Sample records for grown increasingly complex

  1. The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain.

    PubMed

    Alber, Nicole A; Sivanesan, Hampavi; Vanlerberghe, Greg C

    2017-07-01

    The plant mitochondrial electron transport chain (ETC) is bifurcated such that electrons from ubiquinol are passed to oxygen via the usual cytochrome path or through alternative oxidase (AOX). We previously showed that knockdown of AOX in transgenic tobacco increased leaf concentrations of nitric oxide (NO), implying that an activity capable of generating NO had been effected. Here, we identify the potential source of this NO. Treatment of leaves with antimycin A (AA, Q i -site inhibitor of Complex III) increased NO amount more than treatment with myxothiazol (Myxo, Q o -site inhibitor) despite both being equally effective at inhibiting respiration. Comparison of nitrate-grown wild-type with AOX knockdown and overexpression plants showed a negative correlation between AOX amount and NO amount following AA. Further, Myxo fully negated the ability of AA to increase NO amount. With ammonium-grown plants, neither AA nor Myxo strongly increased NO amount in any plant line. When these leaves were supplied with nitrite alongside the AA or Myxo, then the inhibitor effects across lines mirrored that of nitrate-grown plants. Hence the ETC, likely the Q-cycle of Complex III generates NO from nitrite, and AOX reduces this activity by acting as a non-energy-conserving electron sink upstream of Complex III. © 2016 John Wiley & Sons Ltd.

  2. Growth, structural, optical, thermal and dielectric properties of lanthanum chloride—thiourea—L tartaric acid coordinated complex

    NASA Astrophysics Data System (ADS)

    Slathia, Goldy; Bamzai, K. K.

    2017-11-01

    Lanthanum chloride—thiourea—l tartaric acid coordinated complex was grown in the form of single crystal by slow evaporation of supersaturated solutions at room temperature. This coordinated complex crystallizes in orthorhombic crystal system having space group P nma. The crystallinity and purity was tested by powder x-ray diffraction. Fourier transform infra red and Raman spectroscopy analysis provide the evidences on structure and mode of coordination. The scanning electron microscopy (SEM) analysis shows the morphology evolution as brought by the increase in composition of lanthanum chloride. The band transitions due to C=O and C=S chromophores remain active in grown complexes and are recorded in the UV-vis optical spectrum. The thermal effects such as dehydration, melting and decomposition were observed by the thermogravimetric and differential thermo analytical (TGA/DTA) analysis. Electrical properties were studied by dielectric analysis in frequency range 100-30 MHz at various temperatures. Increase in values of dielectric constant was observed with change in lanthanum concentration in the coordinated complex.

  3. Vacancy-hydrogen complexes in ammonothermal GaN

    NASA Astrophysics Data System (ADS)

    Tuomisto, F.; Kuittinen, T.; Zając, M.; Doradziński, R.; Wasik, D.

    2014-10-01

    We have applied positron annihilation spectroscopy to study in-grown vacancy defects in bulk GaN crystals grown by the ammonothermal method. We observe a high concentration of Ga vacancy related defects in n-type samples with varying free electron and oxygen content. The positron lifetimes found in these samples suggest that the Ga vacancies are complexed with hydrogen impurities. The number of hydrogen atoms in each vacancy decreases with increasing free electron concentration and oxygen and hydrogen content. The local vibrational modes observed in infrared absorption support this conclusion. Growth of high-quality ammonothermal GaN single crystals with varying electron concentrations. Identification of defect complexes containing a Ga vacancy and 1 or more hydrogen atoms, and possibly O. These vacancy complexes provide a likely explanation for electrical compensation in ammonothermal GaN.

  4. Report of CEC Study Committee on Construction Management.

    ERIC Educational Resources Information Center

    Consulting Engineers Council of the U.S., Washington, DC.

    Changing times place new demands on those involved in the implementation of construction projects. Within a relatively few years, the size and complexity of projects has grown substantially. Environmental and other public and social considerations are increasingly significant. With growing complexity, the requirements for effective project…

  5. Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD

    NASA Astrophysics Data System (ADS)

    Bryan, Isaac; Bryan, Zachary; Washiyama, Shun; Reddy, Pramod; Gaddy, Benjamin; Sarkar, Biplab; Breckenridge, M. Hayden; Guo, Qiang; Bobea, Milena; Tweedie, James; Mita, Seiji; Irving, Douglas; Collazo, Ramon; Sitar, Zlatko

    2018-02-01

    In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for any doping concentration due to low threading dislocation related compensation and reduced self-compensation. The onset of self-compensation, i.e., the "knee behavior" in conductivity, was found to depend only on the chemical potential of silicon, strongly indicating the cation vacancy complex with Si as the source of self-compensation. However, the magnitude of self-compensation was found to increase with an increase in dislocation density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity over the entire doping range.

  6. Biochemical characteristics of thylakoid membranes in chloroplasts of dark-grown pine cotyledons.

    PubMed

    Shinohara, K; Murakami, A; Fujita, Y

    1992-01-01

    Japanese black pine (Pinus thunbergii) cotyledons were found to synthesize chlorophylls in complete darkness during germination, although the synthesis was not as great as that in the light. The compositions of thylakoid components in plastids of cotyledons grown in the dark and light were compared using sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns of polypeptides and spectroscopic determination of membrane redox components. All thylakoid membrane proteins found in preparations from light-grown cotyledons were also present in preparations from dark-grown cotyledons. However, levels of photosystem I, photosystem II, cytochrome b([ill])/f, and light-harvesting chlorophyll-protein complexes in dark-grown cotyledons were only one-fourth of those in light-grown cotyledons, on a fresh weight basis. These results suggest that the low abundance of thylakoid components in dark-grown cotyledons is associated with the limited supply of chlorophyll needed to assemble the two photosystem complexes and the light-harvesting chlorophyll-protein complex.

  7. Authorship Inflation in Medical Publications.

    PubMed

    Tilak, Gaurie; Prasad, Vinay; Jena, Anupam B

    2015-01-01

    The number of authors per manuscript in peer-reviewed medical journals has increased substantially in the last several decades. Several reasons have been offered to explain this authorship growth, including increased researcher collaboration, honorary authorship driven by increased pressures for funding and promotion, the belief that including senior authors will facilitate publication, and the growing complexity of medical research. It is unknown, however, whether authorship has grown over time due to growing complexity of published academic articles, in which case growth could be warranted, or whether it has grown due to pressures of funding and academic promotion, which have created "authorship inflation." To answer this question, we analyzed data on authorship count, study type, and size of study population for the first 50 original articles published in each decade during 1960-2010 in 3 major medical journals. Within each type of study we considered (eg, randomized trials, observational studies, etc), average authorship rose more than 3-fold during this period. Similar growth persisted after adjustment for changes in study population sizes over time. Our findings suggest that increasing research complexity is an inadequate explanation for authorship growth. Instead, growth in authorship appears inflationary. © The Author(s) 2015.

  8. Chloroplast and reactive oxygen species involvement in apoptotic-like programmed cell death in Arabidopsis suspension cultures

    PubMed Central

    Doyle, Siamsa M.; Diamond, Mark; McCabe, Paul F.

    2010-01-01

    Chloroplasts produce reactive oxygen species (ROS) during cellular stress. ROS are known to act as regulators of programmed cell death (PCD) in plant and animal cells, so it is possible that chloroplasts have a role in regulating PCD in green tissue. Arabidopsis thaliana cell suspension cultures are model systems in which to test this, as here it is shown that their cells contain well-developed, functional chloroplasts when grown in the light, but not when grown in the dark. Heat treatment at 55 °C induced apoptotic-like (AL)-PCD in the cultures, but light-grown cultures responded with significantly less AL-PCD than dark-grown cultures. Chloroplast-free light-grown cultures were established using norflurazon, spectinomycin, and lincomycin and these cultures responded to heat treatment with increased AL-PCD, demonstrating that chloroplasts affect AL-PCD induction in light-grown cultures. Antioxidant treatment of light-grown cultures also resulted in increased AL-PCD induction, suggesting that chloroplast-produced ROS may be involved in AL-PCD regulation. Cycloheximide treatment of light-grown cultures prolonged cell viability and attenuated AL-PCD induction; however, this effect was less pronounced in dark-grown cultures, and did not occur in antioxidant-treated light-grown cultures. This suggests that a complex interplay between light, chloroplasts, ROS, and nuclear protein synthesis occurs during plant AL-PCD. The results of this study highlight the importance of taking into account the time-point at which cells are observed and whether the cells are light-grown and chloroplast-containing or not, for any study on plant AL-PCD, as it appears that chloroplasts can play a significant role in AL-PCD regulation. PMID:19933317

  9. Brassica rapa plants adapted to microgravity with reduced photosystem I and its photochemical activity

    NASA Technical Reports Server (NTRS)

    Jiao, Shunxing; Hilaire, Emmanuel; Paulsen, Avelina Q.; Guikema, James A.

    2004-01-01

    The photosynthetic apparatus contains several protein complexes, many of which are regulated by environmental conditions. In this study, the influences of microgravity on PSI and PSII in Brassica rapa plants grown aboard the space shuttle were examined. We found that Brassica plants grown in space had a normal level of growth relative to controls under similar conditions on Earth. Upon return to Earth, cotyledons were harvested and thylakoid membranes were isolated. Analysis of chlorophyll contents showed that the Chl a/b ratio (3.5) in flight cotyledons was much higher than a ratio of 2.42 in the ground controls. The flight samples also had a reduction of PSI complexes and a corresponding 30% decrease of PSI photochemical activity. Immunoblotting showed that the reaction centre polypeptides of PSI were more apparently decreased (e.g. by 24-33% for PsaA and PsaB, and 57% for PsaC) than the light-harvesting complexes. In comparison, the accumulation of PSII complex was less affected in microgravity, thus only a slight reduction in D1, D2 and LHCII was observed in protein blots. However, there was a 32% decrease of OEC1 in the flight samples, indicating a defective OEC subcomplex. In addition, an average 54% increase of the 54 kDa CF1-beta isoform was found in the flight samples, suggesting that space-grown plants suffered from certain stresses, consistent with implications of the increased Chl a/b ratio. Taken together, the results demonstrated that Brassica plants can adapt to spaceflight microgravity, but with significant alterations in chloroplast structures and photosynthetic complexes, and especially reduction of PSI and its activity.

  10. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy.

    PubMed

    Ueno, Yoshifumi; Aikawa, Shimpei; Kondo, Akihiko; Akimoto, Seiji

    2015-08-01

    Photosynthetic organisms change the quantity and/or quality of their pigment-protein complexes and the interactions among these complexes in response to light conditions. In the present study, we analyzed light adaptation of the unicellular red alga Cyanidioschyzon merolae, whose pigment composition is similar to that of cyanobacteria because its phycobilisomes (PBS) lack phycoerythrin. C. merolae were grown under different light qualities, and their responses were measured by steady-state absorption, steady-state fluorescence, and picosecond time-resolved fluorescence spectroscopies. Cells were cultivated under four monochromatic light-emitting diodes (blue, green, yellow, and red), and changes in pigment composition and energy transfer were observed. Cells grown under blue and green light increased their relative phycocyanin levels compared with cells cultured under white light. Energy-transfer processes to photosystem I (PSI) were sensitive to yellow and red light. The contribution of direct energy transfer from PBS to PSI increased only under yellow light, while red light induced a reduction in energy transfer from photosystem II to PSI and an increase in energy transfer from light-harvesting chlorophyll protein complex I to PSI. Differences in pigment composition, growth, and energy transfer under different light qualities are discussed.

  11. Impacts of projected mid-century temperatures on thermal regimes for select specialty and fieldcrops common to the southwestern U.S.

    USDA-ARS?s Scientific Manuscript database

    The impacts of projected temperature increases in agricultural ecosystems are complex, varying by region, cropping system, crop growth stage and humidity. We analyze the impacts of mid- century temperature increases on crops grown in five southwestern states: Arizona, California, New Mexico, Nevada ...

  12. Effect of altitude on biochemical composition and quality of green arabica coffee beans can be affected by shade and postharvest processing method.

    PubMed

    Worku, Mohammed; de Meulenaer, Bruno; Duchateau, Luc; Boeckx, Pascal

    2018-03-01

    Although various studies have assessed altitude, shade and postharvest processing effects on biochemical content and quality of coffee beans, data on their interactions are scarce. The individual and interactive effects of these factors on the caffeine, chlorogenic acids (CGA) and sucrose contents as well as physical and sensory qualities of green coffee beans from large plantations in southwestern Ethiopia were evaluated. Caffeine and CGA contents decreased with increasing altitude; they respectively declined 0.12 and 1.23gkg -1 100m -1 . Sucrose content increased with altitude; however, the altitude effect was significant for wet-processed beans (3.02gkg -1 100m -1 ), but not for dry-processed beans (0.36g kg -1 100m -1 ). Similarly, sucrose content increased with altitude with much stronger effect for coffee grown without shade (2.11gkg -1 100m -1 ) compared to coffee grown under shade (0.93gkg -1 100m -1 ). Acidity increased with altitude when coffee was grown under shade (0.22 points 100m -1 ), but no significant altitude effect was observed on coffee grown without shade. Beans grown without shade showed a higher physical quality score for dry (37.2) than for wet processing (29.1). These results generally underline the complex interaction effects between altitude and shade or postharvest processing on biochemical composition and quality of green arabica coffee beans. Copyright © 2017. Published by Elsevier Ltd.

  13. The effect of deuteration and doping on the phase transition temperature of grown glycine phosphite single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumal, R., E-mail: perumal-cgc@yahoo.co.uk; Chandru, A. Lakshmi; Babu, S. Moorthy

    The Glycinium Phosphite (GPI) compound is a representative of hydrogen-bonded ferroelectric crystals. The ordering of protons could be expected below the room temperature (225 K). Crystals grown from the milipore water as well as deuterated solvents respectively. The corresponding hydrogen bond distance was stretched out due to the effect of isotopic substitution that increase the phase transition temperature. Further to improve the phase transition temperature, GPI crystal was doped with organic complexing agent and various metals and the obtained results are presented.

  14. Research Management and Administration: A Reflection of Where We Are and Where We Need to Go as a Profession

    ERIC Educational Resources Information Center

    Langley, David

    2012-01-01

    In this article, the author reflects on research management and administration (RMA) as a profession. RMA arose from the need to manage growth in the number and complexity of research awards over the last fifty years, and is an activity and profession that continues to mature. It has grown in parallel with the increasing complexity of research…

  15. Development of PBPK Models for Gasoline in Adult and Pregnant Rats and their Fetuses

    EPA Science Inventory

    Concern for potential developmental effects of exposure to gasoline-ethanol blends has grown along with their increased use in the US fuel supply. Physiologically-based pharmacokinetic (PBPK) models for these complex mixtures were developed to address dosimetric issues related to...

  16. Acceptor Type Vacancy Complexes In As-Grown ZnO

    NASA Astrophysics Data System (ADS)

    Zubiaga, A.; Tuomisto, F.; Zuñiga-Pérez, J.

    2010-11-01

    One of the many technological areas that ZnO is interesting for is the construction of opto-electronic devices working in the blue-UV range as its large band gap (˜3.4 eV at 10 K) makes them suitable for that purpose. As-grown ZnO shows generally n-type conductivity partially due to the large concentration of unintentional shallow donors, like H, but impurities can also form complexes with acceptor type defects (Zn vacancy) leading to the creation of compensating defects. Recently, LiZn and NaZn acceptors have been measured and H could form similar type of defects. Doppler Broadening Positron Annihilation spectroscopy experimental results on the observation of Zn related vacancy complexes in ZnO thin films, as-grown, O implanted and Al doped will be presented. Results show that as-grown ZnO film show small Zn vacancy related complexed that could be related to presence of H as a unintentional doping element.

  17. Students as Teachers: What Faculty Learn by Living on Campus

    ERIC Educational Resources Information Center

    Sriram, Rishi; Shushok, Frank, Jr.; Perkins, Jennifer; Scales, T. Laine

    2011-01-01

    In its recent history, American higher education has segmented the student experience, especially as research universities have grown in size and complexity. To increase the integration of undergraduate learning experiences, many efforts have combined the curricular and cocurricular worlds of students. In one practice, housing and residence life…

  18. Planning and Implementing Technical Services Workstations.

    ERIC Educational Resources Information Center

    Kaplan, Michael, Ed.

    The job of the library cataloger has grown increasingly complex. Catalogers must draw from a vast pool of dynamic information as they handle traditional and new forms of media. Technical Services Workstations (TSWs) provide catalogers the network data, application programs, and standard hardware required to catalog all types of media quickly and…

  19. Towards an Enterprise Level Measure of Security

    ERIC Educational Resources Information Center

    Marchant, Robert L.

    2013-01-01

    Vulnerabilities of Information Technology (IT) Infrastructure have grown at the similar pace (at least) as the sophistication and complexity of the technology that is the cornerstone of our IT enterprises. Despite massive increased funding for research, for development, and to support deployment of Information Assurance (IA) defenses, the damages…

  20. Effects of substrate conductivity on cell morphogenesis and proliferation using tailored, atomic layer deposition-grown ZnO thin films

    PubMed Central

    Choi, Won Jin; Jung, Jongjin; Lee, Sujin; Chung, Yoon Jang; Yang, Cheol-Soo; Lee, Young Kuk; Lee, You-Seop; Park, Joung Kyu; Ko, Hyuk Wan; Lee, Jeong-O

    2015-01-01

    We demonstrate that ZnO films grown by atomic layer deposition (ALD) can be employed as a substrate to explore the effects of electrical conductivity on cell adhesion, proliferation, and morphogenesis. ZnO substrates with precisely tunable electrical conductivity were fabricated on glass substrates using ALD deposition. The electrical conductivity of the film increased linearly with increasing duration of the ZnO deposition cycle (thickness), whereas other physical characteristics, such as surface energy and roughness, tended to saturate at a certain value. Differences in conductivity dramatically affected the behavior of SF295 glioblastoma cells grown on ZnO films, with high conductivity (thick) ZnO films causing growth arrest and producing SF295 cell morphologies distinct from those cultured on insulating substrates. Based on simple electrostatic calculations, we propose that cells grown on highly conductive substrates may strongly adhere to the substrate without focal-adhesion complex formation, owing to the enhanced electrostatic interaction between cells and the substrate. Thus, the inactivation of focal adhesions leads to cell proliferation arrest. Taken together, the work presented here confirms that substrates with high conductivity disturb the cell-substrate interaction, producing cascading effects on cellular morphogenesis and disrupting proliferation, and suggests that ALD-grown ZnO offers a single-variable method for uniquely tailoring conductivity. PMID:25897486

  1. Accumulation of secondary metabolites in healthy and diseased barley, grown under future climate levels of CO2, ozone and temperature.

    PubMed

    Mikkelsen, B L; Olsen, C E; Lyngkjær, M F

    2015-10-01

    Plants produce secondary metabolites promoting adaptation to changes in the environment and challenges by pathogenic microorganisms. A future climate with increased temperature and CO2 and ozone levels will likely alter the chemical composition of plants and thereby plant-pathogen interactions. To investigate this, barley was grown at elevated CO2, temperature and ozone levels as single factors or in combination resembling future climatic conditions. Increased basal resistance to the powdery mildew fungus was observed when barley was grown under elevated CO2, temperature and ozone as single factors. However, this effect was neutralized in the combination treatments. Twenty-five secondary metabolites were putatively identified in healthy and diseased barley leaves, including phenylpropanoids, phenolamides and hydroxynitrile glucosides. Accumulation of the compounds was affected by the climatic growth conditions. Especially elevated temperature, but also ozone, showed a strong impact on accumulation of many compounds, suggesting that these metabolites play a role in adaptation to unfavorable growth conditions. Many compounds were found to increase in powdery mildew diseased leaves, in correlation with a strong and specific influence of the climatic growth conditions. The observed disease phenotypes could not be explained by accumulation of single compounds. However, decreased accumulation of the powdery mildew associated defense compound p-coumaroylhydroxyagmatine could be implicated in the increased disease susceptibility observed when barley was grown under combination of elevated CO2, temperature and ozone. The accumulation pattern of the compounds in both healthy and diseased leaves from barley grown in the combination treatments could not be deduced from the individual single factor treatments. This highlights the complex role and regulation of secondary metabolites in plants' adaptation to unfavorable growth conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. A Multilevel Approach for Library Value Assessment

    ERIC Educational Resources Information Center

    Schwieder, David; Hinchliffe, Lisa Janicke

    2018-01-01

    As the volume of academic library value research has continued to increase, the resulting literature has grown complex and sprawling. This article takes stock of this body of work, using a review of the published research literature and an analysis of its organization and structure. This investigation reveals that the research on library value…

  3. Passing the Baton: The Last 100 Days of the College Presidency

    ERIC Educational Resources Information Center

    Johnson, Sandra Swanson

    2012-01-01

    Over the past half-century, the college president's job and its associated expectations have grown increasingly complex. At the same time, colleges and universities across the United States are facing an unprecedented rate of anticipated turnover among college presidents (King & Gomez, 2008). Current statistics show that approximately 70%…

  4. Gypsum crystallization from cadmium-poisoned solutions

    NASA Astrophysics Data System (ADS)

    Rinaudo, C.; Franchini-Angela, M.; Boistelle, R.

    1988-06-01

    Gypsum crystals, CaSO4⋯2H2O, are grown from solutions containing large amounts of cadmium chloride as an impurity. The initial supersaturations necessary for the gypsum nucleation increase with increasing cadmium concentration. Accordingly, at constant initial supersaturation, the induction periods also increase with increasing cadmium concentration. Cadmium and chlorine are incorporated into the crystals probably as CdCl+ or CdCl2, which are the most abundant complexes in the solutions. Consequently, the gypsum crystals grow curved, distorted and exhibit fractures along the [100] direction. The amount of incorporated cadmium increases with increasing supersaturation. Cadmium is mainly detected near the {120} faces in the area where the fractures release the internal stresses. Supersaturation and concentration of free ions and complexes are calculated for all solutions. Adsorption on {120} is discussed.

  5. Synthesis, structural, spectroscopic and optical studies of charge transfer complex salts.

    PubMed

    Manikandan, Maruthappan; Mahalingam, Thaiyan; Hayakawa, Yasuhiro; Ravi, Ganesan

    2013-01-15

    New charge transfer molecular complex adducts of picric acid (C6H3N3O7) with triethylamine (C6H15N) and dimethylformamide (HCON(CH3)2) were synthesized successfully for the first time. Chemical composition and stoichiometry of the synthesized complex salts were verified by CHN elemental analysis. Solubility of the complex salts have been determined by gravimetric method and single crystals of two new salts were grown by low temperature solution growth technique. Crystal system, crystalline nature and cell parameters of the grown crystals were determined by single crystal X-ray diffraction (SXRD) and powder X-ray diffraction (PXRD) analyses. The formations of the charge-transfer complex, functional groups and the modes of vibrations have been confirmed by Fourier transform infrared (FTIR) spectroscopy. In order to know the linear and nonlinear optical suitability for device fabrication, UV-Vis (UV) spectral analysis and relative second harmonic generation (SHG) efficiency test were performed for the grown crystals. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Synthesis, structural, spectroscopic and optical studies of charge transfer complex salts

    NASA Astrophysics Data System (ADS)

    Manikandan, Maruthappan; Mahalingam, Thaiyan; Hayakawa, Yasuhiro; Ravi, Ganesan

    2013-01-01

    New charge transfer molecular complex adducts of picric acid (C6H3N3O7) with triethylamine (C6H15N) and dimethylformamide (HCON(CH3)2) were synthesized successfully for the first time. Chemical composition and stoichiometry of the synthesized complex salts were verified by CHN elemental analysis. Solubility of the complex salts have been determined by gravimetric method and single crystals of two new salts were grown by low temperature solution growth technique. Crystal system, crystalline nature and cell parameters of the grown crystals were determined by single crystal X-ray diffraction (SXRD) and powder X-ray diffraction (PXRD) analyses. The formations of the charge-transfer complex, functional groups and the modes of vibrations have been confirmed by Fourier transform infrared (FTIR) spectroscopy. In order to know the linear and nonlinear optical suitability for device fabrication, UV-Vis (UV) spectral analysis and relative second harmonic generation (SHG) efficiency test were performed for the grown crystals.

  7. Large local lattice expansion in graphene adlayers grown on copper

    NASA Astrophysics Data System (ADS)

    Chen, Chaoyu; Avila, José; Arezki, Hakim; Nguyen, Van Luan; Shen, Jiahong; Mucha-Kruczyński, Marcin; Yao, Fei; Boutchich, Mohamed; Chen, Yue; Lee, Young Hee; Asensio, Maria C.

    2018-05-01

    Variations of the lattice parameter can significantly change the properties of a material, and, in particular, its electronic behaviour. In the case of graphene, however, variations of the lattice constant with respect to graphite have been limited to less than 2.5% due to its well-established high in-plane stiffness. Here, through systematic electronic and lattice structure studies, we report regions where the lattice constant of graphene monolayers grown on copper by chemical vapour deposition increases up to 7.5% of its relaxed value. Density functional theory calculations confirm that this expanded phase is energetically metastable and driven by the enhanced interaction between the substrate and the graphene adlayer. We also prove that this phase possesses distinctive chemical and electronic properties. The inherent phase complexity of graphene grown on copper foils revealed in this study may inspire the investigation of possible metastable phases in other seemingly simple heterostructure systems.

  8. Macromolecule Crystal Quality Improvement in Microgravity: The Role of Impurities

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matt; Cassanto, John M.

    2000-01-01

    While macromolecule impurities may affect crystal size and morphology the over-riding question is; "How do macromolecule impurities effect crystal X-ray quality and diffraction resolution?" In the case of chicken egg white lysozyme, crystals can be grown in the presence of a number of impurities without affecting diffraction resolution. One impurity however, the lysozyme dimer, does negatively impact the X-ray crystal properties. Crystal quality improvement as a result of better partitioning of this impurity during crystallization in microgravity has been reported'. In our recent experimental work dimer partitioning was found to be not significantly different between the two environments. Mosaicity analysis of pure crystals showed a reduced mosaicity and increased signal to noise for the microgravity grown crystals. Dimer incorporation however, did greatly reduce the resolution limit in both ground and microgravity grown crystals. These results indicate that impurity effects in microgravity are complex and may rely on the conditions or techniques employed.

  9. Financial Aid Policy: Lessons from Research. NBER Working Paper No. 18710

    ERIC Educational Resources Information Center

    Dynarski, Susan; Scott-Clayton, Judith

    2013-01-01

    In the nearly fifty years since the adoption of the Higher Education Act of 1965, financial aid programs have grown in scale, expanded in scope, and multiplied in form. As a result, financial aid has become the norm among college enrollees. The increasing size and complexity of the nation's student aid system has generated questions about…

  10. Price and Value: Considerations for College Shoppers

    ERIC Educational Resources Information Center

    Broh, C. Anthony; Ansel, Dana

    2010-01-01

    Parents and students recognize the value of a college degree. Increasingly, they are borrowing large sums of money to invest in the future. Their choices about how to save for college, where to attend college, how much and from where to borrow for college, and how to repay their loans, have grown more complex. Yet families work with incomplete…

  11. Microevolution of the photosynthetic temperature optimum in relation to the elevational complex gradient

    Treesearch

    John H. Fryer; F. Thomas Ledig

    1972-01-01

    Balsam fir seedlings were grown under uniform conditions from seed collected along an elevational gradient in the White Mountains of New Hampshire. Photosynthetic temperature optimum of the seedlings decreased with increasing elevation of the seed source. The change in temperature optimum with elevation was similar to the adiabatic lapse rate, suggesting a precise...

  12. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykens, James A.; Jamieson, Joseph; Marroquin, Lisa

    2008-12-01

    As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanidemore » toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction.« less

  13. Biguanide-induced mitochondrial dysfunction yields increased lactate production and cytotoxicity of aerobically-poised HepG2 cells and human hepatocytes in vitro.

    PubMed

    Dykens, James A; Jamieson, Joseph; Marroquin, Lisa; Nadanaciva, Sashi; Billis, Puja A; Will, Yvonne

    2008-12-01

    As a class, the biguanides induce lactic acidosis, a hallmark of mitochondrial impairment. To assess potential mitochondrial impairment, we evaluated the effects of metformin, buformin and phenformin on: 1) viability of HepG2 cells grown in galactose, 2) respiration by isolated mitochondria, 3) metabolic poise of HepG2 and primary human hepatocytes, 4) activities of immunocaptured respiratory complexes, and 5) mitochondrial membrane potential and redox status in primary human hepatocytes. Phenformin was the most cytotoxic of the three with buformin showing moderate toxicity, and metformin toxicity only at mM concentrations. Importantly, HepG2 cells grown in galactose are markedly more susceptible to biguanide toxicity compared to cells grown in glucose, indicating mitochondrial toxicity as a primary mode of action. The same rank order of potency was observed for isolated mitochondrial respiration where preincubation (40 min) exacerbated respiratory impairment, and was required to reveal inhibition by metformin, suggesting intramitochondrial bio-accumulation. Metabolic profiling of intact cells corroborated respiratory inhibition, but also revealed compensatory increases in lactate production from accelerated glycolysis. High (mM) concentrations of the drugs were needed to inhibit immunocaptured respiratory complexes, supporting the contention that bioaccumulation is involved. The same rank order was found when monitoring mitochondrial membrane potential, ROS production, and glutathione levels in primary human hepatocytes. In toto, these data indicate that biguanide-induced lactic acidosis can be attributed to acceleration of glycolysis in response to mitochondrial impairment. Indeed, the desired clinical outcome, viz., decreased blood glucose, could be due to increased glucose uptake and glycolytic flux in response to drug-induced mitochondrial dysfunction.

  14. The Urban High School's Challenge: Ensuring Literacy for Every Child. 2002 Carnegie Challenge.

    ERIC Educational Resources Information Center

    de Leon, Anne Grosso

    As demands for more complex literacy skills have increased, and competition in economic and technological arenas at home and abroad have grown more intense, many U.S. students enter high school with literacy skills unequal to this challenge. In U.S. society, where the information base doubles every 5 years, an educated citizenry is essential.…

  15. The China Educational Development Yearbook, Volume 1. The Chinese Academy of Social Sciences Yearbooks: Educational Development

    ERIC Educational Resources Information Center

    Dongping, Yang, Ed.; Chunqing, Chai, Ed.; Yinnian, Zhu, Ed.

    2009-01-01

    China's education system has grown increasingly complex, creating the need for an annual critical review of the education system by China's top scholars. The "Blue Book of Education," as it is known in Chinese, has gained a reputation for offering the most penetrating perspective in China on educational reform and development. In this…

  16. A comparison of three methods for classifying fuel loads in the Southern Appalachian Mountains

    Treesearch

    Lucy Brudnak; Thomas A. Waldrop; Sandra Rideout-Hanzak

    2006-01-01

    As the wildland-urban interface in the Southern Appalachian Mountains has grown and become more complex, land managers, property owners, and ecologists have found it increasingly necessary to understand factors that drive fuel loading. Few predictive fuel loading models have been created for this important region. Three approaches to estimating fuel loads are compared...

  17. Vasopressin activates Akt/mTOR pathway in smooth muscle cells cultured in high glucose concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montes, Daniela K.; Brenet, Marianne; Muñoz, Vanessa C.

    Highlights: •AVP induces mTOR phosphorylation in A-10 cells cultured in high glucose concentration. •The mTOR phosphorylation is mediated by the PI3K/Akt pathway activation. •The AVP-induced mTOR phosphorylation inhibited autophagy and stimulated cell proliferation. -- Abstract: Mammalian target of rapamycin (mTOR) complex is a key regulator of autophagy, cell growth and proliferation. Here, we studied the effects of arginine vasopressin (AVP) on mTOR activation in vascular smooth muscle cells cultured in high glucose concentration. AVP induced the mTOR phosphorylation in A-10 cells grown in high glucose, in contrast to cells cultured in normal glucose; wherein, only basal phosphorylation was observed. Themore » AVP-induced mTOR phosphorylation was inhibited by a PI3K inhibitor. Moreover, the AVP-induced mTOR activation inhibited autophagy and increased thymidine incorporation in cells grown in high glucose. This increase was abolished by rapamycin which inhibits the mTORC1 complex formation. Our results suggest that AVP stimulates mTOR phosphorylation by activating the PI3K/Akt signaling pathway and, subsequently, inhibits autophagy and raises cell proliferation in A-10 cells maintained in high glucose concentration.« less

  18. Factors affecting the palmitoyl-coenzyme A desaturase of Saccharomyces cerevisiae

    NASA Technical Reports Server (NTRS)

    Klein, H. P.; Volkmann, C. M.

    1975-01-01

    The activity and stability of the palmitoyl-coenzyme A (CoA) desaturase complex of Saccharomyces cerevisiae was influenced by several factors. Cells, grown nonaerobically and then incubated with glucose, either in air or under N2, showed a marked increase in desaturase activity. Cycloheximide, added during such incubations, prevented the increase in activity, suggesting de novo synthesis. The stability of the desaturase from cells grown nonaerobically was affected by subsequent treatment of the cells; enzyme from freshly harvested cells, or from cells that were then shaken under nitrogen, readily lost activity upon washing or during density gradient analysis, whereas aerated cells, in the presence or absence of glucose, yielded stable enzyme preparations. The loss of activity in nonaerobic preparations could be reversed by adding soluble supernatant from these homogenates and could be prevented by growing the cells in the presence of palmitoleic acid and ergosterol, but not with several other lipids tested.

  19. Metal Complexation in Xylem Fluid 1

    PubMed Central

    White, Michael C.; Decker, A. Morris; Chaney, Rufus L.

    1981-01-01

    Xylem fluid was analyzed for numerous solutes to characterize chemically the sap as a medium for forming and transporting metal complexes. The stem exudate was collected hourly for 8 hours from topped 31-day-old soybean (Glycine max L. Merr.) and 46-day-old tomato (Lycopersicon esculentum Mill.) plants grown in normal (0.5 micromolar) and Za-phytotoxic nutrient solutions. Soybean plants were grown in the normal and high-Zn solutions for 24 days; tomato plants were grown for 32 days. The exudate was analyzed for seven organic acids, 22 amino acids, eight inorganic solutes, apparent ionic strength, and pH. Significant changes in many solutes occurred over the 8-hour sampling period. These fluctuations depended on plant species, individual solute, and Zn treatment, and demonstrated that extrapolation of xylem-fluid analyses to whole-plant xylem sap is valid only for sap samples collected shortly after topping a plant. Exudate pH decreased over the 8-hour period for both species; exudate ionic strength increased for tomato and decreased for soybean. At the normal-Zn treatment (0 to 1 hour), the highest acid micromolar concentrations in soybean exudate were: asparagine, 2,583; citric, 1,706; malic, 890; and malonic, 264. Under the same conditions, the highest acid micromolar concentrations in tomato exudate were: maleic, 1,206; malic, 628; glutamine, 522; citric, 301; and asparagine, 242. Cysteine and methionine were above detection limits only in soybean exudate. Zinc phytotoxicity caused significant changes in many solutes. The analyses reported here provide a comprehensive data base for further studies on metal-complex equilibria in xylem fluid. PMID:16661664

  20. Light-regulated and organ-specific expression of types 1, 2, and 3 light-harvesting complex b mRNAs in Ginkgo biloba.

    PubMed Central

    Chinn, E; Silverthorne, J; Hohtola, A

    1995-01-01

    In a prior study (E. Chinn and J. Silverthorne [1993] Plant Physiol 103: 727-732) we showed that the gymnosperm Ginkgo biloba was completely dependent on light for chlorophyll synthesis and chloroplast development and that expression of light-harvesting complex b (Lhcb) mRNAs was substantially increased by light. However, dark-grown seedlings that were transferred to constant white light took significantly longer than angiosperm seedlings to initiate a program of photomorphogenesis and the stems failed to green completely. We have prepared type-specific probes for mRNAs encoding major polypeptides of light-harvesting complex II (Lhcb1, Lhcb2, and Lhcb3) and have used these to analyze the expression of individual Lhcb mRNAs during greening. All three sequences accumulated in the top portions of dark-grown seedlings transferred to light, but, as was seen previously for total Lhcb mRNAs, there was a transient, reproducible decline in the levels of all three mRNAs after 4 d in the light. This transient decrease in Lhcb mRNA levels was not paralleled by a decrease in Chl accumulation. By contrast, there were significantly lower levels of all three Lhcb mRNAs in the lower portions of greening dark-grown stems as well as lower Chl levels. We conclude that although the tops of the plants have the capacity to etiolate and green, Gingko seedling stems continue a program of development into woody tissue in darkness that precludes greening when the seedlings are transferred to the light. PMID:7724674

  1. Data on pigments and long-chain fatty compounds identified in Dietzia sp. A14101 grown on simple and complex hydrocarbons

    PubMed Central

    Hvidsten, Ina; Mjøs, Svein Are; Bødtker, Gunhild; Barth, Tanja

    2015-01-01

    This data article provides: 1. An overview of tentatively identified long chain compounds in Dietzia sp. A14101 grown on simple and complex hydrocarbons; 2. Preliminary Identification of pigments in bacterial material obtained from incubation with a hydrocarbon (dodecane, n-C12) as the only carbon and energy source; 3. Some pictures to illustrate the cell surface charge test. PMID:26442286

  2. Fatty acid and sterol composition of three phytomonas species.

    PubMed

    Nakamura, C V; Waldow, L; Pelegrinello, S R; Ueda-Nakamura, T; Filho, B A; Filho, B P

    1999-01-01

    Fatty acid and sterol analysis were performed on Phytomonas serpens and Phytomonas sp. grown in chemically defined and complex medium, and P. françai cultivated in complex medium. The three species of the genus Phytomonas had qualitatively identical fatty acid patterns. Oleic, linoleic, and linolenic were the major unsaturated fatty acids. Miristic and stearic were the major saturated fatty acids. Ergosterol was the only sterol isolated from Phytmonas sp. and P. serpens grown in a sterol-free medium, indicating that it was synthesized de novo. When P. françai that does not grow in defined medium was cultivated in a complex medium, cholesterol was the only sterol detected. The fatty acids and sterol isolated from Phytomonas sp. and P. serpens grown in a chemically defined lipid-free medium indicated that they were able to biosynthesize fatty acids and ergosterol from acetate or from acetate precursors such as glucose or threonine.

  3. Cadmium-sulfide crystallites in Cd-. gamma. -glutamyl peptide complexes from Lycopersicon and Daucus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reese, R.N.; Winge, D.R.

    1989-04-01

    Hydroponically-grown tomato plants (Lycopersicon esculentum P. Mill. cv stone) and suspension-cultured carrot cells (Daucus carota L.) exposed to 100 {mu}M cadmium salts produced metal-{gamma}-glutamyl peptide complexes containing acid labile sulfur. The properties of the complexes resemble the Cd-{gamma}-glutamyl complexes from Schizosaccharomyces pombe and Candida glabrata, known to contain a CdS crystallite core. The crystallite core is stabilized by a coating of peptides of the general structure ({gamma}-Glu-Cys){sub n}-Gly. The Cd-peptide complexes contain predominantly peptides of n{sub 2}, n{sub 3}, n{sub 4} and n{sub 3}desGly. Zn-peptide complexes were also isolated from carrot cultures grown in MS medium supplemented with 2 mMmore » Zn and cysteine. Results of preliminary characterization of these complexes are consistent with the presence of a colloidal particle similar to that of the Cd-complexes.« less

  4. Examining the Relationships among Emotional Intelligence, Coping Mechanisms for Stress, and Leadership Effectiveness for Middle School Principals

    ERIC Educational Resources Information Center

    Reynolds, Christy Hall; O'Dwyer, Laura M.

    2008-01-01

    The role of the school administrator has grown increasingly complex as a consequence of the recent testing and reporting mandates and the threat of sanctions for failing schools. In satisfying the needs of local stakeholders and the state and in meeting the criteria set forth by federal mandates, successful educational leaders must be able to…

  5. Structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Kanzyuba, Vasily; Dong, Sining; Liu, Xinyu; Li, Xiang; Rouvimov, Sergei; Okuno, Hanako; Mariette, Henri; Zhang, Xueqiang; Ptasinska, Sylwia; Tracy, Brian D.; Smith, David J.; Dobrowolska, Margaret; Furdyna, Jacek K.

    2017-02-01

    We describe the structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy on GaAs (111) substrates, as revealed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. When the Mn concentration is increased, the lattice of the ternary (Sn,Mn)Se films evolves quasi-coherently from a SnSe2 two-dimensional (2D) crystal structure into a more complex quasi-2D lattice rearrangement, ultimately transforming into the magnetically concentrated antiferromagnetic MnSe 3D rock-salt structure as Mn approaches 50 at. % of this material. These structural transformations are expected to underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.

  6. Enhanced ferroelectric properties and thermal stability of nonstoichiometric 0.92(Na0.5Bi0.5)TiO3-0.08(K0.5Bi0.5)TiO3 single crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Haiwu; Chen, Chao; Zhao, Xiangyong; Deng, Hao; Li, Long; Lin, Di; Li, Xiaobing; Ren, Bo; Luo, Haosu; Yan, Jun

    2013-11-01

    Bi deficient, Mn doped 0.92(Na0.5Bi0.5)TiO3-0.08(K0.5Bi0.5)TiO3 single crystals were grown by carefully controlled top-seeded solution growth method. Local structures were investigated by transmission electron microscopy. The site occupation and valence state of manganese were characterized by electron paramagnetic resonance spectrum. The leakage current density in the as-grown single crystals is effectively depressed. The introduced defect complexes suppress the temperature induced phase transformation, increasing the depolarization temperature (165 °C) and thermal stability of ferroelectric properties.

  7. A Reproducible Oral Microcosm Biofilm Model for Testing Dental Materials

    PubMed Central

    Rudney, J.D.; Chen, R.; Lenton, P.; Li, J.; Li, Y.; Jones, R.S.; Reilly, C.; Fok, A.S.; Aparicio, C.

    2012-01-01

    Aims Most studies of biofilm effects on dental materials use single-species biofilms, or consortia. Microcosm biofilms grown directly from saliva or plaque are much more diverse, but difficult to characterize. We used the Human Oral Microbial Identification Microarray (HOMIM) to validate a reproducible oral microcosm model. Methods and Results Saliva and dental plaque were collected from adults and children. Hydroxyapatite and dental composite disks were inoculated with either saliva or plaque, and microcosm biofilms were grown in a CDC biofilm reactor. In later experiments, the reactor was pulsed with sucrose. DNA from inoculums and microcosms were analyzed by HOMIM for 272 species. Microcosms included about 60% of species from the original inoculum. Biofilms grown on hydroxyapatite and composites were extremely similar. Sucrose-pulsing decreased diversity and pH, but increased the abundance of Streptococcus and Veilonella. Biofilms from the same donor, grown at different times, clustered together. Conclusions This model produced reproducible microcosm biofilms that were representative of the oral microbiota. Sucrose induced changes associated with dental caries. Significance and Impact of the Study This is the first use of HOMIM to validate an oral microcosm model that can be used to study the effects of complex biofilms on dental materials. PMID:22925110

  8. Molecule diagram from earth-grown crystals

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Like many chemicals in the body, the three-dimensional structure of insulin is extremely complex. When grown on the ground, insulin crystals do not grow as large or as ordered as researchers desire--obscuring the blueprint of the insulin molecules.

  9. Synthesis, crystal growth, structural and physicochemical studies of novel binary organic complex: 4-chloroaniline-3-hydroxy-4-methoxybenzaldehyde

    NASA Astrophysics Data System (ADS)

    Sharma, K. P.; Reddi, R. S. B.; Bhattacharya, S.; Rai, R. N.

    2012-06-01

    The solid-state reaction, which is solvent free and green synthesis, has been adopted to explore the novel compound. The phase diagram of 4-chloroaniline (CA) and 3-hydroxy-4-methoxybenzaldehyde (HMB) system shows the formation of a novel 1:1 molecular complex, and two eutectics on either sides of complex. Thermochemical studies of complex and eutectics have been carried out for various properties such as heat of fusion, entropy of fusion, Jackson's parameters, interfacial energy and excess thermodynamic functions. The formation of molecular complex was also studied by IR, NMR, elemental analysis and UV-Vis absorption spectra. The single crystal of molecular complex was grown and its XRD study confirms the formation of complex and identifies the crystal structure and atomic packing of crystal of complex. Transmission spectra of grown crystal of the complex show 70% transmittance efficiency with cut off wavelength 412 nm. The band gap and refractive index of the crystal of complex have also been studied.

  10. Expression patterns of poliovirus receptor, erythrocyte protein band 4.1-like 3, regulator of g-protein signaling 11, and oxytocin receptor in mouse ovarian cells during follicle growth and early luteinization in vitro and in vivo.

    PubMed

    Segers, Ingrid; Adriaenssens, Tom; Smitz, Johan

    2012-01-01

    Poliovirus receptor (Pvr), erythrocyte protein band 4.1-like 3 (Epb4.1l3), regulator of G-protein signaling 11 (Rgs11), and oxytocin receptor (Oxtr) expression were quantified in in vitro- and in vivo-grown mouse follicles. The expression of all genes was increased during antral growth in in vitro-grown cumulus cells, whereas only Rgs11 and Oxtr were increased and Pvr and Epb4.1l3 were decreased in in vivo grown cumulus cells. In vivo mural granulosa cells showed the highest expression of Pvr, Rgs11, and Oxtr. The in vitro granulosa + theca compartment responded to human chorionic gonadotropinduring early luteinization by either an upregulation (Pvr, Oxtr) or downregulation (Epb41l3, Rgs11). Oocytes expressed Epb4.1l3, not Rgs11, and Pvr only in in vitro-grown oocytes. Translation into protein was confirmed for Epb4.1l3 in in vitro-grown follicles and in vivo-grown cumulus-oocyte complexes. Protein 4.1B was present during antral growth in cumulus, granulosa cells, and oocytes. Hypothetical functions of Epb4.1l3 and Pvr involve cell adhesion regulation and Rgs11 could be involved in cAMP production in the follicle. Oxtr is known to be important during and after the ovulatory stimulus, but, as in bovine, was also regulated during folliculogenesis. High expression of Pvr and Epb4.1l3 with culture duration in cumulus cells might mark inappropriate differentiation into a mural granulosa-like cell type and function as negative follicle development marker. Rgs11 and Oxtr are both in vivo and in vitro upregulated in cumulus cells during antral follicle growth and might be considered positive markers for follicle development.

  11. Investigation on the compensation effect of residual carbon impurities in low temperature grown Mg doped GaN films

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zhao, D. G.; Jiang, D. S.; Chen, P.; Liu, Z. S.; Le, L. C.; Li, X. J.; He, X. G.; Liu, J. P.; Zhang, S. M.; Wang, H.; Zhu, J. J.; Yang, H.

    2014-04-01

    The influence of unintentionally doped carbon impurities on electrical resistivity and yellow luminescence (YL) of low-temperature (LT) grown Mg doped GaN films is investigated. It is found that the resistivity of Mg doped GaN films are closely related to the residual carbon impurity concentration, which may be attributed to the compensation effect of carbon impurities. The carbon impurity may preferentially form deep donor complex CN-ON resulting from its relatively low formation energy. This complex is an effective compensate center for MgGa acceptors as well as inducing YL in photoluminescence spectra. Thus, the low resistivity LT grown p-type GaN films can be obtained only when the residual carbon impurity concentration is sufficiently low, which can explain why LT P-GaN films with lower resistivity were obtained more easily when relatively higher pressure, temperature, or NH3/TMGa flow rate ratio were used in the LT grown Mg doped GaN films reported in earlier reports.

  12. Evidence from Studies with Acifluorfen for Participation of a Flavin-Cytochrome Complex in Blue Light Photoreception for Phototropism of Oat Coleoptiles 12

    PubMed Central

    Leong, Ta-Yan; Briggs, Winslow R.

    1982-01-01

    The diphenyl ether acifluorfen enhances the blue light-induced absorbance change in Triton X100-solubilized crude membrane preparations from etiolated oat (Avena sativa L. cv. Lodi) coleoptiles. Enhancement of the spectral change is correlated with a change in rate of dark reoxidation of a b-type cytochrome. Similar, although smaller, enhancement was obtained with oxyfluorfen, nitrofen, and bifenox. Light-minus-dark difference spectra in the presence and absence of acifluorfen, and the dithionite-reduced-minus oxidized difference spectrum indicate that acifluorfen is acting specifically at a blue light-sensitive cytochrome-flavin complex. Sodium azide, a flavin inhibitor, decreases the light-induced absorbance change significantly, but does not affect the dark reoxidation of the cytochrome. Hence, it is acting on the light reaction, suggesting that the photoreceptor itself is a flavin. Acifluorfen sensitizes phototropism in dark-grown oat seedlings such that the first positive response occurs with blue light fluences as little as one-third of those required to elicit the same response in seedlings grown in the absence of the herbicide. Both this increase in sensitivity to light and the enhancement of the light-induced cytochrome reduction vary with the applied acifluorfen concentration in a similar manner. The herbicide is without effect either on elongation or on the geotropic response of dark-grown oat seedlings, indicating that acifluorfen is acting specifically close to, or at the photoreceptor end of, the stimulus-response chain. It seems likely that the flavin-cytochrome complex serves to transduce the light signal into curvature in phototropism in oats, with the flavin moiety itself serving as the photoreceptor. PMID:16662593

  13. Optical and structural characterisation of epitaxial nanoporous GaN grown by CVD.

    PubMed

    Mena, Josué; Carvajal, Joan J; Martínez, Oscar; Jiménez, Juan; Zubialevich, Vitaly Z; Parbrook, Peter J; Diaz, Francesc; Aguiló, Magdalena

    2017-09-15

    In this paper we study the optical properties of nanoporous gallium nitride (GaN) epitaxial layers grown by chemical vapour deposition on non-porous GaN substrates, using photoluminescence, cathodoluminescence, and resonant Raman scattering, and correlate them with the structural characteristic of these films. We pay special attention to the analysis of the residual strain of the layers and the influence of the porosity in the light extraction. The nanoporous GaN epitaxial layers are under tensile strain, although the strain is progressively reduced as the deposition time and the thickness of the porous layer increases, becoming nearly strain free for a thickness of 1.7 μm. The analysis of the experimental data point to the existence of vacancy complexes as the main source of the tensile strain.

  14. Carboxylate metabolism in sugar beet plants grown with excess Zn.

    PubMed

    Sagardoy, R; Morales, F; Rellán-Álvarez, R; Abadía, A; Abadía, J; López-Millán, A F

    2011-05-01

    The effects of Zn excess on carboxylate metabolism were investigated in sugar beet (Beta vulgaris L.) plants grown hydroponically in a growth chamber. Root extracts of plants grown with 50 or 100μM Zn in the nutrient solution showed increases in several enzymatic activities related to organic acid metabolism, including citrate synthase and phosphoenolpyruvate carboxylase, when compared to activities in control root extracts. Root citric and malic acid concentrations increased in plants grown with 100μM Zn, but not in plants grown with 50μM Zn. In the xylem sap, plants grown with 50 and 100μM Zn showed increases in the concentrations of citrate and malate compared to the controls. Leaves of plants grown with 50 or 100μM Zn showed increases in the concentrations of citric and malic acid and in the activities of citrate synthase and fumarase. Leaf isocitrate dehydrogenase increased only in plants grown with 50μM Zn when compared to the controls. In plants grown with 300μM Zn, the only enzyme showing activity increases in root extracts was citrate synthase, whereas the activities of other enzymes decreased compared to the controls, and root citrate concentrations increased. In the 300μM Zn-grown plants, the xylem concentrations of citric and malic acids were higher than those of controls, whereas in leaf extracts the activity of fumarase increased markedly, and the leaf citric acid concentration was higher than in the controls. Based on our data, a metabolic model of the carboxylate metabolism in sugar beet plants grown under Zn excess is proposed. Copyright © 2010 Elsevier GmbH. All rights reserved.

  15. [Defects in TOR regulatory complexes retard aging and carbonyl/oxidative stress development in yeast Saccharomyces cerevisiae].

    PubMed

    Homza, B V; Vasyl'kovs'ka, R A; Semchyshyn, H M

    2014-01-01

    TOR signaling pathway first described in yeast S. cerevisiae is the highly conserved regulator of eukaryotic cell growth, aging and stress resistance. The effect of nitrogen sources, in particular amino acids, on the activity of TOR signaling pathway is well studied, however its relation to carbohydrates is poor understood. The aim of the present study is expanding of our understanding of potential role of TOR regulatory complexes in development of carbonyl/oxidative stress that can result from yeast cultivation on glucose and fructose. It has been shown that the level of alpha-dicarbonyl compounds and protein carbonyl groups increased with time of yeast cultivation and was higher in cells grown on fructose that demonstrated their accelerated aging and carbonyl/oxidative stress development as compared with cells grown on glucose. The strains defective in TOR proteins cultivated in the presence of glucose as well as fructose demonstrated lower markers of the stress and aging than parental strain. Thus these data confirmed the previous conclusion on fructose more potent ability to cause carbonyl/oxidative stress and accelerated aging in S. cerevisiae as compared with glucose. However, defects in TOR regulatory complexes retard aging and development of the stress in yeast independent on the type of carbohydrate in the cultivation medium.

  16. Deep levels in as-grown and electron-irradiated n-type GaN studied by deep level transient spectroscopy and minority carrier transient spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duc, Tran Thien; School of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Road, Hanoi; Pozina, Galia

    2016-03-07

    Development of high performance GaN-based devices is strongly dependent on the possibility to control and understand defects in material. Important information about deep level defects is obtained by deep level transient spectroscopy and minority carrier transient spectroscopy on as-grown and electron irradiated n-type bulk GaN with low threading dislocation density produced by halide vapor phase epitaxy. One hole trap labelled H1 (E{sub V} + 0.34 eV) has been detected on as-grown GaN sample. After 2 MeV electron irradiation, the concentration of H1 increases and at fluences higher than 5 × 10{sup 14 }cm{sup −2}, a second hole trap labelled H2 is observed. Simultaneously, the concentration of twomore » electron traps, labelled T1 (E{sub C} – 0.12 eV) and T2 (E{sub C} – 0.23 eV), increases. By studying the increase of the defect concentration versus electron irradiation fluence, the introduction rate of T1 and T2 using 2 MeV- electrons was determined to be 7 × 10{sup −3 }cm{sup −1} and 0.9 cm{sup −1}, respectively. Due to the low introduction rate of T1, it is suggested that the defect is associated with a complex. The high introduction rate of trap H1 and T2 suggests that the defects are associated with primary intrinsic defects or complexes. Some deep levels previously observed in irradiated GaN layers with higher threading dislocation densities are not detected in present investigation. It is therefore suggested that the absent traps may be related to primary defects segregated around dislocations.« less

  17. Characterization and regulation of glycine transport in Fusarium oxysporum var. lini.

    PubMed

    Castro, I M; Lima, A A; Nascimento, A F; Ruas, M M; Nicoli, J R; Brandão, R L

    1996-08-01

    Glycine was transported in Fusarium oxysporum cells, grown on glycine as the sole source of carbon and nitrogen, by a facilitated diffusion transport system with a half-saturation constant (Ks) of 11 mM and a maximum velocity (Vmax) of 1.2 mM (g dry weight)-1 h-1 at pH 5.0 and 26 degrees C. Under conditions of nitrogen starvation, the same system was present together with a high-affinity one (Ks) of about 47 microM and Vmax of about 60 microM (g dry weight)-1 h-1). The low-affinity system was more specific than the high-affinity system. Cells grown on gelatine showed the same behavior. In cells grown on glucose-gelatine medium, the low-affinity system was poorly expressed even after carbon and nitrogen starvation. Moreover, addition of glucose to cells grown on glycine and resuspended in mineral medium caused an increase of the glycine transport probably due to a boost in protein synthesis. This stimulation did not affect the Ks of the low-affinity system. These results demonstrate that, as is the case for other eukaryotic systems, F. oxysporum glycine transport is under control of nitrogen sources but its regulation by carbon sources appears to be more complex.

  18. Behaviors of beryllium compensation doping in InGaAsP grown by gas source molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Ma, Y. J.; Zhang, Y. G.; Gu, Y.; Xi, S. P.; Chen, X. Y.; Liang, Baolai; Juang, Bor-Chau; Huffaker, Diana L.; Du, B.; Shao, X. M.; Fang, J. X.

    2017-07-01

    We report structural properties as well as electrical and optical behaviors of beryllium (Be)-doped InGaAsP lattice-matched to InP grown by gas source molecular beam epitaxy. P type layers present a high degree of compensation on the order of 1018 cm-3, and for Be densities below 9.5×1017 cm-3, they are found to be n type. Enhanced incorporation of oxygen during Be doping is observed by secondary ion mass spectroscopy. Be in forms of interstitial donors or donor-like Be-O complexes for cell temperatures below 800°C is proposed to account for such anomalous compensation behaviors. A constant photoluminescence energy of 0.98 eV without any Moss-Burstein shift for Be doping levels up to 1018 cm-3 along with increased emission intensity due to passivation effect of Be is also observed. An increasing number of minority carriers tend to relax via Be defect state-related Shockley-Read-Hall recombination with the increase of Be doping density.

  19. d-Alanine Oxidase from Escherichia coli: Localization and Induction by l-Alanine

    PubMed Central

    Raunio, R. P.; Jenkins, W. T.

    1973-01-01

    Dialyzed membranes of Escherichia coli prepared by an ethylenediaminetetraacetic acid-lysozyme method catalyze the oxidation of both l-alanine and d-alanine. The specific activities for the oxidations of both d-alanine and l-alanine are increased fivefold when the cells are grown in the presence of either l-alanine or dl-alanine, but are increased only slightly when grown in the presence of d-alanine. In the dl-alanine-induced system, the specific activities for the oxidations of some other d-amino acids are also raised. dl-alanine also induces two other alanine catabolizing enzymes, alanine dehydrogenase and alanine-glutamate aminotransferase which are found in the “soluble” fraction of lysozyme-treated cells. The oxidations of both l-alanine and d-alanine were associated with the membranes of induced cells. After the membranes were disintegrated by sonic treatment, both l-alanine and d-alanine oxidation catalysts sedimented in a sucrose density gradient together with d-lactate and l-lactate dehydrogenases, apparently as a single multienzyme complex. PMID:4146872

  20. Study of the interaction mechanisms between absorbed NO{sub 2} and por-Si/SnO{sub x} nanocomposite layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolotov, V. V.; Kan, V. E., E-mail: kan@obisp.oscsbras.ru; Makushenko, R. K.

    2013-10-15

    The interaction mechanisms between NO{sub 2} molecules and the surface of por-Si/SnO{sub x} nanocomposites obtained by magnetron deposition and chemical vapor deposition (CVD) are studied by infrared absorption spectroscopy and electron paramagnetic resonance methods. The observed increase in the free carrier concentration in the por-Si/SnO{sub x} nanocomposite layers is explained by a change in the charge state of P{sub b} centers due to the formation of neutral 'surface defect-adsorbed NO{sub 2} molecule' complexes with free carrier generation in the crystallite bulk. In the nanocomposite layers grown by the CVD method, the increase in the free hole concentration during NO{sub 2}more » adsorption is much less pronounced in comparison with the composite grown by magnetron deposition, which is caused by the competing interaction channel of NO{sub 2} molecules with electrically neutral P{sub b} centers.« less

  1. New insights from monogenic diabetes for “common” type 2 diabetes

    PubMed Central

    Tallapragada, Divya Sri Priyanka; Bhaskar, Seema; Chandak, Giriraj R.

    2015-01-01

    Boundaries between monogenic and complex genetic diseases are becoming increasingly blurred, as a result of better understanding of phenotypes and their genetic determinants. This had a large impact on the way complex disease genetics is now being investigated. Starting with conventional approaches like familial linkage, positional cloning and candidate genes strategies, the scope of complex disease genetics has grown exponentially with scientific and technological advances in recent times. Despite identification of multiple loci harboring common and rare variants associated with complex diseases, interpreting and evaluating their functional role has proven to be difficult. Information from monogenic diseases, especially related to the intermediate traits associated with complex diseases comes handy. The significant overlap between traits and phenotypes of monogenic diseases with related complex diseases provides a platform to understand the disease biology better. In this review, we would discuss about one such complex disease, type 2 diabetes, which shares marked similarity of intermediate traits with different forms of monogenic diabetes. PMID:26300908

  2. Upright and Inverted Single-Junction GaAs Solar Cells Grown by Hydride Vapor Phase Epitaxy

    DOE PAGES

    Simon, John; Schulte, Kevin L.; Jain, Nikhil; ...

    2016-10-19

    Hydride vapor phase epitaxy (HVPE) is a low-cost alternative to conventional metal-organic vapor phase epitaxy (MOVPE) growth of III-V solar cells. In this work, we show continued improvement of the performance of HVPE-grown single-junction GaAs solar cells. We show over an order of magnitude improvement in the interface recombination velocity between GaAs and GaInP layers through the elimination of growth interrupts, leading to increased short-circuit current density and open-circuit voltage compared with cells with interrupts. One-sun conversion efficiencies as high as 20.6% were achieved with this improved growth process. Solar cells grown in an inverted configuration that were removed frommore » the substrate showed nearly identical performance to on-wafer cells, demonstrating the viability of HVPE to be used together with conventional wafer reuse techniques for further cost reduction. As a result, these devices utilized multiple heterointerfaces, showing the potential of HVPE for the growth of complex and high-quality III-V devices.« less

  3. Metal Complexation in Xylem Fluid 1

    PubMed Central

    White, Michael C.; Chaney, Rufus L.; Decker, A. Morris

    1981-01-01

    The capacity of ligands in xylem fluid to form metal complexes was tested with a series of in vitro experiments using paper electrophoresis and radiographs. The xylem fluid was collected hourly for 8 hours from soybean (Glycine max L. Merr.) and tomato (Lycopersicon esculentum Mill.) plants grown in normal and Zn-phytotoxic nutrient solutions. Metal complexation was assayed by anodic or reduced cathodic movement of radionuclides (63Ni, 65Zn, 109Cd, 54Mn) that were presumed to have formed negatively charged complexes. Electrophoretic migration of Ni, Zn, Cd, and Mn added to xylem exudate and spotted on KCl- or KNO3-wetted paper showed that stable Ni, Zn, and Cd metal complexes were formed by exudate ligands. No anodic Mn complexes were observed in this test system. Solution pH, plant species, exudate collection time, and Zn phytotoxicity all affected the amount of metal complex formed in exudate. As the pH increased, there was increased anodic metal movement. Soybean exudate generally bound more of each metal than did tomato exudate. Metal binding usually decreased with increasing exudate collection time, and less metal was bound by the high-Zn exudate. Ni, Zn, Cd, and Mn in exudate added to exudate-wetted paper demonstrated the effect of ligand concentration on stable metal complex formation. Complexes for each metal were demonstratable with this method. Cathodic metal movement increased with time of exudate collection, and it was greater in the high-Zn exudate than in the normal-Zn exudate. A model study illustrated the effect of ligand concentration on metal complex stability in the electrophoretic field. Higher ligand (citric acid) concentrations increased the stability for all metals tested. Images PMID:16661666

  4. Preparation and characterisation of crystalline tris(acetylacetonato)Fe(III) films grown on p-Si substrate for dielectric applications

    NASA Astrophysics Data System (ADS)

    Dakhel, A. A.; Ali-Mohamed, A. Y.

    2007-02-01

    Thin tris(acetylacetonato)iron(III) films were prepared by sublimation in vacuum on glass and p-Si substrates. Then comprehensive studies of X-ray fluorescence (XRF), X-ray diffraction (XRD), optical absorption spectroscopy, AC-conductivity, and dielectric permittivity as a function of frequency and temperature have been performed. The prepared films show a polycrystalline of orthorhombic structure. The optical absorption spectrum of the film was identical with that of the bulk powder layer. For electrical measurements of the complex as insulator, sample in form of metal insulator semiconductor (MIS) structure was prepared and characterised by the measurement of the capacitance and AC-conductance as a function of gate voltage. From those measurements, the state density Dit at insulator/semiconductor interface and the density of the fixed charges in the complex film were determined. It was found that Dit was of order 1010 eV-1/cm2 and the surface charge density in the insulator film was of order 1010 cm-2. The frequency dependence of the electrical conductivity and dielectric properties of MIS structures were studied at room temperature. It was observed that the experimental data follow the correlated barrier-hopping (CBH) model, from which the fundamental absorption edge, the cut off hopping distance, and other parameters of the model were determined. It was found that the capacitance of the complex increases as temperature increases. Generally, the present study shows that the tris(acetylacetonato)iron(III) films grown on p-Si is a promising candidate for low-k dielectric applications, it displays low-k value around 2.0.

  5. Extracting trends from two decades of microgravity macromolecular crystallization history

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; van der Woerd, Mark J.

    2005-01-01

    Since the 1980s hundreds of macromolecular crystal growth experiments have been performed in the reduced acceleration environment of an orbiting spacecraft. Significant enhancements in structural knowledge have resulted from X-ray diffraction of the crystals grown. Similarly, many samples have shown no improvement or degradation in comparison to those grown on the ground. A complex series of interrelated factors affect these experiments and by building a comprehensive archive of the results it was aimed to identify factors that result in success and those that result in failure. Specifically, it was found that dedicated microgravity missions increase the chance of success when compared with those where crystallization took place as a parasitic aspect of the mission. It was also found that the chance of success could not be predicted based on any discernible property of the macromolecule available to us.

  6. Characteristics of the Freshwater Cyanobacterium Microcystis aeruginosa Grown in Iron-Limited Continuous Culture

    PubMed Central

    Dang, T. C.; Fujii, M.; Rose, A. L.; Bligh, M.

    2012-01-01

    A continuous culturing system (chemostat) made of metal-free materials was successfully developed and used to maintain Fe-limited cultures of Microcystis aeruginosa PCC7806 at nanomolar iron (Fe) concentrations (20 to 50 nM total Fe). EDTA was used to maintain Fe in solution, with bioavailable Fe controlled by absorption of light by the ferric EDTA complex and resultant reduction of Fe(III) to Fe(II). A kinetic model describing Fe transformations and biological uptake was applied to determine the biologically available form of Fe (i.e., unchelated ferrous iron) that is produced by photoreductive dissociation of the ferric EDTA complex. Prediction by chemostat theory modified to account for the light-mediated formation of bioavailable Fe rather than total Fe was in good agreement with growth characteristics of M. aeruginosa under Fe limitation. The cellular Fe quota increased with increasing dilution rates in a manner consistent with the Droop theory. Short-term Fe uptake assays using cells maintained at steady state indicated that M. aeruginosa cells vary their maximum Fe uptake rate (ρmax) depending on the degree of Fe stress. The rate of Fe uptake was lower for cells grown under conditions of lower Fe availability (i.e., lower dilution rate), suggesting that cells in the continuous cultures adjusted to Fe limitation by decreasing ρmax while maintaining a constant affinity for Fe. PMID:22210212

  7. Working with complexity: experiences of caring for mothers seeking residential parenting services in New South Wales, Australia.

    PubMed

    Fowler, Cathrine; Schmied, Virginia; Dickinson, Marie; Dahlen, Hannah Grace

    2017-02-01

    To investigate staff perception of the changing complexity of mothers and infants admitted to two residential parenting services in New South Wales in the decade from 2005-2015. For many mothers with a young child, parenting is difficult and stressful. If parenting occurs within the context of anxiety, mental illness or abuse it often becomes a high-risk situation for the primary caregiver. Residential parenting services provide early nursing intervention before parenting problems escalate and require physical or mental health focused care. A qualitative descriptive design using semi-structured interview questions was used as phase three of a larger study. Data were gathered from 35 child and family health nurses and ten physicians during eight focus groups. Three main themes emerged: (1) dealing with complexity; (2) changing practice; and (3) appropriate knowledge and skills to handle greater complexity. There was a mix of participant opinions about the increasing complexity of the mothers presenting at residential parenting services during the past decade. Some of the nurses and physicians confirmed an increase in complexity of the mothers while several participants proposed that it was linked to their increased psychosocial assessment knowledge and skill. All participants recognised their work had grown in complexity regardless of their perception about the increased complexity of the mothers. Australian residential parenting services have a significant role in supporting mothers and their families who are experiencing parenting difficulties. It frequently provides early intervention that helps minimise later emotional and physical problems. Nurses are well placed to work with and support mothers with complex histories. Acknowledgement is required that this work is stressful and nurses need to be adequately supported and educated to manage the complex presentations of many families. © 2016 John Wiley & Sons Ltd.

  8. Characterization of Escherichia coli d-Cycloserine Transport and Resistant Mutants

    PubMed Central

    Baisa, Gary; Stabo, Nicholas J.

    2013-01-01

    d-Cycloserine (DCS) is a broad-spectrum antibiotic that inhibits d-alanine ligase and alanine racemase activity. When Escherichia coli K-12 or CFT073 is grown in minimal glucose or glycerol medium, CycA transports DCS into the cell. E. coli K-12 cycA and CFT073 cycA mutant strains display increased DCS resistance when grown in minimal medium. However, the cycA mutants exhibit no change in DCS sensitivity compared to their parental strains when grown in LB (CFT073 and K-12) or human urine (CFT073 only). These data suggest that cycA does not participate in DCS sensitivity when strains are grown in a non-minimal medium. The small RNA GvcB acts as a negative regulator of E. coli K-12 cycA expression when grown in LB. Three E. coli K-12 gcvB mutant strains failed to demonstrate a change in DCS sensitivity when grown in LB. This further suggests a limited role for cycA in DCS sensitivity. To aid in the identification of E. coli genes involved in DCS sensitivity when grown on complex media, the Keio K-12 mutant collection was screened for DCS-resistant strains. dadA, pnp, ubiE, ubiF, ubiG, ubiH, and ubiX mutant strains showed elevated DCS resistance. The phenotypes associated with these mutants were used to further define three previously characterized E. coli DCS-resistant strains (χ316, χ444, and χ453) isolated by Curtiss and colleagues (R. Curtiss, III, L. J. Charamella, C. M. Berg, and P. E. Harris, J. Bacteriol. 90:1238–1250, 1965). A dadA mutation was identified in both χ444 and χ453. In addition, results are presented that indicate for the first time that DCS can antagonize d-amino acid dehydrogenase (DadA) activity. PMID:23316042

  9. Biogenic production of cyanide and its application to gold recovery.

    PubMed

    Campbell, S C; Olson, G J; Clark, T R; McFeters, G

    2001-03-01

    Chromobacterium violaceum is a cyanogenic (cyanide-producing) microorganism. Cyanide is used on an industrial scale to complex and recover gold from ores or concentrates of ores bearing the precious metal. A potentially useful approach in gold mining operations could be to produce cyanide biologically in relatively small quantities at the ore surface. In this study, C. violaceum grown in nutrient broth formed a biofilm and could complex and solubilize 100% of the gold on glass test slides within 4-7 days. Approximately 50% of the cyanide- recoverable gold could be mobilized from a biooxidized sulfidic-ore concentrate. Complexation of cyanide in solution by gold appeared to have a beneficial effect on cell growth--viable cell counts were nearly two orders of magnitude greater in the presence of gold-coated slides or biooxidized ore substrates than in their absence. C. violaceum was cyanogenic when grown in alternative feedstocks. When grown in a mineral salt solution supplemented with 13.3% v/v swine fecal material (SFM), cells exhibited pigmentation and suspended cell concentrations comparable to cultures grown in nutrient broth. Glycine supplements stimulated production of cyanide in 13.3% v/v SFM. In contrast, glycine was inhibitory when added at the time of inoculation in the more concentrated SFM, decreasing cell numbers and reducing ultimate bulk-solution cyanide concentrations. However, aeration and addition of glycine to stationary phase cells grown on 13.3% v/v SFM anaerobically resulted in rapid production and high concentrations (up to 38 mg l(-1)) of cyanide. This indicates that biogenesis of cyanide may be supported in remote areas using locally produced and inexpensive agricultural feedstocks in place of commercial media.

  10. Vacancy-type defects in Mg-doped GaN grown by ammonia-based molecular beam epitaxy probed using a monoenergetic positron beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uedono, Akira; Malinverni, Marco; Martin, Denis

    Vacancy-type defects in Mg-doped GaN were probed using a monoenergetic positron beam. GaN films with a thickness of 0.5–0.7 μm were grown on GaN/sapphire templates using ammonia-based molecular beam epitaxy and characterized by measuring Doppler broadening spectra. Although no vacancies were detected in samples with a Mg concentration [Mg] below 7 × 10{sup 19 }cm{sup −3}, vacancy-type defects were introduced starting at above [Mg] = 1 × 10{sup 20 }cm{sup −3}. The major defect species was identified as a complex between Ga vacancy (V{sub Ga}) and multiple nitrogen vacancies (V{sub N}s). The introduction of vacancy complexes was found to correlate with a decreasemore » in the net acceptor concentration, suggesting that the defect introduction is closely related to the carrier compensation. We also investigated Mg-doped GaN layers grown using In as the surfactant. The formation of vacancy complexes was suppressed in the subsurface region (≤80 nm). The observed depth distribution of defects was attributed to the thermal instability of the defects, which resulted in the introduction of vacancy complexes during the deposition process.« less

  11. Synthesis, crystal growth and characterization of bioactive material: 2- Amino-1H-benzimidazolium pyridine-3-carboxylate single crystal- a proton transfer molecular complex

    NASA Astrophysics Data System (ADS)

    Fathima, K. Saiadali; Kavitha, P.; Anitha, K.

    2017-09-01

    The 1:1 molecular adducts 2- Amino-1H-benzimidazolium pyridine-3-carboxylate (2ABPC) was synthesized and grown as single crystal where 2-aminobenzimidazole (ABI) acts as a donor and nicotinic acid (NA) acts as an acceptor. The presence of proton and carbon were predicted using 1H and 13C NMR spectral analysis. The molecular structure of the crystal was elucidated by subjecting the grown crystals to the single crystal x-ray diffraction analysis and was refined by full matrix least-squares method to R = 0.038 for 2469 reflections. The vibrational modes of functional group have been studied using FTIR and Raman spectroscopic analysis. The UV-Vis spectrum exhibited a visible band at 246 nm for 2ABPC due to the nicotinate anion of the molecule. Further, the antimicrobial activity of 2ABPC complex against B. subtilis, klebsiella pneumonia, Pseudomonas eruginos and E. coli pathogens was investigated. Minimum Inhibitory Concentration (MIC) for this crystal was obtained using UV spectrometer against MRSA pathogen. It was found that the benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of 2ABPC crystal.

  12. Elemental, isotopic, and geochronological variability in Mogollon-Datil volcanic province archaeological obsidian, southwestern USA: Solving issues of intersource discrimination

    USGS Publications Warehouse

    Shackley, M. Steven; Morgan, Leah; Pyle, Douglas

    2017-01-01

    Solving issues of intersource discrimination in archaeological obsidian is a recurring problem in geoarchaeological investigation, particularly since the number of known sources of archaeological obsidian worldwide has grown nearly exponentially in the last few decades, and the complexity of archaeological questions asked has grown equally so. These two parallel aspects of archaeological investigation have required more exacting understanding of the geological relationship between sources and the more accurate analysis of these sources of archaeological obsidian. This is particularly the case in the North American Southwest where the frequency of archaeological investigation is some of the highest in the world, and the theory and method used to interpret that record has become increasingly nuanced. Here, we attempt to unravel the elemental similarity of archaeological obsidian in the Mogollon-Datil volcanic province of southwestern New Mexico where some of the most important and extensively distributed sources are located and the elemental similarity between the sources is great even though the distance between the sources is large. Uniting elemental, isotopic, and geochronological analyses as an intensive pilot study, we unpack this complexity to provide greater understanding of these important sources of archaeological obsidian.

  13. Effect of D2O on growth properties and chemical structure of annual ryegrass (Lolium multiflorum)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, Barbara R; Bali, Garima; Reeves, David T

    2014-01-01

    In present paper, we report the production and detailed structural analysis of deuterium-enriched rye grass (Lolium multiflorum) for neutron scattering experiments. An efficient method to produce deuterated biomass was developed by designing hydroponic perfusion chambers. In preliminary studies, the partial deuterated rye samples were grown in increasing levels of D2O to study the seed germination and the level of deuterium incorporation as a function of D2O concentration. Solution NMR method indicated 36.9 % deuterium incorporation in 50 % D2O grown annual rye samples and further significant increase in the deuterium incorporation level was observed by germinating the rye seedlings inmore » H2O and growing in 50 % D2O inside the perfusion chambers. Moreover, in an effort to compare the substrate characteristics related to enzymatic hydrolysis on deuterated and protiated version of biomass, annual rye grown in 50 % D2O was selected for detailed biomass characterization studies. The compositional analyses, degree of polymerization and cellulose crystallinity were compared with its protiated control. The cellulose molecular weight indicated slight variation with deuteration; however, hemicellulose molecular weights and cellulose crystallinity remain unaffected with the deuteration. Besides the minor differences in biomass components, the development of deuterated biomass for neutron scattering application is essential to understand the complex biomass conversion processes.« less

  14. Aluminum acceptor four particle bound exciton complex in 4H, 6H, and 3C SiC

    NASA Technical Reports Server (NTRS)

    Clemen, L. L.; Devaty, R. P.; Macmillan, M. F.; Yoganathan, M.; Choyke, W. J.; Larkin, D. J.; Powell, J. A.; Edmond, J. A.; Kong, H. S.

    1993-01-01

    Evidence is presented for a four particle acceptor complex in 3C, 6H, and 4H SiC, obtained in low-temperature photoluminescence and cathodoluminescence experiments. The new lines were observed in p-type films lightly doped with aluminum, of 6H, 4H, and 3C SiC grown on the silicon (0001) face of 6H SiC under special conditions. The lines increase in intensity as more aluminum is added during growth. The multiplicity of observed lines is consistent with symmetry-based models similar to those which have been proposed to describe 4A centers in p-type zincblende semiconductors.

  15. Metamorphic InAsSb-based Barrier Photodetectors for the Long Wave Infrared Region

    DTIC Science & Technology

    2013-08-02

    The character of the I–V for structures with AlInSb layer grown undoped reflects the complex nature of the potential profile in the valence band ...Al0.75In0.25Sb-based barrier photodetectors were grown metamorphically on compositionally graded Ga1?xInxSb buffer layers and GaSb substrates by...ABSTRACT InAs0.6Sb0.4/Al0.75In0.25Sb-based barrier photodetectors were grown metamorphically on compositionally graded Ga1?xInxSb buffer layers and GaSb

  16. A Fully Integrated Micro-Magnometer/Microspacecraft for Multipoint Measurements: The Free-Flyer Magnometer

    NASA Technical Reports Server (NTRS)

    Goldstein, R.; Miller, L. N.; Fossum, E.; Pain, B.; Randolph, J. E.; Turner, P. R.; Cutting, E.

    1995-01-01

    In the decades since the advent of in situ plasma measurements on board spacecraft, the instrumentation has grown bigger, heavier, and more complex as our understanding of space plasmas improves and our appetite for more information increases...There has thus been a recent interest in the miniaturization of both spacecraft and the instrument payload... This paper describes the results and status of an ongoing design study to understand the problems and trade space of fully integrating an instrument into a micro-spacecraft.

  17. Enhancing the electron mobility of SrTiO3 with strain

    NASA Astrophysics Data System (ADS)

    Jalan, Bharat; Allen, S. James; Beltz, Glenn E.; Moetakef, Pouya; Stemmer, Susanne

    2011-03-01

    We demonstrate, using high-mobility SrTiO3 thin films grown by molecular beam epitaxy, that stress has a pronounced influence on the electron mobility in this prototype complex oxide. Moderate strains result in more than 300% increases in the electron mobilities with values exceeding 120 000 cm2/V s and no apparent saturation in the mobility gains. The results point to a range of opportunities to tailor high-mobility oxide heterostructure properties and open up ways to explore oxide physics.

  18. Emergence of a Communication System: International Sign

    NASA Astrophysics Data System (ADS)

    Rosenstock, Rachel

    International Sign (henceforth IS) is a communication system that is used widely in the international Deaf Community. The present study is one of the first to research extensively the origin of both the IS lexicon and grammatical structures. Findings demonstrate that IS is both influenced by naturally evolved sign languages used in grown deaf communities (henceforth SLs) and relies heavily on iconic, universal structures. This paper shows that IS continues to develop from a simplistic iconic system into a conventionalized system with increasingly complex rules.

  19. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce.

    PubMed

    Schreiter, Susanne; Ding, Guo-Chun; Heuer, Holger; Neumann, Günter; Sandmann, Martin; Grosch, Rita; Kropf, Siegfried; Smalla, Kornelia

    2014-01-01

    The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for 10 years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected 3 and 7 weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas, and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three soils. The number of rhizosphere responders was highest 3 weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce.

  20. Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce

    PubMed Central

    Schreiter, Susanne; Ding, Guo-Chun; Heuer, Holger; Neumann, Günter; Sandmann, Martin; Grosch, Rita; Kropf, Siegfried; Smalla, Kornelia

    2014-01-01

    The complex and enormous diversity of microorganisms associated with plant roots is important for plant health and growth and is shaped by numerous factors. This study aimed to unravel the effects of the soil type on bacterial communities in the rhizosphere of field-grown lettuce. We used an experimental plot system with three different soil types that were stored at the same site for 10 years under the same agricultural management to reveal differences directly linked to the soil type and not influenced by other factors such as climate or cropping history. Bulk soil and rhizosphere samples were collected 3 and 7 weeks after planting. The analysis of 16S rRNA gene fragments amplified from total community DNA by denaturing gradient gel electrophoresis and pyrosequencing revealed soil type dependent differences in the bacterial community structure of the bulk soils and the corresponding rhizospheres. The rhizosphere effect differed depending on the soil type and the plant growth developmental stage. Despite the soil type dependent differences in the bacterial community composition several genera such as Sphingomonas, Rhizobium, Pseudomonas, and Variovorax were significantly increased in the rhizosphere of lettuce grown in all three soils. The number of rhizosphere responders was highest 3 weeks after planting. Interestingly, in the soil with the highest numbers of responders the highest shoot dry weights were observed. Heatmap analysis revealed that many dominant operational taxonomic units were shared among rhizosphere samples of lettuce grown in diluvial sand, alluvial loam, and loess loam and that only a subset was increased in relative abundance in the rhizosphere compared to the corresponding bulk soil. The findings of the study provide insights into the effect of soil types on the rhizosphere microbiome of lettuce. PMID:24782839

  1. Investigation of Localized States in GaAsSb Epilayers Grown by Molecular Beam Epitaxy

    PubMed Central

    Gao, Xian; Wei, Zhipeng; Zhao, Fenghuan; Yang, Yahui; Chen, Rui; Fang, Xuan; Tang, Jilong; Fang, Dan; Wang, Dengkui; Li, Ruixue; Ge, Xiaotian; Ma, Xiaohui; Wang, Xiaohua

    2016-01-01

    We report the carrier dynamics in GaAsSb ternary alloy grown by molecular beam epitaxy through comprehensive spectroscopic characterization over a wide temperature range. A detailed analysis of the experimental data reveals a complex carrier relaxation process involving both localized and delocalized states. At low temperature, the localized degree shows linear relationship with the increase of Sb component. The existence of localized states is also confirmed by the temperature dependence of peak position and band width of the emission. At temperature higher than 60 K, emissions related to localized states are quenched while the band to band transition dominates the whole spectrum. This study indicates that the localized states are related to the Sb component in the GaAsSb alloy, while it leads to the poor crystal quality of the material, and the application of GaAsSb alloy would be limited by this deterioration. PMID:27381641

  2. Synthesis, crystal growth and characterization of bioactive material: 2-amino-1H-benzo[d]imidazol-3-ium salicylate single crystal-a proton transfer molecular complex

    NASA Astrophysics Data System (ADS)

    Fathima, K. Saiadali; Anitha, K.

    2017-05-01

    The 1:1 molecular adducts 2-aminobenzimidazolium salicylate (ABIS) single crystal was synthesized and grown from 2-aminobenzimidazole (ABI) as a donor and salicylic acid (SA) as an acceptor. The cell parameter was determined using single crystal X-Ray diffraction method and the complex ABIS belongs to monoclinic system. The spectroscopic studies showed that ABIS crystal was an ion pair complex. The FTIR and Raman spectra showed that the presence of O-H, C=N, C=O vibration which confirms the proton transfer from SA to ABI. The UV-Vis spectrum exhibited a visible band at 359nm for ABIS due to the salicylate anion of the molecule. Further the antimicrobial activity of ABIS complex against Staphylococcus aureus, klebsiella pneumonia, Pseudomonas eruginos and E.coli pathogens was investigated. So the complex molecule inhibits both Gram positive and Gram negative bacterial. It is found that benzimidazole with aminogroup at position 2 increases the general antimicrobial activities of ABIS crystal.

  3. Quantum well infrared photodetectors (QWIP) with selectively regrown N-GaAs plugs

    NASA Astrophysics Data System (ADS)

    Matsukura, Yusuke; Nishino, Hironori; Tanaka, Hitoshi; Fujii, Toshio

    2001-10-01

    We fabricated the GaAs/AlGaAs Quantum Well Infrared Photo detector (QWIP) focal plane array with selectively re-grown N- GaAs interconnection plugs and demonstrated its device operation, in order to establish the technology to obtain both complex device functions and device manufacturability. MBE (Molecular Beam Epitaxy) grown QWIP MQW wafers were covered with SiON and SiNx mask films to obtain selectivity of the re-growth process. N-GaAs plugs were re-grown selectively with low-pressure MOCVD (Metal-Organic Chemical Vapor Deposition) with AsH3 and Dimethylgalliumchloride as precursors, only on the bottom surfaces of the holes for the interconnection to extract the electrodes from the underlying epilayer. Cross- sectional SEM observation revealed that the feature of the re- grown N-GaAs plugs was triangular, rather than rectangular as expected. The reason for this discrepancy is not yet clear. The electrical contact between the epilayer and re-grown N- GaAs plug was 'ohmic-like,' without any trace of interfacial barrier. The Current-Voltage characteristics of the fabricated QWIP device showed no tangible leakage current between the N- GaAs plug and device structure, indicating that electrical insulation between the N-GaAs plugs and device structure was sufficient. Fabricated devices were successfully operated as a hybrid focal plane array, indicating the selective re-growth was a promising technique to realize complex QWIP based devices.

  4. Targeting the Bacterial Cytoskeleton of the Burkholderia cepacia Complex for Antimicrobial Development: A Cautionary Tale.

    PubMed

    Carnell, Sonya C; Perry, John D; Borthwick, Lee; Vollmer, Daniela; Biboy, Jacob; Facchini, Marcella; Bragonzi, Alessandra; Silipo, Alba; Vergunst, Annette C; Vollmer, Waldemar; Khan, Anjam C M; De Soyza, Anthony

    2018-05-30

    Burkholderia cepacia complex (BCC) bacteria are a group of opportunistic pathogens that cause severe lung infections in cystic fibrosis (CF). Treatment of BCC infections is difficult, due to the inherent and acquired multidrug resistance of BCC. There is a pressing need to find new bacterial targets for antimicrobials. Here, we demonstrate that the novel compound Q22, which is related to the bacterial cytoskeleton destabilising compound A22, can reduce the growth rate and inhibit growth of BCC bacteria. We further analysed the phenotypic effects of Q22 treatment on BCC virulence traits, to assess its feasibility as an antimicrobial. BCC bacteria were grown in the presence of Q22 with a broad phenotypic analysis, including resistance to H₂O₂-induced oxidative stress, changes in the inflammatory potential of cell surface components, and in-vivo drug toxicity studies. The influence of the Q22 treatment on inflammatory potential was measured by monitoring the cytokine responses of BCC whole cell lysates, purified lipopolysaccharide, and purified peptidoglycan extracted from bacterial cultures grown in the presence or absence of Q22 in differentiated THP-1 cells. BCC bacteria grown in the presence of Q22 displayed varying levels of resistance to H₂O₂-induced oxidative stress, with some strains showing increased resistance after treatment. There was strain-to-strain variation in the pro-inflammatory ability of bacterial lysates to elicit TNFα and IL-1β from human myeloid cells. Despite minimal toxicity previously shown in vitro with primary CF cell lines, in-vivo studies demonstrated Q22 toxicity in both zebrafish and mouse infection models. In summary, destabilisation of the bacterial cytoskeleton in BCC, using compounds such as Q22, led to increased virulence-related traits in vitro. These changes appear to vary depending on strain and BCC species. Future development of antimicrobials targeting the BCC bacterial cytoskeleton may be hampered if such effects translate into the in-vivo environment of the CF infection.

  5. Energy transfer in purple bacterial photosynthetic units from cells grown in various light intensities.

    PubMed

    Niedzwiedzki, Dariusz M; Gardiner, Alastair T; Blankenship, Robert E; Cogdell, Richard J

    2018-05-03

    Three photosynthetic membranes, called intra-cytoplasmic membranes (ICMs), from wild-type and the ∆pucBA abce mutant of the purple phototrophic bacterium Rps. palustris were investigated using optical spectroscopy. The ICMs contain identical light-harvesting complex 1-reaction centers (LH1-RC) but have various spectral forms of light-harvesting complex 2 (LH2). Spectroscopic studies involving steady-state absorption, fluorescence, and femtosecond time-resolved absorption at room temperature and at 77 K focused on inter-protein excitation energy transfer. The studies investigated how energy transfer is affected by altered spectral features of the LH2 complexes as those develop under growth at different light conditions. The study shows that LH1 → LH2 excitation energy transfer is strongly affected if the LH2 complex alters its spectroscopic signature. The LH1 → LH2 excitation energy transfer rate modeled with the Förster mechanism and kinetic simulations of transient absorption of the ICMs demonstrated that the transfer rate will be 2-3 times larger for ICMs accumulating LH2 complexes with the classical B800-850 spectral signature (grown in high light) compared to the ICMs from the same strain grown in low light. For the ICMs from the ∆pucBA abce mutant, in which the B850 band of the LH2 complex is blue-shifted and almost degenerate with the B800 band, the LH1 → LH2 excitation energy transfer was not observed nor predicted by calculations.

  6. Crystal growth, spectral, structural and optical studies of π-conjugated stilbazolium crystal: 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate.

    PubMed

    Krishna Kumar, M; Sudhahar, S; Bhagavannarayana, G; Mohan Kumar, R

    2014-05-05

    Nonlinear optical (NLO) organic compound, 4-bromobenzaldehyde-4'-N'-methylstilbazolium tosylate was synthesized by reflux method. The formation of molecular complex was confirmed from (1)H NMR, FT-IR and FT-Raman spectral analyses. The single crystals were grown by slow evaporation solution growth method and the crystal structure and atomic packing of grown crystal was identified. The morphology and growth axis of grown crystal were determined. The crystal perfection was analyzed using high resolution X-ray diffraction study on (001) plane. Thermal stability, decomposition stages and melting point of the grown crystal were analyzed. The optical absorption coefficient (α) and energy band gap (E(g)) of the crystal were determined using UV-visible absorption studies. Second harmonic generation efficiency of the grown crystal was examined by Kurtz powder method with different particle size using 1064 nm laser. Laser induced damage threshold study was carried out for the grown crystal using Nd:YAG laser. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Lack of FTSH4 Protease Affects Protein Carbonylation, Mitochondrial Morphology, and Phospholipid Content in Mitochondria of Arabidopsis: New Insights into a Complex Interplay.

    PubMed

    Smakowska, Elwira; Skibior-Blaszczyk, Renata; Czarna, Malgorzata; Kolodziejczak, Marta; Kwasniak-Owczarek, Malgorzata; Parys, Katarzyna; Funk, Christiane; Janska, Hanna

    2016-08-01

    FTSH4 is one of the inner membrane-embedded ATP-dependent metalloproteases in mitochondria of Arabidopsis (Arabidopsis thaliana). In mutants impaired to express FTSH4, carbonylated proteins accumulated and leaf morphology was altered when grown under a short-day photoperiod, at 22°C, and a long-day photoperiod, at 30°C. To provide better insight into the function of FTSH4, we compared the mitochondrial proteomes and oxyproteomes of two ftsh4 mutants and wild-type plants grown under conditions inducing the phenotypic alterations. Numerous proteins from various submitochondrial compartments were observed to be carbonylated in the ftsh4 mutants, indicating a widespread oxidative stress. One of the reasons for the accumulation of carbonylated proteins in ftsh4 was the limited ATP-dependent proteolytic capacity of ftsh4 mitochondria, arising from insufficient ATP amount, probably as a result of an impaired oxidative phosphorylation (OXPHOS), especially complex V. In ftsh4, we further observed giant, spherical mitochondria coexisting among normal ones. Both effects, the increased number of abnormal mitochondria and the decreased stability/activity of the OXPHOS complexes, were probably caused by the lower amount of the mitochondrial membrane phospholipid cardiolipin. We postulate that the reduced cardiolipin content in ftsh4 mitochondria leads to perturbations within the OXPHOS complexes, generating more reactive oxygen species and less ATP, and to the deregulation of mitochondrial dynamics, causing in consequence the accumulation of oxidative damage. © 2016 American Society of Plant Biologists. All Rights Reserved.

  8. Increasing minority carrier lifetime in as-grown multicrystalline silicon by low temperature internal gettering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Amin, M., E-mail: m.al-amin@warwick.ac.uk; Murphy, J. D., E-mail: john.d.murphy@warwick.ac.uk

    2016-06-21

    We report a systematic study into the effects of long low temperature (≤500 °C) annealing on the lifetime and interstitial iron distributions in as-grown multicrystalline silicon (mc-Si) from different ingot height positions. Samples are characterised in terms of dislocation density, and lifetime and interstitial iron concentration measurements are made at every stage using a temporary room temperature iodine-ethanol surface passivation scheme. Our measurement procedure allows these properties to be monitored during processing in a pseudo in situ way. Sufficient annealing at 300 °C and 400 °C increases lifetime in all cases studied, and annealing at 500 °C was only found to improve relatively poormore » wafers from the top and bottom of the block. We demonstrate that lifetime in poor as-grown wafers can be improved substantially by a low cost process in the absence of any bulk passivation which might result from a dielectric surface film. Substantial improvements are found in bottom wafers, for which annealing at 400 °C for 35 h increases lifetime from 5.5 μs to 38.7 μs. The lifetime of top wafers is improved from 12.1 μs to 23.8 μs under the same conditions. A correlation between interstitial iron concentration reduction and lifetime improvement is found in these cases. Surprisingly, although the interstitial iron concentration exceeds the expected solubility values, low temperature annealing seems to result in an initial increase in interstitial iron concentration, and any subsequent decay is a complex process driven not only by diffusion of interstitial iron.« less

  9. Arsenic complexes optical signatures in As-doped HgCdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gemain, F.; Robin, I. C.; Brochen, S.

    2013-04-08

    In this paper, the optical signatures of arsenic complexes in As-doped HgCdTe samples grown by molecular beam epitaxy are clearly identified using comparison between photoluminescence spectra, Extended X-Ray Absorption Fine Structure, and Hall measurements. The ionization energies of the different complexes are measured both by photoluminescence and Hall measurements.

  10. Segregation and inhomogeneities in photorefractive SBN fibers

    NASA Astrophysics Data System (ADS)

    Erdei, Sandor; Galambos, Ludwig; Tanaka, Isao; Hesselink, Lambertus; Ainger, Frank W.; Cross, Leslie E.; Feigelson, Robert S.

    1996-10-01

    Ce doped and undoped SrxBa1-xNb2O6 (SBN) fibers grown by the laser heated pedestal growth (LHPG) technique in Stanford University were investigated by 2D scanning electron microprobe analysis. The SBN fibers grown along c [001] or a [100] axes often show radially distributed optical inhomogeneities (core effects) of varying magnitude. Ba enrichment and Sr reduction were primarily detected in the core which can be qualitatively described by a complex-segregation effect. This defect structure as a complex-congruency related phenomenon modified by the composition-control mechanism of LHPG system. Its radial dependence of effective segregation coefficient is described by the modified Burton-Prim- Slichter equation.

  11. Effects of Complex Structured Anodic Oxide Dielectric Layer Grown in Pore Matrix for Aluminum Capacitor.

    PubMed

    Shin, Jin-Ha; Yun, Sook Young; Lee, Chang Hyoung; Park, Hwa-Sun; Suh, Su-Jeong

    2015-11-01

    Anodization of aluminum is generally divided up into two types of anodic aluminum oxide structures depending on electrolyte type. In this study, an anodization process was carried out in two steps to obtain high dielectric strength and break down voltage. In the first step, evaporated high purity Al on Si wafer was anodized in oxalic acidic aqueous solution at various times at a constant temperature of 5 degrees C. In the second step, citric acidic aqueous solution was used to obtain a thickly grown sub-barrier layer. During the second anodization process, the anodizing potential of various ranges was applied at room temperature. An increased thickness of the sub-barrier layer in the porous matrix was obtained according to the increment of the applied anodizing potential. The microstructures and the growth of the sub-barrier layer were then observed with an increasing anodizing potential of 40 to 300 V by using a scanning electron microscope (SEM). An impedance analyzer was used to observe the change of electrical properties, including the capacitance, dissipation factor, impedance, and equivalent series resistance (ESR) depending on the thickness increase of the sub-barrier layer. In addition, the breakdown voltage was measured. The results revealed that dielectric strength was improved with the increase of sub-barrier layer thickness.

  12. Enzymatic hydrolysis of lignocellulosic biomass from Onopordum nervosum.

    PubMed

    Martín, C; Negro, M J; Alfonsel, M; Sáez, R

    1988-07-20

    Some properties of the cellulolytic complex obtained from Trichoderma reesei QM 9414 grown on Solka floc as carbon source and its ability to hydrolyze the lignocellulosic biomass of Onopordum nervosum Boiss were studied. The optimum enzyme activity was found at temperatures between 50 and 55 degrees C and pH ranging from 4.3 to 4.8. Hydrolysis of 4-nitropnenyl-beta-D-glucopyranoside (4-NPG) and cellobiose by the beta-glucosidase of the complex, showed competitive inhibition by glucose with a K(i) value of 0.8 mM for 4-NPG and 2. 56 mM for cellobiose. Enzymatic hydrolysis yield of Onopordum nervosum, evaluated as glucose production after 48 h, showed a threefold increase by pretreating the lignocellulosic substrate with alkali. When the loss of glucose incurred by de pretreatment was taken into account, a 160% increase in the final cellulose to glucose conversion was found to be due to the pretreatment.

  13. Clades of Photosynthetic Bacteria Belonging to the Genus Rhodopseudomonas Show Marked Diversity in Light-Harvesting Antenna Complex Gene Composition and Expression

    DOE PAGES

    Fixen, Kathryn R.; Oda, Yasuhiro; Harwood, Caroline S.; ...

    2015-12-22

    Many photosynthetic bacteria have peripheral light-harvesting (LH) antenna complexes that increase the efficiency of light energy capture. The purple nonsulfur photosynthetic bacteriumRhodopseudomonas palustrisproduces different types of LH complexes under high light intensities (LH2 complex) and low light intensities (LH3 and LH4 complexes). There are multiplepucBAoperons that encode the α and β peptides that make up these complexes. But, low-resolution structures, amino acid similarities between the complexes, and a lack of transcription analysis have made it difficult to determine the contributions of differentpucBAoperons to the composition and function of different LH complexes. It was also unclear how much diversity of LHmore » complexes exists inR. palustrisand affiliated strains. To address this, we undertook an integrative genomics approach using 20 sequenced strains. Gene content analysis revealed that even closely related strains have differences in theirpucBAgene content. Transcriptome analyses of the strains grown under high light and low light revealed that the patterns of expression of thepucBAoperons varied among strains grown under the same conditions. We also found that one set of LH2 complex proteins compensated for the lack of an LH4 complex under low light intensities but not under extremely low light intensities, indicating that there is functional redundancy between some of the LH complexes under certain light intensities. The variation observed in LH gene composition and expression inRhodopseudomonasstrains likely reflects how they have evolved to adapt to light conditions in specific soil and water microenvironments. ImportanceRhodopseudomonas palustrisis a phototrophic purple nonsulfur bacterium that adapts its photosystem to allow growth at a range of light intensities. It does this by adjusting the amount and composition of peripheral light-harvesting (LH) antenna complexes that it synthesizes.Rhodopseudomonasstrains are notable for containing numerous sets of light-harvesting genes. We determined the diversity of LH complexes and their transcript levels during growth under high and low light intensities in 20 sequenced genomes of strains related to the speciesRhodopseudomonas palustris. Finally, the data obtained are a resource for investigators with interests as wide-ranging as the biophysics of photosynthesis, the ecology of phototrophic bacteria, and the use of photosynthetic bacteria for biotechnology applications.« less

  14. Clades of Photosynthetic Bacteria Belonging to the Genus Rhodopseudomonas Show Marked Diversity in Light-Harvesting Antenna Complex Gene Composition and Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fixen, Kathryn R.; Oda, Yasuhiro; Harwood, Caroline S.

    Many photosynthetic bacteria have peripheral light-harvesting (LH) antenna complexes that increase the efficiency of light energy capture. The purple nonsulfur photosynthetic bacteriumRhodopseudomonas palustrisproduces different types of LH complexes under high light intensities (LH2 complex) and low light intensities (LH3 and LH4 complexes). There are multiplepucBAoperons that encode the α and β peptides that make up these complexes. But, low-resolution structures, amino acid similarities between the complexes, and a lack of transcription analysis have made it difficult to determine the contributions of differentpucBAoperons to the composition and function of different LH complexes. It was also unclear how much diversity of LHmore » complexes exists inR. palustrisand affiliated strains. To address this, we undertook an integrative genomics approach using 20 sequenced strains. Gene content analysis revealed that even closely related strains have differences in theirpucBAgene content. Transcriptome analyses of the strains grown under high light and low light revealed that the patterns of expression of thepucBAoperons varied among strains grown under the same conditions. We also found that one set of LH2 complex proteins compensated for the lack of an LH4 complex under low light intensities but not under extremely low light intensities, indicating that there is functional redundancy between some of the LH complexes under certain light intensities. The variation observed in LH gene composition and expression inRhodopseudomonasstrains likely reflects how they have evolved to adapt to light conditions in specific soil and water microenvironments. ImportanceRhodopseudomonas palustrisis a phototrophic purple nonsulfur bacterium that adapts its photosystem to allow growth at a range of light intensities. It does this by adjusting the amount and composition of peripheral light-harvesting (LH) antenna complexes that it synthesizes.Rhodopseudomonasstrains are notable for containing numerous sets of light-harvesting genes. We determined the diversity of LH complexes and their transcript levels during growth under high and low light intensities in 20 sequenced genomes of strains related to the speciesRhodopseudomonas palustris. Finally, the data obtained are a resource for investigators with interests as wide-ranging as the biophysics of photosynthesis, the ecology of phototrophic bacteria, and the use of photosynthetic bacteria for biotechnology applications.« less

  15. Acclimation of shade-tolerant and light-resistant Tradescantia species to growth light: chlorophyll a fluorescence, electron transport, and xanthophyll content.

    PubMed

    Mishanin, Vladimir I; Trubitsin, Boris V; Patsaeva, Svetlana V; Ptushenko, Vasily V; Solovchenko, Alexei E; Tikhonov, Alexander N

    2017-09-01

    In this study, we have compared the photosynthetic characteristics of two contrasting species of Tradescantia plants, T. fluminensis (shade-tolerant species), and T. sillamontana (light-resistant species), grown under the low light (LL, 50-125 µmol photons m -2  s -1 ) or high light (HL, 875-1000 µmol photons m -2  s -1 ) conditions during their entire growth period. For monitoring the functional state of photosynthetic apparatus (PSA), we measured chlorophyll (Chl) a emission fluorescence spectra and kinetics of light-induced changes in the heights of fluorescence peaks at 685 and 740 nm (F 685 and F 740 ). We also compared the light-induced oxidation of P 700 and assayed the composition of carotenoids in Tradescantia leaves grown under the LL and HL conditions. The analyses of slow induction of Chl a fluorescence (SIF) uncovered different traits in the LL- and HL-grown plants of ecologically contrasting Tradescantia species, which may have potential ecophysiological significance with respect to their tolerance to HL stress. The fluorometry and EPR studies of induction events in chloroplasts in situ demonstrated that acclimation of both Tradescantia species to HL conditions promoted faster responses of their PSA as compared to LL-grown plants. Acclimation of both species to HL also caused marked changes in the leaf anatomy and carotenoid composition (an increase in Violaxanthin + Antheraxantin + Zeaxanthin and Lutein pools), suggesting enhanced photoprotective capacity of the carotenoids in the plants grown in nature under high irradiance. Collectively, the results of the present work suggest that the mechanisms of long-term PSA photoprotection in Tradescantia are based predominantly on the light-induced remodeling of pigment-protein complexes in chloroplasts.

  16. Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 µM Cu.

    PubMed

    Keller, C; Rizwan, M; Davidian, J-C; Pokrovsky, O S; Bovet, N; Chaurand, P; Meunier, J-D

    2015-04-01

    Aqueous Si limits Cu uptake by a Si-accumulating plant via physicochemical mechanisms occurring at the root level. Sufficient Si supply may alleviate Cu toxicity in Cu-contaminated soils. Little information is available on the role of silicon (Si) in copper (Cu) tolerance while Cu toxicity is widespread in crops grown on Cu-contaminated soils. A hydroponic study was set up to investigate the influence of Si on Cu tolerance in durum wheat (Triticum turgidum L.) grown in 0, 0.7, 7.0 and 30 µM Cu without and with 1.0 mM Si, and to identify the mechanisms involved in mitigation of Cu toxicity. Si supply alleviated Cu toxicity in durum wheat at 30 µM Cu, while Cu significantly increased Si concentration in roots. Root length, photosynthetic pigments concentrations, macroelements, and organic anions (malate, acetate and aconitate) in roots, were also increased. Desorption experiments, XPS analysis of the outer thin root surface (≤100 Å) and µXRF analyses showed that Si increased adsorption of Cu at the root surface as well as Cu accumulation in the epidermis while Cu was localised in the central cylinder when Si was not applied. Copper was not detected in phytoliths. This study provides evidences for Si-mediated alleviation of Cu toxicity in durum wheat. It also shows that Si supplementation to plants exposed to increasing levels of Cu in solution induces non-simultaneous changes in physiological parameters. We propose a three-step mechanism occurring mainly at the root level and limiting Cu uptake and translocation to shoots: (i) increased Cu adsorption onto the outer thin layer root surface and immobilisation in the vicinity of root epidermis, (ii) increased Cu complexation by both inorganic and organic anions such as aconitate and, (iii) limitation of translocation through an enhanced thickening of a Si-loaded endodermis.

  17. An electron trap related to phosphorus deficiency in high-purity InP grown by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Yamamoto, Norio; Uwai, Kunihiko; Takahei, Kenichiro

    1989-04-01

    Deep levels in high-purity InP crystal grown by metalorganic chemical vapor deposition (MOCVD) have been measured by deep level transient spectroscopy. While no electron traps are observed in the samples grown at 600 °C with a [PH3]/[In(C2H5)3] of 170, three electron traps with activation energies of 0.80, 0.44, and 0.24 eV were observed in the samples grown at 500 °C with the same [PH3]/[In(C2H5)3]. The 0.44-eV trap, whose capture cross section is 1.5×10-18 cm2, observed at a low [PH3]/[In(C2H5)3] shows a decrease in concentration as [PH3]/[In(C2H5)3] is increased, and becomes less than 5×1012 cm-3 at a [PH3]/[In(C2H5)3] of more than 170. The comparison of annealing behavior of this trap in MOCVD InP and that in liquid-encapsulated Czochralski InP suggests that the 0.44-eV trap is related to a complex formed from residual impurities and native defects related to a phosphorus deficiency such as phosphorus vacancies or indium interstitials. This trap is found to show configurational bistability similar to that observed for the trap in an Fe-doped InP, MFe center.

  18. Properties of Streptococcus mutans Grown in a Synthetic Medium: Binding of Glucosyltransferase and In Vitro Adherence, and Binding of Dextran/Glucan and Glycoprotein and Agglutination

    PubMed Central

    Wu-Yuan, Christine D.; Tai, Stella; Slade, Hutton D.

    1979-01-01

    The influence of culture media on various properties of Streptococcus mutans was investigated. Strains of S. mutans (serotypes c, d, f, and g) were grown in a complex medium (Todd-Hewitt broth [THB]) or a synthetic medium (SYN). The SYN cells, in contrast to THB cells, did not bind extracellular glucosyltransferase and did not produce in vitro adherence. Both types of cells possessed constitutive levels of glucosyltransferase. B13 cells grown in SYN plus invertase-treated glucose possessed the same level of constitutive enzyme as THB cells. In contrast to THB cells, the SYN cells of seven serotype strains did not agglutinate upon the addition of high-molecular-weight dextran/glucan. Significant quantities of lower-molecular-weight (2 × 104 or 7 × 104) dextran and B13 glucan were bound by SYN cells. SYN cells agglutinated weakly in anti-glucan serum (titers, 0 to 16), whereas THB cells possessed titers of 32 to 256. Evidence for the existence of a second binding site in agglutination which does not possess a glucan-like polymer has been obtained. B13 cells grown in invertase-treated THB agglutinated to the same degree as normal THB cells. The nature of this site is unknown. SYN cells possess the type-specific polysaccharide antigen. B13 cells did not bind from THB a glycoprotein which reacts with antisera to the A, B, or T blood group antigens or which allows agglutination upon the addition of dextran. The results demonstrate that S. mutans grown in a chemically defined medium possesse markedly different biochemical and biological activities than cells grown in a complex organic medium. PMID:457252

  19. Nitrogen use efficiencies of spring barley grown under varying nitrogen conditions in the field and growth chamber

    PubMed Central

    Beatty, Perrin H.; Anbessa, Yadeta; Juskiw, Patricia; Carroll, Rebecka T.; Wang, Juan; Good, Allen G.

    2010-01-01

    Background and Aims Nitrogen-use efficiency (NUE) of cereals needs to be improved by nitrogen (N) management, traditional plant breeding methods and/or biotechnology, while maintaining or, optimally, increasing crop yields. The aims of this study were to compare spring-barley genotypes grown on different nitrogen levels in field and growth-chamber conditions to determine the effects on N uptake (NUpE) and N utilization efficiency (NUtE) and ultimately, NUE. Methods Morphological characteristics, seed yield and metabolite levels of 12 spring barley (Hordeum vulgare) genotypes were compared when grown at high and low nitrogen levels in field conditions during the 2007 and 2008 Canadian growing seasons, and in potted and hydroponic growth-chamber conditions. Genotypic NUpE, NUtE and NUE were calculated and compared between field and growth-chamber environments. Key Results Growth chamber and field tests generally showed consistent NUE characteristics. In the field, Vivar, Excel and Ponoka, showed high NUE phenotypes across years and N levels. Vivar also had high NUE in growth-chamber trials, showing NUE across complex to simplistic growth environments. With the high NUE genotypes grown at low N in the field, NUtE predominates over NUpE. N metabolism-associated amino acid levels were different between roots (elevated glutamine) and shoots (elevated glutamate and alanine) of hydroponically grown genotypes. In field trials, metabolite levels were different between Kasota grown at high N (elevated glutamine) and Kasota at low N plus Vivar at either N condition. Conclusions Determining which trait(s) or gene(s) to target to improve barley NUE is important and can be facilitated using simplified growth approaches to help determine the NUE phenotype of various genotypes. The genotypes studied showed similar growth and NUE characteristics across field and growth-chamber tests demonstrating that simplified, low-variable growth environments can help pinpoint genetic targets for improving spring barley NUE. PMID:20308048

  20. Deletion of flbA results in increased secretome complexity and reduced secretion heterogeneity in colonies of Aspergillus niger.

    PubMed

    Krijgsheld, Pauline; Nitsche, Benjamin M; Post, Harm; Levin, Ana M; Müller, Wally H; Heck, Albert J R; Ram, Arthur F J; Altelaar, A F Maarten; Wösten, Han A B

    2013-04-05

    Aspergillus niger is a cell factory for the production of enzymes. This fungus secretes proteins in the central part and at the periphery of the colony. The sporulating zone of the colony overlapped with the nonsecreting subperipheral zone, indicating that sporulation inhibits protein secretion. Indeed, strain ΔflbA that is affected early in the sporulation program secreted proteins throughout the colony. In contrast, the ΔbrlA strain that initiates but not completes sporulation did not show altered spatial secretion. The secretome of 5 concentric zones of xylose-grown ΔflbA colonies was assessed by quantitative proteomics. In total 138 proteins with a signal sequence for secretion were identified in the medium of ΔflbA colonies. Of these, 18 proteins had never been reported to be part of the secretome of A. niger, while 101 proteins had previously not been identified in the culture medium of xylose-grown wild type colonies. Taken together, inactivation of flbA results in spatial changes in secretion and in a more complex secretome. The latter may be explained by the fact that strain ΔflbA has a thinner cell wall compared to the wild type, enabling efficient release of proteins. These results are of interest to improve A. niger as a cell factory.

  1. Carbon reactivation kinetics in GaAs: Its dependence on dopant precursor, doping level, and layer thickness

    NASA Astrophysics Data System (ADS)

    Mimila-Arroyo, J.; Bland, S.; Barbé, M.

    2002-05-01

    The reactivation kinetics of the acceptor behavior of carbon, its dependence on dopant precursors, doping level, layer thickness, and annealing temperature, as well as the behavior of carbon-hydrogen complexes in GaAs grown by metalorganic chemical vapor deposition are studied. Independent of the carbon source, in the "as grown" material, systematically carbon hydrogen complexes are present and the hole concentration is lower than the corresponding carbon concentration. The carbon reactivation kinetics was achieved by ex situ rapid thermal annealing through a series of multistage annealing experiments and assessed at each annealing stage by infrared absorption, hydrogen secondary ion mass spectroscopy profiling, and hole concentration measurements. Carbon reactivation occurs solely by the debonding of hydrogen from the isolated carbon acceptor and its out-diffusion from the sample. The carbon reactivation kinetics can be treated as a first order one with an activation energy, Ea=1.42±0.01 eV, independent of doping precursors, doping level, and layer thickness. The reactivation constant results to decrease as doping level and layer thickness increase. An empirical formula has been obtained that allows one to calculate the reactivation constant as a function of the carbon doping, layer thickness, and annealing temperature, allowing one to determine the optimal carbon reactivation conditions for any C:GaAs layer.

  2. Mössbauer Study and Modeling of Iron Import and Trafficking in Human Jurkat Cells

    PubMed Central

    Jhurry, Nema D.; Chakrabarti, Mrinmoy; McCormick, Sean P.; Gohil, Vishal M.; Lindahl, Paul A.

    2014-01-01

    The Fe content of Jurkat cells grown on transferrin-bound iron (TBI) and FeIII citrate (FC) was characterized using Mössbauer, EPR, and UV-vis spectroscopies, electron microscopy, and ICP-MS. Isolated mitochondria were similarly characterized. Fe-limited cells contained ∼ 100 μM of essential Fe, mainly as mitochondrial Fe and non-mitochondrial nonheme high-spin (NHHS) FeII. Fe-replete cells also contained ferritin-bound Fe and FeIII oxyhydroxide nanoparticles. Only 400 ± 100 Fe ions were loaded per ferritin complex, regardless of the growth medium Fe concentration. Ferritin regulation thus appears more complex than is commonly assumed. The magnetic/structural properties of Jurkat nanoparticles differed from those in yeast mitochondria. They were smaller and may be located in the cytosol. The extent of nanoparticle formation scaled nonlinearly with the concentration of Fe in the medium. Nanoparticle formation was not strongly correlated with ROS damage. Cells could utilize nanoparticle Fe, converting such aggregates into essential Fe forms. Cells grown on galactose rather than glucose respired faster, grew slower, exhibited more ROS damage and generally contained more nanoparticles. Cells grown with TBI rather than FC contained lower Fe concentrations, more ferritin and fewer nanoparticles. Cells in which transferrin receptor expression was increased contained more ferritin Fe. Frataxin-deficient cells contained more nanoparticles than comparable WT cells. Data were analyzed by a chemically-based mathematical model. Although simple, it captured essential features of Fe import, trafficking and regulation. TBI import was highly regulated but FC import was not. Nanoparticle formation was not regulated but the rate was third-order in cytosolic Fe. PMID:24180611

  3. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles.

    PubMed

    Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Günthardt-Goerg, Madeleine S

    2011-01-01

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. The fertilization ability and developmental competence of bovine oocytes grown in vitro

    PubMed Central

    MAKITA, Miho; UEDA, Mayuko; MIYANO, Takashi

    2016-01-01

    In vitro growth culture systems for oocytes are being developed in several mammalian species. In these growth culture systems, in vitro grown oocytes usually have lower blastocyst formation than in vivo grown oocytes after in vitro fertilization. Furthermore, there have been a few reports that investigated the fertilization ability of in vitro grown oocytes in large animals. The purpose of this study was to investigate the fertilization process and developmental competence of bovine oocytes grown in vitro. Oocyte-granulosa cell complexes collected from bovine early antral follicles (0.4−0.7 mm in diameter) were cultured for growth with 17β-estradiol and androstenedione for 14 days and matured in vitro. These oocytes were then inseminated for 6 or 12 h, and further cultured for development up to 8 days in vitro. After growth culture, oocytes grew from 95 µm to around 120 µm and acquired maturation competence (79%). Although fertilization rates of in vitro grown oocytes were low after 6 h of insemination, 34% of in vitro grown oocytes fertilized normally after 12 h of insemination, having two polar bodies and two pronuclei with a sperm tail, and 22% of these oocytes developed into blastocysts after 8 days of culture. The fertilization and blastocyst formation rates were similar to those of in vivo grown oocytes. In addition, blastocyst cell numbers were also similar between in vitro and in vivo grown oocytes. In conclusion, in vitro grown bovine oocytes are similar to in vivo grown oocytes in fertilization ability and can develop into blastocysts. PMID:27151093

  5. The fertilization ability and developmental competence of bovine oocytes grown in vitro.

    PubMed

    Makita, Miho; Ueda, Mayuko; Miyano, Takashi

    2016-08-25

    In vitro growth culture systems for oocytes are being developed in several mammalian species. In these growth culture systems, in vitro grown oocytes usually have lower blastocyst formation than in vivo grown oocytes after in vitro fertilization. Furthermore, there have been a few reports that investigated the fertilization ability of in vitro grown oocytes in large animals. The purpose of this study was to investigate the fertilization process and developmental competence of bovine oocytes grown in vitro. Oocyte-granulosa cell complexes collected from bovine early antral follicles (0.4-0.7 mm in diameter) were cultured for growth with 17β-estradiol and androstenedione for 14 days and matured in vitro. These oocytes were then inseminated for 6 or 12 h, and further cultured for development up to 8 days in vitro. After growth culture, oocytes grew from 95 µm to around 120 µm and acquired maturation competence (79%). Although fertilization rates of in vitro grown oocytes were low after 6 h of insemination, 34% of in vitro grown oocytes fertilized normally after 12 h of insemination, having two polar bodies and two pronuclei with a sperm tail, and 22% of these oocytes developed into blastocysts after 8 days of culture. The fertilization and blastocyst formation rates were similar to those of in vivo grown oocytes. In addition, blastocyst cell numbers were also similar between in vitro and in vivo grown oocytes. In conclusion, in vitro grown bovine oocytes are similar to in vivo grown oocytes in fertilization ability and can develop into blastocysts.

  6. Growth in elevated CO(2) can both increase and decrease photochemistry and photoinhibition of photosynthesis in a predictable manner. Dactylis glomerata grown in two levels of nitrogen nutrition.

    PubMed

    Hymus, G J; Baker, N R; Long, S P

    2001-11-01

    Biochemically based models of C(3) photosynthesis can be used to predict that when photosynthesis is limited by the amount of Rubisco, increasing atmospheric CO(2) partial pressure (pCO(2)) will increase light-saturated linear electron flow through photosystem II (J(t)). This is because the stimulation of electron flow to the photosynthetic carbon reduction cycle (J(c)) will be greater than the competitive suppression of electron flow to the photorespiratory carbon oxidation cycle (J(o)). Where elevated pCO(2) increases J(t), then the ratio of absorbed energy dissipated photochemically to that dissipated non-photochemically will rise. These predictions were tested on Dactylis glomerata grown in fully controlled environments, at either ambient (35 Pa) or elevated (65 Pa) pCO(2), and at two levels of nitrogen nutrition. As was predicted, for D. glomerata grown in high nitrogen, J(t) was significantly higher in plants grown and measured at elevated pCO(2) than for plants grown and measured at ambient pCO(2). This was due to a significant increase in J(c) exceeding any suppression of J(o). This increase in photochemistry at elevated pCO(2) protected against photoinhibition at high light. For plants grown at low nitrogen, J(t) was significantly lower in plants grown and measured at elevated pCO(2) than for plants grown and measured at ambient pCO(2). Elevated pCO(2) again suppressed J(o); however growth in elevated pCO(2) resulted in an acclimatory decrease in leaf Rubisco content that removed any stimulation of J(c). Consistent with decreased photochemistry, for leaves grown at low nitrogen, the recovery from a 3-h photoinhibitory treatment was slower at elevated pCO(2).

  7. Preliminary observations of the effect of solutal convection on crystal morphology

    NASA Technical Reports Server (NTRS)

    Broom, M. Beth H.; Witherow, William K.; Snyder, Robert S.; Carter, Daniel C.

    1988-01-01

    Studies to examine the effect of solutal convection on crystal morphology using sucrose as a model system were initiated. Aspect ratios, defined as the width of the 100-plane-oriented face over the width of the 001-plane-oriented face, were determined for oriented crystals which were grown with either the 001-oriented or the 100-oriented face perpendicular to the convective flow. The dependence of the crystal morphology on orientation is much greater for crystals grown with one face occluded than for crystals grown suspended in solution. Many factors appear to interact in a complex fashion to influence crystal morphology.

  8. UHV-TEM/TED observation of Ag islands grown on Si( 1 1 1 ) 3× 3-Ag surface

    NASA Astrophysics Data System (ADS)

    Oshima, Yoshifumi; Nakade, Hiroyuki; Shigeki, Sinya; Hirayama, Hiroyuki; Takayanagi, Kunio

    2001-11-01

    Growths of Ag islands on Si(1 1 1)3×3-Ag surface at room temperature were observed by UHV transmission electron microscopy and diffraction. The Ag islands grown after six monolayer deposition had neither (1 0 0) nor (1 1 0) orientation, but had two complex epitaxial orientations dominantly. One was striped islands which gave rise to a diffraction pattern commensurate with the 3×3 lattice of the Si(1 1 1) surface. The other was the coagulated islands whose diffraction pattern indicated the Ag(1 -3 4) sheet grown parallel to the Si(1 1 1) surface.

  9. Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis.

    PubMed

    Raman, Babu; Pan, Chongle; Hurst, Gregory B; Rodriguez, Miguel; McKeown, Catherine K; Lankford, Patricia K; Samatova, Nagiza F; Mielenz, Jonathan R

    2009-01-01

    Economic feasibility and sustainability of lignocellulosic ethanol production requires the development of robust microorganisms that can efficiently degrade and convert plant biomass to ethanol. The anaerobic thermophilic bacterium Clostridium thermocellum is a candidate microorganism as it is capable of hydrolyzing cellulose and fermenting the hydrolysis products to ethanol and other metabolites. C. thermocellum achieves efficient cellulose hydrolysis using multiprotein extracellular enzymatic complexes, termed cellulosomes. In this study, we used quantitative proteomics (multidimensional LC-MS/MS and (15)N-metabolic labeling) to measure relative changes in levels of cellulosomal subunit proteins (per CipA scaffoldin basis) when C. thermocellum ATCC 27405 was grown on a variety of carbon sources [dilute-acid pretreated switchgrass, cellobiose, amorphous cellulose, crystalline cellulose (Avicel) and combinations of crystalline cellulose with pectin or xylan or both]. Cellulosome samples isolated from cultures grown on these carbon sources were compared to (15)N labeled cellulosome samples isolated from crystalline cellulose-grown cultures. In total from all samples, proteomic analysis identified 59 dockerin- and 8 cohesin-module containing components, including 16 previously undetected cellulosomal subunits. Many cellulosomal components showed differential protein abundance in the presence of non-cellulose substrates in the growth medium. Cellulosome samples from amorphous cellulose, cellobiose and pretreated switchgrass-grown cultures displayed the most distinct differences in composition as compared to cellulosome samples from crystalline cellulose-grown cultures. While Glycoside Hydrolase Family 9 enzymes showed increased levels in the presence of crystalline cellulose, and pretreated switchgrass, in particular, GH5 enzymes showed increased levels in response to the presence of cellulose in general, amorphous or crystalline. Overall, the quantitative results suggest a coordinated substrate-specific regulation of cellulosomal subunit composition in C. thermocellum to better suit the organism's needs for growth under different conditions. To date, this study provides the most comprehensive comparison of cellulosomal compositional changes in C. thermocellum in response to different carbon sources. Such studies are vital to engineering a strain that is best suited to grow on specific substrates of interest and provide the building blocks for constructing designer cellulosomes with tailored enzyme composition for industrial ethanol production.

  10. A novel conformation of gel grown biologically active cadmium nicotinate

    NASA Astrophysics Data System (ADS)

    Nair, Lekshmi P.; Bijini, B. R.; Divya, R.; Nair, Prabitha B.; Eapen, S. M.; Dileep Kumar, B. S.; Nishanth Kumar, S.; Nair, C. M. K.; Deepa, M.; Rajendra Babu, K.

    2017-11-01

    The elimination of toxic heavy metals by the formation of stable co-ordination compounds with biologically active ligands is applicable in drug designing. A new crystalline complex of cadmium with nicotinic acid is grown at ambient temperature using the single gel diffusion method in which the crystal structure is different from those already reported. Single crystal x-ray diffraction reveals the identity of crystal structure belonging to monoclinic system, P21/c space group with cell dimensions a = 17.220 (2) Å, b = 10.2480 (2) Å, c = 7.229(9) Å, β = 91.829(4)°. Powder x-ray diffraction analysis confirmed the crystallinity of the sample. The unidentate mode of co-ordination between the metal atom and the carboxylate group is supported by the Fourier Transform Infra Red spectral data. Thermal analysis ensures the thermal stability of the complex. Kinetic and thermodynamic parameters are also calculated. The stoichiometry of the complex is confirmed by the elemental analysis. The UV-visible spectral analysis shows the wide transparency window of the complex in the visible region. The band gap of the complex is found to be 3.92 eV. The complex shows excellent antibacterial and antifungal activity.

  11. Cell wall canals formed upon growth of Candida maltosa in the presence of hexadecane are associated with polyphosphates.

    PubMed

    Zvonarev, Anton N; Crowley, David E; Ryazanova, Lubov P; Lichko, Lydia P; Rusakova, Tatiana G; Kulakovskaya, Tatiana V; Dmitriev, Vladimir V

    2017-05-01

    Canals are supramolecular complexes observed in the cell wall of Candida maltosa grown in the presence of hexadecane as a sole carbon source. Such structures were not observed in glucose-grown cells. Microscopic observations of cells stained with diaminobenzidine revealed the presence of oxidative enzymes in the canals. 4΄,6΄-diamino-2-phenylindole staining revealed that a substantial part of cellular polyphosphate was present in the cell wall of cells grown on hexadecane in condition of phosphate limitation. The content and chain length of polyphosphates were higher in hexadecane-grown cells than in glucose grown ones. The treatment of cells with yeast polyphosphatase PPX1 resulted in the decrease of the canal size. These data clearly indicated that polyphosphates are constituents of canals; they might play an important role in the canal structure and functioning. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Steering Dynamics in Complex Education Systems. An Agenda for Empirical Research

    ERIC Educational Resources Information Center

    Theisens, Henno; Hooge, Edith; Waslander, Sietske

    2016-01-01

    Many policy systems and education systems have grown more complex in the last three decades. Power has moved away from central governments in different directions: upwards towards international organisations, sideways towards private institutions and non-governmental organisations and downwards towards local governments and public enterprises such…

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.; Nichols, John A.; Lee, Shinbuhm

    Metal electrodes are a universal element of all electronic devices. Conducting SrRuO 3 (SRO) epitaxial thin films have been extensively used as electrodes in complex-oxide heterostructures due to good lattice mismatches with perovskite substrates. However, when compared to SRO single crystals, SRO thin films have shown reduced conductivity and Curie temperatures (T C), which can lead to higher Joule heating and energy loss in the devices. In this paper, we report that high-quality SRO thin films can be synthesized by controlling the plume dynamics and growth rate of pulsed laser epitaxy (PLE) with real-time optical spectroscopic monitoring. The SRO thinmore » films grown under the kinetically controlled conditions, down to ca. 16 nm in thickness, exhibit both enhanced conductivity and T C as compared to bulk values, due to their improved stoichiometry and a strain-mediated increase of the bandwidth of Ru 4d electrons. Finally, this result provides a direction for enhancing the physical properties of PLE-grown thin films and paves a way to improved device applications.« less

  14. Meeting the demand for crop production: the challenge of yield decline in crops grown in short rotations.

    PubMed

    Bennett, Amanda J; Bending, Gary D; Chandler, David; Hilton, Sally; Mills, Peter

    2012-02-01

    There is a trend world-wide to grow crops in short rotation or in monoculture, particularly in conventional agriculture. This practice is becoming more prevalent due to a range of factors including economic market trends, technological advances, government incentives, and retailer and consumer demands. Land-use intensity will have to increase further in future in order to meet the demands of growing crops for both bioenergy and food production, and long rotations may not be considered viable or practical. However, evidence indicates that crops grown in short rotations or monoculture often suffer from yield decline compared to those grown in longer rotations or for the first time. Numerous factors have been hypothesised as contributing to yield decline, including biotic factors such as plant pathogens, deleterious rhizosphere microorganisms, mycorrhizas acting as pathogens, and allelopathy or autotoxicity of the crop, as well as abiotic factors such as land management practices and nutrient availability. In many cases, soil microorganisms have been implicated either directly or indirectly in yield decline. Although individual factors may be responsible for yield decline in some cases, it is more likely that combinations of factors interact to cause the problem. However, evidence confirming the precise role of these various factors is often lacking in field studies due to the complex nature of cropping systems and the numerous interactions that take place within them. Despite long-term knowledge of the yield-decline phenomenon, there are few tools to counteract it apart from reverting to longer crop rotations or break crops. Alternative cropping and management practices such as double-cropping or inter-cropping, tillage and organic amendments may prove valuable for combating some of the negative effects seen when crops are grown in short rotation. Plant breeding continues to be important, although this does require a specific breeding target to be identified. This review identifies gaps in our understanding of yield decline, particularly with respect to the complex interactions occurring between the different components of agro-ecosystems, which may well influence food security in the 21(st) Century. © 2011 The Authors. Biological Reviews © 2011 Cambridge Philosophical Society.

  15. Inhomogeneities and segregation behavior in strontium—barium niobate fibers grown by laser-heated pedestal growth technique. Part II

    NASA Astrophysics Data System (ADS)

    Erdei, S.; Galambos, L.; Tanaka, I.; Hesselink, L.; Cross, L. E.; Feigelson, R. S.; Ainger, F. W.; Kojima, H.

    1996-10-01

    Inhomogeneities in Ce-doped and undoped fibers grown by laser-heated pedestal growth (LHPG) along the c- or a- axis were investigated by two-dimensional scanning electron microprobe analysis (SEPMA). SEPMA data indicated that these cores are primarily connected with the source rod compositions utilized and the convection characteristics of the LHPG technique. Ba enrichment and Sr decrease were primarily detected in the cores and qualitatively described in terms of the composition-control mechanism of LHPG, the complex-segregation and a modified Burton—Prim—Slichter (BPS) equation. Certain aspects of defect structure as a complex congruency related phenomenon are also discussed in the paper giving a more complete interpretation of the origin of cores in SBN fibers.

  16. Transport of EDTA into cells of the EDTA-degrading bacterial strain DSM 9103.

    PubMed

    Witschel, M; Egli, T; Zehnder, A J; Wehrli, E; Spycher, M

    1999-04-01

    In the bacterial strain DSM 9103, which is able to grow with the complexing agent EDTA as the sole source of carbon, nitrogen and energy, the transport of EDTA into whole cells was investigated. EDTA uptake was found to be dependent on speciation: free EDTA and metal-EDTA complexes with low stability constants were readily taken up, whereas those with stability constants higher than 1016 were not transported. In EDTA-grown cells, initial transport rates of CaEDTA showed substrate-saturation kinetics with a high apparent affinity for CaEDTA (affinity constant Kt= 0.39 microM). Several uncouplers had an inhibitory effect on CaEDTA transport. CaEDTA uptake was also significantly reduced in the presence of an inhibitor of ATPase and the ionophore nigericin, which dissipates the proton gradient. Valinomycin, however, which affects the electrical potential, had little effect on uptake, indicating that EDTA transport is probably driven by the proton gradient. Of various structurally related compounds tested only Ca2+-complexed diethylenetriaminepentaacetate (CaDTPA) competitively inhibited CaEDTA transport. Uptake in fumarate-grown cells was low compared to that measured in EDTA-grown bacteria. These results strongly suggest that the first step in EDTA degradation by strain DSM 9103 consists of transport by an inducible energy-dependent carrier. Uptake experiments with 45Ca2+ in the presence and absence of EDTA indicated that Ca2+ is transported together with EDTA into the cells. In addition, these transport studies and electron-dispersive X-ray analysis of electron-dense intracellular bodies present in EDTA-grown cells suggest that two mechanisms acting simultaneously allow the cells to cope with the large amounts of metal ions taken up together with EDTA. In one mechanism the metal ions are excreted, in the other they are inactivated intracellularly in polyphosphate granules.

  17. Isolation of a carbon disulfide utilizing Thiomonas sp. and its application in a biotrickling filter.

    PubMed

    Pol, Arjan; van der Drift, Chris; Op den Camp, Huub J M

    2007-02-01

    The carbon disulfide (CS2)-oxidizing bacterium Thiomonas sp. WZW was enriched and isolated using activated sewage sludge as inoculum. Growth of Thiomonas sp. WZW was observed on CS2, thiosulfate, dimethylsulfide (DMS), dimethyldisulfide (DMDS), and H2S. No growth occurred on dimethylsulfoxide, methanol, acetate, and on complex media with glucose, yeast extract, or tryptone. DMDS-grown cells respired CS2, DMS, and DMDS, while thiosulfate-grown cells did not respire CS2. Chemostat cultures growing on thiosulfate could be rapidly adapted to growth on CS2. Growth was observed between pH 6 and 8. The Ks values for CS2, thiosulfate, and sulfide of CS2-grown cells were between 5 and 10 microM. CS2 was inhibitory above 0.3 mM. A lab-scale biotrickling filter with lava stone as carrier material for treatment of CS2-polluted air was inoculated with Thiomonas sp. WZW. A rapid start up (95% removal in 1 week) was obtained at an inlet CS2 concentration of 2 cmol l(-1) and an initial space velocity (SV) of 54 h(-1). Subsequent thiosulfate addition for a week during start up increased the removal to 99%. The step-wise increase of SV to 130 h(-1) and a CS2 concentration to 3 micromol l(-1) resulted in a stable performance with a removal efficiency of 95%. Feeding mixtures of volatile sulfur compounds showed simultaneous conversion of H2S, CS2, dimethyldisulfide (DMDS), and DMS, with a preference in this order.

  18. Atomic layer deposition of indium oxide thin film from a liquid indium complex containing 1-dimethylamino-2-methyl-2-propoxy ligands

    NASA Astrophysics Data System (ADS)

    Han, Jeong Hwan; Jung, Eun Ae; Kim, Hyo Yeon; Kim, Da Hye; Park, Bo Keun; Park, Jin-Seong; Son, Seung Uk; Chung, Taek-Mo

    2016-10-01

    In2O3 thin films were grown from a newly developed, liquid, homoleptic, In-based complex, tris(1-dimethylamino-2-methyl-2-propoxy)indium [In(dmamp)3], and O3 by atomic layer deposition (ALD) at growth temperatures of 150-200 °C. In(dmamp)3 exhibited single-step evaporation with negligible residue and excellent thermal stability between 30 and 250 °C. The self-limiting surface reaction of In2O3 during ALD was demonstrated by varying the In(dmamp)3 and O3 pulse lengths, with a growth rate of 0.027 nm/cycle achieved at 200 °C. The In2O3 films grown at temperatures over 175 °C exhibited negligible concentrations of impurities, whereas that grown below 175 °C had concentrations of residual C of 6-8 at.%. Glancing angle X-ray diffraction revealed that the In2O3 films were polycrystalline in nature when the deposition temperature was greater than 200 °C. The In2O3 films grown at 150-200 °C exhibited carrier concentrations of 1.5 × 1018-6.6 × 1019 cm-3, resistivities of 15.1-2 × 10-3 Ω cm, and Hall mobilities of 0.8-42 cm2/(V s).

  19. Teaching the Dynamics of Framing Competitions

    ERIC Educational Resources Information Center

    Rinke, Eike Mark

    2012-01-01

    Framing theory is one of the most thriving and complex fields of communication theory, and as such it has grown to be an integral part of many political communication, public opinion, and communication theory courses. Part of the complexity stems from scholars' efforts to develop accounts of framing processes that are closer to the "real world" of…

  20. Potential for using Fusarium to control Fusarium disease in forest nurseries

    Treesearch

    Robert L. James; R. Kasten Dumroese

    2007-01-01

    The taxon Fusarium oxysporum contains a complex of fungi that are very important pathogens of many plant species worldwide, including seedlings grown in forest nurseries. All members of this complex appear very similar morphologically, and can often be differentiated only on the basis of genetic analyses. Strains of F. oxysporum...

  1. Responses of C4 grasses to atmospheric CO2 enrichment : I. Effect of irradiance.

    PubMed

    Sionit, Nasser; Patterson, David T

    1984-12-01

    The growth and photosynethetic responses to atmospheric CO 2 enrichment of 4 species of C 4 grasses grown at two levels of irradiance were studied. We sought to determine whether CO 2 enrichment would yield proportionally greater growth enhancement in the C 4 grasses when they were grown at low irradiance than when grown at high irradiance. The species studied were Echinochloa crusgalli, Digitaria sanguinalis, Eleusine indica, and Setaria faberi. Plants were grown in controlled environment chambers at 350, 675 and 1,000 μl 1 -1 CO 2 and 1,000 or 150 μmol m -2 s -1 photosynthetic photon flux density (PPFD). An increase in CO 2 concentration and PPFD significantly affected net photosynthesis and total biomass production of all plants. Plants grown at low PPFD had significantly lower rates of photosynthesis, produced less biomass, and had reduced responses to increases in CO 2 . Plants grown in CO 2 -enriched atmosphere had lower photosynthetic capacity relative to the low CO 2 grown plants when exposed to lower CO 2 concentration at the time of measurement, but had greater rate of photosynthesis when exposed to increasing PPFD. The light level under which the plants were growing did not influence the CO 2 compensation point for photosynthesis.

  2. Applying a cloud computing approach to storage architectures for spacecraft

    NASA Astrophysics Data System (ADS)

    Baldor, Sue A.; Quiroz, Carlos; Wood, Paul

    As sensor technologies, processor speeds, and memory densities increase, spacecraft command, control, processing, and data storage systems have grown in complexity to take advantage of these improvements and expand the possible missions of spacecraft. Spacecraft systems engineers are increasingly looking for novel ways to address this growth in complexity and mitigate associated risks. Looking to conventional computing, many solutions have been executed to solve both the problem of complexity and heterogeneity in systems. In particular, the cloud-based paradigm provides a solution for distributing applications and storage capabilities across multiple platforms. In this paper, we propose utilizing a cloud-like architecture to provide a scalable mechanism for providing mass storage in spacecraft networks that can be reused on multiple spacecraft systems. By presenting a consistent interface to applications and devices that request data to be stored, complex systems designed by multiple organizations may be more readily integrated. Behind the abstraction, the cloud storage capability would manage wear-leveling, power consumption, and other attributes related to the physical memory devices, critical components in any mass storage solution for spacecraft. Our approach employs SpaceWire networks and SpaceWire-capable devices, although the concept could easily be extended to non-heterogeneous networks consisting of multiple spacecraft and potentially the ground segment.

  3. Effect of lamp type and temperature on development, carbon partitioning and yield of soybean

    NASA Astrophysics Data System (ADS)

    Dougher, T. A. O.; Bugbee, B.

    1997-01-01

    Soybeans grown in controlled environments are commonly taller than field-grown plants. In controlled environments, including liquid hydroponics, height of the dwarf cultivar ``Hoyt'' was reduced from 46 to 33 cm when plants were grown under metal halide lamps compared to high pressure sodium lamps at the same photosynthetic photon flux. Metal halide lamps reduced total biomass 14% but did not significantly reduce seed yield. Neither increasing temperature nor altering the difference between day/night temperature affected plant height. Increasing temperature from 21 to 27 degC increased yield 32%. High temperature significantly increased carbon partitioning to stems and increased harvest index.

  4. Complex Parts, Complex Data: Why You Need to Understand What Radiation Single Event Testing Data Does and Doesn't Show and the Implications Thereof

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.; Berg, Melanie D.

    2015-01-01

    Electronic parts (integrated circuits) have grown in complexity such that determining all failure modes and risks from single particle event testing is impossible. In this presentation, the authors will present why this is so and provide some realism on what this means. Its all about understanding actual risks and not making assumptions.

  5. Proximate nutritional composition of CELSS crops grown at different CO2 partial pressures

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.; Knott, W. M.; Berry, W. L.

    1994-01-01

    Two Controlled Ecological Life Support System (CELSS) candidate crops, soybean (Glycine max) and potato (Solanum tuberosum), were grown hydroponically in controlled environments maintained at carbon dioxide (CO2) partial pressures ranging from 0.05 to 1.00 kPa (500 to 10,000 ppm at 101 kPa atmospheric pressure). Plants were harvested at maturity (90 days for soybean and 105 days for potato) and all tissues analyzed for proximate nutritional composition (i.e. protein, fat, carbohydrate, crude fiber, and ash content). Soybean seed ash and crude fiber were higher and carbohydrate was lower than values reported for field-grown seed. Potato tubers showed little difference from field-grown tubers. Crude fiber of soybean stems and leaves increased with increased CO2, as did soybean leaf protein (total nitrogen). Potato leaf and stem (combined) protein levels also increased with increased CO2, while leaf and stem carbohydrates decreased. Values for leaf and stem protein and ash were higher than values generally reported for field-grown plants for both species. Results suggest that CO2 partial pressure should have little influence on proximate composition of potato tubers or soybean seed, but that high ash and protein levels might be expected from leaves and stems of crops grown in controlled environments of a CELSS.

  6. ZrO{sub 2}-ZnO composite thin films for humidity sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velumani, M., E-mail: velumanimohan@gmail.com; Sivacoumar, R.; Alex, Z. C.

    2016-05-23

    ZrO{sub 2}-ZnO composite thin films were grown by reactive DC magnetron sputtering. X-ray diffraction studies reveal the composite nature of the films with separate ZnO and ZrO{sub 2} phase. Scanning electron microscopy studies confirm the nanocrystalline structure of the films. The films were studied for their impedometric relative humidity (RH) sensing characteristics. The complex impedance plot was fitted with a standard equivalent circuit consisting of an inter-granular resistance and a capacitance in parallel. The DC resistance was found to be decreasing with increase in RH.

  7. Optical polarization: plenty of room for surprise

    NASA Astrophysics Data System (ADS)

    Chenault, David

    2012-10-01

    Solutions to difficult problems in complex environments frequently require methodical approaches and detailed research plans. Fortunately, there is still room for serendipity in disciplines that are relatively mature and well understood. As a case in point, optical sensors that exploit polarized light have matured greatly and the discipline of optical polarization has grown substantially in scope and applications over the last ten years. In spite of this increased understanding, polarization signatures are frequently not well understood. A good example is polarization in the animal kingdom. The potential for polarimetric monitoring of moose populations, and other applications, will be discussed.

  8. Dark respiration and carbohydrate status of two forest species grown in elevated carbon dioxide. [Liriodendron tulipifera L. ; Quercus alba L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wullschleger, S.D.; Norby, R.J.; Hendrix, D.L.

    1991-05-01

    Carbon assimilation is often increased by CO{sub 2} enrichment, but the response of dark respiration and carbohydrate metabolism to elevated CO{sub 2} is less well documented. The authors examined the diurnal response of these two processes in yellow-poplar (Liriodendron tulipifera L.) and white oak (Quercus alba L.) seedling exposed to CO{sub 2} enrichment under field conditions. One-year-old seedlings of yellow-poplar and white oak were grown in open-top chambers and exposed to ambient, +150 {mu}mol mol{sup {minus}1}, or +300 {mu}mol mol{sup {minus}1} CO{sub 2} concentrations. After 24 weeks, mature leaves of yellow-poplar and white oak seedlings grown at high CO{sub 2}more » showed a 37% and 52% reduction in nighttime respiration, respectively. Morning starch levels for yellow-poplar and white oak grown at +300 {mu}mol mol{sup {minus}1} increased 72% and 40%, respectively, compared to ambient-grown plants. Yellow-poplar and white oak seedlings grown at high CO{sub 2} contained 17% and 27% less morning sucrose, respectively than did plants grown at ambient CO{sub 2} concentration. Starch accumulation and the subsequent depletion of sucrose for plants grown under CO{sub 2} enrichment, resulted in a pronounced rise in the starch/sucrose ratio with increasing CO{sub 2} concentration. The diurnal pattern of dark respiration suggested that a relationship with carbohydrate status might exist.« less

  9. Indirect Redox Transformations of Iron, Copper, and Chromium Catalyzed by Extremely Acidophilic Bacteria

    PubMed Central

    Johnson, D. Barrie; Hedrich, Sabrina; Pakostova, Eva

    2017-01-01

    Experiments were carried out to examine redox transformations of copper and chromium by acidophilic bacteria (Acidithiobacillus, Leptospirillum, and Acidiphilium), and also of iron (III) reduction by Acidithiobacillus spp. under aerobic conditions. Reduction of iron (III) was found with all five species of Acidithiobacillus tested, grown aerobically on elemental sulfur. Cultures maintained at pH 1.0 for protracted periods displayed increasing propensity for aerobic iron (III) reduction, which was observed with cell-free culture liquors as well as those containing bacteria. At. caldus grown on hydrogen also reduced iron (III) under aerobic conditions, confirming that the unknown metabolite(s) responsible for iron (III) reduction were not (exclusively) sulfur intermediates. Reduction of copper (II) by aerobic cultures of sulfur-grown Acidithiobacillus spp. showed similar trends to iron (III) reduction in being more pronounced as culture pH declined, and occurring in both the presence and absence of cells. Cultures of Acidithiobacillus grown anaerobically on hydrogen only reduced copper (II) when iron (III) (which was also reduced) was also included; identical results were found with Acidiphilium cryptum grown micro-aerobically on glucose. Harvested biomass of hydrogen-grown At. ferridurans oxidized iron (II) but not copper (I), and copper (I) was only oxidized by growing cultures of Acidithiobacillus spp. when iron (II) was also included. The data confirmed that oxidation and reduction of copper were both mediated by acidophilic bacteria indirectly, via iron (II) and iron (III). No oxidation of chromium (III) by acidophilic bacteria was observed even when, in the case of Leptospirillum spp., the redox potential of oxidized cultures exceeded +900 mV. Cultures of At. ferridurans and A. cryptum reduced chromium (VI), though only when iron (III) was also present, confirming an indirect mechanism and contradicting an earlier report of direct chromium reduction by A. cryptum. Measurements of redox potentials of iron, copper and chromium couples in acidic, sulfate-containing liquors showed that these differed from situations where metals are not complexed by inorganic ligands, and supported the current observations of indirect copper oxido-reduction and chromium reduction mediated by acidophilic bacteria. The implications of these results for both industrial applications of acidophiles and for exobiology are discussed. PMID:28239375

  10. Measurement of second order susceptibilities of GaN and AlGaN

    NASA Astrophysics Data System (ADS)

    Sanford, N. A.; Davydov, A. V.; Tsvetkov, D. V.; Dmitriev, A. V.; Keller, S.; Mishra, U. K.; DenBaars, S. P.; Park, S. S.; Han, J. Y.; Molnar, R. J.

    2005-03-01

    Rotational Maker fringes, scaled with respect to χ11(2) of crystalline quartz, were used to determine the second order susceptibilities χ31(2) and χ33(2) for samples of thin AlxGa1-xN films, a thicker GaN film, and a free-standing GaN platelets. The pump wavelength was 1064nm. The AlxGa1-xN samples, ranging in thickness from roughly 0.5to4.4μm, were grown by metalorganic chemical vapor deposition (MOCVD) and hydride vapor-phase epitaxy (HVPE) on (0001) sapphire substrates. The Al mole fractions x were 0, 0.419, 0.507, 0.618, 0.660, and 0.666, for the MOCVD-grown samples, and x =0, 0.279, 0.363, and 0.593 for the HVPE-grown samples. An additional HVPE-grown GaN sample ˜70μm thick was also examined. The free-standing bulk GaN platelets consisted of an HVPE grown film ˜226μm thick removed from its growth substrate, and a crystal ˜160μm thick grown by high-pressure techniques. For the AlxGa1-xN samples, the magnitudes of χ31(2) and χ33(2) decrease roughly linearly with increasing x and extrapolate to ˜0 for x =1. Furthermore, the constraint expected for a perfect wurtzite structure, namely χ33(2)=-2χ31(2), was seldom observed, and the samples with x =0.660 and x =0.666 showed χ31(2) and χ33(2) having the same sign. These results are consistent with the theoretical studies of nonlinear susceptibilities for AlN and GaN performed by Chen et al. [Appl. Phys. Lett. 66, 1129 (1995)]. The thicker bulk GaN samples displayed a complex superposition of high- and low-frequency Maker fringes due to the multiple-pass interference of the pump and second-harmonic generation beams, and the nonlinear coefficients were approximately consistent with those measured for the thin-film GaN sample.

  11. Excitonic complexes in single zinc-blende GaN/AlN quantum dots grown by droplet epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sergent, S.; Kako, S.; Bürger, M.

    2014-10-06

    We study by microphotoluminescence the optical properties of single zinc-blende GaN/AlN quantum dots grown by droplet epitaxy. We show evidences of both excitonic and multiexcitonic recombinations in individual quantum dots with radiative lifetimes shorter than 287 ± 8 ps. Owing to large band offsets and a large exciton binding energy, the excitonic recombinations of single zinc-blende GaN/AlN quantum dots can be observed up to 300 K.

  12. Composition of Citrus sinensis (L.) Osbeck cv «Maltaise demi-sanguine» juice. A comparison between organic and conventional farming.

    PubMed

    Letaief, Hend; Zemni, Hassen; Mliki, Ahmed; Chebil, Samir

    2016-03-01

    Juices from conventionally and organically grown Citrus sinensis (L.) Osbeck cv. Maltaise demi-sanguine blood orange were investigated for quality parameters and antioxidant capacity. This blood orange variety is particularly rich in linoleic, linolenic acids, vitamin C and phenolic compounds. The quantitative determination of these compounds in cv. Maltaise demi-sanguine juice produced under conventional and organic agricultural practices revealed significant differences. The organically grown fruits contained more hesperidin and total fatty acids amounts as well as a higher sugar content and a lower acidity. Conventionally-grown fruit was found to have an increase in antioxidant capacity. In addition to having higher antioxidant activity conventionally-grown fruit had an observed increase in the concentration of phenolic acids and most flavonoids. The results of this study indicated that organically-grown Maltaise demi-sanguine juice contained an increased concentration of hesperidin which has been observed to possess biological activities associated with a healthy life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Fabrication and characterization of complex oxide RENiO3/LaAlO3 superlattices

    NASA Astrophysics Data System (ADS)

    Kareev, M.; Freeland, J. W.; Liu, J.; Kirby, B.; Keimer, B.; Chakhalian, J.

    2008-03-01

    Nowadays there has been growing interest to synthesis of atomically thin complex oxide superlattices which can result in novel electronic and magnetic properties at the interface. Here we report on digital synthesis of single unit cell nickel based heterostructures of RENiO3/LaAlO3 (RE = La, Nd and Pr) superlattices on SrTiO3 and LaAlO3 by laser MBE. RHEED analysis, grazing angle XRD and AFM imaging have confirmed the high quality of the epitaxially grown superlattices. The magnetic and electronic properties of the superlattices have been elucidated by polarized X-ray spectroscopies, which show a non-trivial evolution of magnetism and charge of the LNO layer with increasing LNO layer thickness. The work has been supported by U.S. DOD-ARO under Contract No. 0402-17291.

  14. Novel scanning procedure enabling the vectorization of entire rhizotron-grown root systems

    PubMed Central

    2013-01-01

    This paper presents an original spit-and-combine imaging procedure that enables the complete vectorization of complex root systems grown in rhizotrons. The general principle of the method is to (1) separate the root system into a small number of large pieces to reduce root overlap, (2) scan these pieces one by one, (3) analyze separate images with a root tracing software and (4) combine all tracings into a single vectorized root system. This method generates a rich dataset containing morphological, topological and geometrical information of entire root systems grown in rhizotrons. The utility of the method is illustrated with a detailed architectural analysis of a 20-day old maize root system, coupled with a spatial analysis of water uptake patterns. PMID:23286457

  15. Novel scanning procedure enabling the vectorization of entire rhizotron-grown root systems.

    PubMed

    Lobet, Guillaume; Draye, Xavier

    2013-01-04

    : This paper presents an original spit-and-combine imaging procedure that enables the complete vectorization of complex root systems grown in rhizotrons. The general principle of the method is to (1) separate the root system into a small number of large pieces to reduce root overlap, (2) scan these pieces one by one, (3) analyze separate images with a root tracing software and (4) combine all tracings into a single vectorized root system. This method generates a rich dataset containing morphological, topological and geometrical information of entire root systems grown in rhizotrons. The utility of the method is illustrated with a detailed architectural analysis of a 20-day old maize root system, coupled with a spatial analysis of water uptake patterns.

  16. Influence of growth temperature on properties of zirconium dioxide films grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Kukli, Kaupo; Ritala, Mikko; Aarik, Jaan; Uustare, Teet; Leskela, Markku

    2002-08-01

    ZrO2 films were grown by atomic layer deposition from ZrCl4 and H2O or a mixture of H2O and H2O2 on Si(100) substrates in the temperature range of 180-600 degC. The films were evaluated in the as-deposited state, in order to follow the effect of deposition temperature on the film quality. The rate of crystal growth increased and the content of residual impurities decreased with increasing temperature. The zirconium-to-oxygen atomic ratio, determined by ion-beam analysis, corresponded to the stoichiometric dioxide regardless of the growth temperature. The effective permittivity of ZrO2 in Al/ZrO2/Si capacitor structures increased from 13-15 in the films grown at 180 degC to 19 in the films grown at 300-600 degC, measured at 100 kHz. The permittivity was relatively high in the crystallized films, compared to the amorphous ones, but rather insensitive to the crystal structure. The permittivity was higher in the films grown using water. The leakage current density tended to be lower and the breakdown field higher in the films grown using hydrogen peroxide.

  17. One in a Million Given the Accident: Assuring Nuclear Weapon Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jason

    2015-08-25

    Since the introduction of nuclear weapons, there has not been a single instance of accidental or unauthorized nuclear detonation, but there have been numerous accidents and “close calls.” As the understanding of these environments has increased, the need for a robust nuclear weapon safety philosophy has grown. This paper describes some of the methods used by the Nuclear Weapon Complex today to assure nuclear weapon safety, including testing, modeling, analysis, and design features. Lastly, it also reviews safety’s continued role in the future and examines how nuclear safety’s present maturity can play a role in strengthening security and other areasmore » and how increased coordination can improve safety and reduce long-term cost.« less

  18. Toward self-organization and complex matter.

    PubMed

    Lehn, Jean-Marie

    2002-03-29

    Beyond molecular chemistry based on the covalent bond, supramolecular chemistry aims at developing highly complex chemical systems from components interacting through noncovalent intermolecular forces. Over the past quarter century, supramolecular chemistry has grown into a major field and has fueled numerous developments at the interfaces with biology and physics. Some of the conceptual advances and future challenges are profiled here.

  19. Wildland fire management policy: Learning from the past and present and responding to future challenges

    Treesearch

    Tom Zimmerman

    2009-01-01

    Since its origin as a defined functional activity, wildland fire management has been the natural resource management program with the highest risk, complexity, and greatest potential for serious negative outcomes. During this time, this program has continually grown in temporal and spatial extent, operational complexity, ecological significance, social, economic, and...

  20. Multi-cereal molecular surveys suggest host preference among members of the Fusarium graminearum species complex from southern Brazil

    USDA-ARS?s Scientific Manuscript database

    This study aimed to assess the extent and distribution of members of the Fusarium graminearum species complex (FGSC) associated with cereals grown in southern Brazil between 2009 and 2012. The total collection comprised 1,127 isolates, which were divided into four collections obtained from: 1) disea...

  1. Salinity alters the protein composition of rice endosperm and the physicochemical properties of rice flour.

    PubMed

    Baxter, Graeme; Zhao, Jian; Blanchard, Christopher

    2011-09-01

    Salinity is one of the major threats to production of rice and other agricultural crops worldwide. Although numerous studies have shown that salinity can severely reduce rice yield, little is known about its impact on the chemical composition, processing and sensory characteristics of rice. The objective of the current study was to investigate the effect of salinity on the pasting and textural properties of rice flour as well as on the protein content and composition of rice endosperm. Rice grown under saline conditions had significantly lower yields but substantially higher protein content. The increase in protein content was mainly attributed to increases in the amount of glutelin, with lesser contributions from albumin. Salinity also altered the relative proportions of the individual peptides within the glutelin fraction. Flours obtained from rice grown under saline conditions showed significantly higher pasting temperatures, but lower peak and breakdown viscosities. Rice gels prepared from the flour showed significantly higher hardness and adhesiveness values, compared to the freshwater controls. Salinity can significantly affect the pasting and textural characteristics of rice flour. Although some of the effects could be attributed to changes in protein content of the rice flour, especially the increased glutelin level, the impact of salinity on the physicochemical properties of rice is rather complex and may involve the interrelated effects of other rice components such as starch and lipids. Copyright © 2011 Society of Chemical Industry.

  2. Growth and yield responses of field-grown sweetpotato to elevated carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, P.K.; Hileman, D.R.; Ghosh, P.P.

    1996-09-01

    Root crops are important in developing countries, where food supplies are frequently marginal. Increases in atmospheric CO{sub 2} usually lead to increases in plant growth and yield, but little is known about the response of root crops to CO{sub 2} enrichment under field conditions. This experiment was conducted to investigate the effects of CO{sub 2} enrichment on growth and yield of field-grown sweetpotato. Plants were grown in open-top chambers in the field at four CO{sub 2} levels ranging from 354 (ambient) to 665 {mu}mol mol{sup {minus}1} in two growing seasons. Shoot growth was not affected significantly by elevated CO{sub 2}.more » Yield of storage roots increased 46 and 75% at the highest CO{sub 2} level in the 2 yr. The yield enhancement occurred through increases in the number of storage roots in the second year. Storage-root/shoot ratios increased 44% and leaf nitrogen concentrations decreased by 24% at the highest CO{sub 2} level. A comparison of plants grown in the open field to plants grown in open-top chambers at ambient CO{sub 2} concentrations indicated that open-top chambers reduced shoot growth in the first year and storage-root yield in both years. These results are consistent with the majority of CO{sub 2}-enrichment studies done on pot-grown sweetpotato. 37 refs., 2 figs., 5 tabs.« less

  3. Growth and photosynthetic responses of wheat plants grown in space

    NASA Technical Reports Server (NTRS)

    Tripathy, B. C.; Brown, C. S.; Levine, H. G.; Krikorian, A. D.

    1996-01-01

    Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment.

  4. Synthesis aspects, structural, spectroscopic, antimicrobial and room temperature ferromagnetism of zinc iodide complex with Schiff based ligand

    NASA Astrophysics Data System (ADS)

    Shakila, K.; Kalainathan, S.

    2015-01-01

    In this paper, we report the successful growth of complex compound of zinc iodide with thiocarbamide by slow evaporation method. The single crystal XRD study reveals that the crystal belongs to monoclinic system with centrosymmetric space group and powder XRD analysis shows that the perfect crystalline nature of the crystal. The presence of functional group and element were confirmed from FT-IR and EDAX analysis. Optical absorbance of the grown crystal was studied by UV-Vis spectrophotometer. The optical constants were calculated from the optical absorbance data such as refractive index (n), extinction coefficient (K) and reflectance (R). The optical band gap (Eg) of thiocarbamide zinc iodide crystal is 4.22 eV. The magnetic properties of grown crystal have been determined by Vibrating Sample Magnetometry (VSM). Room temperature magnetization revealed a ferromagnetic behaviour for the grown crystal. The antibacterial and antifungal activities of the title compound were performed by well diffusion method and MIC method against the standard bacteria like Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and against fungus like Aspergillus niger, Rhizopus sps and Penicillium sps. Thermal behaviour of the crystal has been investigated using thermogravimetric analysis (TGA) and differential thermal analysis (DTA).

  5. A kinetic model for stress generation in thin films grown from energetic vapor fluxes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chason, E.; Karlson, M.; Colin, J. J.

    We have developed a kinetic model for residual stress generation in thin films grown from energetic vapor fluxes, encountered, e.g., during sputter deposition. The new analytical model considers sub-surface point defects created by atomic peening, along with processes treated in already existing stress models for non-energetic deposition, i.e., thermally activated diffusion processes at the surface and the grain boundary. According to the new model, ballistically induced sub-surface defects can get incorporated as excess atoms at the grain boundary, remain trapped in the bulk, or annihilate at the free surface, resulting in a complex dependence of the steady-state stress on themore » grain size, the growth rate, as well as the energetics of the incoming particle flux. We compare calculations from the model with in situ stress measurements performed on a series of Mo films sputter-deposited at different conditions and having different grain sizes. The model is able to reproduce the observed increase of compressive stress with increasing growth rate, behavior that is the opposite of what is typically seen under non-energetic growth conditions. On a grander scale, this study is a step towards obtaining a comprehensive understanding of stress generation and evolution in vapor deposited polycrystalline thin films.« less

  6. EFFECT OF TEMPERATURE ON THE COMPOSITION OF FATTY ACIDS IN ESCHERICHIA COLI

    PubMed Central

    Marr, Allen G.; Ingraham, John L.

    1962-01-01

    Marr, Allen G. (University of California, Davis) and John L. Ingraham. Effect of temperature on composition of fatty acids in Escherichia coli. J. Bacteriol. 84:1260–1267. 1962.—Variations in the temperature of growth and in the composition of the medium alter the proportions of individual fatty acids in the lipids of Escherichia coli. As the temperature of growth is lowered, the proportion of unsaturated fatty acids (hexadecenoic and octadecenoic acids) increases. The increase in content of unsaturated acids with a decrease in temperature of growth occurs in both minimal and complex media. Cells harvested in the stationary phase contained large amounts of cyclopropane fatty acids (methylenehexadecanoic and methylene octadecanoic acids) in comparison with cells harvested during exponential growth. Cells grown in a chemostat, limited by the concentration of ammonium salts, show a much higher content of saturated fatty acids (principally palmitic acid) than do cells harvested from an exponentially-growing batch culture in the same medium. Cells grown in a chemostat, limited by the concentration of glucose, show a slightly higher content of unsaturated fatty acids than cells from the corresponding batch culture. The results do not indicate a direct relation between fatty acid composition and minimal growth temperature. PMID:16561982

  7. The Question of Impurities in Macromolecule Crystal Quality Improvement in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matthew; Cassanto, John M.

    2000-01-01

    While macromolecule impurities may affect crystal size and morphology the over-riding question is how do macromolecule impurities effect crystal X-ray quality and diffraction resolution. In the case of chicken egg white lysozyme previous researchers have reported that crystals grown in the presence of ovalbumin, ovotransferrin, and turkey egg white lysozyme show no difference in diffraction resolution compared to those grown in pure solutions. One impurity however, a naturally occurring lysozyme dimer, does negatively impact the X-ray crystal properties. For this impurity it has been reported that crystal quality improvement in microgravity may be due to improved impurity partitioning during crystallization. In this study we have examined the incorporation of the dimer into lysozyme crystals, both on the ground and in microgravity experiments, and have performed detailed X-ray analysis of the crystals using a new technique for finely probing the mosaicity of the crystal at the Stanford Synchrotron Radiation Laboratory. Dimer partitioning was not significantly different in microgravity compared to the ground based experiments, although it is significantly better than that previously reported in microgravity. Mosaicity analysis of pure crystals, 1422 indexed reflections (microgravity) and 752 indexed reflections (ground), gave average results of 0.0066 and 0.0092 degrees (FWHM) respectively. The microgravity crystals also provided an increased signal to noise. Dimer incorporation increased the average mosaicity in microgravity but not on the ground. However, dimer incorporation did greatly reduce the resolution limit in both ground and microgravity grown crystals. The data is being treated anisotropically to explore these effects. These results indicate that impurity effects in microgravity are complex and that the conditions or techniques employed may greatly affect the role of impurities.

  8. Dielectric response of crystalline tris(acetylacetonato)cobalt(III) films grown on Si substrate for low- k dielectric applications

    NASA Astrophysics Data System (ADS)

    Dakhel, A. A.; Ali-Mohamed, A. Y.

    2008-01-01

    Thin films of the complex tris(acetylacetonato)cobalt(III) [abb. Co(acac) 3] were deposited in vacuum on glass and p-Si substrates for optical and dielectric studies. The samples were characterised by X-ray diffraction and fluorescence methods as well as optical absorption spectroscopy. The prepared films show a polycrystalline of monoclinic P2 1/ c structure. The optical absorption spectrum of the prepared film was not exactly fit to that of the molecular one. The energy of the optical absorption onset of the Co(acac) 3 film was calculated by using usual solid-state methods. For electrical measurements on the complex as insulator, samples in the form of metal-insulator-semiconductor (MIS) structure were prepared and characterised by measurement of the capacitance as a function of gate voltage at 1 MHz. The frequency dependence of the complex dielectric constant of the complex was studied in the frequency range (1-1000 kHz) in the temperature range (294-323 K). The experimental results were analysed in the framework of Debye single relaxation model. Generally, the present study shows that a film of complex Co(acac) 3 grown on Si substrate is a promising candidate for low- k dielectric applications, it displays low- k value around 1.7 at high frequencies.

  9. Spectroscopic studies of two spectral variants of light-harvesting complex 2 (LH2) from the photosynthetic purple sulfur bacterium Allochromatium vinosum.

    PubMed

    Niedzwiedzki, Dariusz M; Bina, David; Picken, Nichola; Honkanen, Suvi; Blankenship, Robert E; Holten, Dewey; Cogdell, Richard J

    2012-09-01

    Two spectral forms of the peripheral light-harvesting complex (LH2) from the purple sulfur photosynthetic bacterium Allochromatium vinosum were purified and their photophysical properties characterized. The complexes contain bacteriochlorophyll a (BChl a) and multiple species of carotenoids. The composition of carotenoids depends on the light conditions applied during growth of the cultures. In addition, LH2 grown under high light has a noticeable split of the B800 absorption band. The influence of the change of carotenoid distribution as well as the spectral change of the excitonic absorption of the bacteriochlorophylls on the light-harvesting ability was studied using steady-state absorption, fluorescence and femtosecond time-resolved absorption at 77K. The results demonstrate that the change of the distribution of the carotenoids when cells were grown at low light adapts the absorptive properties of the complex to the light conditions and maintains maximum photon-capture performance. In addition, an explanation for the origin of the enigmatic split of the B800 absorption band is provided. This spectral splitting is also observed in LH2 complexes from other photosynthetic sulfur purple bacterial species. According to results obtained from transient absorption spectroscopy, the B800 band split originates from two spectral forms of the associated BChl a monomeric molecules bound within the same complex. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Microgravity

    NASA Image and Video Library

    2004-04-15

    Like many chemicals in the body, the three-dimensional structure of insulin is extremely complex. When grown on the ground, insulin crystals do not grow as large or as ordered as researchers desire--obscuring the blueprint of the insulin molecules.

  11. 78 FR 2908 - Oranges, Grapefruit, Tangerines, and Tangelos Grown in Florida; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-15

    ... Tangelos Grown in Florida; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION... Agricultural Marketing Service (AMS) has considered the economic impact of this rulemaking on small entities..., January 15, 2013 / Proposed Rules#0;#0; [[Page 2908

  12. Facilitation as Attenuating of Environmental Stress among Structured Microbial Populations.

    PubMed

    Martins, Suzana Cláudia Silveira; Santaella, Sandra Tédde; Martins, Claudia Miranda; Martins, Rogério Parentoni

    2016-01-01

    There is currently an intense debate in microbial societies on whether evolution in complex communities is driven by competition or cooperation. Since Darwin, competition for scarce food resources has been considered the main ecological interaction shaping population dynamics and community structure both in vivo and in vitro. However, facilitation may be widespread across several animal and plant species. This could also be true in microbial strains growing under environmental stress. Pure and mixed strains of Serratia marcescens and Candida rugosa were grown in mineral culture media containing phenol. Growth rates were estimated as the angular coefficients computed from linearized growth curves. Fitness index was estimated as the quotient between growth rates computed for lineages grown in isolation and in mixed cultures. The growth rates were significantly higher in associated cultures than in pure cultures and fitness index was greater than 1 for both microbial species showing that the interaction between Serratia marcescens and Candida rugosa yielded more efficient phenol utilization by both lineages. This result corroborates the hypothesis that facilitation between microbial strains can increase their fitness and performance in environmental bioremediation.

  13. Acclimation strategy of Rhodopseudomonas palustris to high light irradiance.

    PubMed

    Muzziotti, Dayana; Adessi, Alessandra; Faraloni, Cecilia; Torzillo, Giuseppe; De Philippis, Roberto

    2017-04-01

    The ability of Rhodopseudomonas palustris cells to rapidly acclimate to high light irradiance is an essential issue when cells are grown under sunlight. The aim of this study was to investigate the photo-acclimation process in Rhodopseudomonas palustris 42OL under different culturing conditions: (i) anaerobic (AnG), (ii) aerobic (AG), and (iii) under H 2 -producing (HP) conditions both at low (LL) and high light (HL) irradiances. The results obtained clearly showed that the photosynthetic unit was significantly affected by the light irradiance at which Rp. palustris 42OL was grown. The synthesis of carotenoids was affected by both illumination and culturing conditions. At LL, lycopene was the main carotenoid synthetized under all conditions tested, while at HL under HP conditions, it resulted the predominant carotenoid. Oppositely, under AnG and AG at HL, rhodovibrin was the major carotenoid detected. The increase in light intensity produced a deeper variation in light-harvesting complexes (LHC) ratio. These findings are important for understanding the ecological distribution of PNSB in natural environments, mostly characterized by high light intensities, and for its growth outdoors. Copyright © 2017 Elsevier GmbH. All rights reserved.

  14. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations inmore » S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.« less

  15. Facilitation as Attenuating of Environmental Stress among Structured Microbial Populations

    PubMed Central

    Santaella, Sandra Tédde; Martins, Claudia Miranda; Martins, Rogério Parentoni

    2016-01-01

    There is currently an intense debate in microbial societies on whether evolution in complex communities is driven by competition or cooperation. Since Darwin, competition for scarce food resources has been considered the main ecological interaction shaping population dynamics and community structure both in vivo and in vitro. However, facilitation may be widespread across several animal and plant species. This could also be true in microbial strains growing under environmental stress. Pure and mixed strains of Serratia marcescens and Candida rugosa were grown in mineral culture media containing phenol. Growth rates were estimated as the angular coefficients computed from linearized growth curves. Fitness index was estimated as the quotient between growth rates computed for lineages grown in isolation and in mixed cultures. The growth rates were significantly higher in associated cultures than in pure cultures and fitness index was greater than 1 for both microbial species showing that the interaction between Serratia marcescens and Candida rugosa yielded more efficient phenol utilization by both lineages. This result corroborates the hypothesis that facilitation between microbial strains can increase their fitness and performance in environmental bioremediation. PMID:26904719

  16. Characterization and Influence of Green Synthesis of Nano-Sized Zinc Complex with 5-Aminolevulinic Acid on Bioactive Compounds of Aniseed.

    PubMed

    Tavallali, Vahid; Rahmati, Sadegh; Rowshan, Vahid

    2017-11-01

    A new water soluble zinc-aminolevulinic acid nano complex (n[Zn(ALA) 2 ]), which was characterized by TEM, IR, and EDX spectra, has been prepared via sonochemical method under green conditions in water. In the current study, the effectiveness of foliar Zn amendment using synthetic Zn-ALA nano complex, as a new introduced Zn-fertilizer here, was evaluated. As the model plant, Pimpinella anisum, the most valuable spice and medicinal plant grown in warm regions, was used. By using zinc nano complex, further twenty compounds were obtained in the essential oil of anise plants. Application of 0.2% (w/v) Zn-ALA nano complex increased the levels of (E)-anethole, β-bisabolene, germacrene D, methyl chavicol, and α-zingiberene in the essential oil. Nano Zn complex at the rate of 0.2% induced considerable high phenolic compounds and zinc content of shoots and seeds. Chlorogenic acid had the highest level between four detected phenolic compounds. The maximum antioxidant activity was monitored through the application of Zn nano complex. According to the results, nanoscale nutrients can be provided with further decreased doses for medicinal plants. Using Zn-ALA nano complex is a new and efficient method to improve the pharmaceutical and food properties of anise plants. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  17. Room temperature direct band gap emission characteristics of surfactant mediated grown compressively strained Ge films

    NASA Astrophysics Data System (ADS)

    Katiyar, Ajit K.; Grimm, Andreas; Bar, R.; Schmidt, Jan; Wietler, Tobias; Joerg Osten, H.; Ray, Samit K.

    2016-10-01

    Compressively strained Ge films have been grown on relaxed Si0.45Ge0.55 virtual substrates using molecular beam epitaxy in the presence of Sb as a surfactant. Structural characterization has shown that films grown in the presence of surfactant exhibit very smooth surfaces with a relatively higher strain value in comparison to those grown without any surfactant. The variation of strain with increasing Ge layer thickness was analyzed using Raman spectroscopy. The strain is found to be reduced with increasing film thickness due to the onset of island nucleation following Stranski-Krastanov growth mechanism. No phonon assisted direct band gap photoluminescence from compressively strained Ge films grown on relaxed Si0.45Ge0.55 has been achieved up to room temperature. Excitation power and temperature dependent photoluminescence have been studied in details to investigate the origin of different emission sub-bands.

  18. The contribution of thermally labile sugar lesions to DNA double-strand break formation in cells grown in the presence of BrdU.

    PubMed

    Li, Fanghua; Cheng, Yanlei; Iliakis, George

    2015-04-01

    Radiosensitization by bromodeoxyuridine (BrdU) is commonly attributed to an increase in the yield of double-strand breaks (DSB) in the DNA and an associated decrease in the reparability of these lesions. Radiation chemistry provides a mechanism for the increased yield of DSB through the generation, after bromine loss, of a highly reactive uracilyl radical that attacks the sugar moiety of the nucleotide to produce a single-strand break (SSB). The effects underpinning DSB repair inhibition remain, in contrast, incompletely characterized. A possible source of reduced reparability is a change in the nature or complexity of the DSB in BrdU-substituted DNA. Recent studies show that DSB-complexity or DSB-nature may also be affected by the presence within the cluster of thermally labile sugar lesions (TLSL) that break the DNA backbone only if they chemically evolve to SSB, a process thought to occur within the first hour post-irradiation. Since BrdU radiosensitization might be associated with increased yields and reduced reparability of DSB, we investigated whether BrdU underpins these effects by shifting the balance in the generation of TLSL. We employed asymmetric-field-inversion gel electrophoresis (AFIGE), a pulsed-field gel electrophoresis (PFGE) method to quantitate DSB in a battery of five cells lines grown in the presence of different concentrations of BrdU. We measured specifically the yields of promptly forming DSB (prDSB) using low temperature lysis protocols, and the yields of total DSB (tDSB = prDSB + tlDSB; tlDSB form after evolution to SSB of TLSL) using high temperature lysis protocols. We report that incorporation of BrdU generates similar increases in the formation of tlDSB and prDSB, but variations are noted among the different cell lines tested. The similar increase in the yields of tlDSB and prDSB in BrdU substituted DNA showed that shifts in the yields of these forms of lesions could not be invoked to explain BrdU radiosensitization.

  19. Mitochondrial DNA Variant in COX1 Subunit Significantly Alters Energy Metabolism of Geographically Divergent Wild Isolates in Caenorhabditis elegans

    PubMed Central

    Dingley, Stephen D.; Polyak, Erzsebet; Ostrovsky, Julian; Srinivasan, Satish; Lee, Icksoo; Rosenfeld, Amy B.; Tsukikawa, Mai; Xiao, Rui; Selak, Mary A.; Coon, Joshua J.; Hebert, Alexander S.; Grimsrud, Paul A.; Kwon, Young Joon; Pagliarini, David J.; Gai, Xiaowu; Schurr, Theodore G.; Hüttemann, Maik; Nakamaru-Ogiso, Eiko; Falk, Marni J.

    2014-01-01

    Mitochondrial DNA (mtDNA) sequence variation can influence the penetrance of complex diseases and climatic adaptation. While studies in geographically defined human populations suggest that mtDNA mutations become fixed when they have conferred metabolic capabilities optimally suited for a specific environment, it has been challenging to definitively assign adaptive functions to specific mtDNA sequence variants in mammals. We investigated whether mtDNA genome variation functionally influences Caenorhabditis elegans wild isolates of distinct mtDNA lineages and geographic origins. We found that, relative to N2 (England) wild-type nematodes, CB4856 wild isolates from a warmer native climate (Hawaii) had a unique p.A12S amino acid substitution in the mtDNA-encoded COX1 core catalytic subunit of mitochondrial complex IV (CIV). Relative to N2, CB4856 worms grown at 20 °C had significantly increased CIV enzyme activity, mitochondrial matrix oxidant burden, and sensitivity to oxidative stress but had significantly reduced lifespan and mitochondrial membrane potential. Interestingly, mitochondrial membrane potential was significantly increased in CB4856 grown at its native temperature of 25 °C. A transmitochondrial cybrid worm strain, chpIR (M, CB4856 > N2), was bred as homoplasmic for the CB4856 mtDNA genome in the N2 nuclear background. The cybrid strain also displayed significantly increased CIV activity, demonstrating that this difference results from the mtDNA-encoded p.A12S variant. However, chpIR (M, CB4856 > N2) worms had significantly reduced median and maximal lifespan relative to CB4856, which may relate to their nuclear– mtDNA genome mismatch. Overall, these data suggest that C. elegans wild isolates of varying geographic origins may adapt to environmental challenges through mtDNA variation to modulate critical aspects of mitochondrial energy metabolism. PMID:24534730

  20. A novel phosphorus biofertilizer based on cattle manure and phytases-nanoclay complexes

    NASA Astrophysics Data System (ADS)

    Blackburn, Daniel; Jorquera, Milko; Greiner, Ralf; Velasquez, Gabriela; Mora, María de la Luz

    2013-04-01

    Phytate and other phytase labile organic phosphorus (P) are abundant in both soils and manures. These recalcitrant forms of P accumulate in soils by their interaction with mineral particles. The aim of this work was to evaluate the potential of treating cattle manure with phytases stabilized in allophanic nanoclays, as a novel P biofertilization technology for crops grown in volcanic soils (Andisol). Two Andisols and two manures with contrasting inorganic Pcontent were used: Low P soil from Piedras Negras series (SPN-LP); High P soil from Freire Series (SF-HP); Low P Waste (WPN-LP); High P Waste (WF-HP). The used Andisols and manures were incubated with phytase-nanoclay complexes and the inorganic P was determined in the NaOH-EDTA and bicarbonate extracts. The WPN-LP was also inoculated with an alkaline β-propeller phytase (BPP) producing bacterium. The incubated SPN-LP and SPN-LP-WPN-LP mixture were evaluated for their P supplying capacity to wheat plants under greenhouse conditions. Our resultsindicated that the treatment of cattle manure with phytase stabilized in nanoclays resulted in a significant (P≤0.0.5) increase in the inorganic P. The use of phytase treated cattle manure increased 10% plant dry weight and 39% P concentration in wheat plants under greenhouse conditions, being equivalent to a P fertilizer dose of about 150 kg of P ha-1. In the case of low P cattle manure inoculated with BPP producing bacterium, inorganic P increased 10% in soil extracts (NaOH EDTA and Bicarbonate). However, the application of this treated manure did not result in a significant response to wheat growth and P acquisition. Our results suggest that this novel approach of incubating cattle manure with phytase stabilized in nanoclays enhances organic P cycling and P nutrition of plants grown under P-deficient soils.

  1. Loblolly pine grown under elevated CO2 affects early instar pine sawfly performance.

    PubMed

    Williams, R S; Lincoln, D E; Thomas, R B

    1994-06-01

    Seedlings of loblolly pine Pinus taeda (L.), were grown in open-topped field chambers under three CO 2 regimes: ambient, 150 μl l -1 CO 2 above ambient, and 300 μl l -1 CO 2 above ambient. A fourth, non-chambered ambient treatment was included to assess chamber effects. Needles were used in 96 h feeding trials to determine the performance of young, second instar larvae of loblolly pine's principal leaf herbivore, red-headed pine sawfly, Neodiprion lecontei (Fitch). The relative consumption rate of larvae significantly increased on plants grown under elevated CO 2 , and needles grown in the highest CO 2 regime were consumed 21% more rapidly than needles grown in ambient CO 2 . Both the significant decline in leaf nitrogen content and the substantial increase in leaf starch content contributed to a significant increase in the starch:nitrogen ratio in plants grown in elevated CO 2 . Insect consumption rate was negatively related to leaf nitrogen content and positively related to the starch:nitrogen ratio. Of the four volatile leaf monoterpenes measured, only β-pinene exhibited a significant CO 2 effect and declined in plants grown in elevated CO 2 . Although consumption changed, the relative growth rates of larvae were not different among CO 2 treatments. Despite lower nitrogen consumption rates by larvae feeding on the plants grown in elevated CO 2 , nitrogen accumulation rates were the same for all treatments due to a significant increase in nitrogen utilization efficiency. The ability of this insect to respond at an early, potentially susceptible larval stage to poorer food quality and declining levels of a leaf monoterpene suggest that changes in needle quality within pines in future elevated-CO 2 atmospheres may not especially affect young insects and that tree-feeding sawflies may respond in a manner similar to herb-feeding lepidopterans.

  2. Effect of CO2 levels on nutrient content of lettuce and radish.

    PubMed

    McKeehen, J D; Smart, D J; Mackowiak, C L; Wheeler, R M; Nielsen, S S

    1996-01-01

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.

  3. Aliphatic and chlorinated alkenes and epoxides as inducers of alkene monooxygenase and epoxidase activities in Xanthobacter strain Py2.

    PubMed Central

    Ensign, S A

    1996-01-01

    The inducible nature of the alkene oxidation system of Xanthobacter strain Py2 has been investigated. Cultures grown with glucose as the carbon source did not contain detectable levels of alkene monooxygenase or epoxidase, two key enzymes of alkene and epoxide metabolism. Upon addition of propylene to glucose-grown cultures, alkene monooxygenase and epoxidase activities increased and after an 11-h induction period reached levels of specific activity comparable to those in propylene-grown cells. Addition of chloramphenicol or rifampin prevented the increase in the enzyme activities. Comparison of the banding patterns of proteins present in cell extracts revealed that polypeptides with molecular masses of 43, 53, and 57 kDa accumulate in propylene-grown but not glucose-grown cells. Pulse-labeling of glucose-grown cells with [35S]methionine and [35S]cysteine revealed that the 43-, 53-, and 57-kDa proteins, as well as two additional polypeptides with molecular masses of 12 and 21 kDa, were newly synthesized upon exposure of cells to propylene or propylene oxide. The addition to glucose-grown cells of a variety of other aliphatic and chlorinated alkenes and epoxides, including ethylene, vinyl chloride (1-chloroethylene), cis- and trans-1,2-dichloroethylene, 1-chloropropylene, 1,3-dichloropropylene, 1-butylene, trans-2-butylene, isobutylene, ethylene oxide, epichlorohydrin (3-chloro-1,2-epoxypropane), 1,2-epoxybutane, cis- and trans-2,3-epoxybutane, and isobutylene oxide stimulated the synthesis of the five propylene-inducible polypeptides as well as increases in alkene monooxygenase and epoxidase activities. In contrast, acetylene, and a range of aliphatic and chlorinated alkanes, did not stimulate the synthesis of the propylene-inducible polypeptides or the increase in alkene monooxygenase and epoxidase activities. PMID:8572713

  4. Effect of CO_2 levels on nutrient content of lettuce and radish

    NASA Astrophysics Data System (ADS)

    McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO_2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar `Waldmann's Green' and radish (Raphanus sativus L.) cultivar `Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO_2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO_2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO_2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish roots and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO_2 level.

  5. Effect of CO2 levels on nutrient content of lettuce and radish

    NASA Technical Reports Server (NTRS)

    McKeehen, J. D.; Smart, D. J.; Mackowiak, C. L.; Wheeler, R. M.; Nielsen, S. S.; Mitchell, C. A. (Principal Investigator)

    1996-01-01

    Atmospheric carbon-dioxide enrichment is known to affect the yield of lettuce and radish grown in controlled environments, but little is known about CO2 enrichment effects on the chemical composition of lettuce and radish. These crops are useful model systems for a Controlled Ecological Life-Support System (CELSS), largely because of their relatively short production cycles. Lettuce (Lactuca sativa L.) cultivar 'Waldmann's Green' and radish (Raphanus sativus L.) cultivar 'Giant White Globe' were grown both in the field and in controlled environments, where hydroponic nutrient solution, light, and temperature were regulated, and where CO2 levels were controlled at 400, 1000, 5000, or 10,000 ppm. Plants were harvested at maturity, dried, and analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate N, free sugars, starch, total dietary fiber, and minerals. Total N, protein N, nonprotein N (NPN), and nitrate N generally increased for radish roots and lettuce leaves when grown under growth chamber conditions compared to field conditions. The nitrate-N level of lettuce leaves, as a percentage of total NPN, decreased with increasing levels of CO2 enrichment. The ash content of radish roots and of radish and lettuce leaves decreased with increasing levels of CO2 enrichment. The levels of certain minerals differed between field- and chamber-grown materials, including changes in the calcium (Ca) and phosphorus (P) contents of radish and lettuce leaves, resulting in reduced Ca/P ratio for chamber-grown materials. The free-sugar contents were similar between the field and chamber-grown lettuce leaves, but total dietary fiber content was much higher in the field-grown plant material. The starch content of growth-chamber lettuce increased with CO2 level.

  6. New exopolysaccharides produced by Aureobasidium pullulans grown on glucosamine.

    PubMed

    Cescutti, Paola; Pupulin, Raffaella; Delben, Franco; Abbate, Maria; Dentini, Mariella; Sparapano, Lorenzo; Rizzo, Roberto; Crescenzi, Vittorio

    2002-07-16

    The polysaccharides produced by Aureobasidium pullulans, grown using glucosamine as the carbon source, were investigated by means of methylation analysis, affinity chromatography and NMR spectroscopy. The results indicated that, besides a small amount of pullulan, this micro-organism was capable of producing-in low yields-mixtures of at least two different complex polysaccharides containing mainly mannose and galactose. (1)H NMR spectra of two fractions obtained by lectin affinity chromatography indicated that one polymer was constituted exclusively of mannose residues while the other contained both galactofuranosyl and mannopyranosyl residues.

  7. 78 FR 77604 - Tomatoes Grown in Florida; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... Service 7 CFR Part 966 [Doc. No. AMS-FV-13-0076; FV13-966-1 PR] Tomatoes Grown in Florida; Increased... rule would increase the assessment rate established for the Florida Tomato Committee (Committee) for the 2013- 14 and subsequent fiscal periods from $0.024 to $0.0375 per 25-pound carton of tomatoes...

  8. 77 FR 21492 - Tomatoes Grown in Florida; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... Service 7 CFR Part 966 [Doc. No. AMS-FV-11-0080; FV11-966-1 PR] Tomatoes Grown in Florida; Increased... increase the assessment rate established for the Florida Tomato Committee (Committee) for the 2011-12 and subsequent fiscal periods from $0.0275 to $0.037 per 25-pound carton of tomatoes handled. The Committee...

  9. High light intensity protects photosynthetic apparatus of pea plants against exposure to lead.

    PubMed

    Romanowska, E; Wróblewska, B; Drozak, A; Siedlecka, M

    2006-01-01

    The electron transport rates and coupling factor activity in the chloroplasts; adenylate contents, rates of photosynthesis and respiration in the leaves as well as activity of isolated mitochondria were investigated in Pisum sativum L. leaves of plants grown under low or high light intensity and exposed after detachment to 5 mM Pb(NO(3))(2). The presence of Pb(2+) reduced rate of photosynthesis in the leaves from plants grown under the high light (HL) and low light (LL) conditions, whereas the respiration was enhanced in the leaves from HL plants. Mitochondria from Pb(2+) treated HL-leaves oxidized glycine at a higher rate than those isolated from LL leaves. ATP content in the Pb-treated leaves increased to a greater extend in the HL than LL grown plants. Similarly ATP synthase activity increased markedly when chloroplasts isolated from control and Pb-treated leaves of HL and LL grown plants were subjected to high intensity light. The presence of Pb ions was found inhibit ATP synthase activity only in chloroplasts from LL grown plants or those illuminated with low intensity light. Low light intensity during growth also lowered PSI electron transport rates and the Pb(2+) induced changes in photochemical activity of this photosystem were visible only in the chloroplasts isolated from LL grown plants. The activity of PSII was influenced by Pb ions on similar manner in both light conditions. This study demonstrates that leaves from plants grown under HL conditions were more resistant to lead toxicity than those obtained from the LL grown plants. The data indicate that light conditions during growth might play a role in regulation of photosynthetic and respiratory energy conservation in heavy metal stressed plants by increasing the flexibility of the stoichiometry of ATP to ADP production.

  10. Peroxisome protein import: a complex journey.

    PubMed

    Baker, Alison; Lanyon-Hogg, Thomas; Warriner, Stuart L

    2016-06-15

    The import of proteins into peroxisomes possesses many unusual features such as the ability to import folded proteins, and a surprising diversity of targeting signals with differing affinities that can be recognized by the same receptor. As understanding of the structure and function of many components of the protein import machinery has grown, an increasingly complex network of factors affecting each step of the import pathway has emerged. Structural studies have revealed the presence of additional interactions between cargo proteins and the PEX5 receptor that affect import potential, with a subtle network of cargo-induced conformational changes in PEX5 being involved in the import process. Biochemical studies have also indicated an interdependence of receptor-cargo import with release of unloaded receptor from the peroxisome. Here, we provide an update on recent literature concerning mechanisms of protein import into peroxisomes. © 2016 The Author(s).

  11. Enhancing the Relationship Between Regulators and Their Profession.

    PubMed

    Austin, Zubin

    2017-01-01

    Regulators face unique pressures to balance competing priorities related to patient safety, public accountability, and practitioners' expectations. Historically, the collegial model of self-regulation has been used as a tool for risk management, to recognize the importance of profession- and context-specific judgment in complex, ambiguous clinical situations. Increasingly, as public accountability concerns have grown dominant within regulatory bodies, this collegial model has shifted toward a more antagonistic relationship between the regulators and the regulated. Wilkie and Tzountzouris (2017) highlight one profession's journey toward embedding professionalism within regulatory practices and policies through application of a right-touch regulatory philosophy. Given the complexity of regulatory work, this shift required significant strategic and deliberative thinking. The challenges of facilitating this sort of cultural shift in the role of a regulator are significant, but so too are the potential gains associated with a more engaged relationship between regulators and their practitioners.

  12. Acetolactate metabolism and the presence of a dehydroxy acid dehydratase in micro-organisms

    PubMed Central

    Wixom, R. L.

    1965-01-01

    1. The growth characteristics of nine micro-organisms on complex broth and defined media, usually with a single nitrogen source (other than vitamins), were examined as a necessary step before growth of cells for enzyme assays. Six of these bacteria gave a positive colour test with a creatine–potassium hydroxide reagent, indicating the presence of acetoin, which other investigators have shown is formed via the intermediate, α-acetolactate. 2. Cell-free extracts of exponential-phase cells of Bacillus subtilis, Staphylococcus aureus, Proteus morganii, Acetobacter rancens (two strains), A. kuetzingianus, A. acetosus, Acetomonas (Acetobacter) melanogenus and Acetomonas (Acetobacter) suboxydans (A.T.C.C. no. 621) were found to contain the enzyme, dihydroxy acid dehydratase (2,3-dihydroxy acid hydro-lyase). 3. The specific activity of the dehydratase from organisms grown on valine- and isoleucine-deficient media was greater than those grown on a complex broth or media containing complete amino acid mixtures. The omission of valine plus isoleucine from a medium containing 19 amino acids caused an increase in the dehydratase specific activity of Staphylococcus aureus and Proteus morganii. 4. The rate of keto acid formation from αβ-dihydroxyisovalerate by extracts of six of the above-named organisms was faster than, but somewhat proportional to, the similar rate from αβ-dihydroxy-β-methyl-n-valerate as substrate. 5. These findings may be related to acetolactate synthesis, acetoin formation and valine–isoleucine biosynthesis in the above-mentioned micro-organisms. PMID:14348203

  13. Chemical bath deposition of II-VI compound thin films

    NASA Astrophysics Data System (ADS)

    Oladeji, Isaiah Olatunde

    II-VI compounds are direct bandgap semiconductors with great potentials in optoelectronic applications. Solar cells, where these materials are in greater demand, require a low cost production technology that will make the final product more affordable. Chemical bath deposition (CBD) a low cost growth technique capable of producing good quality thin film semiconductors over large area and at low temperature then becomes a suitable technology of choice. Heterogeneous reaction in a basic aqueous solution that is responsible for the II-VI compound film growth in CBD requires a metal complex. We have identified the stability constant (k) of the metal complex compatible with CBD growth mechanism to be about 106.9. This value is low enough to ensure that the substrate adsorbed complex relax for subsequent reaction with the chalcogen precursor to take place. It is also high enough to minimize the metal ion concentration in the bath participating in the precipitation of the bulk compounds. Homogeneous reaction that leads to precipitation in the reaction bath takes place because the solubility products of bulk II-VI compounds are very low. This reaction quickly depletes the bath of reactants, limit the film thickness, and degrade the film quality. While ZnS thin films are still hard to grow by CBD because of lack of suitable complexing agent, the homogeneous reaction still limits quality and thickness of both US and ZnS thin films. In this study, the zinc tetraammine complex ([Zn(NH3) 4]2+) with k = 108.9 has been forced to acquire its unsaturated form [Zn(NH3)3]2+ with a moderate k = 106.6 using hydrazine and nitrilotriacetate ion as complementary complexing agents and we have successfully grown ZnS thin films. We have also, minimized or eliminated the homogeneous reaction by using ammonium salt as a buffer and chemical bath with low reactant concentrations. These have allowed us to increase the saturation thickness of ZnS thin film by about 400% and raise that of US film form 0.2 to 0.5 mum with improved quality. A novel chemical activated diffusion of Cd into ZnS thin film at temperature lower than 100°C is also developed. This in conjunction with thermal activated diffusion at 400°C has enabled us to synthesize Cd1-xZn xS thin films suitable for solar cells from CBD grown CdS/ZnS multilayer. The potential application of the new Cd1-xZnxS/CdS/CdTe solar cell structure is also demonstrated. The unoptimized structure grown on transparent conducting oxide coated soda lime glass of 3mm thickness with no antireflection coating yielded a 10% efficiency. This efficiency is the highest ever recorded in any Cd1-xZnxS film containing CdTe solar cells.

  14. Phosphorus reduces the zinc concentration in cereals pot-grown on calcareous Vertisols from southern Spain.

    PubMed

    Sánchez-Rodríguez, Antonio Rafael; Del Campillo, María Carmen; Torrent, José

    2017-08-01

    Zinc deficiency, a major problem in crops grown on soils low in available Zn, is even more important in phosphorus-rich soils. This work aimed to elucidate the effects of soil P and Zn levels, and of fertilizer application, on yield and Zn concentration in cereal grains. Wheat and barley were successively pot-grown on 20 calcareous Vertisols low in available Zn and ranging widely in available P. Grain yield in the plants grown on the native soils was positively correlated with Olsen P but not with diethylenetriaminepentaacetic acid (DTPA)-extractable Zn except for wheat on P-rich soils. Grain Zn concentration was negatively correlated with Olsen P. Grain Zn uptake differed little among soils. Application of P to the soils increased grain yield insignificantly and P concentration significantly; however, it reduced grain Zn concentration (particularly at low Olsen P values). Applying Zn alone only increased grain Zn concentration, whereas applying P and Zn in combination increased yield and grain Zn concentration at low and high Olsen P values, respectively. Applying P alone to plants grown on calcareous Vertisols low in available P and Zn may in practice reduce grain Zn concentrations while not increasing grain yield significantly. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Evaluation of the increase in threading dislocation during the initial stage of physical vapor transport growth of 4H-SiC

    NASA Astrophysics Data System (ADS)

    Suo, Hiromasa; Tsukimoto, Susumu; Eto, Kazuma; Osawa, Hiroshi; Kato, Tomohisa; Okumura, Hajime

    2018-06-01

    The increase in threading dislocation during the initial stage of physical vapor transport growth of n-type 4H-SiC crystals was evaluated by cross-sectional X-ray topography. Crystals were grown under two different temperature conditions. A significant increase in threading dislocation was observed in crystals grown at a high, not low, temperature. The local strain distribution in the vicinity of the grown/seed crystal interface was evaluated using the electron backscatter diffraction technique. The local nitrogen concentration distribution was also evaluated by time-of-flight secondary ion mass spectrometry. We discuss the relationship between the increase in threading dislocation and the local strain due to thermal stress and nitrogen concentration.

  16. Microscale Synthesis, Reactions, and (Super 1)H NMR Spectroscopic Investigations of Square Planar Macrocyclic, Tetramido-N Co(III) Complexes Relevant to Green Chemistry

    ERIC Educational Resources Information Center

    Watson, Tanya T.; Uffelman, Erich S.; Lee, Daniel W., III; Doherty, Jonathan R.; Schulze, Carl; Burke, Amy L.; Bonnema, Kristen, R.

    2004-01-01

    The microscale preparation, characterization, and reactivity of a square planar Co(III) complex that has grown out of a program to introduce experiments of relevance to green chemistry into the undergraduate curriculum is presented. The given experiments illustrate the remarkable redox and aqueous acid-base stability that make the macrocycles very…

  17. Spectroscopic Studies of Carotenoid-to-Bacteriochlorophyll Energy Transfer in LHRC Photosynthetic Complex from Roseiflexus castenholzii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niedzwiedzki, Dariusz; Collins, Aaron M.; LaFountain, Amy M.

    Carotenoids present in the photosynthetic light-harvesting reaction center (LHRC) complex from chlorosome lacking filamentous anoxygenic phototroph, Roseiflexus castenholzii were purified and characterized for their photochemical properties. The LHRC from anaerobically grown cells contains five different carotenoids, methoxy-keto-myxocoxanthin, γ-carotene, and its three derivatives, whereas the LHRC from aerobically grown cells contains only three carotenoid pigments with methoxy-keto-myxocoxanthin being the dominant one. The spectroscopic properties and dynamics of excited singlet states of the carotenoids were studied by steady-state absorption, fluorescence and ultrafast time-resolved optical spectroscopy in organic solvent and in the intact LHRC complex. Time-resolved transient absorption spectroscopy performed in the near-infraredmore » (NIR) on purified carotenoids combined with steady-state absorption spectroscopy led to the precise determination of values of the energies of the S 1(2 1A g -) excited state. Global and single wavelength fitting of the ultrafast spectral and temporal data sets of the carotenoids in solvents and in the LHRC revealed the pathways of de-excitation of the carotenoid excited states.« less

  18. Dialkyldiselenophosphinato-metal complexes - a new class of single source precursors for deposition of metal selenide thin films and nanoparticles

    NASA Astrophysics Data System (ADS)

    Malik, Sajid N.; Akhtar, Masood; Revaprasadu, Neerish; Qadeer Malik, Abdul; Azad Malik, Mohammad

    2014-08-01

    We report here a new synthetic approach for convenient and high yield synthesis of dialkyldiselenophosphinato-metal complexes. A number of diphenyldiselenophosphinato-metal as well as diisopropyldiselenophosphinato-metal complexes have been synthesized and used as precursors for deposition of semiconductor thin films and nanoparticles. Cubic Cu2-xSe and tetragonal CuInSe2 thin films have been deposited by AACVD at 400, 450 and 500 °C whereas cubic PbSe and tetragonal CZTSe thin films have been deposited through doctor blade method followed by annealing. SEM investigations revealed significant differences in morphology of the films deposited at different temperatures. Preparation of Cu2-xSe and In2Se3 nanoparticles using diisopropyldiselenophosphinato-metal precursors has been carried out by colloidal method in HDA/TOP system. Cu2-xSe nanoparticles (grown at 250 °C) and In2Se3 nanoparticles (grown at 270 °C) have a mean diameter of 5.0 ± 1.2 nm and 13 ± 2.5 nm, respectively.

  19. 75 FR 22211 - Olives Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-28

    ... Executive Order 12988, Civil Justice Reform. Under the marketing order now in effect, California olive... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 932 [Doc. No. AMS-FV-09-0089; FV10-932-1 FR] Olives Grown in California; Increased Assessment Rate AGENCY: Agricultural Marketing...

  20. 78 FR 8047 - Onions Grown in South Texas; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... benefits derived by the operation of the marketing order. In addition, the Committee's meeting was widely... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 959 [Doc. No. AMS-FV-12-0039; FV12-959-1 PR] Onions Grown in South Texas; Increased Assessment Rate AGENCY: Agricultural Marketing...

  1. 78 FR 23671 - Onions Grown in South Texas; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-22

    ... FR] Onions Grown in South Texas; Increased Assessment Rate AGENCY: Agricultural Marketing Service... Texas Onion Committee (Committee) for the 2012-13 and subsequent fiscal periods from $0.025 to $0.03 per 50-pound equivalent of onions handled. The Committee locally administers the marketing order that...

  2. 77 FR 51684 - Olives Grown in California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 932 [Doc. No. AMS-FV-11-0093; FV12-932-1 FR] Olives Grown in California; Increased Assessment Rate AGENCY: Agricultural Marketing... assessable ton of olives handled. The Committee locally administers the marketing order which regulates the...

  3. Activity of Tobramycin against Cystic Fibrosis Isolates of Burkholderia cepacia Complex Grown as Biofilms.

    PubMed

    Kennedy, Sarah; Beaudoin, Trevor; Yau, Yvonne C W; Caraher, Emma; Zlosnik, James E A; Speert, David P; LiPuma, John J; Tullis, Elizabeth; Waters, Valerie

    2016-01-01

    Pulmonary infection with Burkholderia cepacia complex in cystic fibrosis (CF) patients is associated with more-rapid lung function decline and earlier death than in CF patients without this infection. In this study, we used confocal microscopy to visualize the effects of various concentrations of tobramycin, achievable with systemic and aerosolized drug administration, on mature B. cepacia complex biofilms, both in the presence and absence of CF sputum. After 24 h of growth, biofilm thickness was significantly reduced by exposure to 2,000 μg/ml of tobramycin for Burkholderia cepacia, Burkholderia multivorans, and Burkholderia vietnamiensis; 200 μg/ml of tobramycin was sufficient to reduce the thickness of Burkholderia dolosa biofilm. With a more mature 48-h biofilm, significant reductions in thickness were seen with tobramycin at concentrations of ≥100 μg/ml for all Burkholderia species. In addition, an increased ratio of dead to live cells was observed in comparison to control with tobramycin concentrations of ≥200 μg/ml for B. cepacia and B. dolosa (24 h) and ≥100 μg/ml for Burkholderia cenocepacia and B. dolosa (48 h). Although sputum significantly increased biofilm thickness, tobramycin concentrations of 1,000 μg/ml were still able to significantly reduce biofilm thickness of all B. cepacia complex species with the exception of B. vietnamiensis. In the presence of sputum, 1,000 μg/ml of tobramycin significantly increased the dead-to-live ratio only for B. multivorans compared to control. In summary, although killing is attenuated, high-dose tobramycin can effectively decrease the thickness of B. cepacia complex biofilms, even in the presence of sputum, suggesting a possible role as a suppressive therapy in CF. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  4. Development of a slow non-viral DNA release system from PDLLA scaffolds fabricated using a supercritical CO2 technique.

    PubMed

    Heyde, Mieke; Partridge, Kris A; Howdle, Steven M; Oreffo, Richard O C; Garnett, Martin C; Shakesheff, Kevin M

    2007-10-15

    Polyamidoamine polymers (PAA) comprising methylene-bisacrylamide/dimethylethylene-diamine monomers were synthesized, complexed with DNA and incorporated into porous P(DL)LA scaffolds by using a supercritical CO(2) (scCO(2)) technique. Scaffolds were made in a dry state consequently there was a need to lyophilize the complexes. A statistically significant reduction of the transfection efficiency was observed in the absence of trehalose when compared to the original complex after freeze-drying. Increasing concentrations (0-10% w/v) of trehalose were added to the complex prior to freeze-drying. Structure dependent differences in DNA binding were evaluated by gel electrophoresis and thermal transition analysis. TEM and PCS showed aggregate formation after freeze-drying without trehalose. Scaffolds were characterized by pore sizes of 173 +/- 73 microm and a porosity of 71%. The transfection potential of the released DNA was investigated by seeding scaffolds with A549 cells and following firefly luciferase as a marker gene after 48 h exposure. Low but continuous levels of transfection were observed for PAA complexes during a 60-day study. Complexes made with Lipofectaminetrade mark gave initially higher levels of DNA release but no further expression was seen after 40 days. Uncomplexed DNA showed background levels of transfection. Culturing cells on 3D scaffolds showed a benefit in retention of transfection activity with time compared to 2D controls. Transfection levels could be increased when cells were grown in OptiMEM. This study demonstrated that PAA/DNA complexes incorporated into a P(DL)LA scaffold made by using scCO(2) processing exhibited a slow release and extended gene expression profile. Copyright 2007 Wiley Periodicals, Inc.

  5. Flow chemistry: A light touch to a deadly problem

    NASA Astrophysics Data System (ADS)

    Booker-Milburn, Kevin

    2012-06-01

    Flow chemistry has grown in stature as a technique with the potential to deliver synthetic complexity with assembly-line-like efficiency. Application of flow technology to the front-line antimalarial drug artemisinin promises to revolutionalize treatment.

  6. Nanowires precisely grown on the ends of microwire electrodes permit the recording of intracellular action potentials within deeper neural structures

    PubMed Central

    Ferguson, John E; Boldt, Christopher; Puhl, Joshua G; Stigen, Tyler W; Jackson, Jadin C; Crisp, Kevin M; Mesce, Karen A; Netoff, Theoden I; Redish, A David

    2012-01-01

    Aims Nanoelectrodes are an emerging biomedical technology that can be used to record intracellular membrane potentials from neurons while causing minimal damage during membrane penetration. Current nanoelectrode designs, however, have low aspect ratios or large substrates and thus are not suitable for recording from neurons deep within complex natural structures, such as brain slices. Materials & methods We describe a novel nanoelectrode design that uses nanowires grown on the ends of microwire recording electrodes similar to those frequently used in vivo. Results & discussion We demonstrate that these nanowires can record intracellular action potentials in a rat brain slice preparation and in isolated leech ganglia. Conclusion Nanoelectrodes have the potential to revolutionize intracellular recording methods in complex neural tissues, to enable new multielectrode array technologies and, ultimately, to be used to record intracellular signals in vivo. PMID:22475650

  7. Image-Based High-Throughput Field Phenotyping of Crop Roots1[W][OPEN

    PubMed Central

    Bucksch, Alexander; Burridge, James; York, Larry M.; Das, Abhiram; Nord, Eric; Weitz, Joshua S.; Lynch, Jonathan P.

    2014-01-01

    Current plant phenotyping technologies to characterize agriculturally relevant traits have been primarily developed for use in laboratory and/or greenhouse conditions. In the case of root architectural traits, this limits phenotyping efforts, largely, to young plants grown in specialized containers and growth media. Hence, novel approaches are required to characterize mature root systems of older plants grown under actual soil conditions in the field. Imaging methods able to address the challenges associated with characterizing mature root systems are rare due, in part, to the greater complexity of mature root systems, including the larger size, overlap, and diversity of root components. Our imaging solution combines a field-imaging protocol and algorithmic approach to analyze mature root systems grown in the field. Via two case studies, we demonstrate how image analysis can be utilized to estimate localized root traits that reliably capture heritable architectural diversity as well as environmentally induced architectural variation of both monocot and dicot plants. In the first study, we show that our algorithms and traits (including 13 novel traits inaccessible to manual estimation) can differentiate nine maize (Zea mays) genotypes 8 weeks after planting. The second study focuses on a diversity panel of 188 cowpea (Vigna unguiculata) genotypes to identify which traits are sufficient to differentiate genotypes even when comparing plants whose harvesting date differs up to 14 d. Overall, we find that automatically derived traits can increase both the speed and reproducibility of the trait estimation pipeline under field conditions. PMID:25187526

  8. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting

    NASA Technical Reports Server (NTRS)

    Goins, G. D.; Yorio, N. C.; Sanwo, M. M.; Brown, C. S.; Sager, J. C. (Principal Investigator)

    1997-01-01

    Red light-emitting diodes (LEDs) are a potential light source for growing plants in spaceflight systems because of their safety, small mass and volume, wavelength specificity, and longevity. Despite these attractive features, red LEDs must satisfy requirements for plant photosynthesis and photomorphogenesis for successful growth and seed yield. To determine the influence of gallium aluminium arsenide (GaAlAs) red LEDs on wheat photomorphogenesis, photosynthesis, and seed yield, wheat (Triticum aestivum L., cv. 'USU-Super Dwarf') plants were grown under red LEDs and compared to plants grown under daylight fluorescent (white) lamps and red LEDs supplemented with either 1% or 10% blue light from blue fluorescent (BF) lamps. Compared to white light-grown plants, wheat grown under red LEDs alone demonstrated less main culm development during vegetative growth through preanthesis, while showing a longer flag leaf at 40 DAP and greater main culm length at final harvest (70 DAP). As supplemental BF light was increased with red LEDs, shoot dry matter and net leaf photosynthesis rate increased. At final harvest, wheat grown under red LEDs alone displayed fewer subtillers and a lower seed yield compared to plants grown under white light. Wheat grown under red LEDs+10% BF light had comparable shoot dry matter accumulation and seed yield relative to wheat grown under white light. These results indicate that wheat can complete its life cycle under red LEDs alone, but larger plants and greater amounts of seed are produced in the presence of red LEDs supplemented with a quantity of blue light.

  9. Defect control of conventional and anomalous electron transport at complex oxide interfaces

    DOE PAGES

    Gunkel, F.; Bell, Chris; Inoue, Hisashi; ...

    2016-08-30

    Using low-temperature electrical measurements, the interrelation between electron transport, magnetic properties, and ionic defect structure in complex oxide interface systems is investigated, focusing on NdGaO 3/SrTiO 3 (100) interfaces. Field-dependent Hall characteristics (2–300 K) are obtained for samples grown at various growth pressures. In addition to multiple electron transport, interfacial magnetism is tracked exploiting the anomalous Hall effect (AHE). These two properties both contribute to a nonlinearity in the field dependence of the Hall resistance, with multiple carrier conduction evident below 30 K and AHE at temperatures ≲10 K. Considering these two sources of nonlinearity, we suggest a phenomenological modelmore » capturing the complex field dependence of the Hall characteristics in the low-temperature regime. Our model allows the extraction of the conventional transport parameters and a qualitative analysis of the magnetization. The electron mobility is found to decrease systematically with increasing growth pressure. This suggests dominant electron scattering by acceptor-type strontium vacancies incorporated during growth. The AHE scales with growth pressure. In conclusion, the most pronounced AHE is found at increased growth pressure and, thus, in the most defective, low-mobility samples, indicating a correlation between transport, magnetism, and cation defect concentration.« less

  10. Antisense Down-Regulation of 4CL Expression Alters Lignification, Tree Growth, and Saccharification Potential of Field-Grown Poplar1[W][OA

    PubMed Central

    Voelker, Steven L.; Lachenbruch, Barbara; Meinzer, Frederick C.; Jourdes, Michael; Ki, Chanyoung; Patten, Ann M.; Davin, Laurence B.; Lewis, Norman G.; Tuskan, Gerald A.; Gunter, Lee; Decker, Stephen R.; Selig, Michael J.; Sykes, Robert; Himmel, Michael E.; Kitin, Peter; Shevchenko, Olga; Strauss, Steven H.

    2010-01-01

    Transgenic down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been reported as a means for reducing lignin content in cell walls and increasing overall growth rates, thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplar (Populus tremula × Populus alba), we applied this strategy and examined field-grown transformants for both effects on wood biochemistry and tree productivity. The reductions in lignin contents obtained correlated well with 4CL RNA expression, with a sharp decrease in lignin amount being observed for RNA expression below approximately 50% of the nontransgenic control. Relatively small lignin reductions of approximately 10% were associated with reduced productivity, decreased wood syringyl/guaiacyl lignin monomer ratios, and a small increase in the level of incorporation of H-monomers (p-hydroxyphenyl) into cell walls. Transgenic events with less than approximately 50% 4CL RNA expression were characterized by patches of reddish-brown discolored wood that had approximately twice the extractive content of controls (largely complex polyphenolics). There was no evidence that substantially reduced lignin contents increased growth rates or saccharification potential. Our results suggest that the capacity for lignin reduction is limited; below a threshold, large changes in wood chemistry and plant metabolism were observed that adversely affected productivity and potential ethanol yield. They also underline the importance of field studies to obtain physiologically meaningful results and to support technology development with transgenic trees. PMID:20729393

  11. Effect of annealing on Curie temperature and phase transition in La{sub 0.55}Sr{sub 0.08}Mn{sub 0.37}O{sub 3} epitaxial films grown on SrTiO{sub 3} (100) substrates by reactive radio frequency magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ichinose, T.

    2016-08-15

    Mn-poor LaSrMnO{sub 3} (LSMO) epitaxial films were grown on SrTiO{sub 3} (100) substrates by radio frequency magnetron sputtering in an argon and oxygen gas mix, and then the samples were annealed in air at various temperatures (T{sub a}). 2 theta-chi X-ray diffraction mapping, nano-beam diffraction analysis through transmission electron microscopy, and electron back scatter diffraction through scanning electron microscopy revealed that the crystal symmetry of the LSMO films changed from monoclinic/orthorhombic to rhombohedral on annealing in air. Curie temperature (T{sub C}) of the LSMO films was found to increase with increasing T{sub a}, and become higher than the room temperaturemore » at T{sub a} ≥ 861 °C, indicating that the cause of these changes was the filling of oxygen and the transition of the crystal symmetry into rhombohedral. - Highlights: •Mn-poor LSMO changed from monoclinic/orthorhombic to rhombohedral by oxygen supply. •Mn-poor LSMO was increased T{sub C} by changed crystal symmetry, and it showed T{sub C} above RT. •Annealed in air effectively supplied O{sub 2} more than O{sub 2} gas during sputtering •EBSD is useful to evaluate crystal symmetry of complex oxide film from the substrate.« less

  12. Synthesis aspects, structural, spectroscopic, antimicrobial and room temperature ferromagnetism of zinc iodide complex with Schiff based ligand.

    PubMed

    Shakila, K; Kalainathan, S

    2015-01-25

    In this paper, we report the successful growth of complex compound of zinc iodide with thiocarbamide by slow evaporation method. The single crystal XRD study reveals that the crystal belongs to monoclinic system with centrosymmetric space group and powder XRD analysis shows that the perfect crystalline nature of the crystal. The presence of functional group and element were confirmed from FT-IR and EDAX analysis. Optical absorbance of the grown crystal was studied by UV-Vis spectrophotometer. The optical constants were calculated from the optical absorbance data such as refractive index (n), extinction coefficient (K) and reflectance (R). The optical band gap (Eg) of thiocarbamide zinc iodide crystal is 4.22 eV. The magnetic properties of grown crystal have been determined by Vibrating Sample Magnetometry (VSM). Room temperature magnetization revealed a ferromagnetic behaviour for the grown crystal. The antibacterial and antifungal activities of the title compound were performed by well diffusion method and MIC method against the standard bacteria like Staphylococcus aureus, Escherichia coli, Klebsiella pneumonia and against fungus like Aspergillus niger, Rhizopus sps and Penicillium sps. Thermal behaviour of the crystal has been investigated using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Copyright © 2014. Published by Elsevier B.V.

  13. Analysis of composition and microstructures of Ge grown on porous silicon using Raman spectroscopy and transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Aouassa, Mansour; Jadli, Imen; Hassayoun, Latifa Slimen; Maaref, Hassen; Panczer, Gerard; Favre, Luc; Ronda, Antoine; Berbezier, Isabelle

    2017-12-01

    Composition and microstructure of Ge grown on porous silicon (PSi) by Molecular Beam Epitaxy (MBE) at different temperatures are examined using High Resolution Transmission Electron Microscopy (HRTEM) and Raman spectroscopy. Ge grown at 400 °C on PSi buffer produces a planar Ge film with high crystalline quality compared to Ge grown on bulk Si. This result is attributed to the compliant nature of PSi. Increasing growth temperature >600 °C, changes the PSi morphology, increase the Ge/Si intermixing in the pores during Ge growth and lead to obtain a composite SiGe/Si substrate. Ge content in the composite SiGe substrate can controlled via growth temperature. These substrates serve as low cost virtual substrate for high efficiency III-V/Si solar cells.

  14. Photosynthetic Rates of Citronella and Lemongrass 1

    PubMed Central

    Herath, H. M. Walter; Ormrod, Douglas P.

    1979-01-01

    Ten selections of citronella (Cymbopogon nardus [L.] Rendle) were grown at 32/27, 27/21, or 15/10 C day/night temperatures, and plants from three populations of lemongrass (Cymbopogon citratus [D.C.] Stapf from Japan or Sri Lanka and Cymbopogon flexuosus [D.C.] Stapf from India) were grown at 8- or 15-hour photoperiods. Net photosynthetic rates of mature leaves were measured in a controlled environment at 25 C and 260 microeinsteins per meter2 per second. Rates declined with increasing leaf age, and from the tip to the base of the leaf blade. Rates for citronella leaves grown at 15/10 C were extremely low for all selections. Highest rates of net photosynthesis were recorded for four selections grown at 27/21 C and for two selections grown at 32/27 C. Lemongrass grown at 8-hour photoperiod had higher photosynthetic rates than that grown at 15-hour photoperiod. PMID:16660737

  15. Thickness dependence of crystal and optical characterization on ZnO thin film grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Baek, Seung-Hye; Lee, Hyun-Jin; Lee, Sung-Nam

    2018-06-01

    We studied the thickness dependence of the crystallographic and optical properties of ZnO thin films grown on c-plane sapphire substrate using atomic layer deposition. High-resolution X-ray diffraction (HR-XRD) revealed two peaks at 34.5° and 36.2° in the initial growth stage of ZnO on the sapphire substrate, corresponding to the (002) and (101) ZnO planes, respectively. However, as the thickness of the ZnO film increased, the XRD intensity of the (002) ZnO peak increased drastically, compared with that of the (101) ZnO peak. This indicated that (002) and (101) ZnO were simultaneously grown on the c-plane sapphire substrate in the initial growth stage, and that (002) ZnO was predominantly grown with the increase in the thickness of ZnO film. The ZnO thin film presented an anisotropic surface structure at the initial stage, whereas the isotropic surface morphology was developed with an increase in the film thickness of ZnO. These observations were consistent with the HR-XRD results.

  16. Metal-organic chemical vapor deposition of cerium oxide, gallium-indium-oxide, and magnesium oxide thin films: Precursor design, film growth, and film characterization

    NASA Astrophysics Data System (ADS)

    Edleman, Nikki Lynn

    A new class of volatile, low-melting, fluorine-free lanthanide metal-organic chemical vapor deposition (MOCVD) precursors has been developed. The neutral, monomeric cerium, neodymium, gadolinium, and erbium complexes are coordinatively saturated by a versatile, multidentate, ether-functionalized beta-ketoiminate ligand, and complex melting point and volatility characteristics can be tuned by altering the alkyl substituents on the ligand periphery. Direct comparison with lanthanide beta-diketonate complexes reveals that the present precursor class is a superior choice for lanthanide oxide MOCVD. Epitaxial CeO 2 buffer layer films have been grown on (001) YSZ substrates by MOCVD at significantly lower temperatures than previously reported using one of the newly developed cerium precursors. High-quality YBCO films grown on these CeO2 buffer layers by POMBE exhibit very good electrical transport properties. The cerium complex has therefore been explicitly demonstrated to be a stable and volatile precursor and is attractive for low-temperature growth of coated conductor multilayer structures by MOCVD. Gallium-indium-oxide thin films (GaxIn2-xO 3), x = 0.0˜1.1, have been grown by MOCVD using the volatile metal-organic precursors In(dpm)3 and Ga(dpm)3. The films have a homogeneously Ga-substituted, cubic In2O3 microstructure randomly oriented on quartz or heteroepitaxial on (100) YSZ single-crystal substrates. The highest conductivity of the as-grown films is found at x = 0.12. The optical transmission window and absolute transparency of the films rivals or exceeds that of the most transparent conductive oxides known. Reductive annealing results in improved charge transport characteristics with little loss of optical transparency. No significant difference in electrical properties is observed between randomly oriented and heteroepitaxial films, thus arguing that carrier scattering effects at high-angle grain boundaries play a minor role in the film conductivity mechanism. The synthesis and characterization of a new magnesium MOCVD precursor, Mg(dpm)2(TMEDA) is detailed. It is shown that the donating ligand TMEDA prevents oligomerization and subsequent volatility depression as observed in the commonly used [Mg(dpm)2]2. The superiority of Mg(dpm)2(TMEDA) as an MOCVD precursor is explicitly demonstrated by growth of epitaxial MgO thin films on single-crystal SrTiO3 substrates.

  17. Effect of atmospheric carbon dioxide levels and nitrate fertilization on glucosinolate biosynthesis in mechanically damaged Arabidopsis plants.

    PubMed

    Paudel, Jamuna Risal; Amirizian, Alexandre; Krosse, Sebastian; Giddings, Jessica; Ismail, Shoieb Akaram Arief; Xia, Jianguo; Gloer, James B; van Dam, Nicole M; Bede, Jacqueline C

    2016-03-22

    Increased atmospheric carbon dioxide (CO2) levels predicted to occur before the end of the century will impact plant metabolism. In addition, nitrate availability will affect metabolism and levels of nitrogen-containing defense compounds, such as glucosinolates (GSLs). We compared Arabidopsis foliar metabolic profile in plants grown under two CO2 regimes (440 vs 880 ppm), nitrate fertilization (1 mM vs 10 mM) and in response to mechanical damage of rosette leaves. Constitutive foliar metabolites in nitrate-limited plants show distinct global patterns depending on atmospheric CO2 levels; in contrast, plants grown under higher nitrate fertilization under elevated atmospheric CO2 conditions have a unique metabolite signature. Nitrate fertilization dampens the jasmonate burst in response to wounding in plants grown at elevated CO2 levels. Leaf GSL profile mirrors the jasmonate burst; in particular, indole GSLs increase in response to damage in plants grown at ambient CO2 but only in nitrate-limited plants grown under elevated CO2 conditions. This may reflect a reduced capacity of C3 plants grown under enriched CO2 and nitrate levels to signal changes in oxidative stress and has implications for future agricultural management practices.

  18. Nonstoichiometry and luminescent properties of ZnSe crystals grown from the melt at high pressures

    NASA Astrophysics Data System (ADS)

    Khanh, Tran; Mozhevitina, Elena; Khomyakov, Andrew; Avetisov, Roman; Davydov, Albert; Chegnov, Vladimir; Antonov, Vladimir; Kobeleva, Svetlana; Zhavoronkov, Nikolai; Avetissov, Igor

    2017-01-01

    50 mm diameter ZnSe crystals have been grown from the melt by a vertical Bridgman technique at 100 atm argon pressure in a graphite crucible. 3D impurities concentration and nonstoichiometry mappings of the grown crystals have been defined by ICP-MS and a direct physic-chemical method, correspondingly. Photoluminescence mapping of the analyzed crystal has been done. It was found out that along the crystal height the nonstoichiometry changed from Se excess over stoichiometrical composition in the cone (bottom) part to Zn excess in the tail (upper) part passing through the stoichiometrical composition in the cylindrical part of the crystal. Metal impurities concentrated in the upper part of the crystal. The gas-forming impurities (H, C, O, N, F) had stochastic distribution but Cl impurity concentrated in the crystal peripheral part (near the crucible walls). It was found out that the as-grown crystal had a single wide PL peal with maximum of 583 nm. A proposal about complex structure luminescent center based on Cl dopant an overstoichiometric Se has been made.

  19. A modelling approach to evaluate the long-term effect of soil texture on spring wheat productivity under a rain-fed condition.

    PubMed

    He, Yong; Hou, Lingling; Wang, Hong; Hu, Kelin; McConkey, Brian

    2014-07-30

    Soil surface texture is an important environmental factor that influences crop productivity because of its direct effect on soil water and complex interactions with other environmental factors. Using 30-year data, an agricultural system model (DSSAT-CERES-Wheat) was calibrated and validated. After validation, the modelled yield and water use (WU) of spring wheat (Triticum aestivum L.) from two soil textures (silt loam and clay) under rain-fed condition were analyzed. Regression analysis showed that wheat grown in silt loam soil is more sensitive to WU than wheat grown in clay soil, indicating that the wheat grown in clay soil has higher drought tolerance than that grown in silt loam. Yield variation can be explained by WU other than by precipitation use (PU). These results demonstrated that the DSSAT-CERES-Wheat model can be used to evaluate the WU of different soil textures and assess the feasibility of wheat production under various conditions. These outcomes can improve our understanding of the long-term effect of soil texture on spring wheat productivity in rain-fed condition.

  20. Membrane proteins involved in transport, vesicle traffic and Ca(2+) signaling increase in beetroots grown in saline soils.

    PubMed

    Lino, Bárbara; Chagolla, Alicia; E González de la Vara, Luis

    2016-07-01

    By separating plasma membrane proteins according to their hydropathy from beetroots grown in saline soils, several proteins probably involved in salt tolerance were identified by mass spectrometry. Beetroots, as a salt-tolerant crop, have developed mechanisms to cope with stresses associated with saline soils. To observe which plasma membrane (PM) proteins were more abundant in beet roots grown in saline soils, beet root plants were irrigated with water or 0.2 M NaCl. PM-enriched membrane preparations were obtained from these plants, and their proteins were separated according to their hydropathy by serial phase partitioning with Triton X-114. Some proteins whose abundance increased visibly in membranes from salt-grown beetroots were identified by mass spectrometry. Among them, there was a V-type H(+)-ATPase (probably from contaminating vacuolar membranes), which increased with salt at all stages of beetroots' development. Proteins involved in solute transport (an H(+)-transporting PPase and annexins), vesicle traffic (clathrin and synaptotagmins), signal perception and transduction (protein kinases and phospholipases, mostly involved in calcium signaling) and metabolism, appeared to increase in salt-grown beetroot PM-enriched membranes. These results suggest that PM and vacuolar proteins involved in transport, metabolism and signal transduction increase in beet roots adapted to saline soils. In addition, these results show that serial phase partitioning with Triton X-114 is a useful method to separate membrane proteins for their identification by mass spectrometry.

  1. Packing of Russian doll clusters to form a nanometer-scale CsCl-type compound in a Cr–Zn–Sn complex metallic alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Weiwei; Cava, Robert J.; Miller, Gordon J.

    A new cubic complex metallic alloy phase, Cr 22Zn 72Sn 24, with a lattice parameter near 2.5 nm was discovered in crystals grown using a Zn/Sn flux. The structure consists of Russian doll clusters or a 3-d network of Cr-centered icosahedra (shown) with bcc-metal fragments in void spaces.

  2. Teaching Future Crop Protection Practitioners through the Use of On-Line Cases: Practicing IPM Spray Decisions in New Zealand Apple Orchards

    ERIC Educational Resources Information Center

    Stewart, Terry Mark

    2015-01-01

    Purpose: There are many complexities to be considered when selecting tactical control options in crops grown under an Integrated Pest Management (IPM) regime. Students being trained in IPM are made aware of this complexity but do not always get the chance to experience IPM decision-making first-hand. This case study describes a web-based…

  3. Packing of Russian doll clusters to form a nanometer-scale CsCl-type compound in a Cr–Zn–Sn complex metallic alloy

    DOE PAGES

    Xie, Weiwei; Cava, Robert J.; Miller, Gordon J.

    2017-07-03

    A new cubic complex metallic alloy phase, Cr 22Zn 72Sn 24, with a lattice parameter near 2.5 nm was discovered in crystals grown using a Zn/Sn flux. The structure consists of Russian doll clusters or a 3-d network of Cr-centered icosahedra (shown) with bcc-metal fragments in void spaces.

  4. Three-Dimensional Rotating Wall Vessel-Derived Cell Culture Models for Studying Virus-Host Interactions

    PubMed Central

    Gardner, Jameson K.; Herbst-Kralovetz, Melissa M.

    2016-01-01

    The key to better understanding complex virus-host interactions is the utilization of robust three-dimensional (3D) human cell cultures that effectively recapitulate native tissue architecture and model the microenvironment. A lack of physiologically-relevant animal models for many viruses has limited the elucidation of factors that influence viral pathogenesis and of complex host immune mechanisms. Conventional monolayer cell cultures may support viral infection, but are unable to form the tissue structures and complex microenvironments that mimic host physiology and, therefore, limiting their translational utility. The rotating wall vessel (RWV) bioreactor was designed by the National Aeronautics and Space Administration (NASA) to model microgravity and was later found to more accurately reproduce features of human tissue in vivo. Cells grown in RWV bioreactors develop in a low fluid-shear environment, which enables cells to form complex 3D tissue-like aggregates. A wide variety of human tissues (from neuronal to vaginal tissue) have been grown in RWV bioreactors and have been shown to support productive viral infection and physiological meaningful host responses. The in vivo-like characteristics and cellular features of the human 3D RWV-derived aggregates make them ideal model systems to effectively recapitulate pathophysiology and host responses necessary to conduct rigorous basic science, preclinical and translational studies. PMID:27834891

  5. Crystallization of a 2:2 complex of granulocyte-colony stimulating factor (GCSF) with the ligand-binding region of the GCSF receptor

    PubMed Central

    Honjo, Eijiro; Tamada, Taro; Maeda, Yoshitake; Koshiba, Takumi; Matsukura, Yasuko; Okamoto, Tomoyuki; Ishibashi, Matsujiro; Tokunaga, Masao; Kuroki, Ryota

    2005-01-01

    The granulocyte-colony stimulating factor (GCSF) receptor receives signals for regulating the maturation, proliferation and differentiation of the precursor cells of neutrophilic granulocytes. The signalling complex composed of two GCSFs (GCSF, 19 kDa) and two GCSF receptors (GCSFR, 34 kDa) consisting of an Ig-like domain and a cytokine-receptor homologous (CRH) domain was crystallized. A crystal of the complex was grown in 1.0 M sodium formate and 0.1 M sodium acetate pH 4.6 and belongs to space group P41212 (or its enantiomorph P43212), with unit-cell parameters a = b = 110.1, c = 331.8 Å. Unfortunately, this crystal form did not diffract beyond 5 Å resolution. Since the heterogeneity of GCSF receptor appeared to prevent the growth of good-quality crystals, the GCSF receptor was fractionated by anion-exchange chromatography. Crystals of the GCSF–fractionated GCSF receptor complex were grown as a new crystal form in 0.2 M ammonium phosphate. This new crystal form diffracted to beyond 3.0 Å resolution and belonged to space group P3121 (or its enantiomorph P3221), with unit-cell parameters a = b = 134.8, c = 105.7 Å. PMID:16511159

  6. Effects of several factors on the heat-shock-induced thermotolerance of Listeria monocytogenes.

    PubMed Central

    Pagán, R; Condón, S; Sala, F J

    1997-01-01

    The influence of the temperature at which Listeria monocytogenes had been grown (4 or 37 degrees C) on the response to heat shocks of different durations at different temperatures was investigated. For cells grown at 4 degrees C, the effect of storage, prior to and after heat shock, on the induced thermotolerance was also studied. Death kinetics of heat-shocked cells is also discussed. For L. monocytogenes grown at 37 degrees C, the greatest response to heat shock was a fourfold increase in thermotolerance. For L. monocytogenes grown at 4 degrees C, the greatest response to heat shock was a sevenfold increase in thermotolerance. The only survival curves of cells to have shoulders were those for cells that had been heat shocked. A 3% concentration of sodium chloride added to the recovery medium made these shoulders disappear and decreased decimal reduction times. The percentage of cells for which thermotolerance increased after a heat shock was smaller the milder the heat shock and the longer the prior storage. PMID:9251209

  7. Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone.

    PubMed

    Will, Rodney E; Wilson, Stuart M; Zou, Chris B; Hennessey, Thomas C

    2013-10-01

    Tree species growing along the forest-grassland ecotone are near the moisture limit of their range. Small increases in temperature can increase vapor pressure deficit (VPD) which may increase tree water use and potentially hasten mortality during severe drought. We tested a 40% increase in VPD due to an increase in growing temperature from 30 to 33°C (constant dewpoint 21°C) on seedlings of 10 tree species common to the forest-grassland ecotone in the southern Great Plains, USA. Measurement at 33 vs 30°C during reciprocal leaf gas exchange measurements, that is, measurement of all seedlings at both growing temperatures, increased transpiration for seedlings grown at 30°C by 40% and 20% for seedlings grown at 33°C. Higher initial transpiration of seedlings in the 33°C growing temperature treatment resulted in more negative xylem water potentials and fewer days until transpiration decreased after watering was withheld. The seedlings grown at 33°C died 13% (average 2 d) sooner than seedlings grown at 30°C during terminal drought. If temperature and severity of droughts increase in the future, the forest-grassland ecotone could shift because low seedling survival rate may not sufficiently support forest regeneration and migration. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. The benefits auditor and the detective.

    PubMed

    Gerver, Howard

    2003-09-01

    As health care grows more complex, the ability to discover overpayments has grown equally challenging. Given the high cost of health care and the expected annual trend of approximately 15% for the next several years, stopping profit losses is critical in any organization.

  9. Ultrafast Energy Flow and Equilibration Dynamics in Photosynthetic Light-Harvesting Complexes

    NASA Astrophysics Data System (ADS)

    Maiuri, Margherita; Lüer, Larry; Henry, Sarah; Carey, Anne-Marie; Cogdell, Richard J.; Cerullo, Giulio; Polli, Dario

    We disentangle various energy transfer pathways in the bacterio-chlorophyll excitation cascade from LH2 to LH1 in Chromatium vinosum grown under high-light or low-light illumination using tunable narrowband selective excitation and broadband infrared probing.

  10. A Review on The Bioconversion of Lignin to Microbial Lipid with Oleaginous Rhodococcus opacus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahan, Kristina M.; Le, Rosemary K.; Yuan, Joshua

    Rhodococcus opacus produces intracellular lipids from the biodegradation of lignocellulosic biomass. These lipids can be used to produce biofuels that could potentially replace petroleum-derived chemicals. Some current studies are focusing on deconstructing lignin through efficient and cost-effective pretreatment methods and improving microbial lipid titers. Furthermore, R. opacus can reach high levels of oleaginicity (>80%) when grown on glucose and other aromatic model compounds but intracellular lipid production is much lower on complex recalcitrant lignin substrates. Our review will discuss recent advances in studying R. opacus lignin degradation by exploring different pretreatment methods, increasing lignin solubility, enriching for low molecular weightmore » lignin compounds and laccase supplementation.« less

  11. Individual-based models in ecology after four decades

    PubMed Central

    Grimm, Volker

    2014-01-01

    Individual-based models simulate populations and communities by following individuals and their properties. They have been used in ecology for more than four decades, with their use and ubiquity in ecology growing rapidly in the last two decades. Individual-based models have been used for many applied or “pragmatic” issues, such as informing the protection and management of particular populations in specific locations, but their use in addressing theoretical questions has also grown rapidly, recently helping us to understand how the sets of traits of individual organisms influence the assembly of communities and food webs. Individual-based models will play an increasingly important role in questions posed by complex ecological systems. PMID:24991416

  12. A Review on The Bioconversion of Lignin to Microbial Lipid with Oleaginous Rhodococcus opacus

    DOE PAGES

    Mahan, Kristina M.; Le, Rosemary K.; Yuan, Joshua; ...

    2017-06-29

    Rhodococcus opacus produces intracellular lipids from the biodegradation of lignocellulosic biomass. These lipids can be used to produce biofuels that could potentially replace petroleum-derived chemicals. Some current studies are focusing on deconstructing lignin through efficient and cost-effective pretreatment methods and improving microbial lipid titers. Furthermore, R. opacus can reach high levels of oleaginicity (>80%) when grown on glucose and other aromatic model compounds but intracellular lipid production is much lower on complex recalcitrant lignin substrates. Our review will discuss recent advances in studying R. opacus lignin degradation by exploring different pretreatment methods, increasing lignin solubility, enriching for low molecular weightmore » lignin compounds and laccase supplementation.« less

  13. A Model-Based Approach to Developing Your Mission Operations System

    NASA Technical Reports Server (NTRS)

    Smith, Robert R.; Schimmels, Kathryn A.; Lock, Patricia D; Valerio, Charlene P.

    2014-01-01

    Model-Based System Engineering (MBSE) is an increasingly popular methodology for designing complex engineering systems. As the use of MBSE has grown, it has begun to be applied to systems that are less hardware-based and more people- and process-based. We describe our approach to incorporating MBSE as a way to streamline development, and how to build a model consisting of core resources, such as requirements and interfaces, that can be adapted and used by new and upcoming projects. By comparing traditional Mission Operations System (MOS) system engineering with an MOS designed via a model, we will demonstrate the benefits to be obtained by incorporating MBSE in system engineering design processes.

  14. Significance of the concentration of chelating ligands on Fe3+-solubility, bioavailability, and uptake in rice plant.

    PubMed

    Hasegawa, Hiroshi; Rahman, M Mamunur; Kadohashi, Kouta; Takasugi, Yui; Tate, Yousuke; Maki, Teruya; Rahman, M Azizur

    2012-09-01

    Present study investigated the significance of the concentration of chelating ligand on Fe(3+)-solubility in growth medium and its influence on Fe bioavailability and uptake in rice plant. Rice seedlings were grown in modified Murashige and Skoog (MS) hydroponic growth medium with moderate (250 μM) and high (500 μM) concentrations of ethylenediaminetetraacetate (EDTA) and hydroxyiminodisuccinate (HIDS) under sterile and non-sterile conditions. Concentrations of soluble Fe in the growth medium increased with increasing ligand concentrations, and the growth of rice seedlings was higher at moderate ligand concentration than at control (without chelant) and high ligand concentration. This explains the relationship between Fe solubility and bioavailability in the growth medium, and its effect on Fe uptake in rice plant. Fe exists in the growth medium predominantly as particulate (insoluble) forms at low ligand concentration, and as soluble [Fe(OH)(2+), Fe(OH)(2)(+), Fe-L complex] and apparently soluble (colloidal) forms at moderate ligand concentration. At high ligand concentration, most of the Fe(3+) in the growth medium forms soluble Fe-L complex, however, the bioavailability of Fe from Fe-L complex decreased due to lopsided complex formation equilibrium reaction (CFER) between Fe and the ligands. Also, Fe is solubilized forming stable and soluble Fe-L complex, which is then detached as less stable, but soluble and bioavailable substance(s) after (time-dependent) biodegradation. Therefore- i) ligand concentration and stability constant of Fe-L complex (K(Fe-L)) influence Fe bioavailability and uptake in rice plant, and ii) the biodegradable ligands (e.g., HIDS) would be more effective Fe fertilizer than the environmentally persistent and less biodegradable ligands (e.g., EDTA). Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. Law Enforcement Efforts to Control Domestically Grown Marijuana.

    DTIC Science & Technology

    1984-05-25

    mari- juana grown indoors , the involvement of large criminal organizations, and the patterns of domestic marijuana distribution. In response to a GAO...information is particularly important if the amount of marijuana grown indoors and the number of large-scale cultiva- tion and distribution organizations... marijuana indoors is becoming increasingly popular. A 1982 narcotics assessment by the Western States Information Network (WSIN)2 of marijuana

  16. Neural signal registration and analysis of axons grown in microchannels

    NASA Astrophysics Data System (ADS)

    Pigareva, Y.; Malishev, E.; Gladkov, A.; Kolpakov, V.; Bukatin, A.; Mukhina, I.; Kazantsev, V.; Pimashkin, A.

    2016-08-01

    Registration of neuronal bioelectrical signals remains one of the main physical tools to study fundamental mechanisms of signal processing in the brain. Neurons generate spiking patterns which propagate through complex map of neural network connectivity. Extracellular recording of isolated axons grown in microchannels provides amplification of the signal for detailed study of spike propagation. In this study we used neuronal hippocampal cultures grown in microfluidic devices combined with microelectrode arrays to investigate a changes of electrical activity during neural network development. We found that after 5 days in vitro after culture plating the spiking activity appears first in microchannels and on the next 2-3 days appears on the electrodes of overall neural network. We conclude that such approach provides a convenient method to study neural signal processing and functional structure development on a single cell and network level of the neuronal culture.

  17. Nanophotonic integrated circuits from nanoresonators grown on silicon.

    PubMed

    Chen, Roger; Ng, Kar Wei; Ko, Wai Son; Parekh, Devang; Lu, Fanglu; Tran, Thai-Truong D; Li, Kun; Chang-Hasnain, Connie

    2014-07-07

    Harnessing light with photonic circuits promises to catalyse powerful new technologies much like electronic circuits have in the past. Analogous to Moore's law, complexity and functionality of photonic integrated circuits depend on device size and performance scale. Semiconductor nanostructures offer an attractive approach to miniaturize photonics. However, shrinking photonics has come at great cost to performance, and assembling such devices into functional photonic circuits has remained an unfulfilled feat. Here we demonstrate an on-chip optical link constructed from InGaAs nanoresonators grown directly on a silicon substrate. Using nanoresonators, we show a complete toolkit of circuit elements including light emitters, photodetectors and a photovoltaic power supply. Devices operate with gigahertz bandwidths while consuming subpicojoule energy per bit, vastly eclipsing performance of prior nanostructure-based optoelectronics. Additionally, electrically driven stimulated emission from an as-grown nanostructure is presented for the first time. These results reveal a roadmap towards future ultradense nanophotonic integrated circuits.

  18. Terahertz conductivity of the highly mismatched amorphous alloy, GaNBi

    NASA Astrophysics Data System (ADS)

    Vaisakh, C. P.; Foxon, C. T.; Novikov, S. V.; Kini, R. N.

    2017-12-01

    We report terahertz optical conductivity measurements of the highly mismatched alloy, GaNBi. We find that in these amorphous GaNBi epilayers grown using plasma assisted molecular beam epitaxy, the optical conductivity is enhanced in the samples grown at higher gallium beam equivalent pressure (BEP). The optical conductivity spectra in these pseudo-amorphous epilayers follow a Drude-Smith behaviour due to charge confinement effects. The direct current conductivity in the epilayers grown at the highest Ga BEP (3.1 × 10-7 Torr) show an increase of three orders of magnitude compared to the one grown at the lowest Ga BEP (2.0 × 10-7 Torr). Our measurements suggests a percolative transition from an insulating nature in the GaNBi epilayers grown at low Ga BEP to a highly conducting phase in the epilayers grown at high Ga BEP.

  19. Cadmium content of plants as affected by soil cadmium concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehoczky, E.; Szabados, I.; Marth, P.

    1996-12-31

    Pot experiments were conducted in greenhouse conditions to study the effects of increasing cadmium (Cd) levels on biomass production and Cd contents in corn, (Zea mays L.), garlic (Allium sativum L.), and spinach (Spinacia oleracea L.). Plants were grown in two soil types: Eutric cambisol soil and A gleyic luvisol soil. Spinach proved to be the most sensitive to Cd treatments as its biomass considerably decreased with the increasing Cd levels. Cadmium contents of the three crops increased with increasing levels of Cd applications. Statistical differences were observed in the Cd contents of crops depending on soil type. With themore » same Cd rates, Cd tissue concentration of test plants grown in the strongly acidic Gleyic luvisol soil were many times higher than that of plants grown in a neutral Eutric cambisol soil. 14 refs., 4 tabs.« less

  20. Gene Expression by the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough Grown on an Iron Electrode under Cathodic Protection Conditions▿ †

    PubMed Central

    Caffrey, Sean M.; Park, Hyung Soo; Been, Jenny; Gordon, Paul; Sensen, Christoph W.; Voordouw, Gerrit

    2008-01-01

    The genome sequence of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough was reanalyzed to design unique 70-mer oligonucleotide probes against 2,824 probable protein-coding regions. These included three genes not previously annotated, including one that encodes a c-type cytochrome. Using microarrays printed with these 70-mer probes, we analyzed the gene expression profile of wild-type D. vulgaris grown on cathodic hydrogen, generated at an iron electrode surface with an imposed negative potential of −1.1 V (cathodic protection conditions). The gene expression profile of cells grown on cathodic hydrogen was compared to that of cells grown with gaseous hydrogen bubbling through the culture. Relative to the latter, the electrode-grown cells overexpressed two hydrogenases, the hyn-1 genes for [NiFe] hydrogenase 1 and the hyd genes, encoding [Fe] hydrogenase. The hmc genes for the high-molecular-weight cytochrome complex, which allows electron flow from the hydrogenases across the cytoplasmic membrane, were also overexpressed. In contrast, cells grown on gaseous hydrogen overexpressed the hys genes for [NiFeSe] hydrogenase. Cells growing on the electrode also overexpressed genes encoding proteins which promote biofilm formation. Although the gene expression profiles for these two modes of growth were distinct, they were more closely related to each other than to that for cells grown in a lactate- and sulfate-containing medium. Electrochemically measured corrosion rates were lower for iron electrodes covered with hyn-1, hyd, and hmc mutant biofilms than for wild-type biofilms. This confirms the importance, suggested by the gene expression studies, of the corresponding gene products in D. vulgaris-mediated iron corrosion. PMID:18310429

  1. The blue light-induced interaction of cryptochrome 1 with COP1 requires SPA proteins during Arabidopsis light signaling.

    PubMed

    Holtkotte, Xu; Ponnu, Jathish; Ahmad, Margaret; Hoecker, Ute

    2017-10-01

    Plants constantly adjust their growth, development and metabolism to the ambient light environment. Blue light is sensed by the Arabidopsis photoreceptors CRY1 and CRY2 which subsequently initiate light signal transduction by repressing the COP1/SPA E3 ubiquitin ligase. While the interaction between cryptochromes and SPA is blue light-dependent, it was proposed that CRY1 interacts with COP1 constitutively, i.e. also in darkness. Here, our in vivo co-immunoprecipitation experiments suggest that CRY1 and CRY2 form a complex with COP1 only after seedlings were exposed to blue light. No association between COP1 and CRY1 or CRY2 was observed in dark-grown seedlings. Thus, our results suggest that cryptochromes bind the COP1/SPA complex after photoactivation by blue light. In a spa quadruple mutant that is devoid of all four SPA proteins, CRY1 and COP1 did not interact in vivo, neither in dark-grown nor in blue light-grown seedlings. Hence, SPA proteins are required for the high-affinity interaction between CRY1 and COP1 in blue light. Yeast three-hybrid experiments also show that SPA1 enhances the CRY1-COP1 interaction. The coiled-coil domain of SPA1 which is responsible for COP1-binding was necessary to mediate a CRY1-SPA1 interaction in vivo, implying that-in turn-COP1 may be necessary for a CRY1-SPA1 complex formation. Hence, SPA1 and COP1 may act cooperatively in recognizing and binding photoactivated CRY1. In contrast, the blue light-induced association between CRY2 and COP1 was not dependent on SPA proteins in vivo. Similarly, ΔCC-SPA1 interacted with CRY2, though with a much lower affinity than wild-type SPA1. In total, our results demonstrate that CRY1 and CRY2 strongly differ in their blue light-induced interaction with the COP1/SPA complex.

  2. Phototropism: a "simple" physiological response modulated by multiple interacting photosensory-response pathways.

    PubMed

    Liscum, E; Stowe-Evans, E L

    2000-09-01

    Phototropism is the process by which plants reorient growth of various organs, most notably stems, in response to lateral differences in light quantity and/or quality. The ubiquitous nature of the phototropic response in the plant kingdom implies that it provides some adaptive evolutionary advantage. Upon visual inspection it is tempting to surmise that phototropic curvatures result from a relatively simple growth response to a directional stimulus. However, detailed photophysiological, and more recently genetic and molecular, studies have demonstrated that phototropism is in fact regulated by complex interactions among several photosensory systems. At least two receptors, phototropin and a presently unidentified receptor, appear to mediate the primary photoreception of directional blue light cues in dark-grown plants. PhyB may also function as a primary receptor to detect lateral increases in far-red light in neighbor-avoidance responses of light-grown plants. Phytochromes (phyA and phyB at a minimum) also appear to function as secondary receptors to regulate adaptation processes that ultimately modulate the magnitude of curvature induced by primary photoperception. As a result of the interactions of these multiple photosensory systems plants are able to maximize the adaptive advantage of the phototropic response in ever changing light environments.

  3. AUXIN BINDING PROTEIN1 Links Cell Wall Remodeling, Auxin Signaling, and Cell Expansion in Arabidopsis[W

    PubMed Central

    Paque, Sébastien; Mouille, Grégory; Grandont, Laurie; Alabadí, David; Gaertner, Cyril; Goyallon, Arnaud; Muller, Philippe; Primard-Brisset, Catherine; Sormani, Rodnay; Blázquez, Miguel A.; Perrot-Rechenmann, Catherine

    2014-01-01

    Cell expansion is an increase in cell size and thus plays an essential role in plant growth and development. Phytohormones and the primary plant cell wall play major roles in the complex process of cell expansion. In shoot tissues, cell expansion requires the auxin receptor AUXIN BINDING PROTEIN1 (ABP1), but the mechanism by which ABP1 affects expansion remains unknown. We analyzed the effect of functional inactivation of ABP1 on transcriptomic changes in dark-grown hypocotyls and investigated the consequences of gene expression on cell wall composition and cell expansion. Molecular and genetic evidence indicates that ABP1 affects the expression of a broad range of cell wall–related genes, especially cell wall remodeling genes, mainly via an SCFTIR/AFB-dependent pathway. ABP1 also functions in the modulation of hemicellulose xyloglucan structure. Furthermore, fucosidase-mediated defucosylation of xyloglucan, but not biosynthesis of nonfucosylated xyloglucan, rescued dark-grown hypocotyl lengthening of ABP1 knockdown seedlings. In muro remodeling of xyloglucan side chains via an ABP1-dependent pathway appears to be of critical importance for temporal and spatial control of cell expansion. PMID:24424095

  4. Salmonella Modulates Metabolism during Growth under Conditions that Induce Expression of Virulence Genes

    PubMed Central

    Kim, Young-Mo; Schmidt, Brian J.; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage Kaiser, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-01-01

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes to virulence in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Furthermore, analyses of omics data in the context of the metabolic model indicated rewiring of the metabolic network to support pathways associated with virulence. For example, cellular concentrations of polyamines were perturbed, as well as the predicted capacity for secretion and uptake. PMID:23559334

  5. Long wavelength emitting GaInN quantum wells on metamorphic GaInN buffer layers with enlarged in-plane lattice parameter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Däubler, J., E-mail: juergen.daeubler@iaf.fraunhofer.de; Passow, T.; Aidam, R.

    Metamorphic (i.e., linear composition graded) GaInN buffer layers with an increased in-plane lattice parameter, grown by plasma-assisted molecular beam epitaxy, were used as templates for metal organic vapor phase epitaxy (MOVPE) grown GaInN/GaInN quantum wells (QWs), emitting in the green to red spectral region. A composition pulling effect was observed allowing considerable higher growth temperatures for the QWs for a given In composition. The internal quantum efficiency (IQE) of the QWs was determined by temperature and excitation power density dependent photoluminescence (PL) spectroscopy. An increase in IQE by a factor of two was found for green emitting QWs grown onmore » metamorphic GaInN buffer compared to reference samples grown on standard GaN buffer layers. The ratio of room temperature to low temperature intensity PL of the red emitting QWs were found to be comparable to the PL efficiency of green emitting QWs, both grown on metamorphic GaInN buffers. The excitation density and well width dependence of the IQE indicate a reduction of the quantum confined Stark effect upon growth on GaInN buffer layers with increased in-plane lattice parameter.« less

  6. Determination of Vitamin C, b-carotene and Riboflavin Contents in Five Green Vegetables Organically and Conventionally Grown.

    PubMed

    Ismail, Amin; Cheah, Sook Fun

    2003-03-01

    As consumer interest in organically grown vegetables is increasing in Malaysia, there is a need to answer whether the vegetables are more nutritious than those conventionally grown. This study investigates commercially available vegetables grown organically and conventionally, purchased from retailers to analyse β-carotene, vitamin C and riboflavin contents. Five types of green vegetables were selected, namely Chinese mustard (sawi) (Brassica juncea), Chinese kale (kai-lan) (Brassica alboglabra), lettuce (daun salad) (Lactuca sativa), spinach (bayam putih) (Amaranthus viridis) and swamp cabbage (kangkung) (Ipomoea aquatica). For vitamin analysis, a reverse-phase high performance liquid chromatography was used to identify and quantify β -carotene, vitamin C and riboflavin. The findings showed that not all of the organically grown vegetables were higher in vitamins than that conventionally grown. This study found that only swamp cabbage grown organically was highest in β -carotene, vitamin C and riboflavin contents among the entire samples studied. The various nutrients in organically grown vegetables need to be analysed for the generation of a database on nutritional value which is important for future research.

  7. Recent advances towards development and commercialization of plant cell culture processes for synthesis of biomolecules

    PubMed Central

    Wilson, Sarah A.; Roberts, Susan C.

    2011-01-01

    (1) Summary Plant cell culture systems were initially explored for use in commercial synthesis of several high value secondary metabolites, allowing for sustainable production that was not limited by the low yields associated with natural harvest or the high cost associated with complex chemical synthesis. Although there have been some commercial successes, most notably paclitaxel production from Taxus sp., process limitations exist with regards to low product yields and inherent production variability. A variety of strategies are being developed to overcome these limitations including elicitation strategies, in situ product removal and metabolic engineering with single genes and transcription factors. Recently, the plant cell culture production platform has been extended to pharmaceutically active heterologous proteins. Plant systems are beneficial because they are able to produce complex proteins that are properly glycosylated, folded and assembled without the risk of contamination by toxins that are associated with mammalian or microbial production systems. Additionally, plant cell culture isolates transgenic material from the environment, allows for more controllable conditions over field grown crops and promotes secretion of proteins to the medium, reducing downstream purification costs. Despite these benefits, the increase in cost of heterologous protein synthesis in plant cell culture as opposed to field grown crops is significant and therefore processes must be optimized with regards to maximizing secretion and enhancing protein stability in the cell culture media. This review discusses recent advancements in plant cell culture processing technology, focusing on progress towards overcoming the problems associated with commercialization of these production systems and highlighting recent commercial successes. PMID:22059985

  8. Stem juice production of the C4 sugarcane (Saccharum officinarum) is enhanced by growth at double-ambient CO2 and high temperature.

    PubMed

    Vu, Joseph C V; Allen, Leon H

    2009-07-15

    Two cultivars of sugarcane (Saccharum officinarum cv. CP73-1547 and CP88-1508) were grown for 3 months in paired-companion, temperature-gradient, sunlit greenhouses under daytime [CO2] of 360 (ambient) and 720 (double ambient) micromol mol(-1) and at temperatures of 1.5 degrees C (near ambient) and 6.0 degrees C higher than outside ambient temperature. Leaf area and biomass, stem biomass and juice and CO2 exchange rate (CER) and activities of ribulose bisphosphate carboxylase-oxygenase (Rubisco) and phosphoenolpyruvate carboxylase (PEPC) of fully developed leaves were measured at harvest. On a main stem basis, leaf area, leaf dry weight, stem dry weight and stem juice volume were increased by growth at doubled [CO2] or high temperature. Such increases were even greater under combination of doubled [CO2]/high temperature. Plants grown at doubled [CO2]/high temperature combination averaged 50%, 26%, 84% and 124% greater in leaf area, leaf dry weight, stem dry weight and stem juice volume, respectively, compared with plants grown at ambient [CO2]/near-ambient temperature combination. In addition, plants grown at doubled [CO2]/high temperature combination were 2-3-fold higher in stem soluble solids than those at ambient [CO2]/near-ambient temperature combination. Although midday CER of fully developed leaves was not affected by doubled [CO2] or high temperature, plants grown at doubled [CO2] were 41-43% less in leaf stomatal conductance and 69-79% greater in leaf water-use efficiency, compared with plants grown at ambient [CO2]. Activity of PEPC was down-regulated 23-32% at doubled [CO2], while high temperature did not have a significant impact on this enzyme. Activity of Rubisco was not affected by growth at doubled [CO2], but was reduced 15-28% at high temperature. The increases in stem juice production and stem juice soluble solids concentration for sugarcane grown at doubled [CO2] or high temperature, or at doubled [CO2]/high temperature combination, were partially the outcome of an increase in whole plant leaf area. Such increase would enhance the ongoing and cumulative photosynthetic capability of the whole plant. The results indicate that a doubling of [CO2] would benefit sugarcane production more than the anticipated 10-15% increase for a C4 species.

  9. Photoprotection of PSI by Far-Red Light Against the Fluctuating Light-Induced Photoinhibition in Arabidopsis thaliana and Field-Grown Plants.

    PubMed

    Kono, Masaru; Yamori, Wataru; Suzuki, Yoshihiro; Terashima, Ichiro

    2017-01-01

    It has been reported that PSI photoinhibition is induced even in wild-type plants of Arabidopsis thaliana, rice and other species by exposure of leaves to fluctuating light (FL) for a few hours. Because plants are exposed to FL in nature, they must possess protective mechanisms against the FL-induced photodamage. Here, using A. thaliana grown at various irradiances, we examined PSI photoprotection by far-red (FR) light at intensities comparable with those observed in nature. Dark-treated leaves were illuminated by red FL alternating high/low light at 1,200/30 µmol m-2 s-1 for 800 ms/10 s. By this FL treatment without FR light for 120 min, the level of photo-oxidizable P700 was decreased by 30% even in the plants grown at high irradiances. The addition of continuous FR light during the FL suppressed this damage almost completely. With FR light, P700 was kept in a more oxidized state in both low- and high-light phases. The protective effect of FR light was diminished more in mutants of the NADH dehydrogenase-like complex (NDH)-mediated cyclic electron flow around PSI (CEF-PSI) than in the PGR5 (proton gradient regulation 5)-mediated CEF-PSI, indicating that the NDH-mediated CEF-PSI would be a major contributor to PSI photoprotection in the presence of FR light. We also confirmed that PSI photoinhibition decreased with the increase in growth irradiance in A. thaliana and field-grown plants, and that this PSI photodamage was largely suppressed by addition of FR light. These results clearly indicate that the most effective PSI protection is realized in the presence of FR light. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Development of the photosynthetic apparatus of Cunninghamia lanceolata in light and darkness.

    PubMed

    Xue, Xian; Wang, Qi; Qu, Yanli; Wu, Hongyang; Dong, Fengqin; Cao, Haoyan; Wang, Hou-Ling; Xiao, Jianwei; Shen, Yingbai; Wan, Yinglang

    2017-01-01

    Here, we compared the development of dark- and light-grown Chinese fir (Cunninghamia lanceolata) cotyledons, which synthesize chlorophyll in the dark, representing a different phenomenon from angiosperm model plants. We determined that the grana lamellar membranes were well developed in both chloroplasts and etiochloroplasts. The accumulation of thylakoid membrane protein complexes was similar between chloroplasts and etiochloroplasts. Measurement of chlorophyll fluorescence parameters indicated that photosystem II (PSII) had low photosynthetic activities, whereas the photosystem I (PSI)-driven cyclic electron flow (CEF) rate exceeded the rate of PSII-mediated photon harvesting in etiochloroplasts. Analysis of the protein contents in etiochloroplasts indicated that the light-harvesting complex II remained mostly in its monomeric conformation. The ferredoxin NADP + oxidoreductase and NADH dehydrogenase-like complexes were relatively abundantly expressed in etiochloroplasts for Chinese fir. Our transcriptome analysis contributes a global expression database for Chinese fir cotyledons, providing background information on the regulatory mechanisms of different genes involved in the development of dark- and light-grown cotyledons. In conclusion, we provide a novel description of the early developmental status of the light-dependent and light-independent photosynthetic apparatuses in gymnosperms. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  11. Suppression of Hydroxycinnamate Network Formation in Cell Walls of Rice Shoots Grown under Microgravity Conditions in Space

    PubMed Central

    Wakabayashi, Kazuyuki; Soga, Kouichi; Hoson, Takayuki; Kotake, Toshihisa; Yamazaki, Takashi; Higashibata, Akira; Ishioka, Noriaki; Shimazu, Toru; Fukui, Keiji; Osada, Ikuko; Kasahara, Haruo; Kamada, Motoshi

    2015-01-01

    Network structures created by hydroxycinnamate cross-links within the cell wall architecture of gramineous plants make the cell wall resistant to the gravitational force of the earth. In this study, the effects of microgravity on the formation of cell wall-bound hydroxycinnamates were examined using etiolated rice shoots simultaneously grown under artificial 1 g and microgravity conditions in the Cell Biology Experiment Facility on the International Space Station. Measurement of the mechanical properties of cell walls showed that shoot cell walls became stiff during the growth period and that microgravity suppressed this stiffening. Amounts of cell wall polysaccharides, cell wall-bound phenolic acids, and lignin in rice shoots increased as the shoot grew. Microgravity did not influence changes in the amounts of cell wall polysaccharides or phenolic acid monomers such as ferulic acid (FA) and p-coumaric acid, but it suppressed increases in diferulic acid (DFA) isomers and lignin. Activities of the enzymes phenylalanine ammonia-lyase (PAL) and cell wall-bound peroxidase (CW-PRX) in shoots also increased as the shoot grew. PAL activity in microgravity-grown shoots was almost comparable to that in artificial 1 g-grown shoots, while CW-PRX activity increased less in microgravity-grown shoots than in artificial 1 g-grown shoots. Furthermore, the increases in expression levels of some class III peroxidase genes were reduced under microgravity conditions. These results suggest that a microgravity environment modifies the expression levels of certain class III peroxidase genes in rice shoots, that the resultant reduction of CW-PRX activity may be involved in suppressing DFA formation and lignin polymerization, and that this suppression may cause a decrease in cross-linkages within the cell wall architecture. The reduction in intra-network structures may contribute to keeping the cell wall loose under microgravity conditions. PMID:26378793

  12. Characterization of re-grown floc size and structure: effect of mixing conditions during floc growth, breakage and re-growth process.

    PubMed

    Nan, Jun; Wang, Zhenbei; Yao, Meng; Yang, Yueming; Zhang, Xiaofei

    2016-12-01

    The impact of mixing speed in three stages-before breakage, during breakage, and after breakage-on re-grown floc properties was investigated by using a non-intrusive optical sampling and digital image analysis technique, respectively. And then, on the basis of different influence extent of mixing speed during each stage on size and structure of re-grown flocs, coagulation performance with varying mixing speed was analyzed. The results indicated that the broken flocs could not re-grow to the size before breakage in all cases. Furthermore, increasing mixing intensity contributed to the re-formation of smaller flocs with higher degree of compactness. For slow mixing before breakage, an increase in mixing speed had less influence on re-grown floc properties due to the same breakage strength during breakage, resulting in inconspicuous variation of coagulation efficiency. For rapid mixing during breakage, larger mixing speed markedly decreased the coagulation efficiency. This could be attributed that mixing speed during breakage generated greater influence on re-grown floc size. However, as slow mixing after breakage was elevated, the coagulation efficiency presented significant rise, indicating that slow mixing after breakage had more influence on re-grown floc structure upon re-structuring and re-arrangement mechanism.

  13. Optimizing the calcium content of a copolymer acrylamide gel matrix for dark-grown seedlings

    NASA Technical Reports Server (NTRS)

    Myers, P. N.; Mitchell, C. A.

    1998-01-01

    A copolymer acrylamide acrylate gel was investigated as the sole root matrix for dark-grown seedlings of soybean (Glycine max Merr. 'Century 84'). Increasing Ca2+ in the hydrating solution of the hydrogel from 1 to 10 mM decreased its water-holding capacity from 97 to 46 mL g-1, yet water potential of the medium remained high, sufficient for normal plant growth at all Ca2+ concentrations tested. Elongation rate of dark-grown soybean seedlings over a 54-hour period was 0.9, 1.5, and 1.8 mm h-1 with 1.0, 2.5, or 5.0 mM Ca2+, respectively, but did not increase with further increases in Ca2+ concentration. Further study revealed that Na+ was released from the hydrogel medium and was taken up by the seedlings as Ca2+ increased in the medium. In dry hypocotyl tissue, sodium content correlated negatively with calcium content. Despite the presence of Na+ in the hydrogel, seedling growth was normal when adequate Ca2+ was added in the hydrating solution. Acrylamide hydrogels hold good potential as a sole growth matrix for short-term experiments with dark-grown seedlings without irrigation.

  14. Functional characteristics of spirilloxanthin and keto-bearing Analogues in light-harvesting LH2 complexes from Rhodobacter sphaeroides with a genetically modified carotenoid synthesis pathway.

    PubMed

    Niedzwiedzki, Dariusz M; Dilbeck, Preston L; Tang, Qun; Mothersole, David J; Martin, Elizabeth C; Bocian, David F; Holten, Dewey; Hunter, C Neil

    2015-01-01

    Light-harvesting 2 (LH2) complexes from a genetically modified strain of the purple photosynthetic bacterium Rhodobacter (Rba.) sphaeroides were studied using static and ultrafast optical methods and resonance Raman spectroscopy. Carotenoid synthesis in the Rba. sphaeroides strain was engineered to redirect carotenoid production away from spheroidene into the spirilloxanthin synthesis pathway. The strain assembles LH2 antennas with substantial amounts of spirilloxanthin (total double-bond conjugation length N=13) if grown anaerobically and of keto-bearing long-chain analogs [2-ketoanhydrorhodovibrin (N=13), 2-ketospirilloxanthin (N=14) and 2,2'-diketospirilloxanthin (N=15)] if grown semi-aerobically (with ratios that depend on growth conditions). We present the photophysical, electronic, and vibrational properties of these carotenoids, both isolated in organic media and assembled within LH2 complexes. Measurements of excited-state energy transfer to the array of excitonically coupled bacteriochlorophyll a molecules (B850) show that the mean lifetime of the first singlet excited state (S1) of the long-chain (N≥13) carotenoids does not change appreciably between organic media and the protein environment. In each case, the S1 state appears to lie lower in energy than that of B850. The energy-transfer yield is ~0.4 in LH2 (from the strain grown aerobically or semi-aerobically), which is less than half that achieved for LH2 that contains short-chain (N≤11) analogues. Collectively, the results suggest that the S1 excited state of the long-chain (N≥13) carotenoids participates little if at all in carotenoid-to-BChl a energy transfer, which occurs predominantly via the carotenoid S2 excited state in these antennas. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Biomass production and secretion of hydrolytic enzymes are influenced by the structural complexity of the nitrogen source in Fusarium oxysporum and Aspergillus nidulans.

    PubMed

    da Silva, M C; Bertolini, M C; Ernandes, J R

    2001-01-01

    The structural complexity of the nitrogen sources strongly affects biomass production and secretion of hydrolytic enzymes in filamentous fungi. Fusarium oxysporum and Aspergillus nidulans were grown in media containing glucose or starch, and supplemented with a nitrogen source varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids), peptides (peptone) and protein (gelatin). In glucose, when the initial pH was adjusted to 5.0, for both microorganisms, higher biomass production occurred upon supplementation with a nitrogen source in the peptide form (peptone and gelatin). With a close to neutrality pH, biomass accumulation was lower only in the presence of the ammonium salt. When grown in starch, biomass accumulation and secretion of hydrolytic enzymes (amylolytic and proteolytic) by Fusarium also depended on the nature of the nitrogen supplement and the pH. When the initial pH was adjusted to 5.0, higher growth and higher amylolytic activities were detected in the media supplemented with peptone, gelatin and casamino acids. However, at pH 7.0, higher biomass accumulation and higher amylolytic activities were observed upon supplementation with peptone or gelatin. Ammonium sulfate and casamino acids induced a lower production of biomass, and a different level of amylolytic enzyme secretion: high in ammonium sulfate and low in casamino acids. Secretion of proteolytic activity was always higher in the media supplemented with peptone and gelatin. Aspergillus, when grown in starch, was not as dependent as Fusarium on the nature of nitrogen source or the pH. The results described in this work indicate that the metabolism of fungi is regulated not only by pH, but also by the level of structural complexity of the nitrogen source in correlation to the carbon source.

  16. High efficiency light harvesting by carotenoids in the LH2 complex from photosynthetic bacteria: unique adaptation to growth under low-light conditions.

    PubMed

    Magdaong, Nikki M; LaFountain, Amy M; Greco, Jordan A; Gardiner, Alastair T; Carey, Anne-Marie; Cogdell, Richard J; Gibson, George N; Birge, Robert R; Frank, Harry A

    2014-09-25

    Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in the major LH2 light-harvesting pigment-protein complex. Under high-light conditions the well-characterized B800-850 LH2 complex is formed and accumulates rhodopin and rhodopin glucoside as the primary carotenoids. Under low-light conditions, a variant LH2, denoted B800-820, is formed, and rhodopinal and rhodopinal glucoside are the most abundant carotenoids. The present investigation compares and contrasts the spectral properties and dynamics of the excited states of rhodopin and rhodopinal in solution. In addition, the systematic differences in pigment composition and structure of the chromophores in the LH2 complexes provide an opportunity to explore the effect of these factors on the rate and efficiency of carotenoid-to-BChl energy transfer. It is found that the enzymatic conversion of rhodopin to rhodopinal by Rbl. acidophilus 7050 grown under low-light conditions results in nearly 100% carotenoid-to-BChl energy transfer efficiency in the LH2 complex. This comparative analysis provides insight into how photosynthetic systems are able to adapt and survive under challenging environmental conditions.

  17. High Efficiency Light Harvesting by Carotenoids in the LH2 Complex from Photosynthetic Bacteria: Unique Adaptation to Growth under Low-Light Conditions

    PubMed Central

    2015-01-01

    Rhodopin, rhodopinal, and their glucoside derivatives are carotenoids that accumulate in different amounts in the photosynthetic bacterium, Rhodoblastus (Rbl.) acidophilus strain 7050, depending on the intensity of the light under which the organism is grown. The different growth conditions also have a profound effect on the spectra of the bacteriochlorophyll (BChl) pigments that assemble in the major LH2 light-harvesting pigment–protein complex. Under high-light conditions the well-characterized B800-850 LH2 complex is formed and accumulates rhodopin and rhodopin glucoside as the primary carotenoids. Under low-light conditions, a variant LH2, denoted B800-820, is formed, and rhodopinal and rhodopinal glucoside are the most abundant carotenoids. The present investigation compares and contrasts the spectral properties and dynamics of the excited states of rhodopin and rhodopinal in solution. In addition, the systematic differences in pigment composition and structure of the chromophores in the LH2 complexes provide an opportunity to explore the effect of these factors on the rate and efficiency of carotenoid-to-BChl energy transfer. It is found that the enzymatic conversion of rhodopin to rhodopinal by Rbl. acidophilus 7050 grown under low-light conditions results in nearly 100% carotenoid-to-BChl energy transfer efficiency in the LH2 complex. This comparative analysis provides insight into how photosynthetic systems are able to adapt and survive under challenging environmental conditions. PMID:25171303

  18. Effect of growth temperature on outer membrane components and virulence of Aeromonas hydrophila strains of serotype O:34.

    PubMed Central

    Merino, S; Camprubí, S; Tomás, J M

    1992-01-01

    Growth of Aeromonas hydrophila strains from serotype O:34 at 20 and 37 degrees C in tryptic soy broth resulted in changes in the lipids, lipopolysaccharide (LPS), and virulence of the strains tested. Cells grown at 20 degrees C contained, relative to those cultured at 37 degrees C, increased levels of the phospholipid fatty acids hexadecanoate and octadecanoate and reduced levels of the corresponding saturated fatty acids. Furthermore, the lipid A fatty acids also showed thermoadaptation. In addition, LPS extracted from cells cultivated at 20 degrees C was smooth, while the LPS extracted from the same cells cultivated at 37 degrees C was rough. Finally, the strains were more virulent for fish and mice when they were grown at 20 degrees C than when they were grown at 37 degrees C and also showed increased different extracellular activities when they were grown at 20 degrees C. Images PMID:1398945

  19. Cryptococcus neoformans responds to mannitol by increasing capsule size in vitro and in vivo

    PubMed Central

    Guimarães, Allan Jefferson; Frases, Susana; Cordero, Radamés J. B.; Nimrichter, Leonardo; Casadevall, Arturo; Nosanchuk, Joshua D.

    2010-01-01

    The polysaccharide capsule of the fungus Cryptococcus neoformans is its main virulence factor. In this study, we determined the effects of mannitol and glucose on the capsule and exopolysaccharide production. Growth in mannitol significantly increased capsular volume compared to cultivation in glucose. However, cells grown in glucose concentrations higher than 62.5mM produced more exopolysaccharide than cells grown in mannitol. The fiber lengths and glycosyl composition of capsular polysaccharide from yeast grown in mannitol was structurally different from that of yeast grown in glucose. Furthermore, mannitol treatment of mice infected intratracheally with C. neoformans resulted in fungal cells with significantly larger capsules and the mice had reduced fungal dissemination to the brain. Our results demonstrate the capacity of carbohydrate source and concentration to modify the expression of a major virulence factor of C. neoformans. These findings may impact the clinical management of cryptococcosis. PMID:20070311

  20. Developmental Expression of Violaxanthin De-Epoxidase in Leaves of Tobacco Growing under High and Low Light1

    PubMed Central

    Bugos, Robert C.; Chang, Sue-Hwei; Yamamoto, Harry Y.

    1999-01-01

    Violaxanthin de-epoxidase (VDE) is a lumen-localized enzyme that catalyzes the de-epoxidation of violaxanthin in the thylakoid membrane upon formation of a transthylakoid pH gradient. We investigated the developmental expression of VDE in leaves of mature tobacco (Nicotiana tabacum) plants grown under high-light conditions (in the field) and low-light conditions (in a growth chamber). The difference in light conditions was evident by the increased pool size (violaxanthin + antheraxanthin + zeaxanthin, VAZ) throughout leaf development in field-grown plants. VDE activity based on chlorophyll or leaf area was low in the youngest leaves, with the levels increasing with increasing leaf age in both high- and low-light-grown plants. However, in high-light-grown plants, the younger leaves in early leaf expansion showed a more rapid increase in VDE activity and maintained higher levels of VDE transcript in more leaves, indicating that high light may induce greater levels of VDE. VDE transcript levels decreased substantially in leaves of mid-leaf expansion, while the levels of enzyme continued to increase, suggesting that the VDE enzyme does not turn over rapidly. The level of VDE changed in an inverse, nonlinear relationship with respect to the VAZ pool, suggesting that enzyme levels could be indirectly regulated by the VAZ pool. PMID:10482676

  1. Developmental expression of violaxanthin de-epoxidase in leaves of tobacco growing under high and low light.

    PubMed

    Bugos, R C; Chang, S H; Yamamoto, H Y

    1999-09-01

    Violaxanthin de-epoxidase (VDE) is a lumen-localized enzyme that catalyzes the de-epoxidation of violaxanthin in the thylakoid membrane upon formation of a transthylakoid pH gradient. We investigated the developmental expression of VDE in leaves of mature tobacco (Nicotiana tabacum) plants grown under high-light conditions (in the field) and low-light conditions (in a growth chamber). The difference in light conditions was evident by the increased pool size (violaxanthin + antheraxanthin + zeaxanthin, VAZ) throughout leaf development in field-grown plants. VDE activity based on chlorophyll or leaf area was low in the youngest leaves, with the levels increasing with increasing leaf age in both high- and low-light-grown plants. However, in high-light-grown plants, the younger leaves in early leaf expansion showed a more rapid increase in VDE activity and maintained higher levels of VDE transcript in more leaves, indicating that high light may induce greater levels of VDE. VDE transcript levels decreased substantially in leaves of mid-leaf expansion, while the levels of enzyme continued to increase, suggesting that the VDE enzyme does not turn over rapidly. The level of VDE changed in an inverse, nonlinear relationship with respect to the VAZ pool, suggesting that enzyme levels could be indirectly regulated by the VAZ pool.

  2. The Potential of Five Winter-grown Crops to Reduce Root-knot Nematode Damage and Increase Yield of Tomato

    PubMed Central

    López-Pérez, Jose Antonio; Roubtsova, Tatiana; de Cara García, Miguel

    2010-01-01

    Broccoli (Brassica oleracea), carrot (Daucus carota), marigold (Tagetes patula), nematode-resistant tomato (Solanum lycopersicum), and strawberry (Fragaria ananassa) were grown for three years during the winter in a root-knot nematode (Meloidogyne incognita) infested field in Southern California. Each year in the spring, the tops of all crops were shredded and incorporated in the soil. Amendment with poultry litter was included as a sub-treatment. The soil was then covered with clear plastic for six weeks and M. incognita-susceptible tomato was grown during the summer season. Plastic tarping raised the average soil temperature at 13 cm depth by 7°C.The different winter-grown crops or the poultry litter did not affect M. incognita soil population levels. However, root galling on summer tomato was reduced by 36%, and tomato yields increased by 19% after incorporating broccoli compared to the fallow control. This crop also produced the highest amount of biomass of the five winter-grown crops. Over the three-year trial period, poultry litter increased tomato yields, but did not affect root galling caused by M. incognita. We conclude that cultivation followed by soil incorporation of broccoli reduced M. incognita damage to tomato. This effect is possibly due to delaying or preventing a portion of the nematodes to reach the host roots. We also observed that M. incognita populations did not increase under a host crop during the cool season when soil temperatures remained low (< 18°C). PMID:22736848

  3. Gene expression profiling of Listeria monocytogenes strain F2365 during growth in ultrahigh-temperature-processed skim milk.

    PubMed

    Liu, Yanhong; Ream, Amy

    2008-11-01

    To study how Listeria monocytogenes survives and grows in ultrahigh-temperature-processed (UHT) skim milk, microarray technology was used to monitor the gene expression profiles of strain F2365 in UHT skim milk. Total RNA was isolated from strain F2365 in UHT skim milk after 24 h of growth at 4 degrees C, labeled with fluorescent dyes, and hybridized to "custom-made" commercial oligonucleotide (35-mers) microarray chips containing the whole genome of L. monocytogenes strain F2365. Compared to L. monocytogenes grown in brain heart infusion (BHI) broth for 24 h at 4 degrees C, 26 genes were upregulated (more-than-twofold increase) in UHT skim milk, whereas 14 genes were downregulated (less-than-twofold decrease). The upregulated genes included genes encoding transport and binding proteins, transcriptional regulators, proteins in amino acid biosynthesis and energy metabolism, protein synthesis, cell division, and hypothetical proteins. The downregulated genes included genes that encode transport and binding proteins, protein synthesis, cellular processes, cell envelope, energy metabolism, a transcriptional regulator, and an unknown protein. The gene expression changes determined by microarray assays were confirmed by real-time reverse transcriptase PCR analyses. Furthermore, cells grown in UHT skim milk displayed the same sensitivity to hydrogen peroxide as cells grown in BHI, demonstrating that the elevated levels of expression of genes encoding manganese transporter complexes in UHT skim milk did not result in changes in the oxidative stress sensitivity. To our knowledge, this report represents a novel study of global transcriptional gene expression profiling of L. monocytogenes in a liquid food.

  4. Influence of electron irradiation on hydrothermally grown zinc oxide single crystals

    NASA Astrophysics Data System (ADS)

    Lu, L. W.; So, C. K.; Zhu, C. Y.; Gu, Q. L.; Li, C. J.; Fung, S.; Brauer, G.; Anwand, W.; Skorupa, W.; Ling, C. C.

    2008-09-01

    The resistivity of hydrothermally grown ZnO single crystals increased from ~103 Ω cm to ~106 Ω cm after 1.8 MeV electron irradiation with a fluence of ~1016 cm-2, and to ~109 Ω cm as the fluence increased to ~1018 cm-2. Defects in samples were studied by thermally stimulated current (TSC) spectroscopy and positron lifetime spectroscopy (PLS). After the electron irradiation with a fluence of 1018 cm-2, the normalized TSC signal increased by a factor of ~100. A Zn vacancy was also introduced by the electron irradiation, though with a concentration lower than expected. After annealing in air at 400 °C, the resistivity and the deep traps concentrations recovered to the levels of the as-grown sample, and the Zn vacancy was removed.

  5. Photoluminescence of vapor and solution grown ZnTe single crystals

    NASA Astrophysics Data System (ADS)

    Biao, Y.; Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.; Su, C.-H.; Volz, M. E.; Szofran, F. R.; Gillies, D. C.

    1994-04-01

    ZnTe single crystals grown by horizontal physical vapor transport (PVT) and by vertical traveling heater method (THM) from a Te solution were characterized by photoluminescence (PL) at 10.6 K and by atomic force microscopy (AFM). Copper was identified by PL as a major impurity existing in both crystals, forming a substitutional acceptor, Cu Zn. The THM ZnTe crystals were found to contain more Cu impurity than the PVT ZnTe crystals. The formation of Cu Zn-V Te complexes and the effects of annealing, oxygen contamination and intentional Cu doping were also studied. Finally, the surface morphology analyzed by AFM was correlated to the PL results.

  6. Role of many-body effects in the coherent dynamics of excitons in low-temperature-grown GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webber, D.; Hacquebard, L.; Hall, K. C.

    2015-10-05

    Femtosecond four-wave mixing experiments on low-temperature-grown (LT-) GaAs indicate a polarization-dependent nonlinear optical response at the exciton, which we attribute to Coulomb-mediated coupling between excitons and electron-hole pairs simultaneously excited by the broad-bandwidth laser pulses. Strong suppression of the exciton response through screening by carriers injected by a third pump pulse was observed, an effect that is transient due to rapid carrier trapping. Our findings highlight the need to account for the complex interplay of disorder and many-body effects in the design of ultrafast optoelectronic devices using this material.

  7. 3D time-lapse analysis of Rab11/FIP5 complex: spatiotemporal dynamics during apical lumen formation.

    PubMed

    Mangan, Anthony; Prekeris, Rytis

    2015-01-01

    Fluorescent imaging of fixed cells grown in two-dimensional (2D) cultures is one of the most widely used techniques for observing protein localization and distribution within cells. Although this technique can also be applied to polarized epithelial cells that form three-dimensional (3D) cysts when grown in a Matrigel matrix suspension, there are still significant limitations in imaging cells fixed at a particular point in time. Here, we describe the use of 3D time-lapse imaging of live cells to observe the dynamics of apical membrane initiation site (AMIS) formation and lumen expansion in polarized epithelial cells.

  8. Effect of dietary protein on hybrid tilapia production in a biofloc technology system

    USDA-ARS?s Scientific Manuscript database

    In an outdoor biofloc technology (BFT) production system a complex of living organisms that includes phytoplankton, zooplankton, ciliates, nematodes, bacteria, all closely associated with particulate organic matter, is maintained suspended in the water column by continuous aeration. Tilapia grown in...

  9. New particle formation and growth in CMAQ via application of comprehensive modal methods

    EPA Science Inventory

    The formation and growth of new atmospheric ultrafine particles are exceedingly complex processes and recent scientific efforts have grown our understanding of them tremendously. This presentation describes the effort to apply this new knowledge to the CMAQ chemical transport mod...

  10. Transcriptomic insights into phenological development and cold tolerance of wheat grown in the field

    USDA-ARS?s Scientific Manuscript database

    Low temperature (LT) acclimation and winter survival in cereal species is determined by complicated environmentally regulated gene expression. However, studies investigating these complex LT responses are mostly conducted in controlled environments that only consider the responses to single environm...

  11. The Development of Ultraviolet Light Emitting Diodes on p-SiC Substrates

    NASA Astrophysics Data System (ADS)

    Brummer, Gordon

    Ultraviolet (UV) light emitting diodes (LEDs) are promising light sources for purification, phototherapy, and resin curing applications. Currently, commercial UV LEDs are composed of AlGaN-based n-i-p junctions grown on sapphire substrates. These devices suffer from defects in the active region, inefficient p-type doping, and poor light extraction efficiency. This dissertation addresses the development of a novel UV LED device structure, grown on p-SiC substrates. In this device structure, the AlGaN-based intrinsic (i) and n-layers are grown directly on the p-type substrate, forming a p-i-n junction. The intrinsic layer (active region) is composed of an AlN buffer layer followed by three AlN/Al0.30Ga0.70N quantum wells. After the intrinsic layer, the n-layer is formed from n-type AlGaN. This device architecture addresses the deficiencies of UV LEDs on sapphire substrates while providing a vertical device geometry, reduced fabrication complexity, and improved thermal management. The device layers were grown by molecular beam epitaxy (MBE). The material properties were optimized by considering varying growth conditions and by considering the role of the layer within the device. AlN grown at 825 C and with a Ga surfactant yielded material with screw dislocation density of 1x10 7 cm-2 based on X-ray diffraction (XRD) analysis. AlGaN alloys grown in this work contained compositional inhomogeneity, as verified by high-resolution XRD, photoluminescence, and absorption measurements. Based on Stokes shift measurements, the degree of compositional inhomogeneity was correlated with the amount of excess Ga employed during growth. Compositional inhomogeneity yields carrier localizing potential fluctuations, which are advantages in light emitting device layers. Therefore, excess Ga growth conditions were used to grow AlN/Al0.30Ga0.70N quantum wells (designed using a wurtzite k.p model) with 35% internal quantum efficiency. Potential fluctuations limit the mobility of carriers and introduce sub-bandgap absorption, making them undesirable in the n-AlGaN layers. n-Al0.60Ga 0.40N grown under stoichiometric Ga flux and an In surfactant reduced the Stokes shift (compared to n-AlGaN grown without In) by 150 meV. However, even under these growth modes, some compositional inhomogeneity persisted which is speculatively attributed to the vicinal substrate. Device epitaxial layer stacks utilizing the optimum growth conditions were fabricated into prototype vertical UV LEDs which emit from 295-320 nm. In order to increase light extraction efficiency, UV distributed Bragg reflectors (DBRs) based on compositionally graded AlGaN alloys were designed using the transfer matrix method (TMM) and grown by MBE. DBRs were formed from repeated compositionally graded AlGaN alloys. This structure utilized the polarization doping and index of refraction variation of graded composition AlGaN. DBRs with square wave, sinusoidal, triangular, and sawtooth compositional profiles were realized, with reflectivity peaks over 50%, centered at 280 nm.

  12. Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.

    PubMed

    Kim, Je-Hyung; Aghaeimeibodi, Shahriar; Richardson, Christopher J K; Leavitt, Richard P; Englund, Dirk; Waks, Edo

    2017-12-13

    Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.

  13. Mechanisms of Fe biofortification and mitigation of Cd accumulation in rice (Oryza sativa L.) grown hydroponically with Fe chelate fertilization.

    PubMed

    Chen, Zhe; Tang, Ye-Tao; Zhou, Can; Xie, Shu-Ting; Xiao, Shi; Baker, Alan J M; Qiu, Rong-Liang

    2017-05-01

    Cadmium contaminated rice from China has become a global food safety issue. Some research has suggested that chelate addition to substrates can affect metal speciation and plant metal content. We investigated the mitigation of Cd accumulation in hydroponically-grown rice supplied with EDTANa 2 Fe(II) or EDDHAFe(III). A japonica rice variety (Nipponbare) was grown in modified Kimura B solution containing three concentrations (0, 10, 100 μΜ) of the iron chelates EDTANa 2 Fe(II) or EDDHAFe(III) and 1 μΜ Cd. Metal speciation in solution was simulated by Geochem-EZ; growth and photosynthetic efficiency of rice were evaluated, and accumulation of Cd and Fe in plant parts was determined. Net Cd fluxes in the meristematic zone, growth zone, and maturation zone of roots were monitored by a non-invasive micro-test technology. Expression of Fe- and Cd-related genes in Fe-sufficient or Fe-deficient roots and leaves were studied by QRT-PCR. Compared to Fe deficiency, a sufficient or excess supply of Fe chelates significantly enhanced rice growth by elevating photosynthetic efficiency. Both Fe chelates increased the Fe content and decreased the Cd content of rice organs, except for the Cd content of roots treated with excess EDDHAFe(III). Compared to EDDHAFe(III), EDTANa 2 Fe(II) exhibited better mitigation of Cd accumulation in rice by generating the EDTANa 2 Cd complex in solution, decreasing net Cd influx and increasing net Cd efflux in root micro-zones. Application of EDTANa 2 Fe(II) and EDDHAFe(III) also reduced Cd accumulation in rice by inhibiting expression of genes involved in transport of Fe and Cd in the xylem and phloem. The 'win-win' situation of Fe biofortification and Cd mitigation in rice was achieved by application of Fe chelates. Root-to-stem xylem transport of Cd and redistribution of Cd in leaves by phloem transport can be regulated in rice through the use of Fe chelates that influence Fe availability and Fe-related gene expression. Fe fertilization decreased Cd influx and increased Cd efflux in rice roots. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Metal sulfide thin films by chemical spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Krunks, Malle; Mellikov, Enn

    2001-04-01

    CdS, ZnS and CuS thin films were prepared by spray pyrolysis method using metal chlorides and thiourea (tu) as starting materials. Metal sulfide films form as products of thermal decomposition of complexes Cd(tu)2Cl2, Zn(tu)2Cl2 and Cu(tu)Cl(DOT)1/2H2O, originally formed in aqueous solution at precursors molar ratio 1:2. The metal-ligand bonding is thermally stable up to 220 degrees Celsius, followed by multistep degradation process of complexes. The TG/DTA analysis show similar thermal behavior of complexes up to 300 degrees Celsius with the formation of metal sulfides in this decomposition step. In air intensive oxidation processes are detected close to 400, 600 and 720 degrees Celsius for Cu, Cd and Zn complexes, respectively. The results of thermoanalytical study and XRD of sprayed films show that CdS and ZnS films could be grown at 450 degrees Celsius even in air while deposition of copper sulfide films should be performed in an inert atmosphere. High total impurities content of 10 wt% in CdS films prepared at 240 degrees Celsius is originated from the precursor and reduced to 2 wt% by increasing the growth temperature up to 400 degrees Celsius.

  15. Palliative Medicine and Decision Science: The Critical Need for a Shared Agenda To Foster Informed Patient Choice in Serious Illness

    PubMed Central

    Kryworuchko, Jennifer; Matlock, Dan D.; Volandes, Angelo E.

    2011-01-01

    Abstract Assisting patients and their families in complex decision making is a foundational skill in palliative care; however, palliative care clinicians and scientists have just begun to establish an evidence base for best practice in assisting patients and families in complex decision making. Decision scientists aim to understand and clarify the concepts and techniques of shared decision making (SDM), decision support, and informed patient choice in order to ensure that patient and family perspectives shape their health care experience. Patients with serious illness and their families are faced with myriad complex decisions over the course of illness and as death approaches. If patients lose capacity, then surrogate decision makers are cast into the decision-making role. The fields of palliative care and decision science have grown in parallel. There is much to be gained in advancing the practices of complex decision making in serious illness through increased collaboration. The purpose of this article is to use a case study to highlight the broad range of difficult decisions, issues, and opportunities imposed by a life-limiting illness in order to illustrate how collaboration and a joint research agenda between palliative care and decision science researchers, theorists, and clinicians might guide best practices for patients and their families. PMID:21895453

  16. Comparison of the structural properties of Zn-face and O-face single crystal homoepitaxial ZnO epilayers grown by RF-magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Schifano, R.; Riise, H. N.; Domagala, J. Z.; Azarov, A. Yu.; Ratajczak, R.; Monakhov, E. V.; Venkatachalapathy, V.; Vines, L.; Chan, K. S.; Wong-Leung, J.; Svensson, B. G.

    2017-01-01

    Homoepitaxial ZnO growth is demonstrated from conventional RF-sputtering at 400 °C on both Zn and O polar faces of hydrothermally grown ZnO substrates. A minimum yield for the Rutherford backscattering and channeling spectrum, χmin, equal to ˜3% and ˜12% and a full width at half maximum of the 00.2 diffraction peak rocking curve of (70 ± 10) arc sec and (1400 ± 100) arc sec have been found for samples grown on the Zn and O face, respectively. The structural characteristics of the film deposited on the Zn face are comparable with those of epilayers grown by more complex techniques like molecular beam epitaxy. In contrast, the film simultaneously deposited on the O-face exhibits an inferior crystalline structure ˜0.7% strained in the c-direction and a higher atomic number contrast compared with the substrate, as revealed by high angle annular dark field imaging measurements. These differences between the Zn- and O-face films are discussed in detail and associated with the different growth mechanisms prevailing on the two surfaces.

  17. A photoluminescence study of the effects of hydrogen on deep levels in MBE grown GaAlAs:Si

    NASA Astrophysics Data System (ADS)

    Bosacchi, A.; Franchi, S.; Vanzetti, L.; Allegri, P.; Grilli, E.; Guzzi, M.; Zamboni, R.; Pavesi, L.

    1991-04-01

    We present a study on low-temperature photoluminescence (PL) of Si-doped Ga 1- xAl xAs ( n ~ 1 × 10 17 cm -3, 0.2 ⩽ x ⩽ 0.5) grown by MBE in the presence and in the absence of a hydrogen backpressure, and post-growth hydrogenated or not, by exposure to a hydrogen plasma. The PL spectra of GaAlAs grown without hydrogen are dominated by transitions involving relatively deep donors and/or acceptors independently on whether the material is post-growth hydrogenated. On the contrary, the spectra of GaAlAs grown in the presence of hydrogen are characterized by recombinations related to excitons and/or to shallow donors and acceptors. Both the in-situ and the ex-situ processes result in PL efficiency enhancements, which are definitely larger (by a factor of up to 20) when the former treatment is used. All of the above results suggest that the ex-situ and the in-situ treatments may affect deep levels of different origin, such as DX centers (related to the band structure of the semiconductor) and levels associated to Al-O complexes, respectively.

  18. Trimethylamine alane for low-pressure MOVPE growth of AlGaAs-based materials and device structures

    NASA Astrophysics Data System (ADS)

    Schneider, R. P.; Bryan, R. P.; Jones, E. D.; Biefield, R. M.; Olbright, G. R.

    The use of trimethylamine alane (TMAA1) as an alternative to trimethylaluminum (TMA1) for low-pressure metalorganic vapor-phase epitaxy (MOVPE) of AlGaAs thin films as well as complex optoelectronic device structures has been studied in detail. AlGaAs layers were grown in a horizontal reaction chamber at 20 - 110 mbar with growth temperatures in the range 650 C less than or equal to T(sub G) less than or equal to 750 C. Wafer thickness uniformity is strongly dependent on growth pressure, and is acceptable only for the highest linear flow velocities. The 12 K photoluminescence (PL) spectra of AlGaAs layers grown using TMAA1 and TEGa exhibit uniformly intense and narrow bound-exciton emission throughout the growth temperature range investigated. To assess the viability of this new source for the low-pressure OMVPE growth of advanced optoelectronic devices, several optically-pumped vertical-cavity surface-emitting laser (VCSEL) structures were grown using TMAA1 extensively. Room temperature lasing at 850 nm was reproducibly obtained from the VCSEL structures, with a threshold pumping power comparable to similar structures grown by molecular beam epitaxy in our laboratories.

  19. Synergisms between microbial pathogens in plant disease complexes: a growing trend

    PubMed Central

    Lamichhane, Jay Ram; Venturi, Vittorio

    2015-01-01

    Plant diseases are often thought to be caused by one species or even by a specific strain. Microbes in nature, however, mostly occur as part of complex communities and this has been noted since the time of van Leeuwenhoek. Interestingly, most laboratory studies focus on single microbial strains grown in pure culture; we were therefore unaware of possible interspecies and/or inter-kingdom interactions of pathogenic microbes in the wild. In human and animal infections, it is now being recognized that many diseases are the result of multispecies synergistic interactions. This increases the complexity of the disease and has to be taken into consideration in the development of more effective control measures. On the other hand, there are only a few reports of synergistic pathogen–pathogen interactions in plant diseases and the mechanisms of interactions are currently unknown. Here we review some of these reports of synergism between different plant pathogens and their possible implications in crop health. Finally, we briefly highlight the recent technological advances in diagnostics as these are beginning to provide important insights into the microbial communities associated with complex plant diseases. These examples of synergistic interactions of plant pathogens that lead to disease complexes might prove to be more common than expected and understanding the underlying mechanisms might have important implications in plant disease epidemiology and management. PMID:26074945

  20. Evidence for a Role of VIPP1 in the Structural Organization of the Photosynthetic Apparatus in Chlamydomonas[W][OA

    PubMed Central

    Nordhues, André; Schöttler, Mark Aurel; Unger, Ann-Katrin; Geimer, Stefan; Schönfelder, Stephanie; Schmollinger, Stefan; Rütgers, Mark; Finazzi, Giovanni; Soppa, Barbara; Sommer, Frederik; Mühlhaus, Timo; Roach, Thomas; Krieger-Liszkay, Anja; Lokstein, Heiko; Crespo, José Luis; Schroda, Michael

    2012-01-01

    The vesicle-inducing protein in plastids (VIPP1) was suggested to play a role in thylakoid membrane formation via membrane vesicles. As this functional assignment is under debate, we investigated the function of VIPP1 in Chlamydomonas reinhardtii. Using immunofluorescence, we localized VIPP1 to distinct spots within the chloroplast. In VIPP1-RNA interference/artificial microRNA cells, we consistently observed aberrant, prolamellar body-like structures at the origin of multiple thylakoid membrane layers, which appear to coincide with the immunofluorescent VIPP1 spots and suggest a defect in thylakoid membrane biogenesis. Accordingly, using quantitative shotgun proteomics, we found that unstressed vipp1 mutant cells accumulate 14 to 20% less photosystems, cytochrome b6f complex, and ATP synthase but 30% more light-harvesting complex II than control cells, while complex assembly, thylakoid membrane ultrastructure, and bulk lipid composition appeared unaltered. Photosystems in vipp1 mutants are sensitive to high light, which coincides with a lowered midpoint potential of the QA/QA− redox couple and increased thermosensitivity of photosystem II (PSII), suggesting structural defects in PSII. Moreover, swollen thylakoids, despite reduced membrane energization, in vipp1 mutants grown on ammonium suggest defects in the supermolecular organization of thylakoid membrane complexes. Overall, our data suggest a role of VIPP1 in the biogenesis/assembly of thylakoid membrane core complexes, most likely by supplying structural lipids. PMID:22307852

  1. Structure and Properties of Al and Ga- Doped ZnO

    NASA Astrophysics Data System (ADS)

    Temizer, Namik Kemal

    Recently there is tremendous interest in Transparent conducting oxide (TCO) research due to the unlimited and exciting application areas. Current research is mostly focused on finding alternative low cost and sustainable materials in order to replace indium tin oxide (ITO), which caused serious concern due to the increasing cost of indium and chemical stability issues of ITO. The primary aim of this research is to develop alternative TCO materials with superior properties in order to increase the efficiency in optoelectronic applications, as well as to study the properties of these materials to fully characterize them. We have grown Al and Ga-doped ZnO films with an optimized composition under different deposition conditions in order to understand the effect of processing parameters on the film properties. We report a detailed investigation on the structure-property correlations in Ga and Al codoped ZnO films on c-sapphire substrates where the thin film microstructure varies from nanocrystalline to single crystal. We have achieved highly epitaxial films with very high optical transmittance (close to 90%) and low resistivity (˜110muO-cm) values. The films grown in an ambient oxygen partial pressure (PO2 ) of 50 mTorr and at growth temperatures from room temperature to 600°C showed semiconducting behavior, whereas samples grown at a Po2 of 1 mTorr showed metallic nature. The most striking feature is the occurrence of resistivity minima at relatively high temperatures around 110 K in films deposited at high temperatures. The structure-property correlations reveal that point defects play an important role in modifying the structural, optical, electrical and magnetic properties and such changes in physical properties are controlled predominantly by the defect content. To gain a better understanding of the conduction processes in doped ZnO thin films, we have studied the temperature variation of resistivity of some selected samples that showed some interesting behavior. Micro-structural, transport, optical and magnetic properties in ZnGa0.002Al 0.02O films grown by pulsed laser deposition under different growth conditions was studied. In ZnO films grown at substrate temperatures of 600°C most interesting features are the concomitant occurrence of high temperature resistivity minima and room temperature ferromagnetism with a high saturation magnetic moment and considerable coercivity. The temperature dependent resistivity data has been interpreted in the light of quantum corrections to conductivity in disordered systems, suggesting that the e-e interactions is the dominant mechanism in the weak-localization (WL) limit in the case of films showing resistivity minima. We propose that formation of oxygen vacancy-Zinc interstitial defect complex (VO-IZn) is responsible for the enhancement in n-type conductivity, and zinc vacancies (VZn) for the observed room temperature ferromagnetism. ZnO nanostructures are gaining importance in various applications, from gas sensing to thin film transistors (TFTs). We have studied the micro-structural, transport, optical and magnetic properties in ZnO nanostructured films grown by pulsed laser deposition under different ambient conditions. We have investigated the nanostructures in detail through x-ray diffraction, SEM and TEM techniques. We have achieved relatively low room temperature resistivity and the occurrence of room temperature ferromagnetism with significant saturation magnetic moment of 1000 A/m with coercivity in the range of 100-150 Oe. Photoluminescence measurements were conducted to get an insight about the types of defects that occur under different growth conditions. Correlations between transport, optical and magnetic properties has been established in terms of these defects and their complexes. These nanostructured oxides with magnetic and optical properties are promising candidates in multifunctional spintronic and photonic devices.

  2. Defect interactions in GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Lagowski, J.

    1984-01-01

    The two-sublattice structural configuration of GaAs and deviations from stoichiometry render the generation and interaction of electrically active point defects (and point defect complexes) critically important for device applications and very complex. Of the defect-induced energy levels, those lying deep into the energy band are very effective lifetime ""killers". The level 0.82 eV below the condition band, commonly referred to as EL2, is a major deep level, particularly in melt-grown GaAs. This level is associated with an antisite defect complex (AsGa - VAS). Possible mechanisms of its formation and its annihilation were further developed.

  3. Heavy metals health risk assessment for population via consumption of vegetables grown in old mining area; a case study: Banat County, Romania

    PubMed Central

    2011-01-01

    Background The aim of this study is to measure the levels of heavy metals (Fe, Mn, Zn, Cu, Ni, Cd and Pb) found in common vegetables (parsley, carrot, onion, lettuce, cucumber and green beans) grown in contaminated mining areas compared with those grown in reference clear area and to determine their potential detrimental effects via calculation of the daily metal intake (DImetal) and Target Hazard Quotients (THQ) for normal daily consumption of these vegetables, for male and female gender. Results Compared with the reference in contaminated areas, soil and plant contents of all analyzed metals are higher, usually over normally content for Mn, Zn, Cu, Cd and Pb. Particularly, in soil, higher values than intervention threshold values (ITV) were found for Cu and Pb and higher than maximum allowable limits (MAL) for Zn, Cu, Cd and Pb for parsley roots and leaves, carrot roots, cabbage, lettuce and cucumber. DImetal and THQ values for male and female were calculated for each vegetable and metal and for which oral reference doses exist. The combined THQ values calculated are concerning in that they are usually below the safe level of THQ<1 for all vegetables grown in reference area. In contaminated Moldova Noua (M) area the combined THQ exceeded the safe level only for parsley roots, while in more contaminated Ruschita (R) area combined THQ exceeded the safe level for parsley and carrot roots, lettuce and cabbage. Cd and Pb, most toxic metals to humans, have an increasing prevalence in the combined THQ for leafy (cabbage and lettuce) and fruit vegetables (cucumber). In the root vegetables only Pb has an increasing prevalence in combined THQ values. In all areas female THQ is higher than male THQ. Conclusion The results of this study regarding metal contents in soils, vegetables, DImetal and THQ suggest that the consumption of some vegetables (especially parsley, carrot and cabbage and less for lettuce, cucumber and green beans) is not free of risks in these areas. The complex THQ parameter use in health risk assessment of heavy metals provides a better image than using only a simple parameter (contents of metals in soils and vegetables). PMID:22017878

  4. Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics.

    PubMed

    Sagardoy, R; Morales, F; López-Millán, A-F; Abadía, A; Abadía, J

    2009-05-01

    The effects of high Zn concentration were investigated in sugar beet (Beta vulgaris L.) plants grown in a controlled environment in hydroponics. High concentrations of Zn sulphate in the nutrient solution (50, 100 and 300 microm) decreased root and shoot fresh and dry mass, and increased root/shoot ratios, when compared to control conditions (1.2 microm Zn). Plants grown with excess Zn had inward-rolled leaf edges and a damaged and brownish root system, with short lateral roots. High Zn decreased N, Mg, K and Mn concentrations in all plant parts, whereas P and Ca concentrations increased, but only in shoots. Leaves of plants treated with 50 and 100 microm Zn developed symptoms of Fe deficiency, including decreases in Fe, chlorophyll and carotenoid concentrations, increases in carotenoid/chlorophyll and chlorophyll a/b ratios and de-epoxidation of violaxanthin cycle pigments. Plants grown with 300 microm Zn had decreased photosystem II efficiency and further growth decreases but did not have leaf Fe deficiency symptoms. Leaf Zn concentrations of plants grown with excess Zn were high but fairly constant (230-260 microg.g(-1) dry weight), whereas total Zn uptake per plant decreased markedly with high Zn supply. These data indicate that sugar beet could be a good model to investigate Zn homeostasis mechanisms in plants, but is not an efficient species for Zn phytoremediation.

  5. Reduced calcification decreases photoprotective capability in the coccolithophorid Emiliania huxleyi.

    PubMed

    Xu, Kai; Gao, Kunshan

    2012-07-01

    Intracellular calcification of coccolithophores generates CO₂ and consumes additional energy for acquisition of calcium and bicarbonate ions; therefore, it may correlate with photoprotective processes by influencing the energetics. To address this hypothesis, a calcifying Emiliania huxleyi strain (CS-369) was grown semi-continuously at reduced (0.1 mM, LCa) and ambient Ca²⁺ concentrations (10 mM, HCa) for 150 d (>200 generations). The HCa-grown cells had higher photosynthetic and calcification rates and higher contents of Chl a and carotenoids compared with the naked (bearing no coccoliths) LCa-grown cells. When exposed to stressfull levels of photosynthetically active radiation (PAR), LCa-grown cells displayed lower photochemical yield and less efficient non-photochemical quenching (NPQ). When the LCa- or HCa-grown cells were inversely shifted to their counterpart medium, LCa to HCa transfer increased photosynthetic carbon fixation (P), calcification rate (C), the C/P ratio, NPQ and pigment contents, whereas those shifted from HCa to LCa exhibited the opposite effects. Increased NPQ, carotenoids and quantum yield were clearly linked with increased or sustained calcification in E. huxleyi. The calcification must have played a role in dissipating excessive energy or as an additional drainage of electrons absorbed by the photosynthetic antennae. This phenomenon was further supported by testing two non-calcifying strains, which showed insignificant changes in photosynthetic carbon fixation and NPQ when transferred to LCa conditions.

  6. Effects of mineral nutrition conditions on heat tolerance of chufa (Сyperus esculentus L.) plant communities to super optimal air temperatures in the BTLSS

    NASA Astrophysics Data System (ADS)

    Shklavtsova, E. S.; Ushakova, S. A.; Shikhov, V. N.; Anishchenko, O. V.

    2014-09-01

    The use of mineralized human wastes as a basis for nutrient solutions will increase the degree of material closure of bio-technical human life support systems. As stress tolerance of plants is determined, among other factors, by the conditions under which they have been grown before exposure to a stressor, the purpose of the study is to investigate the level of tolerance of chufa (Cyperus esculentus L.) plant communities grown in solutions based on mineralized human wastes to a damaging air temperature, 45 °C. Experiments were performed with 30-day-old chufa plant communities grown hydroponically, on expanded clay aggregate, under artificial light, at 690 μmol m-2 s-1 PAR and at a temperature of 25 °C. Plants were grown in Knop’s solution and solutions based on human wastes mineralized according to Yu.A. Kudenko’s method, which contained nitrogen either as ammonium and urea or as nitrates. The heat shock treatment lasted 20 h at 690 and 1150 μmol m-2 s-1 PAR. Chufa heat tolerance was evaluated based on parameters of CO2 gas exchange, the state of its photosynthetic apparatus (PSA), and intensity of peroxidation of leaf lipids. Chufa plants grown in the solutions based on mineralized human wastes that contained ammonium and urea had lower heat tolerance than plants grown in standard mineral solutions. Heat tolerance of the plants grown in the solutions based on mineralized human wastes that mainly contained nitrate nitrogen was insignificantly different from the heat tolerance of the plants grown in standard mineral solutions. A PAR intensity increase from 690 μmol m-2 s-1 to 1150 μmol m-2 s-1 enhanced heat tolerance of chufa plant communities, irrespective of the conditions of mineral nutrition under which they had been grown.

  7. Thermoluminescence and optically stimulated luminescence disadvantages of α-Al2O3:C crystal grown by the temperature gradient technique

    NASA Astrophysics Data System (ADS)

    Yang, Xin-Bo; Xu, Jun; Li, Hong-Jun; Bi, Qun-Yu; Cheng, Yan; Su, Liang-Bi; Tang, Qiang

    2010-04-01

    Recently, α-Al2O3:C crystal with highly sensitive thermoluminescence (TL) and optically stimulated luminescence (OSL) has been successfully grown by the temperature gradient technique. This paper investigates the heating rate dependence of TL sensitivity, light-induced fading of TL signals and thermal stability of OSL of α-Al2O3:C crystals. As the heating rate increases, the integral TL response decreases and the dosimetric glow peak shifts to higher temperatures in α-Al2O3:C crystals. Light-induced fading of TL increases with the irradiation dose, and TL response decreases as the exposure time increases, especially in the first 15 minutes. With the increasing intensity of the exposure light, the TL fading of α-Al2O3:C crystal increases sharply. The OSL response of as-grown α-Al2O3:C crystal is quite stable below 373 K and decreases sharply for higher temperatures.

  8. Increased Expression of Escherichia coli Polynucleotide Phosphorylase at Low Temperatures Is Linked to a Decrease in the Efficiency of Autocontrol

    PubMed Central

    Mathy, N.; Jarrige, A.-C.; Robert-Le Meur, M.; Portier, C.

    2001-01-01

    Polynucleotide phosphorylase (PNPase) synthesis is translationally autocontrolled via an RNase III-dependent mechanism, which results in a tight correlation between protein level and messenger stability. In cells grown at 18°C, the amount of PNPase is twice that found in cells grown at 30°C. To investigate whether this effect was transcriptional or posttranscriptional, the expression of a set of pnp-lacZ transcriptional and translational fusions was analyzed in cells grown at different temperatures. In the absence of PNPase, there was no increase in pnp-lacZ expression, indicating that the increase in pnp expression occurs at a posttranscriptional level. Other experiments clearly show that increased pnp expression at low temperature is only observed under conditions in which the autocontrol mechanism of PNPase is functional. At low temperature, the destabilizing effect of PNPase on its own mRNA is less efficient, leading to a decrease in repression and an increase in the expression level. PMID:11395447

  9. Increased expression of Escherichia coli polynucleotide phosphorylase at low temperatures is linked to a decrease in the efficiency of autocontrol.

    PubMed

    Mathy, N; Jarrige, A C; Robert-Le Meur, M; Portier, C

    2001-07-01

    Polynucleotide phosphorylase (PNPase) synthesis is translationally autocontrolled via an RNase III-dependent mechanism, which results in a tight correlation between protein level and messenger stability. In cells grown at 18 degrees C, the amount of PNPase is twice that found in cells grown at 30 degrees C. To investigate whether this effect was transcriptional or posttranscriptional, the expression of a set of pnp-lacZ transcriptional and translational fusions was analyzed in cells grown at different temperatures. In the absence of PNPase, there was no increase in pnp-lacZ expression, indicating that the increase in pnp expression occurs at a posttranscriptional level. Other experiments clearly show that increased pnp expression at low temperature is only observed under conditions in which the autocontrol mechanism of PNPase is functional. At low temperature, the destabilizing effect of PNPase on its own mRNA is less efficient, leading to a decrease in repression and an increase in the expression level.

  10. The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate

    DOE PAGES

    Poudel, Suresh; Giannone, Richard J.; Basen, Mirko; ...

    2018-03-23

    Background: Caldicellulosiruptor bescii is a thermophilic cellulolytic bacterium that efficiently deconstructs lignocellulosic biomass into sugars, which subsequently can be fermented into alcohols, such as ethanol, and other products. Deconstruction of complex substrates by C. bescii involves a myriad of highly abundant, substrate-specific extracellular solute binding proteins (ESBPs) and carbohydrate-active enzymes (CAZymes) containing carbohydrate-binding modules (CBMs). Mass spectrometry-based proteomics was employed to investigate how these substrate recognition proteins and enzymes vary as a function of lignocellulosic substrates.Results:Proteomic analysis revealed several key extracellular proteins that respond specifically to either C5 or C6 mono- and polysaccharides. These include proteins of unknown functions (PUFs),more » ESBPs, and CAZymes. ESBPs that were previously shown to interact more efficiently with hemicellulose and pectin were detected in high abundance during growth on complex C5 substrates, such as switchgrass and xylan. Some proteins, such as Athe_0614 and Athe_2368, whose functions are not well defined were predicted to be involved in xylan utilization and ABC transport and were significantly more abundant in complex and C5 substrates, respectively. The proteins encoded by the entire glucan degradation locus (GDL; Athe_1857, 1859, 1860, 1865, 1867, and 1866) were highly abundant under all growth conditions, particularly when C. bescii was grown on cellobiose, switchgrass, or xylan. In contrast, the glycoside hydrolases Athe_0609 (Pullulanase) and 0610, which both possess CBM20 and a starch binding domain, appear preferential to C5/complex substrate deconstruction. Some PUFs, such as Athe_2463 and 2464, were detected as highly abundant when grown on C5 substrates (xylan and xylose), also suggesting C5-substrate specificity. In conclusion, this study reveals the protein membership of the C. bescii secretome and demonstrates its plasticity based on the complexity (mono-/disaccharides vs. polysaccharides) and type of carbon (C5 vs. C6) available to the microorganism. The presence or increased abundance of extracellular proteins as a response to specific substrates helps to further elucidate C. bescii’s utilization and conversion of lignocellulosic biomass to biofuel and other valuable products. This includes improved characterization of extracellular proteins that lack discrete functional roles and are poorly/not annotated.« less

  11. The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poudel, Suresh; Giannone, Richard J.; Basen, Mirko

    Background: Caldicellulosiruptor bescii is a thermophilic cellulolytic bacterium that efficiently deconstructs lignocellulosic biomass into sugars, which subsequently can be fermented into alcohols, such as ethanol, and other products. Deconstruction of complex substrates by C. bescii involves a myriad of highly abundant, substrate-specific extracellular solute binding proteins (ESBPs) and carbohydrate-active enzymes (CAZymes) containing carbohydrate-binding modules (CBMs). Mass spectrometry-based proteomics was employed to investigate how these substrate recognition proteins and enzymes vary as a function of lignocellulosic substrates.Results:Proteomic analysis revealed several key extracellular proteins that respond specifically to either C5 or C6 mono- and polysaccharides. These include proteins of unknown functions (PUFs),more » ESBPs, and CAZymes. ESBPs that were previously shown to interact more efficiently with hemicellulose and pectin were detected in high abundance during growth on complex C5 substrates, such as switchgrass and xylan. Some proteins, such as Athe_0614 and Athe_2368, whose functions are not well defined were predicted to be involved in xylan utilization and ABC transport and were significantly more abundant in complex and C5 substrates, respectively. The proteins encoded by the entire glucan degradation locus (GDL; Athe_1857, 1859, 1860, 1865, 1867, and 1866) were highly abundant under all growth conditions, particularly when C. bescii was grown on cellobiose, switchgrass, or xylan. In contrast, the glycoside hydrolases Athe_0609 (Pullulanase) and 0610, which both possess CBM20 and a starch binding domain, appear preferential to C5/complex substrate deconstruction. Some PUFs, such as Athe_2463 and 2464, were detected as highly abundant when grown on C5 substrates (xylan and xylose), also suggesting C5-substrate specificity. In conclusion, this study reveals the protein membership of the C. bescii secretome and demonstrates its plasticity based on the complexity (mono-/disaccharides vs. polysaccharides) and type of carbon (C5 vs. C6) available to the microorganism. The presence or increased abundance of extracellular proteins as a response to specific substrates helps to further elucidate C. bescii’s utilization and conversion of lignocellulosic biomass to biofuel and other valuable products. This includes improved characterization of extracellular proteins that lack discrete functional roles and are poorly/not annotated.« less

  12. The diversity and specificity of the extracellular proteome in the cellulolytic bacterium Caldicellulosiruptor bescii is driven by the nature of the cellulosic growth substrate.

    PubMed

    Poudel, Suresh; Giannone, Richard J; Basen, Mirko; Nookaew, Intawat; Poole, Farris L; Kelly, Robert M; Adams, Michael W W; Hettich, Robert L

    2018-01-01

    Caldicellulosiruptor bescii is a thermophilic cellulolytic bacterium that efficiently deconstructs lignocellulosic biomass into sugars, which subsequently can be fermented into alcohols, such as ethanol, and other products. Deconstruction of complex substrates by C. bescii involves a myriad of highly abundant, substrate-specific extracellular solute binding proteins (ESBPs) and carbohydrate-active enzymes (CAZymes) containing carbohydrate-binding modules (CBMs). Mass spectrometry-based proteomics was employed to investigate how these substrate recognition proteins and enzymes vary as a function of lignocellulosic substrates. Proteomic analysis revealed several key extracellular proteins that respond specifically to either C5 or C6 mono- and polysaccharides. These include proteins of unknown functions (PUFs), ESBPs, and CAZymes. ESBPs that were previously shown to interact more efficiently with hemicellulose and pectin were detected in high abundance during growth on complex C5 substrates, such as switchgrass and xylan. Some proteins, such as Athe_0614 and Athe_2368, whose functions are not well defined were predicted to be involved in xylan utilization and ABC transport and were significantly more abundant in complex and C5 substrates, respectively. The proteins encoded by the entire glucan degradation locus (GDL; Athe_1857, 1859, 1860, 1865, 1867, and 1866) were highly abundant under all growth conditions, particularly when C. bescii was grown on cellobiose, switchgrass, or xylan. In contrast, the glycoside hydrolases Athe_0609 (Pullulanase) and 0610, which both possess CBM20 and a starch binding domain, appear preferential to C5/complex substrate deconstruction. Some PUFs, such as Athe_2463 and 2464, were detected as highly abundant when grown on C5 substrates (xylan and xylose), also suggesting C5-substrate specificity. This study reveals the protein membership of the C. bescii secretome and demonstrates its plasticity based on the complexity (mono-/disaccharides vs. polysaccharides) and type of carbon (C5 vs. C6) available to the microorganism. The presence or increased abundance of extracellular proteins as a response to specific substrates helps to further elucidate C. bescii 's utilization and conversion of lignocellulosic biomass to biofuel and other valuable products. This includes improved characterization of extracellular proteins that lack discrete functional roles and are poorly/not annotated.

  13. Impact of elevated levels of atmospheric CO2 and herbivory on flavonoids of soybean (Glycine max Linnaeus).

    PubMed

    O'Neill, Bridget F; Zangerl, Arthur R; Dermody, Orla; Bilgin, Damla D; Casteel, Clare L; Zavala, Jorge A; DeLucia, Evan H; Berenbaum, May R

    2010-01-01

    Atmospheric levels of carbon dioxide (CO2) have been increasing steadily over the last century. Plants grown under elevated CO2 conditions experience physiological changes, particularly in phytochemical content, that can influence their suitability as food for insects. Flavonoids are important plant defense compounds and antioxidants that can have a large effect on leaf palatability and herbivore longevity. In this study, flavonoid content was examined in foliage of soybean (Glycine max Linnaeus) grown under ambient and elevated levels of CO2 and subjected to damage by herbivores in three feeding guilds: leaf skeletonizer (Popillia japonica Newman), leaf chewer (Vanessa cardui Linnaeus), and phloem feeder (Aphis glycines Matsumura). Flavonoid content also was examined in foliage of soybean grown under ambient and elevated levels of O3 and subjected to damage by the leaf skeletonizer P. japonica. The presence of the isoflavones genistein and daidzein and the flavonols quercetin and kaempferol was confirmed in all plants examined, as were their glycosides. All compounds significantly increased in concentration as the growing season progressed. Concentrations of quercetin glycosides were higher in plants grown under elevated levels of CO2. The majority of compounds in foliage were induced in response to leaf skeletonization damage but remained unchanged in response to non-skeletonizing feeding or phloem-feeding. Most compounds increased in concentration in plants grown under elevated levels of O3. Insects feeding on G. max foliage growing under elevated levels of CO2 may derive additional antioxidant benefits from their host plants as a consequence of the change in ratios of flavonoid classes. This nutritional benefit could lead to increased herbivore longevity and increased damage to soybean (and perhaps other crop plants) in the future.

  14. Influence of carbon on the thermoluminescence and optically stimulated luminescence of α-Al2O3:C crystals

    NASA Astrophysics Data System (ADS)

    Yang, Xin-Bo; Li, Hong-Jun; Bi, Qun-Yu; Cheng, Yan; Tang, Qiang; Xu, Jun

    2008-12-01

    α-Al2O3:C crystal shows excellent thermoluminescence (TL) and optically stimulated luminescence (OSL) properties but the real role carbon plays in this crystal is still not clearly understood so far. In this work, α-Al2O3:C crystal doping with different amounts of carbon were grown by the temperature gradient technique, and TL and OSL properties of as-grown crystals were investigated. Additionally, a mechanism was proposed to explain the role of carbon in forming the TL and OSL properties of α-Al2O3:C. TL and OSL intensities of as-grown crystals increase with the increasing amount of carbon doping in the crystal, but no shift is found in the glow peak location at 465 K. As the amount of carbon doping in the crystals decreases, OSL decay rate becomes faster. With the increase in heating rate, the integral TL response of as-grown crystals decreases and glow peak shifts to higher temperatures. TL response decrease rate increases with the increasing amount of carbon doping in the crystals. All the TL and OSL response curves of as-grown crystals show linear-sublinear-saturation characteristic, and OSL dose response exhibits higher sensitivity and wider linear dose range than that of TL. The crystal doping with 5000 ppm carbon shows the best dosimetric properties. Carbon plays the role of a dopant in α-Al2O3:C crystal and four-valent carbon anions replace the two-valent anions of oxygen during the crystal growth process, and large amounts of oxygen vacancies were formed, which corresponds to the high absorption coefficient of F and F+ centers in the crystals.

  15. Sesbania bispinosa, a new host of a begomovirus-betasatellite complex in Pakistan

    USDA-ARS?s Scientific Manuscript database

    Severe leaf curling, yellowing and vein thickening symptoms, typical of begomoviruses infection, were observed on Sesbania bispinosa grown in cotton leaf curl disease affected cotton field in Pakistan. A begomovirus and its associated betasatellite were amplified and sequenced from these plants. Com...

  16. Managing Conflict in Temporary Management Systems

    ERIC Educational Resources Information Center

    Wilemon, David L.

    1973-01-01

    As organizational tasks have grown more complex, several innovative temporary management systems such as matrix management have been developed. The Apollo space program has been an important contribution to the development of matrix management techniques. Discusses the role of conflict within the matrix, its determinants, and the process of…

  17. Near-ambient ozone concentrations reduce the vigor of Betula and Populus species in Finland.

    PubMed

    Oksanen, Elina; Manninen, Sirkku; Vapaavuori, Elina; Holopainen, Toini

    2009-12-01

    In this review the main growth responses of Finnish birch (Betula pendula, B. pubescens) and aspen species (Populus tremula and P. tremuloides x P. tremula) are correlated with ozone exposure, indicated as the AOT40 value. Data are derived from 23 different laboratory, open-top chamber, and free-air fumigation experiments. Our results indicate that these tree species are sensitive to increasing ozone concentrations, though high intraspecific variation exists. The roots are the most vulnerable targets in both genera. These growth reductions, determined from trees grown under optimal nutrient and water supply, were generally accompanied by increased visible foliar injuries, carbon allocation toward defensive compounds, reduced carbohydrate contents of leaves, impaired photosynthesis processes, disturbances in stomatal function, and earlier autumn senescence. Because both genera have shown complex ozone defense and response mechanisms, which are modified by variable environmental conditions, a mechanistically based approach is necessary for accurate ozone risk assessment.

  18. Laser Doppler velocimeter measurements of boundary layer velocity and turbulent intensities in Mach 2.5 flow

    NASA Technical Reports Server (NTRS)

    Sewell, Jesse; Chew, Larry

    1994-01-01

    In recent years, the interest in developing a high-speed civil transport has increased. This has led to an increase in research activity on compressible supersonic flows, in particular the boundary layer. The structure of subsonic boundary layers has been extensively documented using conditional sampling techniques which exploit the knowledge of both u and v velocities. Researchers using these techniques have been able to explore some of the complex three-dimensional motions which are responsible for Reynolds stress production and transport in the boundary layer. As interest in turbulent structure has grown to include supersonic flows, a need for simultaneous multicomponent velocity measurements in these flows has developed. The success of conditional analysis in determining the characteristics of coherent motions and structures in the boundary layer relies on accurate, simultaneous measurement of two instantaneous velocity components.

  19. The changing demographic, legal, and technological contexts of political representation.

    PubMed

    Forest, Benjamin

    2005-10-25

    Three developments have created challenges for political representation in the U.S. and particularly for the use of territorially based representation (election by district). First, the demographic complexity of the U.S. population has grown both in absolute terms and in terms of residential patterns. Second, legal developments since the 1960s have recognized an increasing number of groups as eligible for voting rights protection. Third, the growing technical capacities of computer technology, particularly Geographic Information Systems, have allowed political parties and other organizations to create election districts with increasingly precise political and demographic characteristics. Scholars have made considerable progress in measuring and evaluating the racial and partisan biases of districting plans, and some states have tried to use Geographic Information Systems technology to produce more representative districts. However, case studies of Texas and Arizona illustrate that such analytic and technical advances have not overcome the basic contradictions that underlie the American system of territorial political representation.

  20. The challenge of selecting tomorrow's police officers from Generations X and Y.

    PubMed

    McCafferty, Francis L

    2003-01-01

    Demands on police officers in the past 30 years have grown dramatically with the increasing threats to social order and personal security. Selection of police officers has always been difficult, but now with the increasing demand and complexity of police work, along with the candidates applying from Generation X and even Generation Y, the selection process has become more critical. The personal characteristics attributed to Generation X--and in the future, to Generation Y--should be factored into the selection process to ensure that those individuals selected as police officers will be able to cope with what has been described as the impossible mandate of police work in a free society. Background information on the X and Y generations is imperative for psychiatrists working with police departments and other law enforcement agencies. This article will explore these areas and construct a paradigm selection process.

  1. Research Priorities in Geriatric Palliative Care: Multimorbidity

    PubMed Central

    Zulman, Donna M.

    2013-01-01

    Abstract With global aging and scientific advances extending survival, the number of adults experiencing multiple chronic conditions has grown substantially and is projected to increase by another third between 2000 and 2030. Among the many challenges posed by multimorbidity, some of the most pressing include how to characterize and measure comorbid conditions, understand symptoms and illness burden, and provide person-centered care in the context of competing health care priorities and increasing complexity. In this white paper emanating from a National Institute on Aging supported conference to discuss research gaps at the geriatrics–palliative care interface, the authors review common definitions of multimorbidity; describe the association between multimorbidity and quality of life, functional status, quality of care, and health care utilization; note content and methodological gaps in multimorbidity evidence; and make recommendations regarding research priorities in this area of expanding public health impact. PMID:23777331

  2. The effect of elevated [CO{sub 2}] on growth and photosynthesis of two eucalyptus species exposed to high temperatures and water deficits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roden, J.S.; Ball, M.C.

    1996-07-01

    Two species of eucalyptus (Eucalyptus macrorhyncha and Eucalyptus rossii) were grown for 8 weeks in either ambient (350 {mu}L L{sup {minus}1}) or elevated (700 {mu}L L{sup {minus}1}) CO{sub 2} concentrations, either well watered or without water additions, and subjected to a daily, 3-h high-temperature (45{degrees}C, maximum) and high-light (1250 {mu}mol photons m{sup {minus}2} s{sup {minus}1}, maximum) stress period. Water-stressed seedlings of E. macrorhyncha had higher leaf water potentials when grown in elevated [CO{sub 2}]. Growth analysis indicated that increased [CO{sub 2}] may allow eucalyptus species to perform better during conditions of low soil moisture. A down-regulation of photosynthetic capacity wasmore » observed for seedlings grown in elevated [CO{sub 2}] when well watered but not when water stressed. Well-water seedlings grown in elevated [CO{sub 2}] had lower quantum efficiencies as measured by chlorophyll fluorescence (the ratio of variable to maximal chlorophyll fluorescence [F{sub v}/F{sub m}]) than seedlings grown in ambine [CO{sub 2}] during the high-temperature stress period. However, no significant differences in F{sub v}/F{sub m} were observed between CO{sub 2} treatments when water was withheld. The reductions in dark-adapted F{sub v}/F{sub m} for plants grown in elevated [CO{sub 2}] were not well correlated with increased xanthophyll cycle photoprotection. However, reductions in the F{sub v}/F{sub m} were correlated with increased levels of nonstructural carbohydrates. The reduction in quantum efficiencies for plants grown in elevated [CO{sub 2}] is discussed in the context of feedback inhibition of electron transport associated with starch accumulation and variation in sink strength. 48 refs., 8 figs., 2 figs.« less

  3. Developmental and environmental effects on assimilate partitioning in Canada thistle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tworkoski, T.J.

    1989-04-01

    Canada thistle (Cirsium arvense) plants at three stages of development (rosette, bolt, and flower bud) were grown under spring-simulated or fall-simulated environments. Sucrose export from a single leaf exposed to {sup 14}CO{sub 2} was significantly greater in rosette-plants than bolt- or flower bud-plants during the first two hours after pulse. Twenty-four hours after pulse, total {sup 14}C translocation (dpm) was the same in both environments but the {sup 14}C concentration (dpm/gm) was greater in roots of fall-grown plants. Shoot meristem respiration of fall-grown plants was approximately 50% less than spring-grown plants and was a factor responsible for this trend. Concentrationsmore » of inulin and water-insoluble starch were greater in roots of fall-grown than spring-grown plants and pulsed {sup 14}C accumulated in these fractions. The results suggest that a shift in respiration and metabolism of fall-grown rosette- and bolt-plants leads to increased assimilate movement to the root which may have practical implications for control of this weed.« less

  4. Growth kinetics of physical vapor transport processes: Crystal growth of the optoelectronic material mercurous chloride

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Duval, W. M.

    1991-01-01

    Physical vapor transport processes were studied for the purpose of identifying the magnitude of convective effects on the crystal growth process. The effects of convection on crystal quality were were studied by varying the aspect ratio and those thermal conditions which ultimately affect thermal convection during physical vapor transport. An important outcome of the present study was the observation that the convection growth rate increased up to a certain value and then dropped to a constant value for high aspect ratios. This indicated that a very complex transport had occurred which could not be explained by linear stability theory. Better quality crystals grown at a low Rayleigh number confirmed that improved properties are possible in convectionless environments.

  5. What to Do with the Spring Ligament.

    PubMed

    Steginsky, Brian; Vora, Anand

    2017-09-01

    The spring ligament complex is an important static restraint of the medial longitudinal arch of the foot and its failure has been associated with progressive flatfoot deformity. Reconstruction of the spring ligament complex is most appropriate in stage II posterior tibial tendon dysfunction, before severe peritalar subluxation and rigid deformity develops. Although an understanding of the spring ligament complex and its contribution to medial arch stability has grown, there is no unanimously accepted surgical technique that has consistently demonstrated satisfactory outcomes. This article reviews the pathoanatomy of the spring ligament complex and the role of spring ligament reconstruction in acquired flatfoot deformity, and highlights current research. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Software Testing and Verification in Climate Model Development

    NASA Technical Reports Server (NTRS)

    Clune, Thomas L.; Rood, RIchard B.

    2011-01-01

    Over the past 30 years most climate models have grown from relatively simple representations of a few atmospheric processes to a complex multi-disciplinary system. Computer infrastructure over that period has gone from punch card mainframes to modem parallel clusters. Model implementations have become complex, brittle, and increasingly difficult to extend and maintain. Existing verification processes for model implementations rely almost exclusively upon some combination of detailed analysis of output from full climate simulations and system-level regression tests. In additional to being quite costly in terms of developer time and computing resources, these testing methodologies are limited in terms of the types of defects that can be detected, isolated and diagnosed. Mitigating these weaknesses of coarse-grained testing with finer-grained "unit" tests has been perceived as cumbersome and counter-productive. In the commercial software sector, recent advances in tools and methodology have led to a renaissance for systematic fine-grained testing. We discuss the availability of analogous tools for scientific software and examine benefits that similar testing methodologies could bring to climate modeling software. We describe the unique challenges faced when testing complex numerical algorithms and suggest techniques to minimize and/or eliminate the difficulties.

  7. Increased occurrence of pesticide residues on crops grown in protected environments compared to crops grown in open field conditions.

    PubMed

    Allen, Gina; Halsall, Crispin J; Ukpebor, Justina; Paul, Nigel D; Ridall, Gareth; Wargent, Jason J

    2015-01-01

    Crops grown under plastic-clad structures or in greenhouses may be prone to an increased frequency of pesticide residue detections and higher concentrations of pesticides relative to equivalent crops grown in the open field. To test this we examined pesticide data for crops selected from the quarterly reports (2004-2009) of the UK's Pesticide Residue Committee. Five comparison crop pairs were identified whereby one crop of each pair was assumed to have been grown primarily under some form of physical protection ('protected') and the other grown primarily in open field conditions ('open'). For each pair, the number of detectable pesticide residues and the proportion of crop samples containing pesticides were statistically compared (n=100 s samples for each crop). The mean concentrations of selected photolabile pesticides were also compared. For the crop pairings of cabbage ('open') vs. lettuce ('protected') and 'berries' ('open') vs. strawberries ('protected') there was a significantly higher number of pesticides and proportion of samples with multiple residues for the protected crops. Statistically higher concentrations of pesticides, including cypermethrin, cyprodinil, fenhexamid, boscalid and iprodione were also found in the protected crops compared to the open crops. The evidence here demonstrates that, in general, the protected crops possess a higher number of detectable pesticides compared to analogous crops grown in the open. This may be due to different pesticide-use regimes, but also due to slower rates of pesticide removal in protected systems. The findings of this study raise implications for pesticide management in protected-crop systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Scanning electron microscopic studies and growth response of the plants of Helianthus annuus L. grown on tannery sludge amended soil.

    PubMed

    Singh, Shraddha; Sinha, Sarita

    2004-05-01

    The plants of Helianthus annuus L. var. modern were grown in the soil amended with different amounts of tannery sludge (10%, 25%, 35%, 50%, 75% and 100%), collected from Wastewater Treatment Plant Jajmau, Kanpur (Uttar Pradesh, India) under field conditions. The effect of tannery sludge amendments was studied on the growth performance of the plant, i.e. root length, shoot length, leaf area and number of leaves after 30, 60 and 90 days of exposures. The root length of the plant increased up to 35% tannery sludge followed by significant (p<0.01) decrease at higher amendments, whereas the shoot length of the plant increased with increase in sludge amendment ratio at all the exposure periods, compared to their respective controls. The number of leaves and leaf area in the plants of H. annuus increased at all the amendments of tannery sludge at initial exposure periods (30 and 60 days); however, it decreased at higher sludge amendments at highest exposure period (90 days) as compared to their respective controls. The analysis of scanning electron micrographs of the leaf surface of H. annuus grown on 50% and 100% tannery sludge after 90 days showed an increase in the frequency of stomata and trichomes, closure of stomata and degeneration of certain cells in the sludge grown plants.

  9. Comparative study of GaN-based ultraviolet LEDs grown on different-sized patterned sapphire substrates with sputtered AlN nucleation layer

    NASA Astrophysics Data System (ADS)

    Zhou, Shengjun; Hu, Hongpo; Liu, Xingtong; Liu, Mengling; Ding, Xinghuo; Gui, Chengqun; Liu, Sheng; Guo, L. Jay

    2017-11-01

    GaN-based ultraviolet-light-emitting diodes (UV LEDs) with 375 nm emission were grown on different-sized patterned sapphire substrates (PSSs) with ex situ 15-nm-thick sputtered AlN nucleation layers by metal-organic chemical vapor deposition (MOCVD). It was observed through in situ optical reflectance monitoring that the transition time from a three-dimensional (3D) island to a two-dimensional (2D) coalescence was prolonged when GaN was grown on a larger PSS, owing to a much longer lateral growth time of GaN. The full widths at half-maximum (FWHMs) of symmetric GaN(002) and asymmetric GaN(102) X-ray diffraction (XRD) rocking curves decreased as the PSS size increased. By cross-sectional transmission electron microscopy (TEM) analysis, it was found that the threading dislocation (TD) density in UV LEDs decreased with increasing pattern size and fill factor of the PSS, thereby resulting in a marked improvement in internal quantum efficiency (IQE). Finite-difference time-domain (FDTD) simulations quantitatively demonstrated a progressive decrease in light extraction efficiency (LEE) as the PSS size increased. However, owing to the significantly reduced TD density in InGaN/AlInGaN multiple quantum wells (MQWs) and thus improved IQE, the light output power of the UV LED grown on a large PSS with a fill factor of 0.71 was 131.8% higher than that of the UV LED grown on a small PSS with a fill factor of 0.4, albeit the UV LED grown on a large PSS exhibited a much lower LEE.

  10. Ellipsometric study of metal-organic chemically vapor deposited III-V semiconductor structures

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Sekula-Moise, Patricia A.; Sieg, Robert M.; Drotos, Mark N.; Bogner, Nancy A.

    1992-01-01

    An ellipsometric study of MOCVD-grown layers of AlGaAs and InGaAs in thick films and strained layer complex structures is presented. It is concluded that the ternary composition of thick nonstrained layers can be accurately determined to within experimental errors using numerical algorithms. In the case of complex structures, thickness of all layers and the alloy composition of nonstrained layers can be determined simultaneously, provided that the correlations between parameters is no higher than 0.9.

  11. Microgravity

    NASA Image and Video Library

    2000-05-05

    This computer graphic depicts the relative complexity of crystallizing large proteins in order to study their structures through x-ray crystallography. Insulin is a vital protein whose structure has several subtle points that scientists are still trying to determine. Large molecules such as insuline are complex with structures that are comparatively difficult to understand. For comparison, a sugar molecule (which many people have grown as hard crystals in science glass) and a water molecule are shown. These images were produced with the Macmolecule program. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  12. Production and postharvest characteristics of Rosa hybrida L. Meijikatar'' grown in pots under carbon dioxide enrichment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, D.G.; Kelly, J.W.; Rajapakse, N.C.

    1993-09-01

    The effects of carbon dioxide enrichment on growth, photosynthesis, and postharvest characteristics of Meijikatar'' potted roses were determined. Plants were grown in 350, 700, or 1,050 [mu]l CO[sub 2]/liter until they reached 50% flower bud coloration and then were placed into dark storage for 5 days at 4 or 16C. Plants grown in 700 or 1,050 [mu]l CO[sub 2]/liter reached the harvest stage earlier and were taller at harvest than plants produced in 350 [mu]l CO[sub 2]/liter, but there were no differences in the number of flowers and flower buds per plant among CO[sub 2] treatments. Plants grown in earlymore » spring were taller and had more flowers and flower buds than plants grown in late winter. shoot and root growth of plants grown in 700 or 1,050 [mu]l CO[sub 2]/liter were higher than in plants produced in 350 [mu]l CO[sub 2]/liter, with plants grown in early spring showing greater increases than plants grown in late winter. Immediately after storage, plants grown in 350 [mu]l CO[sub 2]/liter and stored at 4C had the fewest etiolated shoots, while plants grown in 1,050 [mu]l CO[sub 2]/liter and stored at 16C had the most. Five days after removal from storage, chlorophyll concentration of upper and lower leaves had been reduced by [approximately]50% from the day of harvest. Carbon dioxide enrichment had no effect on postharvest leaf chlorosis, but plants grown in early spring and stored at 16C had the most leaf chlorosis while plants grown in late winter and stored at 4C had the least leaf chlorosis.« less

  13. Crystallization and preliminary crystallographic analysis of calcium-binding protein-2 from Entamoeba histolytica and its complexes with strontium and the IQ1 motif of myosin V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gourinath, S., E-mail: sgourinath@mail.jnu.ac.in; Padhan, Narendra; Alam, Neelima

    2005-04-01

    Calcium-binding protein-2 (EhCaBP2) crystals were grown using MPD as a precipitant. EhCaBP2 also crystallized in complex with strontium (replacing calcium) at similar conditions. Preliminary data for EhCaBP2 crystals in complex with an IQ motif are also reported. Calcium plays a pivotal role in the pathogenesis of amoebiasis, a major disease caused by Entamoeba histolytica. Two domains with four canonical EF-hand-containing calcium-binding proteins (CaBPs) have been identified from E. histolytica. Even though they have very high sequence similarity, these bind to different target proteins in a Ca{sup 2+}-dependent manner, leading to different functional pathways. Calcium-binding protein-2 (EhCaBP2) crystals were grown usingmore » MPD as a precipitant. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 111.74, b = 68.83, c = 113.25 Å, β = 116.7°. EhCaBP2 also crystallized in complex with strontium (replacing calcium) at similar conditions. The crystals belong to space group P2{sub 1}, with unit-cell parameters a = 69.18, b = 112.03, c = 93.42 Å, β = 92.8°. Preliminary data for EhCaBP2 crystals in complex with an IQ motif are also reported. This complex was crystallized with MPD and ethanol as precipitating agents. These crystals belong to space group P2{sub 1}, with unit-cell parameters a = 60.5, b = 69.86, c = 86.5 Å, β = 97.9°.« less

  14. Antibacterial activity of plant defensins against alfalfa crown rot pathogens

    USDA-ARS?s Scientific Manuscript database

    Alfalfa (Medicago sativa) is the fourth most widely grown crop in the United States. Alfalfa crown rot is a disease complex that severely decreases alfalfa stand density and productivity in all alfalfa-producing areas. Currently, there are no viable methods of disease control. Plant defensins are sm...

  15. New Particle Formation & Growth in CMAQ-NPF: Application of Comprehensive Model Methods to Observations during CalNex & CARES

    EPA Science Inventory

    The formation and growth of new atmospheric ultrafine particles are exceedingly complex processes and recent scientific efforts have grown our understanding of them tremendously. This presentation describes the effort to apply this new knowledge to the CMAQ chemical transport mod...

  16. Understanding Current Trends in Family Involvement

    ERIC Educational Resources Information Center

    Carney-Hall, Karla C.

    2008-01-01

    Parents of today's college students have much on their minds: paying for college, coping with their children's history of depression, ensuring safety, managing complex roommate relationships, and emphasizing academic success, to name just a few. Parental involvement has reportedly grown over the past few years, owing to many contributing factors:…

  17. Combating the Sigatoka disease complex on banana

    USDA-ARS?s Scientific Manuscript database

    Banana is the fourth most important staple food in the world behind rice, wheat and maize, with more than 100 million tons produced annually. Although the majority of bananas produced are consumed locally, banana export is a multi-billion dollar business. Bananas are grown in more than 100 countri...

  18. Taxonomic complexity of powdery mildew pathogens found on lentil and pea in the US Pacific Northwest

    USDA-ARS?s Scientific Manuscript database

    Classification of powdery mildews found on lentil and pea in greenhouse and field production conditions in the US Pacific Northwest was investigated using morphological and molecular characters. Isolates collected from lentil plants grown in the greenhouse or field displayed morphologies in substant...

  19. Individual sugar and acid composition within southeastern peach germplasm

    USDA-ARS?s Scientific Manuscript database

    eaches grown in the southeast are valued for their acidic, sweet flavor. A complex mixture of various sugars and acids at different ratios play a key role in determining these unique peach flavor attributes. To understand the flavor profile of fresh market peaches, individual sugar and acid compone...

  20. New particle formation and growth in CMAQ: Application of comprehensive modal methods to observations during CalNex and CARES

    EPA Science Inventory

    The formation and growth of new atmospheric ultrafine particles are exceedingly complex processes and recent scientific efforts have grown our understanding of them tremendously. This presentation describes the effort to apply this new knowledge to the CMAQ chemical transport mod...

  1. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system.

    PubMed

    McLaughlin, M; Albertini, D F; Wallace, W H B; Anderson, R A; Telfer, E E

    2018-03-01

    Can complete oocyte development be achieved from human ovarian tissue containing primordial/unilaminar follicles and grown in vitro in a multi-step culture to meiotic maturation demonstrated by the formation of polar bodies and a Metaphase II spindle? Development of human oocytes from primordial/unilaminar stages to resumption of meiosis (Metaphase II) and emission of a polar body was achieved within a serum free multi-step culture system. Complete development of oocytes in vitro has been achieved in mouse, where in vitro grown (IVG) oocytes from primordial follicles have resulted in the production of live offspring. Human oocytes have been grown in vitro from the secondary/multi-laminar stage to obtain fully grown oocytes capable of meiotic maturation. However, there are no reports of a culture system supporting complete growth from the earliest stages of human follicle development through to Metaphase II. Ovarian cortical biopsies were obtained with informed consent from women undergoing elective caesarean section (mean age: 30.7 ± 1.7; range: 25-39 years, n = 10). Laboratory setting. Ovarian biopsies were dissected into thin strips, and after removal of growing follicles were cultured in serum free medium for 8 days (Step 1). At the end of this period secondary/multi-laminar follicles were dissected from the strips and intact follicles 100-150 μm in diameter were selected for further culture. Isolated follicles were cultured individually in serum free medium in the presence of 100 ng/ml of human recombinant Activin A (Step 2). Individual follicles were monitored and after 8 days, cumulus oocyte complexes (COCs) were retrieved by gentle pressure on the cultured follicles. Complexes with complete cumulus and adherent mural granulosa cells were selected and cultured in the presence of Activin A and FSH on membranes for a further 4 days (Step 3). At the end of Step 3, complexes containing oocytes >100 μm diameter were selected for IVM in SAGE medium (Step 4) then fixed for analysis. Pieces of human ovarian cortex cultured in serum free medium for 8 days (Step 1) supported early follicle growth and 87 secondary follicles of diameter 120 ± 6 μm (mean ± SEM) could be dissected for further culture. After a further 8 days, 54 of the 87 follicles had reached the antral stage of development. COCs were retrieved by gentle pressure from the cultured follicles and those with adherent mural granulosa cells (n = 48) were selected and cultured for a further 4 days (Step 3). At the end of Step 3, 32 complexes contained oocytes >100 μm diameter were selected for IVM (Step 4). Nine of these complexes contained polar bodies within 24 h and all polar bodies were abnormally large. Confocal immuno-histochemical analysis showed the presence of a Metaphase II spindle confirming that these IVG oocytes had resumed meiosis but their developmental potential is unknown. This is a small number of samples but provides proof of concept that complete development of human oocytes can occur in vitro. Further optimization with morphological evaluation and fertilization potential of IVG oocytes is required to determine whether they are normal. The ability to develop human oocytes from the earliest follicular stages in vitro through to maturation and fertilization would benefit fertility preservation practice. Funded by MRC Grants (G0901839 and MR/L00299X/1). No competing interests.

  2. Assessment of Total Phenolic and Flavonoid Content, Antioxidant Properties, and Yield of Aeroponically and Conventionally Grown Leafy Vegetables and Fruit Crops: A Comparative Study

    PubMed Central

    Chandra, Suman; Khan, Shabana; Avula, Bharathi; Lata, Hemant; Yang, Min Hye; ElSohly, Mahmoud A.; Khan, Ikhlas A.

    2014-01-01

    A comparison of the product yield, total phenolics, total flavonoids, and antioxidant properties was done in different leafy vegetables/herbs (basil, chard, parsley, and red kale) and fruit crops (bell pepper, cherry tomatoes, cucumber, and squash) grown in aeroponic growing systems (AG) and in the field (FG). An average increase of about 19%, 8%, 65%, 21%, 53%, 35%, 7%, and 50% in the yield was recorded for basil, chard, red kale, parsley, bell pepper, cherry tomatoes, cucumber, and squash, respectively, when grown in aeroponic systems, compared to that grown in the soil. Antioxidant properties of AG and FG crops were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DDPH) and cellular antioxidant (CAA) assays. In general, the study shows that the plants grown in the aeroponic system had a higher yield and comparable phenolics, flavonoids, and antioxidant properties as compared to those grown in the soil. PMID:24782905

  3. The influence of point defects on the thermal conductivity of AlN crystals

    NASA Astrophysics Data System (ADS)

    Rounds, Robert; Sarkar, Biplab; Alden, Dorian; Guo, Qiang; Klump, Andrew; Hartmann, Carsten; Nagashima, Toru; Kirste, Ronny; Franke, Alexander; Bickermann, Matthias; Kumagai, Yoshinao; Sitar, Zlatko; Collazo, Ramón

    2018-05-01

    The average bulk thermal conductivity of free-standing physical vapor transport and hydride vapor phase epitaxy single crystal AlN samples with different impurity concentrations is analyzed using the 3ω method in the temperature range of 30-325 K. AlN wafers grown by physical vapor transport show significant variation in thermal conductivity at room temperature with values ranging between 268 W/m K and 339 W/m K. AlN crystals grown by hydride vapor phase epitaxy yield values between 298 W/m K and 341 W/m K at room temperature, suggesting that the same fundamental mechanisms limit the thermal conductivity of AlN grown by both techniques. All samples in this work show phonon resonance behavior resulting from incorporated point defects. Samples shown by optical analysis to contain carbon-silicon complexes exhibit higher thermal conductivity above 100 K. Phonon scattering by point defects is determined to be the main limiting factor for thermal conductivity of AlN within the investigated temperature range.

  4. Effect of Hydrogen in Zinc Oxide Thin-Film Transistor Grown by Metal Organic Chemical Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Jo, Jungyol; Seo, Ogweon; Jeong, Euihyuk; Seo, Hyunseok; Lee, Byeongon; Choi, Yearn-Ik

    2007-04-01

    We studied the transport characteristics of ZnO grown by metal organic chemical vapor deposition (MOCVD) at temperatures between 200 and 500 °C. The crystal quality, measured by X-ray diffraction, improved as the growth temperature increased. However, the mobility measured in the thin-film transistor (TFT) decreased in films grown at higher temperatures. In our experiments, a ZnO TFT grown at 250 °C showed good electrical characteristics, with a 13 cm2 V-1 s-1 mobility and a 103 on/off ratio. We conclude that hydrogen incorporated during MOCVD growth plays an important role in determining the transistor characteristics. This was supported by results of secondary ion mass spectroscopy (SIMS), where a higher hydrogen concentration was observed in films grown at lower temperatures.

  5. Chromosome Conformation of Human Fibroblasts Grown in 3-Dimensional Spheroids

    PubMed Central

    Chen, Haiming; Comment, Nicholas; Chen, Jie; Ronquist, Scott; Hero, Alfred; Ried, Thomas; Rajapakse, Indika

    2015-01-01

    In the study of interphase chromosome organization, genome-wide chromosome conformation capture (Hi-C) maps are often generated using 2-dimensional (2D) monolayer cultures. These 2D cells have morphological deviations from cells that exist in 3-dimensional (3D) tissues in vivo, and may not maintain the same chromosome conformation. We used Hi-C maps to test the extent of differences in chromosome conformation between human fibroblasts grown in 2D cultures and those grown in 3D spheroids. Significant differences in chromosome conformation were found between 2D cells and those grown in spheroids. Intra-chromosomal interactions were generally increased in spheroid cells, with a few exceptions, while inter-chromosomal interactions were generally decreased. Overall, chromosomes located closer to the nuclear periphery had increased intra-chromosomal contacts in spheroid cells, while those located more centrally had decreased interactions. This study highlights the necessity to conduct studies on the topography of the interphase nucleus under conditions that mimic an in vivo environment. PMID:25738643

  6. Control of electron transport routes through redox-regulated redistribution of respiratory complexes

    PubMed Central

    Liu, Lu-Ning; Bryan, Samantha J.; Huang, Fang; Yu, Jianfeng; Nixon, Peter J.; Rich, Peter R.; Mullineaux, Conrad W.

    2012-01-01

    In cyanobacteria, respiratory electron transport takes place in close proximity to photosynthetic electron transport, because the complexes required for both processes are located within the thylakoid membranes. The balance of electron transport routes is crucial for cell physiology, yet the factors that control the predominance of particular pathways are poorly understood. Here we use a combination of tagging with green fluorescent protein and confocal fluorescence microscopy in live cells of the cyanobacterium Synechococcus elongatus PCC 7942 to investigate the distribution on submicron scales of two key respiratory electron donors, type-I NAD(P)H dehydrogenase (NDH-1) and succinate dehydrogenase (SDH). When cells are grown under low light, both complexes are concentrated in discrete patches in the thylakoid membranes, about 100–300 nm in diameter and containing tens to hundreds of complexes. Exposure to moderate light leads to redistribution of both NDH-1 and SDH such that they become evenly distributed within the thylakoid membranes. The effects of electron transport inhibitors indicate that redistribution of respiratory complexes is triggered by changes in the redox state of an electron carrier close to plastoquinone. Redistribution does not depend on de novo protein synthesis, and it is accompanied by a major increase in the probability that respiratory electrons are transferred to photosystem I rather than to a terminal oxidase. These results indicate that the distribution of complexes on the scale of 100–300 nm controls the partitioning of reducing power and that redistribution of electron transport complexes on these scales is a physiological mechanism to regulate the pathways of electron flow. PMID:22733774

  7. Oxygen-induced recombination centers in as-grown Czochralski silicon crystals

    NASA Technical Reports Server (NTRS)

    Nauka, K.; Gatos, H. C.; Lagowski, J.

    1983-01-01

    Simultaneous quantitative microprofiles of the interstitial oxygen concentration and of the excess carrier lifetime are obtained in Czochralski-grown Si crystals employing double laser absorption scanning. It is found that oxygen concentration maxima and minima along the crystal growth direction coincide with lifetime minima and maxima, respectively. Another finding is that the magnitude of oxygen-induced lifetime changes increases dramatically in going from the center to the periphery of the crystal. The findings discussed imply that 'as-grown' oxygen precipitates figure in lifetime-limiting processes.

  8. Shifting the fermentative/oxidative balance in Saccharomyces cerevisiae by transcriptional deregulation of Snf1 via overexpression of the upstream activating kinase Sak1p.

    PubMed

    Raab, Andreas M; Hlavacek, Verena; Bolotina, Natalia; Lang, Christine

    2011-03-01

    With the aim to reduce fermentation by-products and to promote respiratory metabolism by shifting the fermentative/oxidative balance, we evaluated the constitutive overexpression of the SAK1 and HAP4 genes in Saccharomyces cerevisiae. Sak1p is one of three kinases responsible for the phosphorylation, and thereby the activation, of the Snf1p complex, while Hap4p is the activator subunit of the Hap2/3/4/5 transcriptional complex. We compared the physiology of a SAK1-overexpressing strain with that of a strain overexpressing the HAP4 gene in wild-type and sdh2 deletion (respiratory-deficient) backgrounds. Both SAK1 and HAP4 overexpressions led to the upregulation of glucose-repressed genes and to reduced by-product formation rates (ethanol and glycerol). SAK1 overexpression had a greater impact on growth rates than did HAP4 overexpression. Elevated transcript levels of SAK1, but not HAP4, resulted in increased biomass yields in batch cultures grown on glucose (aerobic and excess glucose) as well as on nonfermentable carbon sources. SAK1 overexpression, but not the combined overexpression of SAK1 and HAP4 or the overexpression of HAP4 alone, restored growth on ethanol in an sdh2 deletion strain. In glucose-grown shake flask cultures, the sdh2 deletion strain with SAK1 and HAP4 overexpression produced succinic acid at a titer of 8.5 g liter(-1) and a yield of 0.26 mol (mol glucose)(-1) within 216 h. We here report for the first time that a constitutively high level of expression of SAK1 alleviates glucose repression and shifts the fermentative/oxidative balance under both glucose-repressed and -derepressed conditions.

  9. Gravitropic mechanisms derived from space experiments and magnetic gradients.

    NASA Astrophysics Data System (ADS)

    Hasenstein, Karl H.; Park, Myoung Ryoul

    2016-07-01

    Gravitropism is the result of a complex sequence of events that begins with the movement of dense particles, typically starch-filled amyloplasts in response to reorientation. Although these organelles change positions, it is not clear whether the critical signal is derived from sedimentation or dynamic interactions of amyloplasts with relevant membranes. Substituting gravity by high-gradient magnetic fields (HGMF) provides a localized stimulus for diamagnetic starch that is specific for amyloplasts and comparable to gravity without affecting other organelles. Experiments with Brassica rapa showed induction of root curvature by HGMF when roots moved sufficiently close to the magnetic gradient-inducing foci. The focused and short-range effectiveness of HGMFs provided a gravity-like stimulus and affected related gene expression. Root curvature was sensitive to the mutual alignment between roots and HGMF direction. Unrelated to any HGMF effects, the size of amyloplasts in space-grown roots increased by 30% compared to ground controls and suggests enhanced sensitivity in a gravity-reduced environment. Accompanying gene transcription studies showed greater differences between HGMF-exposed and space controls than between space and ground controls. This observation may lead to the identification of gravitropism-relevant genes. However, space grown roots showed stronger transcription of common reference genes such as actin and ubiquitin in magnetic fields than in non-magnetic conditions. In contrast, α-amylase, glucokinase and PIN encoding genes were transcribed stronger under non-magnetic conditions than under HGMF. The large number of comparisons between space, ground, and HGMF prompted the assessment of transcription differences between root segments, root-shoot junction, and seeds. Because presumed transcription of reference genes varied more than genes of interest, changes in gene expression cannot be based on reference genes. The data provide an example of complex and different responses to microgravity conditions, induced curvature, ground controls, clinorotation, and magnetic field exposure.

  10. Arbuscular mycorrhiza improve growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2.

    PubMed

    Zhu, Xiancan; Song, Fengbin; Liu, Shengqun; Liu, Fulai

    2016-02-01

    Effects of the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis on plant growth, carbon (C) and nitrogen (N) accumulation, and partitioning was investigated in Triticum aestivum L. plants grown under elevated CO2 in a pot experiment. Wheat plants inoculated or not inoculated with the AM fungus were grown in two glasshouse cells with different CO2 concentrations (400 and 700 ppm) for 10 weeks. A (15)N isotope labeling technique was used to trace plant N uptake. Results showed that elevated CO2 increased AM fungal colonization. Under CO2 elevation, AM plants had higher C concentration and higher plant biomass than the non-AM plants. CO2 elevation did not affect C and N partitioning in plant organs, while AM symbiosis increased C and N allocation into the roots. In addition, plant C and N accumulation, (15)N recovery rate, and N use efficiency (NUE) were significantly higher in AM plants than in non-AM controls under CO2 enrichment. It is concluded that AM symbiosis favors C and N partitioning in roots, increases C accumulation and N uptake, and leads to greater NUE in wheat plants grown at elevated CO2.

  11. Nucleolus in clinostat-grown plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen-Miller, J.; Dannenhoffer, J.; Hinchman, R.

    1991-05-01

    The clinostat is an apparatus that is used to mimic zero gravity in studies of plant growth in the absence of gravitropic response. Clinostat-grown tissue cultures of carrot exhibit significant increases both in the number of nuclei containing more than one nucleolus and in nucleolar volume. Oat seedlings germinated and grown on clinostats exhibit a decreased rate of shoot elongation, increased tissue sensitivity to applied auxin, and an increased response to gravitropic stimulation. Clinostat treatment clearly affects plant metabolism. The nucleolus is the region in the nucleus where ribosome synthesis and assembly take place. The 18S, 5.8S, and 25S ribosomalmore » genes, in tandem units, are located in the nucleolus. Ribosomes orchestrate the production of all proteins that are necessary for the maintenance of cell growth, development, and survival. A full study of the effects of nullification of gravitropism, by clinostat rotation, on nucleolar development in barley has been initiated. The authors study developmental changes of nucleolar number and diameter in clinostat-grown root tissues. Preliminary results show that barley roots exhibit changes in nucleolar number and diameter. Growth rates of barley root and shoot also appear to be reduced, in measurements of both length and weight.« less

  12. CHEMISTRY OF OXIDATION OF POLYCYCLIC AROMATIC HYDROCARBONS BY SOIL PSEUDOMONADS

    PubMed Central

    Rogoff, Martin H.

    1962-01-01

    Rogoff, Martin H. (U.S. Bureau of Mines, Pittsburgh, Pa.). Oxidation of polycyclic aromatic hydrocarbons by soil pseudomonads. J. Bacteriol. 83:998–1004. 1962.—Substitution of phenanthrene by a methyl group at the 9-carbon blocks oxidation of the compound by a resting-cell suspension of a phenanthrene-grown soil pseudomonad. When 2-methylphenanthrene is provided, the oxidation rate is considerably higher; 3-methylphenanthrene is oxidized at a rate intermediate between the other two, even though the methyl group is attached to a carbon directly involved in ring splitting. Cells grown on naphthalene or anthracene oxidize phenanthrene at a much lower rate than cells grown with phenanthrene or 2-methylnaphthalene as the source of carbon. Naphthalene-grown cells also absorb less phenanthrene from aqueous solution than do their phenanthrene-grown counterparts. The data are in keeping with the hypothesis that polynuclear aromatic hydrocarbons attach to the relevant bacterial enzymes at carbon-carbon bonds of high electron density (K regions; localized double bonds), and that the ring-splitting reactions then occur at other bonds on the substrate molecule. The actual bond that undergoes fission is determined by the electronic and steric configurations of the enzyme-substrate complex. When linearly arranged aromatic compounds such as naphthalene or anthracene are attacked, attachment to an enzyme and ring splitting may take place on the same ring; angular aromatic compounds such as phenanthrene afford attachment to an enzyme at a bond in a ring other than the one containing the ring-splitting site. PMID:14493381

  13. IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex

    PubMed Central

    Maccari, Giuseppe; Robinson, James; Ballingall, Keith; Guethlein, Lisbeth A.; Grimholt, Unni; Kaufman, Jim; Ho, Chak-Sum; de Groot, Natasja G.; Flicek, Paul; Bontrop, Ronald E.; Hammond, John A.; Marsh, Steven G. E.

    2017-01-01

    The IPD-MHC Database project (http://www.ebi.ac.uk/ipd/mhc/) collects and expertly curates sequences of the major histocompatibility complex from non-human species and provides the infrastructure and tools to enable accurate analysis. Since the first release of the database in 2003, IPD-MHC has grown and currently hosts a number of specific sections, with more than 7000 alleles from 70 species, including non-human primates, canines, felines, equids, ovids, suids, bovins, salmonids and murids. These sequences are expertly curated and made publicly available through an open access website. The IPD-MHC Database is a key resource in its field, and this has led to an average of 1500 unique visitors and more than 5000 viewed pages per month. As the database has grown in size and complexity, it has created a number of challenges in maintaining and organizing information, particularly the need to standardize nomenclature and taxonomic classification, while incorporating new allele submissions. Here, we describe the latest database release, the IPD-MHC 2.0 and discuss planned developments. This release incorporates sequence updates and new tools that enhance database queries and improve the submission procedure by utilizing common tools that are able to handle the varied requirements of each MHC-group. PMID:27899604

  14. Effect of rapid thermal annealing on the electrical, optical and structural properties of ZnO-doped In2O3 films grown by linear facing target sputtering.

    PubMed

    Cho, Chung-Ki; Kim, Han-Ki

    2012-04-01

    We investigated the effect of rapid thermal annealing on the electrical, optical, and structural properties of ZnO-doped In2O3 (ZIO) films grown at different Ar/O2 flow ratios (15/0 and 15/1 sccm) by using linear facing target sputtering. It was found that the ZIO films grown at different Ar/O2, flow ratios showed different electrical and optical behavior with increasing rapid thermal annealing temperature. Synchrotron X-ray scattering examination showed that the different electrical and optical properties of the ZIO films could be attributed to the difference in preferred orientation with an increase in rapid thermal annealing temperature.

  15. Morphology of Arabidopsis Grown under Chronic Centrifugation and on the Clinostat 123

    PubMed Central

    Brown, Allan H.; Dahl, A. Orville; Chapman, David K.

    1976-01-01

    Morphological measurements were made on populations of Arabidopsis thaliana grown from seed for 21 days under essentially constant environmental conditions except for the influence of gravitational or centrifugal accelerations. Growth conditions were what had been proposed for experiments in an artificial satellite. Observations are reported for plants grown at normal 1-g upright or on horizontal clinostats and for plants grown on a centrifuge. Increased g-force, up to 15 times normal, was found to have significant but small effects on some morphological end points. The plants' sensitivity to the magnitude of the g-force was much less than to its vector direction. Data from centrifuge experiments (which determined the g-functions for particular characters) were extrapolated to zero-g to predict a set of morphological characteristics of a plant developing in the satellite environment. As an alternative means of predicting properties of a zero-g plant, characteristics of plants grown on horizontal clinostats were measured. The results of these two predictive methods were not in agreement. Clinostat grown plants were morphologically distinct from upright stationary controls. When plants were grown while rotating in the upright position on vertical clinostats they were similar to stationary plants also grown upright, but there were small differences some of which were statistically significant. PMID:16659483

  16. Spectral quality may be used to alter plant disease development in CELSS

    NASA Astrophysics Data System (ADS)

    Schuerger, A. C.; Brown, C. S.

    1994-11-01

    Plants were grown under light emitting diode (LED) arrays with different spectral qualities to determine the effects of light on the development of tomato mosaic virus (ToMV) in peppers and powdery mildew on cucumbers. One LED array supplied 100% of the photosynthetic photon flux (PPF) at 660 nm, a second array supplied 90% of the PPF at 660 nm and 10% at 735 nm, and a third array supplied 98% of the PPF at 660 nm with 2% in the blue region (380-500 nm) supplied by blue fluorescent lamps. Control plants were grown under metal halide (MH) lamps. Pepper plants inoculated with ToMV and grown under 660 and 660/735 LED arrays showed marked increases in both the rate and the severity of symptoms as compared to inoculated plants grown under the MH lamp or 660/blue array. Pepper plants grown under the 660/blue array did not develop symptoms as rapidly as inoculated plants grown under the 660 or 660/735 arrays, but they did develop symptoms faster than inoculated plants grown under the MH lamp. The numbers of colonies of powdery mildew per leaf and the size of each colony were greatest on inoculated cucumber plants grown under the MH lamp.

  17. Epitaxial CuInSe2 thin films grown by molecular beam epitaxy and migration enhanced epitaxy

    NASA Astrophysics Data System (ADS)

    Abderrafi, K.; Ribeiro-Andrade, R.; Nicoara, N.; Cerqueira, M. F.; Gonzalez Debs, M.; Limborço, H.; Salomé, P. M. P.; Gonzalez, J. C.; Briones, F.; Garcia, J. M.; Sadewasser, S.

    2017-10-01

    While CuInSe2 chalcopyrite materials are mainly used in their polycrystalline form to prepare thin film solar cells, epitaxial layers have been used for the characterization of defects. Typically, epitaxial layers are grown by metal-organic vapor phase epitaxy or molecular beam epitaxy (MBE). Here we present epitaxial layers grown by migration enhanced epitaxy (MEE) and compare the materials quality to MBE grown layers. CuInSe2 layers were grown on GaAs (0 0 1) substrates by co-evaporation of Cu, In, and Se using substrate temperatures of 450 °C, 530 °C, and 620 °C. The layers were characterized by high resolution X-ray diffraction (HR-XRD), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, and atomic force microscopy (AFM). HR-XRD and HR-TEM show a better crystalline quality of the MEE grown layers, and Raman scattering measurements confirm single phase CuInSe2. AFM shows the previously observed faceting of the (0 0 1) surface into {1 1 2} facets with trenches formed along the [1 1 0] direction. The surface of MEE-grown samples appears smoother compared to MBE-grown samples, a similar trend is observed with increasing growth temperature.

  18. Cadmium-sulfide crystallites in Cd-(. gamma. EC) sub n G peptide complexes from tomato. [Lycopersicon esculentum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reese, R.N.; White, C.A.; Winge, D.R.

    Hydroponically grown tomato plants (Lycopersicon esculentum P. Mill cv Golden Boy) exposed to 100 micromolar cadmium sulfate produced metal-({gamma}EC){sub n}G peptide complexes containing acid-labile sulfur. The properties of the complexes resemble those of the cadmium-({gamma}EC){sub n}G peptide complexes from Schizo-saccharomyces pombe and Candida glabrata known to contain a cadmium sulfide crystallite core. The crystallite is stabilized by a sheath of peptides of general structure ({gamma}Glu-Cys){sub n}-Gly. The cadmium-peptide complexes of tomato contained predominantly peptides of n{sub 3}, n{sub 4}, and n{sub 5}. Spectroscopic analyses indicated that the tomato cadmium-sulfide-peptide complex contained CdS crystallite core particles smaller than 2.0 nanometers inmore » diameter.« less

  19. Experimental and computational studies on creatininium 4-nitrobenzoate - An organic proton transfer complex

    NASA Astrophysics Data System (ADS)

    Thirumurugan, R.; Anitha, K.

    2017-10-01

    A new organic proton transfer complex of creatininium 4-nitrobenzoate (C4NB) has been synthesized and its single crystals were grown successfully by slow evaporation technique. The grown single crystal was subjected to various characterization techniques like single crystal X-ray diffraction (SCXRD), FTIR, FT-Raman and Kurtz-Perry powder second harmonic generation (SHG). The SCXRD analysis revealed that C4NB was crystallized into orthorhombic crystal system, with noncentrosymmetric (NCS), P212121 space group. The creatininium cation and 4-nitrobenzoate anion were connected through a pair of N__H⋯O hydrogen bonds (N(3)__H(6) ⋯ O(3) (x+1, y, z) and N(2)__H(5) &ctdot O(2) (x-1/2, -y-1/2, -z+2)) and fashioned a R22(8) ring motif. The crystal structure was stabilized by strong N__H⋯O and weak C__H⋯O intermolecular interactions and it was quantitatively analysed by Hirshfeld surface and fingerprint (FP) analysis. FTIR and FT-Raman studies confirmed the vibrational modes of functional groups present in C4NB compound indubitably. SHG efficiency of grown crystal was 4.6 times greater than that of standard potassium dihydrogen phosphate (KDP) material. Moreover, density functional theory (DFT) studies such as Mulliken charge distribution, frontier molecular orbitals (FMOs), molecular electrostatic potential (MEP) map, natural bond orbital analysis (NBO) and first order hyperpolarizability (β0) were calculated to explore the structure-property relationship.

  20. Penalized discriminant analysis for the detection of wild-grown and cultivated Ganoderma lucidum using Fourier transform infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Tan, Tuck Lee

    2016-04-01

    An effective and simple analytical method using Fourier transform infrared (FTIR) spectroscopy to distinguish wild-grown high-quality Ganoderma lucidum (G. lucidum) from cultivated one is of essential importance for its quality assurance and medicinal value estimation. Commonly used chemical and analytical methods using full spectrum are not so effective for the detection and interpretation due to the complex system of the herbal medicine. In this study, two penalized discriminant analysis models, penalized linear discriminant analysis (PLDA) and elastic net (Elnet),using FTIR spectroscopy have been explored for the purpose of discrimination and interpretation. The classification performances of the two penalized models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The Elnet model involving a combination of L1 and L2 norm penalties enabled an automatic selection of a small number of informative spectral absorption bands and gave an excellent classification accuracy of 99% for discrimination between spectra of wild-grown and cultivated G. lucidum. Its classification performance was superior to that of the PLDA model in a pure L1 setting and outperformed the PCDA and PLSDA models using full wavelength. The well-performed selection of informative spectral features leads to substantial reduction in model complexity and improvement of classification accuracy, and it is particularly helpful for the quantitative interpretations of the major chemical constituents of G. lucidum regarding its anti-cancer effects.

  1. Engineering Electronic Properties of Strongly Correlated Metal Thin Films

    NASA Astrophysics Data System (ADS)

    Eaton, Craig

    This dissertation reports on advances in synthesis and characterization of high quality perovskite metals with strong electron correlation. These materials have attracted considerable attention for their potential application as an active electronic material in logic applications utilizing the Mott type metal-to-insulator transition. CaVO3 and SrVO3 correlated metal oxide films have been grown by hybrid-molecular beam epitaxy (MBE), where alkaline earth cations are supplied using a conventional effusion cell and the transition metal vanadium is supplied using the metal-organic precursor vanadium (V) oxytriisopropoxide. Oxygen is available in both molecular and remote plasma activated forms. Titanate-based band insulators, namely SrTiO3 and CaTiO3, have also been grown using titanium tetra-isopropoxide as metal-organic precursor. The grown films have been characterized using reflection high energy electron diffraction (RHEED), X-ray diffraction (XRD), atomic force microscopy (AFM), transition electron microscopy (TEM), and electrical properties have been determined using temperature dependent resistivity and Hall measurements. Optimized films exhibit high quality Kiessig fringes, with substrate limited rocking curve widths of 8 arc seconds in the case of CaVO3 and 17 arc seconds in the case of SrVO3. Both vanadate films grew in a step-flow mode with atomic steps visible after growth by AFM. In SrVO3, the perovskite phase remained present with a gradual lattice expansion away from the optimal cation flux ratio. For CaVO3, the films remained phase pure and with little change in lattice parameter throughout a growth window that spanned a 30% range in cation flux ratios. While an abrupt increase of lattice parameter was found for CaVO3 films grown under Carich conditions, films grown under V-rich conditions revealed a gradual reduction in lattice parameter, in contrast to SrVO3 where all defects have been shown to increase unit cell volume. Low resistivity and high residual resistivity ration complex vanadate thin films have been demonstrated. Methods for growing minimally strained SrVO3 films on (LaAlO 3)0.3(Sr2AlTaO6)0.7 substrates (0.7% tensile) were expanded to other substrates with different lattice mismatches, namely SrTiO3 (1.8% tensile) and LaAlO3 (1.3% compressive). Varying strain modifies bond angles or overlap, and can give rise to an insulating ground state. Changes in the film surface morphology derived from atomic force microscopy (AFM) was used to discriminate optimal growth conditions on each substrate. Films grown at each strain state remain strongly metallic at 10 nm thickness. Low temperature resistivity measurements, which demonstrates a marked increase in low temperature resistivity with respect to those films grown at optimized growth parameters, were found to be substrate dependent. The thickness of films grown on SrTiO3 are optimized for maximum thickness without cracking. Use of epitaxial strain as a mechanism for enabling a Mott transition was not demonstrated at strains and conditions attempted within this study. The experimental support of this hypothesis could not be experimentally confirmed within the range of strains studied here. Finally, high quality epitaxial SrTiO3-SrVO3-SrTiO 3 heterostructures are grown on (LaAlO3)0.3(Sr 2AlTaO6)0.7 substrates by hybrid MBE. RHEED, XRD, and TEM showed that these structures are of high structural quality, with atomically and chemically abrupt interfaces. By fixing the thickness of the SrTiO3 confinement layers to be 15 nm and decreasing the thickness of the SrVO3 from 50 nm down to 1.2 nm, it has been demonstrated that the system transitions from a strongly-correlated metal to an insulating state, as shown by temperature dependent resistivity and carrier concentration measurements. For films with thickness larger than 1.2 nm, the resistivity versus temperature is described by Fermi liquid behavior. Below this critical thickness the material undergoes an electronic phase transition into a variable-range hopping insulating phase. The results of this dissertation show that high quality vanadate thin films can be grown by hybrid MBE. Their electronic ground state, metallic in the bulk phase, can be effectively changed using geometrical confinement, while epitaxial strain was found to have a negligible effect. The ability to grow CaVO3 in a self-regulated fashion holds promise that the favorable growth kinetics in hybrid MBE might be a general characteristic of the metalorganic precursor employed.

  2. The effects of oxygen pressure on disordering and magneto-transport properties of Ba{sub 2}FeMoO{sub 6} thin films grown via pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyeong-Won; Mhin, Sungwook; Jones, Jacob L.

    2015-07-21

    Epitaxial Ba{sub 2}FeMoO{sub 6} thin films were grown via pulsed laser deposition under low oxygen pressure and their structural, chemical, and magnetic properties were examined, focusing on the effects of oxygen pressure. The chemical disorder, off-stoichiometry in B site cations (Fe and Mo) increased with increasing oxygen pressure and thus magnetic properties were degraded. Interestingly, in contrast, negative magneto-resistance, which is the characteristics of this double perovskite material, was enhanced with increasing oxygen pressure. It is believed that phase segregation of highly disordered thin films is responsible for the increased magneto-resistance of thin films grown at high oxygen pressure. Themore » anomalous Hall effect, which behaves hole-like, was also observed due to spin-polarized itinerant electrons under low magnetic field below 1 T and the ordinary electron-like Hall effect was dominant at higher magnetic fields.« less

  3. Phase partition of gaseous hexane and surface hydrophobicity of Fusarium solani when grown in liquid and solid media with hexanol and hexane.

    PubMed

    Vergara-Fernández, Alberto; Van Haaren, Brice; Revah, Sergio

    2006-12-01

    The filamentous fungus, Fusarium solani, was grown in liquid and solid culture with glucose, glycerol, 1-hexanol and n-hexane. The partition coefficient with gaseous hexane (HPC) in the biomass was lower when grown in liquid medium with 1-hexanol (0.4) than with glycerol (0.8) or glucose (1) The HPC for surface growth were 0.2 for 1-hexanol, 0.5 for glycerol, 0.6 for glucose, and 0.2 for F. solani biomass obtained from a biofilter fed with gaseous n-hexane. These values show a 200-fold increase in n-hexane solubility when compared to water (HPC = 42). Lower HPC values can be partially explained by increased lipid accumulation with 1-hexanol, 10.5% (w/w) than with glycerol (8.5% w/w) or glucose (7.1% w/w). The diameter of the hyphae diminished from 3 microm to 2 microm when F. solani was grown on solid media with gaseous n-hexane thereby doubling the surface area for gaseous substrate exchange. The surface hydrophobicity of the mycelia increased consistently with more hydrophobic substrates and the contact angle of a drop of water on the mycelial mat was 113 degrees when grown on n-hexane as compared to 75 degrees with glucose. The fungus thus adapts to hydrophobic conditions and these changes may explain the higher uptake of gaseous hydrophobic substances by fungi in biofilters.

  4. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements.

    PubMed

    Kalaji, Hazem M; Oukarroum, Abdallah; Alexandrov, Vladimir; Kouzmanova, Margarita; Brestic, Marian; Zivcak, Marek; Samborska, Izabela A; Cetner, Magdalena D; Allakhverdiev, Suleyman I; Goltsev, Vasilij

    2014-08-01

    The impact of some macro (Ca, S, Mg, K, N, P) and micro (Fe) nutrients deficiency on the functioning of the photosynthetic machinery in tomato (Solanum lycopersicum L.) and maize (Zea mays L.) plants grown in hydroponic cultures were investigated. Plants grown on a complete nutrient solution (control) were compared with those grown in a medium, which lacked one of macro- or microelements. The physiological state of the photosynthetic machinery in vivo was analysed after 14-days of deficient condition by the parameters of JIP-test based on fast chlorophyll a fluorescence records. In most of the nutrient-deficient samples, the decrease of photochemical efficiency, increase in non-photochemical dissipation and decrease of the number of active photosystem II (PSII) reaction centres were observed. However, lack of individual nutrients also had nutrient-specific effects on the photochemical processes. In Mg and Ca-deficient plants, the most severe decrease in electron donation by oxygen evolving complex (OEC) was indicated. Sulphur deficiency caused limitation of electron transport beyond PSI, probably due to decrease in the PSI content or activity of PSI electron acceptors; in contrary, Ca deficiency had an opposite effect, where the PSII activity was affected much more than PSI. Despite the fact that clear differences in nutrient deficiency responses between tomato and maize plants were observed, our results indicate that some of presented fluorescence parameters could be used as fluorescence phenotype markers. The principal component analysis of selected JIP-test parameters was presented as a possible species-specific approach to identify/predict the nutrient deficiency using the fast chlorophyll fluorescence records. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Crop root behavior coordinates phosphorus status and neighbors: from field studies to three-dimensional in situ reconstruction of root system architecture.

    PubMed

    Fang, Suqin; Gao, Xiang; Deng, Yan; Chen, Xinping; Liao, Hong

    2011-03-01

    Root is a primary organ to respond to environmental stimuli and percept signals from neighboring plants. In this study, root responses in maize (Zea mays)/soybean (Glycine max) intercropping systems recognized soil phosphorus (P) status and neighboring plants in the field. Compared to self culture, the maize variety GZ1 intercropping with soybean HX3 grew much better on low P, but not in another maize variety, NE1. This genotypic response decreased with increasing distance between plants, suggesting that root interactions were important. We further conducted a detailed and quantitative study of root behavior in situ using a gel system to reconstruct the three-dimensional root architecture. The results showed that plant roots could integrate information on P status and root behavior of neighboring plants. When intercropped with its kin, maize or soybean roots grew close to each other. However, when maize GZ1 was grown with soybean HX3, the roots on each plant tended to avoid each other and became shallower on stratified P supply, but not found with maize NE1. Furthermore, root behavior in gel was highly correlated to shoot biomass and P content for field-grown plants grown in close proximity. This study provides new insights into the dynamics and complexity of root behavior and kin recognition among crop species in response to nutrient status and neighboring plants. These findings also indicate that root behavior not only depends on neighbor recognition but also on a coordinated response to soil P status, which could be the underlying cause for the different growth responses in the field.

  6. Intracellular localization of a group II chaperonin indicates a membrane-related function

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D.; Kagawa, Hiromi K.; Paavola, Chad D.; McMillan, R. Andrew; Howard, Jeanie; Jahnke, Linda; Lavin, Colleen; Embaye, Tsegereda; Henze, Christopher E.

    2003-01-01

    Chaperonins are protein complexes that are believed to function as part of a protein folding system in the cytoplasm of the cell. We observed, however, that the group II chaperonins known as rosettasomes in the hyperthermophilic archaeon Sulfolobus shibatae, are not cytoplasmic but membrane associated. This association was observed in cultures grown at 60 degrees C and 76 degrees C or heat-shocked at 85 degrees C by using immunofluorescence microscopy and in thick sections of rapidly frozen cells grown at 76 degrees C by using immunogold electron microscopy. We observed that increased abundance of rosettasomes after heat shock correlated with decreased membrane permeability at lethal temperature (92 degrees C). This change in permeability was not seen in cells heat-shocked in the presence of the amino acid analogue azetidine 2-carboxylic acid, indicating functional protein synthesis influences permeability. Azetidine experiments also indicated that observed heat-induced changes in lipid composition in S. shibatae could not account for changes in membrane permeability. Rosettasomes purified from cultures grown at 60 degrees C and 76 degrees C or heat-shocked at 85 degrees C bind to liposomes made from either the bipolar tetraether lipids of Sulfolobus or a variety of artificial lipid mixtures. The presence of rosettasomes did not significantly change the transition temperature of liposomes, as indicated by differential scanning calorimetry, or the proton permeability of liposomes, as indicated by pyranine fluorescence. We propose that these group II chaperonins function as a structural element in the natural membrane based on their intracellular location, the correlation between their functional abundance and membrane permeability, and their potential distribution on the membrane surface.

  7. Hydrogen Passivation of Interstitial Zn Defects in Heteroepitaxial InP Cell Structures and Influence on Device Characteristics

    NASA Technical Reports Server (NTRS)

    Ringel, S. A.; Chatterjee, B.

    2004-01-01

    Hydrogen passivation of heteroepitaxial InP solar cells is of recent interest for deactivation of dislocations and other defects caused by the cell/substrate lattice mismatch that currently limit the photovoltaic performance of these devices. In this paper we present strong evidence that, in addition to direct hydrogen-dislocation interactions, hydrogen forms complexes with the high concentration of interstitial Zn defects present within the p(+) Zn-doped emitter of MOCVD-grown heteroepitaxial InP devices, resulting in a dramatic increase of the forward bias turn-on voltage by as much as 280 mV, from 680 mV to 960 mV. This shift is reproducible and thermally reversible and no such effect is observed for either n(+)p structures or homoepitaxial p(+)n structures grown under identical conditions. A combination of photoluminescence (PL), electrochemical C-V dopant profiling, SIMS and I-V measurements were performed on a set of samples having undergone a matrix of hydrogenation and post-hydrogenation annealing conditions to investigate the source of this voltage enhancement and confirm the expected role of interstitial Zn and hydrogen. A precise correlation between all measurements is demonstrated which indicates that Zn interstitials within the p(+) emitter and their interaction with hydrogen are indeed responsible for this device behavior.

  8. Biochemical, photosynthetic and productive parameters of Chinese cabbage grown under blue-red LED assembly designed for space agriculture

    NASA Astrophysics Data System (ADS)

    Avercheva, Olga; Berkovich, Yuliy A.; Smolyanina, Svetlana; Bassarskaya, Elizaveta; Pogosyan, Sergey; Ptushenko, Vasiliy; Erokhin, Alexei; Zhigalova, Tatiana

    2014-06-01

    Currently light emitting diodes (LEDs) are considered to be most preferable source for space plant growth facilities. We performed a complex study of growth and photosynthesis in Chinese cabbage plants (Brassica chinensis L.) grown with continuous LED lighting based on red (650 nm) and blue (470 nm) LEDs with a red to blue photon ratio of 7:1. Plants grown with high-pressure sodium (HPS) lamps were used as a control. PPF levels used were about 100 μmol/(m2 s) (PPF 100) and nearly 400 μmol/(m2 s) (PPF 400). One group of plants was grown with PPF 100 and transferred to PPF 400 at the age of 12 days. Plants were studied at the age of 15 and 28 days (harvest age); some plants were left to naturally end their life cycle. We studied a number of parameters reflecting different stages of photosynthesis: photosynthetic pigment content; chlorophyll fluorescence parameters (photosystem II quantum yield, photochemical and non-photochemical chlorophyll fluorescence quenching); electron transport rate, proton gradient on thylakoid membranes (ΔpH), and photophosphorylation rate in isolated chloroplasts. We also tested parameters reflecting plant growth and productivity: shoot and root fresh and dry weight, sugar content and ascorbic acid content in shoots. Our results had shown that at PPF 100, plants grown with LEDs did not differ from control plants in shoot fresh weight, but showed substantial differences in photophosphorylation rate and sugar content. Differences observed in plants grown with PPF 100 become more pronounced in plants grown with PPF 400. Most parameters characterizing the plant photosynthetic performance, such as photosynthetic pigment content, electron transport rate, and ΔpH did not react strongly to light spectrum. Photophosphorylation rate differed strongly in plants grown with different spectrum and PPF level, but did not always reflect final plant yield. Results of the present work suggest that narrow-band LED lighting caused changes in Chinese cabbage plants on levels of the photosynthetic apparatus and the whole plant, concerning its development and adaptation to a varying PPF level.

  9. Crystallization and preliminary X-ray analysis of a complex formed between the antibiotic simocyclinone D8 and the DNA breakage–reunion domain of Escherichia coli DNA gyrase

    PubMed Central

    Edwards, Marcus J.; Flatman, Ruth H.; Mitchenall, Lesley A.; Stevenson, Clare E. M.; Maxwell, Anthony; Lawson, David M.

    2009-01-01

    Crystals of a complex formed between the 59 kDa N-terminal fragment of the Escherichia coli DNA gyrase A subunit (also known as the breakage–reunion domain) and the antibiotic simocyclinone D8 were grown by vapour diffusion. The complex crystallized with I-centred orthorhombic symmetry and X-ray data were recorded to a resolution of 2.75 Å from a single crystal at the synchrotron. DNA gyrase is an essential bacterial enzyme and thus represents an attractive target for drug development. PMID:19652356

  10. Bioaccumulation and cancer risk of polycyclic aromatic hydrocarbons in leafy vegetables grown in soils within automobile repair complex and environ in Uyo, Nigeria.

    PubMed

    Inam, Edu; Ibanga, Felicia; Essien, Joseph

    2016-12-01

    Using gas chromatography-mass spectrometry and an incremental lifetime cancer risks (ILCRs) assessment model, the bioaccumulation and cancer risk of 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) in leafy vegetables (Vernonia amygdalina and Lasianthera africanum) grown in soils within an automobile repair complex environment in Uyo, Nigeria was studied. The total PAHs concentrations recorded for soils ranged from 0.02 to 1.77 mg/kg. The highest level of 1.77 mg/kg was recorded for soils from the main automobile repair complex (site 1). Low molecular weight (LMW) PAHs were predominant although some high molecular weight (HMW) PAHs suites (0.04 mg/kg of chrysene and 0.04 of benzo[k]fluoranthene) were also found in site 1. The leafy vegetables accumulated PAHs were mostly LMW. Accumulation levels were similar but the extent of PAH uptake in vegetables was species dependent as V. amygdalina accumulated more (0.81 mg/kg). The bioaccumulation factors (BaFs) calculated ranged from 0.22 to 0.63 for L. africanum, and 0.18 to 0.55 for V. amygdalina in site 1 where high PAH levels were recorded in soil. Pearson correlation coefficient analysis revealed a strong positive relation between the PAH content of soil and the amount accumulated by L. africanum (r = 0.5) and V. amygdalina (r = 0.8) at p = 0.05. The vegetable's potential to bioaccumulate PAHs is indicative of their use as good bioindicators for PAH contamination in soil. Only two of the USEPA possible human carcinogenic PAHs were detected, and carcinogenic risk assessment based on occupational exposures to soil particles by adults revealed that the total risk level (7.17 × 10 -5 ) contribution from incidental soil ingestion, dermal contact, and soil particle dust inhalation slightly exceed the USEPA acceptable limits (< 1.00 × 10 -5 ). There is a need for public education on consumption of vegetables grown in and around automobile repair complexes across Nigeria.

  11. Relationship between xanthophyll cycle and non-photochemical quenching in rice (Oryza sativa L.) plants in response to light stress.

    PubMed

    Vaz, Janet; Sharma, Prabhat K

    2011-01-01

    Thirty days old rice plants grown under low and moderate light conditions were transferred to full sunlight to observe the extent of photoinhibitory damage and protective mechanism, and the relationship between xanthophyll cycle and nonphotochemical quenching (qN) under changing light environment. Control plants (low, moderate and sun grown) exhibited similar Fv/Fm ratio, indicating similar photosynthetic efficiency prior to light stress. On exposure to the high light treatment, low light grown plants exhibited faster and higher degree of photoinhibition compared to moderate and high light grown plants. Moderate and high light grown plants showed relatively less photoinhibition and also showed higher qN, indicating better capacity of energy dissipation. Increase in qN in moderate light and sun grown plants was accompanied by conversion of violaxanthin (V) to antheraxanthin (A) and zeaxanthin (Z) indicating operation of Z-dependent thermal dissipation. Rice plants fed with ascorbate (AsA), a stimulator of the de-epoxidation state of V to Z, showed higher Fv/Fm ratio and qN than the plants fed with dithiothreitol (DTT) an inhibitor of xanthophyll cycle. This indicated that an increased amount of energy reached PS II reaction centre, due to absence of A and Z formation, thereby causing greater damage to photosynthesis in DTT fed rice plants. The present data confirmed the relationship between qN and Z in dissipating the excess light energy, thereby protecting plants against photodamage.

  12. Responses to iron limitation in Hordeum vulgare L. as affected by the atmospheric CO2 concentration.

    PubMed

    Haase, S; Rothe, A; Kania, A; Wasaki, J; Römheld, V; Engels, C; Kandeler, E; Neumann, G

    2008-01-01

    Elevated atmospheric CO2 treatments stimulated biomass production in Fe-sufficient and Fe-deficient barley plants, both in hydroponics and in soil culture. Root/shoot biomass ratio was increased in severely Fe-deficient plants grown in hydroponics but not under moderate Fe limitation in soil culture. Significantly increased biomass production in high CO2 treatments, even under severe Fe deficiency in hydroponic culture, indicates an improved internal Fe utilization. Iron deficiency-induced secretion of PS in 0.5 to 2.5 cm sub-apical root zones was increased by 74% in response to elevated CO2 treatments of barley plants in hydroponics but no PS were detectable in root exudates collected from soil-grown plants. This may be attributed to suppression of PS release by internal Fe concentrations above the critical level for Fe deficiency, determined at final harvest for soil-grown barley plants, even without additional Fe supply. However, extremely low concentrations of easily plant-available Fe in the investigated soil and low Fe seed reserves suggest a contribution of PS-mediated Fe mobilization from sparingly soluble Fe sources to Fe acquisition of the soil-grown barley plants during the preceding culture period. Higher Fe contents in shoots (+52%) of plants grown in soil culture without Fe supply under elevated atmospheric CO2 concentrations may indicate an increased efficiency for Fe acquisition. No significant influence on diversity and function of rhizosphere-bacterial communities was detectable in the outer rhizosphere soil (0-3 mm distance from the root surface) by DGGE of 16S rRNA gene fragments and analysis of marker enzyme activities for C-, N-, and P-cycles.

  13. Magnetic and chemical nonuniformity in Ga{sub 1-x}Mn{sub x}As films as probed by polarized neutron and x-ray reflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, B. J.; Borchers, J. A.; Rhyne, J. J.

    We have used complementary neutron and x-ray reflectivity techniques to examine the depth profiles of a series of as-grown and annealed Ga{sub 1-x}Mn{sub x}As thin films. A magnetization gradient is observed for two as-grown films and originates from a nonuniformity of Mn at interstitial sites, and not from local variations in Mn at Ga sites. Furthermore, we see that the depth-dependent magnetization can vary drastically among as-grown Ga{sub 1-x}Mn{sub x}As films despite being deposited under seemingly similar conditions. These results imply that the depth profile of interstitial Mn is dependent not only on annealing, but is also extremely sensitive tomore » initial growth conditions. We observe that annealing improves the magnetization by producing a surface layer that is rich in Mn and O, indicating that the interstitial Mn migrates to the surface. Finally, we expand upon our previous neutron reflectivity study of Ga{sub 1-x}Mn{sub x}As, by showing how the depth profile of the chemical composition at the surface and through the film thickness is directly responsible for the complex magnetization profiles observed in both as-grown and annealed films.« less

  14. Magnetic and chemical nonuniformity in Ga{sub 1-x}Mn{sub x}As as probed with neutron & x-ray reflectivfity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirby, B. J.; Borchers, J. A.; Rhyne, J. J.

    We have used complementary neutron and x-ray reflectivity techniques to examine the depth profiles of a series of as-grown and annealed Ga{sub 1-x}Mn{sub x}As thin films. A magnetization gradient is observed for two as-grown films and originates from a nonuniformity of Mn at interstitial sites, and not from local variations in Mn at Ga sites. Furthermore, we see that the depth-dependent magnetization can vary drastically among as-grown Ga{sub 1-x}Mn{sub x}As films despite being deposited under seemingly similar conditions. These results imply that the depth profile of interstitial Mn is dependent not only on annealing, but is also extremely sensitive tomore » initial growth conditions. We observe that annealing improves the magnetization by producing a surface layer that is rich in Mn and O, indicating that the interstitial Mn migrates to the surface. Finally, we expand upon our previous neutron reflectivity study of Ga{sub 1-x}Mn{sub x}As, by showing how the depth profile of the chemical composition at the surface and through the film thickness is directly responsible for the complex magnetization profiles observed in both as-grown and annealed films.« less

  15. Dipicolinate salt of imidazole: Discovering its structure and properties using different experimental methodologies and quantum chemical investigations

    NASA Astrophysics Data System (ADS)

    Thirumurugan, R.; Anitha, K.

    2018-03-01

    A novel organic proton transfer complex of imidazolium dipicolinate (ID) has been synthesized and it was grown as single crystals using slow evaporation method. The molecular structure of synthesized compound and vibrational modes of its functional groups were confirmed by (1H and 13C) NMR, FTIR and FT-Raman spectroscopic studies, respectively. Single crystal X-ray diffraction (SCXRD) analysis confirmed the orthorhombic system with noncentrosymmetric (NCS), P212121, space group of grown ID crystal. UV-Vis-NIR spectral study confirmed its high optical transparency within the region of 285-1500 nm. Powder second harmonic generation (SHG) efficiency of ID crystal was confirmed and it was 6.8 times that of KDP crystal. TG-DTA and DSC analysis revealed the higher thermal stability of grown crystal as 249 °C. The dielectric response and mechanical behaviour of grown crystal were studied effectively. Density functional theory calculations were performed to probe the relationship between the structure and its properties including molecular optimization, Mulliken atomic charge distribution, frontier molecular orbital (FMOs) and molecular electrostatic potential map (MEP) analysis and first hyperpolarizability. All these experimental and computational results were discussed in this communication and it endorsed the ID compound as a potential NLO candidate could be employed in optoelectronics device applications in near future.

  16. Relative sensitivity of five Hawaiian coral species to high temperature under high-pCO2 conditions

    NASA Astrophysics Data System (ADS)

    Bahr, Keisha D.; Jokiel, Paul L.; Rodgers, Ku'ulei S.

    2016-06-01

    Coral reef ecosystems are presently undergoing decline due to anthropogenic climate change. The chief detrimental factors are increased temperature and increased pCO2. The purpose of this study was to evaluate the effect of these two stressors operating independently and in unison on the biological response of common Hawaiian reef corals. Manipulative experiments were performed using five species ( Porites compressa, Pocillopora damicornis, Fungia scutaria, Montipora capitata, and Leptastrea purpurea) in a continuous-flow mesocosm system under natural sunlight conditions. Corals were grown together as a community under treatments of high temperature (2 °C above normal maximum summer temperature), high pCO2 (twice present-day conditions), and with both factors acting in unison. Control corals were grown under present-day pCO2 and at normal summer temperatures. Leptastrea purpurea proved to be an extremely hardy coral. No change in calcification or mortality occurred under treatments of high temperature, high pCO2, or combined high temperature-high pCO2. The remaining four species showed reduced calcification in the high-temperature treatment. Two species ( L. purpurea and M. capitata) showed no response to increased pCO2. Also, high pCO2 ameliorated the negative effect of high temperature on the calcification rates of P. damicornis. Mortality was driven primarily by high temperature, with a negative synergistic effect in P. compressa only in the high-pCO2-high-temperature treatment. Results support the observation that biological response to temperature and pCO2 elevation is highly species-specific, so generalizations based on response of a single species might not apply to a diverse and complex coral reef community.

  17. Comparison of isothiocyanate yield from wasabi rhizome tissues grown in soil or water.

    PubMed

    Sultana, Tamanna; Porter, N G; Savage, G P; McNeil, D L

    2003-06-04

    The isothiocyanate (ITC) yield of wasabi, the Japanese horseradish (Wasabi japonica), was measured on its release from glucosinolates in the rhizomes of plants grown in two traditional ways. Mature plants of 18 months old were harvested from two different commercial farms located in the South Island of New Zealand. At one farm, the plants were grown in raised soil beds, while the plants at the other farm were grown in gravel irrigated by river water. Following harvest, the rhizomes from each growth medium were divided into five size groups based on the weight and length of the rhizomes. The different sized rhizomes were also subdivided into proximal, medial, and distal portions of the rhizomes and each portion was further subdivided into epidermis plus cortex, and vascular plus pith. The individual and total ITC contents of each portion (proximal, medial, and distal) of the rhizomes were measured using dichloromethane extraction followed by the GC-FPD. The total ITC content of the rhizomes grown in soil increased (13 times) linearly from 6 to 114 g of rhizome weight, while the mean ITC content of the water-grown wasabi increased (10 times) nonlinearly for similar sized rhizomes. Water-grown rhizomes in the weight range from 18 to 45 g gave significantly (P = 0.030) higher total ITC (1-2 times) than similarly sized soil-grown rhizomes. Analysis of the tissues showed that the total and the individual ITCs were found in significantly higher levels (73 and 64%, respectively) in the skin and cortex tissue compared to the vascular and pith tissues. Analysis of the ITC content of the different locations of the wasabi rhizome showed that the distal portion of the rhizome contained significantly higher levels of both total and individual ITCs compared to the medial and proximal portions of the rhizome.

  18. Investigation of Artificial Forced Cooling in the Bridgman Crystal Growth of Cadmium Zinc Telluride

    NASA Astrophysics Data System (ADS)

    Liu, Juncheng; Li, Jiao; Zhang, Guodong; Li, Changxing; Lennon, Craig; Sivananthan, Siva

    2007-08-01

    The effects of artificial forced cooling on the solid liquid interface and on solute segregation were investigated by modeling the vertical Bridgman method for the single-crystal growth of CdZnTe, taking into consideration effects such as increasing the axial outward heat flux from the crucible bottom, the radial outward heat flux from the crucible wall, and the carbon film thickness on the crucible inner wall. Axial artificially forced cooling noticeably increases convection and the temperature gradient in the melt next to the solid liquid interface, and substantially reduces interface concavity at the initial solidification stage. Interface concavity increases a little when the solidification proceeds further, however. Axial artificially forced cooling reduces radial solute segregation of the initial segment of the grown crystal and slightly increases the solute iso-concentration segment. Radial artificially forced cooling enhances melt convection substantially, affects solid liquid interface concavity only slightly, and hardly affects solute segregation in the grown crystal. Doubling the carbon film thickness weakens convection of the melt in front of the interface, substantially increases interface concavity, and hardly affects solute segregation in the grown crystal.

  19. Nano-hydroxyapatite alleviates the detrimental effects of heavy metals on plant growth and soil microbes in e-waste-contaminated soil.

    PubMed

    Wei, Liu; Wang, Shutao; Zuo, Qingqing; Liang, Shuxuan; Shen, Shigang; Zhao, Chunxia

    2016-06-15

    The crude recycling activities of e-waste have led to the severe and complex contamination of e-waste workshop topsoil (0-10 cm) by heavy metals. After nano-hydroxyapatite (NHAp) application in June 2013, plant and soil samples were obtained in November 2013, December 2013, March 2014 and June 2014. The results showed that NHAp effectively reduced the concentration of CaCl2-extractable Pb, Cu, Cd, and Zn in the topsoil and significantly reduced the metal content in ryegrass and also increased the plant biomass compared with that of the control. Moreover, the concentrations of CaCl2-extractable metals in the soil decreased with increasing NHAp. NHAp application also increased the activities of soil urease, phosphatase and dehydrogenase. Moreover, the soil bacterial diversity and community structure were also altered after NHAp application. Particularly, Stenotrophomonas sp. and Bacteroides percentages were increased. Our work proves that NHAp application can alleviate the detrimental effects of heavy metals on plants grown in e-waste-contaminated soil and soil enzyme activities, as well as soil microbial diversity.

  20. Growth of Juniperus and Potentilla using Liquid Exponential and Controlled-release Fertilizers

    Treesearch

    R. Kasten Dumroese

    2003-01-01

    Juniperus scopularum Sarg. (Rocky Mountain juniper) and Potentilla fruticosa L. 'Gold Drop (gold drop potentilla) plants grown in containers had similar or better morphology, higher nitrogen concentrations and contents, and higher N-use efficiency when grown with liquid fertilizer applied at an exponentially increasing rate as...

  1. Mycorrhizal symbiosis produces changes in specific flavonoids in leaves of pepper plant (Capsicum annum L.)

    USDA-ARS?s Scientific Manuscript database

    In this study, experiments were performed to investigate if mycorrhizal plants grown under optimal growth conditions would improve crop quality compared to the non-mycorrhizal control. The results clearly showed that while mycorrhizal plants grown under an optimal nutrient supply did not increase t...

  2. Efflux Of Nitrate From Hydroponically Grown Wheat

    NASA Technical Reports Server (NTRS)

    Huffaker, R. C.; Aslam, M.; Ward, M. R.

    1992-01-01

    Report describes experiments to measure influx, and efflux of nitrate from hydroponically grown wheat seedlings. Ratio between efflux and influx greater in darkness than in light; increased with concentration of nitrate in nutrient solution. On basis of experiments, authors suggest nutrient solution optimized at lowest possible concentration of nitrate.

  3. Synthesis and characterization of lead sulphide thin films from ethanolamine (ETA) complexing agent chemical bath

    NASA Astrophysics Data System (ADS)

    Gashaw Hone, Fekadu; Dejene, F. B.

    2018-02-01

    Polycrystalline lead sulphide (PbS) thin films were grown on glass substrates by chemical bath deposition route using ethanolamine (ETA) as a complexing agent. The effects of ETA molar concentration on the structural, morphological, electrical and optical properties of lead sulphide thin films were thoroughly studied. The XRD analyses revealed that all the deposited thin films were face center cubic crystal structure and their preferred orientations were varied along the (111) and (200) planes. The XRD results further confirmed that ETA concentration had a significant effects on the strain, average crystalline size and dislocation density of the deposited thin films. The SEM studies illustrated the evolution and transformation of surface morphology as ETA molar concentration increased from 0.41 M to 1.64 M. The energy dispersive x-ray analysis was used to verify the compositional elements of the deposited thin films. Optical spectroscopy investigation established that the band gap of the PbS thin films were reduced from 0.98 eV to 0.68 eV as ETA concentration increased. The photoluminescence spectra showed a well defined peak at 428 nm and shoulder around 468 nm for all PbS thin films. The electrical resistivity of the thin films found in the order of 103 Ω cm at room temperature and decreased as the ETA molar concentration was increased.

  4. Hydraulics and gas exchange recover more rapidly from severe drought stress in small pot-grown grapevines than in field-grown plants.

    PubMed

    Romero, Pascual; Botía, Pablo; Keller, Markus

    2017-09-01

    Modifications of plant hydraulics and shoot resistances (R shoot ) induced by water withholding followed by rewatering, and their relationships with plant water status, leaf gas exchange and water use efficiency at the leaf level, were investigated in pot-grown and field-grown, own-rooted Syrah grapevines in an arid climate. Water stress induced anisohydric behavior, gradually reducing stomatal conductance (g s ) and leaf photosynthesis (A) in response to decreasing midday stem water potential (Ψ s ). Water stress also rapidly increased intrinsic water-use efficiency (A/g s ); this effect persisted for many days after rewatering. Whole-plant (K plant ), canopy (K canopy ), shoot (K shoot ) and leaf (K leaf ) hydraulic conductances decreased during water stress, in tune with the gradual decrease in Ψ s , leaf gas exchange and whole plant water use. Water-stressed vines also had a lower Ψ gradient between stem and leaf (ΔΨ l ), which was correlated with lower leaf transpiration rate (E). E and ΔΨ l increased with increasing vapour pressure deficit (VPD) in non-stressed control vines but not in stressed vines. Perfusion of xylem-mobile dye showed that water flow to petioles and leaves was substantially reduced or even stopped under moderate and severe drought stress. Leaf blade hydraulic resistance accounted for most of the total shoot resistance. However, hydraulic conductance of the whole root system (K root ) was not significantly reduced until water stress became very severe in pot-grown vines. Significant correlations between K plant , K canopy and Ψ s , K canopy and leaf gas exchange, K leaf and Ψ s , and K leaf and A support a link between water supply, leaf water status and gas exchange. Upon re-watering, Ψ s recovered faster than gas exchange and leaf-shoot hydraulics. A gradual recovery of hydraulic functionality of plant organs was also observed, the leaves being the last to recover after rewatering. In pot-grown vines, K canopy recovered rather quickly following restoration of Ψ s , although gas exchange recovery did not directly depend on recovery of K canopy . In field-grown vines, recovery of water status, gas exchange and hydraulic functionality was slower than in pot-grown plants, and low g s after rewatering was related to sustained decreased K plant , K canopy and K shoot and lower water transport to leaves. These results suggest that caution should be exercised when scaling up conclusions from experiments with small pot-grown plants to field conditions. Copyright © 2017 Elsevier GmbH. All rights reserved.

  5. Growth, optical, luminescence, thermal and mechanical behavior of an organic single crystal: 3-Acetyl-2-methyl-4-phenylquinolin-1-ium chloride.

    PubMed

    Nirosha, M; Kalainathan, S; Sarveswari, S; Vijayakumar, V

    2014-04-05

    A single crystal of 3-acetyl-2-methyl-4-phenylquinolin-1-ium chloride has grown by slow evaporation solution growth technique using ethanol as solvent. The structural, thermal, optical and mechanical property has studied for the grown crystal. Single crystal XRD revealed that the crystal belongs to monoclinic system with space group P21/c. The presences of Functional groups in the crystallized material have confirmed using the FTIR vibrational spectrum. The optical absorbance spectrum recorded from 190 to 1100nm shows the cut-off wavelength occurs at 371nm. The material shows its transparency in the entire region of the visible spectrum. The photoluminescence spectrum shows the ultraviolet and blue emission in the crystal. Thermogravimetric and differential thermal analysis reveal the thermal stability of the grown crystal. Etching study shows the grown mechanism and surface features of the crystal. Vickers microhardness studies have carried out on the (01-1) plane to understand the mechanical properties of the grown crystal. The hardness of the title compound increases on increasing the load. The Meyer's index number (n), and the stiffness constants for different loads has calculated and reported. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Comparison of Vibrio parahaemolyticus grown in estuarine water and rich medium.

    PubMed Central

    Pace, J; Chai, T J

    1989-01-01

    Cell envelope composition and selected physiological traits of Vibrio parahaemolyticus were studied in regard to the Kanagawa phenomenon and growth conditions. Cell envelopes were prepared from cells cultured in Proteose Peptone-beef extract (Difco Laboratories, Detroit, Mich.) medium or filtered estuarine water. Protein, phospholipid, and lipopolysaccharide contents varied with culture conditions. The phospholipids present in the cell envelopes were identified as phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. Phosphatidylethanolamine decreased and phosphatidylglycerol increased in cells grown in estuarine water. Profiles of proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated numerous protein species, with four to six predominant proteins ranging from 26,000 to 120,000 in molecular weight. The profile of V. parahaemolyticus cell envelope proteins was unique and might be useful in the identification of the organism. Alkaline phosphatase activity was slightly higher in Kanagawa-negative strains and was higher in cells grown in estuarine water than in cells grown in rich laboratory medium. The DNA levels in estuarine water-grown cells increased, while RNA levels and cell volume decreased. Bacteriophage sensitivity typing demonstrated a close intraspecies relationship. Results indicated that Kanagawa-positive and -negative strains were closely related, but they could be grouped separately and may have undergone starvation-related physiological changes when cultured in estuarine water. Images PMID:2782869

  7. Effect of temperature on the pathogenesis, accumulation of viral and satellite RNAs and on plant proteome in peanut stunt virus and satellite RNA-infected plants

    PubMed Central

    Obrępalska-Stęplowska, Aleksandra; Renaut, Jenny; Planchon, Sebastien; Przybylska, Arnika; Wieczorek, Przemysław; Barylski, Jakub; Palukaitis, Peter

    2015-01-01

    Temperature is an important environmental factor influencing plant development in natural and diseased conditions. The growth rate of plants grown at C27°C is more rapid than for plants grown at 21°C. Thus, temperature affects the rate of pathogenesis progression in individual plants. We have analyzed the effect of temperature conditions (either 21°C or 27°C during the day) on the accumulation rate of the virus and satellite RNA (satRNA) in Nicotiana benthamiana plants infected by peanut stunt virus (PSV) with and without its satRNA, at four time points. In addition, we extracted proteins from PSV and PSV plus satRNA-infected plants harvested at 21 dpi, when disease symptoms began to appear on plants grown at 21°C and were well developed on those grown at 27°C, to assess the proteome profile in infected plants compared to mock-inoculated plants grown at these two temperatures, using 2D-gel electrophoresis and mass spectrometry approaches. The accumulation rate of the viral RNAs and satRNA was more rapid at 27°C at the beginning of the infection and then rapidly decreased in PSV-infected plants. At 21 dpi, PSV and satRNA accumulation was higher at 21°C and had a tendency to increase further. In all studied plants grown at 27°C, we observed a significant drop in the identified proteins participating in photosynthesis and carbohydrate metabolism at the proteome level, in comparison to plants maintained at 21°C. On the other hand, the proteins involved in protein metabolic processes were all more abundant in plants grown at 27°C. This was especially evident when PSV-infected plants were analyzed, where increase in abundance of proteins involved in protein synthesis, degradation, and folding was revealed. In mock-inoculated and PSV-infected plants we found an increase in abundance of the majority of stress-related differently-regulated proteins and those associated with protein metabolism. In contrast, in PSV plus satRNA-infected plants the shift in the temperature barely increased the level of stress-related proteins. PMID:26579153

  8. Personal Reflections on Observational and Experimental Research Approaches to Childhood Psychopathology

    ERIC Educational Resources Information Center

    Rapoport, Judith L.

    2009-01-01

    The past 50 years have seen dramatic changes in childhood psychopathology research. The goal of this overview is to contrast observational and experimental research approaches; both have grown more complex such that the boundary between these approaches may be blurred. Both are essential. Landmark observational studies with long-term follow-up…

  9. The Affordance of Online Multiuser Virtual Environments (MUVE) for Creative Collaboration

    ERIC Educational Resources Information Center

    Hong, Seung Wan

    2013-01-01

    Creativity is an important criterion for evaluating conceptual and design abilities of architects and their praxis. However, in recent years, the world has grown more complex. New problems have emerged that are often outside the architect's capacity. Given this challenge, architects collaborate with colleagues from architecture and other related…

  10. Mobilities of Language and Literacy Ideologies: Dual Language Graduates' Bilingualism and Biliteracy

    ERIC Educational Resources Information Center

    Granados, Nadia R.

    2017-01-01

    Using qualitative methodology, this research examines how graduates of a K-5 dual language immersion program have experienced multiple and competing social, cultural, institutional, and political forces at play in complex processes that ultimately affect one's mobilities of language, literacy, and learning. These students have now grown into…

  11. Breeding system and interaccessional hybridization of Purshia tridentata plants grown in a common garden

    Treesearch

    Rosemary L. Pendleton; E. Durant McArthur; Stewart C. Sanderson

    2012-01-01

    Purshia spp. (Rosaceae) comprise a widespread western North American species complex that is important as landscape dominants, wildlife habitat, browse for wild and domestic ungulates, and seed reserves for small mammals. This study examined aspects of the phenology, compatibility, pollination biology, and progeny fruit characteristics of multiple accessions of...

  12. Different sucrose-isomaltase response of Caco-2 cells to glucose and maltose suggests dietary maltose sensing

    USDA-ARS?s Scientific Manuscript database

    Using the small intestine enterocyte Caco-2 cell model, sucrase-isomaltase (SI, the mucosal alpha-glucosidase complex) expression and modification were examined relative to exposure to different mono- and disaccharide glycemic carbohydrates. Caco-2/TC7 cells were grown on porous supports to post-con...

  13. Transcriptome and secretome analyses of Phanerochaete chrysosporium reveal complex patterns of gene expression

    Treesearch

    Amber J. Vanden Wymelenberg; Jill A. Gaskell; Michael D. Mozuch; Philip J. Kersten; Grzegorz Sabat; Diego Martinez; Daniel Cullen

    2009-01-01

    The wood decay basidiomycete Phanerochaete chrysosporium was grown under standard ligninolytic or cellulolytic conditions and subjected to whole-genome expression microarray analysis and liquid chromatography-tandem mass spectrometry of extracellular proteins. A total of 545 genes were flagged on the basis of significant changes in transcript accumulation and/or...

  14. Biomass yield comparisons of giant miscanthus, giant reed, and miscane grown under irrigated and rainfed conditions

    USDA-ARS?s Scientific Manuscript database

    The U.S. Department of Energy has initiated efforts to decrease the nation’s dependence on imported oil by developing domestic renewable sources of cellulosic-derived bioenergy. In this study, giant miscanthus (Miscanthus x giganteus), sugarcane (complex hybrid of Saccharum spp.), and giant reed (Ar...

  15. Production and short-term of synthetic seeds from encapsulated begonia

    USDA-ARS?s Scientific Manuscript database

    Synthetic seeds were formed from in vitro grown Begonia (cvs ‘Sweetheart Mix’ and ‘Baby Wing White’) shoot tips using 3% sodium alginate in Murashige and Skoog (1962) medium (MS) salt solution as the gel matrix and 100 mM calcium chloride for complexation. Synthetic seed formation was achieved by re...

  16. Alginate encapsulation of Begonia microshoots for short-term storage and distribution

    USDA-ARS?s Scientific Manuscript database

    Synthetic seeds were formed from in vitro grown Begonia cultivars (Sweetheart Mix and BabyWing White) shoot tips using 3% sodium alginate in Murashige and Skoog medium (MS) salt solution as the gel matrix and 100 mM calcium chloride for complexation. Synthetic seed formation was achieved by releasin...

  17. Clostridium acidurici electron-bifurcating formate dehydrogenase.

    PubMed

    Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Thauer, Rudolf K

    2013-10-01

    Cell extracts of uric acid-grown Clostridium acidurici catalyzed the coupled reduction of NAD(+) and ferredoxin with formate at a specific activity of 1.3 U/mg. The enzyme complex catalyzing the electron-bifurcating reaction was purified 130-fold and found to be composed of four subunits encoded by the gene cluster hylCBA-fdhF2.

  18. Campus Police Benefit by Automating Training Records

    ERIC Educational Resources Information Center

    Galvin, Bob

    2008-01-01

    Making sure law enforcement officers are current with their professional training has always been a top priority of police departments whether they must protect a city or a college campus. However, as training has expanded with many new certification categories, tracking all of these for each officer has grown more complex. This has prompted many…

  19. Motivations to Switch: Refuting the Public Discourse on Athletic Conference Realignment

    ERIC Educational Resources Information Center

    Kramer, Dennis A., II

    2016-01-01

    Since their inception, intercollegiate athletic programs have spurred debates between academics and practitioners in terms of their importance and placement within the academic mission of higher education. This dialogue has escalated over the past 30 years, as the college sports industry has grown in size, scope, and complexity. As a result of…

  20. Screening of sorghum lines against long smut and grain mold pathogens

    USDA-ARS?s Scientific Manuscript database

    Long smut infection is severe in the drier regions of Africa and Asia; whereas, grain mold is the most important widespread complex disease where sorghum is grown worldwide. Both fungal diseases cause significant losses in grain yield and quality. Long smut has not yet been observed in the United ...

  1. Formation of complex natural flavours by biotransformation of apple pomace with basidiomycetes.

    PubMed

    Bosse, Andrea K; Fraatz, Marco A; Zorn, Holger

    2013-12-01

    Altogether 30 different basidiomycetes were grown submerged in liquid culture media using seven different by-products of the food industry as the only carbon source. Seven fungus/substrate combinations revealed interesting flavour profiles. Culture supernatants of Tyromyces chioneus grown on apple pomace were extracted, and the aroma compounds were analysed by gas chromatography-olfactometry (GC-O). Potent odorants were identified by aroma extract dilution analysis (AEDA), calculation of the odour activity values (OAV), and proven by confection of an aroma model. 3-Phenylpropanal, 3-phenyl-1-propanol, and benzyl alcohol were identified as potent aroma biotransformation products. Headspace solid-phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) experiments showed that 3-phenylpropanal, 3-phenyl-1-propanol, benzyl alcohol, methyl 3-phenylpropionate, methyl 2-phenylacetate, cinnamaldehyde and methyl cinnamate were produced during the cultivation period of eight days. By means of labelling experiments, (E)-cinnamic acid was identified as the precursor of 3-phenylpropanal and 3-phenyl-1-propanol. Basidiomycetes were able to biotransform food by-products to pleasant complex flavour mixtures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Studies on growth, thermal, optical, vibrational properties and hyperpolarizability of a complex orthonitroaniline with picric acid

    NASA Astrophysics Data System (ADS)

    Anandhi, S.; Shyju, T. S.; Gopalakrishnan, R.

    2010-11-01

    The present article reports the growth of single crystals of a complex Orthonitroaniline with picric acid (2[C 6H 6N 2O 2]·C 6H 2(NO 2) 3OH) (ONAP) by solution growth (slow evaporation) method at room temperature. Single crystal XRD, UV-vis spectral analysis and TGA/DTA studies were carried out. FT-IR and Raman spectra were recorded to explore information of the functional groups. The high-resolution X-ray diffraction curve reveals the internal structural low angle boundaries. The PL spectrum of the title compound shows green emission. Dielectric behaviour was investigated at 33 and 70 °C. The dipole moment and first-order hyperpolarizability ( β) values were evaluated by using Gaussian 98 W software package with the help of B3LYP the density functional theory (DFT) method. The possible modes of vibrations are theoretically predicted by factor group analysis. The mechanical stability of the grown crystal was tested with Vicker's microhardness tester and the work hardening coefficient of the grown material was estimated.

  3. Nucleoli from growing oocytes inhibit the maturation of enucleolated, full-grown oocytes in the pig.

    PubMed

    Kyogoku, Hirohisa; Ogushi, Sugako; Miyano, Takashi; Fulka, Josef

    2011-06-01

    In mammals, the nucleolus of full-grown oocyte is essential for embryonic development but not for oocyte maturation. In our study, the role of the growing oocyte nucleolus in oocyte maturation was examined by nucleolus removal and/or transfer into previously enucleolated, growing (around 100 µm in diameter) or full-grown (120 µm) pig oocytes. In the first experiment, the nucleoli were aspirated from growing oocytes whose nucleoli had been compacted by actinomycin D treatment, and the enucleolated oocytes were matured in vitro. Most of non-treated or actinomycin D-treated oocytes did not undergo germinal vesicle breakdown (GVBD; 13% and 12%, respectively). However, the GVBD rate of enucleolated, growing oocytes significantly increased to 46%. The low GVBD rate of enucleolated, growing oocytes was restored again by the re-injection of nucleoli from growing oocytes (23%), but not when nucleoli from full-grown oocytes were re-injected into enucleolated, growing oocytes (49%). When enucleolated, full-grown oocytes were injected with nucleoli from growing or full-grown oocytes, the nucleolus in the germinal vesicle was reassembled (73% and 60%, respectively). After maturation, the enucleolated, full-grown oocytes injected with nucleoli from full-grown oocytes matured to metaphase II (56%), whereas injection with growing-oocyte nucleoli reduced this maturation to 21%. These results suggest that the growing-oocyte nucleolus is involved in the oocyte's meiotic arrest, and that the full-grown oocyte nucleolus has lost the ability. Copyright © 2011 Wiley-Liss, Inc.

  4. The RavA-ViaA Chaperone-Like System Interacts with and Modulates the Activity of the Fumarate Reductase Respiratory Complex.

    PubMed

    Wong, Keith S; Bhandari, Vaibhav; Janga, Sarath Chandra; Houry, Walid A

    2017-01-20

    Regulatory ATPase variant A (RavA) is a MoxR AAA+ protein that functions together with a partner protein that we termed VWA interacting with AAA+ ATPase (ViaA) containing a von Willebrand Factor A domain. However, the functional role of RavA-ViaA in the cell is not yet well established. Here, we show that RavA-ViaA are functionally associated with anaerobic respiration in Escherichia coli through interactions with the fumarate reductase (Frd) electron transport complex. Expression analysis of ravA and viaA genes showed that both proteins are co-expressed with multiple anaerobic respiratory genes, many of which are regulated by the anaerobic transcriptional regulator Fnr. Consistently, the expression of both ravA and viaA was found to be dependent on Fnr in cells grown under oxygen-limiting condition. ViaA was found to physically interact with FrdA, the flavin-containing subunit of the Frd complex. Both RavA and the Fe-S-containing subunit of the Frd complex, FrdB, regulate this interaction. Importantly, Frd activity was observed to increase in the absence of RavA and ViaA. This indicates that RavA and ViaA modulate the activity of the Frd complex, signifying a potential regulatory chaperone-like function for RavA-ViaA during bacterial anaerobic respiration with fumarate as the terminal electron acceptor. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Multiple P2Y receptor subtypes in the apical membranes of polarized epithelial cells

    PubMed Central

    McAlroy, H L; Ahmed, S; Day, S M; Baines, D L; Wong, H Y; Yip, C Y; Ko, W H; Wilson, S M; Collett, A

    2000-01-01

    Apical ATP, ATP, UTP and UDP evoked transient increases in short circuit current (ISC, a direct measure of transepithelial ion transport) in confluent Caco-2 cells grown on permeable supports. These responses were mediated by a population of at least three pharmacologically distinct receptors. Experiments using cells grown on glass coverslips showed that ATP and UTP consistently increased intracellular free calcium ([Ca2+]i) whilst sensitivity to UDP was variable. Cross desensitization experiments suggested that the responses to UTP and ATP were mediated by a common receptor population. Messenger RNA transcripts corresponding to the P2Y2, P2Y4 and P2Y6 receptors genes were detected in cells grown on Transwell membranes by the reverse transcriptase–polymerase chain reaction. Identical results were obtained for cells grown on glass. Experiments in which ISC and [Ca2+]i were monitored simultaneously in cells on Transwell membranes, confirmed that apical ATP and UTP increased both parameters and showed that the UDP-evoked increase in ISC was accompanied by a [Ca2+]i-signal. Ionomycin consistently increased [Ca2+]i in such polarized cells but caused no discernible change in ISC. However, subsequent application of apical ATP or UTP evoked a small rise in ISC but no rise in [Ca2+]i. UDP evoked no such response. As well as evoking increases in [Ca2+]i, the ATP/UTP-sensitive receptors present in Caco-2 cells thus allow direct control over ion channels in the apical membrane. The UDP-sensitive receptors, however, appear to simply evoke a rise in [Ca2+]i. PMID:11139443

  6. Relations of enzymes inAspergillus repens grown under sodium chloride stress.

    PubMed

    Kelavkar, U P; Chhatpar, H S

    1993-09-01

    Aspergillus repens, a salt-pan isolate, was halotolerant. When grown for 72 h (log phase) and 144 h (beginning of stationary phase) in a medium containing 2M sodium chloride, the activities of invertase, malate dehydrogenase (MDH), glucose-6-phosphate dehydrogenase (G6PDH), and glutamate dehydrogenase (GDH) were found to have increased. Control cultures grown in a medium devoid of 2M NaCl failed to show such changes. The activities of MDH, G6PDH, and GDH increased with rising concentrations of Na(+) (as NaCl) when added up to 100MM in vitro. At higher concentrations they decreased. Changes in kinetic constants, Km and Vmax of these enzymes, as well as their de novo synthesis, were found to be some of the responses to NaCl stress-mediated changes.

  7. Optical and structural studies of films grown thermally on zirconium surfaces

    NASA Astrophysics Data System (ADS)

    Morgan, J. M.; McNatt, J. S.; Shepard, M. J.; Farkas, N.; Ramsier, R. D.

    2002-06-01

    Variable angle IR reflection spectroscopy and atomic force microscopy are used to determine the thickness and morphology of films grown thermally on Zr surfaces in air. The density and homogeneity of these films increases with temperature in the range studied (773-873 K) and growth at the highest temperature follows cubic rate law kinetics. We demonstrate a structure-property relationship for these thermally grown films and suggest the application of IR reflectivity as an inspection method during the growth of environmentally passive films on industrial Zr components.

  8. Spectroscopic ellipsometric studies of the dielectric function of Cd1-x-yMnxFeyTe single crystals

    NASA Astrophysics Data System (ADS)

    Hwang, Younghun; Kim, Hyekyeong; Um, Youngho; Park, Hyoyeol

    2004-06-01

    Cd1-x-yMnxFeyTe single crystals grown by the vertical Bridgman method have been studied by measuring the complex dielectric function using spectroscopic ellipsometry in the 1.5 5.5 eV photon energy range at room temperature. The CP energy parameters of the E0, E1, E1 + 1, and E2 structures were determined by fitting the second-derivative spectra (d2/d2) with a theoretical model, i.e., the standard critical point (SCP) line shapes. The E1, E1 + 1, and E2 energies decreased with increasing Fe composition y, which is due to the hybridization effect of the valence and conduction bands in Cd1-xMnxTe with Fe 3d levels.

  9. Innovation in academic chemical screening: filling the gaps in chemical biology.

    PubMed

    Hasson, Samuel A; Inglese, James

    2013-06-01

    Academic screening centers across the world have endeavored to discover small molecules that can modulate biological systems. To increase the reach of functional-genomic and chemical screening programs, universities, research institutes, and governments have followed their industrial counterparts in adopting high-throughput paradigms. As academic screening efforts have steadily grown in scope and complexity, so have the ideas of what is possible with the union of technology and biology. This review addresses the recent conceptual and technological innovation that has been propelling academic screening into its own unique niche. In particular, high-content and whole-organism screening are changing how academics search for novel bioactive compounds. Importantly, we recognize examples of successful chemical probe development that have punctuated the changing technology landscape. Published by Elsevier Ltd.

  10. NADP-Specific Electron-Bifurcating [FeFe]-Hydrogenase in a Functional Complex with Formate Dehydrogenase in Clostridium autoethanogenum Grown on CO

    PubMed Central

    Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Mueller, Alexander P.; Köpke, Michael

    2013-01-01

    Flavin-based electron bifurcation is a recently discovered mechanism of coupling endergonic to exergonic redox reactions in the cytoplasm of anaerobic bacteria and archaea. Among the five electron-bifurcating enzyme complexes characterized to date, one is a heteromeric ferredoxin- and NAD-dependent [FeFe]-hydrogenase. We report here a novel electron-bifurcating [FeFe]-hydrogenase that is NADP rather than NAD specific and forms a complex with a formate dehydrogenase. The complex was found in high concentrations (6% of the cytoplasmic proteins) in the acetogenic Clostridium autoethanogenum autotrophically grown on CO, which was fermented to acetate, ethanol, and 2,3-butanediol. The purified complex was composed of seven different subunits. As predicted from the sequence of the encoding clustered genes (fdhA/hytA-E) and from chemical analyses, the 78.8-kDa subunit (FdhA) is a selenocysteine- and tungsten-containing formate dehydrogenase, the 65.5-kDa subunit (HytB) is an iron-sulfur flavin mononucleotide protein harboring the NADP binding site, the 51.4-kDa subunit (HytA) is the [FeFe]-hydrogenase proper, and the 18.1-kDa (HytC), 28.6-kDa (HytD), 19.9-kDa (HytE1), and 20.1-kDa (HytE2) subunits are iron-sulfur proteins. The complex catalyzed both the reversible coupled reduction of ferredoxin and NADP+ with H2 or formate and the reversible formation of H2 and CO2 from formate. We propose the complex to have two functions in vivo, namely, to normally catalyze CO2 reduction to formate with NADPH and reduced ferredoxin in the Wood-Ljungdahl pathway and to catalyze H2 formation from NADPH and reduced ferredoxin when these redox mediators get too reduced during unbalanced growth of C. autoethanogenum on CO (E0′ = −520 mV). PMID:23893107

  11. NADP-specific electron-bifurcating [FeFe]-hydrogenase in a functional complex with formate dehydrogenase in Clostridium autoethanogenum grown on CO.

    PubMed

    Wang, Shuning; Huang, Haiyan; Kahnt, Jörg; Mueller, Alexander P; Köpke, Michael; Thauer, Rudolf K

    2013-10-01

    Flavin-based electron bifurcation is a recently discovered mechanism of coupling endergonic to exergonic redox reactions in the cytoplasm of anaerobic bacteria and archaea. Among the five electron-bifurcating enzyme complexes characterized to date, one is a heteromeric ferredoxin- and NAD-dependent [FeFe]-hydrogenase. We report here a novel electron-bifurcating [FeFe]-hydrogenase that is NADP rather than NAD specific and forms a complex with a formate dehydrogenase. The complex was found in high concentrations (6% of the cytoplasmic proteins) in the acetogenic Clostridium autoethanogenum autotrophically grown on CO, which was fermented to acetate, ethanol, and 2,3-butanediol. The purified complex was composed of seven different subunits. As predicted from the sequence of the encoding clustered genes (fdhA/hytA-E) and from chemical analyses, the 78.8-kDa subunit (FdhA) is a selenocysteine- and tungsten-containing formate dehydrogenase, the 65.5-kDa subunit (HytB) is an iron-sulfur flavin mononucleotide protein harboring the NADP binding site, the 51.4-kDa subunit (HytA) is the [FeFe]-hydrogenase proper, and the 18.1-kDa (HytC), 28.6-kDa (HytD), 19.9-kDa (HytE1), and 20.1-kDa (HytE2) subunits are iron-sulfur proteins. The complex catalyzed both the reversible coupled reduction of ferredoxin and NADP(+) with H2 or formate and the reversible formation of H2 and CO2 from formate. We propose the complex to have two functions in vivo, namely, to normally catalyze CO2 reduction to formate with NADPH and reduced ferredoxin in the Wood-Ljungdahl pathway and to catalyze H2 formation from NADPH and reduced ferredoxin when these redox mediators get too reduced during unbalanced growth of C. autoethanogenum on CO (E0' = -520 mV).

  12. Okara: A Nutritionally Valuable By-product Able to Stabilize Lactobacillus plantarum during Freeze-drying, Spray-drying, and Storage.

    PubMed

    Quintana, Gabriel; Gerbino, Esteban; Gómez-Zavaglia, Andrea

    2017-01-01

    Okara is a nutritionally valuable by-product produced in large quantities as result of soymilk elaboration. This work proposes its use as both culture and dehydration medium during freeze-drying, spray-drying, and storage of Lactobacillus plantarum CIDCA 83114. Whole and defatted okara were employed as culture media for L. plantarum CIDCA 83114. The growth kinetics were followed by plate counting and compared with those of bacteria grown in MRS broth (control). No significant differences in plate counting were observed in the three media. The fatty acid composition of bacteria grown in whole and defatted okara showed a noticeable increase in the unsaturated/saturated (U/S) fatty acid ratio, with regard to bacteria grown in MRS. This change was mainly due to the increase in polyunsaturated fatty acids, namely C18:2. For dehydration assays, cultures in the stationary phase were neutralized and freeze-dried (with or without the addition of 250 mM sucrose) or spray-dried. Bacteria were plate counted immediately after freeze-drying or spray-drying and during storage at 4°C for 90 days. Freeze-drying in whole okara conducted to the highest bacterial recovery. Regarding storage, spray-dried bacteria previously grown in whole and defatted okara showed higher plate counts than those grown in MRS. On the contrary, freeze-dried bacteria previously grown in all the three culture media were those with the lowest plate counts. The addition of sucrose to the dehydration media improved their recovery. The higher recovery of microorganisms grown in okara after freeze-drying and spray-drying processes and during storage was ascribed to both the presence of fiber and proteins in the dehydration media, and the increase in U/S fatty acids ratio in bacterial membranes. The obtained results support for the first time the use of okara as an innovative matrix to deliver L. plantarum . Considering that okara is an agro-waste obtained in large quantities, these results represent an innovative strategy to add it value, providing a symbiotic ingredient with promising industrial applications in the development of novel functional foods and feeds.

  13. Okara: A Nutritionally Valuable By-product Able to Stabilize Lactobacillus plantarum during Freeze-drying, Spray-drying, and Storage

    PubMed Central

    Quintana, Gabriel; Gerbino, Esteban; Gómez-Zavaglia, Andrea

    2017-01-01

    Okara is a nutritionally valuable by-product produced in large quantities as result of soymilk elaboration. This work proposes its use as both culture and dehydration medium during freeze-drying, spray-drying, and storage of Lactobacillus plantarum CIDCA 83114. Whole and defatted okara were employed as culture media for L. plantarum CIDCA 83114. The growth kinetics were followed by plate counting and compared with those of bacteria grown in MRS broth (control). No significant differences in plate counting were observed in the three media. The fatty acid composition of bacteria grown in whole and defatted okara showed a noticeable increase in the unsaturated/saturated (U/S) fatty acid ratio, with regard to bacteria grown in MRS. This change was mainly due to the increase in polyunsaturated fatty acids, namely C18:2. For dehydration assays, cultures in the stationary phase were neutralized and freeze-dried (with or without the addition of 250 mM sucrose) or spray-dried. Bacteria were plate counted immediately after freeze-drying or spray-drying and during storage at 4°C for 90 days. Freeze-drying in whole okara conducted to the highest bacterial recovery. Regarding storage, spray-dried bacteria previously grown in whole and defatted okara showed higher plate counts than those grown in MRS. On the contrary, freeze-dried bacteria previously grown in all the three culture media were those with the lowest plate counts. The addition of sucrose to the dehydration media improved their recovery. The higher recovery of microorganisms grown in okara after freeze-drying and spray-drying processes and during storage was ascribed to both the presence of fiber and proteins in the dehydration media, and the increase in U/S fatty acids ratio in bacterial membranes. The obtained results support for the first time the use of okara as an innovative matrix to deliver L. plantarum. Considering that okara is an agro-waste obtained in large quantities, these results represent an innovative strategy to add it value, providing a symbiotic ingredient with promising industrial applications in the development of novel functional foods and feeds. PMID:28446905

  14. Response to copper of Acidithiobacillus ferrooxidans ATCC 23270 grown in elemental sulfur.

    PubMed

    Almárcegui, Rodrigo J; Navarro, Claudio A; Paradela, Alberto; Albar, Juan Pablo; von Bernath, Diego; Jerez, Carlos A

    2014-11-01

    The response of Acidithiobacillus ferrooxidans ATCC 23270 to copper was analyzed in sulfur-grown cells by using quantitative proteomics. Forty-seven proteins showed altered levels in cells grown in the presence of 50 mM copper sulfate. Of these proteins, 24 were up-regulated and 23 down-regulated. As seen before in ferrous iron-grown cells, there was a notorious up-regulation of RND-type Cus systems and different RND-type efflux pumps, indicating that these proteins are very important in copper resistance. Copper also triggered the down-regulation of the major outer membrane porin of A. ferrooxidans in sulfur-grown bacteria, suggesting they respond to the metal by decreasing the influx of cations into the cell. On the contrary, copper in sulfur-grown cells caused an overexpression of putative TadA and TadB proteins known to be essential for biofilm formation in bacteria. Surprisingly, sulfur-grown microorganisms showed increased levels of proteins related with energy generation (rus and petII operons) in the presence of copper. Although rus operon is overexpressed mainly in cells grown in ferrous iron, the up-regulation of rusticyanin in sulfur indicates a possible role for this protein in copper resistance as well. Finally, copper response in A. ferrooxidans appears to be influenced by the substrate being oxidized by the microorganism. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  15. Effect of elevated CO2 on degradation of azoxystrobin and soil microbial activity in rice soil.

    PubMed

    Manna, Suman; Singh, Neera; Singh, V P

    2013-04-01

    An experiment was conducted in open-top chambers (OTC) to study the effect of elevated CO2 (580 ± 20 μmol mol(-1)) on azoxystrobin degradation and soil microbial activities. Results indicated that elevated CO2 did not have any significant effect on the persistence of azoxystrobin in rice-planted soil. The half-life values for the azoxystrobin in rice soils were 20.3 days in control (rice grown at ambient CO2 outdoors), 19.3 days in rice grown under ambient CO2 atmosphere in OTC, and 17.5 days in rice grown under elevated CO2 atmosphere in OTC. Azoxystrobin acid was recovered as the only metabolite of azoxystrobin, but it did not accumulate in the soil/water and was further metabolized. Elevated CO2 enhanced soil microbial biomass (MBC) and alkaline phosphatase activity of soil. Compared with rice grown at ambient CO2 (both outdoors and in OTC), the soil MBC at elevated CO2 increased by twofold. Elevated CO2 did not affect dehydrogenase, fluorescein diacetate, and acid phosphatase activity. Azoxystrobin application to soils, both ambient and elevated CO2, inhibited alkaline phosphates activity, while no effect was observed on other enzymes. Slight increase (1.8-2 °C) in temperature inside OTC did not affect microbial parameters, as similar activities were recorded in rice grown outdoors and in OTC at ambient CO2. Higher MBC in soil at elevated CO2 could be attributed to increased carbon availability in the rhizosphere via plant metabolism and root secretion; however, it did not significantly increase azoxystrobin degradation, suggesting that pesticide degradation was not the result of soil MBC alone. Study suggested that increased CO2 levels following global warming might not adversely affect azoxystrobin degradation. However, global warming is a continuous and cumulative process, therefore, long-term studies are necessary to get more realistic assessment of global warming on fate of pesticide.

  16. Nanotechnology in the Regeneration of Complex Tissues

    PubMed Central

    Cassidy, John W.

    2015-01-01

    Modern medicine faces a growing crisis as demand for organ transplantations continues to far outstrip supply. By stimulating the body’s own repair mechanisms, regenerative medicine aims to reduce demand for organs, while the closely related field of tissue engineering promises to deliver “off-the-self” organs grown from patients’ own stem cells to improve supply. To deliver on these promises, we must have reliable means of generating complex tissues. Thus far, the majority of successful tissue engineering approaches have relied on macroporous scaffolds to provide cells with both mechanical support and differentiative cues. In order to engineer complex tissues, greater attention must be paid to nanoscale cues present in a cell’s microenvironment. As the extracellular matrix is capable of driving complexity during development, it must be understood and reproduced in order to recapitulate complexity in engineered tissues. This review will summarize current progress in engineering complex tissue through the integration of nanocomposites and biomimetic scaffolds. PMID:26097381

  17. Time threshold for second positive phototropism is decreased by a preirradiation with red light.

    PubMed Central

    Janoudi A-K; Konjevic, R; Apel, P; Poff, K L

    1992-01-01

    A second positive phototropic response is exhibited by a plant after the time of irradiation has exceeded a time threshold. The time threshold of dark-grown seedlings is about 15 minutes for Arabidopsis thaliana. This threshold is decreased to about 4 minutes by a 669-nanometer preirradiation. Tobacco (Nicotiana tabacum) seedlings show a similar response. The time threshold of dark-grown seedlings is about 60 minutes for tobacco, and is decreased to about 15 minutes after a preirradiation with either 450- or 669- nanometer light. The existence of a time threshold for second positive phototropism and the dependence of this threshold on the irradiation history of the seedling contribute to the complexity of the fluence response relationship for phototropism. PMID:11537887

  18. Time threshold for second positive phototropism is decreased by a preirradiation with red light

    NASA Technical Reports Server (NTRS)

    Konjevic, R.; Apel, P.; Poff, K. L.

    1992-01-01

    A second positive phototropic response is exhibited by a plant after the time of irradiation has exceeded a time threshold. The time threshold of dark-grown seedlings is about 15 minutes for Arabidopsis thaliana. This threshold is decreased to about 4 minutes by a 669-nanometer preirradiation. Tobacco (Nicotiana tabacum) seedlings show a similar response. The time threshold of dark-grown seedlings is about 60 minutes for tobacco, and is decreased to about 15 minutes after a preirradiation with either 450- or 669- nanometer light. The existence of a time threshold for second positive phototropism and the dependence of this threshold on the irradiation history of the seedling contribute to the complexity of the fluence response relationship for phototropism.

  19. Tailoring graphene layer-to-layer growth

    NASA Astrophysics Data System (ADS)

    Li, Yongtao; Wu, Bin; Guo, Wei; Wang, Lifeng; Li, Jingbo; Liu, Yunqi

    2017-06-01

    A layered material grown between a substrate and the upper layer involves complex interactions and a confined reaction space, representing an unusual growth mode. Here, we show multi-layer graphene domains grown on liquid or solid Cu by the chemical vapor deposition method via this ‘double-substrate’ mode. We demonstrate the interlayer-induced coupling effect on the twist angle in bi- and multi-layer graphene. We discover dramatic growth disunity for different graphene layers, which is explained by the ideas of a chemical ‘gate’ and a material transport process within a confined space. These key results lead to a consistent framework for understanding the dynamic evolution of multi-layered graphene flakes and tailoring the layer-to-layer growth for practical applications.

  20. Relative Sizes of Organic Molecules

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This computer graphic depicts the relative complexity of crystallizing large proteins in order to study their structures through x-ray crystallography. Insulin is a vital protein whose structure has several subtle points that scientists are still trying to determine. Large molecules such as insuline are complex with structures that are comparatively difficult to understand. For comparison, a sugar molecule (which many people have grown as hard crystals in science glass) and a water molecule are shown. These images were produced with the Macmolecule program. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  1. Altitudinal variation of phenolic contents in flowering heads of Arnica montana cv. ARBO: a 3-year comparison.

    PubMed

    Spitaler, Renate; Winkler, Andrea; Lins, Isabella; Yanar, Sema; Stuppner, Hermann; Zidorn, Christian

    2008-03-01

    In continuation of our studies of altitudinal effects on secondary metabolite profile of flowering heads from taxa of the Asteraceae, we investigated phenolic contents and radical scavenging potential from cultivated plants of Arnica montana cv. ARBO during the growing seasons 2003, 2004, and 2005. By conducting experiments on potted plants, we excluded that differences in phenolic contents from plants grown at different altitudes were related primarily to differences in soil composition at these sites. To assess altitudinal and interseasonal variation, plants of A. montana cultivar ARBO were grown in nine experimental plots at altitudes between 590 and 2,230 m at Mount Patscherkofel near Innsbruck, Austria. In all growing seasons and regardless of the soil the plants were grown in, the proportion of flavonoids with vicinal-free hydroxy groups in ring B to flavonoids lacking this feature, and the total amount of caffeic acid derivatives, significantly increased with elevation. These increases of antioxidant phenolics corresponded to an increase of the radical scavenging potential of extracts from plants grown at different altitudes. The results are discussed in regard to previous studies that suggest that enhanced UV-B radiation and decreased temperatures trigger augmented biosynthesis of UV-absorbing and antioxidant phenolics in higher plants.

  2. Evaluating acetaldehyde synthesis from L-/sup 14/C(U)) threonine by Streptococcus thermophilus and Lactobacillus bulgaricus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkins, D.W.; Schmidt, R.H.; Shireman, R.B.

    To evaluate the synthesis of acetaldehyde from threonine during growth of yogurt cultures, Streptococcus thermophilus MS1 and Lactobacillus bulgaricus MR1 were grown in defined medium in which 10% of the total threonine was composed of L-(carbon-14(U))threonine. Acetaldehyde production was monitored by formation of 2,4-dinitrophenylhydrazone followed by separation and analysis using high performance liquid chromatography. After growth for 8 h at 42/sup 0/C, approximately 2.0% of the total acetaldehyde (780.4 nmol) produced was from L-(carbon-14)threonine. Threonine aldolase activity was determined in cell-free extracts from S. thermophilus and L. bulgaricus grown in Elliker broth. Increasing incubation temperature from 30 to 42/sup 0/Cmore » decreased threonine aldolase activity in cells of the streptococcus harvested after 8 h of incubation. Effect of incubation temperature was more dramatic in cells harvested after 18 h where the activity of cells grown at 48/sup 0/C was 89% lower than that of cells grown at 30/sup 0/C. Cell extracts from S. thermophilus MS1 possessed higher threonine aldolase activity than did those from L. bulgaricus MR1. Increased assay temperature from 30 to 42/sup 0/C increased threonine aldolase activity in S. thermophilus MS1.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jincheng; Kim, Tong-Ho; Jiao, Wenyuan

    Recent work has shown that Bi incorporation increases during molecular beam epitaxy (MBE) when surface processes are kinetically limited through increased growth rate. Herein we explore how the structural and optical properties of GaAs{sub 1−x}Bi{sub x} films are modified when grown under conditions with varying degrees of kinetic limitations realized through growth temperature and growth rate changes. Within the typical window of MBE growth conditions for GaAs{sub 1−x}Bi{sub x}, we compare films with similar (∼3%) compositions grown under conditions of reduced kinetic limitations, i.e., relatively low gallium supersaturation achieved at higher temperatures (∼350 °C) and lower growth rates (∼0.5 μm/h), tomore » those grown farther from equilibrium, specifically, higher supersaturation achieved at lower growth temperatures (∼290 °C) and higher growth rates (∼1.4 μm/h). Both the x-ray diffraction full width at half maximum of the omega-2theta scan and the 300 K photoluminescence intensity increase when samples are grown under less kinetically limited conditions. We interpret these findings in relation to the incorporation of Bi-related microstructural defects that are more readily formed during less kinetically limited growth. These defects lead to enhanced luminescence efficiency due to the spatial localization of carriers.« less

  4. Seed handling practices for southern pines grown in containers

    Treesearch

    William H. Pawuk; James P. Barnett

    1979-01-01

    Cost of producing container-grown seedlings increase when containers are not fully stocked. Best use of containers requires high seed viability and low losses of newly germinated seedlings. Seed handling practices before and after sowing affect germination and seedling survival. This is a summary of seed preperation, sowing rates, disease control, and seed...

  5. Bombus huntii, Bombus impatiens and Bombus vosnesenskii (Hymenoptera: Apidae) pollinate greenhouse-grown tomatoes in western North America

    USDA-ARS?s Scientific Manuscript database

    Bumble bees (Bombus) are the primary pollinators of tomatoes grown in greenhouses and can significantly increase fruit weight compared to tomatoes that receive no supplemental pollination. Due to mounting concerns over the transportation of bumble bees outside of their native ranges, several specie...

  6. Peru Country Analysis Brief

    EIA Publications

    2015-01-01

    The economy of Peru has grown rapidly since the year 2000. Peru's GDP per capita has nearly tripled since then. In tandem with the economic growth, energy demand has also grown considerably. Peru, which is rich in hydrocarbons, has oil, natural gas, and coal reserves. Despite its increased energy consumption, Peru exports both oil and natural gas.

  7. Assessment of the bioaccumulation of metals to chicken eggs from residential backyards.

    PubMed

    Grace, Emily J; MacFarlane, Geoff R

    2016-09-01

    Soil in urban areas contains the residues of past land-uses and practices. Urban farming (keeping chickens, vegetable gardening) requires soil disturbance and can increase exposure of residents to these contaminants. We measured the level of lead, arsenic, cadmium, copper and zinc contaminants in soil and eggs from 26 backyard chicken coops across the Lower Hunter, NSW Australia. We compared the levels of metals in soil to Health Investigation Levels and metals in home-grown eggs to the levels in commercial eggs tested in this study or published by Food Standards Australia New Zealand. The levels of arsenic, cadmium, copper and zinc were low, both in soil and in home-grown eggs and were comparable to commercial eggs tested in this study. The Health Investigation Level for lead in soil (300mglead/kg soil) was exceeded at 7 of the 26 sites. The level of lead in home-grown eggs was generally higher than in commercial eggs. The reference health standard for meat (including chicken), fruit and vegetables of 0.1mglead/kg produce was exceeded in home-grown eggs from 7 of the 26 sites. There was a significant relationship between the lead level in eggs and the lead level in soil accessible to chickens. As soil lead increased, concentrations of lead in eggs tended to increase. No relationship was detected between the lead level in feed and in eggs. We recommend strategies to reduce ingestion of soil by chickens thereby reducing metal contamination in home-grown eggs. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The surface properties of Shewanella putrefaciens 200 and S. oneidensis MR-1: the effect of pH and terminal electron acceptors.

    PubMed

    Furukawa, Yoko; Dale, Jason R

    2013-04-08

    We investigated the surface characteristics of two strains of Shewanella sp., S. oneidensis MR-1 and S. putrefaciens 200, that were grown under aerobic conditions as well as under anaerobic conditions with trimethylamine oxide (TMAO) as the electron acceptor. The investigation focused on the experimental determination of electrophoretic mobility (EPM) under a range of pH and ionic strength, as well as by subsequent modeling in which Shewanella cells were considered to be soft particles with water- and ion-permeable outermost layers. The soft layer of p200 is significantly more highly charged (i.e., more negative) than that of MR-1. The effect of electron acceptor on the soft particle characteristics of Shewanella sp. is complex. The fixed charge density, which is a measure of the deionized and deprotonated functional groups in the soft layer polymers, is slightly greater (i.e., more negative) for aerobically grown p200 than for p200 grown with TMAO. On the other hand, the fixed charge density of aerobically grown MR1 is slightly less than that of p200 grown with TMAO. The effect of pH on the soft particle characteristics is also complex, and does not exhibit a clear pH-dependent trend. The Shewanella surface characteristics were attributed to the nature of the outermost soft layer, the extracellular polymeric substances (EPS) in case of p200 and lypopolysaccharides (LPS) in case of MR1 which generally lacks EPS. The growth conditions (i.e., aerobic vs. anaerobic TMAO) have an influence on the soft layer characteristics of Shewanella sp. cells. Meanwhile, the clear pH dependency of the mechanical and morphological characteristics of EPS and LPS layers, observed in previous studies through atomic force microscopy, adhesion tests and spectroscopies, cannot be corroborated by the electrohydrodynamics-based soft particle characteristics which does not exhibited a clear pH dependency in this study. While the electrohydrodynamics-based soft-particle model is a useful tool in understanding bacteria's surface properties, it needs to be supplemented with other characterization methods and models (e.g., chemical and micromechanical) in order to comprehensively address all of the surface-related characteristics important in environmental and other aqueous processes.

  9. Use of fatty acid methyl ester profiles for discrimination of Bacillus cereus T-strain spores grown on different media.

    PubMed

    Ehrhardt, Christopher J; Chu, Vivian; Brown, TeeCie; Simmons, Terrie L; Swan, Brandon K; Bannan, Jason; Robertson, James M

    2010-03-01

    The goal of this study was to determine if cellular fatty acid methyl ester (FAME) profiling could be used to distinguish among spore samples from a single species (Bacillus cereus T strain) that were prepared on 10 different medium formulations. To analyze profile differences and identify FAME biomarkers diagnostic for the chemical constituents in each sporulation medium, a variety of statistical techniques were used, including nonmetric multidimensional scaling (nMDS), analysis of similarities (ANOSIM), and discriminant function analysis (DFA). The results showed that one FAME biomarker, oleic acid (18:1 omega9c), was exclusively associated with spores grown on Columbia agar supplemented with sheep blood and was indicative of blood supplements that were present in the sporulation medium. For spores grown in other formulations, multivariate comparisons across several FAME biomarkers were required to discern profile differences. Clustering patterns in nMDS plots and R values from ANOSIM revealed that dissimilarities among FAME profiles were most pronounced when spores grown with disparate sources of complex additives or protein supplements were compared (R > 0.8), although other factors also contributed to FAME differences. DFA indicated that differentiation could be maximized with a targeted subset of FAME variables, and the relative contributions of branched FAME biomarkers to group dissimilarities changed when different media were compared. When taken together, these analyses indicate that B. cereus spore samples grown in different media can be resolved with FAME profiling and that this may be a useful technique for providing intelligence about the production methods of Bacillus organisms in a forensic investigation.

  10. Use of Fatty Acid Methyl Ester Profiles for Discrimination of Bacillus cereus T-Strain Spores Grown on Different Media▿

    PubMed Central

    Ehrhardt, Christopher J.; Chu, Vivian; Brown, TeeCie; Simmons, Terrie L.; Swan, Brandon K.; Bannan, Jason; Robertson, James M.

    2010-01-01

    The goal of this study was to determine if cellular fatty acid methyl ester (FAME) profiling could be used to distinguish among spore samples from a single species (Bacillus cereus T strain) that were prepared on 10 different medium formulations. To analyze profile differences and identify FAME biomarkers diagnostic for the chemical constituents in each sporulation medium, a variety of statistical techniques were used, including nonmetric multidimensional scaling (nMDS), analysis of similarities (ANOSIM), and discriminant function analysis (DFA). The results showed that one FAME biomarker, oleic acid (18:1 ω9c), was exclusively associated with spores grown on Columbia agar supplemented with sheep blood and was indicative of blood supplements that were present in the sporulation medium. For spores grown in other formulations, multivariate comparisons across several FAME biomarkers were required to discern profile differences. Clustering patterns in nMDS plots and R values from ANOSIM revealed that dissimilarities among FAME profiles were most pronounced when spores grown with disparate sources of complex additives or protein supplements were compared (R > 0.8), although other factors also contributed to FAME differences. DFA indicated that differentiation could be maximized with a targeted subset of FAME variables, and the relative contributions of branched FAME biomarkers to group dissimilarities changed when different media were compared. When taken together, these analyses indicate that B. cereus spore samples grown in different media can be resolved with FAME profiling and that this may be a useful technique for providing intelligence about the production methods of Bacillus organisms in a forensic investigation. PMID:20097814

  11. Rational growth of branched nanowire heterostructures with synthetically encoded properties and function

    PubMed Central

    Jiang, Xiaocheng; Tian, Bozhi; Xiang, Jie; Qian, Fang; Zheng, Gengfeng; Wang, Hongtao; Mai, Liqiang; Lieber, Charles M.

    2011-01-01

    Branched nanostructures represent unique, 3D building blocks for the “bottom-up” paradigm of nanoscale science and technology. Here, we report a rational, multistep approach toward the general synthesis of 3D branched nanowire (NW) heterostructures. Single-crystalline semiconductor, including groups IV, III–V, and II–VI, and metal branches have been selectively grown on core or core/shell NW backbones, with the composition, morphology, and doping of core (core/shell) NWs and branch NWs well controlled during synthesis. Measurements made on the different composition branched NW structures demonstrate encoding of functional p-type/n-type diodes and light-emitting diodes (LEDs) as well as field effect transistors with device function localized at the branch/backbone NW junctions. In addition, multibranch/backbone NW structures were synthesized and used to demonstrate capability to create addressable nanoscale LED arrays, logic circuits, and biological sensors. Our work demonstrates a previously undescribed level of structural and functional complexity in NW materials, and more generally, highlights the potential of bottom-up synthesis to yield increasingly complex functional systems in the future. PMID:21730174

  12. Applications of different design methodologies in navigation systems and development at JPL

    NASA Technical Reports Server (NTRS)

    Thurman, S. W.

    1990-01-01

    The NASA/JPL deep space navigation system consists of a complex array of measurement systems, data processing systems, and support facilities, with components located both on the ground and on-board interplanetary spacecraft. From its beginings nearly 30 years ago, this system has steadily evolved and grown to meet the demands for ever-increasing navigation accuracy placed on it by a succession of unmanned planetary missions. Principal characteristics of this system are its capabilities and great complexity. Three examples in the design and development of interplanetary space navigation systems are examined in order to make a brief assessment of the usefulness of three basic design theories, known as normative, rational, and heuristic. Evaluation of the examples indicates that a heuristic approach, coupled with rational-based mathematical and computational analysis methods, is used most often in problems such as orbit determination strategy development and mission navigation system design, while normative methods have seen only limited use is such applications as the development of large software systems and in the design of certain operational navigation subsystems.

  13. Selective concentration for ciprofloxacin resistance in Escherichia coli grown in complex aquatic bacterial biofilms.

    PubMed

    Kraupner, Nadine; Ebmeyer, Stefan; Bengtsson-Palme, Johan; Fick, Jerker; Kristiansson, Erik; Flach, Carl-Fredrik; Larsson, D G Joakim

    2018-04-25

    There is concern that antibiotics in the environment can select for and enrich bacteria carrying acquired antibiotic resistance genes, thus increasing the potential of those genes to emerge in a clinical context. A critical question for understanding and managing such risks is what levels of antibiotics are needed to select for resistance in complex bacterial communities. Here, we address this question by examining the phenotypic and genotypic profiles of aquatic communities exposed to ciprofloxacin, also evaluating the within-species selection of resistant E. coli in complex communities. The taxonomic composition was significantly altered at ciprofloxacin exposure concentrations down to 1 μg/L. Shotgun metagenomic analysis indicated that mobile quinolone resistance determinants (qnrD, qnrS and qnrB) were enriched as a direct consequence of ciprofloxacin exposure from 1 μg/L or higher. Only at 5-10 μg/L resistant E.coli increased relative to their sensitive counterparts. These resistant E. coli predominantly harbored non-transferrable, chromosomal triple mutations (gyrA S83 L, D87N and parC S80I), which confer high-level resistance. In a controlled experimental setup such as this, we interpret effects on taxonomic composition and enrichment of mobile quinolone resistance genes as relevant indicators of risk. Hence, the lowest observed effect concentration for resistance selection in complex communities by ciprofloxacin was 1 μg/L and the corresponding no observed effect concentration 0.1 μg/L. These findings can be used to define and implement discharge or surface water limits to reduce risks for selection of antibiotic resistance in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Improvements in the processing of large grain, bulk Y-Ba-Cu-O superconductors via the use of additional liquid phase

    NASA Astrophysics Data System (ADS)

    Congreve, Jasmin V. J.; Shi, Yunhua; Dennis, Anthony R.; Durrell, John H.; Cardwell, David A.

    2017-01-01

    A major limitation to the widespread application of Y-Ba-Cu-O (YBCO) bulk superconductors is the relative complexity and low yield of the top seeded melt growth (TSMG) process, by which these materials are commonly fabricated. It has been demonstrated in previous work on the recycling of samples in which the primary growth had failed, that the provision of an additional liquid-rich phase to replenish liquid lost during the failed growth process leads to the reliable growth of relatively high quality recycled samples. In this paper we describe the adaptation of the liquid phase enrichment technique to the primary TSMG fabrication process. We further describe the observed differences between the microstructure and superconducting properties of samples grown with additional liquid-rich phase and control samples grown using a conventional TSMG process. We observe that the introduction of the additional liquid-rich phase leads to the formation of a higher concentration of Y species at the growth front, which leads, in turn, to a more uniform composition at the growth front. Importantly, the increased uniformity at the growth front leads directly to an increased homogeneity in the distribution of the Y-211 inclusions in the superconducting Y-123 phase matrix and to a more uniform Y-123 phase itself. Overall, the provision of an additional liquid-rich phase improves significantly both the reliability of grain growth through the sample thickness and the magnitude and homogeneity of the superconducting properties of these samples compared to those fabricated by a conventional TSMG process.

  15. Scanning tunneling microscope study of GaAs(001) surfaces grown by migration enhanced epitaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.; Gallagher, M.C.; Willis, R.F.

    We report an investigation of the morphology of p-type GaAs(001) surfaces using scanning tunneling microscopy (STM). The substrates were prepared using two methods: migration enhanced epitaxy (MEE) and standard molecular-beam epitaxy (MBE). The STM measurements were performed ex situ using As decapping. Analysis indicates that the overall step density of the MEE samples decreases as the growth temperature is increased. Nominally flat samples grown at 300{degrees}C exhibited step densities of 10.5 steps/1000 {Angstrom} along [ 110] dropping to 2.5 steps at 580{degrees}C. MEE samples exhibited a lower step density than MBE samples. However as-grown surfaces exhibited a larger distribution ofmore » step heights. Annealing the samples reduced the step height distribution exposing fewer atomic layers. Samples grown by MEE at 580{degrees}C and annealed for 2 min displayed the lowest step density and the narrowest step height distribution. All samples displayed an anisotropic step density. We found a ratio of A-type to B-type steps of between 2 and 3 which directly reflects the difference in the incorporation energy at steps. The aspect ratio increased slightly with growth temperature. We found a similar aspect ratio on samples grown by MBE. This indicates that anisotropic growth during MEE, like MBE, is dominated by incorporation kinetics. MEE samples grown at 580{degrees}C and capped immediately following growth exhibited a number of {open_quotes}holes{close_quotes} in the surface. The holes could be eliminated by annealing the surface prior to quenching. 20 refs., 3 figs., 1 tab.« less

  16. How Posttranslational Modification of Nitrogenase Is Circumvented in Rhodopseudomonas palustris Strains That Produce Hydrogen Gas Constitutively

    PubMed Central

    Heiniger, Erin K.; Oda, Yasuhiro; Samanta, Sudip K.

    2012-01-01

    Nitrogenase catalyzes the conversion of dinitrogen gas (N2) and protons to ammonia and hydrogen gas (H2). This is a catalytically difficult reaction that requires large amounts of ATP and reducing power. Thus, nitrogenase is not normally expressed or active in bacteria grown with a readily utilized nitrogen source like ammonium. nifA* mutants of the purple nonsulfur phototrophic bacterium Rhodopseudomonas palustris have been described that express nitrogenase genes constitutively and produce H2 when grown with ammonium as a nitrogen source. This raised the regulatory paradox of why these mutants are apparently resistant to a known posttranslational modification system that should switch off the activity of nitrogenase. Microarray, mutation analysis, and gene expression studies showed that posttranslational regulation of nitrogenase activity in R. palustris depends on two proteins: DraT2, an ADP-ribosyltransferase, and GlnK2, an NtrC-regulated PII protein. GlnK2 was not well expressed in ammonium-grown NifA* cells and thus not available to activate the DraT2 nitrogenase modification enzyme. In addition, the NifA* strain had elevated nitrogenase activity due to overexpression of the nif genes, and this increased amount of expression overwhelmed a basal level of activity of DraT2 in ammonium-grown cells. Thus, insufficient levels of both GlnK2 and DraT2 allow H2 production by an nifA* mutant grown with ammonium. Inactivation of the nitrogenase posttranslational modification system by mutation of draT2 resulted in increased H2 production by ammonium-grown NifA* cells. PMID:22179236

  17. Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression

    PubMed Central

    Cicatelli, Angela; Lingua, Guido; Todeschini, Valeria; Biondi, Stefania; Torrigiani, Patrizia; Castiglione, Stefano

    2010-01-01

    Background and Aims It is increasingly evident that plant tolerance to stress is improved by mycorrhiza. Thus, suitable plant–fungus combinations may also contribute to the success of phytoremediation of heavy metal (HM)-polluted soil. Metallothioneins (MTs) and polyamines (PAs) are implicated in the response to HM stress in several plant species, but whether the response is modulated by arbuscular mycorrhizal fungi (AMF) remains to be clarified. The aim of the present study was to check whether colonization by AMF could modify growth, metal uptake/translocation, and MT and PA gene expression levels in white poplar cuttings grown on HM-contaminated soil, and to compare this with plants grown on non-contaminated soil. Methods In this greenhouse study, plants of a Populus alba clone were pre-inoculated, or not, with either Glomus mosseae or G. intraradices and then grown in pots containing either soil collected from a multimetal- (Cu and Zn) polluted site or non-polluted soil. The expression of MT and PA biosynthetic genes was analysed in leaves using quantitative reverse transcription–PCR. Free and conjugated foliar PA concentrations were determined in parallel. Results On polluted soil, AMF restored plant biomass despite higher Cu and Zn accumulation in plant organs, especially roots. Inoculation with the AMF caused an overall induction of PaMT1, PaMT2, PaMT3, PaSPDS1, PaSPDS2 and PaADC gene expression, together with increased free and conjugated PA levels, in plants grown on polluted soil, but not in those grown on non-polluted soil. Conclusions Mycorrhizal plants of P. alba clone AL35 exhibit increased capacity for stabilization of soil HMs, together with improved growth. Their enhanced stress tolerance may derive from the transcriptional upregulation of several stress-related genes, and the protective role of PAs. PMID:20810743

  18. Reduced phenylalanine ammonia-lyase and tyrosine ammonia-lyase activities and lignin synthesis in wheat grown under low pressure sodium lamps

    NASA Technical Reports Server (NTRS)

    Guerra, D.; Anderson, A. J.; Salisbury, F. B.

    1985-01-01

    Wheat (Triticum aestivum L. cv Fremont) grown in hydroponic culture under 24-hour continuous irradiation at 560 to 580 micromoles per square meter per second from either metalhalide (MH), high pressure sodium (HPS), or low pressure sodium (LPS) lamps reached maturity in 70 days. Grain yields were similar under all three lamps, although LPS-grown plants lodged at maturity. Phenylalanine ammonia-lyase (PAL) and a tyrosine ammonia lyase (TAL) with lesser activity were detected in all extracts of leaf, inflorescence, and stem. Ammonia-lyase activities increased with age of the plant, and plants grown under the LPS lamp displayed PAL and TAL activities lower than wheat cultured under MH and HPS radiation. Greenhouse solar-grown wheat had the highest PAL and TAL activities. Lignin content of LPS-grown wheat was also significantly reduced from that of plants grown under MH or HPS lamps or in the greenhouse, showing a correlation with the reduced PAL and TAL activities. Ratios of far red-absorbing phytochrome to total phytochrome were similar for all three lamps, but the data do not yet warrant a conclusion about specific wavelengths missing from the LPS lamps that might have induced PAL and TAL activities in plants under the other lamps.

  19. Chlorophyll fluorescence and CO(2) assimilation of black spruce seedlings following frost in different temperature and light conditions.

    PubMed

    Lamontagne, M.; Bigras, F. J.; Margolis, H. A.

    2000-03-01

    Effects of artificial frosts on light-saturated photosynthesis (A(max)) and ground, maximal and variable fluorescence variables (F(o), F(m), and F(v) and F(v)/F(m)) were monitored on 1-year-old foliage of black spruce seedlings (Picea mariana (Mill.) BSP) grown at high (25 degrees C), moderate (15 degrees C) and low (5 degrees C) temperatures and moderate (240 &mgr;mol m(-2) s(-1)) and low (80 &mgr;mol m(-2) s(-1)) irradiances. Photoinhibition of 1-year-old foliage was greater in seedlings grown in moderate light than in seedlings grown in low light. Photoinhibition increased with decreasing growth chamber temperature at both irradiances. Most changes in F(v)/F(m) were caused by changes in F(v). Exposure to -4 degrees C decreased both F(v)/F(m) and A(max) compared with control values. The effect of the -4 degrees C frost treatment was greater in seedlings grown in low light than in seedlings grown in moderate light, probably because seedlings grown in moderate light were already partially photoinhibited before the frost treatment. Following -4 degrees C treatment, neither F(v)/F(m) nor A(max) recovered in seedlings grown in low light. Light-saturated photosynthesis decreased with decreasing growth chamber temperature. Light-saturated photosynthesis was more sensitive to the -3 and -4 degrees C frost treatments in seedlings grown at 25 degrees C than in seedlings grown at 15 and 5 degrees C. The A(max) of seedlings grown at 15 degrees C was sensitive only to the -4 degrees C frost treatment, whereas A(max) of seedlings grown at 5 degrees C was not sensitive to any of the frost treatments. Recovery of A(max) following frost took longer in seedlings grown at high temperatures than in seedlings grown at low temperatures. For seedlings grown at the same temperature but under different irradiances, both A(max) and F(v)/F(m) reflected damage to the photosynthetic system following a moderate frost. However, for seedlings grown at the same irradiance but different temperatures, A(max) provided a more sensitive indicator of frost damage to the photosynthetic system than F(v)/F(m) ratio.

  20. Ga flux dependence of Er-doped GaN luminescent thin films

    NASA Astrophysics Data System (ADS)

    Lee, D. S.; Steckl, A. J.

    2002-02-01

    Er-doped GaN thin films have been grown on (111) Si substrates with various Ga fluxes in a radio frequency plasma molecular beam epitaxy system. Visible photoluminescence (PL) and electroluminescence (EL) emission at 537/558 nm and infrared (IR) PL emission at 1.5 μm from GaN:Er films exhibited strong dependence on the Ga flux. Both visible and IR PL and visible EL increase with the Ga flux up to the stoichiometric growth condition, as determined by growth rate saturation. Beyond this condition, all luminescence levels abruptly dropped to the detection limit with increasing Ga flux. The Er concentration, measured by secondary ion mass spectroscopy and Rutherford backscattering, decreases with increasing Ga flux under N-rich growth conditions and remains constant above the stoichiometric growth condition. X-ray diffraction indicated that the crystalline quality of the GaN:Er film was improved with increasing Ga flux up to stoichiometric growth condition and then saturated. Er ions in the films grown under N-rich conditions appear much more optically active than those in the films grown under Ga-rich conditions.

  1. Penalized discriminant analysis for the detection of wild-grown and cultivated Ganoderma lucidum using Fourier transform infrared spectroscopy.

    PubMed

    Zhu, Ying; Tan, Tuck Lee

    2016-04-15

    An effective and simple analytical method using Fourier transform infrared (FTIR) spectroscopy to distinguish wild-grown high-quality Ganoderma lucidum (G. lucidum) from cultivated one is of essential importance for its quality assurance and medicinal value estimation. Commonly used chemical and analytical methods using full spectrum are not so effective for the detection and interpretation due to the complex system of the herbal medicine. In this study, two penalized discriminant analysis models, penalized linear discriminant analysis (PLDA) and elastic net (Elnet),using FTIR spectroscopy have been explored for the purpose of discrimination and interpretation. The classification performances of the two penalized models have been compared with two widely used multivariate methods, principal component discriminant analysis (PCDA) and partial least squares discriminant analysis (PLSDA). The Elnet model involving a combination of L1 and L2 norm penalties enabled an automatic selection of a small number of informative spectral absorption bands and gave an excellent classification accuracy of 99% for discrimination between spectra of wild-grown and cultivated G. lucidum. Its classification performance was superior to that of the PLDA model in a pure L1 setting and outperformed the PCDA and PLSDA models using full wavelength. The well-performed selection of informative spectral features leads to substantial reduction in model complexity and improvement of classification accuracy, and it is particularly helpful for the quantitative interpretations of the major chemical constituents of G. lucidum regarding its anti-cancer effects. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Thermal stability of isolated and complexed Ga vacancies in GaN bulk crystals

    NASA Astrophysics Data System (ADS)

    Saarinen, K.; Suski, T.; Grzegory, I.; Look, D. C.

    2001-12-01

    We have applied positron annihilation spectroscopy to show that 2-MeV electron irradiation at 300 K creates primary Ga vacancies in GaN with an introduction rate of 1 cm-1. The Ga vacancies recover in long-range migration processes at 500-600 K with an estimated migration energy of 1.5 (2) eV. Since the native Ga vacancies in as-grown GaN survive up to much higher temperatures (1300-1500 K), we conclude that they are stabilized by forming complexes with oxygen impurities. The estimated binding energy of 2.2 (4) eV of such complexes is in good agreement with the results of theoretical calculations.

  3. Phase transitions in tumor growth: V what can be expected from cancer glycolytic oscillations?

    NASA Astrophysics Data System (ADS)

    Martin, R. R.; Montero, S.; Silva, E.; Bizzarri, M.; Cocho, G.; Mansilla, R.; Nieto-Villar, J. M.

    2017-11-01

    Experimental evidence confirms the existence of glycolytic oscillations in cancer, which allows it to self-organize in time and space far from thermodynamic equilibrium, and provides it with high robustness, complexity and adaptability. A kinetic model is proposed for HeLa tumor cells grown in hypoxia conditions. It shows oscillations in a wide range of parameters. Two control parameters (glucose and inorganic phosphate concentration) were varied to explore the phase space, showing also the presence of limit cycles and bifurcations. The complexity of the system was evaluated by focusing on stationary state stability and Lempel-Ziv complexity. Moreover, the calculated entropy production rate was demonstrated behaving as a Lyapunov function.

  4. Programs Automate Complex Operations Monitoring

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Kennedy Space Center, just off the east coast of Florida on Merritt Island, has been the starting place of every human space flight in NASA s history. It is where the first Americans left Earth during Project Mercury, the terrestrial departure point of the lunar-bound Apollo astronauts, as well as the last solid ground many astronauts step foot on before beginning their long stays aboard the International Space Station. It will also be the starting point for future NASA missions to the Moon and Mars and temporary host of the new Ares series rockets designed to take us there. Since the first days of the early NASA missions, in order to keep up with the demands of the intricate and critical Space Program, the launch complex - host to the large Vehicle Assembly Building, two launch pads, and myriad support facilities - has grown increasingly complex to accommodate the sophisticated technologies needed to manage today s space missions. To handle the complicated launch coordination safely, NASA found ways to automate mission-critical applications, resulting in streamlined decision-making. One of these methods, management software called the Control Monitor Unit (CMU), created in conjunction with McDonnell Douglas Space & Defense Systems, has since left NASA, and is finding its way into additional applications.

  5. Microwave and Millimeter Wave Properties of Vertically-Aligned Single Wall Carbon Nanotubes Films

    NASA Astrophysics Data System (ADS)

    Haddadi, K.; Tripon-Canseliet, C.; Hivin, Q.; Ducournau, G.; Teo, E.; Coquet, P.; Tay, B. K.; Lepilliet, S.; Avramovic, V.; Chazelas, J.; Decoster, D.

    2016-05-01

    We present the experimental determination of the complex permittivity of vertically aligned single wall carbon nanotubes (SWCNTs) films grown on quartz substrates in the microwave regime from 10 MHz up to 67 GHz, with the electrical field perpendicular to the main axis of the carbon nanotubes (CNTs), based on coplanar waveguide transmission line approach together with the measurement of the microwave impedance of top metalized vertically—aligned SWCNTs grown on conductive silicon substrates up to 26 GHz. From coplanar waveguide measurements, we obtain a real part of the permittivity almost equal to unity, which is interpreted in terms of low carbon atom density (3 × 1019 at/cm3) associated with a very low imaginary part of permittivity (<10-3) in the frequency range considered due to a very small perpendicular conductivity. The microwave impedance of a vertically aligned CNTs bundle equivalent to a low resistance reveals a good conductivity (3 S/cm) parallel to the CNTs axis. From these two kinds of data, we experimentally demonstrate the tensor nature of the vertically grown CNTs bundles.

  6. A novel structure of gel grown strontium cyanurate crystal and its structural, optical, electrical characterization

    NASA Astrophysics Data System (ADS)

    Divya, R.; Nair, Lekshmi P.; Bijini, B. R.; Nair, C. M. K.; Gopakumar, N.; Babu, K. Rajendra

    2017-12-01

    Strontium cyanurate crystals with novel structure and unique optical property like mechanoluminescence have been grown by conventional gel method. Transparent crystals were obtained. The single crystal X-ray diffraction analysis reveals the exquisite structure of the grown crystal. The crystal is centrosymmetric and has a three dimensional polymeric structure. The powder X ray diffraction analysis confirms its crystalline nature. The functional groups present in the crystal were identified by Fourier transform infrared spectroscopy. Elemental analysis confirmed the composition of the complex. A study of thermal properties was done by thermo gravimetric analysis and differential thermal analysis. The optical properties like band gap, refractive index and extinction coefficient were evaluated from the UV visible spectral analysis. The etching study was done to reveal the dislocations in the crystal which in turn explains mechanoluminescence emission. The mechanoluminescence property exhibited by the crystal makes it suitable for stress sensing applications. Besides being a centrosymmetric crystal, it also exhibits NLO behavior. Dielectric properties were studied and theoretical calculations of Fermi energy, valence electron plasma energy, penn gap and polarisability have been done.

  7. Growth studies of erbium-doped GaAs deposited by metalorganic vapor phase epitaxy using noval cyclopentadienyl-based erbium sources

    NASA Technical Reports Server (NTRS)

    Redwing, J. M.; Kuech, T. F.; Gordon, D. C.; Vaartstra, B. A.; Lau, S. S.

    1994-01-01

    Erbium-doped GaAS layers were grown by metalorganic vapor phase epitaxy using two new sources, bis(i-propylcyclopentadienyl)cyclopentadienyl erbium and tris(t-butylcyclopentadienyl) erbium. Controlled Er doping in the range of 10(exp 17) - 10(exp 18)/cu cm was achieved using a relatively low source temperature of 90 C. The doping exhibits a second-order dependence on inlet source partial pressure, similar to behavior obtained with cyclopentadienyl Mg dopant sources. Equivalent amounts of oxygen and Er are present in 'as-grown' films indicating that the majority of Er dopants probably exist as Er-O complexes in the material. Er(+3) luminescence at 1.54 micrometers was measured from the as-grown films, but ion implantation of additional oxygen decreases the emission intensity. Electrical compensation of n-type GaAs layers codoped with Er and Si is directly correlated to the Er concentration is proposed to arise from the deep centers associated with Er which are responsible for a broad emission band near 0.90 micrometers present in the photoluminescence spectra of GaAs:Si, Er films.

  8. Transcription analysis of pilS and xpsEL genes from Xylella fastidiosa.

    PubMed

    Coltri, Patricia P; Rosato, Yoko B

    2005-04-01

    Xylella fastidiosa is a xylem-limited phytopathogen responsible for diseases in several plants such as citrus and coffee. Analysis of the bacterial genome revealed some putative pathogenicity-related genes that could help to elucidate the molecular mechanisms of plant-pathogen interactions. In the present work, the transcription of three genes of the bacterium, grown in defined and rich media and also in media containing host plant extracts (sweet orange, 'ponkan' and coffee) was analyzed by RT-PCR. The pilS gene, which encodes a sensor histidine kinase responsible for the biosynthesis of fimbriae, was transcribed when the bacterium was grown in more complex media such as PW and in medium containing plant extracts. The xps genes (xpsL and xpsE) which are related to the type II secretion system were also detected when the bacterium was grown in rich media and media with 'ponkan' and coffee extracts. It was thus observed that pilS and xpsEL genes of X. fastidiosa can be modulated by environmental factors and their expression is dependent on the nutritional status of the growth medium.

  9. Weak ferromagnetism and short range polar order in NaMnF3 thin films

    NASA Astrophysics Data System (ADS)

    KC, Amit; Borisov, Pavel; Shvartsman, Vladimir V.; Lederman, David

    2017-02-01

    The orthorhombically distorted perovskite NaMnF3 has been predicted to become ferroelectric if an a = c distortion of the bulk Pnma structure is imposed. In order to test this prediction, NaMnF3 thin films were grown on SrTiO3 (001) single crystal substrates via molecular beam epitaxy. The best films were smooth and single phase with four different twin domains. In-plane magnetization measurements revealed the presence of antiferromagnetic ordering with weak ferromagnetism below the Néel temperature TN = 66 K. For the dielectric studies, NaMnF3 films were grown on a 30 nm SrRuO3 (001) layer used as a bottom electrode grown via pulsed laser deposition. The complex permittivity as a function of frequency indicated a strong Debye-like relaxation contribution characterized by a distribution of relaxation times. A power-law divergence of the characteristic relaxation time revealed an order-disorder phase transition at 8 K. The slow relaxation dynamics indicated the formation of super-dipoles (superparaelectric moments) that extend over several unit cells, similar to polar nanoregions of relaxor ferroelectrics.

  10. Roles of inter-SWCNT junctions in resistive humidity response

    NASA Astrophysics Data System (ADS)

    Zhang, Kang; Zou, Jianping; Zhang, Qing

    2015-11-01

    As a promising chemiresistor for gas sensing, the single-walled carbon nanotube (SWCNT) network has not yet been fully utilized for humidity detection. In this work, it is found that as humidity increases from 10% to 85%, the resistance of as-grown SWCNT networks first decreases and then increases. This non-monotonic resistive response to humidity limits their sensing capabilities. The competition between SWCNT resistance and inter-tube junction resistance changes is then found to be responsible for the non-monotonic resistive humidity responses. Moreover, creating sp3 scattering centers on the SWCNT sidewall by monovalent functionalization of four-bromobenzene diazonium tetrafluoroborate is shown to be capable of eliminating the influence from the inter-tube junctions, resulting in a continuous resistance drop as humidity increases from 10% to 85%. Our results revealed the competing resistive humidity sensing process in as-grown SWCNT networks, which could also be helpful in designing and optimizing as-grown SWCNT networks for humidity sensors and other gas sensors.

  11. Interdisciplinary Vertical Integration: The Future of Biomechanics

    ERIC Educational Resources Information Center

    Gregor, Robert J.

    2008-01-01

    The field of biomechanics has grown rapidly in the past 30 years in both size and complexity. As a result, the term might mean different things to different people. This article addresses the issues facing the field in the form of challenges biomechanists face in the future. Because the field is so diverse, strength within the different areas of…

  12. Clostridium acidurici Electron-Bifurcating Formate Dehydrogenase

    PubMed Central

    Wang, Shuning; Huang, Haiyan; Kahnt, Jörg

    2013-01-01

    Cell extracts of uric acid-grown Clostridium acidurici catalyzed the coupled reduction of NAD+ and ferredoxin with formate at a specific activity of 1.3 U/mg. The enzyme complex catalyzing the electron-bifurcating reaction was purified 130-fold and found to be composed of four subunits encoded by the gene cluster hylCBA-fdhF2. PMID:23872566

  13. A Middleware Platform for Providing Mobile and Embedded Computing Instruction to Software Engineering Students

    ERIC Educational Resources Information Center

    Mattmann, C. A.; Medvidovic, N.; Malek, S.; Edwards, G.; Banerjee, S.

    2012-01-01

    As embedded software systems have grown in number, complexity, and importance in the modern world, a corresponding need to teach computer science students how to effectively engineer such systems has arisen. Embedded software systems, such as those that control cell phones, aircraft, and medical equipment, are subject to requirements and…

  14. The Texas Projection Measure: Ignoring Complex Ecologies in a Changing World

    ERIC Educational Resources Information Center

    Roane, Warren

    2010-01-01

    The Texas Projection Measure (TPM) has grown out of the state's need to meet the requirements of No Child Left Behind (NCLB). An examination of the state's method of predicting 8th grade mathematics scores reveals that several factors have been ignored in the process of developing the model, including assumptions in its underlying statistical…

  15. Snapshots of what, exactly? A comment on methodological experimentation and conceptual foundations in place research

    Treesearch

    Daniel R. Williams; Michael E. Patterson

    2007-01-01

    Place ideas in natural resource management have grown in recent years. But with that growth have come greater complexity and diversity in thinking and mounting confusion about the ontological and epistemological assumptions underlying any specific investigation. Beckley et al. (2007) contribute to place research by proposing a new methodological approach to analyzing...

  16. Bayesian Analysis of Multidimensional Item Response Theory Models: A Discussion and Illustration of Three Response Style Models

    ERIC Educational Resources Information Center

    Leventhal, Brian C.; Stone, Clement A.

    2018-01-01

    Interest in Bayesian analysis of item response theory (IRT) models has grown tremendously due to the appeal of the paradigm among psychometricians, advantages of these methods when analyzing complex models, and availability of general-purpose software. Possible models include models which reflect multidimensionality due to designed test structure,…

  17. Interaction of brassicaceous seed meal and apple rootstock on recovery of Pythium spp. and Pratylenchus penetrans from roots grown in replant soils

    USDA-ARS?s Scientific Manuscript database

    Pythium spp. and Pratylenchus penetrans are significant components of the diverse pathogen complex that incites apple replant disease in Washington state. The structure of the Pythium population differs among orchard soils but is composed of multiple pathogenic species. Studies were conducted to d...

  18. For Grown-Ups Too: The Surprising Depth and Complexity of Children's Literature

    ERIC Educational Resources Information Center

    Lerer, Seth

    2015-01-01

    Children's literature charts the makings of the literate imagination. It shows children finding worlds within the book and books in the world. It addresses the changing environments of family life and human growth, schooling and scholarship, publishing and publicity in which children--at times suddenly, at times subtly--found themselves…

  19. First report of QoI resistance in Alternaria spp. infecting sugar beet (Beta vulgaris) in Michigan, USA

    USDA-ARS?s Scientific Manuscript database

    Alternaria leaf spot (ALS) of sugar beet is caused by Alternaria spp. in the A. alternata species complex. ALS is common wherever sugar beet is grown, but historically has been a minor issue for sugar beet production in the USA with damage usually not affecting crop yield significantly. Occurrence o...

  20. Low temperature grown GaNAsSb: A promising material for photoconductive switch application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, K. H.; Yoon, S. F.; Wicaksono, S.

    2013-09-09

    We report a photoconductive switch using low temperature grown GaNAsSb as the active material. The GaNAsSb layer was grown at 200 °C by molecular beam epitaxy in conjunction with a radio frequency plasma-assisted nitrogen source and a valved antimony cracker source. The low temperature growth of the GaNAsSb layer increased the dark resistivity of the switch and shortened the carrier lifetime. The switch exhibited a dark resistivity of 10{sup 7} Ω cm, a photo-absorption of up to 2.1 μm, and a carrier lifetime of ∼1.3 ps. These results strongly support the suitability of low temperature grown GaNAsSb in the photoconductivemore » switch application.« less

  1. Enhanced photoluminescence of multilayer Ge quantum dots on Si(001) substrates by increased overgrowth temperature.

    PubMed

    Liu, Zhi; Cheng, Buwen; Hu, Weixuan; Su, Shaojian; Li, Chuanbo; Wang, Qiming

    2012-07-11

    Four-bilayer Ge quantum dots (QDs) with Si spacers were grown on Si(001) substrates by ultrahigh vacuum chemical vapor deposition. In three samples, all Ge QDs were grown at 520 °C, while Si spacers were grown at various temperatures (520 °C, 550 °C, and 580 °C). Enhancement and redshift of room temperature photoluminescence (PL) were observed from the samples in which Si spacers were grown at a higher temperature. The enhancement of PL is explained by higher effective electrons capturing in the larger size Ge QDs. Quantum confinement of the Ge QDs is responsible for the redshift of PL spectra. The Ge QDs' size and content were investigated by atomic force microscopy and Raman scattering measurements.

  2. Regulation of asparagine-linked oligosaccharide processing. Oligosaccharide processing in Aedes albopictus mosquito cells.

    PubMed

    Hsieh, P; Robbins, P W

    1984-02-25

    We have examined the synthesis and processing of asparagine-linked oligosaccharides from Aedes albopictus C6/36 mosquito cells. These cells synthesized a glucose-containing lipid-linked oligosaccharide with properties identical to that of Glc3Man9GlcNAc2-PP-dolichol. Results of brief pulse label experiments with [3H]mannose were consistent with the transfer of Glc3Man9GlcNAc2 to protein followed by the rapid removal of glucose residues. Pulse-chase experiments established that further processing of oligosaccharides in C6/36 cells resulted in the removal of up to six alpha-linked mannose residues yielding Man3GlcNAc2 whose structure is identical to that of the trimannosyl "core" of N-linked oligosaccharides of vertebrate cells and yeast. Complex-type oligosaccharides were not observed in C6/36 cells. When Sindbis virus was grown in mosquito cells, Man3GlcNAc2 glycans were preferentially located at the two glycosylation sites which were previously shown to have complex glycans in virus grown in vertebrate cells. These Man3GlcNAc2 structures are the most extensively processed oligosaccharides in A. albopictus, and as such, are analogous to the complex glycans of vertebrate cells. We suggest that determinants of oligosaccharide processing which reside in the polypeptide are universally recognized despite evolutionary divergence of the oligosaccharide-processing pathway between insects and vertebrates.

  3. IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex.

    PubMed

    Maccari, Giuseppe; Robinson, James; Ballingall, Keith; Guethlein, Lisbeth A; Grimholt, Unni; Kaufman, Jim; Ho, Chak-Sum; de Groot, Natasja G; Flicek, Paul; Bontrop, Ronald E; Hammond, John A; Marsh, Steven G E

    2017-01-04

    The IPD-MHC Database project (http://www.ebi.ac.uk/ipd/mhc/) collects and expertly curates sequences of the major histocompatibility complex from non-human species and provides the infrastructure and tools to enable accurate analysis. Since the first release of the database in 2003, IPD-MHC has grown and currently hosts a number of specific sections, with more than 7000 alleles from 70 species, including non-human primates, canines, felines, equids, ovids, suids, bovins, salmonids and murids. These sequences are expertly curated and made publicly available through an open access website. The IPD-MHC Database is a key resource in its field, and this has led to an average of 1500 unique visitors and more than 5000 viewed pages per month. As the database has grown in size and complexity, it has created a number of challenges in maintaining and organizing information, particularly the need to standardize nomenclature and taxonomic classification, while incorporating new allele submissions. Here, we describe the latest database release, the IPD-MHC 2.0 and discuss planned developments. This release incorporates sequence updates and new tools that enhance database queries and improve the submission procedure by utilizing common tools that are able to handle the varied requirements of each MHC-group. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Alternative reactions at the interface of glycolysis and citric acid cycle in Saccharomyces cerevisiae

    PubMed Central

    van Rossum, Harmen M.; Kozak, Barbara U.; Niemeijer, Matthijs S.; Duine, Hendrik J.; Luttik, Marijke A. H.; Boer, Viktor M.; Kötter, Peter; Daran, Jean-Marc G.; van Maris, Antonius J. A.

    2016-01-01

    Pyruvate and acetyl-coenzyme A, located at the interface between glycolysis and TCA cycle, are important intermediates in yeast metabolism and key precursors for industrially relevant products. Rational engineering of their supply requires knowledge of compensatory reactions that replace predominant pathways when these are inactivated. This study investigates effects of individual and combined mutations that inactivate the mitochondrial pyruvate-dehydrogenase (PDH) complex, extramitochondrial citrate synthase (Cit2) and mitochondrial CoA-transferase (Ach1) in Saccharomyces cerevisiae. Additionally, strains with a constitutively expressed carnitine shuttle were constructed and analyzed. A predominant role of the PDH complex in linking glycolysis and TCA cycle in glucose-grown batch cultures could be functionally replaced by the combined activity of the cytosolic PDH bypass and Cit2. Strongly impaired growth and a high incidence of respiratory deficiency in pda1Δ ach1Δ strains showed that synthesis of intramitochondrial acetyl-CoA as a metabolic precursor requires activity of either the PDH complex or Ach1. Constitutive overexpression of AGP2, HNM1, YAT2, YAT1, CRC1 and CAT2 enabled the carnitine shuttle to efficiently link glycolysis and TCA cycle in l-carnitine-supplemented, glucose-grown batch cultures. Strains in which all known reactions at the glycolysis-TCA cycle interface were inactivated still grew slowly on glucose, indicating additional flexibility at this key metabolic junction. PMID:26895788

  5. Crystallization and X-ray diffraction analysis of a putative bacterial class I labdane-related diterpene synthase.

    PubMed

    Serrano-Posada, Hugo; Centeno-Leija, Sara; Rojas-Trejo, Sonia; Stojanoff, Vivian; Rodríguez-Sanoja, Romina; Rudiño-Piñera, Enrique; Sánchez, Sergio

    2015-09-01

    Labdane-related diterpenoids are natural products with potential pharmaceutical applications that are rarely found in bacteria. Here, a putative class I labdane-related diterpene synthase (LrdC) identified by genome mining in a streptomycete was successfully crystallized using the microbatch method. Crystals of the LrdC enzyme were obtained in a holo form with its natural cofactor Mg(2+) (LrdC-Mg(2+)) and in complex with inorganic pyrophosphate (PPi) (LrdC-Mg(2+)-PPi). Crystals of native LrdC-Mg(2+) diffracted to 2.50 Å resolution and belonged to the trigonal space group P3221, with unit-cell parameters a = b = 107.1, c = 89.2 Å. Crystals of the LrdC-Mg(2+)-PPi complex grown in the same conditions as the native enzyme with PEG 8000 diffracted to 2.36 Å resolution and also belonged to the trigonal space group P3221. Crystals of the LrdC-Mg(2+)-PPi complex grown in a second crystallization condition with PEG 3350 diffracted to 2.57 Å resolution and belonged to the monoclinic space group P21, with unit-cell parameters a = 49.9, b = 104.1, c = 66.5 Å, β = 111.4°. The structure was determined by the single-wavelength anomalous dispersion (SAD) technique using the osmium signal from a potassium hexachloroosmate (IV) derivative.

  6. Methane digester for wastewater grown aquatic plants. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1976-01-01

    The purpose of this project was to build and test a small-scale, prototype anaerobic digester using wastewater grown aquatic plants as feed stock. Two 150 gal. digesters of the horizontal ''bag'' shape were constructed and fed with water hyacinths and duckweed plants grown on wastewater. Bio-films were added to increase methane bacteria surface attachment area, and solar heating was used to increase operating temperatures. Repeated difficulties were encountered with the low cost materials and construction techniques used, causing leaks of liquids and methane gas, and in the solar heat exchanger. As a consequence, no reliable data were obtained on performance.more » Due to an inadequate budget, the project was terminated without making construction changes needed to properly operate the system for a long period of time. 15 refs., 7 figs.« less

  7. Increased p-type conductivity in GaN{sub x}Sb{sub 1−x}, experimental and theoretical aspects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segercrantz, N., E-mail: natalie.segercrantz@aalto.fi; Makkonen, I.; Slotte, J.

    2015-08-28

    The large increase in the p-type conductivity observed when nitrogen is added to GaSb has been studied using positron annihilation spectroscopy and ab initio calculations. Doppler broadening measurements have been conducted on samples of GaN{sub x}Sb{sub 1−x} layers grown by molecular beam epitaxy, and the results have been compared with calculated first-principle results corresponding to different defect structures. From the calculated data, binding energies for nitrogen-related defects have also been estimated. Based on the results, the increase in residual hole concentration is explained by an increase in the fraction of negative acceptor-type defects in the material. As the band gapmore » decreases with increasing N concentration, the ionization levels of the defects move closer to the valence band. Ga vacancy-type defects are found to act as positron trapping defects in the material, and the ratio of Ga vacancy-type defects to Ga antisites is found to be higher than that of the p-type bulk GaSb substrate. Beside Ga vacancies, the calculated results imply that complexes of a Ga vacancy and nitrogen could be present in the material.« less

  8. Increasing Growth Yield and Decreasing Acetylation in Escherichia coli by Optimizing the Carbon-to-Magnesium Ratio in Peptide-Based Media.

    PubMed

    Christensen, David G; Orr, James S; Rao, Christopher V; Wolfe, Alan J

    2017-03-15

    Complex media are routinely used to cultivate diverse bacteria. However, this complexity can obscure the factors that govern cell growth. While studying protein acetylation in buffered tryptone broth supplemented with glucose (TB7-glucose), we observed that Escherichia coli did not fully consume glucose prior to stationary phase. However, when we supplemented this medium with magnesium, the glucose was completely consumed during exponential growth, with concomitant increases in cell number and biomass but reduced cell size. Similar results were observed with other sugars and other peptide-based media, including lysogeny broth. Magnesium also limited cell growth for Vibrio fischeri and Bacillus subtilis in TB7-glucose. Finally, magnesium supplementation reduced protein acetylation. Based on these results, we conclude that growth in peptide-based media is magnesium limited. We further conclude that magnesium supplementation can be used to tune protein acetylation without genetic manipulation. These results have the potential to reduce potentially deleterious acetylated isoforms of recombinant proteins without negatively affecting cell growth. IMPORTANCE Bacteria are often grown in complex media. These media are thought to provide the nutrients necessary to grow bacteria to high cell densities. In this work, we found that peptide-based media containing a sugar are magnesium limited for bacterial growth. In particular, magnesium supplementation is necessary for the bacteria to use the sugar for cell growth. Interestingly, in the absence of magnesium supplementation, the bacteria still consume the sugar. However, rather than use it for cell growth, the bacteria instead use the sugar to acetylate lysines on proteins. As lysine acetylation may alter the activity of proteins, this work demonstrates how lysine acetylation can be tuned through magnesium supplementation. These findings may be useful for recombinant protein production, when acetylated isoforms are to be avoided. They also demonstrate how to increase bacterial growth in complex media. Copyright © 2017 American Society for Microbiology.

  9. Increasing Growth Yield and Decreasing Acetylation in Escherichia coli by Optimizing the Carbon-to-Magnesium Ratio in Peptide-Based Media

    PubMed Central

    Christensen, David G.; Orr, James S.; Rao, Christopher V.

    2017-01-01

    ABSTRACT Complex media are routinely used to cultivate diverse bacteria. However, this complexity can obscure the factors that govern cell growth. While studying protein acetylation in buffered tryptone broth supplemented with glucose (TB7-glucose), we observed that Escherichia coli did not fully consume glucose prior to stationary phase. However, when we supplemented this medium with magnesium, the glucose was completely consumed during exponential growth, with concomitant increases in cell number and biomass but reduced cell size. Similar results were observed with other sugars and other peptide-based media, including lysogeny broth. Magnesium also limited cell growth for Vibrio fischeri and Bacillus subtilis in TB7-glucose. Finally, magnesium supplementation reduced protein acetylation. Based on these results, we conclude that growth in peptide-based media is magnesium limited. We further conclude that magnesium supplementation can be used to tune protein acetylation without genetic manipulation. These results have the potential to reduce potentially deleterious acetylated isoforms of recombinant proteins without negatively affecting cell growth. IMPORTANCE Bacteria are often grown in complex media. These media are thought to provide the nutrients necessary to grow bacteria to high cell densities. In this work, we found that peptide-based media containing a sugar are magnesium limited for bacterial growth. In particular, magnesium supplementation is necessary for the bacteria to use the sugar for cell growth. Interestingly, in the absence of magnesium supplementation, the bacteria still consume the sugar. However, rather than use it for cell growth, the bacteria instead use the sugar to acetylate lysines on proteins. As lysine acetylation may alter the activity of proteins, this work demonstrates how lysine acetylation can be tuned through magnesium supplementation. These findings may be useful for recombinant protein production, when acetylated isoforms are to be avoided. They also demonstrate how to increase bacterial growth in complex media. PMID:28062462

  10. Delayed flowering is associated with lack of photosynthetic acclimation in Pigeon pea (Cajanus cajan L.) grown under elevated CO₂.

    PubMed

    Sreeharsha, Rachapudi Venkata; Sekhar, Kalva Madhana; Reddy, Attipalli Ramachandra

    2015-02-01

    In the present study, we investigated the likely consequences of future atmospheric CO2 concentrations [CO2] on growth, physiology and reproductive phenology of Pigeonpea. A short duration Pigeonpea cultivar (ICPL 15011) was grown without N fertilizer from emergence to final harvest in CO2 enriched atmosphere (open top chambers; 550μmolmol(-1)) for two seasons. CO2 enrichment improved both net photosynthetic rates (Asat) and foliar carbohydrate content by 36 and 43%, respectively, which further reflected in dry biomass after harvest, showing an increment of 29% over the control plants. Greater carboxylation rates of Rubisco (Vcmax) and photosynthetic electron transport rates (Jmax) in elevated CO2 grown plants measured during different growth periods, clearly demonstrated lack of photosynthetic acclimation. Further, chlorophyll a fluorescence measurements as indicated by Fv/Fm and ΔF/Fm' ratios justified enhanced photosystem II efficiency. Mass and number of root nodules were significantly high in elevated CO2 grown plants showing 58% increase in nodule mass ratio (NMR) which directly correlated with Pn. Growth under high CO2 showed significant ontogenic changes including delayed flowering. In conclusion, our data demonstrate that the lack of photosynthetic acclimation and increased carbohydrate-nitrogen reserves modulate the vegetative and reproductive growth patterns in Pigeonpea grown under elevated CO2. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Electrical characterisation of deep level defects in Be-doped AlGaAs grown on (100) and (311)A GaAs substrates by MBE

    PubMed Central

    2011-01-01

    The growth of high mobility two-dimensional hole gases (2DHGs) using GaAs-GaAlAs heterostructures has been the subject of many investigations. However, despite many efforts hole mobilities in Be-doped structures grown on (100) GaAs substrate remained considerably lower than those obtained by growing on (311)A oriented surface using silicon as p-type dopant. In this study we will report on the properties of hole traps in a set of p-type Be-doped Al0.29Ga0.71As samples grown by molecular beam epitaxy on (100) and (311)A GaAs substrates using deep level transient spectroscopy (DLTS) technique. In addition, the effect of the level of Be-doping concentration on the hole deep traps is investigated. It was observed that with increasing the Be-doping concentration from 1 × 1016 to 1 × 1017 cm-3 the number of detected electrically active defects decreases for samples grown on (311)A substrate, whereas, it increases for (100) orientated samples. The DLTS measurements also reveal that the activation energies of traps detected in (311)A are lower than those in (100). From these findings it is expected that mobilities of 2DHGs in Be-doped GaAs-GaAlAs devices grown on (311)A should be higher than those on (100). PMID:21711687

  12. The influence of elevated CO2 on non-structural carbohydrate distribution and fructan accumulation in wheat canopies

    NASA Technical Reports Server (NTRS)

    Smart, D. R.; Chatterton, N. J.; Bugbee, B.

    1994-01-01

    We grew 2.4 m2 wheat canopies in a large growth chamber under high photosynthetic photon flux (1000 micromoles m-2 s-1) and using two CO2 concentrations, 360 and 1200 micromoles mol-1. Photosynthetically active radiation (400-700 nm) was attenuated slightly faster through canopies grown in 360 micromoles mol-1 than through canopies grown in 1200 micromoles mol-1, even though high-CO2 canopies attained larger leaf area indices. Tissue fractions were sampled from each 5-cm layer of the canopies. Leaf tissue sampled from the tops of canopies grown in 1200 micromoles mol-1 accumulated significantly more total non-structural carbohydrate, starch, fructan, sucrose, and glucose (p < 0.05) than for canopies grown in 360 micromoles mol-1. Non-structural carbohydrate did not significantly increase in the lower canopy layers of the elevated CO2 treatment. Elevated CO2 induced fructan synthesis in all leaf tissue fractions, but fructan formation was greatest in the uppermost leaf area. A moderate temperature reduction of 10 degrees C over 5 d increased starch, fructan and glucose levels in canopies grown in 1200 micromoles mol-1, but concentrations of sucrose and fructose decreased slightly or remained unchanged. Those results may correspond with the use of fructosyl-residues and release of glucose when sucrose is consumed in fructan synthesis.

  13. Positron annihilation study of defects in electron-irradiated single crystal zinc oxide

    NASA Astrophysics Data System (ADS)

    To, C. K.; Yang, B.; Beling, C. D.; Fung, S.; Ling, C. C.; Gong, M.

    2011-01-01

    Pressurized melt grown zinc oxide (ZnO) single crystals purchased from Cermet Inc. were irradiated by 2MeV electrons with fluence of 6x1017cm-2. Isochronal annealing from 100°C-800°C was performed on the crystals under argon and air ambience. Variable Energy Doppler Broadening Spectroscopy (VEDBS) was carried out on both the as-grown and the irradiated samples at each annealing step. The migration, agglomeration and annealing of grown-in and irradiated-introduced defects were studied. It was observed that the grown-in vacancy-type defects concentration decreased at 300°C and 600 °C. For the irradiated sample annealed in argon, the positron trapping vacancy-type defect concentration decreased at 300°C and 600°C. Further annealing the as-grown and irradiated samples in argon increased the S parameter further. For the irradiated sample annealed in air, the vacancy-type defect concentration decreases at 300°C and 700°C.

  14. Can Ocimum basilicum L. and Ocimum tenuiflorum L. in vitro culture be a potential source of secondary metabolites?

    PubMed

    Bhuvaneshwari, Karuppiah; Gokulanathan, Ananda; Jayanthi, Malayandi; Govindasamy, Vaithiyanathan; Milella, Luigi; Lee, Sungyoung; Yang, Deok Chun; Girija, Shanmugam

    2016-03-01

    In this study Ocimum basilicum L. (OB) and Ocimum tenuiflorum L. (OT) in vitro culture standardisation for increasing eugenol distribution, in comparison to their respective field grown parts was carried out. Eugenol was quantified using an optimised HPLC method and its relation with the total phenolic content (TPC) was measured. In vitro grown leaves and somatic embryos, of both OB and OT were found to contain similar quantities of eugenol (85μg/g approximately), higher than OB and OT field-grown leaves (30.2μg/g and 25.1μg/g respectively). It was also determined that in vitro grown leaves were richer in TPC than the field-grown intact organs. Results demonstrated the prominence of in vitro cultures for eugenol extraction. This study underlines that important food flavouring metabolites (e.g. vanillin, vanillic acids) might be produced, via the eugenol pathway, in Ocimum species that may be a good potential source of eugenol. Copyright © 2015. Published by Elsevier Ltd.

  15. Response of Two Legumes to Two Ultraviolet-B Radiation Regimes

    NASA Technical Reports Server (NTRS)

    Levy, Daniel L.; Skiles, J. W.

    2000-01-01

    Depletion of the stratospheric ozone layer has been directly linked to increased levels of UV radiation at the earth's surface. The purpose of this study was to evaluate the responses of soybean (Glycine max) and alfalfa (Medicago sativa) to increased UV-B radiation (280-320 nm). Soybean and alfalfa were grown successively in a growth chamber that provided UV-B intensities 45% above nominal summer field levels. Mylar-D (UVB opaque) and mono-acetate (UV-B transparent) films were used to establish the two UV-B treatments. Soybean grown under increased UV showed 21% smaller internodal lengths and higher concentrations of UV-B absorbing pigments (i.e. flavonoids) compared to plants grown under no UV. Significant results for alfalfa included 22% greater leaf flavonoid concentration under increased UV, 14% greater leaf chlorophyll concentration under no UV, and 32% greater above-ground biomass with no UV. These leguminous species possess mechanisms that protect against UV-B damage as indicated by increases in foliar concentrations of UV-B absorbing compounds. Alfalfa appears to be more sensitive to UV-B damage than soybean. Remote sensing of chlorophyll fluorescence may offer a means of monitoring UV-induced plant stress and damage.

  16. Boosting autofermentation rates and product yields with sodium stress cycling: application to production of renewable fuels by cyanobacteria.

    PubMed

    Carrieri, Damian; Momot, Dariya; Brasg, Ian A; Ananyev, Gennady; Lenz, Oliver; Bryant, Donald A; Dismukes, G Charles

    2010-10-01

    Sodium concentration cycling was examined as a new strategy for redistributing carbon storage products and increasing autofermentative product yields following photosynthetic carbon fixation in the cyanobacterium Arthrospira (Spirulina) maxima. The salt-tolerant hypercarbonate strain CS-328 was grown in a medium containing 0.24 to 1.24 M sodium, resulting in increased biosynthesis of soluble carbohydrates to up to 50% of the dry weight at 1.24 M sodium. Hypoionic stress during dark anaerobic metabolism (autofermentation) was induced by resuspending filaments in low-sodium (bi)carbonate buffer (0.21 M), which resulted in accelerated autofermentation rates. For cells grown in 1.24 M NaCl, the fermentative yields of acetate, ethanol, and formate increase substantially to 1.56, 0.75, and 1.54 mmol/(g [dry weight] of cells·day), respectively (36-, 121-, and 6-fold increases in rates relative to cells grown in 0.24 M NaCl). Catabolism of endogenous carbohydrate increased by approximately 2-fold upon hypoionic stress. For cultures grown at all salt concentrations, hydrogen was produced, but its yield did not correlate with increased catabolism of soluble carbohydrates. Instead, ethanol excretion becomes a preferred route for fermentative NADH reoxidation, together with intracellular accumulation of reduced products of acetyl coenzyme A (acetyl-CoA) formation when cells are hypoionically stressed. In the absence of hypoionic stress, hydrogen production is a major beneficial pathway for NAD(+) regeneration without wasting carbon intermediates such as ethanol derived from acetyl-CoA. This switch presumably improves the overall cellular economy by retaining carbon within the cell until aerobic conditions return and the acetyl unit can be used for biosynthesis or oxidized via respiration for a much greater energy return.

  17. Expression of virulence factors by Staphylococcus aureus grown in serum.

    PubMed

    Oogai, Yuichi; Matsuo, Miki; Hashimoto, Masahito; Kato, Fuminori; Sugai, Motoyuki; Komatsuzawa, Hitoshi

    2011-11-01

    Staphylococcus aureus produces many virulence factors, including toxins, immune-modulatory factors, and exoenzymes. Previous studies involving the analysis of virulence expression were mainly performed by in vitro experiments using bacterial medium. However, when S. aureus infects a host, the bacterial growth conditions are quite different from those in a medium, which may be related to the different expression of virulence factors in the host. In this study, we investigated the expression of virulence factors in S. aureus grown in calf serum. The expression of many virulence factors, including hemolysins, enterotoxins, proteases, and iron acquisition factors, was significantly increased compared with that in bacterial medium. In addition, the expression of RNA III, a global regulon for virulence expression, was significantly increased. This effect was partially restored by the addition of 300 μM FeCl₃ into serum, suggesting that iron depletion is associated with the increased expression of virulence factors in serum. In chemically defined medium without iron, a similar effect was observed. In a mutant with agr inactivated grown in serum, the expression of RNA III, psm, and sec4 was not increased, while other factors were still induced in the mutant, suggesting that another regulatory factor(s) is involved. In addition, we found that serum albumin is a major factor for the capture of free iron to prevent the supply of iron to bacteria grown in serum. These results indicate that S. aureus expresses virulence factors in adaptation to the host environment.

  18. Water stress, CO2 and photoperiod influence hormone levels in wheat

    NASA Technical Reports Server (NTRS)

    Nan, Rubin; Carman, John G.; Salisbury, Frank B.; Campbell, W. F. (Principal Investigator)

    2002-01-01

    'Super Dwarf' wheat (Triticum aestivum L.) plants have been grown from seed to maturity in the Mir space station where they were periodically exposed, because of microgravity and other constraints, to water deficit, waterlogging, high CO2 levels, and low light intensities. The plants produced many tillers, but none of them produced viable seed. Studies have been initiated to determine why the plants responded in these ways. In the present study, effects of the listed stresses on abscisic acid (ABA), indole-3-acetic acid (IAA) and isopentenyl adenosine ([9R]iP) levels in roots and leaves of plants grown under otherwise near optimal conditions on earth were measured. Hormones were extracted, purified by HPLC, and quantified by noncompetitive indirect ELISA. In response to water deficit, ABA levels increased in roots and leaves, IAA levels decreased in roots and leaves, and [9R]iP levels increased in leaves but decreased in roots. In response to waterlogging, ABA, IAA and [9R]iP levels briefly increased in roots and leaves and then decreased. When portions of the root system were exposed to waterlogging and/or water deficit, ABA levels in leaves increased while [9R]iP and IAA levels decreased. These responses were correlated with the percentage of the root system stressed. At a low photosynthetic photon flux (100 micromoles m-2 s-1), plants grown in continuous light had higher leaf ABA levels than plants grown using an 18 or 21 h photoperiod.

  19. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    DOE PAGES

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.; ...

    2017-05-24

    13C metabolic flux analysis ( 13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant ofmore » 13C MFA known as 2-Scale 13C metabolic flux analysis (2S- 13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical sugar ratio that is known to allow galactose to enter the cell. Additionally, we report a number of fluxomic changes associated with these growth rate increases and unexpected flux profile redistributions resulting from deletion of SIP1 in glucose-only medium.« less

  20. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.

    13C metabolic flux analysis ( 13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant ofmore » 13C MFA known as 2-Scale 13C metabolic flux analysis (2S- 13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical sugar ratio that is known to allow galactose to enter the cell. Additionally, we report a number of fluxomic changes associated with these growth rate increases and unexpected flux profile redistributions resulting from deletion of SIP1 in glucose-only medium.« less

  1. Flux-Enabled Exploration of the Role of Sip1 in Galactose Yeast Metabolism

    PubMed Central

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.; Gin, Jennifer; Apel, Amanda Reider; Mukhopadhyay, Aindrila; García Martín, Héctor; Keasling, Jay D.

    2017-01-01

    13C metabolic flux analysis (13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon known as glucose repression or carbon catabolite repression. The SIP1 gene, encoding a part of this complex, has received little attention, presumably, because its knockout lacks a growth phenotype. We present a fluxomic investigation of the relative effects of the presence of galactose in classically glucose-repressing media and/or knockout of SIP1 using a multi-scale variant of 13C MFA known as 2-Scale 13C metabolic flux analysis (2S-13C MFA). In this study, all strains have the galactose metabolism deactivated (gal1Δ background) so as to be able to separate the metabolic effects purely related to glucose repression from those arising from galactose metabolism. The resulting flux profiles reveal that the presence of galactose in classically glucose-repressing conditions, for a CEN.PK113-7D gal1Δ background, results in a substantial decrease in pentose phosphate pathway (PPP) flux and increased flow from cytosolic pyruvate and malate through the mitochondria toward cytosolic branched-chain amino acid biosynthesis. These fluxomic redistributions are accompanied by a higher maximum specific growth rate, both seemingly in violation of glucose repression. Deletion of SIP1 in the CEN.PK113-7D gal1Δ cells grown in mixed glucose/galactose medium results in a further increase. Knockout of this gene in cells grown in glucose-only medium results in no change in growth rate and a corresponding decrease in glucose and ethanol exchange fluxes and flux through pathways involved in aspartate/threonine biosynthesis. Glucose repression appears to be violated at a 1/10 ratio of galactose-to-glucose. Based on the scientific literature, we may have conducted our experiments near a critical sugar ratio that is known to allow galactose to enter the cell. Additionally, we report a number of fluxomic changes associated with these growth rate increases and unexpected flux profile redistributions resulting from deletion of SIP1 in glucose-only medium. PMID:28596955

  2. 78 FR 28147 - Grapes Grown in Designated Area of Southeastern California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... Service 7 CFR Part 925 [Doc. No. AMS-FV-13-0005; FV13-925-1 PR] Grapes Grown in Designated Area of... California Desert Grape Administrative Committee (Committee) for the 2013 and subsequent fiscal periods from $0.0150 to $0.0165 per 18-pound lug of grapes handled. The Committee locally administers the...

  3. POULTRY-RELATED MICROBIOME CHANGES FROM EMBRYONIC DEVELOPMENT TO FINAL PRODUCT: A SINGLE PASTURED-RAISED FLOCK FARM-TO-FORK ANALYSIS

    USDA-ARS?s Scientific Manuscript database

    Background: While conventionally grown poultry continues to dominate the U.S. poultry industry, there is an increasing demand for locally-grown, “all natural” alternatives. Unfortunately, limited research has been done on this type of poultry management practice, and thus many of these management e...

  4. Monitoring of visually graded structural lumber

    Treesearch

    David E. Kretschmann; James W. Evans; Linda Brown

    To satisfy the increased demand for forest products, much of the future timber supply is expected to be derived from improved trees grown on managed plantations. This fast-grown resource will tend to be harvested in short-age rotations and will contain higher proportions of juvenile wood compared with wood in current harvests. As a result, current allowable properties...

  5. Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata

    USDA-ARS?s Scientific Manuscript database

    Amending soils with Se-hyperaccumulator plant derived sources of selenium (Se) may be useful for increasing Se content in food crops in Se-deficient regions of the world. In this study, we evaluated total Se and the different chemical species of Se in broccoli and carrots grown in soils amended with...

  6. GABA-A receptor antagonists increase firing, bursting and synchrony of spontaneous activity in neuronal networks grown on microelectrode arrays: a step towards chemical "fingerprinting"

    EPA Science Inventory

    Assessment of effects on spontaneous network activity in neurons grown on MEAs is a proposed method to screen chemicals for potential neurotoxicity. In addition, differential effects on network activity (chemical "fingerprints") could be used to classify chemical modes of action....

  7. Comparative transcriptome analysis of Methylibium petroleiphilum PM1 exposed to the fuel oxygenates methyl tert-butyl ether and ethanol.

    PubMed

    Hristova, Krassimira R; Schmidt, Radomir; Chakicherla, Anu Y; Legler, Tina C; Wu, Janice; Chain, Patrick S; Scow, Kate M; Kane, Staci R

    2007-11-01

    High-density whole-genome cDNA microarrays were used to investigate substrate-dependent gene expression of Methylibium petroleiphilum PM1, one of the best-characterized aerobic methyl tert-butyl ether (MTBE)-degrading bacteria. Differential gene expression profiling was conducted with PM1 grown on MTBE and ethanol as sole carbon sources. Based on microarray high scores and protein similarity analysis, an MTBE regulon located on the megaplasmid was identified for further investigation. Putative functions for enzymes encoded in this regulon are described with relevance to the predicted MTBE degradation pathway. A new unique dioxygenase enzyme system that carries out the hydroxylation of tert-butyl alcohol to 2-methyl-2-hydroxy-1-propanol in M. petroleiphilum PM1 was discovered. Hypotheses regarding the acquisition and evolution of MTBE genes as well as the involvement of IS elements in these complex processes were formulated. The pathways for toluene, phenol, and alkane oxidation via toluene monooxygenase, phenol hydroxylase, and propane monooxygenase, respectively, were upregulated in MTBE-grown cells compared to ethanol-grown cells. Four out of nine putative cyclohexanone monooxygenases were also upregulated in MTBE-grown cells. The expression data allowed prediction of several hitherto-unknown enzymes of the upper MTBE degradation pathway in M. petroleiphilum PM1 and aided our understanding of the regulation of metabolic processes that may occur in response to pollutant mixtures and perturbations in the environment.

  8. Preliminary Evaluation of Platelet Rich Fibrin-Mediated Tissue Repair in Immature Canine Pulpless Teeth.

    PubMed

    Wang, Qi Lin; Yang, Pan Pan; Ge, Li Hong; Liu, He

    2016-03-01

    To evaluate the use of platelet-rich fibrin (PRF) in the regenerative therapy of immature canine permanent teeth. Eight immature premolars of beagle dogs were pulp extracted and cleaned with irrigation, then divided into two groups of empty root canals and those filled with a PRF clot. All of the eight premolars were sealed with mineral trioxide aggregate and glass ionomer cement. Two premolars were left naturally grown as a positive control. The root development was assessed radiographically and histologically after 12 weeks. The radiological findings showed greater increases in the thickness of lateral dentinal wall in the PRF group than in the vacant group. Histologically, dental-associated mineral tissue, connective tissue, and bone-like mineral tissue grew into the root canals independent of PRF clot use. The PRF was able to increase the thickness of dental-associated mineral tissue. However, the vital tissue differed from the pulp dentin complex. Our study demonstrated the feasibility of using PRF-mediated regenerative therapy in pulpless immature teeth for improving tissue repair.

  9. Diets of giants: the nutritional value of herbivorous dinosaur diet during the Mesozoic

    NASA Astrophysics Data System (ADS)

    Gill, Fiona; Hummel, Juergen; Sharifi, Reza; Lee, Alexandra; Lomax, Barry

    2017-04-01

    A major uncertainty in estimating energy budgets and population densities of extinct animals is the carrying capacity of their ecosystems, constrained by net primary productivity (NPP) and digestible energy content of that NPP. The hypothesis that increases in NPP of land plants due to elevated atmospheric CO2 contributed to the unparalleled size of the sauropods, the largest ever land animals, has recently been rejected, based on modern studies on herbivorous insects. However, the nutritional value of plants grown under elevated CO2 levels might be very different for vertebrate megaherbivores with more complex digestive systems and different protein:energy requirements than insects. Here we show that the metabolisable energy (ME) value of five species of potential dinosaur food plants does not decline consistently with increasing CO2 growth concentrations, with maxima observed at 1200 ppm CO2. Our data potentially rebut the hypothesis of constraints on herbivore diet quality in the Mesozoic due to CO2 levels.

  10. The changing demographic, legal, and technological contexts of political representation

    PubMed Central

    Forest, Benjamin

    2005-01-01

    Three developments have created challenges for political representation in the U.S. and particularly for the use of territorially based representation (election by district). First, the demographic complexity of the U.S. population has grown both in absolute terms and in terms of residential patterns. Second, legal developments since the 1960s have recognized an increasing number of groups as eligible for voting rights protection. Third, the growing technical capacities of computer technology, particularly Geographic Information Systems, have allowed political parties and other organizations to create election districts with increasingly precise political and demographic characteristics. Scholars have made considerable progress in measuring and evaluating the racial and partisan biases of districting plans, and some states have tried to use Geographic Information Systems technology to produce more representative districts. However, case studies of Texas and Arizona illustrate that such analytic and technical advances have not overcome the basic contradictions that underlie the American system of territorial political representation. PMID:16230615

  11. Organizational Characteristics Associated With Fundraising Performance of Nonprofit Hospitals.

    PubMed

    Erwin, Cathleen Owens; Landry, Amy Yarbrough

    2015-01-01

    Fundraising has become increasingly important to nonprofit hospitals as access to capital has grown more difficult and reimbursement for services more complex. This study analyzes the variation in organizational characteristics and fundraising performance among nonprofit acute care hospitals in the United States to identify and measure critical factors related to one key fundraising performance indicator: public support. Results indicate that the presence of an endowment, along with its value, investments in fundraising, and the geographic location of the organization, account for approximately 46% of variance in public support among nonprofit hospitals. The use of a separate foundation for the fundraising operation is not necessarily associated with measures of fundraising success; however, a majority of hospitals do use a foundation, signaling a strategic choice that may be made for numerous reasons. The study results and limitations are discussed and recommendations are made for maximizing the effectiveness of the fundraising enterprise within nonprofit hospitals. Increasing awareness of challenges associated with fundraising success will enhance the strategic management of fundraising operations by hospital executives and board members.

  12. Performance evaluation of a pilot-scale anaerobic membrane bioreactor (AnMBR) treating ethanol thin stillage.

    PubMed

    Dereli, R K; Urban, D R; Heffernan, B; Jordan, J A; Ewing, J; Rosenberger, G T; Dunaev, T I

    2012-01-01

    The ethanol industry has grown rapidly during the past ten years, mainly due to increasing oil prices. However, efficient and cost-effective solutions for treating thin stillage wastewater have still to be developed. The anaerobic membrane bioreactor (AnMBR) technology combines classical anaerobic treatment in a completely-stirred tank reactor (CSTR) with membrane separation. The combination of these two technologies can achieve a superior effluent quality and also increase biogas production compared to conventional anaerobic solutions. A pilot-scale AnMBR treating thin stillage achieved very high treatment efficiencies in terms of chemical oxygen demand (COD) and total suspended solids (TSS) removal (>98%). An average permeate flux of 4.3 L/m2 x h was achieved at relatively low transmembrane pressure (TMP) values (0.1-0.2 bars) with flat-sheet membranes. Experience gained during the pilot-scale studies provides valuable information for scaling up of AnMBRs treating complex and high-strength wastewaters.

  13. Adaptation of Rhodopseudomonas acidophila strain 7050 to growth at different light intensities: what are the benefits to changing the type of LH2?

    PubMed

    Gardiner, A T; Niedzwiedzki, D M; Cogdell, R J

    2018-04-01

    Typical purple bacterial photosynthetic units consist of light harvesting one/reaction centre 'core' complexes surrounded by light harvesting two complexes. Factors such as the number and size of photosynthetic units per cell, as well as the type of light harvesting two complex that is produced, are controlled by environmental factors. In this paper, the change in the type of LH2 present in the Rhodopsuedomonas acidophila strain 7050 is described when cells are grown at a range of different light intensities. This species contains multiple pucBA genes that encode the apoproteins that form light-harvesting complex two, and a more complex mixture of spectroscopic forms of this complex has been found than was previously thought to be the case. Femto-second time resolved absorption has been used to investigate how the energy transfer properties in the membranes of high-light and low-light adapted cells change as the composition of the LH2 complexes varies.

  14. Generative complexity of Gray-Scott model

    NASA Astrophysics Data System (ADS)

    Adamatzky, Andrew

    2018-03-01

    In the Gray-Scott reaction-diffusion system one reactant is constantly fed in the system, another reactant is reproduced by consuming the supplied reactant and also converted to an inert product. The rate of feeding one reactant in the system and the rate of removing another reactant from the system determine configurations of concentration profiles: stripes, spots, waves. We calculate the generative complexity-a morphological complexity of concentration profiles grown from a point-wise perturbation of the medium-of the Gray-Scott system for a range of the feeding and removal rates. The morphological complexity is evaluated using Shannon entropy, Simpson diversity, approximation of Lempel-Ziv complexity, and expressivity (Shannon entropy divided by space-filling). We analyse behaviour of the systems with highest values of the generative morphological complexity and show that the Gray-Scott systems expressing highest levels of the complexity are composed of the wave-fragments (similar to wave-fragments in sub-excitable media) and travelling localisations (similar to quasi-dissipative solitons and gliders in Conway's Game of Life).

  15. Mapping the Carbon Footprint of Nations.

    PubMed

    Kanemoto, Keiichiro; Moran, Daniel; Hertwich, Edgar G

    2016-10-04

    Life cycle thinking asks companies and consumers to take responsibility for emissions along their entire supply chain. As the world economy becomes more complex it is increasingly difficult to connect consumers and other downstream users to the origins of their greenhouse gas (GHG) emissions. Given the important role of subnational entities-cities, states, and companies-in GHG abatement efforts, it would be advantageous to better link downstream users to facilities and regulators who control primary emissions. We present a new spatially explicit carbon footprint method for establishing such connections. We find that for most developed countries the carbon footprint has diluted and spread: for example, since 1970 the U.S. carbon footprint has grown 23% territorially, and 38% in consumption-based terms, but nearly 200% in spatial extent (i.e., the minimum area needed to contain 90% of emissions). The rapidly growing carbon footprints of China and India, however, do not show such a spatial expansion of their consumption footprints in spite of their increasing participation in the world economy. In their case, urbanization concentrates domestic pollution and this offsets the increasing importance of imports.

  16. Methanol emissions from maize: Ontogenetic dependence to varying light conditions and guttation as an additional factor constraining the flux

    NASA Astrophysics Data System (ADS)

    Mozaffar, A.; Schoon, N.; Digrado, A.; Bachy, A.; Delaplace, P.; du Jardin, P.; Fauconnier, M.-L.; Aubinet, M.; Heinesch, B.; Amelynck, C.

    2017-03-01

    Because of its high abundance and long lifetime compared to other volatile organic compounds in the atmosphere, methanol (CH3OH) plays an important role in atmospheric chemistry. Even though agricultural crops are believed to be a large source of methanol, emission inventories from those crop ecosystems are still scarce and little information is available concerning the driving mechanisms for methanol production and emission at different developmental stages of the plants/leaves. This study focuses on methanol emissions from Zea mays L. (maize), which is vastly cultivated throughout the world. Flux measurements have been performed on young plants, almost fully grown leaves and fully grown leaves, enclosed in dynamic flow-through enclosures in a temperature and light-controlled environmental chamber. Strong differences in the response of methanol emissions to variations in PPFD (Photosynthetic Photon Flux Density) were noticed between the young plants, almost fully grown and fully grown leaves. Moreover, young maize plants showed strong emission peaks following light/dark transitions, for which guttation can be put forward as a hypothetical pathway. Young plants' average daily methanol fluxes exceeded by a factor of 17 those of almost fully grown and fully grown leaves when expressed per leaf area. Absolute flux values were found to be smaller than those reported in the literature, but in fair agreement with recent ecosystem scale flux measurements above a maize field of the same variety as used in this study. The flux measurements in the current study were used to evaluate the dynamic biogenic volatile organic compound (BVOC) emission model of Niinemets and Reichstein. The modelled and measured fluxes from almost fully grown leaves were found to agree best when a temperature and light dependent methanol production function was applied. However, this production function turned out not to be suitable for modelling the observed emissions from the young plants, indicating that production must be influenced by (an) other parameter(s). This study clearly shows that methanol emission from maize is complex, especially for young plants. Additional studies at different developmental stages of other crop species will be required in order to develop accurate methanol emission algorithms for agricultural crops.

  17. BiVO4 thin film photoanodes grown by chemical vapor deposition.

    PubMed

    Alarcón-Lladó, Esther; Chen, Le; Hettick, Mark; Mashouf, Neeka; Lin, Yongjing; Javey, Ali; Ager, Joel W

    2014-01-28

    BiVO4 thin film photoanodes were grown by vapor transport chemical deposition on FTO/glass substrates. By controlling the flow rate, the temperatures of the Bi and V sources (Bi metal and V2O5 powder, respectively), and the temperature of the deposition zone in a two-zone furnace, single-phase monoclinic BiVO4 thin films can be obtained. The CVD-grown films produce global AM1.5 photocurrent densities up to 1 mA cm(-2) in aqueous conditions in the presence of a sacrificial reagent. Front illuminated photocatalytic performance can be improved by inserting either a SnO2 hole blocking layer and/or a thin, extrinsically Mo doped BiVO4 layer between the FTO and the CVD-grown layer. The incident photon to current efficiency (IPCE), measured under front illumination, for BiVO4 grown directly on FTO/glass is about 10% for wavelengths below 450 nm at a bias of +0.6 V vs. Ag/AgCl. For BiVO4 grown on a 40 nm SnO2/20 nm Mo-doped BiVO4 back contact, the IPCE is increased to over 40% at wavelengths below 420 nm.

  18. Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN

    NASA Astrophysics Data System (ADS)

    Kyle, Erin C. H.; Kaun, Stephen W.; Young, Erin C.; Speck, James S.

    2015-06-01

    We have examined the effect of an indium surfactant on the growth of p-type GaN by ammonia-based molecular beam epitaxy. p-type GaN was grown at temperatures ranging from 700 to 780 °C with and without an indium surfactant. The Mg concentration in all films in this study was 4.5-6 × 1019 cm-3 as measured by secondary ion mass spectroscopy. All p-type GaN films grown with an indium surfactant had higher p-type conductivities and higher hole concentrations than similar films grown without an indium surfactant. The lowest p-type GaN room temperature resistivity was 0.59 Ω-cm, and the highest room temperature carrier concentration was 1.6 × 1018 cm-3. Fits of the temperature-dependent carrier concentration data showed a one to two order of magnitude lower unintentional compensating defect concentration in samples grown with the indium surfactant. Samples grown at higher temperature had a lower active acceptor concentration. Improvements in band-edge luminescence were seen by cathodoluminescence for samples grown with the indium surfactant, confirming the trends seen in the Hall data.

  19. Suppression of gate leakage current in in-situ grown AlN/InAlN/AlN/GaN heterostructures based on the control of internal polarization fields

    NASA Astrophysics Data System (ADS)

    Kotani, Junji; Yamada, Atsushi; Ishiguro, Tetsuro; Yamaguchi, Hideshi; Nakamura, Norikazu

    2017-03-01

    This paper investigates the gate leakage characteristics of in-situ AlN capped InAlN/AlN/GaN heterostructures grown by metal-organic vapor phase epitaxy. It was revealed that the leakage characteristics of AlN capped InAlN/AlN/GaN heterostructures are strongly dependent on the growth temperature of the AlN cap. For an AlN capped structure with an AlN growth temperature of 740 °C, the leakage current even increased although there exists a large bandgap material on InAlN/AlN/GaN heterostructures. On the other hand, a large reduction of the gate leakage current by 4-5 orders of magnitudes was achieved with a very low AlN growth temperature of 430 °C. X-ray diffraction analysis of the AlN cap grown at 740 °C indicated that the AlN layer is tensile-strained. In contrast to this result, the amorphous structure was confirmed for the AlN cap grown at 430 °C by transmission electron microscopy. Furthermore, theoretical analysis based on one-dimensional band simulation was carried out, and the large increase in two-dimensional electron gas (2DEG) observed in Hall measurements was well reproduced by taking into account the spontaneous and piezo-electric polarization in the AlN layer grown at 740 °C. For the AlN capped structure grown at 430 °C, it is believed that the reduced polarization field in the AlN cap suppressed the penetration of 2DEG into the InAlN barrier layer, resulting in a small impact on 2DEG mobility and density. We believe that an in-situ grown AlN cap with a very low growth temperature of 430 °C is a promising candidate for high-frequency/high-power GaN-based devices with low gate leakage current.

  20. Growth, pod, and seed yield, and gas exchange of hydroponically grown peanut in response to CO2 enrichment

    NASA Technical Reports Server (NTRS)

    Stanciel, K.; Mortley, D. G.; Hileman, D. R.; Loretan, P. A.; Bonsi, C. K.; Hill, W. A.

    2000-01-01

    The effects of elevated CO2 on growth, pod, and seed yield, and gas exchange of 'Georgia Red' peanut (Arachis hypogaea L.) were evaluated under controlled environmental conditions. Plants were exposed to concentrations of 400 (ambient), 800, and 1200 micromoles mol-1 CO2 in reach-in growth chambers. Foliage fresh and dry weights increased with increased CO2 up to 800 micromoles mol-1, but declined at 1200 micromoles mol-1. The number and the fresh and dry weights of pods also increased with increasing CO2 concentration. However, the yield of immature pods was not significantly influenced by increased CO2. Total seed yield increased 33% from ambient to 800 micromoles mol-1 CO2, and 4% from 800 to 1200 micromoles mol-1 CO2. Harvest index increased with increasing CO2. Branch length increased while specific leaf area decreased linearly as CO2 increased from ambient to 1200 micromoles mol-1. Net photosynthetic rate was highest among plants grown at 800 micromoles mol-1. Stomatal conductance decreased with increased CO2. Carboxylation efficiency was similar among plants grown at 400 and 800 micromoles mol-1 and decreased at 1200 micromoles mol-1 CO2. These results suggest that CO2 enrichment from 400 to 800 micromoles mol-1 had positive effects on peanut growth and yield, but above 800 micromoles mol-1 enrichment seed yield increased only marginally.

  1. Retrospective Evaluation of the Short-Term Sustainability of the Locally Grown Produce Initiative of the Hunger Prevention and Nutrition Assistance Program in New York State.

    PubMed

    Allsopp, Marie A K; Hosler, Akiko S

    2018-03-27

    The Hunger Prevention and Nutrition Assistance Program (HPNAP) is a New York State Department of Health program. The HPNAP improves nutritional quality of food available at food banks, food pantries, soup kitchens, and emergency shelters through contractual relationships to fund the purchase, delivery, storage, and service of nutritious food. To determine whether a one-time fiscal stimulus of the Locally Grown Produce Initiative to HPNAP contractors in 2012-2013 would result in a short-term sustainable increase in the proportion of dollars spent on New York State Grown (NYSG) produce. Quasi-experimental, nonequivalent control group design. We analyzed New York State Department of Health administrative data regarding expenditures on all produce and NYSG produce by HPNAP contractors. New York State. The proportion of dollars spent on NYSG produce during 2011-2012 (preintervention) and 2013-2014 (postintervention) was compared between HPNAP food bank contractors (recipients of stimulus money, n = 8) and non-food bank contractors (nonrecipients, n = 34) using nonparametric methods. The HPNAP Locally Grown Produce Initiative was associated with an increased proportion of NYSG produce spending by food bank contractors that received a fiscal stimulus 1 year later. Upstate food banks had the largest increase (median 31.6%) among all HPNAP contractors. The results of this study revealed that the Locally Grown Produce Initiative fiscal stimulus had a positive, year-long and statewide effect on the proportion of expenditure on NYSG produce by food banks. We hope that the initial success seen in New York State may encourage other states to adopt similar initiatives in future.

  2. Using mini-rockwool blocks as growing media for limited-cluster tomato production

    NASA Technical Reports Server (NTRS)

    Logendra, L. S.; Gianfagna, T. J.; Janes, H. W.

    2001-01-01

    Rockwool is an excellent growing medium for the hydroponic production of tomato; however, the standard size rockwool blocks [4 x 4 x 2.5 inches (10 x 10 x 6.3 cm) or 3 x 3 x 2.5 inches (7.5 x 7.5 x 6.3 cm)] are expensive. The following experiments were conducted with less expensive minirock wool blocks (MRBs), on rayon polyester material (RPM) as a bench top liner, to reduce the production cost of tomatoes (Lycopersicon esculentum) grown in a limited-cluster, ebb and flood hydroponic cultivation system. Fruit yield for single-cluster plants growing in MRBs [2 x 2 x 1.6 inches (5 x 5 x 4 cm) and 1.6 x 1.6 x 1.6 inches (4 x 4 x 4 cm)] was not significantly different from plants grown in larger sized blocks (3 x 3 x 2.5 inches). When the bench top was lined with RPM, roots penetrated the RPM, and an extensive root mat developed between the RPM and the bench top. The fruit yield from plants on RPM was significantly increased compared to plants without RPM due to increases in fruit size and fruit number. RPM also significantly reduced the incidence of blossom-end rot. In a second experiment, single- and double-cluster plants were grown on RPM. Fruit yield for double-cluster plants was 40% greater than for single-cluster plants due to an increase in fruit number, although the fruit were smaller in size. As in the first experiment, fruit yield for all plants grown in MRBs was not significantly different from plants grown in the larger sized blocks. MRBs and a RPM bench liner are an effective combination in the production of limited-cluster hydroponic tomatoes.

  3. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance

    PubMed Central

    Ene, Iuliana V.; Walker, Louise A.; Schiavone, Marion; Lee, Keunsook K.; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A. R.; Munro, Carol A.

    2015-01-01

    ABSTRACT The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. PMID:26220968

  4. Exciton polariton spectra and limiting factors for the room-temperature photoluminescence efficiency in ZnO

    NASA Astrophysics Data System (ADS)

    Chichibu, S. F.; Uedono, A.; Tsukazaki, A.; Onuma, T.; Zamfirescu, M.; Ohtomo, A.; Kavokin, A.; Cantwell, G.; Litton, C. W.; Sota, T.; Kawasaki, M.

    2005-04-01

    Static and dynamic responses of excitons in state-of-the-art bulk and epitaxial ZnO are reviewed to support the possible realization of polariton lasers, which are coherent and monochromatic light sources due to Bose condensation of exciton-polaritons in semiconductor microcavities (MCs). To grasp the current problems and to pave the way for obtaining ZnO epilayers of improved quality, the following four principal subjects are treated: (i) polarized optical reflectance (OR), photoreflectance (PR) and photoluminescence (PL) spectra of the bulk and epitaxial ZnO were recorded at 8 K. Energies of PR resonances corresponded to those of upper and lower exciton-polariton branches, where A-, B- and C-excitons couple simultaneously to an electromagnetic wave. PL peaks due to the corresponding polariton branches were observed. Longitudinal-transverse splittings (ωLT) of the corresponding excitons were 1.5, 11.1 and 13.1 meV, respectively. The latter two values are more than two orders of magnitude greater than that of GaAs being 0.08 meV. (ii) Using these values and material parameters, corresponding vacuum-field Rabi splitting of exciton-polaritons coupled to a model MC mode was calculated to be 191 meV, which is the highest value ever reported for semiconductor MCs and satisfies the requirements to observe the strong exciton-light coupling regime necessary for polariton lasing above room temperature. (iii) Polarized OR and PR spectra of an out-plane nonpolar (1\\,1\\,\\bar{2}\\,0) ZnO epilayer grown by laser-assisted molecular beam epitaxy (L-MBE) were measured, since ZnO quantum wells (QWs) grown in nonpolar orientations are expected to show higher emission efficiencies due to the elimination of spontaneous and piezoelectric polarization fields normal to the QW plane. They exhibited in-plane anisotropic exciton resonances according to the polarization selection rules for anisotropically-strained wurzite material. (iv) Impacts of point defects on the nonradiative processes in L-MBE ZnO were studied using time-resolved PL making a connection with the results of positron annihilation measurement. Free excitonic PL intensity at room temperature naturally increased with the increase in nonradiative lifetime (τnr). The value of τnr increased and density or size of Zn vacancies (VZn) decreased with increasing growth temperature (Tg) in heteroepitaxial films grown on a ScAlMgO4 substrate, and the use of homoepitaxial substrates further reduced VZn density. The value of τnr was shown to increase with the decrease in gross density of positively and negatively charged and neutral point defects including complexes rather than with the decrease in VZn density. The results indicate that the nonradiative recombination process is governed not by single point defects, but by certain defects introduced with the incorporation of VZn, such as VZn-defect complexes. As a result of defect elimination by growing the films at high Tg followed by subsequent post-growth in situ annealing, combined with the use of high-temperature-annealed ZnO self-buffer layer, a record long τnr for spontaneous emission of 3.8 ns was obtained at room temperature. By using progressively improving epitaxial growth methods, the polariton laser effect is expected to be observed at room temperature in the near future.

  5. Thigmomorphogenesis: field and laboratory studies of Abies fraseri in response to wind or mechanical perturbation

    NASA Technical Reports Server (NTRS)

    Telewski, F. W.; Jaffe, M. J.

    1986-01-01

    Field- and greenhouse-grown Abies fraseri (Pursh) Poir. (Fraser fir) were analyzed for wind- or mechanically-induced flexure changes. These changes included inhibition of stem and needle elongation, reinforcement of branch bases around the stem, and increased radial growth in the direction of the mechanical perturbation (MP). Mature trees exposed to high wind conditions were severely flag-formed. These modified tree crowns had a lower drag than crowns of non-flag formed trees in wind-tunnel tests. In both field-grown and greenhouse-grown A. fraseri, MP induced a decrease in flexibility and increased elasticity of the stems. The increased radial growth of the stems overrode the increase in elasticity, resulting in the overall decrease in flexibility. The increase in radial growth caused by wind or mechanical flexure was due to greater cell divisions of the vascular cambium, resulting in increased numbers of tracheids. The decrease in stem elongation in these trees was due, at least in part, to a decrease in tracheid length. The potential biological and mechanical significance of these induced growth changes in trees are addressed. The data support the thigmomorphogenetic theory, which states that plants respond to wind and other mechanical perturbations in a way that is favorable to the plant for continued survival in windy environments.

  6. Thigmomorphogenesis: field and laboratory studies of Abies fraseri in response to wind or mechanical perturbation.

    PubMed

    Telewski, F W; Jaffe, M J

    1986-01-01

    Field- and greenhouse-grown Abies fraseri (Pursh) Poir. (Fraser fir) were analyzed for wind- or mechanically-induced flexure changes. These changes included inhibition of stem and needle elongation, reinforcement of branch bases around the stem, and increased radial growth in the direction of the mechanical perturbation (MP). Mature trees exposed to high wind conditions were severely flag-formed. These modified tree crowns had a lower drag than crowns of non-flag formed trees in wind-tunnel tests. In both field-grown and greenhouse-grown A. fraseri, MP induced a decrease in flexibility and increased elasticity of the stems. The increased radial growth of the stems overrode the increase in elasticity, resulting in the overall decrease in flexibility. The increase in radial growth caused by wind or mechanical flexure was due to greater cell divisions of the vascular cambium, resulting in increased numbers of tracheids. The decrease in stem elongation in these trees was due, at least in part, to a decrease in tracheid length. The potential biological and mechanical significance of these induced growth changes in trees are addressed. The data support the thigmomorphogenetic theory, which states that plants respond to wind and other mechanical perturbations in a way that is favorable to the plant for continued survival in windy environments.

  7. Dry matter, lipids, and proteins of canola seeds as affected by germination and seedling growth under illuminated and dark environments.

    PubMed

    Zhang, Haiyan; Vasanthan, Thava; Wettasinghe, Mahinda

    2004-12-29

    The effect of germination and growth under illuminated and dark environments on canola seed reserves was investigated. Depletion of proteins and lipids in whole seedlings and their top (leaf/cotyledons) and bottom parts (stem/roots/seed coat) was independent of light, whereas the protein solubility increased at a faster rate under an illuminated environment than in the dark. A rapid increase in free fatty acids but a net decrease of dry matter content in seedlings grown in the dark environment was observed. The dry matter content of seedlings grown in the illuminated environment increased due to photosynthetic biomass accumulation.

  8. A novel organic nonlinear optical crystal: Creatininium succinate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thirumurugan, R.; Anitha, K., E-mail: singlecerystalxrd@gmail.ciom

    2015-06-24

    A novel organic material complex of creatininium succinate (CS) has been synthesized and single crystals were grown by the reaction of creatinine and succinic acid from aqueous solution by employing the technique of slow evaporation at room temperature. The structure of the grown crystal has been elucidated using single crystal X-ray diffraction analysis and the structure was refined by least-squares method to R = 0.027 for 1840 reflections. FT-IR spectral investigation has been carried out to identify the various functional groups in the title compound. UV–Vis transmission was carried out which shows the crystal has a good optical transmittance inmore » the visible region with lower cutoff wavelength around 220 nm. Nonlinear optical property of the crystal was confirmed by Kurtz-Perry powder technique.« less

  9. Conducting LaAlO3/SrTiO3 heterointerfaces on atomically-flat substrates prepared by deionized-water

    PubMed Central

    Connell, J. G.; Nichols, J.; Gruenewald, J. H.; Kim, D.-W.; Seo, S. S. A.

    2016-01-01

    We have investigated how the recently-developed water-leaching method for atomically-flat SrTiO3 (STO) substrates affects the transport properties of LaAlO3 (LAO) and STO heterointerfaces. Using pulsed laser deposition at identical growth conditions, we have synthesized epitaxial LAO thin-films on two different STO substrates, which are prepared by water-leaching and buffered hydrofluoric acid (BHF) etching methods. The structural, transport, and optical properties of LAO/STO heterostructures grown on water-leached substrates show the same high-quality as the samples grown on BHF-etched substrates. These results indicate that the water-leaching method can be used to grow complex oxide heterostructures with atomically well-defined heterointerfaces without safety concerns. PMID:27033248

  10. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics

    PubMed Central

    El-Jendoubi, Hamdi; Vázquez, Saúl; Calatayud, Ángeles; Vavpetič, Primož; Vogel-Mikuš, Katarina; Pelicon, Primož; Abadía, Javier; Abadía, Anunciación; Morales, Fermín

    2014-01-01

    Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. “Orbis”) grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs. PMID:24478782

  11. The effects of foliar fertilization with iron sulfate in chlorotic leaves are limited to the treated area. A study with peach trees (Prunus persica L. Batsch) grown in the field and sugar beet (Beta vulgaris L.) grown in hydroponics.

    PubMed

    El-Jendoubi, Hamdi; Vázquez, Saúl; Calatayud, Angeles; Vavpetič, Primož; Vogel-Mikuš, Katarina; Pelicon, Primož; Abadía, Javier; Abadía, Anunciación; Morales, Fermín

    2014-01-01

    Crop Fe deficiency is a worldwide problem. The aim of this study was to assess the effects of foliar Fe applications in two species grown in different environments: peach (Prunus persica L. Batsch) trees grown in the field and sugar beet (Beta vulgaris L. cv. "Orbis") grown in hydroponics. The distal half of Fe-deficient, chlorotic leaves was treated with Fe sulfate by dipping and using a brush in peach trees and sugar beet plants, respectively. The re-greening of the distal (Fe-treated) and basal (untreated) leaf areas was monitored, and the nutrient and photosynthetic pigment composition of the two areas were also determined. Leaves were also studied using chlorophyll fluorescence imaging, low temperature-scanning electron microscopy microanalysis, scanning transmission ion microscopy-particle induced X-ray emission and Perls Fe staining. The distal, Fe-treated leaf parts of both species showed a significant increase in Fe concentrations (across the whole leaf volume) and marked re-greening, with significant increases in the concentrations of all photosynthetic pigments, as well as decreases in de-epoxidation of xanthophyll cycle carotenoids and increases in photochemical efficiency. In the basal, untreated leaf parts, Fe concentrations increased slightly, but little re-greening occurred. No changes in the concentrations of other nutrients were found. Foliar Fe fertilization was effective in re-greening treated leaf areas both in peach trees and sugar beet plants. Results indicate that the effects of foliar Fe-sulfate fertilization in Fe-deficient, chlorotic leaves were minor outside the leaf surface treated, indicating that Fe mobility within the leaf is a major constraint for full fertilizer effectiveness in crops where Fe-deficiency is established and leaf chlorosis occurs.

  12. Effects of high energy electrons on the properties of polyethylene / multiwalled carbon nanotubes composites: Comparison of as-grown and oxygen-functionalised MWCNT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krause, B., E-mail: krause-beate@ipfdd.de, E-mail: poe@ipfdd.de, E-mail: gohs@ipfdd.de; Pötschke, P., E-mail: krause-beate@ipfdd.de, E-mail: poe@ipfdd.de, E-mail: gohs@ipfdd.de; Gohs, U., E-mail: krause-beate@ipfdd.de, E-mail: poe@ipfdd.de, E-mail: gohs@ipfdd.de

    2014-05-15

    Polymer modification with high energy electrons (EB) is well established in different applications for many years. It is used for crosslinking, curing, degrading, grafting of polymeric materials and polymerisation of monomers. In contrast to this traditional method, electron induced reactive processing (EIReP) combines the polymer modification with high energy electrons and the melt mixing process. This novel reactive method was used to prepare polymer blends and composites. In this study, both methods were used for the preparation of polyethylene (PE)/ multiwalled carbon nanotubes (MWCNT) composites in the presence of a coupling agent. The influence of MWCNT and type of electronmore » treatment on the gel content, the thermal conductivity, rheological, and electrical properties was investigated whereby as-grown and oxidised MWCNT were used. In the presence of a coupling agent and at an absorbed dose of 40 kGy, the gel content increased from 57 % for the pure PE to 74 % or 88 % by the addition of as-grown (Baytubes® C150P) or oxidised MWCNT, respectively. In comparison to the composites containing the as-grown MWCNTs, the use of the oxidised MWCNTs led to higher melt viscosity and higher storage modulus due to higher yield of filler polymer couplings. The melt viscosity increased due to the addition of MWCNT and crosslinking of PE. The thermal conductivity increased to about 150 % and showed no dependence on the kind of MWCNT and the type of electron treatment. In contrast, the lowest value of electrical volume resistivity was found for the non-irradiated samples and after state of the art electron treatment without any influence of the type of MWCNT. In the case of EIReP, the volume resistivity increased by 2 (as-grown MWCNT) or 3 decades (oxidised MWCNT) depending on the process parameters.« less

  13. PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress

    PubMed Central

    Ding, Jun; Holzwarth, Garrett; Bradford, C. Samuel; Cooley, Ben; Yoshinaga, Allen S.; Patton-Vogt, Jana; Abeliovich, Hagai; Penner, Michael H.; Bakalinsky, Alan T.

    2017-01-01

    In fungi, two recognized mechanisms contribute to pH homeostasis: the plasma membrane proton-pumping ATPase that exports excess protons and the vacuolar proton-pumping ATPase (V-ATPase) that mediates vacuolar proton uptake. Here, we report that overexpression of PEP3 which encodes a component of the HOPS and CORVET complexes involved in vacuolar biogenesis, shortened lag phase in Saccharomyces cerevisiae exposed to acetic acid stress. By confocal microscopy, PEP3-overexpressing cells stained with the vacuolar membrane-specific dye, FM4-64 had more fragmented vacuoles than the wild-type control. The stained overexpression mutant was also found to exhibit about 3.6-fold more FM4-64 fluorescence than the wild-type control as determined by flow cytometry. While the vacuolar pH of the wild-type strain grown in the presence of 80 mM acetic acid was significantly higher than in the absence of added acid, no significant difference was observed in vacuolar pH of the overexpression strain grown either in the presence or absence of 80 mM acetic acid. Based on an indirect growth assay, the PEP3-overexpression strain exhibited higher V-ATPase activity. We hypothesize that PEP3 overexpression provides protection from acid stress by increasing vacuolar surface area and V-ATPase activity and, hence, proton-sequestering capacity. PMID:26051671

  14. Heterogeneity in extracellular nucleotide hydrolysis among clinical isolates of Trichomonas vaginalis

    PubMed Central

    TASCA, T.; BONAN, C. D.; DE CARLI, G. A.; SARKIS, J.J.F.; ALDERETE, J. F.

    2007-01-01

    SUMMARY Trichomonas vaginalis is a parasitic protozoan that causes trichomonosis, a sexually-transmitted disease, with serious sequelae to women and men. As the host-parasite relationship is complex, it is important to investigate biochemical aspects of the parasite that contribute to our understanding of trichomonal biology and pathogenesis. Nucleoside triphosphate diphosphohydrolase 1 (NTPDase 1), which hydrolyses extracellular ATP and ADP, and ecto-5′-nucleotidase, which hyrolyses AMP, have been characterized in laboratory isolates of T. vaginalis. Here we show that the extracellular ATP:ADP hydrolysis ratio varies among fresh clinical isolates, which presented higher ATPase and ADPase activities than long-term-grown isolates. Growth of parasites in iron-replete and iron-depleted medium resulted in different, albeit minor, patterns in extracellular ATP and ADP hydrolysis among isolates. Importantly, some isolates had low or absent ecto-5′-nucleotidase activity, regardless of environmental conditions tested. For isolates with ecto-5′-nucleotidase activity, high- and low-iron trichomonads had increased and decreased levels of activity, respectively, compared to organisms grown in normal TYM-serum medium. This suggests a regulation in expression of either the enzyme amounts and/or activity under the control of iron. Finally, we found no correlation between the presence or absence of dsRNA virus infection among trichomonad isolates and NTPDase and ecto-5′-nucleotidase activities. PMID:16038398

  15. Effect of substrates and thickness on optical properties in atomic layer deposition grown ZnO thin films

    NASA Astrophysics Data System (ADS)

    Pal, Dipayan; Singhal, Jaya; Mathur, Aakash; Singh, Ajaib; Dutta, Surjendu; Zollner, Stefan; Chattopadhyay, Sudeshna

    2017-11-01

    Atomic Layer Deposition technique was used to grow high quality, very low roughness, crystalline, Zinc Oxide (ZnO) thin films on silicon (Si) and fused quartz (SiO2) substrates to study the optical properties. Spectroscopic ellipsometry results of ZnO/Si system, staggered type-II quantum well, demonstrate that there is a significant drop in the magnitudes of both the real and imaginary parts of complex dielectric constants and in near-band gap absorption along with a blue shift of the absorption edge with decreasing film thickness at and below ∼20 nm. Conversely, UV-vis absorption spectroscopy of ZnO/SiO2, thin type-I quantum well, consisting of a narrower-band gap semiconductor grown on a wider-band gap (insulator) substrate, shows the similar thickness dependent blue-shift of the absorption edge but with an increase in the magnitude of near-band gap absorption with decreasing film thickness. Thickness dependent blue shift, energy vs. 1/d2, in two different systems, ZnO/Si and ZnO/SiO2, show a difference in their slopes. The observed phenomena can be consistently explained by the corresponding exciton (or carrier/s) deconfinement and confinement effects at the ZnO/Si and ZnO/SiO2 interface respectively, where Tanguy-Elliott amplitude pre-factor plays the key role through the electron-hole overlap factor at the interface.

  16. PsbS protein modulates non-photochemical chlorophyll fluorescence quenching in membranes depleted of photosystems.

    PubMed

    Ware, Maxwell A; Giovagnetti, Vasco; Belgio, Erica; Ruban, Alexander V

    2015-11-01

    Plants with varying levels of PsbS protein were grown on lincomycin. Enhanced levels of non-photochemical fluorescence quenching (NPQ) in over-expressers of the protein have been observed. This was accompanied by increased amplitude of the irreversible NPQ component, qI, previously considered to reflect mainly photoinhibition of PSII reaction centres (RCII). However, since RCIIs were largely absent the observed qI is likely to originate from the LHCII antenna. In chloroplasts of over-expressers of PsbS grown on lincomycin an abnormally large NPQ (∼7) was characterised by a 0.34 ns average chlorophyll fluorescence lifetime. Yet the lifetime in the Fm state was similar to that of wild-type plants. 77K fluorescence emission spectra revealed a specific 700 nm peak typical of LHCII aggregates as well as quenching of the PSI fluorescence at 730 nm. The aggregated state manifested itself as a clear change in the distance between LHCII complexes detected by freeze-fracture electron microscopy. Grana thylakoids in the quenched state revealed 3 times more aggregated LHCII particles compared to the dark-adapted state. Overall, the results directly demonstrate the importance of LHCII aggregation in the NPQ mechanism and show that the PSII supercomplex structure plays no role in formation of the observed quenching. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine

    PubMed Central

    Almeida-Paes, Rodrigo; Figueiredo-Carvalho, Maria Helena Galdino; Brito-Santos, Fábio; Almeida-Silva, Fernando; Oliveira, Manoel Marques Evangelista; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies. PMID:27031728

  18. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon

    PubMed Central

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-01-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L. acidophilus NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP-amy-pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and growth phase-dependent, and were repressed by glucose. The highest intracellular glycogen content was observed in early log-phase cells grown on trehalose, which was followed by a drastic decrease of glycogen content prior to entering stationary phase. In raffinose-grown cells, however, glycogen accumulation gradually declined following early log phase and was maintained at stable levels throughout stationary phase. Raffinose also induced an overall higher temporal glg expression throughout growth compared with trehalose. Isogenic ΔglgA (glycogen synthase) and ΔglgB (glycogen-branching enzyme) mutants are glycogen-deficient and exhibited growth defects on raffinose. The latter observation suggests a reciprocal relationship between glycogen synthesis and raffinose metabolism. Deletion of glgB or glgP (glycogen phosphorylase) resulted in defective growth and increased bile sensitivity. The data indicate that glycogen metabolism is involved in growth maintenance, bile tolerance and complex carbohydrate utilization in L. acidophilus. PMID:23879596

  19. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine.

    PubMed

    Almeida-Paes, Rodrigo; Figueiredo-Carvalho, Maria Helena Galdino; Brito-Santos, Fábio; Almeida-Silva, Fernando; Oliveira, Manoel Marques Evangelista; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies.

  20. Cloning of a FLOWERING LOCUS T ortholog in Wasabia japonica (Matsum).

    PubMed

    Kubo, Hiroyoshi; Yoshida, Kiyoshi; Nozue, Masayuki

    2011-01-01

    A FLOWERING LOCUS T ortholog (WjFT) was identified in Wasabia japonica. Heterologous expression of WjFT remarkably promoted the flowering of Arabidopsis. The expression of WjFT was examined in field-grown wasabi in October and November of 2009, and February of 2010 because the differentiation of flower buds occurs in autumn in field-grown wasabi. No expression of WjFT was detected in October, it was slightly increased in November, and highly increased in February. WjFT might be useful for examining the flowering response of wasabi.

  1. Characterization and effect of light on the plasma membrane H(+) -ATPase of bean leaves

    NASA Technical Reports Server (NTRS)

    Linnemeyer, P. A.; Van Volkenburgh, E.; Cleland, R. E.

    1990-01-01

    Proton excretion from bean (Phaseolus vulgaris L.) leaf cells is increased by bright white light. To test whether this could be due, at least in part, to an increase in plasma membrane (PM) ATPase activity, PM vesicles were isolated from primary leaves by phase partitioning and used to characterize PM ATPase activity and changes in response to light. ATPase activity was characterized as magnesium ion dependent, vanadate sensitive, and slightly stimulated by potassium chloride. The pH optimum was 6.5, the Km was approximately 0.30 millimolar ATP, and the activity was about 60% latent. PM vesicles were prepared from leaves of plants grown for 11 days in dim red light (growing slowly) or grown for 10 days in dim red light and then transferred to bright white-light for 1 day (growing rapidly). For both light treatments, ATPase specific activity was approximately 600 to 700 nanomoles per milligram protein per minute, and the latency, Km, and sensitivity to potassium chloride were also similar. PM vesicles from plants grown in complete darkness, however, exhibited a twofold greater specific activity. We conclude that the promotion of leaf growth and proton excretion by bright white light is not due to an increase in ATPase specific activity. Light does influence ATPase activity, however; both dim red light and bright white light decreased the ATPase specific activity by nearly 50% as compared with dark-grown leaves.

  2. Calcium Deficiency of Dark-grown Seedlings of Phaseolus vulgaris L.

    PubMed

    Helms, K

    1971-06-01

    Hypocotyl collapse in dark-grown seedlings of Phaseolus vulgaris cv. Pinto was due to calcium deficiency. There was no evidence of an associated pathogen. The number of seedlings with hypocotyl collapse decreased and the mean hypocotyl length increased when increasing levels of calcium (0-100 micrograms per gram) were supplied in an external nutrient solution to seedlings grown under sterile conditions.When seedlings were supplied with a complete nutrient solution, containing calcium at 100 micrograms per gram, but minus potassium, magnesium, sulfur, nitrogen, or phosphorus, occasional plants developed hypocotyl collapse symptoms; however, the lengths of hypocotyls varied little from those of controls grown in complete nutrient. When the calcium level in the deficient nutrient solutions was raised to 200 micrograms per gram, the number of plants with hypocotyl collapse was reduced markedly.With complete nutrient solution minus calcium, seedlings developed symptoms of calcium deficiency irrespective of seed size, i.e., irrespective of whether or not the seed contained a total calcium content that was low or relatively high.An increase in hypocotyl length in response to an external supply of calcium was obtained with five cultivars of Phaseolus vulgaris L. and with one of Soja max Piper. A similar response to calcium was obtained for epicotyl growth of a cultivar of Vicia faba L., but not for a cultivar of Pisum sativum L.

  3. Polymeric brushes as functional templates for immobilizing ribonuclease A: study of binding kinetics and activity.

    PubMed

    Cullen, Sean P; Liu, Xiaosong; Mandel, Ian C; Himpsel, Franz J; Gopalan, Padma

    2008-02-05

    The ability to immobilize proteins with high binding capacities on surfaces while maintaining their activity is critical for protein microarrays and other biotechnological applications. We employed poly(acrylic acid) (PAA) brushes as templates to immobilize ribonuclease A (RNase A), which is commonly used to remove RNA from plasmid DNA preparations. The brushes are grown by surface-anchored atom-transfer radical polymerization (ATRP) initiators. RNase A was immobilized by both covalent esterification and a high binding capacity metal-ion complexation method to PAA brushes. The polymer brushes immobilized 30 times more enzyme compared to self-assembled monolayers. As the thickness of the brush increases, the surface density of the RNase A increases monotonically. The immobilization was investigated by ellipsometry, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The activity of the immobilized RNase A was determined using UV absorbance. As much as 11.0 microg/cm(2) of RNase A was bound to PAA brushes by metal-ion complexation compared to 5.8 microg/cm(2) by covalent immobilization which is 30 and 16 times the estimated mass bound in a monolayer. The calculated diffusion coefficient D was 0.63 x 10(-14) cm(2)/s for metal-ion complexation and 0.71 x 10(-14) cm(2)/s for covalent immobilization. Similar values of D indicate that the binding kinetics is similar, but the thermodynamic equilibrium coverage varies with the binding chemistry. Immobilization kinetics and thermodynamics were characterized by ellipsometry for both methods. A maximum relative activity of 0.70-0.80 was reached between five and nine monolayers of the immobilized enzyme. However, the relative activity for covalent immobilization was greater than that of metal-ion complexation. Covalent esterification resulted in similar temperature dependence as free enzyme, whereas metal-ion complexation showed no temperature dependence indicating a significant change in conformation.

  4. GATA Factor Regulation in Excess Nitrogen Occurs Independently of Gtr-Ego Complex-Dependent TorC1 Activation.

    PubMed

    Tate, Jennifer J; Georis, Isabelle; Rai, Rajendra; Vierendeels, Fabienne; Dubois, Evelyne; Cooper, Terrance G

    2015-05-29

    The TorC1 protein kinase complex is a central component in a eukaryotic cell's response to varying nitrogen availability, with kinase activity being stimulated in nitrogen excess by increased intracellular leucine. This leucine-dependent TorC1 activation requires functional Gtr1/2 and Ego1/3 complexes. Rapamycin inhibition of TorC1 elicits nuclear localization of Gln3, a GATA-family transcription activator responsible for the expression of genes encoding proteins required to transport and degrade poor nitrogen sources, e.g., proline. In nitrogen-replete conditions, Gln3 is cytoplasmic and Gln3-mediated transcription minimal, whereas in nitrogen limiting or starvation conditions, or after rapamycin treatment, Gln3 is nuclear and transcription greatly increased. Increasing evidence supports the idea that TorC1 activation may not be as central to nitrogen-responsive intracellular Gln3 localization as envisioned previously. To test this idea directly, we determined whether Gtr1/2- and Ego1/3-dependent TorC1 activation also was required for cytoplasmic Gln3 sequestration and repressed GATA factor-mediated transcription by abolishing the Gtr-Ego complex proteins. We show that Gln3 is sequestered in the cytoplasm of gtr1Δ, gtr2Δ, ego1Δ, and ego3Δ strains either long term in logarithmically glutamine-grown cells or short term after refeeding glutamine to nitrogen-limited or -starved cells; GATA factor-dependent transcription also was minimal. However, in all but a gtr1Δ, nuclear Gln3 localization in response to nitrogen limitation or starvation was adversely affected. Our data demonstrate: (i) Gtr-Ego-dependent TorC1 activation is not required for cytoplasmic Gln3 sequestration in nitrogen-rich conditions; (ii) a novel Gtr-Ego-TorC1 activation-independent mechanism sequesters Gln3 in the cytoplasm; (iii) Gtr and Ego complex proteins participate in nuclear Gln3-Myc(13) localization, heretofore unrecognized functions for these proteins; and (iv) the importance of searching for new mechanisms associated with TorC1 activation and/or the regulation of Gln3 localization/function in response to changes in the cells' nitrogen environment. Copyright © 2015 Tate et al.

  5. GATA Factor Regulation in Excess Nitrogen Occurs Independently of Gtr-Ego Complex-Dependent TorC1 Activation

    PubMed Central

    Tate, Jennifer J.; Georis, Isabelle; Rai, Rajendra; Vierendeels, Fabienne; Dubois, Evelyne; Cooper, Terrance G.

    2015-01-01

    The TorC1 protein kinase complex is a central component in a eukaryotic cell’s response to varying nitrogen availability, with kinase activity being stimulated in nitrogen excess by increased intracellular leucine. This leucine-dependent TorC1 activation requires functional Gtr1/2 and Ego1/3 complexes. Rapamycin inhibition of TorC1 elicits nuclear localization of Gln3, a GATA-family transcription activator responsible for the expression of genes encoding proteins required to transport and degrade poor nitrogen sources, e.g., proline. In nitrogen-replete conditions, Gln3 is cytoplasmic and Gln3-mediated transcription minimal, whereas in nitrogen limiting or starvation conditions, or after rapamycin treatment, Gln3 is nuclear and transcription greatly increased. Increasing evidence supports the idea that TorC1 activation may not be as central to nitrogen-responsive intracellular Gln3 localization as envisioned previously. To test this idea directly, we determined whether Gtr1/2- and Ego1/3-dependent TorC1 activation also was required for cytoplasmic Gln3 sequestration and repressed GATA factor-mediated transcription by abolishing the Gtr-Ego complex proteins. We show that Gln3 is sequestered in the cytoplasm of gtr1Δ, gtr2Δ, ego1Δ, and ego3Δ strains either long term in logarithmically glutamine-grown cells or short term after refeeding glutamine to nitrogen-limited or -starved cells; GATA factor−dependent transcription also was minimal. However, in all but a gtr1Δ, nuclear Gln3 localization in response to nitrogen limitation or starvation was adversely affected. Our data demonstrate: (i) Gtr-Ego-dependent TorC1 activation is not required for cytoplasmic Gln3 sequestration in nitrogen-rich conditions; (ii) a novel Gtr-Ego-TorC1 activation-independent mechanism sequesters Gln3 in the cytoplasm; (iii) Gtr and Ego complex proteins participate in nuclear Gln3-Myc13 localization, heretofore unrecognized functions for these proteins; and (iv) the importance of searching for new mechanisms associated with TorC1 activation and/or the regulation of Gln3 localization/function in response to changes in the cells’ nitrogen environment. PMID:26024867

  6. Parasitic phases at the origin of magnetic moment in BiFeO3 thin films grown by low deposition rate RF sputtering

    NASA Astrophysics Data System (ADS)

    Mori, Thiago J. A.; Mouls, Caroline L.; Morgado, Felipe F.; Schio, Pedro; Cezar, Júlio C.

    2017-09-01

    A series of epitaxial BiFeO3 thin films has been grown under high partial pressure in a pure O2 atmosphere, which leads to a low deposition rate. The samples grown under these conditions have presented an evolution of the quality of the epitaxy as the deposition temperature increases, however, spurious β- Bi2O3 and supertetragonal BiFeO3 phases are present in the films grown at higher temperatures. The presence of γ- Fe2O3 is reported in one growing condition, and has been attributed to the origin of hysteretic ferromagnetic behavior. A second kind of magnetism, with higher magnetic moment and anhysteretic behaviour, is attributed to the presence of mixed phases of BiFeO3.

  7. Uptake of aromatic arsenicals from soil contaminated with diphenylarsinic acid by rice.

    PubMed

    Arao, Tomohito; Maejima, Yuji; Baba, Koji

    2009-02-15

    Chemical warfare agents containing aromatic arsenicals (AAs) such as Clark I (diphenylchloroarsine) are well-known, as is the risk of leakage from such munitions into the environment. We investigated the uptake of AAs in agricultural soils by rice. Methylphenylarsinic acid (MPAA) was detected in brown rice grown in contaminated soil. Dimethylphenylarsine oxide (DMPAO) and methyldiphenylarsine oxide (MDPAO) were detected in the straw but not in the grains grown in the contaminated soil. Inthe contaminated soil, phenylarsonic acid (PAA) and MPAA concentrations decreased and DMPAO concentration increased under the flooded conditions; however, their concentrations remained unchanged underthe upland conditions. DMPAO was detected in the straw of the rice grown in PAA- or MPAA-amended soil but was not detected in that grown in a PAA- or MPAA-added solution culture. MDPAO was detected in the straw of the rice grown in diphenylarsinic acid (DPAA)-amended soil but was not detected in that grown in a DPAA-added solution culture. Thus, MPAA and DPAA were methylated not in the rice plant but in the soil under the flooded conditions. Dephenylated products were detected in the straw grown in AA-added solution cultures, but demethylated products were not detected. DMPAO and MDPAO absorbed by the shoots were retained, and MPAA and DPAA absorbed by the shoots were translocated to the grains more easily than other AAs.

  8. Bioactive Compounds in Potato Tubers: Effects of Farming System, Cooking Method, and Flesh Color

    PubMed Central

    Czerko, Zbigniew; Zarzyńska, Krystyna; Borowska-Komenda, Monika

    2016-01-01

    We investigated the effect of cultivation system (conventional or organic), cooking method, and flesh color on the contents of ascorbic acid (AA) and total phenolics (TPs), and on total antioxidant activity (Trolox equivalents, TE) in Solanum tuberosum (potato) tubers. The research material, consisting of 4 potato cultivars, was grown in experimental fields, using organic and conventional systems, at the experimental station in 2012 and 2013. The analysis showed that organically grown potatoes with creamy, light yellow, and yellow flesh had significantly higher TPs than did potatoes grown conventionally. Flesh color and cooking method also affected AA. The greatest losses of AA occurred in yellow-fleshed potatoes grown conventionally and cooked in the microwave; such losses were not observed in potatoes grown organically. A dry cooking method (baking in a microwave) increased the TP contents in potatoes by about 30%, regardless of the flesh color and the production system. TE was significantly higher in organically grown potatoes (raw and cooked in a steamer) than in conventionally grown potatoes. TE and AA contents showed a significant positive correlation, but only in potatoes from the organic system [R2 = 0.686]. By contrast, the positive correlation between TE and TPs was observed regardless of the production system. Therefore, we have identified the effects of farming system, cooking method, and flesh color on the contents of bioactive compounds in potato tubers. PMID:27139188

  9. Microstructures and growth mechanisms of GaN films epitaxially grown on AlN/Si hetero-structures by pulsed laser deposition at different temperatures.

    PubMed

    Wang, Wenliang; Yang, Weijia; Lin, Yunhao; Zhou, Shizhong; Li, Guoqiang

    2015-11-13

    2 inch-diameter GaN films with homogeneous thickness distribution have been grown on AlN/Si(111) hetero-structures by pulsed laser deposition (PLD) with laser rastering technique. The surface morphology, crystalline quality, and interfacial property of as-grown GaN films are characterized in detail. By optimizing the laser rastering program, the ~300 nm-thick GaN films grown at 750 °C show a root-mean-square (RMS) thickness inhomogeneity of 3.0%, very smooth surface with a RMS surface roughness of 3.0 nm, full-width at half-maximums (FWHMs) for GaN(0002) and GaN(102) X-ray rocking curves of 0.7° and 0.8°, respectively, and sharp and abrupt AlN/GaN hetero-interfaces. With the increase in the growth temperature from 550 to 850 °C, the surface morphology, crystalline quality, and interfacial property of as-grown ~300 nm-thick GaN films are gradually improved at first and then decreased. Based on the characterizations, the corresponding growth mechanisms of GaN films grown on AlN/Si hetero-structures by PLD with various growth temperatures are hence proposed. This work would be beneficial to understanding the further insight of the GaN films grown on Si(111) substrates by PLD for the application of GaN-based devices.

  10. Setting up and running an advanced light microscopy and imaging facility.

    PubMed

    Sánchez, Carlos; Muñoz, Ma Ángeles; Villalba, Maite; Labrador, Verónica; Díez-Guerra, F Javier

    2011-07-01

    During the last twenty years, interest in light microscopy and imaging techniques has grown in various fields, such as molecular and cellular biology, developmental biology, and neurobiology. In addition, the number of scientific articles and journals using these techniques is rapidly increasing. Nowadays, most research institutions require sophisticated microscopy systems to cover their investigation demands. In general, such instruments are too expensive and complex to be purchased and managed by a single laboratory or research group, so they have to be shared with other groups and supervised by specialized personnel. This is the reason why microscopy and imaging facilities are becoming so important at research institutions nowadays. In this unit, we have gathered and presented a number of issues and considerations from our own experience that we hope will be helpful when planning or setting up a new facility.

  11. Properties of CsI, CsBr and GaAs thin films grown by pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brendel, V M; Garnov, S V; Yagafarov, T F

    2014-09-30

    CsI, CsBr and GaAs thin films have been grown by pulsed laser deposition on glass substrates. The morphology and structure of the films have been studied using X-ray diffraction and scanning electron microscopy. The CsI and CsBr films were identical in stoichiometry to the respective targets and had a polycrystalline structure. Increasing the substrate temperature led to an increase in the density of the films. All the GaAs films differed in stoichiometry from the target. An explanation was proposed for this fact. The present results demonstrate that, when the congruent transport condition is not fulfilled, films identical in stoichiometry tomore » targets can be grown by pulsed laser deposition in the case of materials with a low melting point and thermal conductivity. (interaction of laser radiation with matter)« less

  12. Effects of nutrient treatment and previous stem galling on biomass allocation in tall goldenrod, Solidago altissima

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, S.S.; Abrahamson, W.G.; McCrea, K.D.

    1987-07-01

    Ramets from six goldenrod clones of known resistance to the gallmaker (Eurosta solidaginis) were grown with and without nutrient treatment. Mated female Eurosta oviposited in ramets which were grown through flowering and harvested to determine biomass allocation. Nutrient treatment increased biomass but did not affect resistance. Gall mass was increased by nutrient treatment and was correlated with larval mass. Additional ramets from two of the susceptible clones were grown from rhizomes of ramets galled and ungalled the previous year. Galls reduced ramet growth in both years. A gall in the previous year reduced total ramet biomass as well as biomassmore » of all component organs in the current year but a gall in the current season had no effect. The detrimental effects of a gall are carried into the next growing season.« less

  13. 77 FR 39184 - Grapes Grown in Designated Area of Southeastern California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... Service 7 CFR Part 925 [Doc. No. AMS-FV-11-0090; FV12-925-1 PR] Grapes Grown in Designated Area of... Grape Administrative Committee (Committee) for the 2012 and subsequent fiscal periods from $0.0125 to $0.0150 per 18- pound lug of grapes handled. The Committee locally administers the marketing order, which...

  14. 76 FR 7119 - Grapes Grown in Designated Area of Southeastern California; Increased Assessment Rate

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-09

    ... Service 7 CFR Part 925 [Doc. No. AMS-FV-10-0104; FV11-925-1 PR] Grapes Grown in Designated Area of... Grape Administrative Committee (Committee) for the 2011 and subsequent fiscal periods from $0.01 to $0.0125 per 18- pound lug of grapes handled. The Committee locally administers the marketing order, which...

  15. A Combined 16S Microbiome and Culture-Based Analysis of Foodborne Pathogens Throughout the Entire Lifecycle of A Single Pastured-Raised Broiler Flock

    USDA-ARS?s Scientific Manuscript database

    While conventionally grown poultry continues to dominate the U.S. poultry industry, there is an increasing demand for locally-grown, “all natural” alternatives. Unfortunately, limited research has been done on this type of poultry management practice, and thus many of these management effects on th...

  16. Formation and properties of juvenile wood in southern pines: a synopsis

    Treesearch

    Philip R. Larson; David E. Kretschmann; Alexander III Clark; J.G. Isebrands

    2001-01-01

    To satisfy the increasing demand for forest products, much of the future timber supply will be from improved trees grown on managed plantations. This fast-grown resource will tend to be harvested in short age rotations and will contain higher proportions of juvenile wood than that of current harvests. In anticipation of this resource, definitive information is needed...

  17. Biomass Composition and Mineral Removal of Sugarcane and Energy Cane on a Sand Soil in Florida

    USDA-ARS?s Scientific Manuscript database

    Approximately 20% of Sugarcane is grown on sand soils in south Florida, but yields and profits are lower compared to sugarcane grown on organic soils in the region. Energy cane may be an alternative crop on sand soils in the future to improve profits because of the growing interest of increased biom...

  18. Sn - Induced decomposition of SiGeSn alloys grown on Si by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Talochkin, A. B.; Timofeev, V. A.; Gutakovskii, A. K.; Mashanov, V. I.

    2017-11-01

    Structural features of Si1-x-yGexSny alloy layers grown on Si by molecular-beam epitaxy are studied. These layers with the thickness of 2.0 nm, the nominal Ge composition of x0 ≈ 0.3, and the Sn-content of y ≈ 2-6 at.% have been grown at low temperatures (100-150 °C). We have used high-resolution transmission electron microscopy to analyze atomic structure of grown layers and Raman spectroscopy to evaluate the real Ge-content x from the observed optical phonon frequencies. It is found that the x value coincides with the nominal one at low Sn-content (2-3 at.%), and when it is increased (y ≥ 5 at.%), the decomposition of alloys into two fractions occurs. One of them is enriched by Ge with x up to 0.6 and the other fraction is Si-enriched. It is shown that the observed decomposition is Sn-induced and related to increase in Ge adatoms mobility in the growth process. This mechanism is similar to that theoretically predicted by Venezuela and Tersoff (Phys. Rev. 58, 10871 (1998)) for the case of high growth temperature.

  19. Quality-enhanced In{sub 0.3}Ga{sub 0.7}As film grown on GaAs substrate with an ultrathin amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fangliang; Li, Guoqiang, E-mail: msgli@scut.edu.cn

    2014-01-27

    Using low-temperature molecular beam epitaxy, amorphous In{sub 0.6}Ga{sub 0.4}As layers have been grown on GaAs substrates to act as buffer layers for the subsequent epitaxial growth of In{sub 0.3}Ga{sub 0.7}As films. It is revealed that the crystallinity of as-grown In{sub 0.3}Ga{sub 0.7}As films is strongly affected by the thickness of the large-mismatched amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer. Given an optimized thickness of 2 nm, this amorphous In{sub 0.6}Ga{sub 0.4}As buffer layer can efficiently release the misfit strain between the In{sub 0.3}Ga{sub 0.7}As epi-layer and the GaAs substrate, trap the threading and misfit dislocations from propagating to the following In{sub 0.3}Ga{submore » 0.7}As epi-layer, and reduce the surface fluctuation of the as-grown In{sub 0.3}Ga{sub 0.7}As, leading to a high-quality In{sub 0.3}Ga{sub 0.7}As film with competitive crystallinity to that grown on GaAs substrate using compositionally graded In{sub x}Ga{sub 1-x}As metamorphic buffer layers. Considering the complexity of the application of the conventional In{sub x}Ga{sub 1-x}As graded buffer layers, this work demonstrates a much simpler approach to achieve high-quality In{sub 0.3}Ga{sub 0.7}As film on GaAs substrate and, therefore, is of huge potential for the InGaAs-based high-efficiency photovoltaic industry.« less

  20. Quantitative Proteomic and Microarray Analysis of the Archaeon Methanosarcina Acetivorans Grown with Acetate Versus Methanol*

    PubMed Central

    Li, Lingyun; Li, Qingbo; Rohlin, Lars; Kim, UnMi; Salmon, Kirsty; Rejtar, Tomas; Gunsalus, Robert P.; Karger, Barry L.; Ferry, James G.

    2008-01-01

    Summary Methanosarcina acetivorans strain C2A is an acetate- and methanol-utilizing methane-producing organism for which the genome, the largest yet sequenced among the Archaea, reveals extensive physiological diversity. LC linear ion trap-FTICR mass spectrometry was employed to analyze acetate- vs. methanol-grown cells metabolically labeled with 14N vs. 15N, respectively, to obtain quantitative protein abundance ratios. DNA microarray analyses of acetate- vs. methanol-grown cells was also performed to determine gene expression ratios. The combined approaches were highly complementary, extending the physiological understanding of growth and methanogenesis. Of the 1081 proteins detected, 255 were ≥ 3-fold differentially abundant. DNA microarray analysis revealed 410 genes that were ≥ 2.5-fold differentially expressed of 1972 genes with detected expression. The ratios of differentially abundant proteins were in good agreement with expression ratios of the encoding genes. Taken together, the results suggest several novel roles for electron transport components specific to acetate-grown cells, including two flavodoxins each specific for growth on acetate or methanol. Protein abundance ratios indicated that duplicate CO dehydrogenase/acetyl-CoA complexes function in the conversion of acetate to methane. Surprisingly, the protein abundance and gene expression ratios indicated a general stress response in acetate- vs. methanol-grown cells that included enzymes specific for polyphosphate accumulation and oxidative stress. The microarray analysis identified transcripts of several genes encoding regulatory proteins with identity to the PhoU, MarR, GlnK, and TetR families commonly found in the Bacteria domain. An analysis of neighboring genes suggested roles in controlling phosphate metabolism (PhoU), ammonia assimilation (GlnK), and molybdopterin cofactor biosynthesis (TetR). Finally, the proteomic and microarray results suggested roles for two-component regulatory systems specific for each growth substrate. PMID:17269732

Top