Science.gov

Sample records for grown bulk ingaas

  1. Characterization of Si volume- and delta-doped InGaAs grown by molecular beam epitaxy

    SciTech Connect

    Fedoryshyn, Y.; Kaspar, P.; Jaeckel, H.; Beck, M.

    2010-05-15

    Bulk InGaAs layers were grown at 400 deg. C lattice-matched to InP semi-insulating substrates by molecular beam epitaxy. Si doping of the layers was performed by applying volume- and delta-doping techniques. The samples were characterized by capacitance-voltage, van der Pauw-Hall, secondary ion mass spectroscopy and photoluminescence measurements. Good agreement in terms of dependence of mobility and Burstein-Moss shift shift on doping concentration in samples doped by the two different techniques was obtained. Amphoteric behavior of Si was observed at doping concentrations higher than {approx}2.9x10{sup 19} cm{sup -3} in both delta- and volume-doped samples. Degradation of InGaAs crystalline quality occurred in samples with Si concentrations higher than {approx}4x10{sup 19} cm{sup -3}.

  2. Catastrophic facet and bulk degradation in high power multi-mode InGaAs strained quantum well single emitters

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Foran, Brendan; Ives, Neil; Moss, Steven C.

    2009-02-01

    Extensive investigations by a number of groups have identified catastrophic sudden degradation as the main failure mode in both single-mode and multi-mode InGaAs-AlGaAs strained quantum well (QW) lasers. Significant progress made in performance characteristics of broad-area InGaAs strained QW single emitters in recent years has led to an optical output power of over 20W and a power conversion efficiency of over 70% under CW operation. However, unlike 980nm single-mode lasers that have shown high reliability operation under a high optical power density of ~50MW/cm2, broad-area lasers have not achieved the same level of reliability even under a much lower optical power density of ~5MW/cm2. This paper investigates possible mechanisms that prevent broad-area lasers from achieving high reliability operation by performing accelerated lifetests of these devices and in-depth failure mode analyses of degraded devices with various destructive and non-destructive techniques including EBIC, FIB, and HR-TEM techniques. The diode lasers that we have investigated are commercial MOCVD-grown broad-area strained InGaAs single QW lasers at ~975nm. Both passivated and unpassivated broad-area lasers were studied that yielded catastrophic failures at the front facet and also in the bulk. To investigate the role that generation and propagation of defects plays in degradation processes via recombination enhanced defect reaction (REDR), EBIC was employed to study dark line defects in degraded lasers, failed under different stress conditions, and the correlation between DLDs and stress levels is reported. FIB was then employed to prepare TEM samples from the DLD areas for cross-sectional HR-TEM analysis.

  3. Measurement of 3-dimensional dopant distribution in InGaAs microdiscs grown selectively on Si (111)

    NASA Astrophysics Data System (ADS)

    Watanabe, Tohma; Takeuchi, Miyuki; Nakano, Yoshiaki; Sugiyama, Masakazu

    2017-04-01

    The control of the dopant profile in 3-dimentional InGaAs microdiscs on Si (111) is essential for their device applications. However, such profiles can never be controlled by simply changing the supply of dopant precursors during the growth of microdiscs. This is because a variety of crystal planes, such as (111), {-110}, and irregular planes near the corners, surround a hexagonal pillar of InGaAs and the incorporation efficiency of dopant elements depends significantly on the kind of planes involved. We here observed the distributions of sulfur and zinc in p-i-n InGaAs microdiscs by both cross-sectional scanning capacitance microscopy (SCM) and secondary-ion mass spectrometry using focused ion beam (NanoSIMS). Even though the InGaAs shell was grown on the microdiscs using dimethylzinc (DMZn), no p-type region was found on the top of the microdiscs and the p-type region existed on the sidewall of the discs alone. This result suggested that the zinc incorporation efficiency on InGaAs (111) plane is much lower than that on {-110} planes. Complete encapsulation of the microdiscs with p-type region was possible by the post-diffusion of zinc during exposure to a mixture of tertiarybutylarsine (TBAs) and DMZn after the growth of InGaAs microdiscs.

  4. Gated Hall Effect Measurements on Selectively grown InGaAs Nanowires.

    PubMed

    Lindelöw, Fredrik Gustav; Zota, Cezar; Lind, Erik

    2017-02-23

    InGaAs nanowires is one of the promising material systems of replacing silicon in future CMOS transistors, due to its high electron mobility, in combination with the excellent electrostatic control from the tri-gate geometry. In this article, we report on gated Hall measurements on single and multiple In0.85Ga0.15As nanowires, selectively grown in a Hall bridge geometry with nanowire widths down to 50 nm and thicknesses of 10 nm. The gated nanowires can be used as junctionless transistors, which allows for a simplified device processing as no regrowth of contact layer or ion implantation is needed, which is especially beneficial as transistor dimensions are scaled down. The analysis shows that the InGaAs layer has a carrier concentration above 10^19 cm^-3, with a Hall carrier mobility of around 1000 cm^2V^-1s^-1. The gated Hall measurements reveal an increased carrier concentration as a function of applied gate voltage, with an increasing mobility for narrow nanowires but no significant effect on larger nanowires.

  5. InGaAs quantum dots grown by molecular beam epitaxy for light emission on Si substrates.

    PubMed

    Bru-Chevallier, C; El Akra, A; Pelloux-Gervais, D; Dumont, H; Canut, B; Chauvin, N; Regreny, P; Gendry, M; Patriarche, G; Jancu, J M; Even, J; Noe, P; Calvo, V; Salem, B

    2011-10-01

    The aim of this study is to achieve homogeneous, high density and dislocation free InGaAs quantum dots grown by molecular beam epitaxy for light emission on silicon substrates. This work is part of a project which aims at overcoming the severe limitation suffered by silicon regarding its optoelectronic applications, especially efficient light emission device. For this study, one of the key points is to overcome the expected type II InGaAs/Si interface by inserting the InGaAs quantum dots inside a thin silicon quantum well in SiO2 fabricated on a SOI substrate. Confinement effects of the Si/SiO2 quantum well are expected to heighten the indirect silicon bandgap and then give rise to a type I interface with the InGaAs quantum dots. Band structure and optical properties are modeled within the tight binding approximation: direct energy bandgap is demonstrated in SiO2/Si/InAs/Si/SiO2 heterostructures for very thin Si layers and absorption coefficient is calculated. Thinned SOI substrates are successfully prepared using successive etching process resulting in a 2 nm-thick Si layer on top of silica. Another key point to get light emission from InGaAs quantum dots is to avoid any dislocations or defects in the quantum dots. We investigate the quantum dot size distribution, density and structural quality at different V/III beam equivalent pressure ratios, different growth temperatures and as a function of the amount of deposited material. This study was performed for InGaAs quantum dots grown on Si(001) substrates. The capping of InGaAs quantum dots by a silicon epilayer is performed in order to get efficient photoluminescence emission from quantum dots. Scanning transmission electronic microscopy images are used to study the structural quality of the quantum dots. Dislocation free In50Ga50As QDs are successfully obtained on a (001) silicon substrate. The analysis of QDs capped with silicon by Rutherford Backscattering Spectrometry in a channeling geometry is also presented.

  6. Control of asymmetric strain relaxation in InGaAs grown by molecular-beam epitaxy

    SciTech Connect

    France, R.; Ptak, A. J.; Jiang, C.-S.; Ahrenkiel, S. P.

    2010-05-15

    InGaAs strain relaxation is studied by an in situ multibeam optical stress sensor (MOSS). Strain relaxation during growth of InGaAs on GaAs occurs at different thicknesses and rates along the directions perpendicular to its misfit dislocations, [110] and [110]. We show the asymmetry of relaxation between these directions in real time by aligning the MOSS laser array along [110] and [110]. This asymmetric relaxation data from the MOSS correlates with both x-ray diffraction relaxation analysis and an estimation of the misfit dislocation density from transmission electron microscopy images. Lowering the V/III ratio or raising the growth temperature lowers the thickness of the onset of dislocation formation, changes the relaxation rate, lowers the final relaxation during 2 {mu}m of growth, and shifts the initial direction of relaxation from [110] to [110]. We identify two phases of relaxation that occur at different growth thicknesses. Lowering the V/III ratio changes the relative contribution of each of these phases to the total relaxation of the epilayer.

  7. Control of asymmetric strain relaxation in InGaAs grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    France, R.; Ptak, A. J.; Jiang, C.-S.; Ahrenkiel, S. P.

    2010-05-01

    InGaAs strain relaxation is studied by an in situ multibeam optical stress sensor (MOSS). Strain relaxation during growth of InGaAs on GaAs occurs at different thicknesses and rates along the directions perpendicular to its misfit dislocations, [110] and [11¯0]. We show the asymmetry of relaxation between these directions in real time by aligning the MOSS laser array along [110] and [11¯0]. This asymmetric relaxation data from the MOSS correlates with both x-ray diffraction relaxation analysis and an estimation of the misfit dislocation density from transmission electron microscopy images. Lowering the V/III ratio or raising the growth temperature lowers the thickness of the onset of dislocation formation, changes the relaxation rate, lowers the final relaxation during 2 μm of growth, and shifts the initial direction of relaxation from [110] to [11¯0]. We identify two phases of relaxation that occur at different growth thicknesses. Lowering the V/III ratio changes the relative contribution of each of these phases to the total relaxation of the epilayer.

  8. Generation of continuous wave terahertz frequency radiation from metal-organic chemical vapour deposition grown Fe-doped InGaAs and InGaAsP

    SciTech Connect

    Mohandas, Reshma A.; Freeman, Joshua R. Rosamond, Mark C.; Chowdhury, Siddhant; Cunningham, John E.; Davies, A. Giles; Linfield, Edmund H.; Dean, Paul; Hatem, Osama; Ponnampalam, Lalitha; Fice, Martyn; Seeds, Alwyn J.; Cannard, Paul J.; Robertson, Michael J.; Moodie, David G.

    2016-04-21

    We demonstrate the generation of continuous wave terahertz (THz) frequency radiation from photomixers fabricated on both Fe-doped InGaAs and Fe-doped InGaAsP, grown by metal-organic chemical vapor deposition. The photomixers were excited using a pair of distributed Bragg reflector lasers with emission around 1550 nm, and THz radiation was emitted over a bandwidth of greater than 2.4 THz. Two InGaAs and four InGaAsP wafers with different Fe doping concentrations were investigated, with the InGaAs material found to outperform the InGaAsP in terms of emitted THz power. The dependencies of the emitted power on the photomixer applied bias, incident laser power, and material doping level were also studied.

  9. Spatially correlated structural and optical characterization of a single InGaAs quantum well fin selectively grown on Si by microscopy and cathodoluminescence techniques

    NASA Astrophysics Data System (ADS)

    David, S.; Roque, J.; Rochat, N.; Bernier, N.; Piot, L.; Alcotte, R.; Cerba, T.; Martin, M.; Moeyaert, J.; Bogumilowizc, Y.; Arnaud, S.; Bertin, F.; Bassani, F.; Baron, T.

    2016-05-01

    Structural and optical properties of InGaAs quantum well fins (QWFs) selectively grown on Si using the aspect ratio trapping (ART) method in 200 nm deep SiO2 trenches are studied. A new method combining cathodoluminescence, transmission electron microscopy, and precession electron diffraction techniques is developed to spatially correlate the presence of defects and/or strain with the light emission properties of a single InGaAs QWF. Luminescence losses and energy shifts observed at the nanoscale along InGaAs QWF are correlated with structural defects. We show that strain distortions measured around threading dislocations delimit both high and low luminescent areas. We also show that trapped dislocations on SiO2 sidewalls can also result in additional distortions. Both behaviors affect optical properties of QWF at the nanoscale. Our study highlights the need to improve the ART growth method to allow integration of new efficient III-V optoelectronic components on Si.

  10. Periodic Two-Dimensional GaAs and InGaAs Quantum Rings Grown on GaAs (001) by Droplet Epitaxy.

    PubMed

    Tung, Kar Hoo Patrick; Huang, Jian; Danner, Aaron

    2016-06-01

    Growth of ordered GaAs and InGaAs quantum rings (QRs) in a patterned SiO2 nanohole template by molecular beam epitaxy (MBE) using droplet epitaxy (DE) process is demonstrated. DE is an MBE growth technique used to fabricate quantum nanostructures of high crystal quality by supplying group III and group V elements in separate phases. In this work, ordered QRs grown on an ordered nanohole template are compared to self-assembled QRs grown with the same DE technique without the nanohole template. This study allows us to understand and compare the surface kinetics of Ga and InGa droplets when a template is present. It is found that template-grown GaAs QRs form clustered rings which can be attributed to low mobility of Ga droplets resulting in multiple nucleation sites for QR formation when As is supplied. However, the case of template-grown InGaAs QRs only one ring is formed per nanohole; no clustering is observed. The outer QR diameter is a close match to the nanohole template diameter. This can be attributed to more mobile InGa droplets, which coalesce from an Ostwald ripening to form a single large droplet before As is supplied. Thus, well-patterned InGaAs QRs are demonstrated and the kinetics of their growth are better understood which could potentially lead to improvements in the future devices that require the unique properties of patterned QRs.

  11. InGaAs Quantum Well Grown on High-Index Surfaces for Superluminescent Diode Applications

    PubMed Central

    2010-01-01

    The morphological and optical properties of In0.2Ga0.8As/GaAs quantum wells grown on various substrates are investigated for possible application to superluminescent diodes. The In0.2Ga0.8As/GaAs quantum wells are grown by molecular beam epitaxy on GaAs (100), (210), (311), and (731) substrates. A broad photoluminescence emission peak (~950 nm) with a full width at half maximum (FWHM) of 48 nm is obtained from the sample grown on (210) substrate at room temperature, which is over four times wider than the quantum well simultaneously grown on (100) substrate. On the other hand, a very narrow photoluminescence spectrum is observed from the sample grown on (311) with FWHM = 7.8 nm. The results presented in this article demonstrate the potential of high-index GaAs substrates for superluminescent diode applications. PMID:20672090

  12. Widely tunable alloy composition and crystal structure in catalyst-free InGaAs nanowire arrays grown by selective area molecular beam epitaxy

    SciTech Connect

    Treu, J. E-mail: Gregor.Koblmueller@wsi.tum.de; Speckbacher, M.; Saller, K.; Morkötter, S.; Xu, X.; Riedl, H.; Abstreiter, G.; Finley, J. J.; Koblmüller, G. E-mail: Gregor.Koblmueller@wsi.tum.de; Döblinger, M.

    2016-02-01

    We delineate the optimized growth parameter space for high-uniformity catalyst-free InGaAs nanowire (NW) arrays on Si over nearly the entire alloy compositional range using selective area molecular beam epitaxy. Under the required high group-V fluxes and V/III ratios, the respective growth windows shift to higher growth temperatures as the Ga-content x(Ga) is tuned from In-rich to Ga-rich InGaAs NWs. Using correlated x-ray diffraction, transmission electron microscopy, and micro-photoluminescence spectroscopy, we identify structural defects to govern luminescence linewidths in In-rich (x(Ga) < 0.4) and Ga-rich (x(Ga) > 0.6) NWs, whereas limitations at intermediate Ga-content (0.4 < x(Ga) < 0.6) are mainly due to compositional inhomogeneities. Most remarkably, the catalyst-free InGaAs NWs exhibit a characteristic transition in crystal structure from wurtzite to zincblende (ZB) dominated phase near x(Ga) ∼ 0.4 that is further reflected in a cross-over from blue-shifted to red-shifted photoluminescence emission relative to the band edge emission of the bulk ZB InGaAs phase.

  13. Comparative optical study of epitaxial InGaAs quantum rods grown with As{sub 2} and As{sub 4} sources

    SciTech Connect

    Nedzinskas, Ramūnas; Čechavičius, Bronislovas; Kavaliauskas, Julius; Karpus, Vytautas; Valušis, Gintaras; Li, Lianhe; Khanna, Suraj P.; Linfield, Edmund H.

    2013-12-04

    Photoreflectance and photoluminescence (PL) spectroscopies are used to examine the optical properties and electronic structure of InGaAs quantum rods (QRs), embedded within InGaAs quantum well (QW). The nanostructures studied were grown by molecular beam epitaxy using As{sub 2} or As{sub 4} sources. The impact of As source on spectral features associated with interband optical transitions in the QRs and the surrounding QW are demonstrated. A red shift of the QR- and a blue shift of the QW-related optical transitions, along with a significant increase in PL intensity, have been observed if an As{sub 4} source is used. The changes in optical properties are attributed mainly to carrier confinement effects caused by variation of In content contrast between the QR material and the surrounding well.

  14. Carbon nanotubes grown on bulk materials and methods for fabrication

    SciTech Connect

    Menchhofer, Paul A; Montgomery, Frederick C; Baker, Frederick S

    2011-11-08

    Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

  15. Effect of InGaAs interlayer on the properties of GaAs grown on Si (111) substrate by molecular beam epitaxy

    SciTech Connect

    Wen, Lei; Gao, Fangliang; Li, Jingling; Guan, Yunfang; Wang, Wenliang; Zhou, Shizhong; Lin, Zhiting; Zhang, Xiaona; Zhang, Shuguang E-mail: mssgzhang@scut.edu.cn; Li, Guoqiang E-mail: mssgzhang@scut.edu.cn

    2014-11-21

    High-quality GaAs films have been epitaxially grown on Si (111) substrates by inserting an In{sub x}Ga{sub 1−x}As interlayer with proper In composition by molecular beam epitaxy (MBE). The effect of In{sub x}Ga{sub 1−x}As (0 < x < 0.2) interlayers on the properties of GaAs films grown on Si (111) substrates by MBE has been studied in detailed. Due to the high compressive strain between InGaAs and Si, InGaAs undergoes partial strain relaxation. Unstrained InGaAs has a larger lattice constant than GaAs. Therefore, a thin InGaAs layer with proper In composition may adopt a close lattice constant with that of GaAs, which is beneficial to the growth of high-quality GaAs epilayer on top. It is found that the proper In composition in In{sub x}Ga{sub 1−x}As interlayer of 10% is beneficial to obtaining high-quality GaAs films, which, on the one hand, greatly compensates the misfit stress between GaAs film and Si substrate, and on the other hand, suppresses the formation of multiple twin during the heteroepitaxial growth of GaAs film. However, when the In composition does not reach the proper value (∼10%), the In{sub x}Ga{sub 1−x}As adopts a lower strain relaxation and undergoes a lattice constant smaller than unstrained GaAs, and therefore introduces compressive stress to GaAs grown on top. When In composition exceeds the proper value, the In{sub x}Ga{sub 1−x}As will adopt a higher strain relaxation and undergoes a lattice constant larger than unstrained GaAs, and therefore introduces tensile stress to GaAs grown on top. As a result, In{sub x}Ga{sub 1−x}As interlayers with improper In composition introduces enlarged misfit stress to GaAs epilayers grown on top, and deteriorates the quality of GaAs epilayers. This work demonstrates a simple but effective method to grow high-quality GaAs epilayers and brings up a broad prospect for the application of GaAs-based optoelectronic devices on Si substrates.

  16. InGaAs quantum dot structures grown in GaAs barrier by metal-organic chemical vapor deposition for high-efficient long-wavelength emission

    NASA Astrophysics Data System (ADS)

    Passaseo, Adriana; Tasco, Vittorianna; De Giorgi, Milena; Todaro, Maria T.; Tarantini, Iolena; Cingolani, Roberto; De Vittorio, Massimo

    2004-06-01

    In this work we present a method to obtain room temperature ground state emission beyond 1.3 μm from InGaAs QDs, grown by MOCVD, embedded directly into a binary GaAs matrix. The wavelength is tuned from 1.26 μm up to 1.33 μm by varying the V/III ratio during the growth of the GaAs cap layer, without using seeding layer or InGaAs wells. A line-shape narrowing (from 36 meV to 24 meV) and a strong reduction of the temperature dependent quenching of the emission (down to a factor 3 from 10K to 300K) are observed, that represent the best value reported for QD structures emitting at 1.3 μm. The results are explained in term different morphological evolution and surface reconstruction undergone by the InGaAs islands during the GaAs overgrowth that result in larger QD size and in lower In-Ga intermixing. Indeed, cross sectional TEM images show an increase in the QD size of more than 30% with decreasing the AsH3 flow. The overall strain reduction due to the use of the GaAs matrix allows the fabrication of highly efficient staked QD layers. The single and multiple QDs samples show a systematic increase of the emission intensity and similar spectral shape.

  17. Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices

    NASA Astrophysics Data System (ADS)

    Cipro, R.; Baron, T.; Martin, M.; Moeyaert, J.; David, S.; Gorbenko, V.; Bassani, F.; Bogumilowicz, Y.; Barnes, J. P.; Rochat, N.; Loup, V.; Vizioz, C.; Allouti, N.; Chauvin, N.; Bao, X. Y.; Ye, Z.; Pin, J. B.; Sanchez, E.

    2014-06-01

    Metal organic chemical vapor deposition of GaAs, InGaAs, and AlGaAs on nominal 300 mm Si(100) at temperatures below 550 °C was studied using the selective aspect ratio trapping method. We clearly show that growing directly GaAs on a flat Si surface in a SiO2 cavity with an aspect ratio as low as 1.3 is efficient to completely annihilate the anti-phase boundary domains. InGaAs quantum wells were grown on a GaAs buffer and exhibit room temperature micro-photoluminescence. Cathodoluminescence reveals the presence of dark spots which could be associated with the presence of emerging dislocation in a direction parallel to the cavity. The InGaAs layers obtained with no antiphase boundaries are perfect candidates for being integrated as channels in n-type metal oxide semiconductor field effect transistor (MOSFET), while the low temperatures used allow the co-integration of p-type MOSFET.

  18. Optical properties of as-grown and annealed InAs quantum dots on InGaAs cross-hatch patterns

    PubMed Central

    2011-01-01

    InAs quantum dots (QDs) grown on InGaAs cross-hatch pattern (CHP) by molecular beam epitaxy are characterized by photoluminescence (PL) at 20 K. In contrast to QDs grown on flat GaAs substrates, those grown on CHPs exhibit rich optical features which comprise as many as five ground-state emissions from [1-10]- and [110]-aligned QDs, two wetting layers (WLs), and the CHP. When subject to in situ annealing at 700°C, the PL signals rapidly degrades due to the deterioration of the CHP which sets the upper limit of overgrowth temperature. Ex situ hydrogen annealing at a much lower temperature of 350°C, however, results in an overall PL intensity increase with a significant narrowing and a small blueshift of the high-energy WL emission due to hydrogen bonding which neutralizes defects and relieves associated strains. PMID:21849063

  19. In(Ga)As quantum dots on InGaP layers grown by solid-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sugaya, T.; Oshima, R.; Matsubara, K.; Niki, S.

    2013-09-01

    We report the growth of In(Ga)As quantum dots (QDs) on In0.48Ga0.52P layers with and without GaAs spacer layers using solid-source molecular beam epitaxy. We can grow high quality and high density In0.4Ga0.6As and InAs QDs on In0.48Ga0.52P layers. In0.4Ga0.6As QDs with 2 nm GaAs spacer layers have high uniformity, which is confirmed by performing a photoluminescence measurement with a full-width at half maximum of 24 meV. We can control the energy difference between the In0.48Ga0.52P conduction band and the QD energy state by employing GaAs spacer layers and InAs QDs, which is a useful technique for realizing optimal intermediate-band solar cells fabricated using In(Ga)As QD structures in an In0.48Ga0.52P matrix.

  20. Comparison of InGaAs(100) Grown by Chemical Beam Epitaxy and Metal Organic Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Greene, A. L.; Daniels-Race, T.; Lum, R. M.

    2000-01-01

    Secondary ion mass spectrometry is used to study the effects of substrate temperature on the composition and growth rate of InGaAs/InP(100) multilayers grown by chemical beam epitaxy, metal-organic chemical vapor deposition and solid source molecular beam epitaxy. The growth kinetics of the material grown by the different techniques are analyzed and compared.

  1. Comparison of InGaAs(100) Grown by Chemical Beam Epitaxy and Metal Organic Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Williams, M. D.; Greene, A. L.; Daniels-Race, T.; Lum, R. M.

    2000-01-01

    Secondary ion mass spectrometry is used to study the effects of substrate temperature on the composition and growth rate of InGaAs/InP(100) multilayers grown by chemical beam epitaxy, metal-organic chemical vapor deposition and solid source molecular beam epitaxy. The growth kinetics of the material grown by the different techniques are analyzed and compared.

  2. The Effects of Substrate Surface Treatments on the Defect Incorporation in Hydride VPE Grown InGaAs Films.

    DTIC Science & Technology

    1984-01-05

    AD-RI37 488 THE EFFECTS OF SUBSTRATE SURFACE TREATMENTS ON THE i/i DEFECT INCORPORATION I..(U) COLORADO STATEUUIIV FORT COLLINS DEPT OF ELECTRICAL...WA n 11111125 liii411.6 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STNA-19- THE EFFECTS OF SUBSTRATE SURFACE TREATMENTS ON THE qDEFECT...b.) in HCI (37.5x) ---------- 12 4. InP films grown on a substrate bathed in PH3 (left) and b.) a substrate etched in HCl (right

  3. Defect studies in 4H- Silicon Carbide PVT grown bulk crystals, CVD grown epilayers and devices

    NASA Astrophysics Data System (ADS)

    Byrappa, Shayan M.

    Silicon Carbide [SiC] which exists as more than 200 different polytypes is known for superior high temperature and high power applications in comparison to conventional semiconductor materials like Silicon and Germanium. The material finds plethora of applications in a diverse fields due to its unique properties like large energy bandgap, high thermal conductivity and high electric breakdown field. Though inundated with superior properties the potential of this material has not been utilized fully due to impeding factors such as defects especially the crystalline ones which limit their performance greatly. Lots of research has been going on for decades to reduce these defects and there has been subsequent improvement in the quality as the diameter of SiC commercial wafers has reached 150mm from 25mm since its inception. The main focus of this thesis has been to study yield limiting defect structures in conjunction with several leading companies and national labs using advanced characterization tools especially the Synchrotron source. The in depth analysis of SiC has led to development of strategies to reduce or eliminate the density of defects by studying how the defects nucleate, replicate and interact in the material. The strategies discussed to reduce defects were proposed after careful deliberation and analysis of PVT grown bulk crystals and CVD grown epilayers. Following are some of the results of the study: [1] Macrostep overgrowth mechanism in SiC was used to study the deflection of threading defects onto the basal plane resulting in stacking faults. Four types of stacking faults associated with deflection of c/c+a threading defects have been observed to be present in 76mm, 100mm and 150mm diameter wafers. The PVT grown bulk crystals and CVD grown epilayers in study were subjected to contrast studies using synchrotron white beam X-ray topography [SWBXT]. The SWBXT image contrast studies of these stacking faults with comparison of calculated phase shifts for

  4. Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices

    SciTech Connect

    Cipro, R.; Gorbenko, V.; Baron, T. Martin, M.; Moeyaert, J.; David, S.; Bassani, F.; Bogumilowicz, Y.; Barnes, J. P.; Rochat, N.; Loup, V.; Vizioz, C.; Allouti, N.; Chauvin, N.; Bao, X. Y.; Ye, Z.; Pin, J. B.; Sanchez, E.

    2014-06-30

    Metal organic chemical vapor deposition of GaAs, InGaAs, and AlGaAs on nominal 300 mm Si(100) at temperatures below 550 °C was studied using the selective aspect ratio trapping method. We clearly show that growing directly GaAs on a flat Si surface in a SiO{sub 2} cavity with an aspect ratio as low as 1.3 is efficient to completely annihilate the anti-phase boundary domains. InGaAs quantum wells were grown on a GaAs buffer and exhibit room temperature micro-photoluminescence. Cathodoluminescence reveals the presence of dark spots which could be associated with the presence of emerging dislocation in a direction parallel to the cavity. The InGaAs layers obtained with no antiphase boundaries are perfect candidates for being integrated as channels in n-type metal oxide semiconductor field effect transistor (MOSFET), while the low temperatures used allow the co-integration of p-type MOSFET.

  5. Single crystalline InGaAs nanopillar grown on polysilicon with dimensions beyond the substrate grain size limit.

    PubMed

    Ng, Kar Wei; Tran, Thai-Truong D; Ko, Wai Son; Chen, Roger; Lu, Fanglu; Chang-Hasnain, Connie J

    2013-01-01

    Monolithic integration of III-V optoelectronic devices with materials for various functionalities inexpensively is always desirable. Polysilicon (poly-Si) is an ideal platform because it is dopable and semiconducting, and can be deposited and patterned easily on a wide range of low cost substrates. However, the lack of crystalline coherency in poly-Si poses an immense challenge for high-quality epitaxial growth. In this work, we demonstrate, for the first time, direct growth of micrometer-sized InGaAs/GaAs nanopillars on polysilicon. Transmission electron microscopy shows that the micrometer-sized pillars are single-crystalline with pure wurzite-phase, far exceeding the substrate crystal grain size ~100 nm. The high quality growth is enabled by the unique tapering geometry at the base of the nanostructure, which reduces the effective InGaAs/Si contact area to <40 nm in diameter. The small footprint not only reduces stress due to lattice mismatch but also prevents the nanopillar from nucleating on multiple Si crystal grains. This relaxes the grain size requirement for poly-Si, potentially reducing the cost for poly-Si deposition. Lasing is achieved in the as-grown pillars under optical pumping, attesting their excellent crystalline and optical quality. These promising results open up a pathway for low-cost synergy of optoelectronics with other technologies such as CMOS integrated circuits, sensing, nanofluidics, thin film transistor display, photovoltaics, and so forth.

  6. Comparison of MOVPE grown GaAs, InGaAs and GaAsSb covering layers for different InAs/GaAs quantum dot applications

    NASA Astrophysics Data System (ADS)

    Zíková, Markéta; Hospodková, Alice; Pangrác, Jiří; Oswald, Jiří; Hulicius, Eduard

    2017-04-01

    InAs/GaAs quantum dot (QD) heterostructures with different covering layers (CLs) prepared by MOVPE are compared in this work. The recombination energy of a structure covered only by GaAs depends nonlinearly on CL thickness. Experimental data of photoluminescence (PL) were supported by theoretical simulations. These simulations prove that the strain plays a major role in the structures. InGaAs strain reducing layer (SRL) was studied as well. Due to the strain reduction, the recombination energy is decreased, so the structure has longer PL wavelength. By theoretical simulations it was shown that for high content of In in InGaAs covering layer (approximately 45% and more), the heterostructure is type II, which would normally be unreachable for flat layers. For the structure with GaAsSb SRL, the band alignment is highly dependent on the SRL composition. The type I/type II transition occurs for approximately 15% of Sb; this value also slightly depends on the QD size. All structures were also studied by HRTEM to show different behavior of the CLs on the interface with InAs which highly influences the structure quality.

  7. A comparative study of AlN and Al2O3 based gate stacks grown by atomic layer deposition on InGaAs

    NASA Astrophysics Data System (ADS)

    Krylov, Igor; Pokroy, Boaz; Ritter, Dan; Eizenberg, Moshe

    2016-02-01

    Thermal activated atomic layer deposited (t) (ALD) and plasma enhanced (p) ALD (PEALD) AlN films were investigated for gate applications of InGaAs based metal-insulator-semiconductor devices and compared to the well-known Al2O3 based system. The roles of post-metallization annealing (PMA) and the pre-deposition treatment (PDT) by either trimethylaluminium (TMA) or NH3 were studied. In contrast to the case of Al2O3, in the case of AlN, the annealing temperature reduced interface states density. In addition, improvement of the AlN film stoichiometry and a related border traps density reduction were observed following PMA. The lowest interface states density (among the investigated gate stacks) was found for PEALD AlN/InGaAs stacks after TMA PDT. At the same time, higher values of the dispersion in accumulation were observed for AlN/InGaAs gate stacks compared to those with Al2O3 dielectric. No indium out-diffusion and the related leakage current degradation due to annealing were observed at the AlN/InGaAs stack. In light of these findings, we conclude that AlN is a promising material for InGaAs based gate stack applications.

  8. Carrier dynamics in bulk 1eV InGaAsNSb materials and epitaxial lift off GaAs-InAlGaP layers grown by MOVPE for multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; LaLumondiere, Stephen; Lotshaw, William; Moss, Steven C.; Kim, Tae Wan; Forghani, Kamran; Mawst, Luke J.; Kuech, Thomas F.; Tatavarti, Rao; Wibowo, Andree; Pan, Noren

    2013-03-01

    III-V multi-junction solar cells are based on a triple-junction design that consists of an InGaP top junction, a GaAs middle junction, and a bottom junction that employs either a 1eV material grown on the GaAs substrate or InGaAs grown on the Ge substrate. The most promising 1 eV material that is currently under extensive investigation is bulk dilute nitride such as InGaAsN(Sb) lattice matched to GaAs substrates. Both approaches utilizing dilute nitrides and lattice-mismatched InGaAs layers have a potential to achieve high performance triple-junction solar cells. In addition, it will be beneficial for both commercial and space applications if III-V triple-junction solar cells can significantly reduce weight and can be manufactured cost effectively while maintaining high efficiency. The most attractive approach to achieve these goals is to employ full-wafer epitaxial lift off (ELO) technology, which can eliminate the substrate weight and also enable multiple substrate re-usages. For the present study, we employed time-resolved photoluminescence (TR-PL) techniques to study carrier dynamics in MOVPE-grown bulk dilute nitride layers lattice matched to GaAs substrates, where carrier lifetime measurements are crucial in optimizing MOVPE materials growth. We studied carrier dynamics in InGaAsN(Sb) layers with different amounts of N incorporated. Carrier lifetimes were also measured from InGaAsN(Sb) layers at different stages of post-growth thermal annealing steps. Post-growth annealing yielded significant improvements in carrier lifetimes of InGaAsNSb double hetero-structure (DH) samples compared to InGaAsN DH samples possibly due to the surfactant effect of Sb. In addition, we studied carrier dynamics in MOVPE-grown GaAs-InAl(Ga)P layers grown on GaAs substrates. The structures were grown on top of a thin AlAs release layer, which allowed epitaxial layers grown on top of the AlAs layer to be removed from the substrate. The GaAs layers had various doping densities and

  9. Near-infrared electroluminescence and photo detection in InGaAs p-i-n microdisks grown by selective area growth on silicon

    SciTech Connect

    Kjellman, Jon Øyvind; Sugiyama, Masakazu; Nakano, Yoshiaki

    2014-06-16

    Microselective-area growth of p-i-n InGaAs disks on (111) silicon by metalorganic chemical vapor deposition is a promising technology for III/V-on-Si integration. As a proof-of-concept, room-temperature electroluminescence is reported from ensembles of p-i-n InGaAs-on-Si micro-disks. The observed spectrum shows peak luminescence at 1.78 μm with a local maxima at 1.65 μm. The disks are also shown to generate a measurable photo current when illuminated by infrared light with less energy than the silicon bandgap energy. This makes these InGaAs-on-Si disks a promising technology for monolithic integration of light sources and detectors with silicon photonics and complementary metal-oxide-semiconductor electronics for optical communication, sensing, and imaging.

  10. Surface studies of gallium nitride quantum dots grown using droplet epitaxy on bulk, native substrates

    NASA Astrophysics Data System (ADS)

    Jones, Christina; Jeon, Sunyeol; Goldman, Rachel; Yacoby, Yizhak; Clarke, Roy

    Gallium nitride (GaN) and its applications in light-emitting diodes play an integral part in efficient, solid-state lighting, as evidenced by its recognition in the 2014 Nobel prize in physics. In order to push this technology towards higher efficiency and reliability and lower cost, we must understand device growth on bulk GaN substrates, which have lower defect densities and strain than template GaN substrates grown on sapphire. In this work, we present our findings on the surface properties of GaN quantum dots (QDs) grown on commercial bulk GaN. QDs are grown using the droplet epitaxy method and analyzed using a surface X-ray diffraction technique called Coherent Bragg Rod Analysis (COBRA), which uses phase retrieval to reconstruct atomic positions near the substrate surface. While several QD growth conditions in our study produce dense QDs, COBRA reveals that only low nitridation temperatures result in GaN QDs that are coherent with the bulk GaN substrate. Results are supported with atomic force microscopy and high-resolution transmission electron microscopy.

  11. Microstructural evolution in multiseeded YBCO bulk samples grown by the TSMG process

    NASA Astrophysics Data System (ADS)

    Goodfellow, A.; Shi, Y.-H.; Durrell, J. H.; Dennis, A. R.; Cardwell, D. A.; Grovenor, C. R. M.; Speller, S. C.

    2016-11-01

    Superconducting single-grain YBCO bulk samples with the ability to trap high magnetic fields can be grown using the top-seeded melt-growth process. Multiseeding techniques have the potential to enable larger diameter bulks to be grown, but the performance of these materials is not yet comparable to the single-seeded bulks. Here we carry out detailed three-dimensional microstructural characterisation on a multiseeded sample grown with the seeds aligned in the 0°-0° geometry using high resolution microanalysis techniques. Chemical and structural variations have been correlated with the trapped field distribution in three separate slices of the sample. The top slice of the sample shows four peaks in trapped field, indicating that the current flows in four separate loops rather than in one large loop within the sample. This has been explained by the build-up in insulating Y-211 particles where the growth fronts from the two seeds meet, forming a barrier to current flow, as well as the low Y-211 content (and hence low J c) of the large c-axis growth sector.

  12. Growth of bulk GaN by HVPE on pressure grown seeds

    NASA Astrophysics Data System (ADS)

    Grzegory, I.; Łucznik, B.; Boćkowski, M.; Pastuszka, B.; Kryśko, M.; Kamler, G.; Nowak, G.; Porowski, S.

    2006-02-01

    Growth of GaN under pressure from solution in gallium results in almost dislocation free plate-like crystals but with size limited to app. 1-2 cm (lateral) and 100 μm (thickness) or up to about 1cm long needles. Deposition of GaN by HVPE on the pressure grown seeds allows stable crystallization (in terms of flatness of the crystallization front and uniformity of the new grown material) at a rate of about 100 μm/h on both types of seed crystals. However, in the thick GaN crystals grown on almost dislocation free plate-like substrates quite a high number of dislocations appears if the crystal thickness exceeds certain critical value. Since the critical thickness for defect generation is of the order of 100 μm, almost dislocation free layers (density below 10 4 cm -2) thinner than 100 μm can be grown. The most obvious further step is removing the substrate and continuation of the HVPE deposition on the free standing low dislocation density layer of sub-critical thickness. The pressure grown substrates were removed by mechanical polishing or conductivity sensitive electrochemical etching (for strongly n-type substrates). Then the HVPE low dislocation density GaN 1platelets were used as substrates for the growth of a few mm thick bulk GaN crystals. The crystals were characterized by defect selective etching of both polar (0001) and non-polar (10 -10) surfaces to check presence and distribution of structural defects. The X-ray measurements allowed concluding about character of strain and deformation in high pressure GaN-HVPE GaN system.

  13. Wurtzite Al xGa 1- xN bulk crystals grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Novikov, S. V.; Staddon, C. R.; Powell, R. E. L.; Akimov, A. V.; Luckert, F.; Edwards, P. R.; Martin, R. W.; Kent, A. J.; Foxon, C. T.

    2011-05-01

    We have studied the growth of wurtzite GaN and Al xGa 1- xN layers and bulk crystals by molecular beam epitaxy (MBE). MBE is normally regarded as an epitaxial technique for the growth of very thin layers with monolayer control of their thickness. However, we have used the MBE technique for bulk crystal growth and have produced 2 in diameter wurtzite Al xGa 1- xN layers up to 10 μm in thickness. Undoped wurtzite Al xGa 1- xN films were grown on GaAs (1 1 1)B substrates by a plasma-assisted molecular beam epitaxy (PA-MBE) method and were removed from the GaAs substrate after the growth. The fact that free-standing ternary Al xGa 1- xN wafers can be grown is very significant for the potential future production of wurtzite Al xGa 1- xN substrates optimized for AlGaN-based device structures.

  14. Photoluminescence Studies of ZnSe Starting Materials and Vapor Grown Bulk Crystals

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Wang, Ling Jun; Lehoczky, S. L.

    2001-01-01

    Low-temperature photoluminescence (PL) spectra were measured on ZnSe starting materials provided by various vendors and on bulk crystals grown from these starting materials by physical vapor transport (PVT) to study the effects of purification and contamination during PVT process. The impurity levels in one set of starting material/grown crystal were also measured by glow discharge mass spectroscopy (GDMS). The purification effect of pre-growth heat treatments and the PVT process is evidenced from the GDMS results which showed orders of magnitude reduction in the Li and Na concentration and a factor of 3 reduction in the O content after growth. The PL spectra showed that the strong emissions associated with Li (or Na) in one of the starting materials disappeared after growth. The GDMS results also showed increases in the At and Si contents by orders of magnitude after growth. To evaluate the contamination of the crystal during the high temperature growth process, three growth runs were processed using similar growth parameters but different furnace environments. The PL spectra suggest that the At contamination originated from the fused silica ampoule and that the Inconel cartridge might have been the cause of the broad Cu green and Cu red bands observed in one of the grown crystals.

  15. Photoluminescence Studies of ZnSe Starting Materials and Vapor Grown Bulk Crystals

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Wang, Ling Jun; Lehoczky, S. L.

    2001-01-01

    Low-temperature photoluminescence (PL) spectra were measured on ZnSe starting materials provided by various vendors and on bulk crystals grown from these starting materials by physical vapor transport (PVT) to study the effects of purification and contamination during PVT process. The impurity levels in one set of starting material/grown crystal were also measured by glow discharge mass spectroscopy (GDMS). The purification effect of pre-growth heat treatments and the PVT process is evidenced from the GDMS results which showed orders of magnitude reduction in the Li and Na concentration and a factor of 3 reduction in the O content after growth. The PL spectra showed that the strong emissions associated with Li (or Na) in one of the starting materials disappeared after growth. The GDMS results also showed increases in the At and Si contents by orders of magnitude after growth. To evaluate the contamination of the crystal during the high temperature growth process, three growth runs were processed using similar growth parameters but different furnace environments. The PL spectra suggest that the At contamination originated from the fused silica ampoule and that the Inconel cartridge might have been the cause of the broad Cu green and Cu red bands observed in one of the grown crystals.

  16. 2.5-μm InGaAs photodiodes grown on GaAs substrates by interfacial misfit array technique

    NASA Astrophysics Data System (ADS)

    Jurczak, Pamela; Sablon, Kimberly A.; Gutiérrez, Marina; Liu, Huiyun; Wu, Jiang

    2017-03-01

    In0.85Ga0.15As photodetectors grown on GaAs substrates using an interfacial misfit array-based simple buffer are studied. The material quality is assessed with a range of characterization tools showing low surface roughness and low density of threading dislocations. These results indicate a significant improvement on crystal quality compared to structures grown on InP substrates by using metamorphic buffers. Quantum efficiency and responsivity measurements show good performance of the fabricated devices between 1.5 and 2.5 μm, making them highly suitable for short-wavelength infrared applications.

  17. Thermally stimulated current studies on deep levels in hydrothermally grown single crystal ZnO bulk

    NASA Astrophysics Data System (ADS)

    Kuriyama, K.; Ooi, M.; Matsumoto, K.; Kushida, K.

    2006-12-01

    The evaluation of the deep levels in hydrothermally grown ZnO single crystal bulk is studied using a thermally stimulated current (TSC) method with excitation above (below) the band gap. Two broad TSC spectra are resolved by four traps, P1 (165meV), P2 (255meV), P3 (300meV), and P4 (375meV). P2, P3, and P4 traps are responsible for excitation by the blue and green lights, but P1 trap is weakly responsible. Possible origins of P1 and P2 are attributed to native point defects and Li acceptor, respectively. P3 is correlated to oxygen vacancy as an origin of the green luminescence.

  18. Photoluminescence Studies of ZnSe Starting Materials and Vapor Grown Bulk Crystals

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, Shari; Wang, Ling Jun; Lehoczky, Sandor L.

    1999-01-01

    Low-temperature photoluminescence (PL) spectra and glow discharge mass spectroscopy (GDMS) were measured on ZnSe starting materials provided by various vendors and on bulk crystals grown from these starting materials by physical vapor transport (PVT) to study the effects of purification and contamination during crystal growth process. The purification effect of pre-growth heat treatments and the PVT process is evidenced from the GDMS results which showed orders of magnitude reduction in the Li and Na concentration and a factor of 3 reduction in the 0 content after growth. The PL spectra showed that the strong emissions associated with Li (or Na) in one of the starting materials disappeared after growth. To evaluate the contamination of the crystal during the high temperature growth process three growth runs were processed using similar growth parameters but with different furnace environments. The GDMS results showed orders of magnitude increase in the Al and Si contents after growth. The PL spectra suggest that the Al contamination was originated from the fused silica ampoule and the Inconel cartridge might have been the cause for the broad Cu green and Cu red bands observed in one of the grown crystal.

  19. Photoluminescence Studies of ZnSe Starting Materials and Vapor Grown Bulk Crystals

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, Shari; Wang, Ling Jun; Lehoczky, Sandor L.

    1999-01-01

    Low-temperature photoluminescence (PL) spectra and glow discharge mass spectroscopy (GDMS) were measured on ZnSe starting materials provided by various vendors and on bulk crystals grown from these starting materials by physical vapor transport (PVT) to study the effects of purification and contamination during crystal growth process. The purification effect of pre-growth heat treatments and the PVT process is evidenced from the GDMS results which showed orders of magnitude reduction in the Li and Na concentration and a factor of 3 reduction in the 0 content after growth. The PL spectra showed that the strong emissions associated with Li (or Na) in one of the starting materials disappeared after growth. To evaluate the contamination of the crystal during the high temperature growth process three growth runs were processed using similar growth parameters but with different furnace environments. The GDMS results showed orders of magnitude increase in the Al and Si contents after growth. The PL spectra suggest that the Al contamination was originated from the fused silica ampoule and the Inconel cartridge might have been the cause for the broad Cu green and Cu red bands observed in one of the grown crystal.

  20. Lattice-Latching Effect in Metalorganic Vapor Phase Epitaxy Growth of InGaAsN Film Lattice-Matched to Bulk InGaAs Substrate

    NASA Astrophysics Data System (ADS)

    Sanorpim, Sakuntam; Katayama, Ryuji; Onabe, Kentaro; Usami, Noritaka; Nakajima, Kazuo

    2010-04-01

    The effects of lattice mismatch between an InzGa1-zAs bulk substrate and an InxGa1-xAs1-yNy epilayer on the incorporation kinetics of N (y) and In (x) were investigated. Compositions (x,y) were revealed to be pinned by the substrate to those satisfying lattice-matching conditions. With decreasing In (z) content in the substrate, the incorporation of N is spontaneously enhanced. On the other hand, the In content of the layer is reduced to decrese the deformation energy due to the lattice mismatch. On the basis of our results, thick InxGa1-xAs1-yNy (0.289 < x < 0.312 and 0.009 < y < 0.014) layers exhibiting photoluminescence in the wavelength range of 1.3-1.55 µm were observed to grow owing to the “lattice-latching” effect.

  1. Carrier dynamics in QW and bulk bismide and epitaxial lift off GaAs-In(Al)GaP double heterostructures grown by MOVPE for multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Peterson, Mark; Lingley, Zachary; LaLumondiere, Stephen; Moss, Steven C.; Kim, Honghyuk; Forghani, Kamran; Guan, Yingxin; Kim, Kangho; Lee, Jaejin; Mawst, Luke J.; Kuech, Thomas F.; Tatavarti, Rao

    2016-03-01

    III-V multi-junction solar cells are based on a triple-junction design that consists of an InGaP top junction, a GaAs middle junction, and a bottom junction that employs either a 1eV material grown on the GaAs substrate or InGaAs grown on the Ge substrate. The most promising 1 eV materials under extensive investigation are the bulk dilute nitride such as InGaAsN(Sb) lattice-matched to GaAs substrate and the dilute-bismide quantum well materials, such as GaAsBi, strain-compensated with GaAsP barriers. Both approaches have the potential to achieve high performance triple-junction solar cells. In addition, space satellite applications utilizing III-V triple-junction solar cells can have significantly reduced weight and high efficiency. An attractive approach to achieve these goals is to employ full-wafer epitaxial lift off (ELO) technology, which can eliminate the substrate weight and also enable multiple substrate re-usages. For the present study, we employed time-resolved photoluminescence (TR-PL) techniques to study carrier dynamics in MOVPE-grown bulk dilute bismide double heterostructures (DH). Carrier lifetime measurements are crucial to optimizing MOVPE materials growth. We have studied carrier dynamics in GaAsBi QW structures with GaAsP barriers. Carrier lifetimes were measured from GaAsBi DH samples at different stages of post-growth thermal annealing steps. Post-growth annealing yielded significant improvements in carrier lifetimes. Based on this study, single junction solar cells (SJSC) were grown and annealed under a variety of conditions and characterized. The SJSC annealed at 600 - 650 °C exhibited improved response in EQE spectra. In addition, we studied carrier dynamics in MOVPE-grown GaAs-In(Al)GaP DH samples grown on GaAs substrates. The structures were grown on top of a thin AlAs release layer, which allowed epitaxial layers grown on top of the AlAs layer to be removed from the substrate. The GaAs active layers had various doping densities and

  2. Tilted bulk heterojunction organic photovoltaic cells grown by oblique angle deposition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Forrest, Stephen R.

    2009-09-01

    We demonstrate small molecule bulk heterojunction organic photovoltaic cells using oblique angle vacuum deposition. Obliquely deposited donor chloroaluminum phthalocyanine (ClAlPc) films on indium tin oxide have surface feature sizes of ˜30 nm, resulting in ClAlPc/C60 donor-acceptor heterojunctions (HJs) with approximately twice the interface area of HJs grown at normal incidence. This results in nearly twice the external quantum efficiency in the ClAlPc absorption band compared with analogous, planar HJs. The efficiency increase is attributed to the increased surface area presented by the donor-acceptor junction to the incident illumination by ClAlPc protrusions lying obliquely to the substrate plane formed during deposition. The power conversion efficiency improves from (2.0±0.1)% to (2.8±0.1)% under 1 sun, AM 1.5G simulated solar illumination. Similarly, the power efficiency of copper phthalocyanine/C60 organic photovoltaic cells is increased from (1.3±0.1)% to (1.7±0.1)%.

  3. Vacancy-type defects in bulk GaN grown by the Na-flux method probed using positron annihilation

    NASA Astrophysics Data System (ADS)

    Uedono, Akira; Imanishi, Masayuki; Imade, Mamoru; Yoshimura, Masashi; Ishibashi, Shoji; Sumiya, Masatomo; Mori, Yusuke

    2017-10-01

    Defects in bulk GaN grown by the Na-flux method have been studied using a positron annihilation technique. Pyramidal bulk samples showed striation and inhomogeneous color distributions. Measurements of the Doppler broadening spectra of the annihilation radiation and lifetime spectra of positrons revealed that the concentration of vacancy-type defects increased with decreasing transparency of the samples. The major defect species was identified as a Ga vacancy coupled with nitrogen vacancies. A correlation between the oxygen incorporation and the introduction of such vacancies was observed. For c-plane GaN grown by a coalescence growth method, the concentration of vacancy-type defects was close to or under the detection limit of positron annihilation technique (≤1015cm-3), suggesting that high-quality bulk GaN can be fabricated using this method.

  4. Influence of Mg and In on defect formation in GaN; bulk and MOCVD grown samples

    SciTech Connect

    Liliental-Weber, Z.; Benamara, M.; Jasinski, J.; Swider, W.; Washburn, J.; Grzegory, I.; Porowski, S.; Bak-Misiuk, J.; Domagala, J.; Bedair, S.; Eiting, C.J.; Dupuis, R.D.

    2000-11-22

    Transmission electron microscopy studies were applied to study GaN crystals doped with Mg. Both: bulk GaN:Mg crystals grown by a high pressure and high temperature process and those grown by metal-organic chemical-vapor deposition (MOCVD) have been studied. Structural dependence on growth polarity was observed in the bulk crystals. Spontaneous ordering (formation of polytypoids) was observed for growth in the N to Ga polar direction (N polarity). On the opposite site of the crystal (growth in the Ga to N polar direction) Mg-rich pyramidal defects with base on the basal planes and with walls inclined about 45O to these planes, empty inside (pinholes) were observed. A high concentration of these pyramidal defects was also observed in the MOCVD grown crystals. For samples grown with Mg delta doping planar defects were also observed especially at the early stages of growth followed by formation of pyramidal defects. TEM and x-ray studies of InxGa{sub 1{minus}x}N crystals for the range of 28-45% nominal In concentration shows formation of two sub-layers: strained and relaxed, with a much lower In concentration in the strained layer. Layers with the highest In concentration were fully relaxed.

  5. Time-resolved PL and TEM studies of MOVPE-grown bulk dilute nitride and bismide quantum well heterostructure

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Lingley, Zachary; Peterson, Mark; Brodie, Miles; Moss, Steven C.; Kim, Tae Wan; Kim, Honghyuk; Guan, Yingxin; Forghani, K.; Mawst, Luke J.; Kuech, Thomas F.

    2015-03-01

    Among several approaches proposed to achieve high-efficiency III-V multi-junction solar cells, the most promising approach is to incorporate a bottom junction consisting of a 1 - 1.25 eV material. In particular, several research groups have studied MBE- and MOVPE-grown 1 - 1.25 eV bulk (In)GaAsN(Sb) dilute nitride lattice matched to GaAs substrates, but it is a challenge to grow dilute nitrides without introducing a number of localized states or defects. Localized states originating from random distributions of nitrogen sites in dilute nitrides behave as highly efficient traps, leading to short minority carrier lifetimes. As our group previously reported, carrier dynamics studies are indispensable in the optimization of dilute nitride materials growth to achieve improved solar cell performance. Also, bismide QW heterostructures have recently received a great deal of attention for applications in solar cells and semiconductor lasers because theoretical studies have predicted reduction in nonradiative recombination in Bicontaining materials. For the present study, we employed time-resolved photoluminescence (TR-PL) techniques to study carrier dynamics in MOVPE-grown bulk (In)GaAsN(Sb) materials nominally lattice matched to GaAs substrates. Compared to our previous samples, our present samples grown using different metalorganic precursors at higher growth temperatures showed a significantly less background C doping density. Carrier lifetimes were measured from such dilute nitride samples with low C doping density at various temperatures between 10K and RT. We also performed preliminary TR-PL measurements on MOVPE-grown bismide QW heterostructures at low temperatures. Carrier lifetimes were measured from as-grown and annealed bismide QW structures consisting of GaAsBi(P) wells and GaAsP barriers. Lastly, TEM cross sections were prepared from both dilute nitride and bismide samples for defect and composition analysis using a high resolution TEM.

  6. Bulk crystals of L-Histidinium dihydrogen phosphate orthophosphoric acid grown by Sankaranarayanan-Ramasamy method

    NASA Astrophysics Data System (ADS)

    Ittyachan, Reena; Arunkumar, A.

    2017-01-01

    L-Histidinium dihydrogen phosphate orthophosphoric acid (LHDP) crystal of length 80 mm long and 20 mm diameter has been grown from aqueous solution along c-axis using Sankaranarayanan-Ramasamy method. The unit cell parameters were confirmed by single crystal X-ray diffraction analysis and it belongs to orthorhombic system. The UV-vis-NIR spectrum showed that the grown crystal is transparent in the entire visible region. The lower optical cut-off wavelength for this crystal was observed at 240 nm. Fluorescence studies were carried out in range of 200-700 nm. SHG efficiency was analyzed using Kurtz-Perry powder technique.

  7. Radiation-induced defects in GaN bulk grown by halide vapor phase epitaxy

    SciTech Connect

    Duc, Tran Thien; Pozina, Galia; Son, Nguyen Tien; Janzén, Erik; Hemmingsson, Carl; Ohshima, Takeshi

    2014-09-08

    Defects induced by electron irradiation in thick free-standing GaN layers grown by halide vapor phase epitaxy were studied by deep level transient spectroscopy. In as-grown materials, six electron traps, labeled D2 (E{sub C}–0.24 eV), D3 (E{sub C}–0.60 eV), D4 (E{sub C}–0.69 eV), D5 (E{sub C}–0.96 eV), D7 (E{sub C}–1.19 eV), and D8, were observed. After 2 MeV electron irradiation at a fluence of 1 × 10{sup 14 }cm{sup −2}, three deep electron traps, labeled D1 (E{sub C}–0.12 eV), D5I (E{sub C}–0.89 eV), and D6 (E{sub C}–1.14 eV), were detected. The trap D1 has previously been reported and considered as being related to the nitrogen vacancy. From the annealing behavior and a high introduction rate, the D5I and D6 centers are suggested to be related to primary intrinsic defects.

  8. Spatial distribution of carbon and native defects in large-diameter bulk grown GaAs

    SciTech Connect

    Walukiewicz, W.; Bourret, E.; Yau, W.F.; Mc Murray, R.E. Jr.; Haller, E.E.; Bliss, D.

    1987-04-01

    Different spectroscopic techniques have been combined to measure concentrations of carbon on arsenic sites and of neutral EL2. Utilizing the recently found dependence of the high resolution local vibrational mode spectrum on the charge state of the carbon acceptors we have been able to separately determine concentrations of neutral and ionized carbon after EL2 has been optically quenched. The concentration of ionized carbon shows a very distinct W-shaped variation across the wafer whereas the total carbon concentration is close to constant. The variations are caused by the nonuniform distribution of donors which are shallower than EL2. The account for the commonly observed variations of the near infrared absorption. Radiotracer experiments with GaAs crystals intentionally doped with /sup 14/C showed that carbon is very homogeneously distributed in GaAs grown by horizontal Bridgman method. No correlation between the distribution of carbon and dislocations has been found. 17 refs., 5 figs.

  9. Investigation of VO-Zni native donor complex in MBE grown bulk ZnO

    NASA Astrophysics Data System (ADS)

    Asghar, M.; Mahmood, K.; Ferguson, I. T.; Raja, M. Yasin A.; Xie, Y. H.; Tsu, R.; Hasan, M.-A.

    2013-10-01

    In this paper, we have experimentally investigated the theoretical predictions of VO-Zni to be a native donor in ZnO. Intrinsically zinc-rich n-type ZnO thin films having ND ˜ 6.23 × 1018 cm-3 grown by molecular beam epitaxy on Si (0 0 1) substrate were annealed in oxygen environment at 500-800 °C, keeping a step of 100 °C for 1 h, each. Room temperature Hall measurements demonstrated that free donor (VO-Zni) concentration decreased exponentially and Arrhenius plot yielded activation energy to be 1.2 ± 0.01 eV. This value is in agreement with theoretically reported activation energy of VO-Zni donor complex in ZnO. We argue; this observation can be explained by two-step process: (i) incoming oxygen fills VO of VO-Zni complex leaving behind Zni; (ii) Zni releases its energy and moves to a lower energy state with respect to the conduction band minima and/or occupies an inactive location. Consequently, Zni-VO complex loses its donor role in the lattice. Our experimental data supported theoretical predictions of VO-Zni to be a native donor. Results from photoluminescence spectroscopy carried out on Zn-rich ZnO additionally justify the existence of VO-Zni complex.

  10. Dielectric function of InGaAs in the visible

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. E.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.

    1990-01-01

    Measurements are reported of the dielectric function of thermodynamically stable In(x)Ga(1-x)As in the composition range 0.3 equal to or less than X = to or less than 0.7. The optically thick samples of InGaAs were made by molecular beam epitaxy (MBE) in the range 0.4 = to or less than X = to or less than 0.7 and by metal-organic chemical vapor deposition (MOCVD) for X = 0.3. The MBE made samples, usually 1 micron thick, were grown on semi-insulating InP and included a strain release structure. The MOCVD sample was grown on GaAs and was 2 microns thick. The dielectric functions were measured by variable angle spectroscopic ellipsometry in the range 1.55 to 4.4 eV. The data was analyzed assuming an optically thick InGaAs material with an oxide layer on top. The thickness of this layer was estimated by comparing the results for the InP lattice matched material, i.e., X = 0.53, with results published in the literature. The top oxide layer mathematically for X = 0.3 and X = 0.53 was removed to get the dielectric function of the bare InGaAs. In addition, the dielectric function of GaAs in vacuum, after a protective arsenic layer was removed. The dielectric functions for X = 0, 0.3, and 0.53 together with the X = 1 result from the literature to evaluate an algorithm for calculating the dielectric function of InGaAs for an arbitrary value of X(0 = to or less than X = to or less than 1) were used. Results of the dielectric function calculated using the algorithm were compared with experimental data.

  11. Dielectric function of InGaAs in the visible

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Yao, H. D.; Snyder, P. G.; Woolam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.; Sieg, R. E.

    1990-01-01

    Measurements are reported of the dielectric function of thermodynamically stable In(x)Ga(1-x)As in the composition range 0.3 equal to or less than X = to or less than 0.7. The optically thick samples of InGaAs were made by molecular beam epitaxy (MBE) in the range 0.4 = to or less than X = to or less than 0.7 and by metal-organic chemical vapor deposition (MOCVD) for X = 0.3. The MBE made samples, usually 1 micron thick, were grown on semi-insulating InP and included a strain release structure. The MOCVD sample was grown on GaAs and was 2 microns thick. The dielectric functions were measured by variable angle spectroscopic ellipsometry in the range 1.55 to 4.4 eV. The data was analyzed assuming an optically thick InGaAs material with an oxide layer on top. The thickness of this layer was estimated by comparing the results for the InP lattice matched material, i.e., X = 0.53, with results published in the literature. The top oxide layer mathematically for X = 0.3 and X = 0.53 was removed to get the dielectric function of the bare InGaAs. In addition, the dielectric function of GaAs in vacuum, after a protective arsenic layer was removed. The dielectric functions for X = 0, 0.3, and 0.53 together with the X = 1 result from the literature to evaluate an algorithm for calculating the dielectric function of InGaAs for an arbitrary value of X (0 = to or less than X = to or less than 1) were used. Results of the dielectric function calculated using the algorithm were compared with experimental data.

  12. Dielectric function of InGaAs in the visible

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Yao, H. D.; Snyder, P. G.; Woolam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.; Sieg, R. E.

    1990-01-01

    Measurements are reported of the dielectric function of thermodynamically stable In(x)Ga(1-x)As in the composition range 0.3 equal to or less than X = to or less than 0.7. The optically thick samples of InGaAs were made by molecular beam epitaxy (MBE) in the range 0.4 = to or less than X = to or less than 0.7 and by metal-organic chemical vapor deposition (MOCVD) for X = 0.3. The MBE made samples, usually 1 micron thick, were grown on semi-insulating InP and included a strain release structure. The MOCVD sample was grown on GaAs and was 2 microns thick. The dielectric functions were measured by variable angle spectroscopic ellipsometry in the range 1.55 to 4.4 eV. The data was analyzed assuming an optically thick InGaAs material with an oxide layer on top. The thickness of this layer was estimated by comparing the results for the InP lattice matched material, i.e., X = 0.53, with results published in the literature. The top oxide layer mathematically for X = 0.3 and X = 0.53 was removed to get the dielectric function of the bare InGaAs. In addition, the dielectric function of GaAs in vacuum, after a protective arsenic layer was removed. The dielectric functions for X = 0, 0.3, and 0.53 together with the X = 1 result from the literature to evaluate an algorithm for calculating the dielectric function of InGaAs for an arbitrary value of X (0 = to or less than X = to or less than 1) were used. Results of the dielectric function calculated using the algorithm were compared with experimental data.

  13. Comparison between structural properties of bulk GaN grown under high N pressure and GaN grown by other methods

    SciTech Connect

    Liliental-Weber, Z.; Jasinski, J.; Washburn, J.

    2002-07-31

    In this paper defects formed in GaN grown by different methods are reviewed. Formation of particular defects are often related to the crystallographic direction in which the crystals grow. For bulk crystals the highest growth rates are observed for directions perpendicular to the c-axis. Threading dislocations and nanopipes along the c-axis are not formed in these crystals, but polarity of the growth direction plays a role concerning defects that are formed and surface roughness. For growth of homoepitaxial layers, where growth is forced to take place in the c-direction threading dislocations are formed and their density is related to the purity of constituents used for growth and to substrate surface inhomogeneities. In heteroepitaxial layers two other factors: lattice mismatch and thermal expansion mismatch are related to the formation of dislocations. Doping of crystals can also lead to formation of defects characteristic for a specific dopant. This type of defects tends to be growth method independent but can depend on growth polarity.

  14. Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Khromov, S.; Hemmingsson, C.; Monemar, B.; Hultman, L.; Pozina, G.

    2014-12-01

    Freestanding bulk C-doped GaN wafers grown by halide vapor phase epitaxy are studied by optical spectroscopy and electron microscopy. Significant changes of the near band gap (NBG) emission as well as an enhancement of yellow luminescence have been found with increasing C doping from 5 × 1016 cm-3 to 6 × 1017 cm-3. Cathodoluminescence mapping reveals hexagonal domain structures (pits) with high oxygen concentrations formed during the growth. NBG emission within the pits even at high C concentration is dominated by a rather broad line at ˜3.47 eV typical for n-type GaN. In the area without pits, quenching of the donor bound exciton (DBE) spectrum at moderate C doping levels of 1-2 × 1017 cm-3 is observed along with the appearance of two acceptor bound exciton lines typical for Mg-doped GaN. The DBE ionization due to local electric fields in compensated GaN may explain the transformation of the NBG emission.

  15. Impact of thermal annealing on bulk InGaAsSbN materials grown by metalorganic vapor phase epitaxy

    SciTech Connect

    Kim, T. W.; Mawst, L. J.; Kim, K.; Lee, J. J.; Kuech, T. F.; Wells, N. P.; LaLumondiere, S. D.; Sin, Y.; Lotshaw, W. T.; Moss, S. C.

    2014-02-03

    Two different thermal annealing techniques (rapid thermal annealing (RTA) and in-situ post-growth annealing in the metalorganic vapor phase epitaxy (MOVPE) chamber) were employed to investigate their impact on the optical characteristics of double-heterostructures (DH) of InGaAsSbN/GaAs and on the performance of single-junction solar cell structures, all grown by MOVPE. We find that an optimized RTA procedure leads to a similar improvement in the photoluminescence (PL) intensity compared with material employing a multi-step optimized anneal within the MOVPE reactor. Time-resolved photoluminescence techniques at low temperature (LT) and room temperature (RT) were performed to characterize the carrier dynamics in bulk InGaAsSbN layers. Room temperature carrier lifetimes were found to be similar for both annealing methods, although the LT-PL (16 K) measurements of the MOVPE-annealed sample found longer lifetimes than the RTA-annealed sample (680 ps vs. 260 ps) for the PL measurement energy of 1.24 eV. InGaAsSbN-based single junction solar cells processed with the optimized RTA procedure exhibited an enhancement of the electrical performance, such as improvements in open circuit voltage, short circuit current, fill factor, and efficiency over solar cells subjected to the in-situ MOVPE annealing technique.

  16. Optical properties of C-doped bulk GaN wafers grown by halide vapor phase epitaxy

    SciTech Connect

    Khromov, S.; Hemmingsson, C.; Monemar, B.; Hultman, L.; Pozina, G.

    2014-12-14

    Freestanding bulk C-doped GaN wafers grown by halide vapor phase epitaxy are studied by optical spectroscopy and electron microscopy. Significant changes of the near band gap (NBG) emission as well as an enhancement of yellow luminescence have been found with increasing C doping from 5 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. Cathodoluminescence mapping reveals hexagonal domain structures (pits) with high oxygen concentrations formed during the growth. NBG emission within the pits even at high C concentration is dominated by a rather broad line at ∼3.47 eV typical for n-type GaN. In the area without pits, quenching of the donor bound exciton (DBE) spectrum at moderate C doping levels of 1–2 × 10{sup 17} cm{sup −3} is observed along with the appearance of two acceptor bound exciton lines typical for Mg-doped GaN. The DBE ionization due to local electric fields in compensated GaN may explain the transformation of the NBG emission.

  17. InGaP-based InGaAs quantum dot solar cells with GaAs spacer layer fabricated using solid-source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sugaya, T.; Takeda, A.; Oshima, R.; Matsubara, K.; Niki, S.; Okano, Y.

    2012-09-01

    We report InGaP-based multistacked InGaAs quantum dot (QD) solar cells with GaAs spacer layers. We obtain a highly stacked and well-aligned InGaAs QD structure with GaAs spacer layers in an InGaP matrix grown by solid-source molecular beam epitaxy. The photoluminescence intensity of the InGaAs QDs in the InGaP matrix increases as the number of QD layers increases, which indicates the growth of a high-quality InGaP-based multistacked InGaAs QD structure. The short-circuit current density and the conversion efficiency of the InGaP-based QD solar cells increase as the number of InGaAs QD layers increases.

  18. Growth of thicker zinc-blende CrSb layers by using (In,Ga)As buffer layers

    NASA Astrophysics Data System (ADS)

    Deng, J. J.; Zhao, J. H.; Bi, J. F.; Niu, Z. C.; Yang, F. H.; Wu, X. G.; Zheng, H. Z.

    2006-05-01

    Zinc-blende CrSb (zb-CrSb) layers with room-temperature ferromagnetism have been grown on (In,Ga)As buffer layers epitaxially prepared on (001) GaAs substrates by molecular-beam epitaxy. Compared with the typical thickness [2-3 ML (ML denotes monolayers)] of zb-CrSb grown directly on GaAs, the thickness of zb-CrSb grown on (In,Ga)As has been increased largely; the maximum can be up to ~9 ML. High-resolution cross sectional transmission electron microscopy images show that the zb-CrSb layer is combined with (In,Ga)As buffer layer without any dislocations at the interface.

  19. Growth of thicker zinc-blende CrSb layers by using (In,Ga)As buffer layers

    SciTech Connect

    Deng, J.J.; Zhao, J.H.; Bi, J.F.; Niu, Z.C.; Yang, F.H.; Wu, X.G.; Zheng, H.Z.

    2006-05-01

    Zinc-blende CrSb (zb-CrSb) layers with room-temperature ferromagnetism have been grown on (In,Ga)As buffer layers epitaxially prepared on (001) GaAs substrates by molecular-beam epitaxy. Compared with the typical thickness [2-3 ML (ML denotes monolayers)] of zb-CrSb grown directly on GaAs, the thickness of zb-CrSb grown on (In,Ga)As has been increased largely; the maximum can be up to {approx}9 ML. High-resolution cross sectional transmission electron microscopy images show that the zb-CrSb layer is combined with (In,Ga)As buffer layer without any dislocations at the interface.

  20. Single-photon and photon pair emission from MOVPE-grown In(Ga)As quantum dots: shifting the emission wavelength from 1.0 to 1.3 μm

    NASA Astrophysics Data System (ADS)

    Kettler, Jan; Paul, Matthias; Olbrich, Fabian; Zeuner, Katharina; Jetter, Michael; Michler, Peter

    2016-03-01

    InAs quantum dots grown on a GaAs substrate have been one of the most successful semiconductor material systems to demonstrate single-photon-based quantum optical phenomena. In this context, we present the feasibility to extend the low-temperature photoluminescence emission range of In(Ga)As/GaAs quantum dots grown by metal-organic vapor-phase epitaxy from the typical window between 880 and 960 nm to wavelengths above 1.3 μm. A low quantum dot density can be obtained throughout this range, enabling the demonstration of single- and cascaded photon emission. We further analyze polarization-resolved micro-photoluminescence from a large number of individual quantum dots with respect to anisotropy and size of the underlying fine-structure splittings in the emission spectra. For samples with elevated emission wavelengths, we observe an increasing tendency of the emitted photons to be polarized along the main crystal axes.

  1. A combined kick-out and dissociative diffusion mechanism of grown-in Be in InGaAs and InGaAsP. A new finite difference-Bairstow method for solution of the diffusion equations

    SciTech Connect

    Koumetz, Serge D. Martin, Patrick; Murray, Hugues

    2014-09-14

    Experimental results on the diffusion of grown-in beryllium (Be) in indium gallium arsenide (In{sub 0.53}Ga{sub 0.47}As) and indium gallium arsenide phosphide (In{sub 0.73}Ga{sub 0.27}As{sub 0.58}P{sub 0.42}) gas source molecular beam epitaxy alloys lattice-matched to indium phosphide (InP) can be successfully explained in terms of a combined kick-out and dissociative diffusion mechanism, involving neutral Be interstitials (Be{sub i}{sup 0}), singly positively charged gallium (Ga), indium (In) self-interstitials (I{sub III}{sup +}) and singly positively charged Ga, In vacancies (V{sub III}{sup +}). A new numerical method of solution to the system of diffusion equations, based on the finite difference approximations and Bairstow's method, is proposed.

  2. Effect of spacer layer thickness on multi-stacked InGaAs quantum dots grown on GaAs (311)B substrate for application to intermediate band solar cells

    NASA Astrophysics Data System (ADS)

    Shoji, Yasushi; Narahara, Kohei; Tanaka, Hideharu; Kita, Takashi; Akimoto, Katsuhiro; Okada, Yoshitaka

    2012-04-01

    We have investigated the properties of multi-stacked layers of self-organized In0.4Ga0.6As quantum dots (QDs) on GaAs (311)B grown by molecular beam epitaxy. We found that a high degree of in-plane ordering of QDs structure with a six-fold symmetry was maintained though the growth has been performed at a higher growth rate than the conventional conditions. The dependence of photoluminescence characteristics on spacer layer thickness showed an increasing degree of electronic coupling between the stacked QDs for thinner spacer layers. The external quantum efficiency for an InGaAs/GaAs quantum dot solar cell (QDSC) with a thin spacer layer thickness increased in the longer wavelength range due to additive contribution from QD layers inserted in the intrinsic region. Furthermore, a photocurrent production by 2-step photon absorption has been observed at room temperature for the InGaAs/GaAs QDSC with a spacer layer thickness of 15 nm.

  3. Optical properties of lithium fluoride fibers grown by micro-pulling-down method

    NASA Astrophysics Data System (ADS)

    Santo, A. M. E.; Courrol, L. C.; Ranieri, I. M.; Wetter, N. U.; Vieira, N. D.; Baldochi, S. L.

    2004-12-01

    Fluoride single-crystalline fibers were grown by the micro-pulling-down (μ-PD) technique. The optical properties of the LiF fiber and the bulk crystal (grown by Czochralski technique) were compared. Both samples were irradiated with 40 Mrad of gamma rays at room temperature and color centers were successfully produced. The emission spectra of the fiber and the bulk crystal when excited at 447 nm show the typical broad emission bands related to the F3+ and F2 centers, with peaks at 535 and 650 nm, respectively. Both spectra contain a very strong emission band centered at 1120 nm with the same half width of 1350 cm-1 when excited with a InGaAs diode laser at 968 nm. These results indicate a potential use of these new LiF fibers in miniaturized active optical devices.

  4. Role of band potential roughness on the luminescence properties of InGaN quantum wells grown by MBE on bulk GaN substrates

    NASA Astrophysics Data System (ADS)

    Ž, A.

    Role of band potential roughness on luminescence decay time and stimulated emission in InGaN quantum wells (QWs) grown by rf plasma-assisted molecular beam epitaxy (MBE) on bulk GaN substrates was studied. A high-photoexcitation regime used ensured conditions similar to those in operating laser diodes. Standard deviation of the potential fluctuations in different thickness InGaN QWs was found to vary in the range of 13-22 meV as revealed by Monte Carlo simulation of localized exciton hopping. A negligible influence of this variation on the luminescence decay time (?700 ps) and stimulated emission threshold (?30 kW/cm2) was observed. We attribute this insensitivity to the low density of localized states (?1 × 1018 cm-3) estimated in our high-quality QWs grown by MBE, and therefore, assign extended states to be mainly responsible for the properties of highly-excited luminescence.

  5. Research on InGaAs FETs.

    DTIC Science & Technology

    1980-09-01

    technique on In53 Ga47 As. On the other hand, InP on InGaAs presents no problem by VPE growth. LPE growth of InGaAs is fairly well established at present...velocity of 3 x 1O7 cm/sec for In53Ga47 As when used as an FET material. Whereas previously the high mobility of In53 Ga47 As was known, it has been...1.3 x 107 cm/sec value obtained for GaAs and thereby recommending In53 Ga47 As as a potentially superior FET material. FETs fabricated on LPE material

  6. Ellipsometric study of InGaAs MODFET material

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. E.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.

    1990-01-01

    In(x)Ga(1-x)As based MODFET (modulation doped field effect transistor) material was grown by molecular beam epitaxy on semi-insulating InP substrates. Several structures were made, including lattice matched and strained layer InGaAs. All structures also included several layers of In(0.52)Al(0.48)As. Variable angle spectroscopic ellipsometry was used to characterize the structures. The experimental data, together with the calibration function for the constituent materials, were analyzed to yield the thickness of all the layers of the MODFET structure. Results of the ellipsometrically determined thicknesses compare very well with the reflection high energy electron diffraction in situ thickness measurements.

  7. Growth of InGaAs nanowires on Ge(111) by selective-area metal-organic vapor-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Yoshida, Akinobu; Tomioka, Katsuhiro; Ishizaka, Fumiya; Motohisa, Junichi

    2017-04-01

    We report the growth of InGaAs nanowires (NWs) on Ge(111) substrates using selective-area metal-organic vapor-phase epitaxy (SA-MOVPE) for novel InGaAs/Ge hybrid complementary metal-oxide-semiconductor (CMOS) applications. Ge(111) substrates with periodic arrays of mask opening were prepared, and InGaAs was selectively grown on the opening region of Ge(111). A uniform array of InGaAs NWs with a diameter around 100 nm was successfully grown using appropriate preparation of the initial surfaces with an AsH3 thermal treatment and flow-rate modulation epitaxy (FME). We found that optimizing partial pressure of AsH3 and the number of FME cycles improved the yield of vertical InGaAs NWs. Line-scan profile analysis of energy dispersive X-ray (EDX) spectrometry showed that the In composition in the InGaAs NW was almost constant from the bottom to the top. Transmission electron microscope (TEM) analysis revealed that the interface between InGaAs NW and Ge had misfit dislocations, but their distance was longer than that expected from the difference in their lattice constants.

  8. Stimulated emission and optical gain in AlGaN heterostructures grown on bulk AlN substrates

    SciTech Connect

    Guo, Wei Bryan, Zachary; Kirste, Ronny; Bryan, Isaac; Hussey, Lindsay; Bobea, Milena; Haidet, Brian; Collazo, Ramón; Sitar, Zlatko; Xie, Jinqiao; Mita, Seiji; Gerhold, Michael

    2014-03-14

    Optical gain spectra for ∼250 nm stimulated emission were compared in three different AlGaN-based structures grown on single crystalline AlN substrates: a single AlGaN film, a double heterostructure (DH), and a Multiple Quantum Well (MQW) structure; respective threshold pumping power densities of 700, 250, and 150 kW/cm{sup 2} were observed. Above threshold, the emission was transverse-electric polarized and as narrow as 1.8 nm without a cavity. The DH and MQW structures showed gain values of 50–60 cm{sup −1} when pumped at 1 MW/cm{sup 2}. The results demonstrated the excellent optical quality of the AlGaN-based heterostructures grown on AlN substrates and their potential for realizing electrically pumped sub-280 nm laser diodes.

  9. The investigation of custom grown vertical zone melt semi-insulating bulk gallium arsenide as a radiation spectrometer

    SciTech Connect

    McGregor, D.S.; Antolak, A.J.; Chui, H.C.

    1996-06-01

    Vertical zone melt (VZM) bulk GaAs boules have been zone refined (ZR) and zone leveled (ZL) to reduce EL2 deep donor levels and impurity concentrations with the intent of improving properties for gamma ray detectors. Zr and Zl GaAs boules had background impurity levels and deep donor EL2 concentrations near or below detectable limits. The crystal mosaic of the material at locations near the seed end was slightly superior to commercial liquid encapsulated Czochralski (LEC) material, and nearly equivalent to commercial vertical gradient freeze (VGF) material. The crystal mosaic in ZL material degraded towards the tail end. The homogeneity of the electrical properties for the ZL and ZR VZM material was inferior compared to commercially available bulk GaAs material. Post growth annealing may help to homogenize some electrical properties of the material. The charge collection efficiency of the ZR GaAs detectors was only 30% maximum, and only 25% maximum for the ZL GaAs detectors. Resulting gamma ray spectra was poor from detectors fabricated with the ZL or ZR VZM material. Detectors fabricated from material that was both ZR and ZL did not demonstrate gamma ray resolution, and operated mainly as counters. The poor spectroscopic performance is presently attributed to the inhomogeneity of the electrical properties of the ZR and ZL GaAs materials. Comparisons are made with detectors fabricated from VGF SI bulk GaAs.

  10. Effect of growth temperature on properties of bulk GdBa2Cu3Oy superconductors grown by IG process

    NASA Astrophysics Data System (ADS)

    Nakanishi, Y.; Naik, S. Pavan Kumar; Muralidhar, M.; Murakami, M.

    2017-07-01

    Recently, the flux pinning performance of Y-123 material was dramatically improved by optimizing the processing conditions during the Infiltration-Growth (IG) process. In the present work, we adapted the top- seeded IG technique and produced several 20 wt.% AgO2 doped bulk GdBa2Cu3Oy (GdBCO or Gd-123) samples at different growth temperatures of 983, 985, 986, 987, 989, 990, and 992 °C with the same holding time of 25 h. Our results indicate that the bulk GdBCO samples dwelled at 986 °C is the optimum temperature to produce large Gd-123 growth without spontaneous nucleation. Magnetization measurements on 986 °C dwelled composite showed a sharp superconducting transition with T c, onset at 93.6 K. The critical current density at 77 K and self-field was 16,500 A/cm2. The critical current density values are correlated with the microstructural changes in the bulk Gd-123 materials.

  11. Border trap reduction in Al2O3/InGaAs gate stacks

    NASA Astrophysics Data System (ADS)

    Tang, Kechao; Winter, Roy; Zhang, Liangliang; Droopad, Ravi; Eizenberg, Moshe; McIntyre, Paul C.

    2015-11-01

    The effect of Al2O3 atomic layer deposition (ALD) temperature on the border trap density (Nbt) of Al2O3/InGaAs gate stacks is investigated quantitatively, and we demonstrate that lowering the trimethylaluminum (TMA)/water vapor ALD temperature from 270 °C to 120 °C significantly reduces Nbt. The reduction of Nbt coincides with increased hydrogen incorporation in low temperature ALD-grown Al2O3 films during post-gate metal forming gas annealing. It is also found that large-dose (˜6000 L) exposure of the In0.53Ga0.47As (100) surface to TMA immediately after thermal desorption of a protective As2 capping layer is an important step to guarantee the uniformity and reproducibility of high quality Al2O3/InGaAs samples made at low ALD temperatures.

  12. Water absorption in thermally grown oxides on SiC and Si: Bulk oxide and interface properties

    SciTech Connect

    Liu, Gang; Xu, Can; Feldman, Leonard C.; Yakshinskiy, Boris; Wielunski, Leszek; Gustafsson, Torgny; Bloch, Joseph; Dhar, Sarit

    2014-11-10

    We combine nuclear reaction analysis and electrical measurements to study the effect of water exposure (D{sub 2}O) on the n-type 4H-SiC carbon face (0001{sup ¯}) MOS system and to compare to standard silicon based structures. We find that: (1) The bulk of the oxides on Si and SiC behave essentially the same with respect to deuterium accumulation; (2) there is a significant difference in accumulation of deuterium at the semiconductor/dielectric interface, the SiC C-face structure absorbs an order of magnitude more D than pure Si; (3) standard interface passivation schemes such as NO annealing greatly reduce the interfacial D accumulation; and (4) the effective interfacial charge after D{sub 2}O exposure is proportional to the total D amount at the interface.

  13. Crystal growth of compound semiconductors in a low-gravity environment (InGaAs crystals) (M-22)

    NASA Technical Reports Server (NTRS)

    Tatsumi, Masami

    1993-01-01

    Compound semiconductor crystals, such as gallium arsenide and indium phosphide crystals, have many interesting properties that silicon crystals lack, and they are expected to be used as materials for optic and/or electro-optic integrated devices. Generally speaking, alloy semiconductors, which consist of more than three elements, demonstrate new functions. For example, values of important parameters, such as lattice constant and emission wavelength, can be chosen independently. However, as it is easy for macroscopic and/or microscopic fluctuations of composition to occur in alloy semiconductor crystals, it is difficult to obtain crystals having homogeneous properties. Macroscopic change of composition in a crystal is caused by the segregation phenomenon. This phenomenon is due to a continuous change in the concentration of constituent elements at the solid-liquid interfacing during solidification. On Earth, attempts were made to obtain a crystal with homogeneous composition by maintaining a constant melt composition near the solid-liquid interface, through suppression of the convection flow of the melt by applying a magnetic field. However, the attempt was not completely successful. Convective flow does not occur in microgravity because the gravity in space is from four to six orders of magnitude less than that on Earth. In such a case, mass transfer in the melt is dominated by the diffusion phenomenon. So, if crystal growth is carried out at a rate that is higher than the rate of mass transfer due to this phenomenon, it is expected that crystals having a homogeneous composition will be obtained. In addition, it is also possible that microscopic composition fluctuations (striation) may disappear because microscopic fluctuations diminish in the absence of convection. We are going to grow a bulk-indium gallium arsenide (InGaAs) crystal using the gradient heating furnace (GHF) in the first material processing test (FMPT). The structure of the sample is shown where InGaAs

  14. Interface Shape and Growth Rate Analysis of Se/GaAs Bulk Crystals Grown in the NASA Crystal Growth Furnace (CGF)

    NASA Technical Reports Server (NTRS)

    Bly, J. M.; Kaforey, M. L.; Matthiesen, D. H.; Chait, A.

    1997-01-01

    Selenium-doped gallium arsenide, Se/GaAs, bulk crystals have been grown on earth using NASA's crystal growth furnace (CGF) in preparation for microgravity experimentation on the USML-2 spacelab mission. Peltier cooling pulses of 50 ms duration, 2040 A magnitude, and 0.0033 Hz frequency were used to successfully demark the melt-solid interface at known times during the crystal growth process. Post-growth characterization included interface shape measurement, growth rate calculation, and growth rate transient determinations. It was found that the interface shapes were always slightly concave into the solid. The curvature of the seeding interfaces was typically 1.5 mm for the 15 mm diameter samples. This was in agreement with the predicted interface shapes and positions relative to the furnace determined using a numerical model of the sample/ampoule/cartridge assembly (SACA).

  15. Interface Shape and Growth Rate Analysis of Se/GaAs Bulk Crystals Grown in the NASA Crystal Growth Furnace (CGF)

    NASA Technical Reports Server (NTRS)

    Bly, J. M.; Kaforey, M. L.; Matthiesen, D. H.; Chait, A.

    1997-01-01

    Selenium-doped gallium arsenide, Se/GaAs, bulk crystals have been grown on earth using NASA's crystal growth furnace (CGF) in preparation for microgravity experimentation on the USML-2 spacelab mission. Peltier cooling pulses of 50 ms duration, 2040 A magnitude, and 0.0033 Hz frequency were used to successfully demark the melt-solid interface at known times during the crystal growth process. Post-growth characterization included interface shape measurement, growth rate calculation, and growth rate transient determinations. It was found that the interface shapes were always slightly concave into the solid. The curvature of the seeding interfaces was typically 1.5 mm for the 15 mm diameter samples. This was in agreement with the predicted interface shapes and positions relative to the furnace determined using a numerical model of the sample/ampoule/cartridge assembly (SACA).

  16. Intergrain and intragrain currents in bulk melt-grown YBa2Cu3O7-δ rings

    NASA Astrophysics Data System (ADS)

    Surzhenko, A. B.; Zeisberger, M.; Habisreuther, T.; Gawalek, W.; Uspenskaya, L. S.

    2003-08-01

    A simple contactless method suitable for discerning between the intergrain (circular) current, which flows in the thin superconducting ring, and the intragrain current, which does not cross the weakest link, has been proposed. At first, we show that the intergrain current may directly be estimated from the magnetic flux density B(±z0) measured by the Hall sensor positioned in the special points ±z0 above or below the ring center. The experimental and numerical techniques to determine the value z0 are discussed. Being very promising for the characterization of a current flowing across the joints in welded YBaCuO rings (its dependences on the temperature and external magnetic field as well as the time dissipation), the approach has been applied to study the corresponding properties of the intragrain and intergrain currents flowing across the a-twisted grain boundaries which are frequent in bulk melt-textured (MT) YBaCuO samples. We present experimental data related to the flux penetration inside a bore of MT YBaCuO rings both in the nonmagnetized, virgin state, and during the field reversal. The shielding properties and their dependence on external magnetic fields are also studied. Besides, we consider flux creep effects and their influence on the current redistribution during a dwell.

  17. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates

    SciTech Connect

    Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramón; Xie, Jinqiao; Mita, Seiji

    2015-04-06

    The internal quantum efficiency (IQE) of Al{sub 0.55}Ga{sub 0.45}N/AlN and Al{sub 0.55}Ga{sub 0.45}N/Al{sub 0.85}Ga{sub 0.15}N UVC MQW structures was analyzed. The use of bulk AlN substrates enabled us to undoubtedly distinguish the effect of growth conditions, such as V/III ratio, on the optical quality of AlGaN based MQWs from the influence of dislocations. At a high V/III ratio, a record high IQE of ∼80% at a carrier density of 10{sup 18 }cm{sup −3} was achieved at ∼258 nm. The high IQE was correlated with the decrease of the non-radiative coefficient A and a reduction of midgap defect luminescence, all suggesting that, in addition to dislocations, point defects are another major factor that strongly influences optical quality of AlGaN MQW structures.

  18. Determination of CdTe bulk carrier lifetime and interface recombination velocity of CdTe/MgCdTe double heterostructures grown by molecular beam epitaxy

    SciTech Connect

    Zhao, Xin-Hao; Campbell, Calli M.; DiNezza, Michael J.; Liu, Shi; Zhao, Yuan; Zhang, Yong-Hang

    2014-12-22

    The bulk Shockley-Read-Hall carrier lifetime of CdTe and interface recombination velocity at the CdTe/Mg{sub 0.24}Cd{sub 0.76}Te heterointerface are estimated to be around 0.5 μs and (4.7 ± 0.4) × 10{sup 2 }cm/s, respectively, using time-resolved photoluminescence (PL) measurements. Four CdTe/MgCdTe double heterostructures (DHs) with varying CdTe layer thicknesses were grown on nearly lattice-matched InSb (001) substrates using molecular beam epitaxy. The longest lifetime of 179 ns is observed in the DH with a 2 μm thick CdTe layer. It is also shown that the photon recycling effect has a strong influence on the bulk radiative lifetime, and the reabsorption process affects the measured PL spectrum shape and intensity.

  19. Photoluminescence characteristics of ZnTe bulk crystal and ZnTe epilayer grown on GaAs substrate by MOVPE

    NASA Astrophysics Data System (ADS)

    Lü, Hai-Yan; Mu, Qi; Zhang, Lei; Lü, Yuan-Jie; Ji, Zi-Wu; Feng, Zhi-Hong; Xu, Xian-Gang; Guo, Qi-Xin

    2015-12-01

    Excitation power and temperature-dependent photoluminescence (PL) spectra of the ZnTe epilayer grown on (100) GaAs substrate and ZnTe bulk crystal are investigated. The measurement results show that both the structures are of good structural quality due to their sharp bound excitonic emissions and absence of the deep level structural defect-related emissions. Furthermore, in contrast to the ZnTe bulk crystal, although excitonic emissions for the ZnTe epilayer are somewhat weak, perhaps due to As atoms diffusing from the GaAs substrate into the ZnTe epilayer and/or because of the strain-induced degradation of the crystalline quality of the ZnTe epilayer, neither the donor-acceptor pair (DAP) nor conduction band-acceptor (e-A) emissions are observed in the ZnTe epilayer. This indicates that by further optimizing the growth process it is possible to obtain a high-crystalline quality ZnTe heteroepitaxial layer that is comparable to the ZnTe bulk crystal. Project supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120131110006), the Key Science and Technology Program of Shandong Province, China (Grant No. 2013GGX10221), the Key Laboratory of Functional Crystal Materials and Device (Shandong University, Ministry of Education), China (Grant No. JG1401), the National Natural Science Foundation of China (Grant No. 61306113), the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91433112), and the Partnership Project for Fundamental Technology Researches of the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  20. Characteristics and reliability of high power multi-mode InGaAs strained quantum well single emitters with CW output powers of over 5W

    NASA Astrophysics Data System (ADS)

    Sin, Yongkun; Presser, Nathan; Mason, Maribeth; Moss, Steven C.

    2006-02-01

    High-power multi-mode broad area InGaAs strained quantum well (QW) single emitters (λ ~ 920-980nm) have been mainly used for industrial applications. Recently, these broad area lasers with CW output powers >5W have also found applications in communications as pump lasers for Er-Yb co-doped fiber amplifiers. This application requires very demanding characteristics including higher reliability than industrial applications. In contrast to 980nm single mode InGaAs strained QW lasers that are widely employed in both terrestrial and submarine applications, the fact that multimode lasers have never been used in optical communications necessitates careful study of these lasers. We report investigations of performance characteristics, reliability, and failure modes of high-power multi-mode single emitters. The lasers studied were broad area strained InGaAs-GaAs single QW lasers grown either by MOCVD or MBE. Typical apertures were around 100μm wide and cavity lengths were <=4.2mm. AR-HR coated laser diode chips were mounted on carriers with junction down configuration to reduce thermal impedance. Laser thresholds were <=453mA at RT. At 6A injection current typical CW output powers were over 5W at 25°C with wall-plug efficiency of ~60%. Characteristics measured included thermal impedance and optical beam profiles that are critical in understanding performance and reliability. Automatic current control burn-in tests with different stress conditions were performed and log (I)-V characteristics were measured at RT to correlate degradation in optical output power and an increase in trap density estimated from the 2κ•T term in bulk recombination current. We also report initial analysis of lifetest results and failure modes from these lasers.

  1. 320×256 InGaAs solid state low-light devices

    NASA Astrophysics Data System (ADS)

    Shi, Yan-li; Lu, Qiang; Hu, Rui; Deng, Gong-rong; Chu, Zhu-jun; Li, Long; Qian, Yao-hong; Feng, Yun-xiang

    2014-11-01

    The InGaAs devices has been chosen as new candidate of solid-state low-light devices because of advantages such as wide response wavelength, high quantum efficiency, high device performance, digitalized readout, high temperature operation, high reliability and long lifetime. It has gained vital development and application in the world. 320×256 InGaAs solid-state low-light devices has been prepared and studied, the p-i-n material structure was grown by MOCVD system. The mesa device structure was chosen and fabricated by inductively coupled plasma (ICP) method. The detector chip and CMOS readout integrated circuit was bonded by flip-chip bonding. The FPAs was packaged to Dewar which temperature could be changed by temperature controller. Both performances of single element device and focal plane arrays were studied in detail. Very simple optics lens was adopted to show the imaging of 1.064μm laser spot and hand. Study results disclose feasible material growth, devices processing and high temperature operation characteristics of InGaAs devices.

  2. Interdiffusion and structural change in an InGaAs dots-in-a-well structure by rapid thermal annealing

    SciTech Connect

    Park, Young Min; Park, Young Ju; Kim, Kwang Moo; Song, Jin Dong; Lee, Jung II; Yoo, Keon-Ho; Kim, Hyung Seok; Park, Chan Gyung

    2004-11-15

    Post-growth rapid thermal annealing (RTA) has been used to investigate an interdiffusion and the structural change in an InGaAs dots-in-a-well (DWELL) structure grown by molecular beam epitaxy using an alternately supplying InAs and GaAs sources. In the case of the as-grown sample, which has a metastable quantum structure due to an intentional deficit of source materials, it is found that an InGaAs quantum well (QW) coexists with the premature quantum dots (QDs), and an intermediate layer exists between the QW and the QDs. Through the RTA process at 600 and 800 deg. C for 30 s, metastable structure changes into a normal DWELL structure composed of QDs and QW as a result of the intermixing of premature QDs and the intermediate layer.

  3. Effect of size and composition fluctuations on the luminescent properties of ensemble of InGaAs nano-objects

    NASA Astrophysics Data System (ADS)

    Yakovliev, Artem; Holubenko, Roman

    2015-09-01

    The luminescent properties of InGaAs/GaAs heterostructures with InGaAs nanoscale objects were investigated. Multilayer heterostructures were grown using molecular beam epitaxy technique. The shapes of the photoluminescence spectra were studied in the temperature range from 10 K to 290 K. The electronic spectrum of heterosystems as well as the energy of interband transitions for InGaAs nano-objects were calculated for different sizes and InGaAs component composition. It is shown that the shape of the photoluminescence spectra is determined by the Gaussian distribution of the energy of band-to-band optical transitions between the ground states of the conduction band and valence band of nanoscale objects. The physical reason for the observed energy dispertion is the variation of sizes, heterogeneity of component composition and strain relief in the ensemble of InGaAs nano-objects. Non-monotonous temperature dependence of the width of the photoluminescence spectra indicates the existence of temperature-dependent redistribution of photoexcited charge carriers between neighbouring nanoislands having different energy of the ground states.

  4. Microstructural dependency of optical properties of m-plane InGaN multiple quantum wells grown on 2° misoriented bulk GaN substrates

    SciTech Connect

    Tang, Fengzai; Barnard, Jonathan S.; Zhu, Tongtong; Oehler, Fabrice; Kappers, Menno J.; Oliver, Rachel A.

    2015-08-24

    A non-polar m-plane structure consisting of five InGaN/GaN quantum wells (QWs) was grown on ammonothermal bulk GaN by metal-organic vapor phase epitaxy. Surface step bunches propagating through the QW stack were found to accommodate the 2° substrate miscut towards the -c direction. Both large steps with heights of a few tens of nanometres and small steps between one and a few atomic layers in height are observed, the former of which exhibit cathodoluminescence at longer wavelengths than the adjacent m-plane terraces. This is attributed to the formation of semi-polar facets at the steps on which the QWs are shown to be thicker and have higher Indium contents than those in the adjacent m-plane regions. Discrete basal-plane stacking faults (BSFs) were occasionally initiated from the QWs on the main m-plane terraces, but groups of BSFs were frequently observed to initiate from those on the large steps, probably related to the increased strain associated with the locally higher indium content and thickness.

  5. Blue-violet InGaN laser diodes grown on bulk GaN substrates by plasma-assisted molecular-beam epitaxy

    SciTech Connect

    Skierbiszewski, C.; Wasilewski, Z.R.; Siekacz, M.; Feduniewicz, A.; Perlin, P.; Wisniewski, P.; Borysiuk, J.; Grzegory, I.; Leszczynski, M.; Suski, T.; Porowski, S.

    2005-01-03

    We report on the InGaN multiquantum laser diodes (LDs) made by rf plasma-assisted molecular beam epitaxy (PAMBE). The laser operation at 408 nm is demonstrated at room temperature with pulsed current injections using 50 ns pulses at 0.25% duty cycle. The threshold current density and voltage for the LDs with cleaved uncoated mirrors are 12 kA/cm{sup 2} (900 mA) and 9 V, respectively. High output power of 0.83 W is obtained during pulse operation at 3.6 A and 9.6 V bias with the slope efficiency of 0.35 W/A. The laser structures are deposited on the high-pressure-grown low dislocation bulk GaN substrates taking full advantage of the adlayer enhanced lateral diffusion channel for adatoms below the dynamic metallic cover. Our devices compare very favorably to the early laser diodes fabricated using the metalorganic vapor phase epitaxy technique, providing evidence that the relatively low growth temperatures used in this process pose no intrinsic limitations on the quality of the blue optoelectronic components that can be fabricated using PAMBE.

  6. The effect of nucleation layer thickness on the structural evolution and crystal quality of bulk GaN grown by a two-step process on cone-patterned sapphire substrate

    NASA Astrophysics Data System (ADS)

    Shang, Lin; Zhai, Guangmei; Mei, Fuhong; Jia, Wei; Yu, Chunyan; Liu, Xuguang; Xu, Bingshe

    2016-05-01

    The role of nucleation layer thickness on the GaN crystal quality grown on cone-patterned sapphire substrate (PSS) was explored. The morphologies of epitaxial GaN at different growth stages were investigated by a series of growth interruption in detail. After 10- and 15-min three-dimensional growth, the nucleation sites are very important for the bulk GaN crystal quality. They have a close relationship with the nucleation layer thickness, as confirmed through the scanning electron microscope (SEM) analysis. Nucleation sites formed mainly on patterns are bad for bulk GaN crystal quality and nucleation sites formed mainly in the trenches of PSS mounds are good for bulk GaN crystal quality, as proved by X-ray diffraction analysis. Nucleation layer thickness can effectively control the nucleation sites and thus determine the crystal quality of bulk GaN.

  7. Energetics of neutral Si dopants in InGaAs: An ab initio and semiempirical Tersoff model study

    NASA Astrophysics Data System (ADS)

    Lee, Cheng-Wei; Lukose, Binit; Thompson, Michael O.; Clancy, Paulette

    2015-03-01

    A roadblock in utilizing III-V semiconductors for scaled-down electronic devices is their poor dopant activation. As a first step to unravel the dopant behavior in InGaAs, we studied the tendency for dopant formation computationally using two approaches: ab initio and semiempirical methods. We studied a number of structural possibilities, such as the impact of local sites and local and global environments. We will show that the dopant we considered here, Si, has discrete preferences for certain sites and the nature of its surroundings. Substitutional defects are clearly preferred over interstitial locations. We shall show that cation ordering has an impact on dopant energetics. Critically, for large-scale simulations of dopant diffusion in InGaAs alloys, we also present a parameterization of the Abell-Tersoff semiempirical potential for pairwise interactions between silicon atoms and each of the elements constituting InGaAs. In the absence of experimental data, reference parameters for estimating the Tersoff values were obtained using ab initio pseudopotential calculations (density functional theory and generalized gradient approximations). These sets of Tersoff parameters were optimized to describe the bulk structural properties of the mostly theoretical alloys Si-As, Si-Ga, and Si-In. We demonstrate the transferability of these parameters by predicting formation energies of extrinsic point "defects" of Si on a variety of sites in ternary InGaAs alloys with different local compositional configurations, both random and ordered. Tersoff model predictions of the extrinsic "substitution energy" of a Si dopant on a cationic lattice site were found to be independent of the composition of the dopant's second nearest neighbors, but were affected by the strain induced by a local arrangement of In and Ga cationic atoms. This finding is important since common deposition processes used to create InGaAs may lead to specifically ordered patterns within the cation sublattice.

  8. Carrier dynamics of strain-engineered InAs quantum dots with (In)GaAs surrounding material

    NASA Astrophysics Data System (ADS)

    Nasr, O.; Chauvin, N.; Alouane, M. H. Hadj; Maaref, H.; Bru-Chevallier, C.; Sfaxi, L.; Ilahi, B.

    2017-02-01

    The present study reports on the optical properties of epitaxially grown InAs quantum dots (QDs) inserted within an InGaAs strain-reducing layer (SRL). The critical energy states in such QD structures have been identified by combining photoluminescence (PL) and photoluminescence of excitation (PLE) measurements. Carrier lifetime is investigated by time-resolved photoluminescence (TRPL), allowing us to study the impact of the composition of the surrounding materials on the QD decay time. Results showed that covering the InAs QDs with, or embedding them within, an InGaAs SRL increases the carrier dynamics, while a shorter carrier lifetime has been observed when they are grown on top of an InGaAs SRL. Investigation of the dependence of carrier lifetime on temperature showed good stability of the decay time, deduced from the consequences of improved QD confinement. The findings suggest that embedding or capping the QDs with SRL exerts optimization of their room temperature optical properties.

  9. Iron doped InGaAs: Competitive THz emitters and detectors fabricated from the same photoconductor

    NASA Astrophysics Data System (ADS)

    Globisch, B.; Dietz, R. J. B.; Kohlhaas, R. B.; Göbel, T.; Schell, M.; Alcer, D.; Semtsiv, M.; Masselink, W. T.

    2017-02-01

    Today, the optimum material systems for photoconductive emitters and receivers are different. In THz reflection measurements, this leads to complicated optics or performance compromises. We present photoconductive emitters and detectors fabricated from molecular beam epitaxy (MBE) grown iron (Fe) doped InGaAs, which are well suited for a THz time-domain spectroscopy as both emitters and detectors. As a photoconductive emitter, 75 μW ± 5 μW of radiated THz power was measured. As a detector, THz pulses with a bandwidth of up to 6 THz and a peak dynamic range of 95 dB could be detected. These results are comparable to state-of-the-art THz photoconductors, which allows for simple reflection measurements without a performance decrease. The incorporation of Fe in InGaAs during MBE growth is investigated by secondary ion mass spectroscopy, Hall, and transient differential transmission measurements. Growth temperatures close to 400 °C allow for homogeneous Fe doping concentrations up to 5 × 1020 cm-3 and result in a photoconductor with an electron lifetime of 0.3 ps, a resistivity of 2 kΩ cm, and an electron mobility higher than 900 cm2 V-1 s-1. We show that iron dopants are incorporated up to a maximum concentration of 1 × 1017 cm-3 into substitutional lattice sites. The remaining dopants are electrically inactive and form defects that are anneal-stable up to a temperature of 600 °C. The fast recombination center in Fe-doped InGaAs is an unidentified defect, representing ≈0.5% of the nominal iron concentration. The electron and hole capture cross section of this defect is determined as σ e = 3.8 × 10-14 cm2 and σ h = 5.5 × 10-15 cm2, respectively.

  10. Characteristics of Monolithically Integrated InGaAs Active Pixel Image Array

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Cunningham, T. J.; Pain, B.; Lange, M. J.; Olsen, G. H.

    1999-01-01

    Switching and amplifying characteristics of a newly developed monolithic InGaAs Active Pixel Imager Array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate.

  11. InP-based lattice-matched InGaAsP and strain-compensated InGaAs /InGaAs quantum well cells for thermophotovoltaic applications

    NASA Astrophysics Data System (ADS)

    Rohr, Carsten; Abbott, Paul; Ballard, Ian; Connolly, James P.; Barnham, Keith W. J.; Mazzer, Massimo; Button, Chris; Nasi, Lucia; Hill, Geoff; Roberts, John S.; Clarke, Graham; Ginige, Ravin

    2006-12-01

    Quantum well cells (QWCs) for thermophotovoltaic (TPV) applications are demonstrated in the InGaAsP material system lattice matched to the InP substrate and strain-compensated InGaAs /InGaAs QWCs also on InP substrates. We show that lattice-matched InGaAsP QWCs are very well suited for TPV applications such as with erbia selective emitters. QWCs with the same effective band gap as a bulk control cell show a better voltage performance in both wide and erbialike emission. We demonstrate a QWC with enhanced efficiency in a narrow-band spectrum compared to a bulk heterostructure control cell with the same absorption edge. A major advantage of QWCs is that the band gap can be engineered by changing the well thickness and varying the composition to the illuminating spectrum. This is relatively straightforward in the lattice-matched InGaAsP system. This approach can be extended to longer wavelengths by using strain-compensation techniques, achieving band gaps as low as 0.62eV that cannot be achieved with lattice-matched bulk material. We show that strain-compensated QWCs have voltage performances that are at least as good as, if not better than, expected from bulk control cells.

  12. Ground-state energy trends in single and multilayered coupled InAs/GaAs quantum dots capped with InGaAs layers: Effects of InGaAs layer thickness and annealing temperature

    SciTech Connect

    Shah, S.; Ghosh, K.; Jejurikar, S.; Mishra, A.; Chakrabarti, S.

    2013-08-01

    Graphical abstract: - Highlights: • Investigation of ground state energy in single and multi-layered InAs/GaAs QD. • Strain reducing layer (InGaAs) prevents the formation of non-radiative. • Strain reducing layer (InGaAs) is responsible for high activation energy. • Significant deviation from the Varshni model, E(T) = E − αT{sup 2}/T + β. - Abstract: Vertically coupled, multilayered InAs/GaAs quantum dots (QDs) covered with thin InGaAs strain-reducing layers (SRLs) are in demand for various technological applications. We investigated low temperature photoluminescence of single and multilayered structures in which the SRL thickness was varied. The SRL layer was responsible for high activation energies. Deviation of experimental data from the Varshni (1967) model, E(T) = E − ∞ T{sup 2}/T + β, suggests that the InAs-layered QDs have properties different from those in bulk material. Anomalous ground-state peak linewidths (FWHM), especially for annealed multilayer structures, were observed. A ground-state peak blue-shift with a broadened linewidth was also observed. Loss of intensity was detected in samples annealed at 800 °C. Presence of SRLs prevents formation of non-radiative centers under high temperature annealing. The results indicate the potential importance of such structures in optoelectronic applications.

  13. 15 μm pixel-pitch VGA InGaAs module for very low background applications

    NASA Astrophysics Data System (ADS)

    Rouvié, A.; Huet, O.; Reverchon, J. L.; Robo, J. A.; Truffer, J. P.; Decobert, J.; Costard, E.; Bois, P.

    2011-11-01

    Thanks to the high transmission coefficient of short infrared wavelengths in the atmosphere and specific contrasts, SWIR imaging is an attractive technology for space applications such as astronomical or earth observation. Detection module must demonstrate high uniformity, sensitivity and resolution combined with compactness to meet the needs of this application field. Image sensors based on InGaAs photodiodes arrays present very low dark currents even at ambient temperature as high quality materials can be grown on InP substrates. Besides, the suppression of InP substrate after hybridization is a way to extend the detection range towards visible wavelengths. These properties result in a new generation of sensitive, compact and multifunctional InGaAs detection modules. In this paper, we describe the performances of an uncooled VGA InGaAs module recently developed. The 640x512 array with a pitch of 15μm allows high resolution images. The excellent crystalline quality induces very low dark current densities at ambient temperature. The readout circuit is based on a capacitive trans-impedance amplifier with correlated double sampling resulting in low readout noise figure. This compact module appears as a serious alternative to the existing technologies for low light level imaging in the [0.4μm-1.7μm] spectral range.

  14. SWIR InGaAs focal plane arrays in France

    NASA Astrophysics Data System (ADS)

    Rouvié, A.; Huet, O.; Hamard, S.; Truffer, J. P.; Pozzi, M.; Decobert, J.; Costard, E.; Zécri, M.; Maillart, P.; Reibel, Y.; Pécheur, A.

    2013-06-01

    SWIR detection band benefits from natural (sun, night glow, thermal radiation) or artificial (eye safe lasers) photons sources combined to low atmospheric absorption and specific contrast compared to visible wavelengths. It gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. The study of InGaAs FPA has begun few years ago with III-VLab, gathering expertise in InGaAs material growth and imaging technology respectively from Alcatel-Lucent and Thales, its two mother companies. This work has led to put quickly on the market a 320x256 InGaAs module. The recent transfer of imagery activities from III-VLab to Sofradir allows developing new high performances products, satisfying customers' new requirements. Especially, a 640x512 InGaAs module with a pitch of 15µm is actually under development to fill the needs of low light level imaging.

  15. Temperature dependence of trapping effects in metal gates/Al2O3/InGaAs stacks

    NASA Astrophysics Data System (ADS)

    Palumbo, F.; Pazos, S.; Aguirre, F.; Winter, R.; Krylov, I.; Eizenberg, M.

    2017-06-01

    The influence of the temperature on Metal Gate/Al2O3/n-InGaAs stacks has been studied by means of capacitance-voltage (C-V) hysteresis and flat band voltage as function of both negative and positive stress fields. It was found that the de-trapping effect decreases at low-temperature, indicating that the de-trapping of trapped electrons from oxide traps may be performed via Al2O3/InGaAs interface defects. The dependence of the C-V hysteresis on the stress field at different temperatures in our InGaAs stacks can be explained in terms of the defect spatial distribution. An oxide defect distribution can be found very close to the metal gate/Al2O3 interface. On the other side, the Al2O3/InGaAs interface presents defects distributed from the interface into the bulk of the oxide, showing the influence of InGaAs on Al2O3 in terms of the spatial defect distribution. At the present, he is a research staff of the National Council of Science and Technology (CONICET), working in the National Commission of Atomic Energy (CNEA) in Buenos Aires, Argentina, well embedded within international research collaboration. Since 2008, he is Professor at the National Technological University (UTN) in Buenos Aires, Argentina. Dr. Palumbo has received research fellowships from: Marie Curie Fellowship within the 7th European Community Framework Programme, Abdus Salam International Centre for Theoretical Physics (ICTP) Italy, National Council of Science and Technology (CONICET) Argentina, and Consiglio Nazionale delle Ricerche (CNR) Italy. He is also a frequent scientific visitor of academic institutions as IMM-CNR-Italy, Minatec Grenoble-France, the Autonomous University of Barcelona-Spain, and the Israel Institute of Technology-Technion. He has authored and co-authored more than 50 papers in international conferences and journals.

  16. Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target

    SciTech Connect

    Kushvaha, S. S.; Kumar, M. Senthil; Maurya, K. K.; Dalai, M. K.; Sharma, Nita D.

    2013-09-15

    Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001) substrates by laser molecular beam epitaxy (LMBE) were investigated in the range of 500–750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM), micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). The x-ray rocking curve full width at a half maximum (FWHM) value for (0002) reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002) plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

  17. Highly c-axis oriented growth of GaN film on sapphire (0001) by laser molecular beam epitaxy using HVPE grown GaN bulk target

    NASA Astrophysics Data System (ADS)

    Kushvaha, S. S.; Kumar, M. Senthil; Maurya, K. K.; Dalai, M. K.; Sharma, Nita D.

    2013-09-01

    Growth temperature dependant surface morphology and crystalline properties of the epitaxial GaN layers grown on pre-nitridated sapphire (0001) substrates by laser molecular beam epitaxy (LMBE) were investigated in the range of 500-750 °C. The grown GaN films were characterized using high resolution x-ray diffraction, atomic force microscopy (AFM), micro-Raman spectroscopy, and secondary ion mass spectroscopy (SIMS). The x-ray rocking curve full width at a half maximum (FWHM) value for (0002) reflection dramatically decreased from 1582 arc sec to 153 arc sec when the growth temperature was increased from 500 °C to 600 °C and the value further decreased with increase of growth temperature up to 720 °C. A highly c-axis oriented GaN epitaxial film was obtained at 720 °C with a (0002) plane rocking curve FWHM value as low as 102 arc sec. From AFM studies, it is observed that the GaN grain size also increased with increasing growth temperature and flat, large lateral grains of size 200-300 nm was obtained for the film grown at 720 °C. The micro-Raman spectroscopy studies also exhibited the high-quality wurtzite nature of GaN film grown on sapphire at 720 °C. The SIMS measurements revealed a non-traceable amount of background oxygen impurity in the grown GaN films. The results show that the growth temperature strongly influences the surface morphology and crystalline quality of the epitaxial GaN films on sapphire grown by LMBE.

  18. Strongly confined excitons in self-assembled InGaAs quantum dot clusters

    NASA Astrophysics Data System (ADS)

    Creasey, Megan; Li, Xiaoqin; Lee, Jihoon; Wang, Zhiming; Salamo, Gregory

    2011-03-01

    Quantum dot clusters (QDCs) consisting of regular geometric patterns of six InGaAs quantum dots (QD) are grown on a GaAs substrate using a hybrid growth method that combines droplet homoepitaxy and Stranski-Krastonov growth. These novel structures have potential applications as tunable single photon sources, entangled photon sources, or error corrected qubits - devices critical to the fields of secure optical communications and quantum computing We study the photoluminescence arising from a single cluster using both continuous wave and ultrafast spectroscopic techniques with variations in the sample temperature and excitation power. Our results suggest excitons (bound electron-hole pairs) are strongly confined within the individual QDs rather than loosely confined throughout the entire QDC. The work at Texas is supported financially by NSF, ARO, AFOSR, ONR, the Welch Foundation, and the Alfred Sloan Foundation. The work at Arkansas is supported by the NSF.

  19. Impact of doping and MOCVD conditions on minority carrier lifetime of zinc- and carbon-doped InGaAs and its applications to zinc- and carbon-doped InP/InGaAs heterostructure bipolar transistors

    NASA Astrophysics Data System (ADS)

    Cui, Delong; Hubbard, Seth M.; Pavlidis, Dimitris; Eisenbach, Andreas; Chelli, Cyril

    2002-06-01

    The impact of doping and metalorganic chemical vapour deposition growth conditions on the minority carrier lifetime of zinc- and carbon-doped InGaAs is reported. Room temperature photoluminescence measurements have been employed to obtain direct information on the non-radiative lifetime of the materials. Low growth temperature and low V/III ratio lead to the lower carrier lifetime of the carbon-doped InGaAs samples. InP/InGaAs heterostructure bipolar transistors were grown and fabricated using both zinc- and carbon-doped InGaAs layers as the base regions. The current gain values measured for these devices agree well with the values calculated from the carrier lifetime and mobility/diffusion coefficient measurements.

  20. LGT (La3Ga5.5Ta0.5O14) langatate bulk crystal grown from the melt by Czochralski technique and characterization

    NASA Astrophysics Data System (ADS)

    Boutahraoui, B.; Nehari, A.; Boy, J.; Vacheret, X.; Allani, M.; Cabane, H.; Dumortier, M.; Derbal, M.; Lebbou, K.

    2017-03-01

    La3Ga5,5Ta0,5O14 (LGT) langatate crystals were grown along Z-axis by Czochralski technique in argon and mixed argon with 0.1%O2 atmosphere. The coloration and the performance of langatate crystals were strongly connected to the starting chemical composition, the gas atmosphere and the growth parameters. Any deviation from the optimal LGT generate macroscopic defects such cracks and grains boundary causing a deterioration of the crystals performance.

  1. InGaAs focal plane array developments and perspectives

    NASA Astrophysics Data System (ADS)

    Rouvié, A.; Coussement, J.; Huet, O.; Truffer, J. P.; Pozzi, M.; Oubensaid, E. H.; Hamard, S.; Chaffraix, V.; Costard, E.

    2015-05-01

    SWIR spectral band is an attractive domain thanks to its intrinsic properties. Close to visible wavelengths, SWIR images interpretation is made easier for field actors. Besides complementary information can be extracted from SWIR band and bring significant added value in several fields of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). Among the various new technologies able to detect SWIR wavelengths, InGaAs appears as a key technology. Initially developed for optical telecommunications, this material guaranties performances, stability and reliability and is compatible with attractive production capacity. Thanks to high quality material, very low dark current levels can be achieved at ambient temperature. Then uncooled operation can be set up, allowing compact and low power systems. Since the recent transfer of InGaAs imaging activities from III-Vlab, Sofradir provides a framework for the production activity with the manufacturing of high performances products: CACTUS320 SW. The developments towards VGA format with 15μm pixel pitch, lead today to the industrialization of a new product: SNAKE. On one side, the InGaAs detection array presents high performances in terms of dark current and quantum efficiency. On the other side, the low noise ROIC has different additional functionalities. Then this 640x512 @ 15μm sensor appears as well suited to answer the needs of a wide range of applications. In this paper, we will present the Sofradir InGaAs technology, the performances of our last product SNAKE and the perspectives of InGaAs new developments.

  2. InGaN/InGaN multiple-quantum-well grown on InGaN/GaN semi-bulk buffer for blue to cyan emission with improved optical emission and efficiency droop

    NASA Astrophysics Data System (ADS)

    Alam, Saiful; Sundaram, Suresh; Elouneg-Jamroz, Miryam; Li, Xin; El Gmili, Youssef; Robin, Ivan Christophe; Voss, Paul L.; Salvestrini, Jean-Paul; Ougazzaden, Abdallah

    2017-04-01

    In0.16Ga0.84N/In0.05Ga0.95N Multiple Quantum Well (MQW) structure grown on a 70 nm thick high quality semi-bulk InGaN buffer layer is reported. Temperature dependent photoluminescence (PL) reveals 67.5% of room temperature Internal Quantum Efficiency (IQE) at an emission peak of ∼455 nm with FWHM of 20 nm. Low temperature PL study shows clear improvement in emission intensity when conventional GaN buffer and GaN barrier are replaced by semi-bulk InGaN buffer in addition with InGaN barrier. Simulation confirms improved IQE and reduced efficiency droop when using semi-bulk as buffer which is attributed to the improved overlapping of electron-hole wave functions due to the reduced internal electric field from counteraction by surface polarization field. This efficiency improvement is very beneficial for high In content green LEDs where the efficiency is limited by polarization induced Quantum Confined Stark Effect (QCSE) for excess indium content.

  3. MWIR barrier infrared detectors with greater than 5μm cutoff using bulk InAsSb grown on GaSb substrates

    NASA Astrophysics Data System (ADS)

    Baril, Neil; Brown, Alexander; Zuo, Daniel; Tidrow, Meimei; Loubychev, Dmitri; Fastenau, Joel M.; Liu, Amy W. K.; Bandara, Sumith

    2017-02-01

    Mid-wavelength infrared photodetectors incorporated into a unipolar barrier architecture with a bulk InAsxSb1-x absorber and an AlSb barrier layer are demonstrated. An extended cutoff was achieved by increasing the lattice constant from 6.09 Å of the GaSb substrate to 6.13 Å using a 1.5 μm thick AlSb buffer layer. This enabled the growth of bulk absorber material with a higher antimony content, InAs0.81Sb0.19, and a greater than 5 μm cutoff. Transitioning the lattice to 6.13 Å also enabled the implementation of a simple binary AlSb layer as a unipolar barrier to block majority carrier electrons and reduce dark current noise. Individual test devices with 4 μm thick absorbers displayed 150 K dark current density, cutoff wavelength, quantum efficiency, and specific detectivity of 3 x 10-5 A/cm2, 5.31 μm, 44 % at 3.4 μm, and 4.3 x 1011 cmHz1/2/W at 5 μm, respectively. The instantaneous dark current activation energy at a given bias and temperature was determined via Arrhenius analysis from the dark current vs. temperature and bias data, and a discussion of valence band alignment between the InAsxSb1-x absorber and AlSb barrier layers is presented. The carrier concentration, mobility, and lifetime of the bulk absorber material and the device performance will be presented and a discussed.

  4. Effect of bulk growth temperature on antiphase domain boundary annihilation rate in MOCVD-grown GaAs on Si(001)

    NASA Astrophysics Data System (ADS)

    Barrett, C. S. C.; Martin, T. P.; Bao, X.-Y.; Kennon, E. L.; Gutierrez, L.; Martin, P.; Sanchez, E.; Jones, K. S.

    2016-09-01

    GaAs is a material of interest as a potential buffer layer in future III-V semiconductor-based transistor technologies integrated on Si wafers. The goal of this study was to investigate the effect of growth temperature on the propagation and annihilation of antiphase domain boundaries (APBs) in GaAs films grown on Si(001) by metal-organic chemical vapor deposition (MOCVD). No intentional wafer off-cuts or high temperature pre-growth anneals (>1000 °C) were employed as both of these practices complicate integration with other devices. To evaluate the role of growth temperature on the APB evolution, a 200 nm thick layer of GaAs was grown on the Si at a fixed temperature of 530 °C so that all samples started with the same approximate APB density. Subsequently, 600 nm of GaAs was grown at temperatures varying between 530 °C and 650 °C. Chemical etching combined with scanning electron microscopy (SEM) was used to profile the density of the APBs in each sample as a function of depth. The APB annihilation rate, i.e. the exponential decay rate of APB density with respect to film thickness, increases from 2.6 μm-1 to 10.7 μm-1 as the growth temperature increases from 530 °C to 610 °C and then saturates. The increase in annihilation rate with increasing temperatures suggests that the higher temperatures remove kinetic barriers to the reduction of the overall APB interfacial area. An activation energy of 1.1 eV was extracted using an Arrhenius relationship and likely corresponds to the energy needed for APBs to kink from {110} to higher-index planes, e.g. {112}. Dark field transmission electron microscopy showed that at higher growth temperatures the APBs can shift from vertical {110} habit planes to {112} planes leading to self-annihilation with sufficient thickness.

  5. Preparation of Ag Schottky contacts on n-type GaN bulk crystals grown in nitrogen rich atmosphere by the hydride vapor phase epitaxy technique

    SciTech Connect

    Stübner, R. Kolkovsky, Vl.; Weber, J.; Leibiger, Gunnar; Habel, Frank

    2014-10-14

    Electrical properties of Schottky contacts on n-type GaN grown in nitrogen rich atmosphere with different N/Ga ratios by hydride vapor phase epitaxy were investigated. We show that tunneling of electrons from the conduction band of GaN to the metal is dominant in our samples. The quality of Schottky contacts does not only depend on surface preparation but also on the growth conditions of the crystals. Schottky contacts on these crystals show an increasing deterioration when higher N/Ga growth ratios are used. We correlate our results with the presence of negatively charged gallium vacancies in the samples. These charges compensate the positively charged donors and lead to a significant increase in series resistance.

  6. Selective growth of strained (In)GaAs quantum dots on GaAs substrates employing diblock copolymer lithography nanopatterning

    NASA Astrophysics Data System (ADS)

    Kim, Honghyuk; Choi, Jonathan; Lingley, Zachary; Brodie, Miles; Sin, Yongkun; Kuech, Thomas F.; Gopalan, Padma; Mawst, Luke J.

    2017-05-01

    Semiconductor laser diodes (LD) were demonstrated employing a strained (In)GaAs quantum dot (QD) active region grown by metalorganic vapor phase epitaxy (MOVPE) on nominally exact (1 0 0) GaAs substrates using selective area epitaxy (SAE). The SAE QD growth employed a SiNx nano-patterned mask defined by diblock copolymer (BCP) lithography. In-situ etching using carbon tetrabromide (CBr4), prior to the SAE of the QDs, was shown to be effective to remove the processing-related damage introduced during the nanopattern transfer process, resulting in a significant reduction in the threshold current density of the LD under the optimal in-situ etching condition. Furthermore, the modal optical gain parameter and the transparency current density were extracted by the conventional cavity length analysis (CLA) on LD devices where the QD was grown with the optimal in-situ etching condition.

  7. Influence of interface traps inside the conduction band on the capacitance-voltage characteristics of InGaAs metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Taoka, Noriyuki; Yokoyama, Masafumi; Kim, Sang Hyeon; Suzuki, Rena; Iida, Ryo; Takenaka, Mitsuru; Takagi, Shinichi

    2016-11-01

    We investigated the influences of the AC response with interface/bulk-oxide traps near the conduction band (CB) and a low effective density of states (DOS) on the accumulation capacitance C acc of an n-type InGaAs metal-oxide-semiconductor (MOS) capacitor. We found that the capacitance associated with the interface traps inside the CB significantly increases C acc compared to the C acc value constrained by a low DOS. These results indicate that accurate characterization inside the CB and considering the capacitance due to the interface traps inside the CB in the MOS capacitance-voltage curves are indispensable for accurate characterization of InGaAs MOS interface properties.

  8. Crosstalk study of near infrared InGaAs detectors

    NASA Astrophysics Data System (ADS)

    Li, Xue; Tang, Hengjing; Li, Tao; Fan, Cui; Shao, Xiumei; Li, Jianwei; Wei, Jun; Gong, Haimei

    2016-05-01

    Crosstalk characteristics of high density FPA detectors attract widespread attention in the application of electro-optical systems. Crosstalk characteristics of near-infrared (NIR) InGaAs photodiodes and focal plane arrays (FPAs) were studied in this paper. The mesa type detector was investigated by using laser beam induced current technique (LBIC) to measure the absorption outside the designed photosensitive area, and the results show that the excess absorption enlarges the crosstalk of the adjacent pixels. The structure optimization using the effective absorption layer between the pixels can effectively reduce the crosstalk to 2.5%. The major crosstalk components of the optimization photodiode come from the electronic signal caused by carrier lateral diffusion. For the planar type detectors, test structures were used to compare the crosstalk of different structures, and the guard ring structure shows good suppression of the crosstalk. Then the back-illuminated 32x32 InGaAs photodiodes with 30μm pitch were designed, and LBIC was used to measure its lateral diffusion of the effective carriers and fill factor of photosensitive area. The results indicate that the fill factor of detectors can reach up to 98% when the diffusion region is optimized, and the minimum response exists between two neighborhood pixels. Based on these crosstalk measurement results and optimizing structure designs, the linear InGaAs photodiodes were designed and thus the InGaAs FPA assembly was fabricated. The assembly shows higher electro-optical performance and good improvement on crosstalk. The assembly was applied in infrared imaging system and modulation transfer function (MTF) of FPA assembly was calculated to be above 0.50. The clear image based on FPA assembly was obtained.

  9. New developments on InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Coussement, J.; Rouvié, A.; Oubensaid, E. H.; Huet, O.; Hamard, S.; Truffer, J.-P.; Pozzi, M.; Maillart, P.; Reibel, Y.; Costard, E.; Billon-Lanfrey, D.

    2014-06-01

    SWIR detection band benefits from natural (sun, night glow, thermal radiation) or artificial (eye safe lasers) photons sources combined to low atmospheric absorption and specific contrast compared to visible wavelengths. It gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. The recent transfer of imagery activities from III-VLab to Sofradir provides a framework for the production activity with the manufacturing of high performances products: CACTUS320 SW and CACTUS640 SW. The developments, begun at III-Vlab towards VGA format with 15μm pixel pitch, lead today to the industrialization of a new product: SNAKE SW. On one side, the InGaAs detection array presents high performances in terms of dark current and quantum efficiency. On the other side, the low noise ROIC has different additional functionalities. Then this 640×512 @ 15μm module appears as well suited to answer the needs of a wide range of applications. In this paper, we will present the Sofradir InGaAs technology, some performances optimization and the last developments leading to SNAKE SW.

  10. Preparation of Transparent Bulk TiO2/PMMA Hybrids with Improved Refractive Indices via an in Situ Polymerization Process Using TiO2 Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization.

    PubMed

    Maeda, Satoshi; Fujita, Masato; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki

    2016-12-21

    Transparent TiO2/PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO2 content and could be increased up to 1.566 for 6.3 vol % TiO2 content (1.492 for pristine PMMA).

  11. InGaAs quantum wells on wafer-bonded InP/GaAs substrates

    SciTech Connect

    Hayashi, S.; Sandhu, R.; Wojtowicz, M.; Chen, G.; Hicks, R.; Goorsky, M.S.

    2005-11-01

    Wafer bonding and hydrogen implantation exfoliation techniques have been used to fabricate a thin InP template layer on GaAs with intermediate silicon nitride bonding layers. This template layer was used to directly compare subsequent metal organic vapor phase epitaxial growth of InGaAs/InAlAs quantum-well structures on these wafer-bonded templates to growth on a standard InP substrate. Chemical mechanical polishing of the bonded structure and companion InP substrates was assessed. No effects from the coefficient of thermal mismatch are detected up to the growth temperature, and compositionally equivalent structures are grown on the wafer-bonded InP template and the bare InP substrate. However, after growth dislocation, loops can be identified in the InP template layer due to the ion implantation step. These defects incur a slight mosaic tilt but do not yield any crystalline defects in the epitaxial structure. Low-temperature photoluminescence measurements of the InGaAs grown on the template structure and the InP substrate exhibit near-band-edge luminescence on the same order; this indicates that ion implantation and exfoliation is a viable technique for the integration of III-V materials.

  12. Defects in GaAs bulk crystals and multi-layers caused by In diffusion

    SciTech Connect

    Werner, P.; Baranowski, J.

    1993-04-01

    The objective was to study by transmission electron microscopy the lattice defects in GaAs bulk crystals and heterostructures formed by In diffusion. In such samples hints for the existence of superconductivity have been found. Indium was found to move more than 100 {mu}m into bulk GaAs during lh annealing at 550C (such conditions are typical for molecular beam epitaxy growth on GaAs wafers). This rapid diffusion is accompanied by the creation of dislocation networks and metallic In droplets that show evidence for lattice strain. To study the interaction of In with the GaAs lattice, In/GaAs multi-layers were grown by MBE at about 450C on a GaAs buffer layer. The interfaces of these structures showed misfit dislocations at islands of InAs besides the presence of lattice strain. Both types of samples showed microwave absorption signals typical for superconductivity. The most likely superconductive phases are small metastable inclusions, probably consisting amorphous Ga or In.

  13. Electron and proton damage on InGaAs solar cells having an InP window layer

    NASA Technical Reports Server (NTRS)

    Messenger, Scott R.; Cotal, Hector L.; Walters, Robert J.; Summers, Geoffrey P.

    1995-01-01

    As part of a continuing program to determine the space radiation resistance of InP/ln(0.53)Ga(0.47)As tandem solar cells, n/p In(0.53)Ga(0. 47)As solar cells fabricated by RTI were irradiated with 1 MeV electrons and with 3 MeV protons. The cells were grown with a 3 micron n-lnP window layer to mimic the top cell in the tandem cell configuration for both AMO solar absorption and radiation effects. The results have been plotted against 'displacement damage dose' which is the product of the nonionizing energy loss (NIEL) and the particle fluence. A characteristic radiation damage curve can then be obtained for predicting the effect of all particles and energies. AMO, 1 sun solar illumination IV measurements were performed on the irradiated InGaAs solar cells and a characteristic radiation degradation curve was obtained using the solar cell conversion efficiency as the model parameter. Also presented are data comparing the radiation response of both n/p and p/n (fabricated by NREL) InGaAs solar cells as a function of base doping concentration. For the solar cell efficiency, the radiation degradation was found to be independent of the sample polarity for the same base doping concentration.

  14. Growth rate and surfactant-assisted enhancements of rare-earth arsenide InGaAs nanocomposites for terahertz generation

    NASA Astrophysics Data System (ADS)

    Salas, R.; Guchhait, S.; Sifferman, S. D.; McNicholas, K. M.; Dasika, V. D.; Jung, D.; Krivoy, E. M.; Lee, M. L.; Bank, S. R.

    2017-09-01

    We report the effects of the growth rate on the properties of iii-v nanocomposites containing rare-earth-monopnictide nanoparticles. In particular, the beneficial effects of surfactant-assisted growth of LuAs:In0.53Ga0.47As nanocomposites were found to be most profound at reduced LuAs growth rates. Substantial enhancement in the electrical and optical properties that are beneficial for ultrafast photoconductors was observed and is attributed to the higher structural quality of the InGaAs matrix in this new growth regime. The combined enhancements enabled a >50% increase in the amount of LuAs that could be grown without degrading the quality of the InGaAs overgrowth. Dark resistivity increased by ˜25× while maintaining carrier mobilities over 3000 cm2/V s; carrier lifetimes were reduced by >2×, even at high depositions of LuAs. The combined growth rate and surfactant enhancements offer a previously unexplored regime to enable high-performance fast photoconductors that may be integrated with telecom components for compact, broadly tunable, heterodyne THz source and detectors.

  15. High efficient photovoltaic power converter suitable for 920nm to 970nm InGaAs laser diodes

    NASA Astrophysics Data System (ADS)

    Liu, James; Wu, Ta-Chung; Cohen, Mort; Werthen, Jan G.

    2005-09-01

    In this work, we report a highly efficient Photovoltaic Power Converter (PPC) suitable for 920 nm to 970 nm InGaAs MQW lasers for the first time. The epitaxial layers were grown by low pressure MOCVD on the semi-insulting GaAs substrate. The epi layers consist of a p-n junction of In0.12Ga0.88As and the window layer of p+ AlInGaAs. The device is made of seven or eight pie-segments of equal area series-connected by means of air-bridges. Under 500mW of 940nm laser illumination, the open-circuit voltage of the eight-segment InGaAs chip is 6.7V. The short-circuit current is 29.7mA. Its maximum delivered electrical power is 171.2mW, equal to a 34.2% overall power conversion efficiency. We also demonstrate the high temperature characteristic and stability of the device.

  16. Border trap reduction in Al{sub 2}O{sub 3}/InGaAs gate stacks

    SciTech Connect

    Tang, Kechao; McIntyre, Paul C.; Winter, Roy; Eizenberg, Moshe; Zhang, Liangliang; Droopad, Ravi

    2015-11-16

    The effect of Al{sub 2}O{sub 3} atomic layer deposition (ALD) temperature on the border trap density (N{sub bt}) of Al{sub 2}O{sub 3}/InGaAs gate stacks is investigated quantitatively, and we demonstrate that lowering the trimethylaluminum (TMA)/water vapor ALD temperature from 270 °C to 120 °C significantly reduces N{sub bt}. The reduction of N{sub bt} coincides with increased hydrogen incorporation in low temperature ALD-grown Al{sub 2}O{sub 3} films during post-gate metal forming gas annealing. It is also found that large-dose (∼6000 L) exposure of the In{sub 0.53}Ga{sub 0.47}As (100) surface to TMA immediately after thermal desorption of a protective As{sub 2} capping layer is an important step to guarantee the uniformity and reproducibility of high quality Al{sub 2}O{sub 3}/InGaAs samples made at low ALD temperatures.

  17. Numerical study of the intrinsic recombination carriers lifetime in extended short-wavelength infrared detector materials: A comparison between InGaAs and HgCdTe

    NASA Astrophysics Data System (ADS)

    Wen, Hanqing; Bellotti, Enrico

    2016-05-01

    Intrinsic carrier lifetime due to radiative and Auger recombination in HgCdTe and strained InGaAs has been computed in the extended short-wavelength infrared (ESWIR) spectrum from 1.7 μm to 2.7 μm. Using the Green's function theory, both direct and phonon-assisted indirect Auger recombination rates as well as the radiative recombination rates are calculated for different cutoff wavelengths at 300 K with full band structures of the materials. In order to properly model the full band structures of strained InGaAs, an empirical pseudo-potential model for the alloy is fitted using the virtual crystal approximation with spin-orbit coupling included. The results showed that for InxGa1-xAs grown on InP substrate, the compressive strain, which presents in the film when the cutoff wavelength is longer than 1.7 μm, leads to decrease of Auger recombination rate and increase of radiative recombination rate. Since the dominant intrinsic recombination mechanism in this spectral range is radiative recombination, the overall intrinsic carrier lifetime in the strained InGaAs alloys is shorter than that in the relaxed material. When compared to the relaxed HgCdTe, both relaxed and compressively strained InGaAs alloys show shorter intrinsic carrier lifetime at the same cutoff wavelength in room temperature which confirms the potential advantage of HgCdTe as wide-band infrared detector material. While HgCdTe offers superior performance, ultimately the material of choice for ESWIR application will also depend on material quality and cost.

  18. Numerical study of the intrinsic recombination carriers lifetime in extended short-wavelength infrared detector materials: A comparison between InGaAs and HgCdTe

    SciTech Connect

    Wen, Hanqing; Bellotti, Enrico

    2016-05-28

    Intrinsic carrier lifetime due to radiative and Auger recombination in HgCdTe and strained InGaAs has been computed in the extended short-wavelength infrared (ESWIR) spectrum from 1.7 μm to 2.7 μm. Using the Green's function theory, both direct and phonon-assisted indirect Auger recombination rates as well as the radiative recombination rates are calculated for different cutoff wavelengths at 300 K with full band structures of the materials. In order to properly model the full band structures of strained InGaAs, an empirical pseudo-potential model for the alloy is fitted using the virtual crystal approximation with spin-orbit coupling included. The results showed that for In{sub x}Ga{sub 1−x}As grown on InP substrate, the compressive strain, which presents in the film when the cutoff wavelength is longer than 1.7 μm, leads to decrease of Auger recombination rate and increase of radiative recombination rate. Since the dominant intrinsic recombination mechanism in this spectral range is radiative recombination, the overall intrinsic carrier lifetime in the strained InGaAs alloys is shorter than that in the relaxed material. When compared to the relaxed HgCdTe, both relaxed and compressively strained InGaAs alloys show shorter intrinsic carrier lifetime at the same cutoff wavelength in room temperature which confirms the potential advantage of HgCdTe as wide-band infrared detector material. While HgCdTe offers superior performance, ultimately the material of choice for ESWIR application will also depend on material quality and cost.

  19. Atomic layer etching of InGaAs by controlled ion beam

    NASA Astrophysics Data System (ADS)

    Park, Jin Woo; San Kim, Doo; Kyeom Mun, Mu; Lee, Won Oh; Kim, Ki Seok; Yeom, Geun Young

    2017-06-01

    Atomic layer etching (ALE) could be an important next-generation etching technique, applicable to various semiconductor materials including III-V compound materials such as indium gallium arsenide (InGaAs) which has high carrier mobility, an advantageous characteristic in nanoscale electronic devices. In this study, the ALE characteristics of InGaAs have been investigated using a reactive ion beam technique. For the ALE of InGaAs, chlorine radicals/low-energy (10-19 eV) reactive ions and low-energy (5-8 eV) Ar+ ions were used for adsorption and desorption, respectively, during the etch cycle to precisely control the etch depth and to minimize the surface damage of the InGaAs. By using the ALE technique, a constant etch rate of 1.1 Å/cycle could be obtained for InGaAs, as well as an infinite etch selectivity of InGaAs over various materials such as photoresist, silicon, amorphous carbon layer, SiO2, and HfO2. The surface composition and surface roughness of the InGaAs after ALE were similar to those of as-received un-etched InGaAs.

  20. Hole mobility degradation by remote Coulomb scattering and charge distribution in Al2O3/GeO x gate stacks in bulk Ge pMOSFET with GeO x grown by ozone oxidation

    NASA Astrophysics Data System (ADS)

    Zhou, Lixing; Wang, Xiaolei; Ma, Xueli; Xiang, Jinjuan; Yang, Hong; Zhao, Chao; Ye, Tianchun; Wang, Wenwu

    2017-06-01

    Hole mobility degradation due to remote Coulomb scattering (RCS) from fixed charges of GeO x /Al2O3 gate stacks is experimentally investigated in bulk Ge p-type metal-oxide-semiconductor field effect transistor (pMOSFET), with GeO x grown by ozone oxidation. The hole mobility at 77 K is found to increase with GeO x thickness. The phonon scattering can be ignored at 77 K and the surface roughness scattering is insignificant at a low inversion carrier concentration. This indicates that the RCS is responsible for mobility degradation. Therefore, the fixed charges are investigated in terms of RCS. The charge distribution in GeO x /Al2O3 gate stacks is experimentally estimated. The bulk charge in GeO x and Al2O3 is negligible. The densities of interface charges are  +3.22  ×  1012 cm-2 and  -2.57  ×  1012 cm-2 at the GeO x /Ge and Al2O3/GeO x interface, respectively. The electric dipole at the Al2O3/GeO x interface is  +0.17 eV, corresponding to charge area density of 1.76  ×  1013 cm-2. Consequently, the dipole at the Al2O3/GeO x interface plays a dominant role in the mobility degradation. Our results show that the investigation of charges in a gate stack is valuable for enhancing device performance.

  1. Lattice-engineered MBE growth of high-indium mole fraction InGaAs for low cost MMICs and (1.3--1.55 {micro}m) OEICs

    SciTech Connect

    Childs, T.T.; Sokolov, V.; Sullivan, C.T.

    1997-11-01

    Using molecular beam epitaxy (MBE) and lattice engineering techniques, the feasibility of combining photonic devices applicable to the 1.3 to 1.55 {micro}m wavelength range and monolithic microwave (or mm-wave) integrated circuits (MMICs) on GaAs is demonstrated. A key factor in the MBE growth is incorporation of an InGaAs active layer having an indium arsenide mole fraction of 0.35 or greater and its lattice compatibility with the underlying semi-insulating GaAs substrate. The InGaAs layer used for the photonic devices, can also serve as the active channel for the high electron mobility transistors (HEMTs) for application in MMICs. Several examples of active and passive photonic devices grown by MBE are presented including an optical ridge waveguide, and a photodetector for detection of light in the 1.3 {micro}m range. The material structure includes a 3-layer AlGaAs/GaAs/AlGaAs optical waveguide and a thin InGaAs absorbing layer situated directly above the optical waveguide. Metal-semiconductor-metal (MSM) photodetectors are formed on the top surface of the InGaAs layer for collection of the photo-induced carriers. The optical ridge waveguide is designed for lateral incidence of the light to enhance the MSM photodetector responsivity. Initial measurements on the optical waveguide and photodetector are presented.

  2. Band offset in GaAlAs and InGaAs: InP heterojunctions by electrochemical CV profiling

    NASA Astrophysics Data System (ADS)

    Furtado, M. T.; Loural, M. S. S.; Sachs, A. C.; Shieh, P. J.

    We report electrochemical CV measurement determination of the conduction band offset ΔEc of Ga 1-xAl xAs:Ga 1-yAl yAs heterojunctions (HJs) with x=0-0.21 and y≈0.4, as well as of In 0.53Ga 0.47As: InP HJs. The samples were grown by liquid phase epitaxy. We have obtained band offset ratios ΔEc/ΔEg≈0.6 and ΔEc/ΔEg≈0.36, respectively, for GaAlAs and InGaAs: InP HJs, where ΔEg is the HJ band gap energy difference. These results are consistent with recent data obtained by other techniques on similar HJs. In addition, the density of fixed interface charges are estimated and are apparently related to the doping of the large band gap layer of the HJ.

  3. Study of InGaAs based MODFET structures using variable angle spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Alterovitz, S. A.; Sieg, R. M.; Yao, H. D.; Snyder, P. G.; Woollam, J. A.; Pamulapati, J.; Bhattacharya, P. K.; Sekula-Moise, P. A.

    1991-01-01

    Variable angle spectroscopic ellipsometry was used to estimate the thicknesses of all layers within the optical penetration depth of InGaAs based MODFET structures. Strained and unstrained InGaAs channels were made by MBE on InP substrates and by MOCVD on GaAs substrates. In most cases, ellipsometrically determined thicknesses were within 10 percent of the growth calibration results. The MBE made InGaAs strained layers showed large strain effects, indicating a probable shift in the critical points of their dielectric function toward the InP lattice matched concentration.

  4. Modeling direct interband tunneling. I. Bulk semiconductors

    SciTech Connect

    Pan, Andrew; Chui, Chi On

    2014-08-07

    Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority of the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.

  5. InGaAs Detectors for Miniature Infrared Instruments

    NASA Technical Reports Server (NTRS)

    Krabach, T. N.; Staller, C.; Dejewski, S.; Cunningham, T.; Herring, M.; Fossum, E. R.

    1993-01-01

    In the past year, there has been substantial impetus for NASA to consider missions that are of relatively low cost as a trade off for a higher new mission launch rate. To maintain low mission cost, these missions will be of short duration and will use smaller launch vehicles (e.g. Pegasus). Consequently, very low volume, very low mass instrument (a.k.a. miniature instrument) payloads will be required. Furthermore, it is anticipated that the number of instruments flown on a particular mission will also be highly constrained; consequently increased instrument capability will also be desired. In the case of infrared instruments, focal planes typically require cooling to ensure high performance of the detectors, especially in the case of spectrometers where high D* is necessary. In this paper, we discuss the InGaAs detector technology and its potential.

  6. Dimensionality of InGaAs nonlinear optical response

    SciTech Connect

    Bolton, S.R. |

    1995-07-01

    In this thesis the ultrafast optical properties of a series of InGaAs samples ranging from the two to the three dimensional limit are discussed. An optical system producing 150 fs continuum centered at 1.5 microns was built. Using this system, ultrafast pump-probe and four wave mixing experiments were performed. Carrier thermalization measurements reveal that screening of the Coulomb interaction is relatively unaffected by confinement, while Pauli blocking nonlinearities at the band edge are approximately twice as strong in two dimensions as in three. Carrier cooling via phonon emission is influenced by confinement due both to the change in electron distribution function and the reduction in electron phonon coupling. Purely coherent band edge effects, as measured by the AC Stark effect and four wave mixing, are found to be dominated by the changes in excitonic structure which take place with confinement.

  7. Characterization of NIR InGaAs imager arrays for the JDEM SNAPmission concept

    SciTech Connect

    Seshadri, S.; Cole, M.D.; Hancock, B.; Ringold, P.; Wrigley, C.; Bonati, M.; Brown, M.G.; Schubnell, M.; Rahmer, G.; Guzman, D.; Figer,D.; Tarle, G.; Smith, R.M.; Bebek, C.

    2006-05-23

    We present the results of a study of the performance of InGaAs detectors conducted for the SuperNova Acceleration Probe (SNAP) dark energy mission concept. Low temperature data from a nominal 1.7um cut-off wavelength 1kx1k InGaAs photodiode array, hybridized to a Rockwell H1RG multiplexer suggest that InGaAs detector performance is comparable to those of existing 1.7um cut-off HgCdTe arrays. Advances in 1.7um HgCdTe dark current and noise initiated by the SNAP detector research and development program makes it the baseline detector technology for SNAP. However, the results presented herein suggest that existing InGaAs technology is a suitable alternative for other future astronomy applications.

  8. Radiative efficiency of MOCVD grown QD lasers

    NASA Astrophysics Data System (ADS)

    Mawst, Luke; Tsvid, Gene; Dudley, Peter; Kirch, Jeremy; Park, J. H.; Kim, N.

    2010-02-01

    The optical spectral gain characteristics and overall radiative efficiency of MOCVD grown InGaAs quantum dot lasers have been evaluated. Single-pass, multi-segmented amplified spontaneous emission measurements are used to obtain the gain, absorption, and spontaneous emission spectra in real units. Integration of the calibrated spontaneous emission spectra then allows for determining the overall radiative efficiency, which gives important insights into the role which nonradiative recombination plays in the active region under study. We use single pass, multi-segmented edge-emitting in which electrically isolated segments allow to vary the length of a pumped region. In this study we used 8 section devices (the size of a segment is 50x300 μm) with only the first 5 segments used for varying the pump length. The remaining unpumped segments and scribed back facet minimize round trip feedback. Measured gain spectra for different pump currents allow for extraction of the peak gain vs. current density, which is fitted to a logarithmic dependence and directly compared to conventional cavity length analysis, (CLA). The extracted spontaneous emission spectrum is calibrated and integrated over all frequencies and modes to obtain total spontaneous radiation current density and radiative efficiency, ηr. We find ηr values of approximately 17% at RT for 5 stack QD active regions. By contrast, high performance InGaAs QW lasers exhibit ηr ~50% at RT.

  9. Growing InGaAs quasi-quantum wires inside semi-rhombic shaped planar InP nanowires on exact (001) silicon

    NASA Astrophysics Data System (ADS)

    Han, Yu; Li, Qiang; Chang, Shih-Pang; Hsu, Wen-Da; Lau, Kei May

    2016-06-01

    We report InGaAs quasi-quantum wires embedded in planar InP nanowires grown on (001) silicon emitting in the 1550 nm communication band. An array of highly ordered InP nanowire with semi-rhombic cross-section was obtained in pre-defined silicon V-grooves through selective-area hetero-epitaxy. The 8% lattice mismatch between InP and Si was accommodated by an ultra-thin stacking disordered InP/GaAs nucleation layer. X-ray diffraction and transmission electron microscope characterizations suggest excellent crystalline quality of the nanowires. By exploiting the morphological evolution of the InP and a self-limiting growth process in the V-grooves, we grew embedded InGaAs quantum-wells and quasi-quantum-wires with tunable shape and position. Room temperature analysis reveals substantially improved photoluminescence in the quasi-quantum wires as compared to the quantum-well reference, due to the reduced intrusion defects and enhanced quantum confinement. These results show great promise for integration of III-V based long wavelength nanowire lasers on the well-established (001) Si platform.

  10. Investigation of electrically active defects in InGaAs quantum wire intermediate-band solar cells using deep-level transient spectroscopy technique.

    PubMed

    Al Saqri, Noor Alhuda; Felix, Jorlandio F; Aziz, Mohsin; Kunets, Vasyl P; Jameel, Dler; Taylor, David; Henini, Mohamed; Abd El-Sadek, Mahmmoud S; Furrow, Colin; Ware, Morgan E; Benamara, Mourad; Mortazavi, Mansour; Salamo, Gregory

    2017-01-27

    InGaAs quantum wire (QWr) intermediate-band solar cell-based nanostructures grown by molecular beam epitaxy are studied. The electrical and interface properties of these solar cell devices, as determined by current-voltage (I-V) and capacitance-voltage (C-V) techniques, were found to change with temperature over a wide range of 20-340 K. The electron and hole traps present in these devices have been investigated using deep-level transient spectroscopy (DLTS). The DLTS results showed that the traps detected in the QWr-doped devices are directly or indirectly related to the insertion of the Si δ-layer used to dope the wires. In addition, in the QWr-doped devices, the decrease of the solar conversion efficiencies at low temperatures and the associated decrease of the integrated external quantum efficiency through InGaAs could be attributed to detected traps E1QWR_D, E2QWR_D, and E3QWR_D with activation energies of 0.0037, 0.0053, and 0.041 eV, respectively.

  11. Investigation of electrically active defects in InGaAs quantum wire intermediate-band solar cells using deep-level transient spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Saqri, Noor alhuda Al; Felix, Jorlandio F.; Aziz, Mohsin; Kunets, Vasyl P.; Jameel, Dler; Taylor, David; Henini, Mohamed; Abd El-sadek, Mahmmoud S.; Furrow, Colin; Ware, Morgan E.; Benamara, Mourad; Mortazavi, Mansour; Salamo, Gregory

    2017-01-01

    InGaAs quantum wire (QWr) intermediate-band solar cell-based nanostructures grown by molecular beam epitaxy are studied. The electrical and interface properties of these solar cell devices, as determined by current-voltage (I-V) and capacitance-voltage (C-V) techniques, were found to change with temperature over a wide range of 20-340 K. The electron and hole traps present in these devices have been investigated using deep-level transient spectroscopy (DLTS). The DLTS results showed that the traps detected in the QWr-doped devices are directly or indirectly related to the insertion of the Si δ-layer used to dope the wires. In addition, in the QWr-doped devices, the decrease of the solar conversion efficiencies at low temperatures and the associated decrease of the integrated external quantum efficiency through InGaAs could be attributed to detected traps E1QWR_D, E2QWR_D, and E3QWR_D with activation energies of 0.0037, 0.0053, and 0.041 eV, respectively.

  12. Comparison of Ge, InGaAs p-n junction solar cell

    NASA Astrophysics Data System (ADS)

    Korun, M.; Navruz, T. S.

    2016-04-01

    In this paper, the effect of material parameters on the efficiency of Ge and InGaAs p-n junction solar cells which are most commonly used as the sub-cell of multi-junction solar cells are investigated and the results due to these two cells are compared. The efficiency of Ge (EG =0.67 eV) solar cell which is easy to manufacture and inexpensive in cost, is compared with the efficiency of InGaAs (EG =0.74 eV) solar cell which is coming with drawback of high production difficulties and cost. The theoretical efficiency limit of Ge and InGaAs solar cells with optimum thickness were determined by using detailed balance model under one sun AM1.5 illumination. Since the band gap values of two cells are close to each other, approximate detailed balance efficiency limits of 16% for InGaAs and 14% for Ge are obtained. When drift-diffusion model is used and the thicknesses and doping concentrations are optimized, the maximum efficiency values are calculated as 13% for InGaAs and 9% for Ge solar cell. For each solar cell external quantum efficiency curves due to wavelength are also sketched and compared.

  13. Testing of an extended-wavelength InGaAs array in an astronomical spectrograph

    NASA Astrophysics Data System (ADS)

    Nelson, Matthew; Yao, Lihong; Wong, Andre F.; Skrutskie, Michael; Wilson, John C.; Kanneganti, Shrikrishna

    2010-07-01

    We present the integration of a low dark current extended wavelength (2.3μm cutoff) InGaAs array into the Cornell-Massachusetts Slit Spectrograph (CorMASS) spectrograph. The InGaAs array was fabricated onto a SB- 206 512×512 readout integrated circuit (ROIC) by Goodrich/Sensors Unlimited and subsequently went through a series of laboratory characterization tests at the University of Virginia demonstrating dark current performance of better than 10 e-/s. The InGaAs array is adapted for use with the CorMASS to verify its performance in a proven astronomical instrument, and for eventual deployment to a telescope to test stability and performance.

  14. Al/Sb free InGaAs unipolar barrier infrared detectors

    NASA Astrophysics Data System (ADS)

    Uzgur, Fatih; Karaca, Utku; Kizilkan, Ekin; Kocaman, Serdar

    2017-02-01

    It is numerically shown that Al/Sb free InGaAs unipolar barrier detectors with superior performance compared to the conventional heterojunction detectors can be constructed. Compositionally graded layers provide the transition between the high bandgap InGaAs barrier and the lattice matched InGaAs absorber layers. In addition, the delta doped layers remove the valence band offset in order to block only majority carriers and allow unimpeded flow of minority carriers. More than one order of magnitude reduction in the dark current is observed while photocurrent remains nearly unchanged. Proposed barrier structure utilized in this study is not limited to short wave infrared (SWIR) and can be applied to a variety of materials operating in various infrared regions.

  15. Photoemission of reflection-mode InGaAs photocathodes after Cs,O activation and recaesiations

    NASA Astrophysics Data System (ADS)

    Yang, Mingzhu; Jin, Muchun

    2016-12-01

    In order to study the photoemission performance of InGaAs photocathodes, experiments of Cs,O activation, multiple recaesiation, and degradation are performed on a reflection-mode InGaAs photocathode. The photocurrent curves during Cs,O activation, recaesiation, and degradation are measured and analyzed. Based on the quantum efficiency formula of InGaAs photocathodes, the critical performance parameters were obtained by fitting the experimental curves. Results show that Cs-only activation results in a positive electron affinity surface and Cs,O activation leads the surface to a negative electron affinity. Recaesiations can make the degraded InGaAs photocathode recover to a good level. Meanwhile, the spectral response and life time of InGaAs photocathode become smaller and smaller as the recaesiation times increase.

  16. All-wurtzite (In,Ga)As-(Ga,Mn)As core-shell nanowires grown by molecular beam epitaxy.

    PubMed

    Siušys, Aloyzas; Sadowski, Janusz; Sawicki, Maciej; Kret, Sławomir; Wojciechowski, Tomasz; Gas, Katarzyna; Szuszkiewicz, Wojciech; Kaminska, Agnieszka; Story, Tomasz

    2014-08-13

    Structural and magnetic properties of (In,Ga)As-(Ga,Mn)As core-shell nanowires grown by molecular beam epitaxy on GaAs(111)B substrate with gold catalyst have been investigated. (In,Ga)As core nanowires were grown at high temperature (500 °C) whereas (Ga,Mn)As shells were deposited on the {11̅00} side facets of the cores at much lower temperature (220 °C). High-resolution transmission electron microscopy images and high spectral resolution Raman scattering data show that both the cores and the shells of the nanowires have wurtzite crystalline structure. Scanning and transmission electron microscopy observations show smooth (Ga,Mn)As shells containing 5% of Mn epitaxially deposited on (In,Ga)As cores containing about 10% of In without any misfit dislocations at the core-shell interface. With the In content in the (In,Ga)As cores larger than 5% the (In,Ga)As lattice parameter is higher than that of (Ga,Mn)As and the shell is in the tensile strain state. Elaborated magnetic studies indicate the presence of ferromagnetic coupling in (Ga,Mn)As shells at the temperatures in excess of 33 K. This coupling is maintained only in separated mesoscopic volumes resulting in an overall superparamagnetic behavior which gets blocked below ∼ 17 K.

  17. Terahertz radiation based on fiber-pigtailed InGaAs photoconductive antenna pumped by 1030-nm mode-locked Yb-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Kim, Ji Su; Han, Sang-Pil; Moon, Kiwon; Ryu, Han-Cheol; Park, Kyung Hyun; Jeon, Min Yong

    2017-04-01

    We present a terahertz (THz) radiation pumped by a passively mode-locked Yb-doped fiber laser using two fiberpigtailed log-spiral-based low-temperature-grown (LTG) InGaAs photoconductive antenna (PCA) modules. The modelocked fiber laser produces over 220 mW of the average optical power with positively chirped of 1.49 ps pulses. In order to generate THz radiation using the fiber-pigtailed PCA modules, the mode-locked optical pulses are pre-chirped with 538 fs using two diffraction gratings. We successfully achieved THz radiation over 2.0 THz using the pre-chirped pulses. We successfully observed the various absorption lines of water vapor dips in the free space of 120 mm.

  18. High kappa Dielectrics on InGaAs and GaN: Growth, Interfacial Structural Studies, and Surface Fermi Level Unpinning

    DTIC Science & Technology

    2010-12-24

    nano-thick Al2O3, HfO2, and Ga2O3 (Gd2O3)/ InGaAs (and GaN) using high-resolution x-ray reflectivity using in-situ/ex-situ high-resolution synchrotron...aligned inversion-channel In0.75Ga0.25As MOSFETs using MBE- grown Al2O3/ Ga2O3 (Gd2O3) Chips integrating high κ’s/InGaAs and /Ge onto Si substrates have...using molecular beam epitaxy (MBE)-Al2O3/ Ga2O3 (Gd2O3) [GGO] and atomic layer deposited (ALD)-Al2O3, with gate lengths (LG) of 1 μm and 0.4 μm

  19. Bulk undercooling

    NASA Technical Reports Server (NTRS)

    Kattamis, T. Z.

    1984-01-01

    Bulk undercooling methods and procedures will first be reviewed. Measurement of various parameters which are necessary to understand the solidification mechanism during and after recalescence will be discussed. During recalescence of levitated, glass-encased large droplets (5 to 8 mm diam) high speed temperature sensing devices coupled with a rapid response oscilloscope are now being used at MIT to measure local thermal behavior in hypoeutectic and eutectic binary Ni-Sn alloys. Dendrite tip velocities were measured by various investigators using thermal sensors or high speed cinematography. The confirmation of the validity of solidification models of bulk-undercooled melts is made difficult by the fineness of the final microstructure, the ultra-rapid evolution of the solidifying system which makes measurements very awkward, and the continuous modification of the microstructure which formed during recalescence because of precipitation, remelting and rapid coarsening.

  20. InGaAs self-assembly quantum dot for high-speed 1300 nm electroabsorption modulator

    NASA Astrophysics Data System (ADS)

    Lin, Chuan-Han; Wu, Jui-pin; Kuo, Yu-zheng; Chiu, Yi-jen; Tzeng, T. E.; Lay, T. S.

    2011-05-01

    In this paper, a new type of high-speed electroabsorption modulator (EAM) based on quantum dot (QD) p-i-n heterostructure is demonstrated. The QD layers sandwiched by p-AlGaAs and n-AlGaAs are grown by multilayer InGaAs self-assembled QD with luminance wavelength of 1300 nm, serving as the active region of EAM. The photocurrent spectrum measurement exhibits a red shift of 15 nm in QD transition energy levels on biasing from 0 to 6 V. A quadratic relation of energy shift against the reversed bias is extracted, confirming the quantum-confined Stark effect (QCSE) in QD. On fabricating a 300 μm long EAM, as high as DC 5 dB extinction ratio by 6 V voltage swing at 1310 nm is observed. As compared with well-developed quantum well (QW) EAM (well thickness ∼10 nm) of the same length, the lower density of states still shows the same order of magnitude in extinction ratio, suggesting strong QCSE in such 3-dimensional confined QD. An electrical-to-optical conversion with -3 dB bandwidth of 3.3 GHz is also attained in such QD EAM, where the speed is mainly limited by the parasitic capacitance on substrate. It implies that through optimization of QD and device structures, the advantages of QD properties are quite promising to be used in high-speed optoelectronic fields.

  1. Time domain terahertz spectroscopy of semiconductor bulk and multiple quantum wells structures

    NASA Astrophysics Data System (ADS)

    Chen, Yue

    A time-domain terahertz spectroscopic system with high source power (average power > 10 nW) and high signal-to- noise ratio (>104) was developed and used to study ultrafast electronic processes in semiconductor structures. The physics of the spectroscopy, the theoretical basis of the interferometry, the model of the electron-electromagnetic field interaction, and the principle of experimental data processing are presented. The first direct measurement of the intervalley scattering time in In 0.53Ga0.47As was performed. The intervalley scattering time constants obtained were τLΓ = 35 fs and τLΓ = 450 fs. The spectroscopic data showed that at low carrier density the carrier- carrier scattering is unimportant. The intervalley deformation potential was obtained from the measured intervalley scattering time constant τ LΓ. The transient conductivity was obtained using time-domain terahertz spectroscopy. The frequency dependent terahertz spectroscopy enabled us to uniquely determine the transient mobility and density. The transient electron mobility is ~5200 cm2/Vs, which is less than the Hall mobility. For large photocarrier densities, this discrepancy is attributed to the additional momentum relaxation associated with electron-hole scattering. Using pump pulses with wavelength of 810 run, the electron trapping time in low-temperature-grown GaAs was accurately determined. The measured trapping time is slightly larger than that observed from a band-edge pump- probe measurements. We argue that the terahertz technique provides the most reliable measure of carrier lifetime due to the unique interaction. The carrier dynamics of low-temperature-grown InGaAs bulk and InGaAs/InAlAs multiple quantum wells were investigated. We were able to differentiate the two dominant mechanisms in the electron decay process, trapping and recombination. A trapping time as fast as 1.3-2.6 ps was observed for photo-excited electrons. The effects of Be-doping and growth temperature on the

  2. Characteristics of Monolithically Integrated InGaAs Active Pixel Imager Array

    NASA Technical Reports Server (NTRS)

    Kim, Q.; Cunningham, T. J.; Pain, B.; Lange, M. J.; Olsen, G. H.

    2000-01-01

    Switching and amplifying characteristics of a newly developed monolithic InGaAs Active Pixel Imager Array are presented. The sensor array is fabricated from InGaAs material epitaxially deposited on an InP substrate. It consists of an InGaAs photodiode connected to InP depletion-mode junction field effect transistors (JFETs) for low leakage, low power, and fast control of circuit signal amplifying, buffering, selection, and reset. This monolithically integrated active pixel sensor configuration eliminates the need for hybridization with silicon multiplexer. In addition, the configuration allows the sensor to be front illuminated, making it sensitive to visible as well as near infrared signal radiation. Adapting the existing 1.55 micrometer fiber optical communication technology, this integration will be an ideal system of optoelectronic integration for dual band (Visible/IR) applications near room temperature, for use in atmospheric gas sensing in space, and for target identification on earth. In this paper, two different types of small 4 x 1 test arrays will be described. The effectiveness of switching and amplifying circuits will be discussed in terms of circuit effectiveness (leakage, operating frequency, and temperature) in preparation for the second phase demonstration of integrated, two-dimensional monolithic InGaAs active pixel sensor arrays for applications in transportable shipboard surveillance, night vision, and emission spectroscopy.

  3. Microsecond-long lasing delays in thin P-clad InGaAs QW lasers

    SciTech Connect

    Wu, C.H.; Miester, C.F; Zory, P.S.; Emanuel, M.A.

    1996-06-01

    Microsecond-long lasing delays have been observed in wide-stripe, thin p-clad, InGaAs single quantum well (QW) lasers with ``thick`` p{sup +} cap layers. Computer modeling indicates that localized refractive index changes in the cap layer due to ohmic heating from the con- tact resistance may be the root cause.

  4. Development of a Quantum Dot, 0.6 eV InGaAs Thermophotovoltaic (TPV) Converter

    NASA Technical Reports Server (NTRS)

    Forbes, David; Sinharoy, Samar; Raffalle, Ryne; Weizer, Victor; Homann, Natalie; Valko, Thomas; Bartos,Nichole; Scheiman, David; Bailey, Sheila

    2007-01-01

    Thermophotovoltaic (TPV) power conversion has to date demonstrated conversion efficiencies exceeding 20% when coupled to a heat source. Current III-V semiconductor TPV technology makes use of planar devices with bandgaps tailored to the heat source. The efficiency can be improved further by increasing the collection efficiency through the incorporation of InAs quantum dots. The use of these dots can provide sub-gap absorption and thus improve the cell short circuit current without the normal increase in dark current associated with lowering the bandgap. We have developed self-assembled InAs quantum dots using the Stranski-Krastanov growth mode on 0.74 eV In0.53GaAs lattice-matched to InP and also on lattice-mismatched 0.6 eV In0.69GaAs grown on InP through the use of a compositionally graded InPAsx buffer structure, by metalorganic vapor phase epitaxy (MOVPE). Atomic force microscopy (AFM) measurements showed that the most reproducible dot pattern was obtained with 5 monolayers of InAs grown at 450 C. The lattice mismatch between InAs and In0.69GaAs is only 2.1%, compared to 3.2% between InAs and In0.53GaAs. The smaller mismatch results in lower strain, making dot formation somewhat more complicated, resulting in quantum dashes, rather than well defined quantum dots in the lattice-mismatched case. We have fabricated 0.6 eV InGaAs planer TPV cells with and without the quantum dashes

  5. Modulation of sub-threshold properties of InGaAs MOSFETs by La2O3 gate dielectrics

    NASA Astrophysics Data System (ADS)

    Chang, C.-Y.; Endo, K.; Kato, K.; Takenaka, M.; Takagi, S.

    2017-09-01

    We have found the ferroelectric-like characteristics in atomic layer deposition (ALD) La2O3 films with thermal budget lower than 300oC in polarization-electric field (P-E) and capacitance-gate voltage (C-V) measurements on W/La2O3/W and W/La2O3/InGaAs capacitors. The observed hysteresis and saturation of polarization in the P-E characteristics of the W/La2O3/W and the W/La2O3/InGaAs capacitors, and the counter-clockwise C-V hysteresis in the C-V curves of the W/La2O3/InGaAs capacitors suggest a possibility of ferroelectricity in the present La2O3 films. By using this gate stack, W/La2O3/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated in order to examine the negative capacitance (NC) effect due to La2O3. It is found that the sub-threshold swing (SS) of W/La2O3/InGaAs MOSFETs is lower at low temperature than the theoretical limit of MOSFETs. This result strongly suggests that the W/La2O3/InGaAs MOSFETs can work as a steep-slope III-V negative capacitance field-effect transistor (NCFET).

  6. Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera

    NASA Astrophysics Data System (ADS)

    Oh, W. Y.; Bouma, B. E.; Iftimia, N.; Yun, S. H.; Yelin, R.; Tearney, G. J.

    2006-01-01

    Full-field optical coherence microscopy (FFOCM) is an interferometric technique for obtaining wide-field microscopic images deep within scattering biological samples. FFOCM has primarily been implemented in the 0.8 μm wavelength range with silicon-based cameras, which may limit penetration when imaging human tissue. In this paper, we demonstrate FFOCM at the wavelength range of 0.9 - 1.4 μm, where optical penetration into tissue is presumably greater owing to decreased scattering. Our FFOCM system, comprising a broadband spatially incoherent light source, a Linnik interferometer, and an InGaAs area scan camera, provided a detection sensitivity of 86 dB for a 2 sec imaging time and an axial resolution of 1.9 μm in water. Images of phantoms, tissue samples, and Xenopus Laevis embryos were obtained using InGaAs and silicon camera FFOCM systems, demonstrating enhanced imaging penetration at longer wavelengths.

  7. Low-Cost InGaAs Detectors for Near-Infrared Imaging and Photometry

    NASA Astrophysics Data System (ADS)

    Sullivan, Peter; Croll, B.; Simcoe, R. A.

    2014-01-01

    Near-infrared detectors made from InGaAs should provide an alternative to HgCdTe that is particularly cost-effective for arrays of small telescopes or for covering large focal planes. Originally designed for night-vision equipment, these detectors can be suitable for astronomy if they support long, up-the-ramp exposures and are cooled sufficiently. We developed custom electronics to operate the FLIR APS640C detector in a camera with thermoelectric and chilled-water cooling. We achieved differential photometric precision of 500 ppm (0.5 mmag) hr^-1/2 observing J=7.7 stars with an effective telescope aperture of 0.25 m. Laboratory results from the latest generation of InGaAs detectors will be presented, and we discuss the limits to achieving background-limited performance in the Y, J, and H bands on 1 m - class telescopes.

  8. Parameterized nonuniformity corrections (NUC) for non-temperature stabilized InGaAs SWIR sensing

    NASA Astrophysics Data System (ADS)

    Battaglia, Jesse; Burzi, Vincent; Moyer, Bruce; Sudol, Thomas; Passe, Joseph

    2010-04-01

    Military applications for conventional InGaAs SWIR sensing have been limited by the requirement of thermoelectric cooler (TEC) temperature stabilization for nonuniformity correction (NUC). TEC operation restricts the operating temperature range and size, weight, and power (SWAP) of these systems. For battery-powered man portable and micro UAV applications elimination of the TEC is critical. This paper discusses the advantages of our non-TEC temperature parameterized NUC corrections algorithms versus TEC stabilized architectures. The corrections algorithms enable performance-tuned polynomial order correction of both pixel uniformity and temperature parameterization for each SWIR sensor. These advances enable SWIR InGaAs sensing to meet the SWAP requirements of next generation military applications.

  9. New InGaAs SWIR imaging solutions from III-VLab

    NASA Astrophysics Data System (ADS)

    Reverchon, J. L.; Decobert, J.; Huet, O.; Lagay, N.; Rouvie, A.; Robo, J. A.; Ni, Y.; Arion, B.; Noguier, V.; Zhu, Y. M.

    2011-11-01

    SWIR image sensors based on p-i-n photodiodes arrays present a tremendous interest in applications often requiring a high intra-scene dynamics. This paper describes a single-chip InGaAs SWIR camera with more than 120 dB intrinsic operational dynamic range with an innovative CMOS ROIC technology initially developed by New Imaging Technologies for visible CMOS camera chip. A simplified camera with on chip fixed pattern noise correction is presented. We also present the next generation of focal plane arrays (FPA) based on a VGA format of 640 x 512 pixels with a pitch of 15 μm. These FPAs are associated to a logarithmic wide dynamic range ROIC. We give the electro-optics performances and particularly the visible extension capabilities. This InGaAs VGA logarithmic single-chip camera allows a high resolution SWIR camera with minimized system complexity and low power consumption.

  10. Spectral imaging of O(2) infrared atmospheric airglow with an InGaAs array detector.

    PubMed

    Doushkina, V V; Wiens, R H; Thomas, P J; Peterson, R N; Shepherd, G G

    1996-11-01

    A linear InGaAs array was used in an interference filter spectral imager to monitor the twilight decay of the O(2) Infrared Atmospheric (0-1) band in the twilight airglow. The interference filter was centered at 1.582 μm and had a bandwidth (full width at half-maximum) of 1.0 nm. The imaging lens was a simple doublet, and a Fresnel lens was used for smearing any possible sky inhomogeneities. Spectra measured over Toronto in October 1994 show that the sensitivity and spectral discrimination against the contaminating OH spectrum are potentially sufficient to infer meaningful rotational temperatures. The improvements that would result from an area InGaAs array are discussed.

  11. Electrical and Optical Performance Characteristics of p/n InGaAs Monolithic Interconnected Modules

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fatemi, Navid S.; Jenkins, Phillip P.; Weizer, Victor G.; Hoffman, Richard W., Jr.; Murray, Christopher S.; Riley, David R.

    1997-01-01

    There has been a traditional trade-off in ThermoPhotoVoltaic (TPV) energy conversion development between system efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A Monolithic Interconnected Module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual Indium Gallium Arsenide (InGaAs) devices series-connected on a single semi-insulating Indium Phosphide (InP) substrate. The MIMs are exposed to the entire emitter output, thereby maximizing output power density. An InfraRed (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight (8) series interconnected cells. MIM devices, produced from 0.74eV InGaAs, have demonstrated V(sub infinity) = 3.2 volts, J(sub sc) = 70 mA/sq cm and a fill factor of 66% under flashlamp testing. IR reflectance measurements (greater than 2 microns) of these devices indicate a reflectivity of greater than 82%. MIM devices produced from 0.55 eV InGaAs have also been demonstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM0) have been demonstrated.

  12. InGaAs focal plane array developments at III-V Lab

    NASA Astrophysics Data System (ADS)

    Rouvié, Anne; Reverchon, Jean-Luc; Huet, Odile; Djedidi, Anis; Robo, Jean-Alexandre; Truffer, Jean-Patrick; Bria, Toufiq; Pires, Mauricio; Decobert, Jean; Costard, Eric

    2012-06-01

    SWIR detection band benefits from natural (sun, night glow, thermal radiation) or artificial (eye safe lasers) photons sources combined to low atmospheric absorption and specific contrast compared to visible wavelengths. It gives the opportunity to address a large spectrum of applications such as defense and security (night vision, active imaging), space (earth observation), transport (automotive safety) or industry (non destructive process control). InGaAs material appears as a good candidate to satisfy SWIR detection needs. The lattice matching with InP constitutes a double advantage to this material: attractive production capacity and uncooled operation thanks to low dark current level induced by high quality material. For few years, III-VLab has been studying InGaAs imagery, gathering expertise in InGaAs material growth and imaging technology respectively from Alcatel-Lucent and Thales, its two mother companies. This work has lead to put quickly on the market a 320x256 InGaAs module, exhibiting high performances in terms of dark current, uniformity and quantum efficiency. In this paper, we present the last developments achieved in our laboratory, mainly focused on increasing the pixels number to VGA format associated to pixel pitch decrease (15μm) and broadening detection spectrum toward visible wavelengths. Depending on targeted applications, different Read Out Integrated Circuits (ROIC) have been used. Low noise ROIC have been developed by CEA LETI to fit the requirements of low light level imaging whereas logarithmic ROIC designed by NIT allows high dynamic imaging adapted for automotive safety.

  13. InGaAs concentrator cells for laser power converters and tandem cells

    NASA Technical Reports Server (NTRS)

    Wojtczuk, S.; Vernon, S.; Gagnon, E.

    1993-01-01

    In(0.53)Ga(0.47)As N-on-P concentrator cells were made as part of an effort to develop 1.315 micron laser power converters. The 1.315 micron laser power conversion efficiency was estimated as 29.4 percent (at 5.57 W/cm(sup 2)) based on an 86 percent measured external quantum efficiency at 1.315 microns, and a measured open circuit voltage (484 mV), and fill-factor (67 percent) at the equivalent AM0 short-circuit photocurrent (5.07 A/cm(sup 2)). A 13.5 percent percent AMO efficiency was achieved at 89 suns and 25 C. Measured one-sun and 100-sun AMO efficiency, log I-V analysis, and quantum efficiency are presented for InGaAs cells with and without InP windows to passivate the front surface. Windowed cells performed better at concentration than windowless cells. Lattice mismatch between InGaAs epilayers and InP substrate was less than 800 ppm. Theoretical efficiency is estimated for 1.315 microns laser power converters versus the bandgap energy. Adding aluminum to InGaAs to form In(x)Al(y)Ga(1-x-y)As is presented as a way to achieve an optimal bandgap for 1.315 microns laser power conversion.

  14. Conceptual design of wide-field focal plane with InGaAs image sensors

    NASA Astrophysics Data System (ADS)

    Komiyama, Y.; Nakaya, H.; Kashikawa, N.; Uchida, T.

    2016-08-01

    We present a conceptual design to implement wide-field focal plane assembly with InGaAs image sensors which are being tested intensively and reveled to be promising for astronomical use. InGaAs image sensors are sensitive up to 1.7 microns and would open a new window for the wide-field near-infrared (NIR) imaging survey once large format sensors are developed. The sensors are not necessarily cooled down to below 100 K, which is the case for prevailing NIR image sensors such as HgCdTe, enabling us to develop the NIR camera based on the technique developed for the CCD camera in optical wavelength. The major technical challenges to employ InGaAS image sensors for wide-field NIR camera are implementation of focal plane assembly and thermal design. In this article, we discuss these difficulties and show how we can conquer based on our experience to build Hyper Suprime-Cam, which is a wide-field imager with 116 2k4k CCDs attached to Subaru Telescope.

  15. n/p/n Tunnel Junction InGaAs Monolithic Interconnected Module (MIM)

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Murray, Christopher S.; Fatemi, Navid S.; Weizer, Victor

    2005-01-01

    The Monolithic Interconnected Module (MIM), originally introduced at the First NREL thermophotovoltaic (TPV) conference, consists of low-bandgap indium gallium arsenide (InGaAs) photovoltaic devices, series interconnected on a common semi-insulating indium phosphide (inP) substrate. An infrared reflector is deposited on the back surface of the substrate to reflect photons, which were not absorbed in the first pass through the structure. The single largest optical loss in the current device occurs int he heavily doped p-type emitter. A new MIM design (pat.pend.) has been developed which flips the polarity of the conventional MIM cell (i.e., n/p rather than p/n), eliminating the need for the high conductivity p-type emitter. The p-type base of the cell is connected to the n-type lateral conduction layer through a thin InGaAs tunnel junction. 0.58 eV and 0.74 eV InGaAs devices have demonstrated reflectances above 90% for wavelengths beyond the bandgap (greater than 95% for unprocessed structures). Electrical measurements indicate minimal voltage drops across the tunnel junction (less than mV/junction under 1200K-blackbody illumnination) and fill factors that are above 70% at current densities (J(sub sc)) above 8 Angstroms per square centimeters for the 0.74eV devices.

  16. Electron-beam-induced current and cathodoluminescence characterization of InGaAs strain-balanced multiquantum well photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Tundo, Stefania; Mazzer, Massimo; Nasi, Lucia; Lazzarini, Laura; Salviati, Giancarlo; Rohr, Carsten; Abbott, Paul; Bushnell, David B.; Barnham, Keith W. J.; Clarke, Graham; Peng, Ruwen

    2003-11-01

    InxGa1-xAs/InyGa1-yAs strain-balanced quantum well cells (QWCs) have been shown to be beneficial for photovoltaic applications in particular to extend the light absorption edge of a single-junction cell toward the near infrared with a lower reduction of the open-circuit voltage compared to a single band-gap cell. The strain-balancing condition ensures that the multi-quantum well as a whole does not relax. However, if the mismatch between wells and barriers exceeds a critical limit, the structure becomes vulnerable to morphological or compositional fluctuations, which can lead to a local structural breakdown with the generation of extended defects of a completely different nature from misfit dislocations. In this work, we investigated a series of strain-balanced InGaAs QWCs grown on InP for thermophotovoltaic applications by means of electron-beam-induced current (EBIC) and cathodoluminescence (CL) measurements. Despite being electrically active, these defects appear to have a minor impact on the dark current of the cells but cause a drop of the photocurrent at relatively low forward bias voltage. The higher carrier collection efficiency revealed both by EBIC and CL at the boundaries of the defects suggests that a notch in the valence band edge limits the collection of holes generated in the MQW and the energy states, induced by the defects inside the energy gap, assist the tunneling of holes through the notch. At zero bias, the overall reduction of the collection efficiency is of the order of a few percent but the rate of recombination of photogenerated carriers increases dramatically with increasing forward-bias voltage as the junction built-in field drops more rapidly where the density of in-gap states is higher.

  17. Growth, microstructure, and luminescent properties of direct-bandgap InAlP on relaxed InGaAs on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Mukherjee, K.; Beaton, D. A.; Christian, T.; Jones, E. J.; Alberi, K.; Mascarenhas, A.; Bulsara, M. T.; Fitzgerald, E. A.

    2013-05-01

    Direct-bandgap InAlP alloy has the potential to be an active material in nitride-free yellow-green and amber optoelectronics with applications in solid-state lighting, display devices, and multi-junction solar cells. We report on the growth of high-quality direct-bandgap InAlP on relaxed InGaAs graded buffers with low threading dislocation densities. Structural characterization reveals phase-separated microstructures in these films which have an impact on the luminescence spectrum. While similar to InGaP in many ways, the greater tendency for phase separation in InAlP leads to the simultaneous occurrence of compositional inhomogeneity and CuPt-B ordering. Mechanisms connecting these two structural parameters are presented as well as results on the effect of silicon and zinc dopants on homogenizing the microstructure. Spontaneous formation of tilted planes of phase-separated material, with alternating degrees of ordering, is observed when InAlP is grown on vicinal substrates. The photoluminescence peak-widths of these films are actually narrower than those grown on exact (001) substrates. We find that, despite phase-separation, ordered direct-bandgap InAlP is a suitable material for optoelectronics.

  18. Enhancement in device performance of hepta-layer coupled InGaAs quantum dot infrared detector by AuGe surface plasmons

    NASA Astrophysics Data System (ADS)

    Pandey, Sushil Kumar; Tyagi, Lavi; Ghadi, Hemant; Rawool, Harshal; Chakrabarti, Subhananda

    2016-09-01

    In this work, we have studied the effect of AuGe alloy nanoparticles deposition on properties of molecular beam epitaxy grown heptalayer coupled InGaAs 5.25 mono-layer quantum-dots (QDs) samples. AuGe 12 nm film was deposited using electron beam evaporator on these samples which were later annealed at 300 °C to create AuGe nanoparticles. SEM measurement confirms formation of AuGe nanoparticles which support surface Plasmon modes. The PL spectra at 20K confirms maximum enhancement of 53% in intensity of peak at ̴̴ 1123 nm for 300 °C annealed sample in comparison to as-grown (without nanoparticle) sample. Single pixel detectors were fabricated from asgrown and 300°C annealed nanoparticle sample using two level lithography and wet etching process. We have observed two-order and one-order augmentation in responsivity and detectivity from device having nanoparticles compared to the as-grown respectively at 80K. Peak detectivity of 4.2×107cm.Hz 1/2/W at 80K was observed for device having nanoparticles. Around 30% increment in spectral response having peak around 5μm at -1V bias for device having AuGe nanoparticles compared to the as-grown device was observed. The observed enhancement is due to increase light trapping or light scattering into the device by nanoparticles. Demonstration of this plasmonic-based detector will move forward the development of high-performance infrared QDs detectors.

  19. The development of InGaAs short wavelength infrared focal plane arrays with high performance

    NASA Astrophysics Data System (ADS)

    Li, Xue; Gong, Haimei; Fang, Jiaxiong; shao, Xiumei; Tang, Hengjing; Huang, Songlei; Li, Tao; Huang, Zhangcheng

    2017-01-01

    High performance, various specifications InGaAs focal plane arrays(FPAs) were studied in Shanghai Institute of Technical Physics (SITP). On the one hand, the typical linear 256 × 1, 512 × 1 and 1024 × 1 FPAs were obtained for response wavelengths from 0.9 μm to 1.7 μm. The typical 320 × 256 FPAs and special sizes 512 × 128, 512 × 256 FPAs for the near infrared multi-spectral imaging were studied. The performance of InGaAs FPAs from 0.9 μm to 1.7 μm has improved enormously. The average peak detectivity, the response non-uniformity and non-operable pixel of the FPAs are superior to 3 × 1012 cm Hz1/2/W, 5% and 1% at the room temperature. On the other hand, the development of the extended InGaAs FPAs was also focused in SITP. The dark current of InGaAs detectors with the response wavelength from 1.0 μm to 2.5 μm decreases to about 10 nA/cm2 at 200 K. The dark current mechanisms for extended InGaAs detectors were studied by P/A photodiodes. The special sizes 512 × 256 FPAs has been fabricated since 2011. The average peak detectivity, the response non-uniformity and non-operable pixel of the FPAs are superior to 5 × 1011 cm Hz1/2/W, 8% and 2% at 200 K. In order to verify the performance of FPAs, the short wavelength infrared lens was used to form optical imaging system. The buildings, water, trees are sharply imaged by 320 × 256 FPAs with 0.9-1.7 μm wavelength and 512 × 1 FPAs with 0.9-2.5 μm wavelength at about hundreds of meters distance as target at daylight.

  20. Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires.

    PubMed

    Kim, Yong; Joyce, Hannah J; Gao, Qiang; Tan, H Hoe; Jagadish, Chennupati; Paladugu, Mohanchand; Zou, Jin; Suvorova, Alexandra A

    2006-04-01

    We have synthesized ternary InGaAs nanowires on (111)B GaAs surfaces by metal-organic chemical vapor deposition. Au colloidal nanoparticles were employed to catalyze nanowire growth. We observed the strong influence of nanowire density on nanowire height, tapering, and base shape specific to the nanowires with high In composition. This dependency was attributed to the large difference of diffusion length on (111)B surfaces between In and Ga reaction species, with In being the more mobile species. Energy dispersive X-ray spectroscopy analysis together with high-resolution electron microscopy study of individual InGaAs nanowires shows large In/Ga compositional variation along the nanowire supporting the present diffusion model. Photoluminescence spectra exhibit a red shift with decreasing nanowire density due to the higher degree of In incorporation in more sparsely distributed InGaAs nanowires.

  1. Passivation of carbon acceptors during growth of carbon-doped GaAs, InGaAs, and HBTs by MOCVD

    SciTech Connect

    Stockman, S.A.; Hanson, A.W.; Lichtenthal, S.M.; Fresina, M.T.; Hoefler, G.E.; Hsieh, K.C.; Stillman, G.E. )

    1992-12-01

    Carbon doped p-type GaAs and In[sub 0.53]Ga[sub 0.47]As epitaxial layers were grown by low-pressure metalorganic chemical vapor deposition using CCl[sub 4] as the carbon source. Low-temperature post-growth annealing resulted in a significant increase in the hole concentration for both GaAs and In[sub 0.53]Ga[sub 0.47]As, especially at high doping levels. The most heavily doped GaAs sample had a hole concentration of 3.6 [times] 10[sup 20] cm[sup [minus]3] after a 5 minute anneal at approximately 400[degree]C in N[sub 2], while the hole concentration in In[sub 0.53]Ga[sub 0.47]As reached 1.6 [times] 10[sup 19] cm[sup [minus]3] after annealing. This behavior is attributed to hydrogen passivation of carbon acceptors. Post-growth cool-down in an AsH[sub 3]/H[sub 2] ambient was found to be the most important factor affecting the degree of passivation for single, uncapped GaAs layers. No evidence of passivation is observed in the base region of InGaP/GaAs HBTs grown at approximately 625[degree]C. The effect of n-type cap layers and cool-down sequence on passivation of C-doped InGaAs grown at approximately 525[degree] shows that hydrogen can come from AsH[sub 3], PH[sub 3], or H[sub 2], and can be incorporated during growth and post-growth cool-down. In the case of InP/InGaAs HBTs, significant passivation was found to occur in the C-doped base region. 28 refs., 5 figs., 2 tabs.

  2. Readout characteristics of integrated monolithic InGaAs active pixel sensor array

    NASA Astrophysics Data System (ADS)

    Kim, Quiesup; Cunningham, Thomas J.; Pain, Bedabrata; Lange, Michael J.; Olsen, Gregory H.

    1997-12-01

    A newly fabricated monolithic InGaAs active pixel image sensor is presented, and its readout characteristics are described. The sensor is fabricated from InGaAs epitaxially deposited on an InP substrate. It consists of an InGaAs photodiode connected to InP depletion-mode junction field effect transistors (JFETs) for signal buffering, selection and reset. The monolithic sensor eliminates the need for hybridization with a silicon multiplexer, and in addition, allows the sensor to be front illuminated, making it sensitive to visible as well as IR radiation. With further development, the sensor is ideal for dual band (visible/IR) applications, including optical communication. It is also well suited to applications requiring near room temperature, broad band response such as for atmospheric gas sensing and target identification. Two different types of small 4 by 1 test arrays have been fabricated. One is a source follower per detector architecture. Here the signal charge is integrated on the photodiode capacitance. The photodiode is connected to a gate of a JFET configured as a source-follower, which buffers the photodiode voltage. The other test circuit uses a capacitive transimpedance amplifier. This circuit contains an invertor using an input JFET with a passive JFET load. The photodiode is connected to the JFET gate. A feedback capacitor causes the circuit to act as an integrator, while keeping the diode input bias relatively constant. Both circuits also contain JFET switches for reset and selection. Selection connects the output of the chosen cell onto a common output bus. In this exploratory development effort, the effectiveness of these two different readout circuits will be discussed in terms of leakage, operating frequency, and temperature. These results then will guide for the second phase demonstration of integrated two dimensional monolithic active pixel sensor arrays for application in transportable shipboard surveillance, night vision and emission

  3. Low temperature performance of a commercially available InGaAs image sensor

    NASA Astrophysics Data System (ADS)

    Nakaya, Hidehiko; Komiyama, Yutaka; Kashikawa, Nobunari; Uchida, Tomohisa; Nagayama, Takahiro; Yoshida, Michitoshi

    2016-08-01

    We report the evaluation results of a commercially available InGaAs image sensor manufactured by Hamamatsu Photonics K. K., which has sensitivity between 0.95μm and 1.7μm at a room temperature. The sensor format was 128×128 pixels with 20 μm pitch. It was tested with our original readout electronics and cooled down to 80 K by a mechanical cooler to minimize the dark current. Although the readout noise and dark current were 200 e- and 20 e- /sec/pixel, respectively, we found no serious problems for the linearity, wavelength response, and intra-pixel response.

  4. InGaAs quantum dot molecules around self-assembled GaAs nanomound templates

    SciTech Connect

    Lee, J. H.; Wang, Zh. M.; Strom, N. W.; Mazur, Yu. I.; Salamo, G. J.

    2006-11-13

    Several distinctive self-assembled InGaAs quantum dot molecules (QDMs) are studied. The QDMs self-assemble around nanoscale-sized GaAs moundlike templates fabricated by droplet homoepitaxy. Depending on the specific InAs monolayer coverage, the number of QDs per GaAs mound ranges from two to six (bi-QDMs to hexa-QDMs). The Ga contribution from the mounds is analyzed in determining the morphologies of the QDMs, with respect to the InAs coverages ranging between 0.8 and 2.4 ML. Optical characterization shows that the resulting nanostructures are high-quality nanocrystals.

  5. Extended short-wavelength spectral response from InGaAs focal plane arrays

    NASA Astrophysics Data System (ADS)

    Hoelter, Theodore R.; Barton, Jeffrey B.

    2003-09-01

    InGaAs detector material used in near infrared focal plane arrays (NIR FPAs) has typically been limited in spectral response to a range from approximately 900 nm to 1700 nm. Through special processing techniques, the spectral response can be extended down through the visible spectrum and into the ultraviolet. Test results showing preliminary spectral response from 350nm to 1700 nm, responsivity, sensitivity, corrected uniformity and simultaneous imaging of NIR and visible signals will be presented along with a discussion of anticipated applications for this new sensor technology.

  6. Hydrodynamic study of terahertz three-dimensional plasma resonances in InGaAs diodes

    NASA Astrophysics Data System (ADS)

    Ziadé, Pierre; Kallassy, Ziad; Marinchio, Hugues; Sabatini, Giulio; Palermo, Christophe; Varani, Luca

    2009-11-01

    We investigate the presence of plasma resonances in InGaAs diodes under different optical excitation conditions. In particular, we study the case of diodes submitted to an optical photoexcitation presenting a beating in the terahertz frequency domain. The responses of the diodes are calculated using a hydrodynamic approach coupled to a one-dimensional Poisson solver. The results show clearly the presence of three-dimensional plasma resonances in the terahertz frequency domain. We also show that the resonances frequency and amplitude can be tuned by modifying the diode geometry and doping profile.

  7. Extremely low nonalloyed and alloyed contact resistance using an InAs cap layer on InGaAs by molecular-beam epitaxy

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Chen, J.; Chyi, J.; Morkoc, H.

    1988-01-01

    Extremely low alloyed and nonalloyed ohmic contact resistances have been formed on n-type InAs/In(0.53)Ga(0.47)As/In(0.52)Al(0.48)As structures grown on InP(Fe) by molecular-beam epitaxy. To insure the accuracy of the small contact resistances measured, an extended transmission line model was used to extrapolate contact resistances from test patterns with multiple gap spacings varying from 1 to 20 microns. For a 150-A-thick InAs layer doped to 2 x 10 to the 18th/cu cm and a 0.1-micron-thick InGaAs layer doped to 1 x 10 to the 18th/cu cm, a specific contact resistance of 2.6 x 10 to the -8th ohm-asterisk sq cm was measured for the nonalloyed contact, while a resistance less than 1.7 x 10 to the -8th ohm-asterisk sq cm is reported for the alloyed contact. Conventional Au-Ge/Ni/Au was used for the ohmic metal contact and alloying was performed at 500 C for 50 s in flowing H2. Using a thermionic field emission model, the barrier height at the InAs/InGaAs interface was calculated to be 20 meV.

  8. Synthesis and characterizations of ternary InGaAs nanowires by a two-step growth method for high-performance electronic devices.

    PubMed

    Hou, Jared J; Han, Ning; Wang, Fengyun; Xiu, Fei; Yip, Senpo; Hui, Alvin T; Hung, TakFu; Ho, Johnny C

    2012-04-24

    InAs nanowires have been extensively studied for high-speed and high-frequency electronics due to the low effective electron mass and corresponding high carrier mobility. However, further applications still suffer from the significant leakage current in InAs nanowire devices arising from the small electronic band gap. Here, we demonstrate the successful synthesis of ternary InGaAs nanowires in order to tackle this leakage issue utilizing the larger band gap material but at the same time not sacrificing the high electron mobility. In this work, we adapt a two-step growth method on amorphous SiO(2)/Si substrates which significantly reduces the kinked morphology and surface coating along the nanowires. The grown nanowires exhibit excellent crystallinity and uniform stoichiometric composition along the entire length of the nanowires. More importantly, the electrical properties of those nanowires are found to be remarkably impressive with I(ON)/I(OFF) ratio >10(5), field-effect mobility of ∼2700 cm(2)/(V·s), and ON current density of ∼0.9 mA/μm. These nanowires are then employed in the contact printing and achieve large-scale assembly of nanowire parallel arrays which further illustrate the potential for utilizing these high-performance nanowires on substrates for the fabrication of future integrated circuits.

  9. Noise characteristics analysis of short wave infrared InGaAs focal plane arrays

    NASA Astrophysics Data System (ADS)

    Yu, Chunlei; Li, Xue; Yang, Bo; Huang, Songlei; Shao, Xiumei; Zhang, Yaguang; Gong, Haimei

    2017-09-01

    The increasing application of InGaAs short wave infrared (SWIR) focal plane arrays (FPAs) in low light level imaging requires ultra-low noise FPAs. This paper presents the theoretical analysis of FPA noise, and point out that both dark current and detector capacitance strongly affect the FPA noise. The impact of dark current and detector capacitance on FPA noise is compared in different situations. In order to obtain low noise performance FPAs, the demand for reducing detector capacitance is higher especially when pixel pitch is smaller, integration time is shorter, and integration capacitance is larger. Several InGaAs FPAs were measured and analyzed, the experiments' results could be well fitted to the calculated results. The study found that the major contributor of FPA noise is coupled noise with shorter integration time. The influence of detector capacitance on FPA noise is more significant than that of dark current. To investigate the effect of detector performance on FPA noise, two kinds of photodiodes with different concentration of the absorption layer were fabricated. The detectors' performance and noise characteristics were measured and analyzed, the results are consistent with that of theoretical analysis.

  10. Multifunction InGaAs detector with on-chip signal processing

    NASA Astrophysics Data System (ADS)

    Shkedy, Lior; Fraenkel, Rami; Fishman, Tal; Giladi, Avihoo; Bykov, Leonid; Grimberg, Ilana; Ilan, Elad; Vaserman, Shay; Koifman, Alina

    2013-06-01

    Advanced electro-optical systems are designed towards a more compact, low power, and low cost solution with respect to traditional systems. Integration of several components or functionalities, such as infrared imager, laser designator, laser range finder (LRF), into one multi-function detector serves this trend. SNIR Read-Out Integrated Circuit (ROIC) incorporates this high level of signal processing and with relatively low power consumption. In this paper we present measurement results from a Focal Plane Array (FPA) where the SNIR ROIC is Flip-Chip bonded to a 15µm pitch VGA InGaAs detector array. The FPA is integrated into a metallic vacuum sealed package. We present InGaAs arrays with dark current density below 1.5 nA/cm2 at 280K (typically 1fA), Quantum Efficiency higher than 80% at 1550 nm and operability better than 99.5%. The metallic package is integrated with a low power proximity electronics which delivers Camera Link output. The overall power dissipation is less than 1W, not including Thermal-Electric Cooling (TEC), which is required in some applications. The various active and passive operation modes of this detector will be reviewed. Specifically, we concentrate on the "high gain" mode with low readout noise for Low Light Level imaging application. Another promising feature is the Asynchronous Laser Pulse Detection (ALPD) with remarkably low detection thresholds.

  11. Near-infrared InGaAs detectors for background-limited imaging and photometry

    NASA Astrophysics Data System (ADS)

    Sullivan, Peter W.; Croll, Bryce; Simcoe, Robert A.

    2014-07-01

    Originally designed for night-vision equipment, InGaAs detectors are beginning to achieve background-limited performance in broadband imaging from the ground. The lower cost of these detectors can enable multi-band instruments, arrays of small telescopes, and large focal planes that would be uneconomical with high-performance HgCdTe detectors. We developed a camera to operate the FLIR AP1121 sensor using deep thermoelectric cooling and up-the-ramp sampling to minimize noise. We measured a dark current of 163 e- s-1 pix-1, a read noise of 87 e- up-the-ramp, and a well depth of 80k e-. Laboratory photometric testing achieved a stability of 230 ppm hr-1/2, which would be required for detecting exoplanet transits. InGaAs detectors are also applicable to other branches of near-infrared time-domain astronomy, ranging from brown dwarf weather to gravitational wave follow-up.

  12. Buffer Layer Effects on Tandem InGaAs TPV Devices

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Wehrer, Rebecca J.; Maurer, William F.

    2004-01-01

    Single junction indium gallium arsenide (InGaAs) based TPV devices have demonstrated efficiencies in excess of 20% at radiator temperatures of 1058 C. Modeling suggests that efficiency improvements in single bandgap devices should continue although they will eventually plateau. One approach for extending efficiencies beyond the single bandgap limit is to follow the technique taken in the solar cell field, namely tandem TPV cells. Tandem photovoltaic devices are traditionally composed of cells of decreasing bandgap, connected electrically and optically in series. The incident light impinges upon the highest bandgap first. This device acts as a sieve, absorbing the high-energy photons, while allowing the remainder to pass through to the underlying cell(s), and so on. Tandem devices reduce the energy lost to overexcitation as well as reducing the current density (Jsc). Reduced Jsc results in lower resistive losses and enables the use of thinner and lower doped lateral current conducting layers as well as a higher pitch grid design. Fabricating TPV tandem devices utilizing InGaAs for all of the component cells in a two cell tandem necessitates the inclusion of a buffer layer in-between the high bandgap device (In0.53 Ga0.47As - 0.74eV) and the low bandgap device (In0.66Ga0.34As - 0.63eV) to accommodate the approximately 1% lattice strain generated due to the change in InGaAs composition. To incorporate only a single buffer layer structure, we have investigated the use of the indium phosphide (InP) substrate as a superstrate. Thus the high-bandgap, lattice- matched device is deposited first, followed by the buffer structure and the low-bandgap cell. The near perfect transparency of the high bandgap (1.35eV) iron-doped InP permits the device to be oriented such that the light enters through the substrate. In this paper we examine the impact of the buffer layer on the underlying lattice-matched InGaAs device. 0.74eV InGaAs devices were produced in a variety of

  13. Buffer Layer Effects on Tandem InGaAs TPV Devices

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Wehrer, Rebecca J.; Maurer, William F.

    2004-01-01

    Single junction indium gallium arsenide (InGaAs) based TPV devices have demonstrated efficiencies in excess of 20% at radiator temperatures of 1058 C. Modeling suggests that efficiency improvements in single bandgap devices should continue although they will eventually plateau. One approach for extending efficiencies beyond the single bandgap limit is to follow the technique taken in the solar cell field, namely tandem TPV cells. Tandem photovoltaic devices are traditionally composed of cells of decreasing bandgap, connected electrically and optically in series. The incident light impinges upon the highest bandgap first. This device acts as a sieve, absorbing the high-energy photons, while allowing the remainder to pass through to the underlying cell(s), and so on. Tandem devices reduce the energy lost to overexcitation as well as reducing the current density (Jsc). Reduced Jsc results in lower resistive losses and enables the use of thinner and lower doped lateral current conducting layers as well as a higher pitch grid design. Fabricating TPV tandem devices utilizing InGaAs for all of the component cells in a two cell tandem necessitates the inclusion of a buffer layer in-between the high bandgap device (In0.53 Ga0.47As - 0.74eV) and the low bandgap device (In0.66Ga0.34As - 0.63eV) to accommodate the approximately 1% lattice strain generated due to the change in InGaAs composition. To incorporate only a single buffer layer structure, we have investigated the use of the indium phosphide (InP) substrate as a superstrate. Thus the high-bandgap, lattice- matched device is deposited first, followed by the buffer structure and the low-bandgap cell. The near perfect transparency of the high bandgap (1.35eV) iron-doped InP permits the device to be oriented such that the light enters through the substrate. In this paper we examine the impact of the buffer layer on the underlying lattice-matched InGaAs device. 0.74eV InGaAs devices were produced in a variety of

  14. Investigation of stress induced interface states in Al2O3/InGaAs metal-oxide-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Palumbo, F.; Winter, R.; Tang, K.; McIntyre, P. C.; Eizenberg, M.

    2017-05-01

    Implementation of high-k dielectrics on InGaAs for CMOS technology requires capabilities to predict long-time degradation and the impact of process changes on degradation processes. In this work, the degradation under constant voltage stress of metal gate/Al2O3/InGaAs stacks is studied for n-type and p-type As2 passivated InGaAs substrates. The results show that the degradation for both positive bias and negative bias did not produce Al2O3 oxide traps, while the distribution of interface states increased. In particular, the distribution of interface states, calculated by the distributed impedance equivalent circuit model, increased significantly after positive bias stress regardless of the doping type of the substrate. The injection of carriers from the semiconductor conduction band into the gate dielectric enhanced the generation of interface states but not the generation of oxide traps, suggesting that the interfacial degradation is related primarily to the InGaAs surface and not to the oxide layer.

  15. Short wave infrared InGaAs focal plane arrays detector: the performance optimization of photosensitive element

    NASA Astrophysics Data System (ADS)

    Gao, Xin-jiang; Tang, Zun-lie; Zhang, Xiu-chuan; Chen, Yang; Jiang, Li-qun; Cheng, Hong-bing

    2009-07-01

    Significant progress has been achieved in technology of the InGaAs focal plane arrays (FPA) detector operating in short wave infrared (SWIR) last two decades. The no cryogenic cooling, low manufacturing cost, low power, high sensitivity and maneuverability features inherent of InGaAs FPA make it as a mainstream SWIR FPA in a variety of critical military, national security, aerospace, telecommunications and industrial applications. These various types of passive image sensing or active illumination image detecting systems included range-gated imaging, 3-Dimensional Ladar, covert surveillance, pulsed laser beam profiling, machine vision, semiconductor inspection, free space optical communications beam tracker, hyperspectroscopy imaging and many others. In this paper the status and perspectives of hybrid InGaAs FPA which is composed of detector array (PDA) and CMOS readout integrate circuit (ROIC) are reviewed briefly. For various low light levels applications such as starlight or night sky illumination, we have made use of the interface circuit of capacitive feedback transimpedance amplifier (CTIA) in which the integration capacitor was adjustable, therefore implements of the physical and electrical characteristics matches between detector arrays and readout intergrate circuit was achieved excellently. Taking into account the influences of InGaAs detector arrays' optoelectronic characteristics on performance of the FPA, we discussed the key parameters of the photodiode in detailed, and the tradeoff between the responsivity, dark current, impedance at zero bias and junction capacitance of photosensitive element has been made to root out the impact factors. As a result of the educed approach of the photodiode's characteristics optimizing which involve with InGaAs PDA design and process, a high performance InGaAs FPA of 30um pixel pitch and 320×256 format has been developed of which the response spectrum range over 0.9um to 1.7um, the mean peak detectivity (λ=1.55

  16. Rotary bulk solids divider

    DOEpatents

    Maronde, Carl P.; Killmeyer, Jr., Richard P.

    1992-01-01

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  17. ROTARY BULK SOLIDS DIVIDER

    DOEpatents

    Maronde, Carl P.; Killmeyer JR., Richard P.

    1992-03-03

    An apparatus for the disbursement of a bulk solid sample comprising, a gravity hopper having a top open end and a bottom discharge end, a feeder positioned beneath the gravity hopper so as to receive a bulk solid sample flowing from the bottom discharge end, and a conveyor receiving the bulk solid sample from the feeder and rotating on an axis that allows the bulk solid sample to disperse the sample to a collection station.

  18. Negative differential resistance of InGaAs dual channel transistors

    NASA Astrophysics Data System (ADS)

    Sugaya, T.; Yamane, T.; Hori, S.; Komori, K.; Yonei, K.

    2006-05-01

    We demonstrate a new type of velocity modulation transistor (VMT) with an InGaAs dual channel structure fabricated on an InP (001) substrate. The dual channel structure consists of a high mobility 10 nm In0.53Ga0.47As quantum well, a 2 nm In0.52Al0.48As barrier layer, and a low mobility 1 nm In0.26Ga0.74As quantum well. The VMTs have a negative differential resistance (NDR) effect with a low source-drain voltage of 0.38 V. The NDR characteristics can be clearly seen in the temperature range of 50 to 220 K with a gate voltage of 5 V. The NDR mechanism is thought to be the carrier transfer from the high mobility to the low mobility channels. Three-terminal VMTs are favorable for applications to highfrequency, high-speed, and low-power consumption devices.

  19. InGaAs PV Device Development for TPV Power Systems

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fatemi, Navid S.; Hoffman, Richard W., Jr.; Jenkins, Phillip P.; Scheiman, David; Lowe, Roland; Landis, Geoffrey A.

    1994-01-01

    Indium gallium arsenide (InGaAs) photovoltaic devices have been fabricated with bandgaps ranging from 0.75 eV to 0.60 eV on Indium Phosphide (InP) substrates. Reported efficiencies have been as high as 11.2 percent (AMO) for the lattice matched 0.75 eV devices. The 0.75 eV cell demonstrated 14.8 percent efficiency under a 1500 K blackbody with a projected efficiency of 29.3 percent. The lattice mismatched devices (0.66 and 0.60 eV) demonstrated measured efficiencies of 8 percent and 6 percent respectively under similar conditions. Low long wavelength response and high dark currents are responsible for the poor performance of the mismatched devices. Temperature coefficients have been measured and are presented for all of the bandgaps tested.

  20. InGaAs communication photodiodes: from low to high power level designs

    NASA Astrophysics Data System (ADS)

    Achouche, M.

    2009-01-01

    While InGaAs absorption material has been used for various applications up to 1.6μm wavelength, specific designs for low level detection have become of main interest using high responsivity and low dark current detectors. By adding an avalanche multiplication layer to form an avalanche photodiode (APD) using the Separated Absorption and Multiplication (SAM) structure, one can take advantage of the very low noise properties of multiplication process in large bandgap Al(Ga)(In)As material to improve receiver sensitivity by >10dB. Under high power level injection, specific PIN structures have been developed to improve space charge effects as needed for power applications such as microwave analog photonic links. Specific designs to achieve simultaneously broad bandwidth, high responsivity, very high power saturation and high linearity will be discussed.

  1. Carrier dynamics in InGaAs with embedded ErAs nanoislands

    SciTech Connect

    Azad, Abul K.; Prasankumar, Rohit P.; Talbayev, Diyar; Taylor, Antoinette J.; O'Hara, John F.; Averitt, Richard D.; Zide, Joshua M. O.; Lu Hong; Gossard, Arthur C.

    2008-09-22

    Using time-resolved optical-pump terahertz-probe spectroscopy, we study the ultrafast carrier dynamics in In{sub 0.53}Ga{sub 0.47}As:ErAs, a potential candidate for 1550 nm based terahertz photoconductive detectors. Material growth is performed by codepositing ErAs nanoislands with Be-compensated InGaAs on an InP:Fe substrate using molecular beam epitaxy. The material shows a rapid photoconductivity response following optical excitation. Photoexcitation with {approx}0.5 {mu}J/cm{sup 2} 800 nm femtosecond laser pulses yields a 3.2 ps carrier lifetime in optical-pump terahertz-probe experiments. We also measure the carrier lifetime using a 1550 nm femtosecond optical pump-probe system, and it is found to agree well with the terahertz measurements. These short lifetimes demonstrate significant potential for implementing terahertz systems using telecommunication based technologies.

  2. TDDA technology for high spatial resolution SWIR InGaAs imaging

    NASA Astrophysics Data System (ADS)

    Jia, Jianxin; Wang, Yueming; Zhuang, Xiaoqiong; Yao, Yi; Wang, Shengwei; Zhao, Ding; Shu, Rong; Wang, Jianyu

    2016-11-01

    With the development of remote sensing technology, shortwave infrared (SWIR) imaging technology has got more and more attention because of its ability through the fog and high spatial resolution. High spatial resolution SWIR imaging often requires high frame frequency. If the frame frequency is too high, it could cause the shortage of the image's signal to noise ratio (SNR), seriously affecting image quality. In order to solve the contradiction between high spatial resolution and sensitivity, time delay and digital accumulation (TDDA) technology is proposed in this paper to improve system's SNR and image quality. A prototype of SWIR imaging system based on a large format area InGaAs detector is designed, which demonstrates TDDA technology. The experiment results indicate that TDDA technology can increase system's SNR of the square root of accumulative stage and improve image's uniformity. The results in this paper are helpful for the improvement and application of high spatial resolution SWIR imaging technology.

  3. InGaAs single photon avalanche detector with ultralow excess noise

    SciTech Connect

    Zhao Kai; Zhang, Arthur; Lo, Yu-hwa; Farr, William

    2007-08-20

    An InGaAs single photon avalanche detector capable of sub-Geiger mode (Photomultiplier-tube-like) operation is reported. The device achieves a stable gain at around 10{sup 6}. The gain fluctuation is greatly suppressed through a self-quenching effect, thus an equivalent excess noise factor as low as 1.001 is achieved. In the photon counting experiment, the device is operated in the nongated mode under a dc bias. Because of its unique characteristics of self-quenching and self-recovery, no external quenching circuit is needed. The device shows a single photon response of around 30 ns and a self-recovery time of about 300 ns.

  4. Numerical simulation of the modulation transfer function in planar InGaAs dense arrays

    NASA Astrophysics Data System (ADS)

    Bai, Lin; Xu, Yun; Jiang, Yu; Chen, Huamin; Wu, Haoyue; Zhang, Jiushuang; Song, Guofeng

    2017-09-01

    Three-dimensional simulation methodology has been used to evaluate the performance of lattice matched InGaAs/InP double layer planar heterointerface detector arrays. The device characteristics under optical illumination and dark conditions have been computed. The modulation transfer function (MTF) profiles have been calculated with varying device geometries and carrier dynamics. It is found that the p well diffusion radius and minority carrier recombination play important roles in the MTF behaviors of dense arrays. Moderate p well diffusion dimension should be used to balance the device performances between the dark current and MTF profile. Moreover, better MTF characteristic under low light condition can be achieved with higher quality material which has longer recombination lifetime. The influences of underlying mechanisms including photon generated carriers diffusion and carrier recombination processes have been discussed. These simulation methods and results should provide a useful tool for the evaluation and improvement of imaging power of InGaAs focal plane arrays.

  5. Polariton condensation in a strain-compensated planar microcavity with InGaAs quantum wells

    SciTech Connect

    Cilibrizzi, Pasquale; Askitopoulos, Alexis Silva, Matteo; Lagoudakis, Pavlos G.; Bastiman, Faebian; Clarke, Edmund; Zajac, Joanna M.; Langbein, Wolfgang

    2014-11-10

    The investigation of intrinsic interactions in polariton condensates is currently limited by the photonic disorder of semiconductor microcavity structures. Here, we use a strain compensated planar GaAs/AlAs{sub 0.98}P{sub 0.02} microcavity with embedded InGaAs quantum wells having a reduced cross-hatch disorder to overcome this issue. Using real and reciprocal space spectroscopic imaging under non-resonant optical excitation, we observe polariton condensation and a second threshold marking the onset of photon lasing, i.e., the transition from the strong to the weak-coupling regime. Condensation in a structure with suppressed photonic disorder is a necessary step towards the implementation of periodic lattices of interacting condensates, providing a platform for on chip quantum simulations.

  6. InGaAs PV device development for TPV power systems

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fatemi, Navid S.; Hoffman, Richard W., Jr.; Jenkins, Phillip P.; Brinker, David J.; Scheiman, David; Lowe, Roland A.; Chubb, Donald

    1994-01-01

    Indium gallium arsenide (InGaAs) photovoltaic devices have been fabricated with bandgaps ranging from 0.75 eV to 0.60 on Indium phosphide (InP) substrates. Reported efficiencies have been as high as 11.2 percent (AMO) for the lattice matched 0.75 eV devices. The 0.75 eV cell demonstrated 14.8 percent efficiency under a 1500 K blackbody with a projected efficiency of 29.3 percent. The lattice mismatched devices (0.66 and 0.60 eV) demonstrated measured efficiencies of 8 percent and 6 percent respectively under similar conditions. Low long wavelength response and high rack currents are responsible for the poor performance of the mismatched devices. Temperature coefficients have been measured and are presented for all of the bandgaps tested.

  7. InGaAs PV Device Development for TPV Power Systems

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fatemi, Navid S.; Hoffman, Richard W., Jr.; Jenkins, Phillip P.; Brinker, David J.; Scheiman, David; Lowe, Roland; Chubb, Donald

    1994-01-01

    lndium Gallium Arsenide (InGaAs) photovoltaic devices have been fabricated with bandgaps ranging from 0.75 eV to 0.60 eV on Indium Phosphide (InP) substrates. Reported efficiencies have been as high as 11.2% (AMO) for the lattice matched 0.75 eV devices. The 0.75 eV cell demonstrated 14.8% efficiency under a 1500 K blackbody with a projected efficiency of 29.3%. The lattice mismatched devices (0.66 and 0.60 eV) demonstrated measured efficiencies of 8% and 6% respectively under similar conditions. Low long wavelength response and high dark currents are responsible for the poor performance of the mismatched devices. Temperature coefficients have been measured and are presented for all of the bandgaps tested.

  8. Impact of Coulomb Scattering on the Ultrafast Gain Recovery in InGaAs Quantum Dots

    NASA Astrophysics Data System (ADS)

    Gomis-Bresco, J.; Dommers, S.; Temnov, V. V.; Woggon, U.; Laemmlin, M.; Bimberg, D.; Malic, E.; Richter, M.; Schöll, E.; Knorr, A.

    2008-12-01

    The application of quantum dot (QD) semiconductor optical amplifiers (SOAs) in above 100-Gbit Ethernet networks demands an ultrafast gain recovery on time scales similar to that of the input pulse ˜100GHz repetition frequency. Microscopic scattering processes have to act at shortest possible time scales and mechanisms speeding up the Coulomb scattering have to be explored, controlled, and exploited. We present a microscopic description of the gain recovery by coupled polarization- and population dynamics in a thermal nonequilibrium situation going beyond rate-equation models and discuss the limitations of Coulomb scattering between 0D and 2D-confined quantum states. An experiment is designed which demonstrates the control of gain recovery for THz pulse trains in InGaAs QD-based SOAs under powerful electrical injection.

  9. Hydrodynamic study of terahertz three-dimensional plasma resonances in InGaAs diodes

    NASA Astrophysics Data System (ADS)

    Ziadé, P.; Marinchio, H.; Laurent, T.; Sabatini, G.; Kallassy, Z.; Palermo, C.; Varani, L.

    2010-07-01

    Using a hydrodynamic model self-consistently coupled to a Poisson solver, we investigate the time and frequency response of InGaAs diodes excited at room temperature by an optical photoexcitation presenting a beating in the terahertz frequency domain. The analysis of the main physical quantities, such as the local electric field and the conduction current density, evidences the presence of strong resonances that are interpreted as three-dimensional plasma oscillations excited by the optical beating. By studying the influence of the geometry and doping of the diode, it is shown that, in most cases, the highly doped contacts mainly control the frequency of the plasma mode while the diode length is a crucial parameter to evidence a second resonance related to the diode active region. Moreover, the amplitude of the plasma resonances can be enhanced at high doping levels and by increasing the level of the optical photoexcitation.

  10. Chirped InGaAs quantum dot molecules for broadband applications

    PubMed Central

    2012-01-01

    Lateral InGaAs quantum dot molecules (QDMs) formed by partial-cap and regrowth technique exhibit two ground-state (GS) peaks controllable via the thicknesses of InAs seed quantum dots (x), GaAs cap (y), and InAs regrowth (z). By adjusting x/y/z in a stacked QDM bilayer, the GS peaks from the two layers can be offset to straddle, stagger, or join up with each other, resulting in multi-GS or broadband spectra. A non-optimized QDM bilayer with a 170-meV full-width at half-maximum is demonstrated. The temperature dependencies of the emission peak energies and intensities from the chirped QDM bilayers are well explained by Varshni's equation and thermal activation of carriers out of constituent quantum dots. PMID:22480323

  11. Vacuum packaging of InGaAs focal plane array with four-stage thermoelectric cooler

    NASA Astrophysics Data System (ADS)

    Mo, De-feng; Liu, Da-fu; Yang, Li-yi; Xu, Qin-fei; Li, Xue

    2013-09-01

    The InGaAs focal plane array (FPA) detectors, covering the near-infrared 1~2.4 μm wavelength range, have been developed for application in space-based spectroscopy of the Earth atmosphere. This paper shows an all-metal vacuum package design for area array InGaAs detector of 1024×64 pixels, and its architecture will be given. Four-stage thermoelectric cooler (TEC) is used to cool down the FPA chip. To acquire high heat dissipation for TEC's Joule-heat, tungsten copper (CuW80) and kovar (4J29) is used as motherboard and cavity material respectively which joined by brazing. The heat loss including conduction, convection and radiation is analyzed. Finite element model is established to analyze the temperature uniformity of the chip substrate which is made of aluminum nitride (AlN). The performance of The TEC with and without heat load in vacuum condition is tested. The results show that the heat load has little influence to current-voltage relationship of TEC. The temperature difference (ΔT) increases as the input current increases. A linear relationship exists between heat load and ΔT of the TEC. Theoretical analysis and calculation show that the heat loss of radiation and conduction is about 187 mW and 82 mW respectively. Considering the Joule-heat of readout circuit and the heat loss of radiation and conduction, the FPA for a 220 K operation at room temperature can be achieved. As the thickness of AlN chip substrate is thicker than 1 millimeter, the temperature difference can be less than 0.3 K.

  12. InGaAs Schottky barrier diode array detectors integrated with broadband antenna (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Dong Woo; Lee, Eui Su; Park, Jeong-Woo; Kim, Hyun-Soo; Lee, Il-Min; Park, Kyung Hyun

    2017-02-01

    Terahertz (THz) waves have been actively studied for the applications of astronomy, communications, analytical science and bio-technologies due to their low energy and high frequency. For example, THz systems can carry more information with faster rates than GHz systems. Besides, THz waves can be applied to imaging, sensing, and spectroscopy. Furthermore, THz waves can be used for non-destructive and non-harmful tomography of living objects. In this reasons, Schottky barrier diodes (SBD) have been widely used as a THz detector for their ultrafast carrier transport, high responsivity, high sensitivity, and excellent noise equivalent power. Furthermore, SBD detectors envisage developing THz applications at low cost, excellent capability, and high yield. Since the major concerns in the THz detectors for THz imaging systems are the realizations of the real-time image acquisitions via a reduced acquisition time, rather than the conventional raster scans that obtains an image by pixel-by-pixel acquisitions, a line-scan based systems utilizes an array detector with an 1 × n SBD array is preferable. In this study, we fabricated the InGaAs based SBD array detectors with broadband antennas of log-spiral and square-spiral patterns. To optimize leakage current and ideality factor, the dependence to the doping levels of ohmic and Schottky layers have been investigated. In addition, the dependence to the capacitance and resistance to anode size are also examined as well. As a consequence, the real-time THz imaging with our InGaAs SBD array detector have been successfully obtained.

  13. Large-area InGaAs quad photoreceiver for Laser Interferometry Space Antenna

    NASA Astrophysics Data System (ADS)

    Datta, Shubhashish; Joshi, Abhay; Rue, Jim

    2010-09-01

    Quad photoreceivers, namely a 2 × 2 array of p-i-n photodiodes followed by a transimpedance amplifier (TIA) per diode, are required as the front-end photonic sensors in several applications relying on free-space propagation with position and direction sensing capability, such as long baseline interferometry, free-space optical communication, missile guidance, and biomedical imaging. It is desirable to increase the active area of quad photoreceivers (and photodiodes) to enhance the link gain, and therefore sensitivity, of the system. However, the resulting increase in the photodiode capacitance reduces the photoreceiver's bandwidth and adds to the excess system noise. As a result, the noise performance of the front-end quad photoreceiver has a direct impact on the sensitivity of the overall system. One such particularly challenging application is the Laser Interferometry Space Antenna (LISA), which proposes to detect gravity waves in space by measuring distance at 1064 nm wavelength with {10 pm/√Hz accuracy over a baseline of 5,000,000 kilometers. Currently, LISA's sensitivity is restricted by the noise arising from {20 pF capacitance per quadrant demonstrated by typical 1 mm diameter InGaAs quad photodiodes. We present a 1 mm diameter quad photoreceiver having an equivalent input current noise density of <3.2 pA/√Hz per quadrant up to a 3 dB bandwidth of {20 MHz. This performance is primarily enabled by a rad-hard-by-design dualdepletion region InGaAs quad photodiode having 2.5 pF capacitance per quadrant, which allows {17dB improvement in sensitivity over the state-of-the-art. Moreover, the quad photoreceiver demonstrates a crosstalk of <-52 dB between the neighboring quadrants, which ensures a direction sensing resolution of <30 nrad in LISA.

  14. Ab initio modeling of vacancies, antisites, and Si dopants in ordered InGaAs

    NASA Astrophysics Data System (ADS)

    Wang, Jingyang; Lukose, Binit; Thompson, Michael O.; Clancy, Paulette

    2017-01-01

    In0.53Ga0.47As, a III-V compound semiconductor with high electron mobility, is expected to bring better performance than silicon in next-generation n-type MOSFET devices. However, one major challenge to its wide scale adoption is the difficulty of obtaining high enough dopant activation. For Si-doped InGaAs, the best current experimental result, involving 10 min of furnace annealing at temperatures above 700 °C, yields a free electron concentration of 1.4 ×1019 cm-3, a value that still falls short of requirement for practical applications. In this paper, we investigate the origin of low dopant activation in InGaAs by calculating formation energies for a wide variety of single point defects (Si substutionals, Si tetrahedral interstitials, vacancies, and antisites) in Si-doped In0.5Ga0.5As in a CuAu-I type crystal structure. We find that (1) a high electron concentration can only be achieved under In/Ga-poor growth conditions, while As-poor conditions inhibit n-type doping; and (2) in heavily n-doped samples, cation vacancies VIn/Ga-3 contribute the most to the compensation of excess Si donors via the Si III - VIII mechanism (III = In/Ga), thus becoming the limiting factor to higher dopant activation. Under the most favorable growth conditions for n-doping, we find the maximum carrier concentration to be 5.2 ×1018 cm-3 under thermal equilibrium, within an order of magnitude of the best experimental value.

  15. Development of high performance SWIR InGaAs focal plane array

    NASA Astrophysics Data System (ADS)

    Nagi, Richie; Bregman, Jeremy; Mizuno, Genki; Oduor, Patrick; Olah, Robert; Dutta, Achyut K.; Dhar, Nibir K.

    2015-05-01

    Banpil Photonics has developed a novel InGaAs based photodetector array for Short-Wave Infrared (SWIR) imaging, for the most demanding security, defense, and machine vision applications. These applications require low noise from both the detector and the readout integrated circuit arrays. In order to achieve high sensitivity, it is crucial to minimize the dark current generated by the photodiode array. This enables the sensor to function in extremely low light situations, which enables it to successfully exploit the benefits of the SWIR band. In addition to minimal dark current generation, it is essential to develop photodiode arrays with higher operating temperatures. This is critical for reducing the power consumption of the device, as less energy is spent in cooling down the focal plane array (in order to reduce the dark current). We at Banpil Photonics are designing, simulating, fabricating and testing SWIR InGaAs arrays, and have achieved low dark current density at room temperature. This paper describes Banpil's development of the photodetector array. We also highlight the fabrication technique used to reduce the amount of dark current generated by the photodiode array, in particular the surface leakage current. This technique involves the deposition of strongly negatively doped semiconductor material in the area between the pixels. This process reduces the number of dangling bonds present on the edges of each pixel, which prevents electrons from being swept across the surface of the pixels. This in turn drastically reduces the amount of surface leakage current at each pixel, which is a major contributor towards the total dark current. We present the optical and electrical characterization data, as well as the analysis that illustrates the dark current mechanisms. Also highlighted are the challenges and potential opportunities for further reduction of dark current, while maintaining other parameters of the photodiode array, such as size, weight, temperature

  16. Impact of La{sub 2}O{sub 3} interfacial layers on InGaAs metal-oxide-semiconductor interface properties in Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks deposited by atomic-layer-deposition

    SciTech Connect

    Chang, C.-Y. Takenaka, M.; Takagi, S.; Ichikawa, O.; Osada, T.; Hata, M.; Yamada, H.

    2015-08-28

    We examine the electrical properties of atomic layer deposition (ALD) La{sub 2}O{sub 3}/InGaAs and Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs metal-oxide-semiconductor (MOS) capacitors. It is found that the thick ALD La{sub 2}O{sub 3}/InGaAs interface provides low interface state density (D{sub it}) with the minimum value of ∼3 × 10{sup 11} cm{sup −2} eV{sup −1}, which is attributable to the excellent La{sub 2}O{sub 3} passivation effect for InGaAs surfaces. It is observed, on the other hand, that there are a large amount of slow traps and border traps in La{sub 2}O{sub 3}. In order to simultaneously satisfy low D{sub it} and small hysteresis, the effectiveness of Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks with ultrathin La{sub 2}O{sub 3} interfacial layers is in addition evaluated. The reduction of the La{sub 2}O{sub 3} thickness to 0.4 nm in Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs gate stacks leads to the decrease in hysteresis. On the other hand, D{sub it} of the Al{sub 2}O{sub 3}/La{sub 2}O{sub 3}/InGaAs interfaces becomes higher than that of the La{sub 2}O{sub 3}/InGaAs ones, attributable to the diffusion of Al{sub 2}O{sub 3} through La{sub 2}O{sub 3} into InGaAs and resulting modification of the La{sub 2}O{sub 3}/InGaAs interface structure. As a result of the effective passivation effect of La{sub 2}O{sub 3} on InGaAs, however, the Al{sub 2}O{sub 3}/10 cycle (0.4 nm) La{sub 2}O{sub 3}/InGaAs gate stacks can realize still lower D{sub it} with maintaining small hysteresis and low leakage current than the conventional Al{sub 2}O{sub 3}/InGaAs MOS interfaces.

  17. Na-doped optical Germanium bulk crystals

    NASA Astrophysics Data System (ADS)

    Pekar, G. S.; Singaevsky, A. F.

    2012-09-01

    In an effort to develop a material for infrared (IR) optics with improved parameters, bulk crystals of optical germanium doped with Na have been first grown and studied. Single-crystalline and coarse-crystalline Ge:Na boules of different shapes and dimensions, up to 10 kg by weight, have been grown. Sodium was incorporated into the Ge crystal during the crystal growing from the melt. Despite the fact that Na contamination in the source material was not strictly controlled, the density of Na in the grown crystals determined by the neutron activation analysis as well as by the glow discharge mass spectrometry did not exceed 1015 cm-3. Just this value may be supposed to be close to the solubility limit of Na incorporated in Ge in the course of bulk crystal growth. A first demonstration of donor behavior of Na in bulk Ge crystals is made by means of a thermoelectric type of testing. An interstitial location of Na impurity has been verified by experiments on donor drift in the dc electric field. The crystals are grown with free electron density in the range from 5ṡ1013 to 4ṡ1014 cm-3 which is optimal for using Ge crystals as an optical material for fabricating passive elements of the IR technique. A comparison between the properties of Ge:Na crystals and Ge crystals doped with Sb, a conventional impurity in optical germanium, grown under the same technological conditions and from the same intrinsic Ge as a source material, revealed a number of advantages of Ge:Na crystals; among them, the higher transparency in the IR region, smaller radiation scattering and higher regular optical transmission, lower dislocation density, more uniform distribution of electrical and optical characteristics over the crystal volume, the identity of optical parameters in the single-crystalline, and coarse-crystalline boules. No degradation of optical elements fabricated from Ge:Na crystals was detected in the course of their commercial application, starting from 1998.

  18. Arsenic-Dominated Chemistry in the Acid Cleaning of InGaAs and InAlAs Surfaces

    SciTech Connect

    Sun, Y.; Pianetta, P.; Chen, P.-T.; Kobayashi, M.; Nishi, Y.; Goel, N.; Garner, M.; Tsai, W.

    2008-10-31

    The surface cleaning of InGaAs and InAlAs is studied using Synchrotron Radiation Photoelectron Spectroscopy. Thermal annealing at 400 C can not completely remove the native oxides from those surfaces. Elemental arsenic build-up is observed on both surfaces after acid treatment using HCl, HF or H{sub 2}SO{sub 4} solutions, which is similar to acid-cleaned GaAs surface. Cleaned InGaAs surface is oxide free but small amount of aluminum oxide remains on cleaned InAlAs surface. The common chemical reactions between III-As semiconductors and acid solutions are identified and are found to be dominated by arsenic chemistry.

  19. Testing of InGaAs, microbolometer and pyroelectric detectors in support of the EarthCARE mission

    NASA Astrophysics Data System (ADS)

    Hopkinson, Gordon; Gomez Rojas, Luis; Skipper, Mark; Meynart, Roland

    2008-10-01

    A test programme for infrared detectors in support of the EarthCARE mission is discussed. Commercially available linear InGaAs arrays from XenICs, Belgium (cut-off wavelengths 1.7, 2.2 and 2.5 μm), 384 x 288 amorphous silicon microbolometer arrays from ULIS, France and un-windowed single element lithium tantalate pyroelectric detectors from Infratec, Germany have been studied in detail to assess their suitability for EarthCARE and to provide performance data to aid in the design of the flight instruments. Tests included radiation resistance (cobalt60 and 60 MeV protons plus a heavy ion latch-up test for the InGaAs and microbolometer arrays), dark signal, noise, output stability, linearity, crosstalk and spectral response. In addition, the pyroelectric detectors were tested for low microphony.

  20. Spectral function of InAs /InGaAs quantum dots in a well detector using Green's function

    NASA Astrophysics Data System (ADS)

    Naser, M. A.; Deen, M. J.; Thompson, D. A.

    2006-11-01

    Theoretical modeling of an InAs /InGaAs quantum dot-in-a well (DWELL) detector is reported. The DWELL structure consists of pyramidal-shaped InAs quantum dots with dimensions of 11nm (base) and 6.5nm (height) placed on the top half of an InGaAs quantum well of 11nm width, which is buried in a GaAs matrix. The Green's function method is used to calculate the spectral function and the density of states of the DWELL. The kinetic equation that governs Green's functions is solved numerically using the method of finite differences. From the information obtained from the density of states, the responsivity of the DWELL can be estimated. The calculated energy eigenvalues are compared with the experimentally measured responsivity of a DWELL detector.

  1. Interface Defect Hydrogen Depassivation and Capacitance-Voltage Hysteresis of Al2O3/InGaAs Gate Stacks.

    PubMed

    Tang, Kechao; Palumbo, Felix Roberto; Zhang, Liangliang; Droopad, Ravi; McIntyre, Paul C

    2017-03-01

    We investigate the effects of pre- and postatomic layer deposition (ALD) defect passivation with hydrogen on the trap density and reliability of Al2O3/InGaAs gate stacks. Reliability is characterized by capacitance-voltage hysteresis measurements on samples prepared using different fabrication procedures and having different initial trap densities. Despite its beneficial capability to passivate both interface and border traps, a final forming gas (H2/N2) anneal (FGA) step is correlated with a significant hysteresis. This appears to be caused by hydrogen depassivation of defects in the gate stack under bias stress, supported by the observed bias stress-induced increase of interface trap density, and strong hydrogen isotope effects on the measured hysteresis. On the other hand, intentional air exposure of the InGaAs surface prior to Al2O3 ALD increases the initial interface trap density (Dit) but considerably lowers the hysteresis.

  2. A simple device for measuring the spectral transmittance of lens used in InGaAs image intensifier apparatus

    NASA Astrophysics Data System (ADS)

    Bai, Xiaofeng; Guo, Hui; Yin, Lei; He, Yingping; Hou, Zhipeng; Miao, Zhuang; Yan, Lei

    2014-09-01

    In this article, in order to accurately measure the spectral transmittance of imaging lens used in InGaAs imaging apparatus, a simple device, which spectrum ranges from 400 nanometers to 2000 nanometers, based on double grating monochromator and self-collimating has been founded by using stable shortwave infrared radiant source, accurate double grating monochromator and telescope, stable silicon detector and cooled HgCdTe infrared detector. An imaging lens whose spectral transmittance has been known is measured on it. Comparing the test results to known data provided by manufacture, it is shown that the testing device founded in this article is competent to measure spectral transmittance of shortwave infrared imaging lens and which max relative deviation is no more than +/-2.5%. It is worthwhile for selecting InGaAs image intensifier assembly and evaluating the quality of shortwave infrared imaging lens.

  3. Study of strain boundary conditions and GaAs buffer sizes in InGaAs quantum dots

    NASA Technical Reports Server (NTRS)

    Oyafuso, F.; Klimeck, G.; Boykin, T. B.; Bowen, R. C.; Allmen, P. von

    2003-01-01

    NEMO 3-D has been developed for the simulation of electronic structure in self-assembled InGaAs quantum dots on GaAs substrates. Typical self-assembled quantum dots in that material system contain about 0.5 to 1 million atoms. Effects of strain by the surrounding GaAs buffer modify the electronic structure inside the quantum dot significantly and a large GaAs buffer must be included in the strain and electronic structure.

  4. Simultaneous Disordering and Isolation Induced by Ion Mixing in InGaAs/ InP Superlattice Structures

    DTIC Science & Technology

    1992-08-01

    13:1 14 SUBJECT TERMS 15. NUMBER OF PAGES electro-optics Quantum wells electronic devices, components, and subsystems infrared sensors INGAAS/INP 18...photonic devices.’ with Ar ions is useful in fabricating planar waveguides in A commonly used method to induce compositional disor- InGaAs/InP quantum ... well structures. In this work, our deriog in a layered structure is to implant a moderate dose objectives are to study the ion mixing phenomena in

  5. Study of strain boundary conditions and GaAs buffer sizes in InGaAs quantum dots

    NASA Technical Reports Server (NTRS)

    Oyafuso, F.; Klimeck, G.; Boykin, T. B.; Bowen, R. C.; Allmen, P. von

    2003-01-01

    NEMO 3-D has been developed for the simulation of electronic structure in self-assembled InGaAs quantum dots on GaAs substrates. Typical self-assembled quantum dots in that material system contain about 0.5 to 1 million atoms. Effects of strain by the surrounding GaAs buffer modify the electronic structure inside the quantum dot significantly and a large GaAs buffer must be included in the strain and electronic structure.

  6. Bulk Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Koch, C. C.; Langdon, T. G.; Lavernia, E. J.

    2017-09-01

    This paper will address three topics of importance to bulk nanostructured materials. Bulk nanostructured materials are defined as bulk solids with nanoscale or partly nanoscale microstructures. This category of nanostructured materials has historical roots going back many decades but has relatively recent focus due to new discoveries of unique properties of some nanoscale materials. Bulk nanostructured materials are prepared by a variety of severe plastic deformation methods, and these will be reviewed. Powder processing to prepare bulk nanostructured materials requires that the powders be consolidated by typical combinations of pressure and temperature, the latter leading to coarsening of the microstructure. The thermal stability of nanostructured materials will also be discussed. An example of bringing nanostructured materials to applications as structural materials will be described in terms of the cryomilling of powders and their consolidation.

  7. Study on the relationship of dark current characteristics and materials surface defects of extended wavelength InGaAs photodiodes

    NASA Astrophysics Data System (ADS)

    Yan, Hongzhou; Tang, Hengjing; Deng, Shuangyan; Chen, Gang; Shao, Xiumei; Li, Tao; Li, Xue; Gong, Haimei

    2015-04-01

    Extended wavelength InGaAs photodiodes in 1.0~2.5μm spectral rang based on two types of material structures were investigated systematically. The first type InGaAs photodiode, marked by sample 1#, was fabricated using MOCVD epitaxial materials with P-i-N structure. The second type InGaAs photodiodes, marked by sample 2#, was fabricated using MBE epitaxial materials with P-i-N structure. The two types of photodiodes were fabricated by mesa etching technique, side-wall and surface passivation film. Dark current and voltage curves were measured by semiconductor parameters analyzer at different temperature, and dark current characteristics were analyzed using different perimeter to area method. The mechanism of the devices has been analysed. Polarization microscopy and conductive atomic force microscopy (c-AFM) have been used to investigate the local conductivity of the photodiodes' sensitive area. Combining the optical and c-AFM micrographs with dark current characteristics, we intended to characterize the relationships of the leak current and the defect. The results indicate that sample 1# has relative much more leak defects than that of sample 2#, and thus the dark current sample 1# is higher than that of sample 2# and. The defects are generated at the body of material and spread to the surface, and these defects cause very high dark current of sample 1#.

  8. InGaAs quantum dot superlattice with vertically coupled states in InGaP matrix

    NASA Astrophysics Data System (ADS)

    Sugaya, Takeyoshi; Oshima, Ryuji; Matsubara, Koji; Niki, Shigeru

    2013-07-01

    We report the formation of vertically coupled states in a 20-stack InGaAs quantum dot (QD) superlattice with GaAs spacer layers in an InGaP matrix. The InGaAs QD superlattices in the InGaP matrix have good optical properties even though the interdot spacing is reduced to 4.5 nm. We confirmed the vertically coupled states from the excitation power dependence in photoluminescence (PL) measurements. The PL peak of a QD superlattice shifts to a shorter wavelength as the excitation power is increased. The blue-shifted energy of the PL peak is 10 meV for a QD superlattice with an interdot spacing of 4.5 nm, whereas the blue shift is not observed for a multistacked QD structure with an interdot spacing of 17 nm. The vertically coupled states induce a blue shift in the PL peak wavelength as the excitation power density is increased. The vertical energy transfer between InGaAs QDs in an InGaP matrix is very attractive for use in solar cell devices.

  9. Large area bulk superconductors

    DOEpatents

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  10. Photon echoes from (In,Ga)As quantum dots embedded in a Tamm-plasmon microcavity

    NASA Astrophysics Data System (ADS)

    Salewski, M.; Poltavtsev, S. V.; Kapitonov, Yu. V.; Vondran, J.; Yakovlev, D. R.; Schneider, C.; Kamp, M.; Höfling, S.; Oulton, R.; Akimov, I. A.; Kavokin, A. V.; Bayer, M.

    2017-01-01

    We report on the coherent optical response from an ensemble of (In,Ga)As quantum dots (QDs) embedded in a planar Tamm-plasmon microcavity with a quality factor of approximately 100. Significant enhancement of the light-matter interaction is demonstrated under selective laser excitation of those quantum dots which are in resonance with the cavity mode. The enhancement is manifested through Rabi oscillations of the photon echo, demonstrating coherent control of excitons with picosecond pulses at intensity levels more than an order of magnitude smaller as compared with bare quantum dots. The decay of the photon echo transients is weakly changed by the resonator, indicating a small decrease of the coherence time T2 which we attribute to the interaction with the electron plasma in the metal layer located close (40 nm) to the QD layer. Simultaneously we see a reduction of the population lifetime T1, inferred from the stimulated photon echo, due to an enhancement of the spontaneous emission by a factor of 2, which is attributed to the Purcell effect, while nonradiative processes are negligible, as confirmed from time-resolved photoluminescence.

  11. RF dual-gate-trench LDMOS on InGaAs with improved performance

    NASA Astrophysics Data System (ADS)

    Payal, M.; Singh, Y.

    2017-07-01

    A new power dual-gate-trench LDMOSFET (DGTLDMOS) structure implemented on emerging InGaAs material is proposed. The proposed device consists of two gates out of which one gate is placed horizontally on the surface while other gate is located vertically in a trench. The dual-gate structure of DGTLDMOS creates two channels in p-base which carry current simultaneously from drain to source. This not only enhances the drain current (ID) but also reduces specific on-resistance (Ron,sp) and improves the peak transconductance (gm) resulting higher cut-off frequency (fT) and maximum oscillation frequency (fmax). Another trench filled with Al2O3 is placed in the drift region between gate and drain to enhance reduced-surface-field effect leading to higher breakdown voltage (Vbr) even at increased drift region doping. Based on 2D simulations, it is demonstrate that a DGTLDMOS designed for Vbr of 90 V achieves 2.2 times higher ID, 10 times reduction in Ron,sp, 1.8 times improvement in gm, 2.8 times increase in fT, and 1.8 times improvement in fmax with 3.3 times reduction in cell pitch as compared to the conventional LDMOS.

  12. High performance multi-channel MOSFET on InGaAs for RF amplifiers

    NASA Astrophysics Data System (ADS)

    Adhikari, Manoj Singh; Singh, Yashvir

    2017-02-01

    In this paper, we propose a multi-channel MOSFET (MC-MOSFET) on In0.53Ga0.47As for the first time by utilising trenches in the conventional planar MOSFET (CP-MOSFET) for RF amplifier applications. The proposed multi-channel MOSFET (MC-MOSFET) has two vertical-gates placed in trenches creating multiple channels in p-body for parallel conduction of drain current. High-k Al2O3 having thickness of 2 nm is used as gate dielectric in the proposed device. The TaN gate electrodes are placed in two different trenches in the p-type InGaAs layer where multiple n-channels are formed. Simultaneous conduction from multiple channels enhances the drain current (ID) and gives higher transconductance (gm) leading to improvement in overall frequency response. Two-dimensional (2D) numerical simulations of both MC-MOSFET and CP-MOSFET are performed by using ATLAS device simulator and their different performance parameters are compared. The proposed multi-channel structure provides 6.79 times higher ID, 5.57 times improvement in gm, 2.5 times increase in unity current gain (ft), 15.85% higher unilateral power gain (fmax) and suppress the short-channel effects (SCEs) as compared with the CP-MOSFET.

  13. Electrical and Optical Gain Lever Effects in InGaAs Double Quantum Well Diode Lasers

    SciTech Connect

    Pocha, M D; Goddard, L L; Bond, T C; Nikolic, R J; Vernon, S P; Kallman, J S; Behymer, E M

    2007-01-03

    In multisection laser diodes, the amplitude or frequency modulation (AM or FM) efficiency can be improved using the gain lever effect. To study gain lever, InGaAs double quantum well (DQW) edge emitting lasers have been fabricated with integrated passive waveguides and dual sections providing a range of split ratios from 1:1 to 9:1. Both the electrical and the optical gain lever have been examined. An electrical gain lever with greater than 7 dB enhancement of AM efficiency was achieved within the range of appropriate DC biasing currents, but this gain dropped rapidly outside this range. We observed a 4 dB gain in the optical AM efficiency under non-ideal biasing conditions. This value agreed with the measured gain for the electrical AM efficiency under similar conditions. We also examined the gain lever effect under large signal modulation for digital logic switching applications. To get a useful gain lever for optical gain quenched logic, a long control section is needed to preserve the gain lever strength and a long interaction length between the input optical signal and the lasing field of the diode must be provided. The gain lever parameter space has been fully characterized and validated against numerical simulations of a semi-3D hybrid beam propagation method (BPM) model for the coupled electron-photon rate equation. We find that the optical gain lever can be treated using the electrical injection model, once the absorption in the sample is known.

  14. Polarized photoreflectance and photoluminescence spectroscopy of InGaAs/GaAs quantum rods grown with As2 and As4 sources.

    PubMed

    Nedzinskas, Ramūnas; Cechavičius, Bronislovas; Kavaliauskas, Julius; Karpus, Vytautas; Valušis, Gintaras; Li, Lianhe; Khanna, Suraj P; Linfield, Edmund H

    2012-11-05

    : We report photoreflectance (PR) and photoluminescence (PL) investigations of the electronic and polarization properties of different aspect ratio (height/diameter) InGaAs quantum rods (QRs) embedded in InGaAs quantum wells (QWs). These nanostructures were grown by molecular beam epitaxy using As2or As4sources. The impact of the As source on the spectral and polarization features of the QR- and QW-related interband transitions was investigated and explained in terms of the carrier confinement effects caused by variation of composition contrast between the QR material and the surrounding well. Polarized PR and PL measurements reveal that the polarization has a preferential direction along the [11¯0] crystal axis with a large optical anisotropy of about 60% in the (001) plane for high aspect ratio (4.1:1) InGaAs QRs. As a result, in PL spectra, the transverse magnetic mode dominated (11¯0)-cleaved surfaces (TM[001]>TE[110]), whereas the transverse electric mode prevailed for (110)-cleaved surfaces (TM[001]

  15. Metal-organic vapor-phase epitaxy-grown ultra-low density InGaAs/GaAs quantum dots exhibiting cascaded single-photon emission at 1.3 μm

    SciTech Connect

    Paul, Matthias Kettler, Jan; Zeuner, Katharina; Clausen, Caterina; Jetter, Michael; Michler, Peter

    2015-03-23

    By metal-organic vapor-phase epitaxy, we have fabricated InGaAs quantum dots on GaAs substrate with an ultra-low lateral density (<10{sup 7} cm{sup −2}). The photoluminescence emission from the quantum dots is shifted to the telecom O-band at 1.31 μm by an InGaAs strain reducing layer. In time-resolved measurements, we find fast decay times for exciton (∼600 ps) and biexciton (∼300 ps). We demonstrate triggered single-photon emission (g{sup (2)}(0)=0.08) as well as cascaded emission from the biexciton decay. Our results suggest that these quantum dots can compete with their counterparts grown by state-of-the-art molecular beam epitaxy.

  16. A Monolithically Integrated Receiver Front-End Comprising Ion-Implanted Lateral Interdigitated InGaAs Pin And Inp JFET Devices

    NASA Astrophysics Data System (ADS)

    Lee, W. S.; Kitching, S. A.; Bland, S. W.

    1989-11-01

    An optical receiver front-end consisting of a lateral interdigitated InGaAs PIN photodetector integrated with an InP JFET amplifier has been fabricated by selective ion implantation. The lateral interdigitated InGaAs PlN is integrated here for the first time. The advantages of the lateral detector structure are its inherently low capacitance and the simplification of the InGaAs material growth requirement to a single layer. A quasi-planar integration approach has been developed in conjunction with a two-level metallisation interconnect scheme employing polyimide as the inter-level dielectric. An optical sensitivity of -29 dBm has been measured at 560 Mbit/s and 1.3 µm wavelength.

  17. Seesaw in the Bulk

    NASA Astrophysics Data System (ADS)

    Watanabe, A.; Yoshioka, K.

    2011-01-01

    A five-dimensional seesaw framework is analyzed with the lepton-number-violating propagator of bulk right-handed neutrinos. That can bypass summing up the effects of heavy Majorana particles whose masses and wavefunctions are not exactly known. The propagator method makes it easier to evaluate the seesaw-induced neutrino mass for various boundary conditions of bulk neutrinos and in a general background geometry, including the warped extra dimension. It is also found that the higher-dimensional seesaw gives a natural framework for the inverse seesaw suppression of low-energy neutrino masses.

  18. Induction detection of concealed bulk banknotes

    NASA Astrophysics Data System (ADS)

    Fuller, Christopher; Chen, Antao

    2011-10-01

    Bulk cash smuggling is a serious issue that has grown in volume in recent years. By building on the magnetic characteristics of paper currency, induction sensing is found to be capable of quickly detecting large masses of banknotes. The results show that this method is effective in detecting bulk cash through concealing materials such as plastics, cardboards, fabrics and aluminum foil. The significant difference in the observed phase between the received signals caused by conducting materials and ferrite compounds, found in banknotes, provides a good indication that this process can overcome the interference by metal objects in a real sensing application. This identification strategy has the potential to not only detect the presence of banknotes, but also the number, while still eliminating false positives caused by metal objects.

  19. Imaging early demineralization on tooth occlusional surfaces with a high definition InGaAs camera

    NASA Astrophysics Data System (ADS)

    Fried, William A.; Fried, Daniel; Chan, Kenneth H.; Darling, Cynthia L.

    In vivo and in vitro studies have shown that high contrast images of tooth demineralization can be acquired in the near-IR due to the high transparency of dental enamel. The purpose of this study is to compare the lesion contrast in reflectance at near-IR wavelengths coincident with high water absorption with those in the visible, the near-IR at 1300-nm and with fluorescence measurements for early lesions in occlusal surfaces. Twenty-four human molars were used in this in vitro study. Teeth were painted with an acidresistant varnish, leaving a 4×4 mm window in the occlusal surface of each tooth exposed for demineralization. Artificial lesions were produced in the exposed windows after 1 and 2-day exposure to a demineralizing solution at pH 4.5. Lesions were imaged using NIR reflectance at 3 wavelengths, 1310, 1460 and 1600-nm using a high definition InGaAs camera. Visible light reflectance, and fluorescence with 405-nm excitation and detection at wavelengths greater than 500-nm were also used to acquire images for comparison. Crossed polarizers were used for reflectance measurements to reduce interference from specular reflectance. The contrast of both the 24 hr and 48 hr lesions were significantly higher (P<0.05) for NIR reflectance imaging at 1460-nm and 1600-nm than it was for NIR reflectance imaging at 1300-nm, visible reflectance imaging, and fluorescence. The results of this study suggest that NIR reflectance measurements at longer near-IR wavelengths coincident with higher water absorption are better suited for imaging early caries lesions.

  20. Development of low-SWaP and low-noise InGaAs detectors

    NASA Astrophysics Data System (ADS)

    Fraenkel, R.; Berkowicz, E.; Bikov, L.; Elishkov, R.; Giladi, A.; Hirsh, I.; Ilan, E.; Jakobson, C.; Kondrashov, P.; Louzon, E.; Nevo, I.; Pivnik, I.; Tuito, A.; Vasserman, S.

    2017-02-01

    In recent years SCD has developed InGaAs/InP technology for Short-Wave Infrared (SWIR) imaging. The first product, Cardinal 640, has a 640×512 (VGA) format at 15μm pitch, and more than two thousand units have already been delivered to customers. Recently we have also introduced Cardinal 1280 which is an SXGA array with 10μm pitch aimed for long-range high end platforms [1]. One of the big challenges facing the SWIR technology is its proliferation to widespread low cost and low SWaP applications, specifically Low Light Level (LLL) and Image Intensifier (II) replacements. In order to achieve this goal we have invested and combined efforts in several design and development directions: 1. Optimization of the InGaAs pixel array, reducing the dark current below 2fA at 20° C in order to save TEC cooling power under harsh light and environmental conditions. 2. Design of a new "Low Noise" ROIC targeting 15e noise floor and improved active imaging capabilities 3. Design of compact, low SWaP and low cost packages. In this context we have developed 2 types of packages: a non-hermetic package with thermo-electric cooler (TEC) and a hermetic TEC-Less ceramic package. 4. Development of efficient TEC-Less algorithms for optimal imaging at both day-light and low light level conditions. The result of these combined efforts is a compact low SWaP detector that provides equivalent performance to Gen III image intensifier under starlight conditions. In this paper we will present results from lab and field experiments that will support this claim.

  1. Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots

    SciTech Connect

    Bracher, Gregor; Schraml, Konrad; Blauth, Mäx; Wierzbowski, Jakob; López, Nicolás Coca; Bichler, Max; Müller, Kai; Finley, Jonathan J.; Kaniber, Michael

    2014-07-21

    We present optical investigations of hybrid plasmonic nanosystems consisting of lithographically defined plasmonic Au-waveguides or beamsplitters on GaAs substrates coupled to proximal self-assembled InGaAs quantum dots. We designed a sample structure that enabled us to precisely tune the distance between quantum dots and the sample surface during nano-fabrication and demonstrated that non-radiative processes do not play a major role for separations down to ∼10 nm. A polarized laser beam focused on one end of the plasmonic nanostructure generates propagating surface plasmon polaritons that, in turn, create electron-hole pairs in the GaAs substrate during propagation. These free carriers are subsequently captured by the quantum dots ∼25 nm below the surface, giving rise to luminescence. The intensity of the spectrally integrated quantum dot luminescence is used to image the propagating plasmon modes. As the waveguide width reduces from 5 μm to 1 μm, we clearly observe different plasmonic modes at the remote waveguide end, enabling their direct imaging in real space. This imaging technique is applied to a plasmonic beamsplitter facilitating the determination of the splitting ratio between the two beamsplitter output ports as the interaction length L{sub i} is varied. A splitting ratio of 50:50 is observed for L{sub i}∼9±1 μm and 1 μm wide waveguides for excitation energies close to the GaAs band edge. Our experimental findings are in good agreement with mode profile and finite difference time domain simulations for both waveguides and beamsplitters.

  2. COUGAR: a liquid nitrogen cooled InGaAs camera for astronomy and electro-luminescence

    NASA Astrophysics Data System (ADS)

    Van Bogget, Urbain; Vervenne, Vincent; Vinella, Rosa Maria; van der Zanden, Koen; Merken, Patrick; Vermeiren, Jan

    2014-06-01

    A SWIR FPA was designed and manufactured with 640*512 pixels, 20 μm pitch and InGaAs detectors for electroluminescence characterization and astronomical applications in the [0.9 - 1.55 μm] range. The FPA is mounted in a liquid nitrogen dewar and is operated by a low noise frontend electronics. One of the biggest problem in designing sensors and cameras for electro-luminescence measurements is the autoillumination of the detectors by the readout circuit. Besides of proper shielding of the detectors, the ROIC shall be optimized for minimal electrical activity during the integration time of the very-weak signals coming from the circuit under test. For this reason a SFD (or Source Follower per Detector) architecture (like in the Hawaii sensor) was selected, resulting in a background limited performance of the detector. The pixel has a (somewhat arbitrary) full well capacity of 400 000 e- and a sensitivity of 2.17 μV/e-. The dark signal is app. 1 e-/pixel/sec and with the appropriate Fowler sampling the dark noise lowers below 5 e-rms. The power consumption of the circuit is limited 2 mW, allowing more than 24 hours of operation on less than 1 l of liquid nitrogen. The FPA is equipped with 4 outputs (optional readout on one single channel) and is capable of achieving 3 frames per second. Due to the non-destructive readout it is possible to determine in a dynamic way the optimal integration time for each observation. The Cougar camera is equipped with ultra-low noise power supply and bias lines; the electronics contain also a 24 bit AD converter to fully exploit the sensitivity of the FPA and the camera.

  3. Room-temperature operation of MOCVD-grown GaInAs/InP strained-layer multiquantum well lasers in 1.8 micron range

    NASA Technical Reports Server (NTRS)

    Forouhar, S.; Larsson, A.; Ksendzov, A.; Lang, R. J.; Tothill, N.; Scott, M. D.

    1992-01-01

    The first successful room-temperature pulsed operation is reported of InGaAs strained layer multiquantum well injection lasers grown by MOVPE on InP substrates in the 1.8 micron range. The threshold current density and the external differential quantum efficiency of the 10 micron wide ridge waveguide lasers were 2.5 kA/sq cm (cavity length = 1 mm) and 5 percent (cavity length = 400 microns), respectively. Broad-area lasers, 100 microns wide and 1 mm long, had a reverse leakage current of less than 10 microamps at -1 V indicating high quality of the epitaxial layers.

  4. Saturation effects in heterodyne detection with Geiger-mode InGaAs avalanche photodiode detector arrays.

    PubMed

    Luu, Jane X; Jiang, Leaf A

    2006-06-01

    We report, to the best of our knowledge, the first demonstration of heterodyne detection of a glint target using an InGaAs avalanche photodiode detector (APD) array in the Geiger mode. Due to the finite number of pixels, all such photon-counting arrays necessarily suffer from saturation effects. At large photon fluxes, saturation of the APD degrades the Doppler frequency resolution and the signal-to-noise ratio (SNR). We derive analytical expressions for the Doppler resolution and SNR, taking saturation effects into account. The optimal local oscillator power can be obtained numerically from the SNR expression.

  5. Radiation performance of AlGaAs and InGaAs concentrator cells and expected performance of cascade structures

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.; Swartz, C. K.; Hart, R. E., Jr.

    1987-01-01

    Aluminum gallium arsenide, GaAs, silicon and InGaAs cells have been irradiated with 1-MeV electrons and 37-MeV protons. These cells are candidates for individual cells in a cascade structure. Data are presented for both electron and proton irradiation studies for one sun and a concentration level of 100X AM0. Results of calculations on the radiation resistance of cascade cell structures based on the individual cell data are also presented. Both series-connected and separately connected structures are investigated.

  6. Energy states, transport, and magnetotransport in diluted magnetic semiconductor (Ga, Mn)As with quantum well InGaAs.

    PubMed

    Shchurova, L Yu; Kulbachinskii, V A

    2011-03-01

    We investigate energy levels, thermodynamic, transport and magnetotransport properties of holes in GaAs structure with quantum well InGaAs delta-doped by C and Mn. We present self-consistent calculations for energy levels in the quantum well for different degrees of ionization of Mn impurity. The magnetoresistance of holes in the quantum well is calculated. We explain observed negative magnetoresistance by the reduction of spin-flip scattering on magnetic ions due to aligning of spins with magnetic field.

  7. Development of an Indium Gallium Arsenide (InGaAs) Short Wave Infrared (SWIR) Line Scan Imaging System

    DTIC Science & Technology

    2011-09-01

    for and used in the visible region, and thus is not optimized to operate at the SWIR range . The BK7 lens cannot be used here due to its limited FOV...area) and a wall at the lower portion (dark area). Light coming from the window is mostly in the visible range , with most of SWIR energy filtered...256 pixel InGaAs linear array sensor operating at the short wave IR ( SWIR ) (0.8–1.7 µm) range and a PC controller. Specifically, the following are

  8. Spin Polarization of Carriers in InGaAs Self-Assembled Quantum Rings Inserted in GaAs-AlGaAs Resonant Tunneling Devices

    NASA Astrophysics Data System (ADS)

    Orsi Gordo, V.; Gobato, Y. Galvão; Galeti, H. V. A.; Brasil, M. J. S. P.; Taylor, D.; Henini, M.

    2017-07-01

    In this work, we have investigated transport and polarization resolved photoluminescence (PL) of n-type GaAs-AlGaAs resonant tunneling diodes (RTDs) containing a layer of InGaAs self-assembled quantum rings (QRs) in the quantum well (QW). All measurements were performed under applied voltage, magnetic fields up to 15 T and using linearly polarized laser excitation. It was observed that the QRs' PL intensity and the circular polarization degree (CPD) oscillate periodically with applied voltage under high magnetic fields at 2 K. Our results demonstrate an effective voltage control of the optical and spin properties of InGaAs QRs inserted into RTDs.

  9. Spin Polarization of Carriers in InGaAs Self-Assembled Quantum Rings Inserted in GaAs-AlGaAs Resonant Tunneling Devices

    NASA Astrophysics Data System (ADS)

    Orsi Gordo, V.; Gobato, Y. Galvão; Galeti, H. V. A.; Brasil, M. J. S. P.; Taylor, D.; Henini, M.

    2017-03-01

    In this work, we have investigated transport and polarization resolved photoluminescence (PL) of n-type GaAs-AlGaAs resonant tunneling diodes (RTDs) containing a layer of InGaAs self-assembled quantum rings (QRs) in the quantum well (QW). All measurements were performed under applied voltage, magnetic fields up to 15 T and using linearly polarized laser excitation. It was observed that the QRs' PL intensity and the circular polarization degree (CPD) oscillate periodically with applied voltage under high magnetic fields at 2 K. Our results demonstrate an effective voltage control of the optical and spin properties of InGaAs QRs inserted into RTDs.

  10. An uncooled 1280 x 1024 InGaAs focal plane array for small platform, shortwave infrared imaging

    NASA Astrophysics Data System (ADS)

    Battaglia, J.; Blessinger, M.; Enriquez, M.; Ettenberg, M.; Evans, M.; Flynn, K.; Lin, M.; Passe, J.; Stern, M.; Sudol, T.

    2009-05-01

    The increasing demand for short wave infrared (SWIR) imaging technology for soldier-based and unmanned platforms requires camera systems where size, weight and power consumption are minimized without loss of performance. Goodrich, Sensors Unlimited Inc. reports on the development of a novel focal plane (FPA) array for DARPA's MISI (Micro-Sensors for Imaging) Program. This large format (1280 x 1024) array is optimized for day/night imaging in the wavelength region from 0.4 μm to 1.7 μm and consists of an InGaAs detector bump bonded to a capacitance transimpedance amplifier (CTIA)-based readout integrated circuit (ROIC) on a compact 15 μm pixel pitch. Two selectable integration capacitors provide for high dynamic range with low (< 50 electrons) noise, and expanded onchip ROIC functionality includes analog-to-digital conversion and temperature sensing. The combination of high quality, low dark current InGaAs with temperature-parameterized non-uniformity correction allows operation at ambient temperatures while eliminating the need for thermoelectric cooling. The resulting lightweight, low power implementation is suitable for man-portable and UAV-mounted applications.

  11. Development of a near-infrared photon-counting system using an InGaAs avalanche photodiode

    NASA Astrophysics Data System (ADS)

    Maruyama, Tomoyuki; Narusawa, Fumio; Kudo, Makoto; Tanaka, Mitsuyoshi; Saito, Yasunori; Nomura, Akio

    2002-02-01

    We have successfully developed a near-infrared photon-counting system using an InGaAs avalanche photodiode. By investigating the characteristics of the InGaAs avalanche photodiode in the analog detection mode and the photon-counting mode, we have optimized its operating condition as a photon-counting detector. The multiplication factor shows a maximum at 193 K, and the detection efficiency shows a maximum at 173 K. However, the signal-to-noise ratio shows a maximum at 153 K. On the optimum operating condition, the wide dynamic range of about 50 dB (1.0 MUL10-16 W to 1.0 X 10-11 W) and the minimum detectable power of 100 aW (1.0 X 10-16 W) are achieved at 1.5 micrometers . The detection efficiency depends on the incident optical power, and 15% for 1 pW is achieved at 1.5 micrometers . In the near-infrared range between 0.9 and 1.55 micrometers , moderate detection efficiency is obtained. Finally, we have demonstrated a 1.54-micrometers eye-safe photon-counting lidar using a Raman shifted Nd:YAG laser and the photon-counting system. Some light signals backscattered from clouds and the atmosphere are obtained. The experimental results show that the photon-counting system is very practical and attractive.

  12. Surface analysis of InP and InGaAs after low temperature diffusion of Zinc

    NASA Astrophysics Data System (ADS)

    Le Goff, Florian; Mathiot, Daniel; Decobert, Jean; Le Goec, Jean-Pierre; Parillaud, Olivier; Reverchon, Jean-Luc

    2016-09-01

    In order to develop III-V based devices integrated directly above post-processed silicon wafers, low temperature diffusion of zinc in n-type InP and InGaAs is studied at compatible temperatures, below 425 oC. We particularly focus on the resulting surface degradation. Efficient Zn diffusion is obtained for InGaAs samples, where the surface remains mirror-like after thermal treatment. Conversely, no significant diffusion occurs in InP where the surface is deeply deteriorated. The stability study for InP under thermal annealing in various ambients allows us to rule out thermal dephosphorization as the main cause of the surface degradation. On the basis of experimental observations and thermodynamic considerations, it is suggested that InP degradation is linked to the direct interaction of Zn and P, inducing the formation of parasitic Zn x P2 alloys, which also hinders the efficient diffusion of Zn into the InP substrate.

  13. InGaAs Nanomembrane/Si van der Waals Heterojunction Photodiodes with Broadband and High Photoresponsivity.

    PubMed

    Um, Doo-Seung; Lee, Youngsu; Lim, Seongdong; Park, Jonghwa; Yen, Wen-Chun; Chueh, Yu-Lun; Kim, Hyung-Jun; Ko, Hyunhyub

    2016-10-05

    Development of broadband photodetectors is of great importance for applications in high-capacity optical communication, night vision, and biomedical imaging systems. While heterostructured photodetectors can expand light detection range, fabrication of heterostructures via epitaxial growth or wafer bonding still faces significant challenges because of problems such as lattice and thermal mismatches. Here, a transfer printing technique is used for the heterogeneous integration of InGaAs nanomembranes on silicon semiconductors and thus the formation of van der Waals heterojunction photodiodes, which can enhance the spectral response and photoresponsivity of Si photodiodes. Transfer-printed InGaAs nanomembrane/Si heterojunction photodiode exhibits a high rectification ratio (7.73 × 10(4) at ±3 V) and low leakage current (7.44 × 10(-5) A/cm(2) at -3 V) in a dark state. In particular, the photodiode shows high photoresponsivities (7.52 and 2.2 A W(-1) at a reverse bias of -3 V and zero bias, respectively) in the broadband spectral range (400-1250 nm) and fast rise-fall response times (13-16 ms), demonstrating broadband and fast photodetection capabilities. The suggested III-V/Si van der Waals heterostructures can be a robust platform for the fabrication of high-performance on-chip photodetectors compatible with Si integrated optical chips.

  14. Surfactant-assisted growth and properties of rare-earth arsenide InGaAs nanocomposites for terahertz generation

    NASA Astrophysics Data System (ADS)

    Salas, R.; Guchhait, S.; McNicholas, K. M.; Sifferman, S. D.; Dasika, V. D.; Jung, D.; Krivoy, E. M.; Lee, M. L.; Bank, S. R.

    2016-05-01

    We explore the effects of surfactant-mediated epitaxy on the structural, electrical, and optical properties of fast metal-semiconductor superlattice photoconductors. Specifically, application of a bismuth flux during growth was found to significantly improve the properties of superlattices of LuAs nanoparticles embedded in In0.53Ga0.47As. These improvements are attributed to the enhanced structural quality of the overgrown InGaAs over the LuAs nanoparticles. The use of bismuth enabled a 30% increase in the number of monolayers of LuAs that could be deposited before the InGaAs overgrowth degraded. Dark resistivity increased by up to ˜15× while carrier mobility remained over 2300 cm2/V-s and carrier lifetimes were reduced by >2× at comparable levels of LuAs deposition. These findings demonstrate that surfactant-mediated epitaxy is a promising approach to enhance the properties of ultrafast photoconductors for terahert generation.

  15. Develop multipurpose InGaAs focal plane array visible/SWIR camera for staring and range-gated applications

    NASA Astrophysics Data System (ADS)

    Nichter, James E.; Martin, Tara J.; Onat, Bora M.

    2007-04-01

    Military imaging is the largest application sector for shortwave infrared (SWIR) detectors, followed by spectroscopy (for the sorting of products and materials), and thermal sensing. Each application places different demands on the detectors, and fulfilling these requirements has driven the production of higher-quality, lower-cost imagers. The Visible SWIR Camera images digital pictures under day and starlight-only conditions, enabling the transmission of those images between soldiers on the battlefield. Additional functions are a windowing capability for comm link reception, and range-gating ability (viewing a specific depth of field at a specified range.) The combination of gated and video imaging is achieved through a high bandwidth pixel with a capacitive transimpedance amplifier (CTIA) design. Two different sensitivities in the CTIA pixel are achieved by switching between two feedback capacitor sizes, allowing for different illumination conditions. Anti-blooming is provided in the all solidstate gated camera, to prevent charge spreading from oversaturated pixels. All pixels are gated simultaneously for "snapshot" exposure. The low dark current and high bandwidth of the InGaAs photodetectors enables both high sensitivity imaging at long exposure times and high bandwidth at short exposure times. The spectral response of InGaAs extends from 0.9 μm to 1.7 μm, The Visible SWIR Camera is very reliable, in addition to being small and lightweight.

  16. High in content InGaAs near-infrared detectors: growth, structural design and photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiwei; Miao, Guoqing; Song, Hang; Li, Dabing; Jiang, Hong; Li, Zhiming; Chen, Yiren; Sun, Xiaojuan

    2017-04-01

    The design of novel structural material is an effective way to improve photodetection device performance. In this paper, the fabrication and performance of high In content InGaAs detectors were investigated. Using the two-step growth method, mismatch defect was effectively inhibited even with larger lattice mismatch at the interface. Meanwhile, the spectral response can cover the entire near-infrared region at room temperature. Through experiments and simulation, the optoelectronic properties of detector with different materials in the p-region are explored, elucidating the critical role of cap material in the transport properties of carriers. Compared to the typical InP cap detector, the InAsP cap detector shows better device performance. Also the dark current mechanism is analyzed on the basis of bias-temperature relation, and the result shows that the tunneling current plays a key role at high bias or low temperature. The introduction of a novel InGaAs detector provides a potential application to the development of near-infrared detection.

  17. Analysis of Carrier Recombination Processes in 0.6 eV InGaAs Epitaxial Materials for Thermophotovoltaic Devices

    SciTech Connect

    D Donetsky; F Newman; M Dashiell

    2006-10-30

    Minority carrier lifetime was measured by time-resolved photoluminescence (TRPL) method in sets of p-type and n-type InGaAs double heterostructures (DH) moderately doped with Zn and Te, respectively. Contributions of the radiative and non-radiative recombination terms were separated by fitting experimental data to temperature dependences of the radiative term. The latter was modeled with measured fundamental absorption spectrum and the temperature dependence of the photon recycling effect was taken into account. Different temperature dependences of radiative terms for electron and hole materials were obtained. It was concluded that in 0.6 eV Te-doped InGaAs structures the radiative recombination controls the hole lifetime at liquid nitrogen temperatures, while Auger recombination dominates at room and above room temperatures. In similar 0.6 eV InGaAs with Zn-doped active regions Shockley-Read-Hall (SRH) recombination was found dominant in a wide temperature range from liquid nitrogen to above-room temperatures. Rapid decrease of electron lifetime with decrease of excess carrier concentration was observed and attributed to recombination through partially-ionized deep donor centers. The obtained data allows for more adequate modeling of the performance and design optimization of narrow-gap photonic devices based on InGaAs Indium-rich compounds.

  18. Light-trapping for room temperature Bose-Einstein condensation in InGaAs quantum wells.

    PubMed

    Vasudev, Pranai; Jiang, Jian-Hua; John, Sajeev

    2016-06-27

    We demonstrate the possibility of room-temperature, thermal equilibrium Bose-Einstein condensation (BEC) of exciton-polaritons in a multiple quantum well (QW) system composed of InGaAs quantum wells surrounded by InP barriers, allowing for the emission of light near telecommunication wavelengths. The QWs are embedded in a cavity consisting of double slanted pore (SP2) photonic crystals composed of InP. We consider exciton-polaritons that result from the strong coupling between the multiple quantum well excitons and photons in the lowest planar guided mode within the photonic band gap (PBG) of the photonic crystal cavity. The collective coupling of three QWs results in a vacuum Rabi splitting of 3% of the bare exciton recombination energy. Due to the full three-dimensional PBG exhibited by the SP2 photonic crystal (16% gap to mid-gap frequency ratio), the radiative decay of polaritons is eliminated in all directions. Due to the short exciton-phonon scattering time in InGaAs quantum wells of 0.5 ps and the exciton non-radiative decay time of 200 ps at room temperature, polaritons can achieve thermal equilibrium with the host lattice to form an equilibrium BEC. Using a SP2 photonic crystal with a lattice constant of a = 516 nm, a unit cell height of 2a=730nm and a pore radius of 0.305a = 157 nm, light in the lowest planar guided mode is strongly localized in the central slab layer. The central slab layer consists of 3 nm InGaAs quantum wells with 7 nm InP barriers, in which excitons have a recombination energy of 0.944 eV, a binding energy of 7 meV and a Bohr radius of aB = 10 nm. We take the exciton recombination energy to be detuned 35 meV above the lowest guided photonic mode so that an exciton-polariton has a photonic fraction of approximately 97% per QW. This increases the energy range of small-effective-mass photonlike states and increases the critical temperature for the onset of a Bose-Einstein condensate. With three quantum wells in the central slab layer

  19. Experimental demonstration of hot-carrier photo-current in an InGaAs quantum well solar cell

    SciTech Connect

    Hirst, L. C.; Walters, R. J.; Führer, M. F.; Ekins-Daukes, N. J.

    2014-06-09

    An unambiguous observation of hot-carrier photocurrent from an InGaAs single quantum well solar cell is reported. Simultaneous photo-current and photoluminescence measurements were performed for incident power density 0.04–3 kW cm{sup −2}, lattice temperature 10 K, and forward bias 1.2 V. An order of magnitude photocurrent increase was observed for non-equilibrium hot-carrier temperatures >35 K. This photocurrent activation temperature is consistent with that of equilibrium carriers in a lattice at elevated temperature. The observed hot-carrier photo-current is extracted from the well over an energy selective GaAs barrier, thus integrating two essential components of a hot-carrier solar cell: a hot-carrier absorber and an energy selective contact.

  20. Magnetically tunable singlet-triplet spin qubit in a four-electron InGaAs coupled quantum dot

    PubMed Central

    Weiss, K. M.; Miguel-Sanchez, J.; Elzerman, J. M.

    2013-01-01

    A pair of self-assembled InGaAs quantum dots filled with two electrons can act as a singlet-triplet spin qubit that is robust against nuclear spin fluctuations as well as charge noise. This results in a T2* coherence time two orders of magnitude longer than that of a single electron, provided the qubit is operated at a particular “sweet spot” in gate voltage. However, at this fixed operating point the ground-state splitting can no longer be tuned into resonance with e.g. another qubit, limiting the options for coupling multiple qubits. Here, we propose using a four-electron coupled quantum dot to implement a singlet-triplet qubit that features a magnetically tunable level splitting. As a first step towards full experimental realization of this qubit design, we use optical spectroscopy to demonstrate the tunability of the four-electron singlet-triplet splitting in a moderate magnetic field. PMID:24177037

  1. Vertically coupled double-microdisk lasers composed of InGaAs quantum dots-in-a-well active layers

    NASA Astrophysics Data System (ADS)

    Hsing, J. Y.; Tzeng, T. E.; Lay, T. S.; Shih, M. H.

    2017-05-01

    We report the epitaxy, fabrication, and measurement of vertically coupled double-microdisk lasers using InGaAs quantum dots-in-a-well as the optical gain material. The bonding and anti-bonding photonic molecule laser modes are simultaneously observed at room temperature (T = 300 K). The optical coupling is confirmed by measuring the double disks for three different air gaps of 100 nm, 200 nm, and 480 nm, respectively. The coupling strengths for the photonic molecule bonding mode MB1,9 and anti-bonding mode MA1,9 between the adjacent microdisks are equal to 17.4 THz for 100 nm air gap, and 5.2 THz for 200 nm air gap, respectively. The refractive index sensing experiments show the lasing wavelength sensitivity of 60 nm/RIU for the vertically coupled double-microdisk laser of 100 nm air gap.

  2. Inversion of the exciton built-in dipole moment in In(Ga)As quantum dots via nonlinear piezoelectric effect

    NASA Astrophysics Data System (ADS)

    Aberl, Johannes; Klenovský, Petr; Wildmann, Johannes S.; Martín-Sánchez, Javier; Fromherz, Thomas; Zallo, Eugenio; Humlíček, Josef; Rastelli, Armando; Trotta, Rinaldo

    2017-07-01

    We show that anisotropic biaxial stress can be used to tune the built-in dipole moment of excitons confined in In(Ga)As quantum dots up to complete erasure of its magnitude and inversion of its sign. We demonstrate that this phenomenon is due to piezoelectricity. We present a model to calculate the applied stress, taking advantage of the so-called piezotronic effect, which produces significant changes in the current-voltage characteristics of the strained diode-membranes containing the quantum dots. Finally, self-consistent k .p calculations reveal that the experimental findings can be only accounted for by the nonlinear piezoelectric effect, whose importance in quantum dot physics has been theoretically recognized although it has proven difficult to single out experimentally.

  3. Sensitivity and noise of micro-Hall magnetic sensors based on InGaAs quantum wells

    NASA Astrophysics Data System (ADS)

    Chenaud, B.; Segovia-Mera, A.; Delgard, A.; Feltin, N.; Hoffmann, A.; Pascal, F.; Zawadzki, W.; Mailly, D.; Chaubet, C.

    2016-01-01

    We study the room-temperature performance of micro-Hall magnetic sensors based on pseudomorphic InGaAs quantum wells. Active areas of our sensors range from 1 to 80 μm. We focus on the smallest detectable magnetic fields in small sensors and perform a systematic study of noise at room temperature in the frequency range between 1 Hz and 100 kHz. Our data are interpreted by the mobility fluctuation model. The Hooge parameter is determined for the applied technology. We show that, independently of the experimental frequency, the ratio of sensitivity to noise is proportional to characteristic length of the sensor. The resolution of 1 mG/√{Hz } is achievable in a 3 μm sensor at room temperature.

  4. Fin width dependence on gate controllability of InGaAs channel FinFETs with regrown source/drain

    NASA Astrophysics Data System (ADS)

    Kise, Nobukazu; Kinoshita, Haruki; Yukimachi, Atsushi; Kanazawa, Toru; Miyamoto, Yasuyuki

    2016-12-01

    In this paper, we report on the structure and characteristics of an indium gallium arsenide (InGaAs) channel fin field effect transistor (FinFET) with a regrown source/drain. The fabrication process we propose is suitable for forming a channel with a high aspect ratio. In simulations, the subthreshold characteristics and drain current (Id) were improved by reducing the fin width. Following the simulations, fabricated devices showed improved gate controllability after the fin width was reduced. A short-channel device (Lch = 50 nm, Hfin = 50 nm, and Wfin = 20 nm) showed an Id of 367 μA/μm and a minimum subthreshold swing (SSmin) of 211 mV/dec at Vd = 0.5 V. The maximum-to-minimum Id ratio was 105.

  5. An InGaAs detector based radiation thermometer and fixed-point blackbodies for temperature scale realization at NIM

    SciTech Connect

    Hao, X.; Yuan, Z.; Wang, J.; Lu, X.

    2013-09-11

    In this paper, we describe an InGaAs detector based radiation thermometer (IRT) and new design of fixed-point blackbodies, including Sn, Zn, Al and Cu, for the establishment of a temperature scale from 200 °C to 1085 °C at the National Institute of Metrology of China. The construction and calibration of the IRT with the four fixed-point blackbodies are described. Characteristics of the IRT, such as the size-of-source effect, the amplifier performance and its stability are determined. The design of the four fixed-points, with 10 mm diameter of aperture and 0.9999 emissivity, is described. The uncertainty of the scale realization is elaborated.

  6. Indium and gallium diffusion through zirconia in the TiN/ZrO{sub 2}/InGaAs stack

    SciTech Connect

    Ceballos-Sanchez, O.; Martinez, E.; Guedj, C.; Veillerot, M.; Herrera-Gomez, A.

    2015-06-01

    Angle-resolved X-ray Photoelectron Spectroscopy (ARXPS) was applied to the TiN/ZrO{sub 2}/InGaAs stack to assess its thermal stability. Through a robust ARXPS analysis, it was possible to observe subtle effects such as the thermally induced diffusion of substrate atomic species (In and Ga) through the dielectric layer. The detailed characterization of the film structure allowed for assessing the depth profiles of the diffused atomic species by means of the scenarios-method. Since the quantification for the amount of diffused material was done at different temperatures, it was possible to obtain an approximate value of the activation energy for the diffusion of indium through zirconia. The result is very similar to the previously reported values for indium diffusion through alumina and through hafnia.

  7. Magnetically tunable singlet-triplet spin qubit in a four-electron InGaAs coupled quantum dot

    NASA Astrophysics Data System (ADS)

    Weiss, K. M.; Miguel-Sanchez, J.; Elzerman, J. M.

    2013-11-01

    A pair of self-assembled InGaAs quantum dots filled with two electrons can act as a singlet-triplet spin qubit that is robust against nuclear spin fluctuations as well as charge noise. This results in a T2* coherence time two orders of magnitude longer than that of a single electron, provided the qubit is operated at a particular ``sweet spot'' in gate voltage. However, at this fixed operating point the ground-state splitting can no longer be tuned into resonance with e.g. another qubit, limiting the options for coupling multiple qubits. Here, we propose using a four-electron coupled quantum dot to implement a singlet-triplet qubit that features a magnetically tunable level splitting. As a first step towards full experimental realization of this qubit design, we use optical spectroscopy to demonstrate the tunability of the four-electron singlet-triplet splitting in a moderate magnetic field.

  8. Optical Spin Noise of a Single Hole Spin Localized in an (InGa)As Quantum Dot

    NASA Astrophysics Data System (ADS)

    Dahbashi, Ramin; Hübner, Jens; Berski, Fabian; Pierz, Klaus; Oestreich, Michael

    2014-04-01

    We advance spin noise spectroscopy to the ultimate limit of single spin detection. This technique enables the measurement of the spin dynamic of a single heavy hole localized in a flat (InGa)As quantum dot. Magnetic field and light intensity dependent studies reveal even at low magnetic fields a strong magnetic field dependence of the longitudinal heavy hole spin relaxation time with an extremely long T1 of ≥180 μs at 31 mT and 5 K. The wavelength dependence of the spin noise power discloses for finite light intensities an inhomogeneous single quantum dot spin noise spectrum which is explained by charge fluctuations in the direct neighborhood of the quantum dot. The charge fluctuations are corroborated by the distinct intensity dependence of the effective spin relaxation rate.

  9. Room-temperature InGaAs detector arrays for 1.0 - 1.7 microns spectroscopy

    NASA Technical Reports Server (NTRS)

    Olsen, G. H.; Joshi, A. M.; Mykietyn, E.; Colosi, J.; Woodruff, K. M.

    1989-01-01

    Linear arrays of 256 element InGaAs detectors with 100 x 30 micron pixels were mounted in multiplexer packages and tested in an optical multichannel analyzer (OMA). Typical performance characteristics include dark current (-5V) of 400 picoamps and responsivities of 0.75 A/W (1.3 microns) and 0.14 A/W (0.85 microns). The 256 element exhibited a mean room-temperature dark current of under 400 picoamps when mounted in the OMA and a dynamic range over 11 bits (2000:1). Future applications, including room-temperature detector arrays for 2.5 microns and avalanche photodiode arrays for 1.0-1.7 microns, are discussed.

  10. Gain-switched pulses from InGaAs ridge-quantum-well lasers limited by intrinsic dynamical gain suppression.

    PubMed

    Chen, Shaoqiang; Yoshita, Masahiro; Ito, Takashi; Mochizuki, Toshimitsu; Akiyama, Hidefumi; Yokoyama, Hiroyuki

    2013-03-25

    Gain-switched pulses of InGaAs double-quantum-well lasers fabricated from identical epitaxial laser wafers were measured under both current injection and optical pumping conditions. The shortest output pulse widths were nearly identical (about 40 ps) both for current injection and optical pumping; this result attributed the dominant pulse-width limitation factor to the intrinsic gain properties of the lasers. We quantitatively compared the experimental results with theoretical calculations based on rate equations incorporating gain nonlinearities. Close consistency between the experimental data and the calculations was obtained only when we assumed a dynamically suppressed gain value deviated from the steady-state gain value supported by standard microscopic theories.

  11. InP and InGaAs Submicron Gate Microwave Power Transistors for 20 GHz Applications

    DTIC Science & Technology

    1991-06-01

    R . Nguyen, R . A . Stall, and M. A . McKee, "Indium Gallium Arsenide Microwave Power Transistors", IEEE Trans. Microwave Theory Tech., to appear in 1991...4 AD-A238 595 REPORT DOCUMENTATIOII 111IIIIIIII’___ 11 11 IN’ 11111 111 U 1 111 nI, i-- jt ncode’ a -U monP) nnq1n ! mrr~jo Ccad a ’ tn4 op, 1f Mad...Maximum 200 WOUEsl .InGaAs MISFETs witl, 0.7 gm gate lengths and 0.2 mm gate widths have demnonstratedl a1 I)1lut~IlTI i1-t 0.92 X/mm at 18 G1I1z with a

  12. An InGaAs detector based radiation thermometer and fixed-point blackbodies for temperature scale realization at NIM

    NASA Astrophysics Data System (ADS)

    Hao, X.; Yuan, Z.; Wang, J.; Lu, X.

    2013-09-01

    In this paper, we describe an InGaAs detector based radiation thermometer (IRT) and new design of fixed-point blackbodies, including Sn, Zn, Al and Cu, for the establishment of a temperature scale from 200 °C to 1085 °C at the National Institute of Metrology of China. The construction and calibration of the IRT with the four fixed-point blackbodies are described. Characteristics of the IRT, such as the size-of-source effect, the amplifier performance and its stability are determined. The design of the four fixed-points, with 10 mm diameter of aperture and 0.9999 emissivity, is described. The uncertainty of the scale realization is elaborated.

  13. Research on influence of parasitic resistance of InGaAs solar cells under continuous wave laser irradiation

    NASA Astrophysics Data System (ADS)

    Li, Guangji; Zhang, Hongchao; Zhou, Guanglong; Lu, Jian; Zhou, Dayong

    2017-06-01

    InGaAs solar cells were irradiated by 1060-1080nm continuous wave (CW) laser, and studied the laser-electrical conversion and damage experiment with the power density as 97mW/cm2 and 507W/cm2 respectively. The result indicated that there is no obvious damage phenomenon but air layer appeared in the damaged region, and there is no direct relationship between the area and the extent of damage. Moreover, the p-n junction in the damage zone was destroyed, lost the ability of photoelectric conversion. The region acts as a resistance between the two electrodes, resulting in an increase in the leakage current of the solar cells and a decrease in the parallel resistance, which is the main reason leading to the decline of open circuit voltage, short circuit current and conversion efficiency. This paper would provide a reference for wireless energy transmission and the subsequent laser damage of solar cells.

  14. Elementary excitations in charge-tunable InGaAs quantum dots studied by resonant Raman and resonant photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Köppen, Tim; Franz, Dennis; Schramm, Andreas; Heyn, Christian; Gutjahr, Johann; Pfannkuche, Daniela; Heitmann, Detlef; Kipp, Tobias

    2011-04-01

    We report on resonant optical spectroscopy of self-assembled InGaAs quantum dots in which the number of electrons can accurately be tuned to N=0,1,2 by an external gate voltage. Polarization, wave vector, and magnetic field dependent measurements enable us to clearly distinguish between resonant Raman and resonant photoluminescence processes. The Raman spectra for N=1 and 2 electrons considerably differ from each other. In particular, for N=2, the quantum-dot He, the spectra exhibit both singlet and triplet transitions reflecting the elementary many-particle interaction. Also the resonant photoluminescence spectra are significantly changed by varying the number of electrons in the QDs. For N=1 we observe complex spectra possibly induced by strong polaronic effects that are suppressed for N=2.

  15. Surface-plasmon-polariton whispering-gallery mode analysis of the graphene monolayer coated InGaAs nanowire cavity.

    PubMed

    Zhao, Jing; Liu, Xianhe; Qiu, Weibin; Ma, Yuhui; Huang, Yixin; Wang, Jia-Xian; Qiang, Kan; Pan, Jiao-Qing

    2014-03-10

    In this article, we proposed and numerically studied the surface plasmon polariton whispering gallery mode properties of the graphene coated InGaAs nanowire cavity. The quality factor and the mode area were investigated as a function of the chemical potential, the cavity radius and the wavelength. A high cavity quality factor of 235 is predicted for a 5 nm radius cavity, accompanied by a mode area as small as3.75×10(-5)(λ(0))(2), when the chemical potential is 1.2 eV. The proposed structure offers a potential solution to high density integration of the nanophotonic devices with an ultra-compact footprint.

  16. New design of InGaAs guided-mode resonance photodiode for SWIR low dark current imaging

    NASA Astrophysics Data System (ADS)

    Verdun, Michaël.; Portier, Benjamin; Jaworowicz, Katarzyna; Jaeck, Julien; Dupuis, Christophe; Haidar, Riad; Pardo, Fabrice; Pelouard, Jean-Luc

    2016-04-01

    We investigate a full-dielectric guided mode resonant photodiode. It has been designed to enhance the absorption by excitation of several resonances in the SWIR domain. The device consists of an InP/InGaAs/InP P-i-N heterojunction containing an active layer as thin as 90 nm on top of a subwavelength lamellar grating and a gold mirror. We successfully compared the electro-optical characterizations of individual pixels with electro-magnetic simulations. In particular, we observe near perfect collection of the photo-carriers and external quantum efficiency (EQE) of up to 71% around 1.55 μm. Moreover, compared with InGaAs resonator state-of-the-art detector, we show a broader spectral response in the 1.2-1.7 μm range, thus paving the way for SWIR low dark current imaging.

  17. Graphic Grown Up

    ERIC Educational Resources Information Center

    Kim, Ann

    2009-01-01

    It's no secret that children and YAs are clued in to graphic novels (GNs) and that comics-loving adults are positively giddy that this format is getting the recognition it deserves. Still, there is a whole swath of library card-carrying grown-up readers out there with no idea where to start. Splashy movies such as "300" and "Spider-Man" and their…

  18. Graphic Grown Up

    ERIC Educational Resources Information Center

    Kim, Ann

    2009-01-01

    It's no secret that children and YAs are clued in to graphic novels (GNs) and that comics-loving adults are positively giddy that this format is getting the recognition it deserves. Still, there is a whole swath of library card-carrying grown-up readers out there with no idea where to start. Splashy movies such as "300" and "Spider-Man" and their…

  19. Explosive bulk charge

    DOEpatents

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  20. Bulk amorphous materials

    SciTech Connect

    Schwarz, R.B.; Archuleta, J.I.; Sickafus, K.E.

    1998-12-01

    This is the final report for a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this work was to develop the competency for the synthesis of novel bulk amorphous alloys. The authors researched their synthesis methods and alloy properties, including thermal stability, mechanical, and transport properties. The project also addressed the development of vanadium-spinel alloys for structural applications in hostile environments, the measurement of elastic constants and thermal expansion in single-crystal TiAl from 300 to 750 K, the measurement of elastic constants in gallium nitride, and a study of the shock-induced martensitic transformations in NiTi alloys.

  1. Bulk material handling system

    DOEpatents

    Kleysteuber, William K.; Mayercheck, William D.

    1979-01-01

    This disclosure relates to a bulk material handling system particularly adapted for underground mining and includes a monorail supported overhead and carrying a plurality of conveyors each having input and output end portions with the output end portion of a first of the conveyors positioned above an input end portion of a second of the conveyors, a device for imparting motion to the conveyors to move the material from the input end portions toward the output end portions thereof, a device for supporting at least one of the input and output end portions of the first and second conveyors from the monorail, and the supporting device including a plurality of trolleys rollingly supported by the monorail whereby the conveyors can be readily moved therealong.

  2. Bulk muscles, loose cables

    PubMed Central

    Liyanage, Chamari R D G; Kodali, Venkata

    2014-01-01

    The accessibility and usage of body building supplements is on the rise with stronger internet marketing strategies by the industry. The dangers posed by the ingredients in them are underestimated. A healthy young man came to the emergency room with palpitations and feeling unwell. Initial history and clinical examination were non-contributory to find the cause. ECG showed atrial fibrillation. A detailed history for any over the counter or herbal medicine use confirmed that he was taking supplements to bulk muscle. One of the components in these supplements is yohimbine; the onset of symptoms coincided with the ingestion of this product and the patient is symptom free after stopping it. This report highlights the dangers to the public of consuming over the counter products with unknown ingredients and the consequential detrimental impact on health. PMID:25326558

  3. Bulk Site Reference Materials

    SciTech Connect

    Barich, J.J. III; Jones, R.R. Sr.

    1996-12-31

    The selection, manufacture and use of Bulk Site Reference Materials (BSRMs) at hazardous waste sites is discussed. BSRMs are useful in preparing stabilization/solidification (S/S) formulations for soils, ranking competing S/S processes, comparing S/S alternatives to other technologies, and in interpreting data from different test types. BSRMs are large volume samples that are representative of the physical and chemical characteristics of a site soil, and that contain contaminants at reasonably high levels. A successful BSRM is extremely homogeneous and well-characterized. While not representative of any point on the site, they contain the contaminants of the site in the matrices of the site. Design objectives for a BSRM are to produce a material that (1) maintains good fidelity to site matrices and contaminants, and (2) exhibits the lowest possible relative standard deviation.

  4. Creating bulk nanocrystalline metal.

    SciTech Connect

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  5. Spectral imaging of chemical compounds using multivariate optically enhanced filters integrated with InGaAs VGA cameras

    NASA Astrophysics Data System (ADS)

    Priore, Ryan J.; Jacksen, Niels

    2016-05-01

    Infrared hyperspectral imagers (HSI) have been fielded for the detection of hazardous chemical and biological compounds, tag detection (friend versus foe detection) and other defense critical sensing missions over the last two decades. Low Size/Weight/Power/Cost (SWaPc) methods of identification of chemical compounds spectroscopy has been a long term goal for hand held applications. We describe a new HSI concept for low cost / high performance InGaAs SWIR camera chemical identification for military, security, industrial and commercial end user applications. Multivariate Optical Elements (MOEs) are thin-film devices that encode a broadband, spectroscopic pattern allowing a simple broadband detector to generate a highly sensitive and specific detection for a target analyte. MOEs can be matched 1:1 to a discrete analyte or class prediction. Additionally, MOE filter sets are capable of sensing an orthogonal projection of the original sparse spectroscopic space enabling a small set of MOEs to discriminate a multitude of target analytes. This paper identifies algorithms and broadband optical filter designs that have been demonstrated to identify chemical compounds using high performance InGaAs VGA detectors. It shows how some of the initial models have been reduced to simple spectral designs and tested to produce positive identification of such chemicals. We also are developing pixilated MOE compressed detection sensors for the detection of a multitude of chemical targets in challenging backgrounds/environments for both commercial and defense/security applications. This MOE based, real-time HSI sensor will exhibit superior sensitivity and specificity as compared to currently fielded HSI systems.

  6. 1-Picosecond InGaAs Photodetector for Operation at 1300-1600 nm

    DTIC Science & Technology

    1993-11-15

    states and thermally-ionized carriers which reduces the sheet resistance by more than one order of magnitude. Material defects also lower the...effect indium has on resistivity we have grown a set of three Wvllability C( lattice-matched samples for measuring sheet resistance . Figure 1 shows n...curve of sheet resistance -d ..... Special Picotronix, Inc., Ann Arbor, MI. 2 Per telecon ONR 2/28/94 C1iC vs. indium concentration for the three

  7. DC and High Frequency Characterization of Metalorganic Chemical Vapor Deposition (MOCVD) Grown InP/InGaAs PNP Heterojunction Bipolar Transistor

    NASA Astrophysics Data System (ADS)

    Cui, Delong; Hsu, Shawn S. H.; Pavlidis, Dimitris

    2002-02-01

    InP/InGaAs PNP heterojunction bipolar transistor (HBT) layers have been grown by metalorganic chemical vapor deposition (MOCVD) and devices have been fabricated using a self-aligned processing technology. A zinc-doped InP layer has been employed as the wide-bandgap emitter layer for the PNP HBT. The base layer used a 500 Å thick n-type InGaAs layer doped at 5× 1018 cm-3. Successful high frequency operation of these devices has been demonstrated. A single-emitter 1× 20 μm2 MOCVD-grown PNP InP/InGaAs HBT achieved current gain cutoff frequency (fT) of more than 11 GHz at a current density (JC) of 8.25× 104 A/cm2.

  8. 1.59 {mu}m room temperature emission from metamorphic InAs/InGaAs quantum dots grown on GaAs substrates

    SciTech Connect

    Seravalli, L.; Frigeri, P.; Trevisi, G.; Franchi, S.

    2008-05-26

    We present design, preparation by molecular beam epitaxy, and characterization by photoluminescence of long-wavelength emitting, strain-engineered quantum dot nanostructures grown on GaAs, with InGaAs confining layers and additional InAlAs barriers embedding InAs dots. Quantum dot strain induced by metamorphic lower confining layers is instrumental to redshift the emission, while a-few-nanometer thick InAlAs barriers allow to significantly increase the activation energy of carriers' thermal escape. This approach results in room temperature emission at 1.59 {mu}m and, therefore, is a viable method to achieve efficient emission in the 1.55 {mu}m window and beyond from quantum dots grown on GaAs substrates.

  9. Dependence of electron mobility on gate voltage sweeping width and deposition temperature in MOSFETs with HfO2/Al2O3/InGaAs gate stacks

    NASA Astrophysics Data System (ADS)

    Ohsawa, Kazuto; Netsu, Seiko; Kise, Nobukazu; Noguchi, Shinji; Miyamoto, Yasuyuki

    2017-04-01

    In this study, we fabricated MOSFETs with Al2O3/InGaAs or HfO2/Al2O3/InGaAs gate stacks. The surface was subjected to nitrogen plasma and trimethylaluminum cleaning prior to low-temperature atomic layer deposition. Electron mobility was extracted using the capacitance–gate voltage (C–V G) and drain current–gate voltage (I D–V G) characteristics. We determined that the mobility decreased when the gate voltage sweeping width increased during C–V G and I D–V G measurements. In addition, we determined that the lowering of the deposition temperature to 120 °C improved the mobility of MOSFETs with HfO2/Al2O3/InGaAs gate stacks as compared with that corresponding to deposition at 300 °C. Furthermore, HfO2/Al2O3/InGaAs gate stacks with various Al2O3 thicknesses were fabricated. When the number of Al2O3 deposition cycles was more than 4, the mobility of MOSFETs with HfO2/Al2O3/InGaAs gate stacks improved, reaching the value of the Al2O3/InGaAs gate stack.

  10. Characterization of ZnSe Single Crystals Grown by Physical Vapor Transport

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Dudley, M.; Matyi, R.; Feth, S.; Lehoczky, S. L.

    1999-01-01

    ZnSe bulk crystals were grown by self-seeded physical vapor transport technique in horizontal and vertical configurations. The impurities and defects in the grown crystals were studied by glow discharge mass spectroscopy (GDMS) and low temperature photoluminescence (PL) measurements. The PL results on the starting material and the grown crystals are consistent with the low impurity levels measured by GDMS. The crystalline quality of the grown crystals were examined by synchrotron white beam X-ray topography (SWBXT) and high resolution triple X-ray diffraction (HRTXD). The SWBXT shows that, aside from twins, the overall crystalline quality of the vapor grown ZnSe crystals, especially in the contactless grown region, was quite high. The HRTXD results are in line with the SWBXT findings. The comparison between the HRTXD on a chemical-mechanically polished and a cleaved surface seems to indicate that polishing damage can obscure the true microstructure in the as-grown ZnSe crystals.

  11. Developing bulk exchange spring magnets

    DOEpatents

    Mccall, Scott K.; Kuntz, Joshua D.

    2017-06-27

    A method of making a bulk exchange spring magnet by providing a magnetically soft material, providing a hard magnetic material, and producing a composite of said magnetically soft material and said hard magnetic material to make the bulk exchange spring magnet. The step of producing a composite of magnetically soft material and hard magnetic material is accomplished by electrophoretic deposition of the magnetically soft material and the hard magnetic material to make the bulk exchange spring magnet.

  12. InGaAsP-based uni-travelling carrier photodiode structure grown by solid source molecular beam epitaxy.

    PubMed

    Natrella, Michele; Rouvalis, Efthymios; Liu, Chin-Pang; Liu, Huiyun; Renaud, Cyril C; Seeds, Alwyn J

    2012-08-13

    We report the first InGaAsP-based uni-travelling carrier photodiode structure grown by Solid Source Molecular Beam Epitaxy; the material contains layers of InGaAsP as thick as 300 nm and a 120 nm thick InGaAs absorber. Large area vertically illuminated test devices have been fabricated and characterised; the devices exhibited 0.1 A/W responsivity at 1550 nm, 12.5 GHz -3 dB bandwidth and -5.8 dBm output power at 10 GHz for a photocurrent of 4.8 mA. The use of Solid Source Molecular Beam Epitaxy enables the major issue associated with the unintentional diffusion of zinc in Metal Organic Vapour Phase Epitaxy to be overcome and gives the benefit of the superior control provided by MBE growth techniques without the costs and the risks of handling toxic gases of Gas Source Molecular Beam Epitaxy.

  13. Low interface defect density of atomic layer deposition BeO with self-cleaning reaction for InGaAs metal oxide semiconductor field effect transistors

    SciTech Connect

    Shin, H. S.; Yum, J. H.; Johnson, D. W.; Harris, H. R.; Hudnall, Todd W.; Oh, J.; Kirsch, P.; Wang, W.-E.; Bielawski, C. W.; Banerjee, S. K.; Lee, J. C.; Lee, H. D.

    2013-11-25

    In this paper, we discuss atomic configuration of atomic layer deposition (ALD) beryllium oxide (BeO) using the quantum chemistry to understand the theoretical origin. BeO has shorter bond length, higher reaction enthalpy, and larger bandgap energy compared with those of ALD aluminum oxide. It is shown that the excellent material properties of ALD BeO can reduce interface defect density due to the self-cleaning reaction and this contributes to the improvement of device performance of InGaAs MOSFETs. The low interface defect density and low leakage current of InGaAs MOSFET were demonstrated using X-ray photoelectron spectroscopy and the corresponding electrical results.

  14. Time-resolved photoluminescence of type-II Ga(As)Sb/GaAs quantum dots embedded in an InGaAs quantum well.

    PubMed

    Tatebayashi, J; Liang, B L; Laghumavarapu, R B; Bussian, D A; Htoon, H; Klimov, V; Balakrishnan, G; Dawson, L R; Huffaker, D L

    2008-07-23

    Optical properties and carrier dynamics in type-II Ga(As)Sb/GaAs quantum dots (QDs) embedded in an InGaAs quantum well (QW) are reported. A large blueshift of the photoluminescence (PL) peak is observed with increased excitation densities. This blueshift is due to the Coulomb interaction between physically separated electrons and holes characteristic of the type-II band alignment, along with a band-filling effect of electrons in the QW. Low-temperature (4 K) time-resolved PL measurements show a decay time of [Formula: see text] ns from the transition between Ga(As)Sb QDs and InGaAs QW which is longer than that of the transition between Ga(As)Sb QDs and GaAs two-dimensional electron gas ([Formula: see text] ns).

  15. An efficient heat-spreader design: First demonstration on InGaP/graded InGaAs base/GaAs collector-up HBTs

    NASA Astrophysics Data System (ADS)

    Tseng, Hsien-Cheng; Chu, Wen-Jen

    2013-01-01

    An efficient heat-spreader design, demonstrated on n-p-n InGaP/graded InGaAs base/GaAs collector-up heterojunction bipolar transistors (HBTs) for the first time, is proposed to achieve high speed and thermal dissipation performances. The collector-up HBT, with a graded InGaAs base, has been successfully fabricated using a three-stage selective-area-regrowth technique. A unity-gain cutoff frequency fT = 55 GHz and a maximum frequency of oscillation fmax = 74 GHz were obtained from prototype devices with a large collector area of 3.5 × 40 μm2. Moreover, through proper thinning process, the maximum junction temperature and thermal coupling within the transistors were effectively decreased. It is shown that the thermal management for power amplifiers, based on the developed HBT, used in next-generation cellular phones can be enhanced.

  16. Indium out-diffusion in Al{sub 2}O{sub 3}/InGaAs stacks during anneal at different ambient conditions

    SciTech Connect

    Krylov, Igor; Winter, Roy; Ritter, Dan; Eizenberg, Moshe

    2014-06-16

    Indium out-diffusion during anneal enhances leakage currents in metal/dielectric/InGaAs gate stacks. In this work, we study the influence of ambient conditions during anneal on indium out-diffusion in Al{sub 2}O{sub 3}/InGaAs structures, prior to the gate metal deposition. Using X-ray photoemission spectroscopy and time of flight secondary ions mass spectrometry, we observed much lower indium concentrations in the Al{sub 2}O{sub 3} layer following vacuum and O{sub 2} anneals compared to forming gas or nitrogen anneals. The electrical characteristics of the Ni/Al{sub 2}O{sub 3}/InGaAs gate stack following these pre-metallization anneals as well as after subsequent post metallization anneals are presented. Possible explanations for the role of the annealing ambient conditions on indium out-diffusion are presented.

  17. The effect of post oxide deposition annealing on the effective work function in metal/Al{sub 2}O{sub 3}/InGaAs gate stack

    SciTech Connect

    Winter, R.; Krylov, I.; Eizenberg, M.; Ahn, J.; McIntyre, P. C.

    2014-05-19

    The effect of post oxide deposition annealing on the effective work function in metal/Al{sub 2}O{sub 3}/ InGaAs gate stacks was investigated. Using a systematic method for effective work function extraction, a shift of 0.3 ± 0.1 eV was found between the effective work function of forming gas annealed samples and vacuum annealed samples. The electrical measurements enabled us to obtain the band alignment of the metal/Al{sub 2}O{sub 3}/InGaAs gate stack. This band alignment was confirmed by X-ray photoelectron spectroscopy. The measured shift in the effective work function between different annealing ambient may be attributed to indium out-diffusion during post oxide deposition annealing that is observed in forming gas anneal to a much larger extent than in vacuum.

  18. Phobos: Observed bulk properties

    NASA Astrophysics Data System (ADS)

    Pätzold, Martin; Andert, Tom; Jacobson, Robert; Rosenblatt, Pascal; Dehant, Véronique

    2014-11-01

    This work is a review of the mass determinations of the Mars moon Phobos by spacecraft close flybys, by solving for the Martian gravity field and by the analysis of secular orbit perturbations. The absolute value and accuracy is sensitive on the knowledge and accuracy of the Phobos ephemeris, of the spacecraft orbit, other perturbing forces acting on the spacecraft and the resolution of the Martian gravity field besides the measurement accuracy of the radio tracking data. The mass value and its error improved from spacecraft mission to mission or from the modern analysis of “old” tracking data but these solutions depend on the accuracy of the ephemeris at the time of observation. The mass value seems to settle within the range of GMPh=(7.11±0.09)×10-4 km3 s-2 which covers almost all mass values from close flybys and “distant” encounters within its 3-σ error (1.5%). Using the volume value determined from MEX HRSC imaging, the bulk density is (1873±31) kg m-3 (3-σ error or 1.7%), a low value which suggests that Phobos is either highly porous, is composed partially of light material or both. The determination of the gravity coefficients C20 and C22 from the Mars Express 2010 close flyby does not allow to draw conclusion on the internal structure. The large errors do not distinguish whether Phobos is homogeneous or not. In view of theories of the Phobos' origin, one possibility is that Phobos is not a captured asteroid but accreted from a debris disk in Mars orbit as a second generation solar system object.

  19. In-situ atomic layer deposition of tri-methylaluminum and water on pristine single-crystal (In)GaAs surfaces: electronic and electric structures.

    PubMed

    Pi, T W; Lin, Y H; Fanchiang, Y T; Chiang, T H; Wei, C H; Lin, Y C; Wertheim, G K; Kwo, J; Hong, M

    2015-04-24

    The electronic structure of single-crystal (In)GaAs deposited with tri-methylaluminum (TMA) and water via atomic layer deposition (ALD) is presented with high-resolution synchrotron radiation core-level photoemission and capacitance-voltage (CV) characteristics. The interaction of the precursor atoms with (In)GaAs is confined at the topmost surface layer. The Ga-vacant site on the GaAs(111)A-2 × 2 surface is filled with Al, thereby effectively passivating the As dangling bonds. The As-As dimers on the GaAs(001)-2 × 4 surface are entirely passivated by one cycle of TMA and water. The presumed layerwise deposition fails to happen in GaAs(001)-4 × 6. In In0.20Ga0.80As(001)-2 × 4, the edge row As atoms are partially bonded with the Al, and one released methyl then bonds with the In. It is suggested that the unpassivated surface and subsurface atoms cause large frequency dispersions in CV characteristics under the gate bias. We also found that the (In)GaAs surface is immune to water in ALD. However, the momentary exposure of it to air (less than one minute) introduces significant signals of native oxides. This indicates the necessity of in situ works of high κ/(In)GaAs-related experiments in order to know the precise interfacial atomic bonding and thus know the electronic characteristics. The electric CV measurements of the ALD-Al2O3 on these (In)GaAs surfaces are correlated with their electronic properties.

  20. Electrical and Optical Performance Characteristics of 0.74-eV p/n InGaAs Monolithic Interconnected Modules

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Fatemi, Navid S.; Jenkins, Phillip P.; Weizer, Victor G.; Hoffman, Richard W., Jr.; Jain, Raj K.; Murray, Christopher S.; Riley, David R.

    1997-01-01

    There has been a traditional trade-off in thermophotovoltaic (TPV) energy conversion development between system efficiency and power density. This trade-off originates from the use of front surface spectral controls such as selective emitters and various types of filters. A monolithic interconnected module (MIM) structure has been developed which allows for both high power densities and high system efficiencies. The MIM device consists of many individual indium gallium arsenide (InGaAs) cells series-connected on a single semi-insulating indium phosphide (InP) substrate. The MIM is exposed to the entire emitter output, thereby maximizing output power density. An infrared (IR) reflector placed on the rear surface of the substrate returns the unused portion of the emitter output spectrum back to the emitter for recycling, thereby providing for high system efficiencies. Initial MIM development has focused on a 1 sq cm device consisting of eight (8) series interconnected cells. MIM devices, produced from 0.74-eV InGaAs, have demonstrated V(sub oc) = 3.2 volts, J(sub sc) = 70 mA/sq cm, and a fill factor of 66% under flashlamp testing. Infrared (IR) reflectance measurements (greater than 2 micron) of these devices indicate a reflectivity of greater than 82%. MIM devices produced from 0.55-eV InGaAs have also been demonstrated. In addition, conventional p/n InGaAs devices with record efficiencies (11.7% AM0) have been demonstrated.

  1. Toward a single-chip TECless/NUCless InGaAs SWIR camera with 120-dB intrinsic operation dynamic range

    NASA Astrophysics Data System (ADS)

    Ni, Y.; Arion, B.; Zhu, Y. M.; Potet, P.; Huet, Odile; Reverchon, Jean Luc; Truffer, Jean Patrick; Robo, Jean Alexandre; Costard, Eric

    2011-06-01

    This paper describes a single-chip InGaAs SWIR camera with more than 120dB instant operational dynamic range with an innovative CMOS ROIC technology, so called MAGIC, invented and patented by New Imaging Technologies. A 320x256- pixel InGaAs 25μm pitch photodiode array, designed and fabricated by III-Vlab/Thales Research & Technology(TRT), has been hybridized on this new generation CMOS ROIC. With NIT's MAGIC technology, the sensor's output follows a precise logarithmic law in function of incoming photon flux and gives instant operational dynamic range (DR) better than 120 dB. The ROIC incorporates the entire video signal processing function including a CCIR TV encoder, so a complete SWIR InGaAs camera with standard video output has been realized on a single 30x30 mm2 PCB board with ¼ W power consumption. Neither TEC nor NUC is needed from room temperature operation. The camera can be switched on and off instantly, ideal for all the portable battery operated SWIR band observation applications. The measured RMS noise and FPN noise on the prototype sensor in dark conditions are 0.4 mV and 0.27 mV respectively. The signal excursion from pixel is about 300mV over the 120 dB dynamic range. The FPN remains almost constant over the whole operation dynamic range. The NEI has been measured to be 3,71E+09 ph/s/cm2 with 92 equivalent noise photons at 25Hz frame rate, better than the same architecture of InGaAs photodiode array hybridized on an Indigo ROIC ISC9809 with a pitch of 30 μm for which a readout noise of 120 electrons is observed.

  2. In-situ atomic layer deposition of tri-methylaluminum and water on pristine single-crystal (In)GaAs surfaces: electronic and electric structures

    NASA Astrophysics Data System (ADS)

    Pi, T. W.; Lin, Y. H.; Fanchiang, Y. T.; Chiang, T. H.; Wei, C. H.; Lin, Y. C.; Wertheim, G. K.; Kwo, J.; Hong, M.

    2015-04-01

    The electronic structure of single-crystal (In)GaAs deposited with tri-methylaluminum (TMA) and water via atomic layer deposition (ALD) is presented with high-resolution synchrotron radiation core-level photoemission and capacitance-voltage (CV) characteristics. The interaction of the precursor atoms with (In)GaAs is confined at the topmost surface layer. The Ga-vacant site on the GaAs(111)A-2 × 2 surface is filled with Al, thereby effectively passivating the As dangling bonds. The As-As dimers on the GaAs(001)-2 × 4 surface are entirely passivated by one cycle of TMA and water. The presumed layerwise deposition fails to happen in GaAs(001)-4 × 6. In In0.20Ga0.80As(001)-2 × 4, the edge row As atoms are partially bonded with the Al, and one released methyl then bonds with the In. It is suggested that the unpassivated surface and subsurface atoms cause large frequency dispersions in CV characteristics under the gate bias. We also found that the (In)GaAs surface is immune to water in ALD. However, the momentary exposure of it to air (less than one minute) introduces significant signals of native oxides. This indicates the necessity of in situ works of high κ/(In)GaAs-related experiments in order to know the precise interfacial atomic bonding and thus know the electronic characteristics. The electric CV measurements of the ALD-Al2O3 on these (In)GaAs surfaces are correlated with their electronic properties.

  3. Wavy growth onset in strain-balanced InGaAs multi-quantum wells

    NASA Astrophysics Data System (ADS)

    Nasi, L.; Ferrari, C.; Lanzi, A.; Lazzarini, L.; Balboni, R.; Clarke, G.; Mazzer, M.; Rohr, C.; Abbott, P.; Barnham, K. W. J.

    2005-01-01

    Different strain-balanced InGaAs/InGaAs multi-quantum wells (MQWs) were grown on (0 0 1) InP to be used as active layers of thermophotovoltaic devices. Transmission electron microscopy (TEM) and high-resolution X-ray diffraction (HRXRD) were performed to correlate the evolution of the layer interfaces from planar to wavy and the consequent nucleation of extended defects with the well and barrier compositions and thicknesses and the growth temperature. The existence of a critical elastic energy density for the wavy growth onset has been experimentally confirmed by changing both the well and barrier misfit and the multi-quantum well layer thickness. A decrease of the growth temperature shifts the critical energy to higher values. An empirical model to predict the maximum number of layers that can be grown without modulations as a function of the strain energy stored in the MQW period and the growth temperature is presented and successfully applied for the growth of high quality 40 repetitions MQWs with a well misfit of about 1.5%.

  4. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes.

    PubMed

    Farrell, Alan C; Senanayake, Pradeep; Hung, Chung-Hong; El-Howayek, Georges; Rajagopal, Abhejit; Currie, Marc; Hayat, Majeed M; Huffaker, Diana L

    2015-12-02

    Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III-V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure.

  5. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes

    NASA Astrophysics Data System (ADS)

    Farrell, Alan C.; Senanayake, Pradeep; Hung, Chung-Hong; El-Howayek, Georges; Rajagopal, Abhejit; Currie, Marc; Hayat, Majeed M.; Huffaker, Diana L.

    2015-12-01

    Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III-V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure.

  6. Development of high-speed InGaAs linear array and camera for OCT and machine vision

    NASA Astrophysics Data System (ADS)

    Malchow, Douglas S.; Brubaker, Robert M.; Nguyen, Hai; Flynn, Kevin

    2008-02-01

    Spectral Domain Optical Coherence Tomography (SD-OCT) is a rapidly growing imaging technique for high-resolution visualization of structures within strongly scattering media. It is being used to create 2-D and 3-D images in biological tissues to measure structures in the eye, image abnormal growths in organ tissue, and to assess the health of arterial walls. The ability to image to depths of several millimeters with resolutions better than 5 microns has driven the need to maximize the image depth, while also increasing the imaging speed. Researchers are using short-wave-infrared light wavelengths from 1 to 1.6 microns to penetrate deeper in denser tissue than visible or NIR wavelengths. This, in turn, has created the need to increase the line rates of InGaAs linear array cameras by a factor of ten, while also increasing gain and reducing dead time. This paper will describe the development and characterization of a 1024 pixel linear array with 25 micron pitch and readout rate of over 45,000 lines per second and the resulting camera. This camera will also have application for machine vision inspection of hot glass globs, for sorting of fast moving agricultural materials and for quality control of pharmaceutical products.

  7. Screened-exchange density functional approach to Auger recombination and impact ionization rates in InGaAs

    NASA Astrophysics Data System (ADS)

    Picozzi, Silvia; Asahi, Ryoji; Geller, Clint; Freeman, Arthur

    2004-03-01

    We present an ab-initio modeling approach for Auger recombination and impact ionization in semiconductors directed at i) quantitative rate determinations and 2) elucidating trends with respect to alloy composition, carrier concentration and temperature. We present a fully first-principles formalism (S.Picozzi, R.Asahi, C.B. Geller and A.J.Freeman, Phys.Rev.Lett. 89, 197601 (2002); Phys.Rev.B 65, 113206 (2002).), based on accurate energy bands and wave functions within the screened exchange local density approximation and the full-potential linearized augmented plane wave (FLAPW) method (E.Wimmer, H.Krakauer, M.Weinert, A.J.Freeman, Phys.Rev.B 24, 864 (1981)). Results are presented for electron- and hole-initiated impact ionization processes and Auger recombinations for p-type and n-type InGaAs. Anisotropy and composition effects in the related rates are discussed in terms of the underlying band-structures. Calculated Auger lifetimes, in general agreement with experiments, are studied for different recombination mechanisms (i.e. CCCH, CHHL, CHHS, involving conduction electrons (C), heavy- (H) and light-hole (L), spin split-off (S) band) in order to understand the dominant mechanism.

  8. A new RF trench-gate multi-channel laterally-diffused MOSFET on InGaAs

    NASA Astrophysics Data System (ADS)

    Payal, M.; Singh, Y.

    2017-09-01

    In this work, a new RF power trench-gate multi-channel laterally-diffused MOSFET (TGMC-LDMOS) on InGaAs is proposed. The gate-electrodes of the new structure are placed vertically in the trenches built in the drift layer. Each gate results in the formation of two channels in the p-body region of the device. The drain metal is also placed in a trench to take contact from the n+-InGaAs region located over the substrate. In a cell length of 5 {{μ }}{{m}}, the TGMC-LDMOS structure has seven channels, which conduct simultaneously to carry drain current in parallel. The formation of multi-channels in the proposed device increases the drive current ({I}{{D}}) leading to a large reduction in the specific on-resistance ({R}{{on-sp}}). Due to better control of gates on the drain current, the new structure exhibits substantially higher transconductance ({g}{{m}}) resulting in significant improvement in cut-off frequency ({f}{{T}}) and oscillation frequency ({f}\\max ). Using two-dimensional numerical simulations, a 55 V TGMC-LDMOS is demonstrated to achieve 7 times higher {I}{{D}}, 6.2 times lower {R}{{on-sp}}, 6.3 times higher peak {g}{{m}}, 2.6 times higher {f}{{T}}, and 2.5 times increase in {f}\\max in comparison to a conventional device for the identical cell length.

  9. Non-destructive mapping of doping and structural composition of MOVPE-grown high current density resonant tunnelling diodes through photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Jacobs, K. J. P.; Stevens, B. J.; Mukai, T.; Ohnishi, D.; Hogg, R. A.

    2015-05-01

    We report on photoluminescence (PL) characterisation of metal-organic vapour phase epitaxy (MOVPE) grown high current density (~700 kA/cm2) InGaAs/AlAs/InP based resonant tunnelling diodes (RTDs) for terahertz emission. The PL mapping we describe allows important information about doping level and uniformity, ternary alloy composition and uniformity, and uniformity of quantum well thickness to be deduced. PL as a function of doping concentration is studied for InGaAs test layers at low temperatures and correlated to secondary-ion mass spectroscopy (SIMS) and electrochemical capacitance-voltage (eCV) profiling to provide non-destructive mapping of doping over the wafer. For the RTD structures, we utilise eCV as a selective etch tool to identify the origin of low temperature PL emission from the quantum well (QW) and the highly doped contact layers. PL mapping of the RTD wafer at low temperatures is shown to allow the assessment of variations in InGaAs alloy composition and QW thickness. Details of the growth process are discussed and confirmed using high resolution X-ray diffraction (HRXRD) crystallography. The rapid non-destructive characterisation and wafer mapping of these structures promises a route to future growth optimisation of such structures.

  10. Magnesium doping in InAlAs and InGaAs/Mg films lattice-matched to InP grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Ezzedini, Maher; Sfaxi, Larbi; M'Ghaieth, Ridha

    2017-01-01

    Mg-doped InAlAs and InGaAs films were grown at 560 °C lattice matched to InP semi-insulting substrate by metalorganic vapor phase epitaxy (MOVPE) under various Cp2Mg flow conditions. Hall effect, photoluminescence (PL), high-resolution X-ray diffraction (HR-XRD), and secondary ion mass (SIMS) were the tools used in this work. The crystalline quality and the n-p conversion of the InAlAs and InGaAs/Mg films are described and discussed in relation to the Cp2Mg flow. Distinguishing triple emission peaks in PL spectra is observed and seems to be strongly dependent on the Cp2Mg flow. SIMS is employed to analyze the elements in the epitaxial layers. The variation of indium and magnesium components indicates a decrease of magnesium incorporation during the growth of InAlAs layers leading to a contracted lattice. In addition, the magnesium incorporation in the InGaAs lattice during growth has been confirmed by SIMS.

  11. Bulking agents in sludge composting

    SciTech Connect

    De Bertoldi, M.; Citernesi, U.; Griselli, M.

    1980-01-01

    Composting is one of the most effective ways of disposing of sludge in agriculture. Three bulking agents were studied: (1) the organic fraction of solid wastes, (2) solid agricultural and forestry waste (straw, maize cobs, sawdust, cork, pine cones, etc.), and (3) recyclable inert substrates (polystyrene or polyethylene balls, porous clay balls, etc.). The sole purpose of the inert bulking agent is to aid in the aeration and drying of the composting material.

  12. Plasmonic field confinement for separate absorption-multiplication in InGaAs nanopillar avalanche photodiodes

    PubMed Central

    Farrell, Alan C.; Senanayake, Pradeep; Hung, Chung-Hong; El-Howayek, Georges; Rajagopal, Abhejit; Currie, Marc; Hayat, Majeed M.; Huffaker, Diana L.

    2015-01-01

    Avalanche photodiodes (APDs) are essential components in quantum key distribution systems and active imaging systems requiring both ultrafast response time to measure photon time of flight and high gain to detect low photon flux. The internal gain of an APD can improve system signal-to-noise ratio (SNR). Excess noise is typically kept low through the selection of material with intrinsically low excess noise, using separate-absorption-multiplication (SAM) heterostructures, or taking advantage of the dead-space effect using thin multiplication regions. In this work we demonstrate the first measurement of excess noise and gain-bandwidth product in III–V nanopillars exhibiting substantially lower excess noise factors compared to bulk and gain-bandwidth products greater than 200 GHz. The nanopillar optical antenna avalanche detector (NOAAD) architecture is utilized for spatially separating the absorption region from the avalanche region via the NOA resulting in single carrier injection without the use of a traditional SAM heterostructure. PMID:26627932

  13. Modelling of bulk superconductor magnetization

    NASA Astrophysics Data System (ADS)

    Ainslie, M. D.; Fujishiro, H.

    2015-05-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet-superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed.

  14. Texturing studies on ? bulk crystals

    NASA Astrophysics Data System (ADS)

    Prabhakaran, D.; Subramanian, C.

    1998-08-01

    Textured crystals of 0953-2048/11/8/013/img2 have been grown by the platinum strip heater-floating zone technique. Texturing ratio and phase purity (Bi-2212) of the grown crystals were calculated from the x-ray diffraction data. Chemical compositions of the grown crystals were quantified from the inductively coupled plasma analysis. 0953-2048/11/8/013/img3 was found to be increased by 2 K for a lower level of substitution and a superconductor to semiconductor transition was observed for the higher order Y substitution. Oxygen stoichiometries of the Y substituted crystals were quantified from the iodometry titration method. Micro-twinning along the growth axis was revealed during etching studies for the cleaved crystals.

  15. Looking for a bulk point

    DOE PAGES

    Maldacena, Juan; Simmons-Duffin, David; Zhiboedov, Alexander

    2017-01-03

    Here, we consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We also argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at thesemore » locations. Finally, we prove this statement in 1+1 dimensions by CFT methods.« less

  16. Looking for a bulk point

    NASA Astrophysics Data System (ADS)

    Maldacena, Juan; Simmons-Duffin, David; Zhiboedov, Alexander

    2017-01-01

    We consider Lorentzian correlators of local operators. In perturbation theory, singularities occur when we can draw a position-space Landau diagram with null lines. In theories with gravity duals, we can also draw Landau diagrams in the bulk. We argue that certain singularities can arise only from bulk diagrams, not from boundary diagrams. As has been previously observed, these singularities are a clear diagnostic of bulk locality. We analyze some properties of these perturbative singularities and discuss their relation to the OPE and the dimensions of double-trace operators. In the exact nonperturbative theory, we expect no singularity at these locations. We prove this statement in 1+1 dimensions by CFT methods.

  17. Compact multichannel receiver using InGaAs APDs for single-pulse eye-safe laser radar imagery

    NASA Astrophysics Data System (ADS)

    Burns, Hoyt N.; Yun, Steven T.; Dinndorf, Kenneth M.; Hayden, David R.

    1997-08-01

    Active imaging laser radars form 3D images which can be processed to provide target identification and precision aimpoint definition in real time. Earlier raster-scanned and pushbroom-scanned 3D imaging laser radar receivers required multiple laser pulses to assemble a complete 3D image frame. Platform/target motion and atmospheric effects caused tearing and jitter in the assembled 3D images, which complicated the subsequent image processing and necessitated the use of stabilized scanning systems. This paper describes the current status of the parallel/multichannel imaging laser radar receiver (PMR) which is being developed under an SBIR Phaser II program by the USAF Wright Laboratories Armament Directorate. The PMR uses an array of multichannel laser radar receivers to form single-pulse, 3D laser radar images, thus eliminating the complex and costly scanning system, and enabling much higher frame rates than were ever before possible. The heart of the PMR is the multichannel optical receiver photonic hybrid (MORPH), a high performance 16-channel laser radar receiver module which uses an array of InGaAs avalanche photodiodes for eyesafe operation. The MORPH provides high downrange resolution, multihit range data for each detector on a compact circuit card. Optical flux is transferred from the receiver focal plane to each MORPH via a fiber optic ribbon cable. An array of MORPHs are plugged into a compact passive backplane, along with a single digital control card (DCC). The DCC, which is the same form factor as the MORPH, synchronizes the MORPHs and transfers the digital range information to the host processor over a standard parallel data interface cable. The system described here illustrates one approach to integrating and packaging high-density photonic arrays and their associated signal processing electronics to yield a compact, low power, scannerless, high performance imaging laser radar receiver, using existing technology.

  18. Evaluation of InGaAs 640×512 detector array manufactured by Chunghwa Leading Photonics Tech

    NASA Astrophysics Data System (ADS)

    Nagayama, Takahiro; Takeuchi, Nami; Kokusho, Takuma; Yamanaka, Asa; Nishiyama, Miho; Kaneda, Hidehiro

    2014-07-01

    Focal Plane Arrays (FPA) are key items for modern astronomical observations in the near infrared wavelength, but it is very expensive and not easy to get them. Less expensive NIR FPAs with reasonable performance are very important to spread NIR observation extensively. FPA640×512 manufactured by Chunghwa Leading Photonics Tech is a 640×512 InGaAs detector covering the 0.9-1.7 μm wavelength. Since this array is significantly cheaper than the commonly used NIR FPAs in the astronomical observation, it is possible to be a good choice for particular projects which do not need many pixels, if FPA640×512 has acceptable performance for the purpose. We have evaluated one test grade array of FPA640×512 both in the room and low temperature environment. In order to evaluate the characteristics of this FPA in the low temperature environment, we cooled it down by the mechanical refrigerator and confirmed that it works at 100 K. We have found that the dark current reduces exponentially as the FPA temperature decreases, but it hits the bottom at~1000 e-/sec bellow 200 K with the default setting. We are trying to reduce the dark current by optimizing the bias voltage and the current to the MUX circuit. The latest experiments have shown the possibility that the dark current decreases to~200 e-/sec. This value is still higher than that of NIR FPAs used in the scientific observation, but it may be applicable for the particular purpose, for example, FPAs for slit viewer in spectrometers, wave front sensor, and so on.

  19. High-Performance Wrap-Gated InGaAs Nanowire Field-Effect Transistors with Sputtered Dielectrics

    PubMed Central

    Shen, Li-Fan; Yip, SenPo; Yang, Zai-xing; Fang, Ming; Hung, TakFu; Pun, Edwin Y.B.; Ho, Johnny C.

    2015-01-01

    Although wrap-gated nanowire field-effect-transistors (NWFETs) have been explored as an ideal electronic device geometry for low-power and high-frequency applications, further performance enhancement and practical implementation are still suffering from electron scattering on nanowire surface/interface traps between the nanowire channel and gate dielectric as well as the complicated device fabrication scheme. Here, we report the development of high-performance wrap-gated InGaAs NWFETs using conventional sputtered Al2O3 layers as gate dielectrics, instead of the typically employed atomic layer deposited counterparts. Importantly, the surface chemical passivation of NW channels performed right before the dielectric deposition is found to significantly alleviate plasma induced defect traps on the NW channel. Utilizing this passivation, the wrap-gated device exhibits superior electrical performances: a high ION/IOFF ratio of ~2 × 106, an extremely low sub-threshold slope of 80 mV/decade and a peak field-effect electron mobility of ~1600 cm2/(Vs) at VDS = 0.1 V at room temperature, in which these values are even better than the ones of state-of-the-art NWFETs reported so far. By combining sputtering and pre-deposition chemical passivation to achieve high-quality gate dielectrics for wrap-gated NWFETs, the superior gate coupling and electrical performances have been achieved, confirming the effectiveness of our hybrid approach for future advanced electronic devices. PMID:26607169

  20. Quantitative analysis of compositional changes in InGaAs/InGaAsP quantum wells on GaAs induced by intermixing with a low temperature grown InGaP cap layer

    SciTech Connect

    Hulko, O.; Thompson, D. A.; Czaban, J. A.; Simmons, J. G.

    2006-08-07

    Energy-dispersive x-ray spectroscopy was used to analyze quantum well intermixing between an InGaAs quantum well (QW) and InGaAsP barriers grown on GaAs induced by a low temperature, molecular beam epitaxy grown, InGaP cap. This cap layer produces an enhanced blueshift of the photoluminescence (PL) wavelength following postgrowth annealing, and degradation of the PL signal. Cross-sectional transmission electron microscopy reveals modification of the whole structure, with formation of arsenic precipitates, broadening, and subsequent disappearance of the QWs in the capped structure. Uncapped samples are relatively unchanged. Increased phosphorus observed in the QW for capped structures confirms the diffusion of phosphorus from the P-rich cap.

  1. 19 CFR 149.4 - Bulk and break bulk cargo.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Importers must still report 24 hours in advance of loading any containerized or non-qualifying break bulk... this chapter that a cargo declaration be filed with Customs and Border Protection (CBP) 24 hours before... Border Protection (CBP) 24 hours before such cargo is laden aboard the vessel at the foreign port,...

  2. Effect of Metal Coverage on the Performance of 0.6-eV InGaAs Monolithic Interconnected Modules

    NASA Astrophysics Data System (ADS)

    Murray, Susan L.; Murray, Christopher S.; Stan, Mark A.; Newman, Frederick D.; Hills, Jenifer; Siergiej, Richard; Wernsman, Bernard

    2003-01-01

    With the device performance of 0.6eV InGaAs monolithic interconnected modules (MIMs) reaching open circuit voltages of 400 mV/junction and achieving excellent quantum efficiency, the next step to improve performance focuses on controlling the parasitic optical absorption in these MIMs. With an integrated spectral control approach, the design of grid finger and interconnect metallization affects both the output power and the optical absorption of the MIM. The effect of metal coverage on the optical and electrical performance of MIMs processed in a multi-wafer environment is presented.

  3. Path-folded infrared spectrometer consisting of 10 sub-gratings and a two-dimensional InGaAs detector.

    PubMed

    Liu, Ming-Hui; Pan, Su-Xing; Chen, Yu-Rui; Wu, Yun-Fei; Cai, Qing-Yuan; Mao, Peng-Hui; Zheng, Yu-Xiang; Chen, Liang-Yao

    2009-08-17

    A new compact infrared spectrometer without any mechanical moving elements has been designed and constructed using a two-dimensional InGaAs array detector and 10 sub-gratings. The instrument is compact, with a double-folded optical path configuration. The spectra are densely 10-folded to achieve 0.07-nm spectral resolution and a 2-ms data acquisition time in the 1450- to 1650-nm wavelength region, making the instrument useful for real-time spectroscopic data analyses in optical communication and many other fields. (c) 2009 Optical Society of America

  4. Growth of bulk single crystals of organic materials for nonlinear optical devices - An overview

    NASA Technical Reports Server (NTRS)

    Penn, Benjamin G.; Cardelino, Beatriz H.; Moore, Craig E.; Shields, Angela W.; Frazier, D. O.

    1991-01-01

    Highly perfect single crystals of nonlinear optical organic materials are required for use in optical devices. An overview of the bulk crystal growth of these materials by melt, vapor, and solution processes is presented. Additionally, methods that may be used to purify starting materials, detect impurities at low levels, screen materials for crystal growth, and process grown crystals are discussed.

  5. Diffused P+-N solar cells in bulk GaAs

    NASA Technical Reports Server (NTRS)

    Borrego, J. M.; Ghandhi, S. K.

    1982-01-01

    Recently melt grown GaAs, made by liquid encapsulation techniques, has become available. This material is of sufficiently good quality to allow the fabrication of solar cells by direct diffusion. Results obtained with p(+)/n junction solar cells made by zinc diffusion are described. The quality of bulk GaAs for this application is evaluated.

  6. Growth of bulk single crystals of organic materials for nonlinear optical devices - An overview

    NASA Technical Reports Server (NTRS)

    Penn, Benjamin G.; Cardelino, Beatriz H.; Moore, Craig E.; Shields, Angela W.; Frazier, D. O.

    1991-01-01

    Highly perfect single crystals of nonlinear optical organic materials are required for use in optical devices. An overview of the bulk crystal growth of these materials by melt, vapor, and solution processes is presented. Additionally, methods that may be used to purify starting materials, detect impurities at low levels, screen materials for crystal growth, and process grown crystals are discussed.

  7. Recent developments of film bulk acoustic resonators

    NASA Astrophysics Data System (ADS)

    Gao, Junning; Liu, Guorong; Li, Jie; Li, Guoqiang

    2016-06-01

    Film bulk acoustic wave resonator (FBAR) experienced skyrocketing development in the past 15 years, owing to the explosive development of mobile communication. It stands out in acoustic filters mainly because of high quality factor, which enables low insertion loss and sharp roll off. Except for the massive application in wireless communication, FBARs are also promising sensors because of the high sensitivity and readily integration ability to miniaturize circuits. On the ground of summarizing FBAR’s application in wireless communication as filters and in sensors including electronic nose, bio field, and pressure sensing, this paper review the main challenges of each application faced. The number of filters installed in the mobile phone has being grown explosively, which leads to overcrowded bands and put harsh requirements on component size and power consumption control for each unit. Data flow and rate are becoming increasingly demanding as well. This paper discusses three promising technical strategies addressing these issues. Among which coupled resonator filter is given intense attention because it is able to vigorously reduce the filter size by stacking two or more resonators together, and it is a great technique to increase data flow and rate. Temperature compensation methods are discussed considering their vital influence on frequency stability. Finally, materials improvement and novel materials exploration for band width modulation, tunable band acquisition, and quality factor improvement are discussed. The authors appeal attention of the academic society to bring AlN epitaxial thin film into the FBAR fabrication and have proposed a configuration to implement this idea.

  8. REL - English Bulk Data Input.

    ERIC Educational Resources Information Center

    Bigelow, Richard Henry

    A bulk data input processor which is available for the Rapidly Extensible Language (REL) English versions is described. In REL English versions, statements that declare names of data items and their interrelationships normally are lines from a terminal or cards in a batch input stream. These statements provide a convenient means of declaring some…

  9. Comparison of the degradation characteristics of AlON/InGaAs and Al2O3/InGaAs stacks

    NASA Astrophysics Data System (ADS)

    Palumbo, F.; Krylov, I.; Eizenberg, M.

    2015-03-01

    In this paper, the degradation characteristics of MOS (Metal-Oxide-Semiconductor) stacks with Al2O3/AlON or Al2O3 only as dielectric layers on InGaAs were studied. The dielectric nitrides are proposed as possible passivation layers to prevent InGaAs oxidation. At negative bias, it has been found out that the main contribution to the overall degradation of the gate oxide is dominated by the generation of positive charge in the gate oxide. This effect is pronounced in MOS stacks with Al2O3/AlON as dielectric, where we think the positive charge is mainly generated in the AlON interlayer. At positive bias, the degradation is dominated by buildup of negative charge due to electron trapping in pre-existing or stress-induced traps. For stress biases where the leakage currents are low, the changes in the electrical characteristics are dominated by electron-trapping into traps located in energy levels in the upper part of the semiconductor gap. For stress biases with higher leakage current levels, the electron trapping occurs in stress-induced traps increasing the shift of VFB towards positive bias. The overall results clearly show that the improvement of the high-k dielectric/InGaAs interface by introducing N into the Al-oxide does not necessarily mean an increase in the reliability of the MOS stack.

  10. Series resistance and gate leakage correction for improved border trap analysis of Al2O3/InGaAs gate stacks

    NASA Astrophysics Data System (ADS)

    Tang, K.; Scheuermann, A. G.; Zhang, L.; McIntyre, P. C.

    2017-09-01

    As the size of electronic devices scales down, series resistance (RS) and gate leakage effects are commonly observed in electrical measurement of metal-oxide-semiconductor gate stacks. As a result of their effects on device characteristics, these phenomena complicate the analysis of border trap density (Nbt) in the gate insulator using capacitance-voltage (C-V) and conductance-voltage (G-V) measurements. In this work, we develop methods to correct for the effects of RS and gate leakage in Al2O3/InGaAs gate stacks to enable reliable fitting of C-V and G-V data to determine Nbt. When tested using data from Pd/Al2O3/InGaAs gate stacks, the RS correction method successfully removes the RS-induced high frequency dispersion in the accumulation region of the C-V curves and provides an accurate extraction of RS and Nbt. The gate leakage correction method is tested on gate stacks with high gate leakage current of ˜25 μA at 2 V bias, and is found to effectively fit capacitance and conductance data, to achieve consistent Nbt extraction. The compatibility of these two methods is confirmed by analysis of data obtained from gate stacks with both substantial RS and gate leakage.

  11. High-optical-power handling InGaAs photodiodes and balanced receivers for high-spurious free dynamic range (SFDR) analog photonic links

    NASA Astrophysics Data System (ADS)

    Joshi, Abhay M.; Wang, Xinde; Mohr, Dan; Becker, Donald; Patil, Ravikiran

    2004-08-01

    We have developed 20 mA or higher photocurrent handling InGaAs photodiodes with 20 GHz bandwidth, and 10 mA or higher photocurrent handling InGaAs photodiodes with >40 GHz bandwidth. These photodiodes have been thoroughly tested for reliability including Bellcore GR 468 standard and are built to ISO 9001:2000 Quality Management System. These Dual-depletion InGaAs/InP photodiodes are surface illuminated and yet handle such large photocurrent due to advanced band-gap engineering. They have broad wavelength coverage from 800 nm to 1700 nm, and thus can be used at several wavelengths such as 850 nm, 1064 nm, 1310 nm, 1550 nm, and 1620 nm. Furthermore, they exhibit very low Polarization Dependence Loss of 0.05dB typical to 0.1dB maximum. Using above high current handling photodiodes, we have developed classical Push-Pull pair balanced photoreceivers for the 2 to 18 GHz EW system. These balanced photoreceivers boost the Spurious Free Dynamic Range (SFDR) by almost 3 dB by eliminating the laser RIN noise. Future research calls for designing an Avalanche Photodiode Balanced Pair to boost the SFDR even further by additional 3 dB. These devices are a key enabling technology in meeting the SFDR requirements for several DoD systems.

  12. Optoelectronic Systems Based on InGaAs Complementary-Metal-Oxide-Semiconductor Smart-Pixel Arrays and Free-Space Optical Interconnects

    NASA Astrophysics Data System (ADS)

    Walker, Andrew C.; Yang, Tsung-Yi; Gourlay, James; Dines, Julian A. B.; Forbes, Mark G.; Prince, Simon M.; Baillie, Douglas A.; Neilson, David T.; Williams, Rhys; Wilkinson, Lucy C.; Smith, George R.; Desmulliez, Mark P. Y.; Buller, Gerald S.; Taghizadeh, Mohammad R.; Waddie, Andrew; Underwood, Ian; Stanley, Colin R.; Pottier, Francois; Vgele, Brigitte; Sibbett, Wilson

    1998-05-01

    Free-space optical interconnects have been identified as a potentially important technology for future massively parallel-computing systems. The development of optoelectronic smart pixels based on InGaAs AlGaAs multiple-quantum-well modulators and detectors flip-chip solder-bump bonded onto complementary-metal-oxide-semiconductor (CMOS) circuits and the design and construction of an experimental processor in which the devices are linked by free-space optical interconnects are described. For demonstrating the capabilities of the technology, a parallel data-sorting system has been identified as an effective demonstrator. By use of Batcher s bitonic sorting algorithm and exploitation of a perfect-shuffle optical interconnection, the system has the potential to perform a full sort on 1024, 16-bit words in less than 16 s. We describe the design, testing, and characterization of the smart-pixel devices and free-space optical components. InGaAs CMOS smart-pixel, chip-to-chip communication has been demonstrated at 50 Mbits s. It is shown that the initial system specifications can be met by the component technologies.

  13. X ray photoelectron analysis of oxide-semiconductor interface after breakdown in Al{sub 2}O{sub 3}/InGaAs stacks

    SciTech Connect

    Shekhter, P.; Palumbo, F.; Cohen Weinfeld, K.; Eizenberg, M.

    2014-09-08

    In this work, the post-breakdown characteristics of metal gate/Al{sub 2}O{sub 3}/InGaAs structures were studied using surface analysis by x ray photoelectron spectroscopy. The results show that for dielectric breakdown under positive bias, localized filaments consisting of oxidized substrate atoms (In, Ga and As) were formed, while following breakdown under negative bias, a decrease of oxidized substrate atoms was observed. Such differences in the microstructure at the oxide-semiconductor interface after breakdown for positive and negative voltages are explained by atomic diffusion of the contact atoms into the gate dielectric in the region of the breakdown spot by the current induced electro-migration effect. These findings show a major difference between Al{sub 2}O{sub 3}/InGaAs and SiO{sub 2}/Si interfaces, opening the way to a better understanding of the breakdown characteristics of III-V complementary-metal-oxide-semiconductor technology.

  14. MT6415CA: a 640×512-15µm CTIA ROIC for SWIR InGaAs detector arrays

    NASA Astrophysics Data System (ADS)

    Eminoglu, Selim; Isikhan, Murat; Bayhan, Nusret; Gulden, M. Ali; Incedere, O. Samet; Soyer, S. Tuncer; Kocak, Serhat; Yilmaz, Gokhan S.; Akin, Tayfun

    2013-06-01

    This paper reports the development of a new low-noise CTIA ROIC (MT6415CA) suitable for SWIR InGaAs detector arrays for low-light imaging applications. MT6415CA is the second product in the MT6400 series ROICs from Mikro-Tasarim Ltd., which is a fabless IC design house specialized in the development of monolithic imaging sensors and ROICs for hybrid imaging sensors. MT6415CA is a low-noise snapshot CTIA ROIC, has a format of 640 × 512 and pixel pitch of 15 µm, and has been developed with the system-on-chip architecture in mind, where all the timing and biasing for this ROIC are generated on-chip without requiring any external inputs. MT6415CA is a highly configurable ROIC, where many of its features can be programmed through a 3-wire serial interface allowing on-the-fly configuration of many ROIC features. It performs snapshot operation both using Integrate-Then-Read (ITR) and Integrate-While-Read (IWR) modes. The CTIA type pixel input circuitry has three gain modes with programmable full-well-capacity (FWC) values of 10.000 e-, 20.000 e-, and 350.000 e- in the very high gain (VHG), high-gain (HG), and low-gain (LG) modes, respectively. MT6415CA has an input referred noise level of less than 5 e- in the very high gain (VHG) mode, suitable for very low-noise SWIR imaging applications. MT6415CA has 8 analog video outputs that can be programmed in 8, 4, or 2-output modes with a selectable analog reference for pseudo-differential operation. The ROIC runs at 10 MHz and supports frame rate values up to 200 fps in the 8-output mode. The integration time can be programmed up to 1s in steps of 0.1 µs. The ROIC uses 3.3 V and 1.8V supply voltages and dissipates less than 150 mW in the 4-output mode. MT6415CA is fabricated using a modern mixed-signal CMOS process on 200 mm CMOS wafers, and tested parts are available at wafer or die levels with test reports and wafer maps. A compact USB 3.0 camera and imaging software have been developed to demonstrate the imaging

  15. Piezoelectric Measurement Of Bulk Modulus

    NASA Technical Reports Server (NTRS)

    Butler, Barry L.

    1992-01-01

    In method of measuring bulk modulus of elasticity of elastomeric material, piezoelectric crystals of various sizes and energized by alternating voltage embedded in material. Concept demonstrated in test cell in which piezoelectric crystal mounted either unconstrained or between two rubber pads and connected as actuator in loud-speaker. The 1-in. diameter crystal excited with 24 Vac at 60 Hz. When crystal was unconstrained, it drew current of 0.8 mA. When crystal was constrained between rubber pads, current fell to 0.65 mA. Low current, minimal heating, and absence of arcing makes technique suitable for measurement of bulk moduli of elasticity of flammable or explosive rubbery materials.

  16. Longitudinal bulk acoustic mass sensor

    NASA Astrophysics Data System (ADS)

    Hales, J. H.; Teva, J.; Boisen, A.; Davis, Z. J.

    2009-07-01

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10-15 g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise in the currently applied measurement system allows for a minimum detectable mass of 0.5 fg in air.

  17. Longitudinal bulk acoustic mass sensor

    SciTech Connect

    Hales, J. H.; Teva, J.; Boisen, A.; Davis, Z. J.

    2009-07-20

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10{sup -15} g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise in the currently applied measurement system allows for a minimum detectable mass of 0.5 fg in air.

  18. TNT Equivalency of Bulk Nitrocellulose

    DTIC Science & Technology

    1981-03-01

    9TIN ’IN AD-E400 576 CONTRACTOR REPORT ARLCD-CR-81007 TNT EQUIVALENCY OF BULK NITROCELLULOSE F. L. MCINTYRE COMPUTER SCIENCES CORPORATION NSTL...September 1978 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(S) 8. CONTRACT OR GRANT NUMBER(e) F. L. Mc~ntyre, Computer Sciences Corporation P. Price...PROJECT. TASK Computer Sciences Corporation AREA & WORK UNIT NUMBERS NSTL Station, MS 39529 MMT-5784285 II. CONTROLLING OFFICE NAME AND ADDRESS 12

  19. Growth and Characteristics of Bulk Single Crystals Grown from Solution on Earth and in Microgravity

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Batra, A. K.; Lal, R. B.; Penn, Benjamin G.; Frazier, Donald O.

    2011-01-01

    The growth of crystals has been of interest to physicists and engineers for a long time because of their unique properties. Single crystals are utilized in such diverse applications as pharmaceuticals, computers, infrared detectors, frequency measurements, piezoelectric devices, a variety of high technology devices and sensors. Solution crystal growth is one of the important techniques to grow a variety of crystals when the material decomposes at the melting point and a suitable solvent is available to make a saturated solution at a desired temperature. In this chapter an attempt is made to give some fundamentals of growing crystals from solution including improved designs of various crystallizers. Since the same solution crystal growth technique could not be used in microgravity, authors had proposed a new cooled sting technique to grow crystals in space. Authors? experiences of conducting two space shuttle experiments relating to solution crystal growth are also detailed in this work. The complexity of these solution growth experiments to grow crystals in space are discussed. These happen to be some of the early experiments performed in space, and various lessons learned are described. A brief discussion of protein crystal growth that also shares basic principles of solution growth technique is given along with some flight hardware information for its growth in microgravity.

  20. Optical and Electrical Characterization of Bulk Grown Indium-Gallium-Arsenide Alloys

    DTIC Science & Technology

    2010-03-01

    expression y x zE v B , where yE , referred to as the Hall field, balances the Lorentz force once the system reaches equilibrium. This equation can be...samples emitted radiation in infrared spectral bands subject to atmospheric absorption. To overcome this absorption, the path from the sample to...laser lines while others were non- lasing infrared plasma lines from the argon ion laser. In most cases these emissions were easily distinguishable

  1. Diffusion length measurements in bulk and epitaxially grown 3-5 semiconductors using charge collection microscopy

    NASA Technical Reports Server (NTRS)

    Leon, R. P.

    1987-01-01

    Diffusion lengths and surface recombination velocities were measured in GaAs diodes and InP finished solar cells. The basic techniques used was charge collection microscopy also known as electron beam induced current (EBIC). The normalized currents and distances from the pn junction were read directly from the calibrated curves obtained while using the line scan mode in an SEM. These values were then equated to integral and infinite series expressions resulting from the solution of the diffusion equation with both extended generation and point generation functions. This expands previous work by examining both thin and thick samples. The surface recombination velocity was either treated as an unknown in a system of two equations, or measured directly using low e(-) beam accelerating voltages. These techniques give accurate results by accounting for the effects of surface recombination and the finite size of the generation volume.

  2. Diffusion length measurement in bulk and epitaxially grown III-V semiconductors using charge collection microscopy

    NASA Technical Reports Server (NTRS)

    Leon, R. P.

    1987-01-01

    Diffusion lengths and surface recombination velocities were measured in GaAs diodes and InP finished solar cells. The basic technique used was charge collection microscopy, also known as electron beam induced current (EBIC). The normalized currents and distances from the pn junction were read directly from the calibrated curves obtained while using the line-scan mode in an SEM. These values were then equated to integral and infinite series expressions resulting from the solution of the diffusion equation with both extended-generation and point-generation functions. This expands previous work by examining both thin and thick samples. The surface recombination velocity was either treated as an unknown in a system of two equations or measured directly using low e(-) beam accelerating voltages. These techniques give accurate results by accounting for the effects of surface recombination and the finite size of the generation volume.

  3. Characterization of Bulk GaN Crystals Grown From Solution at Near Atmospheric Pressure

    DTIC Science & Technology

    2010-01-01

    Diamond Relat. Mater. 13 (2004) 1802–1806. [21] G.P. Bulanova , J. Geochem. Explor. 53 (1995) 1–23. [22] E.A. Vasil’ev, S.V. Sofronev, Geol. Ore Deposits 49 (8) (2007) 784–791., doi:10.1016/j.jcrysgro.2010.04.012

  4. Protein Crystals Grown in Space

    NASA Technical Reports Server (NTRS)

    2000-01-01

    A collage of protein and virus crystals, many of which were grown on the U.S. Space Shuttle or Russian Space Station, Mir. The crystals include the proteins canavalin; mouse monoclonal antibody; a sweet protein, thaumatin; and a fungal protease. Viruses are represented here by crystals of turnip yellow mosaic virus and satellite tobacco mosaic virus. The crystals are photographed under polarized light (thus causing the colors) and range in size from a few hundred microns in edge length up to more than a millimeter. All the crystals are grown from aqueous solutions and are useful for X-ray diffraction analysis. Credit: Dr. Alex McPherson, University of California, Irvine.

  5. Bulk Superconductors in Mobile Application

    NASA Astrophysics Data System (ADS)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  6. Bulk Crystal Growth of Nonlinear Optical Organic Materials Using Inverted Vertical Gradient Freeze Method

    NASA Technical Reports Server (NTRS)

    Choi, J.; Cruz, Magda; Metzl, R.; Wang, W. S.; Aggarwal, M. D.; Penn, Benjamin G.; Frazier, Donald O.

    1998-01-01

    A new process for producing large bulk single crystals of benzil (C6H5COCOC6H5) is reported in this paper. Good quality crystals have been successfully grown using this approach to crystal growth. This method seems to be very promising for other thermally stable NLO organic materials also. The entire contents vycor crucible 1.5 inch in diameter and 2 inch deep was converted to single crystal. Purity of the starting growth material is also an important factor in the final quality of the grown crystals. The entire crystal can be very easily taken out of the crucible by simple maneuvering. Initial characterization of the grown crystals indicated that the crystals are as good as other crystals grown by conventional Bridgman Stockbarger technique.

  7. MBE growth of high-quality GaAsN bulk layers

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Kovsh, A. R.; Wei, L.; Chi, J. Y.; Wu, Y. T.; Wang, P. Y.; Ustinov, V. M.

    2001-12-01

    We have studied the correlation between nitrogen composition of bulk GaAsN layers grown by molecular beam epitaxy using rf plasma cell and photoluminescence (PL) intensity. We have carried out careful optimization of the plasma cell aperture layout and plasma operation regimes as well as the growth condition of the GaAsN. We have demonstrated the same efficiency of PL from GaAsN layers with up to 1.5% of nitrogen as for GaAs analogues grown at the same temperature. The integrated PL intensity of the sample containing 2.5% drops only three times. Using post-growth annealing we eliminated defects related to low-temperature growth and thereby achieved the same radiative efficiency for GaAsN samples grown at 520 °C as for the reference layer of GaAs grown at 600 °C.

  8. Bulk density of small meteoroids

    NASA Astrophysics Data System (ADS)

    Kikwaya, J.-B.; Campbell-Brown, M.; Brown, P. G.

    2011-06-01

    Aims: Here we report on precise metric and photometric observations of 107 optical meteors, which were simultaneously recorded at multiple stations using three different intensified video camera systems. The purpose is to estimate bulk meteoroid density, link small meteoroids to their parent bodies based on dynamical and physical density values expected for different small body populations, to better understand and explain the dynamical evolution of meteoroids after release from their parent bodies. Methods: The video systems used had image sizes ranging from 640 × 480 to 1360 × 1036 pixels, with pixel scales from 0.01° per pixel to 0.05° per pixel, and limiting meteor magnitudes ranging from Mv = +2.5 to +6.0. We find that 78% of our sample show noticeable deceleration, allowing more robust constraints to be placed on density estimates. The density of each meteoroid is estimated by simultaneously fitting the observed deceleration and lightcurve using a model based on thermal fragmentation, conservation of energy and momentum. The entire phase space of the model free parameters is explored for each event to find ranges of parameters which fit the observations within the measurement uncertainty. Results: (a) We have analysed our data by first associating each of our events with one of the five meteoroid classes. The average density of meteoroids whose orbits are asteroidal and chondritic (AC) is 4200 kg m-3 suggesting an asteroidal parentage, possibly related to the high-iron content population. Meteoroids with orbits belonging to Jupiter family comets (JFCs) have an average density of 3100 ± 300 kg m-3. This high density is found for all meteoroids with JFC-like orbits and supports the notion that the refractory material reported from the Stardust measurements of 81P/Wild 2 dust is common among the broader JFC population. This high density is also the average bulk density for the 4 meteoroids with orbits belonging to the Ecliptic shower-type class (ES) also

  9. Integration of bulk-quality thin film magneto-optical cerium-doped yttrium iron garnet on silicon nitride photonic substrates.

    PubMed

    Onbasli, Mehmet C; Goto, Taichi; Sun, Xueyin; Huynh, Nathalie; Ross, C A

    2014-10-20

    Cerium substituted yttrium iron garnet (Ce:YIG) films were grown on yttrium iron garnet (YIG) seed layers on silicon nitride films using pulsed laser deposition. Optimal process conditions for forming garnet films on silicon nitride are presented. Bulk or near-bulk magnetic and magneto-optical properties were observed for 160 nm thick Ce:YIG films grown at 640 °C on rapid thermal annealed 40 nm thick YIG grown at 640 °C and 2 Hz pulse rate. The effect of growth temperature and deposition rate on structural, magnetic and magneto-optical properties has been investigated.

  10. Energy state of InGaAs quantum dots on SiO2-patterned vicinal substrate.

    PubMed

    Kim, Hyo Jin; Mothohisa, Junichi; Fukui, Takashi

    2012-02-06

    The optical properties of In0.8Ga0.2As self-assembled quantum dots (SAQDs) grown on GaAs wire structures formed by utilizing SiO2-patterned exact and 5°-off (001) GaAs substrates have been studied with micro-photoluminescence (μ-PL). Single PL peak was occurred for In0.8Ga0.2As SAQDs grown on SiO2-patterned exact (001) GaAs, whereas double PL peaks were showed for SAQDs grown on 5°-off (001) GaAs substrates as the width of the opening windows increased. The power-dependent μ-PL spectra show that the first and second peaks of these double peaks were originated from the well-defined ground and excited state, respectively. These results demonstrated that In0.8Ga0.2As SAQDs selectively grown by utilizing SiO2-patterned 5°-off (001) GaAs substrates have well-defined zero-dimensional quantum states.

  11. Energy state of InGaAs quantum dots on SiO2-patterned vicinal substrate

    PubMed Central

    2012-01-01

    The optical properties of In0.8Ga0.2As self-assembled quantum dots (SAQDs) grown on GaAs wire structures formed by utilizing SiO2-patterned exact and 5°-off (001) GaAs substrates have been studied with micro-photoluminescence (μ-PL). Single PL peak was occurred for In0.8Ga0.2As SAQDs grown on SiO2-patterned exact (001) GaAs, whereas double PL peaks were showed for SAQDs grown on 5°-off (001) GaAs substrates as the width of the opening windows increased. The power-dependent μ-PL spectra show that the first and second peaks of these double peaks were originated from the well-defined ground and excited state, respectively. These results demonstrated that In0.8Ga0.2As SAQDs selectively grown by utilizing SiO2-patterned 5°-off (001) GaAs substrates have well-defined zero-dimensional quantum states. PMID:22309499

  12. Stable and high-speed SiC bulk growth without dendrites by the HTCVD method

    NASA Astrophysics Data System (ADS)

    Tokuda, Yuichiro; Makino, Emi; Sugiyama, Naohiro; Kamata, Isaho; Hoshino, Norihiro; Kojima, Jun; Hara, Kazukuni; Tsuchida, Hidekazu

    2016-08-01

    We investigate growth conditions to obtain high-quality SiC bulk crystals by the High-Temperature Chemical Vapor Deposition (HTCVD) method. Formation of dendrite crystals, which sometimes occurs on the growth front and degrades the material quality, is raised as an issue. We find that a bulk crystal growth under a high vertical temperature gradient, where the temperature of the back side of the bulk crystal is much lower than that of the crystal surface, suppresses the formation of dendrite crystals. Under growth conditions with a high temperature gradient, a very high-speed growth of 2.4 mm/h is achieved without the formation of dendrite crystals. Growth of a thick 4H-SiC bulk crystal without the dendrites is demonstrated and the quality of a grown crystal is evaluated.

  13. A low-noise 15-μm pixel-pitch 640×512 hybrid InGaAs image sensor for night vision

    NASA Astrophysics Data System (ADS)

    Guellec, Fabrice; Dubois, Sébastien; de Borniol, Eric; Castelein, Pierre; Martin, Sébastien; Guiguet, Romain; Tchagaspanian, Micha"l.; Rouvié, Anne; Bois, Philippe

    2012-03-01

    Hybrid InGaAs focal plane arrays are very interesting for night vision because they can benefit from the nightglow emission in the Short Wave Infrared band. Through a collaboration between III-V Lab and CEA-Léti, a 640x512 InGaAs image sensor with 15μm pixel pitch has been developed. The good crystalline quality of the InGaAs detectors opens the door to low dark current (around 20nA/cm2 at room temperature and -0.1V bias) as required for low light level imaging. In addition, the InP substrate can be removed to extend the detection range towards the visible spectrum. A custom readout IC (ROIC) has been designed in a standard CMOS 0.18μm technology. The pixel circuit is based on a capacitive transimpedance amplifier (CTIA) with two selectable charge-to-voltage conversion gains. Relying on a thorough noise analysis, this input stage has been optimized to deliver low-noise performance in high-gain mode with a reasonable concession on dynamic range. The exposure time can be maximized up to the frame period thanks to a rolling shutter approach. The frame rate can be up to 120fps or 60fps if the Correlated Double Sampling (CDS) capability of the circuit is enabled. The first results show that the CDS is effective at removing the very low frequency noise present on the reference voltage in our test setup. In this way, the measured total dark noise is around 90 electrons in high-gain mode for 8.3ms exposure time. It is mainly dominated by the dark shot noise for a detector temperature settling around 30°C when not cooled. The readout noise measured with shorter exposure time is around 30 electrons for a dynamic range of 71dB in high-gain mode and 108 electrons for 79dB in low-gain mode.

  14. Bulk Moisture and Salinity Sensor

    NASA Technical Reports Server (NTRS)

    Nurge, Mark; Monje, Oscar; Prenger, Jessica; Catechis, John

    2013-01-01

    Measurement and feedback control of nutrient solutions in plant root zones is critical to the development of healthy plants in both terrestrial and reduced-gravity environments. In addition to the water content, the amount of fertilizer in the nutrient solution is important to plant health. This typically requires a separate set of sensors to accomplish. A combination bulk moisture and salinity sensor has been designed, built, and tested with different nutrient solutions in several substrates. The substrates include glass beads, a clay-like substrate, and a nutrient-enriched substrate with the presence of plant roots. By measuring two key parameters, the sensor is able to monitor both the volumetric water content and salinity of the nutrient solution in bulk media. Many commercially available moisture sensors are point sensors, making localized measurements over a small volume at the point of insertion. Consequently, they are more prone to suffer from interferences with air bubbles, contact area of media, and root growth. This makes it difficult to get an accurate representation of true moisture content and distribution in the bulk media. Additionally, a network of point sensors is required, increasing the cabling, data acquisition, and calibration requirements. measure the dielectric properties of a material in the annular space of the vessel. Because the pore water in the media often has high salinity, a method to measure the media moisture content and salinity simultaneously was devised. Characterization of the frequency response for capacitance and conductance across the electrodes was completed for 2-mm glass bead media, 1- to 2-mm Turface (a clay like media), and 1- to 2-mm fertilized Turface with the presence of root mass. These measurements were then used to find empirical relationships among capacitance (C), the dissipation factor (D), the volumetric water content, and the pore water salinity.

  15. Preface: Bulk nitride workshop 2015

    NASA Astrophysics Data System (ADS)

    Freitas, Jaime A.; Pasova, Tania; Bockowski, Michal; Fujioka, Hiroshi

    2016-12-01

    The 9th ;International Workshop on Bulk Nitride Semiconductors; (IWBNS-IX) was held in Wonju, South Korea, from November 2-6, 2015, following the eight previous workshops held in November 2000 (Brazil), May 2002 (Brazil), September 2004 (Poland), October 2006 (Japan), September 2007 (Brazil), August 2009 (Poland), March 2011 (Japan), and October 2013 (Germany). The quietude and the beautiful surrounding nature of the Hansol Oak Valley provided the right environment to host the latest edition of this workshop series, the first one held in South Korea.

  16. Measuring Venus' Bulk Elemental Composition with BECA

    NASA Astrophysics Data System (ADS)

    Parsons, A. M.; Grau, J.; Lawrence, D. J.; Miles, J.; Peplowski, P. N.; Perkins, L.; Schweitzer, J. S.; Starr, R. D.

    2016-10-01

    The Bulk Elemental Composition Analyzer (BECA) instrument uses high energy neutrons and gamma rays to measure the bulk elemental composition of Venus beneath a landed probe. We will present the results of a BECA prototype tested at NASA/GSFC.

  17. 7 CFR 201.40 - Bulk.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Sampling in the Administration of the Act § 201.40 Bulk. Bulk seeds or screenings shall be sampled by... taken as the minimum which would be required for the same quantity of seed or screenings in bags of a...

  18. 49 CFR 172.514 - Bulk packagings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Bulk packagings. 172.514 Section 172.514... SECURITY PLANS Placarding § 172.514 Bulk packagings. (a) Except as provided in paragraph (c) of this section, each person who offers for transportation a bulk packaging which contains a hazardous...

  19. Growth of high quality bulk size single crystals of inverted solubility lithium sulphate monohydrate

    SciTech Connect

    Silambarasan, A.; Rajesh, P. Ramasamy, P.

    2015-06-24

    The paper summarizes the processes of growing large lithium sulfate monohydrate (LSMH) single crystals. We have established a procedure to grow high quality bulk size single crystals of inverted solubility LSMH by a newly developed unidirectional crystallization technique called the Sankeranarayenan - Ramasamy (SR) method. The convective flow of crystal growth processes from solution and the conditions of growing crystals of various aspects were discussed. Good quality LSMH single crystal is grown of the size 20 mmX80 mm without cracks, localized-defects and inclusions. The as-grown crystals are suitable for piezoelectric and nonlinear optical applications.

  20. Improvement of the bulk laser damage threshold of potassium dihydrogen phosphate crystals by ultraviolet irradiation

    SciTech Connect

    Yokotani, A.; Sasaki, T.; Yoshida, K.; Yamanaka, T.; Yamanaka, C.

    1986-04-21

    Potassium dihydrogen phosphate (KDP) crystals were grown under the irradiation of ultraviolet light. The bulk laser damage threshold was improved to two to three times (15-20 J/cm/sup 2/) compared to the case of crystals grown by conventional methods. Microbes such as germs and bacteria are frequently generated in the KDP solution with the usual growth method. The ultraviolet light reduces or eliminates organic materials such as microbes or their carcasses incorporated into the crystal, which are the cause of low damage threshold.

  1. Growth of Bulk Single Crystals of Dicyanovinyl-Ansiole and its Derivatives for Nonlinear Optical Applications

    NASA Technical Reports Server (NTRS)

    Gebre, T.; Choi, J.; Wang, W. S.; Metzl, R.; Aggarwal, M. D.; Romero, Melvin; Clark, Ronald D.; Penn, Benjamin G.; Frazier, Donald O.

    1998-01-01

    Bulk single crystals of a series of thermally stable nonlinear optical organic materials, Dicyanovinyl-anisole (DIVA) and their methoxy derivatives, have been successfully grown using the Bridgman-Stockbarger technique. The growth conditions are chosen to be temperature gradient of 5 to 10 C/cm and lowering rate of 0.1 to 0.3 mm/h. Single crystals of DIVA and its derivatives, of 8 x 8 x 50 cu mm in size, have been grown while maintaining a flat solid-liquid growth interface.

  2. Growth of Bulk Single Crystals of Dicyanovinyl-Ansiole and its Derivatives for Nonlinear Optical Applications

    NASA Technical Reports Server (NTRS)

    Gebre, T.; Choi, J.; Wang, W. S.; Metzl, R.; Aggarwal, M. D.; Romero, Melvin; Clark, Ronald D.; Penn, Benjamin G.; Frazier, Donald O.

    1998-01-01

    Bulk single crystals of a series of thermally stable nonlinear optical organic materials, Dicyanovinyl-anisole (DIVA) and their methoxy derivatives, have been successfully grown using the Bridgman-Stockbarger technique. The growth conditions are chosen to be temperature gradient of 5 to 10 C/cm and lowering rate of 0.1 to 0.3 mm/h. Single crystals of DIVA and its derivatives, of 8 x 8 x 50 cu mm in size, have been grown while maintaining a flat solid-liquid growth interface.

  3. Heat Capacity Study of Solution Grown Crystals of Isotactic Polystyrene

    SciTech Connect

    Xu,H.; Cebe, P.

    2005-01-01

    We have performed measurements of the specific heat capacity on isotactic polystyrene (iPS) crystals grown from dilute solution. Solution grown crystal (SGC) samples had larger crystal fractions and greatly reduced rigid amorphous fractions compared to their bulk cold-crystallized counterparts. Heat capacity studies were performed from below the glass transition temperature to above the melting temperature by using quasi-isothermal temperature modulated differential scanning calorimetry (TMDSC) and standard DSC. Two or three endotherms are observed, which represent the melting of crystals. The small rigid amorphous fraction relaxes in a wide temperature range from just above the glass transition temperature to just below the first crystal melting endotherm. As in bulk iPS, 1 multiple reversing melting was found in iPS SGCs, supporting the view that double melting in iPS may be due to dual thermal stability distribution existing along one single lamella.2 The impact of reorganization and annealing on the melt endotherms was also investigated. Annealing occurs as a result of the very slow effective heating rate of the quasi-isothermal measurements compared to standard DSC. The improvement of crystal perfection through annealing causes the reversing melting endotherms to occur at a temperature higher than the endotherms seen in the standard DSC scan.

  4. Characteristics of the dynamics of breakdown filaments in Al{sub 2}O{sub 3}/InGaAs stacks

    SciTech Connect

    Palumbo, F.; Shekhter, P.; Eizenberg, M.; Cohen Weinfeld, K.

    2015-09-21

    In this paper, the Al{sub 2}O{sub 3}/InGaAs interface was studied by X-ray photoelectron spectroscopy (XPS) after a breakdown (BD) event at positive bias applied to the gate contact. The dynamics of the BD event were studied by comparable XPS measurements with different current compliance levels during the BD event. The overall results show that indium atoms from the substrate move towards the oxide by an electro-migration process and oxidize upon arrival following a power law dependence on the current compliance of the BD event. Such a result reveals the physical feature of the breakdown characteristics of III-V based metal-oxide-semiconductor devices.

  5. Current-injection two-color lasing in a wafer-bonded coupled multilayer cavity with InGaAs multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Minami, Yasuo; Ota, Hiroto; Lu, Xiangmeng; Kumagai, Naoto; Kitada, Takahiro; Isu, Toshiro

    2017-04-01

    Current-injection two-color lasing has been demonstrated using a GaAs/AlGaAs coupled multilayer cavity that is a good candidate for novel terahertz-emitting devices based on difference-frequency generation (DFG) inside the structure. The coupled cavity structure was fabricated by the direct wafer bonding of (001)- and (113)B-oriented epitaxial wafers for the efficient DFG of two modes in the (113)B side cavity, and two types of InGaAs multiple quantum wells (MQWs) were introduced only in the (001) side cavity as optical gain materials. The threshold behavior was clearly observed in the current–light output curve even at room temperature. Two-color lasing was successfully observed when the gain peaks of MQWs were considerably tuned to the cavity modes by the operating temperature.

  6. Development of a large area InGaAs APD receiver based on an impact ionization engineered detector for free-space lasercomm applications

    NASA Astrophysics Data System (ADS)

    Burris, H. R.; Ferraro, M. S.; Freeman, W. T.; Moore, C. I.; Murphy, J. L.; Rabinovich, W. S.; Smith, W. R.; Summers, L. L.; Thomas, L. M.; Vilcheck, M. J.; Clark, W. R.; Waters, W. D.

    2012-06-01

    The U.S. Naval Research Laboratory (NRL) is developing a small size, weight and power (SWaP) free space lasercomm terminal for small unmanned airborne platforms. The terminal is based on a small gimbal developed by CloudCap Technology. A receiver with a large field of view and with sensitivity sufficient to meet the program range goals is required for this terminal. An InGaAs Avalanche Photodiode (APD) with internal structures engineered to reduce excess noise and keff in high gain applications was selected as the detector. The detector is a 350 micron diameter impact ionization engineered (I2E) APD developed by Optogration, Inc. Results of development and characterization of the receiver will be presented.

  7. High net modal gain (>100 cm(-1)) in 19-stacked InGaAs quantum dot laser diodes at 1000 nm wavelength band.

    PubMed

    Tanoue, Fumihiko; Sugawara, Hiroharu; Akahane, Kouichi; Yamamoto, Naokatsu

    2013-07-01

    An InGaAs quantum dot (QD) laser diode with 19-stacked QDs separated by 20 nm-thick GaAs spacers was fabricated using an ultrahigh-rate molecular beam epitaxial growth technique, and the laser characteristics were evaluated. A 19-stacked simple broad area QD laser diode was lased at the 1000 nm waveband. A net modal gain of 103 cm(-1) was obtained at 2.25 kA/cm(2), and the saturated modal gain was 145.6 cm(-1); these are the highest values obtained to our knowledge. These results indicate that using this technique to highly stack QDs is effective for improving the net modal gain of QD lasers.

  8. Influence of indium supply on Au-catalyzed InGaAs nanowire growth studied by in situ X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Sasaki, Takuo; Takahasi, Masamitu

    2017-06-01

    In this study, we analyzed the influence of indium supply on the growth dynamics of gold-catalyzed InGaAs nanowires by in situ synchrotron X-ray diffraction. A high In/Ga supply ratio results in strong size inhomogeneity of Au particles and interrupts the nanowire growth at a certain point of time. Based on the experimental results, we discussed the state of Au catalysts with high indium content during the nanowire growth. We found that a growth temperature below the eutectic temperature is essential to avoid the growth interruption and maintain the nanowire growth. The high In/Ga ratio necessitates accurate size control of Au particles before growth for further improvement of the nanowire growth.

  9. InGaAs tunnel FET with sub-nanometer EOT and sub-60 mV/dec sub-threshold swing at room temperature

    NASA Astrophysics Data System (ADS)

    Alian, A.; Mols, Y.; Bordallo, C. C. M.; Verreck, D.; Verhulst, A.; Vandooren, A.; Rooyackers, R.; Agopian, P. G. D.; Martino, J. A.; Thean, A.; Lin, D.; Mocuta, D.; Collaert, N.

    2016-12-01

    InGaAs homojunction Tunnel FET devices are demonstrated with sub-60 mV/dec Sub-threshold Swing (SS) measured in DC. A 54 mV/dec SS is achieved at 100 pA/μm over a drain voltage range of 0.2-0.5 V. The SS remains sub-60 mV/dec over 1.5 orders of magnitude of current at room temperature. Trap-Assisted Tunneling (TAT) is found to be negligible in the device evidenced by low temperature dependence of the transfer characteristics. Equivalent Oxide Thickness (EOT) is found to play the major role in achieving sub-60 mV/dec performance. The EOT of the demonstrated devices is 0.8 nm.

  10. Interface trap density and mobility extraction in InGaAs buried quantum well metal-oxide-semiconductor field-effect-transistors by gated Hall method

    SciTech Connect

    Chidambaram, Thenappan; Madisetti, Shailesh; Greene, Andrew; Yakimov, Michael; Tokranov, Vadim; Oktyabrsky, Serge; Veksler, Dmitry; Hill, Richard

    2014-03-31

    In this work, we are using a gated Hall method for measurement of free carrier density and electron mobility in buried InGaAs quantum well metal-oxide-semiconductor field-effect-transistor channels. At room temperature, mobility over 8000 cm{sup 2}/Vs is observed at ∼1.4 × 10{sup 12} cm{sup −2}. Temperature dependence of the electron mobility gives the evidence that remote Coulomb scattering dominates at electron density <2 × 10{sup 11} cm{sup −2}. Spectrum of the interface/border traps is quantified from comparison of Hall data with capacitance-voltage measurements or electrostatic modeling. Above the threshold voltage, gate control is strongly limited by fast traps that cannot be distinguished from free channel carriers just by capacitance-based methods and can be the reason for significant overestimation of channel density and underestimation of carrier mobility from transistor measurements.

  11. Development of linear array ROIC for InGaAs detector arrays with wavelength response to 2.5 microns for NIR spectroscopy and machine vision

    NASA Astrophysics Data System (ADS)

    Malchow, Douglas S.; Brubaker, Robert M.; Hansen, Marc P.

    2008-04-01

    The design and development of a new, flexible, linear array readout integrated circuit (ROIC) for a new family of linear array detectors are described in this paper. The detector technology used is based on indium-gallium-arsenide (InGaAs) and includes low dark current versions with room temperature wavelength response cutoff of 1.7 microns and versions with altered stoichiometry to shift the room temperature absorbance cutoff wavelength to 2.55 microns. Discussion includes choice of features to cover many applications, testing methods, and evaluation of the first versions produced. The result will be a highly flexible linear array family, with versions matched to biological imaging, hot process inspection, pharmaceutical pill inspection, agricultural sorting and contaminant rejection, plastics recycling, moisture monitoring of continuous web processes.

  12. High Dielectrics on High Carrier Mobility InGaAs Compound Semiconductors and GaN - Growth, Interfacial Structural Studies, and Surface Fermi Level Unpinning

    DTIC Science & Technology

    2010-02-19

    UHV- deposited Al2O3(3nm)/ Ga2O3 (Gd2O3)(8.5nm) on n- and p-In0.2Ga0.8As/GaAs. The results exhibit very high-quality interface and free-moving Fermi...κ Ga2O3 (Gd2O3) [GGO] and Gd2O3 on InGaAs, without an interfacial layer. InxGa1−xAs MOSFETs have been successfully demonstrated with excellent device... Ga2O3 (Gd2O3)/In0.2Ga0.8As and high temperature (850°C) stability Scaling high κ oxides to nanometer range as well as unpinning surface Fermi level

  13. Fermi level pinning in metal/Al{sub 2}O{sub 3}/InGaAs gate stack after post metallization annealing

    SciTech Connect

    Winter, R.; Krylov, I.; Cytermann, C.; Eizenberg, M.; Tang, K.; Ahn, J.; McIntyre, P. C.

    2015-08-07

    The effect of post metal deposition annealing on the effective work function in metal/Al{sub 2}O{sub 3}/InGaAs gate stacks was investigated. The effective work functions of different metal gates (Al, Au, and Pt) were measured. Flat band voltage shifts for these and other metals studied suggest that their Fermi levels become pinned after the post-metallization vacuum annealing. Moreover, there is a difference between the measured effective work functions of Al and Pt, and the reported vacuum work function of these metals after annealing. We propose that this phenomenon is caused by charging of indium and gallium induced traps at the annealed metal/Al{sub 2}O{sub 3} interface.

  14. High-speed, large-area, p-i-n InGaAs photodiode linear array at 2-micron wavelength

    NASA Astrophysics Data System (ADS)

    Joshi, Abhay; Datta, Shubhashish

    2012-06-01

    We present 16-element and 32-element lattice-mismatched InGaAs photodiode arrays having a cut-off wavelength of ~2.2 um. Each 100 um × 200 um large pixel of the 32-element array has a capacitance of 2.5 pF at 5 V reverse bias, thereby allowing a RC-limited bandwidth of ~1.3 GHz. At room temperature, each pixel demonstrates a dark current of 25 uA at 5 V reverse bias. Corresponding results for the 16-element array having 200 um × 200 um pixels are also reported. Cooling the photodiode array to 150K is expected to reduce its dark current to < 50 nA per pixel at 5 V reverse bias. Additionally, measurement results of 2-micron single photodiodes having 16 GHz bandwidth and corresponding PIN-TIA photoreceiver having 6 GHz bandwidth are also reported.

  15. Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56 μm femtosecond optical pulses

    NASA Astrophysics Data System (ADS)

    Suzuki, Masato; Tonouchi, Masayoshi

    2005-04-01

    Performance of InGaAs photoconductive antennas at an excitation wavelength of 1.56μm has been studied as a terahertz (THz) detector. THz waves in time domain are successfully detected, triggered with 1.56μm femtosecond optical pulses, owing to Fe implantation and annealing at 400 and 580 °C. The peak amplitudes of the THz detected waves by the as-implanted and the low-temperature-annealed detectors saturate with increasing the excitation power. The thermal annealing affects both the frequency component and the amplitude of the THz detected waveforms. In particular, annealing at 580 °C induces twice the increase in the amplitude of the signals.

  16. Room-temperature low-threshold current-injection InGaAs quantum-dot microdisk lasers with single-mode emission.

    PubMed

    Mao, Ming-Hua; Chien, Hao-Che; Hong, Jay-Zway; Cheng, Chih-Yi

    2011-07-18

    We fabricated current-injection InGaAs quantum-dot microdisk lasers with benzocyclobutene cladding in this work. The microdisk pedestal diameter is carefully designed to facilitate carrier injection and modal control. With this structure, low threshold current of 0.45 mA is achieved at room temperature from a device of 6.5 μm in diameter with single-mode emission from quantum-dot ground states. The negative characteristic temperature T0 of threshold current is observed between 80 K and 150 K. The transition temperature from negative T0 to positive T0 is 150 K which is higher than that of the edge-emitting lasers fabricated from the same wafer. This phenomenon indicates the lower loss level of our microdisk cavities. These microdisk lasers also show positive T0 significantly higher than that of the edge-emitting lasers from the same wafer.

  17. Intrinsic spin fluctuations reveal the dynamical response function of holes coupled to nuclear spin baths in (In,Ga)As quantum dots.

    PubMed

    Li, Yan; Sinitsyn, N; Smith, D L; Reuter, D; Wieck, A D; Yakovlev, D R; Bayer, M; Crooker, S A

    2012-05-04

    The problem of how single central spins interact with a nuclear spin bath is essential for understanding decoherence and relaxation in many quantum systems, yet is highly nontrivial owing to the many-body couplings involved. Different models yield widely varying time scales and dynamical responses (exponential, power-law, gaussian, etc.). Here we detect the small random fluctuations of central spins in thermal equilibrium [holes in singly charged (In,Ga)As quantum dots] to reveal the time scales and functional form of bath-induced spin relaxation. This spin noise indicates long (400 ns) spin correlation times at a zero magnetic field that increase to ∼5  μs as dominant hole-nuclear relaxation channels are suppressed with small (100 G) applied fields. Concomitantly, the noise line shape evolves from Lorentzian to power law, indicating a crossover from exponential to slow [∼1/log(t)] dynamics.

  18. Broadband InGaAs quantum dot-in-a-well solar cells of p-type wells

    NASA Astrophysics Data System (ADS)

    Tzeng, T. E.; Chuang, K. Y.; Lay, T. S.; Chang, C. H.

    2013-09-01

    Broadband InxGa1-xAs quantum dot-in-a-well (DWell) solar cells are grown by stacking layers of composition-tailored InxGa1-xAs (x=1, 0.75, and 0.65) quantum dots on p-type In0.1Ga0.9As quantum wells (QWs). Doping concentration and growth temperature for the Be-doped quantum wells are optimized to enhance the conversion efficiency (η). The broadband DWell solar cell of Be: 2×1017 cm-3 QWs grown at 570 °C shows the best photovoltaic characteristics of η=10.86%, which is 3% higher than that of the GaAs baseline solar cell.

  19. Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million-atom electronic structure calculations.

    PubMed

    Usman, Muhammad; Tan, Yui-Hong Matthias; Ryu, Hoon; Ahmed, Shaikh S; Krenner, Hubert J; Boykin, Timothy B; Klimeck, Gerhard

    2011-08-05

    Atomistic electronic structure calculations are performed to study the coherent inter-dot couplings of the electronic states in a single InGaAs quantum dot molecule. The experimentally observed excitonic spectrum by Krenner et al (2005) Phys. Rev. Lett. 94 057402 is quantitatively reproduced, and the correct energy states are identified based on a previously validated atomistic tight binding model. The extended devices are represented explicitly in space with 15-million-atom structures. An excited state spectroscopy technique is applied where the externally applied electric field is swept to probe the ladder of the electronic energy levels (electron or hole) of one quantum dot through anti-crossings with the energy levels of the other quantum dot in a two-quantum-dot molecule. This technique can be used to estimate the spatial electron-hole spacing inside the quantum dot molecule as well as to reverse engineer quantum dot geometry parameters such as the quantum dot separation. Crystal-deformation-induced piezoelectric effects have been discussed in the literature as minor perturbations lifting degeneracies of the electron excited (P and D) states, thus affecting polarization alignment of wavefunction lobes for III-V heterostructures such as single InAs/GaAs quantum dots. In contrast, this work demonstrates the crucial importance of piezoelectricity to resolve the symmetries and energies of the excited states through matching the experimentally measured spectrum in an InGaAs quantum dot molecule under the influence of an electric field. Both linear and quadratic piezoelectric effects are studied for the first time for a quantum dot molecule and demonstrated to be indeed important. The net piezoelectric contribution is found to be critical in determining the correct energy spectrum, which is in contrast to recent studies reporting vanishing net piezoelectric contributions.

  20. Comparison of the degradation characteristics of AlON/InGaAs and Al{sub 2}O{sub 3}/InGaAs stacks

    SciTech Connect

    Palumbo, F. Krylov, I.; Eizenberg, M.

    2015-03-14

    In this paper, the degradation characteristics of MOS (Metal-Oxide-Semiconductor) stacks with Al{sub 2}O{sub 3}/AlON or Al{sub 2}O{sub 3} only as dielectric layers on InGaAs were studied. The dielectric nitrides are proposed as possible passivation layers to prevent InGaAs oxidation. At negative bias, it has been found out that the main contribution to the overall degradation of the gate oxide is dominated by the generation of positive charge in the gate oxide. This effect is pronounced in MOS stacks with Al{sub 2}O{sub 3}/AlON as dielectric, where we think the positive charge is mainly generated in the AlON interlayer. At positive bias, the degradation is dominated by buildup of negative charge due to electron trapping in pre-existing or stress-induced traps. For stress biases where the leakage currents are low, the changes in the electrical characteristics are dominated by electron-trapping into traps located in energy levels in the upper part of the semiconductor gap. For stress biases with higher leakage current levels, the electron trapping occurs in stress-induced traps increasing the shift of V{sub FB} towards positive bias. The overall results clearly show that the improvement of the high-k dielectric/InGaAs interface by introducing N into the Al-oxide does not necessarily mean an increase in the reliability of the MOS stack.

  1. Temperature Dependent Border Trap Response Produced by a Defective Interfacial Oxide Layer in Al2O3/InGaAs Gate Stacks.

    PubMed

    Tang, Kechao; Meng, Andrew C; Droopad, Ravi; McIntyre, Paul C

    2016-11-09

    Intentional oxidation of an As2-decapped (100) In0.57Ga0.43As substrate by additional H2O dosing during initial Al2O3 gate dielectric atomic layer deposition (ALD) increases the interface trap density (Dit), lowers the band edge photoluminescence (PL) intensity, and generates Ga-oxide detected by X-ray photoelectron spectroscopy (XPS). Aberration-corrected high resolution transmission electron microscopy (TEM) reveals formation of an amorphous interfacial layer which is distinct from the Al2O3 dielectric and which is not present without the additional H2O dosing. Observation of a temperature dependent border trap response, associated with the frequency dispersion of the accumulation capacitance and conductance of metal-oxide-semiconductor (MOS) structures, is found to be correlated with the presence of this defective interfacial layer. MOS capacitors prepared with additional H2O dosing show a notable decrease (∼20%) of accumulation dispersion over 5 kHz to 500 kHz when the measurement temperature decreases from room temperature to 77 K, while capacitors prepared with an abrupt Al2O3/InGaAs interface display little change (<2%) with temperature. Similar temperature-dependent border trap response is also observed when the (100) InGaAs surface is treated with a previously reported HCl(aq) wet cleaning procedure prior to Al2O3 ALD. These results point out the sensitivity of the temperature dependence of the border trap response in metal oxide/III-V MOS gate stacks to the presence of processing-induced interface oxide layers, which alter the dynamics of carrier trapping at defects that are not located at the semiconductor interface.

  2. Aeromonas salmonicida grown in vivo.

    PubMed Central

    Garduño, R A; Thornton, J C; Kay, W W

    1993-01-01

    The virulent fish pathogen Aeromonas salmonicida was rapidly killed in vivo when restricted inside a diffusion chamber implanted intraperitoneally in rainbow trout. After a period of regrowth, the survivors had acquired resistance to host-mediated bacteriolysis, phagocytosis, and oxidative killing, properties which were subsequently lost by growth in vitro. Resistance to bacteriolysis and phagocytosis was associated with a newly acquired capsular layer revealed by acidic polysaccharide staining and electron microscopy. This capsular layer shielded the underlying, regular surface array (S-layer) from immunogold labeling with a primary antibody to the S-layer protein. Resistance to oxidative killing was mediated by a mechanism not associated with the presence of the capsular layer. An attenuated vaccine strain of A. salmonicida grown in vivo failed to express the capsular layer. Consequently, the in vivo-grown cells of this attenuated strain remained as sensitive to bacteriolysis, and as avidly adherent to macrophages, as the in vitro-grown cells. The importance of these new virulence determinants and their relation to the known virulence factors of A. salmonicida are discussed. Images PMID:8359906

  3. Local bulk physics from intersecting modular Hamiltonians

    NASA Astrophysics Data System (ADS)

    Kabat, Daniel; Lifschytz, Gilad

    2017-06-01

    We show that bulk quantities localized on a minimal surface homologous to a boundary region correspond in the CFT to operators that commute with the modular Hamiltonian associated with the boundary region. If two such minimal surfaces intersect at a point in the bulk then CFT operators which commute with both extended modular Hamiltonians must be localized at the intersection point. We use this to construct local bulk operators purely from CFT considerations, without knowing the bulk metric, using intersecting modular Hamiltonians. For conformal field theories at zero and finite temperature the appropriate modular Hamiltonians are known explicitly and we recover known expressions for local bulk observables.

  4. Prediction of the Viscoelastic Bulk Modulus

    NASA Astrophysics Data System (ADS)

    Guo, Jiaxi; Simon, Sindee

    2010-03-01

    The bulk and shear viscoelastic responses for several materials appear to arise from the same molecular mechanisms at short times, i.e., Andrade creep where the KWW beta parameter is approximately 0.3. If this is indeed the case, prediction and placement of the bulk viscoelastic response can be made simply by knowing the limiting elastic and rubbery bulk moduli and the viscoelastic shear response. The proposed methodology, which uses only easily measured functions, is considerably less time- and labor-intensive than direct measurement of the viscoelastic bulk modulus. Here we investigate this hypothesis and compare the calculated viscoelastic bulk responses for several materials to existing data in the literature.

  5. Introduction to the Growth of Bulk Single Crystals of Two-Dimensional Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Ueno, Keiji

    2015-12-01

    Semiconducting two-dimensional transition-metal dichalcogenides (MX2) are attracting much attention as promising materials for a new generation of optical and electronic devices. MX2 compounds are complementary or competitive to graphene because of the existence of a native band gap. The growth of large and high-quality bulk single crystals is one of the critical issues for the application of MX2 compounds, whose bulk crystals are generally grown by the chemical vapor transport (CVT) method. In the present review, I introduce experimental techniques required for the CVT growth of high-quality MX2 single crystals.

  6. The Effect of Subbandgap Illumination on the Bulk Resistivity of CdZnTe

    SciTech Connect

    Wright, Jonathan S.; Washington II, Aaron L.; Duff, Martine C.; Burger, Arnold; Groza, Michael; Matei, Liviu; Buliga, Vladimir

    2013-08-24

    The variation in bulk resistivity during infrared (IR) illumination above 950 nm of state-of-the-art CdZnTe (CZT) crystals grown using the traveling heating method or the modified Bridgman method is documented. The change in steady-state current with and without illumination is also evaluated. The influence of secondary phases (SP) on current-voltage (I-V) characteristics is discussed using IR transmission microscopy to determine the defect concentration within the crystal bulk. SP present within the CZT are connected to the existence of deep, IR-excitable traps within the bandgap.

  7. Processing of bulk metallic glass.

    PubMed

    Schroers, Jan

    2010-04-12

    Bulk metallic glass (BMG) formers are multicomponent alloys that vitrify with remarkable ease during solidification. Technological interest in these materials has been generated by their unique properties, which often surpass those of conventional structural materials. The metastable nature of BMGs, however, has imposed a barrier to broad commercial adoption, particularly where the processing requirements of these alloys conflict with conventional metal processing methods. Research on the crystallization of BMG formers has uncovered novel thermoplastic forming (TPF)-based processing opportunities. Unique among metal processing methods, TPF utilizes the dramatic softening exhibited by a BMG as it approaches its glass-transition temperature and decouples the rapid cooling required to form a glass from the forming step. This article reviews crystallization processes in BMG former and summarizes and compares TPF-based processing methods. Finally, an assessment of scientific and technological advancements required for broader commercial utilization of BMGs will be made.

  8. Pluto's atmospheric bulk near perihelion

    NASA Technical Reports Server (NTRS)

    Trafton, L.

    1981-01-01

    The detection of CH4 frost on Pluto's surface implies a significant atmosphere for Pluto. Although Pluto's mass is small, about 7% of Triton's mass, the rapid escape ('blowoff') of gaseous CH4 can be prevented by the presence of a heavy gas mixed with the CH4. The resulting slow escape ('Jeans escape') of CH4 can be accommodated by sublimation of the surface CH4 frost so that an atmosphere exists in the steady state. A heavier gas must exist, otherwise the CH4 frost would have sublimated away long ago because of solar heat and rapid blowoff of gaseous CH4. Pluto is currently near perihelion where the CH4 component of the atmosphere may be 500 times denser than at apehelion. Significant seasonal changes in the atmospheric bulk are therefore possible.

  9. New fermions in the bulk

    NASA Astrophysics Data System (ADS)

    de Brito, K. P. S.; da Rocha, Roldão

    2016-10-01

    The spinor fields on 5-dimensional Lorentzian manifolds are classified according to the geometric Fierz identities, which involve their bilinear covariants. Based upon this classification, which generalises the celebrated 4-dimensional Lounesto classification of spinor fields, new non-trivial classes of 5-dimensional spinor fields are hence found, with important potential applications regarding bulk fermions and their subsequent localisation on brane-worlds. In addition, quaternionic bilinear covariants are used to derive the quaternionic spin density through the truncated exterior bundle. In order to accomplish the realisation of these new spinors, a Killing vector field is constructed on the horizon of a 5-dimensional Kerr black hole. This Killing vector field is shown to reach the time-like Killing vector field at spatial infinity through a current 1-form density, constructed with the new derived spinor fields. The current density is, moreover, expressed as the fünfbein component, assuming a condensed form.

  10. Isotopic signatures by bulk analyses

    SciTech Connect

    Efurd, D.W.; Rokop, D.J.

    1997-12-01

    Los Alamos National Laboratory has developed a series of measurement techniques for identification of nuclear signatures by analyzing bulk samples. Two specific applications for isotopic fingerprinting to identify the origin of anthropogenic radioactivity in bulk samples are presented. The first example is the analyses of environmental samples collected in the US Arctic to determine the impact of dumping of radionuclides in this polar region. Analyses of sediment and biota samples indicate that for the areas sampled the anthropogenic radionuclide content of sediments was predominantly the result of the deposition of global fallout. The anthropogenic radionuclide concentrations in fish, birds and mammals were very low. It can be surmised that marine food chains are presently not significantly affected. The second example is isotopic fingerprinting of water and sediment samples from the Rocky Flats Facility (RFP). The largest source of anthropogenic radioactivity presently affecting surface-waters at RFP is the sediments that are currently residing in the holding ponds. One gram of sediment from a holding pond contains approximately 50 times more plutonium than 1 liter of water from the pond. Essentially 100% of the uranium in Ponds A-1 and A-2 originated as depleted uranium. The largest source of radioactivity in the terminal Ponds A-4, B-5 and C-2 was naturally occurring uranium and its decay product radium. The uranium concentrations in the waters collected from the terminal ponds contained 0.05% or less of the interim standard calculated derived concentration guide for uranium in waters available to the public. All of the radioactivity observed in soil, sediment and water samples collected at RFP was naturally occurring, the result of processes at RFP or the result of global fallout. No extraneous anthropogenic alpha, beta or gamma activities were detected. The plutonium concentrations in Pond C-2 appear to vary seasonally.

  11. Diamond films grown from fullerene precursors

    SciTech Connect

    Gruen, D.M.; Zuiker, C.D.; Krauss, A.R.

    1995-07-01

    Fullerene precursors have been shown to result in the growth of diamond films from argon microwave plasmas. In contradistinction to most diamond films grown using conventional methane-hydrogen mixtures, the fullerene-generated films are nanocrystalline and smooth on the nanometer scale. They have recently been shown to have friction coefficients approaching the values of natural diamond. It is clearly important to understand the development of surface morphology during film growth from fullerene precursors and to elucidate the factors leading to surface roughness when hydrogen is present in the chemical vapor deposition (CVD) gas mixtures. To achieve these goals, we are measuring surface reflectivity of diamond films growing on silicon substrates over a wide range of plasma processing conditions. A model for the interpretation of the laser interferometric data has been developed, which allows one to determine film growth rate, rms surface roughness, and bulk losses due to scattering and absorption. The rms roughness values determined by reflectivity are in good agreement with atomic force microscope (AFM) measurements. A number of techniques, including high-resolution transmission electron microscopy (HRTEM) and near-edge x-ray absorption find structure (NEXAFS) measurements, have been used to characterize the films. A mechanism for diamond-film growth involving the C{sub 2} molecule as a growth species will be presented. The mechanism is based on (1) the observation that the optical emission spectra of the fullerene- containing plasmas are dominated by the Swan bands of C{sub 2} and (2) the ability of C{sub 2} to insert directly into C-H and C-C bonds with low activation barriers, as shown by recent theoretical calculations of reactions of C{sub 2} with carbon clusters.

  12. Direct growth of aligned carbon nanotubes on bulk metals.

    PubMed

    Talapatra, S; Kar, S; Pal, S K; Vajtai, R; Ci, L; Victor, P; Shaijumon, M M; Kaur, S; Nalamasu, O; Ajayan, P M

    2006-11-01

    There are several advantages of growing carbon nanotubes (CNTs) directly on bulk metals, for example in the formation of robust CNT-metal contacts during growth. Usually, aligned CNTs are grown either by using thin catalyst layers predeposited on substrates or through vapour-phase catalyst delivery. The latter method, although flexible, is unsuitable for growing CNTs directly on metallic substrates. Here we report on the growth of aligned multiwalled CNTs on a metallic alloy, Inconel 600 (Inconel), using vapour-phase catalyst delivery. The CNTs are well anchored to the substrate and show excellent electrical contact with it. These CNT-metal structures were then used to fabricate double-layer capacitors and field-emitter devices, which demonstrated improved performance over previously designed CNT structures. Inconel coatings can also be used to grow CNTs on other metallic substrates. This finding overcomes the substrate limitation for nanotube growth which should assist the development of future CNT-related technologies.

  13. Compositional influence on photoluminescence linewidth and Stokes shift in InxAlzGa1 - x - zAs/InyAluGa1 - u - yAs/InP heterostructures grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Hillmer, H.; Lösch, R.; Schlapp, W.

    1995-05-01

    We have grown InxAlzGa1-x-zAs/InP heterostructure layers of different geometry and composition by molecular beam epitaxy showing very narrow photoluminescence linewidth, small Stokes shift, and high epitaxial quality. For rising z we observe experimental linewidths strongly increasing from 1.45 meV (InGaAs) to 13 meV (InAlAs). The Stokes shift is found to grow with rising z. Several contributions are discussed to explain the measured compositional variation of linewidth and Stokes shift. The possibility of arbitrarily combining different material compositions is demonstrated by the growth and characterization of multiple quantum well structures, including possible combinations of ternary and quaternary materials in the wells and barriers.

  14. Braneworld gravity in a symmetric space bulk

    NASA Astrophysics Data System (ADS)

    Yilmaz, Nejat T.

    2010-07-01

    By considering the p-brane motion in a G/K symmetric space bulk we identify the G-invariant bulk metric in the solvable Lie algebra gauge of the brane action. After calculating the Levi-Civita connection of this bulk metric we use it in the Gauss equation to compute the braneworld curvature in terms of the bulk coordinates. Finally, by making use of the Gauss equation in the braneworld Einstein equation we present a geometrical method of implementing the first fundamental form in the gravitating brane dynamics for the specially chosen symmetric space bulk case leading to an Einstein equation expressed solely in terms of the bulk coordinates of the braneworld.

  15. A comparison between HfO2/Al2O3 nano-laminates and ternary HfxAlyO compound as the dielectric material in InGaAs based metal-oxide-semiconductor (MOS) capacitors

    NASA Astrophysics Data System (ADS)

    Krylov, Igor; Pokroy, Boaz; Eizenberg, Moshe; Ritter, Dan

    2016-09-01

    We compare the electrical properties of HfO2/Al2O3 nano-laminates with those of the ternary HfxAlyO compound in metal oxide semiconductor (MOS) capacitors. The dielectrics were deposited by atomic layer deposition on InGaAs. Water, ozone, and oxygen plasma were tested as oxygen precursors, and best results were obtained using water. The total dielectric thickness was kept constant in our experiments. It was found that the effective dielectric constant increased and the leakage current decreased with the number of periods. Best results were obtained for the ternary compound. The effect of the sublayer thicknesses on the electrical properties of the interface was carefully investigated, as well as the role of post-metallization annealing. Possible explanations for the observed trends are provided. We conclude that the ternary HfxAlyO compound is more favorable than the nano-laminates approach for InGaAs based MOS transistor applications.

  16. Aspects of silicon bulk lifetimes

    NASA Technical Reports Server (NTRS)

    Landsberg, P. T.

    1985-01-01

    The best lifetimes attained for bulk crytalline silicon as a function of doping concentrations are analyzed. It is assumed that the dopants which set the Fermi level do not contribute to the recombination traffic which is due to the unknown defect. This defect is assumed to have two charge states: neutral and negative, the neutral defect concentration is frozen-in at some temperature T sub f. The higher doping concentrations should include the band-band Auger effect by using a generalization of the Shockley-Read-Hall (SRH) mechanism. The generalization of the SRH mechanism is discussed. This formulation gives a straightforward procedure for incorporating both band-band and band-trap Auger effects in the SRH procedure. Two related questions arise in this context: (1) it may sometimes be useful to write the steady-state occupation probability of the traps implied by SRH procedure in a form which approximates to the Fermi-Dirac distribution; and (2) the effect on the SRH mechanism of spreading N sub t levels at one energy uniformly over a range of energies is discussed.

  17. Relative entropy equals bulk relative entropy

    SciTech Connect

    Jafferis, Daniel L.; Lewkowycz, Aitor; Maldacena, Juan; Suh, S. Josephine

    2016-06-01

    We consider the gravity dual of the modular Hamiltonian associated to a general subregion of a boundary theory. We use it to argue that the relative entropy of nearby states is given by the relative entropy in the bulk, to leading order in the bulk gravitational coupling. We also argue that the boundary modular flow is dual to the bulk modular flow in the entanglement wedge, with implications for entanglement wedge reconstruction.

  18. Growth kinetics and bulk growth of inversely soluble lithium sulfate monohydrate single crystals and their characterization

    NASA Astrophysics Data System (ADS)

    Silambarasan, A.; Rajesh, P.; Ramasamy, P.

    2017-06-01

    To facilitate controlled nucleation rate to grow good quality inversely soluble LSMH single crystals, the nucleation kinetics was studied. The number of molecules in a critical nucleus and nucleation rate in LSMH crystallization process have been determined from experimentally measured induction period using classical nucleation theory. A good quality bulk size single crystal of Lithium sulfate monohydrate (LSMH) has been grown with higher growth rate by modified Sankaranarayanan - Ramasamy (SR) method. A systematic investigation on UV-Vis-NIR transmittance, second harmonic generation and thermoluminescence (TL) properties of LSMH single crystals has been carried out to evaluate the optical behavior of the LSMH single crystal. This work also investigates the third order nonlinear optical properties of the LSMH single crystals. Finally thermal behavior of the grown crystal was studied to know the first order phase transition in the grown LSMH single crystals.

  19. Applications of bulk high-temperature superconductors

    SciTech Connect

    Hull, J.R.

    1995-06-01

    The development of high-temperature superconductors (HTSs) can be broadly generalized into thin-film electronics, wire applications, and bulk applications. We consider bulk HTSs to include sintered or crystallized forms that do not take the geometry of filaments or tapes, and we discuss major applications for these materials. For the most part applications may be realized with the HTSs cooled to 77 K, and the properties of the bulk HTSs are often already sufficient for commercial use. A non-exhaustive list of applications for bulk HTSs includes trapped field magnets, hysteresis motors, magnetic shielding, current leads, and magnetic bearings. These applications are briefly discussed in this paper.

  20. Applications of bulk high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Hull, J. R.

    The development of high-temperature superconductors (HTS's) can be broadly generalized into thin-film electronics, wire applications, and bulk applications. We consider bulk HTS's to include sintered or crystallized forms that do not take the geometry of filaments or tapes, and we discuss major applications for these materials. For the most part applications may be realized with the HTS's cooled to 77 K, and the properties of the bulk HTS's are often already sufficient for commercial use. A non-exhaustive list of applications for bulk HTS's includes trapped field magnets, hysteresis motors, magnetic shielding, current leads, and magnetic bearings. These applications are briefly discussed in this paper.

  1. Effects of gate-last and gate-first process on deep submicron inversion-mode InGaAs n-channel metal-oxide-semiconductor field effect transistors

    NASA Astrophysics Data System (ADS)

    Gu, J. J.; Wu, Y. Q.; Ye, P. D.

    2011-03-01

    Recently, encouraging progress has been made on surface-channel inversion-mode In-rich InGaAs NMOSFETs with superior drive current, high transconductance and minuscule gate leakage, using atomic layer deposited (ALD) high-k dielectrics. Although gate-last process is favorable for high-k/III-V integration, high-speed logic devices require a self-aligned gate-first process for reducing the parasitic resistance and overlap capacitance. On the other hand, a gate-first process usually requires higher thermal budget and may degrade the III-V device performance. In this paper, we systematically investigate the thermal budget of gate-last and gate-first process for deep-submicron InGaAs MOSFETs. We conclude that the thermal instability of (NH4)2S as the pretreatment before ALD gate dielectric formation leads to the potential failure of enhancement-mode operation and deteriorates interface quality in the gate-first process. We thus report on the detailed study of scaling metrics of deep-submicron self-aligned InGaAs MOSFET without sulfur passivation, featuring optimized threshold voltage and negligible off-state degradation.

  2. Exciton luminescence from Cu2SnS3 bulk crystals

    NASA Astrophysics Data System (ADS)

    Aihara, Naoya; Matsumoto, Yusuke; Tanaka, Kunihiko

    2016-02-01

    The optical properties of Cu2SnS3 (CTS) bulk crystals grown by chemical vapor transport were studied by photoluminescence (PL) spectroscopy. The PL spectra from the CTS bulk crystals were analyzed as a function of excitation power and temperature. The main phase of the as-grown samples was determined to be monoclinic CTS by Raman spectroscopy. The observed PL spectra from the CTS bulk crystals were composed of peaks corresponding to free-exciton, two bound-excitons, and donor-acceptor pair recombination luminescence. The peak energies for the free-exciton and two bound-exciton emissions were 0.9317, 0.9291, and 0.9260 eV, respectively, at temperature of 4.2 K. The bound-exciton luminescence was not observed above 30 K. The thermal activation energies for the free-exciton and two bound-exciton emissions were 6.5, 4.8, and 5.2 meV, respectively. The fundamental band gap in the CTS bulk crystals was expected to be ca. 0.94 eV.

  3. Low Temperature Photoluminescence Characterization of Orbitally Grown CdZnTe

    NASA Technical Reports Server (NTRS)

    Ritter, Timothy M.; Larson, D. J.

    1998-01-01

    The II-VI ternary alloy CdZnTe is a technologically important material because of its use as a lattice matched substrate for HgCdTe based devices. The increasingly stringent requirements on performance that must be met by such large area infrared detectors also necessitates a higher quality substrate. Such substrate material is typically grown using the Bridgman technique. Due to the nature of bulk semiconductor growth, gravitationally dependent phenomena can adversely affect crystalline quality. The most direct way to alleviate this problem is by crystal growth in a reduced gravity environment. Since it requires hours, even days, to grow a high quality crystal, an orbiting space shuttle or space station provides a superb platform on which to conduct such research. For well over ten years NASA has been studying the effects of microgravity semiconductor crystal growth. This paper reports the results of photoluminescence characterization performed on an arbitrary grown CdZnTe bulk crystal.

  4. Metamorphic In(0.20)Ga(0.80)As p-i-n photodetectors grown on GaAs substrates for near infrared applications.

    PubMed

    Swaminathan, K; Yang, L-M; Grassman, T J; Tabares, G; Guzman, A; Hierro, A; Mills, M J; Ringel, S A

    2011-04-11

    The growth and performance of top-illuminated metamorphic In(0.20)Ga(0.80)As p-i-n photodetectors grown on GaAs substrates using a step-graded In(x)Ga(1-x)As buffer is reported. The p-i-n photodetectors display a low room-temperature reverse bias dark current density of ~1.4×10(-7) A/cm(2) at -2 V. Responsivity and specific detectivity values of 0.72 A/W, 2.3×10(12) cm·Hz(1/2)/W and 0.69 A/W, 2.2×10(12) cm·Hz(1/2)/W are achieved for Yb:YAG (1030 nm) and Nd:YAG (1064 nm) laser wavelengths at -2 V, respectively. A high theoretical bandwidth-responsivity product of 0.21 GHz·A/W was estimated at 1064 nm. Device performance metrics for these GaAs substrate-based detectors compare favorably with those based on InP technology due to the close tuning of the detector bandgap to the target wavelengths, despite the presence of a residual threading dislocation density. This work demonstrates the great potential for high performance metamorphic near-infrared InGaAs detectors with optimally tuned bandgaps, which can be grown on GaAs substrates, for a wide variety of applications.

  5. Harvesting microalgae grown on wastewater.

    PubMed

    Udom, Innocent; Zaribaf, Behnaz H; Halfhide, Trina; Gillie, Benjamin; Dalrymple, Omatoyo; Zhang, Qiong; Ergas, Sarina J

    2013-07-01

    The costs and life cycle impacts of microalgae harvesting for biofuel production were investigated. Algae were grown in semi-continuous culture in pilot-scale photobioreactors under natural light with anaerobic digester centrate as the feed source. Algae suspensions were collected and the optimal coagulant dosages for metal salts (alum, ferric chloride), cationic polymer (Zetag 8819), anionic polymer (E-38) and natural coagulants (Moringa Oleifera and Opuntia ficus-indica cactus) were determined using jar tests. The relative dewaterability of the algae cake was estimated by centrifugation. Alum, ferric chloride and cationic polymer could all achieve >91% algae recovery at optimal dosages. Life cycle assessment (LCA) and cost analysis results revealed that cationic polymer had the lowest cost but the highest environmental impacts, while ferric chloride had the highest cost and lowest environmental impacts. Based on the LCA results, belt presses are the recommended algae dewatering technology prior to oil extraction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Atomic and electronic structure of Fe films grown on Pd l brace 001 r brace

    SciTech Connect

    Quinn, J.; Li, Y.S.; Li, H.; Tian, D.; Jona, F. ); Marcus, P.M. )

    1991-02-15

    The atomic and electronic structure of Fe films grown on Pd{l brace}001{r brace} is investigated by means of low-energy electron diffraction and angle-resolved photoemission spectroscopy (ARPES). The films grow pseudomorphically, probably by way of nucleation and growth of flat islands, which ultimately coalesce to form continuous Fe{l brace}001{r brace} films. The structure of these continuous films, if grown at slow rates (of the order of 0.1 A/min), is body-centered tetragonal and is shown to be a distortion from the stable bcc structure of Fe: the in-plane lattice constant is 2.75 A, as dictated by the Pd{l brace}001{r brace} substrate, and the bulk interlayer spacing is 1.50--1.53 A. In 10--12-layer films the first interlayer spacing is expanded by 3.6% above bulk, but with increasing thickness that spacing contracts progressively to about 6.3% below the bulk value in 40--50-layer films. Films as thick as 60--70 layers can be grown pseudomorphically at slow rates despite the large misfit (4.2%) between bcc Fe{l brace}001{r brace} and fcc Pd{l brace}001{r brace}. ARPES data indicate that these films are electronically indistinguishable from bulk bcc Fe. Thick (about 200-layer) films grown at fast rates are essentially bcc, with in-plane lattice constants of 2.87 A, but with slightly expanded (3%) interlayer spacing, attributed to the presence of carbon impurities.

  7. 33 CFR 127.313 - Bulk storage.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The operator... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Bulk storage. 127.313 Section...

  8. 33 CFR 127.313 - Bulk storage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The operator... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Bulk storage. 127.313 Section...

  9. 33 CFR 127.313 - Bulk storage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The operator... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Bulk storage. 127.313 Section...

  10. 33 CFR 127.313 - Bulk storage.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.313 Bulk storage. (a) The operator... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Bulk storage. 127.313 Section...

  11. Temporal soil bulk density following tillage

    USDA-ARS?s Scientific Manuscript database

    Soil is the medium for air, energy, water, and chemical transport between the atmosphere and the solid earth. Soil bulk density is a key variable impacting the rate at which this transport occurs. Typically, soil bulk density is measured by the gravimetric method, where a sample of known volume is t...

  12. 27 CFR 20.191 - Bulk articles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of...

  13. 27 CFR 20.191 - Bulk articles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of...

  14. 27 CFR 20.191 - Bulk articles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of...

  15. 27 CFR 20.191 - Bulk articles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of...

  16. 27 CFR 20.191 - Bulk articles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Bulk articles. 20.191... Users of Specially Denatured Spirits Operations by Users § 20.191 Bulk articles. Users who convey articles in containers exceeding one gallon may provide the recipient with a photocopy of subpart G of...

  17. CMOS compatible self-aligned S/D regions for implant-free InGaAs MOSFETs

    NASA Astrophysics Data System (ADS)

    Czornomaz, L.; El Kazzi, M.; Hopstaken, M.; Caimi, D.; Mächler, P.; Rossel, C.; Bjoerk, M.; Marchiori, C.; Siegwart, H.; Fompeyrine, J.

    2012-08-01

    CMOS compatible self-aligned access regions for indium gallium arsenide (In0.53Ga0.47As) implant-free n-type metal-oxide-semiconductor field effect transistors (MOSFETs) are investigated. In situ doped n+ source/drain regions are selectively grown by metal-organic vapor phase epitaxy and self-aligned Nickel-InGaAs alloyed metal contacts are obtained using a self-aligned silicide-like process, where different process conditions are studied. Soft pre-epitaxy cleaning is followed by X-ray photoelectron spectroscopy, while the Ni-InGaAs/III-V interface is characterized by back-side SIMS profiling. Relevant contact and sheet resistances are measured and integration issues are highlighted. Gate-first implant-free self-aligned n-MOSFETs are produced to quantify the impact of Ni-InGaAs contacts on the device performance.

  18. Heterogeneous integration of InGaAs nanowires on the rear surface of Si solar cells for efficiency enhancement.

    PubMed

    Shin, Jae Cheol; Mohseni, Parsian K; Yu, Ki Jun; Tomasulo, Stephanie; Montgomery, Kyle H; Lee, Minjoo L; Rogers, John A; Li, Xiuling

    2012-12-21

    We demonstrate energy-conversion-efficiency (η) enhancement of silicon (Si) solar cells by the heterogeneous integration of an In(x)Ga(1-x)As nanowire (NW) array on the rear surface. The NWs are grown via a catalyst-free, self-assembled method on Si(111) substrates using metalorganic chemical vapor deposition (MOCVD). Heavily p-doped In(x)Ga(1-x)As (x ≈ 0.7) NW arrays are utilized as not only back-reflectors but also low bandgap rear-point-contacts of the Si solar cells. External quantum efficiency of the hybrid In(x)Ga(1-x)As NW-Si solar cell is increased over the entire solar response wavelength range; and η is enhanced by 36% in comparison to Si solar cells processed under the same condition without the NWs.

  19. Improvement of GaP crystal quality and silicon bulk lifetime in GaP/Si heteroepitaxy

    NASA Astrophysics Data System (ADS)

    Zhang, Chaomin; Kim, Yeongho; Faleev, Nikolai N.; Honsberg, Christiana B.

    2017-10-01

    The GaP crystal quality and Si bulk lifetime of GaP/Si heterostructures, grown by molecular beam epitaxy, are investigated. The Si bulk lifetime is reduced by over one order of magnitude after thermal deoxidation at high temperatures (>700 °C). This significant reduction of the bulk lifetime is not observed when 150 nm-thick SiNx film is present on the backside of Si wafer, which can act as a diffusion barrier and/or getter. In addition, a 15 nm-thick GaP layer grown on the front side of Si wafer with SiNx on the backside shows a high crystal quality of GaP with a low crystalline defect density of 1.1 × 105 cm-2. Moreover, the Si bulk lifetime is determined to be 1.83 ms with a-Si:H passivation at an injected minority-carrier density of 1 × 1015 cm-3, indicative of no bulk lifetime degradation. The high crystallinity of GaP and improved Si bulk lifetime are beneficial to improve photovoltaic device performance of III-V compound solar cells integrated with Si solar cells.

  20. Porous ZnO nanonetworks grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lee, W. C. T.; Kendrick, C. E.; Millane, R. P.; Liu, Z.; Ringer, S. P.; Washburn, K.; Callaghan, P. T.; Durbin, S. M.

    2012-04-01

    Plasma-assisted molecular beam epitaxy was employed to create porous nanonetworks of ZnO directly on GaN epilayers without the use of catalysts or templates. Detailed analysis of scanning electron microscopy (SEM) images of both as-grown and etched samples reveals that the typical porous nanonetwork structure is multilayered, and suggests that dislocations originating at the GaN/sapphire heterointerface and/or defects characterizing an unusually rough GaN surface are responsible. The pore size distribution of the nanonetwork was measured using nuclear magnetic resonance (NMR) cryoporometry. A bimodal pore size distribution centred at 4 nm and 70 nm, respectively, was observed, consistent with the existence of small nanoscale pores in the bulk of the sample, and large open pores on the surface of the porous nanonetwork as observed by SEM.

  1. Fluoride waveguide lasers grown by liquid phase epitaxy

    NASA Astrophysics Data System (ADS)

    Starecki, Florent; Bolaños, Western; Brasse, Gurvan; Benayad, Abdelmjid; Doualan, Jean-Louis; Braud, Alain; Moncorgé, Richard; Camy, Patrice

    2013-03-01

    High optical quality rare-earth-doped LiYF4 (YLF) epitaxial layers were grown on pure YLF substrates by liquid phase epitaxy (LPE). Thulium, praseodymium and ytterbium YLF crystalline waveguides co-doped with gadolinium and/or lutetium were obtained. Spectroscopic and optical characterization of these rare-earth doped waveguides are reported. Internal propagation losses as low as 0.11 dB/cm were measured on the Tm:YLF waveguide and the overall spectroscopic characteristics of the epitaxial layers were found to be comparable to bulk crystals. Laser operation was achieved at 1.87 μm in the Tm3+ doped YLF planar waveguide with a very good efficiency of 76% with respect to the pump power. Lasing was also demonstrated in a Pr3+ doped YLF waveguide in the red and orange regions and in a Yb3+:YLF planar waveguide at 1020 nm and 994 nm.

  2. Low temperature iron gettering by grown-in defects in p-type Czochralski silicon

    NASA Astrophysics Data System (ADS)

    Zhu, Haiyan; Yu, Xuegong; Zhu, Xiaodong; Wu, Yichao; He, Jian; Vanhellemont, Jan; Yang, Deren

    2016-11-01

    Low temperature iron gettering in as-grown boron doped Czochralski silicon (Cz-Si) at temperatures between 220 and 500 °C is studied using microwave-photoconductive decay based minority carrier lifetime measurements. Scanning infrared microscopy technique is used to study the defect density/size distribution in the samples before and after anneal. It is found that the decrease of interstitial iron (Fei) concentration shows a double exponential dependence on annealing time at all temperatures. This suggests the existence of two sinks for Fei. Meanwhile, the observed bulk defect densities and sizes in contaminated and as-grown samples are nearly the same, implying that the grown-in defects could be the gettering centers in this process. The results are important for understanding and controlling low temperature Fei gettering during processing of Cz-Si based devices.

  3. Enhanced performance of room-temperature-grown epitaxial thin films of vanadium dioxide

    SciTech Connect

    Nag, Joyeeta; Payzant, E Andrew; More, Karren Leslie; HaglundJr., Richard F

    2011-01-01

    Stoichiometric vanadium dioxide in bulk, thin film and nanostructured forms exhibits an insulator-to-metal transition (IMT) accompanied by a structural phase transformation, induced by temperature, light, electric fields, doping or strain. We have grown epitaxial films of vanadium dioxide on c-plane (0001) of sapphire using two different procedures involving (1) room temperature growth followed by annealing and (2) direct high temperature growth. Strain at the film-substrate interface due to growth at different temperatures leads to interesting differences in morphologies and phase transition characteristics. Comparison of the morphologies and switching characteristics of the two films shows that contrary to conventional wisdom, the room-temperature grown films have smoother, more continuous morphologies and better switching performance, consistent with the behavior of epitaxially grown semiconductors.

  4. Growth Mechanisms and Structural Properties of Lead Chalcogenide Films Grown by Pulsed Laser Deposition

    NASA Astrophysics Data System (ADS)

    Virt, I. S.; Rudyi, I. O.; Lopatynskyi, I. Ye.; Dubov, Yu.; Tur, Y.; Lusakowska, E.; Luka, G.

    2017-01-01

    Three lead chalcogenide films, PbTe, PbSe, and PbS, with a high structural quality were grown by pulsed lased deposition (PLD). The films were grown on single crystal substrates (Si, KCl, Al2O3) and on Si covered with a Si3N4 buffer layer. The Si3N4 layer latter facilitated the lead chalcogenide layer nucleation during the first growth stages and resulted in a more homogeneous surface morphology and a lower surface roughness. The surface geometry (roughness) of the films grown on Si3N4 was studied by means of the power spectral density analysis. Different growth modes, ranging from plasma plume condensation to bulk diffusion, resulting in observed film morphologies were identified. The investigations were complemented by electrical characterization of the chalcogenide films.

  5. Effect of solvents on the bulk growth of 4-aminobenzophenone single crystals: a potential material for blue and green lasers.

    PubMed

    Natarajan, V; Usharani, S; Arivanandhan, M; Anandan, P; Hayakawa, Y

    2015-06-15

    Although 4-aminobenzophenone (4-ABP) is the best derivative of benzophenone with 260 times higher second harmonic generation (SHG) efficiency than potassium dihydrogen phosphate (KDP), growth of high quality bulk crystal still remains a difficult task. In the present work, the effect of solvents on solubility and growth aspects of 4-ABP was investigated to grow inclusion free 4-ABP crystals. The growth processes were discussed based on solute-solvent interaction in two different growth media of ethyl acetate and ethanol. The growth rate and thereby solvent inclusions are relatively higher in ethyl acetate grown crystal than the crystal grown from ethanol. The structural, thermal and optical properties of 4-ABP crystals were studied. The enthalpy of 4-ABP melting process was estimated from differential thermal analysis. The optical transmission study shows that 4-ABP crystals grown from ethanol has high transparency compared to ethyl acetate grown sample due to solvent inclusion in the later crystal.

  6. Mid-infrared to ultraviolet optical properties of InSb grown on GaAs by molecular beam epitaxy

    SciTech Connect

    D'Costa, Vijay Richard Yeo, Yee-Chia; Tan, Kian Hua; Jia, Bo Wen; Yoon, Soon Fatt

    2015-06-14

    Spectroscopic ellipsometry was used to investigate the optical properties of an InSb film grown on a GaAs (100) substrate, and to compare the optical properties of InSb film with those of bulk InSb. The film was grown by molecular beam epitaxy under conditions intended to form 90° misfit dislocations at the InSb-GaAs interface. The complex dielectric function obtained in a wide spectroscopic range from 0.06–4.6 eV shows the critical point transitions E{sub 0}, E{sub 1}, E{sub 1} + Δ{sub 1}, E{sub 0}{sup ′}, and E{sub 2}. The amplitudes, energy transitions, broadenings, and phase angles have been determined using a derivative analysis. Comparing film and bulk critical point results reveal that the epitaxial film is nearly relaxed and has bulk-like optical characteristics.

  7. Performance of AlGaAs, GaAs and InGaAs cells after 1 MeV electron irradiation

    NASA Technical Reports Server (NTRS)

    Curtis, Henry B.; Hart, Russell E., Jr.

    1987-01-01

    Electron irradiations were made on three different types of III-V cells. AlGaAs, GaAs, and InGaAs cells with bandgaps of approximately 1.72, 1.43, and 1.1 eV, respectively, were tested. All of the cells were concentrator cells and performance data from one sun to beyond 100x AMO were taken. The total 1 MeV electron fluence was 3 times 10 to the 15th power e/square cm with data taken at several intermediate fluences. Cell performance is presented as a function of electron fluence for various concentration ratios and two different temperatures (25 and 80 C). Since these three cell types are potential candidates for the individual cells in a cascade structure, it is possible to calculate the loss in performance of cascade cells under 1 MeV irradiation. Data are presented which show the calculated performance of both series-connected and separately connected cascade cells.

  8. A 50 MHz-1 GHz high linearity CATV amplifier with a 0.15 μm InGaAs PHEMT process

    NASA Astrophysics Data System (ADS)

    Jian, Xu; Zhigong, Wang; Ying, Zhang; Jing, Huang

    2011-07-01

    A 50 MHz-1 GHz low noise and high linearity amplifier monolithic-microwave integrated-circuit (MMIC) for cable TV is presented. A shunt AC voltage negative feedback combined with source current negative feedback is adopted to extend the bandwidth and linearity. A novel DC bias feedback is introduced to stabilize the operation point, which improved the linearity further. The circuit was fabricated with a 0.15 μm InGaAs PHEMT (pseudomorphic high electron mobility transistor) process. The test was carried out in 75 Ω systems from 50 MHz to 1 GHz. The measurement results showed that it gave a small signal gain of 16.5 dB with little gain ripples of less than ± 1 dB. An excellent noise figure of 1.7-2.9 dB is obtained in the designed band. The IIP3 is 16 dBm, which shows very good linearity. The CSO and CTB are high up to 68 dBc and 77 dBc, respectively. The chip area is 0.56 mm2 and the power dissipation is 110 mA with a 5 V supply. It is ideally suited to cable TV systems.

  9. Laser-induced breakdown spectra in the infrared region from 750 to 2000 nm using a cooled InGaAs diode array detector.

    PubMed

    Radziemski, Leon J; Cremers, David A; Bostian, Melissa; Chinni, Rosemarie C; Navarro-Northrup, Claudia

    2007-11-01

    Emissions from a laser-induced breakdown spectroscopy (LIBS) plasma were examined in the region from 750 nm to 2000 nm. A Nd:YAG laser at 532 nm and 75 mJ per pulse were used to initiate the plasma. The detector was an InGaAs 1024 element diode array cooled to -100 degrees C. An f/4 spectrometer with gratings blazed for this region was used as the dispersive element. Survey spectra of soils, uranium, and other selected samples were taken in air and in a flow cell purged with argon at a local pressure of 0.84 x 10(5) Pa. Strong infrared lines of neutral aluminum, carbon, potassium, silicon, sulfur, and uranium, as well as once ionized lines of calcium, were observed out to 1670 nm. For potassium, the detection limits of the infrared (IR) system were compared with those obtained from a standard intensified charge-coupled device (ICCD) spectrometer arrangement, using the 766-770 nm doublet. Detection limits with the IR system were twice as high as those obtained from the ICCD detector.

  10. Prospects for Detecting a Cosmic Bulk Flow

    NASA Astrophysics Data System (ADS)

    Rose, Benjamin; Garnavich, Peter M.; Mathews, Grant James

    2015-01-01

    The ΛCDM model is based upon a homogeneous, isotropic space-time leading to uniform expansion with random peculiar velocities caused by local gravitation perturbations. The Cosmic Microwave Background (CMB) radiation evidences a significant dipole moment in the frame of the Local Group. This motion is usually explained with the Local Group's motion relative to the background Hubble expansion. An alternative explanation, however, is that the dipole moment is the result of horizon-scale curvature remaining from the birth of space-time, possibly a result of quantum entanglement with another universe. This would appear as a single velocity (a bulk flow) added to all points in space. These two explanations differ observationally on cosmic distance scales (z > 0.1). There have been many differing attempts to detect a bulk flow, many with no detectable bulk flow but some with a bulk flow velocity as large as 1000 km/s. Here we report on a technique based upon minimizing the scatter around the expected cosine distribution of the Hubble redshift residuals with respect to angular distance on the sky. That is, the algorithm searches for a directional dependence of Hubble residuals. We find results consistent with most other bulk flow detections at z < 0.05, i.e. a bulk flow velocity of ~300 km/s pointed at (l, b) = (280, 29) in galactic coordinates. Simulations were run to analyze whether a bulk flow can be detected at higher redshifts, z < 0.3. For detecting a bulk flow velocity of <1,000 km/s at such distances one would need distance modulus errors from Type Ia Supernovae to be ~0.01, whereas the current error (~0.2.) is more than an order of magnitude too large for the detection of bulk flow beyond z~0.05.

  11. Bulk modulus for polar covalent crystals

    PubMed Central

    Xu, Bo; Wang, Qianqian; Tian, Yongjun

    2013-01-01

    A microscopic empirical model of bulk modulus based on atomic-scale parameters is proposed. These parameters include the bond length, the effective bonded valence electron (EBVE) number, and the coordination number product of two bonded atoms, etc. The estimated bulk moduli from our model are in good agreement with experimental values for various polar covalent crystals including ionic crystals. Our current work sheds lights on the nature of bulk modulus, provides useful clues for design of crystals with low compressibility, and is applicable to complex crystals such as minerals of geophysical importance. PMID:24166098

  12. OSCEE fan exhaust bulk absorber treatment evaluation

    NASA Technical Reports Server (NTRS)

    Bloomer, H. E.; Samanich, N. E.

    1980-01-01

    The acoustic suppression capability of bulk absorber material designed for use in the fan exhaust duct walls of the quiet clean short haul experiment engine (OCSEE UTW) was evaluated. The acoustic suppression to the original design for the engine fan duct which consisted of phased single degree-of-freedom wall treatment was tested with a splitter and also with the splitter removed. Peak suppression was about as predicted with the bulk absorber configuration, however, the broadband characteristics were not attained. Post test inspection revealed surface oil contamination on the bulk material which could have caused the loss in bandwidth suppression.

  13. Bulk viscosity of superfluid hyperon stars

    SciTech Connect

    Gusakov, Mikhail E.; Kantor, Elena M.

    2008-10-15

    We calculate the bulk viscosity due to nonequilibrium weak processes in superfluid nucleon-hyperon matter of neutron stars. For that, the dissipative relativistic hydrodynamics, formulated eariler [M. E. Gusakov, Phys. Rev. D 76, 083001 (2007).] for superfluid mixtures, is extended to the case when both nucleons and hyperons are superfluid. It is demonstrated that in the most general case (when neutrons, protons, {lambda}, and {sigma}{sup -} hyperons are superfluid), nonequilibrium weak processes generate 16 bulk viscosity coefficients, with only three of them being independent. In addition, we correct an inaccuracy in a widely used formula for the bulk viscosity of nonsuperfluid nucleon-hyperon matter.

  14. Energy Bandgap and Edge States in an Epitaxially Grown Graphene/h-BN Heterostructure

    PubMed Central

    Hwang, Beomyong; Hwang, Jeongwoon; Yoon, Jong Keon; Lim, Sungjun; Kim, Sungmin; Lee, Minjun; Kwon, Jeong Hoon; Baek, Hongwoo; Sung, Dongchul; Kim, Gunn; Hong, Suklyun; Ihm, Jisoon; Stroscio, Joseph A.; Kuk, Young

    2016-01-01

    Securing a semiconducting bandgap is essential for applying graphene layers in switching devices. Theoretical studies have suggested a created bulk bandgap in a graphene layer by introducing an asymmetry between the A and B sub-lattice sites. A recent transport measurement demonstrated the presence of a bandgap in a graphene layer where the asymmetry was introduced by placing a graphene layer on a hexagonal boron nitride (h-BN) substrate. Similar bandgap has been observed in graphene layers on metal substrates by local probe measurements; however, this phenomenon has not been observed in graphene layers on a near-insulating substrate. Here, we present bulk bandgap-like features in a graphene layer epitaxially grown on an h-BN substrate using scanning tunneling spectroscopy. We observed edge states at zigzag edges, edge resonances at armchair edges, and bandgap-like features in the bulk. PMID:27503427

  15. Container-Grown Longleaf Pine Seedling Quality

    Treesearch

    Mark J. Hainds; James P. Barnett

    2004-01-01

    This study examines the comparative hardiness of various classes or grades of container-grown longleaf pine (Pinus palustris Mill.) seedlings. Most container longleaf seedlings are grown in small ribbed containers averaging 5 to 7 cubic inches in volume and 3 to 6 inches in depth. Great variability is often exhibited in typical lots of container-...

  16. Exceptional gettering response of epitaxially grown kerfless silicon

    SciTech Connect

    Powell, D. M.; Markevich, V. P.; Hofstetter, J.; Jensen, M. A.; Morishige, A. E.; Castellanos, S.; Lai, B.; Peaker, A. R.; Buonassisi, T.

    2016-02-08

    The bulk minority-carrier lifetime in p- and n-type kerfless epitaxial (epi) crystalline silicon wafers is shown to increase >500 during phosphorus gettering. We employ kinetic defect simulations and microstructural characterization techniques to elucidate the root cause of this exceptional gettering response. Simulations and deep-level transient spectroscopy (DLTS) indicate that a high concentra- tion of point defects (likely Pt) is “locked in” during fast (60 C/min) cooling during epi wafer growth. The fine dispersion of moderately fast-diffusing recombination-active point defects limits as-grown lifetime but can also be removed during gettering, confirmed by DLTS measurements. Synchrotron-based X-ray fluorescence microscopy indicates metal agglomerates at structural defects, yet the structural defect density is sufficiently low to enable high lifetimes. Consequently, after phosphorus diffusion gettering, epi silicon exhibits a higher lifetime than materials with similar bulk impurity contents but higher densities of structural defects, including multicrystalline ingot and ribbon silicon materials. As a result, device simulations suggest a solar-cell efficiency potential of this material >23%.

  17. Exceptional gettering response of epitaxially grown kerfless silicon

    NASA Astrophysics Data System (ADS)

    Powell, D. M.; Markevich, V. P.; Hofstetter, J.; Jensen, M. A.; Morishige, A. E.; Castellanos, S.; Lai, B.; Peaker, A. R.; Buonassisi, T.

    2016-02-01

    The bulk minority-carrier lifetime in p- and n-type kerfless epitaxial (epi) crystalline silicon wafers is shown to increase >500× during phosphorus gettering. We employ kinetic defect simulations and microstructural characterization techniques to elucidate the root cause of this exceptional gettering response. Simulations and deep-level transient spectroscopy (DLTS) indicate that a high concentration of point defects (likely Pt) is "locked in" during fast (60 °C/min) cooling during epi wafer growth. The fine dispersion of moderately fast-diffusing recombination-active point defects limits as-grown lifetime but can also be removed during gettering, confirmed by DLTS measurements. Synchrotron-based X-ray fluorescence microscopy indicates metal agglomerates at structural defects, yet the structural defect density is sufficiently low to enable high lifetimes. Consequently, after phosphorus diffusion gettering, epi silicon exhibits a higher lifetime than materials with similar bulk impurity contents but higher densities of structural defects, including multicrystalline ingot and ribbon silicon materials. Device simulations suggest a solar-cell efficiency potential of this material >23%.

  18. Exceptional Gettering Response of Epitaxially Grown Kerfless Silicon

    SciTech Connect

    Powell, D.M.; Markevich, V.P.; Hofstetter, J.; Jensen, M. A.; Morishige, A.E.; Castellanos, S.; Lai, B.; Peaker, A.R.; Buonassisi, T.

    2016-02-14

    The bulk minority-carrier lifetime in p- and n-type kerfless epitaxial (epi) crystalline silicon wafers is shown to increase >500× during phosphorus gettering. We employ kinetic defect simulations and microstructural characterization techniques to elucidate the root cause of this exceptional gettering response. Simulations and deep-level transient spectroscopy (DLTS) indicate that a high concentration of point defects (likely Pt) is “locked in” during fast (60 °C/min) cooling during epi wafer growth. The fine dispersion of moderately fast-diffusing recombination-active point defects limits as-grown lifetime, but can also be removed during gettering, confirmed by DLTS measurements. Synchrotron-based X-ray fluorescence microscopy indicates metal agglomerates at structural defects, yet the structural defect density is sufficiently low to enable high lifetimes. Consequently, after phosphorus diffusion gettering, epi silicon exhibits a higher lifetime than materials with similar bulk impurity contents but higher densities of structural defects, including multicrystalline ingot and ribbon silicon materials. Device simulations suggest a solar-cell efficiency potential of this material >23%.

  19. Exceptional gettering response of epitaxially grown kerfless silicon

    DOE PAGES

    Powell, D. M.; Markevich, V. P.; Hofstetter, J.; ...

    2016-02-08

    The bulk minority-carrier lifetime in p- and n-type kerfless epitaxial (epi) crystalline silicon wafers is shown to increase >500 during phosphorus gettering. We employ kinetic defect simulations and microstructural characterization techniques to elucidate the root cause of this exceptional gettering response. Simulations and deep-level transient spectroscopy (DLTS) indicate that a high concentra- tion of point defects (likely Pt) is “locked in” during fast (60 C/min) cooling during epi wafer growth. The fine dispersion of moderately fast-diffusing recombination-active point defects limits as-grown lifetime but can also be removed during gettering, confirmed by DLTS measurements. Synchrotron-based X-ray fluorescence microscopy indicates metal agglomeratesmore » at structural defects, yet the structural defect density is sufficiently low to enable high lifetimes. Consequently, after phosphorus diffusion gettering, epi silicon exhibits a higher lifetime than materials with similar bulk impurity contents but higher densities of structural defects, including multicrystalline ingot and ribbon silicon materials. As a result, device simulations suggest a solar-cell efficiency potential of this material >23%.« less

  20. Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy

    DOE PAGES

    Amrillah, Tahta; Bitla, Yugandhar; Shin, Kwangwoo; ...

    2017-05-22

    Magnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate clamping effect still remains a major hurdle in realizing the ultimate magnetoelectric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric–ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted. In this paper, we investigated the magnetoelectric coupling in a self-assembled BiFeO3 (BFO)–CoFe2O4 (CFO) bulk heterojunction epitaxially grown on a flexiblemore » muscovite substrate. The obtained heterojunction is composed of vertically aligned multiferroic BFO nanopillars embedded in a ferrimagnetic CFO matrix. Moreover, due to the weak interaction between the flexible substrate and bulk heterojunction, the interface is incoherent and, hence, the substrate clamping effect is greatly reduced. The phase-field simulation model also complements our results. The magnetic and electrical characterizations highlight the improvement in magnetoelectric coupling of the BFO–CFO bulk heterojunction. A magnetoelectric coupling coefficient of 74 mV/cm·Oe of this bulk heterojunction is larger than the magnetoelectric coefficient reported earlier on flexible substrates. Finally and therefore, this study delivers a viable route of fabricating a remarkable magnetoelectric heterojunction and yet flexible electronic devices that are robust against extreme conditions with optimized performance.« less

  1. Bulk-impurity induced noise in large-area epitaxial thin films of topological insulators

    NASA Astrophysics Data System (ADS)

    Islam, Saurav; Bhattacharyya, Semonti; Kandala, Abhinav; Richardella, Anthony; Samarth, Nitin; Ghosh, Arindam

    2017-08-01

    We report a detailed study on low-frequency 1 /f -noise in large-area molecular-beam epitaxy grown thin ( ˜10 nm) films of topological insulators as a function of temperature, gate voltage, and magnetic field. When the Fermi energy is within the bulk valence band, the temperature dependence reveals a clear signature of generation-recombination noise in the defect states in the bulk band gap. However, when the Fermi energy is tuned to the bulk band gap, the gate voltage dependence of noise shows that the resistance fluctuations in surface transport are caused by correlated mobility-number density fluctuations due to the activated defect states present in the bulk of the topological insulator crystal with a density of Di t=3.2 ×1017 cm-2 eV-1. In the presence of the magnetic field, noise in these materials follows a parabolic dependence, which is qualitatively similar to mobility and charge-density fluctuation noise in non-degenerately doped trivial semiconductors. Our studies reveal that even in thin films of (Bi,Sb)2Te3 with thickness as low as 10 nm, the internal bulk defects are the dominant source of noise.

  2. Flexible Multiferroic Bulk Heterojunction with Giant Magnetoelectric Coupling via van der Waals Epitaxy.

    PubMed

    Amrillah, Tahta; Bitla, Yugandhar; Shin, Kwangwoo; Yang, Tiannan; Hsieh, Ying-Hui; Chiou, Yu-You; Liu, Heng-Jui; Do, Thi Hien; Su, Dong; Chen, Yi-Chun; Jen, Shien-Uang; Chen, Long-Qing; Kim, Kee Hoon; Juang, Jenh-Yih; Chu, Ying-Hao

    2017-06-27

    Magnetoelectric nanocomposites have been a topic of intense research due to their profound potential in the applications of electronic devices based on spintronic technology. Nevertheless, in spite of significant progress made in the growth of high-quality nanocomposite thin films, the substrate clamping effect still remains a major hurdle in realizing the ultimate magnetoelectric coupling. To overcome this obstacle, an alternative strategy of fabricating a self-assembled ferroelectric-ferrimagnetic bulk heterojunction on a flexible muscovite via van der Waals epitaxy is adopted. In this study, we investigated the magnetoelectric coupling in a self-assembled BiFeO3 (BFO)-CoFe2O4 (CFO) bulk heterojunction epitaxially grown on a flexible muscovite substrate. The obtained heterojunction is composed of vertically aligned multiferroic BFO nanopillars embedded in a ferrimagnetic CFO matrix. Moreover, due to the weak interaction between the flexible substrate and bulk heterojunction, the interface is incoherent and, hence, the substrate clamping effect is greatly reduced. The phase-field simulation model also complements our results. The magnetic and electrical characterizations highlight the improvement in magnetoelectric coupling of the BFO-CFO bulk heterojunction. A magnetoelectric coupling coefficient of 74 mV/cm·Oe of this bulk heterojunction is larger than the magnetoelectric coefficient reported earlier on flexible substrates. Therefore, this study delivers a viable route of fabricating a remarkable magnetoelectric heterojunction and yet flexible electronic devices that are robust against extreme conditions with optimized performance.

  3. Bulk rectification effect in a polar semiconductor

    NASA Astrophysics Data System (ADS)

    Ideue, T.; Hamamoto, K.; Koshikawa, S.; Ezawa, M.; Shimizu, S.; Kaneko, Y.; Tokura, Y.; Nagaosa, N.; Iwasa, Y.

    2017-06-01

    Noncentrosymmetric conductors are an interesting material platform, with rich spintronic functionalities and exotic superconducting properties typically produced in polar systems with Rashba-type spin-orbit interactions. Polar conductors should also exhibit inherent nonreciprocal transport, in which the rightward and leftward currents differ from each other. But such a rectification is difficult to achieve in bulk materials because, unlike the translationally asymmetric p-n junctions, bulk materials are translationally symmetric, making this phenomenon highly nontrivial. Here we report a bulk rectification effect in a three-dimensional Rashba-type polar semiconductor BiTeBr. Experimentally observed nonreciprocal electric signals are quantitatively explained by theoretical calculations based on the Boltzmann equation considering the giant Rashba spin-orbit coupling. The present result offers a microscopic understanding of the bulk rectification effect intrinsic to polar conductors as well as a simple electrical means to estimate the spin-orbit parameter in a variety of noncentrosymmetric systems.

  4. Bulk GaN Ion Cleaving

    NASA Astrophysics Data System (ADS)

    Moutanabbir, O.; Gösele, U.

    2010-05-01

    Bulk or freestanding GaN is a key material in various devices other than the blue laser diodes. However, the high cost of bulk GaN wafers severely limits the large scale exploitation of these potential technologies. In this paper, we discuss some engineering issues involved in the application of the ion-cut process to split a thin layer from 2-inch freestanding GaN. This process combines the implantation of light ions and wafer bonding and can possibly be used to reduce the cost of the fabrication of GaN-based devices by allowing the transfer of several bulk quality thin layers from the same donor wafer. To achieve this multi-layer transfer several conditions must be fulfilled. Here issues related to bulk GaN surface irregularities and wafer bowing are discussed. We also describe a method to circumvent most of these problems and achieve high quality bonding.

  5. Boundary dual of bulk local operators

    NASA Astrophysics Data System (ADS)

    Sanches, Fabio; Weinberg, Sean J.

    2017-07-01

    We provide a procedure to determine if a given nonlocal operator in a large-N holographic CFT is dual to a local bulk operator on the geometry associated with a particular code subspace of the CFT. This procedure does not presuppose knowledge of the bulk geometry. We are able to pick out local operators in a large region of the bulk, called the "localizable region," that can extend beyond event horizons in certain cases. The method relies heavily on the quantum error correcting structure of AdS /CFT and, in particular, on entanglement wedge reconstruction. As a byproduct of this machinery, we are able to reconstruct the metric in the localizable region up to a conformal factor. This suggests a connection between our program and the recent light-cone cut approach to bulk reconstruction.

  6. Inspection program improves bulk cement system delivery

    SciTech Connect

    O'Bannion, T. ); Guidroz, B.; Morris, G. )

    1993-12-20

    A recently implemented survey of pneumatically operated bulk cement-handling equipment offshore has improved bulk cement deliverability on several Gulf of Mexico rigs. The 30-point survey helps ensure an adequate rate of bulk cement delivery throughout the cement job. The inspection survey was developed because the source of many cement job failures was a lack of adequate, steady delivery of bulk cement to the cementing unit during the job. The job failures caused by flow interruptions, plugging of tools by chunks of set cement, and erratic flow resulted in poor primary cement jobs, many of which required remedial cementing jobs. A better-controlled flow of cement may help prevent these types of failure, thereby reducing the number of remedial cement operations. The paper describes the inspection procedures.

  7. Imprinting bulk amorphous alloy at room temperature

    SciTech Connect

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.

  8. Imprinting bulk amorphous alloy at room temperature

    PubMed Central

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; Lograsso, Thomas A.; Huh, Moo-Young; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2015-01-01

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the ability of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. Our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment. PMID:26563908

  9. 49 CFR 172.514 - Bulk packagings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... potential hazard; (2) Is refilled, with a material requiring different placards or no placards, to such an...., a bulk bag or box) with a volumetric capacity of less than 18 cubic meters (640 cubic feet); (4) An...

  10. 49 CFR 172.514 - Bulk packagings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... potential hazard; (2) Is refilled, with a material requiring different placards or no placards, to such an...., a bulk bag or box) with a volumetric capacity of less than 18 cubic meters (640 cubic feet); (4) An...

  11. 49 CFR 172.514 - Bulk packagings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... potential hazard; (2) Is refilled, with a material requiring different placards or no placards, to such an...., a bulk bag or box) with a volumetric capacity of less than 18 cubic meters (640 cubic feet); (4) An...

  12. 49 CFR 172.514 - Bulk packagings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... potential hazard; (2) Is refilled, with a material requiring different placards or no placards, to such an...., a bulk bag or box) with a volumetric capacity of less than 18 cubic meters (640 cubic feet); (4) An...

  13. Characterization and modeling of InGaAs and InGaSb thermophotovoltaic cells and materials

    SciTech Connect

    Zierak, M.J.

    1997-03-01

    Characterization of thermophotovoltaic (TPV) semiconductor materials before and after the fabrication of TPV cells is a very important part of obtaining good quality TPV converters. Various measurements setups have been designed and built to characterize both the starting material and finished TPV cells. These measurement setups include a microwave reflectance setup to obtain bulk lifetime data of starting material, a V{sub oc} decay setup to obtain lifetime data for finished cells, a quantum efficiency setup to measure the external quantum efficiency of finished cells, a capacitance-voltage setup to measure built-in potentials and base doping profiles of cells and a pulsed current-voltage setup to obtain the electrical characteristics of both illuminated and unilluminated TPV cells. A TPV cell simulation program was developed to help optimize the design of In{sub x}Ga{sub 1{minus}x}As and In{sub x}Ga{sub 1{minus}x}Sb cells operating at room temperature. The program is also capable of extracting diffusion lengths and surface recombination velocities from quantum efficiency measurements of finished cells. The program calculates not only the quantum efficiency of a cell, but also the illuminated current density vs. voltage for any incident spectrum. This allows the determination of the electrical characteristics and conversion efficiency of a cell prior to fabrication.

  14. Investigation of Shallow Bulk Acoustic Waves

    DTIC Science & Technology

    1981-11-12

    with the theoretical calculation using equivalent circuit model. How- ever, the spurious bulk wave level at high frequencies is much lower than that of...effect of a metallic grating on SBAW devices on quartz. 7 A periodic metallic structure will support horizontal shear surface waves if the finger...We have extensively investigated shallow bulk acoustic waves in. terms of material aspects, transducer equivalent circuits and device dev-.iopment

  15. The Bulk Multicore Architecture for Improved Programmability

    DTIC Science & Technology

    2009-12-01

    algorithm, forcing the same order of chunk commits as in the recording step. This design, which we call PicoLog , typically incurs a performance cost... PicoLog . Data-race detection at production- run speed. The Bulk Multicore can support an efficient data-race detec- tor based on the “happens-before...Bulk Multicore (a), with a possible OrderOnly execution log (b) and PicoLog execution log (c). contributed articles DECEMBER 2009 | VOL. 52

  16. Boundary-bulk relation in topological orders

    NASA Astrophysics Data System (ADS)

    Kong, Liang; Wen, Xiao-Gang; Zheng, Hao

    2017-09-01

    In this paper, we study the relation between an anomaly-free n + 1D topological order, which are often called n + 1D topological order in physics literature, and its nD gapped boundary phases. We argue that the n + 1D bulk anomaly-free topological order for a given nD gapped boundary phase is unique. This uniqueness defines the notion of the "bulk" for a given gapped boundary phase. In this paper, we show that the n + 1D "bulk" phase is given by the "center" of the nD boundary phase. In other words, the geometric notion of the "bulk" corresponds precisely to the algebraic notion of the "center". We achieve this by first introducing the notion of a morphism between two (potentially anomalous) topological orders of the same dimension, then proving that the notion of the "bulk" satisfies the same universal property as that of the "center" of an algebra in mathematics, i.e. "bulk" = center". The entire argument does not require us to know the precise mathematical description of a (potentially anomalous) topological order. This result leads to concrete physical predictions.

  17. Aluminum nitride bulk crystal growth in a resistively heated reactor

    NASA Astrophysics Data System (ADS)

    Dalmau, Rafael Federico

    A resistively heated reactor capable of temperatures in excess of 2300°C was used to grow aluminum nitride (AlN) bulk single crystals from an AlN powder source by physical vapor transport (PVT) in nitrogen atmosphere. AlN crystals were grown at elevated temperatures by two different methods. Self-seeded crystals were obtained by spontaneous nucleation on the crucible walls, while seeded growth was performed on singular and vicinal (0001) surfaces of silicon carbide (SiC) seeds. During self-seeded growth experiments a variety of crucible materials, such as boron nitride, tungsten, tantalum, rhenium, tantalum nitride, and tantalum carbide, were evaluated. These studies showed that the morphology of crystals grown by spontaneous nucleation strongly depends on the growth temperature and contamination in the reactor. Crucible selection had a profound effect on contamination in the crystal growth environment, influencing nucleation, coalescence, and crystal morphology. In terms of high-temperature stability and compatibility with the growth process, the best results for AlN crystal growth were obtained in crucibles made of sintered tantalum carbide or tantalum nitride. In addition, contamination from the commercially purchased AlN powder source was reduced by presintering the powder prior to growth, which resulted in a drastic reduction of nearly all impurities. Spontaneously grown single crystals up to 15 mm in size were characterized by x-ray diffraction, x-ray topography, glow discharge mass spectrometry, and secondary ion mass spectrometry. Average dislocation densities were on the order of 103 cm -3, with extended areas virtually free of dislocations. High resolution rocking curves routinely showed peak widths as narrow as 7 arcsec, indicating a high degree of crystalline perfection. Low-temperature partially polarized optical reflectance measurements were used to calculate the crystal-field splitting parameter of AlN, Deltacr = -230 meV, and a low-temperature (1

  18. Mellin representation of the graviton bulk-to-bulk propagator in AdS space

    NASA Astrophysics Data System (ADS)

    Balitsky, Ian

    2011-04-01

    A Mellin-type representation of the graviton bulk-to-bulk propagator from E. D’Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis, and L. Rastelli [Nucl. Phys.NUPBBO0550-3213 B562, 330 (1999)10.1016/S0550-3213(99)00524-6] in terms of the integral over the product of bulk-to-boundary propagators is derived.

  19. N-Methylformamide as a Source of Methylammonium Ions in the Synthesis of Lead Halide Perovskite Nanocrystals and Bulk Crystals

    PubMed Central

    2016-01-01

    We report chemical routes for the synthesis of both nanocrystals and bulk crystals of methylammonium (MA) lead halide perovskites employing N-methylformamide (NMF) as a source of MA ions. Colloidal nanocrystals were prepared by a transamidation reaction between NMF and an alkyl amine (oleylamine). The nanocrystals showed photoluminescence quantum yields reaching 74% for MAPbBr3 and 60% for MAPbI3. Bulk crystals were grown at room temperature, with no need for an antisolvent, by the acid hydrolysis of NMF. Important advantages of using NMF instead of MA salts are that the syntheses involve fewer steps and less toxic and less expensive chemicals. PMID:28066824

  20. Terrestrial Trophic Transfer of Bulk and Nanoparticle La2O3 Does Not Depend on Particle Size.

    PubMed

    De la Torre Roche, Roberto; Servin, Alia; Hawthorne, Joseph; Xing, Baoshan; Newman, Lee A; Ma, Xingmao; Chen, Guangcai; White, Jason C

    2015-10-06

    The bioaccumulation and trophic transfer of bulk and nanoparticle (NP) La2O3 from soil through a terrestrial food chain was determined. To investigate the impact of growth conditions, lettuce (Lactuca sativa) was grown in 350 or 1200 g of bulk/NP amended soil. Leaf tissues were fed to crickets (Acheta domesticus) or darkling beetles (Tenebrionoidea); select crickets were fed to mantises. In the small pot (350 g), La2O3 exposure reduced plant biomass by 23-30% and La tissue content did not differ with particle size. In the large pot (1200 g), biomass was unaffected by exposure and La content in the tissues were significantly greater with bulk particle treatment. Darkling beetles exposed to bulk and NP La2O3-contaminated lettuce contained La at 0.18 and 0.08 mg/kg; respectively (significantly different, P < 0.05). Crickets fed bulk or NP La2O3-exposed lettuce contained 0.53 and 0.33 mg/kg, respectively (significantly different, P < 0.05) with 48 h of depuration. After 7 d of depuration, La content did not differ with particle size, indicating that 48 h may be insufficient to void the digestive system. Mantises that consumed crickets from bulk and NP-exposed treatments contained La at 0.05-0.060 mg/kg (statistically equivalent). These results demonstrate that although La does trophically transfer, biomagnification does not occur and NP levels are equivalent or less than the bulk metal.

  1. Predicting bulk damage in NIF triple harmonic generators

    SciTech Connect

    De Yoreo, J; Runkel, M; Williams, W

    1998-09-18

    Recently reported experiments have investigated the statistics of laser damage in KDP and KD*P. Automated damage tests have allowed cumulative failure and damage probability distributions to be constructed. Large area tests have investigated the feasibility of on-line laser conditioning and damage evolution for tripler harmonic generation (THG) crystals on the National Ignition Facility (NIF). These tests have shown that there is a nonzero probability of damage at NIF redline fluence (14.3 J/cm2, 351 nm, 3 ns) and that the damage pinpoint density evolves exponentially with fluence. In this paper, the results of these tests are used in conjunction with model spatial profiles of the NIP beam to predict the level of damage created in the THG crystal. A probabilistic calculation based on the overlap of the beam fluence and damage probabiity distribution shows that the overall damage probability is less than 3% for well-conditioned, high quality KDP/KD*P crystals of conventional or rapid growth. The number density of generated pinpoints has been calculated by mapping the damage evolution curves onto the NlF model profile. This shows that the number of damage pinpoints generated in high fluence portions of the NIF beam will be low for well-conditioned THG crystals. In contrast, unconditioned triplers of the same material will exhibit an increase in pinpoint density of greater than 20x. To test the validity of these calculations a 37 cm, conventionally grown KD*P tripler from the Beamlet laser was scatter mapped for bulk damage. The tripler had been exposed to NE-like fluences during its operational lifetime on Beamlet and exhibited very low levels of bulk pinpoint damage, essentially supporting the predictions based on tests and modeling.

  2. High resolution synchrotron radiation based photoemission study of the in situ deposition of molecular sulphur on the atomically clean InGaAs surface

    NASA Astrophysics Data System (ADS)

    Chauhan, Lalit; Hughes, Greg

    2012-06-01

    High resolution synchrotron radiation core level photoemission studies were performed on atomically clean 0.5 μm thick In0.53Ga0.47As (100) epilayers lattice matched to InP substrates following the removal of a 100 nm protective arsenic cap at 410 °C. Both n-type (Si doped 5 × 1017 cm-3) and p-type (Be doped 5 × 1017 cm-3) InGaAs samples were subsequently exposed in situ to molecular sulphur at room temperature, and the resulting changes in the surface chemical composition were recorded. The photoemission spectra indicate evidence of As-S, Ga-S, and In-S bond formation and the substitution of As in the near surface region by sulphur. Annealing to 400 °C results in the complete removal of the As-S bonding component with both Ga-S and In-S bonding configurations remaining. After the anneal, the Fermi level position for both n-type and p-type samples resides at the top of the bandgap indicating a near flat band condition for n-type and significant band bending on the p-type sample. The results of angle resolved photoemission measurements suggest that the sulphur has substituted arsenic in the near surface region resulting in both samples displaying n-type surface behaviour. Annealing to higher temperatures results in the loss of In from the surface without any significant change in the Ga, As, or S signals. Work function measurements on both doping types after sulphur deposition and anneal show similar behaviour displaying a value close to 6 eV which is indicative of the formation of a surface dipole layer related to the presence of sulphur on the surface.

  3. Ultra-low noise large-area InGaAs quad photoreceiver with low crosstalk for laser interferometry space antenna

    NASA Astrophysics Data System (ADS)

    Joshi, Abhay; Datta, Shubhashish; Rue, Jim; Livas, Jeffrey; Silverberg, Robert; Guzman Cervantes, Felipe

    2012-07-01

    Quad photoreceivers, namely a 2 x 2 array of p-i-n photodiodes followed by a transimpedance amplifier (TIA) per diode, are required as the front-end photonic sensors in several applications relying on free-space propagation with position and direction sensing capability, such as long baseline interferometry, free-space optical communication, and biomedical imaging. It is desirable to increase the active area of quad photoreceivers (and photodiodes) to enhance the link gain, and therefore sensitivity, of the system. However, the resulting increase in the photodiode capacitance reduces the photoreceiver's bandwidth and adds to the excess system noise. As a result, the noise performance of the front-end quad photoreceiver has a direct impact on the sensitivity of the overall system. One such particularly challenging application is the space-based detection of gravitational waves by measuring distance at 1064 nm wavelength with ~ 10 pm/√Hz accuracy over a baseline of millions of kilometers. We present a 1 mm diameter quad photoreceiver having an equivalent input current noise density of < 1.7 pA/√Hz per quadrant in 2 MHz to 20 MHz frequency range. This performance is primarily enabled by a rad-hard-by-design dualdepletion region InGaAs quad photodiode having 2.5 pF capacitance per quadrant. Moreover, the quad photoreceiver demonstrates a crosstalk of < -45 dB between the neighboring quadrants, which ensures an uncorrected direction sensing resolution of < 50 nrad. The sources of this primarily capacitive crosstalk are presented.

  4. The influence of surface preparation on low temperature HfO{sub 2} ALD on InGaAs (001) and (110) surfaces

    SciTech Connect

    Kent, Tyler; Edmonds, Mary; Kummel, Andrew C.; Tang, Kechao; Negara, Muhammad Adi; McIntyre, Paul; Chobpattana, Varistha; Mitchell, William; Sahu, Bhagawan; Galatage, Rohit; Droopad, Ravi

    2015-10-28

    Current logic devices rely on 3D architectures, such as the tri-gate field effect transistor (finFET), which utilize the (001) and (110) crystal faces simultaneously thus requiring passivation methods for the (110) face in order to ensure a pristine 3D surface prior to further processing. Scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy (XPS), and correlated electrical measurement on MOSCAPs were utilized to compare the effects of a previously developed in situ pre-atomic layer deposition (ALD) surface clean on the InGaAs (001) and (110) surfaces. Ex situ wet cleans are very effective on the (001) surface but not the (110) surface. Capacitance voltage indicated the (001) surface with no buffered oxide etch had a higher C{sub max} hypothesized to be a result of poor nucleation of HfO{sub 2} on the native oxide. An in situ pre-ALD surface clean employing both atomic H and trimethylaluminum (TMA) pre-pulsing, developed by Chobpattana et al. and Carter et al. for the (001) surface, was demonstrated to be effective on the (110) surface for producing low D{sub it} high C{sub ox} MOSCAPs. Including TMA in the pre-ALD surface clean resulted in reduction of the magnitude of the interface state capacitance. The XPS studies show the role of atomic H pre-pulsing is to remove both carbon and oxygen while STM shows the role of TMA pre-pulsing is to eliminate H induced etching. Devices fabricated at 120 °C and 300 °C were compared.

  5. The influence of surface preparation on low temperature HfO2 ALD on InGaAs (001) and (110) surfaces

    NASA Astrophysics Data System (ADS)

    Kent, Tyler; Tang, Kechao; Chobpattana, Varistha; Negara, Muhammad Adi; Edmonds, Mary; Mitchell, William; Sahu, Bhagawan; Galatage, Rohit; Droopad, Ravi; McIntyre, Paul; Kummel, Andrew C.

    2015-10-01

    Current logic devices rely on 3D architectures, such as the tri-gate field effect transistor (finFET), which utilize the (001) and (110) crystal faces simultaneously thus requiring passivation methods for the (110) face in order to ensure a pristine 3D surface prior to further processing. Scanning tunneling microscopy (STM), x-ray photoelectron spectroscopy (XPS), and correlated electrical measurement on MOSCAPs were utilized to compare the effects of a previously developed in situ pre-atomic layer deposition (ALD) surface clean on the InGaAs (001) and (110) surfaces. Ex situ wet cleans are very effective on the (001) surface but not the (110) surface. Capacitance voltage indicated the (001) surface with no buffered oxide etch had a higher Cmax hypothesized to be a result of poor nucleation of HfO2 on the native oxide. An in situ pre-ALD surface clean employing both atomic H and trimethylaluminum (TMA) pre-pulsing, developed by Chobpattana et al. and Carter et al. for the (001) surface, was demonstrated to be effective on the (110) surface for producing low Dit high Cox MOSCAPs. Including TMA in the pre-ALD surface clean resulted in reduction of the magnitude of the interface state capacitance. The XPS studies show the role of atomic H pre-pulsing is to remove both carbon and oxygen while STM shows the role of TMA pre-pulsing is to eliminate H induced etching. Devices fabricated at 120 °C and 300 °C were compared.

  6. Module 13: Bulk Packaging Shipments by Highway

    SciTech Connect

    Przybylski, J.L.

    1994-07-01

    The Hazardous Materials Modular Training Program provides participating United States Department of Energy (DOE) sites with a basic, yet comprehensive, hazardous materials transportation training program for use onsite. This program may be used to assist individual program entities to satisfy the general awareness, safety training, and function specific training requirements addressed in Code of Federal Regulation (CFR), Title 49, Part 172, Subpart H -- ``Training.`` Module 13 -- Bulk Packaging Shipments by Highway is a supplement to the Basic Hazardous Materials Workshop. Module 13 -- Bulk Packaging Shipments by Highway focuses on bulk shipments of hazardous materials by highway mode, which have additional or unique requirements beyond those addressed in the ten module core program. Attendance in this course of instruction should be limited to those individuals with work experience in transporting hazardous materials utilizing bulk packagings and who have completed the Basic Hazardous Materials Workshop or an equivalent. Participants will become familiar with the rules and regulations governing the transportation by highway of hazardous materials in bulk packagings and will demonstrate the application of these requirements through work projects and examination.

  7. Molecule diagram from space-grown crystals

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers' at Hauptman-Woodward Medical Research Institute, in Buffalo, N.Y. have analyzed the molecular structures of insulin crystals grown during Space Shuttle experiments and are unlocking the mystery of how insulin works.

  8. Molecule diagram from space-grown crystals

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Researchers' at Hauptman-Woodward Medical Research Institute, in Buffalo, N.Y. have analyzed the molecular structures of insulin crystals grown during Space Shuttle experiments and are unlocking the mystery of how insulin works.

  9. Bulk Growth of 2-6 Crystals in the Microgravity Environment of USML-1

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Lehoczky, Sandor L.; Szofran, Frank R.; Larson, David J.; Su, Ching-Hua; Sha, Yi-Gao; Alexander, Helga A.

    1993-01-01

    The first United States Microgravity Laboratory Mission (USML- 1) flew in June 1992 on the Space Shuttle Columbia. An important part of this SpaceLab mission was the debut of the Crystal Growth Furnace (CGF). Of the seven samples grown in the furnace, three were bulk grown 2-6 compounds, two of a cadmium zinc telluride alloy, and one of a mercury zinc telluride alloy. Ground based results are presented, together with the results of computer simulated growths of these experimental conditions. Preliminary characterization results for the three USML-1 growth runs are also presented and the flight sample characteristics are compared to the equivalent ground truth samples. Of particular interest are the effect of the containment vessel on surface features, and especially on the nucleation, and the effect of the gravity vector on radial and axial compositional variations and stress and defect levels.

  10. Bulk Growth of 2-6 Crystals in the Microgravity Environment of USML-1

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Lehoczky, Sandor L.; Szofran, Frank R.; Larson, David J.; Su, Ching-Hua; Sha, Yi-Gao; Alexander, Helga A.

    1993-01-01

    The first United States Microgravity Laboratory Mission (USML- 1) flew in June 1992 on the Space Shuttle Columbia. An important part of this SpaceLab mission was the debut of the Crystal Growth Furnace (CGF). Of the seven samples grown in the furnace, three were bulk grown 2-6 compounds, two of a cadmium zinc telluride alloy, and one of a mercury zinc telluride alloy. Ground based results are presented, together with the results of computer simulated growths of these experimental conditions. Preliminary characterization results for the three USML-1 growth runs are also presented and the flight sample characteristics are compared to the equivalent ground truth samples. Of particular interest are the effect of the containment vessel on surface features, and especially on the nucleation, and the effect of the gravity vector on radial and axial compositional variations and stress and defect levels.

  11. A stereoscopic look into the bulk

    NASA Astrophysics Data System (ADS)

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Mosk, Benjamin; Sully, James

    2016-07-01

    We present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphisminvariant bulk operators. The CFT operators of interest are the "OPE blocks," contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1 /N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimal surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields.

  12. Micro benchtop optics by bulk silicon micromachining

    DOEpatents

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  13. Orchestrating Bulk Data Movement in Grid Environments

    SciTech Connect

    Vazhkudai, SS

    2005-01-25

    Data Grids provide a convenient environment for researchers to manage and access massively distributed bulk data by addressing several system and transfer challenges inherent to these environments. This work addresses issues involved in the efficient selection and access of replicated data in Grid environments in the context of the Globus Toolkit{trademark}, building middleware that (1) selects datasets in highly replicated environments, enabling efficient scheduling of data transfer requests; (2) predicts transfer times of bulk wide-area data transfers using extensive statistical analysis; and (3) co-allocates bulk data transfer requests, enabling parallel downloads from mirrored sites. These efforts have demonstrated a decentralized data scheduling architecture, a set of forecasting tools that predict bandwidth availability within 15% error and co-allocation architecture, and heuristics that expedites data downloads by up to 2 times.

  14. Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties

    PubMed Central

    Kushwaha, S. K.; Pletikosić, I.; Liang, T.; Gyenis, A.; Lapidus, S. H.; Tian, Yao; Zhao, He; Burch, K. S.; Lin, Jingjing; Wang, Wudi; Ji, Huiwen; Fedorov, A. V.; Yazdani, Ali; Ong, N. P.; Valla, T.; Cava, R. J.

    2016-01-01

    A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high-quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons and be growable as large, high-quality bulk single crystals. Here we show that this material obstacle is overcome by bulk crystals of lightly Sn-doped Bi1.1Sb0.9Te2S grown by the vertical Bridgman method. We characterize Sn-BSTS via angle-resolved photoemission spectroscopy, scanning tunnelling microscopy, transport studies, X-ray diffraction and Raman scattering. We present this material as a high-quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states. PMID:27118032

  15. Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties

    DOE PAGES

    S. K. Kushwaha; Pletikosic, I.; Liang, T.; ...

    2016-04-27

    A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons, and be growable as large, high quality bulk single crystals. Here we show that this materials obstacle is overcome by bulk crystals of lightly Sn-doped Bi1.1Sb0.9Te2S grown by the Vertical Bridgeman method. We characterize Sn-BSTSmore » via angle-resolved photoemission spectroscopy, scanning tunneling microscopy, transport studies, X-ray diffraction, and Raman scattering. We present this material as a high quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states.« less

  16. Sn-doped Bi1.1Sb0.9Te2S bulk crystal topological insulator with excellent properties

    NASA Astrophysics Data System (ADS)

    Kushwaha, S. K.; Pletikosić, I.; Liang, T.; Gyenis, A.; Lapidus, S. H.; Tian, Yao; Zhao, He; Burch, K. S.; Lin, Jingjing; Wang, Wudi; Ji, Huiwen; Fedorov, A. V.; Yazdani, Ali; Ong, N. P.; Valla, T.; Cava, R. J.

    2016-04-01

    A long-standing issue in topological insulator research has been to find a bulk single crystal material that provides a high-quality platform for characterizing topological surface states without interference from bulk electronic states. This material would ideally be a bulk insulator, have a surface state Dirac point energy well isolated from the bulk valence and conduction bands, display quantum oscillations from the surface state electrons and be growable as large, high-quality bulk single crystals. Here we show that this material obstacle is overcome by bulk crystals of lightly Sn-doped Bi1.1Sb0.9Te2S grown by the vertical Bridgman method. We characterize Sn-BSTS via angle-resolved photoemission spectroscopy, scanning tunnelling microscopy, transport studies, X-ray diffraction and Raman scattering. We present this material as a high-quality topological insulator that can be reliably grown as bulk single crystals and thus studied by many researchers interested in topological surface states.

  17. 75 FR 34682 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ... With the International Maritime Solid Bulk Cargoes (IMSBC) Code; Correction AGENCY: Coast Guard, DHS...: Harmonization With the International Maritime Solid Bulk Cargoes (IMSBC) Code.'' This correction provides... (IMSBC) Code,'' which published in the June 17, 2010, issue of the Federal Register, make the following...

  18. 76 FR 8658 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ... International Maritime Solid Bulk Cargoes (IMSBC) Code AGENCY: Coast Guard, DHS. ACTION: Rule; information... carriage of solid hazardous materials in bulk to allow use of the IMSBC Code as an equivalent form of... 202-366-9826. SUPPLEMENTARY INFORMATION: On January 1, 2011, compliance with the IMSBC Code became...

  19. 75 FR 34573 - Bulk Solid Hazardous Materials: Harmonization With the International Maritime Solid Bulk Cargoes...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ...The Coast Guard proposes to harmonize its regulations with International Maritime Organization (IMO) amendments to Chapter VI and Chapter VII to the International Convention for the Safety of Life at Sea, 1974, as amended, (SOLAS) that make the International Maritime Solid Bulk Cargoes (IMSBC) Code mandatory. The amendments require that all vessels subject to SOLAS and carrying bulk solid......

  20. The polarization signature of local bulk flows

    SciTech Connect

    Roebber, Elinore; Holder, Gilbert

    2014-02-01

    A large peculiar velocity of the intergalactic medium produces a Doppler shift of the cosmic microwave background with a frequency-dependent quadrupole term. This quadrupole will act as a source for polarization of the cosmic microwave background, creating a large-scale polarization anisotropy if the bulk flow is local and coherent on large scales. In the case where we are near the center of the moving region, the polarization signal is a pure quadrupole. We show that the signal is small, but detectable with future experiments for bulk flows as large as some recent reports.

  1. "Work-Hardenable" ductile bulk metallic glass.

    PubMed

    Das, Jayanta; Tang, Mei Bo; Kim, Ki Buem; Theissmann, Ralf; Baier, Falko; Wang, Wei Hua; Eckert, Jürgen

    2005-05-27

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (< 1%) at room temperature. We present a new class of bulk metallic glass, which exhibits high strength of up to 2265 MPa together with extensive "work hardening" and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The "work-hardening" capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.

  2. 'Work-Hardenable' Ductile Bulk Metallic Glass

    SciTech Connect

    Das, Jayanta; Eckert, Juergen; Tang Meibo; Wang Weihua; Kim, Ki Buem; Baier, Falko; Theissmann, Ralf

    2005-05-27

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<1%) at room temperature. We present a new class of bulk metallic glass, which exhibits high strength of up to 2265 MPa together with extensive 'work hardening' and large ductility of 18%. Significant increase in the flow stress was observed during deformation. The 'work-hardening' capability and ductility of this class of metallic glass is attributed to a unique structure correlated with atomic-scale inhomogeneity, leading to an inherent capability of extensive shear band formation, interactions, and multiplication of shear bands.

  3. Hamiltonian decomposition for bulk and surface states.

    PubMed

    Sasaki, Ken-Ichi; Shimomura, Yuji; Takane, Yositake; Wakabayashi, Katsunori

    2009-04-10

    We demonstrate that a tight-binding Hamiltonian with nearest- and next-nearest-neighbor hopping integrals can be decomposed into bulk and boundary parts for honeycomb lattice systems. The Hamiltonian decomposition reveals that next-nearest-neighbor hopping causes sizable changes in the energy spectrum of surface states even if the correction to the energy spectrum of bulk states is negligible. By applying the Hamiltonian decomposition to edge states in graphene systems, we show that the next-nearest-neighbor hopping stabilizes the edge states. The application of Hamiltonian decomposition to a general lattice system is discussed.

  4. Meteoroid Bulk Density and Ceplecha Types

    NASA Technical Reports Server (NTRS)

    Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.

    2017-01-01

    The determination of asteroid bulk density is an important aspect of Near Earth Object (NEO) characterization. A fraction of meteoroids originate from asteroids (including some NEOs), thus in lieu of mutual perturbations, satellites, or expensive spacecraft missions, a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs (Potentially Hazardous Objects). Meteoroid bulk density is still inherently difficult to measure, and is most often determined by modeling the ablation of the meteoroid. One approach towards determining a meteoroid density distribution entails using a more easily measured proxy for the densities, then calibrating the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, KB (Ceplecha, 1958), which is thought to indicate the strength of a meteoroid and often correlated to different bulk densities in literature. KB is calculated using the air density at the beginning height of the meteor, the initial velocity, and the zenith angle of the radiant; quantities more readily determined than meteoroid bulk density itself. Numerical values of K(sub B) are sorted into groups (A, B, C, etc.), which have been matched to meteorite falls or meteor showers with known composition such as the porous Draconids. An extensive survey was conducted to establish the strength of the relationship between bulk density and K(sub B), specifically looking at those that additionally determined K(sub B) for the meteors. In examining the modeling of high-resolution meteor data from Kikwaya et al. (2011), the correlation between K(sub B) and bulk density was not as strong as hoped. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter (T(sub J)), with meteoroids from Halley Type comets (T(sub J) < 2) exhibiting much lower bulk densities than those originating from Jupiter Family comets and asteroids (T(sub J) > 2

  5. Efficient bulk-loading of gridfiles

    NASA Technical Reports Server (NTRS)

    Leutenegger, Scott T.; Nicol, David M.

    1994-01-01

    This paper considers the problem of bulk-loading large data sets for the gridfile multiattribute indexing technique. We propose a rectilinear partitioning algorithm that heuristically seeks to minimize the size of the gridfile needed to ensure no bucket overflows. Empirical studies on both synthetic data sets and on data sets drawn from computational fluid dynamics applications demonstrate that our algorithm is very efficient, and is able to handle large data sets. In addition, we present an algorithm for bulk-loading data sets too large to fit in main memory. Utilizing a sort of the entire data set it creates a gridfile without incurring any overflows.

  6. Challenges in modeling of bulk crystal growth

    NASA Astrophysics Data System (ADS)

    Müller, G.; Friedrich, J.

    2004-05-01

    This paper tries to analyze some of the presently existing problems and challenges in the field of modeling bulk crystal growth processes. Strategies will be discussed to meet and overcome these problems and challenges. The different topics will be illustrated by typical examples of bulk growth of semiconductor and optical crystals. Experimental results will be used for a comparison and validation of the numerical results in order to demonstrate the status and maturity of the models. The following topics are considered: modeling of transport phenomena and three-dimensional effects, process optimization by soft computing, modeling of defect formation and finally the speed-up of computations by using PC clusters and paralellization.

  7. Making bulk-conductive glass microchannel plates

    NASA Astrophysics Data System (ADS)

    Yi, Jay J. L.; Niu, Lihong

    2008-02-01

    The fabrication of microchannel plate (MCP) with bulk-conductive characteristics has been studied. Semiconducting clad glass and leachable core glass were used for drawing fibers and making MCP. Co-axial single fiber was drawn from a platinum double-crucible in an automatic fiberizing system, and the fibers were stacked and redrawn into multifiber by a special gripping mechanism. The multifibers were stacked again and the boule was made and sliced into discs. New MCPs were made after chemically leaching process without the traditional hydrogen firing. It was shown that bulk-conductive glass MCP can operate at higher voltage with lower noise.

  8. Bulk transport measurements in ZnO: The effect of surface electron layers

    NASA Astrophysics Data System (ADS)

    Allen, M. W.; Swartz, C. H.; Myers, T. H.; Veal, T. D.; McConville, C. F.; Durbin, S. M.

    2010-02-01

    Magnetotransport measurements and x-ray photoemission spectroscopy were used to investigate the surface conductivity of ZnO. Near-surface downward band bending, consistent with electron accumulation, was found on the polar and nonpolar faces of bulk ZnO single crystals. A significant polarity effect was observed in that the downward band bending was consistently stronger on the Zn-polar face and weaker on the O-polar face. The surface electron accumulation layer was found to significantly influence the electrical properties of high resistivity, hydrothermally grown bulk ZnO crystals at temperatures below 200 K, and is largely responsible for the anomalously low electron mobility reported for this material.

  9. An Integrated Approach to the Bulk III-Nitride Crystal Growth and Wafering

    DTIC Science & Technology

    2007-06-12

    Goto, T. Goto, H. Makino, T. Yao, S. Sarayama, H. Iwata , F.J. DiSalvo, "Time dependence of the growth morphology of GaN single crystals prepared in a ...bulk GaN crystals grown from a Na-Ga melt," Appl. Phys. Lett. 81, 3765-7 (2002). M. Aoki, H. Yamane, M. Shimada, S. Sarayama, H. Iwata , and F.J. Di...with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1

  10. Structural and Optical Characteristics of Metamorphic Bulk InAsSb

    DTIC Science & Technology

    2014-01-01

    Growth of InAs1-xSbx–based epitaxial materials for infrared photodetectors has a long development history1-2. A strong energy gap bowing in these...heterostructure detectors with bulk InAsSb absorbers and AlSb-based barriers. These structures can outperform InSb homojunction photodetectors operating...constant at the top of the buffer layer resulting in a low residual strain (< 0.1%). Unrelaxed InAsSb alloys grown on graded buffer layers were found

  11. Specific features of seeding and growth of bulk polar crystals

    NASA Astrophysics Data System (ADS)

    Tsvetkov, E. G.; Tyurikov, V. I.

    2000-07-01

    Formal analysis of seeding and growth of crystals exhibiting spontaneous polarization has been attempted using lithium iodate (α-LiIO 3) and barium metaborate (β-BaB 2O 4) as representative materials grown from aqueous and high-temperature solutions, respectively. We suggest that the specific growth features of nonlinear optical α-LiIO 3 and β-BaB 2O 4 crystals are being determined by formation and evolutionary restructuring of a double electric layer (DEL) at the growth interface. Both composition and structure of the DEL are governed by potential-determining ions of the growth medium as well as by the nature of crystal polarization and its properties. We have found that the composition and structure of the DEL together with the magnitude and direction of spontaneous polarization of the seed (crystal) predetermine the macrotwinning boundaries during seeding and subsequent stages of crystal growth as well as the formation of microtwin structures of various sizes. Similar reasoning is applied to possible crystal asymmetry, cellular growth, extinction of growth, etc. Model concepts of seeding and growth of bulk polar crystals are discussed.

  12. Spin relaxation of electrons in bulk CdTe

    NASA Astrophysics Data System (ADS)

    Sprinzl, Daniel; Nahalkova, Petra; Kunc, Jan; Maly, Petr; Horodysky, Petr; Grill, Roman; Belas, Eduard; Franc, Jan; Nemec, Petr

    2007-03-01

    We report on the measurements of the spin relaxation time T1 of photo-excited electrons in bulk CdTe. The carrier dynamics were investigated by transient absorption experiments using 80 fs circularly polarized laser pulses at sample temperatures from 20 to 300 K. We studied both p and n type doped CdTe samples, which were prepared in the form of thin platelets from the crystals grown by the modified Bridgman method. The obtained results are compared with the spin relaxation times reported for other semiconductors with the same crystal structure (e.g., GaAs [1]). Finally, the relative contributions of the D'yakonov-Perel, Elliott-Yafet, Bir-Aronov-Pikus, and other mechanisms to the measured spin relaxation times in CdTe are discussed. This work was supported by the Grant Agency of the Czech Republic (grant 202/03/H003), by the Ministry of Education of the Czech Republic in the framework of the research centre LC510 and the research plan MSM 0021620834. [1] J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).

  13. Optical Characterization of Bulk ZnSeTe Solid Solutions

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Zhu, Shen; Lehoczky, S. L.; Wang, Ling Jun

    2000-01-01

    Optical characterization was performed on wafers sliced from crystals of ZnSe, ZnTe, and ZnSe(1-x)Te(x)(0 less than x less than 0.4) grown by physical vapor transport. Energy band gaps at room temperature were determined from optical transmission measurements on 11 wafers. A best fit curve to the band gap versus composition x data gives a bowing parameter of 1.45. This number lies between the value of 1.23 determined previously on ZnSeTe bulk crystals and the value of 1.621 reported on ZnSeTe epilayers. Low-temperature photoluminescence (PL) spectra were measured on six samples. The spectra of ZnSe and ZnTe were dominated by near band edge emissions and no deep donor-acceptor pairs were observed. The PL spectrum exhibited a broad emission for each of the ZnSe(1-x)Te(x) samples, 0.09 less than x less than 0.39. For x=0.09, this emission energy is about 0.2 eV lower than the band gap energy measured at low temperature. As x increases the energy discrepancy gradually decreases and reduces to almost zero at x=0.4. The single broad PL emission spectra and the spectra measured as a function of temperature were interpreted as being associated with the exciton bound to Te clusters because of the high Te content in these samples.

  14. Optical Characterization of Bulk ZnSeTe Solid Solutions

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua; Feth, S.; Zhu, Shen; Lehoczky, S. L.; Wang, Ling Jun

    2000-01-01

    Optical characterization was performed on wafers sliced from crystals of ZnSe, ZnTe, and ZnSe(1-x)Te(x)(0 less than x less than 0.4) grown by physical vapor transport. Energy band gaps at room temperature were determined from optical transmission measurements on 11 wafers. A best fit curve to the band gap versus composition x data gives a bowing parameter of 1.45. This number lies between the value of 1.23 determined previously on ZnSeTe bulk crystals and the value of 1.621 reported on ZnSeTe epilayers. Low-temperature photoluminescence (PL) spectra were measured on six samples. The spectra of ZnSe and ZnTe were dominated by near band edge emissions and no deep donor-acceptor pairs were observed. The PL spectrum exhibited a broad emission for each of the ZnSe(1-x)Te(x) samples, 0.09 less than x less than 0.39. For x=0.09, this emission energy is about 0.2 eV lower than the band gap energy measured at low temperature. As x increases the energy discrepancy gradually decreases and reduces to almost zero at x=0.4. The single broad PL emission spectra and the spectra measured as a function of temperature were interpreted as being associated with the exciton bound to Te clusters because of the high Te content in these samples.

  15. Fiber Treatment Effects on Bioreactor Bulk Fluid Trends

    NASA Technical Reports Server (NTRS)

    Ellis, Ronald II

    2013-01-01

    In order to facilitate the exploration of worlds beyond the borders of our planet, it is necessary to maintain sustainable levels of clean water. The remediation of water via Membrane Aerated Bioreactors (MABRs) is one such method, and the focus of this study. MARRs rely on healthy biofilms grown on hollow fiber membranes to clean non-potable water. These biofilms can take weeks to months to establish. Therefore, various fiber treatments and two inoculums were evaluated for their effect on rapid biofilm formation. Fiber treatments are as follows: sanding of the fibers with 1500 and 8000 grit sandpaper, immersion of the fibers in a 1% hydrofluoric acid solution for 12 seconds and 15 minutes, and the immersion of the fibers in a Fluoroetch® solution for 18 seconds and 5 minutes. The two inoculums utilized were sourced from healthy, established MARRs; Texas Tech University (TTU) MABR "TRL5" and Kennedy Space Center (KSC) MABR "R3". Data attained from direct bacterial cell counts of the reactor bulk fluids via fluorescent microscopy, suggests that the fluoroetching treatment combined with the TTU inoculum show the greatest biofilm creation.

  16. Intracellular carbon isotope distributions of continuous-culture Allochromatium vinosum grown on acetate vs. CO2.

    NASA Astrophysics Data System (ADS)

    Tang, T.; Mohr, W.; Sattin, S.; Rogers, D.; Girguis, P. R.; Pearson, A.

    2016-02-01

    Sulfur oxidizing bacteria are commonly observed in various aquatic environments, which use reduced sulfur compounds as electron donors to complete the carbon metabolism. Their carbon isotope fractionations during biosynthesis can be preserved in the fossil records. Here we grew a model sulfur oxidizing bacterium, Allochromatium vinosum, in two mode of continuous culture. One of the A. vinosum culture was grown autotrophically with CO2 as the carbon source; while the other one was grown heterotrophically on acetate. A novel protein isotope fingerprinting analysis was applied combining proteomics and protein isotope analysis together, which indicates no isotope fractionation among individual proteins, whereas the bulk protein d13C relative to bulk biomass were substantially different between autotrophic and heterotrophic cells. The same trend was also observed in d13C values of bulk amino acids, fatty acids and nucleic acids. The observed difference in major classes of organic compounds may result from the difference in biosynthetic pathways of autotrophic and heterotrophic cells. A closer look into d13C value of individual amino acids and fatty acids provides us further evidence to identify isotopic response to key reactions of central carbon metabolism as revealed by proteomic analysis. Our work suggests that we can decipher diverse microbial carbon metabolisms by combining proteomics with compound specific analysis of major classes of organic compounds.

  17. Optical properties of Bi2Se3: from bulk to ultrathin films

    NASA Astrophysics Data System (ADS)

    Eddrief, M.; Vidal, F.; Gallas, B.

    2016-12-01

    We report on the determination of the dielectric functions of Bi2Se3 thin films and bulk material. The Bi2Se3 thin films with thicknesses ranging from 3-54 quintuple layers (QL) were grown by molecular beam epitaxy on GaAs(1 1 1)B substrates and the optical properties were determined from spectroscopic ellipsometry in the range of 0.5 eV-6 eV. We observed five absorption bands in the bulk sample, with a strong maximum near 2 eV, which were also present in the films down to 19 QL. Reducing the number below 19 QL in the Bi2Se3 films caused dampening and broadening of the bulk absorption bands below 2 eV, and a shift to a higher energy of the band near 2 eV. Our experimental results thus provide evidence of marked changes in the joint density of states of Bi2Se3 below 19 QL, indicating that the whole bulk band structure is affected for the ultrathin epilayers.

  18. Bulk viscosity effects on ultrasonic thermoacoustic instability

    NASA Astrophysics Data System (ADS)

    Lin, Jeffrey; Scalo, Carlo; Hesselink, Lambertus

    2016-11-01

    We have carried out unstructured fully-compressible Navier-Stokes simulations of a minimal-unit traveling-wave ultrasonic thermoacoustic device in looped configuration. The model comprises a thermoacoustic stack with 85% porosity and a tapered area change to suppress the fundamental standing-wave mode. A bulk viscosity model, which accounts for vibrational and rotational molecular relaxation effects, is derived and implemented via direct modification of the viscous stress tensor, τij ≡ 2 μSij +λ/2 μ ∂uk/∂xk δij , where the bulk viscosity is defined by μb ≡ λ +2/3 μ . The effective bulk viscosity coefficient accurately captures acoustic absorption from low to high ultrasonic frequencies and matches experimental wave attenuation rates across five decades. Using pressure-based similitude, the model was downscaled from total length L = 2 . 58 m to 0 . 0258 m, corresponding to the frequency range f = 242 - 24200 Hz, revealing the effects of bulk viscosity and direct modification of the thermodynamic pressure. Simulations are carried out to limit cycle and exhibit growth rates consistent with linear stability analyses, based on Rott's theory.

  19. A stereoscopic look into the bulk

    DOE PAGES

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; ...

    2016-07-26

    Here, we present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphism-invariant bulk operators. The CFT operators of interest are the “OPE blocks,” contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1/N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimalmore » surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields. Although the OPE blocks are non-local operators in the CFT, they admit a simple geometric description as fields in kinematic space — the space of pairs of CFT points. We develop the tools for constructing local bulk operators in terms of these non-local objects. The OPE blocks also allow for conceptually clean and technically simple derivations of many results known in the literature, including linearized Einstein’s equations and the relation between conformal blocks and geodesic Witten diagrams.« less

  20. A stereoscopic look into the bulk

    SciTech Connect

    Czech, Bartlomiej; Lamprou, Lampros; McCandlish, Samuel; Mosk, Benjamin; Sully, James

    2016-07-26

    Here, we present the foundation for a holographic dictionary with depth perception. The dictionary consists of natural CFT operators whose duals are simple, diffeomorphism-invariant bulk operators. The CFT operators of interest are the “OPE blocks,” contributions to the OPE from a single conformal family. In holographic theories, we show that the OPE blocks are dual at leading order in 1/N to integrals of effective bulk fields along geodesics or homogeneous minimal surfaces in anti-de Sitter space. One widely studied example of an OPE block is the modular Hamiltonian, which is dual to the fluctuation in the area of a minimal surface. Thus, our operators pave the way for generalizing the Ryu-Takayanagi relation to other bulk fields. Although the OPE blocks are non-local operators in the CFT, they admit a simple geometric description as fields in kinematic space — the space of pairs of CFT points. We develop the tools for constructing local bulk operators in terms of these non-local objects. The OPE blocks also allow for conceptually clean and technically simple derivations of many results known in the literature, including linearized Einstein’s equations and the relation between conformal blocks and geodesic Witten diagrams.

  1. Imprinting bulk amorphous alloy at room temperature

    DOE PAGES

    Kim, Song-Yi; Park, Eun-Soo; Ott, Ryan T.; ...

    2015-11-13

    We present investigations on the plastic deformation behavior of a brittle bulk amorphous alloy by simple uniaxial compressive loading at room temperature. A patterning is possible by cold-plastic forming of the typically brittle Hf-based bulk amorphous alloy through controlling homogenous flow without the need for thermal energy or shaping at elevated temperatures. The experimental evidence suggests that there is an inconsistency between macroscopic plasticity and deformability of an amorphous alloy. Moreover, imprinting of specific geometrical features on Cu foil and Zr-based metallic glass is represented by using the patterned bulk amorphous alloy as a die. These results demonstrate the abilitymore » of amorphous alloys or metallic glasses to precisely replicate patterning features onto both conventional metals and the other amorphous alloys. In conclusion, our work presents an avenue for avoiding the embrittlement of amorphous alloys associated with thermoplastic forming and yields new insight the forming application of bulk amorphous alloys at room temperature without using heat treatment.« less

  2. Chelsea River Bulk Petroleum Storage Facilities NPDES ...

    EPA Pesticide Factsheets

    2017-04-10

    On September 24, 2014, EPA Region 1 (EPA) and the Massachusetts Department of Environmental Protection (MassDEP) reissued final National Pollutant Discharge Elimination System (NPDES) permits for seven bulk petroleum storage facilities located along Chelsea River in Chelsea, Revere and East Boston, Massachusetts to meet the requirements of the Clean Water Act.

  3. Teaching Advanced SQL Skills: Text Bulk Loading

    ERIC Educational Resources Information Center

    Olsen, David; Hauser, Karina

    2007-01-01

    Studies show that advanced database skills are important for students to be prepared for today's highly competitive job market. A common task for database administrators is to insert a large amount of data into a database. This paper illustrates how an up-to-date, advanced database topic, namely bulk insert, can be incorporated into a database…

  4. Development of portable superconducting bulk magnet system

    NASA Astrophysics Data System (ADS)

    Saho, N.; Nishijima, N.; Tanaka, H.; Sasaki, A.

    2009-10-01

    Recently a magnetic drug delivery system (MDDS) has been developing to navigate magnetic seeded drugs around diseased parts of the human body. To improve the magnetic drug delivery performance, a portable high temperature superconducting (HTS) bulk magnet system with high magnetic fields has been developed. This magnet system mainly consists of small bulk high temperature superconductors and a compact cryocooler. The materials of the high temperature superconductor are rare earth 123 single domain compounds (Gd-Ba-Cu-O). The bulk magnet was activated successfully using field-cooling magnetization under the superconducting solenoid magnet. The magnetic flux densities at the surface of the vacuum chambers that contain bulk magnets reached 5.07 T and 6.76 T using the static magnetic fields of 6 T and 10 T superconducting solenoid magnets, respectively. A cryocooler cooled them to 38.1 K and 39.1 K. It was clarified that the magnetic gradient was approximately 10 T/m at a position located 50 mm from the surface of the vacuum chambers.

  5. Crystal growth of semiconductor bulk crystals

    SciTech Connect

    Kakimoto, Koichi

    2010-07-22

    This course is aimed at showing how to grow bulk crystals by using several methods. The course involves the following points. The growth methods of Bridgman and Czochralski will be introduced. The course also focuses on the mechanism of some processes with consideration of the basic phenomenon. Experimental and numerical examples of the methods will also be introduced.

  6. Cellulosic ethanol byproducts as a bulking agent

    Treesearch

    J.M. Considine; D. Coffin; J.Y. Zhu; D.H. Mann; X. Tang

    2017-01-01

    Financial enhancement of biomass value prior to pulping requires subsequent use of remaining materials; e.g., high value use of remaining stock material after cellulosic ethanol production would improve the economics for cellulosic ethanol. In this work, use of enzymatic hydrolysis residual solids (EHRS), a cellulosic ethanol byproduct, were investigated as a bulking...

  7. Chelsea River Bulk Petroleum Storage Facilities NPDES ...

    EPA Pesticide Factsheets

    2017-04-10

    On September 24, 2014, EPA Region 1 (EPA) and the Massachusetts Department of Environmental Protection (MassDEP) reissued final National Pollutant Discharge Elimination System (NPDES) permits for seven bulk petroleum storage facilities located along Chelsea River in Chelsea, Revere and East Boston, Massachusetts to meet the requirements of the Clean Water Act.

  8. 27 CFR 20.182 - Bulk shipments.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... cap seals used by the Alcohol and Tobacco Tax and Trade Bureau. Specially denatured alcohol or... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Bulk shipments. 20.182 Section 20.182 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT...

  9. 27 CFR 20.182 - Bulk shipments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... cap seals used by the Alcohol and Tobacco Tax and Trade Bureau. Specially denatured alcohol or... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Bulk shipments. 20.182 Section 20.182 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT...

  10. 27 CFR 20.182 - Bulk shipments.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... cap seals used by the Alcohol and Tobacco Tax and Trade Bureau. Specially denatured alcohol or... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Bulk shipments. 20.182 Section 20.182 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT...

  11. 27 CFR 20.182 - Bulk shipments.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... cap seals used by the Alcohol and Tobacco Tax and Trade Bureau. Specially denatured alcohol or... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Bulk shipments. 20.182 Section 20.182 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT...

  12. 27 CFR 20.182 - Bulk shipments.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... cap seals used by the Alcohol and Tobacco Tax and Trade Bureau. Specially denatured alcohol or... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Bulk shipments. 20.182 Section 20.182 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT...

  13. Winterization strategies for bulk storage of pickles

    USDA-ARS?s Scientific Manuscript database

    Cucumbers are commercially fermented and stored in bulk in outdoor open top fiberglass tanks. During winter, snow and ice that accumulates around and on top of tanks influence heat transfer in an unpredictable manner, often compromising quality. This study evaluates the performance of inexpensive an...

  14. Teaching Advanced SQL Skills: Text Bulk Loading

    ERIC Educational Resources Information Center

    Olsen, David; Hauser, Karina

    2007-01-01

    Studies show that advanced database skills are important for students to be prepared for today's highly competitive job market. A common task for database administrators is to insert a large amount of data into a database. This paper illustrates how an up-to-date, advanced database topic, namely bulk insert, can be incorporated into a database…

  15. Characteristics of high efficiency InGaP/InGaAs double junction solar cells grown on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Nguyen, H. P. T.; Kim, K. H.; Lim, H.; Lee, J. J.

    2009-09-01

    In this paper, we report on the conversion efficiency improvement in In0.50Ga0.50P/InxGa1-xAs tandem solar cells by employing metamorphic InGaAs bottom cell instead of lattice matched GaAs cell. In0.50Ga0.50P/In0.025Ga0.975As and In0.50Ga0.50P/GaAs double junction solar cells were grown by low-pressure metalorganic chemical vapor deposition (LP-MOCVD) on GaAs substrates. High-resolution transmission electron microscopy (HR-TEM) measurement reveals the dislocation in the In0.025Ga0.975AS layer which is caused by the lattice mismatch between In0.025Ga0.975AS subcell and GaAs substrate. Conversion efficiencies of these cells were measured to be 24.37% and 25.11% (AMI.5, 1 sun, 25° C) for the In0.50Ga0.50P/GaAs and In0.50Ga0.50P/In0.025Ga0.975As solar cells, respectively. The details about the solar cell characteristics will be discussed in the presentation.

  16. The structural and optical properties of GaSb/InGaAs type-II quantum dots grown on InP (100) substrate

    PubMed Central

    2012-01-01

    We have investigated the structural and optical properties of type-II GaSb/InGaAs quantum dots [QDs] grown on InP (100) substrate by molecular beam epitaxy. Rectangular-shaped GaSb QDs were well developed and no nanodash-like structures which could be easily found in the InAs/InP QD system were formed. Low-temperature photoluminescence spectra show there are two peaks centered at 0.75eV and 0.76ev. The low-energy peak blueshifted with increasing excitation power is identified as the indirect transition from the InGaAs conduction band to the GaSb hole level (type-II), and the high-energy peak is identified as the direct transition (type-I) of GaSb QDs. This material system shows a promising application on quantum-dot infrared detectors and quantum-dot field-effect transistor. PMID:22277096

  17. Relaxor properties of barium titanate crystals grown by Remeika method

    NASA Astrophysics Data System (ADS)

    Roth, Michel; Tiagunov, Jenia; Dul'kin, Evgeniy; Mojaev, Evgeny

    2017-06-01

    Barium titanate (BaTiO3, BT) crystals have been grown by the Remeika method using both the regular KF and mixed KF-NaF (0.6-0.4) solvents. Typical acute angle ;butterfly wing; BT crystals have been obtained, and they were characterized using x-ray diffraction, scanning electron microscopy (including energy dispersive spectroscopy), conventional dielectric and acoustic emission methods. A typical wing has a triangular plate shape which is up to 0.5 mm thick with a 10-15 mm2 area. The plate has a (001) habit and an atomically smooth outer surface. Both K+ and F- solvent ions are incorporated as dopants into the crystal lattice during growth substituting for Ba2+ and O2- ions respectively. The dopants' distribution is found to be inhomogeneous, their content being almost an order of magnitude higher (up to 2 mol%) at out surface of the plate relatively to the bulk. A few μm thick surface layer is formed where a multidomain ferroelectric net is confined between two≤1 μm thick dopant-rich surfaces. The layer as a whole possess relaxor ferroelectric properties, which is apparent from the appearance of additional broad maxima, Tm, in the temperature dependence of the dielectric permittivity around the ferroelectric phase transition. Intense acoustic emission responses detected at temperatures corresponding to the Tm values allow to observe the Tm shift to lower temperatures at higher frequencies, or dispersion, typical for relaxor ferroelectrics. The outer surface of the BT wing can thus serve as a relaxor thin film for various electronic application, such as capacitors, or as a substrate for BT-based multiferroic structure. Crystals grown from KF-NaF fluxes contain sodium atoms as an additional impurity, but the crystal yield is much smaller, and while the ferroelectric transition peak is diffuse it does not show any sign of dispersion typical for relaxor behavior.

  18. Meteoroid Bulk Density and Ceplecha Types

    NASA Technical Reports Server (NTRS)

    Blaauw, R. C.; Moser, D. E.; Moorhead, A. V.

    2017-01-01

    Determination of asteroid bulk density is an important aspect of NEO characterization, yet difficult to measure. As a fraction of meteoroids originate from asteroids (including some NEOs), a study of meteoroid bulk densities can potentially provide useful insights into the densities of NEOs and PHOs in lieu of mutual perturbations, satellite, or expensive spacecraft missions. NASA's Meteoroid Environment Office characterizes the meteoroid environment for the purpose of spacecraft risk and operations. To accurately determine the risk, a distribution of meteoroid bulk densities are needed. This is not trivial to determine. If the particle survives to the ground the bulk density can be directly measured, however only the most dense particles land on the Earth. The next best approach is to model the meteor's ablation, which is not straightforward. Clear deceleration is necessary to do this and there are discrepancies in results between models. One approach to a distribution of bulk density is to use a measured proxy for the densities, then calibrate the proxy with known densities from meteorite falls, ablation modelling, and other sources. An obvious proxy choice is the Ceplecha type, K(sub B), thought to indicate the strength of a meteoroid. KB is frequented cited as a good proxy for meteoroid densities, but we find it is poorly correlated with density. However, a distinct split by dynamical type was seen with Jovian Tisserand parameter, T(sub J), with meteoroids from Halley Type comets (T(sub J less than 2 ) exhibiting much lower densities than those originating from Jupiter and asteroids (T(sub J greater than 2).

  19. Bulk sulfur (S) deposition in China

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zhang, Xiuying; Wang, Shanqian; Zhang, Wuting; Lu, Xuehe

    2016-06-01

    A systematic dataset of an observation network on a national scale has been organized to investigate the spatial distribution of bulk sulfur (S) deposition (Sdep) throughout China during 2000-2013, representing by far the most detailed data set to track the bulk sulfur deposition throughout China since 2000. Such a dataset is needed for ecosystem studies and for developing emission control policies. Bulk Sdep values showed great variations, ranging from 2.17 to 70.55 kg ha-1 y-1, with an average of 22.99 kg ha-1 y-1. The average rate of bulk Sdep located in East Coastal region (35.97 kg ha-1 y-1), Middle Yangtze region (57.90 kg ha-1 y-1), Middle Yellow River region (23.42 kg ha-1 y-1), North Coastal region (42.19 kg ha-1 y-1), Northeast region (34.28 kg ha-1 y-1), South Coastal region (36.97 kg S ha-1 y-1), Southwest region (33.85 kg ha-1 y-1) was 4.50, 7.24, 2.93, 5.28, 4.29, 4.63 and 4.24 times than that in Northwest region (7.99 kg ha-1 y-1). Bulk Sdep over China was mainly from fossil fuel combustion (76.96%), biomass burning (7.64%), crust (6.22%), aged sea salt (5.48%) and agriculture (3.68%). A systematic observation network on a national scale should be established to conduct a long-term monitoring atmospheric Sdep (including wet and dry deposition), based on exiting ecological stations administrated by different departments in China.

  20. Self-limiting CVD of a passivating SiOx control layer on InGaAs(001)-(2x4) with the prevention of III-V oxidation

    NASA Astrophysics Data System (ADS)

    Edmonds, Mary; Wolf, Steven; Chagarov, Evgueni; Kent, Tyler; Park, Jun Hong; Holmes, Russell; Alvarez, Daniel; Droopad, Ravi; Kummel, Andrew C.

    2017-06-01

    A thin passivating SiOx control layer has been deposited via self-limiting CVD on the InGaAs(001)-(2x4) surface by first depositing 2 monolayers of silicon with -Clx termination using Si2Cl6,and then subsequently oxidizing the silicon seed layer by employing anhydrous HOOH(g) at a substrate temperature of 350 °C. After HOOH(g)) dosing, XPS spectra show a higher binding energy shoulder peak on Si2p indicative of SiOx bonding, while an unshifted Si 2p component remains, and In 3d, Ga 2p, and As 2p peaks show no higher binding energy components consistent with the prevention of III-V oxidation. Scanning tunneling spectroscopy (STS) measurements show after SiOx deposition on the InGaAs(001)-(2x4) surface, the bandgap broadens towards that of SiO2, with the electronic structure free of states in the bandgap leaving the surface ready for subsequent gate oxide ALD. Density functional theory calculations support the experimental STS data following TMA dosing, which shows TMA nucleates directly on the SiOx/InGaAs(001) surface and leaves an electrically passive interface with the bandgap free of defect states and the surface ready for high-K gate oxide nucleation.