different levels of facial nerve dysfunction. It is highly necessary to assess and grade patients before observation and treatment in clinical study, and choose corresponding treatment according to severity of damage of the disease.
Vallières, Nicolas; Barrette, Benoit; Wang, Linda Xiang; Bélanger, Erik; Thiry, Louise; Schneider, Marlon R; Filali, Mohammed; Côté, Daniel; Bretzner, Frédéric; Lacroix, Steve
2017-04-01
When a nerve fiber is cut or crushed, the axon segment that is separated from the soma degenerates distal from the injury in a process termed Wallerian degeneration (WD). C57BL/6OlaHsd-Wld S (Wld S ) mutant mice exhibit significant delays in WD. This results in considerably delayed Schwann cell and macrophage responses and thus in impaired nerve regenerations. In our previous work, thousands of genes were screened by DNA microarrays and over 700 transcripts were found to be differentially expressed in the injured sciatic nerve of Wld S compared with wild-type (WT) mice. One of these transcripts, betacellulin (Btc), was selected for further analysis since it has yet to be characterized in the nervous system, despite being known as a ligand of the ErbB receptor family. We show that Btc mRNA is strongly upregulated in immature and dedifferentiated Sox2 + Schwann cells located in the sciatic nerve distal stump of WT mice, but not Wld S mutants. Transgenic mice ubiquitously overexpressing Btc (Tg-Btc) have increased numbers of Schmidt-Lantermann incisures compared with WT mice, as revealed by Coherent anti-Stokes Raman scattering (CARS). Tg-Btc mice also have faster nerve conduction velocity. Finally, we found that deficiency in Btc reduces the proliferation of myelinating Schwann cells after sciatic nerve injury, while Btc overexpression induces Schwann cell proliferation and improves recovery of locomotor function. Taken together, these results suggest a novel regulatory role of Btc in axon-Schwann cell interactions involved in myelin formation and nerve repair. GLIA 2017 GLIA 2017;65:657-669. © 2017 Wiley Periodicals, Inc.
Carriel, Víctor; Garzón, Ingrid; Campos, Antonio; Cornelissen, Maria; Alaminos, Miguel
2017-02-01
Nerve conduits are promising alternatives for repairing nerve gaps; they provide a close microenvironment that supports nerve regeneration. In this sense, histological analysis of axonal growth is a determinant to achieve successful nerve regeneration. To evaluate this process, the most-used immunohistochemical markers are neurofilament (NF), β-III tubulin and, infrequently, GAP-43. However, GAP-43 expression in long-term nerve regeneration models is still poorly understood. In this study we analysed GAP-43 expression and its correlation with NF and S-100, using three tissue-engineering approaches with different regeneration profiles. A 10 mm gap was created in the sciatic nerve of 12 rats and repaired using collagen conduits or collagen conduits filled with fibrin-agarose hydrogels or with hydrogels containing autologous adipose-derived mesenchymal stem cells (ADMSCs). After 12 weeks the conduits were harvested for histological analysis. Our results confirm the long-term expression of GAP-43 in all groups. The expression of GAP-43 and NF was significantly higher in the group with ADMSCs. Interestingly, GAP-43 was observed in immature, newly formed axons and NF in thicker and mature axons. These proteins were not co-expressed, demonstrating their differential expression in newly formed nerve fascicles. Our descriptive and quantitative histological analysis of GAP-43 and NFL allowed us to determine, with high accuracy, the heterogenic population of axons at different stages of maturation in three tissue-engineering approaches. Finally, to perform a complete assessment of axonal regeneration, the quantitative immunohistochemical evaluation of both GAP-43 and NF could be a useful quality control in tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
Lopez-Fagundo, Cristina; Mitchel, Jennifer A.; Ramchal, Talisha D.; Dingle, Yu-Ting L.; Hoffman-Kim, Diane
2013-01-01
The path created by aligned Schwann cells (SCs) after nerve injury underlies peripheral nerve regeneration. We developed geometric bioinspired substrates to extract key information needed for axon guidance by deconstructing the topographical cues presented by SCs. We have previously reported materials that directly replicate SC topography with micro- and nanoscale resolution, but a detailed explanation of the means of directed axon extension on SC topography has not yet been described. Here, using neurite tracing and time-lapse microscopy, we analyzed the SC features that influence axon guidance. Novel poly(dimethylsiloxane) materials, fabricated via photolithography, incorporated bioinspired topographical components with the shapes and sizes of aligned SCs, namely somas and processes, where the length of the processes were varied but the soma geometry and dimensions were kept constant. Rat dorsal root ganglia neurites aligned to all materials presenting bioinspired topography after a 5 days in culture and to bioinspired materials presenting soma and process features after only 17 hours in culture. Key findings of this study were: Neurite response to underlying bioinspired topographical features was time dependent, where at 5 days, neurites aligned most strongly to materials presenting combinations of soma and process features, with higher than average density of either process or soma features; but at 17 hours they aligned more strongly to materials presenting average densities of soma and process features and to materials presenting process features only. These studies elucidate the influence of SC topography on axon guidance in a time-dependent setting and have implications for the optimization of nerve regeneration strategies. PMID:23557939
Ware, Taylor; Simon, Dustin; Hearon, Keith; Liu, Clive; Shah, Sagar; Reeder, Jonathan; Khodaparast, Navid; Kilgard, Michael P; Maitland, Duncan J; Rennaker, Robert L; Voit, Walter E
2012-12-01
Planar electronics processing methods have enabled neural interfaces to become more precise and deliver more information. However, this processing paradigm is inherently 2D and rigid. The resulting mechanical and geometrical mismatch at the biotic-abiotic interface can elicit an immune response that prevents effective stimulation. In this work, a thiol-ene/acrylate shape memory polymer is utilized to create 3D softening substrates for stimulation electrodes. This substrate system is shown to soften in vivo from more than 600 to 6 MPa. A nerve cuff electrode that coils around the vagus nerve in a rat and that drives neural activity is demonstrated.
Graded Positive Feedback in Elasmobranch Ampullae of Lorenzini
NASA Astrophysics Data System (ADS)
Kalmijn, Ad. J.
2003-05-01
The acute electrical sensitivity of marine sharks and rays is the greatest known in the Animal Kingdom. I investigate the possibility that the underlying biophysical principles are the very same as those encountered in the central nervous system of animal and man. The elasmobranch ampullae of Lorenzini detect the weak electric fields originating from the oceanic environment, whereas the nerve cells of the brain detect the electric fields arising, well, from the central nervous system. In responding to electrical signals, the cell membranes of excitable cells behave in different regions of the cell as negative or positive conductors. The negative and positive conductances in series, loaded by the cell's electrolytic environment, constitute a positive feedback circuit. The result may be of an all-or-none nature, as in peripheral nerve conduction, or of a graded nature, as in central processing. In this respect, the operation of the elasmobranch ampullae of Lorenzini is more akin to the graded, integrative processes of higher brain centers than to the conduction of nerve action potentials. Hence, the positive-feedback ampullary circuit promises to help elucidate the functioning of the central nervous system as profoundly as the squid giant axon has served to reveal the process of nervous conduction.
Bolon, Brad; Krinke, Georg; Butt, Mark T; Rao, Deepa B; Pardo, Ingrid D; Jortner, Bernard S; Garman, Robert H; Jensen, Karl; Andrews-Jones, Lydia; Morrison, James P; Sharma, Alok K; Thibodeau, Michael S
2018-01-01
Peripheral nervous system (PNS) toxicity is surveyed inconsistently in nonclinical general toxicity studies. These Society of Toxicologic Pathology "best practice" recommendations are designed to ensure consistent, efficient, and effective sampling, processing, and evaluation of PNS tissues for four different situations encountered during nonclinical general toxicity (screening) and dedicated neurotoxicity studies. For toxicity studies where neurotoxicity is unknown or not anticipated (situation 1), PNS evaluation may be limited to one sensorimotor spinal nerve. If somatic PNS neurotoxicity is suspected (situation 2), analysis minimally should include three spinal nerves, multiple dorsal root ganglia, and a trigeminal ganglion. If autonomic PNS neuropathy is suspected (situation 3), parasympathetic and sympathetic ganglia should be assessed. For dedicated neurotoxicity studies where a neurotoxic effect is expected (situation 4), PNS sampling follows the strategy for situations 2 and/or 3, as dictated by functional or other compound/target-specific data. For all situations, bilateral sampling with unilateral processing is acceptable. For situations 1-3, PNS is processed conventionally (immersion in buffered formalin, paraffin embedding, and hematoxylin and eosin staining). For situation 4 (and situations 2 and 3 if resources and timing permit), perfusion fixation with methanol-free fixative is recommended. Where PNS neurotoxicity is suspected or likely, at least one (situations 2 and 3) or two (situation 4) nerve cross sections should be postfixed with glutaraldehyde and osmium before hard plastic resin embedding; soft plastic embedding is not a suitable substitute for hard plastic. Special methods may be used if warranted to further characterize PNS findings. Initial PNS analysis should be informed, not masked ("blinded"). Institutions may adapt these recommendations to fit their specific programmatic requirements but may need to explain in project documentation the rationale for their chosen PNS sampling, processing, and evaluation strategy.
Balaratnasingam, Chandrakumar; Kang, Min H; Yu, Paula; Chan, Geoffrey; Morgan, William H; Cringle, Stephen J; Yu, Dao-Yi
2014-04-01
Retinal ganglion cell (RGC) axonal structure and function in the optic nerve head (ONH) is predominantly supported by astrocytes and capillaries. There is good experimental evidence to demonstrate that RGC axons are perturbed in a non-uniform manner following ONH injury and it is likely that the pattern of RGC axonal modification bears some correlation with the quantitative properties of astrocytes and capillaries within laminar compartments. Although there have been some excellent topographic studies concerning glial and microvascular networks in the ONH our knowledge regarding the quantitative properties of these structures are limited. This report is an in-depth quantitative, structural analysis of astrocytes and capillaries in the pre laminar, lamina cribrosa and post laminar compartments of the ONH. 49 optic nerves from human (n = 10), pig (n = 12), horse (n = 6), rat (n = 11) and rabbit (n = 10) eyes are studied. Immunohistochemical and high-magnification confocal microscopy techniques are used to co-localise astrocytes, capillaries and nuclei in the mid-portion of the optic nerve. Quantitative methodology is used to determine the area occupied by astrocyte processes, microglia processes, nuclei density and the area occupied by capillaries in each laminar compartment. Comparisons are made within and between species. Relationships between ONH histomorphometry and astrocyte-capillary constitution are also explored. This study demonstrates that there are significant differences in the quantitative properties of capillaries and astrocytes between the laminar compartments of the human ONH. Astrocyte processes occupied the greatest area in the lamina cribrosa compartment of the human ONH implicating it as an area of great metabolic demands. Microglia were found to occupy only a small proportion of tissue in the rat, rabbit and pig optic nerve suggesting that the astrocyte is the predominant glia cell type in the optic nerve. This study also demonstrates that there is significant uniformity, with respect to astrocyte and capillary constitution, in the post laminar region of species with an unmyelinated anterior optic nerve. This implicates an important role served by oligodendrocytes and myelin in governing the structural characteristics of the post laminar optic nerve. Finally, this study demonstrates that eyes with similar lamina cribrosa structure do not necessarily share an identical cellular constitution with respect to astrocytes. The quantitative properties of astrocytes in the pre laminar and lamina cribrosa regions of the rat, which has a rudimentary lamina cribrosa with only a few collagenous beams, shared more similarities to the human eye than the pig or horse. The quantitative properties of astrocytes and capillaries in the laminar compartments of the ONH provide a basis for understanding the pathogenic mechanisms that are involved in diseases such as glaucoma and ischemic optic neuropathy. The findings in this study also provide valuable information about the distinct advantages of different animal models for studying human optic nerve diseases. Utilisation of structural data provided in this report together with emerging in vivo technology may potentially permit the early identification of RGC axonal injury by quantifying changes in ONH capillaries and astrocytes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Peretti, Ana Luiza; Antunes, Juliana Sobral; Lovison, Keli; Kunz, Regina Inês; Castor, Lidyane Regina Gomes; Brancalhão, Rose Meire Costa; Bertolini, Gladson Ricardo Flor; Ribeiro, Lucinéia de Fátima Chasko
2017-01-01
ABSTRACT Objective To evaluate the action of vanillin (Vanilla planifolia) on the morphology of tibialis anterior and soleus muscles after peripheral nerve injury. Methods Wistar rats were divided into four groups, with seven animals each: Control Group, Vanillin Group, Injury Group, and Injury + Vanillin Group. The Injury Group and the Injury + Vanillin Group animals were submitted to nerve injury by compression of the sciatic nerve; the Vanillin Group and Injury + Vanillin Group, were treated daily with oral doses of vanillin (150mg/kg) from the 3rd to the 21st day after induction of nerve injury. At the end of the experiment, the tibialis anterior and soleus muscles were dissected and processed for light microscopy and submitted to morphological analysis. Results The nerve compression promoted morphological changes, typical of denervation, and the treatment with vanillin was responsible for different responses in the studied muscles. For the tibialis anterior, there was an increase in the number of satellite cells, central nuclei and fiber atrophy, as well as fascicular disorganization. In the soleus, only increased vascularization was observed, with no exacerbation of the morphological alterations in the fibers. Conclusion The treatment with vanillin promoted increase in intramuscular vascularization for the muscles studied, with pro-inflammatory potential for tibialis anterior, but not for soleus muscle. PMID:28767917
Hemifacial Spasm and Neurovascular Compression
Lu, Alex Y.; Yeung, Jacky T.; Gerrard, Jason L.; Michaelides, Elias M.; Sekula, Raymond F.; Bulsara, Ketan R.
2014-01-01
Hemifacial spasm (HFS) is characterized by involuntary unilateral contractions of the muscles innervated by the ipsilateral facial nerve, usually starting around the eyes before progressing inferiorly to the cheek, mouth, and neck. Its prevalence is 9.8 per 100,000 persons with an average age of onset of 44 years. The accepted pathophysiology of HFS suggests that it is a disease process of the nerve root entry zone of the facial nerve. HFS can be divided into two types: primary and secondary. Primary HFS is triggered by vascular compression whereas secondary HFS comprises all other causes of facial nerve damage. Clinical examination and imaging modalities such as electromyography (EMG) and magnetic resonance imaging (MRI) are useful to differentiate HFS from other facial movement disorders and for intraoperative planning. The standard medical management for HFS is botulinum neurotoxin (BoNT) injections, which provides low-risk but limited symptomatic relief. The only curative treatment for HFS is microvascular decompression (MVD), a surgical intervention that provides lasting symptomatic relief by reducing compression of the facial nerve root. With a low rate of complications such as hearing loss, MVD remains the treatment of choice for HFS patients as intraoperative technique and monitoring continue to improve. PMID:25405219
Shimizu, Yusuke; Nagasao, Tomohisa; Taneda, Hiroko; Sakamoto, Yoshiaki; Asou, Toru; Imanishi, Nobuyuki; Kishi, Kazuo
2014-02-01
Patients are occasionally unhappy with the size, shape, and positioning of breast implants. An option to improve their satisfaction with breast augmentation includes directly involving them in the process with awake surgery done under nerve block and tumescence. This study describes the resultsof using such an awake anaesthesia technique in 35 patients. After the intercostal nerves dominating the Th3 to Th6 regions were anaesthetized using 0.5% bupivacaine, a tumescent solution consisting of lidocaine, epinephrine, and saline was injected around the mammary gland, and breast augmentation was conducted using silicon implants. The majority of patients (31/35) reported no pain during the procedure and all patients were able to choose and confirm their final implant size and positioning. In all cases, blood loss was less than 10 ml. No patient experienced pneumothorax or toxicity of local anaesthetics. Combined usage of the intercostal nerve block and tumescent anaesthesia effectively reduces pain during breast augmentation. Keeping patient conscious enables meeting their requests during operation, contributing to increased satisfaction. For these advantages, combined usage of the intercostal nerve block and tumescent anaesthesia is recommended as a useful anaesthetic technique for breast augmentation.
NASA Astrophysics Data System (ADS)
Dreisewerd, Klaus; Kingston, Robert; Geraerts, Wijnand P. M.; Li, Ka Wan
1997-12-01
Matrix-assisted laser desorption mass spectrometry (MALDI-MS) was performed directly on a small piece of single penis nerve of the pond snail, Lymnaea stagnalis, and reveals the presence of complex peptide profiles, including many hitherto undescribed peptides. Two of the peptides have molecular weights corresponding exactly to the previously described Lymnaea small cardioactive peptides (SCP) A and B. We confirmed their identities by structural characterization of the two peptides directly from a single penis nerve by matrix-assisted laser desorption ionization high-energy collision tandem MS analysis. MALDI-MS of nervous tissues also demonstrates that a cluster of central neurons, which send their axons to the penis nerve, contain the two peptides. As the penis nerve is the nerve that innervates the penis complex, we propose that the peptides are involved in the modulation of male copulatory processes. A bioassay indeed showed that the peptides increase the contraction frequency of the vas deference in a dose-dependent manner. The results demonstrate the potential of direct MALDI-MS analysis of nervous tissue to complement or substitute conventional biochemical techniques for the identification and localization of neuropeptides.
An electrophysiological follow up of patients with n-hexane polyneuropathy.
Chang, Y C
1991-01-01
Electroneurographic (ENeG) and evoked potential (EP) studies were regularly performed on 11 printing workers with n-hexane polyneuropathy after cessation of exposure. At the initial examination, the ENeG studies simulated a demyelinative process. Further slowing of nerve conduction velocity, or further decreasing of action potential amplitude, or both in the follow up ENeG study were found in about half the patients. The motor distal latency did not worsen. Nerve conduction returned to normal earlier in the sensory than in the motor nerves. After the patients had regained full motor capability, conduction velocities in motor nerves were still significantly slowed. These ENeG characteristics correlate with the pathological and pathophysiological changes in experimental hexa-carbon neuropathies. The initial findings from the EP studies indicated a conduction abnormality in the central nervous system (CNS). Delayed worsening occurred in the amplitude of visual EPs in three patients. On serial follow up, the interpeak latency and interpeak amplitude of visual EPs improved little. Residual abnormalities were also found in the interpeak latency of auditory EPs in the brainstem and in the absolute latency of scalp somatosensory EPs from the peroneal nerve. Astroglial proliferation in the CNS probably impedes recovery of the abnormalities in EP. PMID:1993154
IGF-1 and BDNF promote chick bulbospinal neurite outgrowth in vitro.
Salie, Rishard; Steeves, John D
2005-11-01
Injured neurons in the CNS do not experience significant functional regeneration and so spinal cord insult often results in permanently compromised locomotor ability. The capability of a severed axon to re-grow is thought to depend on numerous factors, one of which is the decreased availability of neurotrophic factors. Application of trophic factors to axotomized neurons has been shown to enhance survival and neurite outgrowth. Although brainstem-spinal connections play a pivotal role in motor dysfunction after spinal cord injury, relatively little is known about the trophic sensitivity of these populations. This study explores the response of bulbospinal populations to various trophic factors. Several growth factors were initially examined for potential trophic effects on the projection neurons of the brainstem. Brain derived neurotrophic factor (BDNF) and insulin-like growth factor (IGF-1) significantly enhance mean process length in both the vestibulospinal neurons and spinal projection neurons from the raphe nuclei. Nerve growth factor (NGF), neurotrophin-4 (NT-4) and glial derived neurotrophic factor (GDNF) did not effect process outgrowth in vestibulospinal neurons. At the developmental stages used in this study, it was determined that receptors for BDNF and IGF-1 were present both on bulbospinal neurons and on surrounding cells with a non-neuronal morphology.
Kim, Seungchan; Im, Woo-Seok; Kang, Lami; Lee, Soon-Tae; Chu, Kon; Kim, Byoung In
2008-09-15
Electric and magnetic fields have been known to influence cellular behavior. In the present study, we hypothesized that the application of static magnetic fields to neurons will cause neurites to grow in a specific direction. In cultured human neuronal SH-SY5Y cells or PC12 cells, neurite outgrowth was induced by forskolin, retinoic acid, or nerve growth factor (NGF). We applied static magnetic fields to the neurons and analyzed the direction and morphology of newly formed neuronal processes. In the presence of the magnetic field, neurites grew in a direction perpendicular to the direction of the magnetic field, as revealed by the higher orientation index of neurites grown under the magnetic field compared to that of the neurites grown in the absence of the magnetic field. The neurites parallel to the magnetic field appeared to be dystrophic, beaded or thickened, suggesting that they would hinder further elongation processes. The co-localized areas of microtubules and actin filaments were arranged into the vertical axis to the magnetic field, while the levels of neurofilament and synaptotagmin were not altered. Our results suggest that the application of magnetic field can be used to modulate the orientation and direction of neurite formation in cultured human neuronal cells.
Kooloos, Jan G M; Vorstenbosch, Marc A T M
2013-01-01
A teaching tool that facilitates student understanding of a three-dimensional (3D) integration of dermatomes with peripheral cutaneous nerve field distributions is described. This model is inspired by the confusion in novice learners between dermatome maps and nerve field distribution maps. This confusion leads to the misconception that these two distribution maps fully overlap, and may stem from three sources: (1) the differences in dermatome maps in anatomical textbooks, (2) the limited views in the figures of dermatome maps and cutaneous nerve field maps, hampering the acquisition of a 3D picture, and (3) the lack of figures showing both maps together. To clarify this concept, the learning process can be facilitated by transforming the 2D drawings in textbooks to a 3D hands-on model and by merging the information from the separate maps. Commercially available models were covered with white cotton pantyhose, and borders between dermatomes were marked using the drawings from the students' required study material. Distribution maps of selected peripheral nerves were cut out from color transparencies. Both the model and the cut-out nerve fields were then at the students' disposal during a laboratory exercise. The students were instructed to affix the transparencies in the right place according to the textbook's figures. This model facilitates integrating the spatial relationships of the two types of nerve distributions. By highlighting the spatial relationship and aiming to provoke student enthusiasm, this model follows the advantages of other low-fidelity models. © 2013 American Association of Anatomists.
Abdulmajeed, Wahab Imam; Ibrahim, Ridwan Babatunde; Ishola, Azeez Olakunle; Balogun, Wasiu Gbolahan; Cobham, Ansa Emmanuel; Amin, Abdulbasit
2016-03-01
Phenytoin and amitriptyline are often reported to attenuate pain in chronic conditions. Information on their ability to ameliorate cognitive impairment associated with neuropathic pain remains unclear due to mixed results from studies. This study investigated the effects of phenytoin and amitriptyline on memory deficit associated with neuropathic pain. Twenty-eight adult male Wistar rats were randomly divided into four groups: A, B, C, and D (n=7). Groups A, B, C, and D served as sham control, sciatic nerve ligated untreated, sciatic nerve ligated receiving amitriptyline (5 mg/kg), and sciatic nerve ligated receiving phenytoin (10 mg/kg) respectively. Treatments lasted for 14 days, after which both 'Y' maze and novel object recognition test (NOR) were performed. On the last day of treatment, the animals were anesthetized and their brain excised, and the prefrontal cortices and sciatic nerve were processed histologically using hematoxylin and eosin. There was memory impairment in the sciatic nerve ligated untreated group which was statistically significant (p<0.05) when compared to the phenytoin-treated, amitriptyline-treated, and sham control groups using the 'Y' maze and NOR tests. Histological quantification showed that the prefrontal cortices of the ligated animals showed increased neural population in comparison to normal control. These increases were significantly marked in the untreated ligated group. Sciatic nerve of untreated ligated group showed high demyelination and axonal degeneration which was ameliorated in the treated animals. The administration of amitriptyline and phenytoin can ameliorate neuronal injury, demyelination, and memory impairment associated with neuropathic pain in Wistar rats.
Clinical feasibility test on a minimally invasive laser therapy system in microsurgery of nerves.
Mack, K F; Leinung, M; Stieve, M; Lenarz, T; Schwab, B
2008-01-01
The clinical feasibility test described here evaluates the basis for a laser therapy system that enables tumour tissue to be separated from nerves in a minimally invasive manner. It was first investigated whether, using an Er:YAG laser, laser-induced nerve (specifically, facial nerve) responses in the rabbit in vivo can be reliably detected with the hitherto standard monitoring techniques. Peripherally recordable neuromuscular signals (i.e. compound action potentials, CAPs) were used to monitor nerve function and to establish a feedback loop. The first occurrence of laser-evoked CAPs was taken as the criterion for deciding when to switch off the laser. When drawing up criteria governing the control and termination of the laser application, the priority was the maintenance of nerve function. Five needle-electrode arrays specially developed for this purpose, each with a miniature preamplifier, were then placed into the facial musculature instead of single-needle electrodes. The system was tested in vivo under realistic surgical conditions (i.e. facial-nerve surgery in the rabbit). This modified multi-channel electromyography (EMG) system enabled laser-evoked CAPs to be detected that have amplitudes 10 times smaller than those picked up by commercially available systems. This optimization, and the connection of the neuromuscular unit with the Er:YAG laser via the electrode array to create a feedback loop, were designed to make it possible to maintain online control of the laser ablation process in the vicinity of neuronal tissue, thus ensuring that tissue excision is both reliable and does not affect function. Our results open up new possibilities in minimally invasive surgery near neural structures.
NASA Technical Reports Server (NTRS)
Yeagle, S. P.; Mayer, R. F.; Max, S. R.
1983-01-01
The peroneal nerve of subject rats were crushed 1 cm from the muscle in order to examine the isometric contractile properties of skeletal muscle in the recovery sequency during reinnervation of normal, castrated, and testosterone-treated rats. The particular muscle studied was the extensor digitorum longus, with functional reinnervation first observed 8-9 days after nerve crush. No evidence was found that either castration or testosterone injections altered the process of reinnervation after the nerve crush, with the conclusion being valid at the 0.05 p level. The most reliable index of reinnervation was found to be the twitch:tetanus ratio, a factor of use in future studies of the reinnervation of skeletal muscle.
[Conversion of sound into auditory nerve action potentials].
Encke, J; Kreh, J; Völk, F; Hemmert, W
2016-11-01
Outer hair cells play a major role in the hearing process: they amplify the motion of the basilar membrane up to a 1000-fold and at the same time sharpen the excitation patterns. These patterns are converted by inner hair cells into action potentials of the auditory nerve. Outer hair cells are delicate structures and easily damaged, e. g., by overexposure to noise. Hearing aids can amplify the amplitude of the excitation patterns, but they cannot restore their degraded frequency selectivity. Noise overexposure also leads to delayed degeneration of auditory nerve fibers, particularly those with low a spontaneous rate, which are important for the coding of sound in noise. However, this loss cannot be diagnosed by pure-tone audiometry.
Lanišnik, Boštjan; Žitnik, Lidija; Levart, Primož; Žargi, Miha; Rodi, Zoran
2016-12-01
Intraoperative monitoring of the cranial nerve XI (CN XI) may decrease shoulder disability following modified radical neck dissection. Prospective study was designed comparing results of Constant Shoulder Score (CSS), Shoulder Pain and Disability Index (SPADI) and EMG score of the trapezius muscle (mT) before and after surgery. One side of the neck was monitored during surgery with intraoperative nerve monitor. EMG scores of the mT 6 months postoperatively were statistically better on monitored as compared to the non-monitored side of the neck (p = 0.041), while the differences of the CSS and SPADI were not statistically significant. Patients with better EMG scores of the mT at 6 weeks recuperated better and with smaller decrease of the CSS. Intraoperative monitoring is beneficial at the beginning of the surgeon's learning curve and in the process of familiarizing with anatomical variation of the CN XI.
Can the Nerve Growth Factor promote the reinnervation of the transplanted heart?
Galli, Alessio
2014-02-01
The activity of the heart is widely regulated by the autonomous nervous system. This important mechanism of control may be impaired in chronic diseases such as heart failure or lost in those patients who undergo heart transplantation, owing to the surgical interruption of cardiac nerves in the transplanted heart. It has been demonstrated that spontaneous reinnervation can occur in transplanted hearts and is associated with an improvement in cardiac function. However, this process may require many years and the restoration of a proper cardiac innervation and functioning during exercise is never complete. In this perspective, the Nerve Growth Factor (NGF) and other neurotrophic hormones might ameliorate cardiac innervation in the transplanted heart and should be tried in animal models. Endothelial cells engineered with a viral vector to overexpress the NGF might be engrafted in the heart and integrate into cardiac small vessels, thus providing a source of neurotrophic factors which might promote and direct regrowth and axonal sprouting of cardiac nerves. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Bcl-2 family member BIM has multiple glaucoma-relevant functions in DBA/2J mice
Harder, Jeffrey M.; Fernandes, Kimberly A.; Libby, Richard T.
2012-01-01
Axonal insult induces retinal ganglion cell (RGC) death through a BAX-dependent process. The pro-apoptotic Bcl-2 family member BIM is known to induce BAX activation. BIM expression increased in RGCs after axonal injury and its induction was dependent on JUN. Partial and complete Bim deficiency delayed RGC death after mechanical optic nerve injury. However, in a mouse model of glaucoma, DBA/2J mice, Bim deficiency did not prevent RGC death in eyes with severe optic nerve degeneration. In a subset of DBA/2J mice, Bim deficiency altered disease progression resulting in less severe nerve damage. Bim deficient mice exhibited altered optic nerve head morphology and significantly lessened intraocular pressure elevation. Thus, a decrease in axonal degeneration in Bim deficient DBA/2J mice may not be caused by a direct role of Bim in RGCs. These data suggest that BIM has multiple roles in glaucoma pathophysiology, potentially affecting susceptibility to glaucoma through several mechanisms. PMID:22833783
Zirconium Hydroxide-coated Nanofiber Mats for Nerve Agent Decontamination.
Kim, Sohee; Ying, Wu Bin; Jung, Hyunsook; Ryu, Sam Gon; Lee, Bumjae; Lee, Kyung Jin
2017-03-16
Diverse innovative fabrics with specific functionalities have been developed for requirements such as self-decontamination of chemical/biological pollutants and toxic nerve agents. In this work, Zr(OH) 4 -coated nylon-6,6 nanofiber mats were fabricated for the decontamination of nerve agents. Nylon-6,6 fabric was prepared via the electrospinning process, followed by coating with Zr(OH) 4 , which was obtained by the hydrolysis of Zr(OBu) 4 by a sol-gel reaction on nanofiber surfaces. The reaction conditions were optimized by varying the amounts of Zr(OBu) 4 ,the reaction time, and the temperature of the sol-gel reaction. The composite nanofibers show high decontamination efficiency against diisopropylfluorophosphate, which is a nerve agent analogue, due to its high nucleophilicity that aids in the catalysis of the hydrolysis of the phosphonate ester bonds. Composite nanofiber mats have a large potential and can be applied in specific fields such as military and medical markets. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Formalin produces depolarizations in human airway smooth muscle in vitro.
Richards, Ira S; DeHate, Robin B
2006-03-01
Respiratory irritants may result in airway smooth muscle (ASM) depolarization and bronchoconstriction. We examined the effect of formalin on membrane potentials in human ASM in two types of in vitro preparations: strip preparations, which contain functional sensory and motor nerve endings and cultured cells, which lack these nerve endings due to the tissue dissociation process. Depolarizations occurred in atropine-treated strip preparations in response to formalin exposures, but not in similarly-treated cultured cells, suggesting a role for non-cholinergic mediators in formalin-induced depolarization. It is suggested that formalin may act as an irritant to produce bronchoconstriction that is mediated by the release of endogenous substance P (SP) from peripheral sensory nerve endings. This is supported by our observation that exogenous SP produced depolarizations of a magnitude similar to those produced by formalin in both strip preparations and cultured cells. In addition, capsaicin, which releases endogenous SP from nerve endings, produced depolarizations of a magnitude similar to formalin in strip preparations, but was without effect in cultured cells.
Infrared thermography based on artificial intelligence for carpal tunnel syndrome diagnosis.
Jesensek Papez, B; Palfy, M; Turk, Z
2008-01-01
Thermography for the measurement of surface temperatures is well known in industry, although is not established in medicine despite its safety, lack of pain and invasiveness, easy reproducibility, and low running costs. Promising results have been achieved in nerve entrapment syndromes, although thermography has never represented a real alternative to electromyography. Here an attempt is described to improve the diagnosis of carpal tunnel syndrome with thermography using a computer-based system employing artificial neural networks to analyse the images. Method reliability was tested on 112 images (depicting the dorsal and palmar sides of 26 healthy and 30 pathological hands), with the hand divided into 12 segments and compared relative to a reference. Palmar segments appeared to have no beneficial influence on classification outcome, whereas dorsal segments gave improved outcome with classification success rates near to or over 80%, and finger segments influenced by the median nerve appeared to be of greatest importance. These are preliminary results from a limited number of images and further research will be undertaken as our image database grows.
Encoding and decoding amplitude-modulated cochlear implant stimuli—a point process analysis
Shea-Brown, Eric; Rubinstein, Jay T.
2010-01-01
Cochlear implant speech processors stimulate the auditory nerve by delivering amplitude-modulated electrical pulse trains to intracochlear electrodes. Studying how auditory nerve cells encode modulation information is of fundamental importance, therefore, to understanding cochlear implant function and improving speech perception in cochlear implant users. In this paper, we analyze simulated responses of the auditory nerve to amplitude-modulated cochlear implant stimuli using a point process model. First, we quantify the information encoded in the spike trains by testing an ideal observer’s ability to detect amplitude modulation in a two-alternative forced-choice task. We vary the amount of information available to the observer to probe how spike timing and averaged firing rate encode modulation. Second, we construct a neural decoding method that predicts several qualitative trends observed in psychophysical tests of amplitude modulation detection in cochlear implant listeners. We find that modulation information is primarily available in the sequence of spike times. The performance of an ideal observer, however, is inconsistent with observed trends in psychophysical data. Using a neural decoding method that jitters spike times to degrade its temporal resolution and then computes a common measure of phase locking from spike trains of a heterogeneous population of model nerve cells, we predict the correct qualitative dependence of modulation detection thresholds on modulation frequency and stimulus level. The decoder does not predict the observed loss of modulation sensitivity at high carrier pulse rates, but this framework can be applied to future models that better represent auditory nerve responses to high carrier pulse rate stimuli. The supplemental material of this article contains the article’s data in an active, re-usable format. PMID:20177761
Contemporary management of jugular paragangliomas.
Wanna, George B; Sweeney, Alex D; Haynes, David S; Carlson, Matthew L
2015-04-01
Jugular paragangliomas are generally benign slow-growing tumors that can cause pulsatile tinnitus, hearing loss, and cranial nerves neuropathy. Progressive growth can also lead to intracranial extension. Historically, the treatment of choice for these lesions has been gross total resection. However, over the last 15 years, many groups have adopted less invasive management strategies including stereotactic radiation therapy, subtotal resection, and primary observation in order to reduce treatment-associated morbidity. The focus of this article is to review the modern management of jugular paraganglioma, highlighting the evolving treatment paradigm at the Otology Group of Vanderbilt. Copyright © 2015 Elsevier Inc. All rights reserved.
An, Ke; Elkassabany, Nabil M.; Liu, Jiabin
2015-01-01
Background Dexamethasone has been studied as an effective adjuvant to prolong the analgesia duration of local anesthetics in peripheral nerve block. However, the route of action for dexamethasone and its potential neurotoxicity are still unclear. Methods A mouse sciatic nerve block model was used. The sciatic nerve was injected with 60ul of combinations of various medications, including dexamethasone and/or bupivacaine. Neurobehavioral changes were observed for 2 days prior to injection, and then continuously for up to 7 days after injection. In addition, the sciatic nerves were harvested at either 2 days or 7 days after injection. Toluidine blue dyeing and immunohistochemistry test were performed to study the short-term and long-term histopathological changes of the sciatic nerves. There were six study groups: normal saline control, bupivacaine (10mg/kg) only, dexamethasone (0.5mg/kg) only, bupivacaine (10mg/kg) combined with low-dose (0.14mg/kg) dexamethasone, bupivacaine (10mg/kg) combined with high-dose (0.5mg/kg) dexamethasone, and bupivacaine (10mg/kg) combined with intramuscular dexamethasone (0.5mg/kg). Results High-dose perineural dexamethasone, but not systemic dexamethasone, combined with bupivacaine prolonged the duration of both sensory and motor block of mouse sciatic nerve. There was no significant difference on the onset time of the sciatic nerve block. There was “rebound hyperalgesia” to thermal stimulus after the resolution of plain bupivacaine sciatic nerve block. Interestingly, both low and high dose perineural dexamethasone prevented bupivacaine-induced hyperalgesia. There was an early phase of axon degeneration and Schwann cell response as represented by S-100 expression as well as the percentage of demyelinated axon and nucleus in the plain bupivacaine group compared with the bupivacaine plus dexamethasone groups on post-injection day 2, which resolved on post-injection day 7. Furthermore, we demonstrated that perineural dexamethasone, but not systemic dexamethasone, could prevent axon degeneration and demyelination. There was no significant caspase-dependent apoptosis process in the mouse sciatic nerve among all study groups during our study period. Conclusions Perineural, not systemic, dexamethasone added to a clinical concentration of bupivacaine may not only prolong the duration of sensory and motor blockade of sciatic nerve, but also prevent the bupivacaine-induced reversible neurotoxicity and short-term “rebound hyperalgesia” after the resolution of nerve block. PMID:25856078
... of the blood vessel walls) Neurosarcoidosis (complication of sarcoidosis, in which inflammation occurs in the brain, spinal ... the chemical processes in the body) Necrotizing vasculitis Sarcoidosis
Genetic control of Drosophila nerve cord development
NASA Technical Reports Server (NTRS)
Skeath, James B.; Thor, Stefan
2003-01-01
The Drosophila ventral nerve cord has been a central model system for studying the molecular genetic mechanisms that control CNS development. Studies show that the generation of neural diversity is a multistep process initiated by the patterning and segmentation of the neuroectoderm. These events act together with the process of lateral inhibition to generate precursor cells (neuroblasts) with specific identities, distinguished by the expression of unique combinations of regulatory genes. The expression of these genes in a given neuroblast restricts the fate of its progeny, by activating specific combinations of downstream genes. These genes in turn specify the identity of any given postmitotic cell, which is evident by its cellular morphology and choice of neurotransmitter.
Vacchiano, Giuseppe; Luna Maldonado, Aurelio; Matas Ros, Maria; Fiorenza, Elisa; Silvestre, Angela; Simonetti, Biagio; Pieri, Maria
2018-06-01
The study reports the evolution of the demyelinization process based on cholesterol ([CHOL]) levels quantified in median nerve samples and collected at different times-from death from both right and left wrists. The statistical data show that the phenomenon evolves differently in the right and left nerves. Such a difference can reasonably be attributed to a different multicenter evolution of the demyelinization. For data analysis, the enrolled subjects were grouped by similar postmortem intervals (PMIs), considering 3 intervals: PMI < 48 hours, 48 hours < PMI < 78 hours, and PMI > 78 hours. Data obtained from tissue dissected within 48 hours of death allowed for a PMI estimation according to the following equations: PMI = 0.000 + 0.7623 [CHOL]right (R = 0.581) for the right wrist and PMI = 0.000 + 0.8911 [CHOL]left (R = 0.794) for the left wrist.At present, this correlation cannot be considered to be definitive because of the limitation of the small size of the samples analyzed, because the differences in the sampling time and the interindividual and intraindividual variation may influence the demyelinization process.
Chemosensitivity of the osphradium of the pond snail Lymnaea stagnalis
Wedemeyer; Schild
1995-01-01
The osphradium of the pond snail Lymnaea stagnalis was studied to determine the stimuli to which this organ responds. The following stimuli were tested: hypoxia, hypercapnia, a mixture of amino acids, a mixture of citralva and amyl acetate and a mixture of lyral, lilial and ethylvanillin. The mean nerve activity consistently increased with elevated PCO2, whereas hypoxia produced variable effects. The nerve activity became rhythmic upon application of citralva and amyl acetate, but it increased in a non-rhythmic way upon application of the other two odorant mixtures tested. Whole-cell patch-clamp recordings were made from a group of 15 neurones that lay next to the issuing osphradial nerve, to determine whether ganglion cells were involved in olfactory signal processing. All neurones tested responded to at least one of the three mixtures of odorants. Both excitatory and inhibitory responses occurred. Our results indicate that the osphradium of the pond snail Lymnaea stagnalis is sensitive to elevated PCO2 as well as to three different classes of odorants. In addition, at least some neurones within the osphradium are involved in the processing of olfactory information.
Schuh, Christina; Halbweis, Robert; Pajer, Krisztián; Márton, Gábor; Hopf, Rudolf; Mosia, Shorena; Rünzler, Dominik; Redl, Heinz; Nógrádi, Antal; Hausner, Thomas
2015-01-01
Over the past decade, silk fibroin (SF) has been emergently used in peripheral nerve tissue engineering. Current approaches aiming at producing SF-based nerve guidance conduits (SF-NGCs) used dissolved silk based on either aqueous solutions or organic solvents. In this study, we describe a novel procedure to produce SF-NGCs: A braided tubular structure of raw Bombyx mori silk is subsequently processed with the ternary solvent CaCl2/H2O/ethanol, formic acid, and methanol to improve its mechanical and topographical characteristics. Topographically, the combination of the treatments results in a fusion of the outer single silk fibers to a closed layer with a thickness ranging from about 40 to 75 μm. In contrast to the outer wall, the inner lumen (not treated with processing solvents) still represents the braided structure of single fibers. Mechanical stability, elasticity, and kink characteristics were evaluated with a custom-made test system. The modification procedure described here drastically improved the elastic properties of our tubular raw scaffold, favoring its use as a NGC. A cell migration assay with NIH/3T3-fibroblasts revealed the impermeability of the SF-NGC wall for possible invading and scar-forming cells. Moreover, the potential of the SF-NGC to serve as a substratum for Schwann cells has been demonstrated by cytotoxicity tests and live-dead stainings of Schwann cells grown on the inner surface of the SF-NGC. In vivo, the SF-NGC was tested in a rat sciatic nerve injury model. In short-term in vivo studies, it was proved that SF-NGCs are not triggering host inflammatory reactions. After 12 weeks, we could demonstrate morphological and functional reinnervation of the distal targets. Filled with collagen, a higher number of axons could be found in the distal to the graft (1678±303), compared with the empty SF-NGC (1274±146). The novel SF-NGC presented here shows promising results for the treatment of peripheral nerve injuries. The modification of braided structures to adapt their mechanical and topographical characteristics may support the translation of SF-based scaffolds into the clinical setting. However, further improvements and the use of extracellular matrix molecules and Schwann cells are suggested to enable silk tube based conduits to bridge long-distance nerve gaps. PMID:25819471
Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity.
Zanos, Theodoros P; Silverman, Harold A; Levy, Todd; Tsaava, Tea; Battinelli, Emily; Lorraine, Peter W; Ashe, Jeffrey M; Chavan, Sangeeta S; Tracey, Kevin J; Bouton, Chad E
2018-05-22
The nervous system maintains physiological homeostasis through reflex pathways that modulate organ function. This process begins when changes in the internal milieu (e.g., blood pressure, temperature, or pH) activate visceral sensory neurons that transmit action potentials along the vagus nerve to the brainstem. IL-1β and TNF, inflammatory cytokines produced by immune cells during infection and injury, and other inflammatory mediators have been implicated in activating sensory action potentials in the vagus nerve. However, it remains unclear whether neural responses encode cytokine-specific information. Here we develop methods to isolate and decode specific neural signals to discriminate between two different cytokines. Nerve impulses recorded from the vagus nerve of mice exposed to IL-1β and TNF were sorted into groups based on their shape and amplitude, and their respective firing rates were computed. This revealed sensory neural groups responding specifically to TNF and IL-1β in a dose-dependent manner. These cytokine-mediated responses were subsequently decoded using a Naive Bayes algorithm that discriminated between no exposure and exposures to IL-1β and TNF (mean successful identification rate 82.9 ± 17.8%, chance level 33%). Recordings obtained in IL-1 receptor-KO mice were devoid of IL-1β-related signals but retained their responses to TNF. Genetic ablation of TRPV1 neurons attenuated the vagus neural signals mediated by IL-1β, and distal lidocaine nerve block attenuated all vagus neural signals recorded. The results obtained in this study using the methodological framework suggest that cytokine-specific information is present in sensory neural signals within the vagus nerve. Copyright © 2018 the Author(s). Published by PNAS.
Jones, Iwan; Novikova, Liudmila N; Novikov, Lev N; Renardy, Monika; Ullrich, Andreas; Wiberg, Mikael; Carlsson, Leif; Kingham, Paul J
2018-04-01
Surgical intervention is the current gold standard treatment following peripheral nerve injury. However, this approach has limitations, and full recovery of both motor and sensory modalities often remains incomplete. The development of artificial nerve grafts that either complement or replace current surgical procedures is therefore of paramount importance. An essential component of artificial grafts is biodegradable conduits and transplanted cells that provide trophic support during the regenerative process. Neural crest cells are promising support cell candidates because they are the parent population to many peripheral nervous system lineages. In this study, neural crest cells were differentiated from human embryonic stem cells. The differentiated cells exhibited typical stellate morphology and protein expression signatures that were comparable with native neural crest. Conditioned media harvested from the differentiated cells contained a range of biologically active trophic factors and was able to stimulate in vitro neurite outgrowth. Differentiated neural crest cells were seeded into a biodegradable nerve conduit, and their regeneration potential was assessed in a rat sciatic nerve injury model. A robust regeneration front was observed across the entire width of the conduit seeded with the differentiated neural crest cells. Moreover, the up-regulation of several regeneration-related genes was observed within the dorsal root ganglion and spinal cord segments harvested from transplanted animals. Our results demonstrate that the differentiated neural crest cells are biologically active and provide trophic support to stimulate peripheral nerve regeneration. Differentiated neural crest cells are therefore promising supporting cell candidates to aid in peripheral nerve repair. © 2018 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.
Intralaryngeal neuroanatomy of the recurrent laryngeal nerve of the rabbit
Ryan, Stephen; McNicholas, Walter T; O'Regan, Ronan G; Nolan, Philip
2003-01-01
We undertook this study to determine the detailed neuroanatomy of the terminal branches of the recurrent laryngeal nerve (RLN) in the rabbit to facilitate future neurophysiological recordings from identified branches of this nerve. The whole larynx was isolated post mortem in 17 adult New Zealand White rabbits and prepared using a modified Sihler's technique, which stains axons and renders other tissues transparent so that nerve branches can be seen in whole mount preparations. Of the 34 hemi-laryngeal preparations processed, 28 stained well and these were dissected and used to characterize the neuroanatomy of the RLN. In most cases (23/28) the posterior cricoarytenoid muscle (PCA) was supplied by a single branch arising from the RLN, though in five PCA specimens there were two or three separate branches to the PCA. The interarytenoid muscle (IA) was supplied by two parallel filaments arising from the main trunk of the RLN rostral to the branch(es) to the PCA. The lateral cricoarytenoid muscle (LCA) commonly received innervation from two fine twigs branching from the RLN main trunk and travelling laterally towards the LCA. The remaining fibres of the RLN innervated the thyroarytenoid muscle (TA) and comprised two distinct branches, one supplying the pars vocalis and the other branching extensively to supply the remainder of the TA. No communicating anastomosis between the RLN and superior laryngeal nerve within the larynx was found. Our results suggest it is feasible to make electrophysiological recordings from identified terminal branches of the RLN supplying laryngeal adductor muscles separate from the branch or branches to the PCA. However, the very small size of the motor nerves to the IA and LCA suggests that it would be very difficult to record selectively from the nerve supply to individual laryngeal adductor muscles. PMID:12739619
Arterial Anatomy of the Posterior Tibial Nerve in the Tarsal Tunnel.
Manske, Mary Claire; McKeon, Kathleen E; McCormick, Jeremy J; Johnson, Jeffrey E; Klein, Sandra E
2016-03-16
Both vascular and compression etiologies have been proposed as the source of neurologic symptoms in tarsal tunnel syndrome. Advancing the understanding of the arterial anatomy supplying the posterior tibial nerve (PTN) and its branches may provide insight into the cause of tarsal tunnel symptoms. The purpose of this study was to describe the arterial anatomy of the PTN and its branches. Sixty adult cadaveric lower extremities (thirty previously frozen and thirty fresh specimens) were amputated distal to the knee. The vascular supply to the PTN and its branches was identified, measured, and described macroscopically (the thirty previously frozen specimens, prepared using a formerly described debridement technique) and microscopically (the thirty fresh specimens, processed using the Spälteholz technique). On both macroscopic and microscopic evaluation, the PTN and the medial and lateral plantar nerves were observed to have multiple entering vessels within the tarsal tunnel. On microscopic evaluation, a vessel was observed to enter the nerve at the bifurcation of the PTN into the medial and lateral plantar nerves in twenty-two (73%) of the thirty specimens. There was a significant difference (p < 0.05) in vascular density between the PTN and each of its branches. The abundant blood supply to the PTN and its branches identified in this study is consistent with observations of other peripheral nerves. This rich vascular network may render the PTN and its branches susceptible to nerve compression related to vascular congestion. The combination of vascular and structural compression may also elicit neurologic symptoms. Advancing the understanding of the arterial anatomy supplying the PTN and its branches may provide insight into the cause and treatment of tarsal tunnel syndrome. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.
Poole, Daniel P.; Lee, Mike; Tso, Patrick; Bunnett, Nigel W.; Yo, Sek Jin; Lieu, TinaMarie; Shiu, Amy; Wang, Jen-Chywan; Nomura, Daniel K.
2014-01-01
Lymphatic fluid is a plasma filtrate that can be viewed as having biological activity through the passive accumulation of molecules from the interstitial fluid. The possibility that lymphatic fluid is part of an active self-contained signaling process that parallels the endocrine system, through the activation of G-protein coupled receptors (GPCR), has remained unexplored. We show that the GPCR lysophosphatidic acid 5 (LPA5) is found in sensory nerve fibers expressing calcitonin gene-related peptide (CGRP) that innervate the lumen of lymphatic lacteals and enteric nerves. Using LPA5 as a model for nutrient-responsive GPCRs present on sensory nerves, we demonstrate that dietary protein hydrolysate (peptone) can induce c-Fos expression in enterocytes and nerves that express LPA5. Mesenteric lymphatic fluid (MLF) mobilizes intracellular calcium in cell models expressing LPA5 upon feeding in a time- and dose-dependent manner. Primary cultured neurons of the dorsal root ganglia expressing CGRP are activated by MLF, which is enhanced upon LPA5 overexpression. Activation is independent of the known LPA5 agonists, lysophosphatidic acid and farnesyl pyrophosphate. These data bring forth a pathway for the direct stimulation of sensory nerves by luminal contents and interstitial fluid. Thus, by activating LPA5 on sensory nerves, MLF provides a means for known and yet to be identified constituents of the interstitial fluid to act as signals to comprise a “neurolymphocrine” system. PMID:24578341
Current progress in use of adipose derived stem cells in peripheral nerve regeneration
Zack-Williams, Shomari DL; Butler, Peter E; Kalaskar, Deepak M
2015-01-01
Unlike central nervous system neurons; those in the peripheral nervous system have the potential for full regeneration after injury. Following injury, recovery is controlled by schwann cells which replicate and modulate the subsequent immune response. The level of nerve recovery is strongly linked to the severity of the initial injury despite the significant advancements in imaging and surgical techniques. Multiple experimental models have been used with varying successes to augment the natural regenerative processes which occur following nerve injury. Stem cell therapy in peripheral nerve injury may be an important future intervention to improve the best attainable clinical results. In particular adipose derived stem cells (ADSCs) are multipotent mesenchymal stem cells similar to bone marrow derived stem cells, which are thought to have neurotrophic properties and the ability to differentiate into multiple lineages. They are ubiquitous within adipose tissue; they can form many structures resembling the mature adult peripheral nervous system. Following early in vitro work; multiple small and large animal in vivo models have been used in conjunction with conduits, autografts and allografts to successfully bridge the peripheral nerve gap. Some of the ADSC related neuroprotective and regenerative properties have been elucidated however much work remains before a model can be used successfully in human peripheral nerve injury (PNI). This review aims to provide a detailed overview of progress made in the use of ADSC in PNI, with discussion on the role of a tissue engineered approach for PNI repair. PMID:25621105
The addition of albumin improves Schwann cells viability in nerve cryopreservation.
González Porto, Sara Alicia; Domenech, Nieves; González Rodríguez, Alba; Avellaneda Oviedo, Edgar Mauricio; Blanco, Francisco J; Arufe Gonda, María C; Álvarez Jorge, Ángel; Sánchez Ibañez, Jacinto; Rendal Vázquez, Esther
2018-04-26
The purpose of the current study was to establish a valid protocol for nerve cryopreservation, and to evaluate if the addition of albumin supposed any advantage in the procedure. We compared a traditional cryopreservation method that uses dimethyl sulfoxide (DMSO) as cryoprotectant, to an alternative method that uses DMSO and albumin. Six Wistar Lewis rats were used to obtain twelve 20 mm fragments of sciatic nerve. In the first group, six fragments were cryopreserved in 199 media with 10% DMSO, with a temperature decreasing rate of 1 °C per minute. In the second group, six fragments were cryopreserved adding 4% human albumin. The unfreezing process consisted of sequential washings with saline in the first group, and saline and 20% albumin in the second group at 37 °C until the crioprotectant was removed. Structural evaluation was performed through histological analysis and electronic microscopy. The viability was assessed with the calcein-AM (CAM) and 4',6-diamino-2-fenilindol (DAPI) staining. Histological results showed a correct preservation of peripheral nerve architecture and no significant differences were found between the two groups. However, Schwann cells viability showed in the CAM-DAPI staining was significantly superior in the albumin group. The viability of Schwann cells was significantly increased when albumin was added to the nerve cryopreservation protocol. However, no significant structural differences were found between groups. Further studies need to be performed to assess the cryopreserved nerve functionality using this new method.
Zhao, He; Duan, Li-Jun; Sun, Qing-Ling; Gao, Yu-Shan; Yang, Yong-Dong; Tang, Xiang-Sheng; Zhao, Ding-Yan; Xiong, Yang; Hu, Zhen-Guo; Li, Chuan-Hong; Chen, Si-Xue; Liu, Tao; Yu, Xing
2018-04-19
Peripheral nerve injury (PNI) has devastating consequences. Dorsal root ganglion as a pivotal locus participates in the process of neuropathic pain and nerve regeneration. In recent years, gene sequencing technology has seen rapid rise in the biomedicine field. So, we attempt to gain insight into in the mechanism of neuropathic pain and nerve regeneration in the transcriptional level and to explore novel genes through bioinformatics analysis. The gene expression profiles of GSE96051 were downloaded from GEO database. The gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses were performed, and protein-protein interaction (PPI) network of the differentially expressed genes (DEGs) was constructed by Cytoscape software. Our results showed that both IL-6 and Jun genes and the signaling pathway of MAPK, apoptosis, P53 present their vital modulatory role in nerve regeneration and neuropathic pain. Noteworthy, 13 hub genes associated with neuropathic pain and nerve regeneration, including Ccl12, Ppp1r15a, Cdkn1a, Atf3, Nts, Dusp1, Ccl7, Csf, Gadd45a, Serpine1, Timp1 were rarely reported in PubMed database, these genes may provide us the new orientation in experimental research and clinical study. Our results may provide more deep insight into the mechanism and a promising therapeutic target. The next step is to put our emphasis on an experiment level and to verify the novel genes from 13 hub genes.
Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans
2017-01-01
Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. We aimed to characterize the stimulus-response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress-strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity ( P <0.05). The stress relaxed less in the diabetic intestinal segment ( P <0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients.
Age-Dependent Schwann Cell Phenotype Regulation Following Peripheral Nerve Injury.
Chen, Wayne A; Luo, T David; Barnwell, Jonathan C; Smith, Thomas L; Li, Zhongyu
2017-12-01
Schwann cells are integral to the regenerative capacity of the peripheral nervous system, which declines after adolescence. The mechanisms underlying this decline are poorly understood. This study sought to compare the protein expression of Notch, c-Jun, and Krox-20 after nerve crush injury in adolescent and young adult rats. We hypothesized that these Schwann cell myelinating regulatory factors are down-regulated after nerve injury in an age-dependent fashion. Adolescent (2 months old) and young adult (12 months old) rats (n = 48) underwent sciatic nerve crush injury. Protein expression of Notch, c-Jun, and Krox-20 was quantified by Western blot analysis at 1, 3, and 7 days post-injury. Functional recovery was assessed in a separate group of animals (n = 8) by gait analysis (sciatic functional index) and electromyography (compound motor action potential) over an 8-week post-injury period. Young adult rats demonstrated a trend of delayed onset of the dedifferentiating regulatory factors, Notch and c-Jun, corresponding to the delayed functional recovery observed in young adult rats compared to adolescent rats. Compound motor action potential area was significantly greater in adolescent rats relative to young adult rats, while amplitude and velocity trended toward statistical significance. The process of Schwann cell dedifferentiation following peripheral nerve injury shows different trends with age. These trends of delayed onset of key regulatory factors responsible for Schwann cell myelination may be one of many possible factors mediating the significant differences in functional recovery between adolescent and young adult rats following peripheral nerve injury.
Chen, Lijian; Liu, Meiling; Zhang, Nan; Zhang, Li; Luo, Yuanwei; Liu, Zhenzhong; Dai, Lijun; Jiang, Yiguo
2016-01-01
As a common toxic metal, lead has significant neurotoxicity to brain development. Long non-coding RNAs (lncRNAs) function in multiple biological processes. However, whether lncRNAs are involved in lead-induced neurotoxicity remains unclear. Uc.173 is a lncRNA from a transcribed ultra-conservative region (T-UCR) of human, mouse and rat genomes. We established a lead-induced nerve injury mouse model. It showed the levels of Uc.173 decreased significantly in hippocampus tissue and serum of the model. We further tested the expression of Uc.173 in serum of lead-exposed children, which also showed a tendency to decrease. To explore the effects of Uc.173 on lead-induced nerve injury, we overexpressed Uc.173 in an N2a mouse nerve cell line and found Uc.173 had an inhibitory effect on lead-induced apoptosis of N2a. To investigate the molecular mechanisms of Uc.173 in apoptosis associated with lead-induced nerve injury, we predicted the target microRNAs of Uc.173 by using miRanda, TargetScan and RegRNA. After performing quantitative real-time PCR and bioinformatics analysis, we showed Uc.173 might inter-regulate with miR-291a-3p in lead-induced apoptosis and regulate apoptosis-associated genes. Our study suggests Uc.173 significantly inhibits the apoptosis of nerve cells, which may be mediated by inter-regulation with miRNAs in lead-induced nerve injury. PMID:26683706
How to Measure Outcomes of Peripheral Nerve Surgery
Wang, Yirong; Sunitha, Malay; Chung, Kevin C.
2013-01-01
Synopsis Evaluation of outcomes after peripheral nerve surgeries include a number of assessment methods that reflect different aspects of recovery, including reinnervation, tactile gnosis, integrated sensory and motor function, pain and discomfort, neurophysiological and patient- reported outcomes. This review makes a list of measurements addressing these aspects as well as advantage and disadvantage of each tool. Because of complexities of neurophysiology, assessment remains a difficult process, which requires researchers focus on measurements best relevant to specific conditions and research questions. PMID:23895715
How to measure outcomes of peripheral nerve surgery.
Wang, Yirong; Sunitha, Malay; Chung, Kevin C
2013-08-01
Evaluation of outcomes after peripheral nerve surgeries include several assessment methods that reflect different aspects of recovery, including reinnervation, tactile gnosis, integrated sensory and motor function, pain and discomfort, and neurophysiologic and patient-reported outcomes. This review lists measurements addressing these aspects as well as the advantages and disadvantages of each tool. Because of complexities of neurophysiology, assessment remains a difficult process, which requires researchers to focus on measurements best relevant to specific conditions and research questions. Copyright © 2013 Elsevier Inc. All rights reserved.
Calcium channel blockers and transmitter release at the normal human neuromuscular junction.
Protti, D A; Reisin, R; Mackinley, T A; Uchitel, O D
1996-05-01
Transmitter release evoked by nerve stimulation is highly dependent on Ca2+ entry through voltage-activated plasma membrane channels. Calcium influx may be modified in some neuromuscular diseases like Lambert-Eaton syndrome and amyotrophic lateral sclerosis. We studied the pharmacologic sensitivity of the transmitter release process to different calcium channel blockers in normal human muscles and found that funnel web toxin and omega-Agatoxin-IVA, both P-type calcium channel blockers, blocked nerve-elicited muscle action potentials and inhibited evoked synaptic transmission. The transmitter release was not affected either by nitrendipine, an L-type channel blocker, or omega-Conotoxin-GVIA, an N-type channel blocker. The pharmacologic profile of neuromuscular transmission observed in normal human muscles indicates that P-like channels mediate transmitter release at the motor nerve terminals.
Role of intrahepatic innervation in regulating the activity of liver cells
Streba, Letitia Adela Maria; Vere, Cristin Constantin; Ionescu, Alin Gabriel; Streba, Costin Teodor; Rogoveanu, Ion
2014-01-01
Liver innervation comprises sympathetic, parasympathetic and peptidergic nerve fibers, organized as either afferent or efferent nerves with different origins and roles. Their anatomy and physiology have been studied in the past 30 years, with different results published over time. Hepatocytes are the main cell population of the liver, making up almost 80% of the total liver volume. The interaction between hepatocytes and nerve fibers is accomplished through a wealth of neurotransmitters and signaling pathways. In this short review, we have taken the task of condensing the most important data related to how the nervous system interacts with the liver and especially with the hepatocyte population, how it influences their metabolism and functions, and how different receptors and transmitters are involved in this complex process. PMID:24672643
Breathing pulses in the damped-soliton model for nerves
NASA Astrophysics Data System (ADS)
Fongang Achu, G.; Moukam Kakmeni, F. M.; Dikande, A. M.
2018-01-01
Unlike the Hodgkin-Huxley picture in which the nerve impulse results from ion exchanges across the cell membrane through ion-gate channels, in the so-called soliton model the impulse is seen as an electromechanical process related to thermodynamical phenomena accompanying the generation of the action potential. In this work, account is taken of the effects of damping on the nerve impulse propagation, within the framework of the soliton model. Applying the reductive perturbation expansion on the resulting KdV-Burgers equation, a damped nonlinear Schrödinger equation is derived and shown to admit breathing-type solitary wave solutions. Under specific constraints, these breathing pulse solitons become self-trapped structures in which the damping is balanced by nonlinearity such that the pulse amplitude remains unchanged even in the presence of damping.
Electrospun nanofibers for neural tissue engineering
NASA Astrophysics Data System (ADS)
Xie, Jingwei; MacEwan, Matthew R.; Schwartz, Andrea G.; Xia, Younan
2010-01-01
Biodegradable nanofibers produced by electrospinning represent a new class of promising scaffolds to support nerve regeneration. We begin with a brief discussion on the electrospinning of nanofibers and methods for controlling the structure, porosity, and alignment of the electrospun nanofibers. The methods include control of the nanoscale morphology and microscale alignment of the nanofibers, as well as the fabrication of macroscale, three-dimensional tubular structures. We then highlight recent studies that utilize electrospun nanofibers to manipulate biological processes relevant to nervous tissue regeneration, including stem cell differentiation, guidance of neurite extension, and peripheral nerve injury treatments. The main objective of this feature article is to provide valuable insights into methods for investigating the mechanisms of neurite growth on novel nanofibrous scaffolds and optimization of the nanofiber scaffolds and conduits for repairing peripheral nerve injuries.
Multifocal Neuropathy: Expanding the Scope of Double Crush Syndrome.
Cohen, Brian H; Gaspar, Michael P; Daniels, Alan H; Akelman, Edward; Kane, Patrick M
2016-12-01
Double crush syndrome (DCS), as it is classically defined, is a clinical condition composed of neurological dysfunction due to compressive pathology at multiple sites along a single peripheral nerve. The traditional definition of DCS is narrow in scope because many systemic pathologic processes, such as diabetes mellitus, drug-induced neuropathy, vascular disease and autoimmune neuronal damage, can have deleterious effects on nerve function. Multifocal neuropathy is a more appropriate term describing the multiple etiologies (including compressive lesions) that may synergistically contribute to nerve dysfunction and clinical symptoms. This paper examines the history of DCS and multifocal neuropathy, including the epidemiology and pathophysiology in addition to principles of evaluation and management. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Shlygin, V V; Tiuliaev, A P; Ioĭleva, E E; Maksimov, G V
2004-01-01
An approach to the choice of the parameters of physiotherapeutic and biophysical influence on the visual nerve was proposed. The approach is based on parallel photo- and magnetostimulation of excitable fibers in which the morphological and electrophysiological properties of fibers and some parameters of the pathological processes associated with partial artophy and ischemia are taken into account. A method for correlating the photostimulation by light flashes (intensity 65 mWt at emission wavelength 660 nm) of a portion of the retina with the choice of the parameters of magnetic influence (amplitude 73 mT, duration of the wave front of 40 ms, and frequency of pulse sequence of about 1 Hz) on the visual nerve was developed.
Onishi, Okihiro; Ikoma, Kazuya; Oda, Ryo; Yamazaki, Tetsuro; Fujiwara, Hiroyoshi; Yamada, Shunji; Tanaka, Masaki; Kubo, Toshikazu
2018-04-23
Although treatment protocols are available, patients experience both acute neuropathic pain and chronic neuropathic pain, hyperalgesia, and allodynia after peripheral nerve injury. The purpose of this study was to identify the brain regions activated after peripheral nerve injury using functional magnetic resonance imaging (fMRI) sequentially and assess the relevance of the imaging results using histological findings. To model peripheral nerve injury in male Sprague-Dawley rats, the right sciatic nerve was crushed using an aneurysm clip, under general anesthesia. We used a 7.04T MRI system. T 2 * weighted image, coronal slice, repetition time, 7 ms; echo time, 3.3 ms; field of view, 30 mm × 30 mm; pixel matrix, 64 × 64 by zero-filling; slice thickness, 2 mm; numbers of slices, 9; numbers of average, 2; and flip angle, 8°. fMR images were acquired during electrical stimulation to the rat's foot sole; after 90 min, c-Fos immunohistochemical staining of the brain was performed in rats with induced peripheral nerve injury for 3, 6, and 9 weeks. Data were pre-processed by realignment in the Statistical Parametric Mapping 8 software. A General Linear Model first level analysis was used to obtain T-values. One week after the injury, significant changes were detected in the cingulate cortex, insular cortex, amygdala, and basal ganglia; at 6 weeks, the brain regions with significant changes in signal density were contracted; at 9 weeks, the amygdala and hippocampus showed activation. Histological findings of the rat brain supported the fMRI findings. We detected sequential activation in the rat brain using fMRI after sciatic nerve injury. Many brain regions were activated during the acute stage of peripheral nerve injury. Conversely, during the chronic stage, activation of the amygdala and hippocampus may be related to chronic-stage hyperalgesia, allodynia, and chronic neuropathic pain. Copyright © 2018 Elsevier B.V. All rights reserved.
Buchaim, Daniela Vieira; Rodrigues, Antonio de Castro; Buchaim, Rogerio Leone; Barraviera, Benedito; Junior, Rui Seabra Ferreira; Junior, Geraldo Marco Rosa; Bueno, Cleuber Rodrigo de Souza; Roque, Domingos Donizeti; Dias, Daniel Ventura; Dare, Leticia Rossi; Andreo, Jesus Carlos
2016-07-01
This study aimed to evaluate the effects of low-level laser therapy (LLLT) in the repair of the buccal branch of the facial nerve with two surgical techniques: end-to-end epineural suture and coaptation with heterologous fibrin sealant. Forty-two male Wistar rats were randomly divided into five groups: control group (CG) in which the buccal branch of the facial nerve was collected without injury; (2) experimental group with suture (EGS) and experimental group with fibrin (EGF): The buccal branch of the facial nerve was transected on both sides of the face. End-to-end suture was performed on the right side and fibrin sealant on the left side; (3) Experimental group with suture and laser (EGSL) and experimental group with fibrin and laser (EGFL). All animals underwent the same surgical procedures in the EGS and EGF groups, in combination with the application of LLLT (wavelength of 830 nm, 30 mW optical power output of potency, and energy density of 6 J/cm(2)). The animals of the five groups were euthanized at 5 weeks post-surgery and 10 weeks post-surgery. Axonal sprouting was observed in the distal stump of the facial nerve in all experimental groups. The observed morphology was similar to the fibers of the control group, with a predominance of myelinated fibers. In the final period of the experiment, the EGSL presented the closest results to the CG, in all variables measured, except in the axon area. Both surgical techniques analyzed were effective in the treatment of peripheral nerve injuries, where the use of fibrin sealant allowed the manipulation of the nerve stumps without trauma. LLLT exhibited satisfactory results on facial nerve regeneration, being therefore a useful technique to stimulate axonal regeneration process.
Dillon, Neal P; Fichera, Loris; Kesler, Kyle; Zuniga, M Geraldine; Mitchell, Jason E; Webster, Robert J; Labadie, Robert F
2017-09-01
This article presents the development and experimental validation of a methodology to reduce the risk of thermal injury to the facial nerve during minimally invasive cochlear implantation surgery. The first step in this methodology is a pre-operative screening process, in which medical imaging is used to identify those patients that present a significant risk of developing high temperatures at the facial nerve during the drilling phase of the procedure. Such a risk is calculated based on the density of the bone along the drilling path and the thermal conductance between the drilling path and the nerve, and provides a criterion to exclude high-risk patients from receiving the minimally invasive procedure. The second component of the methodology is a drilling strategy for manually-guided drilling near the facial nerve. The strategy utilizes interval drilling and mechanical constraints to enable better control over the procedure and the resulting generation of heat. The approach is tested in fresh cadaver temporal bones using a thermal camera to monitor temperature near the facial nerve. Results indicate that pre-operative screening may successfully exclude high-risk patients and that the proposed drilling strategy enables safe drilling for low-to-moderate risk patients.
Kohn-Polster, Caroline; Bhatnagar, Divya; Woloszyn, Derek J.; Richtmyer, Matthew; Starke, Annett; Springwald, Alexandra H.; Franz, Sandra; Schulz-Siegmund, Michaela; Kaplan, Hilton M.; Kohn, Joachim; Hacker, Michael C.
2017-01-01
Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM)-like characteristics and specific biochemical cues holds great potential to support PNR. PMID:28531139
Sandireddy, Reddemma; Yerra, Veera Ganesh; Komirishetti, Prashanth; Areti, Aparna; Kumar, Ashutosh
2016-08-01
The current study is aimed to assess the therapeutic potential of fisetin, a phytoflavonoid in streptozotocin (STZ)-induced experimental diabetic neuropathy (DN) in rats. Fisetin was administered (5 and 10 mg/kg) for 2 weeks (7th and 8th week) post STZ administration. Thermal and mechanical hyperalgesia were assessed by measuring tactile sensitivity to thermal and mechanical stimuli, respectively. Motor nerve conduction velocity (MNCV) was determined using power lab system and sciatic nerve blood flow (NBF) was determined using laser Doppler system. Nerve sections were processed for TUNEL assay and NF-κB, COX-2 immunohistochemical staining. Sciatic nerve homogenate was used for biochemical and Western blotting analysis. MNCV and sciatic NBF deficits associated with DN were ameliorated in fisetin administered rats. Fisetin treatment reduced the interleukin-6 and tumour necrosis factor-alpha in sciatic nerves of diabetic rats (p < 0.001). Protein expression studies have identified that the therapeutic benefit of fisetin might be through regulation of redox sensitive transcription factors such as nuclear erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa B (NF-κB). Our study provides an evidence for the therapeutic potential of fisetin in DN through simultaneous targeting of NF-κB and Nrf2.
The sensory but not muscular pelvic nerve branch is necessary for parturition in the rat.
Martínez-Gómez, M; Cruz, Y; Pacheco, P; Aguilar-Roblero, R; Hudson, R
1998-03-01
In the rat the pelvic nerve consists of a viscerocutaneous (sensory) branch which receives information from pelvic viscera and the midline perineal region, and a somatomotor (muscular) branch which innervates the ilio- and pubococcygeous muscles. To investigate the contribution of these branches to the parturition process, the length of gestation and course of delivery were closely monitored in 43 pregnant, Wistar-strain rats randomly assigned to five groups: untreated control animals, animals in which the somatomotor branch of the pelvic nerve was bilaterally sectioned on Day 14 of gestation, animals in which the viscerocutaneous branch of the pelvic nerve was bilaterally sectioned on Day 14 of gestation, animals treated similarly to the previous group but with young delivered by C-section at term, and sham-operated controls. Sectioning the viscerocutaneous branch seriously disrupted parturition and resulted in major dystocia and a high percentage of stillbirths in all females. In contrast, sectioning the somatomotor branch had no apparent effect on parturition and no significant differences were found between females of this group and sham or control dams on any of the measures recorded. It is concluded that the viscerocutaneous branch of the pelvic nerve is vital for the normal course of parturition in the rat but that the somatomotor branch plays little role, if any.
TGF-β1 is critical for Wallerian degeneration after rat sciatic nerve injury.
Li, M; Zhang, P; Li, H; Zhu, Y; Cui, S; Yao, D
2015-01-22
Wallerian degeneration (WD) is a process of axonal degeneration distal to the injury site followed by a robust regenerative response. It involves degeneration and regeneration which can be directly induced by nerve injury and activated by transcription factors. Although WD has been studied extensively, the precise mechanisms of transcription factors regulating WD are still elusive. In this study, we reported the effect of transforming growth factor-β1 (TGF-β1) on WD after rat sciatic nerve injury. The data showed that TGF-β1 may express in injured rat sciatic nerve and cultured Schwann cells (SCs). Knock down of TGF-β1 expressions resulted in the reduction of SC proliferation and apoptosis, up regulation of cytokines and Smad2, 4. Enhanced expression of TGF-β1 could promote SC proliferation and apoptosis, down regulation of cytokines and Smad2, 4. Altered expressions of TGF-β1 may affect Smad and AKT but not c-Jun and extracellular regulated protein kinase (ERK) pathways. Our results revealed the role of TGF-β1 on WD and provided the basis for the molecular mechanisms of TGF-β1-regulated nerve degeneration and/or regeneration. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Enterocyte-afferent nerve interactions in dietary fat sensing.
Mansouri, A; Langhans, W
2014-09-01
The central nervous system (CNS) constantly monitors nutrient availability in the body and, in particular, in the gastrointestinal (GI) tract to regulate nutrient and energy homeostasis. Extrinsic parasympathetic and sympathetic nerves are crucial for CNS nutrient sensing in the GI tract. These extrinsic afferent nerves detect the nature and amount of nutrients present in the GI tract and relay the information to the brain, which controls energy intake and expenditure accordingly. Dietary fat and fatty acids are sensed through various direct and indirect mechanisms. These sensing processes involve the binding of fatty acids to specific G protein-coupled receptors expressed either on the afferent nerve fibres or on the surface of enteroendocrine cells that release gut peptides, which themselves can modulate afferent nerve activity through their cognate receptors or have endocrine effects directly on the brain. Further dietary fat sensing mechanisms that are related to enterocyte fat handling and metabolism involve the release of several possible chemical mediators such as fatty acid ethanolamides or apolipoprotein A-IV. We here present evidence for yet another mechanism that may be based on ketone bodies resulting from enterocyte oxidation of dietary fat-derived fatty acids. The presently available evidence suggests that sympathetic rather than vagal afferents are involved, but further experiments are necessary to critically examine this concept. © 2014 John Wiley & Sons Ltd.
Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration
Ma, Marek; Ferguson, Toby A.; Schoch, Kathleen M.; Li, Jian; Qian, Yaping; Shofer, Frances S.; Saatman, Kathryn E.; Neumar, Robert W.
2013-01-01
In both the central nervous system (CNS) and peripheral nervous system (PNS), transected axons undergo Wallerian degeneration. Even though Augustus Waller first described this process after transection of axons in 1850, the molecular mechanisms may be shared, at least in part, by many human diseases. Early pathology includes failure of synaptic transmission, target denervation, and granular disintegration of the axonal cytoskeleton (GDC). The Ca2+-dependent proteases calpains have been implicated in GDC but causality has not been established. To test the hypothesis that calpains play a causal role in axonal and synaptic degeneration in vivo, we studied transgenic mice that express human calpastatin (hCAST), the endogenous calpain inhibitor, in optic and sciatic nerve axons. Five days after optic nerve transection and 48 hours after sciatic nerve transection, robust neurofilament proteolysis observed in wild-type controls was reduced in hCAST transgenic mice. Protection of the axonal cytoskeleton in sciatic nerves of hCAST mice was nearly complete 48 hours post-transection. In addition, hCAST expression preserved the morphological integrity of neuromuscular junctions. However, compound muscle action potential amplitudes after nerve transection were similar in wild-type and hCAST mice. These results, in total, provide direct evidence that calpains are responsible for the morphological degeneration of the axon and synapse during Wallerian degeneration. PMID:23542511
Kohn-Polster, Caroline; Bhatnagar, Divya; Woloszyn, Derek J; Richtmyer, Matthew; Starke, Annett; Springwald, Alexandra H; Franz, Sandra; Schulz-Siegmund, Michaela; Kaplan, Hilton M; Kohn, Joachim; Hacker, Michael C
2017-05-21
Toward the next generation of nerve guidance conduits (NGCs), novel biomaterials and functionalization concepts are required to address clinical demands in peripheral nerve regeneration (PNR). As a biological polymer with bioactive motifs, gelatinous peptides are promising building blocks. In combination with an anhydride-containing oligomer, a dual-component hydrogel system (cGEL) was established. First, hollow cGEL tubes were fabricated by a continuous dosing and templating process. Conduits were characterized concerning their mechanical strength, in vitro and in vivo degradation and biocompatibility. Second, cGEL was reformulated as injectable shear thinning filler for established NGCs, here tyrosine-derived polycarbonate-based braided conduits. Thereby, the formulation contained the small molecule LM11A-31. The biofunctionalized cGEL filler was assessed regarding building block integration, mechanical properties, in vitro cytotoxicity, and growth permissive effects on human adipose tissue-derived stem cells. A positive in vitro evaluation motivated further application of the filler material in a sciatic nerve defect. Compared to the empty conduit and pristine cGEL, the functionalization performed superior, though the autologous nerve graft remains the gold standard. In conclusion, LM11A-31 functionalized cGEL filler with extracellular matrix (ECM)-like characteristics and specific biochemical cues holds great potential to support PNR.
The Effect of Memantine on Functional Recovery of the Sciatic Nerve Crush Injury in Rats.
Ghayour, Mohammad-Bagher; Abdolmaleki, Arash; Behnam-Rassouli, Morteza
2017-01-01
Following severe peripheral nerve injury (PNI), regeneration is often insufficient and functional recovery is incomplete. In this regard, glutamate N-methyl-D-aspartate (NMDA) receptor antagonist such as Memantine have been shown to have neuroprotective effects. We evaluated the effects of Memantine against sciatic nerve crush injury in male Wistar Rats. Memantine or vehicle was given parenteraly to rats for 7 days postoperative. In Memantine treatment groups, a single dose of agent (5 and 10 mg/kg) was administered daily. The control group was given vehicle in the same manner. The rats were subjected to crush injury in the left sciatic nerve with non-serrated clamp for 30 seconds. Behavioural, electrophysiological and morphological alterations were evaluated during the experimental period. Results showed that Memantine has no significant effect on regeneration process rate and functional recovery quality. In the sciatic functional index (SFI) test no significant difference was observed between Memantine treatment groups (5 and 10 mg/ kg) at any week. Since the major neuroprotective effect of Memantine is due to its protective activity against NMDA receptormediated excitotoxicity, it seems that glutamate excitotoxicity is less important in motor impairment due to sciatic nerve crush injury. It is clear that more research is needed to confirm these findings.
Minerals: What They Do and Where to Get Them
... biologic process, use of glucose in the body, synthesis of nucleic acids and protein, cellular energy Green leafy vegetables, fish, nuts, beans, ... Many major biologic processes, muscle contraction, nerve impulses, synthesis of nucleic ... production Fresh vegetables, fresh fruits Sodium Water ...
Bombeiro, André L.; Santini, Júlio C.; Thomé, Rodolfo; Ferreira, Elisângela R. L.; Nunes, Sérgio L. O.; Moreira, Bárbara M.; Bonet, Ivan J. M.; Sartori, Cesar R.; Verinaud, Liana; Oliveira, Alexandre L. R.
2016-01-01
Injuries to peripheral nerves cause loss of motor and sensory function, greatly affecting life quality. Successful repair of the lesioned nerve requires efficient cell debris removal, followed by axon regeneration and reinnervation of target organs. Such process is orchestrated by several cellular and molecular events in which glial and immune cells actively participate. It is known that tissue clearance is largely improved by macrophages, which activation is potentiated by cells and molecules of the acquired immune system, such as T helper lymphocytes and antibodies, respectively. In the present work, we evaluated the contribution of lymphocytes in the regenerative process of crushed sciatic nerves of immunocompetent (wild-type, WT) and T and B-deficient (RAG-KO) mice. In Knockout animals, we found increased amount of macrophages under basal conditions and during the initial phase of the regenerative process, that was evaluated at 2, 4, and 8 weeks after lesion (wal). That parallels with faster axonal regeneration evidenced by the quantification of neurofilament and a growth associated protein immunolabeling. The motor function, evaluated by the sciatic function index, was fully recovered in both mouse strains within 4 wal, either in a progressive fashion, as observed for RAG-KO mice, or presenting a subtle regression, as seen in WT mice between 2 and 3 wal. Interestingly, boosting the immune response by early adoptive transference of activated WT lymphocytes at 3 days after lesion improved motor recovery in WT and RAG-KO mice, which was not ameliorated when cells were transferred at 2 wal. When monitoring lymphocytes by in vivo imaging, in both mouse strains, cells migrated to the lesion site shortly after transference, remaining in the injured limb up to its complete motor recovery. Moreover, a first peak of hyperalgesia, determined by von-Frey test, was coincident with increased lymphocyte infiltration in the damaged paw. Overall, the present results suggest that a wave of immune cell infiltration takes place during subacute phase of axonal regeneration, resulting in transient set back of motor recovery following peripheral axonal injury. Moreover, modulation of the immune response can be an efficient approach to speed up nerve regeneration. PMID:27378849
Physiological basis for human autonomic rhythms
NASA Technical Reports Server (NTRS)
Eckberg, D. L.
2000-01-01
Oscillations of arterial pressures, heart periods, and muscle sympathetic nerve activity have been studied intensively in recent years to explore otherwise obscure human neurophysiological mechanisms. The best-studied rhythms are those occurring at breathing frequencies. Published evidence indicates that respiratory fluctuations of muscle sympathetic nerve activity and electrocardiographic R-R intervals result primarily from the action of a central 'gate' that opens during expiration and closes during inspiration. Parallel respiratory fluctuations of arterial pressures and R-R intervals are thought to be secondary to arterial baroreflex physiology: changes in systolic pressure provoke changes in the R-R interval. However, growing evidence suggests that these parallel oscillations result from the influence of respiration on sympathetic and vagal-cardiac motoneurones rather than from baroreflex physiology. There is a rapidly growing literature on the use of mathematical models of low- and high-frequency (respiratory) R-R interval fluctuations in characterizing instantaneous 'sympathovagal balance'. The case for this approach is based primarily on measurements made with patients in upright tilt. However, the strong linear relation between such measures as the ratio of low- to high-frequency R-R interval oscillations and the angle of the tilt reflects exclusively the reductions of the vagal (high-frequency) component. As the sympathetic component does not change in tilt, the low- to high-frequency R-R interval ratio provides no proof that sympathetic activity increases. Moreover, the validity of extrapolating from measurements performed during upright tilt to measurements during supine rest has not been established. Nonetheless, it is clear that measures of heart rate variability provide important prognostic information in patients with cardiovascular diseases. It is not known whether reduced heart rate variability is merely a marker for the severity of disease or a measurement that identifies functional reflex abnormalities contributing to terminal dysrhythmias.
Chang, Amy Y; Mann, Tracy S; McFawn, Peter K; Han, Liang; Dong, Xinzhong; Henry, Peter J
2016-05-23
The hexapeptide SLIGRL-amide activates protease-activated receptor-2 (PAR-2) and mas-related G protein-coupled receptor C11 (MRGPRC11), both of which are known to be expressed on populations of sensory nerves. SLIGRL-amide has recently been reported to inhibit influenza A (IAV) infection in mice independently of PAR-2 activation, however the explicit roles of MRGPRC11 and sensory nerves in this process are unknown. Thus, the principal aim of this study was to determine whether SLIGRL-amide-induced inhibition of influenza infection is mediated by MRGPRC11 and/or by capsaicin-sensitive sensory nerves. The inhibitory effect of SLIGRL-amide on IAV infection observed in control mice in vivo was compared to effects produced in mice that did not express MRGPRC11 (mrgpr-cluster∆ (-/-) mice) or had impaired sensory nerve function (induced by chronic pre-treatment with capsaicin). Complementary mechanistic studies using both in vivo and ex vivo approaches investigated whether the anti-IAV activity of SLIGRL-amide was (1) mimicked by either activators of MRGPRC11 (BAM8-22) or by activators (acute capsaicin) or selected mediators (substance P, CGRP) of sensory nerve function, or (2) suppressed by inhibitors of sensory nerve function (e.g. NK1 receptor antagonists). SLIGRL-amide and BAM8-22 dose-dependently inhibited IAV infection in mrgpr-cluster∆ (-/-) mice that do not express MRGPRC11. In addition, SLIGRL-amide and BAM8-22 each inhibited IAV infection in capsaicin-pre-treated mice that lack functional sensory nerves. Furthermore, the anti-IAV activity of SLIGRL-amide was not mimicked by the sensory neuropeptides substance P or CGRP, nor blocked by either NK1 (L-703,606, RP67580) and CGRP receptor (CGRP8-37) antagonists. Direct stimulation of airway sensory nerves through acute exposure to the TRPV1 activator capsaicin also failed to mimic SLIGRL-amide-induced inhibition of IAV infectivity. The anti-IAV activity of SLIGRL-amide was mimicked by the purinoceptor agonist ATP, a direct activator of mucus secretion from airway epithelial cells. Additionally, both SLIGRL-amide and ATP stimulated mucus secretion and inhibited IAV infectivity in mouse isolated tracheal segments. SLIGRL-amide inhibits IAV infection independently of MRGPRC11 and independently of capsaicin-sensitive, neuropeptide-releasing sensory nerves, and its secretory action on epithelial cells warrants further investigation.
Growth on demand: Reviewing the mechanobiology of stretched skin
Zöllner, Alexander M.; Holland, Maria A.; Honda, Kord S.; Gosain, Arun K.; Kuhl, Ellen
2013-01-01
Skin is a highly dynamic, autoregulated, living system that responds to mechanical stretch through a net gain in skin surface area. Tissue expansion uses the concept of controlled overstretch to grow extra skin for defect repair in situ. While the short-term mechanics of stretched skin have been studied intensely by testing explanted tissue samples ex vivo, we know very little about the long-term biomechanics and mechanobiology of living skin in vivo. redHere we explore the long-term effects of mechanical stretch on the characteristics of living skin using a mathematical model for skin growth. We review the molecular mechanisms by which skin responds to mechanical loading and model their effects collectively in a single scalar-valued internal variable, the surface area growth. redThis allows us to adopt a continuum model for growing skin based on the multiplicative decomposition of the deformation gradient into a reversible elastic and an irreversible growth part.redTo demonstrate the inherent modularity of this approach, we implement growth as a user-defined constitutive subroutine into the general purpose implicit finite element program Abaqus/Standard. To illustrate the features of the model, we simulate the controlled area growth of skin in response to tissue expansion with multiple filling points in time. Our results demonstrate that the field theories of continuum mechanics can reliably predict the manipulation of thin biological membranes through mechanical overstretch. Our model could serve as a valuable tool to rationalize clinical process parameters such as expander geometry, expander size, filling volume, filling pressure, and inflation timing to minimize tissue necrosis and maximize patient comfort in plastic and reconstructive surgery. While initially developed for growing skin, our model can easily be generalized to arbitrary biological structures to explore the physiology and pathology of stretch-induced growth of other living systems such as hearts, arteries, bladders, intestines, ureters, muscles, and nerves. PMID:23623569
Clinical anatomy and 3D virtual reconstruction of the lumbar plexus with respect to lumbar surgery.
Lu, Sheng; Chang, Shan; Zhang, Yuan-zhi; Ding, Zi-hai; Xu, Xin Ming; Xu, Yong-qing
2011-04-14
Exposure of the anterior or lateral lumbar via the retroperitoneal approach easily causes injuries to the lumbar plexus. Lumbar plexus injuries which occur during anterior or transpsoas lumbar spine exposure and placement of instruments have been reported. This study aims is to provide more anatomical data and surgical landmarks in operations concerning the lumbar plexus in order to prevent lumbar plexus injuries and to increase the possibility of safety in anterior approach lumbar surgery. To study the applied anatomy related to the lumbar plexus of fifteen formaldehyde-preserved cadavers, Five sets of Virtual Human (VH) data set were prepared and used in the study. Three-dimensional (3D) computerized reconstructions of the lumbar plexus and their adjacent structures were conducted from the VH female data set. The order of lumbar nerves is regular. From the anterior view, lumbar plexus nerves are arranged from medial at L5 to lateral at L2. From the lateral view, lumbar nerves are arranged from ventral at L2 to dorsal at L5. The angle of each nerve root exiting outward to the corresponding intervertebral foramen increases from L1 to L5. The lumbar plexus nerves are observed to be in close contact with transverse processes (TP). All parts of the lumbar plexus were located by sectional anatomy in the dorsal third of the psoas muscle. Thus, access to the psoas major muscle at the ventral 2/3 region can safely prevent nerve injuries. 3D reconstruction of the lumbar plexus based on VCH data can clearly show the relationships between the lumbar plexus and the blood vessels, vertebral body, kidney, and psoas muscle. The psoas muscle can be considered as a surgical landmark since incision at the ventral 2/3 of the region can prevent lumbar plexus injuries for procedures requiring exposure of the lateral anterior of the lumbar. The transverse process can be considered as a landmark and reference in surgical operations by its relative position to the lumbar plexus. 3D reconstructions of the lumbar plexus based on VCH data provide a virtual morphological basis for anterior lumbar surgery.
Clinical anatomy and 3D virtual reconstruction of the lumbar plexus with respect to lumbar surgery
2011-01-01
Background Exposure of the anterior or lateral lumbar via the retroperitoneal approach easily causes injuries to the lumbar plexus. Lumbar plexus injuries which occur during anterior or transpsoas lumbar spine exposure and placement of instruments have been reported. This study aims is to provide more anatomical data and surgical landmarks in operations concerning the lumbar plexus in order to prevent lumbar plexus injuries and to increase the possibility of safety in anterior approach lumbar surgery. Methods To study the applied anatomy related to the lumbar plexus of fifteen formaldehyde-preserved cadavers, Five sets of Virtual Human (VH) data set were prepared and used in the study. Three-dimensional (3D) computerized reconstructions of the lumbar plexus and their adjacent structures were conducted from the VH female data set. Results The order of lumbar nerves is regular. From the anterior view, lumbar plexus nerves are arranged from medial at L5 to lateral at L2. From the lateral view, lumbar nerves are arranged from ventral at L2 to dorsal at L5. The angle of each nerve root exiting outward to the corresponding intervertebral foramen increases from L1 to L5. The lumbar plexus nerves are observed to be in close contact with transverse processes (TP). All parts of the lumbar plexus were located by sectional anatomy in the dorsal third of the psoas muscle. Thus, access to the psoas major muscle at the ventral 2/3 region can safely prevent nerve injuries. 3D reconstruction of the lumbar plexus based on VCH data can clearly show the relationships between the lumbar plexus and the blood vessels, vertebral body, kidney, and psoas muscle. Conclusion The psoas muscle can be considered as a surgical landmark since incision at the ventral 2/3 of the region can prevent lumbar plexus injuries for procedures requiring exposure of the lateral anterior of the lumbar. The transverse process can be considered as a landmark and reference in surgical operations by its relative position to the lumbar plexus. 3D reconstructions of the lumbar plexus based on VCH data provide a virtual morphological basis for anterior lumbar surgery. PMID:21492461
Kamogawa, Junji; Kato, Osamu; Morizane, Tatsunori; Hato, Taizo
2015-01-01
There have been several imaging studies of cervical radiculopathy, but no three-dimensional (3D) images have shown the path, position, and pathological changes of the cervical nerve roots and spinal root ganglion relative to the cervical bony structure. The objective of this study was to introduce a technique that enables the virtual pathology of the nerve root to be assessed using 3D magnetic resonance (MR)/computed tomography (CT) fusion images that show the compression of the proximal portion of the cervical nerve root by both the herniated disc and the preforaminal or foraminal bony spur in patients with cervical radiculopathy. MR and CT images were obtained from three patients with cervical radiculopathy. 3D MR images were placed onto 3D CT images using a computer workstation. The entire nerve root could be visualized in 3D with or without the vertebrae. The most important characteristic evident on the images was flattening of the nerve root by a bony spur. The affected root was constricted at a pre-ganglion site. In cases of severe deformity, the flattened portion of the root seemed to change the angle of its path, resulting in twisted condition. The 3D MR/CT fusion imaging technique enhances visualization of pathoanatomy in cervical hidden area that is composed of the root and intervertebral foramen. This technique provides two distinct advantages for diagnosis of cervical radiculopathy. First, the isolation of individual vertebra clarifies the deformities of the whole root groove, including both the uncinate process and superior articular process in the cervical spine. Second, the tortuous or twisted condition of a compressed root can be visualized. The surgeon can identify the narrowest face of the root if they view the MR/CT fusion image from the posterolateral-inferior direction. Surgeons use MR/CT fusion images as a pre-operative map and for intraoperative navigation. The MR/CT fusion images can also be used as educational materials for all hospital staff and for patients and patients' families who provide informed consent for treatments.
Fairbanks, Carolyn A; Peterson, Cristina D; Speltz, Rebecca H; Riedl, Maureen S; Kitto, Kelley F; Dykstra, Jaclyn A; Braun, Patrick D; Sadahiro, Masato; Salton, Stephen R; Vulchanova, Lucy
2014-07-01
VGF (nonacronymic) is a granin-like protein that is packaged and proteolytically processed within the regulated secretory pathway. VGF and peptides derived from its processing have been implicated in neuroplasticity associated with learning, memory, depression, and chronic pain. In sensory neurons, VGF is rapidly increased following peripheral nerve injury and inflammation. Several bioactive peptides generated from the C-terminus of VGF have pronociceptive spinal effects. The goal of the present study was to examine the spinal effects of the peptide TLQP-21 and determine whether it participates in spinal mechanisms of persistent pain. Application of exogenous TLQP-21 induced dose-dependent thermal hyperalgesia in the warm-water immersion tail-withdrawal test. This hyperalgesia was inhibited by a p38 mitogen-activated protein kinase inhibitor, as well as inhibitors of cyclooxygenase and lipoxygenase. We used immunoneutralization of TLQP-21 to determine the function of the endogenous peptide in mechanisms underlying persistent pain. In mice injected intradermally with complete Freund adjuvant, intrathecal treatment with anti-TLQP-21 immediately prior to or 5hours after induction of inflammation dose-dependently inhibited tactile hypersensitivity and thermal hyperalgesia. Intrathecal anti-TL21 administration also attenuated the development and maintenance of tactile hypersensitivity in the spared nerve injury model of neuropathic pain. These results provide evidence that endogenous TLQP-21 peptide contributes to the mechanisms of spinal neuroplasticity after inflammation and nerve injury. Copyright © 2014 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Kuhn, Donald M; Francescutti-Verbeem, Dina M; Thomas, David M
2008-10-01
Methamphetamine (METH) is well known for its ability to cause damage to dopamine (DA) nerve endings of the striatum. The mechanisms by which METH causes neurotoxicity are not fully understood, but likely candidates are increased oxidative and nitrosative stress and mitochondrial dysfunction. Microglial activation is also emerging as an important element of the METH neurotoxic cascade, and it appears that extensive cross-talk between these cells and DA nerve endings is an early event in this process. It may seem paradoxical, but DA itself is also thought to be an essential factor in the neuronal damaging effects of METH, but issues relating to its precise role in this regard remain unanswered. We present in this overview a summary of studies that tested how alterations in the disposition of presynaptic DA (injections of reserpine, L-DOPA, or clorgyline) modulate METH neurotoxicity. In all cases, these drugs significantly increased the magnitude of microglial activation as well as the severity of damage to striatal DA nerve endings caused by METH. The enhancement of METH effects in striatum by reserpine, L-DOPA, and clorgyline persisted for 14 days and showed no evidence of recovery. These data establish that subtle shifts in the newly synthesized pool of DA can cause substantial changes in the severity of METH-induced neurotoxicity. DA released into the synapse by METH is very likely the source of downstream reactants that provoke microglial activation and the ensuing damage to DA nerve endings.
Autologous transplantation with fewer fibers repairs large peripheral nerve defects
Deng, Jiu-xu; Zhang, Dian-yin; Li, Ming; Weng, Jian; Kou, Yu-hui; Zhang, Pei-xun; Han, Na; Chen, Bo; Yin, Xiao-feng; Jiang, Bao-guo
2017-01-01
Peripheral nerve injury is a serious disease and its repair is challenging. A cable-style autologous graft is the gold standard for repairing long peripheral nerve defects; however, ensuring that the minimum number of transplanted nerve attains maximum therapeutic effect remains poorly understood. In this study, a rat model of common peroneal nerve defect was established by resecting a 10-mm long right common peroneal nerve. Rats receiving transplantation of the common peroneal nerve in situ were designated as the in situ graft group. Ipsilateral sural nerves (10–30 mm long) were resected to establish the one sural nerve graft group, two sural nerves cable-style nerve graft group and three sural nerves cable-style nerve graft group. Each bundle of the peroneal nerve was 10 mm long. To reduce the barrier effect due to invasion by surrounding tissue and connective-tissue overgrowth between neural stumps, small gap sleeve suture was used in both proximal and distal terminals to allow repair of the injured common peroneal nerve. At three months postoperatively, recovery of nerve function and morphology was observed using osmium tetroxide staining and functional detection. The results showed that the number of regenerated nerve fibers, common peroneal nerve function index, motor nerve conduction velocity, recovery of myodynamia, and wet weight ratios of tibialis anterior muscle were not significantly different among the one sural nerve graft group, two sural nerves cable-style nerve graft group, and three sural nerves cable-style nerve graft group. These data suggest that the repair effect achieved using one sural nerve graft with a lower number of nerve fibers is the same as that achieved using the two sural nerves cable-style nerve graft and three sural nerves cable-style nerve graft. This indicates that according to the ‘multiple amplification’ phenomenon, one small nerve graft can provide a good therapeutic effect for a large peripheral nerve defect. PMID:29323049
Oral sensory nerve damage: Causes and consequences.
Snyder, Derek J; Bartoshuk, Linda M
2016-06-01
Oral sensations (i.e., taste, oral somatosensation, retronasal olfaction) are integrated into a composite sense of flavor, which guides dietary choices with long-term health impact. The nerves carrying this input are vulnerable to peripheral damage from multiple sources (e.g., otitis media, tonsillectomy, head injury), and this regional damage can boost sensations elsewhere in the mouth because of central interactions among nerve targets. Mutual inhibition governs this compensatory process, but individual differences lead to variation in whole-mouth outcomes: some individuals are unaffected, others experience severe loss, and some encounter sensory increases that may (if experienced early in life) elevate sweet-fat palatability and body mass. Phantom taste, touch, or pain sensations (e.g., burning mouth syndrome) may also occur, particularly in those expressing the most taste buds. To identify and treat these conditions effectively, emerging clinical tests measure regional vs. whole-mouth sensation, stimulated vs. phantom cues, and oral anatomy. Scaling methods allowing valid group comparisons have strongly aided these efforts. Overall, advances in measuring oral sensory function in health and disease show promise for understanding the varied clinical consequences of nerve damage.
Oral Sensory Nerve Damage: Causes and Consequences
Snyder, Derek J.; Bartoshuk, Linda M.
2016-01-01
Oral sensations (i.e., taste, oral somatosensation, retronasal olfaction) are integrated into a composite sense of flavor, which guides dietary choices with long-term health impact. The nerves carrying this input are vulnerable to peripheral damage from multiple sources (e.g., otitis media, tonsillectomy, head injury), and this regional damage can boost sensations elsewhere in the mouth because of central interactions among nerve targets. Mutual inhibition governs this compensatory process, but individual differences lead to variation in whole-mouth outcomes: some individuals are unaffected, others experience severe loss, and some encounter sensory increases that may (if experienced early in life) elevate sweet-fat palatability and body mass. Phantom taste, touch, or pain sensations (e.g., burning mouth syndrome) may also occur, particularly in those expressing the most taste buds. To identify and treat these conditions effectively, emerging clinical tests measure regional vs. whole-mouth sensation, stimulated vs. phantom cues, and oral anatomy. Scaling methods allowing valid group comparisons have strongly aided these efforts. Overall, advances in measuring oral sensory function in health and disease show promise for understanding the varied clinical consequences of nerve damage. PMID:27511471
Integration of Synaptic Vesicle Cargo Retrieval with Endocytosis at Central Nerve Terminals
Cousin, Michael A.
2017-01-01
Central nerve terminals contain a limited number of synaptic vesicles (SVs) which mediate the essential process of neurotransmitter release during their activity-dependent fusion. The rapid and accurate formation of new SVs with the appropriate cargo is essential to maintain neurotransmission in mammalian brain. Generating SVs containing the correct SV cargo with the appropriate stoichiometry is a significant challenge, especially when multiple modes of endocytosis exist in central nerve terminals, which occur at different locations within the nerve terminals. These endocytosis modes include ultrafast endocytosis, clathrin-mediated endocytosis (CME) and activity-dependent bulk endocytosis (ADBE) which are triggered by specific patterns of neuronal activity. This review article will assess the evidence for the role of classical adaptor protein complexes in SV retrieval, discuss the role of monomeric adaptors and how interactions between specific SV cargoes can facilitate retrieval. In addition it will consider the evidence for preassembled plasma membrane cargo complexes and their role in facilitating these endocytosis modes. Finally it will present a unifying model for cargo retrieval at the presynapse, which integrates endocytosis modes in time and space. PMID:28824381
Modeling neuropeptide transport in various types of nerve terminals containing en passant boutons.
Kuznetsov, I A; Kuznetsov, A V
2015-03-01
We developed a mathematical model for simulating neuropeptide transport inside dense core vesicles (DCVs) in axon terminals containing en passant boutons. The motivation for this research is a recent experimental study by Levitan and colleagues (Bulgari et al., 2014) which described DCV transport in nerve terminals of type Ib and type III as well as in nerve terminals of type Ib with the transcription factor DIMM. The goal of our modeling is validating the proposition put forward by Levitan and colleagues that the dramatic difference in DCV number in type Ib and type III terminals can be explained by the difference in DCV capture in type Ib and type III boutons rather than by differences in DCV anterograde transport and half-life of resident DCVs. The developed model provides a tool for studying the dynamics of DCV transport in various types of nerve terminals. The model is also an important step in gaining a better mechanistic understanding of transport processes in axons and identifying directions for the development of new models in this area. Copyright © 2014 Elsevier Inc. All rights reserved.
Pavlova, Galina A; Glantz, Raymon M; Dennis Willows, A O
2011-10-01
Prior behavioral and neurophysiological studies provide evidence that the nudibranch mollusk Tritonia orients to the earth's magnetic field. Earlier studies of electrophysiological responses in certain neurons of the brain to changing ambient magnetic fields suggest that although certain identified brain cells fire impulses when the ambient field is changed, these neuron somata and their central dentritic and axonal processes are themselves not primary magnetic receptors. Here, using semi-intact animal preparations from which the brain was removed, we recorded from peripheral nerve trunks. Using techniques to count spikes in individual nerves and separately also to identify, then count individual axonal spikes in extracellular records, we found both excitatory and inhibitory axonal responses elicited by changes in the direction of ambient earth strength magnetic fields. We found responses in nerves from many locations throughout the body and in axons innervating the body wall and rhinophores. Our results indicate that primary receptors for geomagnetism in Tritonia are not focally concentrated in any particular organ, but appear to be widely dispersed in the peripheral body tissues.
Inquimbert, Perrine; Moll, Martin; Latremoliere, Alban; Tong, Chi-Kun; Whang, John; Sheehan, Gregory F; Smith, Brendan M; Korb, Erica; Athié, Maria C P; Babaniyi, Olusegun; Ghasemlou, Nader; Yanagawa, Yuchio; Allis, C David; Hof, Patrick R; Scholz, Joachim
2018-05-29
Peripheral nerve lesions provoke apoptosis in the dorsal horn of the spinal cord. The cause of cell death, the involvement of neurons, and the relevance for the processing of somatosensory information are controversial. Here, we demonstrate in a mouse model of sciatic nerve injury that glutamate-induced neurodegeneration and loss of γ-aminobutyric acid (GABA)ergic interneurons in the superficial dorsal horn promote the transition from acute to chronic neuropathic pain. Conditional deletion of Grin1, the essential subunit of N-methyl-d-aspartate-type glutamate receptors (NMDARs), protects dorsal horn neurons from excitotoxicity and preserves GABAergic inhibition. Mice deficient in functional NMDARs exhibit normal nociceptive responses and acute pain after nerve injury, but this initial increase in pain sensitivity is reversible. Eliminating NMDARs fully prevents persistent pain-like behavior. Reduced pain in mice lacking proapoptotic Bax confirmed the significance of neurodegeneration. We conclude that NMDAR-mediated neuron death contributes to the development of chronic neuropathic pain. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Stimulus electrodiagnosis and motor and functional evaluations during ulnar nerve recovery
Fernandes, Luciane F. R. M.; Oliveira, Nuno M. L.; Pelet, Danyelle C. S.; Cunha, Agnes F. S.; Grecco, Marco A. S.; Souza, Luciane A. P. S.
2016-01-01
BACKGROUND: Distal ulnar nerve injury leads to impairment of hand function due to motor and sensorial changes. Stimulus electrodiagnosis (SE) is a method of assessing and monitoring the development of this type of injury. OBJECTIVE: To identify the most sensitive electrodiagnostic parameters to evaluate ulnar nerve recovery and to correlate these parameters (Rheobase, Chronaxie, and Accommodation) with motor function evaluations. METHOD: A prospective cohort study of ten patients submitted to ulnar neurorrhaphy and evaluated using electrodiagnosis and motor assessment at two moments of neural recovery. A functional evaluation using the DASH questionnaire (Disability of the Arm, Shoulder, and Hand) was conducted at the end to establish the functional status of the upper limb. RESULTS: There was significant reduction only in the Chronaxie values in relation to time of injury and side (with and without lesion), as well as significant correlation of Chronaxie with the motor domain score. CONCLUSION: Chronaxie was the most sensitive SE parameter for detecting differences in neuromuscular responses during the ulnar nerve recovery process and it was the only parameter correlated with the motor assessment. PMID:26786072
adrift, a novel bnl-induced Drosophila gene, required for tracheal pathfinding into the CNS.
Englund, C; Uv, A E; Cantera, R; Mathies, L D; Krasnow, M A; Samakovlis, C
1999-04-01
Neurons and glial cells provide guidance cues for migrating neurons. We show here that migrating epithelial cells also contact specific neurons and glia during their pathfinding, and we describe the first gene required in the process. In wild-type Drosophila embryos, the ganglionic tracheal branch navigates a remarkably complex path along specific neural and glial substrata, switching substrata five times before reaching its ultimate target in the CNS. In adrift mutants, ganglionic branches migrate normally along the intersegmental nerve, but sporadically fail to switch to the segmental nerve and enter the CNS; they wind up meandering along the ventral epidermis instead. adrift encodes a novel nuclear protein with an evolutionarily conserved motif. The gene is required in the trachea and is expressed in the leading cells of migrating ganglionic branches where it is induced by the branchless FGF pathway. We propose that Adrift regulates expression of tracheal genes required for pathfinding on the segmental nerve, and FGF induction of adrift expression in migrating tracheal cells promotes the switch from the intersegmental to the segmental nerve.
Object localization, discrimination, and grasping with the optic nerve visual prosthesis.
Duret, Florence; Brelén, Måten E; Lambert, Valerie; Gérard, Benoît; Delbeke, Jean; Veraart, Claude
2006-01-01
This study involved a volunteer completely blind from retinis pigmentosa who had previously been implanted with an optic nerve visual prosthesis. The aim of this two-year study was to train the volunteer to localize a given object in nine different positions, to discriminate the object within a choice of six, and then to grasp it. In a closed-loop protocol including a head worn video camera, the nerve was stimulated whenever a part of the processed image of the object being scrutinized matched the center of an elicitable phosphene. The accessible visual field included 109 phosphenes in a 14 degrees x 41 degrees area. Results showed that training was required to succeed in the localization and discrimination tasks, but practically no training was required for grasping the object. The volunteer was able to successfully complete all tasks after training. The volunteer systematically performed several left-right and bottom-up scanning movements during the discrimination task. Discrimination strategies included stimulation phases and no-stimulation phases of roughly similar duration. This study provides a step towards the practical use of the optic nerve visual prosthesis in current daily life.
Capek, Stepan; Amrami, Kimberly K; Dyck, P James B; Spinner, Robert J
2015-09-01
OBJECT Nerve biopsy is typically performed in distal, noncritical sensory nerves without using imaging to target the more involved regions. The yield of these procedures rarely achieves more than 50%. In selected cases where preoperative evaluation points toward a more localized (usually a more proximal) process, targeted biopsy would likely capture the disease. Synthesis of data obtained from clinical examination, electrophysiological testing, and MRI allows biopsy of a portion of the major mixed nerves safely and efficiently. Herein, experiences with the sciatic nerve are reported and a description of the operative technique is provided. METHODS All cases of sciatic nerve biopsy performed between 2000 and 2014 were reviewed. Only cases of fascicular nerve biopsy approached from the buttock or the posterior aspect of the thigh were included. Demographic data, clinical presentation, and the presence of percussion tenderness for each patient were recorded. Reviewed studies included electrodiagnostic tests and imaging. Previous nerve and muscle biopsies were noted. All details of the procedure, final pathology, and its treatment implications were recorded. The complication rate was carefully assessed for temporary as well as permanent complications. RESULTS One hundred twelve cases (63 men and 49 women) of sciatic nerve biopsy were performed. Mean patient age was 46.4 years. Seventy-seven (68.8%) patients presented with single lower-extremity symptoms, 16 (14.3%) with bilateral lower-extremity symptoms, and 19 (17%) with generalized symptoms. No patient had normal findings on physical examination. All patients underwent electrodiagnostic studies, the findings of which were abnormal in 110 (98.2%) patients. MRI was available for all patients and was read as pathological in 111 (99.1%). The overall diagnostic yield of biopsy was 84.8% (n = 95). The pathological diagnoses included inflammatory demyelination, perineurioma, nonspecific inflammatory changes, neurolymphomatosis, amyloidosis, prostate cancer, injury neuroma, neuromuscular choristoma, sarcoidosis, vasculitis, hemangiomatosis, arteriovenous malformation, fibrolipomatous hamartoma (lipomatosis of nerve), and cervical adenocarcinoma. The series included 11 (9.9%) temporary and 5 (4.5%) permanent complications: 3 patients (2.7%) reported permanent numbness in the peroneal division distribution, and 2 patients (1.8%) were diagnosed with neuromuscular choristoma that developed desmoid tumor at the biopsy site 3 and 8 years later. CONCLUSIONS Targeted fascicular biopsy of the sciatic nerve is a safe and efficient diagnostic procedure, and in highly selected cases can be offered as the initial procedure over distal cutaneous nerve biopsy. Diagnoses were very diverse and included entities considered very rare. Even for the more prevalent diagnoses, the biopsy technique allowed a more targeted approach with a higher diagnostic yield and justification for more aggressive treatment. In this series, new radiological patterns of some entities were identified, which could be biopsied less frequently.
The Multifactorial role of Peripheral Nervous System in Bone Growth
NASA Astrophysics Data System (ADS)
Gkiatas, Ioannis; Papadopoulos, Dimitrios; Pakos, Emilios E.; Kostas-Agnantis, Ioannis; Gelalis, Ioannis; Vekris, Marios; Korompilias, Anastasios
2017-09-01
Bone alters its metabolic and anabolic activities in response to the variety of systemic and local factors such as hormones and growth factors. Classical observations describing abundance of the nerve fibers in bone also predict a paradigm that the nervous system influences bone metabolism and anabolism. Since 1916 several investigators tried to analyze the effect of peripheral nervous system in bone growth and most of them advocated for the positive effect of innervation in the bones of growing organisms. Moreover, neuronal tissue controls bone formation and remodeling. The purpose of this mini-review is to present the most recent data concerning the influence of innervation on bone growth, the current understanding of the skeletal innervation and their proposed physiological effects on bone metabolism as well as the implication of denervation in human skeletal biology in the developing organism since the peripheral neural trauma as well as peripheral neuropathies are common and they have impact on the growing skeleton.
Human Recombinant Insulin 1g - ug
NASA Technical Reports Server (NTRS)
2004-01-01
Proteins are the building blocks of our bodies and the living world around us. Within our bodies proteins make it possible for red blood cells to carry oxygen throughout the body. Others help transmit nerve impulses so we can hear, smell and feel the world around us. While others play a crucial role in preventing or causing disease. If the structure of a protein is known, then companies can develop new or improved drugs to fight the disease of which the protein is a part. To determine protein structure, researchers must grow near-perfect crystals of the protein. On Earth convection currents, sedimentation and other gravity-induced phenomena hamper crystal growth efforts. In microgravity researchers can grow near-perfect crystals in an environment free of these effects. Because of the enormous potential for new pharmaceutical products the Center for Macromolecular Crystallography--the NASA Commercial Space Center responsible for commercial protein crystal growth efforts has more than fifty major industry and academic partners. Research on crystals of human insulin could lead to improved treatments for diabetes.
2004-04-15
Proteins are the building blocks of our bodies and the living world around us. Within our bodies proteins make it possible for red blood cells to carry oxygen throughout the body. Others help transmit nerve impulses so we can hear, smell and feel the world around us. While others play a crucial role in preventing or causing disease. If the structure of a protein is known, then companies can develop new or improved drugs to fight the disease of which the protein is a part. To determine protein structure, researchers must grow near-perfect crystals of the protein. On Earth convection currents, sedimentation and other gravity-induced phenomena hamper crystal growth efforts. In microgravity researchers can grow near-perfect crystals in an environment free of these effects. Because of the enormous potential for new pharmaceutical products the Center for Macromolecular Crystallography--the NASA Commercial Space Center responsible for commercial protein crystal growth efforts has more than fifty major industry and academic partners. Research on crystals of human insulin could lead to improved treatments for diabetes.
Suzuki, Daichi G; Murakami, Yasunori; Yamazaki, Yuji; Wada, Hiroshi
2015-01-01
Image-forming vision is crucial to animals for recognizing objects in their environment. In vertebrates, this type of vision is achieved with paired camera eyes and topographic projection of the optic nerve. Topographic projection is established by an orthogonal gradient of axon guidance molecules, such as Ephs. To explore the evolution of image-forming vision in vertebrates, lampreys, which belong to the basal lineage of vertebrates, are key animals because they show unique "dual visual development." In the embryonic and pre-ammocoete larval stage (the "primary" phase), photoreceptive "ocellus-like" eyes develop, but there is no retinotectal optic nerve projection. In the late ammocoete larval stage (the "secondary" phase), the eyes grow and form into camera eyes, and retinotectal projection is newly formed. After metamorphosis, this retinotectal projection in adult lampreys is topographic, similar to that of gnathostomes. In this study, we explored the involvement of Ephs in lamprey "dual visual development" and establishment of the image-form vision. We found that gnathostome-like orthogonal gradient expression was present in the retina during the "secondary" phase; i.e., EphB showed a gradient of expression along the dorsoventral axis, while EphC was expressed along the anteroposterior axis. However, no orthogonal gradient expression was observed during the "primary" phase. These observations suggest that Ephs are likely recruited de novo for the guidance of topographical "second" optic nerve projection. Transformations during lamprey "dual visual development" may represent "recapitulation" from a protochordate-like ancestor to a gnathostome-like vertebrate ancestor. © 2015 Wiley Periodicals, Inc.
Gao, F B; Raff, M
1997-09-22
We have used clonal analysis and time-lapse video recording to study the proliferative behavior of purified oligodendrocyte precursor cells isolated from the perinatal rat optic nerve growing in serum-free cultures. First, we show that the cell cycle time of precursor cells decreases with increasing concentrations of PDGF, the main mitogen for these cells, suggesting that PDGF levels may regulate the cell cycle time during development. Second, we show that precursor cells isolated from embryonic day 18 (E18) nerves differ from precursor cells isolated from postnatal day 7 (P7) or P14 nerves in a number of ways: they have a simpler morphology, and they divide faster and longer before they stop dividing and differentiate into postmitotic oligodendrocytes. Third, we show that purified E18 precursor cells proliferating in culture progressively change their properties to resemble postnatal cells, suggesting that progressive maturation is an intrinsic property of the precursors. Finally, we show that precursor cells, especially mature ones, sometimes divide unequally, such that one daughter cell is larger than the other; in each of these cases the larger daughter cell divides well before the smaller one, suggesting that the precursor cells, just like single-celled eucaryotes, have to reach a threshold size before they can divide. These and other findings raise the possibility that such stochastic unequal divisions, rather than the stochastic events occurring in G1 proposed by "transition probability" models, may explain the random variability of cell cycle times seen within clonal cell lines in culture.
Gao, Fen-Biao; Raff, Martin
1997-01-01
We have used clonal analysis and time-lapse video recording to study the proliferative behavior of purified oligodendrocyte precursor cells isolated from the perinatal rat optic nerve growing in serum-free cultures. First, we show that the cell cycle time of precursor cells decreases with increasing concentrations of PDGF, the main mitogen for these cells, suggesting that PDGF levels may regulate the cell cycle time during development. Second, we show that precursor cells isolated from embryonic day 18 (E18) nerves differ from precursor cells isolated from postnatal day 7 (P7) or P14 nerves in a number of ways: they have a simpler morphology, and they divide faster and longer before they stop dividing and differentiate into postmitotic oligodendrocytes. Third, we show that purified E18 precursor cells proliferating in culture progressively change their properties to resemble postnatal cells, suggesting that progressive maturation is an intrinsic property of the precursors. Finally, we show that precursor cells, especially mature ones, sometimes divide unequally, such that one daughter cell is larger than the other; in each of these cases the larger daughter cell divides well before the smaller one, suggesting that the precursor cells, just like single-celled eucaryotes, have to reach a threshold size before they can divide. These and other findings raise the possibility that such stochastic unequal divisions, rather than the stochastic events occurring in G1 proposed by “transition probability” models, may explain the random variability of cell cycle times seen within clonal cell lines in culture. PMID:9298991
Neuroprotective Effects of Exercise Treatments After Injury: The Dual Role of Neurotrophic Factors
Cobianchi, Stefano; Arbat-Plana, Ariadna; López-Álvarez, Víctor M.; Navarro, Xavier
2017-01-01
Background Shared connections between physical activity and neuroprotection have been studied for decades, but the mechanisms underlying this effect of specific exercise were only recently brought to light. Several evidences suggest that physical activity may be a reasonable and beneficial method to improve functional recovery in both peripheral and central nerve injuries and to delay functional decay in neurodegenerative diseases. In addition to improving cardiac and immune functions, physical activity may represent a multifunctional approach not only to improve cardiocirculatory and immune functions, but potentially modulating trophic factors signaling and, in turn, neuronal function and structure at times that may be critical for neurodegeneration and regeneration. Methods Research content related to the effects of physical activity and specific exercise programs in normal and injured nervous system have been reviewed. Results Sustained exercise, particularly if applied at moderate intensity and early after injury, exerts anti-inflammatory and pro-regenerative effects, and may boost cognitive and motor functions in aging and neurological disorders. However, newest studies show that exercise modalities can differently affect the production and function of brain-derived neurotrophic factor and other neurotrophins involved in the generation of neuropathic conditions. These findings suggest the possibility that new exercise strategies can be directed to nerve injuries with therapeutical benefits. Conclusion Considering the growing burden of illness worldwide, understanding of how modulation of neurotrophic factors contributes to exercise-induced neuroprotection and regeneration after peripheral nerve and spinal cord injuries is a relevant topic for research, and represents the beginning of a new non-pharmacological therapeutic approach for better rehabilitation of neural disorders. PMID:27026050
Recurrent largngeal nerve paralysis: a laryngographic and computed tomographic study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agha, F.P.
Vocal cord paralysis is a relatively common entity, usually resulting from a pathologic process of the vagus nerve or its recurrent larynegeal branch. It is rarely caused by intralargngeal lesions. Four teen patients with recurrent laryngeal nerve paralysis (RLNP) were evaluated by laryngography, computed tomography (CT), or both. In the evaluation of the paramedian cord, CT was limited in its ability to differentiate between tumor or RLNP as the cause of the fixed cord, but it yielded more information than laryngography on the structural abnormalities of the larynx and pre-epiglottic and paralaryngeal spaces. Laryngography revealed distinct features of RLNP andmore » is the procedure of choice for evaluation of functional abnormalities of the larynx until further experience with faster CT scanners and dynamic scanning of the larynx is gained.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collombet, Jean-Marc, E-mail: jmcollombet@imassa.fr
This manuscript provides a survey of research findings catered to the development of effective countermeasures against nerve agent poisoning over the past decade. New neuropathophysiological distinctive features as regards organophosphate (OP) intoxication are presented. Such leading neuropathophysiological features include recent data on nerve agent-induced neuropathology, related peripheral or central nervous system inflammation and subsequent angiogenesis process. Hence, leading countermeasures against OP exposure are down-listed in terms of pre-treatment, protection or decontamination and emergency treatments. The final chapter focuses on the description of the self-repair attempt encountered in lesioned rodent brains, up to 3 months after soman poisoning. Indeed, an increasedmore » proliferation of neuronal progenitors was recently observed in injured brains of mice subjected to soman exposure. Subsequently, the latter experienced a neuronal regeneration in damaged brain regions such as the hippocampus and amygdala. The positive effect of a cytokine treatment on the neuronal regeneration and subsequent cognitive behavioral recovery are also discussed in this review. For the first time, brain cell therapy and neuronal regeneration are considered as a valuable contribution towards delayed treatment against OP intoxication. To date, efficient delayed treatment was lacking in the therapeutic resources administered to patients contaminated by nerve agents. - Highlights: > This review focuses on neuropathophysiology following nerve agent poisoning in mice. > Extensive data on long-term neuropathology and related inflammation are provided here. > Delayed self-repair attempts encountered in lesioned rodent brains are also described. > Cell therapy is considered as a valuable treatment against nerve agent intoxication.« less
Bush, M S; Reid, A R; Allt, G
1991-09-01
Previous investigations of the blood-nerve barrier have correlated the greater permeability of ganglionic endoneurial vessels, compared to those of nerve trunks, with the presence of fenestrations and open intercellular junctions. Recent studies have demonstrated reduced endothelial cell surface charge in blood vessels showing greater permeability. To determine the distribution of anionic sites on the plasma membranes and basal laminae of endothelial cells in dorsal root ganglia, cationic colloidal gold and cationic ferritin were used. Electron microscopy revealed the existence of endothelial microdomains with differing labelling densities. Labelling indicated that caveolar and fenestral diaphragms and basal laminae are highly anionic at physiological pH, luminal plasma membranes and endothelial processes are moderately charged and abluminal plasma membranes are weakly anionic. Tracers did not occur in caveolae or cytoplasmic vesicles. In vitro tracer experiments at pH values of 7.3, 5.0, 3.5 and 2.0 indicated that the anionic charge on the various endothelial domains was contributed by chemical groups with differing pKa values. In summary, the labelling of ganglionic and sciatic nerve vessels was similar except for the heavy labelling of diaphragms in a minority of endoneurial vessels in ganglia. This difference is likely to account in part for the greater permeability of ganglionic endoneurial vessels. The results are discussed with regard to the blood-nerve and -brain barriers and vascular permeability in other tissues and a comparison made between the ultrastructure and anionic microdomains of epi-, peri- and endoneurial vessels of dorsal root ganglia and sciatic nerves.
Oleo gum resin of Ferula assa-foetida L. ameliorates peripheral neuropathy in mice.
Homayouni Moghadam, Farshad; Dehghan, Maryam; Zarepur, Ehsan; Dehlavi, Reyhaneh; Ghaseminia, Fatemeh; Ehsani, Shima; Mohammadzadeh, Golnaz; Barzegar, Kazem
2014-05-28
According to the Chinese, European, Iranian and Indian traditional medicines, oleo gum resin of Ferula assa-foetida (asafoetida) has therapeutic effects on different kinds of diseases. Some of these effects are related to the diseases of nervous system such as hysteresis and convulsion. In recent studies, some anti-epileptic and neuroprotective roles were also considered for it and we examined its possible role on treatment of peripheral neuropathy. in vitro studies were carried out to identify the response of isolated sciatic nerves to different concentrations of oleo gum resin of asafoetida solved in Lock׳s solution. Then, in vivo studies were conducted to evaluate its effect on amelioration of peripheral neuropathy in mice. Peripheral neuropathy was induced by intraperiotoneal injection of high doses of pyridoxine in adult Balb/c male mice. Tail flick tests were performed to identify the incidence of neuropathy in animals. After 10 days treatment with asafoetida, the efficiency of treatment was assessed by behavioral, electrophysiological and histological studies. in vitro experiments confirmed that incubating the nerves in aqueous extract of oleo gum rein of asafoetida increased the amplitude and decreased the latent period of nerve compound action potential (CAP). Nerve conduction velocity (NCV) and amplitude of CAP also improved in asafoetida treated animals. Histological and behavioral studies showed that asafoetida was able to facilitate the healing process in peripheral nerves. in vitro experiments showed that asafoetida is a nerve stimulant and its administration in neuropathic mice exerted neuroprotecting effects through stimulating axonal regeneration and remyelination and decrement of lymphocyte infiltration. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Zhao, Jingbo; Yang, Jian; Liao, Donghua; Gregersen, Hans
2017-01-01
Background Gastrointestinal disorders are very common in diabetic patients, but the pathogenesis is still not well understood. Peripheral afferent nerves may be involved due to the complex regulation of gastrointestinal function by the enteric nervous system. Objective We aimed to characterize the stimulus–response function of afferent fibers innervating the jejunum in the Goto-Kakizaki (GK) type 2 diabetic rat model. A key question is whether changes in afferent firing arise from remodeled tissue or from adaptive afferent processes. Design Seven 32-week-old male GK rats and seven age-matched normal Wistar rats were studied. Firing from mesenteric afferent nerves was recorded in excised jejunal segments of seven GK rats and seven normal Wistar rats during ramp test, stress relaxation test, and creep test. The circumferential stress–strain, spike rate increase ratio (SRIR), and single unit firing rates were calculated for evaluation of interdependency of the mechanical stimulations and the afferent nerve discharge. Results Elevated sensitivity to mechanical stimuli was found for diabetic nerve bundles and single unit activity (P<0.05). The stress relaxed less in the diabetic intestinal segment (P<0.05). Linear association between SRIR and the thickness of circumferential muscle layer was found at high stress levels as well as for SRIR and the glucose level. Conclusion Altered viscoelastic properties and elevated mechanosensitivity were found in the GK rat intestine. The altered nerve signaling is related to muscle layer remodeling and glucose levels and may contribute to gastrointestinal symptoms experienced by diabetic patients. PMID:29238211
Cutaneous sensory and autonomic denervation in CADASIL.
Nolano, Maria; Provitera, Vincenzo; Donadio, Vincenzo; Caporaso, Giuseppe; Stancanelli, Annamaria; Califano, Francesca; Pianese, Luigi; Liguori, Rocco; Santoro, Lucio; Ragno, Michele
2016-03-15
To assess the involvement of the peripheral nervous system in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) by means of immunofluorescence and confocal analysis of punch skin biopsies. We recruited 14 unrelated patients with CADASIL (M/F = 9/5; age 53.9 ± 10.5 years) and 52 healthy controls (M/F = 31/21; age 53.8 ± 9.8). Patients underwent clinical and neuroradiologic assessment. Three-millimeter punch skin biopsies were taken from the fingertip, the thigh, and the distal leg and processed using indirect immunofluorescence and a panel of primary antibodies to mark vessels and sensory and autonomic nerve fibers. Intraepidermal nerve fibers (IENF), Meissner corpuscles (MC), and sudomotor, vasomotor, and pilomotor nerves were assessed using confocal microscopy. In patients, compared to controls, we found a severe loss of IENF at the distal leg (p < 0.01), at the thigh (p < 0.01), and at the fingertip (p < 0.01) with a non-length-dependent pattern and a loss of MC (p < 0.01). A severe sudomotor, vasomotor, and pilomotor nerve fiber loss was found by semiquantitative evaluation. Along with nerve loss, a severe derangement of the vascular bed was observed. In our patient population, sensory and autonomic denervation did not correlate with age, sex, type of mutation, or MRI involvement. We found an involvement of the peripheral nervous system in patients with CADASIL through the assessment of cutaneous somatic and autonomic nerves. The neurovascular derangement observed in the skin may reflect, although to a lesser extent, what happens in the CNS. © 2016 American Academy of Neurology.
Barigye, R; Davis, S; Hunt, R; Hunt, N; Walsh, S; Elliott, N; Burnup, C; Aumann, S; Day, C; Dyrting, K; Weir, R; Melville, L F
2016-10-01
This study assessed the neurotropism of bovine ephemeral fever (BEF) virus (BEFV) and described histomorphological abnormalities of the brain, spinal cord and peripheral nerves that may causally contribute to paresis or paralysis in BEF. Four paralysed and six asymptomatic but virus-infected cattle were monitored, and blood and serum samples screened by qRT-PCR, virus isolation and neutralisation tests. Fresh brain, spinal cord, peripheral nerve and other tissues were qRT-PCR-tested for viral RNA, while formalin-fixed specimens were processed routinely and immunohistochemically evaluated for histomorphological abnormalities and viral antigen distribution, respectively. The neurotropism of BEFV was immunohistochemically confirmed in the brain and peripheral nerves and peripheral neuropathy was demonstrated in three paralysed but not the six aneurological but virus-infected animals. Wallerian degeneration (WD) was present in the ventral funicular white matter of the lumbar spinal cord of a paralysed steer and in cervical and thoracic spinal cord segments of three paralysed animals. Although no spinal cord lesions were seen in the steer euthanased within 7 days of illness, peripheral neuropathy was present and more severe in nerves of the brachial plexuses than in the gluteal or fibular nerves. The only steer with WD in the lumbar spinal cord also showed intrahistiocytic cell viral antigen that was spatially distributed within areas of moderate brain stem encephalitis. The data confirmed neurotropism of BEFV in cattle and documented histomorphological abnormalities in peripheral nerves and brain which, together with spinal cord lesions, may contribute to chronic paralysis in BEFV-infected downer cattle. © 2016 Australian Veterinary Association.
2013-01-01
Background Remipedia were initially seen as a primitive taxon within Pancrustacea based on characters considered ancestral, such as the homonomously segmented trunk. Meanwhile, several morphological and molecular studies proposed a more derived position of Remipedia within Pancrustacea, including a sister group relationship to Hexapoda. Because of these conflicting hypotheses, fresh data are crucial to contribute new insights into euarthropod phylogeny. The architecture of individually identifiable serotonin-immunoreactive neurons has successfully been used for phylogenetic considerations in Euarthropoda. Here, we identified neurons in three species of Remipedia with an antiserum against serotonin and compared our findings to reconstructed ground patterns in other euarthropod taxa. Additionally, we traced neurite connectivity and neuropil outlines using antisera against acetylated α-tubulin and synapsin. Results The ventral nerve cord of Remipedia displays a typical rope-ladder-like arrangement of separate metameric ganglia linked by paired longitudinally projecting connectives. The peripheral projections comprise an intersegmental nerve, consisting of two branches that fuse shortly after exiting the connectives, and the segmental anterior and posterior nerve. The distribution and morphology of serotonin-immunoreactive interneurons in the trunk segments is highly conserved within the remipede species we analyzed, which allows for the reconstruction of a ground pattern: two posterior and one anterior pair of serotonin-immunoreactive neurons that possess a single contralateral projection. Additionally, three pairs of immunoreactive neurons are found in the medial part of each hemiganglion. In one species (Cryptocorynetes haptodiscus), the anterior pair of immunoreactive neurons is missing. Conclusions The anatomy of the remipede ventral nerve cord with its separate metameric ganglia mirrors the external morphology of the animal’s trunk. The rope-ladder-like structure and principal architecture of the segmental ganglia in Remipedia corresponds closely to that of other Euarthropoda. A comparison of the serotonin-immunoreactive cell arrangement of Remipedia to reconstructed ground patterns of major euarthropod taxa supports a homology of the anterior and posterior neurons in Pancrustacea. These neurons in Remipedia possess unbranched projections across the midline, pointing towards similarities to the hexapod pattern. Our findings are in line with a growing number of phylogenetic investigations proposing Remipedia to be a rather derived crustacean lineage that perhaps has close affinities to Hexapoda. PMID:23758940
Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects
Liu, Huawei; Wen, Weisheng; Hu, Min; Bi, Wenting; Chen, Lijie; Liu, Sanxia; Chen, Peng; Tan, Xinying
2013-01-01
Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as well as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa-line groups than in the nerve growth factor-microspheres and autologous nerve groups. physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation illustrated that the di-ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits. PMID:25206635
[Diagnosis and treatment of peripheral neuropathy induced by ANCA-associated vasculitis].
Hattori, Naoki
2014-07-01
ANCA-associated vasculitis is induced by necrotizing angiitis of small vessels supplying the peripheral nervous system. Ischemic processes induce neuronal damage and axonal degeneration in the peripheral nerve. Motor dysfunction as well as sensory disturbance and allodynia caused by neuropathic symptoms may influence an individual's activities of daily living and quality of life. Notably, the peripheral nerve is predominantly affected in ANCA-associated vasculitis. We suggest that early diagnosis and appropriate treatment are important to improve survival in and functional prognosis of ANCA-associated vasculitis.
Tamada, Hiromi; Kiryu-Seo, Sumiko; Hosokawa, Hiroki; Ohta, Keisuke; Ishihara, Naotada; Nomura, Masatoshi; Mihara, Katsuyoshi; Nakamura, Kei-Ichiro; Kiyama, Hiroshi
2017-08-01
Mitochondria undergo morphological changes through fusion and fission for their quality control, which are vital for neuronal function. In this study, we examined three-dimensional morphologies of mitochondria in motor neurons under normal, nerve injured, and nerve injured plus fission-impaired conditions using the focused ion beam/scanning electron microscopy (FIB/SEM), because the FIB/SEM technology is a powerful tool to demonstrate both 3D images of whole organelle and the intra-organellar structure simultaneously. Crossing of dynamin-related protein 1 (Drp1) gene-floxed mice with neuronal injury-specific Cre driver mice, Atf3:BAC Tg mice, allowed for Drp1 ablation specifically in injured neurons. FIB/SEM analysis demonstrated that somatic mitochondrial morphologies in motor neurons were not altered before or after nerve injury. However, the fission impairment resulted in prominent somatic mitochondrial enlargement, which initially induced complex morphologies with round regions and long tubular processes, subsequently causing a decrease in the number of processes and further enlargement of the round regions, which eventually resulted in big spheroidal mitochondria without processes. The abnormal mitochondria exhibited several degradative morphologies: local or total cristae collapse, vacuolization, and mitophagy. These suggest that mitochondrial fission is crucial for maintaining mitochondrial integrity in injured motor neurons, and multiple forms of mitochondria degradation may accelerate neuronal degradation. © 2017 Wiley Periodicals, Inc.
Chang, Ming-Fong; Hsieh, Jung-Hsien; Chiang, Hao; Kan, Hung-Wei; Huang, Cho-Min; Chellis, Luke; Lin, Bo-Shiou; Miaw, Shi-Chuen; Pan, Chun-Liang; Chao, Chi-Chao; Hsieh, Sung-Tsang
2016-01-01
Delivering gene constructs into the dorsal root ganglia (DRG) is a powerful but challenging therapeutic strategy for sensory disorders affecting the DRG and their peripheral processes. The current delivery methods of direct intra-DRG injection and intrathecal injection have several disadvantages, including potential injury to DRG neurons and low transfection efficiency, respectively. This study aimed to develop a spinal nerve injection strategy to deliver polyethylenimine mixed with plasmid (PEI/DNA polyplexes) containing green fluorescent protein (GFP). Using this spinal nerve injection approach, PEI/DNA polyplexes were delivered to DRG neurons without nerve injury. Within one week of the delivery, GFP expression was detected in 82.8% ± 1.70% of DRG neurons, comparable to the levels obtained by intra-DRG injection (81.3% ± 5.1%, p = 0.82) but much higher than those obtained by intrathecal injection. The degree of GFP expression by neurofilament(+) and peripherin(+) DRG neurons was similar. The safety of this approach was documented by the absence of injury marker expression, including activation transcription factor 3 and ionized calcium binding adaptor molecule 1 for neurons and glia, respectively, as well as the absence of behavioral changes. These results demonstrated the efficacy and safety of delivering PEI/DNA polyplexes to DRG neurons via spinal nerve injection. PMID:27748450
Ning, Liqun; Sun, Haoying; Lelong, Tiphanie; Guilloteau, Romain; Zhu, Ning; Schreyer, David J; Chen, Daniel Xiongbiao
2018-06-18
Three-dimensional (3D) bioprinting of biomaterials shows great potential for producing cell-encapsulated scaffolds to repair nerves after injury or disease. For this, preparation of biomaterials and bioprinting itself are critical to create scaffolds with both biological and mechanical properties appropriate for nerve regeneration, yet remain unachievable. This paper presents our study on bioprinting Schwann cell-encapsulated scaffolds using composite hydrogels of alginate, fibrin, hyaluronic acid, and/or RGD peptide, for nerve tissue engineering applications. For the preparation of composite hydrogels, suitable hydrogel combinations were identified and prepared by adjusting the concentration of fibrin based on the morphological spreading of Schwann cells. In bioprinting, the effects of various printing process parameters (including the air pressure for dispensing, dispensing head movement speed, and crosslinking conditions) on printed structures were investigated and, by regulating these parameters, mechanically-stable scaffolds with fully interconnected pores were printed. The performance of Schwann cells within the printed scaffolds were examined in terms of viability, proliferation, orientation, and ability to produce laminin. Our results show that the printed scaffolds can promote the alignment of Schwann cells inside scaffolds and thus provide haptotactic cues to direct the extension of dorsal root ganglion neurites along the printed strands, demonstrating their great potential for applications in the field of nerve tissue engineering. © 2018 IOP Publishing Ltd.
Electrospinning of poly(glycerol sebacate)-based nanofibers for nerve tissue engineering.
Hu, Jue; Kai, Dan; Ye, Hongye; Tian, Lingling; Ding, Xin; Ramakrishna, Seeram; Loh, Xian Jun
2017-01-01
Nerve tissue engineering (TE) requires biomimetic scaffolds providing essential chemical and topographical cues for nerve regeneration. Poly(glycerol sebacate) (PGS) is a biodegradable and elastic polymer that has gained great interest as a TE scaffolding biomaterial. However, uncured PGS is difficult to be electrospun into nanofibers. PGS would, therefore, require the addition of electrospinning agents. In this study, we modified PGS by using atom transfer radical polymerization (ATRP) to synthesize PGS-based copolymers with methyl methacrylate (MMA). The synthesized PGS-PMMA copolymer showed a molecular weight of 82kDa and a glass transition temperature of 115°C. More importantly, the PGS-PMMA could be easily electrospun into nanofiber with a fiber diameter of 167±33nm. Blending gelatin into PGS-PMMA nanofibers was found to increase its hydrophilicity and biocompatibility. Rat PC12 cells were seeded onto the PGS-PMMA/gelatin nanofibers to investigate their potential for nerve regeneration. It was found that gelatin-containing PGS-based nanofibers promoted cell proliferation. The elongated cell morphology observed on such nanofibers indicated that the scaffolds could induce the neurite outgrowth of the nerve stem cells. Overall, our study suggested that the synthesis of PGS-based copolymers might be a promising approach to enhance their processability, and therefore advancing bioscaffold engineering for various TE applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Importance of electromyography and the electrophysiological severity scale in forensic reports.
Bilgin, Nursel Gamsiz; Ozge, Aynur; Mert, Ertan; Yalçinkaya, Deniz E; Kar, Hakan
2007-05-01
Forensic reports on traumatic peripheral nerve injuries include dysfunction degrees of extremities, which are arranged according to the Turkish Penalty Code. The aim of this study is to discuss the role and importance of electromyography while preparing forensic reports in the cases of traumatic peripheral nerve injuries and the usefulness of scoring systems. A modified global scale, recommended by Mondelli et al., was used to assess the electrophysiological impairment of each peripheral nerve. Forensic reports of 106 patients, reported between 2002 and 2004, were evaluated. Thirty-four percent of the cases were reported as "total loss of function," 41.5% were reported as "functional disability," and there were no dysfunctions in the other cases in forensic reports that were prepared based on Council of Social Insurance Regulations of Health Processes and Guide prepared by the Council of Forensic Medicine and profession associations of forensic medicine. When we rearranged these forensic reports based on the electrophysiological severity scale (ESS), it was clearly found that all of the score 2 cases and 86.7% of the score 3 cases corresponded to "functional disability" and 91.4% of the score 4 cases correspond to "total loss of function." We found a significant correlation between the ESS and functional evaluation in peripheral nerve injury cases. Evaluation of functional disabilities in peripheral nerve injuries with the ESS represents a standardized and objective method used for forensic reports.
Devic, P; Gallay, L; Streichenberger, N; Petiot, P
2016-11-01
Amongst the heterogeneous group of inflammatory myopathies, focal myositis stands as a rare and benign dysimmune disease. Although it can be associated with root and/or nerve lesions, traumatic muscle lesions and autoimmune diseases, its triggering factors remain poorly understood. Defined as an isolated inflammatory pseudotumour usually restricted to one skeletal muscle, clinical presentation of focal myositis is that of a rapidly growing solitary mass within a single muscle, usually in the lower limbs. Electromyography shows spontaneous activity associated with a myopathic pattern. MRI reveals a contrast enhanced enlarged muscle appearing hyper-intense on FAT-SAT T2 weighted images. Adjacent structures are spared and there are no calcifications. Serum creatine kinase (CK) levels are usually moderately augmented and biological markers of systemic inflammation are absent in most cases. Pathological histological features include marked variation in fibre size, inflammatory infiltrates mostly composed of T CD4+ lymphocytes and macrophages, degenerating/regenerating fibres and interstitial fibrosis. Differential diagnoses are numerous and include myositis of other origin with focal onset. Steroid treatment should be reserved for patients who present with major pain, nerve lesions, associated autoimmune disease, or elevated C reactive protein or CK. Copyright © 2016 Elsevier B.V. All rights reserved.
The First Experience of Triple Nerve Transfer in Proximal Radial Nerve Palsy.
Emamhadi, Mohammadreza; Andalib, Sasan
2018-01-01
Injury to distal portion of posterior cord of brachial plexus leads to palsy of radial and axillary nerves. Symptoms are usually motor deficits of the deltoid muscle; triceps brachii muscle; and extensor muscles of the wrist, thumb, and fingers. Tendon transfers, nerve grafts, and nerve transfers are options for surgical treatment of proximal radial nerve palsy to restore some motor functions. Tendon transfer is painful, requires a long immobilization, and decreases donor muscle strength; nevertheless, nerve transfer produces promising outcomes. We present a patient with proximal radial nerve palsy following a blunt injury undergoing triple nerve transfer. The patient was involved in a motorcycle accident with complete palsy of the radial and axillary nerves. After 6 months, on admission, he showed spontaneous recovery of axillary nerve palsy, but radial nerve palsy remained. We performed triple nerve transfer, fascicle of ulnar nerve to long head of the triceps branch of radial nerve, flexor digitorum superficialis branch of median nerve to extensor carpi radialis brevis branch of radial nerve, and flexor carpi radialis branch of median nerve to posterior interosseous nerve, for restoration of elbow, wrist, and finger extensions, respectively. Our experience confirmed functional elbow, wrist, and finger extensions in the patient. Triple nerve transfer restores functions of the upper limb in patients with debilitating radial nerve palsy after blunt injuries. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Weijie, E-mail: 459586768@qq.com; Liu, Yuxi, E-mail: 924013616@qq.com; Wang, Youhua, E-mail: wyouhua1516@163.com
Sam68 (Src-associated in mitosis of 68 kD), a KH domain RNA-binding protein, is not only important in signaling transduction cascades, but crucial in a variety of cellular processes. Sam68 is reported to be involved in the phospoinositide3-kinase (PI3K) and nuclear factor-kappa B (NF-κB) signaling pathways, and it is closely associated with cell proliferation, RNA metabolism, and tumor progression. However, we know little about the role of Sam68 during peripheral nervous system injury and regeneration. In this study, we investigated the expression of Sam68 and its biological significances in sciatic nerve crush. Interestingly, we found Sam68 had a co-localization with S100 (Schwannmore » cell marker). Moreover, after crush, Sam68 had a spatiotemporal protein expression, which was in parallel with proliferation cell nuclear antigen (PCNA). In vitro, we also observed increased expression of Sam68 during the process of TNF-α-induced Schwann cell proliferation model. Besides, flow cytometry analyses, CCK-8, and EDU were all performed with the purpose of investigating the role of Sam68 in the regulation of Schwann cell proliferation. Even more importantly, we discovered that Sam68 could enhance the phosphorylation of Akt while LY294002 (a PI3K inhibitor) obviously reversed Sam68-induced cell proliferation. Finally, we detected the variance during regeneration progress through the rat walk footprint test. In summary, all these evidences demonstrated that Sam68 might participate in Schwann cell proliferation partially via PI3K/Akt pathway and also regulate regeneration after sciatic nerve crush. -- Highlights: •The dynamic changes and location of Sam68 after sciatic nerve crush. •Sam68 promoted Schwann cell proliferation via PI3K/Akt pathway. •Sam68 modulated functional recovery after sciatic nerve crush.« less
Chang, Hung-Ming; Shyu, Ming-Kwang; Tseng, Guo-Fang; Liu, Chiung-Hui; Chang, Hung-Shuo; Lan, Chyn-Tair; Hsu, Wen-Ming; Liao, Wen-Chieh
2013-01-01
Background Adequate migration of Schwann cells (Sc) is crucial for axon-guidance in the regenerative process after peripheral nerve injury (PNI). Considering neuregulin-erbB-FAK signaling is an essential pathway participating in the regulation of Sc migration during development, the present study is aimed to examine whether neuregulin would exert its beneficial effects on adult following PNI and further determine the potential changes of downstream pathway engaged in neuro-regeneration by both in vitro and in vivo approaches. Methodology and Principal Findings Cultured RSC96 cells treated with neuregulin were processed for erbB2/3 immunofluorescence and FAK immunoblotings. The potential effects of neuregulin on Sc were assessed by cell adherence, spreading, and migration assays. In order to evaluate the functional significance of neuregulin on neuro-regeneration, the in vivo model of PNI was performed by chronic end-to-side neurorrhaphy (ESN). In vitro studies indicated that after neuregulin incubation, erbB2/3 were not only expressed in cell membranes, but also distributed throughout the cytoplasm and nucleus of RSC96 cells. Activation of erbB2/3 was positively correlated with FAK phosphorylation. Neuregulin also increases Sc adherence, spreading, and migration by 127.2±5.0%, 336.8±3.0%, and 80.0±5.7%, respectively. As for in vivo study, neuregulin significantly accelerates the speed of Sc migration and increases Sc expression in the distal stump of injured nerves. Retrograde labeling and compound muscle action potential recordings (CMAP) also showed that neuregulin successfully facilitates nerve regeneration by eliciting noticeably larger CMAP and promoting quick re-innervation of target muscles. Conclusions As neuregulin successfully improves axo-glial interaction by speeding Sc migration via the erbB2/3-FAK pathway, therapeutic use of neuregulin may thus serve as a promising strategy to facilitate the progress of nerve regeneration after PNI. PMID:23301073
GFAP immunoreactivity within the rat nucleus ambiguus after laryngeal nerve injury
Berdugo-Vega, G; Arias-Gil, G; Rodriguez-Niedenführ, M; Davies, D C; Vázquez, T; Pascual-Font, A
2014-01-01
Changes that occur in astroglial populations of the nucleus ambiguus after recurrent (RLN) or superior (SLN) laryngeal nerve injury have hitherto not been fully characterised. In the present study, rat RLN and SLN were lesioned. After 3, 7, 14, 28 or 56 days of survival, the nucleus ambiguus was investigated by means of glial fibrillary acidic protein (GFAP) immunofluorescence or a combination of GFAP immunofluorescence and the application of retrograde tracers. GFAP immunoreactivity was significantly increased 3 days after RLN resection and it remained significantly elevated until after 28 days post injury (dpi). By 56 dpi it had returned to basal levels. In contrast, following RLN transection with repair, GFAP immunoreactivity was significantly elevated at 7 dpi and remained significantly elevated until 14 dpi. It had returned to basal levels by 28 dpi. Topographical analysis of the distribution of GFAP immunoreactivity revealed that after RLN injury, GFAP immunoreactivity was increased beyond the area of the nucleus ambiguus within which RLN motor neuron somata were located. GFAP immunoreactivity was also observed in the vicinity of neuronal somata that project into the uninjured SLN. Similarly, lesion of the SLN resulted in increased GFAP immunoreactivity around the neuronal somata projecting into it and also in the vicinity of the motor neuron somata projecting into the RLN. The increase in GFAP immunoreactivity outside of the region containing the motor neurons projecting into the injured nerve, may reflect the onset of a regenerative process attempting to compensate for impairment of one of the laryngeal nerves and may occur because of the dual innervation of the posterior cricoarytenoid muscle. This dual innervation of a very specialised muscle could provide a useful model system for studying the molecular mechanisms underlying axonal regeneration process and the results of the current study could provide the basis for studies into functional regeneration following laryngeal nerve injury, with subsequent application to humans. PMID:25181319
Kruyt, Ivo J; Verheul, Jeroen B; Hanssens, Patrick E J; Kunst, Henricus P M
2018-01-01
OBJECTIVE Neurofibromatosis Type 2 (NF2) is a tumor syndrome characterized by an autosomal dominant pattern of inheritance. The hallmark of NF2 is the development of bilateral vestibular schwannomas (VSs), generally by 30 years of age. One of the first-line treatment options for small to medium-large VSs is radiosurgery. Although radiosurgery shows excellent results in sporadic VS, its use in NF2-related VS is still a topic of dispute. The aim of this study was to evaluate long-term tumor control, hearing preservation rates, and factors influencing outcome of optimally dosed, contemporary Gamma Knife radiosurgery (GKRS) for growing VSs in patients with NF2 and compare the findings to data obtained in patients with sporadic VS also treated by means of GKRS. METHODS The authors performed a retrospective analysis of 47 growing VSs in 34 NF2 patients who underwent GKRS treatment performed with either the Model C or Perfexion Leksell Gamma Knife, with a median margin dose of 11 Gy. Actuarial tumor control rates were estimated using the Kaplan-Meier method. For patient- and treatment-related factors, a Cox proportional hazards model was used to identify predictors of outcome. Trigeminal, facial, and vestibulocochlear nerve function were assessed before and after treatment. NF2-related VS patients were matched 1:1 with sporadic VS patients who were treated in the same institute, and the same indications for treatment, definitions, and dosimetry were used in order to compare outcomes. RESULTS Actuarial tumor control rates in NF2 patients after 1, 3, 5, and 8 years were 98%, 89%, 87%, and 87%, respectively. Phenotype and tumor volume had significant hazard rates of 0.086 and 22.99, respectively, showing that Feiling-Gardner phenotype and a tumor volume not exceeding 6 cm 3 both were associated with significantly better outcome. Actuarial rates of serviceable hearing preservation after 1, 3, 5, and 7 years were 95%, 82%, 59%, and 33%, respectively. None of the patients experienced worsening of trigeminal nerve function. Facial nerve function worsened in 1 patient (2.5%). No significant differences in tumor control, hearing preservation, or complications were found in comparing the results of GKRS for NF2-related VS versus GKRS for sporadic VS. CONCLUSIONS With modern GKRS, the use of low margin doses for treating growing VSs in patients with NF2 demonstrates good long-term tumor control rates. Feiling-Gardner phenotype and tumor volume smaller than 6 cm 3 seem to be independently associated with prolonged progression-free survival, highlighting the clinical importance of phenotype assessment before GKRS treatment. In addition, no significant differences in tumor control rates or complications were found in the matched-control cohort analysis comparing GKRS for VS in patients with NF2 and GKRS for sporadic VS. These results show that GKRS is a valid treatment option for NF2-related VS, in addition to being a good option for sporadic VS, particularly in patients with the Feiling-Gardner phenotype and/or tumors that are small to medium in size. Larger tumors in patients with the Wishart phenotype appear to respond poorly to radiosurgery, and other treatment modalities should therefore be considered in such cases.
External laryngeal nerve in thyroid surgery: is the nerve stimulator necessary?
Aina, E N; Hisham, A N
2001-09-01
To find out the incidence and type of external laryngeal nerves during operations on the thyroid, and to assess the role of a nerve stimulator in detecting them. Prospective, non-randomised study. Teaching hospital, Malaysia. 317 patients who had 447 dissections between early January 1998 and late November 1999. Number and type of nerves crossing the cricothyroid space, and the usefulness of the nerve stimulator in finding them. The nerve stimulator was used in 206/447 dissections (46%). 392 external laryngeal nerves were seen (88%), of which 196/206 (95%) were detected with the stimulator. However, without the stimulator 196 nerves were detected out of 241 dissections (81%). The stimulator detected 47 (23%) Type I nerves (nerve > 1 cm from the upper edge of superior pole); 86 (42%) Type IIa nerves (nerve < 1 cm from the upper edge of superior pole); and 63 (31%) Type IIb nerves (nerve below upper edge of superior pole). 10 nerves were not detected. When the stimulator was not used the corresponding figures were 32 (13%), 113 (47%), and 51 (21%), and 45 nerves were not seen. If the nerve cannot be found we recommend dissection of capsule close to the medial border of the upper pole of the thyroid to avoid injury to the nerve. Although the use of the nerve stimulator seems desirable, it confers no added advantage in finding the nerve. In the event of uncertainty about whether a structure is the nerve, the stimulator may help to confirm it. However, exposure of the cricothyroid space is most important for good exposure in searching for the external laryngeal nerve.
Yu, Qing; Zhang, She-Hong; Wang, Tao; Peng, Feng; Han, Dong; Gu, Yu-Dong
2017-10-01
End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve. It involves suturing the distal stump of the disconnected nerve (recipient nerve) to the side of the intimate adjacent nerve (donor nerve). However, the motor-sensory specificity after end-to-side neurorrhaphy remains unclear. This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy. Thirty rats were randomized into three groups: (1) end-to-side neurorrhaphy using the ulnar nerve (mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve; (2) the sham group: ulnar nerve and cutaneous antebrachii medialis nerve were just exposed; and (3) the transected nerve group: cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied. At 5 months, acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group, and none of the myelinated axons were stained in either the sham or transected nerve groups. Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%. In contrast, no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment. These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy.
Yu, Qing; Zhang, She-hong; Wang, Tao; Peng, Feng; Han, Dong; Gu, Yu-dong
2017-01-01
End-to-side neurorrhaphy is an option in the treatment of the long segment defects of a nerve. It involves suturing the distal stump of the disconnected nerve (recipient nerve) to the side of the intimate adjacent nerve (donor nerve). However, the motor-sensory specificity after end-to-side neurorrhaphy remains unclear. This study sought to evaluate whether cutaneous sensory nerve regeneration induces motor nerves after end-to-side neurorrhaphy. Thirty rats were randomized into three groups: (1) end-to-side neurorrhaphy using the ulnar nerve (mixed sensory and motor) as the donor nerve and the cutaneous antebrachii medialis nerve as the recipient nerve; (2) the sham group: ulnar nerve and cutaneous antebrachii medialis nerve were just exposed; and (3) the transected nerve group: cutaneous antebrachii medialis nerve was transected and the stumps were turned over and tied. At 5 months, acetylcholinesterase staining results showed that 34% ± 16% of the myelinated axons were stained in the end-to-side group, and none of the myelinated axons were stained in either the sham or transected nerve groups. Retrograde fluorescent tracing of spinal motor neurons and dorsal root ganglion showed the proportion of motor neurons from the cutaneous antebrachii medialis nerve of the end-to-side group was 21% ± 5%. In contrast, no motor neurons from the cutaneous antebrachii medialis nerve of the sham group and transected nerve group were found in the spinal cord segment. These results confirmed that motor neuron regeneration occurred after cutaneous nerve end-to-side neurorrhaphy. PMID:29171436
Rui, Jing; Xu, Ya-Li; Zhao, Xin; Li, Ji-Feng; Gu, Yu-Dong; Lao, Jie
2018-05-01
Exogenous discharge can positively promote nerve repair. We, therefore, hypothesized that endogenous discharges may have similar effects. The phrenic nerve and intercostal nerve, controlled by the respiratory center, can emit regular nerve impulses; therefore these endogenous automatically discharging nerves might promote nerve regeneration. Action potential discharge patterns were examined in the diaphragm, external intercostal and latissimus dorsi muscles of rats. The phrenic and intercostal nerves showed rhythmic clusters of discharge, which were consistent with breathing frequency. From the first to the third intercostal nerves, spontaneous discharge amplitude was gradually increased. There was no obvious rhythmic discharge in the thoracodorsal nerve. Four animal groups were performed in rats as the musculocutaneous nerve cut and repaired was bland control. The other three groups were followed by a side-to-side anastomosis with the phrenic nerve, intercostal nerve and thoracodorsal nerve. Compound muscle action potentials in the biceps muscle innervated by the musculocutaneous nerve were recorded with electrodes. The tetanic forces of ipsilateral and contralateral biceps muscles were detected by a force displacement transducer. Wet muscle weight recovery rate was measured and pathological changes were observed using hematoxylin-eosin staining. The number of nerve fibers was observed using toluidine blue staining and changes in nerve ultrastructure were observed using transmission electron microscopy. The compound muscle action potential amplitude was significantly higher at 1 month after surgery in phrenic and intercostal nerve groups compared with the thoracodorsal nerve and blank control groups. The recovery rate of tetanic tension and wet weight of the right biceps were significantly lower at 2 months after surgery in the phrenic nerve, intercostal nerve, and thoracodorsal nerve groups compared with the negative control group. The number of myelinated axons distal to the coaptation site of the musculocutaneous nerve at 1 month after surgery was significantly higher in phrenic and intercostal nerve groups than in thoracodorsal nerve and negative control groups. These results indicate that endogenous autonomic discharge from phrenic and intercostal nerves can promote nerve regeneration in early stages after brachial plexus injury.
Raman spectroscopic detection of peripheral nerves towards nerve-sparing surgery
NASA Astrophysics Data System (ADS)
Minamikawa, Takeo; Harada, Yoshinori; Takamatsu, Tetsuro
2017-02-01
The peripheral nervous system plays an important role in motility, sensory, and autonomic functions of the human body. Preservation of peripheral nerves in surgery, namely nerve-sparing surgery, is now promising technique to avoid functional deficits of the limbs and organs following surgery as an aspect of the improvement of quality of life of patients. Detection of peripheral nerves including myelinated and unmyelinated nerves is required for the nerve-sparing surgery; however, conventional nerve identification scheme is sometimes difficult to identify peripheral nerves due to similarity of shape and color to non-nerve tissues or its limited application to only motor peripheral nerves. To overcome these issues, we proposed a label-free detection technique of peripheral nerves by means of Raman spectroscopy. We found several fingerprints of peripheral myelinated and unmyelinated nerves by employing a modified principal component analysis of typical spectra including myelinated nerve, unmyelinated nerve, and adjacent tissues. We finally realized the sensitivity of 94.2% and the selectivity of 92.0% for peripheral nerves including myelinated and unmyelinated nerves against adjacent tissues. Although further development of an intraoperative Raman spectroscopy system is required for clinical use, our proposed approach will serve as a unique and powerful tool for peripheral nerve detection for nerve-sparing surgery in the future.
Ultrasonographic diagnostics of pain in the lateral cubital compartment and proximal forearm
Nowicki, Paweł
2012-01-01
Pain in the lateral compartment of the elbow joint and decreased strength of the extensor muscle constitute a fairly common clinical problem. These symptoms, occurring in such movements as inverting and converting the forearm, pushing, lifting and pulling, mostly affect people who carry out daily activities with an intense use of wrist, e.g. work on computer. Strains in this area often result from persistent overload and degeneration processes of the common extensor tendon and the radial collateral ligament. Similar symptoms resulting from the compression of deep branch of the radial nerve in radial nerve tunnel should be remembered as well. It happens that both conditions occur simultaneously. A proper diagnosis is essential in undertaking an effective treatment. Ultrasonography is a non-invasive method and the application of high-end apparatus with heads of frequencies exceeding 12 MHz allows for a precise evaluation of joint structures, tendons and nerves. In case of the so-called tennis elbow, the examination allows for evaluation of the degree and extent of injury to the radial collateral ligament and common extensor tendon, in addition to the presence of blood vessels in inflicted area. Administration of autologous blood platelets concentrate containing growth factors, used in treatment of tennis elbow, is performed under ultrasound image control conditions. This allows for a precise incision of scar whilst keeping a healthy (unaffected) tissue margin to form fine channels enabling the penetration of growth factors. Post-surgery medical check-up allows for the evaluation of treatment effectiveness. In radial nerve tunnel syndrome, the ultrasound examination can reveal abnormalities in the deep branch of the radial nerve and within the anatomical structures adjacent to the nerve in the radial nerve tunnel. Furthermore, the ultrasound examination allows for detection of other articular and extraarticular pathologies, which affect the compression of the deep branch of radial nerve, such as skeletal deformations, post-traumatic changes, arthritis, and the presence of tumors. The ultrasonography is also helpful in differentiation of symptoms arising from cervical radiculopathy or brachial plexus injury. PMID:26674710
Free flap reconstruction of the sole of the foot with or without sensory nerve coaptation.
Santanelli, Fabio; Tenna, Stefania; Pace, Andrea; Scuderi, Nicolò
2002-06-01
The authors present a retrospective study on major plantar foot reconstruction to evaluate the role of the free fasciocutaneous flap and the importance of sensory nerve reconstruction in improving long-term results. Between 1995 and 1999, 20 patients with major defects of the sole of the foot underwent free forearm flap reconstruction performed by the senior author (F.S.). Sensory nerve reconstruction was added to this technique in 1997. The age and sex of the patients and the cause, location, and dimensions of their defects were recorded. The patients were clinically and neurophysiologically evaluated at 3, 6, and 12 months after the procedure for the following parameters: flap contour, flap stability, load capacity, walking ability, touch sensation, pain sensation, static two-point discrimination, and thermal sensibility. Dermatomic somatosensory-evoked potentials were also tested at 12 months. Follow-up ranged from 1 to 5 years. Patients were divided into two groups according to sensory nerve reconstruction. Group A consisted of 11 patients with nerve repair, and group B consisted of nine patients without nerve repair. One patient from group A who had an idiopathic neuropathy was excluded from the study because of interference with the reinnervation process. Five more patients (three from group A and two from group B) were lost at follow-up and excluded from the study. The final sample size in each group was seven. Data from both groups were compared and statistically analyzed with the Mann-Whitney test and the Fisher exact test. Long-term results confirmed in all reconstructions long-lasting stability. During the first postoperative year, patients with sensory nerve reconstruction showed better sensibility. The statistical analyses confirmed significant differences between the two groups to be dependent upon surgical technique at 3 and 6 months. Two-point discrimination and dermatomic somatosensory-evoked potentials were recorded. After 12 months, flaps without surgical nerve repair showed progressive improvement of sensitive thresholds, achieving a good protective sensibility, similar to that of the other group, but these flaps never regained two-point discrimination or dermatomic somatosensory-evoked potentials.
Tanigawa, T; Ahluwalia, A; Watanabe, T; Arakawa, T; Tarnawski, A S
2015-08-01
A previous study has demonstrated that locally administered growth factors such as epidermal growth factor, basic fibroblast growth factor and hepatocyte growth factor can accelerate healing of experimental gastric ulcers in rats. That study indicates that locally administered growth factors can exert potent biological effects resulting in enhanced gastric ulcers healing. However, the fate of injected growth factors, their retention and localization to specific cellular compartments have not been examined. In our preliminary study, we demonstrated that local injection of nerve growth factor to the base of experimental gastric ulcers dramatically accelerates ulcer healing, increases angiogenesis - new blood vessel formation, and improves the quality of vascular and epithelial regeneration. Before embarking on larger, definitive and time sequence studies, we wished to determine whether locally injected nerve growth factor is retained in gastric ulcer's tissues and taken up by specific cells during gastric ulcer healing. Gastric ulcers were induced in anesthetized rats by local application of acetic acid using standard methods; and, 60 min later fluorescein isothiocyanate-labeled nerve growth factor was injected locally to the ulcer base. Rats were euthanized 2, 5 and 10 days later. Gastric specimens were obtained and processed for histology. Unstained paraffin sections were examined under a fluorescence microscope, and the incorporation of fluorescein isothiocyanate-labeled nerve growth factor into various gastric tissue cells was determined and quantified. In addition, we performed immunostaining for S100β protein that is expressed in neural components. Five and ten days after ulcer induction labeled nerve growth factor (injected to the gastric ulcer base) was incorporated into endothelial cells of blood vessels, neuronal, glial and epithelial cells, myofibroblasts and muscle cells. This study demonstrates for the first time that during gastric ulcer healing locally administered exogenous nerve growth factor is retained in gastric tissue and is taken up by endothelial, neural, muscle and epithelial cells. This is likely the basis for the therapeutic action of locally administered nerve growth factor and its stimulation of angiogenesis, tissue regeneration and gastric ulcer healing.
Kinetics of Uptake and Washout of Lidocaine in Rat Sciatic Nerve In Vitro
Leeson, Stanley; Strichartz, Gary
2012-01-01
Background The potency and efficacy of local anesthetics injected clinically for peripheral nerve block depends strongly on the rate of neural drug uptake. However, since diffusion into surrounding tissues and removal by the vascular system are major factors in the overall distribution of lidocaine in vivo, true kinetics of drug/neural tissue interactions must be studied in the absence of those confounding factors. Methods Uptake: Ensheathed or desheathed isolated rat sciatic nerves were exposed to [14C]-lidocaine for 0-180min and then removed and the lidocaine content of nerve and sheath analyzed. Washout: Isolated nerves were soaked in [14C]-lidocaine for 60min and then placed in lidocaine-free solution for 0-30min, with samples removed at different times to assess the drug content. Experimental variables included the effects of the ensheathing epineurium, lidocaine concentration, pH, presence of CO2-bicarbonate, and incubation duration. Results The equilibrium uptake of lidocaine increased with incubation time, concentration and the fraction of molecules in the non-ionized form. The uptake rate was unaffected by drug concentration, but was about halved by the presence of the epineurial sheath, with the washout rate slowed less. Slight alkalinization, from pH 6.8 to pH 7.4, by bicarbonate-CO2 buffer or a non-bicarbonate buffer, enhanced the neural uptake, and to the same degree. The washout of lidocaine was faster after shorter incubations at high concentrations than when equal amounts of lidocaine were taken up after long incubations at low lidocaine concentrations. Conclusion Lidocaine enters a nerve by a process other than free diffusion, through an epineurial sheath that is a slight obstacle. Given the rapid entry in vitro compared to the much smaller and transient content measured in vivo, it seems highly unlikely that lidocaine equilibrates with the nerve during a peripheral blockade. PMID:23400993
Harrigan, Robert L; Smith, Alex K; Mawn, Louise A; Smith, Seth A; Landman, Bennett A
2016-02-27
The optic nerve (ON) plays a crucial role in human vision transporting all visual information from the retina to the brain for higher order processing. There are many diseases that affect the ON structure such as optic neuritis, anterior ischemic optic neuropathy and multiple sclerosis. Because the ON is the sole pathway for visual information from the retina to areas of higher level processing, measures of ON damage have been shown to correlate well with visual deficits. Increased intracranial pressure has been shown to correlate with the size of the cerebrospinal fluid (CSF) surrounding the ON. These measures are generally taken at an arbitrary point along the nerve and do not account for changes along the length of the ON. We propose a high contrast and high-resolution 3-D acquired isotropic imaging sequence optimized for ON imaging. We have acquired scan-rescan data using the optimized sequence and a current standard of care protocol for 10 subjects. We show that this sequence has superior contrast-to-noise ratio to the current standard of care while achieving a factor of 11 higher resolution. We apply a previously published automatic pipeline to segment the ON and CSF sheath and measure the size of each individually. We show that these measures of ON size have lower short-term reproducibility than the population variance and the variability along the length of the nerve. We find that the proposed imaging protocol is (1) useful in detecting population differences and local changes and (2) a promising tool for investigating biomarkers related to structural changes of the ON.
NASA Astrophysics Data System (ADS)
Harrigan, Robert L.; Smith, Alex K.; Mawn, Louise A.; Smith, Seth A.; Landman, Bennett A.
2016-03-01
The optic nerve (ON) plays a crucial role in human vision transporting all visual information from the retina to the brain for higher order processing. There are many diseases that affect the ON structure such as optic neuritis, anterior ischemic optic neuropathy and multiple sclerosis. Because the ON is the sole pathway for visual information from the retina to areas of higher level processing, measures of ON damage have been shown to correlate well with visual deficits. Increased intracranial pressure has been shown to correlate with the size of the cerebrospinal fluid (CSF) surrounding the ON. These measures are generally taken at an arbitrary point along the nerve and do not account for changes along the length of the ON. We propose a high contrast and high-resolution 3-D acquired isotropic imaging sequence optimized for ON imaging. We have acquired scan-rescan data using the optimized sequence and a current standard of care protocol for 10 subjects. We show that this sequence has superior contrast-to-noise ratio to the current standard of care while achieving a factor of 11 higher resolution. We apply a previously published automatic pipeline to segment the ON and CSF sheath and measure the size of each individually. We show that these measures of ON size have lower short- term reproducibility than the population variance and the variability along the length of the nerve. We find that the proposed imaging protocol is (1) useful in detecting population differences and local changes and (2) a promising tool for investigating biomarkers related to structural changes of the ON.
Kollmann-Camaiora, A; Brogly, N; Alsina, E; Gilsanz, F
2017-10-01
Although ultrasound is a basic competence for anaesthesia residents (AR) there is few data available on the learning process. This prospective observational study aims to assess the learning process of ultrasound-guided continuous femoral nerve block and to determine the number of procedures that a resident would need to perform in order to reach proficiency using the cumulative sum (CUSUM) method. We recruited 19 AR without previous experience. Learning curves were constructed using the CUSUM method for ultrasound-guided continuous femoral nerve block considering 2 success criteria: a decrease of pain score>2 in a [0-10] scale after 15minutes, and time required to perform it. We analyse data from 17 AR for a total of 237 ultrasound-guided continuous femoral nerve blocks. 8/17 AR became proficient for pain relief, however all the AR who did more than 12 blocks (8/8) became proficient. As for time of performance 5/17 of AR achieved the objective of 12minutes, however all the AR who did more than 20 blocks (4/4) achieved it. The number of procedures needed to achieve proficiency seems to be 12, however it takes more procedures to reduce performance time. The CUSUM methodology could be useful in training programs to allow early interventions in case of repeated failures, and develop competence-based curriculum. Copyright © 2017 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.
Watanabe, Koichi; Saga, Tsuyoshi; Iwanaga, Joe; Tabira, Yoko; Yamaki, Koh-Ichi
2017-01-01
The transversus nuchae muscle appears inconsistently in the occipital region. It has gained attention as one of the muscles composing the superficial musculoaponeurotic system (SMAS). The purpose of this study was to clarify its detailed anatomical features. We examined 124 sides of 62 cadavers. The transversus nuchae muscle was identified when present and examined after it had been completely exposed. We also examined its relationship to the occipital cutaneous nerves.The transversus nuchae muscle was detected in 40 sides (40/124, 32.2%) of 26 cadavers; it was present bilaterally in 14 and unilaterally in 12. It originated from the external occipital protuberance; 43% of the observed muscles inserted around the mastoid process, and 58% curved upward around the mastoid process and became the uppermost bundle of the platysma. In one case, an additional bundle originated from the lower posterior border of the sternocleidomastoid muscle and coursed obliquely upward along with platysma. Ninety percent of the muscles ran below the sling through which the greater occipital nerve passed; 65% of the lesser occipital nerves ran deep to the muscle, and 55% of the great auricular nerves ran superficial to it. Our observations clarify the unique anatomical features of the transversus nuchae muscle. We found that it occurs at a rate similar to that described in previous reports, but its arrangement is variable. Further investigations will be performed to clarify its innervation and other anatomical features. Clin. Anat. 30:32-38, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Presynaptic GABAergic inhibition regulated by BDNF contributes to neuropathic pain induction
Chen, Jeremy Tsung-chieh; Guo, Da; Campanelli, Dario; Frattini, Flavia; Mayer, Florian; Zhou, Luming; Kuner, Rohini; Heppenstall, Paul A.; Knipper, Marlies; Hu, Jing
2014-01-01
The gate control theory proposes the importance of both pre- and post-synaptic inhibition in processing pain signal in the spinal cord. However, although postsynaptic disinhibition caused by brain-derived neurotrophic factor (BDNF) has been proved as a crucial mechanism underlying neuropathic pain, the function of presynaptic inhibition in acute and neuropathic pain remains elusive. Here we show that a transient shift in the reversal potential (EGABA) together with a decline in the conductance of presynaptic GABAA receptor result in a reduction of presynaptic inhibition after nerve injury. BDNF mimics, whereas blockade of BDNF signalling reverses, the alteration in GABAA receptor function and the neuropathic pain syndrome. Finally, genetic disruption of presynaptic inhibition leads to spontaneous development of behavioural hypersensitivity, which cannot be further sensitized by nerve lesions or BDNF. Our results reveal a novel effect of BDNF on presynaptic GABAergic inhibition after nerve injury and may represent new strategy for treating neuropathic pain. PMID:25354791
[Effectiveness of magnetotherapy in optic nerve atrophy. A preliminary study].
Zobina, L V; Orlovskaia, L S; Sokov, S L; Sabaeva, G F; Kondé, L A; Iakovlev, A A
1990-01-01
Magnetotherapy effects on visual functions (vision acuity and field), on retinal bioelectric activity, on conductive vision system, and on intraocular circulation were studied in 88 patients (160 eyes) with optic nerve atrophy. A Soviet Polyus-1 low-frequency magnetotherapy apparatus was employed with magnetic induction of about 10 mT, exposure 7-10 min, 10-15 sessions per course. Vision acuity of patients with its low (below 0.04 diopters) values improved in 50 percent of cases. The number of patients with vision acuity of 0.2 diopters has increased from 46 before treatment to 75. Magnetotherapy improved ocular hemodynamics in patients with optic nerve atrophy, it reduced the time of stimulation conduction along the vision routes and stimulated the retinal ganglia cells. The maximal effect was achieved after 10 magnetotherapy sessions. A repeated course carried out in 6-8 months promoted a stabilization of the process.
Gokce, Sertan Kutal; Guo, Samuel X.; Ghorashian, Navid; Everett, W. Neil; Jarrell, Travis; Kottek, Aubri; Bovik, Alan C.; Ben-Yakar, Adela
2014-01-01
Femtosecond laser nanosurgery has been widely accepted as an axonal injury model, enabling nerve regeneration studies in the small model organism, Caenorhabditis elegans. To overcome the time limitations of manual worm handling techniques, automation and new immobilization technologies must be adopted to improve throughput in these studies. While new microfluidic immobilization techniques have been developed that promise to reduce the time required for axotomies, there is a need for automated procedures to minimize the required amount of human intervention and accelerate the axotomy processes crucial for high-throughput. Here, we report a fully automated microfluidic platform for performing laser axotomies of fluorescently tagged neurons in living Caenorhabditis elegans. The presented automation process reduces the time required to perform axotomies within individual worms to ∼17 s/worm, at least one order of magnitude faster than manual approaches. The full automation is achieved with a unique chip design and an operation sequence that is fully computer controlled and synchronized with efficient and accurate image processing algorithms. The microfluidic device includes a T-shaped architecture and three-dimensional microfluidic interconnects to serially transport, position, and immobilize worms. The image processing algorithms can identify and precisely position axons targeted for ablation. There were no statistically significant differences observed in reconnection probabilities between axotomies carried out with the automated system and those performed manually with anesthetics. The overall success rate of automated axotomies was 67.4±3.2% of the cases (236/350) at an average processing rate of 17.0±2.4 s. This fully automated platform establishes a promising methodology for prospective genome-wide screening of nerve regeneration in C. elegans in a truly high-throughput manner. PMID:25470130
Distal Nerve Transfers: A Perspective on the Future of Reconstructive Microsurgery.
Chuang, David Chwei-Chin
2018-05-16
Nerve transfer can be broadly separated into two categories: proximal nerve graft and/or transfer and distal nerve transfer. The superiority of proximal nerve graft/transfer over distal nerve transfer strategy has been debated extensively, but which strategy is the best has not yet been defined. Each technique has its own advantages and disadvantages. However, proximal nerve graft/transfer is still the main reconstructive procedure based on the principle of "no diagnosis, then no treatment." Proximal nerve transfer can avoid iatrogenic injury where the lesion is still in continuity and neurolysis is the only procedure without further cutting the nerve. Our clinical and experimental study show that proximal nerve grafts/transfers yield at least equal or better results compared to distal nerve transfers. Proximal nerve grafts/transfers remain the mainstay of my reconstructive strategy. Proximal nerve graft/transfer offers more accurate diagnosis and proper treatment to restore shoulder and elbow functions simultaneously. Distal nerve transfers can offer more efficient elbow flexion. Combined, both strategies in primary nerve reconstruction are especially recommended when there is no healthy or not enough donor nerve available Distal nerve transfers should be considered as a complementary option for proximal nerve grafts/ transfers. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Direct Administration of Nerve-Specific Contrast to Improve Nerve Sparing Radical Prostatectomy
Barth, Connor W.; Gibbs, Summer L.
2017-01-01
Nerve damage remains a major morbidity following nerve sparing radical prostatectomy, significantly affecting quality of life post-surgery. Nerve-specific fluorescence guided surgery offers a potential solution by enhancing nerve visualization intraoperatively. However, the prostate is highly innervated and only the cavernous nerve structures require preservation to maintain continence and potency. Systemic administration of a nerve-specific fluorophore would lower nerve signal to background ratio (SBR) in vital nerve structures, making them difficult to distinguish from all nervous tissue in the pelvic region. A direct administration methodology to enable selective nerve highlighting for enhanced nerve SBR in a specific nerve structure has been developed herein. The direct administration methodology demonstrated equivalent nerve-specific contrast to systemic administration at optimal exposure times. However, the direct administration methodology provided a brighter fluorescent nerve signal, facilitating nerve-specific fluorescence imaging at video rate, which was not possible following systemic administration. Additionally, the direct administration methodology required a significantly lower fluorophore dose than systemic administration, that when scaled to a human dose falls within the microdosing range. Furthermore, a dual fluorophore tissue staining method was developed that alleviates fluorescence background signal from adipose tissue accumulation using a spectrally distinct adipose tissue specific fluorophore. These results validate the use of the direct administration methodology for specific nerve visualization with fluorescence image-guided surgery, which would improve vital nerve structure identification and visualization during nerve sparing radical prostatectomy. PMID:28255352
Direct Administration of Nerve-Specific Contrast to Improve Nerve Sparing Radical Prostatectomy.
Barth, Connor W; Gibbs, Summer L
2017-01-01
Nerve damage remains a major morbidity following nerve sparing radical prostatectomy, significantly affecting quality of life post-surgery. Nerve-specific fluorescence guided surgery offers a potential solution by enhancing nerve visualization intraoperatively. However, the prostate is highly innervated and only the cavernous nerve structures require preservation to maintain continence and potency. Systemic administration of a nerve-specific fluorophore would lower nerve signal to background ratio (SBR) in vital nerve structures, making them difficult to distinguish from all nervous tissue in the pelvic region. A direct administration methodology to enable selective nerve highlighting for enhanced nerve SBR in a specific nerve structure has been developed herein. The direct administration methodology demonstrated equivalent nerve-specific contrast to systemic administration at optimal exposure times. However, the direct administration methodology provided a brighter fluorescent nerve signal, facilitating nerve-specific fluorescence imaging at video rate, which was not possible following systemic administration. Additionally, the direct administration methodology required a significantly lower fluorophore dose than systemic administration, that when scaled to a human dose falls within the microdosing range. Furthermore, a dual fluorophore tissue staining method was developed that alleviates fluorescence background signal from adipose tissue accumulation using a spectrally distinct adipose tissue specific fluorophore. These results validate the use of the direct administration methodology for specific nerve visualization with fluorescence image-guided surgery, which would improve vital nerve structure identification and visualization during nerve sparing radical prostatectomy.
Liu, Ying; Xu, Xun-cheng; Zou, Yi; Li, Su-rong; Zhang, Bin; Wang, Yue
2015-01-01
Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering ‘excellent’ and ‘good’ muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery. PMID:25883637
Liu, Ying; Xu, Xun-Cheng; Zou, Yi; Li, Su-Rong; Zhang, Bin; Wang, Yue
2015-02-01
Phrenic nerve transfer is a major dynamic treatment used to repair brachial plexus root avulsion. We analyzed 72 relevant articles on phrenic nerve transfer to repair injured brachial plexus that were indexed by Science Citation Index. The keywords searched were brachial plexus injury, phrenic nerve, repair, surgery, protection, nerve transfer, and nerve graft. In addition, we performed neurophysiological analysis of the preoperative condition and prognosis of 10 patients undergoing ipsilateral phrenic nerve transfer to the musculocutaneous nerve in our hospital from 2008 to 201 3 and observed the electromyograms of the biceps brachii and motor conduction function of the musculocutaneous nerve. Clinically, approximately 28% of patients had brachial plexus injury combined with phrenic nerve injury, and injured phrenic nerve cannot be used as a nerve graft. After phrenic nerve transfer to the musculocutaneous nerve, the regenerated potentials first appeared at 3 months. Recovery of motor unit action potential occurred 6 months later and became more apparent at 12 months. The percent of patients recovering 'excellent' and 'good' muscle strength in the biceps brachii was 80% after 18 months. At 12 months after surgery, motor nerve conduction potential appeared in the musculocutaneous nerve in seven cases. These data suggest that preoperative evaluation of phrenic nerve function may help identify the most appropriate nerve graft in patients with an injured brachial plexus. The functional recovery of a transplanted nerve can be dynamically observed after the surgery.
Posterior Branches of Lumbar Spinal Nerves - Part I: Anatomy and Functional Importance.
Kozera, Katarzyna; Ciszek, Bogdan
2016-01-01
The aim of this paper is to compare anatomic descriptions of posterior branches of the lumbar spinal nerves and, on this basis, present the location of these structures. The majority of anatomy textbooks do not describe these nerves in detail, which may be attributable to the fact that for many years they were regarded as structures of minor clinical importance. The state of knowledge on these nerves has changed within the last 30 years. Attention has been turned to their function and importance for both diagnostic practice and therapy of lower back pain. Summarising the available literature, we may conclude that the medial and lateral branches separate at the junction of the facet joint and the distal upper edge of the transverse process; that the size, course and area supplied differ between the lateral and the medial branch; and that facet joints receive multisegmental innervation. It has been demonstrated that medial branches are smaller than the respective lateral branches and they have a more constant course. Medial branches supply the area from the midline to the facet joint line, while lateral branches innervate tissues lateral to the facet joint. The literature indicates difficulties with determining specific anatomic landmarks relative to which the lateral branch and the distal medial branch can be precisely located. Irritation of sensory fibres within posterior branches of the lumbar spinal nerves may be caused by pathology of facet joints, deformity of the spine or abnormalities due to overloading or injury. The anatomic location and course of posterior branches of spinal nerves should be borne in mind to prevent damaging them during low-invasive analgesic procedures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samanta, Uttamkumar; Kirby, Stephen D.; Srinivasan, Prabhavathi
The enzyme group-VIIA phospholipase A2 (gVIIA-PLA2) is bound to lipoproteins in human blood and hydrolyzes the ester bond at the sn-2 position of phospholipid substrates with a short sn-2 chain. The enzyme belongs to a serine hydrolase superfamily of enzymes, which react with organophosphorus (OP) nerve agents. OPs ultimately exert their toxicity by inhibiting human acetycholinesterase at nerve synapses, but may additionally have detrimental effects through inhibition of other serine hydrolases. We have solved the crystal structures of gVIIA-PLA2 following inhibition with the OPs diisopropylfluorophosphate, sarin, soman and tabun. The sarin and soman complexes displayed a racemic mix of P{submore » R} and P{sub S} stereoisomers at the P-chiral center. The tabun complex displayed only the P{sub R} stereoisomer in the crystal. In all cases, the crystal structures contained intact OP adducts that had not aged. Aging refers to a secondary process OP complexes can go through, which dealkylates the nerve agent adduct and results in a form that is highly resistant to either spontaneous or oxime-mediated reactivation. Non-aged OP complexes of the enzyme were corroborated by trypsin digest and matrix-assisted laser desorption ionization mass spectrometry of OP-enzyme complexes. The lack of stereoselectivity of sarin reaction was confirmed by gas chromatography/mass spectrometry using a chiral column to separate and quantitate the unbound stereoisomers of sarin following incubation with enzyme. The structural details and characterization of nascent reactivity of several toxic nerve agents is discussed with a long-term goal of developing gVIIA-PLA2 as a catalytic bioscavenger of OP nerve agents.« less
Filler, Aaron
2009-10-01
Methods were invented that made it possible to image peripheral nerves in the body and to image neural tracts in the brain. The history, physical basis, and dyadic tensor concept underlying the methods are reviewed. Over a 15-year period, these techniques-magnetic resonance neurography (MRN) and diffusion tensor imaging-were deployed in the clinical and research community in more than 2500 published research reports and applied to approximately 50,000 patients. Within this group, approximately 5000 patients having MRN were carefully tracked on a prospective basis. A uniform Neurography imaging methodology was applied in the study group, and all images were reviewed and registered by referral source, clinical indication, efficacy of imaging, and quality. Various classes of image findings were identified and subjected to a variety of small targeted prospective outcome studies. Those findings demonstrated to be clinically significant were then tracked in the larger clinical volume data set. MRN demonstrates mechanical distortion of nerves, hyperintensity consistent with nerve irritation, nerve swelling, discontinuity, relations of nerves to masses, and image features revealing distortion of nerves at entrapment points. These findings are often clinically relevant and warrant full consideration in the diagnostic process. They result in specific pathological diagnoses that are comparable to electrodiagnostic testing in clinical efficacy. A review of clinical outcome studies with diffusion tensor imaging also shows convincing utility. MRN and diffusion tensor imaging neural tract imaging have been validated as indispensable clinical diagnostic methods that provide reliable anatomic pathological information. There is no alternative diagnostic method in many situations. With the elapsing of 15 years, tens of thousands of imaging studies, and thousands of publications, these methods should no longer be considered experimental.
Nagata, Kazuya; Itaka, Keiji; Baba, Miyuki; Uchida, Satoshi; Ishii, Takehiko; Kataoka, Kazunori
2014-06-10
The recovery of neurologic function after peripheral nerve injury often remains incomplete because of the prolonged reinnervation process, which leads to skeletal muscle atrophy and articular contracture from disuse over time. To rescue the skeletal muscle and promote functional recovery, insulin-like growth factor-1 (IGF-1), a potent myogenic factor, was introduced into the muscle by hydrodynamic injection of IGF-1-expressing plasmid DNA using a biocompatible nonviral gene carrier, a polyplex nanomicelle. In a mouse model of sciatic nerve injury, the introduction of IGF-1 into the skeletal muscle of the paralyzed limb effectively alleviated a decrease in muscle weight compared with that in untreated control mice. Histologic analysis of the muscle revealed the IGF-1-expressing plasmid DNA (pDNA) to have a myogenic effect, inducing muscle hypertrophy with the upregulation of the myogenic regulatory factors, myogenin and MyoD. The evaluation of motor function by walking track analysis revealed that the group that received the hydrodynamic injection of IGF-1-expressing pDNA using the polyplex nanomicelle had significantly early recovery of motor function compared with groups receiving negative control pDNA and untreated controls. Early recovery of sensation in the distal area of sciatic nerve injury was also induced by the introduction of IGF-1-expressing pDNA, presumably because of the effect of secreted IGF-1 protein in the vicinity of the injured sciatic nerve exerting a synergistic effect with muscle hypertrophy, inducing a more favorable prognosis. This approach of introducing IGF-1 into skeletal muscle is promising for the treatment of peripheral nerve injury by promoting early motor function recovery. Copyright © 2014 Elsevier B.V. All rights reserved.
Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira
2015-01-01
Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound action potentials in neural regeneration studies.
Wozniak, Krystyna M; Vornov, James J; Wu, Ying; Liu, Ying; Carozzi, Valentina A; Rodriguez-Menendez, Virginia; Ballarini, Elisa; Alberti, Paola; Pozzi, Eleonora; Semperboni, Sara; Cook, Brett M; Littlefield, Bruce A; Nomoto, Kenichi; Condon, Krista; Eckley, Sean; DesJardins, Christopher; Wilson, Leslie; Jordan, Mary A; Feinstein, Stuart C; Cavaletti, Guido; Polydefkis, Michael; Slusher, Barbara S
2018-02-01
Chemotherapy-induced peripheral neuropathy (CIPN) is a major cause of disability in cancer survivors. CIPN investigations in preclinical model systems have focused on either behaviors or acute changes in nerve conduction velocity (NCV) and amplitude, but greater understanding of the underlying nature of axonal injury and its long-term processes is needed as cancer patients live longer. In this study, we used multiple independent endpoints to systematically characterize CIPN recovery in mice exposed to the antitubulin cancer drugs eribulin, ixabepilone, paclitaxel, or vinorelbine at MTDs. All of the drugs ablated intraepidermal nerve fibers and produced axonopathy, with a secondary disruption in myelin structure within 2 weeks of drug administration. In addition, all of the drugs reduced sensory NCV and amplitude, with greater deficits after paclitaxel and lesser deficits after ixabepilone. These effects correlated with degeneration in dorsal root ganglia (DRG) and sciatic nerve and abundance of Schwann cells. Although most injuries were fully reversible after 3-6 months after administration of eribulin, vinorelbine, and ixabepilone, we observed delayed recovery after paclitaxel that produced a more severe, pervasive, and prolonged neurotoxicity. Compared with other agents, paclitaxel also displayed a unique prolonged exposure in sciatic nerve and DRG. The most sensitive indicator of toxicity was axonopathy and secondary myelin changes accompanied by a reduction in intraepidermal nerve fiber density. Taken together, our findings suggest that intraepidermal nerve fiber density and changes in NCV and amplitude might provide measures of axonal injury to guide clinical practice. Significance: This detailed preclinical study of the long-term effects of widely used antitubulin cancer drugs on the peripheral nervous system may help guide clinical evaluations to improve personalized care in limiting neurotoxicity in cancer survivors. Cancer Res; 78(3); 817-29. ©2017 AACR . ©2017 American Association for Cancer Research.
Response properties of the refractory auditory nerve fiber.
Miller, C A; Abbas, P J; Robinson, B K
2001-09-01
The refractory characteristics of auditory nerve fibers limit their ability to accurately encode temporal information. Therefore, they are relevant to the design of cochlear prostheses. It is also possible that the refractory property could be exploited by prosthetic devices to improve information transfer, as refractoriness may enhance the nerve's stochastic properties. Furthermore, refractory data are needed for the development of accurate computational models of auditory nerve fibers. We applied a two-pulse forward-masking paradigm to a feline model of the human auditory nerve to assess refractory properties of single fibers. Each fiber was driven to refractoriness by a single (masker) current pulse delivered intracochlearly. Properties of firing efficiency, latency, jitter, spike amplitude, and relative spread (a measure of dynamic range and stochasticity) were examined by exciting fibers with a second (probe) pulse and systematically varying the masker-probe interval (MPI). Responses to monophasic cathodic current pulses were analyzed. We estimated the mean absolute refractory period to be about 330 micros and the mean recovery time constant to be about 410 micros. A significant proportion of fibers (13 of 34) responded to the probe pulse with MPIs as short as 500 micros. Spike amplitude decreased with decreasing MPI, a finding relevant to the development of computational nerve-fiber models, interpretation of gross evoked potentials, and models of more central neural processing. A small mean decrement in spike jitter was noted at small MPI values. Some trends (such as spike latency-vs-MPI) varied across fibers, suggesting that sites of excitation varied across fibers. Relative spread was found to increase with decreasing MPI values, providing direct evidence that stochastic properties of fibers are altered under conditions of refractoriness.
Malformation of the eighth cranial nerve in children.
de Paula-Vernetta, Carlos; Muñoz-Fernández, Noelia; Mas-Estellés, Fernando; Guzmán-Calvete, Abel; Cavallé-Garrido, Laura; Morera-Pérez, Constantino
2016-01-01
Prevalence of congenital sensorineural hearing loss (SNHL) is approximately 1.5-6 in every 1,000 newborns. Dysfunction of the auditory nerve (auditory neuropathy) may be involved in up to 1%-10% of cases; hearing losses because of vestibulocochlear nerve (VCN) aplasia are less frequent. The objectives of this study were to describe clinical manifestations, hearing thresholds and aetiology of children with SNHL and VCN aplasia. We present 34 children (mean age 20 months) with auditory nerve malformation and profound HL taken from a sample of 385 children implanted in a 10-year period. We studied demographic characteristics, hearing, genetics, risk factors and associated malformations (Casselman's and Sennaroglu's classifications). Data were processed using a bivariate descriptive statistical analysis (P<.05). Of all the cases, 58.8% were bilateral (IIa/IIa and I/I were the most common). Of the unilateral cases, IIb was the most frequent. Auditory screening showed a sensitivity of 77.4%. A relationship among bilateral cases and systemic pathology was observed. We found a statistically significant difference when comparing hearing loss impairment and patients with different types of aplasia as defined by Casselman's classification. Computed tomography (CT) scan yielded a sensitivity of 46.3% and a specificity of 85.7%. However, magnetic resonance imaging (MRI) was the most sensitive imaging test. Ten percent of the children in a cochlear implant study had aplasia or hypoplasia of the auditory nerve. The degree of auditory loss was directly related to the different types of aplasia (Casselman's classification) Although CT scan and MRI are complementary, the MRI is the test of choice for detecting auditory nerve malformation. Copyright © 2016 Elsevier España, S.L.U. and Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. All rights reserved.
Samanta, Uttamkumar; Kirby, Stephen D; Srinivasan, Prabhavathi; Cerasoli, Douglas M; Bahnson, Brian J
2009-08-15
The enzyme group-VIIA phospholipase A2 (gVIIA-PLA2) is bound to lipoproteins in human blood and hydrolyzes the ester bond at the sn-2 position of phospholipid substrates with a short sn-2 chain. The enzyme belongs to a serine hydrolase superfamily of enzymes, which react with organophosphorus (OP) nerve agents. OPs ultimately exert their toxicity by inhibiting human acetycholinesterase at nerve synapses, but may additionally have detrimental effects through inhibition of other serine hydrolases. We have solved the crystal structures of gVIIA-PLA2 following inhibition with the OPs diisopropylfluorophosphate, sarin, soman and tabun. The sarin and soman complexes displayed a racemic mix of P(R) and P(S) stereoisomers at the P-chiral center. The tabun complex displayed only the P(R) stereoisomer in the crystal. In all cases, the crystal structures contained intact OP adducts that had not aged. Aging refers to a secondary process OP complexes can go through, which dealkylates the nerve agent adduct and results in a form that is highly resistant to either spontaneous or oxime-mediated reactivation. Non-aged OP complexes of the enzyme were corroborated by trypsin digest and matrix-assisted laser desorption ionization mass spectrometry of OP-enzyme complexes. The lack of stereoselectivity of sarin reaction was confirmed by gas chromatography/mass spectrometry using a chiral column to separate and quantitate the unbound stereoisomers of sarin following incubation with enzyme. The structural details and characterization of nascent reactivity of several toxic nerve agents is discussed with a long-term goal of developing gVIIA-PLA2 as a catalytic bioscavenger of OP nerve agents.
Potas, Jason Robert; de Castro, Newton Gonçalves; Maddess, Ted; de Souza, Marcio Nogueira
2015-01-01
Experimental electrophysiological assessment of evoked responses from regenerating nerves is challenging due to the typical complex response of events dispersed over various latencies and poor signal-to-noise ratio. Our objective was to automate the detection of compound action potential events and derive their latencies and magnitudes using a simple cross-correlation template comparison approach. For this, we developed an algorithm called Waveform Similarity Analysis. To test the algorithm, challenging signals were generated in vivo by stimulating sural and sciatic nerves, whilst recording evoked potentials at the sciatic nerve and tibialis anterior muscle, respectively, in animals recovering from sciatic nerve transection. Our template for the algorithm was generated based on responses evoked from the intact side. We also simulated noisy signals and examined the output of the Waveform Similarity Analysis algorithm with imperfect templates. Signals were detected and quantified using Waveform Similarity Analysis, which was compared to event detection, latency and magnitude measurements of the same signals performed by a trained observer, a process we called Trained Eye Analysis. The Waveform Similarity Analysis algorithm could successfully detect and quantify simple or complex responses from nerve and muscle compound action potentials of intact or regenerated nerves. Incorrectly specifying the template outperformed Trained Eye Analysis for predicting signal amplitude, but produced consistent latency errors for the simulated signals examined. Compared to the trained eye, Waveform Similarity Analysis is automatic, objective, does not rely on the observer to identify and/or measure peaks, and can detect small clustered events even when signal-to-noise ratio is poor. Waveform Similarity Analysis provides a simple, reliable and convenient approach to quantify latencies and magnitudes of complex waveforms and therefore serves as a useful tool for studying evoked compound action potentials in neural regeneration studies. PMID:26325291
Fang, Jia; Cui, Liying; Liu, Mingsheng; Guan, Yuzhou; Ding, Qingyun; Shen, Dongchao; Li, Dawei; Tai, Hongfei
2017-01-01
A-wave was observed in patients with motor neuron disease (1). However, data on the characteristics and clinical significance of A-waves in patients with amyotrophic lateral sclerosis (ALS) have been scarce. The F-wave studies of 83 patients with ALS and 63 normal participants which were conducted previously at the Department of Neurology in Peking Union Medical College Hospital were retrospectively reviewed to determine the occurrence of A-waves in ALS. A-waves occurred more frequently in ALS patients than in normal controls. For the median and peroneal nerves, the frequencies of nerves with A-waves and frequencies of patients with A-waves were comparable between the ALS patients and normal controls. For the ulnar and tibial nerves, the frequencies of nerves with A-waves and frequencies of patients with A-waves were significantly increased in the ALS patients compared with those of the normal participants. Disease progression rate was slower in the ALS patients with A-waves (0.73 ± 0.99) than that in the ALS patients without A-waves (0.87 ± 0.55, P = 0.007). No correlations were found between the amplitudes of F-waves with A-waves and those of A-waves in the ulnar nerves ( r = 0.423, P = 0.149). No correlations were found between the persistence of F-waves with A-waves and the persistence of A-waves in the ulnar nerves as well ( r = 0.219, P = 0.473). The occurrence of A-waves may indicate dysfunction of lower motor neurons and possibly imply a relatively slower degenerative process.
Fang, Jia; Cui, Liying; Liu, Mingsheng; Guan, Yuzhou; Ding, Qingyun; Shen, Dongchao; Li, Dawei; Tai, Hongfei
2017-01-01
A-wave was observed in patients with motor neuron disease (1). However, data on the characteristics and clinical significance of A-waves in patients with amyotrophic lateral sclerosis (ALS) have been scarce. The F-wave studies of 83 patients with ALS and 63 normal participants which were conducted previously at the Department of Neurology in Peking Union Medical College Hospital were retrospectively reviewed to determine the occurrence of A-waves in ALS. A-waves occurred more frequently in ALS patients than in normal controls. For the median and peroneal nerves, the frequencies of nerves with A-waves and frequencies of patients with A-waves were comparable between the ALS patients and normal controls. For the ulnar and tibial nerves, the frequencies of nerves with A-waves and frequencies of patients with A-waves were significantly increased in the ALS patients compared with those of the normal participants. Disease progression rate was slower in the ALS patients with A-waves (0.73 ± 0.99) than that in the ALS patients without A-waves (0.87 ± 0.55, P = 0.007). No correlations were found between the amplitudes of F-waves with A-waves and those of A-waves in the ulnar nerves (r = 0.423, P = 0.149). No correlations were found between the persistence of F-waves with A-waves and the persistence of A-waves in the ulnar nerves as well (r = 0.219, P = 0.473). The occurrence of A-waves may indicate dysfunction of lower motor neurons and possibly imply a relatively slower degenerative process. PMID:29033889
Digestive physiology of the pig symposium: detection of dietary glutamate via gut-brain axis.
Bannai, M; Torii, K
2013-05-01
Gustatory and visceral stimulation from food regulates digestion and nutrient use. Free L-glutamate (Glu) release from digested protein is responsible for umami taste perception in the gut. Moreover, monosodium Glu (MSG) is widely used as a flavor enhancer to add umami taste in various cuisines. Recent studies indicate that dietary Glu sensors and their signal transduction system exist in both gut mucosa and taste cells. Oral Glu sensing has been well studied. In this review, we focus on the role of Glu on digestion and absorption of food. Infusion of Glu into the stomach and intestine increase afferent nerve activity of the gastric and the celiac branches of the vagus nerve, respectively. Luminal Glu also evokes efferent nerve activation of the abdominal vagus nerve branches simultaneously. Additionally, intragastric infusion of Glu activates the insular cortex, limbic system, hypothalamus, nucleus tractus solitaries, and amygdala, as determined by functional magnetic resonance imaging, and is able to induce flavor-preference learning as a result of postingestive effects in rats. These results indicate that Glu signaling via gustatory and visceral pathways plays an important role in the processes of digestion, absorption, metabolism, and other physiological functions via activation of the brain.
An integrated theoretical-experimental approach to accelerate translational tissue engineering.
Coy, Rachel H; Evans, Owen R; Phillips, James B; Shipley, Rebecca J
2018-01-01
Implantable devices utilizing bioengineered tissue are increasingly showing promise as viable clinical solutions. The design of bioengineered constructs is currently directed according to the results of experiments that are used to test a wide range of different combinations and spatial arrangements of biomaterials, cells and chemical factors. There is an outstanding need to accelerate the design process and reduce financial costs, whilst minimizing the required number of animal-based experiments. These aims could be achieved through the incorporation of mathematical modelling as a preliminary design tool. Here we focus on tissue-engineered constructs for peripheral nerve repair, which are designed to aid nerve and blood vessel growth and repair after peripheral nerve injury. We offer insight into the role that mathematical modelling can play within tissue engineering, and motivate the use of modelling as a tool capable of improving and accelerating the design of nerve repair constructs in particular. Specific case studies are presented in order to illustrate the potential of mathematical modelling to direct construct design. Copyright © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. Copyright © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd.
Mattiussi, Gabriele; Moreno, Carlos
2016-01-01
Proximal Hamstring Tendinopathy-related Sciatic Nerve Entrapment (PHTrSNE) is a neuropathy caused by fibrosis interposed between the semimembranosus tendon and the sciatic nerve, at the level of the ischial tuberosity. Ultrasound-guided Intratissue Percutaneous Electrolysis (US-guided EPI) involves galvanic current transfer within the treatment target tissue (fibrosis) via a needle 0.30 to 0.33 mm in diameter. The galvanic current in a saline solution instantly develops the chemical process of electrolysis, which in turn induces electrochemical ablation of fibrosis. In this article, the interventional procedure is presented in detail, and both the strengths and limits of the technique are discussed. US-guided EPI eliminates the fibrotic accumulation that causes PHTrSNE, without the semimembranosus tendon or the sciatic nerve being directly involved during the procedure. The technique is however of limited use in cases of compression neuropathy. US-guided EPI is a technique that is quick to perform, minimally invasive and does not force the patient to suspend their activities (work or sports) to make the treatment effective. This, coupled to the fact that the technique is generally well-tolerated by patients, supports use of US-guided EPI in the treatment of PHTrSNE.
VOLTAGE CLAMP BEHAVIOR OF IRON-NITRIC ACID SYSTEM AS COMPARED WITH THAT OF NERVE MEMBRANE
Tasaki, I.; Bak, A. F.
1959-01-01
The current-voltage relation for the surface layer of an iron wire immersed in nitric acid was investigated by the voltage clamp technique. Comparing the phase of nitric acid to the axoplasm and the metallic phase to the external fluid medium for the nerve fiber, a striking analogy was found between the voltage clamp behavior of the iron-nitric acid system and that of the nerve membrane. The current voltage curve was found to consist of three parts: (a) a straight line representing the behavior of the resting (passive) membrane, (b) a straight line representing the fully excited (active) state, and (c) an intermediate zone connecting (a) and (b). It was shown that in the intermediate zone, the surface of iron consisted of a fully active patch (or patches) surrounded by a remaining resting area. The phenomenon corresponding to "repetitive firing of responses under voltage clamp" in the nerve membrane was demonstrated in the intermediate zone. The behavior of the cobalt electrode system was also investigated by the same technique. An attempt was made to interpret the phenomenon of initiation and abolition of an active potential on the basis of the thermodynamics of irreversible processes. PMID:13654740
Sympathetic neural control of the kidney in hypertension.
DiBona, G F
1992-01-01
Efferent renal sympathetic nerve activity is elevated in human essential hypertension as well as in several forms of experimental hypertension in animals. In addition, bilateral complete renal denervation delays the development and/or attenuates the magnitude of the hypertension in several different forms of experimental hypertension in animals. Efferent renal sympathetic nerve activity is known to have dose-dependent effects on renal blood flow, the glomerular filtration rate, renal tubular sodium and water reabsorption, and the renin secretion rate, which are capable of contributing, singly or in combination, to the development, maintenance, and exacerbation of the hypertensive state. Of the many factors known to influence the central nervous system integrative regulation of efferent renal sympathetic nerve activity, two environmental factors, a high dietary sodium intake and environmental stress, are capable of significant interaction. This resultant increase in efferent renal sympathetic nerve activity and subsequent renal functional alterations can participate in the hypertensive process. This is especially evident in the presence of an underlying genetic predisposition to the development of hypertension. Thus, interactions between environmental and genetic influences can produce alterations in the sympathetic neural control of renal function that play an important role in hypertension.
Dahan, Albert; Dunne, Ann; Swartjes, Maarten; Proto, Paolo L; Heij, Lara; Vogels, Oscar; van Velzen, Monique; Sarton, Elise; Niesters, Marieke; Tannemaat, Martijn R; Cerami, Anthony; Brines, Michael
2013-11-08
Small nerve fiber loss and damage (SNFLD) is a frequent complication of sarcoidosis that is associated with autonomic dysfunction and sensory abnormalities, including pain syndromes that severely degrade the quality of life. SNFLD is hypothesized to arise from the effects of immune dysregulation, an essential feature of sarcoidosis, on the peripheral and central nervous systems. Current therapy of sarcoidosis-associated SNFLD consists primarily of immune suppression and symptomatic treatment; however, this treatment is typically unsatisfactory. ARA 290 is a small peptide engineered to activate the innate repair receptor that antagonizes inflammatory processes and stimulates tissue repair. Here we show in a blinded, placebo-controlled trial that 28 d of daily subcutaneous administration of ARA 290 in a group of patients with documented SNFLD significantly improves neuropathic symptoms. In addition to improved patient-reported symptom-based outcomes, ARA 290 administration was also associated with a significant increase in corneal small nerve fiber density, changes in cutaneous temperature sensitivity, and an increased exercise capacity as assessed by the 6-minute walk test. On the basis of these results and of prior studies, ARA 290 is a potential disease-modifying agent for treatment of sarcoidosis-associated SNFLD.
Dahan, Albert; Dunne, Ann; Swartjes, Maarten; Proto, Paolo L; Heij, Lara; Vogels, Oscar; van Velzen, Monique; Sarton, Elise; Niesters, Marieke; Tannemaat, Martijn R; Cerami, Anthony; Brines, Michael
2013-01-01
Small nerve fiber loss and damage (SNFLD) is a frequent complication of sarcoidosis that is associated with autonomic dysfunction and sensory abnormalities, including pain syndromes that severely degrade the quality of life. SNFLD is hypothesized to arise from the effects of immune dysregulation, an essential feature of sarcoidosis, on the peripheral and central nervous systems. Current therapy of sarcoidosis-associated SNFLD consists primarily of immune suppression and symptomatic treatment; however, this treatment is typically unsatisfactory. ARA 290 is a small peptide engineered to activate the innate repair receptor that antagonizes inflammatory processes and stimulates tissue repair. Here we show in a blinded, placebo-controlled trial that 28 d of daily subcutaneous administration of ARA 290 in a group of patients with documented SNFLD significantly improves neuropathic symptoms. In addition to improved patient-reported symptom-based outcomes, ARA 290 administration was also associated with a significant increase in corneal small nerve fiber density, changes in cutaneous temperature sensitivity, and an increased exercise capacity as assessed by the 6-minute walk test. On the basis of these results and of prior studies, ARA 290 is a potential disease-modifying agent for treatment of sarcoidosis-associated SNFLD. PMID:24136731
[Sural nerve removal using a nerve stripper].
Assmus, H
1983-03-01
In 19 patients the sural nerve was removed for nerve grafting by a specially designed nerve stripper. This technique provides a safe and time-saving removal of the nerve in length up to 34 cm (depending on the length of the stripper used). From a single short incision at the level of the lateral malleolus the nerve is stripped proximally tearing some small branches of the distal nerve. The relatively blunt tip avoids inadvertent transection of the nerve at a lower level or dissection of the nerve at a point where branching occurs. Finally the nerve is cut by the divided cylinder at the tip of the stripper.
Recent advances in nerve tissue engineering.
Zhang, Bill G X; Quigley, Anita F; Myers, Damian E; Wallace, Gordon G; Kapsa, Robert M I; Choong, Peter F M
2014-04-01
Nerve injury secondary to trauma, neurological disease or tumor excision presents a challenge for surgical reconstruction. Current practice for nerve repair involves autologous nerve transplantation, which is associated with significant donor-site morbidity and other complications. Previously artificial nerve conduits made from polycaprolactone, polyglycolic acid and collagen were approved by the FDA (USA) for nerve repair. More recently, there have been significant advances in nerve conduit design that better address the requirements of nerve regrowth. Innovations in materials science, nanotechnology, and biology open the way for the synthesis of new generation nerve repair conduits that address issues currently faced in nerve repair and regeneration. This review discusses recent innovations in this area, including the use of nanotechnology to improve the design of nerve conduits and to enhance nerve regeneration.
A physiologic role for serotonergic transmission in adult rat taste buds.
Jaber, Luc; Zhao, Fang-li; Kolli, Tamara; Herness, Scott
2014-01-01
Of the multiple neurotransmitters and neuropeptides expressed in the mammalian taste bud, serotonin remains both the most studied and least understood. Serotonin is expressed in a subset of taste receptor cells that form synapses with afferent nerve fibers (type III cells) and was once thought to be essential to neurotransmission (now understood as purinergic). However, the discovery of the 5-HT1A serotonin receptor in a subset of taste receptor cells paracrine to type III cell suggested a role in cell-to-cell communication during the processing of taste information. Functional data describing this role are lacking. Using anatomical and neurophysiological techniques, this study proposes a modulatory role for serotonin during the processing of taste information. Double labeling immunocytochemical and single cell RT-PCR technique experiments documented that 5-HT1A-expressing cells co-expressed markers for type II cells, cells which express T1R or T2R receptors and release ATP. These cells did not co-express type III cells markers. Neurophysiological recordings from the chorda tympani nerve, which innervates anterior taste buds, were performed prior to and during intravenous injection of a 5-HT1A receptor antagonist. These experiments revealed that serotonin facilitates processing of taste information for tastants representing sweet, sour, salty, and bitter taste qualities. On the other hand, injection of ondansetron, a 5-HT3 receptor antagonist, was without effect. Collectively, these data support the hypothesis that serotonin is a crucial element in a finely-tuned feedback loop involving the 5-HT1A receptor, ATP, and purinoceptors. It is hypothesized that serotonin facilitates gustatory signals by regulating the release of ATP through ATP-release channels possibly through phosphatidylinositol 4,5-bisphosphate resynthesis. By doing so, 5-HT1A activation prevents desensitization of post-synaptic purinergic receptors expressed on afferent nerve fibers and enhances the afferent signal. Serotonin may thus play a major modulatory role within peripheral taste in shaping the afferent taste signals prior to their transmission across gustatory nerves.
Zhu, Shuang; Liu, Jianghui; Zheng, Canbin; Gu, Liqiang; Zhu, Qingtang; Xiang, Jianping; He, Bo; Zhou, Xiang; Liu, Xiaolin
2017-08-01
Human acellular nerve allografts have been increasingly applied in clinical practice. This study was undertaken to investigate the functional outcomes of nerve allograft reconstruction for nerve defects in the upper extremity. A total of 64 patients from 13 hospitals were available for this follow-up study after nerve repair using human acellular nerve allografts. Sensory and motor recovery was examined according to the international standards for motor and sensory nerve recovery. Subgroup analysis and logistic regression analysis were conducted to identify the relationship between the known factors and the outcomes of nerve repair. Mean follow-up time was 355 ± 158 (35-819) days; mean age was 35 ± 11 (14-68) years; average nerve gap length was 27 ± 13 (10-60) mm; no signs of infection, tissue rejection or extrusion were observed among the patients; 48/64 (75%) repaired nerves experienced meaningful recovery. Univariate analysis showed that site and gap length significantly influenced prognosis after nerve repair using nerve grafts. Delay had a marginally significant relationship with the outcome. A multivariate logistic regression model revealed that gap length was an independent predictor of nerve repair using human acellular nerve allografts. The results indicated that the human acellular nerve allograft facilitated safe and effective nerve reconstruction for nerve gaps 10-60 mm in length in the hand and upper extremity. Factors such as site and gap length had a statistically significant influence on the outcomes of nerve allograft reconstruction. Gap length was an independent predictor of nerve repair using human acellular nerve allografts. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Nerve stripper-assisted sural nerve harvest.
Hassanpour, Esmail; Yavari, Masoud; Karbalaeikhani, Ali; Saremi, Hossein
2014-03-01
Sural nerve has the favorite length and size for nerve graft interposition. Here two techniques, that is, "stocking seam" and "stair-step" or "stepladder," have been used for harvesting sural nerve. The first technique results in an unsightly scar at the posterior calf, and the latter one takes a long time to perform and exert undue traction to the graft during harvesting. The purpose of this article is to describe our experience in harvesting the sural nerve by a nerve stripper. A nerve stripper was used for harvesting sural nerve in 35 adult patients (in 6 patients, sural harvesting was done bilaterally), 27 men and 8 women. Thirty-one sural nerve harvests were done by closed technique (i.e., harvesting of sural nerve only by two incisions, one in the posterior of the lateral malleolus and the other in popliteal fossa), in 8 others by limited open technique, and in 2 cases, there was early laceration of the sural nerve at the beginning of the study. The contralateral sural nerve was harvested in one patient and medial antebrachial nerve in another by open technique. The mean length of the retrieved sural nerve was 34.5 cm in the closed technique group and 35 cm in the limited open technique group. We detected advancing Tinel's sign in all nerve stripper-assisted sural nerve harvested group members in both the closed and limited open groups. Sural nerve harvesting by the nerve stripper is a reliable and simple technique, and it is applicable as a routine technique. Applying controlled rotatory movements of the nerve stripper instead of pushing can result in satisfactory harvesting of the sural nerve without early laceration. Georg Thieme Verlag KG Stuttgart · New York.
Cai, R S; Alexander, M Sipski; Marson, L
2008-09-01
We examined the effects of pudendal sensory nerve stimulation and urethral distention on vaginal blood flow and the urethrogenital reflex, and the relationship between somatic and autonomic pathways regulating sexual responses. Distention of the urethra and stimulation of the pudendal sensory nerve were used to evoke changes in vaginal blood flow (laser Doppler perfusion monitoring) and pudendal motor nerve activity in anesthetized, spinally transected female rats. Bilateral cuts of either the pelvic or hypogastric nerve or both autonomic nerves were made, and blood flow and pudendal nerve responses were reexamined. Stimulation of the pudendal sensory nerve or urethral distention elicited consistent increases in vaginal blood flow and rhythmic firing of the pudendal motor nerve. Bilateral cuts of the pelvic plus hypogastric nerves significantly reduced vaginal blood flow responses without altering pudendal motor nerve responses. Pelvic nerve cuts also significantly reduced vaginal blood flow responses. In contrast, hypogastric nerve cuts did not significantly change vaginal blood flow. Bilateral cuts of the pudendal sensory nerve blocked pudendal motor nerve responses but stimulation of the central end evoked vaginal blood flow and pudendal motor nerve responses. Stimulation of the sensory branch of the pudendal nerve elicits vasodilatation of the vagina. The likely mechanism is via activation of spinal pathways that in turn activate pelvic nerve efferents to produced changes in vaginal blood flow. Climatic-like responses (firing of the pudendal motor nerve) occur in response to stimulation of the pudendal sensory nerve and do not require intact pelvic or hypogastric nerves.
Dahlin, Lars B; Andersson, Gert; Backman, Clas; Svensson, Hampus; Björkman, Anders
2017-01-01
Recovery after surgical reconstruction of a brachial plexus injury using nerve grafting and nerve transfer procedures is a function of peripheral nerve regeneration and cerebral reorganization. A 15-year-old boy, with traumatic avulsion of nerve roots C5-C7 and a non-rupture of C8-T1, was operated 3 weeks after the injury with nerve transfers: (a) terminal part of the accessory nerve to the suprascapular nerve, (b) the second and third intercostal nerves to the axillary nerve, and (c) the fourth to sixth intercostal nerves to the musculocutaneous nerve. A second operation-free contralateral gracilis muscle transfer directly innervated by the phrenic nerve-was done after 2 years due to insufficient recovery of the biceps muscle function. One year later, electromyography showed activation of the biceps muscle essentially with coughing through the intercostal nerves, and of the transferred gracilis muscle by deep breathing through the phrenic nerve. Voluntary flexion of the elbow elicited clear activity in the biceps/gracilis muscles with decreasing activity in intercostal muscles distal to the transferred intercostal nerves (i.e., corresponding to eighth intercostal), indicating cerebral plasticity, where neural control of elbow flexion is gradually separated from control of breathing. To restore voluntary elbow function after nerve transfers, the rehabilitation of patients operated with intercostal nerve transfers should concentrate on transferring coughing function, while patients with phrenic nerve transfers should focus on transferring deep breathing function.