Science.gov

Sample records for growth biomass allocation

  1. Branch growth and biomass allocation in Abies amabilis saplings in contrasting light environments.

    PubMed

    King, D A

    1997-04-01

    Aboveground biomass allocation, and height and branch growth were studied in saplings of the shade-tolerant conifer, Abies amabilis Dougl. ex Forbes growing in large openings and in the understory of an old-growth forest in western Oregon. The presence of annual overwintering budscale scars was used to infer extension growth histories; annual growth rings in branches and stems were used in combination with extension histories to compute partitioning of new biomass among leaves, branches and stems. Saplings growing in large gaps had conical crowns, whereas understory saplings had umbrella shaped crowns as a result of much greater rates of branch extension than stem extension. Understory saplings grew slowly in height because of low rates of biomass production and low allocation of biomass to stem extension. About 40% of new biomass was allocated to foliage in both groups, but understory saplings allocated more of the remaining growth increment to branches and less to stem than did saplings growing in large gaps. These results differ from the patterns observed in shade-tolerant saplings of tropical forests, where allocation to foliage increases with shading and branch allocation is much lower than observed here. This difference in allocation may reflect mechanical constraints imposed by snow loads on the evergreen A. amabilis crowns, particularly on flat-crowned understory saplings.

  2. Biomass allocation and long-term growth patterns of temperate lianas in comparison with trees.

    PubMed

    Ichihashi, Ryuji; Tateno, Masaki

    2015-08-01

    The host-dependent support habit of lianas is generally interpreted as a strategy designed to reduce resource investment in mechanical tissues; this allows preferential allocation to leaf and stem extension, thereby enhancing productivity and competitive abilities. However, this hypothesis has not been rigorously tested. We examined the aboveground allometries regarding biomass allocation (leaf mass and current-year stem mass (approximated as biomass allocated to extension growth) vs total aboveground mass) and long-term apparent growth patterns (height and aboveground mass vs age, i.e. numbers of growth rings) for nine deciduous liana species in Japan. Lianas had, on average, three- and five-fold greater leaf and current-year stem mass, respectively, than trees for a given aboveground mass, whereas the time course to reach the forest canopy was comparable and biomass accumulation during that period was only one-tenth that of co-occurring canopy trees. The balance between the lengths of yearly stem extension and existing older stems indicated that lianas lost c. 75% of stem length during growth to the canopy, which is probably a consequence of the host-dependent growth. Our observations suggest that, although lianas rely on hosts mechanically, allowing for short-term vigorous growth, this habit requires a large cost and could limit plant growth over protracted periods. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  3. Effects of windspeed on the growth and biomass allocation of white mustard Sinapis alba L.

    PubMed

    Retuerto, Ruben; Woodward, F Ian

    1992-10-01

    We examined how different wind speeds and interactions between plant age and wind affect growth and biomass allocation of Sinapis alba L. (white mustard). Physiological and growth measurements were made on individuals of white mustard grown in controlled-environment wind tunnels at windspeeds of 0.3, 2.2 and 6.0 ms(-1) for 42 days. Plants were harvested at four different dates. Increasing wind speed slightly increased transpiration and stomatal conductance. We did not observe a significant decline in the photosynthetic rate per unit of leaf area. Number of leaves, stem length, leaf area and dry weights of total biomass and plant parts were significantly lower in plants exposed at high wind speed conditions. There were no significant differences in the unit leaf rate nor relative growth rates, although these were always lower in plants grown at high wind speed. Allocation and architectural parameters were also examined. After 42 days of exposure to wind, plants showed higher leaf area ratio, root and leaf weight ratios and root/shoot ratio than those grown at control treatment. Only specific leaf area declined significantly with wind speed, but stem and reproductive parts also decreased. The responses of plants to each wind speed treatment depended on the age of the plant for most of the variables. It is suggested that wind operates in logarithmic manner, with relatively small or no effect at lower wind speeds and a much greater effect at higher speeds. Since there is no evidence of a significant reduction in photosynthetic rate of Sinapis with increasing wind speed it is suggested that the effect of wind on plant growth was due to mechanical effects leading to changes in allocation and developmental patterns.

  4. Sapling biomass allocation and growth in the understory of a deciduous hardwood forest.

    PubMed

    Delucia, E; Sipe, T; Herrick, J; Maherali, H

    1998-07-01

    Above- and belowground tissues of co-occurring saplings (0.1-1 m height) of Acer saccharum Marsh. (very shade tolerant), Acer rubrum L. (shade tolerant), Fraxinus americana L. (intermediate shade tolerant), and Prunus serotina Ehrh. (shade intolerant) were harvested from a forest understory to test the hypothesis that the pattern of biomass allocation varied predictably with shade-tolerance rank. The placement and length of branches along the main axis were consistent with the formation of a monolayer of foliage for the tolerant and intermediate species. Other morphological characteristics did not vary predictably with shade-tolerance rank. The maintenance of high specific leaf area (SLA; leaf area/leaf mass) and leaf area ratio (LAR; leaf area/sapling mass) is considered important for growth under extreme shade, yet these traits were not clearly related to the shade-tolerance rank of these species. Fraxinus americana, an intermediate species, had the highest LAR and growth rate in the understory, and with the exception of P. serotina, the very shade-tolerant A. saccharum had the lowest LAR. Prunus serotina maintained a large starch-rich tap root and shoot dieback was common, yielding the largest root/shoot ratio for these species. The observed allocation patterns were not similar to the long-standing expectation for the phenotypic response of juvenile trees to shade, but were consistent with three hypothetical "growth strategies" in the understory: (1) the low SLA and LAR of A. saccharum may provide a measure of defense against herbivores and pathogens and thus promote persistence in the understory, (2) the high SLA for F. americana and high LAR for F. americana and A. rubrum may enable these species to achieve high growth rates in shade, and (3) the large carbohydrate stores of P. serotina may poise this species for opportunistic growth following disturbance. The relative importance of resistance to herbivores and pathogens vs. the maintenance of high growth

  5. Deciduous conifers: high n deposition and o3 exposure effects on growth and biomass allocation in ponderosa pine

    Treesearch

    Nancy Grulke; L. Balduman

    1999-01-01

    Ponderosa pines (Pinus ponderosa Dougl. ex. Laws) 21 to 60 yr old were used to assess the relative importance of environmental stressors (O3, drought) versus an enhancer (N deposition) on foliar retention, components of aboveground growth, and whole tree biomass allocation. Sites were chosen across a well-described gradient...

  6. Biomass allocation, growth, and photosynthesis of genotypes from native and introduced ranges of the tropical shrub Clidemia hirta.

    PubMed

    DeWalt, Saara J; Denslow, Julie S; Hamrick, J L

    2004-03-01

    We tested the hypothesis that the tropical shrub Clidemia hirta appears more shade tolerant and is more abundant in its introduced than native range because of genetic differences in resource acquisition, allocation, and phenotypic plasticity between native and introduced genotypes. We examined growth, biomass allocation, and photosynthetic parameters of C. hirta grown in a greenhouse from seed collected from four populations in part of its native range (Costa Rica) and four populations in part of its introduced range (Hawaiian Islands). Six-month-old seedlings were placed in high (10.3-13.9 mol m(-2) day(-1)) or low (1.4-4.5 mol m(-2) day(-1)) light treatments and grown for an additional 6 months. Our study provided little evidence that Hawaiian genotypes of C. hirta differed genetically from Costa Rican genotypes in ways that would contribute to differences in habitat distribution or abundance. Some of the genetic differences that were apparent, such as greater allocation to stems and leaf area relative to whole plant biomass in Costa Rican genotypes and greater allocation to roots in Hawaiian genotypes, were contrary to predictions that genotypes from the introduced range would allocate more biomass to growth and less to storage than those from the native range. Hawaiian and Costa Rican genotypes displayed no significant differences in relative growth rates, maximal photosynthetic rates, or specific leaf areas in either light treatment. In the high light environment, however, Hawaiian genotypes allocated more biomass to reproductive parts than Costa Rican genotypes. Phenotypic plasticity for only 1 of 12 morphological and photosynthetic variables was greater for Hawaiian than Costa Rican genotypes. We conclude that genetic shifts in resource use, resource allocation, or plasticity do not contribute to differences in habitat distribution and abundance between the native and introduced ranges of C. hirta.

  7. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    PubMed

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade

  8. [Interactive effects of light intensity and nitrogen supply on fraxinus mandshurica seedlings growth, biomass, and nitrogen allocation].

    PubMed

    Huo, Chang-fu; Wang, Zheng-quan; Sun, Hai-long; Fan, Zhi-qiang; Zhao, Xiao-min

    2008-08-01

    With sand culture in greenhouse, the responses of Fraxinus mandshurica seedlings growth, biomass, and N allocation to 2 levels of light intensity and 4 levels of N supply were studied. The results showed that under low light intensity, the seedlings shoot/root ratio (S/R) and net N uptake rate (NNUR) increased significantly (P < 0.01), but their relative growth rate (RGR) and net assimilation rate (NAR) had a significant decrease (P < 0.01). The biomass of root, stem, leaf, and total plant under low light was decreased by 36.8% (P < 0.01), 1.7%, 12.7% (P < 0.05) , and 24.3% (P < 0.01), respectively, and the N allocation to leaf increased but that to root was in adverse. At the two light levels, N supply had an obvious promotion effect on the seedlings growth, and the S/R and the N allocation to leaf were increased obviously with increasing N supply. Significant interactive effects of light and N supply were observed on the seedlings diameter, S/R, RGR, and biomass allocation.

  9. EFFECTS OF CARBON DIOXIDE AND OZONE ON GROWTH AND BIOMASS ALLOCATION IN PINUS PONDEROSA

    EPA Science Inventory

    The future productivity of forests will be affected by combinations of elevated atmospheric CO2 and O3. Because productivity of forests will, in part, be determined by growth of young trees, we evaluated shoot growth and biomass responses of Pinus ponderosa seedlings exposed to ...

  10. EFFECTS OF CARBON DIOXIDE AND OZONE ON GROWTH AND BIOMASS ALLOCATION IN PINUS PONDEROSA

    EPA Science Inventory

    The future productivity of forests will be affected by combinations of elevated atmospheric CO2 and O3. Because productivity of forests will, in part, be determined by growth of young trees, we evaluated shoot growth and biomass responses of Pinus ponderosa seedlings exposed to ...

  11. Changes in biomass allocation buffer low CO2 effects on tree growth during the last glaciation

    PubMed Central

    Li, Guangqi; Gerhart, Laci M.; Harrison, Sandy P.; Ward, Joy K.; Harris, John M.; Prentice, I. Colin

    2017-01-01

    Isotopic measurements on junipers growing in southern California during the last glacial, when the ambient atmospheric [CO2] (ca) was ~180 ppm, show the leaf-internal [CO2] (ci) was approaching the modern CO2 compensation point for C3 plants. Despite this, stem growth rates were similar to today. Using a coupled light-use efficiency and tree growth model, we show that it is possible to maintain a stable ci/ca ratio because both vapour pressure deficit and temperature were decreased under glacial conditions at La Brea, and these have compensating effects on the ci/ca ratio. Reduced photorespiration at lower temperatures would partly mitigate the effect of low ci on gross primary production, but maintenance of present-day radial growth also requires a ~27% reduction in the ratio of fine root mass to leaf area. Such a shift was possible due to reduced drought stress under glacial conditions at La Brea. The necessity for changes in allocation in response to changes in [CO2] is consistent with increased below-ground allocation, and the apparent homoeostasis of radial growth, as ca increases today. PMID:28233772

  12. Changes in biomass allocation buffer low CO2 effects on tree growth during the last glaciation.

    PubMed

    Li, Guangqi; Gerhart, Laci M; Harrison, Sandy P; Ward, Joy K; Harris, John M; Prentice, I Colin

    2017-02-24

    Isotopic measurements on junipers growing in southern California during the last glacial, when the ambient atmospheric [CO2] (ca) was ~180 ppm, show the leaf-internal [CO2] (ci) was approaching the modern CO2 compensation point for C3 plants. Despite this, stem growth rates were similar to today. Using a coupled light-use efficiency and tree growth model, we show that it is possible to maintain a stable ci/ca ratio because both vapour pressure deficit and temperature were decreased under glacial conditions at La Brea, and these have compensating effects on the ci/ca ratio. Reduced photorespiration at lower temperatures would partly mitigate the effect of low ci on gross primary production, but maintenance of present-day radial growth also requires a ~27% reduction in the ratio of fine root mass to leaf area. Such a shift was possible due to reduced drought stress under glacial conditions at La Brea. The necessity for changes in allocation in response to changes in [CO2] is consistent with increased below-ground allocation, and the apparent homoeostasis of radial growth, as ca increases today.

  13. Family Differences in Aboveground Biomass Allocation in Loblolly Pine

    Treesearch

    Scott D. Roberts

    2002-01-01

    The proportion of tree growth allocated to stemwood is an important economic component of growth efficiency. Differences in growth efficiency between species, or between families within species, may therefore be related to how growth is proportionally allocated between the stem and other aboveground biomass components. This study examines genetically related...

  14. Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability

    USGS Publications Warehouse

    Lorenzen, B.; Brix, H.; Mendelssohn, I.A.; McKee, K.L.; Miao, S.L.

    2001-01-01

    The effects of phosphorus (P) and oxygen availability on growth, biomass allocation and nutrient use efficiency in Cladium jamaicense Crantz and Typha domingensis Pers. were studied in a growth facility equipped with steady-state hydroponic rhizotrons. The treatments included four P concentrations (10, 40, 80 and 500 ??g I-1) and two oxygen concentration (8.0 and <0.5 mg O2 I-1) in the culture solutions. In Cladium, no clear relationship was found between P availability and growth rate (19-37 mg g-1 d-1), the above to below ground biomass ratio (A/B) (mean = 4.6), or nitrogen use efficiency (NUE) (mean = 72 g dry weight g-1 N). However, the ratio between root supported tissue (leaves, rhizomes and ramets) and root biomass (S/R) (5.6-8) increased with P availability. In contrast, the growth rate (48-89 mg g-1 d-1) and the biomass ratios A/B (2.4-6.1) and S/R (5.4-10.3) of Typha increased with P availability, while NUE (71-30 g dry weight g-1 N) decreased. The proportion of root laterals was similar in the two species, but Typha had thinner root laterals (diameter = 186 ??m) than Cladium (diameter = 438 ??m) indicating a larger root surface area in Typha. The two species had a similar P use efficiency (PUE) at 10 ??g PI-1 (mean = 1134 g dry weight g-1 P) and at 40 and 80 ??g PI-1 (mean = 482 dry weight g-1 P) but the N/P ratio indicated imbalances in nutrient uptake at a higher P concentration (40 ??g PI-1) in Typha than in Cladium (10 ??g PI-1). The two species had similar root specific P accumulation rate at the two lowest P levels, whereas Typha had 3-13-fold higher P uptake rates at the two highest P levels, indicating a higher nutrient uptake capacity in Typha. The experimental oxygen concentration in the rhizosphere had only limited effect on the growth of the two species and had little effect on biomass partitioning and nutrient use efficiency. The aerenchyma in these species was probably sufficient to maintain adequate root oxygenation under partially oxygen

  15. Compensatory responses of CO2 exchange and biomass allocation and their effects on the relative growth rate of ponderosa pine in different CO2 and temperature regimes.

    PubMed

    Callaway, R M; DeLucia, E H; Thomas, E M; Schlesinger, W H

    1994-07-01

    Increases in the concentration of atmospheric carbon dioxide may have a fertilizing effect on plant growth by increasing photosynthetic rates and therefore may offset potential growth decreases caused by the stress associated with higher temperatures and lower precipitation. However, plant growth is determined both by rates of net photosynthesis and by proportional allocation of fixed carbon to autotrophic tissue and heterotrophic tissue. Although CO2 fertilization may enhance growth by increasing leaf-level assimilation rates, reallocation of biomass from leaves to stems and roots in response to higher concentrations of CO2 and higher temperatures may reduce whole-plant assimilation and offset photosynthetic gains. We measured growth parameters, photosynthesis, respiration, and biomass allocation of Pinus ponderosa seedlings grown for 2 months in 2×2 factorial treatments of 350 or 650μ bar CO2 and 10/25° C or 15/30° C night/day temperatures. After 1 month in treatment conditions, total seedling biomass was higher in elevated CO2, and temperature significantly enhanced the positive CO2 effect. However, after 2 months the effect of CO2 on total biomass decreased and relative growth rates did not differ among CO2 and temperature treatments over the 2-month growth period even though photosynthetic rates increased ≈7% in high CO2 treatments and decreased ≈10% in high temperature treatments. Additionally, CO2 enhancement decreased root respiration and high temperatures increased shoot respiration. Based on CO2 exchange rates, CO2 fertilization should have increased relative growth rates (RGR) and high temperatures should have decreased RGR. Higher photosynthetic rates caused by CO2 fertilization appear to have been mitigated during the second month of exposure to treatment conditions by a ≈3% decrease in allocation of biomass to leaves and a ≈9% increase in root:shoot ratio. It was not clear why diminished photosynthetic rates and increased respiration rates

  16. Assessing wheat yield, Biomass, and water productivity responses to growth stage based irrigation water allocation

    USDA-ARS?s Scientific Manuscript database

    Increasing irrigated wheat yields is important to the overall profitability of limited-irrigation cropping systems in western Kansas. A simulation study was conducted to (1) validate APSIM's (Agricultural Production Systems sIMulator) ability to simulate wheat growth and yield in Kansas, and (2) app...

  17. Biomass Resource Allocation among Competing End Uses

    SciTech Connect

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  18. Sensitivity of growth and biomass allocation patterns to increasing nitrogen: a comparison between ephemerals and annuals in the Gurbantunggut Desert, north-western China.

    PubMed

    Zhou, Xiaobing; Zhang, Yuanming; Niklas, Karl J

    2014-02-01

    Biomass accumulation and allocation patterns are critical to quantifying ecosystem dynamics. However, these patterns differ among species, and they can change in response to nutrient availability even among genetically related individuals. In order to understand this complexity further, this study examined three ephemeral species (with very short vegetative growth periods) and three annual species (with significantly longer vegetative growth periods) in the Gurbantunggut Desert, north-western China, to determine their responses to different nitrogen (N) supplements under natural conditions. Nitrogen was added to the soil at rates of 0, 0.5, 1.0, 3.0, 6.0 and 24.0 g N m(-2) year(-1). Plants were sampled at various intervals to measure relative growth rate and shoot and root dry mass. Compared with annuals, ephemerals grew more rapidly, increased shoot and root biomass with increasing N application rates and significantly decreased root/shoot ratios. Nevertheless, changes in the biomass allocation of some species (i.e. Erodium oxyrrhynchum) in response to the N treatment were largely a consequence of changes in overall plant size, which was inconsistent with an optimal partitioning model. An isometric log shoot vs. log root scaling relationship for the final biomass harvest was observed for each species and all annuals, while pooled data of three ephemerals showed an allometric scaling relationship. These results indicate that ephemerals and annuals differ observably in their biomass allocation patterns in response to soil N supplements, although an isometric log shoot vs. log root scaling relationship was maintained across all species. These findings highlight that different life history strategies behave differently in response to N application even when interspecific scaling relationships remain nearly isometric.

  19. Heterogeneous Light Supply Affects Growth and Biomass Allocation of the Understory Fern Diplopterygium glaucum at High Patch Contrast

    PubMed Central

    Guo, Wei; Song, Yao-Bin; Yu, Fei-Hai

    2011-01-01

    Spatial heterogeneity in resource supply is common and responses to heterogeneous resource supply have been extensively documented in clonal angiosperms but not in pteridophytes. To test the hypotheses that clonal integration can modify responses of pteridophytes to heterogeneous resource supply and the integration effect is larger at higher patch contrast, we conducted a field experiment with three homogeneous and two heterogeneous light treatments on the rhizomatous, understory fern Diplopterygium glaucum in an evergreen broad-leaved forest in East China. In homogeneous treatments, all D. glaucum ramets in 1.5 m×1.5 m units were subjected to 10, 40 and 100% natural light, respectively. In the heterogeneous treatment of low patch contrast, ramets in the central 0.5 m×0.5 m plots of the units were subjected to 40% natural light and their interconnected ramets in the surrounding area of the units to 100%; in the heterogeneous treatment of high patch contrast, ramets in the central plots were subjected to 10% natural light and those in the surrounding area to 100%. In the homogeneous treatments, biomass and number of living ramets in the central plots decreased and number of dead ramets increased with decreasing light supply. At low contrast heterogeneous light supply did not affect performance or biomass allocation of D. glaucum in the central plots, but at high contrast it increased lamina biomass and number of living ramets older than annual and modified biomass allocation to lamina and rhizome. Thus, clonal integration can affect responses of understory ferns to heterogeneous light supply and ramets in low light patches can be supported by those in high light. The results also suggest that effects of clonal integration depend on the degree of patch contrast and a significant integration effect may be found only under a relatively high patch contrast. PMID:22132189

  20. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation

    PubMed Central

    Cunniff, Jennifer; Purdy, Sarah J.; Barraclough, Tim J.P.; Castle, March; Maddison, Anne L.; Jones, Laurence E.; Shield, Ian F.; Gregory, Andrew S.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation. PMID:26339128

  1. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation.

    PubMed

    Cunniff, Jennifer; Purdy, Sarah J; Barraclough, Tim J P; Castle, March; Maddison, Anne L; Jones, Laurence E; Shield, Ian F; Gregory, Andrew S; Karp, Angela

    2015-09-01

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation.

  2. Biomass allocation along tree stems in relation to environmental conditions

    NASA Astrophysics Data System (ADS)

    Merganicova, Katarina; Merganic, Jan; Sitkova, Zuzana; Sitko, Roman; Lestianska, Adriana; Strelcova, Katarina; Jezik, Marek

    2017-04-01

    Traditional tree parameters measured by foresters are tree diameter at breast height and tree height. Allocation of biomass to other parts of trees is usually estimated using empirically derived relationships. These are considered to be constant over time. However, current changing climatic conditions and climate extremes may cause changes in allocation, which has already been indicated in some studies of herbs and tree seedlings. Nevertheless, the data from mature trees are still rare. Our study aims to fill the gap in this area by analysing biomass allocation along tree stems over a period of several years. The analysed data represent the radial growth of beech trees at four different heights along their main stem axes. The values of radial growth were derived from the continual measurements of stem diameters at different stem heights with band dendrometers during the period from 2014 to 2016. The years differed in their weather conditions, which allowed us to analyse the impact of climatic conditions on the biomass allocation along tree stems. The results of this study can enlighten how the biomass allocation in mature trees responds to the changes in climatic conditions and to drought, which is one of the most threatening climate extremes of Central European forests.

  3. Ammonium and nitrate uptake, nitrogen productivity and biomass allocation in interior spruce families with contrasting growth rates and mineral nutrient preconditioning.

    PubMed

    Miller, Brad D; Hawkins, Barbara J

    2007-06-01

    Four full-sib families of interior spruce (Picea glauca (Moench) Voss) x Picea engelmanii Parry ex Engelm.) with contrasting growth rates (two fast-growing and two slow-growing families) were grown aeroponically with either a 2% relative nitrogen addition rate or free access to nitrogen. Fast-growing families showed greater plasticity in allocating biomass to shoots at high nitrogen supply and to roots at low nitrogen supply than slow-growing families. Compared with the slow-growing families, short-term net ammonium uptake rate measured with an ion selective electrode was significantly greater in fast-growing families at high ammonium supply, but not at low supply. Net nitrate uptake showed the same trend, but differences among families were not significant. Results indicate that differences in seedling growth rate are partly a result of physiological differences in net nitrogen uptake efficiency and nitrogen productivity.

  4. Reproductive biomass allocation in three Sargassum species.

    PubMed

    McCourt, Richard M

    1985-08-01

    Allocation of biomass to sexual reproductive (receptacle) tissue and vegetative (holdfast) tissue differed absolutely and relatively in three Sargassum species that form the bulk of the intertidal algal canopy in the northern Gulf of California. Sargassum herporhizum devoted a greater proportion of its thallus mass into its rhizoidal holdfast than did S. sinicola var. camouii or S. johnstonii, whose holdfasts are solid, more compact, and composed of a lower percentage of water. Conversely, more sexual receptacle tissue was produced by these two species with small holdfasts during the spring reproductive period. Sargassum sinicola var. camouii, which is the only species of the three that becomes fertile in the fall, produces a comparable amount of sexual tissue during this second period of reproduction. Removal of Sargassum from single-species patches showed that canopy regrowth by S. herporhizum with its encroaching rhizoidal holdfast was more rapid and complete than that of the other two species, which invest most of their reproductive efforts into sexual propagules that can disperse long distances. Sargassum herporhizum also displayed a more rapid and complete recovery of canopy cover in patches cleared of thalli and in control patches following the annual summer dieback. These two divergent modes of reproductive biomass allocation suggest that ability to encroach upon nearby open sites and ability to colonize distant discrete islands of suitable habitat represent two distinct reproductive strategies requiring different patterns of biomass allocation. Moreover, for energetic reasons, a species may not be able to excel at both modes of reproduction.

  5. Biomass for biorefining: Resources, allocation, utilization, and policies

    USDA-ARS?s Scientific Manuscript database

    The importance of biomass in the development of renewable energy, the availability and allocation of biomass, its preparation for use in biorefineries, and the policies affecting biomass are discussed in this chapter. Bioenergy development will depend on maximizing the amount of biomass obtained fro...

  6. Do plants modulate biomass allocation in response to petroleum pollution?

    PubMed Central

    Nie, Ming; Yang, Qiang; Jiang, Li-Fen; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2010-01-01

    Biomass allocation is an important plant trait that responds plastically to environmental heterogeneities. However, the effects on this trait of pollutants owing to human activities remain largely unknown. In this study, we investigated the response of biomass allocation of Phragmites australis to petroleum pollution by a 13CO2 pulse-labelling technique. Our data show that plant biomass significantly decreased under petroleum pollution, but the root–shoot ratio for both plant biomass and 13C increased with increasing petroleum concentration, suggesting that plants could increase biomass allocation to roots in petroleum-polluted soil. Furthermore, assimilated 13C was found to be significantly higher in soil, microbial biomass and soil respiration after soils were polluted by petroleum. These results suggested that the carbon released from roots is rapidly turned over by soil microbes under petroleum pollution. This study found that plants can modulate biomass allocation in response to petroleum pollution. PMID:20484231

  7. Do plants modulate biomass allocation in response to petroleum pollution?

    PubMed

    Nie, Ming; Yang, Qiang; Jiang, Li-Fen; Fang, Chang-Ming; Chen, Jia-Kuan; Li, Bo

    2010-12-23

    Biomass allocation is an important plant trait that responds plastically to environmental heterogeneities. However, the effects on this trait of pollutants owing to human activities remain largely unknown. In this study, we investigated the response of biomass allocation of Phragmites australis to petroleum pollution by a ¹³CO₂ pulse-labelling technique. Our data show that plant biomass significantly decreased under petroleum pollution, but the root-shoot ratio for both plant biomass and ¹³C increased with increasing petroleum concentration, suggesting that plants could increase biomass allocation to roots in petroleum-polluted soil. Furthermore, assimilated ¹³C was found to be significantly higher in soil, microbial biomass and soil respiration after soils were polluted by petroleum. These results suggested that the carbon released from roots is rapidly turned over by soil microbes under petroleum pollution. This study found that plants can modulate biomass allocation in response to petroleum pollution.

  8. Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis

    PubMed Central

    Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming

    2016-01-01

    Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants. PMID:27200071

  9. Biomass Allocation of Stoloniferous and Rhizomatous Plant in Response to Resource Availability: A Phylogenetic Meta-Analysis.

    PubMed

    Xie, Xiu-Fang; Hu, Yu-Kun; Pan, Xu; Liu, Feng-Hong; Song, Yao-Bin; Dong, Ming

    2016-01-01

    Resource allocation to different functions is central in life-history theory. Plasticity of functional traits allows clonal plants to regulate their resource allocation to meet changing environments. In this study, biomass allocation traits of clonal plants were categorized into absolute biomass for vegetative growth vs. for reproduction, and their relative ratios based on a data set including 115 species and derived from 139 published literatures. We examined general pattern of biomass allocation of clonal plants in response to availabilities of resource (e.g., light, nutrients, and water) using phylogenetic meta-analysis. We also tested whether the pattern differed among clonal organ types (stolon vs. rhizome). Overall, we found that stoloniferous plants were more sensitive to light intensity than rhizomatous plants, preferentially allocating biomass to vegetative growth, aboveground part and clonal reproduction under shaded conditions. Under nutrient- and water-poor condition, rhizomatous plants were constrained more by ontogeny than by resource availability, preferentially allocating biomass to belowground part. Biomass allocation between belowground and aboveground part of clonal plants generally supported the optimal allocation theory. No general pattern of trade-off was found between growth and reproduction, and neither between sexual and clonal reproduction. Using phylogenetic meta-analysis can avoid possible confounding effects of phylogeny on the results. Our results shown the optimal allocation theory explained a general trend, which the clonal plants are able to plastically regulate their biomass allocation, to cope with changing resource availability, at least in stoloniferous and rhizomatous plants.

  10. Pattern and control of biomass allocation across global forest ecosystems.

    PubMed

    Jiang, Yongtao; Wang, Limei

    2017-07-01

    The underground part of a tree is an important carbon sink in forest ecosystems. Understanding biomass allocation between the below- and aboveground parts (root:shoot ratios) is necessary for estimation of the underground biomass and carbon pool. Nevertheless, large-scale biomass allocation patterns and their control mechanisms are not well identified. In this study, a large database of global forests at the community level was compiled to investigate the root:shoot ratios and their responses to environmental factors. The results indicated that both the aboveground biomass (AGB) and belowground biomass (BGB) of the forests in China (medians 73.0 Mg/ha and 17.0 Mg/ha, respectively) were lower than those worldwide (medians 120.3 Mg/ha and 27.7 Mg/ha, respectively). The root:shoot ratios of the forests in China (median = 0.23), however, were not significantly different from other forests worldwide (median = 0.24). In general, the allocation of biomass between the belowground and aboveground parts was determined mainly by the inherent allometry of the plant but also by environmental factors. In this study, most correlations between root:shoot ratios and environmental factors (development parameter, climate, altitude, and soil) were weak but significant (p < .01). The allometric model agreed with the trends observed in this study and effectively estimated BGB based on AGB across the entire database.

  11. Growth, biomass allocation and photosynthetic responses are related to intensity of root severance and soil moisture conditions in the plantation tree Cunninghamia lanceolata.

    PubMed

    Dong, Tingfa; Duan, Baoli; Zhang, Sheng; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang

    2016-07-01

    We employed the warm temperate conifer Cunninghamia lanceolata (Lamb.) Hook. as a model of plantation forest species to investigate ecophysiological responses to root treatments (control (0%), and ∼25, 50 or 75% of the initial root mass) under well-watered and water-limited conditions. Our results indicated that total root dry mass accumulation was negatively associated with the severity of root pruning, but there was evidence of multiple compensatory responses. The plants exhibited higher instantaneous and long-term (assessed by carbon isotope composition, δ(13)C) water-use efficiency in pruning treatments, especially under low water availability. Root pruning also increased the fine root/total root mass ratio, specific root length and fine root vitality in both water availability treatments. As a result of the compensatory responses, under well-watered conditions, height, stem dry mass accumulation, leaf/fine root biomass ratio (L/FR), transpiration rate, photosynthetic capacity and photosynthetic nitrogen-use efficiency (EN) were the highest under 25% pruning. Yet, all these traits except L/FR and foliage nitrogen content were severely reduced under 75% pruning. Drought negatively affected growth and leaf gas exchange rates, and there was a greater negative effect on growth, water potential, gas exchange and EN when >25% of total root biomass was removed. The stem/aboveground mass ratio was the highest under 25% pruning in both watering conditions. These results indicate that the responses to root severance are related to the excision intensity and soil moisture content. A moderate root pruning proved to be an effective means to improve stem dry mass accumulation. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Biomass allocation of montane and desert Pondersoa Pine: An analog for response to climate change

    SciTech Connect

    Callaway, R.M.; DeLucia, E.H. ); Schlesinger, W.H. )

    1994-07-01

    Aboveground biomass allocation of Pinus ponderosa on hydrothermally altered andesite in montane and desert climates was measured. Trees from montane climates had higher leaf mass per unit cross-sectional area of sapwood than trees from desert climates, suggesting a function response to differences in climate. Results also indicate that sapwood mass:leaf mass ratios of P. ponderosa may increase [approx]50% with a 5[degrees]C change in mean growing-season temperature. High proportional allocation of biomass to sapwood may improve water relations of P. ponderosa, but because sapwood contains living parenchyma, respiratory costs may be high. Simulated montane trees were 46-52% taller than desert trees, and montane trees 10 cm in dbh had twice the total aboveground mass of desert counterparts. Simulated 50-cm montane and desert trees were almost identical in total mass, even though the montane tree was 46% taller. The predicted proportion of biomass allocated to bole sapwood increased with size for both montane and desert models; however, the 50-cm desert model contained 8% more total sapwood mass than the taller montane model. Biomass of primary and secondary branches differed considerably. The 50-cm desert model had twice as much biomass in primary branches, whereas the montane model had 3 times more biomass in secondary branches than the desert model. For 10-cm trees of the desert and montane models 29 and 33% of the biomass were leaves, respectively. In larger trees, leaf allocation decreased to 5 and 7% for desert and montane models, respectively. The effects of climate on biomass allocation such as reported here, and corresponding changes in whole-plant assimilation rates must be incorporated into growth-response models used to predict future fluctuations in forest productivity due to global climate change. 35 refs., 3 figs., 3 tabs.

  13. Pitfalls and Possibilities in the Analysis of Biomass Allocation Patterns in Plants

    PubMed Central

    Poorter, Hendrik; Sack, Lawren

    2012-01-01

    Plants can differentially allocate biomass to leaves, stems, roots, and reproduction, and follow ontogenetic trajectories that interact with the prevailing climate. Various methodological tools exist to analyze the resulting allocation patterns, based either on the calculation of biomass ratios or fractions of different organs at a given point in time, or on a so-called allometric analysis of biomass data sampled across species or over an experimental growth period. We discuss the weak and strong points of each of these methods. Although both approaches have useful features, we suggest that often a plot of biomass fractions against total plant size, either across species or in the comparison of treatment effects, combines the best of both worlds. PMID:23227027

  14. Biomass allocation and nutrients balance related to the concentration of Nitrogen and Phosphorus in Salvinia auriculata (Salviniaceae).

    PubMed

    Medeiros, J C C; Coelho, F F; Teixeira, E

    2016-06-01

    Aquatic plants can use differential allocation (trade-off) of carbon among their structures depending on the nutrition concentration. Given that N and P are limiting in the growth of plants, our questions were: Are the N and P concentrations in S. auriculata related to the biomass allocation to its structures? Is a differential allocation of N and P between floating and submerged leaves? We evaluated the relation between the nutrients and the biomass allocation, and the trade-off among the leaves using the Spearman correlation. Our results showed that N and P concentrations in S. auriculata are related to the biomass allocation to its structures, and that there is no trade-off of these nutrients between "shoot and root". Thus, we can see the importance of N and P concentration in the biomass of S. auriculata, and why this plant is capable to development in different environments as a weedy.

  15. Remotely-sensed indicators of N-related biomass allocation in Schoenoplectus acutus

    USGS Publications Warehouse

    O’Connell, Jessica L.; Byrd, Kristin B.; Kelly, Maggi

    2014-01-01

    Coastal marshes depend on belowground biomass of roots and rhizomes to contribute to peat and soil organic carbon, accrete soil and alleviate flooding as sea level rises. For nutrient-limited plants, eutrophication has either reduced or stimulated belowground biomass depending on plant biomass allocation response to fertilization. Within a freshwater wetland impoundment receiving minimal sediments, we used experimental plots to explore growth models for a common freshwater macrophyte, Schoenoplectus acutus. We used N-addition and control plots (4 each) to test whether remotely sensed vegetation indices could predict leaf N concentration, root:shoot ratios and belowground biomass of S. acutus. Following 5 months of summer growth, we harvested whole plants, measured leaf N and total plant biomass of all above and belowground vegetation. Prior to harvest, we simulated measurement of plant spectral reflectance over 164 hyperspectral Hyperion satellite bands (350–2500 nm) with a portable spectroradiometer. N-addition did not alter whole plant, but reduced belowground biomass 36% and increased aboveground biomass 71%. We correlated leaf N concentration with known N-related spectral regions using all possible normalized difference (ND), simple band ratio (SR) and first order derivative ND (FDN) and SR (FDS) vegetation indices. FDN1235, 549 was most strongly correlated with leaf N concentration and also was related to belowground biomass, the first demonstration of spectral indices and belowground biomass relationships. While S. acutus exhibited balanced growth (reduced root:shoot ratio with respect to nutrient addition), our methods also might relate N-enrichment to biomass point estimates for plants with isometric root growth. For isometric growth, foliar N indices will scale equivalently with above and belowground biomass. Leaf N vegetation indices should aid in scaling-up field estimates of biomass and assist regional monitoring.

  16. Remotely-Sensed Indicators of N-Related Biomass Allocation in Schoenoplectus acutus

    PubMed Central

    O’Connell, Jessica L.; Byrd, Kristin B.; Kelly, Maggi

    2014-01-01

    Coastal marshes depend on belowground biomass of roots and rhizomes to contribute to peat and soil organic carbon, accrete soil and alleviate flooding as sea level rises. For nutrient-limited plants, eutrophication has either reduced or stimulated belowground biomass depending on plant biomass allocation response to fertilization. Within a freshwater wetland impoundment receiving minimal sediments, we used experimental plots to explore growth models for a common freshwater macrophyte, Schoenoplectus acutus. We used N-addition and control plots (4 each) to test whether remotely sensed vegetation indices could predict leaf N concentration, root:shoot ratios and belowground biomass of S. acutus. Following 5 months of summer growth, we harvested whole plants, measured leaf N and total plant biomass of all above and belowground vegetation. Prior to harvest, we simulated measurement of plant spectral reflectance over 164 hyperspectral Hyperion satellite bands (350–2500 nm) with a portable spectroradiometer. N-addition did not alter whole plant, but reduced belowground biomass 36% and increased aboveground biomass 71%. We correlated leaf N concentration with known N-related spectral regions using all possible normalized difference (ND), simple band ratio (SR) and first order derivative ND (FDN) and SR (FDS) vegetation indices. FDN1235, 549 was most strongly correlated with leaf N concentration and also was related to belowground biomass, the first demonstration of spectral indices and belowground biomass relationships. While S. acutus exhibited balanced growth (reduced root:shoot ratio with respect to nutrient addition), our methods also might relate N-enrichment to biomass point estimates for plants with isometric root growth. For isometric growth, foliar N indices will scale equivalently with above and belowground biomass. Leaf N vegetation indices should aid in scaling-up field estimates of biomass and assist regional monitoring. PMID:24614037

  17. Conditioning biomass for microbial growth

    DOEpatents

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  18. Effects of Aspect on Clonal Reproduction and Biomass Allocation of Layering Modules of Nitraria tangutorum in Nebkha Dunes

    PubMed Central

    Li, Qinghe; Xu, Jun; Li, Huiqing; Wang, Saixiao; Yan, Xiu; Xin, Zhiming; Jiang, Zeping; Wang, Linlong; Jia, Zhiqing

    2013-01-01

    The formation of many nebkha dunes relies on the layering of clonal plants. The microenvironmental conditions of such phytogenic nebkha are heterogeneous depending on the aspect and slope. Exploring the effects of aspect on clonal reproduction and biomass allocation can be useful in understanding the ecological adaptation of species. We hypothesized that on the windward side layering propagation would be promoted, that biomass allocation to leaves and stems of ramets would increase, and that the effects of aspect would be greater in the layering with larger biomass. To test these hypotheses, we surveyed the depth of germination points of axillary buds, the rate of ramet sprouting, the density of adventitious root formation points, and the biomass of modules sprouting from layering located on the NE, SE, SW and NW, aspects of Nitraria tangutorum nebkhas. The windward side was located on the NW and SW aspects. The results indicated that conditions of the NW aspect were more conducive to clonal reproduction and had the highest rate of ramet sprouting and the highest density of adventitious formation points. For the modules sprouting from layering on the SW aspect, biomass allocation to leaves and stems was greatest with biomass allocation to adventitious roots being lowest. This result supported our hypothesis. Contrary to our hypothesis, the effects of aspect were greater in layering of smaller biomass. These results support the hypothesis that aspect does affect layering propagation capacity and biomass allocation in this species. Additionally, clonal reproduction and biomass allocation of modules sprouting from layering with smaller biomass was more affected by aspect. These results suggest that the clonal growth of N. tangutorum responses to the microenvironmental heterogeneity that results from aspect of the nebkha. PMID:24205391

  19. Biomass Allocation Patterns across China’s Terrestrial Biomes

    PubMed Central

    Wang, Limei; Li, Longhui; Chen, Xi; Tian, Xin; Wang, Xiaoke; Luo, Geping

    2014-01-01

    Root to shoot ratio (RS) is commonly used to describe the biomass allocation between below- and aboveground parts of plants. Determining the key factors influencing RS and interpreting the relationship between RS and environmental factors is important for biological and ecological research. In this study, we compiled 2088 pairs of root and shoot biomass data across China’s terrestrial biomes to examine variations in the RS and its responses to biotic and abiotic factors including vegetation type, soil texture, climatic variables, and stand age. The median value of RS (RSm) for grasslands, shrublands, and forests was 6.0, 0.73, and 0.23, respectively. The range of RS was considerably wide for each vegetation type. RS values for all three major vegetation types were found to be significantly correlated to mean annual precipitation (MAP) and potential water deficit index (PWDI). Mean annual temperature (MAT) also significantly affect the RS for forests and grasslands. Soil texture and forest origin altered the response of RS to climatic factors as well. An allometric formula could be used to well quantify the relationship between aboveground and belowground biomass, although each vegetation type had its own inherent allometric relationship. PMID:24710503

  20. The effect of a rosette-crown fly, Botanophila turcica, on growth,biomass allocation and reproduction of the thistle Carthamus lanatus

    NASA Astrophysics Data System (ADS)

    Sheppard, Andrew W.; Vitou, Janine

    2000-12-01

    Plant growth and reproductive output of the winter annual invasive thistle, Carthamus lanatus was characterised in relation to plant size in three native populations in southern France. The effects of the rosette-crown feeding fly Botanophila turcica on these plant characteristics were assessed by comparing unattacked with naturally attacked plants at each site and by a field experiment. Indirect effects of B. turcica on plant seed production were also compared with direct seed loss caused by a guild of capitulum-feeding insects that incidentally attacked the marked plants at these sites. C. lanatus showed no size or weight requirement for flowering, but larger flowering plants produced less total receptacle surface and less seed production (female reproductive potential) in proportion to plant weight than smaller flowering plants. B. turcica did not select hosts on the basis of size or density. B. turcica reduced plant relative growth rate (RGR) in all situations, but attacked plants compensated fully at two of three sites as attack failed to halt rosette growth. Attacked plants suffered 12 % mortality, and 71 % lower seed production than unattacked plants at the site with the lowest RGR. This corresponded to 9 % lower seed production for the whole thistle population compared to 8.6-19.5 % direct seed loss to capitulum insects across all sites.

  1. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control.

    PubMed

    Poorter, Hendrik; Niklas, Karl J; Reich, Peter B; Oleksyn, Jacek; Poot, Pieter; Mommer, Liesje

    2012-01-01

    We quantified the biomass allocation patterns to leaves, stems and roots in vegetative plants, and how this is influenced by the growth environment, plant size, evolutionary history and competition. Dose-response curves of allocation were constructed by means of a meta-analysis from a wide array of experimental data. They show that the fraction of whole-plant mass represented by leaves (LMF) increases most strongly with nutrients and decreases most strongly with light. Correction for size-induced allocation patterns diminishes the LMF-response to light, but makes the effect of temperature on LMF more apparent. There is a clear phylogenetic effect on allocation, as eudicots invest relatively more than monocots in leaves, as do gymnosperms compared with woody angiosperms. Plants grown at high densities show a clear increase in the stem fraction. However, in most comparisons across species groups or environmental factors, the variation in LMF is smaller than the variation in one of the other components of the growth analysis equation: the leaf area : leaf mass ratio (SLA). In competitive situations, the stem mass fraction increases to a smaller extent than the specific stem length (stem length : stem mass). Thus, we conclude that plants generally are less able to adjust allocation than to alter organ morphology.

  2. Plant winners and losers during grassland N-eutrophication differ in biomass allocation and mycorrhizas.

    PubMed

    Johnson, Nancy Collins; Rowland, Diane L; Corkidi, Lea; Allen, Edith B

    2008-10-01

    Human activities release tremendous amounts of nitrogenous compounds into the atmosphere. Wet and dry deposition distributes this airborne nitrogen (N) on otherwise pristine ecosystems. This eutrophication process significantly alters the species composition of native grasslands; generally a few nitrophilic plant species become dominant while many other species disappear. The functional equilibrium model predicts that, compared to species that decline in response to N enrichment, nitrophilic grass species should respond to N enrichment with greater biomass allocation aboveground and reduced allocation to roots and mycorrhizas. The mycorrhizal feedback hypothesis states that the composition of mycorrhizal fungal communities may influence the composition of plant communities, and it predicts that N enrichment may generate reciprocal shifts in the species composition of mycorrhizal fungi and plants. We tested these hypotheses with experiments that compared biomass allocation and mycorrhizal function of four grass ecotypes (three species), two that gained and two that lost biomass and cover in response to long-term N enrichment experiments at Cedar Creek and Konza Long-Term Ecological Research grasslands. Local grass ecotypes were grown in soil from their respective sites and inoculated with whole-soil inoculum collected from either fertilized (FERT) or unfertilized (UNFERT) plots. Our results strongly support the functional equilibrium model. In both grassland systems the nitrophilic grass species grew taller, allocated more biomass to shoots than to roots, and formed fewer mycorrhizas compared to the grass species that it replaced. Our results did not fully support the hypothesis that N-induced changes in the mycorrhizal fungal community were drivers of the plant community shifts that accompany N eutrophication. The FERT and UNFERT soil inoculum influenced the growth of the grasses differently, but this varied with site and grass ecotype in both expected and

  3. [Growth and resource allocation pattern of Artemisia frigida under different grazing and clipping intensities].

    PubMed

    Li, Jinhua; Li, Zhenqing; Liu, Zhenguo

    2004-03-01

    In order to understand the degradation process and its mechanism of typical steppe in Inner Mongolia, this paper studied the growth and resource allocation pattern of Artimisia frigida under different grazing and clipping intensities(no grazing, light grazing 1.33 sheep.hm-2, moderate grazing 4.00 sheep.hm-2, heavy grazing 6.67 sheep.hm-2, proportional clipping and stubble clipping), which was conducted at the Inner Mongolia Grassland Ecosystem Research Station of Chinese Academy of Sciences(43 degrees 26'-44 degrees 08' N, 116 degrees 04'-117 degrees 05' E). The results showed that the regrowth ability of A. frigida under proportional clipping was superior to that under stubble clipping, and light clipping (1/4 proportional clipping or 10 cm stubble clipping) was superior to no clipping. In early growth season, the net regrowth of A. frigida was higher under no clipping than under light clipping, but reversed in late growth season (after mid-August). The biomass allocation pattern of A. frigida was roots > leaves > stems. Grazing or clipping affected biomass allocation significantly, especially for the allocation of leaves and flowers. The biomass allocation of leaves was significantly higher under 3/4 proportional clipping or 4 cm stubble clipping than under other treatments, and reverse trend was true for the biomass allocation of flowers. There were no significant differences in biomass allocation of roots and stems among treatments. Sexual reproductive allocation decreased with increasing grazing or clipping intensities, and reproductive mode of A. frigida changed under heavy grazing. The changes in priority of biomass allocation from sexual reproductive organs to clonal growth to sustain and propagate population were important ecological strategies of the species to heavy grazing.

  4. Distinguishing the Biomass Allocation Variance Resulting from Ontogenetic Drift or Acclimation to Soil Texture

    PubMed Central

    Xie, Jiangbo; Tang, Lisong; Wang, Zhongyuan; Xu, Guiqing; Li, Yan

    2012-01-01

    In resource-poor environments, adjustment in plant biomass allocation implies a complex interplay between environmental signals and plant development rather than a delay in plant development alone. To understand how environmental factors influence biomass allocation or the developing phenotype, it is necessary to distinguish the biomass allocations resulting from environmental gradients or ontogenetic drift. Here, we compared the development trajectories of cotton plants (Gossypium herbaceum L.), which were grown in two contrasting soil textures during a 60-d period. Those results distinguished the biomass allocation pattern resulting from ontogenetic drift and the response to soil texture. The soil texture significantly changed the biomass allocation to leaves and roots, but not to stems. Soil texture also significantly changed the development trajectories of leaf and root traits, but did not change the scaling relationship between basal stem diameter and plant height. Results of nested ANOVAs of consecutive plant-size categories in both soil textures showed that soil gradients explained an average of 63.64–70.49% of the variation of biomass allocation to leaves and roots. Ontogenetic drift explained 77.47% of the variation in biomass allocation to stems. The results suggested that the environmental factors governed the biomass allocation to roots and leaves, and ontogenetic drift governed the biomass allocation to stems. The results demonstrated that biomass allocation to metabolically active organs (e.g., roots and leaves) was mainly governed by environmental factors, and that biomass allocation to metabolically non-active organs (e.g., stems) was mainly governed by ontogenetic drift. We concluded that differentiating the causes of development trajectories of plant traits was important to the understanding of plant response to environmental gradients. PMID:22911802

  5. Distinguishing the biomass allocation variance resulting from ontogenetic drift or acclimation to soil texture.

    PubMed

    Xie, Jiangbo; Tang, Lisong; Wang, Zhongyuan; Xu, Guiqing; Li, Yan

    2012-01-01

    In resource-poor environments, adjustment in plant biomass allocation implies a complex interplay between environmental signals and plant development rather than a delay in plant development alone. To understand how environmental factors influence biomass allocation or the developing phenotype, it is necessary to distinguish the biomass allocations resulting from environmental gradients or ontogenetic drift. Here, we compared the development trajectories of cotton plants (Gossypium herbaceum L.), which were grown in two contrasting soil textures during a 60-d period. Those results distinguished the biomass allocation pattern resulting from ontogenetic drift and the response to soil texture. The soil texture significantly changed the biomass allocation to leaves and roots, but not to stems. Soil texture also significantly changed the development trajectories of leaf and root traits, but did not change the scaling relationship between basal stem diameter and plant height. Results of nested ANOVAs of consecutive plant-size categories in both soil textures showed that soil gradients explained an average of 63.64-70.49% of the variation of biomass allocation to leaves and roots. Ontogenetic drift explained 77.47% of the variation in biomass allocation to stems. The results suggested that the environmental factors governed the biomass allocation to roots and leaves, and ontogenetic drift governed the biomass allocation to stems. The results demonstrated that biomass allocation to metabolically active organs (e.g., roots and leaves) was mainly governed by environmental factors, and that biomass allocation to metabolically non-active organs (e.g., stems) was mainly governed by ontogenetic drift. We concluded that differentiating the causes of development trajectories of plant traits was important to the understanding of plant response to environmental gradients.

  6. Mechanical stimuli regulate the allocation of biomass in trees: demonstration with young Prunus avium trees.

    PubMed

    Coutand, Catherine; Dupraz, Christian; Jaouen, Gaëlle; Ploquin, Stéphane; Adam, Boris

    2008-06-01

    Plastic tree-shelters are increasingly used to protect tree seedlings against browsing animals and herbicide drifts. The biomass allocation in young seedlings of deciduous trees is highly disturbed by common plastic tree-shelters, resulting in poor root systems and reduced diameter growth of the trunk. The shelters have been improved by creating chimney-effect ventilation with holes drilled at the bottom, resulting in stimulated trunk diameter growth, but the root deficit has remained unchanged. An experiment was set up to elucidate the mechanisms behind the poor root growth of sheltered Prunus avium trees. Tree seedlings were grown either in natural windy conditions or in tree-shelters. Mechanical wind stimuli were suppressed in ten unsheltered trees by staking. Mechanical stimuli (bending) of the stem were applied in ten sheltered trees using an original mechanical device. Sheltered trees suffered from poor root growth, but sheltered bent trees largely recovered, showing that mechano-sensing is an important mechanism governing C allocation and the shoot-root balance. The use of a few artificial mechanical stimuli increased the biomass allocation towards the roots, as did natural wind sway. It was demonstrated that there was an acclimation of plants to the imposed strain. This study suggests that if mechanical stimuli are used to control plant growth, they should be applied at low frequency in order to be most effective. The impact on the functional equilibrium hypothesis that is used in many tree growth models is discussed. The consequence of the lack of mechanical stimuli should be incorporated in tree growth models when applied to environments protected from the wind (e.g. greenhouses, dense forests).

  7. Mechanical Stimuli Regulate the Allocation of Biomass in Trees: Demonstration with Young Prunus avium Trees

    PubMed Central

    Coutand, Catherine; Dupraz, Christian; Jaouen, Gaëlle; Ploquin, Stéphane; Adam, Boris

    2008-01-01

    Background and Aims Plastic tree-shelters are increasingly used to protect tree seedlings against browsing animals and herbicide drifts. The biomass allocation in young seedlings of deciduous trees is highly disturbed by common plastic tree-shelters, resulting in poor root systems and reduced diameter growth of the trunk. The shelters have been improved by creating chimney-effect ventilation with holes drilled at the bottom, resulting in stimulated trunk diameter growth, but the root deficit has remained unchanged. An experiment was set up to elucidate the mechanisms behind the poor root growth of sheltered Prunus avium trees. Methods Tree seedlings were grown either in natural windy conditions or in tree-shelters. Mechanical wind stimuli were suppressed in ten unsheltered trees by staking. Mechanical stimuli (bending) of the stem were applied in ten sheltered trees using an original mechanical device. Key Results Sheltered trees suffered from poor root growth, but sheltered bent trees largely recovered, showing that mechano-sensing is an important mechanism governing C allocation and the shoot–root balance. The use of a few artificial mechanical stimuli increased the biomass allocation towards the roots, as did natural wind sway. It was demonstrated that there was an acclimation of plants to the imposed strain. Conclusions This study suggests that if mechanical stimuli are used to control plant growth, they should be applied at low frequency in order to be most effective. The impact on the functional equilibrium hypothesis that is used in many tree growth models is discussed. The consequence of the lack of mechanical stimuli should be incorporated in tree growth models when applied to environments protected from the wind (e.g. greenhouses, dense forests). PMID:18448448

  8. Effects of nutrient availabiiity on biomass allocation as well as constitutive and rapid induced herbivore resistance in poplar

    Treesearch

    Carolyn Glynn; Daniel A. Herms; Marie Egawa; Robert Hansen; William J. Mattson

    2003-01-01

    Many studies have examined effects of nutrient availability on constitutive herbivore resistance of plants, but few have addressed effects on expression of rapid induced resistance (RIR). We quantified effects of two levels of nutrient availability on growth, biomass allocation, photosynthesis, and constitutive secondary metabolism of black poplar (>i>Populus...

  9. Effect of temperature on biomass allocation in seedlings of two contrasting genotypes of the oilseed crop Ricinus communis.

    PubMed

    Ribeiro, Paulo R; Zanotti, Rafael F; Deflers, Carole; Fernandez, Luzimar G; Castro, Renato D de; Ligterink, Wilco; Hilhorst, Henk W M

    2015-08-01

    Ricinus communis is becoming an important crop for oil production, and studying the physiological and biochemical aspects of seedling development may aid in the improvement of crop quality and yield. The objective of this study was to assess the effect of temperature on biomass allocation in two R. communis genotypes. Biomass allocation was assessed by measuring dry weight of roots, stems, and cotyledons of seedlings grown at three different temperatures. Root length of each seedling was measured. Biomass allocation was strongly affected by temperature. Seedlings grown at 25°C and 35°C showed greater biomass than seedlings grown at 20°C. Cotyledon and stem dry weight increased for both genotypes with increasing temperature, whereas root biomass allocation showed a genotype-dependent behavior. Genotype MPA11 showed a continuous increase in root dry weight with increasing temperature, while genotype IAC80 was not able to sustain further root growth at higher temperatures. Based on metabolite and gene expression profiles, genotype MPA11 increases its level of osmoprotectant molecules and transcripts of genes encoding for antioxidant enzymes and heat shock proteins to a higher extent than genotype IAC80. This might be causal for the ability to maintain homeostasis and support root growth at elevated temperatures in genotype MPA11.

  10. Low tolerance to simulated herbivory in Hawaiian seedlings despite induced changes in photosynthesis and biomass allocation.

    PubMed

    Barton, Kasey E

    2016-05-01

    Seedling herbivory is an important factor underlying plant community diversity and structure. While considerable research has characterized seedling defence in terms of resistance, very little is known about seedling tolerance of herbivory. Moreover, few studies have attempted to identify mechanisms of tolerance across a range of plant species. Seedling tolerance of simulated herbivory was tested in a diverse pool of ten Hawaiian plant species, including several lobeliad species (family Campanulaceae), a grass, a herb and common woody trees and shrubs. Tolerance was measured as the relative survival and growth of damaged plants receiving 50 % defoliation with simultaneous jasmonic acid application compared with undamaged control plants, assessed 1·5 and 5 weeks after damage. Putative mechanisms of tolerance were measured, including photosynthetic parameters, light use efficiency, and biomass allocation reflecting growth priorities, and analysed using species-level regression analyses on tolerance indices. No species fully tolerated 50 % defoliation at either harvest date, and simulated herbivory significantly reduced shoot as well as root biomass. Lobeliad species had particularly low tolerance. Species varied considerably in size, biomass allocation parameters and their constitutive (pre-damage) and induced (post-damage) photosynthetic parameters. However, only constitutive levels of non-photochemical quenching were significantly related to tolerance, indicating that species with more efficient light use (and less heat dissipation) are better at tolerating damage than species with high levels of heat dissipation. Native Hawaiian plants expressed low tolerance to a conservative level of simulated herbivory. Root growth decreased in response to damage, but this was not associated with greater tolerance, suggesting this response may be due to allocation constraints following defoliation and not due to adaptive plasticity. Conservation of native island plants

  11. Plants adapted to nutrient limitation allocate less biomass into stems in an arid-hot grassland.

    PubMed

    Yan, Bangguo; Ji, Zhonghua; Fan, Bo; Wang, Xuemei; He, Guangxiong; Shi, Liangtao; Liu, Gangcai

    2016-09-01

    Biomass allocation can exert a great influence on plant resource acquisition and nutrient use. However, the role of biomass allocation strategies in shaping plant community composition under nutrient limitations remains poorly addressed. We hypothesized that species-specific allocation strategies can affect plant adaptation to nutrient limitations, resulting in species turnover and changes in community-level biomass allocations across nutrient gradients. In this study, we measured species abundance and the concentrations of nitrogen and phosphorus in leaves and soil nutrients in an arid-hot grassland. We quantified species-specific allocation parameters for stems vs leaves based on allometric scaling relationships. Species-specific stem vs leaf allocation parameters were weighted with species abundances to calculate the community-weighted means driven by species turnover. We found that the community-weighted means of biomass allocation parameters were significantly related to the soil nutrient gradient as well as to leaf stoichiometry, indicating that species-specific allocation strategies can affect plant adaptation to nutrient limitations in the studied grassland. Species that allocate less to stems than leaves tend to dominate nutrient-limited environments. The results support the hypothesis that species-specific allocations affect plant adaptation to nutrient limitations. The allocation trade-off between stems and leaves has the potential to greatly affect plant distribution across nutrient gradients.

  12. Aboveground biomass allocation of ponderosa pine along an elevational gradient: An analog for response to climate change

    SciTech Connect

    Callaway, R.M.; DeLucia, E.H.; Schlesinger, W.H. Duke Univ., Durham, NC )

    1993-06-01

    Predictions of CO[sub 2]-enhanced growth for adult trees are primarily based on leaf-level assimilation responses and improved growth rates of seedlings and saplings. Plant growth may be more dependent on biomass allocation than on rates of assimilation, but predictions have not incorporated the effects of temperature on biomass reallocation among autotrophic and heterotrophic tissues and whole-plant carbon balance. We measured biomass allocation of Pinus ponderosa on hydrothermally altered andesite in montane and desert climates, thus substrate was held constant while climate varied. Trees from montane climates supported higher leaf mass per cross-sectional sapwood area (functional conducting xylem) than trees from desert climates, suggesting that a functional response to climate had occurred. Our results also indicate that sapwood mass:leaf mass ratios of P. ponderosa may increase [approx] 50% with a 5[degrees]C change. in mean growing season temperature, approximately the difference between our montane and desert sites. Such an increase in sapwood:leaf ratio may partially offset predicted CO[sub 2]-enhancement effects and substantially reduce whole-plant carbon balance. Biomass allocation responses must be incorporated into growth-response models used to predict fluctuations in forest productivity with changes in climate and atmospheric CO[sub 2] concentration.

  13. Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies.

    PubMed

    Eyles, Alieta; Pinkard, Elizabeth A; Mohammed, Caroline

    2009-06-01

    In woody species, potential mechanisms to compensate for tissue loss to herbivory and diseases have been related to post-event shifts in growth, biomass and internal resource allocation patterns, as modulated by external resource limitations. We examined the interactive effects of belowground resource limitations by varying nutrient and water availability, and aboveground carbon limitation imposed by a single defoliation event (40% leaf removal) on stem growth, whole-tree and within-tree resource allocation patterns (total non-structural carbohydrate and nitrogen) and below- and aboveground biomass allocation patterns in 8-month-old, field-grown Eucalyptus globulus Labill. saplings. Two months after treatments were imposed, the direction of the stem growth response to defoliation depended on the abiotic treatment. Five months after defoliation, however, we found little evidence that resource availability constrained the expression of tolerance to defoliation. With the exception of the combined low-nutrient and low-water supply treatment, saplings grown with (1) adequate water and nutrient supplies and even with (2) low-water supply or (3) low-nutrient supply were able to compensate for the 40% foliage loss. The observed compensatory responses were attributed to the activation of several short- and longer-term physiological mechanisms including reduced biomass allocation to coarse roots, mobilization of carbohydrate reserves, robust internal N dynamics and increased ratio of foliage to wood dry mass.

  14. Aboveground Tree Growth Varies with Belowground Carbon Allocation in a Tropical Rainforest Environment

    PubMed Central

    Raich, James W.; Clark, Deborah A.; Schwendenmann, Luitgard; Wood, Tana E.

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide. PMID:24945351

  15. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment.

    PubMed

    Raich, James W; Clark, Deborah A; Schwendenmann, Luitgard; Wood, Tana E

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15-20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production). In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide.

  16. Shifts in Aboveground Biomass Allocation Patterns of Dominant Shrub Species across a Strong Environmental Gradient

    PubMed Central

    Kumordzi, Bright B.; Gundale, Michael J.; Nilsson, Marie-Charlotte; Wardle, David A.

    2016-01-01

    Most plant biomass allocation studies have focused on allocation to shoots versus roots, and little is known about drivers of allocation for aboveground plant organs. We explored the drivers of within-and between-species variation of aboveground biomass allocation across a strong environmental resource gradient, i.e., a long-term chronosequence of 30 forested islands in northern Sweden across which soil fertility and plant productivity declines while light availability increases. For each of the three coexisting dominant understory dwarf shrub species on each island, we estimated the fraction of the total aboveground biomass produced year of sampling that was allocated to sexual reproduction (i.e., fruits), leaves and stems for each of two growing seasons, to determine how biomass allocation responded to the chronosequence at both the within-species and whole community levels. Against expectations, within-species allocation to fruits was least on less fertile islands, and allocation to leaves at the whole community level was greatest on intermediate islands. Consistent with expectations, different coexisting species showed contrasting allocation patterns, with the species that was best adapted for more fertile conditions allocating the most to vegetative organs, and with its allocation pattern showing the strongest response to the gradient. Our study suggests that co-existing dominant plant species can display highly contrasting biomass allocations to different aboveground organs within and across species in response to limiting environmental resources within the same plant community. Such knowledge is important for understanding how community assembly, trait spectra, and ecological processes driven by the plant community vary across environmental gradients and among contrasting ecosystems. PMID:27270445

  17. Importance of whole-plant biomass allocation and reproductive timing to habitat differentiation across the North American sunflowers.

    PubMed

    Mason, Chase M; Goolsby, Eric W; Davis, Kaleigh E; Bullock, Devon V; Donovan, Lisa A

    2017-05-01

    Trait-based plant ecology attempts to use small numbers of functional traits to predict plant ecological strategies. However, a major gap exists between our understanding of organ-level ecophysiological traits and our understanding of whole-plant fitness and environmental adaptation. In this gap lie whole-plant organizational traits, including those that describe how plant biomass is allocated among organs and the timing of plant reproduction. This study explores the role of whole-plant organizational traits in adaptation to diverse environments in the context of life history, growth form and leaf economic strategy in a well-studied herbaceous system. A phylogenetic comparative approach was used in conjunction with common garden phenotyping to assess the evolution of biomass allocation and reproductive timing across 83 populations of 27 species of the diverse genus Helianthus (the sunflowers). Broad diversity exists among species in both relative biomass allocation and reproductive timing. Early reproduction is strongly associated with resource-acquisitive leaf economic strategy, while biomass allocation is less integrated with either reproductive timing or leaf economics. Both biomass allocation and reproductive timing are strongly related to source site environmental characteristics, including length of the growing season, temperature, precipitation and soil fertility. Herbaceous taxa can adapt to diverse environments in many ways, including modulation of phenology, plant architecture and organ-level ecophysiology. Although leaf economic strategy captures one key aspect of plant physiology, on their own leaf traits are not particularly predictive of ecological strategies in Helianthus outside of the context of growth form, life history and whole-plant organization. These results highlight the importance of including data on whole-plant organization alongside organ-level ecophysiological traits when attempting to bridge the gap between functional traits and plant

  18. ROOT BIOMASS ALLOCATION IN THE WORLD'S UPLAND FORESTS

    EPA Science Inventory

    Because the world's forests play a major role in regulating nutrient and carbon cycles, there is much interest in estimating their biomass. Estimates of aboveground biomass based on well-established methods are relatively abundant; estimates of root biomass based on standard meth...

  19. ROOT BIOMASS ALLOCATION IN THE WORLD'S UPLAND FORESTS

    EPA Science Inventory

    Because the world's forests play a major role in regulating nutrient and carbon cycles, there is much interest in estimating their biomass. Estimates of aboveground biomass based on well-established methods are relatively abundant; estimates of root biomass based on standard meth...

  20. Phytohormonal Regulation of Biomass Allocation and Morphological and Physiological Traits of Leaves in Response to Environmental Changes in Polygonum cuspidatum

    PubMed Central

    Sugiura, Daisuke; Kojima, Mikiko; Sakakibara, Hitoshi

    2016-01-01

    Plants plastically change their morphological and physiological traits in response to environmental changes, which are accompanied by changes in endogenous levels of phytohormones. Although roles of phytohormones in various aspects of plant growth and development were elucidated, their importance in the regulation of biomass allocation was not fully investigated. This study aimed to determine causal relationships among changes in biomass allocation, morphological and physiological traits, and endogenous levels of phytohormones such as gibberellins (GAs) and cytokinins (CKs) in response to environmental changes in Polygonum cuspidatum. Seedlings of P. cuspidatum were grown under two light intensities, each at three nitrogen availabilities. The seedlings grown in high light intensity and high nitrogen availability (HH) were subjected to three additional treatments: Defoliating half of the leaves (Def), transferral to low nitrogen availability (LowN), or low light intensity (LowL). Biomass allocation at the whole-plant level, morphological and physiological traits of each leaf, and endogenous levels of phytohormones in each leaf and shoot apex were measured. Age-dependent changes in leaf traits were also investigated. After the treatments, endogenous levels of GAs in the shoot apex and leaves significantly increased in Def, decreased in LowN, and did not change in LowL compared with HH seedlings. Among all of the seedlings, the levels of GAs in the shoot apex and leaves were strongly correlated with biomass allocation ratio between leaves and roots. The levels of GAs in the youngest leaves were highest, while the levels of CKs were almost consistent in each leaf. The levels of CKs were positively correlated with leaf nitrogen content in each leaf, whereas the levels of GAs were negatively correlated with the total non-structural carbohydrate content in each leaf. These results support our hypothesis that GAs and CKs are key regulatory factors that control biomass

  1. Assessing the Impact of Model Parameter Uncertainty in Simulating Grass Biomass Using a Hybrid Carbon Allocation Strategy

    NASA Astrophysics Data System (ADS)

    Reyes, J. J.; Adam, J. C.; Tague, C.

    2016-12-01

    Grasslands play an important role in agricultural production as forage for livestock; they also provide a diverse set of ecosystem services including soil carbon (C) storage. The partitioning of C between above and belowground plant compartments (i.e. allocation) is influenced by both plant characteristics and environmental conditions. The objectives of this study are to 1) develop and evaluate a hybrid C allocation strategy suitable for grasslands, and 2) apply this strategy to examine the importance of various parameters related to biogeochemical cycling, photosynthesis, allocation, and soil water drainage on above and belowground biomass. We include allocation as an important process in quantifying the model parameter uncertainty, which identifies the most influential parameters and what processes may require further refinement. For this, we use the Regional Hydro-ecologic Simulation System, a mechanistic model that simulates coupled water and biogeochemical processes. A Latin hypercube sampling scheme was used to develop parameter sets for calibration and evaluation of allocation strategies, as well as parameter uncertainty analysis. We developed the hybrid allocation strategy to integrate both growth-based and resource-limited allocation mechanisms. When evaluating the new strategy simultaneously for above and belowground biomass, it produced a larger number of less biased parameter sets: 16% more compared to resource-limited and 9% more compared to growth-based. This also demonstrates its flexible application across diverse plant types and environmental conditions. We found that higher parameter importance corresponded to sub- or supra-optimal resource availability (i.e. water, nutrients) and temperature ranges (i.e. too hot or cold). For example, photosynthesis-related parameters were more important at sites warmer than the theoretical optimal growth temperature. Therefore, larger values of parameter importance indicate greater relative sensitivity in

  2. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests

    PubMed Central

    Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping

    2015-01-01

    To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China’s forests using both the national forest inventory data (2004–2008) and our field measurements (2011–2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China. PMID:26525117

  3. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China's forests.

    PubMed

    Zhang, Hao; Wang, Kelin; Xu, Xianli; Song, Tongqing; Xu, Yanfang; Zeng, Fuping

    2015-11-03

    To test whether there are general patterns in biomass partitioning in relation to environmental variation when stand biomass is considered, we investigated biomass allocation in leaves, stems, and roots in China's forests using both the national forest inventory data (2004-2008) and our field measurements (2011-2012). Distribution patterns of leaf, stem, and root biomass showed significantly different trends according to latitude, longitude, and altitude, and were positively and significantly correlated with stand age and mean annual precipitation. Trade-offs among leaves, stems, and roots varied with forest type and origin and were mainly explained by stand biomass. Based on the constraints of stand biomass, biomass allocation was also influenced by forest type, origin, stand age, stand density, mean annual temperature, precipitation, and maximum temperature in the growing season. Therefore, after stand biomass was accounted for, the residual variation in biomass allocation could be partially explained by stand characteristics and environmental factors, which may aid in quantifying carbon cycling in forest ecosystems and assessing the impacts of climate change on forest carbon dynamics in China.

  4. Reproductive allocation of biomass and nitrogen in annual and perennial Lesquerella crops.

    PubMed

    Ploschuk, E L; Slafer, G A; Ravetta, D A

    2005-07-01

    The use of perennial crops could contribute to increase agricultural sustainability. However, almost all of the major grain crops are herbaceous annuals and opportunities to replace them with more long-lived perennials have been poorly explored. This follows the presumption that the perennial life cycle is associated with a lower potential yield, due to a reduced allocation of biomass to grains. The hypothesis was tested that allocation to perpetuation organs in the perennial L. mendocina would not be directly related to a lower allocation to seeds. * Two field experiments were carried on with the annual Lesquerella fendleri and the iteroparous perennial L. mendocina, two promising oil-seed crops for low-productivity environments, subjected to different water and nitrogen availability. * Seed biomass allocation was similar for both species, and unresponsive to water and nitrogen availability. Greater root and vegetative shoot allocation in the perennial was counterbalanced by a lower allocation to other reproductive structures compared with the annual Lesquerella. Allometric relationships revealed that allocation differences between the annual and the perennial increased linearly with plant size. The general allocation patterns for nitrogen did not differ from those of biomass. However, nitrogen concentrations were higher in the vegetative shoot and root of L. mendocina than of L. fendleri but remained stable in seeds of both species. * It is concluded that vegetative organs are more hierarchically important sinks in L. mendocina than in the annual L. fendleri, but without disadvantages in seed hierarchy.

  5. Reproductive Allocation of Biomass and Nitrogen in Annual and Perennial Lesquerella Crops

    PubMed Central

    PLOSCHUK, E. L.; SLAFER, G. A.; RAVETTA, D. A.

    2005-01-01

    • Background and Aims The use of perennial crops could contribute to increase agricultural sustainability. However, almost all of the major grain crops are herbaceous annuals and opportunities to replace them with more long-lived perennials have been poorly explored. This follows the presumption that the perennial life cycle is associated with a lower potential yield, due to a reduced allocation of biomass to grains. The hypothesis was tested that allocation to perpetuation organs in the perennial L. mendocina would not be directly related to a lower allocation to seeds. • Methods Two field experiments were carried on with the annual Lesquerella fendleri and the iteroparous perennial L. mendocina, two promising oil-seed crops for low-productivity environments, subjected to different water and nitrogen availability. • Key Results Seed biomass allocation was similar for both species, and unresponsive to water and nitrogen availability. Greater root and vegetative shoot allocation in the perennial was counterbalanced by a lower allocation to other reproductive structures compared with the annual Lesquerella. Allometric relationships revealed that allocation differences between the annual and the perennial increased linearly with plant size. The general allocation patterns for nitrogen did not differ from those of biomass. However, nitrogen concentrations were higher in the vegetative shoot and root of L. mendocina than of L. fendleri but remained stable in seeds of both species. • Conclusions It is concluded that vegetative organs are more hierarchically important sinks in L. mendocina than in the annual L. fendleri, but without disadvantages in seed hierarchy. PMID:15863469

  6. Constraints on growth and allocation patterns of Silphium integrifolium (Asteraceae) caused by a cynipid gall wasp.

    PubMed

    Fay, P A; Hartnett, D C

    1991-10-01

    Insect herbivory can have important effects on plant life histories and architecture. We quantified the impact that a cynipid gall wasp, Antistrophus silphii, had on growth, reproduction, and biomass allocation patterns of Silphium integrifolium growing in the tallgrass prairie of northeastern Kansas. Experimentally galled individual Silphium shoots (ramets) had reduced shoot growth, leaf and flower head production, and delayed flowering compared to gall-free control shoots. Gall formation completely halted normal apical growth in 65% of the shoots. Galling did not affect individual flower head weight, the numbers of achenes per flower head or achene weight. Silphium plants (genets) with a high proportion of galled shoots had lower total biomass, a lower proportion of total biomass allocated to flower heads, higher allocation to leaves, but no change in allocation to stems or rhizome. High gall densities reduced the number of flower heads per plant and shortened the time between flower head initiation and maturity. An adaptive interpretation of these results would be that the survivorship and future performance of galled Silphium may be promoted by maintaining allocation to rhizome. However, reduced shoot growth and delayed reproduction in galled Silphium may weaken its competitive ability and reduce pollination success, so that any adaptive advantage to Silphium's allocation responses to galls may be outweighed by disadvantages from its growth and flowering phenology responses. We conclude that a more parsimonious interpretation of these results is that gall-induced allocation changes are due to architectural constraints placed by galls on meristem activity, rather than to any adaptive response on the part of the plant.

  7. Research and evaluation of biomass resources/conversion/utilization systems. Biomass allocation model. Volume 1: Test and appendices A & B

    NASA Astrophysics Data System (ADS)

    Stringer, R. P.; Ahn, Y. K.; Chen, H. T.; Helm, R. W.; Nelson, E. T.; Shields, K. J.

    1981-08-01

    A biomass allocation model was developed to show the most profitable combination of biomass feedstocks, thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating which of a large number of potential biomass missions is the most profitable mission. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a microprocessor. A User's Manual for the system is included. Biomass derived fuels included in the data base are the following: medium Btu gas, low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil.

  8. Inherent and environmental patterns in biomass allocation and allometry among higher plants

    NASA Astrophysics Data System (ADS)

    Poorter, Hendrik

    2017-04-01

    It is well-known that plants may adjust the distribution of biomass over leaves, stems and roots depending on environmental conditions. It is also clear that size is an important factor as well. However, good quantitative insights are lacking. In this talk I analyse biomass allocation patterns to leaves, stems and roots of herbs and woody species. A database was compiled with 11.000 records of leaf, stem and root biomass for 1200 species. First, I'll derive general dose-response curves that describe the relationship between biomass allocation and the 12 most important a-biotic environmental factors and compare them with the changes in leaf, stem and root morphology. Second, I'll focus on allometric relationships between the various organs and test to what extent they comply with models like that for Metabolic Scaling Theory, where the slope of the log-log relationship between leaf and root biomass is expected to have a value of ¾. Third, I analyse how leaf, stem and root mass fractions change as a function of total plant size. This offers a great opportunity to test to what extent there are systematic differences in allocation patterns related to phylogeny (e.g. Gymnosperms vs. Angiosperms, grasses vs. herbaceous dicots) and functional group (e.g. deciduous vs. evergreens). Poorter et al. (2012) Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytol. 193: 30-50. Poorter & Sack (2012) Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Front. Plant Sci. 3: 259. Poorter et al. (2015) How does biomass distribution change with size and differ among species? New Phytol. 208: 736-749

  9. Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau

    PubMed Central

    Yang, Yuanhe; Yang, Lucun; Zhou, Guoying

    2016-01-01

    Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011–2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level. PMID:27119379

  10. Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau.

    PubMed

    Nie, Xiuqing; Yang, Yuanhe; Yang, Lucun; Zhou, Guoying

    2016-01-01

    Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011-2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level.

  11. Adventitious Root Production and Plastic Resource Allocation to Biomass Determine Burial Tolerance in Woody Plants from Central Canadian Coastal Dunes

    PubMed Central

    DECH, JEFFERY P.; MAUN, M. ANWAR

    2006-01-01

    • Background and Aims Burial is a recurrent stress imposed upon plants of coastal dunes. Woody plants are buried on open coastal dunes and in forested areas behind active blowouts; however, little is known about the burial responses and adaptive traits of these species. The objectives of this study were: (a) to determine the growth and morphological responses to burial in sand of seven woody plant species native to central Canadian coastal dunes; and (b) to identify traits that determine burial tolerance in these species. • Methods Field experiments were conducted to determine the responses of each species to burial. Saplings were exposed to burial treatments of 0, 10, 25, 50 and 75 % of their height. Burial responses were evaluated based on regressions of total biomass, height, adventitious root production and percentage allocation to shoot, root and adventitious root biomass on percentage burial. • Key Results Pinus strobus and Picea glauca lacked burial tolerance. In response to the burial gradient, these species showed a strong linear decline in total biomass, minimal adventitious root production that peaked at moderate levels (25–50 % burial) and no change in allocation to shoots vs. roots. The tolerant species Juniperus virginiana, Thuja occidentalis and Picea mariana showed a quadratic response to burial, with little change in biomass up to 50 % burial, but a large decline at 75 %. These species produced abundant adventitious roots up to 50 % burial, but did not alter allocation patterns over the range of burial levels. Populus balsamifera and Salix cordata were stimulated by burial. These species showed linear increases in biomass with increasing burial, produced copious adventitious roots across the gradient and showed a clear shift in allocation to vertical shoot growth and adventitious root production at the expense of the original roots under high burial conditions. • Conclusions Adventitious root production and plastic resource

  12. Biomass allocation is an important determinant of the tannin concentration in growing plants.

    PubMed

    Häring, D A; Suter, D; Amrhein, N; Lüscher, A

    2007-01-01

    Condensed tannins (CTs) in the diet affect consumers in a concentration-dependent manner. Because of their importance in plant defence against herbivores and pathogens as well as their potential application against gastrointestinal parasites of ruminants in agronomy, an understanding of the seasonal dynamics of CT concentrations during plant growth is essential. Over a vegetation period, CT concentrations in leaves, stems and roots and the biomass proportions between these organs were investigated in Onobrychis viciifolia, Lotus corniculatus and Cichorium intybus. Based on the experimental data, a model has been suggested to predict CT concentrations in harvestable biomass of these species. During the experiment, leaf mass fractions of plants decreased from 85, 64, 85 to 30, 18, 39 % d. wt in Onobrychis, Lotus and Cichorium, respectively, and proportions of stems and roots increased accordingly. While CT concentrations almost doubled in leaves in Onobrychis (from 52 to 86 mg g(-1) d. wt, P<0.001) and Lotus (from 25 to 54 mg g(-1) d. wt, P<0.001), they were stable at low levels in expanding leaves of Cichorium (5 mg g(-1) d. wt) and in stems and roots of all investigated species. Due to an inverse effect of the increasing CT concentrations in leaves and simultaneous dilution from increasing proportions of 'CT-poor' stems, CT concentrations in harvestable biomass were stable over time in all investigated species: 62, 26 and 5 mg g(-1) d. wt for Onobrychis, Lotus and Cichorium, respectively. As a consequence of the unequal distribution of tannins in different plant parts and due to the changing biomass proportions between them, various herbivores (e.g. a leaf-eating insect and a grazing ruminant) may find not only different concentrations of CT in their diets but also different CT dynamics during the season. For the prediction of seasonal variations of CT concentrations, biomass allocation and accumulation of none-CT plant material are likely to be as important

  13. Biomass Allocation is an Important Determinant of the Tannin Concentration in Growing Plants

    PubMed Central

    Häring, D. A.; Suter, D.; Amrhein, N.; Lüscher, A.

    2007-01-01

    Background and aims Condensed tannins (CTs) in the diet affect consumers in a concentration-dependent manner. Because of their importance in plant defence against herbivores and pathogens as well as their potential application against gastrointestinal parasites of ruminants in agronomy, an understanding of the seasonal dynamics of CT concentrations during plant growth is essential. Methods Over a vegetation period, CT concentrations in leaves, stems and roots and the biomass proportions between these organs were investigated in Onobrychis viciifolia, Lotus corniculatus and Cichorium intybus. Based on the experimental data, a model has been suggested to predict CT concentrations in harvestable biomass of these species. Key Results During the experiment, leaf mass fractions of plants decreased from 85, 64, 85 to 30, 18, 39 % d. wt in Onobrychis, Lotus and Cichorium, respectively, and proportions of stems and roots increased accordingly. While CT concentrations almost doubled in leaves in Onobrychis (from 52 to 86 mg g−1 d. wt, P<0·001) and Lotus (from 25 to 54 mg g−1 d. wt, P<0·001), they were stable at low levels in expanding leaves of Cichorium (5 mg g−1 d. wt) and in stems and roots of all investigated species. Due to an inverse effect of the increasing CT concentrations in leaves and simultaneous dilution from increasing proportions of ‘CT-poor’ stems, CT concentrations in harvestable biomass were stable over time in all investigated species: 62, 26 and 5 mg g−1 d. wt for Onobrychis, Lotus and Cichorium, respectively. Conclusions As a consequence of the unequal distribution of tannins in different plant parts and due to the changing biomass proportions between them, various herbivores (e.g. a leaf-eating insect and a grazing ruminant) may find not only different concentrations of CT in their diets but also different CT dynamics during the season. For the prediction of seasonal variations of CT concentrations, biomass allocation and accumulation

  14. Regional allocation of biomass to U.S. energy demands under a portfolio of policy scenarios.

    PubMed

    Mullins, Kimberley A; Venkatesh, Aranya; Nagengast, Amy L; Kocoloski, Matt

    2014-01-01

    The potential for widespread use of domestically available energy resources, in conjunction with climate change concerns, suggest that biomass may be an essential component of U.S. energy systems in the near future. Cellulosic biomass in particular is anticipated to be used in increasing quantities because of policy efforts, such as federal renewable fuel standards and state renewable portfolio standards. Unfortunately, these independently designed biomass policies do not account for the fact that cellulosic biomass can equally be used for different, competing energy demands. An integrated assessment of multiple feedstocks, energy demands, and system costs is critical for making optimal decisions about a unified biomass energy strategy. This study develops a spatially explicit, best-use framework to optimally allocate cellulosic biomass feedstocks to energy demands in transportation, electricity, and residential heating sectors, while minimizing total system costs and tracking greenhouse gas emissions. Comparing biomass usage across three climate policy scenarios suggests that biomass used for space heating is a low cost emissions reduction option, while biomass for liquid fuel or for electricity becomes attractive only as emissions reduction targets or carbon prices increase. Regardless of the policy approach, study results make a strong case for national and regional coordination in policy design and compliance pathways.

  15. Environmental control of carbon allocation matters for modelling forest growth.

    PubMed

    Guillemot, Joannès; Francois, Christophe; Hmimina, Gabriel; Dufrêne, Eric; Martin-StPaul, Nicolas K; Soudani, Kamel; Marie, Guillaume; Ourcival, Jean-Marc; Delpierre, Nicolas

    2017-04-01

    We aimed to evaluate the importance of modulations of within-tree carbon (C) allocation by water and low-temperature stress for the prediction of annual forest growth with a process-based model. A new C allocation scheme was implemented in the CASTANEA model that accounts for lagged and direct environmental controls of C allocation. Different approaches (static vs dynamic) to modelling C allocation were then compared in a model-data fusion procedure, using satellite-derived leaf production estimates and biometric measurements at c. 10(4) sites. The modelling of the environmental control of C allocation significantly improved the ability of CASTANEA to predict the spatial and year-to-year variability of aboveground forest growth along regional gradients. A significant effect of the previous year's water stress on the C allocation to leaves and wood was reported. Our results also are consistent with a prominent role of the environmental modulation of sink demand in the wood growth of the studied species. Data available at large scales can inform forest models about the processes driving annual and seasonal C allocation. Our results call for a greater consideration of C allocation drivers, especially sink-demand fluctuations, for the simulations of current and future forest productivity with process-based models.

  16. [Biomass- and energy allocation in Eucalyptus urophylla x Eucalyptus tereticornis plantations at different stand ages].

    PubMed

    Zhou, Qun-Ying; Chen, Shao-Xiong; Han, Fei-Yang; Chen, Wen-Ping; Wu, Zhi-Hua

    2010-01-01

    An investigation was made on the biomass- and energy allocation in 1-4-year-old Eucalyptus urophylla x Eucalyptus tereticornis plantations at Beipo Forest Farm of Suixi County in Guangdong Province. Stand age had significant effects on the retained biomass of the plantations (P < 0.01). The biomass was in the range of 10.61-147.28 t x hm(-2). Both the total biomass and the biomass of above- and belowground components increased with increasing stand age. The proportions of leaf-, branch- and bark biomass to total biomass decreased with year, while that of stem biomass was in reverse. The biomass allocation of the components in 1- and 2-year-old plantations decreased in order of stem > branch > bark > root > leaf, and that in 3- and 4 -year-old plantations was in order of stem > root > branch > bark > leaf. The mean ash content (AC) of the five components at different stand ages ranged from 0.47% to 5.91%, being the highest in bark and the lowest in stem. The mean gross caloric value (GCV) and ash free caloric value (AFCV) of different components ranged from 17.33 to 20. 60 kJ x g(-1) and from 18.42 to 21.59 kJ x g(-1) respectively. Of all the components, leaf had the highest GVC and AFCV, while bark had the lowest ones. Stand age had significant effects on the GVC of branch, stem, and bark, and on the AFCV of leaf, stem, and bark (P < 0.05), but the effects on the GVC of leaf and root, the AFCV of branch and root, and the GVC and AFCV of individual trees were not significant (P > 0.05). The retained energy of 1-4-year-old plantations ranged from 199.98 to 2837.20 GJ x hm(-2), with significant differences among the stand ages (P < 0.01). The retained energy of various components and plantations increased with stand age, and the energy allocation of various components had the same trend as biomass allocation.

  17. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Heijmans, Monique M. P. D.; Mommer, Liesje; van Ruijven, Jasper; Maximov, Trofim C.; Berendse, Frank

    2016-05-01

    Climate warming is known to increase the aboveground productivity of tundra ecosystems. Recently, belowground biomass is receiving more attention, but the effects of climate warming on belowground productivity remain unclear. Enhanced understanding of the belowground component of the tundra is important in the context of climate warming, since most carbon is sequestered belowground in these ecosystems. In this study we synthesized published tundra belowground biomass data from 36 field studies spanning a mean annual temperature (MAT) gradient from -20 °C to 0 °C across the tundra biome, and determined the relationships between different plant biomass pools and MAT. Our results show that the plant community biomass-temperature relationships are significantly different between above and belowground. Aboveground biomass clearly increased with MAT, whereas total belowground biomass and fine root biomass did not show a significant increase over the broad MAT gradient. Our results suggest that biomass allocation of tundra vegetation shifts towards aboveground in warmer conditions, which could impact on the carbon cycling in tundra ecosystems through altered litter input and distribution in the soil, as well as possible changes in root turnover.

  18. High water level impedes the adaptation of Polygonum hydropiper to deep burial: responses of biomass allocation and root morphology.

    PubMed

    Pan, Ying; Xie, Yong H; Deng, Zheng M; Tang, Yue; Pan, Dong D

    2014-07-08

    Many studies have investigated the individual effects of sedimentation or inundation on the performance of wetland plants, but few have examined the combined influence of these processes. Wetland plants might show greater morphological plasticity in response to inundation than to sedimentation when these processes occur simultaneously since inundation can negate the negative effects of burial on plant growth. Here, we evaluate this hypothesis by assessing growth of the emergent macrophyte Polygonum hydropiper under flooding (0 and 40 cm) and sedimentation (0, 5, and 10 cm), separately and in combination. Deep burial and high water level each led to low oxidation-reduction potential, biomass (except for 5-cm burial), and growth of thick, short roots. These characteristics were generally more significant under high water level than under deep burial conditions. More biomass was allocated to stems in the deep burial treatments, but more to leaves in the high water level treatments. Additionally, biomass accumulation was lower and leaf mass ratio was higher in the 40-cm water level + 10-cm burial depth treatment than both separate effects. Our data indicate that inundation plays a more important role than sedimentation in determining plant morphology, suggesting hierarchical effects of environmental stressors on plant growth.

  19. Biogeographical patterns of forest biomass allocation vary by climate, soil and forest characteristics in China

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Song, Tongqing; Wang, Kelin; Wang, Genxuan; Liao, Jianxiong; Xu, Guanghua; Zeng, Fuping

    2015-04-01

    To explore whether the large-scale patterns of biomass allocation vary by climate, soil, and forest characteristics in terrestrial ecosystems, on the basis of the national forest inventory data (2004-2008) and our previous field measurements (2011-2012), we investigated the variation of four biomass allocation fractions (BAFs), and their relationship with environmental factors (e.g. climate and soil chemistry) and forest characteristics (e.g. stand age and stand density) across 11 of China’s forest types. Our results revealed that BAFs have significant latitudinal, longitudinal and altitudinal trends. Stepwise multiple regression models that involve the climate, soil and forest stand properties account for a part of the biogeographical variation in BAFs, and the stand age, stand density and mean growing season temperature mainly explain these variations. Reduced major axis regression models showed that BAFs differ in their sensitivity (slope of their response to environmental gradients) to climate, soil and forest characteristics among different forest types. The results of the current study do not support the isometric allocation hypothesis, which suggests that component biomass scales equivalently as total biomass across different plant species along environmental gradients.

  20. C3 and C4 biomass allocation responses to elevated CO2 and nitrogen: contrasting resource capture strategies

    USGS Publications Warehouse

    White, K.P.; Langley, J.A.; Cahoon, D.R.; Megonigal, J.P.

    2012-01-01

    Plants alter biomass allocation to optimize resource capture. Plant strategy for resource capture may have important implications in intertidal marshes, where soil nitrogen (N) levels and atmospheric carbon dioxide (CO2) are changing. We conducted a factorial manipulation of atmospheric CO2 (ambient and ambient + 340 ppm) and soil N (ambient and ambient + 25 g m-2 year-1) in an intertidal marsh composed of common North Atlantic C3 and C4 species. Estimation of C3 stem turnover was used to adjust aboveground C3 productivity, and fine root productivity was partitioned into C3-C4 functional groups by isotopic analysis. The results suggest that the plants follow resource capture theory. The C3 species increased aboveground productivity under the added N and elevated CO2 treatment (P 2 alone. C3 fine root production decreased with added N (P 2 (P = 0.0481). The C4 species increased growth under high N availability both above- and belowground, but that stimulation was diminished under elevated CO2. The results suggest that the marsh vegetation allocates biomass according to resource capture at the individual plant level rather than for optimal ecosystem viability in regards to biomass influence over the processes that maintain soil surface elevation in equilibrium with sea level.

  1. Allocation of biomass and photoassimilates in juvenile plants of six Patagonian species in response to five water supply regimes

    PubMed Central

    Cella Pizarro, Lucrecia; Bisigato, Alejandro J.

    2010-01-01

    Background and Aims The growth–differentiation balance hypothesis (GDBH) states that there is a physiological trade-off between growth and secondary metabolism and predicts a parabolic effect of resource availability (such as water or nutrients) on secondary metabolite production. To test this hypothesis, the response of six Patagonian Monte species (Jarava speciosa, Grindelia chiloensis, Prosopis alpataco, Bougainvillea spinosa, Chuquiraga erinacea and Larrea divaricata) were investigated in terms of total biomass and resource allocation patterns in response to a water gradient. Methods One-month-old seedlings were subjected to five water supply regimes (expressed as percentage dry soil weight: 13 %, 11 %, 9 %, 7 % or 5 % – field water capacity being 15 %). After 150 d, plants were harvested, oven-dried and partitioned into root, stem and leaf. Allometric analysis was used to correct for size differences in dry matter partitioning. Determinations of total phenolics (TP), condensed tannins (CT), nitrogen (N) and total non-structural carbohydrates (TNC) concentrations were done on each fraction. Based on concentrations and biomass data, contents of TP and CT were estimated for whole plants, and graphical vector analysis was applied to interpret drought effect. Key Results Four species (J. speciosa, G. chiloensis, P. alpataco and B. spinosa) showed a decrease in total biomass in the 5 % water supply regime. Differences in dry matter partitioning among treatments were mainly due to size variation. Concentrations of TP, CT, N and TNC varied little and the effect of drought on contents of TP and CT was not adequately predicted by the GDBH, except for G. chiloensis. Conclusions Water stress affected growth-related processes (i.e. reduced total biomass) rather than defence-related secondary metabolism or allocation to different organs in juvenile plants. Therefore, the results suggest that application of the GDBH to plants experiencing drought-stress should be done

  2. Food restriction alters energy allocation strategy during growth in tobacco hornworms (Manduca sexta larvae).

    PubMed

    Jiao, Lihong; Amunugama, Kaushalya; Hayes, Matthew B; Jennings, Michael; Domingo, Azriel; Hou, Chen

    2015-08-01

    Growing animals must alter their energy budget in the face of environmental changes and prioritize the energy allocation to metabolism for life-sustaining requirements and energy deposition in new biomass growth. We hypothesize that when food availability is low, larvae of holometabolic insects with a short development stage (relative to the low food availability period) prioritize biomass growth at the expense of metabolism. Driven by this hypothesis, we develop a simple theoretical model, based on conservation of energy and allometric scaling laws, for understanding the dynamic energy budget of growing larvae under food restriction. We test the hypothesis by manipulative experiments on fifth instar hornworms at three temperatures. At each temperature, food restriction increases the scaling power of growth rate but decreases that of metabolic rate, as predicted by the hypothesis. During the fifth instar, the energy budgets of larvae change dynamically. The free-feeding larvae slightly decrease the energy allocated to growth as body mass increases and increase the energy allocated to life sustaining. The opposite trends were observed in food restricted larvae, indicating the predicted prioritization in the energy budget under food restriction. We compare the energy budgets of a few endothermic and ectothermic species and discuss how different life histories lead to the differences in the energy budgets under food restriction.

  3. Food restriction alters energy allocation strategy during growth in tobacco hornworms ( Manduca sexta larvae)

    NASA Astrophysics Data System (ADS)

    Jiao, Lihong; Amunugama, Kaushalya; Hayes, Matthew B.; Jennings, Michael; Domingo, Azriel; Hou, Chen

    2015-08-01

    Growing animals must alter their energy budget in the face of environmental changes and prioritize the energy allocation to metabolism for life-sustaining requirements and energy deposition in new biomass growth. We hypothesize that when food availability is low, larvae of holometabolic insects with a short development stage (relative to the low food availability period) prioritize biomass growth at the expense of metabolism. Driven by this hypothesis, we develop a simple theoretical model, based on conservation of energy and allometric scaling laws, for understanding the dynamic energy budget of growing larvae under food restriction. We test the hypothesis by manipulative experiments on fifth instar hornworms at three temperatures. At each temperature, food restriction increases the scaling power of growth rate but decreases that of metabolic rate, as predicted by the hypothesis. During the fifth instar, the energy budgets of larvae change dynamically. The free-feeding larvae slightly decrease the energy allocated to growth as body mass increases and increase the energy allocated to life sustaining. The opposite trends were observed in food restricted larvae, indicating the predicted prioritization in the energy budget under food restriction. We compare the energy budgets of a few endothermic and ectothermic species and discuss how different life histories lead to the differences in the energy budgets under food restriction.

  4. Floral bud damage compensation by branching and biomass allocation in genotypes of Brassica napus with different architecture and branching potential

    PubMed Central

    Pinet, Amélie; Mathieu, Amélie; Jullien, Alexandra

    2015-01-01

    Plant branching is a key process in the yield elaboration of winter oilseed rape (WOSR). It is also involved in plant tolerance to flower damage because it allows the setting of new fertile inflorescences. Here we characterize the changes in the branching and distribution of the number of pods between primary and secondary inflorescences in response to floral bud clippings. Then we investigate the impacts of the modifications in branching on the biomass allocation and its consequence on the crop productivity (harvest index). These issues were addressed on plants with contrasted architecture and branching potential, using three genotypes (Exocet, Pollen, and Gamin) grown under two levels of nitrogen fertilization. Clipping treatments of increasing intensities were applied to either inflorescences or flower buds. We were able to show that restoration of the number of pods after clipping is the main lever for the compensation. Genotypes presented different behaviors in branching and biomass allocation as a function of clipping treatments. The number of fertile ramifications increased for the high intensities of clipping. In particular, the growth of secondary ramifications carried by branches developed before clipping has been observed. The proportions of yield and of number of pods carried by these secondary axes increased and became almost equivalent to the proportion carried by primary inflorescences. In terms of biomass allocation, variations have also been evidenced in the relationship between pod dry mass on a given axis and the number of pods set, while the shoot/root ratio was not modified. The harvest index presented different responses: it decreased after flower buds clipping, while it was maintained after the clipping of the whole inflorescences. The results are discussed relative to their implications regarding the identification of interesting traits to be target in breeding programs in order to improve WOSR tolerance. PMID:25759703

  5. Soil water content and patterns of allocation to below- and above-ground biomass in the sexes of the subdioecious plant Honckenya peploides.

    PubMed

    Sánchez-Vilas, Julia; Bermúdez, Raimundo; Retuerto, Rubén

    2012-09-01

    Dioecious plants often show sex-specific differences in growth and biomass allocation. These differences have been explained as a consequence of the different reproductive functions performed by the sexes. Empirical evidence strongly supports a greater reproductive investment in females. Sex differences in allocation may determine the performance of each sex in different habitats and therefore might explain the spatial segregation of the sexes described in many dimorphic plants. Here, an investigation was made of the sexual dimorphism in seasonal patterns of biomass allocation in the subdioecious perennial herb Honckenya peploides, a species that grows in embryo dunes (i.e. the youngest coastal dune formation) and displays spatial segregation of the sexes at the studied site. The water content in the soil of the male- and female-plant habitats at different times throughout the season was also examined. The seasonal patterns of soil-water availability and biomass allocation were compared in two consecutive years in male and female H. peploides plants by collecting soil and plant samples in natural populations. Vertical profiles of below-ground biomass and water content were studied by sampling soil in male- and female-plant habitats at different soil depths. The sexes of H. peploides differed in their seasonal patterns of biomass allocation to reproduction. Males invested twice as much in reproduction than females early in the season, but sexual differences became reversed as the season progressed. No differences were found in above-ground biomass between the sexes, but the allocation of biomass to below-ground structures varied differently in depth for males and females, with females usually having greater below-ground biomass than males. In addition, male and female plants of H. peploides had different water-content profiles in the soil where they were growing and, when differences existed (usually in the upper layers of the soil), the water content of the soil

  6. Soil water content and patterns of allocation to below- and above-ground biomass in the sexes of the subdioecious plant Honckenya peploides

    PubMed Central

    Sánchez-Vilas, Julia; Bermúdez, Raimundo; Retuerto, Rubén

    2012-01-01

    Background and aims Dioecious plants often show sex-specific differences in growth and biomass allocation. These differences have been explained as a consequence of the different reproductive functions performed by the sexes. Empirical evidence strongly supports a greater reproductive investment in females. Sex differences in allocation may determine the performance of each sex in different habitats and therefore might explain the spatial segregation of the sexes described in many dimorphic plants. Here, an investigation was made of the sexual dimorphism in seasonal patterns of biomass allocation in the subdioecious perennial herb Honckenya peploides, a species that grows in embryo dunes (i.e. the youngest coastal dune formation) and displays spatial segregation of the sexes at the studied site. The water content in the soil of the male- and female-plant habitats at different times throughout the season was also examined. Methods The seasonal patterns of soil-water availability and biomass allocation were compared in two consecutive years in male and female H. peploides plants by collecting soil and plant samples in natural populations. Vertical profiles of below-ground biomass and water content were studied by sampling soil in male- and female-plant habitats at different soil depths. Key Results The sexes of H. peploides differed in their seasonal patterns of biomass allocation to reproduction. Males invested twice as much in reproduction than females early in the season, but sexual differences became reversed as the season progressed. No differences were found in above-ground biomass between the sexes, but the allocation of biomass to below-ground structures varied differently in depth for males and females, with females usually having greater below-ground biomass than males. In addition, male and female plants of H. peploides had different water-content profiles in the soil where they were growing and, when differences existed (usually in the upper layers of the

  7. Light and nutrient effects on growth and allocation of Inga vera(Leguminosae), a successional tree of Puerto Rico.

    Treesearch

    R. W. Myster

    2006-01-01

    With the aim of acquiring a better understanding of ecological growth and biomass allocation of Neotropical trees, I inoculated Inga vera Willd. (Leguminosae) plants from cuttings with Rhizobium spp. and arbuscular mycorrhizal fungi and grew them in a greenhouse for 8 months under varying light (L), phosphorus (P), and nitrogen (N) treatments. I obtained the following...

  8. Scaling relationships of twig biomass allocation in Pinus hwangshanensis along an altitudinal gradient.

    PubMed

    Li, Man; Zheng, Yuan; Fan, RuiRui; Zhong, QuanLin; Cheng, DongLiang

    2017-01-01

    Understanding the response of biomass allocation in twigs (the terminal branches of current-year shoots) to environmental change is crucial for elucidating forest ecosystem carbon storage, carbon cycling, and plant life history strategies under a changing climate. On the basis of interspecies investigations of broad-leaved plants, previous studies have demonstrated that plants respond to environmental factors by allocating biomass in an allometric manner between support tissues (i.e., stems) and the leaf biomass of twigs, where the scaling exponent (i.e., slope of a log-log linear relationship, α) is constant, and the scaling constant (i.e., intercept of a log-log linear relationship, log β) varies with respect to environmental factors. However, little is known about whether the isometric scaling exponents of such biomass allocations remain invariant for single species, particularly conifers, at different altitudes and in different growing periods. In this study, we investigated how twig biomass allocation varies with elevation and period among Pinus hwangshanensis Hsia trees growing in the mountains of Southeast China. Specifically, we explored how twig stem mass, needle mass, and needle area varied throughout the growing period (early, mid-, late) and at three elevations in the Wuyi Mountains. Standardized major axis analysis was used to compare the scaling exponents and scaling constants between the biomass allocations of within-twig components. Scaling relationships between these traits differed with growing period and altitude gradient. During the different growing periods, there was an isometric scaling relationship, with a common slope of 1.0 (i.e., α ≈ 1.0), between needle mass and twig mass (the sum of the total needle mass and the stem mass), whereas there were allometric scaling relationships between the stem mass and twig mass and between the needle mass and stem mass of P. hwangshanensis. The scaling constants (log β) for needle mass vs. twig

  9. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula)

    PubMed Central

    Sellin, Arne; Rosenvald, Katrin; Õunapuu-Pikas, Eele; Tullus, Arvo; Ostonen, Ivika; Lõhmus, Krista

    2015-01-01

    As changes in air temperature, precipitation, and air humidity are expected in the coming decades, studies on the impact of these environmental shifts on plant growth and functioning are of major importance. Greatly understudied aspects of climate change include consequences of increasing air humidity on forest ecosystems, predicted for high latitudes. The main objective of this study was to find a link between hydraulic acclimation and shifts in trees’ resource allocation in silver birch (Betula pendula Roth) in response to elevated air relative humidity (RH). A second question was whether the changes in hydraulic architecture depend on tree size. Two years of application of increased RH decreased the biomass accumulation in birch saplings, but the biomass partitioning among aboveground parts (leaves, branches, and stems) remained unaffected. Increased stem Huber values (xylem cross-sectional area to leaf area ratio) observed in trees under elevated RH did not entail changes in the ratio of non-photosynthetic to photosynthetic tissues. The reduction of stem–wood density is attributable to diminished mechanical load imposed on the stem, since humidified trees had relatively shorter crowns. Growing under higher RH caused hydraulic conductance of the root system (KR) to increase, while KR (expressed per unit leaf area) decreased and leaf hydraulic conductance increased with tree size. Saplings of silver birch acclimate to increasing air humidity by adjusting plant morphology (live crown length, slenderness, specific leaf area, and fine-root traits) and wood density rather than biomass distribution among aboveground organs. The treatment had a significant effect on several hydraulic properties of the trees, while the shifts were largely associated with changes in tree size but not in biomass allocation. PMID:26528318

  10. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula).

    PubMed

    Sellin, Arne; Rosenvald, Katrin; Õunapuu-Pikas, Eele; Tullus, Arvo; Ostonen, Ivika; Lõhmus, Krista

    2015-01-01

    As changes in air temperature, precipitation, and air humidity are expected in the coming decades, studies on the impact of these environmental shifts on plant growth and functioning are of major importance. Greatly understudied aspects of climate change include consequences of increasing air humidity on forest ecosystems, predicted for high latitudes. The main objective of this study was to find a link between hydraulic acclimation and shifts in trees' resource allocation in silver birch (Betula pendula Roth) in response to elevated air relative humidity (RH). A second question was whether the changes in hydraulic architecture depend on tree size. Two years of application of increased RH decreased the biomass accumulation in birch saplings, but the biomass partitioning among aboveground parts (leaves, branches, and stems) remained unaffected. Increased stem Huber values (xylem cross-sectional area to leaf area ratio) observed in trees under elevated RH did not entail changes in the ratio of non-photosynthetic to photosynthetic tissues. The reduction of stem-wood density is attributable to diminished mechanical load imposed on the stem, since humidified trees had relatively shorter crowns. Growing under higher RH caused hydraulic conductance of the root system (K R) to increase, while K R (expressed per unit leaf area) decreased and leaf hydraulic conductance increased with tree size. Saplings of silver birch acclimate to increasing air humidity by adjusting plant morphology (live crown length, slenderness, specific leaf area, and fine-root traits) and wood density rather than biomass distribution among aboveground organs. The treatment had a significant effect on several hydraulic properties of the trees, while the shifts were largely associated with changes in tree size but not in biomass allocation.

  11. Elymus repens biomass allocation and acquisition as affected by light and nutrient supply and companion crop competition.

    PubMed

    Ringselle, Björn; Prieto-Ruiz, Inés; Andersson, Lars; Aronsson, Helena; Bergkvist, Göran

    2017-02-01

    Competitive crops are a central component of resource-efficient weed control, especially for problematic perennial weeds such as Elymus repens Competition not only reduces total weed biomass, but denial of resources can also change the allocation pattern - potentially away from the underground storage organs that make perennial weeds difficult to control. Thus, the competition mode of crops may be an important component in the design of resource-efficient cropping systems. Our aim was to determine how competition from companion crops with different modes of competition affect E. repens biomass acquisition and allocation and discuss that in relation to how E. repens responds to different levels of light and nutrient supply. Greenhouse experiments were conducted with E. repens growing in interspecific competition with increasing density of perennial ryegrass or red clover, or growing at three levels of both light and nutrient supply. Elymus repens total biomass decreased with increasing biomass of the companion crop and the rate of decrease was higher with red clover than with perennial ryegrass, particularly for E. repens rhizome biomass. A reduced nutrient supply shifted E. repens allocation towards below-ground biomass while a reduced light supply shifted it towards shoot biomass. Red clover caused no change in E. repens allocation pattern, while ryegrass mostly shifted the allocation towards below-ground biomass, but the change was not correlated with ryegrass biomass. The companion crop mode of competition influences both the suppression rate of E. repens biomass acquisition and the likelihood of shifts in E. repens biomass allocation. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Visibility vs. biomass in flowers: exploring corolla allocation in Mediterranean entomophilous plants.

    PubMed

    Herrera, Javier

    2009-05-01

    While pollinators may in general select for large, morphologically uniform floral phenotypes, drought stress has been proposed as a destabilizing force that may favour small flowers and/or promote floral variation within species. The general validity of this concept was checked by surveying a taxonomically diverse array of 38 insect-pollinated Mediterranean species. The interplay between fresh biomass investment, linear size and percentage corolla allocation was studied. Allometric relationships between traits were investigated by reduced major-axis regression, and qualitative correlates of floral variation explored using general linear-model MANOVA. Across species, flowers were perfectly isometrical with regard to corolla allocation (i.e. larger flowers were just scaled-up versions of smaller ones and vice versa). In contrast, linear size and biomass varied allometrically (i.e. there were shape variations, in addition to variations in size). Most floral variables correlated positively and significantly across species, except corolla allocation, which was largely determined by family membership and floral symmetry. On average, species with bilateral flowers allocated more to the corolla than those with radial flowers. Plant life-form was immaterial to all of the studied traits. Flower linear size variation was in general low among conspecifics (coefficients of variation around 10 %), whereas biomass was in general less uniform (e.g. 200-400 mg in Cistus salvifolius). Significant among-population differences were detected for all major quantitative floral traits. Flower miniaturization can allow an improved use of reproductive resources under prevailingly stressful conditions. The hypothesis that flower size reflects a compromise between pollinator attraction, water requirements and allometric constraints among floral parts is discussed.

  13. Visibility vs. biomass in flowers: exploring corolla allocation in Mediterranean entomophilous plants

    PubMed Central

    Herrera, Javier

    2009-01-01

    Background and Aims While pollinators may in general select for large, morphologically uniform floral phenotypes, drought stress has been proposed as a destabilizing force that may favour small flowers and/or promote floral variation within species. Methods The general validity of this concept was checked by surveying a taxonomically diverse array of 38 insect-pollinated Mediterranean species. The interplay between fresh biomass investment, linear size and percentage corolla allocation was studied. Allometric relationships between traits were investigated by reduced major-axis regression, and qualitative correlates of floral variation explored using general linear-model MANOVA. Key Results Across species, flowers were perfectly isometrical with regard to corolla allocation (i.e. larger flowers were just scaled-up versions of smaller ones and vice versa). In contrast, linear size and biomass varied allometrically (i.e. there were shape variations, in addition to variations in size). Most floral variables correlated positively and significantly across species, except corolla allocation, which was largely determined by family membership and floral symmetry. On average, species with bilateral flowers allocated more to the corolla than those with radial flowers. Plant life-form was immaterial to all of the studied traits. Flower linear size variation was in general low among conspecifics (coefficients of variation around 10 %), whereas biomass was in general less uniform (e.g. 200–400 mg in Cistus salvifolius). Significant among-population differences were detected for all major quantitative floral traits. Conclusions Flower miniaturization can allow an improved use of reproductive resources under prevailingly stressful conditions. The hypothesis that flower size reflects a compromise between pollinator attraction, water requirements and allometric constraints among floral parts is discussed. PMID:19258340

  14. Plasticity in seedling morphology, biomass allocation and physiology among ten temperate tree species in response to shade is related to shade tolerance and not leaf habit.

    PubMed

    Chmura, D J; Modrzyński, J; Chmielarz, P; Tjoelker, M G

    2017-03-01

    Mechanisms of shade tolerance in tree seedlings, and thus growth in shade, may differ by leaf habit and vary with ontogeny following seed germination. To examine early responses of seedlings to shade in relation to morphological, physiological and biomass allocation traits, we compared seedlings of 10 temperate species, varying in their leaf habit (broadleaved versus needle-leaved) and observed tolerance to shade, when growing in two contrasting light treatments - open (about 20% of full sunlight) and shade (about 5% of full sunlight). We analyzed biomass allocation and its response to shade using allometric relationships. We also measured leaf gas exchange rates and leaf N in the two light treatments. Compared to the open treatment, shading significantly increased traits typically associated with high relative growth rate (RGR) - leaf area ratio (LAR), specific leaf area (SLA), and allocation of biomass into leaves, and reduced seedling mass and allocation to roots, and net assimilation rate (NAR). Interestingly, RGR was not affected by light treatment, likely because of morphological and physiological adjustments in shaded plants that offset reductions of in situ net assimilation of carbon in shade. Leaf area-based rates of light-saturated leaf gas exchange differed among species groups, but not between light treatments, as leaf N concentration increased in concert with increased SLA in shade. We found little evidence to support the hypothesis of a increased plasticity of broadleaved species compared to needle-leaved conifers in response to shade. However, an expectation of higher plasticity in shade-intolerant species than in shade-tolerant ones, and in leaf and plant morphology than in biomass allocation was supported across species of contrasting leaf habit. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  15. Metal uptake and allocation in trees grown on contaminated land: implications for biomass production.

    PubMed

    Evangelou, Michael W H; Robinson, Brett H; Günthardt-Goerg, Madeleine S; Schulin, Rainer

    2013-01-01

    Phytostabilization aims to reduce environmental and health risks arising from contaminated soil. To be economically attractive, plants used for phytostabilization should produce valuable biomass. This study investigated the biomass production and metal allocation to foliage and wood of willow (Salix viminalis L.), poplar (Populus monviso), birch (Betula pendula), and oak (Quercus robur) on five different soils contaminated with trace elements (TE), with varying high concentrations of Cu, Zn, Cd, and Pb as well as an uncontaminated control soil. In the treatment soils, the biomass was reduced in all species except oak. There was a significant negative correlation between biomass and foliar Cd and Zn concentrations, reaching up to 15 mg Cd kg(-1) and 2000 mg Zn kg(-1) in willow leaves. Lead was the only TE with higher wood than foliage concentrations. The highest Pb accumulation occurred in birch with up to 135 mg kg(-1) in wood and 78 mg kg(-1) in foliage. Birch could be suitable for phytostabilization of soils with high Cd and Zn but low Pb concentrations, while poplars and willows could be used to stabilise soils with high Cu and Pb and low Zn and Cd concentrations.

  16. Seasonal Biomass and Carbohydrate Allocation in a Southern Population of Eurasian Watermilfoil.

    DTIC Science & Technology

    1997-06-01

    Thistle (Cirsium arvense) root bud growth and root carbohydrate Aquat. Plant Manage. 28: 55-64. reserves. Weed Sci. 33: 44-49. Swank,j. C., F. E. Below...Tucker, C. S. and T. A. DeBusk. 1981. Seasonal growth of Eichhoroia crassipes (Myriophyllum spicatum) and related Haloragaceae species. Aquatic Plant (Mart...Miscellaneous Paper A-97-4 June 1997 US Army Corps of Engineers Waterways Experiment Station Aquatic Plant Control Research Program Seasonal Biomass

  17. Growth, biomass yield and biomass functions for plantation-grown Nauclea diderrichii (de wild) in the humid tropical rainforest zone of south-western Nigeria.

    PubMed

    Onyekwelu, Jonathan C

    2007-10-01

    Adequate management of forest plantation requires estimation of growth and biomass yield and consequently, the fitting of functions for estimating biomass. Growth, biomass yield and biomass functions for estimating biomass of Nauclea diderrichii plantations in Omo forest reserve, Nigeria are described. Data were obtained from 30 temporary sample plots selected from stands that are 5-30 years old. A total of 81 trees were harvested for biomass estimation. Mean tree diameter at breast height (dbh), total height and stand bole volume ranged from 9.6 to 29.3 cm; 9.0 to 23.6m and 23.27 to 535.52 m(3)ha(-1), respectively while Total Above Ground Biomass (TAGB) varied from 32.5 t ha(-1) to 287.5 t ha(-1) between 5 and 30 years. Biomass allocations to stem, branch and foliage were 84.5%, 13.5% and 3%, respectively. All biomass components could be described precisely by dbh alone (R(adj)(2)>0.97), with very low standard errors of estimates. Little improvement in the precision of the functions was achieved by including total height. In addition, the residuals of regression functions with only dbh were generally more constrained than those that included total height. Consequently, the functions with dbh alone and its derivative as independent variables were recommended for estimating biomass of opepe in Nigeria.

  18. [Vegetation biomass allocation and its spatial distribution after 20 years ecological restoration in a dry-hot valley in Yuanmou, Yunnan Province of Southwest China].

    PubMed

    Li, Bin; Tang, Guo-Yong; Li, Kun; Gao, Cheng-Jie; Liu, Fang-Yan; Wang, Xiao-Fei

    2013-06-01

    By using layering harvest method, a comparative study was conducted on the biomass allocation and its spatial distribution of 20-year-old Eucalyptus camaldulensis plantation, Leucaena leucocephala plantation, and E. camaldulensis-L. leucocephala plantation in Yuanmou dry-hot valley of Yunnan Province, Southwest China. The stand biomass in the mixed E. camaldulensis-L. leucocephala plantation (82.99 t x hm(-2)) was between that of monoculture E. camaldulensis plantation (60.64 t x hm(-2)) and L. leucocephala plantation (127.79 t x hm(-2)). The individual tree biomass of E. camaldulensis in the mixed plantation (44.32 kg) was 49.8% higher than that in monoculture plantation (29.58 kg). The branch and leaf biomass of L. leucocephala (25.4%) in monoculture plantation was larger than that of E. camaldulensis (8.9%) in monoculture plantation, and the aboveground biomass distribution ratio (78.0%) of L. leucocephala (25.4%) was also higher than that of E. camaldulensis (73.4%). The roots of L. leucocephala in both monoculture and mixed plantations were mainly distributed in 0-40 cm soil layer, while those of E. camaldulensis in monoculture and mixed plantations were mainly found in 0-80 cm and 0-60 cm, respectively. The proportion of biomass allocated to roots including medium roots, small roots, and fine roots of L. leucocephala in mixed plantation was higher than that in monoculture plantation, but it was contrary for E. camaldulensis. It was suggested that introducing L. leucocephala in E. camaldulensis plantation promoted the growth of E. camaldulensis, especially for its aboveground biomass, and increased the amount of lateral roots in 0-20 cm soil layer, which had significance in soil and water conservation in the study area.

  19. Biomass Production System (BPS) Plant Growth Unit

    NASA Astrophysics Data System (ADS)

    Morrow, R. C.; Crabb, T. M.

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses it's own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive

  20. Biomass Production System (BPS) plant growth unit.

    PubMed

    Morrow, R C; Crabb, T M

    2000-01-01

    The Biomass Production System (BPS) was developed under the Small Business Innovative Research (SBIR) program to meet science, biotechnology and commercial plant growth needs in the Space Station era. The BPS is equivalent in size to a double middeck locker, but uses its own custom enclosure with a slide out structure to which internal components mount. The BPS contains four internal growth chambers, each with a growing volume of more than 4 liters. Each of the growth chambers has active nutrient delivery, and independent control of temperature, humidity, lighting, and CO2 set-points. Temperature control is achieved using a thermoelectric heat exchanger system. Humidity control is achieved using a heat exchanger with a porous interface which can both humidify and dehumidify. The control software utilizes fuzzy logic for nonlinear, coupled temperature and humidity control. The fluorescent lighting system can be dimmed to provide a range of light levels. CO2 levels are controlled by injecting pure CO2 to the system based on input from an infrared gas analyzer. The unit currently does not scrub CO2, but has been designed to accept scrubber cartridges. In addition to providing environmental control, a number of features are included to facilitate science. The BPS chambers are sealed to allow CO2 and water vapor exchange measurements. The plant chambers can be removed to allow manipulation or sampling of specimens, and each chamber has gas/fluid sample ports. A video camera is provided for each chamber, and frame-grabs and complete environmental data for all science and hardware system sensors are stored on an internal hard drive. Data files can also be transferred to 3.5-inch disks using the front panel disk drive.

  1. Biomass allocation and C-N-P stoichiometry in C3 and C4 crops under abiotic stress

    USDA-ARS?s Scientific Manuscript database

    Biomass allocation to structural, metabolic and reproductive organs as well as their carbon, nitrogen and phosphorus (C-N-P) profiles and ratios (C:N, C:P, and N:P) were estimated in C3 and C4 crop plants subjected to multiple abiotic stresses (i.e., combination of temperature and water stress level...

  2. Flexible C, N and P allocation in maize plants and soil microbial biomass under recurrent and long-term drought

    NASA Astrophysics Data System (ADS)

    Larionova, Alla; Semenov, Vyacheslav; Yevdokimov, Ilya; Blagodatskaya, Evgenia

    2016-04-01

    One of the negative effects of the global warming is increasing aridity worldwide. Alterations in plant and microbial C, N and P in response to drought events can differ considerably in magnitude and direction. Therefore, synchronization between C, N and P in plants, dissolved forms and microbial biomass in soil is of great interest. Our objective was to evaluate C:N:P stoichiometry relations in plants and soil as affected by moderate water shortage and severe drought with subsequent rewetting. We tested the sensitivity of stoichiometry ratios in plants, dissolved compounds and soil microbial biomass in greenhouse experiment with maize. Three treatments were used: i) control with constant soil moisture (CTL); ii) soil with constantly low wetness of 25% WHC (DRY) and iii) soil exposed to drying-rewetting events (DRW). N dynamics was the most sensitive to water stress in maize plants and soil, while P dynamics was almost unaffected by drought and rewetting. As a result, C:N and N:P ratios were also sensitive to water treatment indicating that C, N and P cycles were decoupled by the water stresses. High C:N ratios in CTL and low C:N ratios in DRY and DRW treatments indicate stoichiometric flexibility in plants and soil microbes. N allocation was found to respond to N shortage in CTL and increased salt concentrations in soil solution in DRY and DRW treatments. C:N:P stoichiometry in soil microbes was found flexible during active plant growth, while that at the end of growth season turned to almost homeostatic ratio. The research was supported by Russian Science Foundation (project 14-14-00625)

  3. Placental phenotype and the insulin-like growth factors: resource allocation to fetal growth.

    PubMed

    Sferruzzi-Perri, Amanda N; Sandovici, Ionel; Constancia, Miguel; Fowden, Abigail L

    2017-03-24

    The placenta is the main determinant of fetal growth and development in utero. It supplies all the nutrients and oxygen required for fetal growth and secretes hormones that facilitate maternal allocation of nutrients to the fetus. Furthermore, the placenta responds to nutritional and metabolic signals in the mother by altering its structural and functional phenotype which can lead to changes in maternal resource allocation to the fetus. The molecular mechanisms by which the placenta senses and responds to environmental cues are poorly understood. This review discusses the role of the insulin-like growth factors (IGFs) in controlling placental resource allocation to fetal growth, particularly in response to adverse gestational environments. In particular, it assesses the impact of the IGFs and their signalling machinery on placental morphogenesis, substrate transport and hormone secretion, primarily in the laboratory species, although it draws on data from human and other species where relevant. It also considers the role of the IGFs as environmental signals in linking resource availability, to fetal growth through changes in the morphological and functional phenotype of the placenta. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing adult-onset diseases in later life, understanding the role of IGFs during pregnancy in regulating placental resource allocation to fetal growth is important for identifying the mechanisms underlying the developmental programming of offspring phenotype by suboptimal intrauterine growth. This article is protected by copyright. All rights reserved.

  4. Deciduous and evergreen trees differ in juvenile biomass allometries because of differences in allocation to root storage

    PubMed Central

    Tomlinson, Kyle W.; van Langevelde, Frank; Ward, David; Bongers, Frans; da Silva, Dulce Alves; Prins, Herbert H. T.; de Bie, Steven; Sterck, Frank J.

    2013-01-01

    Background and Aims Biomass partitioning for resource conservation might affect plant allometry, accounting for a substantial amount of unexplained variation in existing plant allometry models. One means of resource conservation is through direct allocation to storage in particular organs. In this study, storage allocation and biomass allometry of deciduous and evergreen tree species from seasonal environments were considered. It was expected that deciduous species would have greater allocation to storage in roots to support leaf regrowth in subsequent growing seasons, and consequently have lower scaling exponents for leaf to root and stem to root partitioning, than evergreen species. It was further expected that changes to root carbohydrate storage and biomass allometry under different soil nutrient supply conditions would be greater for deciduous species than for evergreen species. Methods Root carbohydrate storage and organ biomass allometries were compared for juveniles of 20 savanna tree species of different leaf habit (nine evergreen, 11 deciduous) grown in two nutrient treatments for periods of 5 and 20 weeks (total dry mass of individual plants ranged from 0·003 to 258·724 g). Key Results Deciduous species had greater root non-structural carbohydrate than evergreen species, and lower scaling exponents for leaf to root and stem to root partitioning than evergreen species. Across species, leaf to stem scaling was positively related, and stem to root scaling was negatively related to root carbohydrate concentration. Under lower nutrient supply, trees displayed increased partitioning to non-structural carbohydrate, and to roots and leaves over stems with increasing plant size, but this change did not differ between leaf habits. Conclusions Substantial unexplained variation in biomass allometry of woody species may be related to selection for resource conservation against environmental stresses, such as resource seasonality. Further differences in plant

  5. The effects of defoliation on carbon allocation: can carbon limitation reduce growth in favour of storage?

    PubMed

    Wiley, Erin; Huepenbecker, Sarah; Casper, Brenda B; Helliker, Brent R

    2013-11-01

    There is no consensus about how stresses such as low water availability and temperature limit tree growth. Sink limitation to growth and survival is often inferred if a given stress does not cause non-structural carbohydrate (NSC) concentrations or levels to decline along with growth. However, trees may actively maintain or increase NSC levels under moderate carbon stress, making the pattern of reduced growth and increased NSCs compatible with carbon limitation. To test this possibility, we used full and half defoliation to impose severe and moderate carbon limitation on 2-year-old Quercus velutina Lam. saplings grown in a common garden. Saplings were harvested at either 3 weeks or 4 months after treatments were applied, representing short- and longer-term effects on woody growth and NSC levels. Both defoliation treatments maintained a lower total leaf area than controls throughout the experiment with no evidence of photosynthetic up-regulation, and resulted in a similar total biomass reduction. While fully defoliated saplings had lower starch levels than controls in the short term, half defoliated saplings maintained control starch levels in both the short and longer term. In the longer term, fully defoliated saplings had the greatest starch concentration increment, allowing them to recover to near-control starch levels. Furthermore, between the two harvest dates, fully and half defoliated saplings allocated a greater proportion of new biomass to starch than did controls. The maintenance of control starch levels in half defoliated saplings indicates that these trees actively store a substantial amount of carbon before growth is carbon saturated. In addition, the allocation shift favouring storage in defoliated saplings is consistent with the hypothesis that, as an adaptation to increasing carbon stress, trees can prioritize carbon reserve formation at the expense of growth. Our results suggest that as carbon limitation increases, reduced growth is not necessarily

  6. Biomass and Its Allocation in Relation to Temperature, Precipitation, and Soil Nutrients in Inner Mongolia Grasslands, China

    PubMed Central

    Kang, Muyi; Dai, Cheng; Ji, Wenyao; Jiang, Yuan; Yuan, Zhiyou; Chen, Han Y. H.

    2013-01-01

    Aim Understanding and predicting ecosystem functioning such as biomass accumulation requires an accurate assessment of large-scale patterns of biomass distribution and partitioning in relation to climatic and soil environments. Methods We sampled above- and belowground biomass from 26 sites spanning 1500 km in Inner Mongolian grasslands, compared the difference in aboveground, belowground biomass and below-aboveground biomass ratio (AGB, BGB, and B/A, respectively) among meadow steppe, typical steppe, and desert steppe types. The relationships between AGB, BGB, B/A and climatic and soil environments were then examined. Results We found that AGB and BGB differed significantly among three types of grasslands while B/A did not differ. Structural equation model analyses indicated that mean annual precipitation was the strongest positive driver for AGB and BGB. AGB was also positively associated with soil organic carbon, whereas B/A was positively associated with total soil nitrogen. Conclusions These results indicated that precipitation positively influence plant production in Inner Mongolian grasslands. Contrary to the prediction from the optimal partitioning hypothesis, biomass allocation to belowground increased with soil total nitrogen, suggesting that more productive sites may increase belowground allocation as an adaptive strategy to potentially high fire frequencies. PMID:23936045

  7. Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels

    NASA Astrophysics Data System (ADS)

    Feng, Yulong; Wang, Junfeng; Sang, Weiguo

    2007-01-01

    We tested the hypotheses that invasive species had higher irradiance plasticity, capture ability and efficiency than noninvasive species using two invasive aliens - Ageratina adenophora and Chromolaena odorata, and one noninvasive alien - Gynura sp. The three aliens were grown at 4.5%, 12.5%, 36%, 50% and 100% irradiances for 64 days before harvesting. The plastic response of specific leaf area (SLA) contributed to improved light interception at low irradiance, carbon gain and water balance at high irradiance. It was a good predictor for intraspecific irradiance responses of leaf area ratio (LAR), leaf area:root mass ratio, maximum photosynthetic rate ( Pmax) and net assimilation rate (NAR). Biomass allocation-related traits were species specific and their plasticity to irradiance was low. The high root mass fraction, leaf mass fraction and LAR distinguished the two invaders from Gynura. However, other resource capture-related traits, such as SLA, NAR and Pmax, were not always higher for the invaders than for Gynura. Furthermore, plasticity to irradiance was not different between the invasive and noninvasive aliens. With increasing irradiance, Gynura decreased biomass investment to roots and leaves but increased the investment to support structures adversely affecting both low and high irradiance acclimation. Ageratina might invade new habitat successfully through tolerating shading at low irradiance and outshading competitors by forming dense stands when irradiance is increased. The results suggested that both resource capture-related traits and irradiance acclimation conferred competitive advantage to the two invaders and some traits were common for invasive and noninvasive aliens but others were specific for invaders.

  8. Water-use efficiency of willow: Variation with season, humidity and biomass allocation

    NASA Astrophysics Data System (ADS)

    Lindroth, Anders; Verwijst, Theo; Halldin, Sven

    1994-04-01

    Information on the water-use efficiency (WUE) of a vegetation cover improves understanding of the interrelationship between the water and carbon cycles, and enables hydrological practices to be related to agricultural and silvicultural planning and management. This study determined seasonal and climatic variations of the WUE of a fertilized and irrigated short-rotation stand of Salix viminalis L. on a clay soil. The WUE was determined as the ratio of above-ground production to transpiration or, alternatively, to transpiration divided by the saturation vapour pressure deficit. Growth was estimated from a combination of destructive and non-destructive measurements for 10 day periods during the growing seasons of 1986 and 1988. Daily transpiration was estimated using a physically based evaporation model, tuned against energy-balance/Bowen-ratio measurements of total stand evaporation. Nutrients were adequate and climate conditions were similar in both years. In spite of irrigation soil-water deficits developed during midsummer and affected growth rates in different ways: in 1986, both stem and leaf growth decreased, while in 1988 only stem growth decreased. Exceptionally high stem growth rates, twice the total potential growth rates, were recorded after the drought of 1988. They were probably caused by root-allocated assimilates that were sent above-ground after the drought. In both years, stem growth ceased 2-3 weeks after the leaf area had reached its maximum. Since light and temperature were still sufficient to maintain assimilation, all growth presumably took place below ground towards the end of the season. Changes in root-shoot allocation caused large variations in the WUE in 1988. The WUE, weighted by the saturation vapour pressure deficit, was fairly constant in 1986. In both years, the WUE was correlated with the vapour pressure deficit. Towards the end of both growing seasons, when all assimilates were sent below ground, the WUE decreased rapidly to zero

  9. Experimental sand burial affects seedling survivorship, morphological traits, and biomass allocation of Ulmus pumila var. sabulosa in the Horqin Sandy Land, China

    NASA Astrophysics Data System (ADS)

    Tang, Jiao; Busso, Carlos Alberto; Jiang, Deming; Musa, Ala; Wu, Dafu; Wang, Yongcui; Miao, Chunping

    2016-07-01

    As a native tree species, Ulmus pumila var. sabulosa (sandy elm) is widely distributed in the Horqin Sandy Land, China. However, seedlings of this species have to withstand various depths of sand burial after emergence because of increasing soil degradation, which is mainly caused by overgrazing, climate change, and wind erosion. An experiment was conducted to evaluate the changes in its survivorship, morphological traits, and biomass allocation when seedlings were buried at different burial depths: unburied controls and seedlings buried vertically up to 33, 67, 100, or 133 % of their initial mean seedling height. The results showed that partial sand burial treatments (i.e., less than 67 % burial) did not reduce seedling survivorship, which still reached 100 %. However, seedling mortality increased when sand burial was equal to or greater than 100 %. In comparison with the control treatment, seedling height and stem diameter increased at least by 6 and 14 % with partial burial, respectively. In the meantime, seedling taproot length, total biomass, and relative mass growth rates were at least enhanced by 10, 15.6, and 27.6 %, respectively, with the partial sand burial treatment. Furthermore, sand burial decreased total leaf area and changed biomass allocation in seedlings, partitioning more biomass to aboveground organs (e.g., leaves) and less to belowground parts (roots). Complete sand burial after seedling emergence inhibited its re-emergence and growth, even leading to death. Our findings indicated that seedlings of sandy elm showed some resistance to partial sand burial and were adapted to sandy environments from an evolutionary perspective. The negative effect of excessive sand burial after seedling emergence might help in understanding failures in recruitments of sparse elm in the study region.

  10. Artificial defoliation effect on Populus growth, biomass production, and total nonstructural carbohydrate concentration

    SciTech Connect

    Reichenbacker, R.R.; Hart, E.R.; Schultz, R.C.

    1996-06-01

    The impact of artificial defoliation on Populus growth, biomass production, and total nonstructural carbohydrate concentration was examined. Four Populus clones were field planted and artificially defoliated. Assigned defoliation levels (0, 25, 50, or 75%) were applied to leaves of leaf plastochron index 0 through 8 during a 6-d period in a 3-step incremental manner to simulate cottonwood leaf beetle, Chrysomela scripta F., larval feeding patterns. Artificial defoliations were timed to coincide with the outbreaks of natural beetle populations in adjacent areas. After 2 growing seasons, trees were measured for height, diameter, and biomass accumulation. Root samples were collected from 0 and 75% defoliation treatments for each clone. Biomass was reduced an average of 33% as defoliation level increased from 0 to 75%. As defoliation level increased from 0 to 75%, a consistent allocation ratio of biomass to 2/3 above and 1/3 below ground components continued in all clones. An overcompensation response occurred in above ground biomass when a defoliation level of 25% was applied. Between 25 and 75% a strong linear trend of decreasing biomass as defoliation increased was indicated. Vitality of the tree, as indicated by total nonstructural carbohydrate content, was affected only slightly by increasing defoliation. 26 refs., 1 fig., 6 tabs.

  11. Effects of Grazing on Above- vs. Below-Ground Biomass Allocation of Alpine Grasslands on the Northern Tibetan Plateau.

    PubMed

    Zeng, Chaoxu; Wu, Jianshuang; Zhang, Xianzhou

    2015-01-01

    Biomass allocation is an essential concept for understanding above- vs. below-ground functions and for predicting the dynamics of community structure and ecosystem service under ongoing climate change. There is rare available knowledge of grazing effects on biomass allocation in multiple zonal alpine grassland types along climatic gradients across the Northern Tibetan Plateau. We collected the peak above- and below-ground biomass (AGB and BGB) values at 106 pairs of well-matched grazed vs. fenced sites during summers of 2010-2013, of which 33 pairs were subject to meadow, 52 to steppe and 21 to desert-steppe. The aboveground net primary productivity (ANPP) was represented by the peak AGB while the belowground net primary productivity (BNPP) was estimated from ANPP, the ratio of living vs. dead BGB, and the root turnover rate. Two-ways analyses of variance (ANOVA) and paired samples comparisons with t-test were applied to examine the effects of pasture managements (PMS, i.e., grazed vs. fenced) and zonal grassland types on both ANPP and BNPP. Allometric and isometric allocation hypotheses were also tested between logarithmically transformed ANPP and BNPP using standardized major axis (SMA) analyses across grazed, fenced and overall sites. In our study, a high community-dependency was observed to support the allometric biomass allocation hypothesis, in association with decreased ANPP and a decreasing-to-increasing BNPP proportions with increasing aridity across the Northern Tibetan Plateau. Grazing vs. fencing seemed to have a trivial effect on ANPP compared to the overwhelming influence of different zonal grassland types. Vegetation links above- and below-ground ecological functions through integrated meta-population adaptive strategies to the increasing severity of habitat conditions. Therefore, more detailed studies on functional diversity are essentially to achieve conservation and sustainability goals under ongoing climatic warming and intensifying human

  12. Effects of Grazing on Above- vs. Below-Ground Biomass Allocation of Alpine Grasslands on the Northern Tibetan Plateau

    PubMed Central

    Zeng, Chaoxu; Wu, Jianshuang; Zhang, Xianzhou

    2015-01-01

    Biomass allocation is an essential concept for understanding above- vs. below-ground functions and for predicting the dynamics of community structure and ecosystem service under ongoing climate change. There is rare available knowledge of grazing effects on biomass allocation in multiple zonal alpine grassland types along climatic gradients across the Northern Tibetan Plateau. We collected the peak above- and below-ground biomass (AGB and BGB) values at 106 pairs of well-matched grazed vs. fenced sites during summers of 2010–2013, of which 33 pairs were subject to meadow, 52 to steppe and 21 to desert-steppe. The aboveground net primary productivity (ANPP) was represented by the peak AGB while the belowground net primary productivity (BNPP) was estimated from ANPP, the ratio of living vs. dead BGB, and the root turnover rate. Two-ways analyses of variance (ANOVA) and paired samples comparisons with t-test were applied to examine the effects of pasture managements (PMS, i.e., grazed vs. fenced) and zonal grassland types on both ANPP and BNPP. Allometric and isometric allocation hypotheses were also tested between logarithmically transformed ANPP and BNPP using standardized major axis (SMA) analyses across grazed, fenced and overall sites. In our study, a high community-dependency was observed to support the allometric biomass allocation hypothesis, in association with decreased ANPP and a decreasing-to-increasing BNPP proportions with increasing aridity across the Northern Tibetan Plateau. Grazing vs. fencing seemed to have a trivial effect on ANPP compared to the overwhelming influence of different zonal grassland types. Vegetation links above- and below-ground ecological functions through integrated meta-population adaptive strategies to the increasing severity of habitat conditions. Therefore, more detailed studies on functional diversity are essentially to achieve conservation and sustainability goals under ongoing climatic warming and intensifying human

  13. Leaf physiology and biomass allocation of backcross hybrid American chestnut (Castanea dentata) seedlings in response to light and water availability.

    PubMed

    Brown, Caleb E; Mickelbart, Michael V; Jacobs, Douglass F

    2014-12-01

    Partial canopy cover promotes regeneration of many temperate forest trees, but the consequences of shading on seedling drought resistance are unclear. Reintroduction of blight-resistant American chestnut (Castanea dentata (Marsh.) Borkh.) into eastern North American forests will often occur on water-limited sites and under partial canopy cover. We measured leaf pre-dawn water potential (Ψpd), leaf gas exchange, and growth and biomass allocation of backcross hybrid American chestnut seedlings from three orchard sources grown under different light intensities (76, 26 and 8% full photosynthetically active radiation (PAR)) and subjected to well-watered or mid-season water-stressed conditions. Seedlings in the water-stress treatment were returned to well-watered conditions after wilting to examine recovery. Seedlings growing under medium- and high-light conditions wilted at lower leaf Ψpd than low-light seedlings. Recovery of net photosynthesis (Anet) and stomatal conductance (gs) was greater in low and medium light than in high light. Seed source did not affect the response to water stress or light level in most cases. Between 26 and 8% full PAR, light became limiting to the extent that the effects of water stress had no impact on some growth and morphological traits. We conclude that positive and negative aspects of shading on seedling drought tolerance and recovery are not mutually exclusive. Partial shade may help American chestnut tolerate drought during early establishment through effects on physiological conditioning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Optimization of biomass composition explains microbial growth-stoichiometry relationships

    USGS Publications Warehouse

    Franklin, O.; Hall, E.K.; Kaiser, C.; Battin, T.J.; Richter, A.

    2011-01-01

    Integrating microbial physiology and biomass stoichiometry opens far-reaching possibilities for linking microbial dynamics to ecosystem processes. For example, the growth-rate hypothesis (GRH) predicts positive correlations among growth rate, RNA content, and biomass phosphorus (P) content. Such relationships have been used to infer patterns of microbial activity, resource availability, and nutrient recycling in ecosystems. However, for microorganisms it is unclear under which resource conditions the GRH applies. We developed a model to test whether the response of microbial biomass stoichiometry to variable resource stoichiometry can be explained by a trade-off among cellular components that maximizes growth. The results show mechanistically why the GRH is valid under P limitation but not under N limitation. We also show why variability of growth rate-biomass stoichiometry relationships is lower under P limitation than under N or C limitation. These theoretical results are supported by experimental data on macromolecular composition (RNA, DNA, and protein) and biomass stoichiometry from two different bacteria. In addition, compared to a model with strictly homeostatic biomass, the optimization mechanism we suggest results in increased microbial N and P mineralization during organic-matter decomposition. Therefore, this mechanism may also have important implications for our understanding of nutrient cycling in ecosystems.

  15. Optimization of biomass composition explains microbial growth-stoichiometry relationships.

    PubMed

    Franklin, Oskar; Hall, Edward K; Kaiser, Christina; Battin, Tom J; Richter, Andreas

    2011-02-01

    Integrating microbial physiology and biomass stoichiometry opens far-reaching possibilities for linking microbial dynamics to ecosystem processes. For example, the growth-rate hypothesis (GRH) predicts positive correlations among growth rate, RNA content, and biomass phosphorus (P) content. Such relationships have been used to infer patterns of microbial activity, resource availability, and nutrient recycling in ecosystems. However, for microorganisms it is unclear under which resource conditions the GRH applies. We developed a model to test whether the response of microbial biomass stoichiometry to variable resource stoichiometry can be explained by a trade-off among cellular components that maximizes growth. The results show mechanistically why the GRH is valid under P limitation but not under N limitation. We also show why variability of growth rate-biomass stoichiometry relationships is lower under P limitation than under N or C limitation. These theoretical results are supported by experimental data on macromolecular composition (RNA, DNA, and protein) and biomass stoichiometry from two different bacteria. In addition, compared to a model with strictly homeostatic biomass, the optimization mechanism we suggest results in increased microbial N and P mineralization during organic-matter decomposition. Therefore, this mechanism may also have important implications for our understanding of nutrient cycling in ecosystems.

  16. The linkages between photosynthesis, productivity, growth and biomass in lowland Amazonian forests.

    PubMed

    Malhi, Yadvinder; Doughty, Christopher E; Goldsmith, Gregory R; Metcalfe, Daniel B; Girardin, Cécile A J; Marthews, Toby R; Del Aguila-Pasquel, Jhon; Aragão, Luiz E O C; Araujo-Murakami, Alejandro; Brando, Paulo; da Costa, Antonio C L; Silva-Espejo, Javier E; Farfán Amézquita, Filio; Galbraith, David R; Quesada, Carlos A; Rocha, Wanderley; Salinas-Revilla, Norma; Silvério, Divino; Meir, Patrick; Phillips, Oliver L

    2015-06-01

    Understanding the relationship between photosynthesis, net primary productivity and growth in forest ecosystems is key to understanding how these ecosystems will respond to global anthropogenic change, yet the linkages among these components are rarely explored in detail. We provide the first comprehensive description of the productivity, respiration and carbon allocation of contrasting lowland Amazonian forests spanning gradients in seasonal water deficit and soil fertility. Using the largest data set assembled to date, ten sites in three countries all studied with a standardized methodology, we find that (i) gross primary productivity (GPP) has a simple relationship with seasonal water deficit, but that (ii) site-to-site variations in GPP have little power in explaining site-to-site spatial variations in net primary productivity (NPP) or growth because of concomitant changes in carbon use efficiency (CUE), and conversely, the woody growth rate of a tropical forest is a very poor proxy for its productivity. Moreover, (iii) spatial patterns of biomass are much more driven by patterns of residence times (i.e. tree mortality rates) than by spatial variation in productivity or tree growth. Current theory and models of tropical forest carbon cycling under projected scenarios of global atmospheric change can benefit from advancing beyond a focus on GPP. By improving our understanding of poorly understood processes such as CUE, NPP allocation and biomass turnover times, we can provide more complete and mechanistic approaches to linking climate and tropical forest carbon cycling.

  17. Effects of light acclimation on shoot morphology, structure, and biomass allocation of two Taxus species in southwestern China

    PubMed Central

    Liu, Wande; Su, Jianrong

    2016-01-01

    Acclimation to changing light conditions plays a crucial role in determining the competitive capability of tree species. There is currently limited information about acclimation to natural light gradient and its effect on shoot structure and biomass in Taxus species. We examined the acclimation of the leaf and shoot axis morphology, structure and biomass allocation of Taxus yunnanensis and T. chinensis var. mairei under three different natural light environments, full daylight, 40–60% full daylight and <10% full daylight. The leaf biomass, nitrogen content per unit area, leaf carbon content per dry mass and leaf dry mass to fresh mass ratio increased with light in both species, demonstrating an enhanced investment of photosynthetic biomass and structural investment under high light. The number of leaves per unit shoot axis length and the leaf dry mass per unit shoot axis length increased with light in both species. However, the light increase did not result in the increase of the total shoot mass. T. yunnanensis produced larger leaves under low light and a higher shoot axis length per unit dry mass under high light, whereas the leaf size and biomass yield of T. chinensis var. mairei were not sensitive to light. PMID:27734944

  18. Effects of light acclimation on shoot morphology, structure, and biomass allocation of two Taxus species in southwestern China

    NASA Astrophysics Data System (ADS)

    Liu, Wande; Su, Jianrong

    2016-10-01

    Acclimation to changing light conditions plays a crucial role in determining the competitive capability of tree species. There is currently limited information about acclimation to natural light gradient and its effect on shoot structure and biomass in Taxus species. We examined the acclimation of the leaf and shoot axis morphology, structure and biomass allocation of Taxus yunnanensis and T. chinensis var. mairei under three different natural light environments, full daylight, 40–60% full daylight and <10% full daylight. The leaf biomass, nitrogen content per unit area, leaf carbon content per dry mass and leaf dry mass to fresh mass ratio increased with light in both species, demonstrating an enhanced investment of photosynthetic biomass and structural investment under high light. The number of leaves per unit shoot axis length and the leaf dry mass per unit shoot axis length increased with light in both species. However, the light increase did not result in the increase of the total shoot mass. T. yunnanensis produced larger leaves under low light and a higher shoot axis length per unit dry mass under high light, whereas the leaf size and biomass yield of T. chinensis var. mairei were not sensitive to light.

  19. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment

    Treesearch

    J.W. Raich; D.A. Clark; L. Schwendenmann; Tana Wood

    2014-01-01

    Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15–20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the...

  20. Biomass of algae growth on natural water medium.

    PubMed

    Ramaraj, Rameshprabu; Tsai, David Dah-Wei; Chen, Paris Honglay

    2015-01-01

    Algae are the dominant primary producers in aquatic ecosystems. Since algae are highly varied group organisms, which have important functions in ecosystem, and their biomass is an essential biological resource. Currently, algae have been applied increasingly to diverse range of biomass applications. Therefore, this study was aimed to investigate the ecological algae features of microalgal production by natural medium, ecological function by lab scale of the symbiotic reactor which is imitated nature ecosystem, and atmospheric CO2 absorption that was related the algal growth of biomass to understand algae in natural water body better. Consequently, this study took advantages of using the unsupplemented freshwater natural medium to produce microalgae. Algal biomass by direct measurement of total suspended solids (TSS) and volatile suspended solids (VSS) resulted as 0.14g/L and 0.08g/L respectively. The biomass measurements of TSS and VSS are the sensible biomass index for algae production. The laboratory results obtained in the present study proved the production of algae by the natural water medium is potentially feasible.

  1. Vegetation in karst terrain of southwestern China allocates more biomass to roots

    NASA Astrophysics Data System (ADS)

    Ni, J.; Luo, D. H.; Xia, J.; Zhang, Z. H.; Hu, G.

    2015-03-01

    In mountainous areas of southwestern China, especially Guizhou Province, continuous, broadly distributed karst landscapes with harsh and fragile habitats often lead to land degradation. Research indicates that vegetation located in karst terrains has low aboveground biomass, and land degradation reduces vegetation biomass, but belowground biomass measurements are rarely reported. Using the soil pit method, we investigated the root biomass of karst vegetation in five degraded (successional) stages: grassland, grass-scrub tussock, thorn-scrub shrubland, scrub-tree forest, and mixed evergreen and deciduous forest in Maolan, southern Guizhou Province, growing in two different soil-rich and rock-dominated habitats. The results show that roots in karst vegetation, especially the coarse roots, and roots in rocky habitats, are mostly distributed in the topsoil layers (89% on the surface up to 20 cm depth). The total root biomass in all habitats of all vegetation degradation periods is 18.77 Mg ha-1, in which roots in rocky habitat have higher biomass than in earthy habitat, and coarse root biomass is larger than medium and fine root biomass. The root biomass of mixed evergreen and deciduous forest in karst habitat (35.83 Mg ha-1) is not greater than that of most typical, non-karst evergreen broad-leaved forests in subtropical regions of China, but the ratio of root to aboveground biomass in karst forest (0.37) is significantly greater than the mean ratio (0.26±0.07) of subtropical evergreen forests. Vegetation restoration in degraded karst terrain will significantly increase the belowground carbon stock, forming a potential regional carbon sink.

  2. Vegetation in karst terrain of southwestern China allocates more biomass to roots

    NASA Astrophysics Data System (ADS)

    Ni, J.; Luo, D. H.; Xia, J.; Zhang, Z. H.; Hu, G.

    2015-07-01

    In mountainous areas of southwestern China, especially Guizhou province, continuous, broadly distributed karst landscapes with harsh and fragile habitats often lead to land degradation. Research indicates that vegetation located in karst terrains has low aboveground biomass and land degradation that reduces vegetation biomass, but belowground biomass measurements are rarely reported. Using the soil pit method, we investigated the root biomass of karst vegetation in five land cover types: grassland, grass-scrub tussock, thorn-scrub shrubland, scrub-tree forest, and mixed evergreen and deciduous forest in Maolan, southern Guizhou province, growing in two different soil-rich and rock-dominated habitats. The results show that roots in karst vegetation, especially the coarse roots, and roots in rocky habitats are mostly distributed in the topsoil layers (89 % on the surface up to 20 cm depth). The total root biomass in all habitats of all vegetation degradation periods is 18.77 Mg ha-1, in which roots in rocky habitat have higher biomass than in earthy habitat, and coarse root biomass is larger than medium and fine root biomass. The root biomass of mixed evergreen and deciduous forest in karst habitat (35.83 Mg ha-1) is not greater than that of most typical, non-karst evergreen broad-leaved forests in subtropical regions of China, but the ratio of root to aboveground biomass in karst forest (0.37) is significantly greater than the mean ratio (0.26 ± 0.07) of subtropical evergreen forests. Vegetation restoration in degraded karst terrain will significantly increase the belowground carbon stock, forming a potential regional carbon sink.

  3. Growth and carbon allocation of tropical and temperate N-fixing trees grown in elevated CO{sub 2}

    SciTech Connect

    Tissue, D.T.; Megonigal, J.P.; Thomas, R.B.

    1995-09-01

    Seeds of two tree species, Gliricidia seplum (tropical) and Robinia pseudoacacia (temperate), were inoculated with N-fixing Rhizobium bacteria and grown in environmentally controlled glasshouses for 75 days to determine the effects of atmospheric CO{sub 2} on seedling growth and carbon allocation. Seedlings were grown in ambient CO{sub 2}(35 Pa) and elevated CO{sub 22}(70 Pa) and watered with a N-deficient nutrient solution such that bacterial N-fixation was the only source of N. Elevated CO{sub 2} increased leaf, stem, root and total biomass in Gliricidia, but did not affect nodule mass; Robinia biomass was unchanged by CO{sub 2}. Leaf photosynthetic rates at 70 Pa CO{sub 2} were increased 49% in Gliricidia, but were unchanged in Robinia, and there was no change in respiration rate in either species. A {sup 14}CO{sub 2} labelling experiment demonstrated that elevated CO{sub 2} did not affect the kinetics or allocation patterns of photosynthetically fixed carbon to nodules or other plant parts in either species. Our results demonstrate that Gliricidia, but not Robinia, will show an early, positive growth and photosynthetic response to elevated CO{sub 2} in N-poor soils, suggesting that tropical N-fixing trees may be more responsive than temperate N-fixing trees to future atmospheric CO{sub 2} conditions.

  4. Overexpression of GA20-OXIDASE1 impacts plant height, biomass allocation and saccharification efficiency in maize.

    PubMed

    Voorend, Wannes; Nelissen, Hilde; Vanholme, Ruben; De Vliegher, Alex; Van Breusegem, Frank; Boerjan, Wout; Roldán-Ruiz, Isabel; Muylle, Hilde; Inzé, Dirk

    2016-03-01

    Increased biomass yield and quality are of great importance for the improvement of feedstock for the biorefinery. For the production of bioethanol, both stem biomass yield and the conversion efficiency of the polysaccharides in the cell wall to fermentable sugars are of relevance. Increasing the endogenous levels of gibberellic acid (GA) by ectopic expression of GA20-OXIDASE1 (GA20-OX1), the rate-limiting step in GA biosynthesis, is known to affect cell division and cell expansion, resulting in larger plants and organs in several plant species. In this study, we examined biomass yield and quality traits of maize plants overexpressing GA20-OX1 (GA20-OX1). GA20-OX1 plants accumulated more vegetative biomass than control plants in greenhouse experiments, but not consistently over two years of field trials. The stems of these plants were longer but also more slender. Investigation of GA20-OX1 biomass quality using biochemical analyses showed the presence of more cellulose, lignin and cell wall residue. Cell wall analysis as well as expression analysis of lignin biosynthetic genes in developing stems revealed that cellulose and lignin were deposited earlier in development. Pretreatment of GA20-OX1 biomass with NaOH resulted in a higher saccharification efficiency per unit of dry weight, in agreement with the higher cellulose content. On the other hand, the cellulose-to-glucose conversion was slower upon HCl or hot-water pretreatment, presumably due to the higher lignin content. This study showed that biomass yield and quality traits can be interconnected, which is important for the development of future breeding strategies to improve lignocellulosic feedstock for bioethanol production. © 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Effects of soil C:N:P stoichiometry on biomass allocation in the alpine and arid steppe systems.

    PubMed

    Wang, Xiaodan; Ma, Xingxing; Yan, Yan

    2017-03-01

    Soil nutrients strongly influence biomass allocation. However, few studies have examined patterns induced by soil C:N:P stoichiometry in alpine and arid ecosystems. Samples were collected from 44 sites with similar elevation along the 220-km transect at spatial intervals of 5 km along the northern Tibetan Plateau. Aboveground biomass (AGB) levels were measured by cutting a sward in each plot. Belowground biomass (BGB) levels were collected from soil pits in a block of 1 m × 1 m in actual root depth. We observed significant decreases in AGB and BGB levels but increases in the BGB:AGB ratio with increases in latitude. Although soil is characterized by structural complexity and spatial heterogeneity, we observed remarkably consistent C:N:P ratios within the cryic aridisols. We observed significant nonlinear relationships between the soil N:P and BGB:AGB ratios. The critical N:P ratio in soils was measured at approximately 2.0, above which the probability of BGB:AGB response to nutrient availability is small. These findings serve as interesting contributions to the global data pool on arid plant stoichiometry, given the previously limited knowledge regarding high-altitude regions.

  6. Allocation trade-offs dominate the response of tropical forest growth to seasonal and interannual drought.

    PubMed

    Doughty, Christopher E; Malhi, Yadvinder; Araujo-Murakami, Alejandro; Metcalfe, Daniel B; Silva-Espejo, Javier E; Arroyo, Luzmila; Heredia, Juan P; Pardo-Toledo, Erwin; Mendizabal, Luz M; Rojas-Landivar, Victor D; Vega-Martinez, Meison; Flores-Valencia, Marcio; Sibler-Rivero, Rebeca; Moreno-Vare, Luzmarina; Viscarra, Laura Jessica; Chuviru-Castro, Tamara; Osinaga-Becerra, Marilin; Ledezma, Roxana

    2014-08-01

    What determines the seasonal and interannual variation of growth rates in trees in a tropical forest? We explore this question with a novel four-year high-temporal-resolution data set of carbon allocation from two forest plots in the Bolivian Amazon. The forests show strong seasonal variation in tree wood growth rates, which are largely explained by shifts in carbon allocation, and not by shifts in total productivity. At the deeper soil plot, there was a clear seasonal trade-off between wood and canopy NPP, while the shallower soils plot showed a contrasting seasonal trade-off between wood and fine roots. Although a strong 2010 drought reduced photosynthesis, NPP remained constant and increased in the six-month period following the drought, which indicates usage of significant nonstructural carbohydrate stores. Following the drought, carbon allocation increased initially towards the canopy, and then in the following year, allocation increased towards fine-root production. Had we only measured woody growth at these sites and inferred total NPP, we would have misinterpreted both the seasonal and interannual responses. In many tropical forest ecosystems, we propose that changing tree growth rates are more likely to reflect shifts in allocation rather than changes in overall productivity. Only a whole NPP allocation perspective can correctly interpret the relationship between changes in growth and changes in productivity.

  7. The dynamic of annual carbon allocation to wood in European forests is consistent with a combined source-sink limitation of growth: implications for modelling

    NASA Astrophysics Data System (ADS)

    Guillemot, J.; Martin-StPaul, N. K.; Dufrêne, E.; François, C.; Soudani, K.; Ourcival, J. M.; Delpierre, N.

    2015-02-01

    The extent to which forest growth is limited by carbon (C) supply (source control) or by cambial activity (sink control) will condition the response of trees to global changes. However, the physiological processes responsible for the limitation of forest growth are still under debate. The aim of this study is to evaluate the key drivers of the annual carbon allocation to wood along large soil and climate regional gradients in five tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex, Quercus robur and Picea abies). Combining field measurements and process-based simulations at 49 sites (931 site-years), we assessed the stand biomass growth dependences at both inter-site and inter-annual scales. Specifically, the relative influence of forest C balance (source control), direct environmental control (water and temperature controls of sink activity) and allocation adjustments related to age, past climate conditions, competition intensity and soil nutrient availability on growth were quantified. The inter-site variability in stand C allocation to wood was predominantly driven by an age-related decline. The direct control of temperature or water stress on sink activity (i.e. independently from their effects on C supply) exerted a strong influence on the annual stand woody growth in all the species considered, including deciduous temperate species. The lagged effect of the past environment conditions was a significant driver of the annual C allocation to wood. Carbon supply appeared to strongly limit growth only in deciduous temperate species. We provide an evaluation of the spatio-temporal dynamics of annual carbon allocation to wood in European forests. Our study supports the premise that European forest growth is under a complex control including both source and sink limitations. The relative influences of the different growth drivers strongly vary across years and spatial ecological gradients. We suggest a

  8. A modeling framework for inferring tree growth and allocation from physiological, morphological and allometric traits.

    PubMed

    Ogle, Kiona; Pacala, Stephen W

    2009-04-01

    Predictions of forest succession, diversity and function require an understanding of how species differ in their growth, allocation patterns and susceptibility to mortality. These processes in turn are affected by allometric constraints and the physiological state of the tree, both of which are coupled to the tree's labile carbon status. Ultimately, insight into the hidden labile pools and the processes affecting the allocation of labile carbon to storage, maintenance and growth will improve our ability to predict tree growth, mortality and forest dynamics. We developed the 'Allometrically Constrained Growth and Carbon Allocation' (ACGCA) model that explicitly couples tree growth, mortality, allometries and labile carbon. This coupling results in (1) a semi-mechanistic basis for predicting tree death, (2) an allocation scheme that simultaneously satisfies allometric relationships and physiology-based carbon dynamics and (3) a range of physiological states that are consistent with tree behavior (e.g., healthy, static, shrinking, recovering, recovered and dead). We present the ACGCA model and illustrate aspects of its behavior by conducting simulations under different forest gap dynamics scenarios and with parameter values obtained for two ecologically dissimilar species: loblolly pine (Pinus taeda L.) and red maple (Acer rubrum L.). The model reproduces growth and mortality patterns of these species that are consistent with their shade-tolerance and succession status. The ACGCA framework provides an alternative, and potentially improved, approach for predicting tree growth, mortality and forest dynamics.

  9. Effect of culture and density on aboveground biomass allocation of 12 years old loblolly pine trees in the upper coastal plain and piedmont of Georgia and Alabama

    Treesearch

    Santosh Subedi; Dr. Michael Kane; Dr. Dehai Zhao; Dr. Bruce Borders; Dr. Dale Greene

    2012-01-01

    We destructively sampled a total of 192 12-year-old loblolly pine trees from four installations established by the Plantation Management Research Cooperative (PMRC) to analyze the effects of planting density and cultural intensity on tree level biomass allocation in the Piedmont and Upper Coastal Plain of Georgia and Alabama. Each installation had 12 plots, each plot...

  10. WHOLE-SEEDLING BIOMASS ALLOCATION, LEAF AREA, AND TISSUE CHEMISTRY FOR DOUGLAS-FIR EXPOSED TO ELEVATED CO2 AND TEMPERATURE FOR 4 YEARS

    EPA Science Inventory

    Changes in the global climate may impact forests, but data are lacking for climate change effects on whole tree productivity over multiple seasons and conditions representative of the field. To address this critical need, we measured biomass allocation for whole Pseudotsuga menzi...

  11. Life cycles and biomass allocation in seed- and ramet-derived plants of Cryptotaenia canadensis (Apicea), a monocarpic species of eastern North America

    Treesearch

    Tracy S. Hawkins; Jerry M. Baskin; Carol C. Baskin

    2005-01-01

    Life cycles, survivorship, and biomass allocation for seed- and ramet-derived plants of Cryptotaenia canadensis (L.) DC. were studied to determine if variation existed between plant derivations, and how these attributes contribute to persistence of the species within a temperate forest habitat. Seed-derived plants behaved as biennials, reproducing...

  12. Physiological responses of biomass allocation, root architecture, and invertase activity to copper stress in young seedlings from two populations of Kummerowia stipulacea (maxim.) Makino.

    PubMed

    Zhang, Luan; Pan, Yuxue; Lv, Wei; Xiong, Zhi-ting

    2014-06-01

    In the current study, we hypothesize that mine (metallicolous) populations of metallophytes form a trade-off between the roots and shoots when under copper (Cu) stress to adapt themselves to heavy metal contaminated habitats, and thus, differ from normal (non-metallicolous) populations in biomass allocation. To test the hypothesis, two populations of the metallophyte Kummerowia stipulacea, one from an ancient Cu mine (MP) and the other from a non-contaminated site (NMP), were treated with Cu(2+) in hydroponic conditions. The results showed that MP plants had higher root/shoot biomass allocation and more complicated root system architecture compared to those of the NMP plants when under Cu stress. The net photosynthetic capacity was more inhibited in the NMP plants than in the MP plants when under Cu stress. The sugar (sucrose and hexose) contents and acid invertase activities of MP plants were elevated while those in NMP plants were inhibited after Cu treatment. The neutral/alkaline invertase activities and sucrose synthase level showed no significant differences between the two populations when under Cu stress. The results showed that acid invertase played an important role in biomass allocation and that the physiological responses were beneficial for the high root/shoot biomass allocation, which were advantageous during adaptive evolution to Cu-enriched mine soils.

  13. Five-year vegetation control effects on aboveground biomass and nitrogen content and allocation in Douglas-fir plantations on three contrasting sites

    Treesearch

    Warren D. Devine; Timothy B. Harrington; Thomas A. Terry; Robert B. Harrison; Robert A. Slesak; David H. Peter; Constance A. Harrington; Carol J. Shilling; Stephen H. Schoenholtz

    2011-01-01

    Despite widespread use of intensive vegetation control (VC) in forest management, the effects of VC on allocation of biomass and nutrients between young trees and competing vegetation are not well understood. On three Pacific Northwest sites differing in productivity, soil parent material, and understory vegetation community, we evaluated year-5 effects of presence/...

  14. WHOLE-SEEDLING BIOMASS ALLOCATION, LEAF AREA, AND TISSUE CHEMISTRY FOR DOUGLAS-FIR EXPOSED TO ELEVATED CO2 AND TEMPERATURE FOR 4 YEARS

    EPA Science Inventory

    Changes in the global climate may impact forests, but data are lacking for climate change effects on whole tree productivity over multiple seasons and conditions representative of the field. To address this critical need, we measured biomass allocation for whole Pseudotsuga menzi...

  15. Metabolic efficiency in yeast Saccharomyces cerevisiae in relation to temperature dependent growth and biomass yield.

    PubMed

    Zakhartsev, Maksim; Yang, Xuelian; Reuss, Matthias; Pörtner, Hans Otto

    2015-08-01

    Canonized view on temperature effects on growth rate of microorganisms is based on assumption of protein denaturation, which is not confirmed experimentally so far. We develop an alternative concept, which is based on view that limits of thermal tolerance are based on imbalance of cellular energy allocation. Therefore, we investigated growth suppression of yeast Saccharomyces cerevisiae in the supraoptimal temperature range (30-40°C), i.e. above optimal temperature (Topt). The maximal specific growth rate (μmax) of biomass, its concentration and yield on glucose (Yx/glc) were measured across the whole thermal window (5-40°C) of the yeast in batch anaerobic growth on glucose. Specific rate of glucose consumption, specific rate of glucose consumption for maintenance (mglc), true biomass yield on glucose (Yx/glc(true)), fractional conservation of substrate carbon in product and ATP yield on glucose (Yatp/glc) were estimated from the experimental data. There was a negative linear relationship between ATP, ADP and AMP concentrations and specific growth rate at any growth conditions, whilst the energy charge was always high (~0.83). There were two temperature regions where mglc differed 12-fold, which points to the existence of a 'low' (within 5-31°C) and a 'high' (within 33-40°C) metabolic mode regarding maintenance requirements. The rise from the low to high mode occurred at 31-32°C in step-wise manner and it was accompanied with onset of suppression of μmax. High mglc at supraoptimal temperatures indicates a significant reduction of scope for growth, due to high maintenance cost. Analysis of temperature dependencies of product formation efficiency and Yatp/glc revealed that the efficiency of energy metabolism approaches its lower limit at 26-31°C. This limit is reflected in the predetermined combination of Yx/glc(true), elemental biomass composition and degree of reduction of the growth substrate. Approaching the limit implies a reduction of the safety margin

  16. Do changes in carbon allocation account for the growth response to potassium and sodium applications in tropical Eucalyptus plantations?

    PubMed

    Epron, Daniel; Laclau, Jean-Paul; Almeida, Julio C R; Gonçalves, José Leonardo M; Ponton, Stephane; Sette, Carlos R; Delgado-Rojas, Juan S; Bouillet, Jean-Pierre; Nouvellon, Yann

    2012-06-01

    Understanding the underlying mechanisms that account for the impact of potassium (K) fertilization and its replacement by sodium (Na) on tree growth is key to improving the management of forest plantations that are expanding over weathered tropical soils with low amounts of exchangeable bases. A complete randomized block design was planted with Eucalyptus grandis (W. Hill ex Maiden) to quantify growth, carbon uptake and carbon partitioning using a carbon budget approach. A combination of approaches including the establishment of allometric relationships over the whole rotation and measurements of soil CO(2) efflux and aboveground litterfall at the end of the rotation were used to estimate aboveground net production (ANPP), total belowground carbon flux and gross primary production (GPP). The stable carbon isotope (δ(13)C) of stem wood α-cellulose produced every year was used as a proxy for stomatal limitation of photosynthesis. Potassium fertilization increased GPP and decreased the fraction of carbon allocated belowground. Aboveground net production was strongly enhanced, and because leaf lifespan increased, leaf biomass was enhanced without any change in leaf production, and wood production (P(W)) was dramatically increased. Sodium application decreased the fraction of carbon allocated belowground in a similar way, and enhanced GPP, ANPP and P(W), but to a lesser extent compared with K fertilization. Neither K nor Na affected δ(13)C of stem wood α-cellulose, suggesting that water-use efficiency was the same among the treatments and that the inferred increase in leaf photosynthesis was not only related to a higher stomatal conductance. We concluded that the response to K fertilization and Na addition on P(W) resulted from drastic changes in carbon allocation.

  17. Influence of atmospheric [CO2] on growth, carbon allocation and cost of plant tissues on leaf nitrogen concentration maintenance in nodulated Medicago sativa

    NASA Astrophysics Data System (ADS)

    Pereyra, Gabriela; Hartmann, Henrik; Ziegler, Waldemar; Michalzik, Beate; Gonzalez-Meler, Miquel; Trumbore, Susan

    2015-04-01

    Plant carbon (C) allocation and plant metabolic processes (i.e. photosynthesis and respiration) can be affected by changes in C availability, for example from changing atmospheric [CO2]. In nodulated plants, C availability may also influence nitrogen (N) fixation by bacteriods. But C allocation and N fixation are often studied independently and hence do not allow elucidating interactive effects. We investigated how different atmospheric [CO2] (Pleistocene: 170 ppm, ambient: 400 ppm and projected future: 700 ppm) influence plant growth, allocation to nodules, and the ratio of photosynthesis-to-respiration (R:A) as an indicator of C cost in Medicago sativa inoculated with Ensifer meliloti. M. sativa grew c. 38% more nodules at 400 ppm and 700 ppm than at 170 ppm. However, ratios of above- and belowground plant biomass to nodule biomass were constant over time and independent of atmospheric [CO2]. Total non-structural carbohydrate concentrations were not significantly different between plants grown at 400 and 700 ppm, but were four to five-fold higher than in 170 ppm plants. Leaf level N concentration was similar across treatments, but N-based photosynthetic rates were 82% and 93% higher in leaves of plants grown at 400 and 700 ppm, respectively, than plants grown at 170 ppm. In addition, leaf R:A was greater (48% or 55%) in plants grown at 170 ppm than plants grown at 400 and 700 ppm. Similarly, the greatest proportion of assimilated CO2 released by root respiration occurred in rhizobial plants growing at 170 ppm. Our results suggest that C limitation in nodulated Medicago sativa plants did not influence C allocation to nodule biomass but caused a proportionally greater allocation of C to belowground respiration, most likely to bacteriods. This suggests that N tissue concentration was maintained at low [CO2] by revving up bacteriod metabolism and at the expense of non-structural carbohydrate reserves.

  18. Spatial allocation of future landscape patterns for biomass and alleviation of hydrologic impacts of climate change

    NASA Astrophysics Data System (ADS)

    Ssegane, H.; Negri, M. C.

    2015-12-01

    Current and future demand for food, feed, fiber, and energy require novel approaches to land management, which demands that multifunctional landscapes are created to integrate various ecosystem functions into a sustainable land use. Concurrently, the Intergovernmental Panel on Climate Change (IPCC) predicts an increase of 2 to 4°C over the next 100 years above the preindustrial baseline, beginning as early as 2016 to 2035 over all seasons in the North America. This climate change is projected to further strain water resources currently stressed by anthropogenic activities. Therefore, placement of bioenergy crops on strategically selected sub-field areas in an agricultural landscape has the potential to increase the environmental and economic sustainability if location and choice of the crops result in minimal disruption of current food production systems and therefore cause minimal indirect land use change. This study identified sub-field marginal areas in an agricultural watershed using soil-based environmental sustainability criteria and a crop productivity index. Future landscape patterns (FLPs) were developed by allocating bioenergy crops (switchgrass: Panicum virgatum or shrub willows: Salix spp.) to these marginal areas (20% of the watershed). SWAT hydrologic model and dynamically downscaled climatic projection were used to asses impact of climate change on extreme flow conditions, total annual production of commodity and bioenergy crops, and water quality under current and future landscape patterns for the mid-21st century (2045-2055) and late 21st century (2085-2095) climatic projections. The frequency of flood and drought conditions was projected to increase while the corresponding durations to decrease. Sediment yields were projected to increase by 85% to 170% while FLPs would mitigate this increase by 26% to 32%.

  19. Carbon allocation during defoliation: testing a defense-growth trade-off in balsam fir

    PubMed Central

    Deslauriers, Annie; Caron, Laurie; Rossi, Sergio

    2015-01-01

    During repetitive defoliation events, carbon can become limiting for trees. To maintain growth and survival, the resources have to be shared more efficiently, which could result in a trade-off between the different physiological processes of a plant. The objective of this study was to assess the effect of defoliation in carbon allocation of balsam fir [Abies balsamea (L.) Mill.] to test the presence of a trade-off between allocation to growth, carbon storage, and defense. Three defoliation intensities [control (C-trees, 0% defoliation), moderately (M-trees, 41–60%), and heavily (H-trees, 61–80%) defoliated] were selected in order to monitor several variables related to stem growth (wood formation in xylem), carbon storage in stem and needle (non-structural soluble sugars and starch), and defense components in needles (terpenoids compound) from May to October 2011. The concentration of starch was drastically reduced in both wood and leaves of H-trees with a quasi-absence of carbon partitioning to storage in early summer. Fewer kinds of monoterpenes and sesquiterpenes were formed with an increasing level of defoliation indicating a lower carbon allocation for the production of defense. The carbon allocation to wood formation gradually reduced at increasing defoliation intensities, with a lower growth rate and fewer tracheids resulting in a reduced carbon sequestration in cell walls. The hypothesis of a trade-off between the allocations to defense components and to non-structural (NCS) and structural (growth) carbon was rejected as most of the measured variables decreased with increasing defoliation. The starch amount was highly indicative of the tree carbon status at different defoliation intensity and future research should focus on the mechanism of starch utilization for survival and growth following an outbreak. PMID:26029235

  20. Carbon allocation during defoliation: testing a defense-growth trade-off in balsam fir.

    PubMed

    Deslauriers, Annie; Caron, Laurie; Rossi, Sergio

    2015-01-01

    During repetitive defoliation events, carbon can become limiting for trees. To maintain growth and survival, the resources have to be shared more efficiently, which could result in a trade-off between the different physiological processes of a plant. The objective of this study was to assess the effect of defoliation in carbon allocation of balsam fir [Abies balsamea (L.) Mill.] to test the presence of a trade-off between allocation to growth, carbon storage, and defense. Three defoliation intensities [control (C-trees, 0% defoliation), moderately (M-trees, 41-60%), and heavily (H-trees, 61-80%) defoliated] were selected in order to monitor several variables related to stem growth (wood formation in xylem), carbon storage in stem and needle (non-structural soluble sugars and starch), and defense components in needles (terpenoids compound) from May to October 2011. The concentration of starch was drastically reduced in both wood and leaves of H-trees with a quasi-absence of carbon partitioning to storage in early summer. Fewer kinds of monoterpenes and sesquiterpenes were formed with an increasing level of defoliation indicating a lower carbon allocation for the production of defense. The carbon allocation to wood formation gradually reduced at increasing defoliation intensities, with a lower growth rate and fewer tracheids resulting in a reduced carbon sequestration in cell walls. The hypothesis of a trade-off between the allocations to defense components and to non-structural (NCS) and structural (growth) carbon was rejected as most of the measured variables decreased with increasing defoliation. The starch amount was highly indicative of the tree carbon status at different defoliation intensity and future research should focus on the mechanism of starch utilization for survival and growth following an outbreak.

  1. Leaf structural and photosynthetic characteristics, and biomass allocation to foliage in relation to foliar nitrogen content and tree size in three Betula species.

    PubMed

    Niinemets, Ulo; Portsmuth, Angelika; Truus, Laimi

    2002-02-01

    results demonstrate that: (1) tree height and N(M) may independently control foliar structure and physiology, and have an even greater impact on biomass allocation; and (2) the modified within-plant light availabilities alone do not explain the observed patterns. Although there were interspecific differences with respect to the statistical significance of the relationships, all species generally fit common regressions. However, these differences were consistent, and suggested that more competitive species with inherently larger growth rates also more plastically respond to N and H.

  2. Cellular trade-offs and optimal resource allocation during cyanobacterial diurnal growth.

    PubMed

    Reimers, Alexandra-M; Knoop, Henning; Bockmayr, Alexander; Steuer, Ralf

    2017-07-18

    Cyanobacteria are an integral part of Earth's biogeochemical cycles and a promising resource for the synthesis of renewable bioproducts from atmospheric CO2 Growth and metabolism of cyanobacteria are inherently tied to the diurnal rhythm of light availability. As yet, however, insight into the stoichiometric and energetic constraints of cyanobacterial diurnal growth is limited. Here, we develop a computational framework to investigate the optimal allocation of cellular resources during diurnal phototrophic growth using a genome-scale metabolic reconstruction of the cyanobacterium Synechococcus elongatus PCC 7942. We formulate phototrophic growth as an autocatalytic process and solve the resulting time-dependent resource allocation problem using constraint-based analysis. Based on a narrow and well-defined set of parameters, our approach results in an ab initio prediction of growth properties over a full diurnal cycle. The computational model allows us to study the optimality of metabolite partitioning during diurnal growth. The cyclic pattern of glycogen accumulation, an emergent property of the model, has timing characteristics that are in qualitative agreement with experimental findings. The approach presented here provides insight into the time-dependent resource allocation problem of phototrophic diurnal growth and may serve as a general framework to assess the optimality of metabolic strategies that evolved in phototrophic organisms under diurnal conditions.

  3. Allocation changes buffer CO2 effect on tree growth since the last ice age

    NASA Astrophysics Data System (ADS)

    Li, G.; Harrison, S. P.; Prentice, I. C. C.; Gerhart, L. M.; Ward, J. K.

    2015-12-01

    Isotopic measurements on junipers growing in southern California during the last glacial, when the ambient atmospheric [CO2] (ca) was ~180 ppm, show the leaf- internal [CO2] (ci) was close to the modern CO2 compensation point for C3 plants. Despite this, stem growth rates were similar to today. Using a coupled light-use efficiency and tree growth model, we show that the ci/ca ratio was stable because both vapor pressure deficit and temperature were decreased with compensating effects. Reduced photorespiration at lower temperatures partly mitigated the effect of low ci on gross primary production, but maintenance of present-day radial growth also required changes in carbon allocation, including a ~25% reduction in below-ground carbon allocation and a ~7% in allocation to leaves. Such a shift was possible due to reduced drought stress. Our findings are consistent with the observed increase in below-ground allocation in FACE experiments and the apparent homoeostasis of measured radial growth as ca increases today; results which our model can also reproduce.

  4. Growth and allocation of resources in economics: The agent-based approach

    NASA Astrophysics Data System (ADS)

    Scalas, Enrico; Gallegati, Mauro; Guerci, Eric; Mas, David; Tedeschi, Alessandra

    2006-10-01

    Some agent-based models for growth and allocation of resources are described. The first class considered consists of conservative models, where the number of agents and the size of resources are constant during time evolution. The second class is made up of multiplicative noise models and some of their extensions to continuous time.

  5. Stand Density Effects on Biomass Allocation Patterns and Subsequent Soil Nitrogen Demand

    Treesearch

    Christopher A. Dicus; Thomas J. Dean

    1998-01-01

    Growth and yield data from a loblolly pine plantation in southeastern Louisiana were obtained yearly from 1993 to 1996 on numbered trees within two stands initially planted on a 1.22- by 1.22-meter spacing, and two stands planted on a 2.44- by 2.44-meter spacing. Using allometric equations derived from a 1994 on-site destructive harvest, cited nitrogen...

  6. Effects of externally supplied protein on root morphology and biomass allocation in Arabidopsis

    PubMed Central

    Lonhienne, Thierry G. A.; Trusov, Yuri; Young, Anthony; Rentsch, Doris; Näsholm, Torgny; Schmidt, Susanne; Paungfoo-Lonhienne, Chanyarat

    2014-01-01

    Growth, morphogenesis and function of roots are influenced by the concentration and form of nutrients present in soils, including low molecular mass inorganic N (IN, ammonium, nitrate) and organic N (ON, e.g. amino acids). Proteins, ON of high molecular mass, are prevalent in soils but their possible effects on roots have received little attention. Here, we investigated how externally supplied protein of a size typical of soluble soil proteins influences root development of axenically grown Arabidopsis. Addition of low to intermediate concentrations of protein (bovine serum albumen, BSA) to IN-replete growth medium increased root dry weight, root length and thickness, and root hair length. Supply of higher BSA concentrations inhibited root development. These effects were independent of total N concentrations in the growth medium. The possible involvement of phytohormones was investigated using Arabidopsis with defective auxin (tir1-1 and axr2-1) and ethylene (ein2-1) responses. That no phenotype was observed suggests a signalling pathway is operating independent of auxin and ethylene responses. This study expands the knowledge on N form-explicit responses to demonstrate that ON of high molecular mass elicits specific responses. PMID:24852366

  7. Mortality affects adaptive allocation to growth and reproduction: field evidence from a guild of body snatchers.

    PubMed

    Hechinger, Ryan F

    2010-05-07

    The probability of being killed by external factors (extrinsic mortality) should influence how individuals allocate limited resources to the competing processes of growth and reproduction. Increased extrinsic mortality should select for decreased allocation to growth and for increased reproductive effort. This study presents perhaps the first clear cross-species test of this hypothesis, capitalizing on the unique properties offered by a diverse guild of parasitic castrators (body snatchers). I quantify growth, reproductive effort, and expected extrinsic mortality for several species that, despite being different species, use the same species' phenotype for growth and survival. These are eight trematode parasitic castrators-the individuals of which infect and take over the bodies of the same host species-and their uninfected host, the California horn snail. As predicted, across species, growth decreased with increased extrinsic mortality, while reproductive effort increased with increased extrinsic mortality. The trematode parasitic castrator species (operating stolen host bodies) that were more likely to be killed by dominant species allocated less to growth and relatively more to current reproduction than did species with greater life expectancies. Both genders of uninfected snails fit into the patterns observed for the parasitic castrator species, allocating as much to growth and to current reproduction as expected given their probability of reproductive death (castration by trematode parasites). Additionally, species differences appeared to represent species-specific adaptations, not general plastic responses to local mortality risk. Broadly, this research illustrates that parasitic castrator guilds can allow unique comparative tests discerning the forces promoting adaptive evolution. The specific findings of this study support the hypothesis that extrinsic mortality influences species differences in growth and reproduction.

  8. Biomass and nutrient distributions in central Oregon second-growth ponderosa pine ecosystems.

    Treesearch

    Susan N. Little; Lauri J. Shainsky

    1995-01-01

    We investigated the distribution of biomass and nutrients in second-growth ponderosa pine (Pinus ponderosa Dougl. ex Laws.) ecosystems in central Oregon. Destructive sampling of aboveground and belowground tree biomass was carried out at six sites in the Deschutes National Forest; three of these sites also were intensively sampled for biomass and...

  9. Cation Uptake and Allocation by Red Pine Seedlings under Cation-Nutrient Stress in a Column Growth Experiment

    SciTech Connect

    Shi, Zhenqing; Balogh-Brunstad, Zsuzsanna; Grant, Michael R.; Harsh, James B.; Gill, Richard; Thomashow, Linda; Dohnalkova, Alice; Stacks, Daryl; Letourneau, Melissa; Keller, Chester K.

    2014-01-10

    Background and Aims Plant nutrient uptake is affected by environmental stress, but how plants respond to cation-nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient limitation on cation uptake in an experimental plant-mineral system. Methods Column experiments, with red pine (Pinus resinosa Ait.) seedlings growing in sand/mineral mixtures, were conducted for up to nine months under a range of Ca- and K-limited conditions. The Ca and K were supplied from both minerals and nutrient solutions with varying Ca and K concentrations. Results Cation nutrient stress had little impact on carbon allocation after nine months of plant growth and K was the limiting nutrient for biomass production. The Ca/Sr and K/Rb ratio results allowed independent estimation of dissolution incongruency and discrimination against Sr and Rb during cation uptake processes. The fraction of K in biomass from biotite increased with decreasing K supply from nutrient solutions. The mineral anorthite was consistently the major source of Ca, regardless of nutrient treatment. Conclusions Red pine seedlings exploited more mineral K in response to more severe K deficiency. This did not occur for Ca. Plant discrimination factors must be carefully considered to accurately identify nutrient sources using cation tracers.

  10. Allometry in global models: an important reality check on the growth and biomass of forests

    NASA Astrophysics Data System (ADS)

    Wolf, A.; Berry, J. A.

    2009-12-01

    Data assimilation incorporates information into a model of nature, and regardless of the algorithm employed the success of DA rests heavily on the quality of both the data and the model. Here we ask the question: if would could assimilate biomass from remote sensing or direct observation, could the models accommodate this information? We find that the state variables that are simulated by land surface models, such as biomass per unit area, are not amenable to developing an "observation operator" necessary for comparison with data. That is, lidar, radar, and multi-angle observations are sensitive to the size and shape of individual trees, whereas most land surface models have no representation of an individual. In addition, most land surface models make no distinction between aboveground and belowground woody biomass. We used the Cannell (1982) forest inventory database to individuate the biomass simulated in land surface models and found that the scaling of biomass pools - leaves, stem, coarse and fine roots - do not obey widely observed empirical and theoretical allometric constraints that are observed for individual trees (Enquist and Niklas, 2002), suggesting that the fractional allocation to these pools and their characteristic turnover times are in error. This discrepancy represents a gap in the translation of research on individual-based allocation to the stand level, where self-pruning and competition are manifest in the observed fluxes and biomass pools per unit area. We develop an approach to synthesize individual-based allocation with area-based flux models using a recent database of component flux and biomass compiled from Fluxnet sites (Luyssaert et al., 2008). We present the size-dependent pattern of allocation and turnover time for forest biomass pools at the spatial scale appropriate for land surface models. We discuss the implications of these results at the global scale for forests with changing size and age structure.

  11. Effects of fire on sandhill herbs: nutrients, mycorrhizae, and biomass allocation.

    PubMed

    Anderson, R; Menges, E

    1997-07-01

    Differences in growth responses, tissue and soil inorganic nutrients, and mycorrhizal relationships of four herbaceous species were studied on burned and unburned sandhill sites in south-central Florida, USA. Three species, (Aristida stricta, Liatris tenuifolia var. laevigata, and Pityopsis graminifolia) responded positively to conditions following the burn by increased vegetative growth and flowering. The fourth species, Balduina angustifolia, is a fire-sensitive biennial and its first-year rosettes were, with an occasional exception, unable to survive or resprout following fire. Availability of all soil inorganic nutrients examined (Ca, K, Mg, and P) was low, as were total nitrogen, soil organic matter, and pH. There was a slight nutrient pulse of phosphorus into the soil following burning. For two species (Aristida and Liatris), shoot tissue concentrations of several inorganic nutrients (especially N and P) were higher on the burned site than the unburned site following burning. These differences generally dissipated over time since burning. The high concentration of tissue nutrients postburn followed by a decline on the burned site may result from rapid nutrient uptake after fire and dilution of this concentration following restoration of plant mass. Despite low levels of soil inorganic nutrients, including phosphorus, mycotrophy was absent or weakly developed among the herbaceous species examined, except for the tap-rooted Balduina angustifolia. Colonization of host plants by vesicular mycorrhizal fungi was unaffected by burning. Mycorrhizal inoculum potentials of sandhill soil were extremely low, varying seasonally from (mean +/- 1 SE) 0.3 +/- 0.2 to 3.8 +/- 0.7%.

  12. Closed-loop system for growth of aquatic biomass and gasification thereof

    DOEpatents

    Oyler, James R.

    2017-09-19

    Processes, systems, and methods for producing combustible gas from wet biomass are provided. In one aspect, for example, a process for generating a combustible gas from a wet biomass in a closed system is provided. Such a process may include growing a wet biomass in a growth chamber, moving at least a portion of the wet biomass to a reactor, heating the portion of the wet biomass under high pressure in the reactor to gasify the wet biomass into a total gas component, separating the gasified component into a liquid component, a non-combustible gas component, and a combustible gas component, and introducing the liquid component and non-combustible gas component containing carbon dioxide into the growth chamber to stimulate new wet biomass growth.

  13. Balanced allocation of organic acids and biomass for phosphorus and nitrogen demand in the fynbos legume Podalyria calyptrata.

    PubMed

    Maistry, Pravin M; Muasya, A Muthama; Valentine, Alex J; Chimphango, Samson B M

    2015-02-01

    Podalyria calyptrata is from fynbos soils with low availability of phosphorus (P) and nitrogen (N). We investigated the physiological basis for tolerance of low P supply in nodulated P. calyptrata and examined responses to increased supply of combined-N as Ca(NO3)2 and P. It was hypothesized that increasing supply of combined-N would stimulate P-acquisition mechanisms and enhance plant growth with high P supply. Biomass, leaf [N] and [P], organic acid and phosphatase root exudates, and phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) activity in nodules and roots were examined in two N×P experiments. Low P supply decreased leaf [P] and limited growth, decreasing the nodule:root ratio but increasing nodular PEPC and MDH activity for enhanced P-acquisition or P-utilization. At low P supply, a N-induced demand for P increased root exudation of citrate and PEPC and MDH activity in roots. Greater combined-N supply inhibited nodulation more at low P supply than at high P supply. With a P-induced demand for N the plants nodulated prolifically and increased combined-N supply did not enhance plant growth. The physiological basis for N2-fixing P. calyptrata tolerating growth at low P supply and responding to greater P supply is through balanced acquisition of P and N for plant demand.

  14. Female Baltic herring Clupea harengus allocate resources from growth to reproduction in poor feeding conditions.

    PubMed

    Rajasilta, M; Eklund, J; Hänninen, J; Vuorinen, I; Laine, P

    2015-01-22

    The trade-off between somatic growth and reproduction in the female Baltic herring Clupea harengus was investigated from 1984 to 2002. During the study period, growth decreased, as a consequence of decreasing salinity and weakening of feeding conditions. Production of muscle and ovarian tissue decreased in repeat spawners, but investment in reproduction took an increasing amount of the total production of new tissues. This suggested that a shift in allocation to reproduction takes precedence over body growth in the reproductive strategy of C. harengus. The process also indicated one possible mechanism leading to dwarf forms in fish populations. © 2015 The Fisheries Society of the British Isles.

  15. Uav-Based Automatic Tree Growth Measurement for Biomass Estimation

    NASA Astrophysics Data System (ADS)

    Karpina, M.; Jarząbek-Rychard, M.; Tymków, P.; Borkowski, A.

    2016-06-01

    Manual in-situ measurements of geometric tree parameters for the biomass volume estimation are time-consuming and economically non-effective. Photogrammetric techniques can be deployed in order to automate the measurement procedure. The purpose of the presented work is an automatic tree growth estimation based on Unmanned Aircraft Vehicle (UAV) imagery. The experiment was conducted in an agriculture test field with scots pine canopies. The data was collected using a Leica Aibotix X6V2 platform equipped with a Nikon D800 camera. Reference geometric parameters of selected sample plants were measured manually each week. In situ measurements were correlated with the UAV data acquisition. The correlation aimed at the investigation of optimal conditions for a flight and parameter settings for image acquisition. The collected images are processed in a state of the art tool resulting in a generation of dense 3D point clouds. The algorithm is developed in order to estimate geometric tree parameters from 3D points. Stem positions and tree tops are identified automatically in a cross section, followed by the calculation of tree heights. The automatically derived height values are compared to the reference measurements performed manually. The comparison allows for the evaluation of automatic growth estimation process. The accuracy achieved using UAV photogrammetry for tree heights estimation is about 5cm.

  16. Investigation of growth responses in saprophytic fungi to charred biomass.

    PubMed

    Ascough, Philippa L; Sturrock, Craig J; Bird, Michael I

    2010-03-01

    We present the results of a study testing the response of two saprophytic white-rot fungi species, Pleurotus pulmonarius and Coriolus versicolor, to charred biomass (charcoal) as a growth substrate. We used a combination of optical microscopy, scanning electron microscopy, elemental abundance measurements, and isotope ratio mass spectrometry ((13)C and (15)N) to investigate fungal colonisation of control and incubated samples of Scots Pine (Pinus sylvestris) wood, and charcoal from the same species produced at 300 degrees C and 400 degrees C. Both species of fungi colonise the surface and interior of wood and charcoals over time periods of less than 70 days; however, distinctly different growth forms are evident between the exterior and interior of the charcoal substrate, with hyphal penetration concentrated along lines of structural weakness. Although the fungi were able to degrade and metabolise the pine wood, charcoal does not form a readily available source of fungal nutrients at least for these species under the conditions used in this study.

  17. Growth and biomass distribution of cherrybark oak (Quercus pagoda Raf.) seedlings as influenced by light availability

    Treesearch

    Emile S. Gardiner; John D. Hodges

    1998-01-01

    Cherrybark oak (Quercus pagoda Raf.) seedlings were established and raised in the field under four light levels (100 percent. 53 percent, 27 percent or 8 percent of full sunlight) to study the effects of light availability on their shoot growth, biomass accumulation. and biomass distribution. After two growing seasons, greatest stem growth was observed on seedlings...

  18. Effects of a three-year exposure to ambient ozone on biomass allocation in poplar using ethylenediurea.

    PubMed

    Hoshika, Yasutomo; Pecori, Francesco; Conese, Ilaria; Bardelli, Tommaso; Marchi, Enrico; Manning, William J; Badea, Ovidiu; Paoletti, Elena

    2013-09-01

    We examined the effect of ambient ozone on visible foliar injury, growth and biomass in field-grown poplar cuttings of an Oxford clone sensitive to ozone (Populus maximoviczii Henry × berolinensis Dippel) irrigated with ethylenediurea (EDU) or water for three years. EDU is used as an ozone protectant for plants. Protective effects of EDU on ozone visible injury were found. As a result, poplar trees grown under EDU treatment increased leaves, lateral branches and root density in the third year, although no significant enhancement of stem height and diameter was found. Ambient ozone (AOT40, 24.6 ppm h; diurnal hourly average, 40.3 ppb) may finally reduce carbon gain by reducing the number of branches, and thus sites for leaf formation, in ozone-sensitive poplar trees under not-limiting conditions.

  19. Biomass

    Treesearch

    Bernard R. Parresol

    2001-01-01

    Biomass, the contraction for biological mass, is the amount of living material provided by a given area or volume of the earth's surface, whether terrestrial or aquatic. Biomass is important for commercial uses (e.g., fuel and fiber) and for national development planning, as well as for scientific studies of ecosystem productivity, energy and nutrient flows, and...

  20. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.

    PubMed

    Kerhoulas, Lucy P; Kane, Jeffrey M

    2012-01-01

    Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables

  1. The dynamic of the annual carbon allocation to wood in European tree species is consistent with a combined source-sink limitation of growth: implications for modelling

    NASA Astrophysics Data System (ADS)

    Guillemot, J.; Martin-StPaul, N. K.; Dufrene, E.; Francois, C.; Soudani, K.; Ourcival, J. M.; Delpierre, N.

    2015-05-01

    The extent to which wood growth is limited by carbon (C) supply (i.e. source control) or by cambial activity (i.e. sink control) will strongly determine the responses of trees to global changes. Nevertheless, the physiological processes that are responsible for limiting forest growth are still a matter of debate. The aim of this study was to evaluate the key determinants of the annual C allocation to wood along large soil and climate regional gradients over France. The study was conducted for five tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex, Quercus robur and Picea abies). The drivers of stand biomass growth were assessed on both inter-site and inter-annual scales. Our data set comprised field measurements performed at 49 sites (931 site-years) that included biometric measurements and a variety of stand characteristics (e.g. soil water holding capacity, leaf area index). It was complemented with process-based simulations when possible explanatory variables could not be directly measured (e.g. annual and seasonal tree C balance, bioclimatic water stress indices). Specifically, the relative influences of tree C balance (source control), direct environmental control (water and temperature controls of sink activity) and allocation adjustments related to age, past climate conditions, competition intensity and soil nutrient availability on growth were quantified. The inter-site variability in the stand C allocation to wood was predominantly driven by age-related decline. The direct effects of temperature and water stress on sink activity (i.e. effects independent from their effects on the C supply) exerted a strong influence on the annual stand wood growth in all of the species considered, including deciduous temperate species. The lagged effect of the past environmental conditions (e.g. the previous year's water stress and low C uptake) significantly affected the annual C allocation to wood. The C supply

  2. Modification in growth, biomass and yield of radish under supplemental UV-B at different NPK levels.

    PubMed

    Singh, Suruchi; Kumari, Rima; Agrawal, Madhoolika; Agrawal, S B

    2011-05-01

    Growth, biomass, yield and quality characteristics of radish (Raphanus sativus L. var. Pusa Himani) were investigated under supplemental UV-B (sUV-B; 280-320 nm; +7.2 kJ m(-2) d(-1)) radiation at varying levels of soil NPK. Combinations of NPK were recommended, 1.5 times NPK, 1.5 times N and 1.5 times K. sUV-B radiation negatively affected the growth and economic yield with more reductions at 1.5 times recommended NPK, N and K compared to recommended NPK. Total biomass remained unaffected in plants at recommended NPK under sUV-B radiation. At 1.5 times NPK and N more partitioning of biomass to shoot led to reduction in root shoot ratio and consequently yield under sUV-B. Nutrients in edible part declined maximally at 1.5 times recommended K under sUV-B. The study suggests that higher than recommended NPK makes radish plants more sensitive to sUV-B in terms of yield by allocating less photosynthates towards roots compared to shoots. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Concentrative nitrogen allocation to sun-lit branches and the effects on whole-plant growth under heterogeneous light environments.

    PubMed

    Sugiura, D; Tateno, M

    2013-08-01

    We investigated the nitrogen and carbohydrate allocation patterns of trees under heterogeneous light environments using saplings of the devil maple tree (Acer diabolicum) with Y-shaped branches. Different branch groups were created: all branches of a sapling exposed to full light (L-branches), all branches exposed to full shade (S-branches), and half of the branches of a sapling exposed to light (HL-branches) and the other half exposed to shade (HS-branches). Throughout the growth period, nitrogen was preferentially allocated to HL-branches, whereas nitrogen allocation to HS-branches was suppressed compared to L- and S-branches. HL-branches with the highest leaf nitrogen content (N(area)) also had the highest rates of growth, and HS-branches with the lowest N(area) had the lowest observed growth rates. In addition, net nitrogen assimilation, estimated using a photosynthesis model, was strongly correlated with branch growth and whole-plant growth. In contrast, patterns of photosynthate allocation to branches and roots were not affected by the light conditions of the other branch. These observations suggest that tree canopies develop as a result of resource allocation patterns, where the growth of sun-lit branches is favoured over shaded branches, which leads to enhanced whole-plant growth in heterogeneous light environments. Our results indicate that whole-plant growth is enhanced by the resource allocation patterns created for saplings in heterogeneous light environments.

  4. Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies

    PubMed Central

    Giordano, Nils; Mairet, Francis; Gouzé, Jean-Luc

    2016-01-01

    Microbial physiology exhibits growth laws that relate the macromolecular composition of the cell to the growth rate. Recent work has shown that these empirical regularities can be derived from coarse-grained models of resource allocation. While these studies focus on steady-state growth, such conditions are rarely found in natural habitats, where microorganisms are continually challenged by environmental fluctuations. The aim of this paper is to extend the study of microbial growth strategies to dynamical environments, using a self-replicator model. We formulate dynamical growth maximization as an optimal control problem that can be solved using Pontryagin’s Maximum Principle. We compare this theoretical gold standard with different possible implementations of growth control in bacterial cells. We find that simple control strategies enabling growth-rate maximization at steady state are suboptimal for transitions from one growth regime to another, for example when shifting bacterial cells to a medium supporting a higher growth rate. A near-optimal control strategy in dynamical conditions is shown to require information on several, rather than a single physiological variable. Interestingly, this strategy has structural analogies with the regulation of ribosomal protein synthesis by ppGpp in the enterobacterium Escherichia coli. It involves sensing a mismatch between precursor and ribosome concentrations, as well as the adjustment of ribosome synthesis in a switch-like manner. Our results show how the capability of regulatory systems to integrate information about several physiological variables is critical for optimizing growth in a changing environment. PMID:26958858

  5. Sex-related differences in growth and carbon allocation to defence in Populus tremula as explained by current plant defence theories.

    PubMed

    Randriamanana, Tendry R; Nybakken, Line; Lavola, Anu; Aphalo, Pedro J; Nissinen, Katri; Julkunen-Tiitto, Riitta

    2014-05-01

    Plant defence theories have recently evolved in such a way that not only the quantity but also the quality of mineral nutrients is expected to influence plant constitutive defence. Recently, an extended prediction derived from the protein competition model (PCM) suggested that nitrogen (N) limitation is more important for the production of phenolic compounds than phosphorus (P). We aimed at studying sexual differences in the patterns of carbon allocation to growth and constitutive defence in relation to N and P availability in Populus tremula L. seedlings. We compared the gender responses in photosynthesis, growth and whole-plant allocation to phenolic compounds at different combination levels of N and P, and studied how they are explained by the main plant defence theories. We found no sexual differences in phenolic concentrations, but interestingly, slow-growing females had higher leaf N concentration than did males, and genders differed in their allocation priority. There was a trade-off between growth and the production of flavonoid-derived phenylpropanoids on one hand, and between the production of salicylates and flavonoid-derived phenylpropanoids on the other. Under limited nutrient conditions, females prioritized mineral nutrient acquisition, flavonoid and condensed tannin (CT) production, while males invested more in above-ground biomass. Salicylate accumulation followed the growth differentiation balance hypothesis as low N mainly decreased the production of leaf and stem salicylate content while the combination of both low N and low P increased the amount of flavonoids and CTs allocated to leaves and to a lesser extent stems, which agrees with the PCM. We suggest that such a discrepancy in the responses of salicylates and flavonoid-derived CTs is linked to their clearly distinct biosynthetic origins and/or their metabolic costs. © The Author 2014. Published by Oxford University Press. All rights reserved.

  6. Tree Biomass Allocation and Its Model Additivity for Casuarina equisetifolia in a Tropical Forest of Hainan Island, China.

    PubMed

    Xue, Yang; Yang, Zhongyang; Wang, Xiaoyan; Lin, Zhipan; Li, Dunxi; Su, Shaofeng

    2016-01-01

    Casuarina equisetifolia is commonly planted and used in the construction of coastal shelterbelt protection in Hainan Island. Thus, it is critical to accurately estimate the tree biomass of Casuarina equisetifolia L. for forest managers to evaluate the biomass stock in Hainan. The data for this work consisted of 72 trees, which were divided into three age groups: young forest, middle-aged forest, and mature forest. The proportion of biomass from the trunk significantly increased with age (P<0.05). However, the biomass of the branch and leaf decreased, and the biomass of the root did not change. To test whether the crown radius (CR) can improve biomass estimates of C. equisetifolia, we introduced CR into the biomass models. Here, six models were used to estimate the biomass of each component, including the trunk, the branch, the leaf, and the root. In each group, we selected one model among these six models for each component. The results showed that including the CR greatly improved the model performance and reduced the error, especially for the young and mature forests. In addition, to ensure biomass additivity, the selected equation for each component was fitted as a system of equations using seemingly unrelated regression (SUR). The SUR method not only gave efficient and accurate estimates but also achieved the logical additivity. The results in this study provide a robust estimation of tree biomass components and total biomass over three groups of C. equisetifolia.

  7. Tree Biomass Allocation and Its Model Additivity for Casuarina equisetifolia in a Tropical Forest of Hainan Island, China

    PubMed Central

    Xue, Yang; Yang, Zhongyang; Wang, Xiaoyan; Lin, Zhipan; Li, Dunxi; Su, Shaofeng

    2016-01-01

    Casuarina equisetifolia is commonly planted and used in the construction of coastal shelterbelt protection in Hainan Island. Thus, it is critical to accurately estimate the tree biomass of Casuarina equisetifolia L. for forest managers to evaluate the biomass stock in Hainan. The data for this work consisted of 72 trees, which were divided into three age groups: young forest, middle-aged forest, and mature forest. The proportion of biomass from the trunk significantly increased with age (P<0.05). However, the biomass of the branch and leaf decreased, and the biomass of the root did not change. To test whether the crown radius (CR) can improve biomass estimates of C. equisetifolia, we introduced CR into the biomass models. Here, six models were used to estimate the biomass of each component, including the trunk, the branch, the leaf, and the root. In each group, we selected one model among these six models for each component. The results showed that including the CR greatly improved the model performance and reduced the error, especially for the young and mature forests. In addition, to ensure biomass additivity, the selected equation for each component was fitted as a system of equations using seemingly unrelated regression (SUR). The SUR method not only gave efficient and accurate estimates but also achieved the logical additivity. The results in this study provide a robust estimation of tree biomass components and total biomass over three groups of C. equisetifolia. PMID:27002822

  8. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants

    PubMed Central

    Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A. M.; Voesenek, Laurentius A. C. J.; Pierik, Ronald

    2015-01-01

    Background and Aims Volatile organic compounds (VOCs) play various roles in plant–plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar ‘Alva’ cause changes in biomass allocation in plants of the cultivar ‘Kara’. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant–plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant–plant signalling between ‘Alva’ and ‘Kara’. Methods The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by ‘Alva’ under control and far-red light-enriched conditions were analysed using gas chromatography–mass spectrometry (GC-MS). ‘Kara’ plants were exposed to the VOC blend emitted by the ‘Alva’ plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for ‘Kara’ plants exposed to ‘Alva’ VOCs, and also for ‘Alva’ plants exposed to either control or far-red-enriched light treatments. Key Results Total VOC emissions by ‘Alva’ were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by ‘Alva’ plants exposed to low R:FR was found to affect carbon allocation in receiver plants of ‘Kara’. Conclusions The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions

  9. Red:far-red light conditions affect the emission of volatile organic compounds from barley (Hordeum vulgare), leading to altered biomass allocation in neighbouring plants.

    PubMed

    Kegge, Wouter; Ninkovic, Velemir; Glinwood, Robert; Welschen, Rob A M; Voesenek, Laurentius A C J; Pierik, Ronald

    2015-05-01

    Volatile organic compounds (VOCs) play various roles in plant-plant interactions, and constitutively produced VOCs might act as a cue to sense neighbouring plants. Previous studies have shown that VOCs emitted from the barley (Hordeum vulgare) cultivar 'Alva' cause changes in biomass allocation in plants of the cultivar 'Kara'. Other studies have shown that shading and the low red:far-red (R:FR) conditions that prevail at high plant densities can reduce the quantity and alter the composition of the VOCs emitted by Arabidopsis thaliana, but whether this affects plant-plant signalling remains unknown. This study therefore examines the effects of far-red light enrichment on VOC emissions and plant-plant signalling between 'Alva' and 'Kara'. The proximity of neighbouring plants was mimicked by supplemental far-red light treatment of VOC emitter plants of barley grown in growth chambers. Volatiles emitted by 'Alva' under control and far-red light-enriched conditions were analysed using gas chromatography-mass spectrometry (GC-MS). 'Kara' plants were exposed to the VOC blend emitted by the 'Alva' plants that were subjected to either of the light treatments. Dry matter partitioning, leaf area, stem and total root length were determined for 'Kara' plants exposed to 'Alva' VOCs, and also for 'Alva' plants exposed to either control or far-red-enriched light treatments. Total VOC emissions by 'Alva' were reduced under low R:FR conditions compared with control light conditions, although individual volatile compounds were found to be either suppressed, induced or not affected by R:FR. The altered composition of the VOC blend emitted by 'Alva' plants exposed to low R:FR was found to affect carbon allocation in receiver plants of 'Kara'. The results indicate that changes in R:FR light conditions influence the emissions of VOCs in barley, and that these altered emissions affect VOC-mediated plant-plant interactions. © The Author 2015. Published by Oxford University Press on

  10. Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions.

    PubMed

    Juntila, D J; Bautista, M A; Monotilla, W

    2015-09-01

    A local Chlorella sp. isolate with 97% rbcL sequence identity to Chlorella sorokiniana was evaluated in terms of its biomass and lipid production under mixotrophic growth conditions. Glucose-supplemented cultures exhibited increasing growth rate and biomass yield with increasing glucose concentration. Highest growth rate and biomass yield of 1.602 day(-1) and 687.5 mg L(-1), respectively, were achieved under 2 g L(-1) glucose. Nitrogen starvation up to 75% in the 1.0 g L(-1) glucose-supplemented culture was done to induce lipid accumulation and did not significantly affect the growth. Lipid content ranges from 20% to 27% dry weight. Nile Red staining showed more prominent neutral lipid bodies in starved mixotrophic cultures. C. sorokiniana exhibited enhanced biomass production under mixotrophy and more prominent neutral lipid accumulation under nitrogen starvation with no significant decrease in growth; hence, this isolate could be further studied to establish its potential for biodiesel production.

  11. Simulation of wheat growth and development based on organ-level photosynthesis and assimilate allocation.

    PubMed

    Evers, J B; Vos, J; Yin, X; Romero, P; van der Putten, P E L; Struik, P C

    2010-05-01

    Intimate relationships exist between form and function of plants, determining many processes governing their growth and development. However, in most crop simulation models that have been created to simulate plant growth and, for example, predict biomass production, plant structure has been neglected. In this study, a detailed simulation model of growth and development of spring wheat (Triticum aestivum) is presented, which integrates degree of tillering and canopy architecture with organ-level light interception, photosynthesis, and dry-matter partitioning. An existing spatially explicit 3D architectural model of wheat development was extended with routines for organ-level microclimate, photosynthesis, assimilate distribution within the plant structure according to organ demands, and organ growth and development. Outgrowth of tiller buds was made dependent on the ratio between assimilate supply and demand of the plants. Organ-level photosynthesis, biomass production, and bud outgrowth were simulated satisfactorily. However, to improve crop simulation results more efforts are needed mechanistically to model other major plant physiological processes such as nitrogen uptake and distribution, tiller death, and leaf senescence. Nevertheless, the work presented here is a significant step forwards towards a mechanistic functional-structural plant model, which integrates plant architecture with key plant processes.

  12. Genotypic variation in biomass allocation in response to field drought has a greater affect on yield than gas exchange or phenology.

    PubMed

    Edwards, Christine E; Ewers, Brent E; Weinig, Cynthia

    2016-08-24

    Plant performance in agricultural and natural settings varies with moisture availability, and understanding the range of potential drought responses and the underlying genetic architecture is important for understanding how plants will respond to both natural and artificial selection in various water regimes. Here, we raised genotypes of Brassica rapa under well-watered and drought treatments in the field. Our primary goal was to understand the genetic architecture and yield effects of different drought-escape and dehydration-avoidance strategies. Drought treatments reduced soil moisture by 62 % of field capacity. Drought decreased biomass accumulation and fruit production by as much as 48 %, whereas instantaneous water-use efficiency and root:shoot ratio increased. Genotypes differed in the mean value of all traits and in the sensitivity of biomass accumulation, root:shoot ratio, and fruit production to drought. Bivariate correlations involving gas-exchange and phenology were largely constant across environments, whereas those involving root:shoot varied across treatments. Although root:shoot was typically unrelated to gas-exchange or yield under well-watered conditions, genotypes with low to moderate increases in root:shoot allocation in response to drought survived the growing season, maintained maximum photosynthesis levels, and produced more fruit than genotypes with the greatest root allocation under drought. QTL for gas-exchange and yield components (total biomass or fruit production) had common effects across environments while those for root:shoot were often environment-specific. Increases in root allocation beyond those needed to survive and maintain favorable water relations came at the cost of fruit production. The environment-specific effects of root:shoot ratio on yield and the differential expression of QTL for this trait across water regimes have important implications for efforts to improve crops for drought resistance.

  13. Growth rate and resource imbalance interactively control biomass stoichiometry and elemental quotas of aquatic bacteria.

    PubMed

    Godwin, Casey M; Whitaker, Emily A; Cotner, James B

    2017-03-01

    The effects of resource stoichiometry and growth rate on the elemental composition of biomass have been examined in a wide variety of organisms, but the interaction among these effects is often overlooked. To determine how growth rate and resource imbalance affect bacterial carbon (C): nitrogen (N): phosphorus (P) stoichiometry and elemental content, we cultured two strains of aquatic heterotrophic bacteria in chemostats at a range of dilution rates and P supply levels (C:P of 100:1 to 10,000:1). When growing below 50% of their maximum growth rate, P availability and dilution rate had strong interactive effects on biomass C:N:P, elemental quotas, cell size, respiration rate, and growth efficiency. In contrast, at faster growth rates, biomass stoichiometry was strongly homeostatic in both strains (C:N:P of 70:13:1 and 73:14:1) and elemental quotas of C, N, and P were tightly coupled (but not constant). Respiration and cell size increased with both growth rate and P limitation, and P limitation induced C accumulation and excess respiration. These results show that bacterial biomass stoichiometry is relatively constrained when all resources are abundant and growth rates are high, but at low growth rates resource imbalance is relatively more important than growth rate in controlling bacterial biomass composition.

  14. Decrease in Phosphoribulokinase Activity by Antisense RNA in Transgenic Tobacco. Relationship between Photosynthesis, Growth, and Allocation at Different Nitrogen Levels1

    PubMed Central

    Banks, Fiona M.; Driscoll, Simon P.; Parry, Martin A.J.; Lawlor, David W.; Knight, Jacqui S.; Gray, John C.; Paul, Matthew J.

    1999-01-01

    To study the direct effects of photosynthesis on allocation of biomass by altering photosynthesis without altering leaf N or nitrate content, phosphoribulokinase (PRK) activity was decreased in transgenic tobacco (Nicotiana tabacum L.) with an inverted tobacco PRK cDNA and plants were grown at different N levels (0.4 and 5 mm NH4NO3). The activation state of PRK increased as the amount of enzyme was decreased genetically at both levels of N. At high N a 94% decrease in PRK activity had only a small effect (20%) on photosynthesis and growth. At low N a 94% decrease in PRK activity had a greater effect on leaf photosynthesis (decreased by up to 50%) and whole-plant photosynthesis (decreased by up to 35%) than at high N. These plants were up to 35% smaller than plants with higher PRK activities because they had less structural dry matter and less starch, which was decreased by 3- to 4-fold, but still accumulated to 24% to 31% of dry weight; young leaves contained more starch than older leaves in older plants. Leaves had a higher ion and water content, and specific leaf area was higher, but allocation between shoot and root was unaltered. In conclusion, low N in addition to a 94% decrease in PRK by antisense reduces the activity of PRK sufficient to diminish photosynthesis, which limits biomass production under conditions normally considered sink limited. PMID:10069852

  15. Growth, aboveground biomass, and nutrient concentration of young Scots pine and lodgepole pine in oil shale post-mining landscapes in Estonia.

    PubMed

    Kuznetsova, Tatjana; Tilk, Mari; Pärn, Henn; Lukjanova, Aljona; Mandre, Malle

    2011-12-01

    The investigation was carried out in 8-year-old Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta var. latifolia Engelm.) plantations on post-mining area, Northeast Estonia. The aim of the study was to assess the suitability of lodgepole pine for restoration of degraded lands by comparing the growth, biomass, and nutrient concentration of studied species. The height growth of trees was greater in the Scots pine stand, but the tree aboveground biomass was slightly larger in the lodgepole pine stand. The aboveground biomass allocation to the compartments did not differ significantly between species. The vertical distribution of compartments showed that 43.2% of the Scots pine needles were located in the middle layer of the crown, while 58.5% of the lodgepole pine needles were in the lowest layer of the crown. The largest share of the shoots and stem of both species was allocated to the lowest layer of the crown. For both species, the highest NPK concentrations were found in the needles and the lowest in the stems. On the basis of the present study results, it can be concluded that the early growth of Scots pine and lodgepole pine on oil shale post-mining landscapes is similar.

  16. Does chronic nitrogen deposition during biomass growth affect atmospheric emissions from biomass burning?

    Treesearch

    Michael R Giordano; Joey Chong; David R Weise; Akua A Asa-Awuku

    2016-01-01

    Chronic nitrogen deposition has measureable impacts on soil and plant health.We investigate burning emissions from biomass grown in areas of high and low NOx deposition. Gas and aerosolphase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not...

  17. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    SciTech Connect

    Kay, Steve A.

    2013-05-02

    Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass (Brachypodium distachyon) also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation.

  18. Effect of Continuous Cropping Generations on Each Component Biomass of Poplar Seedlings during Different Growth Periods

    PubMed Central

    Xia, Jiangbao; Zhang, Shuyong; Li, Tian; Liu, Xia; Zhang, Ronghua; Zhang, Guangcan

    2014-01-01

    In order to investigate the change rules and response characteristics of growth status on each component of poplar seedling followed by continuous cropping generations and growth period, we clear the biomass distribution pattern of poplar seedling, adapt continuous cropping, and provide theoretical foundation and technical reference on cultivation management of poplar seedling, the first generation, second generation, and third generation continuous cropping poplar seedlings were taken as study objects, and the whole poplar seedling was harvested to measure and analyze the change of each component biomass on different growth period poplar leaves, newly emerging branches, trunks and root system, and so forth. The results showed that the whole biomass of poplar seedling decreased significantly with the leaf area and its ratio increased, and the growth was inhibited obviously. The biomass aboveground was more than that underground. The ratios of leaf biomass and newly emerging branches biomass of first continuous cropping poplar seedling were relatively high. With the continuous cropping generations and growth cycle increasing, poplar seedling had a growth strategy to improve the ratio of root-shoot and root-leaf to adapt the limited soil nutrient of continuous cropping. PMID:25401150

  19. Effect of continuous cropping generations on each component biomass of poplar seedlings during different growth periods.

    PubMed

    Xia, Jiangbao; Zhang, Shuyong; Li, Tian; Liu, Xia; Zhang, Ronghua; Zhang, Guangcan

    2014-01-01

    In order to investigate the change rules and response characteristics of growth status on each component of poplar seedling followed by continuous cropping generations and growth period, we clear the biomass distribution pattern of poplar seedling, adapt continuous cropping, and provide theoretical foundation and technical reference on cultivation management of poplar seedling, the first generation, second generation, and third generation continuous cropping poplar seedlings were taken as study objects, and the whole poplar seedling was harvested to measure and analyze the change of each component biomass on different growth period poplar leaves, newly emerging branches, trunks and root system, and so forth. The results showed that the whole biomass of poplar seedling decreased significantly with the leaf area and its ratio increased, and the growth was inhibited obviously. The biomass aboveground was more than that underground. The ratios of leaf biomass and newly emerging branches biomass of first continuous cropping poplar seedling were relatively high. With the continuous cropping generations and growth cycle increasing, poplar seedling had a growth strategy to improve the ratio of root-shoot and root-leaf to adapt the limited soil nutrient of continuous cropping.

  20. Research and evaluation of biomass resources/conversion/utilization systems (market/experimental analysis for development of a data base for a fuels from biomass model. Volume I. Biomass allocation model. Technical progress report for the period ending September 30, 1980

    SciTech Connect

    Ahn, Y.K.; Chen, H.T.; Helm, R.W.; Nelson, E.T.; Shields K.J.

    1980-01-01

    A biomass allocation model has been developed to show the most profitable combination of biomass feedstocks thermochemical conversion processes, and fuel products to serve the seasonal conditions in a regional market. This optimization model provides a tool for quickly calculating the most profitable biomass missions from a large number of potential biomass missions. Other components of the system serve as a convenient storage and retrieval mechanism for biomass marketing and thermochemical conversion processing data. The system can be accessed through the use of a computer terminal, or it could be adapted to a portable micro-processor. A User's Manual for the system has been included in Appendix A of the report. The validity of any biomass allocation solution provided by the allocation model is dependent on the accuracy of the data base. The initial data base was constructed from values obtained from the literature, and, consequently, as more current thermochemical conversion processing and manufacturing costs and efficiencies become available, the data base should be revised. Biomass derived fuels included in the data base are the following: medium Btu gas low Btu gas, substitute natural gas, ammonia, methanol, electricity, gasoline, and fuel oil. The market sectors served by the fuels include: residential, electric utility, chemical (industrial), and transportation. Regional/seasonal costs and availabilities and heating values for 61 woody and non-woody biomass species are included. The study has included four regions in the United States which were selected because there was both an availability of biomass and a commercial demand for the derived fuels: Region I: NY, WV, PA; Region II: GA, AL, MS; Region III: IN, IL, IA; and Region IV: OR, WA.

  1. Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto

    DOEpatents

    Lau, Ming Woei

    2015-12-08

    A method for producing a microbial growth stimulant (MGS) from a plant biomass is described. In one embodiment, an ammonium hydroxide solution is used to extract a solution of proteins and ammonia from the biomass. Some of the proteins and ammonia are separated from the extracted solution to provide the MGS solution. The removed ammonia can be recycled and the proteins are useful as animal feeds. In one embodiment, the method comprises extracting solubles from pretreated lignocellulosic biomass with a cellulase enzyme-producing growth medium (such T. reesei) in the presence of water and an aqueous extract.

  2. Biomass Accumulation Rates of Amazonian Secondary Forest and Biomass of Old-Growth Forests from Landsat Time Series and GLAS

    NASA Astrophysics Data System (ADS)

    Helmer, E.; Lefsky, M. A.; Roberts, D.

    2009-12-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975-2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age mapping with biomass estimates from the Geoscience Laser Altimeter System (GLAS). Though highly variable, the estimated average biomass accumulation rate of 8.4 Mg ha-1 yr-1 agrees well with ground-based studies for young secondary forests in the region. In isolating the lowland forests, we map land cover and general types of old-growth forests with decision tree classification of Landsat imagery and elevation data. We then estimate aboveground live biomass for seven classes of old-growth forest. TAMA is simple, fast, and self-calibrating. By not using between-date band or index differences or trends, it requires neither image normalization nor atmospheric correction. In addition, it uses an approach to map forest cover for the self-calibrations that is novel to forest mapping with satellite imagery; it maps humid secondary forest that is difficult to distinguish from old-growth forest in single-date imagery; it does not assume that forest age equals time since disturbance; and it incorporates Landsat Multispectral Scanner (MSS) imagery. Variations on the work that we present here can be applied to other forested landscapes. Applications that use image time series will be helped by the free distribution of coregistered Landsat imagery, which began in December 2008, and of the Ice Cloud and land Elevation Satellite (ICESat) Vegetation Product, which simplifies the use of GLAS data. Finally, we demonstrate here for the first time how the optical imagery of fine spatial resolution that is viewable on Google Earth provides a new source of reference data for remote sensing applications related to land cover

  3. Is growth reduction in defoliated trees a consequence of prioritized carbon allocation to reserves?

    NASA Astrophysics Data System (ADS)

    Hoch, Guenter; Schmid, Sandra; Palacio, Sara

    2015-04-01

    Tissue concentrations of carbon reserve compounds are frequently used as proxies for the carbon balance of trees, but the mechanisms regulating the formation of carbon reserves are still under debate. It is often assumed that carbon storage in trees is largely a consequence of surplus carbon supply (reserve accumulation). In contrast, carbon storage might also occur against prevailing carbon demand from other sink activities, like growth (reserve formation), in which case carbon reserve pools might increase even at carbon limitation, and thus, cannot be used as indicators for a tree's carbon supply status. Such a situation might be severe defoliation by herbivores. Especially in evergreen tree species, it has been shown that natural and experimental defoliation leads to a reduction of growth that is proportional to the lost leaf area. Compared to this strong effect on growth, carbon reserve pools (i.e. sugars, starch and storage lipids) of defoliated trees often exert only a temporary decrease immediately after defoliation, while tissue concentrations of carbon reserves return to those of undefoliated trees by the end of the growing season. Within a recent experiment, we investigated, if the growth decline in trees following early season defoliation is the consequence of prioritized carbon allocation to carbon reserves over growth. To test this hypothesis we grew seedlings of evergreen Quecus ilex and deciduous Quercus petraea trees under low (140 ppm), medium (280 ppm) and high (560 ppm) CO2 concentrations and completely defoliated half of the seedlings in each CO2 treatment at the beginning of the growing season. In undefoliated control trees, CO2 had a significant positive effect on the seasonal growth in both species. Defoliation had a strong negative impact on growth in the evergreen Q. illex, but less in the deciduous Q. petraea. In both species, the growth reduction after defoliation relative to undefoliated controls was very similar at all three CO2

  4. An exploration of the relationships between microalgae biomass growth and related environmental variables.

    PubMed

    Ramaraj, Rameshprabu; Tsai, David Dah-Wei; Chen, Paris Honglay

    2014-06-05

    Algal community plays critical roles as the primary producer and as a major biotic component in the nutrient/energy cycle in aquatic ecosystems. The potential of fresh water algal biomass to mitigate global problems of food and energy and its significance as a carbon sink have been recognized. In this study, with a view to decreasing the cost of producing algal biomass for various purposes, the natural medium of unsupplemented freshwater was applied to mimic the real world to produce algal biomass. The relevant physicochemical variables in the improvised algal growth environment were analyzed and monitored, to investigate the algal growth mechanism. The simple regression analysis showed the applicability of the unsupplemented natural medium with sufficient natural nutrition for algal biomass production. The multiple linear analyses explained the complexity of the mimicked freshwater mixed-algal community in the laboratory. The laboratory results obtained in the present study also provide better insights that improve our understanding of the natural algal growth characteristics.

  5. Biomass and nutrient distributions in central Oregon second-growth ponderosa pine ecosystems. Forest Service research paper

    SciTech Connect

    Little, S.N.; Shainsky, L.J.

    1995-03-01

    We investigated the distributioin of biomass and nurtrients in second-growth ponderosa pine (Pinus ponderosa Dougl. ex Laws.) ecosystems in central Oregon. Destructive sampling of aboveground and belowground tree biomass was carried out at six sites in the Deschutes National Forest; three of these sites also were intensively sampled for biomass and nutrient concentrations of the soil, forest floor, residue, and shrub components. Tree biomass equations were developed that related component biomass to diameter at breast height and total tree height.

  6. A Screening Model to Predict Microalgae Biomass Growth in Photobioreactors and Raceway Ponds

    SciTech Connect

    Huesemann, Michael H.; Van Wagenen, Jonathan M.; Miller, Tyler W.; Chavis, Aaron R.; Hobbs, Watts B.; Crowe, Braden J.

    2013-06-01

    A microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in photobioreactors or outdoor ponds. Growth is modeled by first estimating the light attenuation by biomass according to Beer-Lambert’s law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model requires only two physical and two species-specific biological input parameters, all of which are relatively easy to determine: incident light intensity, culture depth, as well as the biomass light absorption coefficient and the specific growth rate as a function of light intensity. Roux bottle culture experiments were performed with Nannochloropsis salina at constant temperature (23 °C) at six different incident light intensities (5, 10, 25, 50, 100, 250, and 850 μmol/m2∙ sec) to determine both the specific growth rate under non-shading conditions and the biomass light absorption coefficient as a function of light intensity. The model was successful in predicting the biomass growth rate in these Roux bottle cultures during the light-limited linear phase at different incident light intensities. Model predictions were moderately sensitive to minor variations in the values of input parameters. The model was also successful in predicting the growth performance of Chlorella sp. cultured in LED-lighted 800 L raceway ponds operated at constant temperature (30 °C) and constant light intensity (1650 μmol/m2∙ sec). Measurements of oxygen concentrations as a function of time demonstrated that following exposure to darkness, it takes at least 5 seconds for cells to initiate dark respiration. As a result, biomass loss due to dark respiration in the aphotic zone of a culture is unlikely to occur in highly mixed small-scale photobioreactors where cells move rapidly in and out of the light. By contrast, as

  7. A screening model to predict microalgae biomass growth in photobioreactors and raceway ponds.

    PubMed

    Huesemann, M H; Van Wagenen, J; Miller, T; Chavis, A; Hobbs, S; Crowe, B

    2013-06-01

    A microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient-replete conditions in photobioreactors or outdoor ponds. Growth is modeled by first estimating the light attenuation by biomass according to Beer-Lambert's Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model uses only two physical and two species-specific biological input parameters, all of which are relatively easy to determine: incident light intensity, culture depth, as well as the biomass light absorption coefficient and the specific growth rate as a function of light intensity. Roux bottle culture experiments were performed with Nannochloropsis salina at constant temperature (23°C) at six different incident light intensities (10, 25, 50, 100, 250, and 850 µmol/m(2)  s) to determine both the specific growth rate under non-shading conditions and the biomass light absorption coefficient as a function of light intensity. The model was successful in predicting the biomass growth rate in these Roux bottle batch cultures during the light-limited linear phase at different incident light intensities. Model predictions were moderately sensitive to minor variations in the values of input parameters. The model was also successful in predicting the growth performance of Chlorella sp. cultured in LED-lighted 800 L raceway ponds operated in batch mode at constant temperature (30°C) and constant light intensity (1,650 µmol/m(2)  s). Measurements of oxygen concentrations as a function of time demonstrated that following exposure to darkness, it takes at least 5 s for cells to initiate dark respiration. As a result, biomass loss due to dark respiration in the aphotic zone of a culture is unlikely to occur in highly mixed small-scale photobioreactors where cells move rapidly in and out of the light. By contrast

  8. A dynamic model for intertemporal allocation of old-growth forests in the Pacific Northwest.

    PubMed

    Carver, Andrew D; Lee, John G; LeMaster, Dennis C

    2002-12-01

    Across the globe, continued policy debates regarding the management of old-growth forests center around the difficult task of balancing economic and ecological considerations. Though the forests of the Pacific Northwest United States are among the most studied old-growth ecosystems, ecological and economic analyses have yielded public land management directives that remain controversial. Specifically, the recently adopted Northwest Forest Plan lacks explicit goals for maintaining intergenerational equity for the use of forest resources and the diversity of old-growth ecosystems. Unlike previous studies which rely on monetary quantification of costs and benefits, this study develops and applies a conceptual framework for evaluating socially optimal Pacific Northwest old-growth forest utilization strategies. Conditions for the optimal management of old-growth forests are derived using dynamic programming. The objective function synthesizes relevant biological and economic attributes of the old-growth allocation problem. Results in the form of extraction paths are compared given social pressure for consumptive and non-consumptive benefits, as well as different planning horizons, rates of social time preference, and environmental variance. Lengthening the planning horizon results in a vast divergence of optimal policies in the absence of discounting. Extraction rates appear to approach zero as the planning horizon approaches infinity. While higher rates of social time preference increase the rate of extraction, forest stocks remaining at the terminal time period equal levels remaining with a lower discount rate. Increasing environmental variance results in a higher level of stock remaining at the terminal time period. This analysis, while specific to the old-growth controversy of the Pacific Northwest, does provide general guidelines for addressing similar problems of multiple uses of natural areas, particularly where such uses are mutually incompatible, or where one

  9. Response of woody swamp seedlings to flooding and increased water temperatures. I. Growth, biomass, and survivorship

    SciTech Connect

    Donovan, L.A.; McLeod, K.W.; Sherrod, K.C.; Stumpff, N.J. )

    1988-08-01

    Growth, biomass, and survival of bald cypress (Taxodium distichum (L.) Richard), water tupelo (Nyssa aquatica L.), black willow (Salix nigra Marshall), and button bush (Cephalanthus occidentalis L.) were examined in a 3 {times} 3 factorial experiment varying water temperatures (Ambient, mid, and high ({approximately} 40 C)) and water levels (drained, saturated, and flooded). Stem diameter and height, biomass, and survivorship for water tupelo and bald cypress were all reduced by the high/flooded treatment. Black willow growth had the greatest variability among nonlethal flooding and temperature treatments, and achieved the greatest biomass of the four species. In the high/flooded treatment, however, only 47% of the black willow seedlings survived and stem diameter, height, and biomass of survivors were greatly reduced. Button bush had intermediate variability of growth to the nonlethal treatments as compared to the other study species. Survival of button bush seedlings in the high/flooded treatment was high (87%), but root biomass of the survivors was reduced. Interspecific differences in growth, biomass, survivorship, and morphological characteristics existed among these swamp species to experimental conditions. These responses may help explain vegetation patterns in a thermally impacted swamp.

  10. Sowing Density: A Neglected Factor Fundamentally Affecting Root Distribution and Biomass Allocation of Field Grown Spring Barley (Hordeum Vulgare L.).

    PubMed

    Hecht, Vera L; Temperton, Vicky M; Nagel, Kerstin A; Rascher, Uwe; Postma, Johannes A

    2016-01-01

    Studies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm(-3)) increases in the topsoil as well as specific root length (root length per root dry weight, cm g(-1)) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24-340 seeds m(-2)) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0-10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4-1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m(-2) suggest that this efficiency did not translate into greater yield. We conclude that plant density is a

  11. Sowing Density: A Neglected Factor Fundamentally Affecting Root Distribution and Biomass Allocation of Field Grown Spring Barley (Hordeum Vulgare L.)

    PubMed Central

    Hecht, Vera L.; Temperton, Vicky M.; Nagel, Kerstin A.; Rascher, Uwe; Postma, Johannes A.

    2016-01-01

    Studies on the function of root traits and the genetic variation in these traits are often conducted under controlled conditions using individual potted plants. Little is known about root growth under field conditions and how root traits are affected by agronomic practices in particular sowing density. We hypothesized that with increasing sowing density, root length density (root length per soil volume, cm cm−3) increases in the topsoil as well as specific root length (root length per root dry weight, cm g−1) due to greater investment in fine roots. Therefore, we studied two spring barley cultivars at ten different sowing densities (24–340 seeds m−2) in 2 consecutive years in a clay loam field in Germany and established sowing density dose-response curves for several root and shoot traits. We took soil cores for measuring roots up to a depth of 60 cm in and between plant rows (inter-row distance 21 cm). Root length density increased with increasing sowing density and was greatest in the plant row in the topsoil (0–10 cm). Greater sowing density increased specific root length partly through greater production of fine roots in the topsoil. Rooting depth (D50) of the major root axes (root diameter class 0.4–1.0 mm) was not affected. Root mass fraction decreased, while stem mass fraction increased with sowing density and over time. Leaf mass fraction was constant over sowing density but greater leaf area was realized through increased specific leaf area. Considering fertilization, we assume that light competition caused plants to grow more shoot mass at the cost of investment into roots, which is partly compensated by increased specific root length and shallow rooting. Increased biomass per area with greater densities suggest that density increases the efficiency of the cropping system, however, declines in harvest index at densities over 230 plants m−2 suggest that this efficiency did not translate into greater yield. We conclude that plant density is a

  12. Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv.

    PubMed

    Delaplace, Pierre; Delory, Benjamin M; Baudson, Caroline; Mendaluk-Saunier de Cazenave, Magdalena; Spaepen, Stijn; Varin, Sébastien; Brostaux, Yves; du Jardin, Patrick

    2015-08-12

    Plant growth-promoting rhizobacteria are increasingly being seen as a way of complementing conventional inputs in agricultural systems. The effects on their host plants are diverse and include volatile-mediated growth enhancement. This study sought to assess the effects of bacterial volatiles on the biomass production and root system architecture of the model grass Brachypodium distachyon (L.) Beauv. An in vitro experiment allowing plant-bacteria interaction throughout the gaseous phase without any physical contact was used to screen 19 bacterial strains for their growth-promotion ability over a 10-day co-cultivation period. Five groups of bacteria were defined and characterised based on their combined influence on biomass production and root system architecture. The observed effects ranged from unchanged to greatly increased biomass production coupled with increased root length and branching. Primary root length was increased only by the volatile compounds emitted by Enterobacter cloacae JM22 and Bacillus pumilus T4. Overall, the most significant results were obtained with Bacillus subtilis GB03, which induced an 81 % increase in total biomass, as well as enhancing total root length, total secondary root length and total adventitious root length by 88.5, 201.5 and 474.5 %, respectively. This study is the first report on bacterial volatile-mediated growth promotion of a grass plant. Contrasting modulations of biomass production coupled with changes in root system architecture were observed. Most of the strains that increased total plant biomass also modulated adventitious root growth. Under our screening conditions, total biomass production was strongly correlated with the length and branching of the root system components, except for primary root length. An analysis of the emission kinetics of the bacterial volatile compounds is being undertaken and should lead to the identification of the compounds responsible for the observed growth-promotion effects. Within the

  13. The relative contributions of forest growth and areal expansion to forest biomass carbon

    Treesearch

    P. Li; J. Zhu; H. Hu; Z. Guo; Y. Pan; R. Birdsey; J. Fang

    2016-01-01

    Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms...

  14. Maximum photosynthetic efficiency of biomass growth: a criticism of some measurements

    SciTech Connect

    Lee, Y.K.; Pirt, S.J.

    1982-02-01

    The yield of biomass produced in a photosynthetic culture is an expression of the photosynthetic efficiency. Microbial cells consume energy for both growth and for maintenance. The bioenergetics of Chlorella cultures and the maximum growth yields obtained by various researchers are examined in this paper.

  15. Carbon allocation, gas exchange, and needle morphology of Pinus ponderosa genotypes known to differ in growth and survival under imposed drought.

    PubMed

    Cregg, B. M.

    1994-01-01

    Seedlings from 27 open-pollinated families of ponderosa pine representing nine geographically diverse origins were screened for drought tolerance based on survival and growth under imposed drought. Seedlings that had been preconditioned to drought survived 14 days longer than seedlings that had been well watered before being subjected to drought. Seed sources varied in their ability to survive drought and this variation was accentuated by drought preconditioning. Seedlings from a South Dakota source and a Nebraska source generally survived the longest under drought. Seedlings from a Montana source and a New Mexico source succumbed the fastest after water was withheld. Significant family within source variation in drought survival was observed for some sources. In general, drought survival was poorly correlated to climate indices of the seed sources. Allocation of biomass to roots, stems, and needles varied significantly among the seed sources with the most drought-sensitive sources (Montana and New Mexico) showing the most divergent allocation patterns. The relation between drought survival and shoot/root ratio suggested that there is an optimum pattern of allocation for drought survival. A comparison of the most and least drought-tolerant sources indicated that needle gas exchange (net photosynthesis and needle conductance to water vapor) and predawn needle water potential were similar among the sources regardless of their relative ability to survive drought. Needle morphology traits often associated with variation in drought tolerance, such as stomatal density and specific leaf area, did not differ among the seed sources. However, seedlings from the drought-tolerant sources had shorter needles, less surface area per needle, and fewer stomata per needle than seedlings from the drought-sensitive sources. The results suggest that drought tolerance of ponderosa pine may be improved through seed source selection and, within certain sources, family selection

  16. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants

    PubMed Central

    Albacete, Alfonso; Ghanem, Michel Edmond; Martínez-Andújar, Cristina; Acosta, Manuel; Sánchez-Bravo, José; Martínez, Vicente; Lutts, Stanley; Dodd, Ian C.; Pérez-Alfocea, Francisco

    2008-01-01

    Following exposure to salinity, the root/shoot ratio is increased (an important adaptive response) due to the rapid inhibition of shoot growth (which limits plant productivity) while root growth is maintained. Both processes may be regulated by changes in plant hormone concentrations. Tomato plants (Solanum lycopersicum L. cv Moneymaker) were cultivated hydroponically for 3 weeks under high salinity (100 mM NaCl) and five major plant hormones (abscisic acid, ABA; the cytokinins zeatin, Z, and zeatin-riboside, ZR; the auxin indole-3-acetic acid, IAA; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, ACC) were determined weekly in roots, xylem sap, and leaves. Salinity reduced shoot biomass by 50–60% and photosynthetic area by 20–25% both by decreasing leaf expansion and delaying leaf appearance, while root growth was less affected, thus increasing the root/shoot ratio. ABA and ACC concentrations strongly increased in roots, xylem sap, and leaves after 1 d (ABA) and 15 d (ACC) of salinization. By contrast, cytokinins and IAA were differentially affected in roots and shoots. Salinity dramatically decreased the Z+ZR content of the plant, and induced the conversion of ZR into Z, especially in the roots, which accounted for the relative increase of cytokinins in the roots compared to the leaf. IAA concentration was also strongly decreased in the leaves while it accumulated in the roots. Decreased cytokinin content and its transport from the root to the shoot were probably induced by the basipetal transport of auxin from the shoot to the root. The auxin/cytokinin ratio in the leaves and roots may explain both the salinity-induced decrease in shoot vigour (leaf growth and leaf number) and the shift in biomass allocation to the roots, in agreement with changes in the activity of the sink-related enzyme cell wall invertase. PMID:19036841

  17. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants.

    PubMed

    Albacete, Alfonso; Ghanem, Michel Edmond; Martínez-Andújar, Cristina; Acosta, Manuel; Sánchez-Bravo, José; Martínez, Vicente; Lutts, Stanley; Dodd, Ian C; Pérez-Alfocea, Francisco

    2008-01-01

    Following exposure to salinity, the root/shoot ratio is increased (an important adaptive response) due to the rapid inhibition of shoot growth (which limits plant productivity) while root growth is maintained. Both processes may be regulated by changes in plant hormone concentrations. Tomato plants (Solanum lycopersicum L. cv Moneymaker) were cultivated hydroponically for 3 weeks under high salinity (100 mM NaCl) and five major plant hormones (abscisic acid, ABA; the cytokinins zeatin, Z, and zeatin-riboside, ZR; the auxin indole-3-acetic acid, IAA; and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid, ACC) were determined weekly in roots, xylem sap, and leaves. Salinity reduced shoot biomass by 50-60% and photosynthetic area by 20-25% both by decreasing leaf expansion and delaying leaf appearance, while root growth was less affected, thus increasing the root/shoot ratio. ABA and ACC concentrations strongly increased in roots, xylem sap, and leaves after 1 d (ABA) and 15 d (ACC) of salinization. By contrast, cytokinins and IAA were differentially affected in roots and shoots. Salinity dramatically decreased the Z+ZR content of the plant, and induced the conversion of ZR into Z, especially in the roots, which accounted for the relative increase of cytokinins in the roots compared to the leaf. IAA concentration was also strongly decreased in the leaves while it accumulated in the roots. Decreased cytokinin content and its transport from the root to the shoot were probably induced by the basipetal transport of auxin from the shoot to the root. The auxin/cytokinin ratio in the leaves and roots may explain both the salinity-induced decrease in shoot vigour (leaf growth and leaf number) and the shift in biomass allocation to the roots, in agreement with changes in the activity of the sink-related enzyme cell wall invertase.

  18. Effects of light acclimation on photosynthesis, growth, and biomass allocation in america chestnut seedlings

    Treesearch

    G. Geoff Wang; William L. Bauerle; Bryan T. Mudder

    2006-01-01

    American chestnut [Castanea dentate(Marshall) Borkh.] was a widely distributed tree species in the Eastern U.S., comprising an estimated 25 percent of native eastern hardwood forests. Chestnut blight eradicated American chestnut from the forest canopy by the 1950s, and now it only persists as understory sprouts. However, blight-resistant hybrids with...

  19. Carbon allocation to growth and storage in two evergreen species of contrasting successional status.

    PubMed

    Piper, Frida I; Sepúlveda, Paulina; Bustos-Salazar, Angela; Zúñiga-Feest, Alejandra

    2017-05-01

    A prevailing hypothesis in forest succession is that shade-tolerant species grow more slowly than shade-intolerant species, across light conditions, because they prioritize carbon (C) allocation to storage. We examined this hypothesis in a confamilial pair of species, including one of the fastest-growing tree species in the world (Eucalyptus globulus) and a shade-tolerant, slow-growing species (Luma apiculata). Seedlings were subjected to one out of four combinations of light (high vs. low) and initial defoliation (90% defoliated vs. nondefoliated) for four months. Growth, C storage concentration in different organs, leaf shedding, and lateral shoot formation were measured at the end of the experiment. Eucalyptus globulus grew faster than L. apiculata in high light, but not in low light. Both species had lower C storage concentration in low than in high light, but similar C storage concentrations in each light condition. Defoliation had no effect on C storage, except in the case of the old leaves of both species, which showed lower C storage levels in response to defoliation. Across treatments, leaf shedding was 96% higher in E. globulus than in L. apiculata while, in contrast, lateral shoot formation was 87% higher in L. apiculata. In low light, E. globulus prioritized C storage instead of growth, whereas L. apiculata prioritized growth and lateral branching. Our results suggest that shade tolerance depends on efficient light capture rather than C conservation traits. © 2017 Botanical Society of America.

  20. DESPOT, a process-based tree growth model that allocates carbon to maximize carbon gain.

    PubMed

    Buckley, Thomas N; Roberts, David W

    2006-02-01

    We present a new model of tree growth, DESPOT (Deducing Emergent Structure and Physiology Of Trees), in which carbon (C) allocation is adjusted in each time step to maximize whole-tree net C gain in the next time step. Carbon gain, respiration and the acquisition and transport of substitutable photosynthetic resources (nitrogen, water and light) are modeled on a process basis. The current form of DESPOT simulates a uniform, monospecific, self-thinning stand. This paper describes DESPOT and its general behavior in comparison to published data, and presents an evaluation of the sensitivity of its qualitative predictions by Monte Carlo parameter sensitivity analysis. DESPOT predicts determinate height growth and steady stand-level net primary productivity (NPP), but slow declines in aboveground NPP and leaf area index. Monte Carlo analysis, wherein the model was run repeatedly with randomly different parameter sets, revealed that many parameter sets do not lead to sustainable NPP. Of those that do lead to sustainable growth, the ratios at maturity of net to gross primary productivity and of leaf area to sapwood area are highly conserved.

  1. Biomass, growth, and development of populations of herbivorous zooplankton in the southeastern Bering Sea during spring

    SciTech Connect

    Vidal, J.; Smith, S.L.

    1985-09-01

    Two distinct communities of herbivorous zooplankton, separated by an oceanographic front, inhabit the continental shelf and slope of the southeastern Bering Sea during spring. The community over the outer shelf and slope is dominated by populations of large-sized oceanic copepods (mainly Neocalanus ssp.) that develop early in spring and attain maximum biomass and growth rates by mid- to late spring. Total biomass and growth rates of herbivores follow the spring outburst of phytoplankton; during April and May biomass increases from less than or equal to1 to approx.14 g C m/sup -2/ on the slope and to approx.10 g C m/sup -2/ on the outer shelf, and maximum growth rates >500 and approx.300 mg C m/sup -2/ day/sup -1/ occure on the slope and outer shelf, respectively in May. The dominant species, N. plumchrus, grows from copepodid I and V between late March and early May, and after attaining maximum body weight in late May and early June it begins its downward migration. The inshore community on the middle shelf is dominated by the euphausiid Thysanoessa raschi in April and May and by the copepod Calanus marshallae in late May and early June. Total biomass (less than or equal to g C m/sup -2/) and growth rates (less than or equal to50 mg C m/sup -2/) of the inshore community are substantially lower than those of the offshore community and show a delayed response to the spring bloom of phytoplankton; both biomass and growth rates increase about one month after the bloom. Small herbivorous copepods contributed little to the total biomass and growth rates of either community and the cumulative community growth rates during April and May decreases from 18.3 g C m/sup -2/ on the slope to 2.5 g C m/sup -2/ on the middle shelf. 79 refs., 15 figs., 7 tabs.

  2. Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others

    PubMed Central

    Bandau, Franziska; Decker, Vicki Huizu Guo; Gundale, Michael J.; Albrectsen, Benedicte Riber

    2015-01-01

    Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype’s baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a

  3. Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others.

    PubMed

    Bandau, Franziska; Decker, Vicki Huizu Guo; Gundale, Michael J; Albrectsen, Benedicte Riber

    2015-01-01

    Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype's baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a

  4. Development of a rotating algal biofilm growth system for attached microalgae growth with in situ biomass harvest.

    PubMed

    Gross, Martin; Henry, Wesley; Michael, Clayton; Wen, Zhiyou

    2013-12-01

    This work aimed to develop a rotating algal biofilm (RAB) cultivation system that can be widely adopted by microalgae producers for easy biomass harvest. Algal cells were grown on the surface of a material rotating between nutrient-rich liquid and CO2-rich gaseous phase. Scrapping biomass from the attached surface avoided the expensive harvest operations such as centrifugation. Among various attachment materials, cotton sheet resulted in best algal growth, durability, and cost effectiveness. A lab-scale RAB system was further optimized with harvest frequency, rotation speed, and CO2 levels. The algal biomass from the RAB system had a similar water content as that in centrifuged biomass. An open pond raceway retrofitted with a pilot-scale RAB system resulted in a much higher biomass productivity when compared to a control open pond. Collectively, the research shows that the RAB system is an efficient algal culture system for easy biomass harvest with enhanced biomass productivity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Clonal Patch Size and Ramet Position of Leymus chinensis Affected Reproductive Allocation

    PubMed Central

    Zhang, Zhuo; Yang, Yunfei

    2015-01-01

    Reproductive allocation is critically important for population maintenance and usually varies with not only environmental factors but also biotic ones. As a typical rhizome clonal plant in China's northern grasslands, Leymus chinensis usually dominates the steppe communities and grows in clonal patches. In order to clarify the sexual reproductive allocation of L. chinensis in the process of the growth and expansion, we selected L. chinensis clonal patches of a range of sizes to examine the reproductive allocation and allometric growth of the plants. Moreover, the effects of position of L. chinensis ramets within the patch on their reproductive allocation were also examined. Clonal patch size and position both significantly affected spike biomass, reproductive tiller biomass and SPIKE/TILLER biomass ratio. From the central to the marginal zone, both the spike biomass and reproductive tiller biomass displayed an increasing trend in all the five patch size categories except for reproductive tiller biomass in 15–40m2 category. L. chinensis had significantly larger SPIKE/TILLER biomass ratio in marginal zone than in central zone of clonal patches that are larger than 15 m2 in area. Regression analysis showed that the spike biomass and SPIKE/TILLER biomass ratio were negatively correlated with clonal patch size while patch size showed significantly positive effect on SEED/SPIKE biomass ratio, but the reproductive tiller biomass and SEED/TILLER biomass ratio were not dependent on clonal patch size. The relationships between biomass of spike and reproductive tiller, between mature seed biomass and spike biomass and between mature seed biomass and reproductive tiller biomass were significant allometric for all or some of patch size categories, respectively. The slopes of all these allometric relationships were significantly different from 1. The allometric growth of L. chinensis is patch size-dependent. This finding will be helpful for developing appropriate practices for

  6. UV photolysis for relieved inhibition of sulfadiazine (SD) to biomass growth.

    PubMed

    Pan, Shihui; Yan, Ning; Zhang, Yongming; Rittmann, Bruce E

    2015-05-01

    UV photolysis was used to relieve inhibition of biomass growth by sulfadiazine (SD), a broad-spectrum anti-microbial. To investigate the effects of SD on biomass growth, three substrates-glucose alone (G), glucose plus sulfadiazine (G+SD), and glucose plus photolyzed SD (G+PSD)-were used to culture the bacteria acclimated to glucose. The biomass was strongly inhibited when SD was added into the glucose solution, but inhibition was relieved to a significant degree when the SD was treated with UV irradiation as a pretreatment. The biomass growth kinetics were described well by the Monod model when glucose was used as a substrate alone, but the kinetics followed a hybrid Aiba model for non-competitive inhibition when SD was added to the solution. When photolyzed SD was added to glucose solution to replace original SD, the growth still followed Aiba inhibition, but inhibition was significantly relieved: the maximum specific growth rate (μ max) increased by 17 %, and the Aiba inhibition concentration increased by 60 %. Aniline, a major product of UV photolysis, supported the growth of the glucose-biodegrading bacteria. Thus, UV photolysis of SD significantly relieved inhibition by lowering the SD concentration and by generating a biodegradable product.

  7. Interpretation of tree-ring data with a model for primary production, carbon allocation and growth

    NASA Astrophysics Data System (ADS)

    Li, G.; Wang, H.; Harrison, S. P.; Prentice, I. C.

    2013-12-01

    We present a simple, generic model of annual tree growth, called ';T'. This model accepts input from a generic light-use efficiency model which is known to provide good simulations of terrestrial carbon exchange. The light-use efficiency model provides values for Gross Primary Production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport-tissue, and fine-root production and respiration, in such a way as to satisfy well-understood dimensional relationships. The result is a model that can represent both ontogenetic effects and the effects of environmental variations and trends on growth. The model has been applied to simulate ring-width series from multiple individual trees in temperature- and drought-limited contexts. Each tree is initialized at its actual diameter at the time when local climate records started. These records are used to drive the trees' subsequent growth. Realistic simulations of the pattern of interannual variability of ring-width are generated, and shown to relate statistically to climate. An upward trend in ring-width during 1958-2007 is shown to be present in the primary observations, and in the simulations; but not in the standard, detrended ring-width series. This approach combines two modelling approaches previously developed in the global carbon cycle and forest science literature respectively. Neither has been widely applied in the context of tree-ring based climate reconstruction. This combination of methods offers promise, however, because it could provide a way to sidestep several known problems. These include: reliance on correlations for the interpretation of ring-width variations in terms of climate; the necessity of detrending using empirical functions (which can remove trends caused by variations in the environment as well as those that are ontogenetic); and the difficulty of assessing effects of extrinsic, non

  8. The relative contributions of forest growth and areal expansion to forest biomass carbon

    NASA Astrophysics Data System (ADS)

    Li, P.; Zhu, J.; Hu, H.; Guo, Z.; Pan, Y.; Birdsey, R.; Fang, J.

    2016-01-01

    Forests play a leading role in regional and global terrestrial carbon (C) cycles. Changes in C sequestration within forests can be attributed to areal expansion (increase in forest area) and forest growth (increase in biomass density). Detailed assessment of the relative contributions of areal expansion and forest growth to C sinks is crucial to reveal the mechanisms that control forest C sinks and it is helpful for developing sustainable forest management policies in the face of climate change. Using the Forest Identity concept and forest inventory data, this study quantified the spatial and temporal changes in the relative contributions of forest areal expansion and increased biomass growth to China's forest biomass C sinks from 1977 to 2008. Over the last 30 years, the areal expansion of forests has been a larger contributor to C sinks than forest growth for planted forests in China (62.2 % vs. 37.8 %). However, for natural forests, forest growth has made a larger contribution than areal expansion (60.4 % vs. 39.6 %). For all forests (planted and natural forests), growth in area and density has contributed equally to the total C sinks of forest biomass in China (50.4 % vs. 49.6 %).The relative contribution of forest growth of planted forests showed an increasing trend from an initial 25.3 % to 61.0 % in the later period of 1998 to 2003, but for natural forests, the relative contributions were variable without clear trends, owing to the drastic changes in forest area and biomass density over the last 30 years. Our findings suggest that afforestation will continue to increase the C sink of China's forests in the future, subject to sustainable forest growth after the establishment of plantations.

  9. Explaining biomass growth of tropical canopy trees: the importance of sapwood.

    PubMed

    van der Sande, Masha T; Zuidema, Pieter A; Sterck, Frank

    2015-04-01

    Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown traits [total leaf area, specific leaf area and leaf nitrogen (N) concentration] and stem traits [sapwood area (SA) and sapwood N concentration] measured for individual trees affect absolute biomass growth for 43 tropical canopy trees belonging to four species, in a moist forest in Bolivia. Biomass growth varied strongly among trees, between 17.3 and 367.3 kg year(-1), with an average of 105.4 kg year(-1). We found that variation in biomass growth was chiefly explained by a positive effect of SA, and not by tree size or other traits examined. SA itself was positively associated with sapwood growth, sapwood lifespan and basal area. We speculate that SA positively affects the growth of individual trees mainly by increasing water storage, thus securing water supply to the crown. These positive roles of sapwood on growth apparently offset the increased respiration costs incurred by more sapwood. This is one of the first individual-based studies to show that variation in sapwood traits-and not crown traits-explains variation in growth among tropical canopy trees. Accurate predictions of C dynamics in tropical forests require similar studies on biomass growth of individual trees as well as studies evaluating the dual effect of sapwood (water provision vs. respiratory costs) on tropical tree growth.

  10. Testing the Growth Rate Hypothesis in Vascular Plants with Above- and Below-Ground Biomass

    PubMed Central

    Yu, Qiang; Wu, Honghui; He, Nianpeng; Lü, Xiaotao; Wang, Zhiping; Elser, James J.; Wu, Jianguo; Han, Xingguo

    2012-01-01

    The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N∶C under N limitation and positively correlated with P∶C under P limitation. However, the N∶P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C∶N∶P stoichiometry. Furthermore, μ and C∶N∶P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations. PMID:22427823

  11. Testing the growth rate hypothesis in vascular plants with above- and below-ground biomass.

    PubMed

    Yu, Qiang; Wu, Honghui; He, Nianpeng; Lü, Xiaotao; Wang, Zhiping; Elser, James J; Wu, Jianguo; Han, Xingguo

    2012-01-01

    The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C:P and N:P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N:C under N limitation and positively correlated with P:C under P limitation. However, the N:P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C:N:P stoichiometry. Furthermore, μ and C:N:P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations.

  12. Invited review: resource allocation mismatch as pathway to disproportionate growth in farm animals - prerequisite for a disturbed health.

    PubMed

    Huber, K

    2017-08-14

    The availability of resources including energy, nutrients and (developmental) time has a crucial impact on productivity of farm animals. Availability of energy and nutrients depends on voluntary feed intake and intestinal digestive and absorptive capacity at optimal feeding conditions. Availability of time is provided by the management in animal production. According to the resource allocation theory, resources have to be allocated between maintenance, ontogenic growth, production and reproduction during lifetime. Priorities for these processes are mainly determined by the genetic background, the rearing system and the feeding regimen. Aim of this review was to re-discuss the impact of a proper resource allocation for a long and healthy life span in farm animals. Using the barrel model of resource allocation, resource fluxes were explained and were implemented to specific productive life conditions of different farm animal species, dairy cows, sows and poultry. Hypothetically, resource allocation mismatch neglecting maintenance is a central process, which might be associated with morphological constraints of extracellular matrix components; evidence for that was found in the literature. A potential consequence of this limitation is a phenomenon called disproportionate growth, which counteracts the genetically determined scaling rules for body and organ proportions and could have a strong impact on farm animal health and production.

  13. Distributed Generators Allocation in Radial Distribution Systems with Load Growth using Loss Sensitivity Approach

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwani; Vijay Babu, P.; Murty, V. V. S. N.

    2016-07-01

    Rapidly increasing electricity demands and capacity shortage of transmission and distribution facilities are the main driving forces for the growth of distributed generation (DG) integration in power grids. One of the reasons for choosing a DG is its ability to support voltage in a distribution system. Selection of effective DG characteristics and DG parameters is a significant concern of distribution system planners to obtain maximum potential benefits from the DG unit. The objective of the paper is to reduce the power losses and improve the voltage profile of the radial distribution system with optimal allocation of the multiple DG in the system. The main contribution in this paper is (i) combined power loss sensitivity (CPLS) based method for multiple DG locations, (ii) determination of optimal sizes for multiple DG units at unity and lagging power factor, (iii) impact of DG installed at optimal, that is, combined load power factor on the system performance, (iv) impact of load growth on optimal DG planning, (v) Impact of DG integration in distribution systems on voltage stability index, (vi) Economic and technical Impact of DG integration in the distribution systems. The load growth factor has been considered in the study which is essential for planning and expansion of the existing systems. The technical and economic aspects are investigated in terms of improvement in voltage profile, reduction in total power losses, cost of energy loss, cost of power obtained from DG, cost of power intake from the substation, and savings in cost of energy loss. The results are obtained on IEEE 69-bus radial distribution systems and also compared with other existing methods.

  14. Distributed Generators Allocation in Radial Distribution Systems with Load Growth using Loss Sensitivity Approach

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwani; Vijay Babu, P.; Murty, V. V. S. N.

    2017-06-01

    Rapidly increasing electricity demands and capacity shortage of transmission and distribution facilities are the main driving forces for the growth of distributed generation (DG) integration in power grids. One of the reasons for choosing a DG is its ability to support voltage in a distribution system. Selection of effective DG characteristics and DG parameters is a significant concern of distribution system planners to obtain maximum potential benefits from the DG unit. The objective of the paper is to reduce the power losses and improve the voltage profile of the radial distribution system with optimal allocation of the multiple DG in the system. The main contribution in this paper is (i) combined power loss sensitivity (CPLS) based method for multiple DG locations, (ii) determination of optimal sizes for multiple DG units at unity and lagging power factor, (iii) impact of DG installed at optimal, that is, combined load power factor on the system performance, (iv) impact of load growth on optimal DG planning, (v) Impact of DG integration in distribution systems on voltage stability index, (vi) Economic and technical Impact of DG integration in the distribution systems. The load growth factor has been considered in the study which is essential for planning and expansion of the existing systems. The technical and economic aspects are investigated in terms of improvement in voltage profile, reduction in total power losses, cost of energy loss, cost of power obtained from DG, cost of power intake from the substation, and savings in cost of energy loss. The results are obtained on IEEE 69-bus radial distribution systems and also compared with other existing methods.

  15. Effects of space allocations and energy levels on growth performance and nutrient digestibility in growing and finishing pigs.

    PubMed

    Lei, X J; Yan, L; Kim, Y M; Kim, I H

    2017-05-15

    Two experiments were conducted to investigate effects of different space allocations and different dietary metabolizable energy (ME) levels on growth performance and nutrient digestibility in growing and finishing pigs. In experiment 1, a total of 84 growing pigs [(Yorkshire × Landrace) × Duroc] with an initial body weight (BW) of 27.10 ± 1.60 kg were used in a 5-week trial. Pigs were blocked based on initial BW into a 2 × 2 factorial design with the following factors: (i) 0.60 or 0.80 m(2) /pig space allocations; and (ii) 3,400 or 3,550 kcal/kg ME of diets. In experiment 2, a total of 84 finishing pigs with an initial BW of 67.43 ± 1.97 kg were used in a 10-week trial. Pigs were allotted based on initial BW into a 2 × 2 factorial design with the following factors: (i) 0.81 or 1.08 m(2) /pig space allocations; and (ii) 3,300 or 3,450 kcal/kg ME of diet. In experiment 1, high ME diet improved gain-to-feed ratio (G:F) in pigs with low space allocation but not in pigs in high space allocation (p < .05). Additionally, high ME diet increased apparent total tract digestibility (ATTD) of nitrogen in low space allocation but decreased ATTD of nitrogen in high space allocation (p < .05). In experiment 2, high ME diet improved average daily gain (ADG) and G:F in early-finishing pigs with low space allocation but not in pigs with high space allocation (p < .05). In conclusion, the provision of high ME diets was not enough to overcome the reduction in growth performance due to low space allocation but can improve feed efficiency in growing pigs and daily gain and feed efficiency early-finishing pigs. © 2017 Blackwell Verlag GmbH.

  16. Hydrolysate of lipid extracted microalgal biomass residue: An algal growth promoter and enhancer.

    PubMed

    Maurya, Rahulkumar; Paliwal, Chetan; Chokshi, Kaumeel; Pancha, Imran; Ghosh, Tonmoy; Satpati, Gour Gopal; Pal, Ruma; Ghosh, Arup; Mishra, Sandhya

    2016-05-01

    The present study demonstrates the utilization of the algal hydrolysate (AH) prepared from lipid extracted residual harmful bloom-forming cyanobacteria Lyngbya majuscula biomass, as a growth supplement for the cultivation of green microalgae Chlorella vulgaris. BG-11 replacements with AH in different proportions significantly affects the cell count, dry cell weight (DCW), biomass productivity (BP) and pigments concentration. Among all, 25% AH substitution in BG11 media was found to be optimum which enhanced DCW, BP and pigments content by 39.13%, 40.81% and 129.47%, respectively, compared to control. The lipid content (31.95%) was also significantly higher in the 25% AH replacement. The volumetric productivity of neutral lipids (ideal for biodiesel) and total protein content of the cells significantly increased in all AH substitutions. Thus, lipid extracted microalgal biomass residue (LMBR) hydrolysate can be a potential growth stimulating supplement for oleaginous microalgae C. vulgaris.

  17. Modeling mangrove biomass using remote sensing based age and growth estimates

    NASA Astrophysics Data System (ADS)

    Lagomasino, D.; Fatoyinbo, T. E.; Feliciano, E. A.; Lee, S. K.; Trettin, C.; Mangora, M.; Rahman, M.

    2016-12-01

    Mangroves are highly regarded coastal forests because of their ecosystem services and high carbon storage potential. In addition, these forests can develop rapidly in locations where congenial environmental conditions and sediment supply are available. Monitoring the growth and age of developing mangrove forests is crucial for sustainable management and estimating carbon stocks. Combining imagery from radar and optical satellites (e.g., TanDEM-X and Landsat), we can estimate young mangrove growth and age at regional and continental scales. We used TanDEM-X radar interferometry for modeling canopy height in 2013 and Landsat to measure land cover change from 1990 to 2013. Annual NDVI composites were determined for each calendar year between 1990 and 2013. New land areas gained from the transition of water to vegetation were determined by the differences in annual NDVI composites and the reference year 2013. The year of the greatest NDVI difference that met the threshold criteria was used as the initial tree height (0 m). Annual canopy height growth rates were estimated by the duration between land generation times and 2013 canopy height models derived from TanDEM-X and very-high resolution optical data. In this presentation, we compare growth rates and biomass accumulation in mangrove forests at four river deltas; the Zambezi (Mozambique), Rufiji (Tanzania), Ganges (Bangladesh), and Mekong (Vietnam). The spatial patterns of growth rates coincided with characteristic successional paradigms and stream morphology, where the maximum growth rates typically occurred along prograding creek banks. Initial comparisons between height-only and growth-age biomass indicate that the latter tend to overestimate biomass for younger forest stands of similar height. Both the vertical (e.g., canopy height) and horizontal (e.g., expansion) growth rates measured from remote sensing can garner important information regarding mangrove succession and primary productivity. Continued research

  18. Biomass growth restriction in a packed bed reactor

    DOEpatents

    Griffith, William L.; Compere, Alicia L.

    1978-01-01

    When carrying out continuous biologically catalyzed reactions with anaerobic microorganisms attached to a support in an upflow packed bed column, growth of the microorganisms is restricted to prevent the microorganisms from plugging the column by limiting the availability of an essential nutrient and/or by the presence of predatory protozoa which consume the anaerobic microorganisms. A membrane disruptive detergent may be provided in the column to lyse dead microorganisms to make them available as nutrients for live microorganisms.

  19. Competitive growth, energy allocation, and host modification in the acanthocephalan Acanthocephalus dirus: field data.

    PubMed

    Caddigan, Sara C; Pfenning, Alaina C; Sparkes, Timothy C

    2017-01-01

    The acanthocephalan Acanthocephalus dirus is a trophically transmitted parasite that modifies both the physiology and behavior of its intermediate host (isopod) prior to transmission to its definitive host (fish). Infected isopods often contain multiple A. dirus individuals and we examined the relationships between host sharing, body size, energy content, and host modification to determine if host sharing was costly and if these costs could influence the modification of host behavior (mating behavior). Using field-based measures of parasite energy content (glycogen, lipid) and parasite body size (volume), we showed that host sharing was costly in terms of energy content but not in terms of body size. Analysis of the predictors of host behavior revealed that energy content, and body size, were not predictors of host behavior. Of the variables examined, parasite intensity was the only predictor of host behavior. Hosts that contained more parasites were less likely to be modified (i.e., less likely to undergo mating suppression). We suggest that intraspecific competition influenced parasite energy content and that the costs associated with competition are likely to shape the strategy of growth and energy allocation adopted by the parasites. These costs did not appear to have a direct effect on the modification of host mating behavior.

  20. Accumulation of biomass and mineral elements with calendar time by corn: application of the expanded growth model.

    PubMed

    Overman, Allen R; Scholtz, Richard V

    2011-01-01

    The expanded growth model is developed to describe accumulation of plant biomass (Mg ha(-1)) and mineral elements (kg ha(-1)) in with calendar time (wk). Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L.) growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N), phosphorus (P), and potassium (K). It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation.

  1. Accumulation of Biomass and Mineral Elements with Calendar Time by Corn: Application of the Expanded Growth Model

    PubMed Central

    Overman, Allen R.; Scholtz, Richard V.

    2011-01-01

    The expanded growth model is developed to describe accumulation of plant biomass (Mg ha−1) and mineral elements (kg ha−1) in with calendar time (wk). Accumulation of plant biomass with calendar time occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. In this analysis, the expanded growth model is tested against high quality, published data on corn (Zea mays L.) growth. Data from a field study in South Carolina was used to evaluate the application of the model, where the planting time of April 2 in the field study maximized the capture of solar energy for biomass production. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen (N), phosphorus (P), and potassium (K). It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation. PMID:22194842

  2. Simulation of tree-ring widths with a model for primary production, carbon allocation, and growth

    NASA Astrophysics Data System (ADS)

    Li, G.; Harrison, S. P.; Prentice, I. C.; Falster, D.

    2014-12-01

    We present a simple, generic model of annual tree growth, called "T". This model accepts input from a first-principles light-use efficiency model (the "P" model). The P model provides values for gross primary production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport tissue, and fine-root production and respiration in such a way as to satisfy well-understood dimensional and functional relationships. Our approach thereby integrates two modelling approaches separately developed in the global carbon-cycle and forest-science literature. The T model can represent both ontogenetic effects (the impact of ageing) and the effects of environmental variations and trends (climate and CO2) on growth. Driven by local climate records, the model was applied to simulate ring widths during the period 1958-2006 for multiple trees of Pinus koraiensis from the Changbai Mountains in northeastern China. Each tree was initialised at its actual diameter at the time when local climate records started. The model produces realistic simulations of the interannual variability in ring width for different age cohorts (young, mature, and old). Both the simulations and observations show a significant positive response of tree-ring width to growing-season total photosynthetically active radiation (PAR0) and the ratio of actual to potential evapotranspiration (α), and a significant negative response to mean annual temperature (MAT). The slopes of the simulated and observed relationships with PAR0 and α are similar; the negative response to MAT is underestimated by the model. Comparison of simulations with fixed and changing atmospheric CO2 concentration shows that CO2 fertilisation over the past 50 years is too small to be distinguished in the ring-width data, given ontogenetic trends and interannual variability in climate.

  3. Simulation of tree ring-widths with a model for primary production, carbon allocation and growth

    NASA Astrophysics Data System (ADS)

    Li, G.; Harrison, S. P.; Prentice, I. C.; Falster, D.

    2014-07-01

    We present a simple, generic model of annual tree growth, called "T". This model accepts input from a first-principles light-use efficiency model (the P model). The P model provides values for Gross Primary Production (GPP) per unit of absorbed photosynthetically active radiation (PAR). Absorbed PAR is estimated from the current leaf area. GPP is allocated to foliage, transport-tissue, and fine root production and respiration, in such a way as to satisfy well-understood dimensional and functional relationships. Our approach thereby integrates two modelling approaches separately developed in the global carbon-cycle and forest-science literature. The T model can represent both ontogenetic effects (impact of ageing) and the effects of environmental variations and trends (climate and CO2) on growth. Driven by local climate records, the model was applied to simulate ring widths during 1958-2006 for multiple trees of Pinus koraiensis from the Changbai Mountain, northeastern China. Each tree was initialised at its actual diameter at the time when local climate records started. The model produces realistic simulations of the interannual variability in ring width for different age cohorts (young, mature, old). Both the simulations and observations show a significant positive response of tree-ring width to growing-season total photosynthetically active radiation (PAR0) and the ratio of actual to potential evapotranspiration (α), and a significant negative response to mean annual temperature (MAT). The slopes of the simulated and observed relationships with PAR0 and α are similar; the negative response to MAT is underestimated by the model. Comparison of simulations with fixed and changing atmospheric CO2 concentration shows that CO2 fertilization over the past 50 years is too small to be distinguished in the ring-width data given ontogenetic trends and interannual variability in climate.

  4. Introduction to the invited issue on carbon allocation of trees and forests

    Treesearch

    Daniel Epron; Yann Nouvellon; Michael G. Ryan

    2012-01-01

    Carbon (C) allocation is a major issue in plant ecology, controlling the flows of C fixed in photosynthesis between respiration and biomass production, and between short- and long-lived and aboveground and belowground tissues. Incomplete knowledge of C allocation currently hinders accurate modelling of tree growth and forest ecosystem metabolism (Friedlingstein et al....

  5. Stand density, tree social status and water stress influence allocation in height and diameter growth of Quercus petraea (Liebl.).

    PubMed

    Trouvé, Raphaël; Bontemps, Jean-Daniel; Seynave, Ingrid; Collet, Catherine; Lebourgeois, François

    2015-10-01

    Even-aged forest stands are competitive communities where competition for light gives advantages to tall individuals, thereby inducing a race for height. These same individuals must however balance this competitive advantage with height-related mechanical and hydraulic risks. These phenomena may induce variations in height-diameter growth relationships, with primary dependences on stand density and tree social status as proxies for competition pressure and access to light, and on availability of local environmental resources, including water. We aimed to investigate the effects of stand density, tree social status and water stress on the individual height-circumference growth allocation (Δh-Δc), in even-aged stands of Quercus petraea Liebl. (sessile oak). Within-stand Δc was used as surrogate for tree social status. We used an original long-term experimental plot network, set up in the species production area in France, and designed to explore stand dynamics on a maximum density gradient. Growth allocation was modelled statistically by relating the shape of the Δh-Δc relationship to stand density, stand age and water deficit. The shape of the Δh-Δc relationship shifted from linear with a moderate slope in open-grown stands to concave saturating with an initial steep slope in closed stands. Maximum height growth was found to follow a typical mono-modal response to stand age. In open-grown stands, increasing summer soil water deficit was found to decrease height growth relative to radial growth, suggesting hydraulic constraints on height growth. A similar pattern was found in closed stands, the magnitude of the effect however lowering from suppressed to dominant trees. We highlight the high phenotypic plasticity of growth in sessile oak trees that further adapt their allocation scheme to their environment. Stand density and tree social status were major drivers of growth allocation variations, while water stress had a detrimental effect on height in the

  6. Stem girdling indicates prioritized carbon allocation to the root system at the expense of radial stem growth in Norway spruce under drought conditions

    PubMed Central

    Oberhuber, Walter; Gruber, Andreas; Lethaus, Gina; Winkler, Andrea; Wieser, Gerhard

    2017-01-01

    The early culmination of maximum radial growth (RG) in late spring has been found in several coniferous species in a dry inner Alpine environment. We hypothesized that an early decrease in RG is an adaptation to cope with drought stress, which might require an early switch of carbon (C) allocation to belowground organs. To test this hypothesis, we experimentally subjected six-year-old Norway spruce saplings (tree height: 1.35 m; n = 80 trees) to two levels of soil water availability (watered versus drought conditions) and manipulated tree C status by physically blocking phloem transport at three girdling dates (GD). The influence of C availability and drought on tree growth (radial and shoot growth; root biomass) in response to girdling was analyzed in both treatments. Non-structural carbohydrates (NSCs, soluble sugars and starch) were measured in the stem, root and current leader to evaluate changes in tree C status due to girdling. The main finding was a significant increase in RG of the girdled trees compared to the controls above the girdling zone (UZ). At all girdling dates the RG increase was significantly more intense in the drought-stressed compared with watered trees (c. 3.3 and 1.9-fold higher compared with controls in the drought-stressed and watered trees, respectively), most likely indicating that an early switch of C allocation to belowground occurs as an adaptation to maintain tree water status under drought conditions. Reactivation of the cambium after the cessation of its regular activity was detected in UZ in drought-stressed trees, while below the girdling zone no xylem formation was found and the NSC content was strikingly reduced. Irrespective of water availability, girdling before growth onset significantly reduced the progression of bud break (P < 0.05) and the length of the current leader shoot by −47% (P < 0.01) indicating a reduction in xylem hydraulic conductance, which was corroborated by significantly reduced xylem sap flow (P < 0

  7. A New Method for Non-destructive Measurement of Biomass, Growth Rates, Vertical Biomass Distribution and Dry Matter Content Based on Digital Image Analysis

    PubMed Central

    Tackenberg, Oliver

    2007-01-01

    Background and Aims Biomass is an important trait in functional ecology and growth analysis. The typical methods for measuring biomass are destructive. Thus, they do not allow the development of individual plants to be followed and they require many individuals to be cultivated for repeated measurements. Non-destructive methods do not have these limitations. Here, a non-destructive method based on digital image analysis is presented, addressing not only above-ground fresh biomass (FBM) and oven-dried biomass (DBM), but also vertical biomass distribution as well as dry matter content (DMC) and growth rates. Methods Scaled digital images of the plants silhouettes were taken for 582 individuals of 27 grass species (Poaceae). Above-ground biomass and DMC were measured using destructive methods. With image analysis software Zeiss KS 300, the projected area and the proportion of greenish pixels were calculated, and generalized linear models (GLMs) were developed with destructively measured parameters as dependent variables and parameters derived from image analysis as independent variables. A bootstrap analysis was performed to assess the number of individuals required for re-calibration of the models. Key Results The results of the developed models showed no systematic errors compared with traditionally measured values and explained most of their variance (R2 ≥ 0·85 for all models). The presented models can be directly applied to herbaceous grasses without further calibration. Applying the models to other growth forms might require a re-calibration which can be based on only 10–20 individuals for FBM or DMC and on 40–50 individuals for DBM. Conclusions The methods presented are time and cost effective compared with traditional methods, especially if development or growth rates are to be measured repeatedly. Hence, they offer an alternative way of determining biomass, especially as they are non-destructive and address not only FBM and DBM, but also vertical

  8. Microalgae cultivation using an aquaculture wastewater as growth medium for biomass and biofuel production.

    PubMed

    Guo, Zhen; Liu, Yuan; Guo, Haiyan; Yan, Song; Mu, Jun

    2013-12-01

    Microalgae as a main feedstock has attracted much attention in recent years but is still not economically feasible due to high algal culture cost. The objective of this study was to develop a comprehensive eco-friendly technology for cultivating microalgae Platymonas subcordiformis using aquaculture wastewater as growth medium for biomass and biofuel production. Platymonas subcordiformis was grown in pretreated flounder aquaculture wastewaters taken from different stages. Each of wastewater contained different levels of nutrients. The biomass yield of microalgae and associated nitrogen and phosphorous removal were investigated. The results showed that algal cell density increased 8.9 times than the initial level. Platymonas subcordiformis removed nitrogen and phosphorus from wastewater with an average removal efficiency of 87%-95% for nitrogen and 98%-99% for phosphorus. It was feasible to couple the removal of nitrogen and phosphorus from wastewater to algal biomass and biofuel production. However, further studies are required to make this technologies economically viable for algae biofuel production.

  9. Halimeda biomass, growth rates and sediment generation on reefs in the central great barrier reef province

    NASA Astrophysics Data System (ADS)

    Drew, Edward A.

    1983-06-01

    The average biomass of Halimeda per m2 of solid substratum increased progressively on a series of reefs situated at increasing distances from the shore in the central Great Barrier Reef. There was none on a reef close inshore, increasing to nearly 500 g m-2 total biomass (≃90% calcium carbonate) on an oceanic atoll system in the Coral Sea. The biomass measured contained 13 species of Halimeda but was dominated by only two species, H. copiosa and H. opuntia, except on the atoll where H. minima was dominant. Three sand-dwelling species were also present but did not occur anywhere in substantial quantities. Growth rates of the dominant species were measured bv tagging individual branch tips. A mean value of 0.16 segments d-1 was recorded but 41% of the branch tips did not grow any new segments whilst only 1% grew more than one per day. The number of branch tips per unit biomass was very constant and has been used in conjunction with growth rates and biomass to calculate productivity rates, and thence sedimentation, in the lagoon of one of the reefs. Biomass doubling time of 15 d and production of 6.9 g dry wt m-2 d-1 are considerably higher than previously reported values for Halimeda vegetation and there was little seasonal change detected over a whole year. Those values indicate annual accretion of 184.9 g m-2 year-1 of Halimeda segment debris over the entire lagoon floor (5.9 km2) of Davies Reef, equivalent to 0.13 mm year-1 due to Halimeda alone, or 1 m every 1,892 years when other contributions to that sediment are taken into account.

  10. Long-term exposure to twice-ambient ozone (O3) affects carbon sink strength, allocation and stem growth in adult central European forest trees

    NASA Astrophysics Data System (ADS)

    Grams, T. E.; Matyssek, R.

    2009-12-01

    Amongst air pollutants, ground-level ozone (O3) is potentially the most detrimental to vegetation. Spreading globally, enhanced O3 levels are predicted to increase, in particular, in rapidly developing countries and, thus, O3 must now be considered in climate change scenarios and post-Kyoto policies. Here, we present an appraisal of a unique 8-year free-air O3 fumigation experiment on adult European beech (Fagus sylvatica) and Noway spruce (Picea abies), ecologically and economically important, late-succession tree species in Central Europe. For the first time, whole-plant canopies of naturally grown, 60 to 70 years old forest trees were exposed to twice-ambient O3 levels for a total of eight years. Throughout the study period, enhanced O3 uptake in the elevated O3 treatment affected net C fixation and distinctly weakened the whole-stem growth in beech. In contrast, adult spruce at the same site did not display decline in stem biomass development. Those findings corroborate species-specific sensitivities to O3 reported from previous chamber studies on juvenile beech and spruce trees. Carbon allocation of adult trees, as a mechanistical basis of growth processes, was investigated through stable isotope tracer experiments using 13C depleted CO2 at the canopy level. To this end, a novel free-air CO2 exposure system, named tubeFACE, was developed, which employed micro-porous PVC tubes hanging through the canopy of adult trees. In a 19-day 13CO2/12CO2 labeling experiment, CO2 with a δ13C of -46.9 ‰ was continuously released into the canopy to increase [CO2] by 100 µmol mol-1, resulting in a reduction in δ13C of about 8 ‰. Subsequently, C allocation to respiratory pools of various tree organs was studied. Similar to the reduced stem growth in beech, elevated O3 significantly reduced allocation of labeled C to stem respiration, whereas in spruce such a reduction was not found. Hence, our study underlines the need to understand O3 risks by species, so that modeling

  11. Cell growth kinetics of Chlorella sorokiniana and nutritional values of its biomass.

    PubMed

    Kumar, Kanhaiya; Dasgupta, Chitralekha Nag; Das, Debabrata

    2014-09-01

    The present study investigates the effects of different physico-chemical parameters for the growth of Chlorella sorokiniana and subsequently determination of nutritional values of its biomass. Most suitable temperature, light intensity, pH, and acetic acid concentration were 30°C, 100 μmol m(-2)s(-1), pH 7.5, and 34.8mM, respectively for the growth of this microorganism. Arrhenius growth activation energy, Ea was calculated as 7.08 kJ mol(-1). Monod kinetics constants: maximum specific growth rate (μ max) and substrate (acetic acid) affinity coefficient (Ks) were determined as 0.1 ± 0.01 h(-1) and 76 ± 8 mg L(-1), respectively. Stoichiometric analysis revealed the capture of 1.83 g CO2 and release of 1.9 g O2 for 1g algal biomass synthesis. Algal biomass of C. sorokiniana was found rich in protein and several important minerals such as Mg, Ca, and Fe. Astaxanthin and β-carotene were extracted and quantified using high performance liquid chromatography.

  12. Shoot biomass growth is related to the vertical leaf nitrogen gradient in Salix canopies.

    PubMed

    Weih, Martin; Rönnberg-Wästjung, Ann-Christin

    2007-11-01

    Plant canopy optimization models predict that leaf nitrogen (N) distribution in the canopy will parallel the vertical light gradient, and numerous studies with many species have confirmed this prediction. Further, it is predicted that for a given canopy leaf area, a low vertical light extinction coefficient will promote rapid growth. Therefore, the ideal canopy of fast-growing plants should combine high leaf area index with a low light extinction coefficient; the latter being reflected in a flat vertical leaf N gradient throughout the canopy. Based on data from an experimental Salix stand (six varieties) grown on agricultural land in central Sweden, we tested the hypothesis that shoot growth is correlated with vertical leaf N gradient in canopies of hybrid willows bred for biomass production, which could have implications for Salix breeding. Tree improvement research requires screening of growth-related traits in large numbers of plants, but assessment of canopy leaf N gradients by chemical analysis is expensive, time-consuming and destructive. An alternative to analytical methods is to estimate leaf N gradients nondestructively with an optical chlorophyll meter (SPAD method). Here we provide a specific calibration for interpreting SPAD data measured in hybrid willows grown in biomass plantations on fertile agricultural land. Based on SPAD measurements, a significant and inverse relationship (r(2) = 0.88) was found between shoot biomass growth and vertical leaf N gradient across canopies of six Salix varieties.

  13. The allocation of assimilated carbon to shoot growth: in situ assessment in natural grasslands reveals nitrogen effects and interspecific differences.

    PubMed

    Gong, Xiao Ying; Berone, Germán Darío; Agnusdei, Mónica Graciela; Palma, Ricardo Manuel Rodríguez; Schäufele, Rudi; Lattanzi, Fernando Alfredo

    2014-04-01

    In grasslands, sustained nitrogen loading would increase the proportion of assimilated carbon allocated to shoot growth (A shoot), because it would decrease allocation to roots and also encourage the contribution of species with inherently high A shoot. However, in situ measurements of carbon allocation are scarce. Therefore, it is unclear to what extent species that coexist in grasslands actually differ in their allocation strategy or in their response to nitrogen. We used a mobile facility to perform steady-state (13)C-labeling of field stands to quantify, in winter and autumn, the daily relative photosynthesis rate (RPR~tracer assimilated over one light-period) and A shoot (~tracer remaining in shoots after a 100 degree days chase period) in four individual species with contrasting morpho-physiological characteristics coexisting in a temperate grassland of Argentina, either fertilized or not with nitrogen, and either cut intermittently or grazed continuously. Plasticity in response to nitrogen was substantial in most species, as indicated by positive correlations between A shoot and shoot nitrogen concentration. There was a notable interspecific difference: productive species with higher RPR, enhanced by fertilization and characterized by faster leaf turnover rate, allocated ~20% less of the assimilated carbon to shoot growth than species of lower productivity (and quality) characterized by longer leaf life spans and phyllochrons. These results imply that, opposite to the expected response, sustained nitrogen loading would change little the A shoot of grassland communities if increases at the species-level are offset by decreases associated with replacement of 'low RPR-high A shoot' species by 'high RPR-low A shoot' species.

  14. Larval growth rate and sex determine resource allocation and stress responsiveness across life stages in juvenile frogs.

    PubMed

    Warne, Robin W; Crespi, Erica J

    2015-03-01

    The extent to which interactions between environmental stressors and phenotypic variation during larval life stages impose carry-over effects on adult phenotypes in wildlife are not clear. Using semi-natural mesocosms, we examined how chronically low food availability and size-specific phenotypes in larval amphibians interact and carry over to influence frog growth, resource allocation, endocrine activity and survival. We tagged three cohorts of larvae that differed in body size and developmental stage at 3 weeks after hatching, and tracked them through 10 weeks after metamorphosis in high and low food conditions. We found that growth and development rates during the early tadpole stage not only affected metamorphic rates, but also shaped resource allocation and stress responsiveness in frogs: the slowest growing larvae from low-food mesocosms exhibited a suppressed glucocorticoid response to a handling stressor; reduced growth rate and fat storage as frogs. We also show for the first time that larval developmental trajectories varied with sex, where females developed faster than males especially in food-restricted conditions. Last, while larval food restriction profoundly affected body size in larvae and frogs, time to metamorphosis was highly constrained, which suggests that the physiology and development of this ephemeral pond-breeding amphibian is adapted for rapid metamorphosis despite large potential variation in nutrient availability. Taken together, these results suggest that larval phenotypic variation significantly influences multiple dimensions of post-metamorphic physiology and resource allocation, which likely affect overall performance.

  15. [Effects of phosphorus fertilization on leaf area index, biomass accumulation and allocation, and phosphorus use efficiency of intercropped maize].

    PubMed

    Chen, Yuan-Xue; Li, Han-Han; Zhou, Tao; Chen, Xin-Ping; Huang, Wei; Liu, Jing; Zhang, Chao-Chun; Xu, Kai-Wei

    2013-10-01

    A 2-year field experiment was conducted in 2011 and 2012 to investigate the effects of phosphorus (P) fertilization on the leaf area index (LAI), dry matter accumulation (DMA), and P use efficiency (PUE) of maize in wheat/maize/soybean intercropping system. Five P fertilization rates were installed, i.e., 0, 45, 90, 135, and 180 kg P2O5 x hm(-2) for wheat, marked as WP0, WP1, WP2, WP3, and WP4, respectively, and 0, 37.5, 75, 112.5, and 150 kg P2O5 x hm(-2) for maize, marked as MP0, MP1, MP2, MP3, and MP4, respectively. During the coexisted growth periods of wheat and maize, P fertilization increased the LAI, leaf area duration (LAD), and stem and leaf DMA of maize significantly. After the jointing stage of maize, the maize LAI, LAD, DMA, and crop growth rate (CGR) all decreased after an initial increase with the increasing P rate, with the maximum growth in treatment MP2 or MP3. During the reproductive stage of maize, the maize dry mass translocation from vegetative to reproductive organ increased with increasing P fertilization rate, and the grain yield of both maize and whole cropping system increased firstly and decreased then, with the maximum grain yield of maize and whole cropping system being 6588 and 11955 kg x hm(-2) in treatment P3, respectively. The P apparent recovery efficiency of maize was the highest (26.3%) in treatment MP2, being 82.6%, 38.4%, and 152.9% higher than that in MP1 (14.4%), MP3 (19.0%), and MP4 (10.4%), respectively. In sum, for the wheat/maize/soybean intercropping system, applying appropriate amount of P fertilizer could promote maize growth, alleviate the impact of wheat on maize, and consequently, increase the P apparent recovery efficiency of maize. In this study, the appropriate P fertilization rate was 75-112.5 kg P2O5 x hm(-2).

  16. Accumulation of biomass and mineral elements with calendar time by cotton: application of the expanded growth model.

    PubMed

    Overman, Allen R; Scholtz, Richard V

    2013-01-01

    Accumulation of plant biomass (Mg ha(-1)) with calendar time (wk) occurs as a result of photosynthesis for green land-based plants. A corresponding accumulation of mineral elements (kg ha(-1)) such as nitrogen, phosphorus, and potassium occurs from the soil through plant roots. Field data from literature for the warm-season annual cotton (Gossypium hirsutum L.) are used in this analysis. The expanded growth model is used to describe accumulation of biomass and mineral elements with calendar time. The growth model predicts a simple linear relationship between biomass yield and the growth quantifier, which is confirmed with the data. The growth quantifier incorporates the unit processes of distribution of solar energy which drives biomass accumulation by photosynthesis, partitioning of biomass between light-gathering and structural components of the plants, and an aging function. A hyperbolic relationship between plant nutrient uptake and biomass yield is assumed, and is confirmed for the mineral elements nitrogen, phosphorus, and potassium. It is concluded that the rate limiting process in the system is biomass accumulation by photosynthesis and that nutrient accumulation occurs in virtual equilibrium with biomass accumulation. The expanded growth model describes field data from California and Alabama rather well. Furthermore, all model parameters were common for the two sites with the exception of the yield factor A which accounts for differences in soil types, environmental conditions, fertilizer levels, and plant population.

  17. Growth, biomass, and fecundity of Bothriocephalus acheilognathi in a North Carolina cooling reservoir

    SciTech Connect

    Riggs, M.R.; Lemly, A.D.; Esch, G.W.

    1987-10-01

    An investigation of differences in growth, maturation, biomass, and fecundity of Bothriocephalus acheilognathi in 3 host species was conducted on metapopulations from 3 distinct communities in Belews Lake, North Carolina. The results indicated that host-specific differences in growth and biomass were additive among metapopulations from different localities. However, species-specific differences in maturation and fecundity exhibited differential variation between the sites. These site X host interactions were related to host-specific differences in bioaccumulation of selenium at sites that were exposed to effluent from a coal-fired power plant. Significant (alpha = 0.001) statistical associations were observed between selenium concentration in tapeworm tissue and fecundity measures. The results of this study demonstrate that host suitability is determined by morphological, physiological, and behavioral differences in the host species which affect transmission dynamics and the quality and stability of the enteric environment.

  18. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality

    USGS Publications Warehouse

    Foster, Jane R.; D'Amato, Anthony W.; Bradford, John B.

    2014-01-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20–30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25–30 % higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  19. Looking for age-related growth decline in natural forests: unexpected biomass patterns from tree rings and simulated mortality.

    PubMed

    Foster, Jane R; D'Amato, Anthony W; Bradford, John B

    2014-05-01

    Forest biomass growth is almost universally assumed to peak early in stand development, near canopy closure, after which it will plateau or decline. The chronosequence and plot remeasurement approaches used to establish the decline pattern suffer from limitations and coarse temporal detail. We combined annual tree ring measurements and mortality models to address two questions: first, how do assumptions about tree growth and mortality influence reconstructions of biomass growth? Second, under what circumstances does biomass production follow the model that peaks early, then declines? We integrated three stochastic mortality models with a census tree-ring data set from eight temperate forest types to reconstruct stand-level biomass increments (in Minnesota, USA). We compared growth patterns among mortality models, forest types and stands. Timing of peak biomass growth varied significantly among mortality models, peaking 20-30 years earlier when mortality was random with respect to tree growth and size, than when mortality favored slow-growing individuals. Random or u-shaped mortality (highest in small or large trees) produced peak growth 25-30% higher than the surviving tree sample alone. Growth trends for even-aged, monospecific Pinus banksiana or Acer saccharum forests were similar to the early peak and decline expectation. However, we observed continually increasing biomass growth in older, low-productivity forests of Quercus rubra, Fraxinus nigra, and Thuja occidentalis. Tree-ring reconstructions estimated annual changes in live biomass growth and identified more diverse development patterns than previous methods. These detailed, long-term patterns of biomass development are crucial for detecting recent growth responses to global change and modeling future forest dynamics.

  20. Growth, yield and compositional characteristics of Jerusalem artichoke as it relates to biomass production

    SciTech Connect

    Stauffer, M.D.; Chubey, B.B.; Dorrell, D.G.

    1980-01-01

    Jerusalem artichoke (Helianthus tuberosus L.) has shown excellent potential as a carbohydrate-rich crop. Initial investigations determined inulin and tuber yields; however, when additional studies showed that good quality pulp remained after inulin extraction and high forage yields per hectare were obtainable, the scope of investigation was broadened to assess utilization of the total plant. Plant growth, yield and compositional characteristics of Jerusalem artichoke as they relate to biomass production will be reported.

  1. Plot size recommendations for biomass estimation in a midwestern old-growth forest

    Treesearch

    Martin A. Spetich; George R Parker

    1998-01-01

    The authors examine the relationship between disturbance regime and plot size for woody biomass estimation in a midwestern old-growth deciduous forest from 1926 to 1992. Analysis was done on the core 19.6 ac of a 50.1 ac forest in which every tree 4 in. d.b.h. and greater has been tagged and mapped since 1926. Five windows of time are compared—1926, 1976, 1981, 1986...

  2. Growth Properties and Biomass Production in the Hybrid C4 Crop Sorghum bicolor.

    PubMed

    Tazoe, Youshi; Sazuka, Takashi; Yamaguchi, Miki; Saito, Chieko; Ikeuchi, Masahiro; Kanno, Keiichi; Kojima, Soichi; Hirano, Ko; Kitano, Hideki; Kasuga, Shigemitsu; Endo, Tsuyoshi; Fukuda, Hiroo; Makino, Amane

    2016-05-01

    Hybrid vigor (heterosis) has been used as a breeding technique for crop improvement to achieve enhanced biomass production, but the physiological mechanisms underlying heterosis remain poorly understood. In this study, to find a clue to the enhancement of biomass production by heterosis, we systemically evaluated the effect of heterosis on the growth rate and photosynthetic efficiency in sorghum hybrid [Sorghum bicolor (L.) Moench cv. Tentaka] and its parental lines (restorer line and maintainer line). The final biomass of Tentaka was 10-14 times greater than that of the parental lines grown in an experimental field, but the relative growth rate during the vegetative growth stage did not differ. Tentaka exhibited a relatively enlarged leaf area with lower leaf nitrogen content per leaf area (Narea). When the plants were grown hydroponically at different N levels, daily CO2 assimilation per leaf area (A) increased with Narea, and the ratio of A to Narea (N-use efficiency) was higher in the plants grown at low N levels but not different between Tentaka and the parental lines. The relationships between the CO2 assimilation rate, the amounts of photosynthetic enzymes, including ribulose-1,5-bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase and pyruvate phosphate dikinase, Chl and Narea did not differ between Tentaka and the parental lines. Thus, Tentaka tended to exhibit enlargement of leaf area with lower N content, leading to a higher N-use efficiency for CO2 assimilation, but the photosynthetic properties did not differ. The greater biomass in Tentaka was mainly due to the prolonged vegetative growth period.

  3. Distribution of biomass in an Indiana old-growth forest from 1926 to 1992

    Treesearch

    Martin A. Spetich; George R. Parker

    1998-01-01

    We examined the structural and spatial distribution of woody biomass in relationship to disturbance in an Indiana old-growth deciduous forest over a 66-year period. Analysis was done on the core 7.92 ha of a 20.6 ha forest in which every tree 10 cm dbh and over has been tagged and mapped since 1926. Five years are compared - 1926, 1976, 1981, 1986 and 1992....

  4. Studies on mould growth and biomass production using waste banana peel.

    PubMed

    Essien, J P; Akpan, E J; Essien, E P

    2005-09-01

    Hyphomycetous (Aspergillus fumigatus) and Phycomycetous (Mucor hiemalis) moulds were cultivated in vitro at room temperature (28 + 20 degrees C) to examined their growth and biomass production on waste banana peel agar (BPA) and broth (BPB) using commercial malt extract agar (MEA) and broth (MEB) as control. The moulds grew comparatively well on banana peel substrates. No significant difference (p > 0.05) in radial growth rates was observed between moulds cultivated on PBA and MEA, although growth rates on MEA were slightly better. Slight variations in sizes of asexual spores and reproductive hyphae were also observed between moulds grown on MEA and BPA. Smaller conidia and sporangiospores, and shorter aerial hyphae (conidiophores and sporangiophores) were noticed in moulds grown on BPA than on MEA. The biomass weight of the test moulds obtained after one month of incubation with BPB were only about 1.8 mg and 1.4 mg less than values recorded for A. fumigatus and M. hiemalis respectively, grown on MEB. The impressive performance of the moulds on banana peel substrate may be attributed to the rich nutrient (particularly the crude protein 7.8% and crude fat 11.6% contents) composition of banana peels. The value of this agricultural waste can therefore be increased by its use not only in the manufacture of mycological medium but also in the production of valuable microfungal biomass which is rich in protein and fatty acids.

  5. Geographic patterns of herbivory and resource allocation to defense, growth, and reproduction in an invasive biennial, Alliaria petiolata.

    PubMed

    Lewis, Kristin C; Bazzaz, F A; Liao, Qing; Orians, Colin M

    2006-06-01

    We investigated geographic patterns of herbivory and resource allocation to defense, growth, and reproduction in an invasive biennial, Alliaria petiolata, to test the hypothesis that escape from herbivory in invasive species permits enhanced growth and lower production of defensive chemicals. We quantified herbivore damage, concentrations of sinigrin, and growth and reproduction inside and outside herbivore exclusion treatments, in field populations in the native and invasive ranges. As predicted, unmanipulated plants in the native range (Hungary, Europe) experienced greater herbivore damage than plants in the introduced range (Massachusetts and Connecticut, USA), providing evidence for enemy release, particularly in the first year of growth. Nevertheless, European populations had consistently larger individuals than US populations (rosettes were, for example, eightfold larger) and also had greater reproductive output, but US plants produced larger seeds at a given plant height. Moreover, flowering plants showed significant differences in concentrations of sinigrin in the invasive versus native range, although the direction of the difference was variable, suggesting the influence of environmental effects. Overall, we observed less herbivory, but not increased growth or decreased defense in the invasive range. Geographical differences in performance and leaf chemistry appear to be due to variation in the environment, which could have masked evolved differences in allocation.

  6. Effect of tree shelters on above-ground stem biomass leaf numbers and size, and height growth

    Treesearch

    Douglas O. Lantagne; Gregory Kowalewski

    1997-01-01

    Tree shelters have been tested and shown to be effective in several circumstances regarding hardwood regeneration, especially with northern red oak (Quercus rubra L.). A study was initiated to quantify how tree shelters affected quantity, size and biomass of leaves, the number of growth flushes, and the above ground stem biomass of planted northern...

  7. Simulation of carbon allocation and organ growth variability in apple tree by connecting architectural and source–sink models

    PubMed Central

    Pallas, Benoît; Da Silva, David; Valsesia, Pierre; Yang, Weiwei; Guillaume, Olivier; Lauri, Pierre-Eric; Vercambre, Gilles; Génard, Michel; Costes, Evelyne

    2016-01-01

    Background and aims Plant growth depends on carbon availability and allocation among organs. QualiTree has been designed to simulate carbon allocation and partitioning in the peach tree (Prunus persica), whereas MappleT is dedicated to the simulation of apple tree (Malus × domestica) architecture. The objective of this study was to couple both models and adapt QualiTree to apple trees to simulate organ growth traits and their within-tree variability. Methods MappleT was used to generate architectures corresponding to the ‘Fuji’ cultivar, accounting for the variability within and among individuals. These architectures were input into QualiTree to simulate shoot and fruit growth during a growth cycle. We modified QualiTree to account for the observed shoot polymorphism in apple trees, i.e. different classes (long, medium and short) that were characterized by different growth function parameters. Model outputs were compared with observed 3D tree geometries, considering shoot and final fruit size and growth dynamics. Key Results The modelling approach connecting MappleT and QualiTree was appropriate to the simulation of growth and architectural characteristics at the tree scale (plant leaf area, shoot number and types, fruit weight at harvest). At the shoot scale, mean fruit weight and its variability within trees was accurately simulated, whereas the model tended to overestimate individual shoot leaf area and underestimate its variability for each shoot type. Varying the parameter related to the intensity of carbon exchange between shoots revealed that behaviour intermediate between shoot autonomy and a common assimilate pool was required to properly simulate within-tree fruit growth variability. Moreover, the model correctly dealt with the crop load effect on organ growth. Conclusions This study provides understanding of the integration of shoot ontogenetic properties, carbon supply and transport between entities for simulating organ growth in trees. Further

  8. Simulation of carbon allocation and organ growth variability in apple tree by connecting architectural and source-sink models.

    PubMed

    Pallas, Benoît; Da Silva, David; Valsesia, Pierre; Yang, Weiwei; Guillaume, Olivier; Lauri, Pierre-Eric; Vercambre, Gilles; Génard, Michel; Costes, Evelyne

    2016-08-01

    Plant growth depends on carbon availability and allocation among organs. QualiTree has been designed to simulate carbon allocation and partitioning in the peach tree (Prunus persica), whereas MappleT is dedicated to the simulation of apple tree (Malus × domestica) architecture. The objective of this study was to couple both models and adapt QualiTree to apple trees to simulate organ growth traits and their within-tree variability. MappleT was used to generate architectures corresponding to the 'Fuji' cultivar, accounting for the variability within and among individuals. These architectures were input into QualiTree to simulate shoot and fruit growth during a growth cycle. We modified QualiTree to account for the observed shoot polymorphism in apple trees, i.e. different classes (long, medium and short) that were characterized by different growth function parameters. Model outputs were compared with observed 3D tree geometries, considering shoot and final fruit size and growth dynamics. The modelling approach connecting MappleT and QualiTree was appropriate to the simulation of growth and architectural characteristics at the tree scale (plant leaf area, shoot number and types, fruit weight at harvest). At the shoot scale, mean fruit weight and its variability within trees was accurately simulated, whereas the model tended to overestimate individual shoot leaf area and underestimate its variability for each shoot type. Varying the parameter related to the intensity of carbon exchange between shoots revealed that behaviour intermediate between shoot autonomy and a common assimilate pool was required to properly simulate within-tree fruit growth variability. Moreover, the model correctly dealt with the crop load effect on organ growth. This study provides understanding of the integration of shoot ontogenetic properties, carbon supply and transport between entities for simulating organ growth in trees. Further improvements regarding the integration of retroaction loops

  9. Selecting and optimizing eco-physiological parameters of Biome-BGC to reproduce observed woody and leaf biomass growth of Eucommia ulmoides plantation in China using Dakota optimizer

    NASA Astrophysics Data System (ADS)

    Miyauchi, T.; Machimura, T.

    2013-12-01

    In the simulation using an ecosystem process model, the adjustment of parameters is indispensable for improving the accuracy of prediction. This procedure, however, requires much time and effort for approaching the simulation results to the measurements on models consisting of various ecosystem processes. In this study, we tried to apply a general purpose optimization tool in the parameter optimization of an ecosystem model, and examined its validity by comparing the simulated and measured biomass growth of a woody plantation. A biometric survey of tree biomass growth was performed in 2009 in an 11-year old Eucommia ulmoides plantation in Henan Province, China. Climate of the site was dry temperate. Leaf, above- and below-ground woody biomass were measured from three cut trees and converted into carbon mass per area by measured carbon contents and stem density. Yearly woody biomass growth of the plantation was calculated according to allometric relationships determined by tree ring analysis of seven cut trees. We used Biome-BGC (Thornton, 2002) to reproduce biomass growth of the plantation. Air temperature and humidity from 1981 to 2010 was used as input climate condition. The plant functional type was deciduous broadleaf, and non-optimizing parameters were left default. 11-year long normal simulations were performed following a spin-up run. In order to select optimizing parameters, we analyzed the sensitivity of leaf, above- and below-ground woody biomass to eco-physiological parameters. Following the selection, optimization of parameters was performed by using the Dakota optimizer. Dakota is an optimizer developed by Sandia National Laboratories for providing a systematic and rapid means to obtain optimal designs using simulation based models. As the object function, we calculated the sum of relative errors between simulated and measured leaf, above- and below-ground woody carbon at each of eleven years. In an alternative run, errors at the last year (at the

  10. Growth-defence balance in grass biomass production: the role of jasmonates.

    PubMed

    Shyu, Christine; Brutnell, Thomas P

    2015-07-01

    Growth-defence balance is the selective partitioning of resources between biomass accumulation and defence responses. Although it is generally postulated that reallocation of limited carbon pools drives the antagonism between growth and defence, little is known about the mechanisms underlying this regulation. Jasmonates (JAs) are a group of oxylipins that are required for a broad range of responses from defence against insects to reproductive growth. Application of JAs to seedlings also leads to inhibited growth and repression of photosynthesis, suggesting a role for JAs in regulating growth-defence balance. The majority of JA research uses dicot models such as Arabidopsis and tomato, while understanding of JA biology in monocot grasses, which comprise most bioenergy feedstocks, food for human consumption, and animal feed, is limited. Interestingly, JA mutants of grasses exhibit unique phenotypes compared with well-studied dicot models. Gene expression analyses in bioenergy grasses also suggest roles for JA in rhizome development, which has not been demonstrated in Arabidopsis. In this review we summarize current knowledge of JA biology in panicoid grasses-the group that consists of the world's emerging bioenergy grasses such as switchgrass, sugarcane, Miscanthus, and sorghum. We discuss outstanding questions regarding the role of JAs in panicoid grasses, and highlight the importance of utilizing emerging grass models for molecular studies to provide a basis for engineering bioenergy grasses that can maximize biomass accumulation while efficiently defending against stress.

  11. Testosterone inhibits growth in juvenile male eastern fence lizards (Sceloporus undulatus): implications for energy allocation and sexual size dimorphism.

    PubMed

    Cox, Robert M; Skelly, Stephanie L; John-Alder, Henry B

    2005-01-01

    In the eastern fence lizard, Sceloporus undulatus, female-larger sexual size dimorphism develops because yearling females grow faster than males before first reproduction. This sexual growth divergence coincides with maturational increases in male aggression, movement, and ventral coloration, all of which are influenced by the sex steroid testosterone (T). These observations suggest that male growth may be constrained by energetic costs of activity and implicate T as a physiological regulator of this potential trade-off. To test this hypothesis, we used surgical castration and subsequent administration of exogenous T to alter the physiological and behavioral phenotypes of field-active males during the period of sexual growth divergence. As predicted, T inhibited male growth, while castration promoted long-term growth. Males treated with T also exhibited increased daily activity period, movement, and home range area. Food consumption did not differ among male treatments or sexes, suggesting that the inhibitory effects of T on growth are mediated by patterns of energy allocation rather than acquisition. On the basis of estimates derived from published data, we conclude that the energetic cost of increased daily activity period following T manipulation is sufficient to explain most (79%) of the associated reduction in growth. Further, growth may have been constrained by additional energetic costs of increased ectoparasite load following T manipulation. Similar studies of the proximate behavioral, ecological, and physiological mechanisms involved in growth regulation should greatly improve our understanding of sexual size dimorphism.

  12. Effect of Tris-(hydroxymethyl)-amino methane on microalgae biomass growth in a photobioreactor.

    PubMed

    Nguyen, Thanh Tin; Bui, Xuan Thanh; Pham, Minh Duyen; Guo, Wenshan; Ngo, Huu Hao

    2016-05-01

    One of the buffers namely Tris (Tris-(hydroxymethyl)-amino methane) was used to increase the growth of microalgae by stabilizing the pH value in microalgae cultures. The objective of this research is to determine the growth rate and biomass productivity of Chlorella sp. with and without Tris addition. Both conditions function at various N:P ratios cultured in photobioreactors (carbon dioxide of 5%(v/v), light intensity of 3.3 Klux). Daily variations in nutrient removal (nitrogen and phosphorus), cell concentration, DO, temperature and pH were measured for data analysis. The results show that the largest yield of biomass was achieved at the N:P ratio of 15:1 with and without Tris. After cultivation lasting 92 h, the algae concentration at this ratio was 1250 mg L(-1) and 3568 mg L(-1) with and without Tris, respectively. This indicates that adding Tris to the photobioreactor greatly reduces algae biomass due to bacterial competition.

  13. Sexual competition affects biomass partitioning, carbon-nutrient balance, Cd allocation and ultrastructure of Populus cathayana females and males exposed to Cd stress.

    PubMed

    Chen, Juan; Duan, Baoli; Xu, Gang; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang

    2016-11-01

    Although increasing attention has been paid to plant adaptation to soil heavy metal contamination, competition and neighbor effects have been largely overlooked, especially in dioecious plants. In this study, we investigated growth as well as biochemical and ultrastructural responses of Populus cathayana Rehder females and males to cadmium (Cd) stress under different sexual competition patterns. The results showed that competition significantly affects biomass partitioning, photosynthetic capacity, leaf and root ultrastructure, Cd accumulation, the contents of polyphenols, and structural and nonstructural carbohydrates. Compared with single-sex cultivation, plants of opposite sexes exposed to sexual competition accumulated more Cd in tissues and their growth was more strongly inhibited, indicating enhanced Cd toxicity under sexual competition. Under intrasexual competition, females showed greater Cd accumulation, more serious damage at the ultrastructural level and greater reduction in physiological activity than under intersexual competition, while males performed better under intrasexual competition than under intersexual competition. Males improved the female microenvironment by greater Cd uptake and lower resource consumption under intersexual competition. These results demonstrate that the sex of neighbor plants and competition affect sexual differences in growth and in key physiological processes under Cd stress. The asymmetry of sexual competition highlighted here might regulate population structure, and spatial segregation and phytoremediation potential of both sexes in P. cathayana growing in heavy metal-contaminated soils. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Whole-plant C allocation priorities: do secondary metabolites and VOCs matter?

    NASA Astrophysics Data System (ADS)

    Hartmann, Henrik; Huang, Jianbei; Forkelova, Lenka; Behrendt, Thomas; Reichelt, Michael; Hammerbacher, Almuth

    2017-04-01

    Whole-plant carbon (C) allocation is a critical issue for understanding plant functioning and has been studied for many decades. Plants fix CO2 from the atmosphere and partition the resulting photosynthetic products (carbohydrates) among several functional pools including growth of structural and reproductive biomass, metabolic processes like respiration but also for the synthesis of secondary metabolites promoting defense and communication. Allocation to secondary metabolites is conceptually viewed as a trade-off between growth and defense. Plants either invest carbohydrates to produce biomass which may be lost - at least partially -to herbivory or they increase allocation to secondary metabolites to deter herbivores from consuming existing biomass. While conceptually intuitive, trade-off hypotheses all suffer from one important shortcoming: the whole-plant carbon balance, critical for determining trade-off relationships, is usually unknown. In the research group on Plant Allocation, we manipulate and measure the whole-plant carbon balance in different species and use tracers to investigate carbon fluxes through the plant and into functional allocation pools. Inducing carbon limitation by reducing atmospheric [CO2] allows us to infer allocation priorities. In this presentation I will show several examples of studies on whole-plant carbon allocation patterns in different plant species. These investigations include assessments of different functional pools like growth, storage, secondary metabolites and volatile emissions as well as the underlying phytohormonal patterns and show that allocation to secondary metabolites and volatiles has a high priority in the whole-plant carbon balance.

  15. Allocation of new growth between shoot, root and mycorrhiza in relation to carbon, nitrogen and phosphate supply: teleonomy with maximum growth rate.

    PubMed

    Thornley, John H M; Parsons, Anthony J

    2014-02-07

    Treating resource allocation within plants, and between plants and associated organisms, is essential for plant, crop and ecosystem modelling. However, it is still an unresolved issue. It is also important to consider quantitatively when it is efficient and to what extent a plant can invest profitably in a mycorrhizal association. A teleonomic model is used to address these issues. A six state-variable model giving exponential growth is constructed. This represents carbon (C), nitrogen (N) and phosphorus (P) substrates with structure in shoot, root and mycorrhiza. The shoot is responsible for uptake of substrate C, the root for substrates N and P, and the mycorrhiza also for substrates N and P. A teleonomic goal, maximizing proportional growth rate, is solved analytically for the allocation fractions. Expressions allocating new dry matter to shoot, root and mycorrhiza are derived which maximize growth rate. These demonstrate several key intuitive phenomena concerning resource sharing between plant components and associated mycorrhizae. For instance, if root uptake rate for phosphorus is equal to that achievable by mycorrhiza and without detriment to root uptake rate for nitrogen, then this gives a faster growing mycorrhizal-free plant. However, if root phosphorus uptake is below that achievable by mycorrhiza, then a mycorrhizal association may be a preferred strategy. The approach offers a methodology for introducing resource sharing between species into ecosystem models. Applying teleonomy may provide a valuable short-term means of modelling allocation, avoiding the circularity of empirical models, and circumventing the complexities and uncertainties inherent in mechanistic approaches. However it is subjective and brings certain irreducible difficulties with it.

  16. Simple control of specific growth rate in biotechnological fed-batch processes based on enhanced online measurements of biomass.

    PubMed

    Dabros, Michal; Schuler, Moira Monika; Marison, Ian W

    2010-11-01

    Reliable control of the specific growth rate (μ) in fed-batch fermentations depends on the availability of accurate online estimations of the controlled variable. Due to difficulties in measuring biomass, μ is typically estimated using reference models relating measurements of substrate consumption or oxygen uptake rate to biomass growth. However, as culture conditions vary, these models are adapted dynamically, resulting in complex algorithms that lack the necessary robustness for industrial applicability. A simpler approach is presented where biomass is monitored using dielectric spectroscopy. The measurements are subjected to online balances and reconciled in real time against metabolite concentrations and off-gas composition. The reconciled biomass values serve to estimate the growth rate and a simple control scheme is implemented to maintain the desired value of μ. The methodology is developed with the yeast Kluyveromyces marxianus, tested for disturbance rejection and validated with two other strains. It is applicable to other cellular systems with minor modifications.

  17. Density-dependent reproductive and vegetative allocation in the aquatic plant Pistia stratiotes (Araceae).

    PubMed

    Coelho, Flávia Freitas; Deboni, Liene; Lopes, Frederico Santos

    2005-01-01

    Pistia stratiotes is an aquatic macrophyte that grows in temporary-ponds in the southern Pantanal, Brazil. It reproduces both sexually and asexually and is usually observed forming dense mats on the water surface, a condition favored by the plant's vegetative reproduction coupled with an ability for rapid growth. In this study we examined the effect of densely crowded conditions on the production of reproductive and vegetative structures. In addition, we verified whether there is a trade-off between clonal growth and investment in sexual reproductive structures, and whether there is an allocation pattern with plant size. Individual plant biomass and the number of the rosettes producing sexual reproductive structures and vegetative growth structures both increased with density. Increase in plant size resulted in increased proportional allocation to sexual reproductive structures and vegetative growth structures. Allocation of biomass to reproduction did not occur at the expense of clonal growth. Thus, the density response appears as a increase of rosettes producing sexual reproductive structures and vegetative growth structures. Therefore, long leaves and stolons may be adaptive under densely crowded conditions where competition for light is intense. An important aspect in the study of trade-offs is the size-dependency of the allocation patterns .Usually, larger plants produce more biomass. Therefore, larger plants can allocate more biomass to both vegetative and sexual reproduction than smaller plants and thus show a positive correlation between both traits rather than the expected negative one.

  18. Comprehensive computational model for combining fluid hydrodynamics, light transport and biomass growth in a Taylor vortex algal photobioreactor: Lagrangian approach.

    PubMed

    Gao, Xi; Kong, Bo; Vigil, R Dennis

    2017-01-01

    A comprehensive quantitative model incorporating the effects of fluid flow patterns, light distribution, and algal growth kinetics on biomass growth rate is developed in order to predict the performance of a Taylor vortex algal photobioreactor for culturing Chlorella vulgaris. A commonly used Lagrangian strategy for coupling the various factors influencing algal growth was employed whereby results from computational fluid dynamics and radiation transport simulations were used to compute numerous microorganism light exposure histories, and this information in turn was used to estimate the global biomass specific growth rate. The simulations provide good quantitative agreement with experimental data and correctly predict the trend in reactor performance as a key reactor operating parameter is varied (inner cylinder rotation speed). However, biomass growth curves are consistently over-predicted and potential causes for these over-predictions and drawbacks of the Lagrangian approach are addressed.

  19. Disposal of metal treated Salvinia biomass in soil and its effect on growth and photosynthetic efficiency of wheat.

    PubMed

    Dhir, Bhupinder; Srivastava, Sheela

    2012-01-01

    Phytoremediation technologies generate huge quantities of biomass, the disposal of which is a serious concern. Wastewater samples collected from electroplating industries were treated with Salvinia biomass. The effect of application of metal loaded Salvinia plant biomass in soil on growth and physiological indices of 10-day-old seedlings of Triticum aestivum was evaluated. Controls (A) consisted of soil supplemented with untreated plant biomass. Seed germination, seedling height, total chlorophyll, glucose and protein levels, photosynthetic efficiency (Fv/Fm), photochemical quenching (qP), non-photochemical quenching (qn), quantum yield (Y), and electron transport rate (ETR) were not significantly affected in seedlings raised in soils supplemented with metal loaded biomass from most of the samples (B-F) in comparison to control. However, significant decline was noted in total chlorophyll, glucose, and quantum yield in plants grown in soil supplemented with biomass from sample E. Among elemental levels, C(%) remained largely unaffected, N(%) showed slight enhancement but a decrease in H(%) was noted in plants grown in soil supplemented with biomass from sample E. Our results, therefore, suggest that metal accumulated Salvinia biomass obtained after phytoremediation of heavy metal contaminated wastewater can be supplemented in soil. Further studies are required to assess long-term effects of disposal of metal loaded Salvinia plant biomass in soil.

  20. Biomass partitioning in red pine (Pinus resinosa) along a chronosequence in the Upper Peninsula of Michigan

    Treesearch

    J.S. King; C.P. Giardina; K.S. Pregitzer; A.L. Friend

    2007-01-01

    Carbon (C) allocation to the perennial coarse-root system of trees contributes to ecosystem C sequestration through formation of long-lived live wood biomass and, following senescence, by providing a large source of nutrient-poor detrital C. Our understanding of the controls on C allocation to coarse-root growth is rudimentary, but it has important implications for...

  1. Dynamics of Aviation Biofuel Investment, Incentives, and Market Growth: An Exploration Using the Biomass Scenario Model

    SciTech Connect

    Vimmerstedt, Laura; Newes, Emily

    2016-10-25

    The Federal Aviation Administration promotes the development of an aviation biofuel market, and has pursued a goal of 1 billion gallons of production annually by 2018. Although this goal is unlikely to be met, this analysis applies the Biomass Scenario Model to explore conditions affecting market growth, and identifies policy incentive and oil price conditions under which this level of production might occur, and by what year. Numerous combinations of conditions that are more favorable than current conditions can reach the goal before 2030.

  2. Soil microbial biomass and root growth in Bt and non-Bt cotton

    NASA Astrophysics Data System (ADS)

    Tan, D. K. Y.; Broughton, K.; Knox, O. G.; Hulugalle, N. R.

    2012-04-01

    The introduction of transgenic Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.) has had a substantial impact on pest management in the cotton industry. While there has been substantial research done on the impact of Bt on the above-ground parts of the cotton plant, less is known about the effect of Bt genes on below ground growth of cotton and soil microbial biomass. The aim of this research was to test the hypothesis that Bt [Sicot 80 BRF (Bollgard II Roundup Ready Flex®)] and non-Bt [Sicot 80 RRF (Roundup Ready Flex®)] transgenic cotton varieties differ in root growth and root turnover, carbon indices and microbial biomass. A field experiment was conducted in Narrabri, north-western NSW. The experimental layout was a randomised block design and used minirhizotron and core break and root washing methods to measure cotton root growth and turnover during the 2008/09 season. Root growth in the surface 0-0.1 m of the soil was measured using the core break and root washing methods, and that in the 0.1 to 1 m depth was measured with a minirhizotron and an I-CAP image capture system. These measurements were used to calculate root length per unit area, root carbon added to the soil through intra-seasonal root death, carbon in roots remaining at the end of the season and root carbon potentially added to the soil. Microbial biomass was also measured using the ninhydrin reactive N method. Root length densities and length per unit area of non-Bt cotton were greater than Bt cotton. There were no differences in root turnover between Bt and non-Bt cotton at 0-1 m soil depth, indicating that soil organic carbon stocks may not be affected by cotton variety. Cotton variety did not have an effect on soil microbial biomass. The results indicate that while there are differences in root morphology between Bt and non-Bt cotton, these do not change the carbon turnover dynamics in the soil.

  3. Biomass density-function relationships in suspended growth biological processes - A critical review.

    PubMed

    Li, Lin; Pagilla, Krishna R

    2017-03-15

    Good settling performance in suspended growth biomass systems, for example in activated sludge (AS) process, leads to efficient wastewater and sludge treatment. Factors that cause the differences in settleablility of AS include the morphology of bacteria, microbial community structure, and the density of bacteria and flocs. Density of AS at three levels, namely, cell, floc, and process, have been discussed here to explain the variations in AS settleability. Dense materials, inside or outside the cell, significantly increase density of AS bacteria or flocs. Functional bacteria, defined as those performing N and P removal and recovery such as phosphate accumulating organisms, nitrifiers, and anammox contain cellular inclusions that increase their density, and consequently a dense and well-settling biomass results at the process level in those systems. A density based selector of AS can be used to enrich functional bacteria in the process through the wasting and sludge age control operations in AS process. This paper critically reviews the latest literature to elucidate mechanisms of density enhancement from cell to process level, and identifies needs/strategies to improve the AS process through a biomass density selector. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Biomass accumulation in sugarcane: unravelling the factors underpinning reduced growth phenomena.

    PubMed

    van Heerden, Philippus D R; Donaldson, Robin A; Watt, Derek A; Singels, Abraham

    2010-06-01

    Constant radiation use efficiency throughout the entire sugarcane crop cycle is often assumed for crop yield forecasting and management purposes. However, several examples are known where the linear relationship between cumulative intercepted radiation and biomass accumulation becomes uncoupled at some stage, with the latter declining by 21% in one reported case. This slowdown in growth is commonly referred to as the reduced growth phenomenon (RGP). In certain instances, this phenomenon appears to be related to the timing of crop initiation and harvesting. Summer-initiated sugarcane crops do not always resume expected growth rates after the transition from winter to spring, despite conditions being favourable for vigorous growth. Possible factors underlying the failure of sugarcane crops to realize full yield potential are reported and interrogated in this review. The potential involvement of lodging, flowering, and tiller mortality have been reviewed and the data suggest that, while such factors may contribute, they are unlikely to be the major causes of sugarcane RGPs. Similarly, reports indicate that temperature cannot account for reduced growth, as rates remain low despite the onset of favourable conditions in spring. In contrast, a decline in specific leaf nitrogen, potential initiation of sugar-mediated source-sink feedback inhibition of photosynthesis, and increased rates of maintenance respiration that occur during sugarcane development and maturation appear to be likely factors contributing to RGPs. An evaluation of areas of sugarcane biology and agronomy that would benefit from further research towards overcoming yield restriction imposed by reduced growth phenomena is provided.

  5. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    SciTech Connect

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.

  6. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana.

    PubMed

    Weraduwage, Sarathi M; Chen, Jin; Anozie, Fransisca C; Morales, Alejandro; Weise, Sean E; Sharkey, Thomas D

    2015-01-01

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.

  7. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    PubMed Central

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; Morales, Alejandro; Weise, Sean E.; Sharkey, Thomas D.

    2015-01-01

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growth analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness. PMID:25914696

  8. Winter wheat optimizes allocation in response to carbon limitation

    NASA Astrophysics Data System (ADS)

    Huang, Jianbei; Hammerbacher, Almuth; Trumbore, Susan; Hartmann, Henrik

    2016-04-01

    • Plant photosynthesis is not carbon-saturated at current atmospheric CO2 concentration ([CO2]) thus carbon allocation priority is of critical importance in determining plant response to environmental changes, including increasing [CO2]. • We quantified the percentage of daytime net assimilation (A) allocated to whole-plant nighttime respiration (R) and structural growth (SG), nonstructural carbohydrates (NSC) and secondary metabolites (SMs) during winter wheat (Triticum aestivum) vegetative growth (over 4 weeks) at glacial, ambient, and elevated [CO2] (170, 390 and 680 ppm). • We found that R/A remained relatively constant (11-14%) across [CO2] treatments, whereas plants allocated less C to growth and more C to export at low [CO2] than elevated [CO2]; low [CO2] grown plants tended to invest overall less C into NSC and SMs than to SG due to reduced NSC availability; while leaf SMs/NSC was greater at 170 ppm than at 680 ppm [CO2] this was the opposite for root SMs/NSC; biomass, especially NSC, were preferentially allocated to leaves instead of stems and roots, likely to relieve C limitation induced by low [CO2]. • We conclude that C limitation may force plants to reduce C allocation to long-term survival in order to secure short-term survival. Furthermore, they optimized allocation of the available resource by concentrating biomass and storage to those tissues responsible for assimilation.

  9. Sorption and biodegradation of propylparaben in greywater by aerobic attached-growth biomass.

    PubMed

    Song, Haihong; Alfiya, Yuval; Dubowski, Yael; Friedler, Eran

    2017-11-15

    Greywater (GW) is becoming an important alternative water source for non-potable purposes, but requires treatment to remove contaminants, including micropollutants that in GW mainly originate from personal care products. Biofilters are commonly used for onsite GW treatment, but there are still significant knowledge gaps regarding their ability and mechanism of micropollutants removal. This study investigates the removal of propylparaben (PPB) by aerobic attached-growth biomass, quantifying the kinetics and the interplay between sorption and biodegradation. The ability of biomass, collected from a pilot scale biofilter treating real GW, to eliminate PPB from both synthetic greywater (SGW) and deionized (DI) water was studied in laboratory batch experiments. Elimination of PPB was found to proceed via sorption to biomass followed by biodegradation. Sorption of PPB by biomass in SGW and in DI water exhibited similar kinetics, fitting Langmuir isotherm with the maximum adsorbed amount of 9.8mgPPB gbiomass(-1). PPB biodegradation exhibited first-order kinetics in both SGW and DI water, with a 30h lag-phase in SGW and no lag-phase in DI water. This difference is attributed to presence of readily-biodegradable organic matter in the SGW. Actual PPB degradation rate in both cases (excluding the lag phase in SGW) was very similar, 62mgPPB gbiomass(-1)d(-1), yielding almost full mineralization. These findings show the relative contribution of the major processes involved in PPB elimination by biofilters and can be applied for designing GW treatment units. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Importance of algal biomass to growth and development of Anopheles gambiae larvae.

    PubMed

    Kaufman, Michael G; Wanja, Elizabeth; Maknojia, Shahnaz; Bayoh, M Nabie; Vulule, John M; Walker, Edward D

    2006-07-01

    We conducted experiments to investigate the importance of algal food resources for larval growth and adult emergence of Anopheles gambiae Giles s.s. in simulated larval habitats in Kenya, and in greenhouse and laboratory microcosms in the United States. In the first experiment, we used shading to reduce algal biomass, and because algal production and larval development might be a function of underlying soil nutrients, we crossed sun-shade treatments with soils of two distinct types collected near larval habitats. Shading reduced pupation rates and total adult biomass of An. gambiae by approximately 50%. Soil type had no significant effect on mosquito production, but it did significantly affect concentrations of phosphorus and chlorophyll a in the surface microlayer. In a subsequent experiment conducted in the greenhouse to reduce temperature differences found between the shaded and sunlit treatments, <1% of larvae in the shaded treatments reached the pupal stage. There was a marked reduction of chlorophyll a levels as a function of shading and larval density. In a third experiment, larvae receiving material harvested from sunlit surface microlayers performed as well as those receiving liver powder, whereas those receiving surface microlayer from shaded habitats suffered >90% mortality and failed to pupate. In a fourth experiment, glucose was added to shaded microcosms to stimulate bacterial activity in the absence of algae. Bacterial growth rates were 2 to 3 times higher, and larval development was enhanced in glucose-amended treatments. However, pupation rates and adult weights in glucose-amended shaded microcosms were still poor compared with those in nonamended sunlit microcosms. Overall, these results demonstrate the importance of algal biomass in the surface microlayers of larval habitats to development and adult production of An. gambiae.

  11. Biomass removal, soil compaction, and vegetation control effects on five-year growth of Douglas-fir in coastal Washington.

    Treesearch

    A. Ares; T. Terry; C. Harrington; W. Devine; D. Peter; J. Bailey

    2007-01-01

    Sustainable forest production requires an understanding of the effects of site disturbance on tree growth and the consequences of soil amelioration and vegetation control practices. We assessed the impacts of biomass removals at harvest, soil compaction and tillage, and vegetation control on early growth of Douglas-fir in coastal Washington. Harvest treatments included...

  12. Effect of growth factors on oocyte maturation and allocations of inner cell mass and trophectoderm cells of cloned bovine embryos.

    PubMed

    Arat, Sezen; Caputcu, Arzu Tas; Cevik, Mesut; Akkoc, Tolga; Cetinkaya, Gaye; Bagis, Haydar

    2016-08-01

    This study was conducted to determine the additive effects of exogenous growth factors during in vitro oocyte maturation (IVM) and the sequential culture of nuclear transfer (NT) embryos. Oocyte maturation and culture of reconstructed embryos derived from bovine granulosa cells were performed in culture medium supplemented with either epidermal growth factor (EGF) alone or a combination of EGF with insulin-like growth factor-I (IGF-I). The maturation rates of oocytes matured in the presence of EGF or the EGF + IGF-I combination were significantly higher than those of oocytes matured in the presence of only fetal calf serum (FCS) (P 0.05). IGF-I alone or in combination with EGF in sequential embryo culture medium significantly increased the ratio of inner cell mass (ICM) to total blastocyst cells (P < 0.05). Our results showed that the addition of growth factors to IVM and sequential culture media of cloned bovine embryos increased the ICM without changing the total cell number. These unknown and uncontrolled effects of growth factors can alter the allocation of ICM and trophectoderm cells (TE) in NT embryos. A decrease in TE cell numbers could be a reason for developmental abnormalities in embryos in the cloning system.

  13. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate

    PubMed Central

    Keren, Leeat; Segal, Eran; Milo, Ron

    2016-01-01

    Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms. PMID:27073913

  14. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate.

    PubMed

    Barenholz, Uri; Keren, Leeat; Segal, Eran; Milo, Ron

    2016-01-01

    Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms.

  15. The relationship between leaf area growth and biomass accumulation in Arabidopsis thaliana

    DOE PAGES

    Weraduwage, Sarathi M.; Chen, Jin; Anozie, Fransisca C.; ...

    2015-04-09

    Leaf area growth determines the light interception capacity of a crop and is often used as a surrogate for plant growth in high-throughput phenotyping systems. The relationship between leaf area growth and growth in terms of mass will depend on how carbon is partitioned among new leaf area, leaf mass, root mass, reproduction, and respiration. A model of leaf area growth in terms of photosynthetic rate and carbon partitioning to different plant organs was developed and tested with Arabidopsis thaliana L. Heynh. ecotype Columbia (Col-0) and a mutant line, gigantea-2 (gi-2), which develops very large rosettes. Data obtained from growthmore » analysis and gas exchange measurements was used to train a genetic programming algorithm to parameterize and test the above model. The relationship between leaf area and plant biomass was found to be non-linear and variable depending on carbon partitioning. The model output was sensitive to the rate of photosynthesis but more sensitive to the amount of carbon partitioned to growing thicker leaves. The large rosette size of gi-2 relative to that of Col-0 resulted from relatively small differences in partitioning to new leaf area vs. leaf thickness.« less

  16. Influence of nitrogen and potassium fertilization on leaf lifespan and allocation of above-ground growth in Eucalyptus plantations.

    PubMed

    Laclau, Jean-Paul; Almeida, Julio C R; Gonçalves, José Leonardo M; Saint-André, Laurent; Ventura, Marcelo; Ranger, Jacques; Moreira, Rildo M; Nouvellon, Yann

    2009-01-01

    Eucalyptus grandis (W. Hill ex Maiden) leaf traits and tree growth were studied over 3 years after the establishment of two adjacent complete randomized block designs in southern Brazil. In a nitrogen (N) input experiment, a treatment with the application of 120 kg N ha(-1) was compared to a control treatment without N addition, and in a potassium (K) input experiment a control treatment without K addition was compared to a treatment with the application of 116 kg K ha(-1). Young leaves were tagged 9 months after planting to estimate the effect of N and K fertilizations on leaf lifespan. Leaf mass, specific leaf area and nutrient concentrations were measured on a composite sample per plot every 28 days until the last tagged leaf fell. Successive inventories, destructive sampling of trees and leaf litter fall collection made it possible to assess the effect of N and K fertilization on the dynamics of biomass accumulation in above-ground tree components. Whilst the effects of N fertilization on tree growth only occurred in the first 24 months after planting, K fertilization increased the above-ground net primary production from 4478 to 8737 g m(-2) over the first 36 months after planting. The average lifespan of tagged leaves was not modified by N addition but it increased from 111 to 149 days with K fertilization. The peak of leaf production occurred in the second year after planting (about 800 g m(-2) year(-1)) and was not significantly modified (P < 0.05) by N and K fertilizations. By contrast, K addition significantly increased the maximum leaf standing biomass from 292 to 528 g m(-2), mainly as a consequence of the increase in leaf lifespan. Potassium fertilization increased the stand biomass mainly through the enhancement in leaf area index (LAI) since growth efficiency (defined as the ratio between woody biomass production and LAI) was not significantly modified. A better understanding of the physiological processes governing the leaf lifespan is necessary to

  17. Growth, biomass distribution and CO2 exchange of northern hardwood seedlings in high and low light: relationships with successional status and shade tolerance.

    PubMed

    Walters, M B; Kruger, E L; Reich, P B

    1993-05-01

    The physiology, morphology and growth of first-year Betula papyrifera Marsh., Betula alleghaniensis Britton, Ostrya virginiana (Mill.) K. Koch, Acer saccharum Marsh., and Quercus rubra L. seedlings, which differ widely in reported successional affinity and shade tolerance, were compared in a controlled high-resource environment. Relative to late-successional, shade-tolerant Acer and Ostrya species, early-successional, shade-intolerant Betula species had high relative growth rates (RGR) and high rates of photosynthesis, nitrogen uptake and respiration when grown in high light. Fire-adapted Quercus rubra had intermediate photosynthetic rates, but had the lowest RGR and leaf area ratio and the highest root weight ratio of any species. Interspecific variation in RGR in high light was positively correlated with allocation to leaves and rates of photosynthesis and respiration, and negatively related to seed mass and leaf mass per unit area. Despite higher respiration rates, early-successional Betula papyrifera lost a lower percentage of daily photosynthetic CO2 gain to respiration than other species in high light. A subset comprised of the three Betulaceae family members was also grown in low light. As in high light, low-light grown Betula species had higher growth rates than tolerant Ostrya virainiana. The rapid growth habit of sarly-successional species in low light was associated with a higher proportion of biomass distributed to leaves, lower leaf mass per unit area, a lower proportion of biomass in roots, and a greater height per unit stem mass. Variation in these traits is discussed in terms of reported species ecologies in a resource availability context.

  18. Placental phenotype and resource allocation to fetal growth are modified by the timing and degree of hypoxia during mouse pregnancy

    PubMed Central

    Higgins, J. S.; Vaughan, O. R.; Fernandez de Liger, E.; Fowden, A. L.

    2015-01-01

    Key points Hypoxia is a major cause of fetal growth restriction, particularly at high altitude, although little is known about its effects on placental phenotype and resource allocation to fetal growth.In the present study, maternal hypoxia induced morphological and functional changes in the mouse placenta, which depended on the timing and severity of hypoxia, as well as the degree of maternal hypophagia.Hypoxia at 13% inspired oxygen induced beneficial changes in placental morphology, nutrient transport and metabolic signalling pathways associated with little or no change in fetal growth, irrespective of gestational age.Hypoxia at 10% inspired oxygen adversely affected placental phenotype and resulted in severe fetal growth restriction, which was due partly to maternal hypophagia.There is a threshold between 13% and 10% inspired oxygen, corresponding to altitudes of ∼3700 m and 5800 m, respectively, at which the mouse placenta no longer adapts to support fetal resource allocation. This has implications for high altitude human pregnancies. Abstract The placenta adapts its transport capacity to nutritional cues developmentally, although relatively little is known about placental transport phenotype in response to hypoxia, a major cause of fetal growth restriction. The present study determined the effects of both moderate hypoxia (13% inspired O2) between days (D)11 and D16 or D14 and D19 of pregnancy and severe hypoxia (10% inspired O2) from D14 to D19 on placental morphology, transport capacity and fetal growth on D16 and D19 (term∼D20.5), relative to normoxic mice in 21% O2. Placental morphology adapted beneficially to 13% O2; fetal capillary volume increased at both ages, exchange area increased at D16 and exchange barrier thickness reduced at D19. Exposure to 13% O2 had no effect on placental nutrient transport on D16 but increased placental uptake and clearance of 3H‐methyl‐d‐glucose at D19. By contrast, 10% O2 impaired fetal vascularity

  19. Effects of nitrogen form on growth, CO2 assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plants*

    PubMed Central

    Zhou, Yan-hong; Zhang, Yi-li; Wang, Xue-min; Cui, Jin-xia; Xia, Xiao-jian; Shi, Kai; Yu, Jing-quan

    2011-01-01

    Cucumber and rice plants with varying ammonium (NH4 +) sensitivities were used to examine the effects of different nitrogen (N) sources on gas exchange, chlorophyll (Chl) fluorescence quenching, and photosynthetic electron allocation. Compared to nitrate (NO3 −)-grown plants, cucumber plants grown under NH4 +-nutrition showed decreased plant growth, net photosynthetic rate, stomatal conductance, intercellular carbon dioxide (CO2) level, transpiration rate, maximum photochemical efficiency of photosystem II, and O2-independent alternative electron flux, and increased O2-dependent alternative electron flux. However, the N source had little effect on gas exchange, Chl a fluorescence parameters, and photosynthetic electron allocation in rice plants, except that NH4 +-grown plants had a higher O2-independent alternative electron flux than NO3 −-grown plants. NO3 − reduction activity was rarely detected in leaves of NH4 +-grown cucumber plants, but was high in NH4 +-grown rice plants. These results demonstrate that significant amounts of photosynthetic electron transport were coupled to NO3 − assimilation, an effect more significant in NO3 −-grown plants than in NH4 +-grown plants. Meanwhile, NH4 +-tolerant plants exhibited a higher demand for the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) for NO3 − reduction, regardless of the N form supplied, while NH4 +-sensitive plants had a high water-water cycle activity when NH4 + was supplied as the sole N source. PMID:21265044

  20. Effects of nitrogen form on growth, CO₂ assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plants.

    PubMed

    Zhou, Yan-hong; Zhang, Yi-li; Wang, Xue-min; Cui, Jin-xia; Xia, Xiao-jian; Shi, Kai; Yu, Jing-quan

    2011-02-01

    Cucumber and rice plants with varying ammonium (NH(4)(+)) sensitivities were used to examine the effects of different nitrogen (N) sources on gas exchange, chlorophyll (Chl) fluorescence quenching, and photosynthetic electron allocation. Compared to nitrate (NO(3)(-))-grown plants, cucumber plants grown under NH(4)(+)-nutrition showed decreased plant growth, net photosynthetic rate, stomatal conductance, intercellular carbon dioxide (CO(2)) level, transpiration rate, maximum photochemical efficiency of photosystem II, and O(2)-independent alternative electron flux, and increased O(2)-dependent alternative electron flux. However, the N source had little effect on gas exchange, Chl a fluorescence parameters, and photosynthetic electron allocation in rice plants, except that NH(4)(+)-grown plants had a higher O(2)-independent alternative electron flux than NO(3)(-)-grown plants. NO(3)(-) reduction activity was rarely detected in leaves of NH(4)(+)-grown cucumber plants, but was high in NH(4)(+)-grown rice plants. These results demonstrate that significant amounts of photosynthetic electron transport were coupled to NO(3)(-) assimilation, an effect more significant in NO(3)(-)-grown plants than in NH(4)(+)-grown plants. Meanwhile, NH(4)(+)-tolerant plants exhibited a higher demand for the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) for NO(3)(-) reduction, regardless of the N form supplied, while NH(4)(+)-sensitive plants had a high water-water cycle activity when NH(4)(+) was supplied as the sole N source.

  1. Modeling Forest Biomass and Growth: Coupling Long-Term Inventory and Lidar Data

    NASA Technical Reports Server (NTRS)

    Babcock, Chad; Finley, Andrew O.; Cook, Bruce D.; Weiskittel, Andrew; Woodall, Christopher W.

    2016-01-01

    Combining spatially-explicit long-term forest inventory and remotely sensed information from Light Detection and Ranging (LiDAR) datasets through statistical models can be a powerful tool for predicting and mapping above-ground biomass (AGB) at a range of geographic scales. We present and examine a novel modeling approach to improve prediction of AGB and estimate AGB growth using LiDAR data. The proposed model accommodates temporal misalignment between field measurements and remotely sensed data-a problem pervasive in such settings-by including multiple time-indexed measurements at plot locations to estimate AGB growth. We pursue a Bayesian modeling framework that allows for appropriately complex parameter associations and uncertainty propagation through to prediction. Specifically, we identify a space-varying coefficients model to predict and map AGB and its associated growth simultaneously. The proposed model is assessed using LiDAR data acquired from NASA Goddard's LiDAR, Hyper-spectral & Thermal imager and field inventory data from the Penobscot Experimental Forest in Bradley, Maine. The proposed model outperformed the time-invariant counterpart models in predictive performance as indicated by a substantial reduction in root mean squared error. The proposed model adequately accounts for temporal misalignment through the estimation of forest AGB growth and accommodates residual spatial dependence. Results from this analysis suggest that future AGB models informed using remotely sensed data, such as LiDAR, may be improved by adapting traditional modeling frameworks to account for temporal misalignment and spatial dependence using random effects.

  2. Estimates of bacterial growth from changes in uptake rates and biomass.

    PubMed Central

    Kirchman, D; Ducklow, H; Mitchell, R

    1982-01-01

    Rates of nucleic acid synthesis have been used to examine microbiol growth in natural waters. These rates are calculated from the incorporation of [3H]adenine and [3H]thymidine for RNA and DNA syntheses, respectively. Several additional biochemical parameters must be measured or taken from the literature to estimate growth rates from the incorporation of the tritiated compounds. We propose a simple method of estimating a conversion factor which obviates measuring these biochemical parameters. The change in bacterial abundance and incorporation rates of [3H]thymidine was measured in samples from three environments. The incorporation of exogenous [3H]thymidine was closely coupled with growth and cell division as estimated from the increase in bacterial biomass. Analysis of the changes in incorporation rates and initial bacterial abundance yielded a conversion factor for calculating bacterial production rates from incorporation rates. Furthermore, the growth rate of only those bacteria incorporating the compound can be estimated. The data analysis and experimental design can be used to estimate the proportion of nondividing cells and to examine changes in cell volumes. PMID:6760812

  3. Difference in C3-C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1.

    PubMed

    Fu, Yanfen; Beck, David A C; Lidstrom, Mary E

    2016-07-19

    Two variants of Methylobacterium extorquens AM1 demonstrated a trade-off between growth rate and biomass yield. In addition, growth rate and biomass yield were also affected by supplementation of growth medium with different amounts of cobalt. The metabolism changes relating to these growth phenomena as well as the trade-off were investigated in this study. (13)C metabolic flux analysis was used to generate a detailed central carbon metabolic flux map with both absolute and normalized flux values. The major differences between the two variants occurred at the formate node as well as within C3-C4 inter-conversion pathways. Higher relative fluxes through formyltetrahydrofolate ligase, phosphoenolpyruvate carboxylase, and malic enzyme led to higher biomass yield, while higher relative fluxes through pyruvate kinase and pyruvate dehydrogenase led to higher growth rate. These results were then tested by phenotypic studies on three mutants (null pyk, null pck mutant and null dme mutant) in both variants, which agreed with the model prediction. In this study, (13)C metabolic flux analysis for two strain variants of M. extorquens AM1 successfully identified metabolic pathways contributing to the trade-off between cell growth and biomass yield. Phenotypic analysis of mutants deficient in corresponding genes supported the conclusion that C3-C4 inter-conversion strategies were the major response to the trade-off.

  4. Biomass or growth rate endpoint for algae and aquatic plants: relevance for the aquatic risk assessment of herbicides.

    PubMed

    Bergtold, Matthias; Dohmen, Gerhard Peter

    2011-04-01

    Ecotoxicological studies with algae and aquatic plants are essential parts of the aquatic risk assessment for crop protection products (CPP). Growth rate is used as a response variable and in addition the effects on biomass and/or yield (in the following biomass) can be measured. The parameter biomass generally provides a lower numerical value compared with the growth rate for systematic and mathematical reasons. Therefore, some regulators prefer to use the EbC50 value (i.e., the concentration at which 50% reduction of biomass is observed) rather than ErC50 (the concentration at which a 50% inhibition of growth rate is observed) as the endpoint for ecotoxicological risk assessment. However, the parameter growth rate is scientifically more appropriate and robust against deviations in test conditions, permitting better interpretation of, and comparison between, studies. The aim of the present work is to evaluate the growth rate and biomass parameters with regard to their protectiveness and suitability for environmental risk assessment of CPP. It has been shown for a number of herbicides that the use of the EC50 value (without distinction between growth rate and biomass endpoints) from laboratory studies in combination with an assessment factor of 10 is sufficiently protective for aquatic plants (except for the herbicide 2,4-D). In this paper we evaluated EbC50 and ErC50 values separately. Data on 19 different herbicides were compiled from the literature or GLP reports. The EbC50 and ErC50 values obtained in laboratory studies were compared with effect concentrations in ecosystem studies (mainly mesocosm). This comparison of laboratory and field data shows that the overall aquatic risk assessment using ErC50 values in combination with the currently applied assessment factor of 10 is sufficient to exclude significant risk to aquatic plants in the environment. Copyright © 2010 SETAC.

  5. Family- and population-level responses to atmospheric CO2 concentration: gas exchange and the allocation of C, N, and biomass in Plantago lanceolata (Plantaginaceae).

    PubMed

    Jenkins Klus, D; Kalisz, S; Curtis, P S; Teeri, J A; Tonsor, S J

    2001-06-01

    To ascertain the inheritance of responses to changing atmospheric CO(2) content, we partitioned response to elevated CO(2) in Plantago lanceolata between families and populations in 18 families in two populations. Plants were grown in 35 Pa and 71 Pa partial pressure of CO(2) (pCO(2)) in open-top chambers. We measured above- and belowground mass, carbon (C), nitrogen (N), hexose sugar, and gas exchange properties in both CO(2) treatments. Families within populations differed in mass, mass allocation, root : shoot ratios, aboveground percentage N, C : N ratio, and gas exchange properties. The CO(2) × family interaction is the main indicator of potential evolutionary responses to changing CO(2). Significant CO(2) × family interactions were observed for N content, C : N ratio, and photosynthetic rate (A: instantaneous light-saturated carbon assimilation capacity), intercellular CO(2) concentration, transpiration rate (E), and water use efficiency (WUE = A/E), but not for stomatal conductance. Families differed significantly in acclimation across time. The ratio of A in elevated vs. ambient growth CO(2), when measured at a common internal CO(2) partial pressure was 0.79, indicating down-regulation of A under CO(2) enrichment. Mass, C : N ratio, percentage, C (%C), and soluble sugar all increased significantly but overall %N did not change. Increases in %C and sugar were significant and were coincident with redistribution of N aboveground. The observed variation among populations and families in response to CO(2) is evidence of genetic variation in response and therefore of the potential for novel evolutionary trajectories with rising atmospheric CO(2).

  6. Direct Image-Based Enumeration of Clostridium phytofermentans Cells on Insoluble Plant Biomass Growth Substrates

    PubMed Central

    Alvelo-Maurosa, Jesús G.; Lee, Scott J.; Hazen, Samuel P.

    2015-01-01

    A dual-fluorescent-dye protocol to visualize and quantify Clostridium phytofermentans ISDg (ATCC 700394) cells growing on insoluble cellulosic substrates was developed by combining calcofluor white staining of the growth substrate with cell staining using the nucleic acid dye Syto 9. Cell growth, cell substrate attachment, and fermentation product formation were investigated in cultures containing either Whatman no. 1 filter paper, wild-type Sorghum bicolor, or a reduced-lignin S. bicolor double mutant (bmr-6 bmr-12 double mutant) as the growth substrate. After 3 days of growth, cell numbers in cultures grown on filter paper as the substrate were 6.0- and 2.2-fold higher than cell numbers in cultures with wild-type sorghum and double mutant sorghum, respectively. However, cells produced more ethanol per cell when grown with either sorghum substrate than with filter paper as the substrate. Ethanol yields of cultures were significantly higher with double mutant sorghum than with wild-type sorghum or filter paper as the substrate. Moreover, ethanol production correlated with cell attachment in sorghum cultures: 90% of cells were directly attached to the double mutant sorghum substrate, while only 76% of cells were attached to wild-type sorghum substrate. With filter paper as the growth substrate, ethanol production was correlated with cell number; however, with either wild-type or mutant sorghum, ethanol production did not correlate with cell number, suggesting that only a portion of the microbial cell population was active during growth on sorghum. The dual-staining procedure described here may be used to visualize and enumerate cells directly on insoluble cellulosic substrates, enabling in-depth studies of interactions of microbes with plant biomass. PMID:26637592

  7. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.

    PubMed

    Adadi, Roi; Volkmer, Benjamin; Milo, Ron; Heinemann, Matthias; Shlomi, Tomer

    2012-01-01

    Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long standing goal. This gap stems from strictly relying on data regarding reaction stoichiometry and directionality, without accounting for enzyme kinetic considerations. Here we present a novel metabolic network-based approach, MetabOlic Modeling with ENzyme kineTics (MOMENT), which predicts metabolic flux rate and growth rate by utilizing prior data on enzyme turnover rates and enzyme molecular weights, without requiring measurements of nutrient uptake rates. The method is based on an identified design principle of metabolism in which enzymes catalyzing high flux reactions across different media tend to be more efficient in terms of having higher turnover numbers. Extending upon previous attempts to utilize kinetic data in genome-scale metabolic modeling, our approach takes into account the requirement for specific enzyme concentrations for catalyzing predicted metabolic flux rates, considering isozymes, protein complexes, and multi-functional enzymes. MOMENT is shown to significantly improve the prediction accuracy of various metabolic phenotypes in E. coli, including intracellular flux rates and changes in gene expression levels under different growth rates. Most importantly, MOMENT is shown to predict growth rates of E. coli under a diverse set of media that are correlated with experimental measurements, markedly improving upon existing state-of-the art stoichiometric modeling approaches. These results support the view that a physiological bound on cellular enzyme concentrations is a key factor that determines microbial growth rate.

  8. Transcriptional profiling of biomass degradation-related genes during Trichoderma reesei growth on different carbon sources.

    PubMed

    Chen, Xiuzhen; Luo, Yingfeng; Yu, Hongtao; Sun, Yuhui; Wu, Hong; Song, Shuhui; Hu, Songnian; Dong, Zhiyang

    2014-03-10

    To identify all the gene products involved in cellulosic biomass degradation, we employed RNA sequencing technology to perform a genome-wide comparison of gene expression during growth of Trichoderma reesei QM9414 on cellulose or glucose. Due to their important role in lignocellulose decomposition, we focused on CAZymes and other secreted proteins. In total, 122 CAZymes showed at least a two-fold change in mRNA abundance, and 97 of those were highly induced by cellulose. Compared to the well-characterized cellulases and hemicellulases, a majority of the other upregulated CAZymes showed lower transcriptional levels. In addition, 64 secreted proteins, including oxidoreductases, exhibited at least two-fold upregulation on cellulose medium. To better understand the potential roles of low-abundance CAZymes in cellulose breakdown, we compared the expression patterns of 25 glycoside hydrolase genes under different conditions via real-time PCR. Substantial differences for the 25 genes were observed for individual strains grown on different carbon sources, and between QM9414 and RUTC30 when grown on the same carbon source. Moreover, we identified 3 genes that are coregulated with known cellulases. Collectively, this study highlights a comprehensive transcriptional profile for biomass degradation-related proteins and provides a first step toward the identification of candidates to construct optimized enzyme cocktails.

  9. Effects of chronic air pollution stress on photosynthesis, carbon allocation, and growth of white pine trees

    SciTech Connect

    McLaughlin, S.B.; McConathy, R.K.; Duvick, D.; Mann, L.K.

    1982-03-01

    Comparisons of annual growth, photosynthetic capacity, and fate of photosynthetic products were made to determine the rate and case of declining vigor of oxidant-stressed white pine (Pinus strobus L.) growing near Oak Ridge, Tennessee. Three approximately 25-year-old trees were selected for study from each of three sensitivity classes based on needle color, length, and duration of retention. Growth ring analysis revealed comparable growth trends in intermediate and tolerant trees whereas sensitive trees experienced a steady decline in average ring width (70 percent decrease over 15 years) and a loss in capacity for recovery of growth. The fate of photosynthetically fixed /sup 14/C was followed after supplying /sup 14/CO/sub 2/ to in situ foliage four times (June, July, August, November) during the growing season. Carbon-14 transport patterns emphasized the role of older needles as sources of photosynthate for new needle growth in spring and storage sinks in the fall. Higher retention of /sup 14/C-photosynthate by foliage and branches of sensitive trees indicatd that photosynthante export to boles and roots was reduced. Photosynthetic capacity (CO/sub 2/ uptake/g dwt ) of foliage of sensitive and tolerant trees was similar. The ratio of respiratory to photosynthetic activity was significantly higher for foliage of sensitive trees. Results suggest that declining vigor of sensitive trees in ths area results from reductions in needle longevity, size, increased respiratory activity, and altered translocation patterns which are induced by chronic air pollution stress.

  10. Physiological, morphological and allocational plasticity in understory deciduous trees: importance of plant size and light availability.

    PubMed

    Delagrange, Sylvain; Messier, Christian; Lechowicz, Martin J; Dizengremel, Pierre

    2004-07-01

    In a 4-year study, we investigated changes in leaf physiology, crown morphology and whole-tree biomass allocation in seedlings and saplings of shade-tolerant sugar maple (Acer saccharum Marsh.) and intermediate shade-tolerant yellow birch (Betula alleghaniensis Britt.) growing in natural understory light (0.5 to 35% of full sunlight) or in understory light reduced by 50% with shade nets to simulate the effect of gap closure. Leaf physiological parameters were mainly influenced by the light gradient, whereas crown morphological and whole-tree allocational parameters were mainly influenced by tree size. No single physiological, morphological or allocational trait was identified that could explain the difference in shade tolerance between the species. Yellow birch had higher growth rates, biomass allocation to branches and leaf physiological plasticity and lower crown morphological plasticity in unmodified understory light than sugar maple. Sugar maple did not display significant physiological plasticity, but showed variation with tree size in both crown morphology and whole-tree biomass allocation. When sugar maple was small, a greater proportion of whole-tree biomass was allocated to roots. However, physiological differences between the species decreased with decreasing light and most morphological and allocational differences tended to disappear with increasing tree size, suggesting that many species differences in shade-tolerance are expressed mainly during the seedling stage. Understory trees of both species survived for 4 years under shade nets, possibly because of higher plasticity when small and the use of stored reserves when taller. Copyright 2004 Heron Publishing

  11. Treatment of agro based industrial wastewater in sequencing batch reactor: performance evaluation and growth kinetics of aerobic biomass.

    PubMed

    Lim, J X; Vadivelu, V M

    2014-12-15

    A sequencing batch reactor (SBR) with a working volume of 8 L and an exchange ratio of 25% was used to enrich biomass for the treatment of the anaerobically treated low pH palm oil mill effluent (POME). The influent concentration was stepwise increased from 5000 ± 500 mg COD/L to 11,500 ± 500 mg COD/L. The performance of the reactor was monitored at different organic loading rates (OLRs). It was found that approximately 90% of the COD content of the POME wastewater was successfully removed regardless of the OLR applied to the SBR. Cycle studies of the SBR show that the oxygen uptake by the biomass while there is no COD reduction may be due to the oxidation of the storage product by the biomass. Further, the growth kinetic parameters of the biomass were determined in batch experiments using respirometer. The maximum specific growth rate (μmax) was estimated to be 1.143 day(-1) while the half saturation constant (Ks) with respect to COD was determined to be 0.429 g COD/L. The decay coefficient (bD) and biomass yield (Y) were found to be 0.131 day(-1) and 0.272 mg biomass/mg COD consumed, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Growth, morphology, ammonium uptake and nutrient allocation of Myriophyllum brasiliense Cambess. under high NH₄⁺ concentrations.

    PubMed

    Saunkaew, Piyanart; Wangpakapattanawong, Prasit; Jampeetong, Arunothai

    2011-11-01

    The effects of high NH(4)(+) concentration on growth, morphology, NH(4) (+) uptake and nutrient allocation of Myriophyllum brasiliense were investigated in hydroponic culture. The plants were grown under greenhouse conditions for 4 weeks using four levels of NH(4)(+) concentration: 1, 5, 10 and 15 mM. M. brasiliense grew well with a relative growth rate of c.0.03 day(-1) at NH(4)(+) concentration up to 5 mM. At the higher NH(4)(+) concentrations the growth of the plants was stunted and the plants had short roots and few new buds, especially when grown in 15 mM NH(4)(+) where the submerged leaves were lost and there were rotten roots and submerged stems. To avoid NH(4)(+) toxicity, the plants may have a mechanism to prevent cytoplasmic NH(4)(+) accumulation in plant cells. The net uptake of NH(4)(+) significantly decreased and the total N significantly increased in the plants treated with 10 and 15 mM NH(4)(+), respectively. The plant may employ NH(4)(+) assimilation and extrusion as a mechanism to compensate for the high NH(4)(+) concentrations. However, the plants may show nutrient deficiency symptoms, especially K deficiency symptoms, after they were exposed to NH(4)(+) concentration higher than 10 mM. The present study provides a basic ecophysiology of M. brasiliense that it can grow in NH(4)(+) enriched water up to concentrations as high as 5 mM.

  13. Relationship between self-fertility, allocation of growth, and inbreeding depression in three coniferous species.

    Treesearch

    Frank C. Sorensen

    1999-01-01

    Mortality and growth of self and outcross families of three wind-pollinated, mixed-mating, long-lived conifers, Douglas-fir (Pseudotsuga menziesii), ponderosa pine (Pinus ponderosa), and noble fir (Abies procera) were followed from outplanting to age 26 (25 for noble fir) in spaced plantings at a common...

  14. [Growth feature of biomass of Lemna aequinoctialis and Spirodela polyrrhiza in medium with nutrient character of wastewater].

    PubMed

    Chong, Yun-xiao; Hu, Hong-ying; Qian, Yi

    2004-11-01

    Duckweeds have an important potential in nutrient recovery from wastewater because of their rapid multiplication and high protein content in biomass. The growth rate of duckweed biomass has a direct relationship with nutrient removal and recovery. With laboratory experiments of batch culture and continuous culture, the growth curves of two duckweed species, Lemna aequinoctialis and Spirodela polyrrhiza, cultivated in different media were gotten and fitted by Logistic model. The effect of nitrogen on growth of duckweed was evaluated. Experimental results indicated that the growth curve had characteristic of sigmoidal shape and the growth rate had density-dependent characteristic. Results of statistical analysis demonstrated that Logistic model is suitable to describe the growth of single duckweed specie. The maximal growth rate from regression in medium with ammonia nitrogen was lower than those in medium with nitrate nitrogen. The maximal growth rate of Lemna aequinoctialis was higher than Spirodela polyrrhiza The paper also discussed the application of Logistic model in harvesting of duckweed biomass from wastewater.

  15. Effects of industrial wastewater on growth and biomass production in commonly grown vegetables.

    PubMed

    Uzma, Syeda; Azizullah, Azizullah; Bibi, Roqaia; Nabeela, Farhat; Muhammad, Uzair; Ali, Imran; Rehman, Zia Ur; Häder, Donat-Peter

    2016-06-01

    In developing countries like Pakistan, irrigation of crops with industrial and municipal wastewater is a common practice. However, the impact of wastewater irrigation on vegetables growth has rarely been studied. Therefore, the present study was conducted to determine the effect of industrial wastewater on the germination and seedling growth of some commonly grown vegetables in Pakistan. Wastewater samples were collected from two different industries (marble industry and match alam factory) at Hayatabad Industrial Estate (HIE) in Peshawar, Pakistan, and their effect on different growth parameters of four vegetables including Hibiscus esculentus, Lactuca sativa, Cucumis sativus, and Cucumis melo was investigated. The obtained results revealed that wastewater from marble industry did not affect seed germination except a minor inhibition in H. esculentus. Effluents from match alam factory stimulated seed germination in C. melo and C. sativus but had no effect on seed germination in the other two vegetables. Wastewater increased root and shoot length in H. esculentus, L. sativa and C. melo, but decreased it in C. sativus. Similarly, differential effects of wastewater were observed on fresh and dry biomass of seedlings in all vegetables. It can be concluded that wastewater may have different effects on different crops, depending upon the nature of wastewater and sensitivity of a plant species to wastewater.

  16. Effect of moderate high temperature on the vegetative growth and potassium allocation in olive plants.

    PubMed

    Benlloch-González, María; Quintero, José Manuel; Suárez, María Paz; Sánchez-Lucas, Rosa; Fernández-Escobar, Ricardo; Benlloch, Manuel

    2016-12-01

    There is little information about the prolonged effect of a moderately high temperature on the growth of olive (Olea europaea L.). It has been suggested that when the temperature of the air rises above 35°C the shoot growth of olive is inhibited while there is any reference on how growth is affected when the soil is warmed. In order to examine these effects, mist-cuttings and young plants generated from seeds were grown under moderate high temperature (37°C) for 64 and 42days respectively. In our study, plant dry matter accumulation was reduced when the temperature of both the air and the root medium was moderately high. However, when the temperature of the root medium was 25°C, the inhibitory effect of air high temperature on plant growth was not observed. The exposure of both the aerial part and the root to moderate high temperature also reduced the accumulation of K(+) in the stem and the root, the water use efficiency and leaf relative water content. However, when only the aerial part was exposed to moderate high temperature, the accumulation of K(+) in the stem, the water use efficiency and leaf relative water content were not modified. The results from this study suggest that the olive is very efficient in regulating the water and potassium transport through the plant when only the atmosphere surrounding the aerial part is warmed up. However, an increase in the soil temperature decrease root K(+) uptake and its transport to the aerial parts resulting in a reduction in shoot water status and growth.

  17. Pattern and dynamics of biomass stock in old growth forests: The role of habitat and tree size

    NASA Astrophysics Data System (ADS)

    Yuan, Zuoqiang; Gazol, Antonio; Wang, Xugao; Lin, Fei; Ye, Ji; Zhang, Zhaochen; Suo, YanYan; Kuang, Xu; Wang, Yunyun; Jia, Shihong; Hao, Zhanqing

    2016-08-01

    Forest ecosystems play a fundamental role in the global carbon cycle. However, how stand-level changes in tree age and structure influence biomass stock and dynamics in old-growth forests is a question that remains unclear. In this study, we quantified the aboveground biomass (AGB) standing stock, the coarse woody productivity (CWP), and the change in biomass over ten years (2004-2014) in a 25 ha unmanaged broad-leaved Korean pine mixed forest in northeastern China. In addition, we quantified how AGB stock and change (tree growth, recruitment and mortality) estimations are influenced by the variation in habitat heterogeneity, tree size structure and subplot size. Our analysis indicated that Changbai forest had AGB of 265.4 Mg ha-1 in 2004, and gained1.36 Mg ha-1 y-1 between 2004 and 2014. Despite recruitment having better performance in nutrient rich habitat, we found that there is a directional tree growth trend independent of habitat heterogeneity for available nutrients in this old growth forest. The observed increases in AGB stock (∼70%) are mainly attributed to the growth of intermediate size trees (30-70 cm DBH), indicating that this forest is still reaching its mature stage. Meanwhile, we indicated that biomass loss due to mortality reduces living biomass, not increment, may be the primary factor to affect forest biomass dynamics in this area. Also, spatial variation in forest dynamics is large for small sizes (i.e. coefficient of variation in 20 × 20 m subplots is 53.2%), and more than 90 percent of the inherent variability of these coefficients was predicted by a simple model including plot size. Our result provides a mean by which to estimate within-plot variability at a local scale before inferring any directional change in forest dynamics at a regional scale, and information about the variability of forest structure and dynamics are fundamental to design effective sampling strategies in future study.

  18. Carbon allocation in forest ecosystems

    Treesearch

    Creighton M. Litton; James W. Raich; Michael G. Ryan

    2007-01-01

    Carbon allocation plays a critical role in forest ecosystem carbon cycling. We reviewed existing literature and compiled annual carbon budgets for forest ecosystems to test a series of hypotheses addressing the patterns, plasticity, and limits of three components of allocation: biomass, the amount of material present; flux, the flow of carbon to a component per unit...

  19. The use of flue gas for the growth of microalgal biomass

    SciTech Connect

    Zeiler, K.G.; Kadam, K.L.; Heacox, D.A.

    1995-11-01

    Capture and utilization of carbon dioxide (CO{sub 2}) by microalgae is a promising technology to help reduce emissions from fossil fuel-fired power plants. Microalgae are of particular interest because of their rapid growth rates and tolerance to varying environmental conditions. Laboratory work is directed toward investigating the effects of simulated flue gas on microalgae, while engineering studies have focused on the economics of the technology. One strain of a green algae, Monoraphidium minutum, has shown excellent tolerance and growth when exposed to simulated flue gas which meets the requirements of the 1990 Clean Air Act Amendments (1990 CAAA). Biomass concentrations of {similar_to}2g/L have been measured in batch culture. Several other microalgae have also shown tolerance to simulated flue gas; however, the growth of these strains is not equivalent to that observed for M. minutum. Coupling the production of biodiesel or other microalgae-derived commodity chemicals with the use of flue gas carbon dioxide is potentially a zero-cost method of reducing the amount of carbon dioxide contributed to the atmosphere by fossil fuel-fired power plants. We have identified two major biological performance parameters which can provide sufficient improvement in this technology to render it cost-competitive with other existing CO{sub x} mitigation technologies. These are algal growth rate and lipid content. An updated economic analysis shows that growth rate is the more important of the two, and should be the focus of near term research activities. The long term goal of achieving zero cost will require other, non-biological, improvements in the process.

  20. Applying Central Composite Design and Response Surface Methodology to Optimize Growth and Biomass Production of Haemophilus influenzae Type b

    PubMed Central

    Momen, Seyed Bahman; Siadat, Seyed Davar; Akbari, Neda; Ranjbar, Bijan; Khajeh, Khosro

    2016-01-01

    Background Haemophilus influenzae type b (Hib) is the leading cause of bacterial meningitis, otitis media, pneumonia, cellulitis, bacteremia, and septic arthritis in infants and young children. The Hib capsule contains the major virulence factor, and is composed of polyribosyl ribitol phosphate (PRP) that can induce immune system response. Vaccines consisting of Hib capsular polysaccharide (PRP) conjugated to a carrier protein are effective in the prevention of the infections. However, due to costly processes in PRP production, these vaccines are too expensive. Objectives To enhance biomass, in this research we focused on optimizing Hib growth with respect to physical factors such as pH, temperature, and agitation by using a response surface methodology (RSM). Materials and Methods We employed a central composite design (CCD) and a response surface methodology to determine the optimum cultivation conditions for growth and biomass production of H. influenzae type b. The treatment factors investigated were initial pH, agitation, and temperature, using shaking flasks. After Hib cultivation and determination of dry biomass, analysis of experimental data was performed by the RSM-CCD. Results The model showed that temperature and pH had an interactive effect on Hib biomass production. The dry biomass produced in shaking flasks was about 5470 mg/L, which was under an initial pH of 8.5, at 250 rpm and 35° C. Conclusions We found CCD and RSM very effective in optimizing Hib culture conditions, and Hib biomass production was greatly influenced by pH and incubation temperature. Therefore, optimization of the growth factors to maximize Hib production can lead to 1) an increase in bacterial biomass and PRP productions, 2) lower vaccine prices, 3) vaccination of more susceptible populations, and 4) lower risk of Hib infections. PMID:27630761

  1. Biomass Partitioning and Its Relationship with the Environmental Factors at the Alpine Steppe in Northern Tibet

    PubMed Central

    Wu, Jianbo; Hong, Jiangtao; Wang, Xiaodan; Sun, Jian; Lu, Xuyang; Fan, Jihui; Cai, Yanjiang

    2013-01-01

    Alpine steppe is considered to be the largest grassland type on the Tibetan Plateau. This grassland contributes to the global carbon cycle and is sensitive to climate changes. The allocation of biomass in an ecosystem affects plant growth and the overall functioning of the ecosystem. However, the mechanism by which plant biomass is allocated on the alpine steppe remains unclear. In this study, biomass allocation and its relationship to environmental factors on the alpine grassland were studied by a meta-analysis of 32 field sites across the alpine steppe of the northern Tibetan Plateau. We found that there is less above-ground biomass (MA) and below-ground biomass (MB) in the alpine steppe than there is in alpine meadows and temperate grasslands. By contrast, the root-to-shoot ratio (R:S) in the alpine steppe is higher than it is in alpine meadows and temperate grasslands. Although temperature maintained the biomass in the alpine steppe, precipitation was found to considerably influence MA, MB, and R:S, as shown by ordination space partitioning. After standardized major axis (SMA) analysis, we found that allocation of biomass on the alpine steppe is supported by the allometric biomass partitioning hypothesis rather than the isometric allocation hypothesis. Based on these results, we believe that MA and MB will decrease as a result of the increased aridity expected to occur in the future, which will reduce the landscape’s capacity for carbon storage. PMID:24349170

  2. Carbon allocation, source-sink relations and plant growth: do we need to revise our carbon centric concepts?

    NASA Astrophysics Data System (ADS)

    Körner, Christian

    2014-05-01

    Since the discovery that plants 'eat air' 215 years ago, carbon supply was considered the largely unquestioned top driver of plant growth. The ease at which CO2 uptake (C source activity) can be measured, and the elegant algorithms that describe the responses of photosynthesis to light, temperature and CO2 concentration, explain why carbon driven growth and productivity became the starting point of all process based vegetation models. Most of these models, nowadays adopt other environmental drivers, such as nutrient availability, as modulating co-controls, but the carbon priority is retained. Yet, if we believe in the basic rules of stoichometry of all life, there is an inevitable need of 25-30 elements other then carbon, oxygen and hydrogen to build a healthy plant body. Plants compete for most of these elements, and their availability (except for N) is finite per unit land area. Hence, by pure plausibility, it is a highly unlikely situation that carbon plays the rate limiting role of growth under natural conditions, except in deep shade or on exceptionally fertile soils. Furthermore, water shortage and low temperature, both act directly upon tissue formation (meristems) long before photosynthetic limitations come into play. Hence, plants will incorporate C only to the extent other environmental drivers permit. In the case of nutrients and mature ecosystems, this sink control of plant growth may be masked in the short term by a tight, almost closed nutrient cycle or by widening the C to other element ratio. Because source and sink activity must match in the long term, it is not possible to identify the hierarchy of growth controls without manipulating the environment. Dry matter allocation to C rich structures and reserves may provide some stoichimetric leeway or periodic escapes from the more fundamental, long-term environmental controls of growth and productivity. I will explain why carbon centric explanations of growth are limited or arrive at plausible answers

  3. Effect of acetate to biomass ratio on simultaneous polyhydroxybutyrate generation and direct microbial growth in fast growing microbial culture.

    PubMed

    Biros, Yester; Çokgör, Emine Ubay; Yağcı, Nevin; Pala-Ozkok, Ilke; Çakar, Zeynep Petek; Sözen, Seval; Orhon, Derin

    2014-11-01

    The study investigated the effect of variations in the acetate to biomass ratio on substrate storage potential, and the kinetics of substrate utilization. A series of batch experiments were conducted with biomass taken from the fill and draw reactor operated at a sludge age of 2 d. One of the batch reactors duplicated the substrate loading in the main reactor. The others were started with different initial acetate to biomass ratios both in lower and higher ranges. Increasing available acetate did not totally divert excess substrate to storage; the microbial culture adjusted the kinetics of the metabolic reactions to a higher growth rate so that more substrate could be utilized for direct growth at high acetate levels. Conversely, storage rate was increased, utilizing a higher substrate fraction for polyhydroxybutyrate generation when acetate concentration was lowered. The physiological and molecular bases of storage at low substrate levels were discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Mycophagous growth of Collimonas bacteria in natural soils, impact on fungal biomass turnover and interactions with mycophagous Trichoderma fungi.

    PubMed

    Höppener-Ogawa, Sachie; Leveau, Johan H J; van Veen, Johannes A; De Boer, Wietse

    2009-02-01

    Bacteria of the genus Collimonas are widely distributed in soils, although at low densities. In the laboratory, they were shown to be mycophagous, that is, they are able to grow at the expense of living hyphae. However, so far the importance of mycophagy for growth and survival of collimonads in natural soil habitats is unknown. Using a Collimonas-specific real-time PCR assay, we show here that the invasion of field soils by fungal hyphae (Absidia sp.) resulted in a short-term, significant increase (average fourfold) of indigenous collimonads. No such responses were observed for other soil bacteria studied (Pseudomonas, Burkholderia, PCR-denaturing gradient gel electrophoresis patterns of total bacteria and Burkholderia). Hence, it appears that the stimulation of growth of Collimonas bacteria by fungal hyphae is not common among other soil bacteria. In the same field soils, Trichoderma, a fungal genus known for mycophagous (mycoparasitic) growth, increased upon introduction of Absidia hyphae. Hence, mycophagous growth by Collimonas and Trichoderma can occur in the same soils. However, in controlled experiments (sand microcosms), collimonads appeared to have a negative effect on mycophagous growth of a Trichoderma strain. The effect of mycophagous growth of collimonads on fungal biomass dynamics was studied in sand microcosms using the same Absidia sp. as a test fungus. The growth of collimonads did not cause a significant reduction in the Absidia biomass. Overall, the study indicates that mycophagous nutrition may be important for collimonads in natural soils, but the impact on fungal biomass turnover is likely to be minor.

  5. Glucocorticosteroids do not impact directly growth rate and biomass of Rhizopus arrhizus (syn. R. oryzae) in vitro.

    PubMed

    Bellanger, A P; Minetos, Y D; Albert, N; Shirazi, F; Walsh, T J; Kontoyiannis, D P

    2015-01-01

    Glucocorticoid (GC) use is a common risk factor for invasive fungal infections. This is attributed to the complex dysregulation of immunity caused by GCs. However, studies have demonstrated increased growth with GC exposure for some molds, such as Aspergillus fumigatus and Exserohilum rostratum. No such data exist for Mucorales. Therefore, we investigated the influence of GC exposure on the growth of Rhizopus arrhizus (syn. R. oryzae) in different culture media and in different atmospheres. We measured continuous spore growth using spectrophotometry and biomass variations using XTT assay. We did not observe enhanced growth or biomass variation with any of the GCs regardless of the medium or conditions. These results support the existence of fungus-specific differences in the effect of GCs on fungal biology.

  6. Changes in growth, leaf abscission, and biomass associated with seasonal tropospheric ozone exposures of Populus tremuloides clones and seedlings

    Treesearch

    D.F. Karnosky; Z.E. Gagnon; R.E. Dickson; M.D. Coleman; E.H. Lee; J.G. Isebrands

    1996-01-01

    The effects of single-season tropospheric ozone (03) exposures on growth, leaf abscission, and biomass of trembling aspen (Populus tremuloides Michx.) rooted cuttings and seedlings were studied. Plants were grown in the Upper Peninsula of Michigan in open-top chambers with 03 exposures that ranged from...

  7. Genomics Mechanisms of Carbon Allocation and Partitioning in Poplar

    SciTech Connect

    Kirst, Matias; Peter, Gary; Martin, Timothy

    2009-07-30

    The genetic control of carbon allocation and partitioning in woody perennial plants is poorly understood despite its importance for carbon sequestration. It is also unclear how environmental cues such as nitrogen availability impact the genes that regulate growth, and biomass allocation and wood composition in trees. To address these questions we phenotyped 396 clonally replicated genotypes of an interspecific pseudo-backcross pedigree of Populus for wood composition and biomass traits in above and below ground organs. The loci that regulate growth, carbon allocation and partitioning under two nitrogen conditions were identified, defining the contribution of environmental cues to their genetic control. Fifty-seven quantitative trait loci (QTL) were identified for twenty traits analyzed. The majority of QTL are specific to one of the two nitrogen treatments, demonstrating significant nitrogen-dependent genetic control. A highly significant genetic correlation was observed between plant growth and lignin/cellulose composition, and QTL co-localization identified the genomic position of potential pleiotropic regulators. Gene expression analysis of all poplar genes was also characterized in differentiating xylem, whole-roots and developing leaves of 192 of the segregating population. By integrating the QTL and gene expression information we identified genes that regulate carbon partitioning and several biomass growth related properties. The work developed in this project resulted in the publication of three book chapters, four scientific articles (three others currently in preparation), 17 presentations in international conferences and two provisional patent applications.

  8. Microalgae biomass growth using primary treated wastewater as nutrient source and their potential use for lipids production

    NASA Astrophysics Data System (ADS)

    Frementiti, Anastacia; Aravantinou, Andriana F.; Manariotis, Ioannis D.

    2015-04-01

    The great demand for energy, the rising price of the crude oil and the rapid decrease of the supply of fossil fuels are the main reasons that have increased the interest for the production of fuels from renewable resources. Microalgae are considered to be the most promising new source of biomass and biofuels, since their lipid content in some cases is up to 70%. The microalgal growth and its metabolism processes are essential in wastewater treatment with many economical prospects. The aim of this work was to evaluate the algal production in a laboratory scale open pond. The pond had a working volume of 30 L and was fed with sterilized primary treated wastewater. Chlorococcum sp. was used as a model microalgal. Experiments were conducted under controlled environmental conditions in order to investigate the removal of nutrients, biomass growth, and lipids accumulation in microalgae. Chlorococcum sp. cultures behavior was investigated under batch, fill and draw, and continuous operation mode, at two different radiation intensities (100 and 200 μmol/m2s). The maximum biomass concentration of 630 mg/L was observed with the fill and draw mode. Moreover, the growth rates of microalgal biomass were depended on the influent nutrients concentration. Specifically, the phosphates were the limiting factor for biomass growth in continuous condition; the phosphates removal in this condition, reached a 100%. Chemical demand oxygen (COD) was not removed efficiently by Chlorococcum sp. since it was an autotrophic microalgal with no organic carbon demands for its growth. The lipids content in the dry weight of Chlorococcum sp. ranged from 1 to 9% depending on the concentration of nutrients and the operating conditions.

  9. Mulch and fertilizer management practices for organic production of highbush blueberry. I. Plant growth and allocation of biomass during establishment

    USDA-ARS?s Scientific Manuscript database

    A systems trial was established to evaluate management practices for organic production of highbush blueberry. The practices included two bed types (flat and raised), two sources and rates of fertilizer (feather meal and fish emulsion applied at 29 and 57 kg/ha N), three mulches [sawdust, compost to...

  10. Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees.

    PubMed

    Jin, Yan-Li; Tang, Ren-Jie; Wang, Hai-Hai; Jiang, Chun-Mei; Bao, Yan; Yang, Yang; Liang, Mei-Xia; Kong, Fanjing; Li, Bei; Zhang, Hong-Xia

    2017-03-04

    Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyze the conversion of castasterone (CS) to brassinolide (BL), a final rate-limiting step in the BR biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded-growth phenotype of the Arabidopsis cyp85a2-2 and tomato d(x) mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type (WT), plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggest that PtCYP85A3 could be used as a potential candidate gene for engineering fast growing trees with improved wood production. This article is protected by copyright. All rights reserved.

  11. Maximal sum of metabolic exchange fluxes outperforms biomass yield as a predictor of growth rate of microorganisms.

    PubMed

    Zarecki, Raphy; Oberhardt, Matthew A; Yizhak, Keren; Wagner, Allon; Shtifman Segal, Ella; Freilich, Shiri; Henry, Christopher S; Gophna, Uri; Ruppin, Eytan

    2014-01-01

    Growth rate has long been considered one of the most valuable phenotypes that can be measured in cells. Aside from being highly accessible and informative in laboratory cultures, maximal growth rate is often a prime determinant of cellular fitness, and predicting phenotypes that underlie fitness is key to both understanding and manipulating life. Despite this, current methods for predicting microbial fitness typically focus on yields [e.g., predictions of biomass yield using GEnome-scale metabolic Models (GEMs)] or notably require many empirical kinetic constants or substrate uptake rates, which render these methods ineffective in cases where fitness derives most directly from growth rate. Here we present a new method for predicting cellular growth rate, termed SUMEX, which does not require any empirical variables apart from a metabolic network (i.e., a GEM) and the growth medium. SUMEX is calculated by maximizing the SUM of molar EXchange fluxes (hence SUMEX) in a genome-scale metabolic model. SUMEX successfully predicts relative microbial growth rates across species, environments, and genetic conditions, outperforming traditional cellular objectives (most notably, the convention assuming biomass maximization). The success of SUMEX suggests that the ability of a cell to catabolize substrates and produce a strong proton gradient enables fast cell growth. Easily applicable heuristics for predicting growth rate, such as what we demonstrate with SUMEX, may contribute to numerous medical and biotechnological goals, ranging from the engineering of faster-growing industrial strains, modeling of mixed ecological communities, and the inhibition of cancer growth.

  12. Lipid for biodiesel production from attached growth Chlorella vulgaris biomass cultivating in fluidized bed bioreactor packed with polyurethane foam material.

    PubMed

    Mohd-Sahib, Ainur-Assyakirin; Lim, Jun-Wei; Lam, Man-Kee; Uemura, Yoshimitsu; Isa, Mohamed Hasnain; Ho, Chii-Dong; Kutty, Shamsul Rahman Mohamed; Wong, Chung-Yiin; Rosli, Siti-Suhailah

    2017-09-01

    The potential to grow attached microalgae Chlorella vulgaris in fluidized bed bioreactor was materialized in this study, targeting to ease the harvesting process prior to biodiesel production. The proposed thermodynamic mechanism and physical property assessment of various support materials verified polyurethane to be suitable material favouring the spontaneous adhesion by microalgae cells. The 1-L bioreactor packed with only 2.4% (v/v) of 1.00-mL polyurethane foam cubes could achieve the highest attached growth microalgae biomass and lipid weights of 812±122 and 376±37mg, respectively, in comparison with other cube sizes. The maturity of attached growth microalgae biomass for harvesting could also be determined from the growth trend of suspended microalgae biomass. Analysis of FAME composition revealed that the harvested microalgae biomass was dominated by C16-C18 (>60%) and mixture of saturated and mono-unsaturated fatty acids (>65%), satiating the biodiesel standard with adequate cold flow property and oxidative stability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Diverse acidogenic effluents as feedstock for microalgae cultivation: Dual phase metabolic transition on biomass growth and lipid synthesis.

    PubMed

    Chiranjeevi, P; Venkata Mohan, S

    2017-10-01

    In this study, a biorefinery process integrating dark fermentation with microalgae cultivation (dual phase metabolic transition) was demonstrated with real-field wastewater. Acid rich fermented effluents (distillery waste (FDW1); dairy waste (FDW2)) were used as feedstock for microalgae cultivation. Experiments were performed with FDW1 during growth phase (GP) in mixotrophic mode and FDW2 during stress phase (SP) in both mixotrophic and heterotrophic modes. Mixotrophic cultivation with FDW1 documented significantly higher biomass productivity (5.3g/l). Total lipid (TL) percentage was high in mixotrophic (34%) mode and neutral lipid (NL) was high in heterotrophic (13%) mode of cultivation during SP with FDW2. Overall, the microalgae growth is favoured with effluents containing high acetate, and low butyrate concentrations. Mixotrophic cultivation enhanced both biomass growth and lipid production along with simultaneous treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Running Title: C and N Allocation in Pine

    SciTech Connect

    Ball, J. Timothy

    1996-12-01

    uptake, and the dynamics of nutrient use were all seen to be influenced by the interplay between previous N supply, previous C supply, and the concentration of CO{sub 2} in the atmosphere. The data suggest that in an elevated CO{sub 2} atmosphere ponderosa pine seedlings will have higher root biomass and be likely to capture more N compared to seedlings today. Further, the combined growth and allocation responses of Ponderosa pine at elevated CO{sub 2} resulted in higher growth per unit N (nitrogen productivity) and lower N per gram of tissue (all tissues not just leaves) when nitrogen was not in abundant supply.

  15. Parallelised online biomass monitoring in shake flasks enables efficient strain and carbon source dependent growth characterisation of Saccharomyces cerevisiae.

    PubMed

    Bruder, Stefan; Reifenrath, Mara; Thomik, Thomas; Boles, Eckhard; Herzog, Konrad

    2016-07-25

    Baker's yeast, Saccharomyces cerevisiae, as one of the most often used workhorses in biotechnology has been developed into a huge family of application optimised strains in the last decades. Increasing numbers of strains render their characterisation highly challenging, even with the simple methods of growth-based analytics. Here we present a new sensor system for the automated, non-invasive and parallelisable monitoring of biomass in continuously shaken shake flask cultures, called CGQ ("cell growth quantifier"). The CGQ implements a dynamic approach of backscattered light measurement, allowing for efficient and accurate growth-based strain characterisation, as exemplarily demonstrated for the four most commonly used laboratory and industrial yeast strains, BY4741, W303-1A, CEN.PK2-1C and Ethanol Red. Growth experiments revealed distinct carbon source utilisation differences between the investigated S. cerevisiae strains. Phenomena such as diauxic shifts, morphological changes and oxygen limitations were clearly observable in the growth curves. A strictly monotonic non-linear correlation of OD600 and the CGQ's backscattered light intensities was found, with strain-to-strain as well as growth-phase related differences. The CGQ measurements showed high resolution, sensitivity and smoothness even below an OD600 of 0.2 and were furthermore characterised by low background noise and signal drift in combination with high reproducibility. With the CGQ, shake flask fermentations can be automatically monitored regarding biomass and growth rates with high resolution and parallelisation. This makes the CGQ a valuable tool for growth-based strain characterisation and development. The exceptionally high resolution allows for the identification of distinct metabolic differences and shifts as well as for morphologic changes. Applications that will benefit from that kind of automatized biomass monitoring include, amongst many others, the characterization of deregulated native or

  16. Improved growth media and culture techniques for genetic analysis and assessment of biomass utilization by Caldicellulosiruptor bescii.

    PubMed

    Farkas, Joel; Chung, Daehwan; Cha, Minseok; Copeland, Jennifer; Grayeski, Philip; Westpheling, Janet

    2013-01-01

    Methods for efficient growth and manipulation of relatively uncharacterized bacteria facilitate their study and are essential for genetic manipulation. We report new growth media and culture techniques for Caldicellulosiruptor bescii, the most thermophilic cellulolytic bacterium known. A low osmolarity defined growth medium (LOD) was developed that avoids problems associated with precipitates that form in previously reported media allowing the monitoring of culture density by optical density at 680 nm (OD(680)) and more efficient DNA transformation by electroporation. This is a defined minimal medium and does not support growth when a carbon source is omitted, making it suitable for selection of nutritional markers as well as the study of biomass utilization by C. bescii. A low osmolarity complex growth medium (LOC) was developed that dramatically improves growth and culture viability during storage, making it a better medium for routine growth and passaging of C. bescii. Both media contain significantly lower solute concentration than previously published media, allowing for flexibility in developing more specialized media types while avoiding the issues of growth inhibition and cell lysis due to osmotic stress. Plating on LOD medium solidified by agar results in ~1,000-fold greater plating efficiency than previously reported and allows the isolation of discrete colonies. These new media represent a significant advance for both genetic manipulation and the study of biomass utilization in C. bescii, and may be applied broadly across the Caldicellulosiruptor genus.

  17. Resource allocation patterns of two California-Sonoran desert ephemerals.

    PubMed

    Clark, D D; Burk, J H

    1980-07-01

    The patterns of allocation of structural and nonstructural carbon were followed in the co-occurring desert ephemerals Plantago insularis and Camissonia boothii. Patterns of biomass distribution were determined from material harvested at biweekly intervals as were levels of nonstructural sugar and starch. Seasonal patterns of growth and reproduction differed markedly with Plantago allocating significantly more structural and nonstructural carbon to reproduction early in the season. Plantago completed its life cycle in less than 60 days but Camissonia continued both vegetative and reproductive growth to over 100 days. The longer growing season of Camissonia was possible because more energy was allocated to vegetative tissues and storage presumably as investment toward longer life and higher levels of reproduction.

  18. Non-structural carbon dynamics and allocation relate to growth rate and leaf habit in California oaks.

    PubMed

    Trumbore, Susan; Czimczik, Claudia I; Sierra, Carlos A; Muhr, Jan; Xu, Xiaomei

    2015-11-01

    Trees contain non-structural carbon (NSC), but it is unclear for how long these reserves are stored and to what degree they are used to support plant activity. We used radiocarbon ((14)C) to show that the carbon (C) in stemwood NSC can achieve ages of several decades in California oaks. We separated NSC into two fractions: soluble (∼50% sugars) and insoluble (mostly starch) NSC. Soluble NSC contained more C than insoluble NSC, but we found no consistent trend in the amount of either pool with depth in the stem. There was no systematic difference in C age between the two fractions, although ages increased with stem depth. The C in both NSC fractions was consistently younger than the structural C from which they were extracted. Together, these results indicate considerable inward mixing of NSC within the stem and rapid exchange between soluble and insoluble pools, compared with the timescale of inward mixing. We observed similar patterns in sympatric evergreen and deciduous oaks and the largest differences among tree stems with different growth rates. The (14)C signature of carbon dioxide (CO2) emitted from tree stems was higher than expected from very recent photoassimilates, indicating that the mean age of C in respiration substrates included a contribution from C fixed years previously. A simple model that tracks NSC produced each year, followed by loss (through conversion to CO2) in subsequent years, matches our observations of inward mixing of NSC in the stem and higher (14)C signature of stem CO2 efflux. Together, these data support the idea of continuous accumulation of NSC in stemwood and that 'vigor' (growth rate) and leaf habit (deciduous vs evergreen) control NSC pool size and allocation.

  19. Evaluation of morphological variation and biomass growth of Nostoc commune under laboratory conditions.

    PubMed

    Diao, Yi; Yang, Zujun

    2014-05-01

    Nostoc commune is a blue green alga used for health food and herbal medicine due to its nutritional values and antioxidant properties. However, wild type N. commune has been decreasing in quantity as a result of ever-growing market demand and environmental pollution. Therefore, artificial culture of N. commune is important as it can bring great social and economic benefits. In this article, N. commune was cultured in BG11 medium, under which condition morphological variation and biomass growth of N. commune were investigated. Results indicated that concentration, fresh weight and dry weight of the colony increased fastest at 40 rpm from the 1st day to 14th day and the fresh and dry weight increased as the culturing time was prolonged, and reached 27.22 g l⁻¹ and 0.88 g l⁻¹ respectively on 56th day. Aggregated cell mass formed on 4th day and it expanded to asteriated colonies on 10th day. Single microcolonies formed on the 21st day had diameters 200-250 μm. Macrocolonies obtained after 28 days had diameters of 5 mm on 42nd day. Discoid colonies were formed as macrocolonies ruptured on 49th day and the diameter reached 15 mm on 56th day. Results of the present study can promote large-scale industrial production of N. commune.

  20. Growth, reproduction, mortality, distribution, and biomass of freshwater drum in Lake Erie

    USGS Publications Warehouse

    Bur, Michael T.

    1984-01-01

    Predominant age-groups in the Lake Erie freshwater drum Aplodinotus grunnienspopulation were 3, 4, and 5 as determined from gill net, trap net, bottom trawl, and midwater trawl samples. Age and growth calculations indicated that females grew faster than males. However, the length-weight relation did not differ between sexes and was described by the equation: log W = −5.4383 + 3.1987 log L. Some males became sexually mature at age 2 and all were mature by age 6. Females matured 1 year later than males. Three sizes of eggs were present in ovaries; the average total number was 127,000 per female for 20 females over a length range of 270 to 478 mm. Seasonal analysis of the ovary-body weight ratio indicated that spawning extended from June to August. A total annual mortality rate of 49% for drum aged 4 through 11 was derived from catch-curve analysis. Freshwater drum were widely distributed throughout Lake Erie in 1977–1979, the greatest concentration being in the western basin. They moved into warm, shallow water (less than 10 m deep) during summer, and returned to deeper water in late fall. Summer biomass estimates for the western basin, based on systematic surveys with bottom trawls, were 9,545 t in 1977 and 2,333 t in 1978.

  1. Selective consumption and metabolic allocation of terrestrial and algal carbon determine allochthony in lake bacteria.

    PubMed

    Guillemette, François; Leigh McCallister, S; Del Giorgio, Paul A

    2016-06-01

    Here we explore strategies of resource utilization and allocation of algal versus terrestrially derived carbon (C) by lake bacterioplankton. We quantified the consumption of terrestrial and algal dissolved organic carbon, and the subsequent allocation of these pools to bacterial growth and respiration, based on the δ(13)C isotopic signatures of bacterial biomass and respiratory carbon dioxide (CO2). Our results confirm that bacterial communities preferentially remove algal C from the terrestrially dominated organic C pool of lakes, but contrary to current assumptions, selectively allocate this autochthonous substrate to respiration, whereas terrestrial C was preferentially allocated to biosynthesis. The results provide further evidence of a mechanism whereby inputs of labile, algal-derived organic C may stimulate the incorporation of a more recalcitrant, terrestrial C pool. This mechanism resulted in a counterintuitive pattern of high and relatively constant levels of allochthony (~76%) in bacterial biomass across lakes that otherwise differ greatly in productivity and external inputs.

  2. Activity and growth of anammox biomass on aerobically pre-treated municipal wastewater.

    PubMed

    Laureni, Michele; Weissbrodt, David G; Szivák, Ilona; Robin, Orlane; Nielsen, Jeppe Lund; Morgenroth, Eberhard; Joss, Adriano

    2015-09-01

    Direct treatment of municipal wastewater (MWW) based on anaerobic ammonium oxidizing (anammox) bacteria holds promise to turn the energy balance of wastewater treatment neutral or even positive. Currently, anammox processes are successfully implemented at full scale for the treatment of high-strength wastewaters, whereas the possibility of their mainstream application still needs to be confirmed. In this study, the growth of anammox organisms on aerobically pre-treated municipal wastewater (MWW(pre-treated)), amended with nitrite, was proven in three parallel reactors. The reactors were operated at total N concentrations in the range 5-20 mg(N)∙L(-1), as expected for MWW. Anammox activities up to 465 mg(N)∙L(-1)∙d(-1) were reached at 29 °C, with minimum doubling times of 18 d. Lowering the temperature to 12.5 °C resulted in a marked decrease in activity to 46 mg(N)∙L(-1)∙d(-1) (79 days doubling time), still in a reasonable range for autotrophic nitrogen removal from MWW. During the experiment, the biomass evolved from a suspended growth inoculum to a hybrid system with suspended flocs and wall-attached biofilm. At the same time, MWW(pre-treated) had a direct impact on process performance. Changing the influent from synthetic medium to MWW(pre-treated) resulted in a two-month delay in net anammox growth and a two to three-fold increase in the estimated doubling times of the anammox organisms. Interestingly, anammox remained the primary nitrogen consumption route, and high-throughput 16S rRNA gene-targeted amplicon sequencing analyses revealed that the shift in performance was not associated with a shift in dominant anammox bacteria ("Candidatus Brocadia fulgida"). Furthermore, only limited heterotrophic denitrification was observed in the presence of easily biodegradable organics (acetate, glucose). The observed delays in net anammox growth were thus ascribed to the acclimatization of the initial anammox population or/and the development of a side

  3. Effects of space allocation within a deep-bedded finishing system on pig growth performance, fatty acid composition and pork quality.

    PubMed

    Patton, B S; Huff-Lonergan, E; Honeyman, M S; Kerr, B J; Lonergan, S M

    2008-03-01

    The objectives of the current study were to determine the degree to which space allocation in a deep-bedded system influences swine performance and pork quality. The deep-bedded method employed was hoop structures, which are large, tent-like shelters with cornstalks or straw for bedding. One hundred gilts ranging in weight from 59 to 71 kg were randomly assigned to treatments of low (0.70 m2 per pig, n = 50) or high (1.13 m2 per pig, n = 50) space allocation. During the 45-day experimental period, gilts were ad libitum fed a two-phase diet. Six gilts per treatment were used for carcass composition and pork quality evaluation for each replication. Five replications were conducted over a period of 4 months. Pigs finished with greater space allocation had smaller longissimus muscle area and produced pork that appeared to be darker. Variations in fatty acid composition and lipid percentage of subcutaneous adipose and longissimus dorsi muscle were observed when space allocation was changed within hoop structures. Less space resulted in greater proportion of lipid present as polyunsaturated fatty acids. Greater space allocation resulted in lower total lipid in subcutaneous pork adipose tissue. Space allocation did not affect fat firmness. Replications spanned the months of August to November, with temperatures ranging from 32°C to -2°C within the hoop structure. As environmental temperature declined, the proportion of monounsaturated fatty acids increased. Providing more space during finishing in these systems had only a small affect on pig growth and pork quality. Variations observed from replication to replication at fluctuating temperatures provide insight to seasonal differences in growth and adipose tissue composition and firmness. Therefore, finishing pigs in these systems may lead to seasonal variation in lipid composition.

  4. Lipase Production in Solid-State Fermentation Monitoring Biomass Growth of Aspergillus niger Using Digital Image Processing

    NASA Astrophysics Data System (ADS)

    Dutra, Julio C. V.; da Terzi, Selma C.; Bevilaqua, Juliana Vaz; Damaso, Mônica C. T.; Couri, Sônia; Langone, Marta A. P.; Senna, Lilian F.

    The aim of this study was to monitor the biomass growth of Aspergillus niger in solid-state fermentation (SSF) for lipase production using digital image processing technique. The strain A. niger 11T53A14 was cultivated in SSF using wheat bran as support, which was enriched with 0.91% (m/v) of ammonium sulfate. The addition of several vegetable oils (castor, soybean, olive, corn, and palm oils) was investigated to enhance lipase production. The maximum lipase activity was obtained using 2% (m/m) castor oil. In these conditions, the growth was evaluated each 24 h for 5 days by the glycosamine content analysis and digital image processing. Lipase activity was also determined. The results indicated that the digital image process technique can be used to monitor biomass growth in a SSF process and to correlate biomass growth and enzyme activity. In addition, the immobilized esterification lipase activity was determined for the butyl oleate synthesis, with and without 50% v/v hexane, resulting in 650 and 120 U/g, respectively. The enzyme was also used for transesterification of soybean oil and ethanol with maximum yield of 2.4%, after 30 min of reaction.

  5. Effects of soil type, fertilization and drought on carbon allocation to root growth and partitioning between secondary metabolism and ectomycorrhizae of Betula papyrifera.

    PubMed

    Kleczewski, Nathan M; Herms, Daniel A; Bonello, Pierluigi

    2010-07-01

    Paper birch (Betula papyrifera Marsh) seedlings were grown in a greenhouse in either subsoil or topsoil in factorial combination with two fertilization and drought regimes to investigate how different soil environments and nutrient availability drive belowground partitioning between growth, secondary metabolism and ectomycorrhizal (EM) associations, and impact drought tolerance of paper birch. Root and total seedling dry biomass, starch, soluble sugars, soluble phenolics, lignin and EM abundance were quantified. In unfertilized topsoil, total plant biomass and root biomass were approximately nine times higher than in unfertilized subsoil, but the root weight ratios did not differ between soils. Root soluble phenolics and lignin were higher in unfertilized subsoil than in unfertilized topsoil, whereas EM abundance was significantly higher in unfertilized topsoil than in unfertilized subsoil. In topsoil, fertilization decreased root biomass and EM abundance and increased root phenolics and lignin. In contrast, fertilization of subsoil increased root biomass but decreased root phenolics and lignin, while EM abundance was unaffected. In both soil types, fertilization reduced root weight ratios. Across soil types, EM abundance was negatively correlated with root soluble sugars, root phenolics and lignin, but this was driven mainly by the responses in the topsoil treatment. Our results show that soil fertility mediates carbon tradeoffs among defense, growth and EM associations.

  6. Longer black willow cuttings result in better initial height and diameter growth in biomass plantations

    Treesearch

    Jake C. Camp; Randall J. Rousseau; Emile S. Gardiner

    2012-01-01

    Black willow (Salix nigra Marsh.) has the potential to be a viable plantation species for biomass production on heavy clay soils throughout the southern United States. The most favorable planting stock for woody biomass plantations is dormant unrooted cuttings, because they are easy to plant and use of clonal material allows for advancing genetic...

  7. Shrub biomass production following simulated herbivory: A test of the compensatory growth hypothesis

    Treesearch

    Terri B. Teaschner; Timothy E. Fulbright

    2007-01-01

    The objective of this experiment was to test the hypotheses that 1) simulated herbivory stimulates increased biomass production in spiny hackberry (Celtis pallida), but decreases biomass production in blackbrush acacia (Acacia rigidula) compared to unbrowsed plants and 2) thorn density and length increase in blackbrush acacia to a...

  8. The dynamics of annual carbon allocation to wood in European forests is consistent with a combined source-sink limitation of growth.

    NASA Astrophysics Data System (ADS)

    Guillemot, Joannès; Martin-StPaul, Nicolas K.; Dufrêne, Eric; François, Christophe; Soudani, Kamel; Ourcival, Jean-Marc; Leadley, Paul; Delpierre, Nicolas

    2015-04-01

    The extent to which forest growth is limited by carbon (C) supply (source control) or by cambial activity (sink control) will strongly determines the responses of trees to global changes. However, the physiological processes responsible for the limitation of forest growth are still under debate. The aim of this study was i) to evaluate the key drivers of the annual carbon allocation to wood along large soil and climate regional gradients in four tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex and Picea abies) ii) to implement the identified key drivers in a new C allocation scheme within the CASTANEA terrestrial biosphere model (TBM). Combining field measurements and process-based simulations at 49 sites (931 site-years), our analyses revealed that the inter-site variability in C allocation to wood was predominantly driven by an age-related decline. The direct control of temperature or water stress on sink activity (i.e. independently from their effects on C supply) exerted a strong influence on the annual woody growth in all the species considered, including deciduous temperate species. The lagged effect of the past environment conditions was a significant driver of the annual C allocation to wood. Carbon supply appeared to strongly limit growth only in deciduous temperate species. Our study supports the premise that European forest growth is under a complex panel of source- and sink- limitations, contradicting the simple source control implemented in most TBMs. The implementation of these combined forest growth limitations in the CASTANEA model significantly improved its performance when evaluated against independent stand growth data at the regional scale (mainland France, >10000 plots). We finally discuss how the sink imitation affects the CASTANEA simulated projections of forest productivity along the 21th century, especially with respect to the expected fertilizing effect of increasing atmospheric

  9. Organic and inorganic fertilizer effect on soil CO2 flux, microbial biomass, and growth of Nigella sativa L.

    NASA Astrophysics Data System (ADS)

    Salehi, Aliyeh; Fallah, Seyfollah; Sourki, Ali Abasi

    2017-01-01

    Cattle manure has a high carbon/nitrogen ratio and may not decompose; therefore, full-dose application of urea fertilizer might improve biological properties by increasing manure decomposition. This study aimed to investigate the effect of combining cattle manure and urea fertilizer on soil CO2 flux, microbial biomass carbon, and dry matter accumulation during Nigella sativa L. (black cumin) growth under field conditions. The treatments were control, cattle manure, urea, different levels of split and full-dose integrated fertilizer. The results showed that integrated application of cattle manure and chemical fertilizer significantly increased microbial biomass carbon by 10%, soil organic carbon by 2.45%, total N by 3.27%, mineral N at the flowering stage by 7.57%, and CO2 flux by 9% over solitary urea application. Integrated application increased microbial biomass carbon by 10% over the solitary application and the full-dose application by 5% over the split application. The soil properties and growth parameters of N. sativa L. benefited more from the full-dose application than the split application of urea. Cattle manure combined with chemical fertilizer and the full-dose application of urea increased fertilizer efficiency and improved biological soil parameters and plant growth. This method decreased the cost of top dressing urea fertilizer and proved beneficial for the environment and medicinal plant health.

  10. Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA

    PubMed Central

    2014-01-01

    Trends in living aboveground biomass and inputs to the pool of coarse woody debris (CWD) in an undisturbed, old-growth hemlock-northern hardwood forest in northern MI were estimated from multi-decade observations of permanent plots. Growth and demographic data from seven plot censuses over 47 years (1962–2009), combined with one-time measurement of CWD pools, help assess biomass/carbon status of this landscape. Are trends consistent with traditional notions of late-successional forests as equilibrial ecosystems? Specifically, do biomass pools and CWD inputs show consistent long-term trends and relationships, and can living and dead biomass pools and trends be related to forest composition and history? Aboveground living biomass densities, estimated using standard allometric relationships, range from 360–450 Mg/ha among sampled stands and types; these values are among the highest recorded for northeastern North American forests. Biomass densities showed significant decade-scale variation, but no consistent trends over the full study period (one stand, originating following an 1830 fire, showed an aggrading trend during the first 25 years of the study). Even though total above-ground biomass pools are neither increasing nor decreasing, they have been increasingly dominated, over the full study period, by very large (>70 cm dbh) stems and by the most shade-tolerant species (Acer saccharum and Tsuga canadensis). CWD pools measured in 2007 averaged 151 m3/ha, with highest values in Acer-dominated stands. Snag densities averaged 27/ha, but varied nearly ten-fold with canopy composition (highest in Tsuga-dominated stands, lowest in Acer-dominated); snags constituted 10–50% of CWD biomass. Annualized CWD inputs from tree mortality over the full study period averaged 1.9–3.2 Mg/ha/yr, depending on stand and species composition. CWD input rates tended to increase over the course of the study. Input rates may be expected to increase over longer-term observations

  11. Multi-decade biomass dynamics in an old-growth hemlock-northern hardwood forest, Michigan, USA.

    PubMed

    Woods, Kerry D

    2014-01-01

    Trends in living aboveground biomass and inputs to the pool of coarse woody debris (CWD) in an undisturbed, old-growth hemlock-northern hardwood forest in northern MI were estimated from multi-decade observations of permanent plots. Growth and demographic data from seven plot censuses over 47 years (1962-2009), combined with one-time measurement of CWD pools, help assess biomass/carbon status of this landscape. Are trends consistent with traditional notions of late-successional forests as equilibrial ecosystems? Specifically, do biomass pools and CWD inputs show consistent long-term trends and relationships, and can living and dead biomass pools and trends be related to forest composition and history? Aboveground living biomass densities, estimated using standard allometric relationships, range from 360-450 Mg/ha among sampled stands and types; these values are among the highest recorded for northeastern North American forests. Biomass densities showed significant decade-scale variation, but no consistent trends over the full study period (one stand, originating following an 1830 fire, showed an aggrading trend during the first 25 years of the study). Even though total above-ground biomass pools are neither increasing nor decreasing, they have been increasingly dominated, over the full study period, by very large (>70 cm dbh) stems and by the most shade-tolerant species (Acer saccharum and Tsuga canadensis). CWD pools measured in 2007 averaged 151 m(3)/ha, with highest values in Acer-dominated stands. Snag densities averaged 27/ha, but varied nearly ten-fold with canopy composition (highest in Tsuga-dominated stands, lowest in Acer-dominated); snags constituted 10-50% of CWD biomass. Annualized CWD inputs from tree mortality over the full study period averaged 1.9-3.2 Mg/ha/yr, depending on stand and species composition. CWD input rates tended to increase over the course of the study. Input rates may be expected to increase over longer-term observations because, (a

  12. Soil acidity, and the growth, biomass partitioning and leaf mineral composition of honeylocust (Gleditsia triacanthos L.) seedlings.

    PubMed

    Schindelbeck, R R; Riha, S J

    1988-12-01

    Honeylocust seedlings (Gleditsia triacanthos L.) were grown in cylinders containing soil adjusted to pH 4, 5 or 6, and harvested every 10 days for 40 days for dry weight and leaf mineral analysis. Total weight of plants grown at pH 4 was less than that of plants grown at pH 5 or 6. Root weight accounted for a greater proportion of total weight in plants grown at pH 4 than in plants grown at pH 5 or 6. Root growth as a function of total plant growth was higher in plants grown at pH 4 than in plants grown at pH 5 or 6, whereas leaf growth as a function of total plant growth was less in plants grown at pH 4 than in plants grown at pH 5 or 6. However, the relationships between root biomass and root length and between leaf biomass and leaf area were the same in all treatments. An analysis of total leaf concentrations of Ca, P, K, Mg, Mn and Al indicated that Al accumulation in leaves was significantly related to a decrease in plant growth at pH 5. A leaf tissue aluminum concentration of 35 microg g(-1) was associated with toxicity symptoms and a 25% reduction in total plant weight.

  13. Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates

    SciTech Connect

    Nelson, Cassandra E.; Beri, Nina R.; Gardner, Jeffrey G.

    2016-09-21

    Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interaction between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. Furthermore, we applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present.

  14. Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates

    DOE PAGES

    Nelson, Cassandra E.; Beri, Nina R.; Gardner, Jeffrey G.

    2016-09-21

    Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interactionmore » between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. Furthermore, we applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present.« less

  15. Custom fabrication of biomass containment devices using 3-D printing enables bacterial growth analyses with complex insoluble substrates.

    PubMed

    Nelson, Cassandra E; Beri, Nina R; Gardner, Jeffrey G

    2016-11-01

    Physiological studies of recalcitrant polysaccharide degradation are challenging for several reasons, one of which is the difficulty in obtaining a reproducibly accurate real-time measurement of bacterial growth using insoluble substrates. Current methods suffer from several problems including (i) high background noise due to the insoluble material interspersed with cells, (ii) high consumable and reagent cost and (iii) significant time delay between sampling and data acquisition. A customizable substrate and cell separation device would provide an option to study bacterial growth using optical density measurements. To test this hypothesis we used 3-D printing to create biomass containment devices that allow interaction between insoluble substrates and microbial cells but do not interfere with spectrophotometer measurements. Evaluation of materials available for 3-D printing indicated that UV-cured acrylic plastic was the best material, being superior to nylon or stainless steel when examined for heat tolerance, reactivity, and ability to be sterilized. Cost analysis of the 3-D printed devices indicated they are a competitive way to quantitate bacterial growth compared to viable cell counting or protein measurements, and experimental conditions were scalable over a 100-fold range. The presence of the devices did not alter growth phenotypes when using either soluble substrates or insoluble substrates. We applied biomass containment to characterize growth of Cellvibrio japonicus on authentic lignocellulose (non-pretreated corn stover), and found physiological evidence that xylan is a significant nutritional source despite an abundance of cellulose present. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Models of knot and stem development in black spruce trees indicate a shift in allocation priority to branches when growth is limited

    PubMed Central

    Duchateau, Emmanuel; Auty, David; Mothe, Frédéric; Longuetaud, Fleur; Ung, Chhun Huor

    2015-01-01

    The branch autonomy principle, which states that the growth of individual branches can be predicted from their morphology and position in the forest canopy irrespective of the characteristics of the tree, has been used to simplify models of branch growth in trees. However, observed changes in allocation priority within trees towards branches growing in light-favoured conditions, referred to as ‘Milton’s Law of resource availability and allocation,’ have raised questions about the applicability of the branch autonomy principle. We present models linking knot ontogeny to the secondary growth of the main stem in black spruce (Picea mariana (Mill.) B.S.P.), which were used to assess the patterns of assimilate allocation over time, both within and between trees. Data describing the annual radial growth of 445 stem rings and the three-dimensional shape of 5,377 knots were extracted from optical scans and X-ray computed tomography images taken along the stems of 10 trees. Total knot to stem area increment ratios (KSR) were calculated for each year of growth, and statistical models were developed to describe the annual development of knot diameter and curvature as a function of stem radial increment, total tree height, stem diameter, and the position of knots along an annual growth unit. KSR varied as a function of tree age and of the height to diameter ratio of the stem, a variable indicative of the competitive status of the tree. Simulations of the development of an individual knot showed that an increase in the stem radial growth rate was associated with an increase in the initial growth of the knot, but also with a shorter lifespan. Our results provide support for ‘Milton’s Law,’ since they indicate that allocation priority is given to locations where the potential return is the highest. The developed models provided realistic simulations of knot morphology within trees, which could be integrated into a functional-structural model of tree growth and above

  17. Effect of different growth conditions on biomass increase in kefir grains.

    PubMed

    Guzel-Seydim, Z; Kok-Tas, T; Ertekin-Filiz, B; Seydim, A C

    2011-03-01

    Kefir is a functional dairy product and the effects of kefir consumption on health have been well documented. Kefir grains have naturally high numbers of lactic acid bacteria and yeasts and are used in manufacturing kefir. The biomass of kefir grains slowly increases after successive fermentations. The effects of adding whey protein isolate, modified whey protein (MWP, fat replacer; Carbery Inc., Cork, Ireland), or inulin to milk and different atmospheric conditions (ambient or 6% CO(2)) during fermentation on the increase in biomass of kefir grains were investigated. Reconstituted milks (10% milk powder) enriched with whey protein isolate (2%), MWP (2%), and inulin (2%) were inoculated with kefir grains and fermented in ambient and 6% CO(2) incubators at 25°C until a final pH of 4.6 was reached. Biomass increments of kefir grains were determined weekly over 30 d. Lactic acid bacteria and yeast contents of kefir grains were also determined. The highest biomass increase (392%) was found in kefir grains grown in milk supplemented with whey protein isolate under ambient atmospheric conditions. Application of CO(2) did not provide a significant supporting effect on the biomass of kefir grains. Addition of MWP significantly accelerated the formation of kefir grain biomass (223%). The use of whey protein isolate, MWP, or inulin in milk did not cause any adverse effects on the microbial flora of kefir grains. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Media arrangement impacts cell growth in anaerobic fixed-bed reactors treating sugarcane vinasse: Structured vs. randomic biomass immobilization.

    PubMed

    de Aquino, Samuel; Fuess, Lucas Tadeu; Pires, Eduardo Cleto

    2017-03-23

    This study reports on the application of an innovative structured-bed reactor (FVR) as an alternative to conventional packed-bed reactors (PBRs) to treat high-strength solid-rich wastewaters. Using the FVR prevents solids from accumulating within the fixed-bed, while maintaining the advantages of the biomass immobilization. The long-term operation (330days) of a FVR and a PBR applied to sugarcane vinasse under increasing organic loads (2.4-18.0kgCODm(-3)day(-1)) was assessed, focusing on the impacts of the different media arrangements over the production and retention of biomass. Much higher organic matter degradation rates, as well as long-term operational stability and high conversion efficiencies (>80%) confirmed that the FVR performed better than the PBR. Despite the equivalent operating conditions, the biomass growth yield was different in both reactors, i.e., 0.095gVSSg(-1)COD (FVR) and 0.066gVSSg(-1)COD (PBR), indicating a clear control of the media arrangement over the biomass production in fixed-bed reactors.

  19. Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency.

    PubMed

    Barbosa, Maria J; Janssen, Marcel; Ham, Nienke; Tramper, Johannes; Wijffels, René H

    2003-04-20

    The slow development of microalgal biotechnology stems from the failure in the design of large-scale photobioreactors where light energy is efficiently utilized. Due to the light gradient inside the reactor and depending on the mixing properties, algae are subjected to certain light/dark cycles where the light period is characterized by a light gradient. These light/dark cycles will determine productivity and biomass yield on light energy. Air-lift reactors can be used for microalgae cultivation and medium-frequency light/dark cycles will be found in these systems. Light/dark cycles are associated with two basic parameters: first, the light fraction, i.e., the ratio between the light period and the cycle time and second, the frequency of the light/dark cycle. In the present work, light/dark cycles found in air-lift reactors were simulated taking into account the light gradient during the light period. The effect of medium-frequency cycle time (10-100 s) and light fraction (0.1-1) on growth rate and biomass yield on light energy of the microalgae Dunaliella tertiolecta was studied. The biomass yield and growth rates were mainly affected by the light fraction, while cycle time had little influence. Response surface methodology was used and a statistical model describing the effect of light fraction and cycle time on growth rate and biomass yield on light energy was developed. The use of the model as a reactor design criterion is discussed. Copyright 2003 Wiley Periodicals, Inc.

  20. Seasonal trends in growth and biomass accumulation of selected nutrients and metals in six species of emergent aquatic macrophytes

    SciTech Connect

    Behrends, L.L.; Bailey, E.; Bulls, M.J.; Coonrod, H.S.; Sikora, F.J.

    1996-05-01

    Growth and biomass accumulation of selected nutrients and trace metals were monitored for six species of aquatic macrophytes during June, August and November, 1993. Plant species were cultivated in two polyculture treatments, each replicated three times. Polyculture I consisted of Scirpus acutus (hardstem bullrush), Phragmites communes (common reed), and Phalaris arundinacea (canary grass). Polyculture H consisted of Typha spp. (cattail), Scirpus atrovirens (green bullrush), and Scirpus cyperinus (wool grass). Each of the six cells (6 x 9 x 0.6 m), was operated as a gravel-substrate, subsurface-flow wetlands in a continuous recirculating mode. At six week intervals, macro, micro and trace elements were dissolved and added to the sump of the recirculating system. On each of three sampling dates, replicate shoot and root samples were collected, segregated by species and tissue type (roots, rhizomes, stems and leaves), and prepared for gravimetric biomass estimates and chemical analysis. Tissue specific concentrations of N, P, K, Ca, Mg, Fe, Mn, Zn and Cu, were determined on each date for each species and tissue type. Results will be discussed with respect to species specific growth rates, biomass accumulation, and seasonal uptake and translocation of plant nutrients.

  1. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition.

    PubMed

    Sulochana, Sujitha Balakrishnan; Arumugam, Muthu

    2016-08-01

    Scenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.21pmol/L) during the onset of nitrogen starvation followed by a sharp decline. The external supplemented ABA showed a positive effect on growth pattern (38×10(6)cells/ml) at a lower concentration. The dry biomass yield is also increasing up to 2.1 fold compared to nitrogen deficient S. quadricauda. The lipid content sustains in 1 and 2μM concentration of ABA under nitrogen-deficient condition. The fatty acid composition of ABA treated S. quadricauda cultures with respect to nitrogen-starved cells showed 11.17% increment in saturated fatty acid content, the desired lipid composition for biofuel application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Enhancing the growth and yield of Ramie (Boehmeria nivea L.) by ramie biomass waste in liquid form and gibberellic acid

    NASA Astrophysics Data System (ADS)

    Suherman, C.; Nuraini, A.; Wulandari, A. P.; Kadapi, M.

    2017-05-01

    Ramie (Boehmeria nivea L.) is one of the most important sources of natural fibre, a sustainable biomass. The growth and yield of ramie are affected by mineral nutrients. In the present study, we usedfertilizers from waste of ramie biomass in liquid form (liquid organic fertilizer, LOF) and the other treatment is by gibberellic acid (GA3). This study was to obtain the effect of treatments on enhance the growth and yield of ramie. Hence, we measure the character that related to the important parameter for biomass product of ramie. Such plant height, stem diameter, dry plant weight, and ramie fresh stem weight of ramie clone Pujon 13. This research was conducted from January 2016 to March 2016 at Research Field Ciparanje, Faculty of Agriculture, Padjadjaran University, Jatinangor, Sumedang, West Java with an altitude of about ± 750 m above sea level. The type of Soil in this area is Inceptisolsoil order and thetype of rainfall according to Schmidt and Fergusson Classification is C type. The experiment used Randomized Block Design (RBD) which consisted of eight treatments (GA and LOF) and four replications. The concentration of GA from 0, 50, 100 and 150 ppm and for concentration of LOF is 40 mlL-1. We suggested the treatment of GA 150 ppm with 40 mlL-1 LOF was the best treatment on enhancing plant height and stem fresh weight of ramie clone Pujon 13.

  3. Estimation of the relationship between growth, consumption, and energy allocation in juvenile pacific cod (Gadus macrocephalus) as a function of temperature and ration

    NASA Astrophysics Data System (ADS)

    Sreenivasan, Ashwin; Heintz, Ron

    2016-10-01

    Pacific cod (Gadus macrocephalus) are generalist predators in the Gulf of Alaska (GOA), and are an important predator on other commercially important species. Efficient management of this species can benefit by knowing how these fish adapt to changing environmental conditions, with a focus on how growth and condition are affected by changes in temperature and diet. We conducted a feeding study to understand the relationship between growth, ration, and temperature, and how these factors interact to affect energy allocation strategies. Since growth and condition of juveniles can determine recruitment into the population, this study focused on growth and consumption of age 1+Pacific cod held over 4 temperature treatments (4 °C, 8 °C, 12 °C, and 16 °C) and 3 ration levels (unlimited ration, medium ration, and low ration). We also compared cellular nucleic acid (RNA/DNA) ratios, an instantaneous growth index, total-body lipid, and proximate composition between fish. At 4 °C, 8 °C, and 12 °C, fish at medium and low rations had higher growth rates relative to fish at high rations. Higher food consumption appears to negatively affect digestive ability, assimilation efficiency, and nutrient utilization. RNA/DNA was clearly correlated with growth rates at 4 °C and 8 °C, but this relationship did not hold at higher temperatures. A secondary growth study was conducted to test the reliability of the growth/consumption models derived from the main growth study. Temperature influenced energy reserves (lipid) while tissue growth (protein) was influenced by ration level. Average lipid values were higher at 4 °C than at 8 °C or 12 °C, suggesting a predisposition to heightened lipid synthesis at colder temperatures. Longer durations of warmer water temperature in the GOA could consequently affect energy allocation strategies, with dietary changes in the field potentially amplifying this effect in cold and warm years. This energy allocation strategy could be detrimental

  4. Selenium nanoparticle-enriched biomass of Yarrowia lipolytica enhances growth and survival of Artemia salina.

    PubMed

    Hamza, Faseela; Vaidya, Amogh; Apte, Mugdha; Kumar, Ameeta Ravi; Zinjarde, Smita

    2017-11-01

    Controlling disease outbreaks is a major challenge in aquaculture farms and conventional methods are often ineffective. Nutritional supplementation and probiotic preparations help in reducing severity of such infections. The generally regarded as safe yeast (Yarrowia lipolytica) was used in the current study. A marine strain of Y. lipolytica exhibited tolerance towards sodium selenite and formed cell associated selenium nanoparticles (SeNPs). The synthesized nanoparticles were characterized by UV-vis spectroscopy, X-ray diffraction (XRD) and Field Emission Scanning Electron Microscope (FE-SEM) observations. Fourier transform infra-red (FTIR) spectroscopy indicated the role of carboxylic and amine groups in the synthesis of nanoparticles. This SeNP-enriched biomass was used as feed for the model aquaculture system, Artemia salina and compared with normal feed, baker's yeast (Saccharomyces cerevisiae). A. salina fed with SeNP-enriched biomass, showed increased survival rates (96.66%) as compared to those fed with S. cerevisiae (60.0%). The size of the larvae fed with SeNP-enriched biomass of Y. lipolytica was also found to be larger. Additionally, larval groups fed with SeNP-enriched biomass were better protected (70.0% survival) against V. harveyi infection when compared with groups fed with S. cerevisiae (24.44%). This combination of selenium in the nanoparticle form associated with the biomass of Y. lipolytica has potential application in improving health of aquaculture species in farms. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Social dominance in prepubertal dairy heifers allocated in continuous competitive dyads: Effects on body growth, metabolic status, and reproductive development.

    PubMed

    Fiol, C; Carriquiry, M; Ungerfeld, R

    2017-03-01

    The objective of this study was to compare the body weight (BW) and size, metabolic status, and reproductive development of dominant and subordinate prepubertal dairy heifers allocated in competitive dyads. Sixteen Holstein and Jersey × Holstein prepubertal heifers (means ± SEM; 250.8 ± 9.8 d; 208.5 ± 13.9 kg of BW) were assigned to 8 homogeneous dyads according to breed, age, and BW. Dyads were housed in pens separated 1 m from each other during 120 d, receiving a total mixed ration on a 5% restriction of their potential dry matter intake, and had access to the same feeder (60 cm) throughout the experiment. Dominant and subordinate heifers were defined based on the winning agonistic interactions in each dyad. Body development was recorded every 20 d in all heifers, and blood samples were collected on the same days to determine endocrine and metabolic status. The maximum follicle diameter, number of follicles >6 mm, and the presence of corpus luteum were observed weekly by ultrasound. Heifer BW (269.3 vs. 265.3 ± 1.5 kg) and average daily gains (0.858 vs. 0.770 ± 0.02 kg/d) were greater in dominant than subordinate heifers. On d 30, 37, and 53, dominant heifers had more follicles than subordinate heifers, and maximum follicle diameter was greater in dominant than in subordinate heifers (10.0 vs. 9.0 ± 0.3 mm). Dominant heifers achieved puberty earlier than subordinate heifers (313.9 ± 4.9 vs. 329.6 ± 5.7 d) with similar BW (279.4 ± 2.6 vs. 277.4 ± 5.8 kg). Glucose concentrations were greater in dominant than subordinate heifers (89.2 vs. 86.8 ± 1.2 mg/dL), but cholesterol concentrations were greater in subordinate than dominant heifers (86.1 vs. 90.2 ± 2.6 mg/dL). We concluded that, under continuous competitive situations, dominant heifers were more precocious than subordinate ones, achieving an earlier puberty. Dominant heifers had greater body growth and glucose concentrations than subordinate heifers, which may be responsible, at least in part, for

  6. A growth inhibitory model with SOx influenced effective growth rate for estimation of algal biomass concentration under flue gas atmosphere

    USDA-ARS?s Scientific Manuscript database

    A theoretical model for the prediction of biomass concentration under real flue gas emission has been developed. The model considers the CO2 mass transfer rate, the critical SOx concentration and its role on pH based inter-conversion of bicarbonate in model building. The calibration and subsequent v...

  7. Effects of space allocation within a deep bedded finishing system on swine growth performance, fatty acid composition and pork quality

    USDA-ARS?s Scientific Manuscript database

    The objectives of the current study were to determine the degree to which space allocation in a deep-bedded system influences swine performance and pork quality. The deep-bedded method employed was hoop structures which are large, tent-like shelters with cornstalks or straw for bedding. One hundred ...

  8. Coordination between water transport capacity, biomass growth, metabolic scaling and species stature in co-occurring shrub and tree species.

    PubMed

    Smith, Duncan D; Sperry, John S

    2014-12-01

    The significance of xylem function and metabolic scaling theory begins from the idea that water transport is strongly coupled to growth rate. At the same time, coordination of water transport and growth seemingly should differ between plant functional types. We evaluated the relationships between water transport, growth and species stature in six species of co-occurring trees and shrubs. Within species, a strong proportionality between plant hydraulic conductance (K), sap flow (Q) and shoot biomass growth (G) was generally supported. Across species, however, trees grew more for a given K or Q than shrubs, indicating greater growth-based water-use efficiency (WUE) in trees. Trees also showed slower decline in relative growth rate (RGR) than shrubs, equivalent to a steeper G by mass (M) scaling exponent in trees (0.77-0.98). The K and Q by M scaling exponents were common across all species (0.80, 0.82), suggesting that the steeper G scaling in trees reflects a size-dependent increase in their growth-based WUE. The common K and Q by M exponents were statistically consistent with the 0.75 of ideal scaling theory. A model based upon xylem anatomy and branching architecture consistently predicted the observed K by M scaling exponents but only when deviations from ideal symmetric branching were incorporated.

  9. Disparities between in situ and optically derived carbon biomass and growth rates of the prymnesiophyte Phaeocystis globosa

    NASA Astrophysics Data System (ADS)

    Peperzak, L.; van der Woerd, H. J.; Timmermans, K. R.

    2015-03-01

    The oceans play a pivotal role in the global carbon cycle. It is not practical to measure the global daily production of organic carbon, the product of phytoplankton standing stock and its growth rate using discrete oceanographic methods. Instead, optical proxies from Earth-orbiting satellites must be used. To test the accuracy of optically derived proxies of phytoplankton physiology and growth rate, hyperspectral reflectance data from the wax and wane of a Phaeocystis bloom in laboratory mesocosms were compared with standard ex situ data. Chlorophyll biomass could be estimated accurately from reflectance using specific chlorophyll absorption algorithms. However, the conversion of chlorophyll (Chl) to carbon (C) was obscured by the non-linear increase in C : Chl under nutrient-limited growth. Although C : Chl was inversely correlated (r2 = 0.88) with the in situ fluorometric growth rate indicator Fv / Fm (Photosystem II quantum efficiency), none of them was linearly correlated to growth rate, constraining the accurate calculation of Phaeocystis growth or production rates. Unfortunately, the optical proxy ϕph (quantum efficiency of fluorescence: the ratio of the number of fluoresced photons to the number of photons absorbed by the phytoplankton) did not show any correlation with Phaeocystis growth rate, and therefore it is concluded that ϕph cannot be applied in the remotely sensed measurement of this species' carbon production rate.

  10. The evaluation of mixtures of yeast and potato extracts in growth media for biomass production of lactic cultures.

    PubMed

    Gaudreau, H; Renard, N; Champagne, C P; Van Horn, D

    2002-07-01

    The effectiveness of yeast extracts (YE) and potato extracts (PE) to promote growth of seven lactic cultures was evaluated by automated spectrophotometry (AS). Two aspects of the growth curve were analysed: (1) maximum biomass obtained (using ODmax) and (2) highest specific growth rate mu(max)) Eleven lots from the same PE-manufacturing process were examined for lot-to-lot variability. The ODmax values of three of the seven strains were significantly affected by lot source, but mu(max) was not significantly affected. The growth of bacteria was systematically lower in base medium containing 100% PE than in base medium containing 100% YE for both ODmax or mu(max) data, which could be related to the lower content in nitrogen-based compounds in PE. In AS assays, highest OD values for Lactobacillus casei EQ28, Lactobacillus rhamnosus R-011, Lactobacillus plantarum EQ12, and Streptococcus thermophilus R-083 were obtained with a mixture of PE and YE. Fermentations (2 L) were also carried out to determine the accuracy of AS to predict biomass levels obtained under fermentation trials. In these fermentations, replacement of 50% YE with PE was shown to enable good growth of S. thermophilus. With L. rhamnosus R-011, a high correlation (R2 = 0.95) was found between ODmax data obtained in the AS assays and that of the 2-L bioreactor when the same growth medium was used for both series of fermentations. However, AS was not as efficient when industrial media were used for the bioreactor assays. The relationship was still good for ODmax between AS data and that of the bioreactor data with L. rhamnosus R-011 in industrial LBS medium (R2 = 0.87), but was very poor with the S. thermophilus R-083 on Rosell #43 industrial medium (R2 = 0.33). Since PE cost 40% less than YE, there are strong economic advantages in considering such a partial replacement of YE by PE.

  11. Optimizing reproductive phenology in a two-resource world: a dynamic allocation model of plant growth predicts later reproduction in phosphorus-limited plants.

    PubMed

    Nord, Eric A; Shea, Katriona; Lynch, Jonathan P

    2011-08-01

    Timing of reproduction is a key life-history trait that is regulated by resource availability. Delayed reproduction in soils with low phosphorus availability is common among annuals, in contrast to the accelerated reproduction typical of other low-nutrient environments. It is hypothesized that this anomalous response arises from the high marginal value of additional allocation to root growth caused by the low mobility of phosphorus in soils. To better understand the benefits and costs of such delayed reproduction, a two-resource dynamic allocation model of plant growth and reproduction is presented. The model incorporates growth, respiration, and carbon and phosphorus acquisition of both root and shoot tissue, and considers the reallocation of resources from senescent leaves. The model is parameterized with data from Arabidopsis and the optimal reproductive phenology is explored in a range of environments. The model predicts delayed reproduction in low-phosphorus environments. Reproductive timing in low-phosphorus environments is quite sensitive to phosphorus mobility, but is less sensitive to the temporal distribution of mortality risks. In low-phosphorus environments, the relative metabolic cost of roots was greater, and reproductive allocation reduced, compared with high-phosphorus conditions. The model suggests that delayed reproduction in response to low phosphorus availability may be reduced in plants adapted to environments where phosphorus mobility is greater. Delayed reproduction in low-phosphorus soils can be a beneficial response allowing for increased acquisition and utilization of phosphorus. This finding has implications both for efforts to breed crops for low-phosphorus soils, and for efforts to understand how climate change may impact plant growth and productivity in low-phosphorus environments.

  12. Optimizing reproductive phenology in a two-resource world: a dynamic allocation model of plant growth predicts later reproduction in phosphorus-limited plants

    PubMed Central

    Nord, Eric A.; Shea, Katriona; Lynch, Jonathan P.

    2011-01-01

    Background and Aims Timing of reproduction is a key life-history trait that is regulated by resource availability. Delayed reproduction in soils with low phosphorus availability is common among annuals, in contrast to the accelerated reproduction typical of other low-nutrient environments. It is hypothesized that this anomalous response arises from the high marginal value of additional allocation to root growth caused by the low mobility of phosphorus in soils. Methods To better understand the benefits and costs of such delayed reproduction, a two-resource dynamic allocation model of plant growth and reproduction is presented. The model incorporates growth, respiration, and carbon and phosphorus acquisition of both root and shoot tissue, and considers the reallocation of resources from senescent leaves. The model is parameterized with data from Arabidopsis and the optimal reproductive phenology is explored in a range of environments. Key Results The model predicts delayed reproduction in low-phosphorus environments. Reproductive timing in low-phosphorus environments is quite sensitive to phosphorus mobility, but is less sensitive to the temporal distribution of mortality risks. In low-phosphorus environments, the relative metabolic cost of roots was greater, and reproductive allocation reduced, compared with high-phosphorus conditions. The model suggests that delayed reproduction in response to low phosphorus availability may be reduced in plants adapted to environments where phosphorus mobility is greater. Conclusions Delayed reproduction in low-phosphorus soils can be a beneficial response allowing for increased acquisition and utilization of phosphorus. This finding has implications both for efforts to breed crops for low-phosphorus soils, and for efforts to understand how climate change may impact plant growth and productivity in low-phosphorus environments. PMID:21712299

  13. Influence of flooding duration on the biomass growth of alder and willow.

    Treesearch

    Lewis F. Ohmann; M. Dean Knighton; Ronald McRoberts

    1990-01-01

    Simple second-order (quadratic) polynomials were used to model the relationship between 3-year biomass increase (net ovendry weight in grams) and flooding duration (days) for four combinations of shrub type (alder, willow) and soils type (fine-sand, clay-loam).

  14. Modeling forest biomass and growth: Coupling long-term inventory and LiDAR data

    Treesearch

    Chad Babcock; Andrew O. Finley; Bruce D. Cook; Aaron Weiskittel; Christopher W. Woodall

    2016-01-01

    Combining spatially-explicit long-term forest inventory and remotely sensed information from Light Detection and Ranging (LiDAR) datasets through statistical models can be a powerful tool for predicting and mapping above-ground biomass (AGB) at a range of geographic scales. We present and examine a novel modeling approach to improve prediction of AGB and estimate AGB...

  15. Comparison of Sugarcane and Energy Cane in Growth and Biomass Production

    USDA-ARS?s Scientific Manuscript database

    Sugarcane is one of major crops on sand soils in south Florida, but yields and profits are low compared to sugarcane grown on organic soils in the region. Energy cane may be an alternative crop on sand soils in the future to improve profits because of the growing interest of high biomass for energy....

  16. Intercropping of two Leucaena spp. with sweet potato: yield, growth rate and biomass

    SciTech Connect

    Swift, J.F.

    1982-01-01

    Results of trials with Leucaena leucocephala and Leucaena diversifolia at Wau, Papua New Guinea, showed potential benefits of the agroforestry cropping system. The total biomass yield (sweet potato plus firewood and green manure) was considerably greater than the yield per unit area of sweet potato alone. 3 references.

  17. Increased Biomass Production by Mesophilic Food-Associated Bacteria through Lowering the Growth Temperature from 30°C to 10°C.

    PubMed

    Seel, Waldemar; Derichs, Julia; Lipski, André

    2016-07-01

    Five isolates from chilled food and refrigerator inner surfaces and closely related reference strains of the species Escherichia coli, Listeria monocytogenes, Staphylococcus xylosus, Bacillus cereus, Pedobacter nutrimenti, and Pedobacter panaciterrae were tested for the effect of growth temperature (30°C and 10°C) on biomass formation. Growth was monitored via optical density, and biomass formation was measured at the early stationary phase based on the following parameters in complex and defined media: viable cell count, total cell count, cell dry weight, whole-cell protein content, and cell morphology. According to the lack of growth at 1°C, all strains were assigned to the thermal class of mesophiles. Glucose and ammonium consumption related to cell yield were analyzed in defined media. Except for the protein content, temperature had a significant (t test, P < 0.05) effect on all biomass formation parameters for each strain. The results show a significant difference between the isolates and the related reference strains. Isolates achieved an increase in biomass production between 20% and 110% at the 10°C temperature, which is 15 to 25°C lower than their maximum growth rate temperatures. In contrast, reference strains showed a maximum increase of only about 25%, and some reference strains showed no increase or a decrease of approximately 25%. As expected, growth rates for all strains were higher at 30°C than at 10°C, while biomass production for isolates was higher at 10°C than at 30°C. In contrast, the reference strains showed similar growth yields at the two temperatures. This also demonstrates for mesophilic bacterial strains more efficient nutrient assimilation during growth at low temperatures. Until now, this characteristic was attributed only to psychrophilic microorganisms. For several psychrophilic species, increased biomass formation was described at temperatures lower than optimum growth temperatures, which are defined by the highest growth

  18. Increased Biomass Production by Mesophilic Food-Associated Bacteria through Lowering the Growth Temperature from 30°C to 10°C

    PubMed Central

    Seel, Waldemar; Derichs, Julia

    2016-01-01

    ABSTRACT Five isolates from chilled food and refrigerator inner surfaces and closely related reference strains of the species Escherichia coli, Listeria monocytogenes, Staphylococcus xylosus, Bacillus cereus, Pedobacter nutrimenti, and Pedobacter panaciterrae were tested for the effect of growth temperature (30°C and 10°C) on biomass formation. Growth was monitored via optical density, and biomass formation was measured at the early stationary phase based on the following parameters in complex and defined media: viable cell count, total cell count, cell dry weight, whole-cell protein content, and cell morphology. According to the lack of growth at 1°C, all strains were assigned to the thermal class of mesophiles. Glucose and ammonium consumption related to cell yield were analyzed in defined media. Except for the protein content, temperature had a significant (t test, P < 0.05) effect on all biomass formation parameters for each strain. The results show a significant difference between the isolates and the related reference strains. Isolates achieved an increase in biomass production between 20% and 110% at the 10°C temperature, which is 15 to 25°C lower than their maximum growth rate temperatures. In contrast, reference strains showed a maximum increase of only about 25%, and some reference strains showed no increase or a decrease of approximately 25%. As expected, growth rates for all strains were higher at 30°C than at 10°C, while biomass production for isolates was higher at 10°C than at 30°C. In contrast, the reference strains showed similar growth yields at the two temperatures. This also demonstrates for mesophilic bacterial strains more efficient nutrient assimilation during growth at low temperatures. Until now, this characteristic was attributed only to psychrophilic microorganisms. IMPORTANCE For several psychrophilic species, increased biomass formation was described at temperatures lower than optimum growth temperatures, which are defined by

  19. Physiological, biomass elemental composition and proteomic analyses of Escherichia coli ammonium-limited chemostat growth, and comparison with iron- and glucose-limited chemostat growth

    PubMed Central

    Folsom, James Patrick

    2015-01-01

    Escherichia coli physiological, biomass elemental composition and proteome acclimations to ammonium-limited chemostat growth were measured at four levels of nutrient scarcity controlled via chemostat dilution rate. These data were compared with published iron- and glucose-limited growth data collected from the same strain and at the same dilution rates to quantify general and nutrient-specific responses. Severe nutrient scarcity resulted in an overflow metabolism with differing organic byproduct profiles based on limiting nutrient and dilution rate. Ammonium-limited cultures secreted up to 35  % of the metabolized glucose carbon as organic byproducts with acetate representing the largest fraction; in comparison, iron-limited cultures secreted up to 70  % of the metabolized glucose carbon as lactate, and glucose-limited cultures secreted up to 4  % of the metabolized glucose carbon as formate. Biomass elemental composition differed with nutrient limitation; biomass from ammonium-limited cultures had a lower nitrogen content than biomass from either iron- or glucose-limited cultures. Proteomic analysis of central metabolism enzymes revealed that ammonium- and iron-limited cultures had a lower abundance of key tricarboxylic acid (TCA) cycle enzymes and higher abundance of key glycolysis enzymes compared with glucose-limited cultures. The overall results are largely consistent with cellular economics concepts, including metabolic tradeoff theory where the limiting nutrient is invested into essential pathways such as glycolysis instead of higher ATP-yielding, but non-essential, pathways such as the TCA cycle. The data provide a detailed insight into ecologically competitive metabolic strategies selected by evolution, templates for controlling metabolism for bioprocesses and a comprehensive dataset for validating in silico representations of metabolism. PMID:26018546

  20. Metabolism of n-C10:0 and n-C11:0 fatty acids by Trichoderma koningii, Penicillium janthinellum and their mixed culture: I. Biomass and CO2 production, and allocation of intracellular lipids.

    PubMed

    Chahal, Amarpreet; Monreal, Carlos M; Bissett, John; Rowland, Owen; Smith, Myron L; Shea Miller, S

    2014-01-01

    The capacity of two soil fungi, Trichoderma koningii and Penicillium janthinellum, to oxidize n-C10:0 and n-C11:0 fatty acids to CO2 and store intracellular lipids during growth is unknown. This article reports for the first time the metabolism of decanoic acid (DA, C10:0), undecanoic acid (UDA, n-C11:0), a mixture of the acids (UDA+DA) and a mixture of UDA+ potato dextrose broth (PDB) by T. koningii and P. janthinellum and their mixed culture. A control PDB complex substrate was used as a substrate control treatment. The fungal cultures were assayed for their capacity to: (1) oxidize n-C10:0 and n-C11:0 fatty acids to CO2 and (2) store lipids intracellularly during growth. On all four fatty acid substrates, the mixed T. koningii and P. janthinellum culture produced more biomass and CO2 than the individual fungal cultures. Per 150 mL culture, the mixed species culture grown on UDA+PDB and on PDB alone produced the most biomass (7,567 mg and 11,425 mg, respectively). When grown in DA, the mixed species culture produced the least amount of biomass (6,400 mg), a quantity that was lower than those obtained in UDA (7,550 mg) or UDA+DA (7,270 mg). Amounts of CO2 produced ranged from 210 mg under DA to 618 mg under PDB, and these amounts were highly correlated with biomass (r(2) = 0.99). Fluorescence microscopy of stained lipids in the mixed fungal cell cultures growing during the exponential phase demonstrated larger fungal cells and higher accumulation of lipids in membranes and storage bodies than those observed during the lag and stationary phases. T. koningii and P. janthinellum grown on n-C10:0 and n-C11:0 fatty acids produced lower amounts of biomass and CO2, but stored higher amounts of intracellular lipids, than when grown on PDB alone.

  1. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth.

    PubMed

    Fang, Jingyun; Guo, Zhaodi; Hu, Huifeng; Kato, Tomomichi; Muraoka, Hiroyuki; Son, Yowhan

    2014-06-01

    Forests play an important role in regional and global carbon (C) cycles. With extensive afforestation and reforestation efforts over the last several decades, forests in East Asia have largely expanded, but the dynamics of their C stocks have not been fully assessed. We estimated biomass C stocks of the forests in all five East Asian countries (China, Japan, North Korea, South Korea, and Mongolia) between the 1970s and the 2000s, using the biomass expansion factor method and forest inventory data. Forest area and biomass C density in the whole region increased from 179.78 × 10(6) ha and 38.6 Mg C ha(-1) in the 1970s to 196.65 × 10(6) ha and 45.5 Mg C ha(-1) in the 2000s, respectively. The C stock increased from 6.9 Pg C to 8.9 Pg C, with an averaged sequestration rate of 66.9 Tg C yr(-1). Among the five countries, China and Japan were two major contributors to the total region's forest C sink, with respective contributions of 71.1% and 32.9%. In China, the areal expansion of forest land was a larger contributor to C sinks than increased biomass density for all forests (60.0% vs. 40.0%) and for planted forests (58.1% vs. 41.9%), while the latter contributed more than the former for natural forests (87.0% vs. 13.0%). In Japan, increased biomass density dominated the C sink for all (101.5%), planted (91.1%), and natural (123.8%) forests. Forests in South Korea also acted as a C sink, contributing 9.4% of the total region's sink because of increased forest growth (98.6%). Compared to these countries, the reduction in forest land in both North Korea and Mongolia caused a C loss at an average rate of 9.0 Tg C yr(-1), equal to 13.4% of the total region's C sink. Over the last four decades, the biomass C sequestration by East Asia's forests offset 5.8% of its contemporary fossil-fuel CO2 emissions. © 2014 John Wiley & Sons Ltd.

  2. Biomass, Growth and Grazing Responses in the SOFeX Iron-Fertilized Patch at 66°S

    NASA Astrophysics Data System (ADS)

    Landry, M. R.; Brown, S. L.; Selph, K. E.; Bidigare, R. R.; Johnson, Z. I.; Sheridan, C.; Christensen, S.; Twining, B. S.; Cassar, N.

    2002-12-01

    We investigated plankton community biomass, growth and grazing rate responses to the SOFeX iron fertilization at 66°S (the Southern patch) using a combination of microscopy, taxon-specific pigments, flow cytometry and dilution experiments. Unlike previous iron enrichment experiments, the ambient phytoplankton community began with relatively high carbon biomass (~60 μg C L-1) dominated by large diatoms. Over the course of 3 weeks of sampling, the fertilized patch responded with a 2.2-fold increase in carbon biomass, a 3.4-fold decrease in C:Chl a (282 to 82), clear visual indications of enhanced phytoplankton vitality, but relatively modest changes in community composition. Diatom carbon increased in proportion to other phytoplankton taxa and fairly uniformly across sizes, from <20 to >100-μm cell (or chain) lengths. Heterotrophic protists increased by a factor of 1.6 in the patch relative to ambient waters, with the largest absolute and relative increases in the >20-μm size categories. For the first time in field experiments, we observed large discrepancies in phytoplankton community rate estimates from dilution experiments analyzed by fluorometric and HPLC measures of Chl a. This effect appears to be due an interference caused by chlorophyll derivatives in the fluorometric analyses, and systematic differences in the relative rates of grazer production and photo-degradation of these pigments among incubated bottles containing the different dilution treatments. The HPLC-based estimates show synthesis rates of Chl a (0.24-0.46 d-1) substantially in excess of grazing (0.12-0.18 d-1) through the first 2 weeks of observation. Ultimately, synthesis and grazing achieved a rate balance (0.22-0.24 d-1) coincident with the increasing biomass of protist grazers and the plateau of the patch chlorophyll concentration at 2.5 to 3.0 ng Chl a L-1. Essentially the same dynamics were observed in analyses based on fucoxanthin as a proxy for diatom biomass. We assess the relative

  3. Comparative Secretome Analysis of Trichoderma reesei and Aspergillus niger during Growth on Sugarcane Biomass

    PubMed Central

    Borin, Gustavo Pagotto; Sanchez, Camila Cristina; de Souza, Amanda Pereira; de Santana, Eliane Silva; de Souza, Aline Tieppo; Leme, Adriana Franco Paes; Squina, Fabio Marcio; Buckeridge, Marcos; Goldman, Gustavo Henrique; Oliveira, Juliana Velasco de Castro

    2015-01-01

    Background Our dependence on fossil fuel sources and concern about the environment has generated a worldwide interest in establishing new sources of fuel and energy. Thus, the use of ethanol as a fuel is advantageous because it is an inexhaustible energy source and has minimal environmental impact. Currently, Brazil is the world's second largest producer of ethanol, which is produced from sugarcane juice fermentation. However, several studies suggest that Brazil could double its production per hectare by using sugarcane bagasse and straw, known as second-generation (2G) bioethanol. Nevertheless, the use of this biomass presents a challenge because the plant cell wall structure, which is composed of complex sugars (cellulose and hemicelluloses), must be broken down into fermentable sugar, such as glucose and xylose. To achieve this goal, several types of hydrolytic enzymes are necessary, and these enzymes represent the majority of the cost associated with 2G bioethanol processing. Reducing the cost of the saccharification process can be achieved via a comprehensive understanding of the hydrolytic mechanisms and enzyme secretion of polysaccharide-hydrolyzing microorganisms. In many natural habitats, several microorganisms degrade lignocellulosic biomass through a set of enzymes that act synergistically. In this study, two fungal species, Aspergillus niger and Trichoderma reesei, were grown on sugarcane biomass with two levels of cell wall complexity, culm in natura and pretreated bagasse. The production of enzymes related to biomass degradation was monitored using secretome analyses after 6, 12 and 24 hours. Concurrently, we analyzed the sugars in the supernatant. Results Analyzing the concentration of monosaccharides in the supernatant, we observed that both species are able to disassemble the polysaccharides of sugarcane cell walls since 6 hours post-inoculation. The sugars from the polysaccharides such as arabinoxylan and β-glucan (that compose the most external

  4. Effects of Artificial Defoliation on Growth and Biomass Accumulation in Short-Rotation Sweetgum (Liquidambar styraciflua) in North Carolina

    PubMed Central

    Jetton, Robert M.; Robison, Daniel J.

    2014-01-01

    Sweetgum, Liquidambar styraciflua L. (Hamamelidales: Hamamelidaceae), is a species of interest for short-rotation plantation forestry in the southeastern United States. Despite its high levels of resistance to many native insects and pathogens, the species is susceptible to generalist defoliators during outbreak epidemics. The objective of this field study was to evaluate the potential impact of defoliation on sweetgum growth and productivity within the context of an operational plantation. Over three growing seasons, trees were subjected to artificial defoliation treatments of various intensity (control = 0% defoliation; low intensity = 33% defoliation; moderate intensity = 67% defoliation; high intensity = 99% defoliation) and frequency (not defoliated; defoliated once in April of the first growing season; defoliated twice, once in April of the first growing season and again in April of the second growing season). The responses of stem height, stem diameter, stem volume, crown volume, total biomass accumulation, and branch growth were measured in November of each growing season. At the end of the first growing season, when trees had received single defoliations, significant reductions in all growth traits followed the most severe (99%) defoliation treatment only. After the second and third growing seasons, when trees had received one or two defoliations of varying intensity, stem diameter and volume and total tree biomass were reduced significantly by 67 and 99% defoliation, while reductions in stem height and crown volume followed the 99% treatment only. All growth traits other than crown volume were reduced significantly by two defoliations but not one defoliation. Results indicate that sweetgum is highly resilient to single defoliations of low, moderate, and high intensity. However, during the three-year period of the study, repeated high-intensity defoliation caused significant reductions in growth and productivity that could have lasting impacts on yield

  5. Predicting tree biomass growth in the temperate-boreal ecotone: is tree size, age, competition or climate response most important?

    USGS Publications Warehouse

    Foster, Jane R.; Finley, Andrew O.; D'Amato, Anthony W.; Bradford, John B.; Banerjee, Sudipto

    2016-01-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2and thereby slow rising CO2 concentrations. Forests’ ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals’ size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species likeAcer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92–95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth

  6. Predicting tree biomass growth in the temperate-boreal ecotone: Is tree size, age, competition, or climate response most important?

    PubMed

    Foster, Jane R; Finley, Andrew O; D'Amato, Anthony W; Bradford, John B; Banerjee, Sudipto

    2016-06-01

    As global temperatures rise, variation in annual climate is also changing, with unknown consequences for forest biomes. Growing forests have the ability to capture atmospheric CO2 and thereby slow rising CO2 concentrations. Forests' ongoing ability to sequester C depends on how tree communities respond to changes in climate variation. Much of what we know about tree and forest response to climate variation comes from tree-ring records. Yet typical tree-ring datasets and models do not capture the diversity of climate responses that exist within and among trees and species. We address this issue using a model that estimates individual tree response to climate variables while accounting for variation in individuals' size, age, competitive status, and spatially structured latent covariates. Our model allows for inference about variance within and among species. We quantify how variables influence aboveground biomass growth of individual trees from a representative sample of 15 northern or southern tree species growing in a transition zone between boreal and temperate biomes. Individual trees varied in their growth response to fluctuating mean annual temperature and summer moisture stress. The variation among individuals within a species was wider than mean differences among species. The effects of mean temperature and summer moisture stress interacted, such that warm years produced positive responses to summer moisture availability and cool years produced negative responses. As climate models project significant increases in annual temperatures, growth of species like Acer saccharum, Quercus rubra, and Picea glauca will vary more in response to summer moisture stress than in the past. The magnitude of biomass growth variation in response to annual climate was 92-95% smaller than responses to tree size and age. This means that measuring or predicting the physical structure of current and future forests could tell us more about future C dynamics than growth responses

  7. The Dynamic of Annual Carbon Allocation to Wood in European Forests Is Consistent with a Combined Source-Sink Limitation of Growth: Implications on Growth Simulations in a Terrestrial Biosphere Model

    NASA Astrophysics Data System (ADS)

    Guillemot, J.; Martin-StPaul, N. K.; Dufrêne, E.; François, C.; Soudani, K.; Ourcival, J. M.; Leadley, P.; Delpierre, N.

    2014-12-01

    The extent to which forest growth is limited by carbon (C) supply (source control) or by cambial activity (sink control) will strongly determines the responses of trees to global changes. However, the physiological processes responsible for the limitation of forest growth are still under debate. The aim of this study was i) to evaluate the key drivers of the annual carbon allocation to wood along large soil and climate regional gradients in four tree species representative of the main European forest biomes (Fagus sylvatica, Quercus petraea, Quercus ilex and Picea abies) ii) to implement the identified key drivers in a new C allocation scheme within the CASTANEA terrestrial biosphere model (TBM). Combining field measurements and process-based simulations at 49 sites (931 site-years), our analyses revealed that the inter-site variability in C allocation to wood was predominantly driven by an age-related decline. The direct control of temperature or water stress on sink activity (i.e. independently from their effects on C supply) exerted a strong influence on the annual woody growth in all the species considered, including deciduous temperate species. The lagged effect of the past environment conditions was a significant driver of the annual C allocation to wood. Carbon supply appeared to strongly limit growth only in deciduous temperate species. Our study supports the premise that European forest growth is under a complex panel of source- and sink- limitations, contradicting the simple source control implemented in most TBMs. The implementation of these combined forest growth limitations in the CASTANEA model significantly improved its performance when evaluated against independent stand growth data at the regional scale (mainland France, >103 plots). We finally discuss how the sink imitation affects the CASTANEA simulated projections of forest productivity along the 21th century, especially with respect to the expected fertilizing effect of increasing atmospheric

  8. Influence of growth regulators in biomass production and volatile profile of in vitro plantlets of Thymus vulgaris L.

    PubMed

    Affonso, Vanessa Ribeiro; Bizzo, Humberto Ribeiro; Lage, Celso Luiz Salgueiro; Sato, Alice

    2009-07-22

    In vitro shoots of thyme (Thymus vulgaris L.) were established, and the effects of the auxin indole-3-acetic (IAA) acid and the cytokinins benzyladenine (BA), zeatin (ZEA), and kinetin (KIN) at 1.0, 5.0, and 10.0 microM on rooting, biomass production, and volatile compounds production by these plants were investigated. The volatiles were extracted by solid phase microextraction (SPME) and analyzed by gas chromatography. The highest biomass shoot growth was obtained with BA at 5.0 microM, while IAA at all concentrations tested achieved 100% rooting frequency. The three major compounds were gamma-terpinene (22.8-38.8%), p-cymene (13.8-27.9%), and thymol (6.5-29.0%). Quantitative changes of these compounds were observed in response to the effect of varying growth regulators concentrations in the culture medium. Growing Thymus vulgaris L. plants in media supplemented with IAA at 1.0 microM increased volatile compounds such as thymol by 315%. Nevertheless, the same major compounds were produced in all treatments and no qualitative changes were observed in the volatile profile of thyme plants.

  9. Screening and kinetic studies of catharanthine and ajmalicine accumulation and their correlation with growth biomass in Catharanthus roseus hairy roots.

    PubMed

    Benyammi, Roukia; Paris, Cédric; Khelifi-Slaoui, Majda; Zaoui, Djamila; Belabbassi, Ouarda; Bakiri, Nouara; Meriem Aci, Myassa; Harfi, Boualem; Malik, Sonia; Makhzoum, Abdullah; Desobry, Stéphane; Khelifi, Lakhdar

    2016-10-01

    Context Catharanthus roseus (L.) G. Don (Apocynaceae) is still one of the most important sources of terpene indole alkaloids including anticancer and hypertensive drugs as vincristine and vinblastine. These final compounds have complex pathway and many enzymes are involved in their biosynthesis. Indeed, ajmalicine and catharanthine are important precursors their increase can lead to enhance levels of molecules of interest. Objective This study aims at selecting the highest yield of hairy root line(s) and at identifying best times for further treatments. We study kinetics growth and alkaloids (ajmalicine and catharanthine) accumulation of three selected hairy root lines during the culture cycle in order to determine the relationship between biomass production and alkaloids accumulation. Materials and methods Comparative analysis has been carried out on three selected lines of Catharanthus roseus hairy roots (LP10, LP21 and L54) for their kinetics of growth and the accumulation of ajamalicine and catharanthine, throughout a 35-day culture cycle. The methanolic extract for each line in different times during culture cycle is analyzed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Results Maximum accumulation of the alkaloids is recorded for LP10 line in which the peak of ajmalicine and catharanthine accumulation reached to 3.8 and 4.3 mg/g dry weight (DW), respectively. This increase coincides with an exponential growth phase. Discussion and conclusion Our results suggest that the evolution of accumulation of ajmalicine and catharanthine are positively correlated with the development of the biomass growth. Significantly, for LP10 line the most promising line to continue optimizing the production of TIAs. Additionally, the end of exponential phase remains the best period for elicitor stimuli.

  10. Genetic and environmental variation in spring and autumn phenology of biomass willows (Salix spp.): effects on shoot growth and nitrogen economy.

    PubMed

    Weih, Martin

    2009-12-01

    Six commercial willow (Salix spp.) varieties were examined to investigate the effects of genotype and environment on spring and autumn phenology and the relationships between phenology, shoot growth and leaf nitrogen (N) retranslocation. The willows were field-grown under different irrigation and fertilization in central Sweden. Two independent data sets of bud-burst, leaf unfolding duration, growth cessation and the timing of leaf abscission were assessed, and the biomass and leaf N data from the end of the first cutting cycle were used. Specific hypotheses were that (1) spring phenology has a greater effect on the shoot biomass production than autumn phenology; (2) later bud-burst is associated with more rapid leaf unfolding; (3) the timing of leaf abscission has a greater effect on the shoot biomass production than height growth cessation; and (4) later leaf fall is associated with poorer leaf N retranslocation. Bud-burst date varied by 19 and 39 days in the 2 years and leaf unfolding duration varied by 13 and 38 days. Growth cessation varied by 2.5 weeks and completion of leaf abscission (> 90% of leaves shed) by more than 3 weeks between the genotypes and treatments. Bud-burst date was inversely correlated with leaf unfolding duration (R(2) = 0.96). Significant effects of the duration of leafy period (bud-burst to leaf abscission) and bud-burst date on shoot growth were found. Delayed growth cessation and leaf abscission were generally associated with a greater biomass production, but especially the relationship between growth cessation and biomass was weak. The results show that the timing of bud-burst and leaf abscission is more important for willow biomass production than growth cessation. Delayed leaf abscission has a negative effect on leaf N retranslocation and increases the N losses. The results have implications for the breeding of perennial energy crops.

  11. Growth responses, biomass partitioning, and nitrogen isotopes of prairie legumes in response to elevated temperature and varying nitrogen source in a growth chamber experiment.

    PubMed

    Whittington, Heather R; Deede, Laura; Powers, Jennifer S

    2012-05-01

    Because legumes can add nitrogen (N) to ecosystems through symbiotic fixation, they play important roles in many plant communities, such as prairies and grasslands. However, very little research has examined the effect of projected climate change on legume growth and function. Our goal was to study the effects of temperature on growth, nodulation, and N chemistry of prairie legumes and determine whether these effects are mediated by source of N. We grew seedlings of Amorpha canescens, Dalea purpurea, Lespedeza capitata, and Lupinus perennis at 25/20°C (day/night) or 28/23°C with and without rhizobia and mineral N in controlled-environment growth chambers. Biomass, leaf area, nodule number and mass, and shoot N concentration and δ(15)N values were measured after 12 wk of growth. Both temperature and N-source affected responses in a species-specific manner. Lespedeza showed increased growth and higher shoot N content at 28°C. Lupinus showed decreases in nodulation and lower shoot N concentration at 28°C. The effect of temperature on shoot N concentration occurred only in individuals whose sole N source was N(2)-fixation, but there was no effect of temperature on δ(15)N values in these plants. Elevated temperature enhanced seedling growth of some species, while inhibiting nodulation in another. Temperature-induced shifts in legume composition or nitrogen dynamics may be another potential mechanism through which climate change affects unmanaged ecosystems.

  12. Bifidobacterial growth stimulation by oligosaccharides generated from olive tree pruning biomass.

    PubMed

    Ruiz, Encarnación; Gullón, Beatriz; Moura, Patrícia; Carvalheiro, Florbela; Eibes, Gemma; Cara, Cristóbal; Castro, Eulogio

    2017-08-01

    This work aims to evaluate the prebiotic potential of oligosaccharides (OS) obtained from autohydrolysis of olive tree pruning biomass (OTPB). Two selected fractions (F1 and F2) were characterized and used in in vitro fermentations by two Bifidobacterium spp. (B. adolescentis and B. longum) and one fecal inoculum. The fraction F1 presented a lower average degree of polymerization (DP) mainly with OS ranging from 3 to 6 DP, whereas the fraction F2 corresponded to a pool of unsubstituted and acetylated oligomers with DP between 4 and 19. In the fermentation by Bifidobacterium, F1 supported a higher biomass formation, OS consumption and organic acids production than F2. With the fecal inoculum, the accumulation of organic acids, as the sum of acetate, propionate and butyrate, was similar for F1 and F2 (107 and 101mM, respectively). The bifidobacteria counts also increased during the incubation time for both OS fractions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Assessment of Chlorella vulgaris and indigenous microalgae biomass with treated wastewater as growth culture medium.

    PubMed

    Fernández-Linares, Luis C; Guerrero Barajas, Claudia; Durán Páramo, Enrique; Badillo Corona, Jesús A

    2017-11-01

    The aim of the present work was to evaluate the feasibility of microalgae cultivation using secondary treated domestic wastewater. Two Chlorella vulgaris strains (CICESE and UTEX) and an indigenous consortium, were cultivated on treated wastewater enriched with and without the fertilizer Bayfolan®. Biomass production for C. vulgaris UTEX, CICESE and the indigenous consortium grown in treated wastewater was 1.167±0.057, 1.575±0.434 and 1.125±0.250g/L, with a total lipid content of 25.70±1.24, 23.35±3.01and 20.54±1.23% dw, respectively. The fatty acids profiles were mainly composed of C16 and C18. Regardless of the media used, in all three strains unsaturated fatty acids were the main FAME (fatty acids methyl esters) accumulated in a range of 45-62%. An enrichment of treated wastewater with Bayfolan® significantly increased the production of biomass along with an increase in pigments and proteins of ten and threefold, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Growth, biomass production and remediation of copper contamination by Jatropha curcas plant in industrial wasteland soil.

    PubMed

    Ghavri, S V; Singh, Rana P

    2012-03-01

    The survival, biomass production and copper (Cu) remediation efficiency of Jatropha curcas L. was evaluated in Cu rich industrial wasteland soil (IWLS), collected from a local town, Sandila (Hardoi), Uttar Pradesh, India. The IWLS had high bulk density, water holding capacity (WHC), pH, electrical conductivity (EC), organic carbon and NPK. The Cu and Mn contents in IWLS were about 3 and 2 fold higher than that in the normal field soil (control). Stem cuttings of the J. curcas clones (BTP-A, BTP-N and BTP-K) were planted in IWLS as well as the same amended with cowdung or sand. The percent survival, net elongations and biomass accumulation of J. curcas were decreased slightly in IWLS, as compared to the control soil. The translocation of Cu from soil to the plants was higher in IWLS grown plants, which was more pronounced in IWLS amended with cowdung. J. curcas clones BTP-N, showed better survival and Cu removal efficiency from IWLS.

  15. Salinity Reduction and Biomass Accumulation in Hydroponic Growth of Purslane (Portulaca oleracea).

    PubMed

    de Lacerda, Laís Pessôa; Lange, Liséte Celina; Costa França, Marcel Giovanni; Zonta, Everaldo

    2015-01-01

    In many of the world's semi-arid and arid regions, the increase in demand for good quality water associated with the gradual and irreversible salinisation of the soil and water have raised the development of techniques that facilitate the safe use of brackish and saline waters for agronomic purposes. This study aimed to evaluate the salinity reduction of experimental saline solutions through the ions uptake capability of purslane (Portulaca oleracea), as well as its biomass accumulation. The hydroponic system used contained three different nutrient solutions composed of fixed concentrations of macro and micronutrients to which three different concentrations of sodium chloride had been added. Two conditions were tested, clipped and intact plants. It was observed that despite there being a notable removal of magnesium and elevated biomass accumulation, especially in the intact plants, purslane did not present the expected removal quantity of sodium and chloride. We confirmed that in the research conditions of the present study, purslane is a saline-tolerant species but accumulation of sodium and chloride was not shown as previously described in the literature.

  16. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in southern China.

    PubMed

    Zhou, Lili; Cai, Liping; He, Zongming; Wang, Rongwei; Wu, Pengfei; Ma, Xiangqing

    2016-12-01

    Sustainable forestry requires adopting more ecosystem-informed perspectives. Tree thinning improves forest productivity by encouraging the development of the understory, which in turn improves species diversity and nutrient cycling, thereby altering the ecophysiological environment of the stand. This study aimed to quantify tree growth, understory vegetation, and soil quality of 9- and 16-year-old Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations in South China, 1-7 years after pre-commercial thinning. The quadratic mean diameter (QMD) and individual tree volume were greatly increased and compensated for the reduced stand yield in thinned stands. In 2011, the stand volume in unthinned and thinned stands were 276.33 and 226.46 and 251.30 and 243.64 m(3) ha(-1), respectively, for young and middle stage. Therefore, we predicted that over time, the stand volume in thinned stands should exceed that in unthinned stands. The composition, diversity, and biomass of understory vegetation of the plantation monocultures significantly increased after thinning. The effects of thinning management on understory development were dynamic and apparent within 1-2 years post-thinning. Some light-demanding plant species such as Styrax faberi, Callicarpa formosana, Lophatherum gracile, and Gahnia tristis emerged in the shrub and herb layer and became dominant with the larger gaps in the canopy in thinned stands. The trigger effects of thinning management on understory and tree growth were more pronounced in the young stage. The beneficial effects on soil physical and chemical properties were measurable at later stages (7 years after thinning). The strong positive relationship between understory biomass and volume increment (at the tree and stand levels) indicated that understory improvement after thinning did not restrict productivity within Chinese fir stands but rather, benefited soil water content and nutrient status and promoted tree growth.

  17. Xylose Isomerase Improves Growth and Ethanol Production Rates from Biomass Sugars for Both Saccharomyces Pastorianus and Saccharomyces Cerevisiae

    PubMed Central

    Miller, Kristen P.; Gowtham, Yogender Kumar; Henson, J. Michael; Harcum, Sarah W.

    2013-01-01

    The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. PMID:22866331

  18. A Protocol for Generating and Exchanging (Genome-Scale) Metabolic Resource Allocation Models.

    PubMed

    Reimers, Alexandra-M; Lindhorst, Henning; Waldherr, Steffen

    2017-09-06

    In this article, we present a protocol for generating a complete (genome-scale) metabolic resource allocation model, as well as a proposal for how to represent such models in the systems biology markup language (SBML). Such models are used to investigate enzyme levels and achievable growth rates in large-scale metabolic networks. Although the idea of metabolic resource allocation studies has been present in the field of systems biology for some years, no guidelines for generating such a model have been published up to now. This paper presents step-by-step instructions for building a (dynamic) resource allocation model, starting with prerequisites such as a genome-scale metabolic reconstruction, through building protein and noncatalytic biomass synthesis reactions and assigning turnover rates for each reaction. In addition, we explain how one can use SBML level 3 in combination with the flux balance constraints and our resource allocation modeling annotation to represent such models.

  19. Chaparral growth-ring analysis as an indicator of stand biomass development

    Treesearch

    Kellie A. Uyeda; Douglas A. Stow; John F. O' Leary; Christina Tague; Philip J. Riggan

    2016-01-01

    Chaparral wildfires typically create even-aged stands of vegetation that grow quickly in the first 2 decades following a fire. Patterns of this growth are important for understanding ecosystem productivity and re-establishment success, but are logistically challenging to measure over long time periods. We tested the utility of a novel method of using shrub growth rings...

  20. [Effects of drip irrigation under mulching on cotton root and shoot biomass and yield].

    PubMed

    Yan, Ying-Yu; Zhao, Cheng-Yi; Sheng, Yu; Li, Ju-Yan; Peng, Dong-Mei; Li, Zi-Liang; Feng, Sheng-Li

    2009-04-01

    By using bidirectional sampling method with soil drill, the effects of different amounts of drip irrigation (2618, 2947, 3600 and 4265 m3 x hm(-2)) under mulching on the root distribution, aboveground growth, and yield of cotton was studied in field. The results indicated that irrigation amount affected the root and shoot growth significantly. In all irrigation treatments, cotton root was mainly distributed in mulched area, occupying 60.65%-73.45% of total root biomass, while only 39.35%-26.55% was distributed in bare area. Water stress increased rooting depth, root biomass, and the extent of lateral rooting. Significant differences were observed in the biological characteristics and the biomass accumulation and allocation of cotton plant among different irrigation treatments. Over-irrigation (4265 m3 x hm(-2)) increased plant height, width of inverse fourth leaf, and amounts of branch and bud, and thus, accelerated biomass accumulation rate. Over-irrigation also increased the root/shoot ratio and the proportion of biomass allocated to vegetative organs, but increased the fruit abscission rate and therefore reduced the economic yield. It was suggested that both excessive soil moisture content and water stress could affect the biomass accumulation and allocation in different cotton organs and at various life stages. Under the conditions of our experiment, 3600 m3 x hm(-2) was the optimal irrigation amount.

  1. Difference in C3–C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1

    SciTech Connect

    Fu, Yanfen; Beck, David A. C.; Lidstrom, Mary E.

    2016-07-19

    In this study, two variants of Methylobacterium extorquens AM1 demonstrated a trade-off between growth rate and biomass yield. In addition, growth rate and biomass yield were also affected by supplementation of growth medium with different amounts of cobalt. The metabolism changes relating to these growth phenomena as well as the trade-off were investigated in this study. 13C metabolic flux analysis was used to generate a detailed central carbon metabolic flux map with both absolute and normalized flux values. As a result, the major differences between the two variants occurred at the formate node as well as within C3-C4 inter-conversion pathways. Higher relative fluxes through formyltetrahydrofolate ligase, phosphoenolpyruvate carboxylase, and malic enzyme led to higher biomass yield, while higher relative fluxes through pyruvate kinase and pyruvate dehydrogenase led to higher growth rate. These results were then tested by phenotypic studies on three mutants (null pyk, null pck mutant and null dme mutant) in both variants, which agreed with the model prediction. In this study, 13C metabolic flux analysis for two strain variants of M. extorquens AM1 successfully identified metabolic pathways contributing to the trade-off between cell growth and biomass yield. Phenotypic analysis of mutants deficient in corresponding genes supported the conclusion that C3-C4 inter-conversion strategies were the major response to the trade-off.

  2. Difference in C3–C4 metabolism underlies tradeoff between growth rate and biomass yield in Methylobacterium extorquens AM1

    DOE PAGES

    Fu, Yanfen; Beck, David A. C.; Lidstrom, Mary E.

    2016-07-19

    In this study, two variants of Methylobacterium extorquens AM1 demonstrated a trade-off between growth rate and biomass yield. In addition, growth rate and biomass yield were also affected by supplementation of growth medium with different amounts of cobalt. The metabolism changes relating to these growth phenomena as well as the trade-off were investigated in this study. 13C metabolic flux analysis was used to generate a detailed central carbon metabolic flux map with both absolute and normalized flux values. As a result, the major differences between the two variants occurred at the formate node as well as within C3-C4 inter-conversion pathways.more » Higher relative fluxes through formyltetrahydrofolate ligase, phosphoenolpyruvate carboxylase, and malic enzyme led to higher biomass yield, while higher relative fluxes through pyruvate kinase and pyruvate dehydrogenase led to higher growth rate. These results were then tested by phenotypic studies on three mutants (null pyk, null pck mutant and null dme mutant) in both variants, which agreed with the model prediction. In this study, 13C metabolic flux analysis for two strain variants of M. extorquens AM1 successfully identified metabolic pathways contributing to the trade-off between cell growth and biomass yield. Phenotypic analysis of mutants deficient in corresponding genes supported the conclusion that C3-C4 inter-conversion strategies were the major response to the trade-off.« less

  3. Optimization and phenotype allocation.

    PubMed

    Jost, Jürgen; Wang, Ying

    2014-01-01

    We study the phenotype allocation problem for the stochastic evolution of a multitype population in a random environment. Our underlying model is a multitype Galton–Watson branching process in a random environment. In the multitype branching model, different types denote different phenotypes of offspring, and offspring distributions denote the allocation strategies. Two possible optimization targets are considered: the long-term growth rate of the population conditioned on nonextinction, and the extinction probability of the lineage. In a simple and biologically motivated case, we derive an explicit formula for the long-term growth rate using the random Perron–Frobenius theorem, and we give an approximation to the extinction probability by a method similar to that developed by Wilkinson. Then we obtain the optimal strategies that maximize the long-term growth rate or minimize the approximate extinction probability, respectively, in a numerical example. It turns out that different optimality criteria can lead to different strategies.

  4. Influence of specific growth rate on biomass yield, productivity, and compostion of Candida utilis in batch and continuous culture.

    PubMed Central

    Paredes-López, O; Camargo-Rubio, E; Ornelas-Vale, A

    1976-01-01

    Candida utilis was grown in batch and continuous culture on prickly pear juice as sole carbon and energy source. In batch culture the maximum specific growth rate (mum) and the substrate yield coefficient (Yps) varied according to sugar concentration. When the fermentation was carried out with 1% sugar, mum and Ys were 0.47/h and 42.6%, respectively. The best yields occurred in a chemostat at the pH range of 3.5 to 4.5 and temperature of 30 C. A beneficial effect on Ys was observed when the dilution rate (D) was increased. At a D of 0.55/h, the productivity was 2.38 g/liter per h. The maintenance coefficient attained a value of 0.09 g of sugar/g of biomass per h. Increases of D produced higher protein contents of the biomass. The information obtained indicates that protein production with Candida utilis, using prickly pear juice, should be carried out a high dilution rates where the Ys and protein content of the cell mass are also higher. PMID:5055

  5. Influence of specific growth rate on biomass yield, productivity, and compostion of Candida utilis in batch and continuous culture.

    PubMed

    Paredes-López, O; Camargo-Rubio, E; Ornelas-Vale, A

    1976-04-01

    Candida utilis was grown in batch and continuous culture on prickly pear juice as sole carbon and energy source. In batch culture the maximum specific growth rate (mum) and the substrate yield coefficient (Yps) varied according to sugar concentration. When the fermentation was carried out with 1% sugar, mum and Ys were 0.47/h and 42.6%, respectively. The best yields occurred in a chemostat at the pH range of 3.5 to 4.5 and temperature of 30 C. A beneficial effect on Ys was observed when the dilution rate (D) was increased. At a D of 0.55/h, the productivity was 2.38 g/liter per h. The maintenance coefficient attained a value of 0.09 g of sugar/g of biomass per h. Increases of D produced higher protein contents of the biomass. The information obtained indicates that protein production with Candida utilis, using prickly pear juice, should be carried out a high dilution rates where the Ys and protein content of the cell mass are also higher.

  6. Anaerobic digestion of waste biomass from the production of L-cystine in suspended-growth bioreactors.

    PubMed

    Chávez-Fuentes, Juan José; Hutňan, Miroslav; Bodík, Igor; Zakhar, Ronald; Czölderová, Marianna

    2015-01-01

    Waste biomass from the industrial production of the amino acid L-cystine contains above-average concentrations of organic pollutants and significant concentrations of nitrogen and sulfur. The specific biogas production (SBP) of waste biomass was monitored in parallel suspended-growth laboratory anaerobic bioreactors. After severe inhibition was observed, three different procedures were applied to inhibited reactor sludge to counter-attack the inhibitory effects of sulfides, respectively hydrogen sulfide: micro-aeration, dilution with water and precipitation by ferrous iron cations. The performance of bioreactors was weekly monitored. Organic loading rates (as chemical oxygen demand, COD) ranged from 1.07 to 1.97 g L(-1) d(-1). At the end of the experimentation, SBP averaged 217, 300 and 320 l kg(-1) COD with a methane content of 21%, 52% and 54%; specific sludge production averaged 133, 111 and 400 g total solids kg(-1) COD, and inhibition was 49%, 27% and 25%; for the applied procedures of micro-aeration, dilution and precipitation respectively.

  7. Assessing the fate of nutrients and carbon in the bioenergy chain through the modeling of biomass growth and conversion.

    PubMed

    François, Jessica; Fortin, Mathieu; Patisson, Fabrice; Dufour, Anthony

    2014-12-02

    A forest growth model was coupled to a model of combined heat and power (CHP) production in a gasification plant developed in Aspen Plus. For a given production, this integrated forest-to-energy model made it possible to predict the annual flows in wood biomass, carbon, and nutrients, including N, S, P, and K, from the forest to the air emissions (NOx, SOx, PAH, etc.) and ash flows. We simulated the bioenergy potential of pure even-aged high-forest stands of European beech, an abundant forest type in Northeastern France. Two forest management practices were studied, a standard-rotation and a shorter-rotation scenario, along with two wood utilizations: with or without fine woody debris (FWD) harvesting. FWD harvesting tended to reduce the forested area required to supply the CHP by 15–22% since larger amounts of energy wood were available for the CHP process, especially in the short-rotation scenario. Because less biomass was harvested, the short-rotation scenario with FWD decreased the nutrient exports per hectare and year by 4–21% compared to standard practices but increased the amount of N, S, and P in the CHP process by 2–9%. This increase in the input nutrient flows had direct consequences on the inorganic air emissions, thus leading to additional NOx and SO2 emissions. This model is a valuable tool for assessing the life cycle inventories of the entire bioenergy chain.

  8. Release of resource constraints allows greater carbon allocation to secondary metabolites and storage in winter wheat.

    PubMed

    Huang, Jianbei; Hammerbacher, Almuth; Forkelová, Lenka; Hartmann, Henrik

    2017-05-01

    The atmospheric CO2 concentration ([CO2 ]) is rapidly increasing, and this may have substantial impact on how plants allocate metabolic resources. A thorough understanding of allocation priorities can be achieved by modifying [CO2 ] over a large gradient, including low [CO2 ], thereby altering plant carbon (C) availability. Such information is of critical importance for understanding plant responses to global environmental change. We quantified the percentage of daytime whole-plant net assimilation (A) allocated to night-time respiration (R), structural growth (SG), nonstructural carbohydrates (NSC) and secondary metabolites (SMs) during 8 weeks of vegetative growth in winter wheat (Triticum aestivum) growing at low, ambient and elevated [CO2 ] (170, 390 and 680 ppm). R/A remained relatively constant over a large gradient of [CO2 ]. However, with increasing C availability, the fraction of assimilation allocated to biomass (SG + NSC + SMs), in particular NSC and SMs, increased. At low [CO2 ], biomass and NSC increased in leaves but decreased in stems and roots, which may help plants achieve a functional equilibrium, that is, overcome the most severe resource limitation. These results reveal that increasing C availability from rising [CO2 ] releases allocation constraints, thereby allowing greater investment into long-term survival in the form of NSC and SMs. © 2016 John Wiley & Sons Ltd.

  9. Optimal Number and Allocation of Data Collection Points for Linear Spline Growth Curve Modeling: A Search for Efficient Designs

    ERIC Educational Resources Information Center

    Wu, Wei; Jia, Fan; Kinai, Richard; Little, Todd D.

    2017-01-01

    Spline growth modelling is a popular tool to model change processes with distinct phases and change points in longitudinal studies. Focusing on linear spline growth models with two phases and a fixed change point (the transition point from one phase to the other), we detail how to find optimal data collection designs that maximize the efficiency…

  10. Seasonal variation in growth and biomass of an intertidal Zostera noltii stand in the Dutch wadden sea

    NASA Astrophysics Data System (ADS)

    Philippart, C. J. M.

    To assess relationships between the life cycle of the seagrass Zostera noltii and light conditions in its habitat, the seasonal dynamics of a seagrass-dominated community on a tidal flat off Terschelling were studied. The main components of this community were seagrass, periphyton and the periphyton grazing mudsnail Hydrobia ulvae. Total biomass of the seagrass stand showed a unimodal curve with a maximum of more than 110 gADW·m -2 in August and a minimum of less than 10 gADW·m -2 in January. Chlorophyll density of periphyton on the seagrass leaves followed a more or less similar pattern, ranging from 0.4 μg chlorophyll·cm -2 in May to more than 3 μg chlorophyll·cm -2 at the end of August. Periphyton biomass was, however, already maximal in May with almost 1.6 mgADW·cm -2 and subsequently decreased to less than 0.6 mgADW·cm -2 in August. The total weight of H. ulvae was more or less stable, varying between more than 150 and less than 400 gDW·m -2, although significant changes were observed within size classes. Light is assumed to be the primary limiting factor for seagrass distribution in the Wadden Sea. The light conditions of seagrass in the study area were influenced by periphyton and mudsnails. Leaf growth rates and biomass development appeared to be related with light conditions in the seagrass habitat. Shading caused by periphyton during the growing season was estimated at 10 to 90% of incident light, resulting in a reduction of about 2 to 80% of the yearly period during which the light compensation point (LCP) of the seagrass is exceeded. The mudsnails were found to be theoretically able to ingest daily 25 to 100% of the standing stock of periphyton and microphytobenthos. It is concluded that shading by periphyton and grazing by mudsnails play an important role in the seasonal biomass development and survival of Z. noltii in the seagrass-dominated community on a tidal flat off Terschelling.

  11. Spatial relationship of biomass and species distribution in an old-growth Pseudotsuga Tsuga forest.

    Treesearch

    Jiquan Chen; Bo Song; Mark Rudnicki; Melinda Moeur; Ken Bible; Malcolm North; Dave C. Shaw; Jerry F. Franklin; Dave M. Braun

    2003-01-01

    Old-growth forests are known for their complex and variable structure and function. In a 12-ha plot (300 m x 400 m) of an old-growth Douglas-fir forest within the T.T. Munger Research Natural Area in southern Washington, we mapped and recorded live/dead condition, species, and diameter at breast height to address the following objectives: (1) to quantify the...

  12. SuMoToRI, an Ecophysiological Model to Predict Growth and Sulfur Allocation and Partitioning in Oilseed Rape (Brassica napus L.) Until the Onset of Pod Formation.

    PubMed

    Brunel-Muguet, Sophie; Mollier, Alain; Kauffmann, François; Avice, Jean-Christophe; Goudier, Damien; Sénécal, Emmanuelle; Etienne, Philippe

    2015-01-01

    Sulfur (S) nutrition in rapeseed (Brassica napus L.) is a major concern for this high S-demanding crop, especially in the context of soil S oligotrophy. Therefore, predicting plant growth, S plant allocation (between the plant's compartments) and S pool partitioning (repartition of the mobile-S vs. non-mobile-S fractions) until the onset of reproductive phase could help in the diagnosis of S deficiencies during the early stages. For this purpose, a process-based model, SuMoToRI (Sulfur Model Toward Rapeseed Improvement), was developed up to the onset of pod formation. The key features rely on (i) the determination of the S requirements used for growth (structural and metabolic functions) through critical S dilution curves and (ii) the estimation of a mobile pool of S that is regenerated by daily S uptake and remobilization from senescing leaves. This study describes the functioning of the model and presents the model's calibration and evaluation. SuMoToRI was calibrated and evaluated with independent datasets from greenhouse experiments under contrasting S supply conditions. It is run with a small number of parameters with generic values, except in the case of the radiation use efficiency, which was shown to be modulated by S supply. The model gave satisfying predictions of the dynamics of growth, S allocation between compartments and S partitioning, such as the mobile-S fraction in the leaves, which is an indicator of the remobilization potential toward growing sinks. The mechanistic features of SuMoToRI provide a process-based framework that has enabled the description of the S remobilizing process in a species characterized by senescence during the vegetative phase. We believe that this model structure could be useful for modeling S dynamics in other arable crops that have similar senescence-related characteristics.

  13. SuMoToRI, an Ecophysiological Model to Predict Growth and Sulfur Allocation and Partitioning in Oilseed Rape (Brassica napus L.) Until the Onset of Pod Formation

    PubMed Central

    Brunel-Muguet, Sophie; Mollier, Alain; Kauffmann, François; Avice, Jean-Christophe; Goudier, Damien; Sénécal, Emmanuelle; Etienne, Philippe

    2015-01-01

    Sulfur (S) nutrition in rapeseed (Brassica napus L.) is a major concern for this high S-demanding crop, especially in the context of soil S oligotrophy. Therefore, predicting plant growth, S plant allocation (between the plant’s compartments) and S pool partitioning (repartition of the mobile-S vs. non-mobile-S fractions) until the onset of reproductive phase could help in the diagnosis of S deficiencies during the early stages. For this purpose, a process-based model, SuMoToRI (Sulfur Model Toward Rapeseed Improvement), was developed up to the onset of pod formation. The key features rely on (i) the determination of the S requirements used for growth (structural and metabolic functions) through critical S dilution curves and (ii) the estimation of a mobile pool of S that is regenerated by daily S uptake and remobilization from senescing leaves. This study describes the functioning of the model and presents the model’s calibration and evaluation. SuMoToRI was calibrated and evaluated with independent datasets from greenhouse experiments under contrasting S supply conditions. It is run with a small number of parameters with generic values, except in the case of the radiation use efficiency, which was shown to be modulated by S supply. The model gave satisfying predictions of the dynamics of growth, S allocation between compartments and S partitioning, such as the mobile-S fraction in the leaves, which is an indicator of the remobilization potential toward growing sinks. The mechanistic features of SuMoToRI provide a process-based framework that has enabled the description of the S remobilizing process in a species characterized by senescence during the vegetative phase. We believe that this model structure could be useful for modeling S dynamics in other arable crops that have similar senescence-related characteristics. PMID:26635825

  14. Cytokinin-dependent secondary growth determines root biomass in radish (Raphanus sativus L.)

    PubMed Central

    Jang, Geupil; Lee, Jung-Hun; Rastogi, Khushboo; Park, Suhyoung; Oh, Sang-Hun; Lee, Ji-Young

    2015-01-01

    The root serves as an essential organ in plant growth by taking up nutrients and water from the soil and supporting the rest of the plant body. Some plant species utilize roots as storage organs. Sweet potatoes (Ipomoea batatas), cassava (Manihot esculenta), and radish (Raphanus sativus), for example, are important root crops. However, how their root growth is regulated remains unknown. In this study, we characterized the relationship between cambium and radial root growth in radish. Through a comparative analysis with Arabidopsis root expression data, we identified putative cambium-enriched transcription factors in radish and analysed their expression in representative inbred lines featuring distinctive radial growth. We found that cell proliferation activities in the cambium positively correlated with radial growth and final yields of radish roots. Expression analysis of candidate transcription factor genes revealed that some genes are differentially expressed between inbred lines and that the difference is due to the distinct cytokinin response. Taken together, we have demonstrated for the first time, to the best of our knowledge, that cytokinin-dependent radial growth plays a key role in the yields of root crops. PMID:25979997

  15. Cytokinin-dependent secondary growth determines root biomass in radish (Raphanus sativus L.).

    PubMed

    Jang, Geupil; Lee, Jung-Hun; Rastogi, Khushboo; Park, Suhyoung; Oh, Sang-Hun; Lee, Ji-Young

    2015-08-01

    The root serves as an essential organ in plant growth by taking up nutrients and water from the soil and supporting the rest of the plant body. Some plant species utilize roots as storage organs. Sweet potatoes (Ipomoea batatas), cassava (Manihot esculenta), and radish (Raphanus sativus), for example, are important root crops. However, how their root growth is regulated remains unknown. In this study, we characterized the relationship between cambium and radial root growth in radish. Through a comparative analysis with Arabidopsis root expression data, we identified putative cambium-enriched transcription factors in radish and analysed their expression in representative inbred lines featuring distinctive radial growth. We found that cell proliferation activities in the cambium positively correlated with radial growth and final yields of radish roots. Expression analysis of candidate transcription factor genes revealed that some genes are differentially expressed between inbred lines and that the difference is due to the distinct cytokinin response. Taken together, we have demonstrated for the first time, to the best of our knowledge, that cytokinin-dependent radial growth plays a key role in the yields of root crops. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Short-duration cassava genotypes for crop diversification in the humid tropics: growth dynamics, biomass, yield and quality.

    PubMed

    Suja, Girija; John, Kuzhivilayil Susan; Sreekumar, Janardanan; Srinivas, Tavva

    2010-01-30

    Short-duration (6-7 months) cassava provides opportunities to smallholder farmers for effective utilisation of resources such as land, moisture and nutrients as well as diversification of enterprise and income. The variation in biomass production and partitioning, seasonal course of growth indices, yield, quality and nutrient uptake of ten short-duration/early-bulking genotypes of cassava and their impact on nutrient contents in soil in a lowland situation akin to rice fallow were examined in this study. Triploid 2-18 gave the highest yield (38.34 t ha(-1)), followed by triploid 4-2, Sree Vijaya, Sree Jaya and Vellayani Hraswa, which were on a par (30-32 t ha(-1)). Vellayani Hraswa, Sree Vijaya and triploid 4-2 had significantly higher tuberous root dry matter content (370-380 mg g(-1)) and fairly higher starch content (270-280 mg g(-1)). All genotypes except triploid 4-2, triploid 2-18 and H-165 had low cyanogen content (29.2-43.8 microg g(-1)), well within the tolerable limit. Tuberous root dry matter and total dry matter production, crop growth rate, tuberous root bulking rate and harvest index at the last phase, number of tuberous roots, mean weight of tuberous roots and nutrient uptake showed significant positive correlations with tuberous root yield. Principal component analysis also showed a similar trend. The diploids Sree Vijaya, Sree Jaya, Vellayani Hraswa and Kalpaka are ideal for cultivation in rice fallow for food use owing to their high yield, good cooking quality and low cyanogen content. The triploids are better suited for industrial use owing to their high tuberous root dry biomass production. (c) 2009 Society of Chemical Industry.

  17. Biomass rather than growth rate determines variation in net primary production by giant kelp.

    PubMed

    Reed, Daniel C; Rassweiler, Andrew; Arkema, Katie K

    2008-09-01

    Net primary production (NPP) is influenced by disturbance-driven fluctuations in foliar standing crop (FSC) and resource-driven fluctuations in rates of recruitment and growth, yet most studies of NPP have focused primarily on factors influencing growth. We quantified NPP, FSC, recruitment, and growth rate for the giant kelp, Macrocystis pyrifera, at three kelp forests in southern California, U.S.A., over a 54-month period and determined the relative roles of FSC, recruitment, and growth rate in contributing to variation in annual NPP. Net primary production averaged between 0.42 and 2.38 kg dry mass x m(-2) x yr(-1) at the three sites. The initial FSC present at the beginning of the growth year and the recruitment of new plants during the year explained 63% and 21% of the interannual variation observed in NPP, respectively. The previous year's NPP and disturbance from waves collectively accounted for 80% of the interannual variation in initial FSC. No correlation was found between annual growth rate (i.e., the amount of new kelp mass produced per unit of existing kelp mass) and annual NPP (i.e., the amount of new kelp mass produced per unit area of ocean bottom), largely because annual growth rate was consistent compared to initial FSC and recruitment, which fluctuated greatly among years and sites. Although growth rate was a poor predictor of variation in annual NPP, it was principally responsible for the high mean values observed for NPP by Macrocystis. These high mean values reflected rapid growth (average of approximately 2% per day) of a relatively small standing crop (maximum annual mean = 444 g dry mass/m2) that replaced itself approximately seven times per year. Disturbance-driven variability in FSC may be generally important in explaining variation in NPP, yet it is rarely examined because cycles of disturbance and recovery occur over timescales of decades or more in many systems. Considerable insight into how variation in FSC drives variation in NPP may

  18. Ex situ growth and biomass of Populus bioenergy crops irrigated and fertilized with landfill leachate

    Treesearch

    Ronald S. Jr. Zalesny; Adam H. Wiese; Edmund O. Bauer; Donald E. Riemenschneider

    2009-01-01

    Merging traditional intensive forestry with waste management offers dual goals of fiber and bioenergy production, along with environmental benefits such as soil/water remediation and carbon sequestration. As part of an ongoing effort to acquire data about initial genotypic performance, we evaluated: (1) the early aboveground growth of trees belonging to currently...

  19. A structurally based analytic model of growth and biomass dynamics in single species stands of conifers

    Treesearch

    Robin J. Tausch

    2015-01-01

    A theoretically based analytic model of plant growth in single species conifer communities based on the species fully occupying a site and fully using the site resources is introduced. Model derivations result in a single equation simultaneously describes changes over both, different site conditions (or resources available), and over time for each variable for each...

  20. Switchgrass growth and effects on biomass accumulation, moisture content, and nutrient removal

    USDA-ARS?s Scientific Manuscript database

    Temporal patterns of plant growth, composition, and nutrient removal impact development of models for predicting optimal harvest times of switchgrass (Panicum virgatum L.) for bioenergy. Objectives were to characterize seasonal trends in yield, tissue moisture, ash content, leaf area index (LAI), in...

  1. Adding net growth, removals, and mortality estimates for biomass and carbon in FIADB

    Treesearch

    Jeffery A. Turner

    2015-01-01

    Traditional growth, removals, and mortality (GRM) estimates produced from Forest Inventory and Analysis (FIA) periodic inventories were limited to changes in volume on timberland. Estimates on forestland were added in the east as the first installment of annual inventory plots was remeasured. The western FIA units have begun annual remeasurement, precipitating the need...

  2. Modelling C allocation in response to nutrient availability

    NASA Astrophysics Data System (ADS)

    Stocker, Benjamin; Prentice, Colin

    2015-04-01

    Carbon (C) allocation in ecosystems is a key variable of the global terrestrial C cycle. While photosynthesis governs the amount of C that enters ecosystems, its subsequent allocation to compartments with different life times determines its over-all residence time and variations in allocation patterns drive changes in ecosystem C balance and its response to environmental change. A better understanding of the controls on allocation is thus key to improving global vegetation models that commonly rely on using fixed partitioning factors. Observational data suggests variations of ecosystem structure and functioning along large-scale gradients of resource availability. Below-ground C allocation, inferred as gross primary production minus above-ground biomass production increases along gradients of decreasing nutrient availability. This is not only due to more root growth, but also due to enhanced production of exudates and stimulation of root symbionts and has been interpreted to reflect optimal plant allocation decisions under a varying soil fertility status. Here, we propose a model that accounts for trade-offs between (i) growth in above-ground and (ii) below-ground plant compartments, (iii) exudation to the rhizosphere and root symbionts and (iv) temporary storage in non-structural pools. By postulating the maximization of long-term growth under a given (seasonal regime) of soil nitrogen (N) availability, we attempt to reproduce observed large-scale gradients. The model is formulated based on a C cost for different N uptake decisions, where the cost is a function of N availability, root mass, and soil temperature (for biological N fixation). On a daily time scale, ecosystem N uptake may be realized by C exudation to the rhizosphere and/or symbiotic fixation of atmospheric N2. On an annual time scale, allocation to roots versus leaves is adjusted to soil inorganic N availability and modeled to yield maximum total growth. Exudation versus temporary storage of C is

  3. Influence of mechanical disintegration on the microbial growth of aerobic sludge biomass: A comparative study of ultrasonic and shear gap homogenizers by oxygen uptake measurements.

    PubMed

    Divyalakshmi, P; Murugan, D; Sivarajan, M; Saravanan, P; Lajapathi Rai, C

    2015-11-01

    Wastewater treatment plant incorporates physical, chemical and biological processes to treat and remove the contaminants. The main drawback of conventional activated sludge process is the huge production of excess sludge, which is an unavoidable byproduct. The treatment and disposal of excess sludge costs about 60% of the total operating cost. The ideal way to reduce excess sludge production during wastewater treatment is by preventing biomass formation within the aerobic treatment train rather than post treatment of the generated sludge. In the present investigation two different mechanical devices namely, Ultrasonic and Shear Gap homogenizers have been employed to disintegrate the aerobic biomass. This study is intended to restrict the multiplication of microbial biomass and at the same time degrade the organics present in wastewater by increasing the oxidative capacity of microorganisms. The disintegrability on biomass was determined by biochemical methods. Degree of inactivation provides the information on inability of microorganisms to consume oxygen upon disruption. The soluble COD quantifies the extent of release of intra cellular compounds. The participation of disintegrated microorganism in wastewater treatment process was carried out in two identical respirometeric reactors. The results show that Ultrasonic homogenizer is very effective in the disruption of microorganisms leading to a maximum microbial growth reduction of 27%. On the other hand, Shear gap homogenizer does not favor the sludge growth reduction rather it facilitates the growth. This study also shows that for better microbial growth reduction, floc size reduction alone is not sufficient but also microbial disruption is essential. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Effect of indigo dye effluent on the growth, biomass production and phenotypic plasticity of Scenedesmus quadricauda (Chlorococcales).

    PubMed

    Chia, Mathias A; Musa, Rilwan I

    2014-03-01

    The effect of indigo dye effluent on the freshwater microalga Scenedesmus quadricauda ABU12 was investigated under controlled laboratory conditions. The microalga was exposed to different concentrations of the effluent obtained by diluting the dye effluent from 100 to 175 times in bold basal medium (BBM). The growth rate of the microalga decreased as indigo dye effluent concentration increased (p <0.05). The EC50 was found to be 166 dilution factor of the effluent. Chlorophyll a, cell density and dry weight production as biomarkers were negatively affected by high indigo dye effluent concentration, their levels were higher at low effluent concentrations (p <0.05). Changes in coenobia size significantly correlated with the dye effluent concentration. A shift from large to small coenobia with increasing indigo dye effluent concentration was obtained. We conclude that even at low concentrations; effluents from textile industrial processes that use indigo dye are capable of significantly reducing the growth and biomass production, in addition to altering the morphological characteristics of the freshwater microalga S. quadricauda. The systematic reduction in the number of cells per coenobium observed in this study further confirms that environmental stress affects coenobium structure in the genus Scenedesmus, which means it can be considered an important biomarker for toxicity testing.

  5. Utilization of lipid extracted algal biomass and sugar factory wastewater for algal growth and lipid enhancement of Ettlia sp.

    PubMed

    Moon, Myounghoon; Kim, Chul Woong; Farooq, Wasif; Suh, William I; Shrivastav, Anupama; Park, Min S; Mishra, Sanjiv K; Yang, Ji-Won

    2014-07-01

    The present study assessed the use of hydrolysate of lipid extracted algal biomass (LEA) combined with the sugar factory wastewater (SFW) as a low cost nutrient and a carbon source, respectively for microalgal cultivation. Microalgal strain Ettlia sp. was both mixotrophically and heterotrophically cultivated using various amounts of hydrolysate and SFW. The culture which was grown in medium containing 50% LEA hydrolysate showed highest growth, achieving 5.26 ± 0.14 gL(-1) after 12 days of cultivation. The addition of SFW increased the lipid productivity substantially from 5.8 to 95.5 mg L(-1)d(-1) when the culture medium was fortified with 20% SFW. Gas chromatography analysis indicated a noticeable increase of 20% in C16 and C18 fraction in FAME distribution under above condition. Therefore, it can be concluded that the combination of LEA hydrolysate and sugar factory waste water can be a powerful growth medium for economical algal cultivation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    SciTech Connect

    Kirst, Matias

    2014-04-14

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  7. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    SciTech Connect

    Kirst, Matias

    2015-04-15

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  8. A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii.

    PubMed

    Kropat, Janette; Hong-Hermesdorf, Anne; Casero, David; Ent, Petr; Castruita, Madeli; Pellegrini, Matteo; Merchant, Sabeeha S; Malasarn, Davin

    2011-06-01

    Interest in exploiting algae as a biofuel source and the role of inorganic nutrient deficiency in inducing triacylglyceride (TAG) accumulation in cells necessitates a strategy to efficiently formulate species-specific culture media that can easily be manipulated. Using the reference organism Chlamydomonas reinhardtii, we tested the hypothesis that modeling trace element supplements after the cellular ionome would result in optimized cell growth. We determined the trace metal content of several commonly used Chlamydomonas strains in various culture conditions and developed a revised trace element solution to parallel these measurements. Comparison of cells growing in the revised supplement versus a traditional trace element solution revealed faster growth rates and higher maximum cell densities with the revised recipe. RNA-seq analysis of cultures growing in the traditional versus revised medium suggest that the variation in transcriptomes was smaller than that found between different wild-type strains grown in traditional Hutner's supplement. Visual observation did not reveal defects in cell motility or mating efficiency in the new supplement. Ni²⁺-inducible expression from the CYC6 promoter remained a useful tool, albeit with an increased requirement for Ni²⁺ because of the introduction of an EDTA buffer system in the revised medium. Other advantages include more facile preparation of trace element stock solutions, a reduction in total chemical use, a more consistent batch-to-batch formulation and long-term stability (tested up to 5 years). Under the new growth regime, we analyzed cells growing under different macro- and micronutrient deficiencies. TAG accumulation in N deficiency is comparable in the new medium. Fe and Zn deficiency also induced TAG accumulation, as suggested by Nile Red staining. This approach can be used to efficiently optimize culture conditions for other algal species to improve growth and to assay cell physiology. © 2011 The Authors

  9. A revised mineral nutrient supplement increases biomass and growth rate in Chlamydomonas reinhardtii

    PubMed Central

    Kropat, Janette; Hong-Hermesdorf, Anne; Casero, David; Ent, Petr; Castruita, Madeli; Pellegrini, Matteo; Merchant, Sabeeha S.; Malasarn, Davin

    2011-01-01

    Summary Interest in exploiting algae as a biofuel source and the role of inorganic nutrient deficiency in inducing triacylglyceride (TAG) accumulation in cells necessitates a strategy to efficiently formulate species-specific culture media that can easily be manipulated. Using the reference organism Chlamydomonas reinhardtii, we tested the hypothesis that modeling trace element supplements after the cellular ionome would result in optimized cell growth. We determined the trace metal content of several commonly used Chlamydomonas strains in various culture conditions and developed a revised trace element solution to parallel these measurements. Comparison of cells growing in the revised supplement versus a traditional trace element solution revealed faster growth rates and higher maximum cell densities with the revised recipe. RNA-seq analysis of cultures growing in the traditional versus revised medium suggest that the variation in transcriptomes was smaller than that found between different wild-type strains grown in traditional Hutner’s supplement. Visual observation did not reveal defects in cell motility or mating efficiency in the new supplement. Ni2+-inducible expression from the CYC6 promoter remained a useful tool, albeit with an increased requirement for Ni2+ because of the introduction of an EDTA buffer system in the revised medium. Other advantages include more facile preparation of trace element stock solutions, a reduction in total chemical use, a more consistent batch-to-batch formulation, and long-term stability (tested up to 5 years). Under the new growth regime, we analyzed cells growing under different macro- and micronutrient-deficiencies. TAG accumulation in N deficiency is comparable in the new medium. Fe and Zn deficiency also induced TAG accumulation, as suggested by Nile Red staining. This approach can be used to efficiently optimize culture conditions for other algal species to improve growth and to assay cell physiology. PMID:21309872

  10. Production, allocation, and stemwood growth efficiency of Pinus taeda L. stands in response to 6 years of intensive management

    Treesearch

    Lisa J. Samuelson; Kurt Johnsen; Tom Stokes

    2004-01-01

    Loblolly pine (Pinus taeda L.) is a highly plastic species with respect to growth responses to forest management. Loblolly pine is the most planted species across the southern United States, a region with the most expansive and intensively managed forest plantations in the world. Management intensity, using tools such as site preparation and...

  11. [Optimum harvest time of Tulipa edulis based on comparison of biomass accumulation and medicinal quality evaluation].

    PubMed

    Yang, Xiao-Hua; Guo, Qiao-Sheng; Zhu, Zai-Biao; Lin, Jian-Luo; Miao, Yuan-Yuan; Sun, Yuan

    2016-02-01

    The optimum harvest time of Tulipa edulis was explored based on biomass accumulation and medicinal quality evaluation. Samples were taken from bud stage (Feb 13th) to dormancy stage (May 14th) and the growth indexes, organs biomasses, drying rate, contents of water-soluble extract and polysaccharides were determined. The results showed that biomass distribution of T. edulis varied with growth center and the bulb gained maximum biomass allocation in the whole growth period. The total biomass accumulation and bulb biomass accumulation increased in the whole growth period and peaked in fructescence stage. No differences were observed in bulb biomass among fructescence stage, withering stage and dormancy stage. The correlation between bulb biomass allocation and other morphological indexes varied with the harvest time. Bulb dry weight biomass had negative correlation with some morphological indexes of aerial part of T. edulis at bud stage, flower stage and fructescence and had significant positive (P<0.05) or extremely significant positive correlation(P<0.01)with other morphological indexes except for root at bearing fruits stage. The drying rate of bulb of T. edulis increased with the extension of harvest time and peaked in dormancy stage. The water-soluble extract of T. edulis bulb was the highest in pre-growing-stage. The tendency of polysaccharides contents showed a W-shape variation during the harvesting period. The polysaccharides content was the lowest in fructescence stage and was the highest in dormancy stage. Considering the yield and medicinal quality of T. edulis bulb, the optimum harvest time of T. edulis is in the withering stage or early stage of dormancy. Copyright© by the Chinese Pharmaceutical Association.

  12. Biomass accumulation rates of Amazonian secondary forest and biomass of old-growth forests from Landsat time series and the Geoscience Laser Altimeter System

    Treesearch

    E. H. Helmer; M. A. Lefsky; D. A. Roberts

    2009-01-01

    We estimate the age of humid lowland tropical forests in Rondônia, Brazil, from a somewhat densely spaced time series of Landsat images (1975–2003) with an automated procedure, the Threshold Age Mapping Algorithm (TAMA), first described here. We then estimate a landscape-level rate of aboveground woody biomass accumulation of secondary forest by combining forest age...

  13. Trade-offs between biomass growth and inducible biosynthesis of polyhydroxybutyrate in transgenic poplar.

    PubMed

    Dalton, David A; Ma, Cathleen; Shrestha, Shreya; Kitin, Peter; Strauss, Steven H

    2011-09-01

    Polyhydroxybutyrate (PHB) is a bioplastic that can be produced in transgenic plants by the coexpression of three bacterial genes for its biosynthesis. PHB yields from plants have been constrained by the negative impacts on plant health that result from diversion of resources into PHB production; thus, we employed an ecdysone analogue-based system for induced gene expression. We characterized 49 insertion events in hybrid transgenic poplar (Populus tremula x alba) that were produced using Agrobacterium transformation and studied two high-producing events in detail. Regenerated plants contained up to 1-2% PHB (dry weight) in leaves after 6-8 weeks of induction. Strong induction was observed with 1-10 mm Intrepid and limited direct toxicity observed. Confocal fluorescence microscopy was used to visualize PHB granules in chloroplasts after chemical treatment to reduce autofluorescence. A greenhouse study indicated that there were no negative consequences of PHB production on growth unless the PHB content exceeded 1% of leaf weight; at PHB levels above 1%, growth (height, diameter and total mass) decreased by 10%-34%. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  14. Thermal profiling for parallel on-line monitoring of biomass growth in miniature stirred bioreactors.

    PubMed

    Gill, N K; Appleton, M; Lye, G J

    2008-09-01

    Recently we have described the design and operation of a miniature bioreactor system in which 4-16 fermentations can be performed (Gill et al., Biochem Eng J 39:164-176, 2008). Here we report on the use of thermal profiling techniques for parallel on-line monitoring of cell growth in these bioreactors based on the natural heat generated by microbial culture. Results show that the integrated heat profile during E. coli TOP10 pQR239 fermentations followed the same pattern as off-line optical density (OD) measurements. The maximum specific growth rates calculated from off-line OD and on-line thermal profiling data were in good agreement, at 0.66+/-0.04 and 0.69+/-0.05 h(-1) respectively. The combination of a parallel miniature bioreactor system with a non-invasive on-line technique for estimation of culture kinetic parameters provides a valuable approach for the rapid optimisation of microbial fermentation processes.

  15. Feasibility of various carbon sources and plant materials in enhancing the growth and biomass productivity of the freshwater microalgae Monoraphidium griffithii NS16.

    PubMed

    Yee, Willy

    2015-11-01

    In order to assess the feasibility of various carbon sources and plant materials in increasing the growth rate and biomass productivity of Monoraphidium griffithii, ten carbon sources as well as six plant materials were tested in mixotrophic cultures with or without aeration. It was found that glucose, fructose, maltose, sodium acetate and mannitol were potential carbon sources for growth enhancement of M. griffithii. Supplementation of culture medium with these carbon sources resulted in approximately 1-4-fold increase in cell density compared to control in a small scale culture. In a larger scale mixotrophic culture with aeration, 0.05% mannitol and 0.1% fructose resulted in a decent 1-1.5-fold increase in final cell density, approximately 2-fold increase in growth rate and 0.5-1-fold increase in dry biomass weight. Findings from this study suggests that glucose, fructose, maltose and mannitol were potential organic carbon sources for mixotrophic culture of M. griffithii.

  16. The effects of mechanical stress and spectral shading on the growth and allocation of ten genotypes of a stoloniferous plant.

    PubMed

    Liu, Yun; Schieving, Feike; Stuefer, Josef F; Anten, Niels P R

    2007-01-01

    Because plants protect each other from wind, stand density affects both the light climate and the amount of mechanical stress experienced by plants. But the potential interactive effects of mechanical stress and canopy shading on plant growth have rarely been investigated and never in stoloniferous plants which, due to their creeping growth form, can be expected to respond differently to these factors than erect plants. Plants of ten genotypes of the stoloniferous species Potentilla reptans were subjected to two levels of mechanical stress (0 or 40 daily flexures) and two levels of spectral shading (15 % of daylight with a red:far red ratio of 0.3 vs. 50 % daylight and a red:far red ratio of 1.2). Mechanically stressed plants produced more leaves with shorter more flexible petioles, more roots, and more but less massive stolons. Responses to spectral shading were mostly in the opposite direction to thigmomorphogenesis, including the production of thinner, taller petioles made of more rigid tissue. The degree of thigmomorphogenesis was either independent of light climate or stimulated by spectral shading. At the genotypic level there were no clear correlations between responses to shade and mechanical stress. These results suggest that in stoloniferous plants mechanical stress results in clones with a more compact, shorter shoot structure and more roots. This response does not appear to be suppressed by canopy shading, which suggests that wind shielding (reduced mechanical stress) by neighbours in dense vegetation serves as a cue that induces shade avoidance responses such as increased petiole elongation.

  17. Unravelling carbon allocation dynamics in an evergreen temperate forest

    NASA Astrophysics Data System (ADS)

    Griebel, Anne; Bennett, Lauren T.; Arndt, Stefan K.

    2015-04-01

    Eucalypt trees have the potential to sequester carbon from the atmosphere year-round by maintaining evergreen leaves with a prolonged multi-year lifetime. Unlike deciduous trees, eucalypts are generally known to grow opportunistic resulting in a lack of defined growth rings and no distinct seasonal crown turnover events. Stem expansion has been successfully measured with micro-dendrometers, however, it remains challenging to monitor crown dynamics at a similarly high temporal resolution. Hence, carbon allocation dynamics and seasonal variations of carbon distribution between stem and crown biomass remain largely unknown for evergreen species. Ecosystem scale observations of net ecosystem exchange (NEE) from a flux tower located in a predominantly temperature and moisture regulated environment in south-eastern Australia have demonstrated that the ecosystem is a constant terrestrial sink for carbon. Intra-annual variations in temperature and moisture and prolonged heat waves and dry spells result in a wide range of annual sums (e.g. 2013: NEE~4 t C ha-1yr-1, 2012: NEE~12 t C ha-1yr-1). Newly developed low-cost terrestrial lidar sensors (VEGNET) now allow for automated daily monitoring of crown dynamics, enabling more detailed observations on the duration of crown biomass changes. In addition to leaf area index (LAI), VEGNET sensors define the location within the crown strata of the gains and losses in plant volume across the vertical forest structure. With the development of VEGNET sensors, combined with ecosystem carbon fluxes from eddy covariance measurements and with micro-dendrometers, we are able to quantify the dynamics of carbon allocation to above ground biomass pools. Our results demonstrate that stem growth dominates in spring and in autumn, and is strongly associated with water availability. Leaf turnover predominantly takes place in summer and is initiated by prolonged heat stress and isolated storm events, yet crown biomass remains stable throughout the

  18. Allocation plasticity and plant-metal partitioning: meta-analytical perspectives in phytoremediation.

    PubMed

    Audet, Patrick; Charest, Christiane

    2008-11-01

    In this meta-analysis of plant growth and metal uptake parameters, we selected 19 studies of heavy metal (HM) phytoremediation to evaluate trends of allocation plasticity and plant-metal partitioning in roots relative to shoots. We calculated indexes of biomass allocation and metal distribution for numerous metals and plant species among four families of interest for phytoremediation purposes (e.g. Brassicaceae, Fabaceae, Poaceae, and Solanaceae). We determined that plants shift their biomass and distribute metals more to roots than shoots possibly to circumvent the challenges of increasing soil-HM conditions. Although this shift is viewed as a stress-avoidance strategy complementing intrinsic stress-tolerance, our findings indicate that plants express different levels of allocation plasticity and metal partitioning depending on their overall growth strategy and status as 'fast-grower' or 'slow-grower' species. Accordingly, we propose a conceptual model of allocation plasticity and plant-metal partitioning comparing 'fast-grower' and 'slow-grower' strategies and outlining applications for remediation practices.

  19. Growth of the oleaginous microalga Aurantiochytrium sp. KRS101 on cellulosic biomass and the production of lipids containing high levels of docosahexaenoic acid.

    PubMed

    Hong, Won-Kyung; Kim, Chul Ho; Rairakhwada, Dina; Kim, Seonghun; Hur, Byung-Ki; Kondo, Akihiko; Seo, Jeong-Woo

    2012-01-01

    We examined the growth of a novel oleaginous microalga, Aurantiochytrium sp. KRS101, using cellulosic materials as nutrients, and the resultant production of lipids containing high levels of docosahexaenoic acid (DHA). The microalgal strain could grow using either carboxymethylcellulose or cellobiose as a carbon source, and produced lipids containing high levels of DHA (49-58% of total fatty acids). In line with this growth behavior, carboxymethylcellulase and cellobiohydrolase activities were evident in both cell-free lysates and culture broths. Additionally, an industrial cellulosic biomass, palm oil empty fruit bunches (POEFB), a by-product of the palm oil industry, were utilized by the microalgal strain for cell growth and lipid production.

  20. The Effects of Mechanical Stress and Spectral Shading on the Growth and Allocation of Ten Genotypes of a Stoloniferous Plant

    PubMed Central

    Liu, Yun; Schieving, Feike; Stuefer, Josef F.; Anten, Niels P. R.

    2007-01-01

    Background and Aims Because plants protect each other from wind, stand density affects both the light climate and the amount of mechanical stress experienced by plants. But the potential interactive effects of mechanical stress and canopy shading on plant growth have rarely been investigated and never in stoloniferous plants which, due to their creeping growth form, can be expected to respond differently to these factors than erect plants. Methods Plants of ten genotypes of the stoloniferous species Potentilla reptans were subjected to two levels of mechanical stress (0 or 40 daily flexures) and two levels of spectral shading (15 % of daylight with a red:far red ratio of 0·3 vs. 50 % daylight and a red:far red ratio of 1·2). Key Results Mechanically stressed plants produced more leaves with shorter more flexible petioles, more roots, and more but less massive stolons. Responses to spectral shading were mostly in the opposite direction to thigmomorphogenesis, including the production of thinner, taller petioles made of more rigid tissue. The degree of thigmomorphogenesis was either independent of light climate or stimulated by spectral shading. At the genotypic level there were no clear correlations between responses to shade and mechanical stress. Conclusions These results suggest that in stoloniferous plants mechanical stress results in clones with a more compact, shorter shoot structure and more roots. This response does not appear to be suppressed by canopy shading, which suggests that wind shielding (reduced mechanical stress) by neighbours in dense vegetation serves as a cue that induces shade avoidance responses such as increased petiole elongation. PMID:17085473

  1. Influence of lead acetate on soil microbial biomass and community structure in two different soils with the growth of Chinese cabbage (Brassica chinensis).

    PubMed

    Liao, Min; Chen, Cheng-Li; Zeng, Lu-Sheng; Huang, Chang-Yong

    2007-01-01

    A greenhouse pot experiment was conducted to evaluate the impact of different concentrations of lead acetate on soil microbial biomass and community structure during growth of Chinese cabbage (Brassica chinensis) in two different soils. The field soils were used for a small pot, short-term 60-day growth chamber study. The soils were amended with different Pb concentrations, ranging from 0 to 900mgkg(-1) soil. The experimental design was a 2 soilx2 vegetation/non-vegetationx6 treatments (Pb)x3 replicate factorial experiment. At 60 days the study was terminated and soils were analyzed for microbial parameters, namely, microbial biomass, basal respiration and PLFAs. The results indicated that the application of Pb at lower concentrations (100 and 300mgkg(-1)) as lead acetate resulted in a slight increase in soil microbial biomass, whereas Pb concentrations >500mgkg(-1) caused an immediate gradual significant decline in biomass. However, the degree of impact on soil microbial biomass and basal respiration by Pb was related to management (plant vegetation) or the contents of clay and organic matter in soils. The profiles of 21 phospholipid fatty acids (PLFAs) were used to assess whether observed changes in functional microbial parameters were accompanied by changes in the composition of the microbial communities after Pb application at 0, 300 and 900mg Pbkg(-1) soil. The results of principal component analyses (PCA) indicated that there were significant increases in fungi biomarkers of 18:3omega6c, 18:1omega9c and a decrease in cy17:0, which is an indicator of gram-negative bacteria for the high levels of Pb treatments In a word, soil microbial biomass and community structure, therefore, may be sensitive indicators reflecting environmental stress in soil-Pb-plant system. However, further studies will be needed to better understand how these changes in microbial community structure might actually impact soil microbial community function.

  2. Biomass effects on stalagmite growth and isotope ratios: A 20th century analogue from Wiltshire, England [rapid communication

    NASA Astrophysics Data System (ADS)

    Baldini, J. U. L.; McDermott, F.; Baker, A.; Baldini, L. M.; Mattey, D. P.; Railsback, L. Bruce

    2005-12-01

    Increases in calcite deposition rates combined with decreases in δ 13C and δ 18O in three modern stalagmites from Brown's Folly Mine, Wiltshire, England, are correlative with a well-documented re-vegetation above the mine. Increased soil PCO 2 resulted in greater amounts of dissolved CaCO 3 in the drip waters, which consequently increased annual calcite deposition rates. The absence of deposition prior to 1916 (28 years after the mine was closed) indicates that vegetation had not yet sufficiently developed to allow higher PCO 2 values to form in the soil. Lower δ 13C values through time may reflect the increased input of isotopically light biogenic carbon to the total dissolved inorganic carbon (DIC). δ 18O decreased synchronously with δ 13C, reflecting the increased importance of isotopically light winter recharge due to greater biomass-induced summer evapotranspiration. This is the first empirical demonstration that vegetation density can control stalagmite growth rates, δ 13C, and δ 18O, contributing critical insights into the interpretation of these climate proxies in ancient stalagmites.

  3. Ozone pollution effects on gas exchange, growth and biomass yield of salinity-treated winter wheat cultivars.

    PubMed

    Zheng, Yanhai; Cheng, Da; Simmons, Matthew

    2014-11-15

    A sand-culture experiment was conducted in four Open-Top-Chambers to assess the effects of O3 on salinity-treated winter wheat. Two winter wheat cultivars, salt-tolerant Dekang961 and salt-sensitive Lumai15, were grown under saline (100 mM NaCl) and/or O3 (80±5 nmol mol(-1)) conditions for 35 days. Significant (P<0.05) O3-induced decreases were noted for both cultivars in terms of gas exchange, relative water content, growth and biomass yield in the no-salinity treatment. Significant (P<0.01) corresponding decreases were measured in Dekang961 but not in Lumai15 in the salinity treatment. Soluble sugar and proline contents significantly increased in both cultivars in combined salinity and O3 exposure. O3-induced down-regulation in the gradients of A-C(i) and A-PPFD response curves were much larger in Dekang961 than in Lumai15 under saline conditions. Significant (P<0.05) interactions were noted in both salinity×cultivars and salinity×O3 stresses. The results clearly demonstrated that O3 injuries were closely correlated with plant stomatal conductance (g(s)); the salt-tolerant wheat cultivar might be damaged more severely than the salt-sensitive cultivar by O3 due to its higher g(s) in saline conditions.

  4. Nutrients and light limit biomass growth of N2-fixing but not non-fixing trees in tropical forests after 15 years of fertilization

    NASA Astrophysics Data System (ADS)

    Trierweiler, Annette; Wright, Joseph; Winter, Klaus; Hedin, Lars

    2015-04-01

    Tropical forests contribute a major fraction to the land C sink but the role of soil nutrients in limiting tree biomass growth in response to rising atmospheric CO2 is poorly known. Recent findings suggest that, following disturbance, successionally young forests may be deficient in nitrogen (N) and/or phosphorus (P), however nutrient manipulations of mature forests have revealed surprisingly weak effects of nutrients on the stem growth of mature individual trees. It is unclear how such weak experimental nutrient effects are reconciled with the existence of broad geographical correlations between soil nutrients and forest biomass growth. While tree growth is a complex function of nutrients, light, and canopy status, it is plausible that responses differ across different plant functional types. Here we use data from the longest running tropical fertilization experiment to ask first whether different functional groups have different nutrient needs, second, whether a differential nutrient limitation response will affect biomass accretion, and third, whether there is an interactive light-nutrient effect. Finally we examined how nutrient responses changed over time. We show that, in an intact and biodiverse mature tropical forest in Panama, N2-fixing trees more than double their basal area growth rate when exposed to increased soil P and N in the first 11 years of fertilization, for an overall 60% increase over 15 years. In contrast, there was no effect of nutrient treatment on the growth of non-fixing trees. We found a strong interactive effect of soil nutrients and light on fixer tree growth as the greatest growth response was in mature canopy-level trees with full access to light and potentially new nitrogen through fixation. In addition, the positive nutrient effect declined over the 15 years, rather than the expected increase. Our findings suggest that N2-fixing tree species may play a disproportionately important role in governing tropical forest response to

  5. Phenotypic and genotypic components of growth and reproduction in Typha latifolia: experimental studies in three contrasting marshes

    SciTech Connect

    Grace, J.B.

    1980-01-01

    The magnitude and causes of intraspecific variation in biomass production and allocation, and morphology for Typha latifolia L. from three marshes which can be distinguished by their successional maturity were investigated. The first stage of investigation was to determine the environmental characteristics of the three marshes and the characteristics of the T. latifolia populations. Second, in situ studies of /sup 14/C fixation and allocation were used to determine the phenotypic variation in biomass production and allocation. Third, populations were sampled for genotypic variation in biomass allocation patterns by comparing growth in controlled garden experiments. Fourth, the growth of different biotypes was compared by transplantation into natural stands of T. latifolia. And fifth, the intraspecific variations were considered in terms of their consequences for the persistence of T. latifolia in habitats over successional time.

  6. Polyhydroxyalkanoate (PHA) storage within a mixed-culture biomass with simultaneous growth as a function of accumulation substrate nitrogen and phosphorus levels.

    PubMed

    Valentino, Francesco; Karabegovic, Lamija; Majone, Mauro; Morgan-Sagastume, Fernando; Werker, Alan

    2015-06-15

    The response of a mixed-microbial-culture (MMC) biomass for PHA accumulation was evaluated over a range of relative nitrogen (N) and phosphorus (P) availabilities with respect to the supply of either complex (fermented whey permeate - FWP) or simpler (acetic acid) organic feedstocks. Fed-batch feed-on-demand PHA accumulation experiments were conducted where the feed N/COD and P/COD ratios were varied ranging from conditions of nutrient starvation to excess. A feast-famine enrichment (activated sludge) biomass, produced in a pilot-scale aerobic sequencing batch reactor on FWP and with a long history of stable PHA accumulation performance, was used for all the experiments as reference material. FWP with N/COD ratios of (2, 5, 15, 70 mg/g all with P/COD = 8 mg/g) as well as simulated FWP with nutrient starvation (N/COD = P/COD = 0) conditions were applied. For the acetic acid accumulations, nutrient starvation as well as N/COD variations (2.5, 5, 50 mg/g all with P/COD = 9 mg/g) and P/COD variations (0.5, 2, 9, 15 mg/g all with N/COD = 10 mg/g) were evaluated. An optimal range of combined N and P limitation with N/COD from 2 to 15 mg/g and P/COD from 0.5 to 3 mg/g was considered to offer consistent improvement of productivity over the case of nutrient starvation. Productivity increased due to active biomass growth of the PHA storing biomass without observed risk for a growth response overtaking PHA storage activity. PHA production with respect to the initial active biomass was significantly higher even in cases of excess nutrient additions when compared to the cases of nutrient starvation. The 24-h PHA productivities were enhanced as much as 4-fold from a base value of 1.35 g-PHA per gram initial active biomass with respect nutrient starvation feedstock. With or without nutrient loading the biomass consistently accumulated similar and significant PHA (nominally 60% g-PHA/g-VSS). Based on results from replicate experiments some variability in the extant biomass maximum

  7. Nutritional value content, biomass production and growth performance of Daphnia magna cultured with different animal wastes resulted from probiotic bacteria fermentation

    NASA Astrophysics Data System (ADS)

    Endar Herawati, Vivi; Nugroho, R. A.; Pinandoyo; Hutabarat, Johannes

    2017-02-01

    Media culture is an important factor for the growth and quality of Daphnia magna nutrient value. This study has purpose to find the increasing of nutritional content,