Science.gov

Sample records for growth factor ii

  1. Keratinocyte growth factor and hepatocyte growth factor/scatter factor are heparin-binding growth factors for alveolar type II cells in fibroblast-conditioned medium.

    PubMed Central

    Panos, R J; Rubin, J S; Csaky, K G; Aaronson, S A; Mason, R J

    1993-01-01

    Epithelial-mesenchymal interactions mediate aspects of normal lung growth and development and are important in the restoration of normal alveolar architecture after lung injury. To determine if fibroblasts are a source of soluble growth factors for alveolar type II cells, we investigated the effect of fibroblast-conditioned medium (CM) on alveolar type II cell DNA synthesis. Serum-free CM from confluent adult human lung fibroblasts was concentrated fivefold by lyophilization. Type II cells were isolated from adult rats by elastase dissociation and incubated with [3H]thymidine and varying dilutions of concentrated CM and serum from day 1 to 3 of culture. Stimulation of type II cell DNA synthesis by fibroblast-CM was maximal after 48 h of conditioning and required the presence of serum. The activity of the CM was eliminated by boiling and by treatment with trypsin, pepsin, or dithiothreitol and was additive with saturating concentrations of acidic fibroblast growth factor, epidermal growth factor, and insulin. The growth factor activity bound to heparin-Sepharose and was eluted with 0.6 and 1.0 M NaCl. Neutralizing antibody studies demonstrated that the primary mitogens isolated in the 0.6 and 1.0 M NaCl fractions were keratinocyte growth factor (KGF, fibroblast growth factor 7) and hepatocyte growth factor/scatter factor (HGF/SF), respectively. HGF/SF was demonstrated in the crude CM and KGF was detected in the 0.6 M NaCl eluent by immunoblotting. Northern blot analysis confirmed that the lung fibroblasts expressed both KGF and HGF/SF transcripts. Human recombinant KGF and HGF/SF induced a concentration- and serum-dependent increase in rat alveolar type II cell DNA synthesis. We conclude that adult human lung fibroblasts produce at least two soluble heparin-binding growth factors, KGF and HGF/SF, which promote DNA synthesis and proliferation of rat alveolar type II cells in primary culture. KGF and HGF/SF may be important stimuli for alveolar type II cell

  2. Insulin-like growth factor II mediates epidermal growth factor-induced mitogenesis in cervical cancer cells.

    PubMed Central

    Steller, M A; Delgado, C H; Zou, Z

    1995-01-01

    There is increasing evidence that activation of the insulin-like growth factor I (IGF-I) receptor plays a major role in the control of cellular proliferation of many cell types. We studied the mitogenic effects of IGF-I, IGF-II, and epidermal growth factor (EGF) on growth-arrested HT-3 cells, a human cervical cancer cell line. All three growth factors promoted dose-dependent increases in cell proliferation. In untransformed cells, EGF usually requires stimulation by a "progression" factor such as IGF-I, IGF-II, or insulin (in supraphysiologic concentrations) in order to exert a mitogenic effect. Accordingly, we investigated whether an autocrine pathway involving IGF-I or IGF-II participated in the EGF-induced mitogenesis of HT-3 cells. With the RNase protection assay, IGF-I mRNA was not detected. However, IGF-II mRNA increased in a time-dependent manner following EGF stimulation. The EGF-induced mitogenesis was abrogated in a dose-dependent manner by IGF-binding protein 5 (IGFBP-5), which binds to IGF-II and neutralizes it. An antisense oligonucleotide to IGF-II also inhibited the proliferative response to EGF. In addition, prolonged, but not short-term, stimulation with EGF resulted in autophosphorylation of the IGF-I receptor, and coincubations with both EGF and IGFBP-5 attenuated this effect. These data demonstrate that autocrine secretion of IGF-II in HT-3 cervical cancer cells can participate in EGF-induced mitogenesis and suggest that autocrine signals involving the IGF-I receptor occur "downstream" of competence growth factor receptors such as the EGF receptor. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8618825

  3. Transforming growth factor receptor type II (ec-TβR II) behaves as a halophile.

    PubMed

    Saini, Komal; Khan, M Ashhar I; Chakrapani, Sumit; Deep, Shashank

    2015-01-01

    The members of transforming growth factor β family (TGF-β) are multifunctional proteins but their main role is to control cell proliferation and differentiation. Polypeptides of TGF-β family function by binding to two related, functionally distinct transmembrane receptor kinases, first to the type II (TβR II) followed by type I receptor (TβR I). The paper describes, in details, the stability of wt-ec-TβR II under different conditions. The stability of wt-ec-TβR II was observed at different pH and salt concentration using fluorescence spectroscopy. Stability of ec-TβR II decreases with decrease in pH. Interestingly, the addition of salt increases the stability of the TβRII at pH 5.0 as observed for halophiles. Computational analysis using DELPHI suggests that this is probably due to the decrease in repulsion between negatively charged residues at surface on the addition of salt. This is further confirmed by the change in the stability of receptor on mutation of some of the residues (D32A) at surface.

  4. Insulin-like growth factor-II: its role in metabolic and endocrine disease.

    PubMed

    Livingstone, Callum; Borai, Anwar

    2014-06-01

    Insulin-like growth factor-II (IGF-II) is a widely expressed 7·5 kDa mitogenic peptide hormone. Although it is abundant in serum, understanding of its physiological role is limited compared with that of IGF-I. IGF-II regulates foetal development and differentiation, but its role in adults is less well understood. Evidence suggests roles in a number of tissues including skeletal muscle, adipose tissue, bone and ovary. Altered IGF-II expression has been observed in metabolic conditions, notably obesity, diabetes and the polycystic ovary syndrome. This article summarizes what is known about the actions of IGF-II and its dysregulation in metabolic and endocrine diseases. The possible causes and consequences of dysregulation are discussed along with the implications for diagnostic tests and future research.

  5. Insulin-like growth factor-II regulates bone sialoprotein gene transcription.

    PubMed

    Choe, Jin; Sasaki, Yoko; Zhou, Liming; Takai, Hideki; Nakayama, Yohei; Ogata, Yorimasa

    2016-09-01

    Insulin-like growth factor-I and -II (IGF-I and IGF-II) have been found in bone extracts of several different species, and IGF-II is the most abundant growth factor stored in bone. Bone sialoprotein (BSP) is a noncollagenous extracellular matrix glycoprotein associated with mineralized connective tissues. In this study, we have investigated the regulation of BSP transcription by IGF-II in rat osteoblast-like ROS17/2.8 cells. IGF-II (50 ng/ml) increased BSP mRNA and protein levels after 6-h stimulation, and enhanced luciferase activities of the constructs pLUC3 (-116 to +60), pLUC4 (-425 to +60), pLUC5 (-801 to +60) and pLUC6 (-938 to +60). Effects of IGF-II were inhibited by tyrosine kinase, extracellular signal-regulated kinase1/2 and phosphatidylinositol 3-kinase inhibitors, and abrogated by 2-bp mutations in cAMP response element (CRE), FGF2 response element (FRE) and homeodomain protein-binding site (HOX). The results of gel shift assays showed that nuclear proteins binding to CRE, FRE and HOX sites were increased by IGF-II (50 ng/ml) at 3 and 6 h. CREB1, phospho-CREB1, c-Fos and c-Jun antibodies disrupted the formation of the CRE-protein complexes. Dlx5 and Runx2 antibodies disrupted the FRE- and HOX-protein complex formations. These studies therefore demonstrated that IGF-II increased BSP transcription by targeting CRE, FRE and HOX elements in the proximal promoter of the rat BSP gene. Moreover, phospho-CREB1, c-Fos, c-Jun, Dlx5 and Runx2 transcription factors appear to be key regulators of IGF-II effects on BSP transcription.

  6. Acetylation of RNA Polymerase II Regulates Growth-Factor-Induced Gene Transcription in Mammalian Cells

    PubMed Central

    Schröder, Sebastian; Herker, Eva; Itzen, Friederike; He, Daniel; Thomas, Sean; Gilchrist, Daniel A.; Kaehlcke, Katrin; Cho, Sungyoo; Pollard, Katherine S.; Capra, John A.; Schnölzer, Martina; Cole, Philip A.; Geyer, Matthias; Bruneau, Benoit G.; Adelman, Karen; Ott, Melanie

    2014-01-01

    SUMMARY Lysine acetylation regulates transcription by targeting histones and nonhistone proteins. Here we report that the central regulator of transcription, RNA polymerase II, is subject to acetylation in mammalian cells. Acetylation occurs at eight lysines within the C-terminal domain (CTD) of the largest polymerase subunit and is mediated by p300/KAT3B. CTD acetylation is specifically enriched downstream of the transcription start sites of polymerase-occupied genes genome-wide, indicating a role in early stages of transcription initiation or elongation. Mutation of lysines or p300 inhibitor treatment causes the loss of epidermal growth-factor-induced expression of c-Fos and Egr2, immediate-early genes with promoter-proximally paused polymerases, but does not affect expression or polymerase occupancy at housekeeping genes. Our studies identify acetylation as a new modification of the mammalian RNA polymerase II required for the induction of growth factor response genes. PMID:24207025

  7. Insulin-like growth factor-II and insulin-like growth factor-binding proteins in bovine cystic ovarian disease.

    PubMed

    Rey, F; Rodríguez, F M; Salvetti, N R; Palomar, M M; Barbeito, C G; Alfaro, N S; Ortega, H H

    2010-01-01

    Cystic ovarian disease (COD) is one of the most common reproductive disorders of cattle and is considered to have multifactorial aetiology. An accepted hypothesis involves neuroendocrinological dysfunction of the hypothalamic-pituitary-gonadal axis; however, the role of growth factors in COD has not been extensively investigated. The present study examines the potential role of members of the insulin-like growth factor (IGF) family in COD. Expression of genes encoding IGF-II and insulin-like growth factor-binding proteins (IGFBPs) was examined and the distribution of IGF-II within the follicular wall was assessed immunohistochemically. Finally, the concentration of IGF-II protein was determined in follicular fluid. There was increased IGF-II mRNA in the wall of cystic follicles, mainly associated with granulosa cells. Additionally, there was significantly more IGF-II protein in granulosa and theca cells in cystic follicles, but no change in the concentration of IGF-II in follicular fluid. Total IGFBPs, assessed by western blotting, were similar in different structures. However, by discriminating each IGFBP a decrease was detected in IGFBP-2 expression in cystic follicles that may be related to the observed higher expression of IGF-II. In summary, the present study provides evidence to suggest that COD in cattle is associated with modifications in the IGF-II system.

  8. Insulin and insulin like growth factor II endocytosis and signaling via insulin receptor B

    PubMed Central

    2013-01-01

    Background Insulin and insulin-like growth factors (IGFs) act on tetrameric tyrosine kinase receptors controlling essential functions including growth, metabolism, reproduction and longevity. The insulin receptor (IR) binds insulin and IGFs with different affinities triggering different cell responses. Results We showed that IGF-II induces cell proliferation and gene transcription when IR-B is over-expressed. We combined biotinylated ligands with streptavidin conjugated quantum dots and visible fluorescent proteins to visualize the binding of IGF-II and insulin to IR-B and their ensuing internalization. By confocal microscopy and flow cytometry in living cells, we studied the internalization kinetic through the IR-B of both IGF-II, known to elicit proliferative responses, and insulin, a regulator of metabolism. Conclusions IGF-II promotes a faster internalization of IR-B than insulin. We propose that IGF-II differentially activates mitogenic responses through endosomes, while insulin-activated IR-B remains at the plasma membrane. This fact could facilitate the interaction with key effector molecules involved in metabolism regulation. PMID:23497114

  9. Internephron heterogeneity of growth factors and sclerosis--modulation of platelet-derived growth factor by angiotensin II.

    PubMed

    Tanaka, R; Sugihara, K; Tatematsu, A; Fogo, A

    1995-01-01

    We studied the early phase after 5/6 nephrectomy in Munich-Wistar rats to determine whether treatment with angiotensin II receptor antagonist (AIIRA) modulates the expression of platelet-derived growth factor (PDGF) mRNA and its protein among the glomeruli which are undergoing progressive hypertrophy and sclerosis. Average PDGF-B immunohistochemistry staining score (IHS, 0 to 3 scale) in glomeruli and PDGF-B chain mRNA from kidneys were both increased in 5/6 nephrectomy rats (N = 6) versus age-matched normal (N = 5) at week 4, when glomeruli were at early stages of sclerosis (IHS, 0.81 +/- 0.12 vs. 0.19 +/- 0.05; sclerosis index, S.I., 0 to 4 scale: 0.41 +/- 0.04 vs. 0.05 +/- 0.01, both P < 0.05). AIIRA (80 mg/liter drinking water, N = 6) started at time of 5/6 nephrectomy prevented the development of sclerosis (S.I. 0.08 +/- 0.03) and decreased PDGF-B protein (IHS 0.22 +/- 0.08, both P = NS vs. normal), and PDGF-B chain mRNA. In contrast, triple therapy (TRX; hydralazine, reserpine and hydrochlorothiazide, N = 5) in doses which controlled systemic blood pressure resulted in intermediate level of glomerulosclerosis at this early time point of progressive injury. Concurrently, TRX failed to affect the expression of PDGF-B protein (IHS 0.86 +/- 0.19) or its mRNA expression. The PDGF-B distribution was not uniform amongst the glomeruli with varying stages of sclerosis. There was a strong correlation in individual glomeruli of increased PDGF-B staining with early sclerotic changes (P < 0.01), with the disappearance of this correlation in glomeruli with advanced sclerosis.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Isolation of the human insulin-like growth factor genes: insulin-like growth factor II and insulin genes are contiguous.

    PubMed Central

    Bell, G I; Gerhard, D S; Fong, N M; Sanchez-Pescador, R; Rall, L B

    1985-01-01

    Overlapping recombinant clones that encompass the insulin-like growth factor (IGF) I and II genes have been isolated from a human genomic DNA library. Each gene is present once per haploid genome; the IGF-I gene spans greater than 35 kilobase pairs (kbp) and the IGF-II gene is at least 15 kbp. The exon-intron organization of these genes is similar, each having four exons, which is one more than the related insulin gene. Comparison of the restriction endonuclease cleavage maps of the IGF-II and insulin genes, including their flanking regions and hybridization with an IGF-II cDNA probe, revealed that they are adjacent to one another. The IGF-II and insulin genes have the same polarity and are separated by 12.6 kbp of intergenic DNA that includes a dispersed middle repetitive Alu sequence. The order of the genes is 5'-insulin-IGF-II-3'. Images PMID:3901002

  11. Mitogenic properties of insulin-like growth factors I and II, insulin-like growth factor binding protein-3 and epidermal growth factor on human breast stromal cells in primary culture.

    PubMed

    Strange, Karen S; Wilkinson, Darcy; Edin, Glenn; Emerman, Joanne T

    2004-03-01

    Insulin-like growth factors I and II (IGF-I and IGF-II) are growth factors implicated in both normal mammary gland development and breast cancer. We have previously reported on the effects of components of the IGF system on breast epithelial cells. Since data suggests that stromal-epithelial interactions play a crucial role in breast cancer, we have now investigated the mitogenic properties of IGF-I, IGF-II, insulin-like growth factor binding protein-3 (IGFBP-3) and epidermal growth factor (EGF) on human breast stromal cells in primary culture. We show that, under serum-free conditions, stromal cells are stimulated to grow in response to IGF-I and IGF-II in a dose-dependent manner. IGF-I and EGF, a potent stimulator of human breast epithelial cell growth in primary culture and also associated with breast cancer, appear to stimulate stromal cell growth in a synergistic manner. IGFBP-3 does not inhibit the stimulation of growth by IGF-I, or IGF-I plus EGF. However, IGFBP-3 does inhibit the stimulation of growth by IGF-II. In contrast to our previous results with human breast epithelial cells, IGFBP-3 does not have an IGF-independent inhibitory effect on stromal cell growth. This study is the first to address the effects of IGF-I, IGF-II and IGFBP-3 alone and in combination with EGF on human breast stromal cell growth in primary culture. Characterizing the role of the IGF system in both normal breast epithelial cells and stromal cells will aid in our understanding of the mechanisms behind the role of the IGF system in breast cancer.

  12. The types II and III transforming growth factor-beta receptors form homo-oligomers

    PubMed Central

    1994-01-01

    Affinity-labeling experiments have detected hetero-oligomers of the types I, II, and III transforming growth factor beta (TGF-beta) receptors which mediate intracellular signaling by TGF-beta, but the oligomeric state of the individual receptor types remains unknown. Here we use two types of experiments to show that a major portion of the receptor types II and III forms homo-oligomers both in the absence and presence of TGF-beta. Both experiments used COS-7 cells co-transfected with combinations of these receptors carrying different epitope tags at their extracellular termini. In immunoprecipitation experiments, radiolabeled TGF-beta was bound and cross-linked to cells co-expressing two differently tagged type II receptors. Sequential immunoprecipitations using anti-epitope monoclonal antibodies showed that type II TGF-beta receptors form homo-oligomers. In cells co- expressing epitope-tagged types II and III receptors, a low level of co- precipitation of the ligand-labeled receptors was observed, indicating that some hetero-oligomers of the types II and III receptors exist in the presence of ligand. Antibody-mediated cross-linking studies based on double-labeling immunofluorescence explored co-patching of the receptors at the cell surface on live cells. In cells co-expressing two differently tagged type II receptors or two differently tagged type III receptors, forcing one receptor into micropatches by IgG induced co- patching of the receptor carrying the other tag, labeled by noncross- linking monovalent Fab'. These studies showed that homo-oligomers of the types II and III receptors exist on the cell surface in the absence or presence of TGF-beta 1 or -beta 2. In cells co-expressing types II and III receptors, the amount of heterocomplexes at the cell surface was too low to be detected in the immunofluorescence co-patching experiments, confirming that hetero-oligomers of the types II and III receptors are minor and probably transient species. PMID:8027173

  13. Mitogenic properties of insulin-like growth factors I and II, insulin-like growth factor binding protein-3 and epidermal growth factor on human breast epithelial cells in primary culture.

    PubMed

    Strange, Karen S; Wilkinson, Darcy; Emerman, Joanne T

    2002-10-01

    Insulin-like growth factor-I (IGF-I) and insulin-like growth factor-II (IGF-II) are growth factors implicated in mammary gland development and are believed to be involved in breast cancer. However, the interactions between components of the IGF system and breast epithelial cells, which give rise to breast cancer, are not well understood. We have investigated the mitogenic properties of IGF-I, IGF-II, IGF binding protein-3 (IGFBP-3) and epidermal growth factor (EGF) on human breast epithelial cells (HBEC) in primary culture. We show that, under serum-free conditions, HBEC are stimulated to grow in response to IGF-I and IGF-II in a dose-dependent manner. IGF-I and EGF, a potent stimulator of HBEC growth in primary culture and also associated with breast cancer, appear to stimulate HBEC in a synergistic manner. IGFBP-3 inhibits the stimulation by IGF-I, IGF-II and IGF-I plus EGE In addition, it appears that IGFBP-3 has an inhibitory effect on HBEC growth that is IGF-independent. This study is the first to address the effects of IGF-I, IGF-II and IGFBP-3 alone and in combination with EGF on HBEC growth in primary culture. Characterizing the role of the IGF system in normal breast biology is significant because the system has been implicated in breast cancer and a number of the anti-estrogens used in treatment are believed to function through the IGF system.

  14. The effect of Mn(II) on the autoinducing growth inhibition factor in Deinococcus radiodurans.

    PubMed

    Lee, Hui-Yu; Wong, Tit-Yee; Kuo, Jimmy; Liu, Jong-Kang

    2014-10-01

    Decreases in cell division at the stationary phase in bacterial cultures are often due to the depletion of nutrients and/or accumulation of toxic waste products. Yet, during the stationary phase, the highly radiation-resistant bacterium Deinococcus radiodurans undergoes new rounds of cell division when Mn(II) is added to the medium in a phenomenon known as manganese-induced cell division (MnCD). When cells were cultured in medium without Mn(II)-enrichment, a heat-resistant, proteinase K-resistant factor (or factors) with a molecular mass less than 10 kD accumulated in the spent medium. Inclusion of the concentrated spent medium in fresh medium could inhibit the growth of D. radiodurans significantly, and the degree of inhibition was dose dependent. However, the relative stimulatory effect of MnCD was also dose dependent-the higher the inhibition, the stronger was the MnCD response. Previous studies have shown that nutrients were not limiting and deinococcal cells would continue metabolizing its nutrients at stationary phase. Cells became more sensitive to radiation when nutrients in the medium eventually became depleted. We speculated that D. radiodurans might produce this factor in the medium to control its population density. The reduction in cell population would conserve the nutrients that in turn might enhance the survival of the species.

  15. Somatomedin-C/insulin-like growth factor-I and Insulin-like growth factor-II mRNAs in rate fetal and adult tissues

    SciTech Connect

    Lund, P.K.; Moats-Staats, B.M.; Hynes, M.A.; Simmons, J.G.; Jansen, M.; D'ercole, A.J.; Van Wyk, J.J.

    1986-11-05

    Somatomedin-C or insulin-like growth factor I (Sm-C/IGF-I) and insulin-like growth factor II (IGF-II) have been implicated in the regulation of fetal growth and development. In the present study /sup 32/P-labeled complementary DNA probes encoding human and mouse Sm-C/IGF-I and human IGF-II were used in Northern blot hybridizations to analyze rat Sm-C/IGF-I and IGF-II mRNAs in poly(A/sup +/) RNAs from intestine, liver, lung, and brain of adult rats and fetal rats between day 14 and 17 of gestation. In fetal rats, all four tissues contained a major mRNA of 1.7 kilobase (kb) that hybridized with the human Sm-C/IGF-I cDNA and mRNAs of 7.5, 4.7, 1.7, and 1.2 kb that hybridized with the mouse Sm-C/IGF-I cDNA. Adult rat intestine, liver, and lung also contained these mRNAs but Sm-C/IGF-I mRNAs were not detected in adult rat brain. These findings provide direct support for prior observations that multiple tissues in the fetus synthesize immunoreactive Sm-C/IGF-I and imply a role for Sm-C/IGF-I in fetal development as well as postnatally. Multiple IGF-II mRNAs of estimated sizes 4.7, 3.9, 2.2, 1.75, and 1.2 kb were observed in fetal rat intestine, liver, lung, and brain. The 4.7- and 3.9-kb mRNAs were the major hybridizing IGF-II mRNAs in all fetal tissues. Higher abundance of IGF-II mRNAs in rat fetal tissues compared with adult tissues supports prior hypotheses, based on serum IGF-II concentrations, that IGF-II is predominantly a fetal somatomedin. IGF-II mRNAs are present, however, in some poly(A/sup +/) RNAs from adult rat tissues. The brain was the only tissue in the adult rat where the 4.7- and 3.9-kb IGF-II mRNAs were consistently detected. These findings suggest that a role for IGF-II in the adult rat, particularly in the central nervous system, cannot be excluded.

  16. Growth factors

    SciTech Connect

    Golde, D.W.; Herschman, H.R.; Lusis, A.J.; Groopman, J.E.

    1980-05-01

    Humoral regulation of somatic and hematopoietic cell growth has been intensely investigated during the past decade. Growth hormone is unique because it regulates the size of the person within the constraints of the genetic program. The somatomedins and insulin growth factors are low molecular weight polypeptides believed to mediate some functions of growth hormone. Epithelial growth factor and nerve growth factor are well-characterized polypeptides that influence the growth and differentiation of epithelial and neural tissues and interact with specific cell surface receptors. The hematopoietins are a family of polypeptide hormones that specifically regulate the proliferation and differentiation of stem cells giving rise to erythrocytes, granulocytes, monocytes, megakaryocytes, and B and T lymphocytes. Platelet-derived growth factor modulates the proliferation of fibroblasts in vitro and may have a role in the development of atherosclerosis and myelofibrosis. New knowledge on the biochemistry and physiology of growth factors will probably have a substantial impact on our understanding of human diseases involving abnormal cell growth.

  17. Insulin-like growth factors I and II are produced in the metanephros and are required for growth and development in vitro.

    PubMed

    Rogers, S A; Ryan, G; Hammerman, M R

    1991-06-01

    The role(s) of one family of polypeptide growth factors in a developing organ system was examined. Renal anlagen (metanephroi) were surgically removed from 13-d-old rat embryos and grown in organ culture for up to 6 d. Over this period of time when placed in serum-free defined media, the metanephroi increased in size and morphologic complexity. Messenger RNAs for both insulin-like growth factors (IGFs), IGF I and IGF II, were present in the metanephroi. Immunoreactive IGF I and IGF II were produced by the renal anlagen and released into culture media. Levels were relatively constant during the 6 d in culture and averaged 3.5 X 10(-9) M IGF I and 8.3 X 10(-9) M IGF II in media removed from metanephroi after contact for 24 h. IGF binding protein activity was not detected in culture media. Growth and development of metanephroi in vitro was prevented by the addition of anti-IGF I or anti-IGF II antibodies to organ cultures. IGF II produced by metanephroi was active in an IGF II biological assay system and addition of anti-IGF II receptor antibodies to organ cultures prevented growth and development, consistent with the action of IGF II in metanephroi being mediated via the IGF II receptor. The data demonstrate production of both IGF I and IGF II by developing rat metanephroi in organ culture. Each of these peptides is necessary for growth and development of the renal anlage to take place in vitro. Our findings suggest that both IGF I and IGF II are produced within the developing metanephros in vivo and promote renal organogenesis.

  18. Vertebral Artery Aneurysm Mimicking as Left Subclavian Artery Aneurysm in a Patient with Transforming Growth Factor Beta Receptor II Mutation.

    PubMed

    Afifi, Rana O; Dhillon, Baltej Singh; Sandhu, Harleen K; Charlton-Ouw, Kristofer M; Estrera, Anthony L; Azizzadeh, Ali

    2015-10-01

    We report successful endovascular repair of a left vertebral artery aneurysm in a patient with transforming growth factor beta receptor II mutation. The patient was initially diagnosed with a left subclavian artery aneurysm on computed tomography angiography. The patient consented to publication of this report.

  19. EFFECT OF GROWTH FACTOR-FIBRONECTIN MATRIX INTERACTION ON RAT TYPE II CELL ADHESION AND DNA SYTHESIS

    EPA Science Inventory

    ABSTRACT

    Type II cells attach, migrate and proliferate on a provisional fibronectin-rich matrix during alveolar wall repair after lung injury. The combination of cell-substratum interactions via integrin receptors and exposure to local growth factors are likely to initiat...

  20. Probing Receptor Specificity by Sampling the Conformational Space of the Insulin-like Growth Factor II C-domain*

    PubMed Central

    Hexnerová, Rozálie; Křížková, Květoslava; Fábry, Milan; Sieglová, Irena; Kedrová, Kateřina; Collinsová, Michaela; Ullrichová, Pavlína; Srb, Pavel; Williams, Christopher; Crump, Matthew P.; Tošner, Zdeněk; Jiráček, Jiří; Veverka, Václav; Žáková, Lenka

    2016-01-01

    Insulin and insulin-like growth factors I and II are closely related protein hormones. Their distinct evolution has resulted in different yet overlapping biological functions with insulin becoming a key regulator of metabolism, whereas insulin-like growth factors (IGF)-I/II are major growth factors. Insulin and IGFs cross-bind with different affinities to closely related insulin receptor isoforms A and B (IR-A and IR-B) and insulin-like growth factor type I receptor (IGF-1R). Identification of structural determinants in IGFs and insulin that trigger their specific signaling pathways is of increasing importance in designing receptor-specific analogs with potential therapeutic applications. Here, we developed a straightforward protocol for production of recombinant IGF-II and prepared six IGF-II analogs with IGF-I-like mutations. All modified molecules exhibit significantly reduced affinity toward IR-A, particularly the analogs with a Pro-Gln insertion in the C-domain. Moreover, one of the analogs has enhanced binding affinity for IGF-1R due to a synergistic effect of the Pro-Gln insertion and S29N point mutation. Consequently, this analog has almost a 10-fold higher IGF-1R/IR-A binding specificity in comparison with native IGF-II. The established IGF-II purification protocol allowed for cost-effective isotope labeling required for a detailed NMR structural characterization of IGF-II analogs that revealed a link between the altered binding behavior of selected analogs and conformational rearrangement of their C-domains. PMID:27510031

  1. Induction of steroid sulfatase expression in PC-3 human prostate cancer cells by insulin-like growth factor II.

    PubMed

    Sung, Chul-Hoon; Im, Hee-Jung; Park, Nahee; Kwon, Yeojung; Shin, Sangyun; Ye, Dong-Jin; Cho, Nam-Hyeon; Park, Young-Shin; Choi, Hyung-Kyoon; Kim, Donghak; Chun, Young-Jin

    2013-11-25

    Human steroid sulfatase (STS) plays an important role in regulating the formation of biologically active estrogens and may be a promising target for treating estrogen-mediated carcinogenesis. The molecular mechanism of STS gene expression, however, is still not clear. Growth factors are known to increase STS activity but the changes in STS expression have not been completely understood. To determine whether insulin-like growth factor (IGF)-II can induce STS gene expression, the effects of IGF-II on STS expression were studied in PC-3 human prostate cancer cells. RT-PCR and Western blot analysis showed that IGF-II treatment significantly increased the expression of STS mRNA and protein in concentration- and time-dependent manners. To understand the signaling pathway by which IGF-II induces STS gene expression, the effects of specific PI3-kinase/Akt and NF-κB inhibitors were determined. When the cells were treated with IGF-II and PI3-kinase/Akt inhibitors, such as LY294002, wortmannin, or Akt inhibitor IV, STS expression induced by IGF-II was significantly blocked. Moreover, we found that NF-κB inhibitors, such as MG-132, bortezomib, Bay 11-7082 or Nemo binding domain (NBD) binding peptide, also strongly prevented IGF-II from inducing STS gene expression. We assessed whether IGF-II activates STS promoter activity using transient transfection with a luciferase reporter. IGF-II significantly stimulated STS reporter activity. Furthermore, IGF-II induced expression of 17β-hydroxysteroid dehydrogenase (HSD) 1 and 3, whereas it reduced estrone sulfotransferase (EST) gene expression, causing enhanced estrone and β-estradiol production. Taken together, these results strongly suggest that IGF-II induces STS expression via a PI3-kinase/Akt-NF-κB signaling pathway in PC-3 cells and may induce estrogen production and estrogen-mediated carcinogenesis. PMID:24055520

  2. Induction of steroid sulfatase expression in PC-3 human prostate cancer cells by insulin-like growth factor II.

    PubMed

    Sung, Chul-Hoon; Im, Hee-Jung; Park, Nahee; Kwon, Yeojung; Shin, Sangyun; Ye, Dong-Jin; Cho, Nam-Hyeon; Park, Young-Shin; Choi, Hyung-Kyoon; Kim, Donghak; Chun, Young-Jin

    2013-11-25

    Human steroid sulfatase (STS) plays an important role in regulating the formation of biologically active estrogens and may be a promising target for treating estrogen-mediated carcinogenesis. The molecular mechanism of STS gene expression, however, is still not clear. Growth factors are known to increase STS activity but the changes in STS expression have not been completely understood. To determine whether insulin-like growth factor (IGF)-II can induce STS gene expression, the effects of IGF-II on STS expression were studied in PC-3 human prostate cancer cells. RT-PCR and Western blot analysis showed that IGF-II treatment significantly increased the expression of STS mRNA and protein in concentration- and time-dependent manners. To understand the signaling pathway by which IGF-II induces STS gene expression, the effects of specific PI3-kinase/Akt and NF-κB inhibitors were determined. When the cells were treated with IGF-II and PI3-kinase/Akt inhibitors, such as LY294002, wortmannin, or Akt inhibitor IV, STS expression induced by IGF-II was significantly blocked. Moreover, we found that NF-κB inhibitors, such as MG-132, bortezomib, Bay 11-7082 or Nemo binding domain (NBD) binding peptide, also strongly prevented IGF-II from inducing STS gene expression. We assessed whether IGF-II activates STS promoter activity using transient transfection with a luciferase reporter. IGF-II significantly stimulated STS reporter activity. Furthermore, IGF-II induced expression of 17β-hydroxysteroid dehydrogenase (HSD) 1 and 3, whereas it reduced estrone sulfotransferase (EST) gene expression, causing enhanced estrone and β-estradiol production. Taken together, these results strongly suggest that IGF-II induces STS expression via a PI3-kinase/Akt-NF-κB signaling pathway in PC-3 cells and may induce estrogen production and estrogen-mediated carcinogenesis.

  3. Stimulation of glucose uptake by insulin-like growth factor II in human muscle is not mediated by the insulin-like growth factor II/mannose 6-phosphate receptor.

    PubMed Central

    Burguera, B; Elton, C W; Caro, J F; Tapscott, E B; Pories, W J; Dimarchi, R; Sakano, K; Dohm, G L

    1994-01-01

    Although the growth-promoting effects of insulin-like growth factor II (IGF-II) have been intensively studied, the acute actions of this hormone on glucose metabolism have been less well evaluated, especially in skeletal muscle of humans. We and other groups have shown that IGFs reduce glycaemic levels in humans and stimulate glucose uptake in rat muscle. The purpose of the present study was to evaluate the effect of IGF-II on glucose transport in muscle of normal and obese patients with and without non-insulin-dependent diabetes mellitus (NIDDM), as well as to identify the receptor responsible for this action. 2-Deoxyglucose transport was determined in vitro using a muscle-fibre strip preparation. IGF-II were investigated in biopsy material of rectus abdominus muscle taken from lean and obese patients and obese patients with NIDDM at the time of surgery. In the lean group, IGF-II (100 nM) stimulated glucose transport 2.1-fold, which was slightly less than stimulation by insulin (2.8-fold) at the same concentration. Binding of IGF-II was approx. 25% of that of insulin at 1 nM concentrations of both hormones. Obesity with or without NIDDM significantly reduced IGF-II-stimulated glucose uptake compared with the lean group. In order to explore which receptor mediated the IGF-II effect, we compared glucose uptake induced by IGF-II and two IGF-II analogues: [Leu27]IGF-II, with high affinity for the IGF-II/Man 6-P receptor but markedly reduced affinity for the IGF-I and insulin receptors, and [Arg54,Arg55]IGF-II was similar to that of IGF-II, whereas [Leu27]IGF-II had a very diminished effect. Results show that IGF-II is capable of stimulating muscle glucose uptake in lean but not in obese subjects and this effect seems not to be mediated via an IGF-II/Man 6-P receptor. Images Figure 2 PMID:8010960

  4. Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-beta.

    PubMed Central

    Wolf, G; Mueller, E; Stahl, R A; Ziyadeh, F N

    1993-01-01

    Previous studies by our group have demonstrated that angiotensin II (ANG II), as a single factor in serum-free medium, induces cellular hypertrophy of a cultured murine proximal tubular cell line (MCT). The present study was performed to test the hypothesis that this growth effect was mediated by activation of endogenous transforming growth factor-beta (TGF-beta). Exogenous TGF-beta 1 (1 ng/ml) mimicked the growth effects observed with 10(-8) M ANG II (inhibition of DNA synthesis and induction of cellular hypertrophy). A neutralizing anti-TGF-beta antibody attenuated the ANG II-induced increase in de novo protein and total RNA synthesis as well as total protein content. This antibody also abolished the ANG II-mediated inhibition of [3H]thymidine incorporation into quiescent MCT cells. Control IgG or an unrelated antibody had no effect. A bioassay for TGF-beta using mink lung epithelial cells revealed that MCT cells treated with ANG II released active TGF-beta into the cell culture supernatant. Northern blot analysis and semi-quantitative cDNA amplification demonstrated increases in steady-state levels for TGF-beta 1 mRNA after ANG II stimulation of MCT cells, but not in a syngeneic murine mesangial cell line. Our data indicate that the ANG II-induced hypertrophy in MCT cells is mediated by synthesis and activation of endogenous TGF-beta. It is intriguing to speculate that TGF-beta may play a role in the early tubular cell hypertrophy and the subsequent interstitial scarring observed in several models of chronic renal injury that are characterized by increased activity of intrarenal ANG II. Images PMID:7690779

  5. Insulin-like Growth Factor-II (IGF-II) and IGF-II Analogs with Enhanced Insulin Receptor-a Binding Affinity Promote Neural Stem Cell Expansion*

    PubMed Central

    Ziegler, Amber N.; Chidambaram, Shravanthi; Forbes, Briony E.; Wood, Teresa L.; Levison, Steven W.

    2014-01-01

    The objective of this study was to employ genetically engineered IGF-II analogs to establish which receptor(s) mediate the stemness promoting actions of IGF-II on mouse subventricular zone neural precursors. Neural precursors from the subventricular zone were propagated in vitro in culture medium supplemented with IGF-II analogs. Cell growth and identity were analyzed using sphere generation and further analyzed by flow cytometry. F19A, an analog of IGF-II that does not bind the IGF-2R, stimulated an increase in the proportion of neural stem cells (NSCs) while decreasing the proportion of the later stage progenitors at a lower concentration than IGF-II. V43M, which binds to the IGF-2R with high affinity but which has low binding affinity to the IGF-1R and to the A isoform of the insulin receptor (IR-A) failed to promote NSC growth. The positive effects of F19A on NSC growth were unaltered by the addition of a functional blocking antibody to the IGF-1R. Altogether, these data lead to the conclusion that IGF-II promotes stemness of NSCs via the IR-A and not through activation of either the IGF-1R or the IGF-2R. PMID:24398690

  6. Role of epidermal growth factor receptor and endoplasmic reticulum stress in vascular remodeling induced by angiotensin II.

    PubMed

    Takayanagi, Takehiko; Kawai, Tatsuo; Forrester, Steven J; Obama, Takashi; Tsuji, Toshiyuki; Fukuda, Yamato; Elliott, Katherine J; Tilley, Douglas G; Davisson, Robin L; Park, Joon-Young; Eguchi, Satoru

    2015-06-01

    The mechanisms by which angiotensin II (AngII) elevates blood pressure and enhances end-organ damage seem to be distinct. However, the signal transduction cascade by which AngII specifically mediates vascular remodeling such as medial hypertrophy and perivascular fibrosis remains incomplete. We have previously shown that AngII-induced epidermal growth factor receptor (EGFR) transactivation is mediated by disintegrin and metalloproteinase domain 17 (ADAM17), and that this signaling is required for vascular smooth muscle cell hypertrophy but not for contractile signaling in response to AngII. Recent studies have implicated endoplasmic reticulum (ER) stress in hypertension. Interestingly, EGFR is capable of inducing ER stress. The aim of this study was to test the hypothesis that activation of EGFR and ER stress are critical components required for vascular remodeling but not hypertension induced by AngII. Mice were infused with AngII for 2 weeks with or without treatment of EGFR inhibitor, erlotinib, or ER chaperone, 4-phenylbutyrate. AngII infusion induced vascular medial hypertrophy in the heart, kidney and aorta, and perivascular fibrosis in heart and kidney, cardiac hypertrophy, and hypertension. Treatment with erlotinib as well as 4-phenylbutyrate attenuated vascular remodeling and cardiac hypertrophy but not hypertension. In addition, AngII infusion enhanced ADAM17 expression, EGFR activation, and ER/oxidative stress in the vasculature, which were diminished in both erlotinib-treated and 4-phenylbutyrate-treated mice. ADAM17 induction and EGFR activation by AngII in vascular cells were also prevented by inhibition of EGFR or ER stress. In conclusion, AngII induces vascular remodeling by EGFR activation and ER stress via a signaling mechanism involving ADAM17 induction independent of hypertension.

  7. Expression of transforming growth factor β receptor II in mesenchymal stem cells from systemic sclerosis patients

    PubMed Central

    Vanneaux, Valérie; Farge-Bancel, Dominique; Lecourt, Séverine; Baraut, Julie; Cras, Audrey; Jean-Louis, Francette; Brun, Cécilia; Verrecchia, Franck; Larghero, Jérôme; Michel, Laurence

    2013-01-01

    Objectives The present work aimed to evaluate the expression of transforming growth factor-β (TGF-β) receptors on bone marrow-derived multipotent mesenchymal stromal cells (MSCs) in patients with systemic sclerosis (SSc) and the consequences of TGF-β activation in these cells, since MSC have potential therapeutic interest for SSc patients and knowing that TGF-β plays a critical role during the development of fibrosis in SSc. Design This is a prospective research study using MSC samples obtained from SSc patients and compared with MSC from healthy donors. Setting One medical hospital involving collaboration between an internal medicine department for initial patient recruitment, a clinical biotherapeutic unit for MSC preparation and an academic laboratory for research. Participants 9 patients with diffuse SSc for which bone marrow (BM) aspiration was prescribed by sternum aspiration before haematopoietic stem cell transplantation, versus nine healthy donors for normal BM. Primary and secondary outcome measures TGF-β, TGF-β receptor types I (TBRI) and II (TBRII) mRNA and protein expression were assessed by quantitative PCR and flow cytometry, respectively, in MSC from both SSc patients and healthy donors. MSC were exposed to TGF-β and assessed for collagen 1α2 synthesis and Smad expression. As positive controls, primary cultures of dermal fibroblasts were also analysed. Results Compared with nine controls, MSC from nine SSc patients showed significant increase in mRNA levels (p<0.002) and in membrane expression (p<0.0001) of TBRII. In response to TGF-β activation, a significant increase in collagen 1α synthesis (p<0.05) and Smad-3 phosphorylation was upregulated in SSc MSC. Similar results were obtained on eight SSc-derived dermal fibroblasts compared to six healthy controls. Conclusions TBRII gene and protein expression defect in MSC derived from SSc patients may have pathological significance. These findings should be taken into account when considering

  8. Fibulin-2 is essential for angiotensin II-induced myocardial fibrosis mediated by transforming growth factor (TGF)-β.

    PubMed

    Khan, Shaukat A; Dong, Hailong; Joyce, Jennifer; Sasaki, Takako; Chu, Mon-Li; Tsuda, Takeshi

    2016-07-01

    Fibrosis is an ominous pathological process in failing myocardium, but its pathogenesis is poorly understood. We recently reported that loss of an extracellular matrix (ECM) protein, fibulin-2, protected against ventricular dysfunction after myocardial infarction (MI) in association with absence of activation of transforming growth factor (TGF)-β signaling and suppressed upregulation of ECM protein expression during myocardial remodeling. Here we investigated the role of fibulin-2 in the development of myocardial hypertrophy and fibrosis induced by continuous pressor-dosage of angiotensin II (Ang II) infusion. Both wild type (WT) and fibulin-2 null (Fbln2KO) mice developed comparable hypertension and myocardial hypertrophy by Ang II infusion. However, myocardial fibrosis with significant upregulation of collagen type I and III mRNA was only seen in WT but not in Fbln2KO mice.Transforming growth factor (TGF)-β1 mRNA and its downstream signal, Smad2, were significantly upregulated in WT by Ang II, whereas there were no Ang II-induced changes in Flbn2KO, suggesting fibulin-2 is necessary for Ang II-induced TGF-β signaling that induces myocardial fibrosis. To test whether fibulin-2 is sufficient for Ang II-induced TGF-β upregulation, isolated Flbn2KO cardiac fibroblasts were treated with Ang II after transfecting with fibulin-2 expression vector or pretreating with recombinant fibulin-2 protein. Ang II-induced TGF-β signaling in Fbln2KO cells was partially rescued by exogenous fibulin-2, suggesting that fibulin-2 is required and probably sufficient for Ang II-induced TGF-β activation. Smad2 phosphorylation was induced just by adding recombinant fibulin-2 to KO cells, suggesting that extracellular interaction between fibulin-2 and latent TGF-β triggered initial TGF-β activation. Our study indicates that Ang II cannot induce TGF-β activation without fibulin-2 and that fibulin-2 has an essential role in Ang II-induced TGF-β signaling and subsequent myocardial

  9. Regulation of transglutaminase type II by transforming growth factor-beta 1 in normal and transformed human epidermal keratinocytes.

    PubMed

    George, M D; Vollberg, T M; Floyd, E E; Stein, J P; Jetten, A M

    1990-07-01

    This study examines the effect of transforming growth factor-beta 1 (TGF-beta 1) on the expression of Type I and II transglutaminase in normal human epidermal keratinocytes (NHEK cells). Treatment of undifferentiated NHEK cells with 100 pM TGF-beta 1 caused a 10- to 15-fold increase in the activity of a soluble transglutaminase. Based on its cellular distribution and immunoreactivity this transglutaminase was identified as Type II (tissue) transglutaminase. TGF-beta 1 did not enhance the levels of the membrane-bound Type I (epidermal) transglutaminase activity which is induced during squamous cell differentiation and did not increase Type II transglutaminase activity in differentiated NHEK cells. Several SV40 large T antigen-immortalized NHEK cell lines also exhibited a dramatic increase in transglutaminase Type II activity after TGF-beta 1 treatment; however, TGF-beta 1 did not induce any significant change in transglutaminase activity in the carcinoma-derived cell lines SCC-13, SCC-15, and SQCC/Y1. Half-maximal stimulation of transglutaminase Type II activity in NHEK cells occurred at a dose of 15 pM TGF-beta 1. TGF-beta 2 was about equally effective. This enhancement in transglutaminase activity was related to an increase in the amount of transglutaminase Type II protein as indicated by immunoblot analysis. Northern blot analyses using a specific cDNA probe for Type II transglutaminase showed that exposure of NHEK cells to TGF-beta 1 caused a marked increase in the mRNA levels of this enzyme which could be observed as early as 4 h after the addition of TGF-beta 1. Maximal induction of transglutaminase Type II mRNA occurred between 18 and 24 h. The increase in Type II transglutaminase mRNA levels was blocked by the presence of cycloheximide, suggesting that this increase in mRNA by TGF-beta 1 is dependent on protein synthesis. PMID:1972706

  10. Nerve growth factor improves visual loss in childhood optic gliomas: a randomized, double-blind, phase II clinical trial.

    PubMed

    Falsini, Benedetto; Chiaretti, Antonio; Rizzo, Daniela; Piccardi, Marco; Ruggiero, Antonio; Manni, Luigi; Soligo, Marzia; Dickmann, Anna; Federici, Matteo; Salerni, Annabella; Timelli, Laura; Guglielmi, Gaspare; Lazzareschi, Ilaria; Caldarelli, Massimo; Galli-Resta, Lucia; Colosimo, Cesare; Riccardi, Riccardo

    2016-02-01

    Paediatric optic pathway gliomas are low-grade brain tumours characterized by slow progression and invalidating visual loss. Presently there is no strategy to prevent visual loss in this kind of tumour. This study evaluated the effects of nerve growth factor administration in protecting visual function in patients with optic pathway glioma-related visual impairment. A prospective randomized double-blind phase II clinical trial was conducted in 18 optic pathway glioma patients, aged from 2 to 23 years, with stable disease and severe visual loss. Ten patients were randomly assigned to receive a single 10-day course of 0.5 mg murine nerve growth factor as eye drops, while eight patients received placebo. All patients were evaluated before and after treatment, testing visual acuity, visual field, visual-evoked potentials, optic coherence tomography, electroretinographic photopic negative response, and magnetic resonance imaging. Post-treatment evaluations were repeated at 15, 30, 90, and 180 days Brain magnetic resonance imaging was performed at baseline and at 180 days. Treatment with nerve growth factor led to statistically significant improvements in objective electrophysiological parameters (electroretinographic photopic negative response amplitude at 180 days and visual-evoked potentials at 30 days), which were not observed in placebo-treated patients. Furthermore, in patients in whom visual fields could still be measured, visual field worsening was only observed in placebo-treated cases, while three of four nerve growth factor-treated subjects showed significant visual field enlargement. This corresponded to improved visually guided behaviour, as reported by the patients and/or the caregivers. There was no evidence of side effects related to nerve growth factor treatment. Nerve growth factor eye drop administration appears a safe, easy and effective strategy for the treatment of visual loss associated with optic pathway gliomas. PMID:26767384

  11. Solitary fibrous tumor of the pleura causing recurrent hypoglycemia by secretion of insulin-like growth factor II.

    PubMed

    Fukasawa, Y; Takada, A; Tateno, M; Sato, H; Koizumi, M; Tanaka, A; Sato, T

    1998-01-01

    A case of malignant solitary fibrous tumor (SFT) is reported, occurring in a 61-year-old man with frequent hypoglycemia. Endocrinological analyses showed high serum levels of insulin-like growth factor II (IGF-II) and suppressed secretion of insulin. After the removal of a pleural tumor, which weighed 3150 g, serum IGF-II levels returned to normal and hypoglycemic attacks ceased. The tumor was composed of uniform spindle cells arranged in bundles, and fascicles with varying amounts of collagen and reticulin fibers. Mitotic figures at the rate of 6/10 high-power fields, and frequent foci of necrosis and hemorrhage were seen. Almost all of the tumor cells were immunohistochemically positive for vimentin and CD34. Electron microscopy revealed the immature mesenchymal or myofibroblastic nature of the tumor cells. These findings are consistent with malignant SFT of the pleura. Moreover, the tumor produced IGF-II mRNA as demonstrated by northern blot analysis. Thus, hypoglycemia of this patient was induced by SFT through the production and secretion of IGF-II.

  12. Tissue-specific expression of insulin-like growth factor II mRNAs with distinct 5' untranslated regions

    SciTech Connect

    Irminger, J.C.; Rosen, K.M.; Humble, R.E.; Villa-Komaroff, L.

    1987-09-01

    The authors have used RNA from human hypothalamus as template for the production of cDNAs encoding insulin-like growth factor II (IGF-II). The prohormone coding sequence of brain IGF-II RNA is identical to that found in liver; however, the 5' untranslated sequence of the brain cDNA has no homology to the 5' untranslated sequence of the previously reported liver cDNAs. By using hybridization to specific probes as well as a method based on the properties of RNase H, they found that the human IGF-II gene has at least three exons that encode alternative 5' untranslated regions and that are expressed in a tissue-specific manner. A probe specific to the brain cDNA 5' untranslated region hybridizes to a 6.0-kilobase transcript present in placenta, hypothalamus, adrenal gland, kidney, Wilms tumor, and a pheochromocytoma. The 5' untranslated sequence of the brain cDNA does not hybridize to a 5.3-kilobase transcript found in liver or to a 5.0-kb transcript found in pheochromocytoma. By using RNase H to specifically fragment the IGF-II transcripts into 3' and 5' fragments, they found that the RNAs vary in size due to differences in the 5' end but not the 3' end.

  13. A Novel Approach to Identify Two Distinct Receptor Binding Surfaces of Insulin-like Growth Factor II*S⃞

    PubMed Central

    Alvino, Clair L.; McNeil, Kerrie A.; Ong, Shee Chee; Delaine, Carlie; Booker, Grant W.; Wallace, John C.; Whittaker, Jonathan; Forbes, Briony E.

    2009-01-01

    Very little is known about the residues important for the interaction of insulin-like growth factor II (IGF-II) with the type 1 IGF receptor (IGF-1R) and the insulin receptor (IR). Insulin, to which IGF-II is homologous, is proposed to cross-link opposite halves of the IR dimer through two receptor binding surfaces, site 1 and site 2. In the present study we have analyzed the contribution of IGF-II residues equivalent to insulin's two binding surfaces toward the interaction of IGF-II with the IGF-1R and IR. Four “site 1” and six “site 2” analogues were produced and analyzed in terms of IGF-1R and IR binding and activation. The results show that Val43, Phe28, and Val14 (equivalent to site 1) are critical to IGF-1R and IR binding, whereas mutation to alanine of Gln18 affects only IGF-1R and not IR binding. Alanine substitutions at Glu12, Asp15, Phe19, Leu53, and Glu57 analogues resulted in significant (>2-fold) decreases in affinity for both the IGF-1R and IR. Furthermore, taking a novel approach using a monomeric, single-chain minimized IGF-1R we have defined a distinct second binding surface formed by Glu12, Phe19, Leu53, and Glu57 that potentially engages the IGF-1R at one or more of the FnIII domains. PMID:19139090

  14. Insulin-like growth factor II blocks apoptosis of N-myc2-expressing woodchuck liver epithelial cells.

    PubMed Central

    Yang, D; Faris, R; Hixson, D; Affigne, S; Rogler, C E

    1996-01-01

    N-myc2 and insulin-like growth factor II (IGF-II) are coordinately overexpressed in the great majority of altered hepatic foci, which are the earliest precancerous lesions observed in the liver of woodchuck hepatitis virus carrier woodchucks, and these genes continue to be overexpressed in hepatocellular carcinomas (HCCs). We have investigated the function of these genes in woodchuck hepatocarcinogenesis by using a woodchuck liver epithelial cell line (WC-3). WC-3 cells react positively with a monoclonal antibody (12.8.5) against woodchuck oval cells, suggesting a lineage relationship with oval cells. Overexpression of N-myc2 in three WC-3 cell lines caused their morphological transformation and increased their growth rate and saturation density in medium containing 10% serum. Removal of serum from the medium increased cell death of the N-myc2-expressing lines, whereas cell death in control lines was minimal. The death of N-myc2-expressing WC-3 cells was accompanied by nucleosomal fragmentation of cellular DNA, and DAPI (4',6-diamidino-2-phenylindole) staining revealed condensation and fragmentation of the nuclei, suggesting that N-myc2-expressing WC-3 cells undergo apoptosis in the absence of serum. In colony regression assays, conducted in the absence of serum, control colonies were stable, while N-myc2-expressing colonies regressed to various degrees. Addition of recombinant human IGF-II to the serum-free medium blocked both cell death and colony regression in all the N-myc2-expressing lines. Therefore, coordinate overexpression of N-myc2 and IGF-II in woodchuck altered hepatic foci may allow cells which otherwise might die to survive and progress to hepatocellular carcinoma. PMID:8709253

  15. Autoradiographic visualization of insulin-like growth factor-II receptors in rat brain

    SciTech Connect

    Mendelsohn, L.G.; Kerchner, G.A.; Clemens, J.A.; Smith, M.C.

    1986-03-01

    The documented presence of IGF-II in brain and CSF prompted us to investigate the distribution of receptors for IGF-II in rat brain slices. Human /sup 125/-I-IGF-II (10 pM) was incubated for 16 hrs at 4/sup 0/C with slide-mounted rat brain slices in the absence and presence of unlabeled human IGF-II (67 nM) or human insulin (86 nM). Slides were washed, dried, and exposed to X-ray film for 4-7 days. The results showed dense labeling in the granular layers of the olfactory bulbs, deep layers of the cerebral cortex, pineal gland, anterior pituitary, hippocampus (pyramidal cells CA/sub 1/-CA/sub 2/ and dentate gyrus), and the granule cell layers of the cerebellum. Unlabeled IGF-II eliminated most of the binding of these brain regions while insulin produced only a minimal reduction in the amount of /sup 125/I-IGF-II bound. These results indicate that a specific neural receptor for IGS-II is uniquely distributed in rat brain tissue and supports the notion that this peptide might play an important role in normal neuronal functioning.

  16. Factor II deficiency

    MedlinePlus

    ... blood. It leads to problems with blood clotting (coagulation). Factor II is also known as prothrombin. ... blood clots form. This process is called the coagulation cascade. It involves special proteins called coagulation, or ...

  17. The Epidermal Growth Factor Receptor Is Involved in Angiotensin II But Not Aldosterone/Salt-Induced Cardiac Remodelling

    PubMed Central

    Griol-Charhbili, Violaine; Escoubet, Brigitte; Sadoshima, Junichi; Farman, Nicolette; Jaisser, Frederic

    2012-01-01

    Experimental and clinical studies have shown that aldosterone/mineralocorticoid receptor (MR) activation has deleterious effects in the cardiovascular system; however, the signalling pathways involved in the pathophysiological effects of aldosterone/MR in vivo are not fully understood. Several in vitro studies suggest that Epidermal Growth Factor Receptor (EGFR) plays a role in the cardiovascular effects of aldosterone. This hypothesis remains to be demonstrated in vivo. To investigate this question, we analyzed the molecular and functional consequences of aldosterone exposure in a transgenic mouse model with constitutive cardiomyocyte-specific overexpression of a mutant EGFR acting as a dominant negative protein (DN-EGFR). As previously reported, Angiotensin II-mediated cardiac remodelling was prevented in DN-EGFR mice. However, when chronic MR activation was induced by aldosterone-salt-uninephrectomy, cardiac hypertrophy was similar between control littermates and DN-EGFR. In the same way, mRNA expression of markers of cardiac remodelling such as ANF, BNF or β-Myosin Heavy Chain as well as Collagen 1a and 3a was similarly induced in DN-EGFR mice and their CT littermates. Our findings confirm the role of EGFR in AngII mediated cardiac hypertrophy, and highlight that EGFR is not involved in vivo in the damaging effects of aldosterone on cardiac function and remodelling. PMID:22291909

  18. Elevated serum insulin-like growth factor (IGF)-II and IGF binding protein-2 in patients with colorectal cancer

    PubMed Central

    Renehan, A G; Jones, J; Potten, C S; Shalet, S M; O'Dwyer, S T

    2000-01-01

    This study explored the relationships of serum insulin-like growth factors, IGF-I and IGF-II, and their binding proteins (IGFBP)-2 and IGFBP-3, with key clinicopathological parameters in 92 patients with colorectal cancer (cases). Comparisons were made with 57 individuals who had a normal colonoscopy (controls). Serial changes were examined in 27 cases. As IGF-related peptides are age- and sex-dependent, absolute concentrations were converted to standard deviation scores (SDS). Mean IGF-II SDS were elevated in Dukes A (n= 12 P< 0.001) and Dukes B (n= 25 P< 0.001) cases compared with controls, but not in advanced disease. Compared with controls, mean IGFBP-2 SDS were significantly elevated in patients with Dukes B (P< 0.001), Dukes C (n= 13 P< 0.001) and advanced disease (n= 42 P< 0.0001), with a significant trend from early to advanced disease (one-way ANOVA P< 0.001). Furthermore, IGFBP-2 SDS were positively related to tumour size (P= 0.01) and fell significantly in patients following curative resection (P= 0.04), suggesting that circulating levels reflect tumour load. We tested the potential tumour marker characteristics of IGFBP-2 SDS against three endpoints: metastasis alone; local pelvic recurrence alone; and metastasis and recurrence combined. The sensitivities for IGFBP-2 alone (≥ + 2SD) were modest at 55%, 46%, and 52%, but in combination with CEA, increased substantially to 90%, 77% and 86%, respectively. We conclude that the serum IGF-II and IGFBP-2 profiles may provide insights into underlying biological mechanisms, and that serum IGFBP-2 may have an adjunct role in cancer surveillance in patients with colorectal cancer. © 2000 Cancer Research Campaign PMID:11044360

  19. Insulin-like growth factors (IGFs) stimulate the release of alpha 1-antichymotrypsin and soluble IGF-II/mannose 6-phosphate receptor from MCF7 breast cancer cells.

    PubMed

    Confort, C; Rochefort, H; Vignon, F

    1995-09-01

    The growth of hormone-responsive MCF7 human breast cancer cells is controlled by steroid hormones and growth factors. By metabolic labeling of cells grown in steroid- and growth factor-stripped serum conditions, we show that insulin-like growth factors (IGF-I and IGF-II) increase by approximately 5-fold the release of several proteins including cathepsin D, alpha 1-antichymotrypsin, and soluble forms of the multifunctional IGF-II/mannose 6-phosphate (M6P) receptor. Two soluble forms of IGF-II/M6P receptors were detected, one major (approximately 260 kilodaltons) and one minor (approximately 85 kilodaltons) that probably represents a proteolytic fragment of the larger soluble molecule. IGFs increased receptor release in a dose-dependent fashion with 50-60% of newly synthesized receptor released at 5-10 nM IGFs. The release of IGF-II/M6P receptors correlated with the levels of secreted cathepsin D in different human breast cancer cells or in rats stable transfectants that are constitutively expressing variable levels of human cathepsin D. IGFs had a stronger effect on IGF-II/M6P receptor release, whereas estradiol treatment preferentially enhanced the release of protease and antiprotease. We thus demonstrate that in human breast cancer cells, IGFs not only act as strong mitogens but also regulate release of alpha 1-antichymotrypsin, IGF-II/M6P-soluble receptor, and cathepsin D; three proteins that potentially regulate cell proliferation and/or invasion.

  20. Insulin-like growth factors I and II in the sole Solea senegalensis: cDNA cloning and quantitation of gene expression in tissues and during larval development.

    PubMed

    Funes, V; Asensio, E; Ponce, M; Infante, C; Cañavate, J P; Manchado, M

    2006-11-01

    Insulin-like growth factors I and II (IGF-I and IGF-II) play an important role as modulators of development, growth, and reproduction. This study aimed to isolate the IGF-I and IGF-II cDNAs and determine their temporal expression pattern in different organs and throughout larval development in Senegal sole. The rapid amplification of cDNA ends (RACE) was used to obtain both full-length IGFs sequences. A high sequence similarity with other teleosts sequences was observed. Domains B and A revealed as the most evolutionary conserved. Steady-state copy numbers of IGF-I and IGF-II were also quantified in different Senegal sole tissues by real-time PCR. IGF-I and IGF-II expressed ubiquitously with the highest mRNA levels in liver (88 x 10(6) molecules/microg total RNA) and gills (14.0 x 10(6) molecules/microg total RNA) respectively. IGF-II mRNA levels were higher than IGF-I in prehatching embryos and premetamorphic larvae with a significant drop before the commencement of eye migration in metamorphosis. The abundance of IGF-II transcripts correlated positively with the growth rate during larval development. The putative role of IGF-II on metamorphosis and larval growth is discussed.

  1. Effect of epidermal growth factor in HLA class I and class II transcription and protein expression in human breast adenocarcinoma cell lines.

    PubMed Central

    Bernard, D. J.; Courjal, F.; Maurizis, J. C.; Bignon, Y. J.; Chollet, P.; Plagne, R.

    1992-01-01

    The spontaneous expression of HLA class I and class II molecules in two human breast carcinoma cell lines (MCF7, T47D) and their modulation during epidermal growth factor treatment are reported. Transcription was analysed by Northern blot and hybridisation with HLA class II and class I cDNA specific probes. The expression of cell surface determinants was examined by internal protein labelling with 35s-methionine, immunoprecipitation with monoclonal antibodies specific for HLA class I or class II, followed by isolation of the immune complex on protein A-Sepharose; at least a quantification of glycoprotein was performed by chromatofocusing. Glycoprotein quantification showed a significant increase of HLA class I and class II (DR) antigen expression after stimulation by epidermal growth factor (0.02 microgram ml-1) in the two cell lines, when compared with untreated cell controls. However, with epidermal growth factor treatment of MCF7 and T47D cells, low increases in the amounts of HLA class I and class II RNA were obtained. These differences between expressed antigens and correspondent RNA amounts would be explained by the fact that EGF in these two cell lines acts more in post-transcription for HLA class I and class II antigens. Images Figure 1 PMID:1637682

  2. Collagen Hydrogel Scaffold and Fibroblast Growth Factor-2 Accelerate Periodontal Healing of Class II Furcation Defects in Dog

    PubMed Central

    Momose, Takehito; Miyaji, Hirofumi; Kato, Akihito; Ogawa, Kosuke; Yoshida, Takashi; Nishida, Erika; Murakami, Syusuke; Kosen, Yuta; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Objective: Collagen hydrogel scaffold exhibits bio-safe properties and facilitates periodontal wound healing. However, regenerated tissue volume is insufficient. Fibroblast growth factor-2 (FGF2) up-regulates cell behaviors and subsequent wound healing. We evaluated whether periodontal wound healing is promoted by application of collagen hydrogel scaffold in combination with FGF2 in furcation defects in beagle dogs. Methods: Collagen hydrogel was fabricated from bovine type I collagen with an ascorbate-copper ion cross-linking system. Collagen hydrogel was mingled with FGF2 and injected into sponge-form collagen. Subsequently, FGF2 (50 µg)/collagen hydrogel scaffold and collagen hydrogel scaffold alone were implanted into class II furcation defects in dogs. In addition, no implantation was performed as a control. Histometric parameters were assessed at 10 days and 4 weeks after surgery. Result: FGF2 application to scaffold promoted considerable cell and tissue ingrowth containing numerous cells and blood vessel-like structure at day 10. At 4 weeks, reconstruction of alveolar bone was stimulated by implantation of scaffold loaded with FGF2. Furthermore, periodontal attachment, consisting of cementum-like tissue, periodontal ligament-like tissue and Sharpey’s fibers, was also repaired, indicating that FGF2-loaded scaffold guided self-assembly and then re-established the function of periodontal organs. Aberrant healing, such as ankylosis and root resorption, was not observed. Conclusion: FGF2-loaded collagen hydrogel scaffold possessed excellent biocompatibility and strongly promoted periodontal tissue engineering, including periodontal attachment re-organization. PMID:27583044

  3. Epidermal Growth Factor Signalling Controls Myosin II Planar Polarity to Orchestrate Convergent Extension Movements during Drosophila Tubulogenesis

    PubMed Central

    Bunt, Stephanie; Bischoff, Marcus; VijayRaghavan, Krishnaswamy; Skaer, Helen

    2014-01-01

    Most epithelial tubes arise as small buds and elongate by regulated morphogenetic processes including oriented cell division, cell rearrangements, and changes in cell shape. Through live analysis of Drosophila renal tubule morphogenesis we show that tissue elongation results from polarised cell intercalations around the tubule circumference, producing convergent-extension tissue movements. Using genetic techniques, we demonstrate that the vector of cell movement is regulated by localised epidermal growth factor (EGF) signalling from the distally placed tip cell lineage, which sets up a distal-to-proximal gradient of pathway activation to planar polarise cells, without the involvement for PCP gene activity. Time-lapse imaging at subcellular resolution shows that the acquisition of planar polarity leads to asymmetric pulsatile Myosin II accumulation in the basal, proximal cortex of tubule cells, resulting in repeated, transient shortening of their circumferential length. This repeated bias in the polarity of cell contraction allows cells to move relative to each other, leading to a reduction in cell number around the lumen and an increase in tubule length. Physiological analysis demonstrates that animals whose tubules fail to elongate exhibit abnormal excretory function, defective osmoregulation, and lethality. PMID:25460353

  4. Preptin derived from proinsulin-like growth factor II (proIGF-II) is secreted from pancreatic islet beta-cells and enhances insulin secretion.

    PubMed Central

    Buchanan, C M; Phillips, A R; Cooper, G J

    2001-01-01

    Pancreatic islet beta-cells secrete the hormones insulin, amylin and pancreastatin. To search for further beta-cell hormones, we purified peptides from secretory granules isolated from cultured murine beta TC6-F7 beta-cells. We identified a 34-amino-acid peptide (3948 Da), corresponding to Asp(69)-Leu(102) of the proinsulin-like growth factor II E-peptide, which we have termed 'preptin'. Preptin, is present in islet beta-cells and undergoes glucose-mediated co-secretion with insulin. Synthetic preptin increases insulin secretion from glucose-stimulated beta TC6-F7 cells in a concentration-dependent and saturable manner. Preptin infusion into the isolated, perfused rat pancreas increases the second phase of glucose-mediated insulin secretion by 30%, while anti-preptin immunoglobulin infusion decreases the first and second phases of insulin secretion by 29 and 26% respectively. These findings suggest that preptin is a physiological amplifier of glucose-mediated insulin secretion. PMID:11716772

  5. Short stature associated with high circulating insulin-like growth factor (IGF)-binding protein-1 and low circulating IGF-II: effect of growth hormone therapy.

    PubMed

    Barreca, A; Bozzola, M; Cesarone, A; Steenbergh, P H; Holthuizen, P E; Severi, F; Giordano, G; Minuto, F

    1998-10-01

    We report a case of short stature associated with high circulating levels of insulin-like growth factor (IGF)-binding protein-1 (IGFBP-10 and low levels of IGF-II responsive to pharmacological treatment with GH. Our patient suffered severe growth failure from birth (2.06 SD below the mean for normal full-term boys, and 5.2 and 7.3 SD below the mean at 5 and 10 months). Studies carried out before referral to our pediatric unit included normal 46,XY karyotype and normal encephalic imaging. Other endocrine and metabolic alterations and other systemic diseases were excluded. At 1.7 yr of age (length, 6.1 SD; weight, 4.6 SD; head circumference, 1.4 SD below the mean, respectively) the patient was referred to our pediatric unit. The baseline GH concentration was 31 microg/L, and the peak after an arginine load was 59.6 microg/L. In the same samples GH bioactivity was nearly superimposable (RIA/Nb2 bioactivity ratio = 0.9). Fasting insulin and glucose concentrations were 7.4 microU/mL and 65 mg/dL, respectively, both normally responsive to an oral glucose load. GH insensitivity was excluded by a basal IGF-I concentration (64 ng/mL) in the normal range for 0- to 5-yr-old boys and its increase after 2 IU/day hGH administration for 4 days. IGFBP-3 (0.5 microg/mL) was slightly reduced, whereas IGFBP-1 (2218 and 1515 ng/mL in two different basal samples) was well above the normal values for age and was suppressible by GH (maximum suppression, -77% at 84 h) and glucose load (maximum suppression, -46% at 150 min). The basal IGF-II concentration was below the normal range (86 ng/mL), whereas IGFBP-2 was normal (258 ng/mL). Analysis of the promoter region of IGFBP-1 and IGF-II failed to find major alterations. Neutral gel filtration of serum showed that almost all IGF-I activity was in the 35- to 45-kDa complex, coincident with IGFBP-1 peak, while the 150-kDa complex was absent, although the acid-labile subunit was normally represented. At 2.86 yr (height, 65.8 cm; height SD score

  6. Propulsive appliance stimulates the synthesis of insulin-like growth factors I and II in the mandibular condylar cartilage of young rats.

    PubMed

    Hajjar, Denise; Santos, Marinilce F; Kimura, Edna Teruko

    2003-09-01

    Functional orthopedic appliances correct dental malocclusion partially by exerting indirect mechanical stimulus on the condylar cartilage, modulating growth and the adaptation of orofacial structures. However, the exact nature of the biological responses to this therapy is not well understood. Insulin-like growth factors I and II (IGF-I and IGF-II) are important local factors during growth and differentiation of several tissues, including cartilage. The aim of this study was to verify the mRNA and protein expression of IGF-I and IGF-II in the condylar cartilage of young male Wistar rats that used a mandibular propulsive appliance for 3, 5, 7, 9, 11, 13 or 15 days. For this purpose, sagittal sections of decalcified and paraffin-embedded condyles were submitted to immunohistochemistry and in situ hybridization. IGF-I and IGF-II expression increased with developmental age in the control and treated rats. After 9 days of treatment the positivity for both peptides in the animals that wore the propulsive appliance increased even more, expressively different from the age-matched controls. The expression patterns of both IGFs were similar, although IGF-I labelling was stronger. Furthermore, the enhanced expression of both peptides was in parallel with the proliferating cell nuclear antigen (PCNA) positivity, a proliferation cell marker. The modulation of IGF-I and IGF-II expression in the condylar cartilage in response to the propulsive appliance suggests that both peptides are involved in the mandibular adaptation during this therapy.

  7. Angiotensin II-induced pro-fibrotic effects require p38MAPK activity and transforming growth factor beta 1 expression in skeletal muscle cells.

    PubMed

    Morales, María Gabriela; Vazquez, Yaneisi; Acuña, María José; Rivera, Juan Carlos; Simon, Felipe; Salas, José Diego; Alvarez Ruf, Joel; Brandan, Enrique; Cabello-Verrugio, Claudio

    2012-11-01

    Fibrotic disorders are typically characterised by excessive connective tissue and extracellular matrix (ECM) deposition that preclude the normal healing of different tissues. Several skeletal muscle dystrophies are characterised by extensive fibrosis. Among the factors involved in skeletal muscle fibrosis is angiotensin II (Ang-II), a key protein of the renin-angiotensin system (RAS). We previously demonstrated that myoblasts responded to Ang-II by increasing the ECM protein levels mediated by AT-1 receptors, implicating an Ang-II-induced reactive oxygen species (ROS) by a NAD(P)H oxidase-dependent mechanism. In this paper, we show that in myoblasts, Ang-II induced the increase of transforming growth factor beta 1 (TGF-β1) and connective tissue growth factor (CTGF) expression through its AT-1 receptor. This effect is dependent of the NAD(P)H oxidase (NOX)-induced ROS, as indicated by a decrease of the expression of both pro-fibrotic factors when the ROS production was inhibited via the NOX inhibitor apocynin. The increase in pro-fibrotic factors levels was paralleled by enhanced p38MAPK and ERK1/2 phosphorylation in response to Ang-II. However, only the p38MAPK activity was critical for the Ang-II-induced fibrotic effects, as indicated by the decrease in the Ang-II-induced TGF-β1 and CTGF expression and fibronectin levels by SB-203580, an inhibitor of the p38MAPK, but not by U0126, an inhibitor of ERK1/2 phosphorylation. Furthermore, we showed that the Ang-II-dependent p38MAPK activation, but not the ERK1/2 phosphorylation, was necessary for the NOX-derived ROS. In addition, we demonstrated that TGF-β1 expression was required for the Ang-II-induced pro-fibrotic effects evaluated by using SB-431542, an inhibitor of TGF-βRI kinase activity, and by knocking down TGF-β1 levels by shRNA technique. These results strongly suggest that the fibrotic response to Ang-II is mediated by the AT-1 receptor and requires the p38MAPK phosphorylation, NOX-induced ROS, and TGF

  8. Insulin-like growth factors (IGFs) stimulate the release of alpha 1-antichymotrypsin and soluble IGF-II/mannose 6-phosphate receptor from MCF7 breast cancer cells.

    PubMed

    Confort, C; Rochefort, H; Vignon, F

    1995-09-01

    The growth of hormone-responsive MCF7 human breast cancer cells is controlled by steroid hormones and growth factors. By metabolic labeling of cells grown in steroid- and growth factor-stripped serum conditions, we show that insulin-like growth factors (IGF-I and IGF-II) increase by approximately 5-fold the release of several proteins including cathepsin D, alpha 1-antichymotrypsin, and soluble forms of the multifunctional IGF-II/mannose 6-phosphate (M6P) receptor. Two soluble forms of IGF-II/M6P receptors were detected, one major (approximately 260 kilodaltons) and one minor (approximately 85 kilodaltons) that probably represents a proteolytic fragment of the larger soluble molecule. IGFs increased receptor release in a dose-dependent fashion with 50-60% of newly synthesized receptor released at 5-10 nM IGFs. The release of IGF-II/M6P receptors correlated with the levels of secreted cathepsin D in different human breast cancer cells or in rats stable transfectants that are constitutively expressing variable levels of human cathepsin D. IGFs had a stronger effect on IGF-II/M6P receptor release, whereas estradiol treatment preferentially enhanced the release of protease and antiprotease. We thus demonstrate that in human breast cancer cells, IGFs not only act as strong mitogens but also regulate release of alpha 1-antichymotrypsin, IGF-II/M6P-soluble receptor, and cathepsin D; three proteins that potentially regulate cell proliferation and/or invasion. PMID:7649082

  9. A possible role of insulin-like growth factor-II C-peptide in regulating the function of steroidogenic cells in adult frog adrenal glands.

    PubMed

    Castillo, Songül Süren

    2008-01-01

    The sole structural determinant for the differential ability of the insulin-like growth factors (IGF-I and IGF-II) to induce autophosphorylation of specific insulin receptor (IR) tyrosine residues and activate downstream signaling molecules is the C domain. The IR is structurally related to the type I insulin-like growth factor receptor (IGF-IR). This study aimed to identify the presence of IGF receptors by which the IGF-II C-peptide could mediate its effects in the frog (Rana ridibunda) adrenal glands and to observe whether injection of IGF-II C-peptide affects the function of adrenal steroidogenic cells using light and transmission electron microscopy and by the evaluation of the immunoreactivity of steroidogenic acute regulatory protein (StAR). After IGF-II C-peptide injection, there was a reduction of StAR protein immunoreactivity levels, an accumulation of large lipid droplets in close contact with each other, and an induction of proliferation of the steroidogenic cells. These results indicate a possible role of IGF-II C-peptide in steroidogenic cell function and in induction of steroidogenesis. The detection in this study of IGF-I receptor (IGF-IR) immunoreactivity in frog adrenal glands also indicates that the metabolic and mitogenic effects of IGF-II C-peptide in these glands may occur via the IGF-IR.

  10. Pro-Insulin-Like Growth Factor-II Ameliorates Age-Related Inefficient Regenerative Response by Orchestrating Self-Reinforcement Mechanism of Muscle Regeneration.

    PubMed

    Ikemoto-Uezumi, Madoka; Uezumi, Akiyoshi; Tsuchida, Kunihiro; Fukada, So-ichiro; Yamamoto, Hiroshi; Yamamoto, Naoki; Shiomi, Kosuke; Hashimoto, Naohiro

    2015-08-01

    Sarcopenia, age-related muscle weakness, increases the frequency of falls and fractures in elderly people, which can trigger severe muscle injury. Rapid and successful recovery from muscle injury is essential not to cause further frailty and loss of independence. In fact, we showed insufficient muscle regeneration in aged mice. Although the number of satellite cells, muscle stem cells, decreases with age, the remaining satellite cells maintain the myogenic capacity equivalent to young mice. Transplantation of young green fluorescent protein (GFP)-Tg mice-derived satellite cells into young and aged mice revealed that age-related deterioration of the muscle environment contributes to the decline in regenerative capacity of satellite cells. Thus, extrinsic changes rather than intrinsic changes in satellite cells appear to be a major determinant of inefficient muscle regeneration with age. Comprehensive protein expression analysis identified a decrease in insulin-like growth factor-II (IGF-II) level in regenerating muscle of aged mice. We found that pro- and big-IGF-II but not mature IGF-II specifically express during muscle regeneration and the expressions are not only delayed but also decreased in absolute quantity with age. Supplementation of pro-IGF-II in aged mice ameliorated the inefficient regenerative response by promoting proliferation of satellite cells, angiogenesis, and suppressing adipogenic differentiation of platelet derived growth factor receptor (PDGFR)α(+) mesenchymal progenitors. We further revealed that pro-IGF-II but not mature IGF-II specifically inhibits the pathological adipogenesis of PDGFRα(+) cells. Together, these results uncovered a distinctive pro-IGF-II-mediated self-reinforcement mechanism of muscle regeneration and suggest that supplementation of pro-IGF-II could be one of the most effective therapeutic approaches for muscle injury in elderly people.

  11. Expression analysis of the insulin-like growth factors I and II during embryonic and early larval development of turbot ( Scophthalmus maximus)

    NASA Astrophysics Data System (ADS)

    Wen, Haishen; Qi, Qian; Hu, Jian; Si, Yufeng; He, Feng; Li, Jifang

    2015-04-01

    The insulin-like growth factors I and II (IGF-I and IGF-II) are important proteins involved in fish growth and development. Here, we report the isolation of IGF-II and expression analysis of IGFs in turbot Scophthalmus maximus, aiming to clarify their function in embryonic and larval development of fish. The deduced IGF-II gene is 808 bp in full length, which encodes a protein of 219 amino acids and is 93% similar with that of Paralichthys olicaceus in amino acid sequence. The tissue abundance and the expression pattern of IGFs in a turbot at early development stages were investigated via reverse transcription-polymer chain reaction. Result showed that the IGF-I and IGF-II genes were widely expressed in tissues of S. maximus. IGF-I was detected in all tissues except intestines with the highest level in liver, while IGF-II transcript presented in all tissues except muscle. At the stages of embryonic and larval development, the mRNA levels of IGFs sharply increased from the stage of unfertilized egg to post larva, followed by a decrease with larval development. However, there was an increase in IGF-I at the embryonic stage and IGF-II at the gastrula stage, respectively. These results suggested that IGFs play important roles in cell growth and division of the turbot. Our study provides reference data for further investigation of growth regulation in turbot, which can guarantee better understanding of the physiological role that IGFs play in fish.

  12. Relationships Between RNA Polymerase II Activity and Spt Elongation Factors to Spt- Phenotype and Growth in Saccharomyces cerevisiae

    PubMed Central

    Cui, Ping; Jin, Huiyan; Vutukuru, Manjula Ramya; Kaplan, Craig D.

    2016-01-01

    The interplay between adjacent transcription units can result in transcription-dependent alterations in chromatin structure or recruitment of factors that determine transcription outcomes, including the generation of intragenic or other cryptic transcripts derived from cryptic promoters. Mutations in a number of genes in Saccharomyces cerevisiae confer both cryptic intragenic transcription and the Suppressor of Ty (Spt-) phenotype for the lys2-128∂ allele of the LYS2 gene. Mutants that suppress lys2-128∂ allow transcription from a normally inactive Ty1 ∂ promoter, conferring a LYS+ phenotype. The arrangement of transcription units at lys2-128∂ is reminiscent of genes containing cryptic promoters within their open reading frames. We set out to examine the relationship between RNA Polymerase II (Pol II) activity, functions of Spt elongation factors, and cryptic transcription because of the previous observation that increased-activity Pol II alleles confer an Spt- phenotype. We identify both cooperating and antagonistic genetic interactions between Pol II alleles and alleles of elongation factors SPT4, SPT5, and SPT6. We find that cryptic transcription at FLO8 and STE11 is distinct from that at lys2-128∂, though all show sensitivity to reduction in Pol II activity, especially the expression of lys2-128∂ found in Spt- mutants. We determine that the lys2-128∂ Spt- phenotypes for spt6-1004 and increased activity rpo21/rpb1 alleles each require transcription from the LYS2 promoter. Furthermore, we identify the Ty1 transcription start site (TSS) within the ∂ element as the position of Spt- transcription in tested Spt- mutants. PMID:27261007

  13. Relationships Between RNA Polymerase II Activity and Spt Elongation Factors to Spt- Phenotype and Growth in Saccharomyces cerevisiae.

    PubMed

    Cui, Ping; Jin, Huiyan; Vutukuru, Manjula Ramya; Kaplan, Craig D

    2016-08-09

    The interplay between adjacent transcription units can result in transcription-dependent alterations in chromatin structure or recruitment of factors that determine transcription outcomes, including the generation of intragenic or other cryptic transcripts derived from cryptic promoters. Mutations in a number of genes in Saccharomyces cerevisiae confer both cryptic intragenic transcription and the Suppressor of Ty (Spt(-)) phenotype for the lys2-128∂ allele of the LYS2 gene. Mutants that suppress lys2-128∂ allow transcription from a normally inactive Ty1 ∂ promoter, conferring a LYS(+) phenotype. The arrangement of transcription units at lys2-128∂ is reminiscent of genes containing cryptic promoters within their open reading frames. We set out to examine the relationship between RNA Polymerase II (Pol II) activity, functions of Spt elongation factors, and cryptic transcription because of the previous observation that increased-activity Pol II alleles confer an Spt(-) phenotype. We identify both cooperating and antagonistic genetic interactions between Pol II alleles and alleles of elongation factors SPT4, SPT5, and SPT6 We find that cryptic transcription at FLO8 and STE11 is distinct from that at lys2-128∂, though all show sensitivity to reduction in Pol II activity, especially the expression of lys2-128∂ found in Spt(-) mutants. We determine that the lys2-128∂ Spt(-) phenotypes for spt6-1004 and increased activity rpo21/rpb1 alleles each require transcription from the LYS2 promoter. Furthermore, we identify the Ty1 transcription start site (TSS) within the ∂ element as the position of Spt(-) transcription in tested Spt(-) mutants.

  14. Can "big" insulin-like growth factor II in serum of tumor patients account for the development of extrapancreatic tumor hypoglycemia?

    PubMed Central

    Zapf, J; Futo, E; Peter, M; Froesch, E R

    1992-01-01

    The pathogenesis of extrapancreatic tumor hypoglycemia has been related to the secretion of big insulin-like growth factor (IGF) II by the tumor. In 25 of 28 patients with this type of hypoglycemia we found 1.5-8-fold elevated serum levels of immunoreactive big (15-25 kD), but decreased levels of normal IGF II. After removal of the tumor, big IGF II disappeared and normal IGF II increased. Tumors contained elevated levels of IGF II, 65-80% in the big form. The insulin-like bioactivity of big IGF II and its affinity towards IGF-binding proteins (IGFBP)-2 and -3 are similar to those of normal IGF II, but two- to threefold higher on a molar basis. Big IGF II is mainly bound to the 50-kD IGFBP complex. The latter contains approximately 10 times more of this peptide than in normal serum and displays three- to fourfold increased insulin-like bioactivity. The formation of the 150-kD IGFBP complex with 125I-recombinant human IGFBP-3 is impaired in tumor serum. This results in sequestration of IGFBP-3 and predominant association of big IGF II with IGFBP-2 and -3 in the 50-kD complex. Increased bioavailability of big IGF II in this complex due to unrestricted capillary passage and enhanced insulin bioactivity of this big IGF II pool provide a continuous increased insulin-like potential available to insulin and type 1 IGF receptors of insulin-sensitive tissues and thus may lead to sustained hypoglycemia. Images PMID:1281841

  15. Isolation of an insulin-like growth factor II cDNA with a unique 5 prime untranslated region from human placenta

    SciTech Connect

    Shen, Shujane; Daimon, Makoto; Wang, Chunyeh; Ilan, J. ); Jansen, M. )

    1988-03-01

    Human insulin-like growth factor II (IGF-II) cDNA from a placental library was isolated and sequenced. The 5{prime} untranslated region (5{prime}-UTR) sequence of this cDNA differs completely from that of adult human liver and has considerable base sequence identity to the same region of an IGF-II cDNA of a rat liver cell line, BRL-3A. Human placental poly(A){sup +} RNA was probed with either the 5{prime}-UTR of the isolated human placental IGF-II cDNA or the 5{prime}-UTR of the IGF-II cDNA obtained from adult human liver. No transcripts were detected by using the 5{prime}-UTR of the adult liver IGF-II as the probe. In contrast, three transcripts of 6.0, 3.2, and 2.2 kilobases were detected by using the 5{prime}-UTR of the placental IGF-II cDNA as the probe or the probe from the coding sequence. A fourth IGF-II transcript of 4.9 kilobases presumably containing a 5{prime}-UTR consisting of a base sequence dissimilar to that of either IGF-II 5{prime}-UTR was apparent. Therefore, IGF-II transcripts detected may be products of alternative splicing as their 5{prime}-UTR sequence is contained within the human IGF-II gene or they may be a consequence of alternative promoter utilization in placenta.

  16. Hypoglycemia Associated with a Gastrointestinal Stromal Tumor Producing High-molecular-weight Insulin Growth Factor II: A Case Report and Literature Review.

    PubMed

    Hirai, Hiroyuki; Ogata, Emi; Ohki, Shinji; Fukuda, Izumi; Tanaka, Mizuko; Watanabe, Tsuyoshi; Satoh, Hiroaki

    2016-01-01

    A 61-year-old woman with multiple metastatic and unresectable gastrointestinal stromal tumors (GISTs) was referred for investigation of refractory hypoglycemia that developed four months before this hospitalization. On admission, her fasting plasma glucose was 38 mg/dL despite 10% glucose infusion. Investigations revealed that her serum C-peptide, insulin and growth hormone levels were suppressed, and big insulin-like growth factor II was observed. She was diagnosed with non-islet cell tumor hypoglycemia, which resolved after glucocorticoid treatment. Clinicians should thus be vigilant to identify hypoglycemia in patients with large metastatic GISTs because glucocorticoid therapy is useful even if the GIST is inoperable. PMID:27181538

  17. G protein coupling and second messenger generation are indispensable for metalloprotease-dependent, heparin-binding epidermal growth factor shedding through angiotensin II type-1 receptor.

    PubMed

    Mifune, Mizuo; Ohtsu, Haruhiko; Suzuki, Hiroyuki; Nakashima, Hidekatsu; Brailoiu, Eugen; Dun, Nae J; Frank, Gerald D; Inagami, Tadashi; Higashiyama, Shigeki; Thomas, Walter G; Eckhart, Andrea D; Dempsey, Peter J; Eguchi, Satoru

    2005-07-15

    A G protein-coupled receptor agonist, angiotensin II (AngII), induces epidermal growth factor (EGF) receptor (EGFR) transactivation possibly through metalloprotease-dependent, heparin-binding EGF (HB-EGF) shedding. Here, we have investigated signal transduction of this process by using COS7 cells expressing an AngII receptor, AT1. In these cells AngII-induced EGFR transactivation was completely inhibited by pretreatment with a selective HB-EGF inhibitor, or with a metalloprotease inhibitor. We also developed a COS7 cell line permanently expressing a HB-EGF construct tagged with alkaline phosphatase, which enabled us to measure HB-EGF shedding quantitatively. In the COS7 cell line AngII stimulated release of HB-EGF. This effect was mimicked by treatment either with a phospholipase C activator, a Ca2+ ionophore, a metalloprotease activator, or H2O2. Conversely, pretreatment with an intracellular Ca2+ antagonist or an antioxidant blocked AngII-induced HB-EGF shedding. Moreover, infection of an adenovirus encoding an inhibitor of G(q) markedly reduced EGFR transactivation and HB-EGF shedding through AT1. In this regard, AngII-stimulated HB-EGF shedding was abolished in an AT1 mutant that lacks G(q) protein coupling. However, in cells expressing AT1 mutants that retain G(q) protein coupling, AngII is still able to induce HB-EGF shedding. Finally, the AngII-induced EGFR transactivation was attenuated in COS7 cells overexpressing a catalytically inactive mutant of ADAM17. From these data we conclude that AngII stimulates a metalloprotease ADAM17-dependent HB-EGF shedding through AT1/G(q)/phospholipase C-mediated elevation of intracellular Ca2+ and reactive oxygen species production, representing a key mechanism indispensable for EGFR transactivation.

  18. Rearrangements at the 11p15 locus and overexpression of insulin-like growth factor-II gene in sporadic adrenocortical tumors

    SciTech Connect

    Gicquel, C.; Schneid, H.; Le Bouc, Y.; Bertagna, X.; Francillard-Leblond, M.; Luton, J.P.; Girard, F.

    1994-06-01

    Little is known about the pathophysiology of sporadic adrenocortical tumors in adults. Because loss of heterozygosity at the 11p15 locus has been described in childhood tumors, particularly in adrenocortical tumors associated with the Beckwith-Wiedemann syndrome, and because insulin-like growth factor-II (IGF-II) is a crucial regulator of fetal adrenal growth, the authors looked for structural analysis at the 11p15 locus and IGF-II gene expression in 23 sporadic adrenocortical adult tumors: 6 carcinomas (5 with Cushing`s syndrome and 1 nonsecreting) and 17 benign adenomas (13 with Cushing`s syndrome, 1 pure androgen secreting, and 3 nonsecreting). Twenty-one patients were informative at the 11p15 locus, and six (four carcinomas and two adenomas) of them (28.5%) exhibited 11p15 structural abnormalities in tumor DNA (five, a uniparental disomy and one, a mosaicism). In a single case that could be further studied, a paternal isodisomy was observed. Very high IGF-II mRNA contents were detected in seven tumors (30%; 5 of the 6 carcinomas and 2 of the 17 adenomas). They were particularly found in tumors with uniparental disomy at the 11p15 locus. Overall, a strong correlation existed between IGF-II mRNA contents and DNA demethylation at the IGF-II locus. These data show that genetic alterations involving the 11p15 locus were highly frequent in malignant tumors, but found only in rare adenomas. These results in combination with evidence for overexpression of IGF-II from the 11p15.5 locus suggest that abnormalities in structure and/or expression of the IGF-II gene play a role as a late event of a multistep process of tumorigenesis. 58 refs., 6 figs., 4 tabs.

  19. Insulin-like growth factors I and II in starry flounder (Platichthys stellatus): molecular cloning and differential expression during embryonic development.

    PubMed

    Xu, Yongjiang; Zang, Kun; Liu, Xuezhou; Shi, Bao; Li, Cunyu; Shi, Xueying

    2015-02-01

    In order to elucidate the possible roles of insulin-like growth factors I and II (IGF-I and IGF-II) in the embryonic development of Platichthys stellatus, their cDNAs were isolated and their spatial expression pattern in adult organs and temporal expression pattern throughout embryonic development were examined by quantitative real-time PCR assay. The IGF-I cDNA sequence was 1,268 bp in length and contained an open reading frame (ORF) of 558 bp, which encoded 185 amino acid residues. With respect to IGF-II, the full-length cDNA was 899 bp in length and contained a 648-bp ORF, which encoded 215 amino acid residues. The amino acid sequences of IGF-I and IGF-II exhibited high identities with their fish counterparts. The highest IGF-I mRNA level was found in the liver for both sexes, whereas the IGF-II gene was most abundantly expressed in female liver and male liver, gill, and brain. The sex-specific and spatial expression patterns of IGF-I and IGF-II mRNAs are thought to be related to the sexually dimorphic growth and development of starry flounder. Both IGF-I and IGF-II mRNAs were detected in unfertilized eggs, which indicated that IGF-I and IGF-II were parentally transmitted. Nineteen embryonic development stages were tested. IGF-I mRNA level remained high from unfertilized eggs to low blastula followed by a significant decrease at early gastrula and then maintained a lower level. In contrast, IGF-II mRNA level was low from unfertilized eggs to high blastula and peaked at low blastula followed by a gradual decrease. Moreover, higher levels of IGF-I mRNA than that of IGF-II were found from unfertilized eggs to high blastula, vice versa from low blastula to newly hatched larva, and the different expression pattern verified the differential roles of IGF-I and IGF-II in starry flounder embryonic development. These results could help in understanding the endocrine mechanism involved in the early development and growth of starry flounder.

  20. Insulin-like growth factors I and II in starry flounder (Platichthys stellatus): molecular cloning and differential expression during embryonic development.

    PubMed

    Xu, Yongjiang; Zang, Kun; Liu, Xuezhou; Shi, Bao; Li, Cunyu; Shi, Xueying

    2015-02-01

    In order to elucidate the possible roles of insulin-like growth factors I and II (IGF-I and IGF-II) in the embryonic development of Platichthys stellatus, their cDNAs were isolated and their spatial expression pattern in adult organs and temporal expression pattern throughout embryonic development were examined by quantitative real-time PCR assay. The IGF-I cDNA sequence was 1,268 bp in length and contained an open reading frame (ORF) of 558 bp, which encoded 185 amino acid residues. With respect to IGF-II, the full-length cDNA was 899 bp in length and contained a 648-bp ORF, which encoded 215 amino acid residues. The amino acid sequences of IGF-I and IGF-II exhibited high identities with their fish counterparts. The highest IGF-I mRNA level was found in the liver for both sexes, whereas the IGF-II gene was most abundantly expressed in female liver and male liver, gill, and brain. The sex-specific and spatial expression patterns of IGF-I and IGF-II mRNAs are thought to be related to the sexually dimorphic growth and development of starry flounder. Both IGF-I and IGF-II mRNAs were detected in unfertilized eggs, which indicated that IGF-I and IGF-II were parentally transmitted. Nineteen embryonic development stages were tested. IGF-I mRNA level remained high from unfertilized eggs to low blastula followed by a significant decrease at early gastrula and then maintained a lower level. In contrast, IGF-II mRNA level was low from unfertilized eggs to high blastula and peaked at low blastula followed by a gradual decrease. Moreover, higher levels of IGF-I mRNA than that of IGF-II were found from unfertilized eggs to high blastula, vice versa from low blastula to newly hatched larva, and the different expression pattern verified the differential roles of IGF-I and IGF-II in starry flounder embryonic development. These results could help in understanding the endocrine mechanism involved in the early development and growth of starry flounder. PMID:25424555

  1. Apoptosis is induced by N-myc expression in hepatocytes, a frequent event in hepadnavirus oncogenesis, and is blocked by insulin-like growth factor II.

    PubMed Central

    Ueda, K; Ganem, D

    1996-01-01

    Induction of hepatocellular carcinoma in woodchucks by woodchuck hepatitis virus is associated with the activation of N-myc gene expression, usually by viral DNA integration in cis to the N-myc locus. We have examined the consequences of N-myc up-regulation in rodent hepatic cells in culture. Mouse alpha ML hepatocytes infected with a retroviral vector overexpressing the woodchuck N-myc2 gene display a higher proliferation rate than parental alpha ML cells but are morphologically unchanged and do not form colonies in soft agar. However, they display an increased propensity to undergo apoptosis, an effect that is markedly augmented by serum deprivation. Expression of the woodchuck hepatitis virus X gene in alpha ML cells does not alter the growth phenotype of the cells and has no effect upon N-myc-dependent apoptosis. However, apoptosis in N-myc2-expressing alpha ML cells is strongly inhibited by insulin-like growth factor II (IGF II). IGF II gene expression is also strongly up-regulated during hepatic carcinogenesis in vivo in virally infected animals and has been speculated to be part of an autocrine growth-stimulatory pathway. Our results suggest that IGF II may play another role in the development of virus-induced hepatoma: the prevention of programmed cell death triggered by deregulated N-myc expression. PMID:8627653

  2. Silencing of the transforming growth factor-beta (TGFbeta) receptor II by Kruppel-like factor 14 underscores the importance of a negative feedback mechanism in TGFbeta signaling.

    PubMed

    Truty, Mark J; Lomberk, Gwen; Fernandez-Zapico, Martin E; Urrutia, Raul

    2009-03-01

    The role of non-Smad proteins in the regulation of transforming growth factor-beta (TGFbeta) signaling is an emerging line of active investigation. Here, we characterize the role of KLF14, as a TGFbeta-inducible, non-Smad protein that silences the TGFbeta receptor II (TGFbetaRII) promoter. Together with endocytosis, transcriptional silencing is a critical mechanism for down-regulating TGFbeta receptors at the cell surface. However, the mechanisms underlying transcriptional repression of these receptors remain poorly understood. KLF14 has been chosen from a comprehensive screen of 24 members of the Sp/KLF family due to its TGFbeta inducibility, its ability to regulate the TGFbetaRII promoter, and the fact that this protein had yet to be functionally characterized. We find that KLF14 represses the TGFbetaRII, a function that is augmented by TGFbeta treatment. Mapping of the TGFbetaRII promoter, in combination with site-directed mutagenesis, electromobility shift, and chromatin immunoprecipitation assays, have identified distinct GC-rich sequences used by KLF14 to regulate this promoter. Mechanistically, KLF14 represses the TGFbetaRII promoter via a co-repressor complex containing mSin3A and HDAC2. Furthermore, the TGFbeta pathway activation leads to recruitment of a KLF14-mSin3A-HDAC2 repressor complex to the TGFbetaRII promoter, as well as the remodeling of chromatin to increase histone marks that associate with transcriptional silencing. Thus, these results describe a novel negative-feedback mechanism by which TGFbetaRII activation at the cell surface induces the expression of KLF14 to ultimately silence the TGFbetaRII and further expand the network of non-Smad transcription factors that participate in the TGFbeta pathway. PMID:19088080

  3. Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D.

    PubMed

    Li, Fang; Malik, Kafait U

    2005-03-01

    Angiotensin II (Ang II) activates cytosolic Ca(2+)-dependent phospholipase A(2) (cPLA(2)), phospholipase D (PLD), p38 mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR) and Akt in vascular smooth muscle cells (VSMC). This study was conducted to investigate the relationship between Akt activation by Ang II and other signaling molecules in rat VSMC. Ang II-induced Akt phosphorylation was significantly reduced by the PLD inhibitor 1-butanol, but not by its inactive analog 2-butanol, and by brefeldin A, an inhibitor of the PLD cofactor ADP-ribosylation factor, and in cells infected with retrovirus containing PLD(2) siRNA or transfected with PLD(2) antisense but not control LacZ or sense oligonucleotide. Diacylglycerol kinase inhibitor II diminished Ang II-induced and diC8-phosphatidic acid (PA)-increased Akt phosphorylation, suggesting that PLD-dependent Akt activation is mediated by PA. Ang II-induced EGFR phosphorylation was inhibited by 1-butanol and PLD(2) siRNA and also by cPLA(2) siRNA. In addition, the inhibitor of arachidonic acid (AA) metabolism 5,8,11,14-eicosatetraynoic acid (ETYA) reduced both Ang II- and AA-induced EGFR transactivation. Furthermore, ETYA, cPLA(2) antisense, and cPLA(2) siRNA attenuated Ang II-elicited PLD activation. p38 MAPK inhibitor SB202190 [4-(4-flurophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] reduced PLD activity and EGFR and Akt phosphorylation elicited by Ang II. Pyrrolidine-1, a cPLA(2) inhibitor, and cPLA(2) siRNA decreased p38 MAPK activity. These data indicate that Ang II-stimulated Akt activity is mediated by cPLA(2)-dependent, p38 MAPK regulated PLD(2) activation and EGFR transactivation. We propose the following scheme of the sequence of events leading to activation of Akt in VSMC by Ang II: Ang II-->cPLA(2)-->AA-->p38 MAPK-->PLD(2)-->PA-->EGFR-->Akt. PMID:15525798

  4. Angiotensin II-induced Akt activation through the epidermal growth factor receptor in vascular smooth muscle cells is mediated by phospholipid metabolites derived by activation of phospholipase D.

    PubMed

    Li, Fang; Malik, Kafait U

    2005-03-01

    Angiotensin II (Ang II) activates cytosolic Ca(2+)-dependent phospholipase A(2) (cPLA(2)), phospholipase D (PLD), p38 mitogen-activated protein kinase (MAPK), epidermal growth factor receptor (EGFR) and Akt in vascular smooth muscle cells (VSMC). This study was conducted to investigate the relationship between Akt activation by Ang II and other signaling molecules in rat VSMC. Ang II-induced Akt phosphorylation was significantly reduced by the PLD inhibitor 1-butanol, but not by its inactive analog 2-butanol, and by brefeldin A, an inhibitor of the PLD cofactor ADP-ribosylation factor, and in cells infected with retrovirus containing PLD(2) siRNA or transfected with PLD(2) antisense but not control LacZ or sense oligonucleotide. Diacylglycerol kinase inhibitor II diminished Ang II-induced and diC8-phosphatidic acid (PA)-increased Akt phosphorylation, suggesting that PLD-dependent Akt activation is mediated by PA. Ang II-induced EGFR phosphorylation was inhibited by 1-butanol and PLD(2) siRNA and also by cPLA(2) siRNA. In addition, the inhibitor of arachidonic acid (AA) metabolism 5,8,11,14-eicosatetraynoic acid (ETYA) reduced both Ang II- and AA-induced EGFR transactivation. Furthermore, ETYA, cPLA(2) antisense, and cPLA(2) siRNA attenuated Ang II-elicited PLD activation. p38 MAPK inhibitor SB202190 [4-(4-flurophenyl)-2-(4-hydroxyphenyl)-5-(4-pyridyl)1H-imidazole] reduced PLD activity and EGFR and Akt phosphorylation elicited by Ang II. Pyrrolidine-1, a cPLA(2) inhibitor, and cPLA(2) siRNA decreased p38 MAPK activity. These data indicate that Ang II-stimulated Akt activity is mediated by cPLA(2)-dependent, p38 MAPK regulated PLD(2) activation and EGFR transactivation. We propose the following scheme of the sequence of events leading to activation of Akt in VSMC by Ang II: Ang II-->cPLA(2)-->AA-->p38 MAPK-->PLD(2)-->PA-->EGFR-->Akt.

  5. LY2109761, a novel transforming growth factor β receptor type I and type II dual inhibitor, as a therapeutic approach to suppressing pancreatic cancer metastasis

    PubMed Central

    Melisi, Davide; Ishiyama, Satoshi; Sclabas, Guido M.; Fleming, Jason B.; Xia, Qianghua; Tortora, Giampaolo; Abbruzzese, James L.; Chiao, Paul J.

    2011-01-01

    Most pancreatic cancer patients present with inoperable disease or develop metastases after surgery. Conventional therapies are usually ineffective in treating metastatic disease. It is evident that novel therapies remain to be developed. Transforming growth factor β (TGF-β) plays a key role in cancer metastasis, signaling through the TGF-β type I/II receptors (TβRI/II). We hypothesized that targeting TβRI/II kinase activity with the novel inhibitor LY2109761 would suppress pancreatic cancer metastatic processes. The effect of LY2109761 has been evaluated on soft agar growth, migration, invasion using a fibroblast coculture model, and detachment-induced apoptosis (anoikis) by Annexin V flow cytometric analysis. The efficacy of LY2109761 on tumor growth, survival, and reduction of spontaneous metastasis have been evaluated in an orthotopic murine model of metastatic pancreatic cancer expressing both luciferase and green fluorescence proteins (L3.6pl/GLT). To determine whether pancreatic cancer cells or the cells in the liver microenvironment were involved in LY2109761-mediated reduction of liver metastasis, we used a model of experimental liver metastasis. LY2109761 significantly inhibited the L3.6pl/GLT soft agar growth, suppressed both basal and TGF-β1–induced cell migration and invasion, and induced anoikis. In vivo, LY2109761, in combination with gemcitabine, significantly reduced the tumor burden, prolonged survival, and reduced spontaneous abdominal metastases. Results from the experimental liver metastasis models indicate an important role for targeting TβRI/II kinase activity on tumor and liver microenvironment cells in suppressing liver metastasis. Targeting TβRI/II kinase activity on pancreatic cancer cells or the cells of the liver microenvironment represents a novel therapeutic approach to prevent pancreatic cancer metastasis. PMID:18413796

  6. Growth factor signalling.

    PubMed

    de Laat, S W; Boonstra, J; Defize, L H; Kruijer, W; van der Saag, P T; Tertoolen, L G; van Zoelen, E J; den Hertog, J

    1999-01-01

    Signalling between cells in the developing vertebrate embryo is essential for normal embryonic development. In the mid 1970's, signal transduction research started at the Hubrecht Laboratory with special emphasis on analysis of the signalling mechanisms that direct cell proliferation and differentiation. The introduction of in vitro model systems contributed tremendously to the success of the signal transduction research at the Hubrecht Laboratory. Initially neuroblastoma cell lines, and later embryonal carcinoma and embryonal stem cells played an important role in identification of the molecular key players in developmental signalling. For instance, embryonal carcinoma cells were used to identify and characterise polypeptide growth factors. Growth factor signalling research was extended to analysis of growth factor receptor activation. Moreover, the second messenger systems that are linked to growth factor receptors were studied, as well as the nuclear responses to growth factor receptor activation. Finally, the role of growth factor signalling in differentiation was established using embryonal carcinoma cells. Here, we will review work that was characteristic for the growth factor receptor signalling research that was done at the Hubrecht Laboratory between 1980 and the early 1990's.

  7. The Higher Response of Vascular Endothelial Growth Factor and Angiotensin-II to Human Chorionic Gonadotropin in Women with Polycystic Ovary Syndrome

    PubMed Central

    Qu, Junwei; Che, Yena; Xu, Pei; Xia, Yanjie; Wu, Xiaoke; Wang, Yong

    2015-01-01

    Background This research investigated the response of vascular active factors, vascular endothelial growth factor (VEGF) and angiotensin-II (AT-II) to ovarian stimulation during 24 hours in patients with polycystic ovary syndrome (PCOS). Materials and Methods In this clinical trial study, 52 patients with PCOS and 8 control cases were stimulated with human chorionic gonadotropin (HCG) on the 4th to 7th day of the patients’ natural or induced menstrual cycles. We measured VEGF and AT-II by radioimmunoassay before the injection (0 hour) and 3, 8, 12, 18 and 24 hours after the stimulation. Results After ovarian stimulation, there was substantially higher level of VEGF in typical PCOS patients than the other three groups at the 3 hour time point (p<0.05), while there were no significant differences in VEGF at all the other time points among the four groups. As for AT-II, before and at all time points after the ovarian stimulation, it seemed that the AT-II levels in patients’ sera with different phenotypes of PCOS by the Rotterdam criteria were all higher than in the control group although the differences were not statistically significant. The level of AT-II in typical PCOS patients was also significantly higher than the other three groups at the 3 hour time point (p<0.05), while no significant differences at all the other time points among the four groups were observed. Conclusion The response to the stimulation varied among patients with different phenotypes of PCOS according to the Rotterdam criteria. Serum VEGF and AT-II were possible contributors to an increased risk of developing ovarian hyperstimulation syndrome (OHSS) in patients with typical PCOS during the early follicular phase (3 hours) after ovarian stimulation (Registration Number: NCT02265861). PMID:25780518

  8. Targeted gene knockdown in zebrafish reveals distinct intraembryonic functions for insulin-like growth factor II signaling.

    PubMed

    White, Yvonne A R; Kyle, Joshua T; Wood, Antony W

    2009-09-01

    IGF-II is the predominant IGF ligand regulating prenatal growth in all vertebrates, including humans, but its central role in placental development has confounded efforts to fully elucidate its functions within the embryo. Here we use a nonplacental model vertebrate (zebrafish) to interrogate the intraembryonic functions of IGF-II signaling. The zebrafish genome contains two coorthologs of mammalian IGF2 (igf2a, igf2b), which exhibit distinct patterns of expression during embryogenesis. Expression of igf2a mRNA is restricted to the notochord, primarily during segmentation/neurulation. By contrast, igf2b mRNA is expressed in midline tissues adjacent to the notochord, with additional sites of expression in the ventral forebrain, and the pronephros. To identify their intraembryonic functions, we suppressed the expression of each gene with morpholino oligonucleotides. Knockdown of igf2a led to defects in dorsal midline development, characterized by delayed segmentation, notochord undulations, and ventral curvature. Similarly, suppression of igf2b led to defects in dorsal midline development but also induced ectopic fusion of the nephron primordia, and defects in ventral forebrain development. Subsequent onset of severe body edema in igf2b, but not igf2a morphants, further suggested a distinct role for igf2b in development of the embryonic kidney. Simultaneous knockdown of both genes increased the severity of dorsal midline defects, confirming a conserved role for both genes in dorsal midline development. Collectively, these data provide evidence that the zebrafish orthologs of IGF2 function in dorsal midline development during segmentation/neurulation, whereas one paralog, igf2b, has evolved additional, distinct functions during subsequent organogenesis.

  9. Krüppel-like factor KLF10 regulates transforming growth factor receptor II expression and TGF-β signaling in CD8+ T lymphocytes

    PubMed Central

    Papadakis, Konstantinos A.; Krempski, James; Reiter, Jesse; Svingen, Phyllis; Xiong, Yuning; Sarmento, Olga F.; Huseby, April; Johnson, Aaron J.; Lomberk, Gwen A.; Urrutia, Raul A.

    2014-01-01

    KLF10 has recently elicited significant attention as a transcriptional regulator of transforming growth factor-β1 (TGF-β1) signaling in CD4+ T cells. In the current study, we demonstrate a novel role for KLF10 in the regulation of TGF-β receptor II (TGF-βRII) expression with functional relevance in antiviral immune response. Specifically, we show that KLF10-deficient mice have an increased number of effector/memory CD8+ T cells, display higher levels of the T helper type 1 cell-associated transcription factor T-bet, and produce more IFN-γ following in vitro stimulation. In addition, KLF10−/− CD8+ T cells show enhanced proliferation in vitro and homeostatic proliferation in vivo. Freshly isolated CD8+ T cells from the spleen of adult mice express lower levels of surface TGF-βRII (TβRII). Congruently, in vitro activation of KLF10-deficient CD8+ T cells upregulate TGF-βRII to a lesser extent compared with wild-type (WT) CD8+ T cells, which results in attenuated Smad2 phosphorylation following TGF-β1 stimulation compared with WT CD8+ T cells. Moreover, we demonstrate that KLF10 directly binds to the TGF-βRII promoter in T cells, leading to enhanced gene expression. In vivo viral infection with Daniel's strain Theiler's murine encephalomyelitis virus (TMEV) also led to lower expression of TGF-βRII among viral-specific KLF10−/− CD8+ T cells and a higher percentage of IFN-γ-producing CD8+ T cells in the spleen. Collectively, our data reveal a critical role for KLF10 in the transcriptional activation of TGF-βRII in CD8+ T cells. Thus, KLF10 regulation of TGF-βRII in this cell subset may likely play a critical role in viral and tumor immune responses for which the integrity of the TGF-β1/TGF-βRII signaling pathway is crucial. PMID:25472963

  10. Stimulation of casein kinase II by epidermal growth factor: Relationship between the physiological activity of the kinase and the phosphorylation state of its beta subunit

    SciTech Connect

    Ackerman, P.; Osheroff, N. ); Glover, C.V.C. )

    1990-01-01

    To determine relationships between the hormonal activation of casein kinase II and its phosphorylation state, epidermal growth factor (EGF)-treated and EGF-naive human A-431 carcinoma cells were cultured in the presence of ({sup 32}P)orthophosphate. Immunoprecipitation experiments indicated that casein kinase II in the cytosol of EGF-treated cells contained approximately 3-fold more incorporated ({sup 32}P)phosphate than did its counterpart in untreated cells. Levels of kinase phosphorylation paralleled levels of kinase activity over a wide range of EGF concentrations as well as over a time course of hormone action. Approximately 97% of the incorporated ({sup 32}P)phosphate was found in the {beta} subunit of casein kinase II. Both activated and hormone-naive kinase contained radioactive phosphoserine and phosphothreonine but no phosphotyronsine. On the basis of proteolytic mapping experiments, EGF treatment of A-431 cells led to an increase in the average ({sup 32}P)phosphate content (i.e., hyperphosphorylation) of casein kinase II {beta} subunit peptides which were modified prior to hormone treatment. Finally, the effect of alkaline phosphatase on the reaction kinetics of activated casein kinase II indicated that hormonal stimulation of the kinase resulted from the increase in its phosphorylation state.

  11. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    SciTech Connect

    Sahni, Abha; Wang, Nadan; Alexis, Jeffrey

    2013-02-15

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reported that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease.

  12. FGF growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Takahashi, Kazuyuki

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  13. Differential expression of insulin-like growth factor I and II mRNAs during embryogenesis and early larval development in rabbitfish, Siganus guttatus.

    PubMed

    Ayson, Felix G; de Jesus, Evelyn Grace T; Moriyama, Shunsuke; Hyodo, Susumu; Funkenstein, Bruria; Gertler, Arieh; Kawauchi, Hiroshi

    2002-04-01

    In rodents, the expression of insulin-like growth factor II (IGF-II) is higher than that of insulin-like growth factor I (IGF-I) during fetal life while the reverse is true after birth. We wanted to examine whether this is also true in fish and whether IGF-I and IGF-II are differentially regulated during different stages of embryogenesis and early larval development in rabbitfish. We first cloned the cDNAs of rabbitfish IGF-I and IGF-II from the liver. Rabbitfish IGF-I has an open reading frame of 558 bp that codes for a signal peptide of 44 amino acids (aa), a mature protein of 68 aa, and a single form of E domain of 74 aa. Rabbitfish IGF-II, on the other hand, has an open reading frame of 645 bp that codes for a signal peptide of 47 aa, a mature protein of 70 aa, and an E domain of 98 aa. On the amino acid level, rabbitfish IGF-I shares 68% similarity with IGF-II. We then examined the relative expression of the two IGFs in unfertilized eggs, during different stages of embryogenesis, and in early larval stages of rabbitfish by a semiquantitative reverse transcription-polymerase chain reaction. Primers that amplify the mature peptide region of both IGFs were used and PCR for both peptides was done simultaneously, with identical PCR conditions for both. The identity of the PCR products was confirmed by direct sequencing. Contrary to published reports for seabream and rainbow trout, IGF-I mRNA was not detected in rabbitfish unfertilized eggs; it was first expressed in larvae soon after hatching. IGF-II mRNA, however, was expressed in unfertilized eggs, albeit weakly, and was already strongly expressed during the cleavage stage. mRNAs for both peptides were strongly expressed in the larvae, although IGF-II mRNA expression was higher than IGF-I expression.

  14. Effect of some peroxisome proliferators on transforming growth factor-beta 1 gene expression and insulin-like growth factor II/mannose-6-phosphate receptor gene expression in rat liver.

    PubMed

    Rumsby, P C; Davies, M J; Price, R J; Lake, B G

    1994-02-01

    Male Sprague-Dawley rats were given daily oral doses of either corn oil (control), 80 mg/kg nafenopin (NAF), 50 mg/kg methylclofenapate (MCP), 50 mg/kg Wy-14,643 (WY) or 250 mg/kg clofibric acid (CA) for 7 days. All four compounds increased relative liver weight and produced hepatic peroxisome proliferation as assessed by induction of both peroxisomal (palmitoyl-CoA oxidation) and microsomal (lauric acid 12-hydroxylase) fatty acid oxidising enzyme activities. RNA was extracted from liver samples and analysed for expression of transforming growth factor-beta 1 (TGF-beta 1) and the insulin-like growth factor II/mannose-6-phosphate (IGFII/Man6P) receptor (which may be involved in transporting latent TGF-beta 1 into hepatocytes). TGF-beta 1 mRNA levels were increased to 151-178% of control by all four compounds, whereas NAF, MCP and WY, but not CA, increased IGFII/Man6P receptor mRNA levels to 195-209% of control. The induction of TGF-beta 1 and IGFII/Man6P receptor expression by short term treatment with peroxisome proliferators may represent an adaptive response to limit the initial hyperplastic effects of such compounds.

  15. Hypoglycemia in a dog with a leiomyoma of the gastric wall producing an insulin-like growth factor II-like peptide.

    PubMed

    Boari, A; Barreca, A; Bestetti, G E; Minuto, F; Venturoli, M

    1995-06-01

    A 12-year-old mixed-breed male dog was referred to the Clinica Medica Veterinaria of Bologna University for recurrent episodes of seizures due to hypoglycemia with abnormally low plasma insulin levels (18 pmol/l). Resection of a large leiomyoma (780 g) of the gastric wall resulted in a permanent resolution of the hypoglycemic episodes. Insulin-like growth factors I and II (IGF-I and -II) were measured by RIA in serum before and after surgery and in tumor tissue. Results were compared to the serum concentration of 54 normal and to the tissue concentration observed in eight non-hypoglycemic dog gastric wall extracts. Before surgery, circulating immunoreactive IGF-I was 0.92 nmol/l, which is significantly lower than the control values (16.92 +/- 8.44 nmol/l, range 3.53-35.03), while IGF-II was 152 nmol/l, which is significantly higher than the control values (42.21 +/- 3.75, range 31.99-50.74). After surgery, IGF-I increased to 6.80 nmol/l while IGF-II decreased to 45.52 nmol/l. Tumor tissue IGF-II concentration was higher than normal (5.66 nmol/kg tissue as compared to a range in normal gastric wall tissue of 1.14-3.72 nmol/kg), while IGF-I was 0.08 nmol/kg tissue, which is close to the lowest normal value (range in controls, 0.08-1.18 nmol/kg). Partial characterization of IGF-II immunoreactivity extracted from tissue evidenced a molecular weight similar to that of mature IGF-II, thus excluding that peptide released by the tumor is a precursor molecule.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Growth factors for nanobacteria

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Kajander, E. Olavi

    1999-12-01

    Nanobacteria are novel microorganisms recently isolated from fetal bovine serum and blood of cows and humans. These coccoid, gram negative bacteria in alpha-2 subgroup of Proteobacteria grow slowly under mammalian cell culture conditions but not in common media for microbes. Now we have found two different kinds of culture supplement preparations that improve their growth and make them culturable in the classical sense. These are supernatant fractions of conditioned media obtained from 1 - 3 months old nanobacteria cultures and from about a 2 weeks old Bacillus species culture. Both improved multiplication and particle yields and the latter increased their resistance to gentamicin. Nanobacteria cultured with any of the methods shared similar immunological property, structure and protein pattern. The growth supporting factors were heat-stabile and nondialyzable, and dialysis improved the growth promoting action. Nanobacteria formed stony colonies in a bacteriological medium supplemented with the growth factors. This is an implication that nanobacterial growth is influenced by pre-existing bacterial flora.

  17. Peptide growth factors, part A

    SciTech Connect

    Barnes, D.; Sirbasku, D.A.

    1987-01-01

    This book contains information on the following topics: Epidermal Growth Factor;Transforming Growth Factors;Bone and Cartilage Growth Factors;Somatomedin/Insulin-Like Growth Factors;Techniques for the Study of Growth Factor Activity;Assays, Phosphorylation, and Surface Membrane Effects.

  18. Thrombospondins I and II messenger RNA expression in lung carcinoma: relationship with p53 alterations, angiogenic growth factors, and vascular density.

    PubMed

    Fontanini, G; Boldrini, L; Calcinai, A; Chinè, S; Lucchi, M; Mussi, A; Angeletti, C A; Basolo, F; Bevilacqua, G

    1999-01-01

    Thrombospondin (TSP) is a Mr 450,000 multifunctional matrix glycoprotein that interferes with tumor growth, angiogenesis, and metastasis. It has recently been shown that TSP expression is enhanced by the product of the p53 gene and that a down-regulation of TSP may be observed when alterations of the p53 protein occur. Moreover, a number of studies have demonstrated a regulatory activity of p53 on human vascular endothelial growth factor (VEGF), although additional investigations will be necessary to understand their relationship. In non-small cell lung carcinoma (NSCLC), neoangiogenesis, p53 alterations, and VEGF expression seem to have meaningful implications in the development and progression of this type of cancer. The aim of this study is to identify and quantitate TSP I and TSP II mRNA in NSCLCs with respect to p53 alterations, angiogenic growth factor expression, and microvascular density. A series of 24 cases of NSCLC were analyzed. Eleven of 24 of the cases were positive for TSP II mRNA, whereas 8 of 24 showed TSP I mRNA expression. A significant inverse association was found between TSP I mRNA and fibroblast growth factor (FGF) protein expression (P = 0.00001). Tumors with low FGF protein expression (< or = 40% of positive cells) presented a number of TSP I cDNA molecules, significantly higher than tumors expressing high levels of FGF protein. No association was found between TSP mRNA expression and other angiogenic growth factors (i.e., VEGF) or tumoral neovascularization. On the contrary, tumors with high levels of FGF showed a higher number of microvessels (P = 0.05). By PCR-single-strand conformational polymorphism analysis, we observed aberrations of the p53 gene in 19 of the 24 tumor samples. No association was found between p53 alterations and TSP mRNA expression. Instead, an interestingly significant association was found between the presence of p53 mutations and high VEGF protein expression (P = 0.01) and neovascularization (P = 0.03). Highly

  19. New microbial growth factor

    NASA Technical Reports Server (NTRS)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  20. Differential expression and localization of insulin-like growth factors I and II in cutaneous wounds of diabetic and nondiabetic mice.

    PubMed Central

    Brown, D. L.; Kane, C. D.; Chernausek, S. D.; Greenhalgh, D. G.

    1997-01-01

    Insulin-like growth factor (IGF)-I has profound effects on tissue repair. IGF-II is felt to exert its influence predominately during fetal development. The purpose of this study was to localize and quantify the expression of IGF-I and IGF-II mRNA and protein during early wound healing in diabetic and nondiabetic mice. The hypothesis is that IGF-I and IGF-II are up-regulated in the healing wound, but their expression is inhibited in diabetics. Full-thickness cutaneous wounds were made on genetically diabetic (C57BL/ KsJ-db/db) mice and their nondiabetic littermates. At various times after wounding, one-half of each wound was fixed and paraffin embedded for immunohistochemistry and in situ hybridization. The other half was flash-frozen for quantification of IGF mRNA by competitive reverse transcriptase polymerase chain reaction and protein by radioimmunoassay. IGF-I mRNA rose sharply in nondiabetics at day 3. Expression in diabetic wounds was significantly delayed until 14 days after wounding. Even then, diabetic IGF-I mRNA levels were 50% less than those in the nondiabetics at their peak. Although not usually considered active in adult life, IGF-II mRNA expression was augmented after wounding, peaking at 3 days in nondiabetics. As with IGF-I, diabetic wounds exhibited a delay in IGF-II mRNA expression, with maximal levels at 10 days after wounding. Interestingly, peak concentrations of IGF-II mRNA were four times greater in diabetics versus nondiabetics. Trends in IGF-I protein expression followed the patterns of mRNA expression. IGF-I levels in nondiabetics were initially double those in diabetics and peaked at 5 days. Diabetic wound concentrations of IGF-I did not peak until 21 days after wounding, at which time they rose to nondiabetic levels. IGF-I and IGF-II proteins were localized to the advancing epithelial edge, to the epithelial cells of adjacent hair follicles, and to the granulation tissue of the wounds. IGF-I and IGF-II mRNA expression was noted in the

  1. A Case of Transforming Growth Factor-β-Induced Gene-Related Oculorenal Syndrome: Granular Corneal Dystrophy Type II with a Unique Nephropathy

    PubMed Central

    Iwafuchi, Yoichi; Morioka, Tetsuo; Oyama, Yuko; Nozu, Kandai; Iijima, Kazumoto; Narita, Ichiei

    2016-01-01

    Many types of inherited renal diseases have ocular features that occasionally support a diagnosis. The following study describes an unusual example of a 40-year-old woman with granular corneal dystrophy type II complicated by renal involvement. These two conditions may coincidentally coexist; however, there are some reports that demonstrate an association between renal involvement and granular corneal dystrophy type II. Granular corneal dystrophy type II is caused by a mutation in the transforming growth factor-β-induced (TGFBI) gene. The patient was referred to us because of the presence of mild proteinuria without hematuria that was subsequently suggested to be granular corneal dystrophy type II. A kidney biopsy revealed various glomerular and tubular basement membrane changes and widening of the subendothelial space of the glomerular basement membrane by electron microscopy. However, next-generation sequencing revealed that she had no mutation in a gene that is known to be associated with monogenic kidney diseases. Conversely, real-time polymerase chain reaction, using a simple buccal swab, revealed TGFBI heteromutation (R124H). The TGFBI protein plays an important role in cell-collagen signaling interactions, including extracellular matrix proteins which compose the renal basement membrane. This mutation can present not only as corneal dystrophy but also as renal disease. TGFBI-related oculorenal syndrome may have been unrecognized. It is difficult to diagnose this condition without renal electron microscopic studies. To the best of our knowledge, this is the first detailed report of nephropathy associated with a TGFBI mutation. PMID:27781206

  2. Peptide growth factors, part B

    SciTech Connect

    Barnes, D.; Sirbasku, D.A.

    1987-01-01

    This book discusses the following topics: Platelet-Derived Growth Factor;Nerve and Glial Growth Factors;PC12 Pheochromocytoma Cells;Techniques for the Study of Growth Factor Activity;Genetic Approaches and Biological Effects.

  3. Interplay between microRNA-17-5p, insulin-like growth factor-II through binding protein-3 in hepatocellular carcinoma

    PubMed Central

    Habashy, Danira Ashraf; El Tayebi, Hend Mohamed; Fawzy, Injie Omar; Hosny, Karim Adel; Esmat, Gamal; Abdelaziz, Ahmed Ihab

    2016-01-01

    AIM To investigate the effect of microRNA on insulin-like growth factor binding protein-3 (IGFBP-3) and hence on insulin-like growth factor-II (IGF-II) bioavailability in hepatocellular carcinoma (HCC). METHODS Bioinformatic analysis was performed using microrna.org, DIANA lab and Segal lab softwares. Total RNA was extracted from 23 HCC and 10 healthy liver tissues using mirVana miRNA Isolation Kit. microRNA-17-5p (miR-17-5p) expression was mimicked and antagonized in HuH-7 cell lines using HiPerFect Transfection Reagent, then total RNA was extracted using Biozol reagent then reverse transcribed into cDNA followed by quantification of miR-17-5p and IGFBP-3 expression using TaqMan real-time quantitative PCR. Luciferase reporter assay was performed to validate the binding of miR-17-5p to the 3’UTR of IGFBP-3. Free IGF-II protein was measured in transfected HuH-7 cells using IGF-II ELISA kit. RESULTS Bioinformatic analysis revealed IGFBP-3 as a potential target for miR-17-5p. Screening of miR-17-5p and IGFBP-3 revealed a moderate negative correlation in HCC patients, where miR-17-5p was extensively underexpressed in HCC tissues (P = 0.0012), while IGFBP-3 showed significant upregulation in the same set of patients (P = 0.0041) compared to healthy donors. Forcing miR-17-5p expression in HuH-7 cell lines showed a significant downregulation of IGFBP-3 mRNA expression (P = 0.0267) and a significant increase in free IGF-II protein (P = 0.0339) compared to mock untransfected cells using unpaired t-test. Luciferase assay validated IGFBP-3 as a direct target of miR-17-5p; luciferase activity was inhibited by 27.5% in cells co-transfected with miR-17-5p mimics and the construct harboring the wild-type binding region 2 of IGFBP-3 compared to cells transfected with this construct alone (P = 0.0474). CONCLUSION These data suggest that regulating IGF-II bioavailability and hence HCC progression can be achieved through targeting IGFBP-3 via manipulating the expression of mi

  4. Interplay between microRNA-17-5p, insulin-like growth factor-II through binding protein-3 in hepatocellular carcinoma

    PubMed Central

    Habashy, Danira Ashraf; El Tayebi, Hend Mohamed; Fawzy, Injie Omar; Hosny, Karim Adel; Esmat, Gamal; Abdelaziz, Ahmed Ihab

    2016-01-01

    AIM To investigate the effect of microRNA on insulin-like growth factor binding protein-3 (IGFBP-3) and hence on insulin-like growth factor-II (IGF-II) bioavailability in hepatocellular carcinoma (HCC). METHODS Bioinformatic analysis was performed using microrna.org, DIANA lab and Segal lab softwares. Total RNA was extracted from 23 HCC and 10 healthy liver tissues using mirVana miRNA Isolation Kit. microRNA-17-5p (miR-17-5p) expression was mimicked and antagonized in HuH-7 cell lines using HiPerFect Transfection Reagent, then total RNA was extracted using Biozol reagent then reverse transcribed into cDNA followed by quantification of miR-17-5p and IGFBP-3 expression using TaqMan real-time quantitative PCR. Luciferase reporter assay was performed to validate the binding of miR-17-5p to the 3’UTR of IGFBP-3. Free IGF-II protein was measured in transfected HuH-7 cells using IGF-II ELISA kit. RESULTS Bioinformatic analysis revealed IGFBP-3 as a potential target for miR-17-5p. Screening of miR-17-5p and IGFBP-3 revealed a moderate negative correlation in HCC patients, where miR-17-5p was extensively underexpressed in HCC tissues (P = 0.0012), while IGFBP-3 showed significant upregulation in the same set of patients (P = 0.0041) compared to healthy donors. Forcing miR-17-5p expression in HuH-7 cell lines showed a significant downregulation of IGFBP-3 mRNA expression (P = 0.0267) and a significant increase in free IGF-II protein (P = 0.0339) compared to mock untransfected cells using unpaired t-test. Luciferase assay validated IGFBP-3 as a direct target of miR-17-5p; luciferase activity was inhibited by 27.5% in cells co-transfected with miR-17-5p mimics and the construct harboring the wild-type binding region 2 of IGFBP-3 compared to cells transfected with this construct alone (P = 0.0474). CONCLUSION These data suggest that regulating IGF-II bioavailability and hence HCC progression can be achieved through targeting IGFBP-3 via manipulating the expression of miRNAs.

  5. Clinical Comparison of Autogenous Bone Graft with and without Plasma Rich in Growth Factors in the Treatment of Grade II Furcation Involvement of Mandibular Molars

    PubMed Central

    Lafzi, Ardeshir; Shirmohammadi, Adileh; Faramarzi, Masoumeh; Jabali, Sahar; Shayan, Arman

    2013-01-01

    Background and aims Plasma rich in growth factors (PRGF) is a concentrated suspension of growth factors, which is used to promote periodontal tissue regeneration. The aim of this randomized, controlled, clinical trial was to evaluate of the treatment of grade II mandibular molar furcation involvement using autogenous bone graft with and without PRGF. Materials and methods In this double-blind clinical trial, thirty mandibular molars with grade II furcation involvement in 30 patients were selected. The test group received bone graft combined with PRGF, while the control group was treated with bone graft only. Clinical parameters included clinical probing depth (CPD), vertical clinical attachment level (V-CAL), horizontal clinical attachment level (H-CAL), location of gingival margin (LGM), surgically exposed horizontal probing depth of bony defect (E-HPD), vertical depth of bone crest (V-DBC), vertical depth of the base of bony defect (V-DBD), and length of the intrabony defect (LID). After six months, a re-entry surgery was performed. Data were analyzed by SPSS 14, using Kolmogorov, Mann-Whitney U, and paired t-test. Results After 6 months, both treatment methods led to significant improvement in V-CAL and H-CAL and significant decreases in CPD, E-HPD, V-DBD and LID; there was no significant difference in LGM and V-DBC in any of the treated groups compared to the baseline values. Also, none of the parameters showed significant differences between the study groups. Conclusion Although autogenous bone grafts, with or without PRGF, were successful in treating grade II furcation involvement, no differences between the study groups were observed. PMID:23486928

  6. Response of broilers selected on carcass quality to dietary protein supply: live performance, muscle development, and circulating insulin-like growth factors (IGF-I and -II).

    PubMed

    Tesseraud, S; Pym, R A E; Le Bihan-Duval, E; Duclos, M J

    2003-06-01

    The effect of dietary protein supply on muscle development and circulating concentrations of insulin-like growth factors (IGF)-I and -II was examined in chickens selected for increased breast yield and decreased fatness (quality, QL) and in its control line (CL). CL and QL chickens were fed isoenergetic diets containing 121.5 or 215.8 g CP/kg during a 12-d period; comparisons were performed at 33 d of age. Birds given the high protein diet grew faster, ate less feed, had lower feed conversion ratio (FCR), and higher muscle weights than their counterparts given the low protein diet. The muscle weight response to protein supply differed between muscles in both lines, with pectoralis major appearing more sensitive than sartorius. The response of the gastrocnemius muscle depended on the line. Selection for carcass quality increased (P < 0.01) body weight, growth rate, feed intake, pectoralis major and sartorius muscle weights, and pectoralis major muscle proportion. There was, however, no line difference in FCR or in sartorius muscle proportion. The weight and proportion of the gastrocnemius muscle were higher (P < 0.05) in the QL than the CL chickens on the high protein diet, but there was no line difference for the low protein diet. Plasma levels of IGF-I, and to a lesser extent IGF-II, were lower (P < 0.01) in protein-restricted chickens. No difference in circulating IGF-II was observed between the lines. Concentrations of IGF-I were higher (P < 0.05) in QL than CL chickens, which may contribute to improved body composition for this genotype.

  7. Insulin-like growth factor II messenger RNA-binding protein-3 is an indicator of malignant phyllodes tumor of the breast.

    PubMed

    Takizawa, Katsumi; Yamamoto, Hidetaka; Taguchi, Kenichi; Ohno, Shinji; Tokunaga, Eriko; Yamashita, Nami; Kubo, Makoto; Nakamura, Masafumi; Oda, Yoshinao

    2016-09-01

    The aim of this study was to elucidate the clinicopathological and prognostic significance of the expressions of insulin-like growth factor II mRNA-binding protein-3 (IMP3) and epidermal growth factor receptor (EGFR) in phyllodes tumors (PTs). Immunohistochemical staining for IMP3 and EGFR was performed in 130 cases of primary PTs (83 benign, 28 borderline, 19 malignant), 34 recurrent/metastatic PTs, and 26 fibroadenomas (FAs). Among the primary tumors, a high expression of IMP3 was significantly more frequently present in malignant PTs (17/19, 89%) than in the FAs (0/26, 0%), benign PTs (0/83, 0%) and borderline PTs (3/28, 11%). The recurrent and metastatic lesions of malignant PTs also showed high IMP3 expression (3/5 [60%] and 6/6 [100%], respectively). Most malignant PTs showed strong IMP3 expression at the interductal area or more diffusely, whereas weak and focal (low) expression of IMP3 was limited to the periductal area in FAs and benign PTs. EGFR overexpression was significantly correlated with tumor grade and high IMP3 expression. Overexpressions of IMP3 and EGFR were significantly associated with shorter periods of metastasis-free and disease-free survival. The results suggest that high expressions of IMP3 and EGFR with a characteristic staining pattern may be helpful for both identifying malignant PT and predicting the prognosis of these tumors. PMID:27137988

  8. Responsiveness to transforming growth factor-beta (TGF-beta)-mediated growth inhibition is a function of membrane-bound TGF-beta type II receptor in human breast cancer cells.

    PubMed

    Lynch, M A; Petrel, T A; Song, H; Knobloch, T J; Casto, B C; Ramljak, D; Anderson, L M; DeGroff, V; Stoner, G D; Brueggemeier, R W; Weghorst, C M

    2001-01-01

    Transforming growth factor-beta (TGF-beta) is a potent inhibitor of growth and proliferation of breast epithelial cells, and loss of sensitivity to its effects has been associated with malignant transformation and tumorigenesis. The biological effects of TGF-beta are mediated by the TGF-beta receptor complex, a multimer composed of TGF-beta receptor type I (TbetaR-I) and TGF-beta receptor type II (TbetaR-II) subunits. Evidence suggests that loss of expression of Tbeta3R-II is implicated in the loss of sensitivity of tumorigenic breast cell lines to TGF-beta-mediated growth inhibition. A panel of human breast cell lines, including the immortalized MCF-10F and tumorigenic MCF-7, ZR75-1, BT474, T47-D, MDA-MB231, BT20, and SKBR-3 cell lines, was characterized for responsiveness to TGF-beta-induced G1 growth arrest. Only the nontumorigenic MCF-10F and the tumorigenic MDA-MB231 cell lines demonstrated a significant inhibitory response to TGF-beta1 and a significant binding of 125I-labeled TGF-beta ligand. While expression of TbetaR-I mRNA was similar across the panel of cell lines, TbetaR-II mRNA expression was decreased significantly in all seven tumorigenic cell lines in comparison with the nontumorigenic MCF- 10F cell line. When total cellular protein was fractionated by centrifugation, TbetaR-I protein was observed in both the cytosolic and membrane fractions at similar levels in all cell lines; however, TbetaR-II protein was present in the cytosolic fraction in all cell lines, but was observed in the membrane fraction of only the TGF-beta-responsive MCF-10F and MDA-MB231 cells. Thus, lack of membrane-bound TbetaR-II protein appears to be an important determinant of resistance to TGF-beta-mediated growth inhibition in this group of breast cell lines. PMID:11444526

  9. Insulin-Like Growth Factor II mRNA-Binding Protein 3 Expression Correlates with Poor Prognosis in Acral Lentiginous Melanoma

    PubMed Central

    Sheen, Yi-Shuan; Liao, Yi-Hua; Lin, Ming-Hsien; Chiu, Hsien-Ching; Jee, Shiou-Hwa; Liau, Jau-Yu

    2016-01-01

    Insulin-like growth factor-II mRNA-binding protein 3 (IMP-3) is an RNA-binding protein expressed in multiple cancers, including melanomas. However, the expression of IMP-3 has not been investigated in acral lentiginous melanoma (ALM). This study sought to elucidate its prognostic value in ALMs. IMP-3 expression was studied in 93 patients diagnosed with ALM via immunohistochemistry. Univariate and multivariate analyses for survival were performed, according to clinical and histologic parameters, using the Cox proportional hazard model. Survival curves were graphed using the Kaplan-Meier method. IMP-3 was over-expressed in 70 out of 93 tumors (75.3%). IMP-3 expression correlated with thick and high-stage tumor and predicted poorer overall, melanoma-specific, recurrence-free and distant metastasis-free survivals (P = 0.002, 0.006, 0.008 and 0.012, respectively). Further analysis showed that patients with tumor thickness ≤ 4.0 mm and positive IMP-3 expression had a significantly worse melanoma-specific survival than those without IMP-3 expression (P = 0.048). IMP-3 (hazard ratio 3.67, 95% confidence intervals 1.35–9.97, P = 0.011) was confirmed to be an independent prognostic factor for melanoma-specific survival in multivariate survival analysis. Positive IMP-3 expression was an important prognostic factor for ALMs. PMID:26796627

  10. Treatment of Mandibular Molar Class II Furcation Defects in Humans With Bovine Porous Bone Mineral in Combination With Plasma Rich in Growth Factors

    PubMed Central

    Mansouri, S. Sadat; Ghasemi, M.; Darmian, S. Saljughi; Pourseyediyan, T.

    2012-01-01

    Objective: The purpose of the present randomized clinical trial study was to compare the effectiveness of Bovine Porous Bone Mineral (BPBM) with and without Plasma Rich in Growth Factors (PRGF) in the treatment of mandibular Class II furcation defects. Materials and Methods: In seven patients, nine pairs of symmetric buccal or lingual mandibular class II furcation defects were treated. In each patient, one defect received BPBM (control) and the other received BPBM/PRGF (test) by random assignment. Clinical measurements were made both at baseline and 6-month evaluation. Results: Similar improvements were observed with both treatment modalities. Significant reductions were gained in the gingival index, probing depth and relative vertical clinical attachment level. Plaque index and gingival recession changes were not significant in both groups. The mean probing depth reductions were 2.67±0.87 mm for the control group and 3.22±1.56 mm for the test group (p<0.001). The mean relative vertical clinical attachment level gains were 1.57±0.96 mm (p<0.001) and 1.65±1.24 mm (p<0.004) in the control and test groups, respectively. In the test group, the relative horizontal clinical attachment level reduced from 5.87±0.96 mm to 4.58±1.02 mm (p<0.02). No significant differences were observed in all clinical parameters 6 months postoperatively between the two groups. Conclusion: The application of a combined technique using BPBM/PRGF, compared to the BPBM alone, resulted in greater healing, although not significant, in the treatment of mandibular class II furcation defects. PMID:22924101

  11. Effect of IGF-II (insulin-like growth factor-II) genotype on the quality of dry-cured hams and shoulders.

    PubMed

    Reina, Raquel; López-Buesa, Pascual; Sánchez del Pulgar, José; Ventanas, Jesús; García, Carmen

    2012-12-01

    The aim of this study was to investigate the effect of the paternal allele (homozygous AA and heterozygous AG) of the IGF-II gene on the fat content, fatty acid composition and sensory characteristics of dry-cured hams and shoulders. The effects were more evident in the subcutaneous fat thickness than in the intramuscular fat (IMF) content, and in the dry-cured hams rather than the dry-cured shoulders. Subcutaneous fat thickness was significantly higher in AG dry-cured hams and shoulders; however, IMF content was only significantly higher in AG dry-cured hams. These effects produce changes in fatty acid composition and sensory characteristics when comparing both batches of each product, but the behavior differed with the type of product. Sensory characteristics were similar in both batches of dry-cured hams in spite of the differences in IMF content. Nevertheless, AG dry-cured shoulders showed higher scores in most of the attributes evaluated, despite the IMF content being similar between batches.

  12. Fibroblast Growth Factor 2-A Predictor of Outcome for Patients Irradiated for Stage II-III Non-Small-Cell Lung Cancer

    SciTech Connect

    Rades, Dirk; Setter, Cornelia; Dahl, Olav; Schild, Steven E.; Noack, Frank

    2012-01-01

    Purpose: The prognostic value of the tumor cell expression of the fibroblast growth factor 2 (FGF-2) in patients with non-small-cell lung cancer (NSCLC) is unclear. The present study investigated the effect of tumor cell expression of FGF-2 on the outcome of 60 patients irradiated for Stage II-III NSCLC. Methods and Materials: The effect of FGF-2 expression and 13 additional factors on locoregional control (LRC), metastasis-free survival (MFS), and overall survival (OS) were retrospectively evaluated. These additional factors included age, gender, Karnofsky performance status, histologic type, histologic grade, T and N category, American Joint Committee on Cancer stage, surgery, chemotherapy, pack-years, smoking during radiotherapy, and hemoglobin during radiotherapy. Locoregional failure was identified by endoscopy or computed tomography. Univariate analyses were performed with the Kaplan-Meier method and the Wilcoxon test and multivariate analyses with the Cox proportional hazard model. Results: On univariate analysis, improved LRC was associated with surgery (p = .017), greater hemoglobin levels (p = .036), and FGF-2 negativity (p <.001). On multivariate analysis of LRC, surgery (relative risk [RR], 2.44; p = .037), and FGF-2 expression (RR, 5.06; p <.001) maintained significance. On univariate analysis, improved MFS was associated with squamous cell carcinoma (p = .020), greater hemoglobin levels (p = .007), and FGF-2 negativity (p = .001). On multivariate analysis of MFS, the hemoglobin levels (RR, 2.65; p = .019) and FGF-2 expression (RR, 3.05; p = .004) were significant. On univariate analysis, improved OS was associated with a lower N category (p = .048), greater hemoglobin levels (p <.001), and FGF-2 negativity (p <.001). On multivariate analysis of OS, greater hemoglobin levels (RR, 4.62; p = .002) and FGF-2 expression (RR, 3.25; p = .002) maintained significance. Conclusions: Tumor cell expression of FGF-2 appeared to be an independent negative predictor

  13. Stability Analysis of an Inline Peptide-based Conjugate for Metal Delivery: Nickel(II)-claMP Tag Epidermal Growth Factor as a Model System

    PubMed Central

    Mills, Brittney J.; Laurence, Jennifer S.

    2014-01-01

    Metals are a key component of many diagnostic imaging and biotechnology applications, and the majority of cancer patients receive a platinum-based drug as part of their treatment. Significant effort has been devoted to developing tight binding synthetic chelators to enable effective targeted delivery of metal-based conjugates, with most successes involving lanthanides rather than transition metals for diagnostic imaging. Chemical conjugation modifies the protein’s properties and generates a heterogeneous mixture of products. Chelator attachment is typically done by converting the amino group on lysines to an amide, which can impact the stability and solubility of the targeting protein and these properties vary among the set of individual conjugate species. Site-specific attachment is sought to reduce complexity and control stability. Here, the metal abstraction peptide (MAP) technology was applied to create the claMP Tag, an inline platform for generating site-specific conjugates involving transition metals. The claMP Tag was genetically encoded into epidermal growth factor (EGF) and loaded with nickel(II) as a model system to demonstrate that the tag within the homogeneous inline conjugate presents sufficient solution stability to enable biotechnology applications. The structure and disulfide network of the protein and chemical stability of the claMP Tag and EGF components were characterized. PMID:25212829

  14. Insulin-like growth factor II mRNA binding protein 3 (IMP3) is overexpressed in prostate cancer and correlates with higher Gleason scores

    PubMed Central

    2010-01-01

    Background The oncofetal protein insulin-like growth factor II mRNA binding protein 3 (IMP3) is an important factor for cell-migration and adhesion in malignancies. Recent studies have shown a remarkable overexpression of IMP3 in different human malignant neoplasms and also revealed it as an important prognostic marker in some tumor entities. To our knowledge, IMP3 expression has not been investigated in prostate carcinomas so far. Methods Immunohistochemical stainings for IMP3 were performed on tissue microarray (TMA) organized samples from 507 patients: 31 normal prostate tissues, 425 primary carcinomas and 51 prostate cancer metastases or castration-resistant prostate cancers (CRPC). IMP3 immunoreactivity was semiquantitatively scored and correlated with clinical-pathologic parameters including survival. Results IMP3 is significantly stronger expressed in prostate carcinomas compared to normal prostate tissues (p < 0.0001), but did not show significant correlation with the pT-stage, the proliferation index (MIB1), preoperative serum PSA level and the margin status. Only a weak and slightly significant correlation was found with the Gleason score and IMP3 expression failed to show prognostic significance in clinico-pathological correlation-analyses. Conclusions Although IMP3 is overexpressed in a significant proportion of prostate cancer cases, which might be of importance for novel therapeutic approaches, it does not appear to possess any immediate diagnostic or prognostic value, limiting its potential as a tissue biomarker for prostate cancer. These results might be corroborated by the fact, that two independent tumor cohorts were separately reviewed. PMID:20591150

  15. Serum "big insulin-like growth factor II" from patients with tumor hypoglycemia lacks normal E-domain O-linked glycosylation, a possible determinant of normal propeptide processing.

    PubMed Central

    Daughaday, W H; Trivedi, B; Baxter, R C

    1993-01-01

    The insulin-like growth factor II (IGF-II) gene is overexpressed in many mesenchymal tumors and can lead to non-islet-cell tumor hypoglycemia (NICTH). ProIGF-II consists of the 67 aa of IGF-II with a carboxyl 89-aa extension, the E domain. A derivative of proIGF-II containing only the first 21 aa of the E domain [proIGF-II-(E1-21)] has been isolated by others from normal serum and has O-linked glycosylation. We found that the "big IGF-II" of normal serum, as detected by an RIA directed against residues 1-21 of the E domain of proIGF-II, was reduced in size by treatment with neuraminidase and O-glycosidase. The big IGF-II, which is greatly increased in NICTH sera, was unaffected by neuraminidase and O-glycosidase treatment. We have also shown that big IGF-II from normal serum is retained by jacalin lectin columns and that big IGF-II from NICTH serum was not retained, indicating that it lacked O-glycosylation. Normal O-linked glycosylation may be required for proper peptidase processing of proIGF-II. The lack of normal O-linked glycosylation by tumors may explain the predominance of big IGF-II in NICTH sera. In normal serum, most of the IGF-II is present in a 150-kDa ternary complex with IGF-II binding protein (IGFBP) 3 and alpha subunit. In NICTH serum, however, the complexes carrying big IGF-II are < 50 kDa. We investigated whether big IGF-II of NICTH was responsible for this abnormality. Tumor big IGF-II and IGF-II were equally effective in forming the 150-kDa complex with purified IGFBP-3 and 125I-labeled alpha subunit. Both 125I-labeled IGF-II and 125I-labeled proIGF-II-(E1-21), when incubated with normal serum, formed the 150-kDa complex as detected by Superose 12 exclusion chromatography. We conclude that the nonglycosylated big IGF-II of NICTH serum can form normal complexes with serum IGFBPs. The defective binding in NICTH is attributable to defective IGFBP-3 binding. PMID:7685912

  16. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling.

    PubMed

    Quan, Taihao; He, Tianyuan; Kang, Sewon; Voorhees, John J; Fisher, Gary J

    2004-09-01

    Ultraviolet (UV) irradiation from the sun reduces production of type I procollagen (COLI), the major structural protein in human skin. This reduction is a key feature of the pathophysiology of premature skin aging (photoaging). Photoaging is the most common form of skin damage and is associated with skin carcinoma. TGF-beta/Smad pathway is the major regulator of type I procollagen synthesis in human skin. We have previously reported that UV irradiation impairs transforming growth factor-beta (TGF-beta)/Smad signaling in mink lung epithelial cells. We have investigated the mechanism of UV irradiation impairment of the TGF-beta/Smad pathway and the impact of this impairment on type I procollagen production in human skin fibroblasts, the major collagen-producing cells in skin. We report here that UV irradiation impairs TGF-beta/Smad pathway in human skin by down-regulation of TGF-beta type II receptor (TbetaRII). This loss of TbetaRII occurs within 8 hours after UV irradiation and precedes down-regulation of type I procollagen expression in human skin in vivo. In human skin fibroblasts, UV-induced TbetaRII down-regulation is mediated by transcriptional repression and results in 90% reduction of specific, cell-surface binding of TGF-beta. This loss of TbetaRII prevents downstream activation of Smad2/3 by TGF-beta, thereby reducing expression of type I procollagen. Preventing loss of TbetaRII by overexpression protects against UV inhibition of type I procollagen gene expression in human skin fibroblasts. UV-induced down-regulation of TbetaRII, with attendant reduction of type I procollagen production, is a critical molecular mechanism in the pathophysiology of photoaging.

  17. Expression and significance of transforming growth factor-β receptor type II and DPC4/Smad4 in non-small cell lung cancer

    PubMed Central

    CHEN, HONG; WANG, JING-WEI; LIU, LI-XIN; YAN, JI-DONG; REN, SHU-HUA; LI, YAN; LU, ZHENG

    2015-01-01

    The aim of the present study was to investigate the expression levels of transforming growth factor-β (TGF-β) receptor type II (TβRII) and DPC4/Smad4 in the TGF-β signaling pathway and the importance of these expression levels in non-small cell lung cancer (NSCLC). The mRNA and protein expression levels of TβRII and DPC4/Smad4 were detected by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively, in NSCLC and control nonlesional lung tissues of 60 patients. The protein expression levels of DPC4/Smad4 were detected by immunohistochemistry in paraffin-embedded samples of NSCLC. In addition, the correlations among the expression levels of TβRII and DPC4/Smad4 and their association with the clinical and pathological features of NSCLC were analyzed. The expression levels of TβRII and DPC4/Smad4 in NSCLC tissues were significantly lower when compared with the control nonlesional lung tissues (P<0.05). In addition, the expression of TβRII and DPC4/Smad4 in poorly-differentiated NSCLC tissues was significantly lower compared with moderately- or well-differentiated NSCLC tissues (P<0.05). The expression levels of TβRII and DPC4/Smad4 were significantly lower in NSCLC tissues with metastatic lymph nodes compared with tissue without metastatic lymph nodes (P<0.05). Thus, the expression levels were demonstrated to significantly correlate with the clinical and pathological stages, and subsequently were shown to be associated with the occurrence and progression of NSCLC. In conclusion, TβRII and DPC4/Smad4 may play an important role in the tumorigenesis, differentiation and progression of NSCLC via the TGF-β signaling pathway. PMID:25452807

  18. Concurrent and distinct transcription and translation of transforming growth factor-beta type I and type II receptors in rodent embryogenesis.

    PubMed

    Mariano, J M; Montuenga, L M; Prentice, M A; Cuttitta, F; Jakowlew, S B

    1998-11-01

    The transforming growth factor-betas (TGF-betas) are multifunctional regulatory polypeptides that play a crucial role in many cell processes and function through a set of cell surface protein receptors that includes TGF-beta type I (RI) and type II (RII). The present study reports a comprehensive comparison of the patterns of expression of TGF-beta RI and RII proteins and mRNAs in the developing mouse embryo using immunohistochemical and in situ hybridization analyses. Although widespread expression of both TGF-beta receptors was detected throughout the embryonic development period so that many similarities occur in localization of the TGF-beta receptors, TGF-beta RI was expressed in a well-defined, non-uniform pattern that was different in many respects from that of TGF-beta RII. Whereas higher levels of TGF-beta RI compared to TGF-beta RII were detected in some tissues of the embryo at the beginning of organogenesis, the level of TGF-beta RII increased more dramatically than that of TGF-beta RI during late organogenesis; this was especially true in many neural structures where TGF-beta RI and RII were comparable by day 16. The lung, kidney and intestine, in which epithelial-mesenchymal interactions occur, showed a complex pattern of TGF-beta RI and Rll expression. Additionally, northern blot hybridization and reverse transcription-polymerase chain reaction (RT-PCR) amplification showed non-uniform expression of the transcripts for TGF-beta RI and RII in embryonic and adult mouse and rat tissues. These data show that regulation of TGF-beta1 RI and RII occurs concurrently, but distinctly, in a spatial and temporal manner in rodent embryogenesis which may allow control of signal transduction of TGF-beta during development. PMID:9879710

  19. Oncogenes, genes, and growth factors

    SciTech Connect

    Guroff, G.

    1989-01-01

    This book contains 12 chapters. Some of the chapter titles are: The Epidermal Growth Factor Receptor Gene; Structure and Expression of the Nerve Growth Factor Gene; The Erythropoietin Gene; The Interleukin-2 Gene; The Transferrin Gene; and The Transferrin Receptor Gene.

  20. Interstitial fibrosis and growth factors.

    PubMed Central

    Lasky, J A; Brody, A R

    2000-01-01

    Interstitial pulmonary fibrosis (IPF) is scarring of the lung caused by a variety of inhaled agents including mineral particles, organic dusts, and oxidant gases. The disease afflicts millions of individuals worldwide, and there are no effective therapeutic approaches. A major reason for this lack of useful treatments is that few of the molecular mechanisms of disease have been defined sufficiently to design appropriate targets for therapy. Our laboratory has focused on the molecular mechanisms through which three selected peptide growth factors could play a role in the development of IPF. Hundreds of growth factors and cytokines could be involved in the complex disease process. We are studying platelet-derived growth factor because it is the most potent mesenchymal cell mitogen yet described, transforming growth factor beta because it is a powerful inducer of extracellular matrix (scar tissue) components by mesenchymal cells, and tumor necrosis factor alpha because it is a pleiotropic cytokine that we and others have shown is essential for the development of IPF in animal models. This review describes some of the evidence from studies in humans, in animal models, and in vitro, that supports the growth factor hypothesis. The use of modern molecular and transgenic technologies could elucidate those targets that will allow effective therapeutic approaches. Images Figure 1 Figure 2 PMID:10931794

  1. Recurrent solitary fibrous tumor of the pleura with malignant transformation and non-islet cell tumor-induced hypoglycemia due to paraneoplastic overexpression and secretion of high-molecular-weight insulin-like growth factor II.

    PubMed

    Tominaga, Naoto; Kawarasaki, Chiaki; Kanemoto, Keiko; Yokochi, Akio; Sugino, Keishi; Hatanaka, Kazuhito; Uekusa, Toshimasa; Fukuda, Izumi; Aiba, Motohiko; Hizuka, Naomi; Uda, Susumu

    2012-01-01

    A 41-year-old man was diagnosed with a solitary fibrous tumor (SFT) of the pleura in the posterior mediastinum. Despite two surgeries for excision, the SFT recurred and progressed with direct invasion of the chest wall and bone metastases. He was hospitalized because of cerebral infarction and presented with recurrent severe hypoglycemia fourteen years later. High-molecular-weight (HMW) insulin-like growth factor II (IGF-II) was identified in the serum and tumor using Western blotting and immunohistochemistry. These findings suggested that the cause of the recurrent severe hypoglycemia was SFT production of HMW IGF-II, a mediator of non-islet cell tumor-induced hypoglycemia (NICTH).

  2. Growth factors and cardiovascular structure. Implications for calcium antagonist therapy.

    PubMed

    Re, R N; Chen, L

    1991-07-01

    Abnormalities of cellular growth regulation are integral to the development of cardiovascular disorders such as atherogenesis, ventricular hypertrophy, and diabetic glomerulopathy. Moreover, cellular growth is in large measure controlled by peptide and nonpeptide growth factors that mediate their actions, in part, through the transcriptional regulation of normal cellular genes called protooncogenes. Because angiotensin II is one such growth regulatory factor and because changes in intracellular calcium are intimately involved in the action of angiotensin and other growth factors, it is likely that inhibitors of angiotensin action and calcium-channel-blocking agents will be found to have useful growth regulatory properties. PMID:1910639

  3. Size at birth and cord blood levels of insulin, insulin-like growth factor I (IGF-I), IGF-II, IGF-binding protein-1 (IGFBP-1), IGFBP-3, and the soluble IGF-II/mannose-6-phosphate receptor in term human infants. The ALSPAC Study Team. Avon Longitudinal Study of Pregnancy and Childhood.

    PubMed

    Ong, K; Kratzsch, J; Kiess, W; Costello, M; Scott, C; Dunger, D

    2000-11-01

    Experimental rodent studies demonstrate that insulin-like growth factor II (IGF-II) promotes fetal growth, whereas the nonsignaling IGF-II receptor (IGF2R) is inhibitory; in humans their influence is as yet unclear. A soluble, circulating form of IGF2R inhibits IGF-II mediated DNA synthesis and may therefore restrain fetal growth. We measured cord blood levels of IGF-II, soluble IGF2R, insulin, IGF-I, IGF-binding protein-1 (IGFBP-1), and IGFBP-3 and examined their relationships to weight, length, head circumference, ponderal index, and placental weight at birth in 199 normal term singletons. IGF-II levels correlated with levels of IGF-I (r = 0.29; P < 0.0005), IGFBP-3 (r = 0.45; P < 0.0005), and soluble IGF2R (r = 0.20; P < 0.005). Insulin and IGF-I were positively related to all parameters of size at birth. IGF-II was weakly related to ponderal index (r = 0.18; P < 0.05) and placental weight (r = 0.18; P < 0.05), and the molar ratio of IGF-II to IGF2R was also related to birth weight (r = 0.15; P < 0.05). Correlations between the IGFs and size at birth were stronger in nonprimiparous pregnancies; in these, IGF-I (r = 0.52; P < 0.0005), IGFBP-3 (r = 0.41; P < 0.0005), and the IGF-II to IGF2R ratio (r = 0.40; P < 0.0005) were most closely related to placental weight, together accounting for 39% of its variance. We demonstrate for the first time relationships between circulating IGF-II and soluble IGF2R levels and size at birth, supporting their putative opposing roles in human fetal growth. PMID:11095465

  4. Bubble growth in superheated He-II

    SciTech Connect

    Dresner, L.

    1988-01-01

    Bubble growth in superheated He-II is controlled by the transfer of heat to the surface of the growing bubble by nonlinear Gorter-Mellink counterflow. The present work presents analytic formulas for the bubble radius as a function of time in the limiting cases of small and large superheats. The formulas include the effect of the inertial reaction of the surrounding liquid to the expansion of the bubble. A numerical example shows that bubble velocities of the order of meters per second are possible. A related problem, involving only heat transfer but no movement of the liquid, is the motion of the free surface of superheated He-II in a very long tube. This problem has a similarity solution. The interfacial velocity in the tube is much smaller than the bubble growth velocity. 1 ref.

  5. Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis

    NASA Technical Reports Server (NTRS)

    Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep

    2002-01-01

    Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (P<0.05 vs. baseline). This loss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (P<0.05). Bone histomorphometry indicated increases in endocortical and cancellous bone formation rates and in trabecular thickness. These results demonstrate that short-term administration of the IGF-II/IGFBP-2 complex can prevent loss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.

  6. Growth factors in orthopedic surgery

    PubMed Central

    Zaharia, C; Despa, N; Simionescu, M; Jinga, V; Fleseriu, I

    2010-01-01

    Growth factors have represented an essential issue of interest for the researchers and clinicians in orthopedics and trauma over the last 40 years. In the last 10 to 15 years, the advances registered in this field have permitted the identification of the most active cellular and humoral factors as well as the improvement of their use in the orthopedic and trauma surgery. Their domain of application has been continuously enlarged and the results have been visible from the beginning. The authors present their appreciation on the actual state of this subject as well as their experience with results and related conclusions. PMID:20302195

  7. Distribution of insulin-like growth factors in condylar hyperplasia.

    PubMed

    Götz, Werner; Lehmann, Tim Sebastian; Appel, Thorsten Robin; Rath-Deschner, Birgit; Dettmeyer, Reinhard; Luder, Hans-Ulrich; Reich, Rudolf H; Jäger, Andreas

    2007-01-01

    Condylar hyperplasia (CH) is a local overgrowth of the condylar process of the temporomandibular joint (TMJ) of unknown etiology. Probably, growth factors like the insulin-like growth factors (IGFs) are involved in its pathogenesis. Specimens from 12 patients were investigated histologically and immunohistochemically to obtain the distribution of the IGFs-I and -II and the IGF1 receptor. The results revealed juvenile and adult subtypes. While generally IGF-II could only be detected weakly, in the juvenile cases strong immunostaining for IGF-I in cartilage and bone supposes an influence on pathological growth processes. PMID:17695990

  8. Late recurrence of a malignant hypoglycemia-inducing pelvic solitary fibrous tumor secreting high-molecular-weight insulin-like growth factor-II: A case report with protein analysis

    PubMed Central

    ISHIHARA, HIROKI; OMAE, KENJI; IIZUKA, JUNPEI; KOBAYASHI, HIROHITO; FUKUDA, IZUMI; KONDO, TSUNENORI; HIZUKA, NAOMI; NAGASHIMA, YOJI; TANABE, KAZUNARI

    2016-01-01

    The present study reports a case of recurrent malignant pelvic solitary fibrous tumor (SFT) that induced non-islet cell tumor hypoglycemia via high-molecular-weight insulin-like growth factor-II in a 72-year-old male patient. The tumor recurred ~12 years after the complete resection of the original mass. The recurrent tumor, which had directly invaded the left ureter and perirectal fat tissue, could not be completely excised due to its fragility and adhesiveness. At 13 days post-surgery, the patient presented with rectal perforation, and an urgent rectal resection and colostomy was performed. Neither recurrence of the tumor nor hypoglycemic symptoms were observed 9 months after the surgery. High molecular weight insulin-like growth factor-II was detected in the serum and tumor specimens by western blot analysis and immunohistochemistry. The present case report suggests that certain SFTs can relapse even ≥10 years after a presumed complete resection of the primary tumor, and that performing a safe and complete resection of these tumors can be challenging, due to their adhesiveness or physical presentation; therefore, the indications for surgery should be considered with caution. PMID:27347168

  9. Acidic fibroblast growth factor and keratinocyte growth factor stimulate fetal rat pulmonary epithelial growth.

    PubMed

    Deterding, R R; Jacoby, C R; Shannon, J M

    1996-10-01

    We have shown that pulmonary epithelial growth and differentiation can occur if pulmonary mesenchyme is replaced with a mixture of growth factors [total growth medium (TGM)] that consists of adult rat bronchoalveolar lavage fluid, insulin, epidermal growth factor (EGF), cholera toxin (CT), acidic fibroblast growth factor (aFGF), and fetal bovine serum. In the present study, we have defined the importance of specific components of TGM. Day 14 fetal rat distal lung epithelium, devoid of mesenchyme, was enrobed in growth factor-depleted Matrigel and cultured for 5 days in various soluble factors. We found that deleting aFGF or CT from TGM significantly reduced DNA synthesis. Epithelial proliferation was not significantly different when keratinocyte growth factor (KGF) replaced aFGF in TGM. KGF, however, required the presence of a basal medium containing CT, insulin, and serum for optimal proliferation. We then added specific growth factors to the basal medium and showed that aFGF and KGF were more potent mitogens than EGF, transforming growth factor-alpha, and hepatocyte growth factor. Additionally, basal medium + KGF also allowed progression to a distal alveolar phenotype. We conclude that aFGF and KGF may be important mediators in epithelial-mesenchymal interactions. PMID:8897895

  10. Transforming growth factor-beta 1 and fibroblast growth factors in rat growth plate.

    PubMed

    Jingushi, S; Scully, S P; Joyce, M E; Sugioka, Y; Bolander, M E

    1995-09-01

    Chondrocytes in the growth plate progress in an orderly fashion from resting through proliferating to hypertrophic cells. In the region of hypertrophic chondrocytes, the cartilage is invaded by capillary loops and endochondral ossification is initiated. It is currently believed that growth factors may regulate the proliferation and maturation of chondrocytes and the synthesis of extracellular matrix in the growth plate. The ordered sequence of proliferation and differentiation observed in the growth plate provides a unique opportunity to study the role of acidic fibroblast growth factor, basic fibroblast growth factor, and transforming growth factor-beta 1 in the regulation of these processes. In this study, expression of the mRNA of these growth factors was examined using total RNA extracted from the physis and epiphysis of rat tibias. Transforming growth factor-beta 1 mRNA was detected by Northern hybridization. Expression of the genes encoding acidic and basic fibroblast growth factors was demonstrated by polymerase chain reaction amplification. In addition, using polyclonal antibodies against these growth factors, we localized them by immunohistochemical analysis. Strong intracellular staining with a predominantly nuclear pattern was observed in chondrocytes from the proliferating and upper hypertrophic zones. In contrast, chondrocytes in the resting zone stained only faintly for the presence of these growth factors. Some chondrocytes in the resting zone adjacent to the proliferating zone stained with these antibodies, and the antibodies also stained cells in the zone of Ranvier, which regulates latitudinal bone growth. Lastly, the location of transforming growth factor-beta 1 was examined further with use of a polyclonal antipeptide antibody specific for its extracellular epitope.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7472755

  11. Decorin inhibits the proliferation of HepG2 cells by elevating the expression of transforming growth factor-β receptor II

    PubMed Central

    Liu, Yanfeng; Wang, Xuesong; Wang, Zhaohui; Ju, Wenbo; Wang, Dawei

    2016-01-01

    The aim of the present study was to investigate the effects of decorin (DCN) on the proliferation of human hepatoma HepG2 cells and the involvement of transforming growth factor-β (TGF-β) signaling pathway. A vector containing DCN was transfected into HepG2 cells with the use of Lipofectamine 2000. Cell proliferation was assessed with an MTT assay, and western blot analysis was used to detect the protein expression of TGF-β receptor I (TGF-βRI), phosphorylated TGF-βRI, p15 and TGF-βRII. In addition, small interfering RNA (siRNA) silencing was performed to knock down the target gene. The results indicated that, compared with the control group, cell proliferation was significantly decreased in HepG2 cells transfected with DCN. In addition, DCN transfection significantly increased the phosphorylation level of TGF-βRI in HepG2 cells. The expression of the downstream factor p15 was also significantly elevated in the DCN-transfected HepG2 cells. Furthermore, DCN transfection significantly elevated the expression level of TGF-βRII in HepG2 cells. By contrast, the silencing of TGF-βRII significantly decreased the phosphorylation of TGF-βRI in DCN-transfected HepG2 cells. In addition, TGF-βRII silencing abolished the effects of DCN on the proliferation of HepG2 cells. In conclusion, DCN elevated the expression level of TGF-βRII, increased the phosphorylation level of TGF-βRI, enhanced the expression of p15, and finally inhibited the proliferation of HepG2 cells. These findings may contribute to the understanding of the role of DCN in the pathogenesis of hepatic carcinoma and assist in the disease treatment.

  12. Short Hairpin RNA Causes the Methylation of Transforming Growth Factor-β Receptor II Promoter and Silencing of the Target Gene in Rat Hepatic Stellate Cells

    PubMed Central

    Kim, Jin-Wook; Zhang, Yan-Hong; Zern, Mark A; Rossi, John J.; Wu, Jian

    2008-01-01

    Small interfering RNA (siRNA) induces transcriptional gene silencing (TGS) in plant and animal cells. RNA dependent DNA methylation (RdDM) accounts for TGS in plants, but it is unclear whether siRNA induces RdDM in mammalian cells. To determine whether stable expression of short hairpin siRNA (shRNA) induces DNA methylation in mammalian cells, we transduced rat hepatic stellate SBC10 cells with lentiviral vectors which encode an U6 promoter-driven shRNA expression cassette homologous to the transforming growth factor-β receptor (TGFβRII) promoter region. Sequencing analysis of bisulfite-modified genomic DNA showed the methylation of cytosine residues both in CpG dinucleotides and non-CpG sites around the target region of the TGFβRII promoter in SBC10 cells transduced with the promoter-targeting lentiviral vector. In these cells, real-time RT-PCR showed a decrease in TGFβRII mRNA levels which were reversed by treatment with 5-aza-2-deoxycytidine. Our results demonstrate that recombinant lentivirus-mediated shRNA delivery resulted in the methylation of the homologous promoter area in mammalian cells, and this approach may be used as a tool for transcriptional gene silencing by epigenetic modification of mammalian cell promoters. PMID:17533113

  13. Epidermal growth factor and growth in vivo

    SciTech Connect

    Rhodes, J.A.

    1986-01-01

    Epidermal growth factor (EGF) causes a dose-dependent thickening of the epidermis in suckling mice. The cellular mechanisms underlying this thickening were analyzed by measuring the effect of EGF on the cell-cycle. Neonatal mice were given daily injections of either 2ug EGF/g body weight/day or an equivalent volume of saline, and on the seventh day received a single injection of /sup 3/H-thymidine. At various times the mice were perfused with fixative; 1um sections of skin were stained with a modification of Harris' hematoxylin and were autoradiographed. The sections were analyzed using three methods based on the dependence on time after injection of /sup 3/H-thymidine of: frequency of labelled mitoses, labelling index, and reciprocal grains/nucleus. It was found that EGF caused a two-fold increase in the cell production rate. The effect of exogenous EGF on the morphology of gastric mucosa and incisors of suckling mice was also studied. The gastric mucosa appeared thicker in EGF-treated animals, but the effect was not statistically significant. In contrast to its effect on epidermis and gastric mucosa, EGF caused a significant, dose-dependent decrease in the size of the incisors. Because the mouse submandibular salivary gland is the major source of EGF the effect of sialoadenectomy on female reproductive functions was examined. Ablation of the submandibular gland had no effect on: length of estrus cycle, ability of the female to produce litters, length of the gestation period, litter size, and weight of the litter at birth. There was also no effect on survival of the offspring or on age at which the eyelids separated.

  14. Different expression of mu-opiate receptor in chronic and acute wounds and the effect of beta-endorphin on transforming growth factor beta type II receptor and cytokeratin 16 expression.

    PubMed

    Bigliardi, P L; Sumanovski, L T; Büchner, S; Rufli, T; Bigliardi-Qi, M

    2003-01-01

    There is evidence that neuropeptides, especially the opiate receptor agonists, are involved in wound healing. We have previously observed that beta-endorphin, the endogenous ligand for the mu-opiate receptor, stimulates the expression of cytokeratin 16 in a dose-dependent manner in human skin organ cultures. Cytokeratin 16 is expressed in hyperproliferative epidermis such as psoriasis and wound healing. Therefore we were interested to study whether epidermal mu-opiate receptor expression is changed at the wound margins in acute and chronic wounds. Using classical and confocal microscopy, we were able to compare the expression level of mu-opiate receptors and the influence of beta-endorphin on transforming growth factor beta type II receptor in organ culture. Our results show indeed a significantly decreased expression of mu-opiate receptors on keratinocytes close to the wound margin of chronic wounds compared to acute wounds. Additionally beta-endorphin upregulates the expression of transforming growth factor beta type II receptor in human skin organ cultures. These results suggest a crucial role of opioid peptides not only in pain control but also in wound healing. Opioid peptides have already been used in animal models in treatment of wounds; they induce fibroblast proliferation and growth of capillaries, and accelerate the maturation of granulation tissue and the epithelization of the defect. Furthermore opioid peptides may fine-tune pain and the inflammatory response while healing takes place. This new knowledge could potentially be used to design new locally applied drugs to improve the healing of painful chronic wounds.

  15. Insulin-like growth factor-I stimulates H{sub 4}II rat hepatoma cell proliferation: Dominant role of PI-3'K/Akt signaling

    SciTech Connect

    Alexia, Catherine; Fourmatgeat, Pascal; Delautier, Daniele; Groyer, Andre . E-mail: groyer@bichat.inserm.fr

    2006-04-15

    Although hepatocytes are the primary source of endocrine IGF-I and -II in mammals, their autocrine/paracrine role in the dysregulation of proliferation and apoptosis during hepatocarcinogenesis and in hepatocarcinomas (HCC) remains to be elucidated. Indeed, IGF-II and type-I IGF receptors are overexpressed in HCC cells, and IGF-I is synthesized in adjacent non-tumoral liver tissue. In the present study, we have investigated the effects of type-I IGF receptor signaling on H{sub 4}II rat hepatoma cell proliferation, as estimated by {sup 3}H-thymidine incorporation into DNA. IGF-I stimulated the rate of DNA synthesis of serum-deprived H{sub 4}II cells, stimulation being maximal 3 h after the onset of IGF-I treatment and remaining elevated until at least 6 h. The IGF-I-induced increase in DNA replication was abolished by LY294002 and only partially inhibited by PD98059, suggesting that phosphoinositol-3' kinase (PI-3'K) and to a lesser extent MEK/Erk signaling were involved. Furthermore, the 3- to 19-fold activation of the Erks in the presence of LY294002 suggested a down-regulation of the MEK/Erk cascade by PI-3'K signaling. Finally, the effect of IGF-I on DNA replication was almost completely abolished in clones of H{sub 4}II cells expressing a dominant-negative form of Akt but was unaltered by rapamycin treatment of wild-type H{sub 4}II cells. Altogether, these data support the notion that the stimulation of H{sub 4}II rat hepatoma cell proliferation by IGF-I is especially dependent on Akt activation but independent on the Akt/mTOR signal0009i.

  16. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (UNIX VERSION)

    NASA Technical Reports Server (NTRS)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  17. FASTRAN II - FATIGUE CRACK GROWTH STRUCTURAL ANALYSIS (IBM PC VERSION)

    NASA Technical Reports Server (NTRS)

    Newman, J. C.

    1994-01-01

    Predictions of fatigue crack growth behavior can be made with the Fatigue Crack Growth Structural Analysis (FASTRAN II) computer program. As cyclic loads are applied to a selected crack configuration with an initial crack size, FASTRAN II predicts crack growth as a function of cyclic load history until either a desired crack size is reached or failure occurs. FASTRAN II is based on plasticity-induced crack-closure behavior of cracks in metallic materials and accounts for load-interaction effects, such as retardation and acceleration, under variable-amplitude loading. The closure model is based on the Dugdale model with modifications to allow plastically deformed material to be left along the crack surfaces as the crack grows. Plane stress and plane strain conditions, as well as conditions between these two, can be simulated in FASTRAN II by using a constraint factor on tensile yielding at the crack front to approximately account for three-dimensional stress states. FASTRAN II contains seventeen predefined crack configurations (standard laboratory fatigue crack growth rate specimens and many common crack configurations found in structures); and the user can define one additional crack configuration. The baseline crack growth rate properties (effective stress-intensity factor against crack growth rate) may be given in either equation or tabular form. For three-dimensional crack configurations, such as surface cracks or corner cracks at holes or notches, the fatigue crack growth rate properties may be different in the crack depth and crack length directions. Final failure of the cracked structure can be modelled with fracture toughness properties using either linear-elastic fracture mechanics (brittle materials), a two-parameter fracture criterion (brittle to ductile materials), or plastic collapse (extremely ductile materials). The crack configurations in FASTRAN II can be subjected to either constant-amplitude, variable-amplitude or spectrum loading. The applied

  18. Cytokines and growth factors which regulate bone cell function

    NASA Astrophysics Data System (ADS)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  19. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage.

    PubMed

    Johns, D E; Athanasiou, K A

    2008-09-01

    Tissue-engineered fibrocartilage could become a feasible option for replacing tissues such as the knee meniscus or temporomandibular joint disc. This study employed five growth factors (insulin-like growth factor-I, transforming growth factor-beta1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor) in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs had lower biomechanical and biochemical properties than the controls with no growth factors, suggesting a detrimental effect, but the treatment with insulin-like growth factor-I tended to improve the constructs. Additionally, the 6-week time point was consistently better than that at 3 weeks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  20. Effects of basic fibroblast growth factor and insulin-like growth factor on cultured cartilage cells from skate Raja porasa

    NASA Astrophysics Data System (ADS)

    Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng

    2003-12-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  1. Growth Factors in Proliferative Diabetic Retinopathy

    PubMed Central

    Khan, Zia Ali

    2003-01-01

    Many growth factors are implicated in the pathogenesis of proliferative diabetic retinopathy. Alteration of growth factors and their receptors in diabetes has been shown in both experimental and clinical studies. Sustained hyperglycemia resulting from long-standing diabetes leads to several biochemical abnormalities that consequently result in retinal hypoxia. Retinal oxygenation state regulates various growth factors that promote angiogenesis in order to meet the oxygen demands of the tissue. However, unregulated expression of these growth factors and induction of complex cascades leading to augmentation of other proangiogenic factors, which may not be regulated by tissue oxygenation, leads to uncontrolled retinal neovascularization and blindness in diabetic patients. PMID:14668050

  2. [Dynamics of local expression of connexin-43 and basic fibroblast growth factor receptors in patients with skin and soft-tissue infections against the background of diabetes mellitus type II].

    PubMed

    Vinnik, Iu S; Salmina, A B; Tepliakova, O V; Drobushevskaia, A I; Malinovskaia, N A; Pozhilenkova, E A; Morgun, A V; Gitlina, A G

    2014-01-01

    Clinical results of wound healing dynamics were studied in 60 patients with soft-tissue infection against the background of diabetes mellitus type II. At the same time the study considered indices of intercellular contacts protein tissue expression such as connexin 43 (Cx43) and basic fibroblast growth factor receptors (bFGFR). The basic therapy of biopsy material of wound borders was applied. The reduction of bFGFR expression and the minor growth of Cx43 expression were observed. The pain syndrome proceeded for a long time and there were signs of perifocal inflammation, retard wound healing with granulation tissue. The application of combined method of ozone therapy which included autohemotherapy with ozone and an external management of wound by ozone-oxygen mixture facilitated to considerable shortening of inflammatory phase and regeneration. It was associated with increased Cx43 expression (in 1.9 times) in comparison with initial level and bFGFR was enlarged in 1.7 times to eighth day of postoperative period.

  3. [Personal contextual factors (short version), part II].

    PubMed

    Viol, M; Grotkamp, S; Seger, W

    2007-01-01

    In this journal a group of medical experts recently compiled a proposal for a systemic classification of personal contextual factors into domains, categories and items with respect to the ethical guidelines of the ICF (part I). In a second step the main issues have been transferred into the preliminary draft for a short version which is presented in this paper to give support for practical daily use in health insurance matters (part II). PMID:17347930

  4. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  5. A growth-related concept for skeletal class II treatment.

    PubMed

    Teuscher, U

    1978-09-01

    The use of a combined activator--high-pull headgear appliance for treatment of Class II, Division 1 malocclusion is presented as a preliminary report. The activator itself is equipped with a palatal bar, lower lip pads, and torque-control auxiliaries for the upper incisors. The face-bow is mounted directly on the activator, and the extraoral force vector is equivalent to that of an anterior high-pull vector. During bite registration the veritcal displacement of the mandible is restricted to a minimum, and the anterior displacement should not exceed 6 mm. On the basis of current knowledge of the growth of the bony facial structures, treatment objectives and a specific approach for skeletal Class II correction are defined. Following these objectives, the therapy aims at correcting the malocclusion without diverting the anterior landmarks of the bony face from their specific lines of growth. This is brought about by the corresponding mechanics of the activator-headgear combination. The corrective effect of this appliance may be assumed to be the result of several different factors. The maxillary dentition is restrained in a posterior cranial direction, and an inhibitory effect on the maxilla counter to its line of development is attained. The mandibular dentition is influenced in an anterior downward direction by means of the bite registration, and the occlusion is unlocked during treatment. Any transfer of distally directed headgear forces from the maxilla to the mandible is prevented. Temporary stimulation of condylar growth, possibly combined with temporary posterior deflection of condylar growth, may also be induced. In this way it is possible to take maximum advantage of condylar growth in the sagittal dimension. Thus, not only is the malocclusion corrected but, at the same time, decisive profile improvement is achieved by anterior development of the mandible. From the experience gained so far with a Class II, Division 1 sample undergoing treatment with the

  6. Epidermal growth factor receptor not equal to nerve growth factor.

    PubMed

    Williams, L R

    1989-01-01

    I am perplexed by the authors' complete lack of definition of neurotrophic factors. The agents Butcher and Woolf want to blame are neurite promoting factors, not neurotrophic factors. Treatment of Alzheimer's disease with NGF antagonists might instead exacerbate the death of both basal forebrain neurons and their cortical target neurons, accelerating the progress of dementia.

  7. Autocrine growth factors and solid tumor malignancy.

    PubMed Central

    Walsh, J. H.; Karnes, W. E.; Cuttitta, F.; Walker, A.

    1991-01-01

    The ability of malignant cells to escape the constraint that normally regulate cell growth and differentiation has been a primary focus of attention for investigators of cancer cell biology. An outcome of this attention has been the discovery that the protein products of oncogenes play a role in the activation of growth signal pathways. A second outcome, possibly related to abnormal oncogene expression, has been the discovery that malignant cells frequently show an ability to regulate their own growth by the release of autocrine growth modulatory substances. Most important, the growth of certain malignant cell types has been shown to depend on autocrine growth circuits. A malignant tumor whose continued growth depends on the release of an autocrine growth factor may be vulnerable to treatment with specific receptor antagonists or immunoneutralizing antibodies designed to break the autocrine circuit. Information is rapidly emerging concerning autocrine growth factors in selected human solid tissue malignancy. Images PMID:1926844

  8. Growth factor transgenes interactively regulate articular chondrocytes.

    PubMed

    Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2013-04-01

    Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair.

  9. Mechanics, growth, and class II corrections.

    PubMed

    Hultgren, B W; Isaacson, R J; Erdman, A G; Worms, F W

    1978-10-01

    Growth of the orofacial region is quantitatively described by locating the center of mandibular rotation relative to the cranial base. The center of mandibular rotation is positioned by the ratio of vertical facial growth (AFH/PFH) and the direction of condylar growth. Appliance therapy is associated with changes in the means of both of these parameters. These changes reduce or stop favorable anterior mandibular rotation and redirect the mean condylar growth vector more posteriorly. When appliance therapy is stopped, these parameters return toward their resting values. The mean direction of the condylar growth vector became even more anteriorly directed after treatment than the pretreatment mean value. These data support the hypothesis that orthodontic appliances significantly alter the facial growth pattern and when they are stopped, the growth pattern tends to rebound to or beyond the pretreatment values.

  10. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  11. [Growth factors in proliferative diabetic retinopathy].

    PubMed

    Ioniţă, M

    1997-01-01

    This work presents the possible implications of the angiogenic growth factors and some cell mediators in the initiation and development of the neovascular proliferation in diabetic retinopathy. According to the physiopathologic theories stated above, that are implied in the generation of proliferative diabetic retinopathy, here are some therapeutic experiments based on the action of the angiogenic growth factors. PMID:9409959

  12. Semiquantitative reverse transcription-polymerase chain reaction analysis of mRNA for growth factors and growth factor receptors from normal and healing rabbit medial collateral ligament tissue.

    PubMed

    Sciore, P; Boykiw, R; Hart, D A

    1998-07-01

    Growth factors and their receptors play an essential role in the development, maturation, and response to injury of all tissues. A number of studies have explored the possibility of improving ligament healing with exogenous growth factors. However, limited data is available regarding the endogenous growth factor network in ligaments on which any exogenous growth factors must impact. The purpose of this study was to assess the endogenous growth factor network with molecular techniques. By the sensitive reverse transcription-polymerase chain reaction technique, transcripts for a number of growth factors and receptors were detected with RNA isolated from normal and healing rabbit medial collateral ligament tissues. These include transforming growth factor-beta1, insulin-like growth factors I and II, basic fibroblast growth factor, endothelin-1, and the receptors for insulin and insulin-like growth factor II. Semiquantitative reverse transcription-polymerase chain reaction analysis of RNA from normal and scar tissues from the medial collateral ligament revealed that the levels of several transcripts were elevated in the scar tissue. It was not possible to confirm biological activity because of the hypocellularity of the tissues; however, the results obtained indicate that the reverse transcription-polymerase chain reaction approach to defining the endogenous growth factor-receptor phenotype is feasible, and further definition should contribute to the development of rational approaches to exogenous therapy to improve healing.

  13. Multicentre prospective phase II trial of gefitinib for advanced non-small cell lung cancer with epidermal growth factor receptor mutations: results of the West Japan Thoracic Oncology Group trial (WJTOG0403)

    PubMed Central

    Tamura, K; Okamoto, I; Kashii, T; Negoro, S; Hirashima, T; Kudoh, S; Ichinose, Y; Ebi, N; Shibata, K; Nishimura, T; Katakami, N; Sawa, T; Shimizu, E; Fukuoka, J; Satoh, T; Fukuoka, M

    2008-01-01

    The purpose of this study was to evaluate the efficacy of gefitinib and the feasibility of screening for epidermal growth factor receptor (EGFR) mutations among select patients with advanced non-small cell lung cancer (NSCLC). Stage IIIB/IV NSCLC, chemotherapy-naive patients or patients with recurrences after up to two prior chemotherapy regimens were eligible. Direct sequencing using DNA from tumour specimens was performed by a central laboratory to detect EGFR mutations. Patients harbouring EGFR mutations received gefitinib. The primary study objective was response; the secondary objectives were toxicity, overall survival (OS), progression-free survival (PFS), 1-year survival (1Y-S) and the disease control rate (DCR). Between March 2005 and January 2006, 118 patients were recruited from 15 institutions and were screened for EGFR mutations, which were detected in 32 patients – 28 of whom were enrolled in the present study. The overall response rate was 75%, the DCR was 96% and the median PFS was 11.5 months. The median OS has not yet been reached, and the 1Y-S was 79%. Thus, gefitinib chemotherapy in patients with advanced NSCLC harbouring EGFR mutations was highly effective. This trial documents the feasibility of performing a multicentre phase II study using a central typing laboratory, demonstrating the benefit to patients of selecting gefitinib treatment based on their EGFR mutation status. PMID:18283321

  14. Phase II open label study of the oral vascular endothelial growth factor-receptor inhibitor PTK787/ZK222584 (vatalanib) in adult patients with refractory or relapsed diffuse large B-cell lymphoma.

    PubMed

    Brander, Danielle; Rizzieri, David; Gockerman, Jon; Diehl, Louis; Shea, Thomas Charles; Decastro, Carlos; Moore, Joseph O; Beaven, Anne

    2013-12-01

    PTK787/ZK222584 (vatalanib), an orally active inhibitor of vascular endothelial growth factor receptors (VEGFRs), was evaluated in this phase II study of 20 patients with relapsed/refractory diffuse large B-cell lymphoma (DLBCL). Patients received once-daily PTK787/ZK222584 at a target dose of 1250 mg. Eighteen patients were evaluable for response: one patient had a complete response (CR), six patients had stable disease but subsequently progressed, 10 patients had progressive disease by three cycles and one subject withdrew before response evaluation. The patient who attained a CR underwent autologous stem cell transplant and remains disease-free 76 months after study completion. There were no grade 4 toxicities. Grade 3 thrombocytopenia occurred in 20% and grade 3 hypertension occurred in 10%. There were no episodes of grade 3 proteinuria. In conclusion, PTK787/ZK222584 was well tolerated in a heavily pretreated population of patients with DLBCL, although its therapeutic potential as a single agent in DLBCL appears limited. PMID:23488610

  15. Growth factors from genes to clinical application

    SciTech Connect

    Sara, V.R. ); Hall, K.; Low, H. )

    1990-01-01

    The last decade has witnessed an explosion in the identification of growth factors and their receptors. This has been greatly facilitated by recombinant DNA technology, which has provided the tools not only to identify these proteins at the gene level but also to produce recombinant proteins for evaluating their biological activities. With the help of such techniques, we are moving toward an understanding of the biosynthesis of growth factors and their receptors, structure-function relationships, as well as mechanisms for intracellular signal transmission. The possibility of modifying these factors has opened new fields of clinical application. In this paper, four major areas of growth factor research are presented: the characterization of growth factor genes and their protein products, growth factor receptors and signal transduction by the receptors to mediate biological action, the biological actions of the various growth factors, and the role of growth factors in health and disease and their possible clinical application. Some of the topics covered include: structure of the IGFs and their variants; isoforms of PDGF receptor types; tyrosine kinase activation; structure of G-proteins in biological membranes; possible therapeutic application of NGF in the treatment of Parkinson's and Alzheimer's diseases; PDGF's possible role in the development of several fibroproliferative diseases and its therapeutic application in wound healing; and the possible use of angiogenic inhibitors in tumor treatment.

  16. growl: Growth factor and growth rate of expanding universes

    NASA Astrophysics Data System (ADS)

    Hamilton, Andrew J. S.

    2015-12-01

    Growl calculates the linear growth factor Da and its logarithmic derivative dln D/dln a in expanding Friedmann-Robertson-Walker universes with arbitrary matter and vacuum densities. It permits rapid and stable numerical evaluation.

  17. Characterization of the affinities of insulin-like growth factor (IGF)-binding proteins 1-4 for IGF-I, IGF-II, IGF-I/insulin hybrid, and IGF-I analogs.

    PubMed

    Oh, Y; Müller, H L; Lee, D Y; Fielder, P J; Rosenfeld, R G

    1993-03-01

    Insulin-like growth factor (IGF)-binding proteins (BPs) bind IGF-I and IGF-II with high affinity and modify the activity of IGF peptides in a complex manner. We have characterized the affinities of IGFBP-1-4 for IGF-I and -II by employing 1) purified IGFBP preparations, 2) both [125I]IGF-I and [125I]IGF-II as radioligands, and 3) multiple IGF analogs designed to have altered affinities for IGFBPs. To this end, human (h) IGFBP-1, hIGFBP-2, and rat (r) IGFBP-4 have been purified to homogeneity from human amniotic fluid, human prostate epithelial cell culture, and B104 rat neuroblastoma cells; for human IGFBP-3, the glycosylated recombinant form (rec-hIGFBP-3), produced in Chinese hamster ovary cells, was employed. The IC50 values of IGF-I for hIGFBP-1, hIGFBP-2, rec-hIGFBP-3, rIGFBP-4, and human serum IGFBPs were 0.05 +/- 0.01, 5.0 +/- 0.01, 0.25 +/- 0.20, 0.6 +/- 0.4, and 0.1 +/- 0.01 ng/ml, respectively. While hIGFBP-1 and rIGFBP-4 had virtually equivalent affinities for IGF-I and IGF-II, hIGFBP-2 and rec-hIGFBP-3 demonstrated 2- to 5-fold higher affinities for IGF-II than for IGF-I. Studies with [Gln3,Ala4,Tyr15,Leu16]IGF-I and Des-(1-3)-IGF-I indicate that specific residues in the first 16 amino acids of the B domain of IGF-I appear to be critical for binding to all of the IGFBPs tested, but not to IGF receptors. However, severe modifications in the B domain disrupt binding affinity, not only for IGFBPs, but also for receptors (IGF-I/insulin hybrid and B-chain mutant). Interestingly, modifications in the A domain of IGF-I, which is believed to contain residues critical for binding to IGF-I and insulin receptors, show differential effects on binding affinity to BPs. [Thr49,Ser50,Ile51]IGF-I, which has normal affinity for the type I IGF receptor, shows at least a 500-fold decreased affinity for hIGFBP-1 and recombinant hIGFBP-3, in contrast to 50- to 100-fold reduced affinity for hIGFBP-2 and rIGFBP-4, and 5- to 10-fold reduced affinity for purified human serum

  18. Transforming growth factor beta1 and aldosterone

    PubMed Central

    Matsuki, Kota; Hathaway, Catherine K.; Chang, Albert S.; Smithies, Oliver; Kakoki, Masao

    2016-01-01

    Purpose of review It is well established that blocking renin-angiotensin II-aldosterone system (RAAS) is effective for the treatment of cardiovascular and renal complications in hypertension and diabetes mellitus. Although the induction of transforming growth factor beta1 (TGFbeta1) by components of RAAS mediates the hypertrophic and fibrogenic changes in cardiovascular-renal complications, it is still controversial as to whether TGFbeta1 can be a target to prevent such complications. Here we review recent findings on the role of TGFbeta1 in fluid homeostasis, focusing on the relationship with aldosterone. Recent findings TGFbeta1 suppresses adrenal production of aldosterone and renal tubular sodium reabsorption. We have generated mice with TGFbeta1 mRNA expression graded in five steps from 10% to 300% normal, and found that blood pressure and plasma volume are negatively regulated by TGFbeta1. Notably, the 10 % hypomorph exhibits primary aldosteronism and sodium and water retention due to markedly impaired urinary excretion of water and electrolytes. Summary These results identify TGFbeta signaling as an important counterregulatory system against aldosterone. Understanding the molecular mechanisms for the suppressive effects of TGFbeta1 on adrenocortical and renal function may further our understanding of primary aldosteronism as well as assist in the development of novel therapeutic strategies for hypertension. PMID:25587902

  19. [Development and psychometric evaluation of a Japanese version of the Personal Growth Initiative Scale-II].

    PubMed

    Tokuyoshi, Yoga; Iwasaki, Syoichi

    2014-06-01

    We conducted two studies to develop a Japanese version of the Personal Growth Initiative Scale-II (PGIS-II), and examined its reliability and validity. PGIS-II was developed as a multidimensional measure of the multiple processes of the Personal Growth Initiative (PGI). The PGI describes an active, intentional engagement in the process of personal growth for self-improvement of life experiences. Study 1 (N = 204) reports the confirmatory factor analysis (CFA) of the Japanese version of the PGIS-II. The CFA confirmed that 4-factor model showed acceptable fit indices, with reliability coefficients ranging from .67 to .84. Concurrent validity of the PGIS-II was indicated by the correlation with happiness, the positive score for automatic thoughts. Study 2 (N = 101) reports the concurrent validity of the PGIS-II using scales for locus of control, self-esteem and coping. Results suggested significant correlations between scores on the PGIS-II and locus of control, self-esteem and some coping subscales. The overall results suggest that the Japanese version of the PGIS-II has satisfactory statistical reliability and validity. PMID:25016838

  20. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  1. Environmental factors influencing growth and pubertal development.

    PubMed Central

    Delemarre-van de Waal, H A

    1993-01-01

    Postnatal growth is based on hereditary signals and environmental factors in a complex regulatory network. Each factor must be in an optimal state for normal growth of the child. Fetal conditions may also have consequences on postnatal height. Intrauterine growth retardation can be recovered postnatally, although postnatal growth remains depressed in about one-third of cases. After birth, the environment may exert either a positive or negative effect on growth. In underdeveloped countries, malnutrition plays a major role in inhibiting the growth process. Children from families of higher socioeconomic classes are taller than their coevals in the lower socioeconomic groups. Urbanization also has a positive effect on growth. Better child care is supported by sufficient food supply, appropriate health and sanitation services, and a higher level of education. Over the last century, these factors have induced a taller stature and a more rapid maturity in Europe, North America, and Australia; a phenomenon which has been referred to as "the secular trend" in growth. Recently, a secular trend has also been reported in some developing countries. Although urbanization in general appears to be associated with better conditions of living, this is not the case in the slums of South America or in Africa where rural children are better off than children living in the poor cities. This paper describes in more detail the different hereditary and environmental factors that act during the fetal period and postnatally, and which play a role in human growth and pubertal development. PMID:8243404

  2. Vascular growth factors in neuropsychiatry

    PubMed Central

    Newton, Samuel S.; Fournier, Neil M.; Duman, Ronald S.

    2014-01-01

    Recent advances in understanding the cellular and molecular basis of psychiatric illnesses have shed light on the important role played by trophic factors in modulating functional parameters associated with disease causality and drug action. Disease mechanisms are now thought to involve multiple cell types, including neurons and endothelial cells. These functionally distinct but interactively coupled cell types engage in cellular cross talk via shared and common signaling molecules. Dysregulation in their cellular signaling pathways influences brain function and alters behavioral performance. Multifunctional trophic factors such as VEGF and EPO that possess both neurotrophic and angiogenic actions are of particular interest due to their ability to rescue structural and plasticity deficits in neurons and vasculature. Obtaining insight into the behavioral, cellular and molecular actions of multi-functional trophic factors has the potential to open new and transformative therapeutic approaches. PMID:23475069

  3. Relationships of RNA polymerase II genetic interactors to transcription start site usage defects and growth in Saccharomyces cerevisiae.

    PubMed

    Jin, Huiyan; Kaplan, Craig D

    2014-11-06

    Transcription initiation by RNA Polymerase II (Pol II) is an essential step in gene expression and regulation in all organisms. Initiation requires a great number of factors, and defects in this process can be apparent in the form of altered transcription start site (TSS) selection in Saccharomyces cerevisiae (Baker's yeast). It has been shown previously that TSS selection in S. cerevisiae is altered in Pol II catalytic mutants defective in a conserved active site feature known as the trigger loop. Pol II trigger loop mutants show growth phenotypes in vivo that correlate with biochemical defects in vitro and exhibit wide-ranging genetic interactions. We assessed how Pol II mutant growth phenotypes and TSS selection in vivo are modified by Pol II genetic interactors to estimate the relationship between altered TSS selection in vivo and organismal fitness of Pol II mutants. We examined whether the magnitude of TSS selection defects could be correlated with Pol II mutant-transcription factor double mutant phenotypes. We observed broad genetic interactions among Pol II trigger loop mutants and General Transcription Factor (GTF) alleles, with reduced-activity Pol II mutants especially sensitive to defects in TFIIB. However, Pol II mutant growth defects could be uncoupled from TSS selection defects in some Pol II allele-GTF allele double mutants, whereas a number of other Pol II genetic interactors did not influence ADH1 start site selection alone or in combination with Pol II mutants. Initiation defects are likely only partially responsible for Pol II allele growth phenotypes, with some Pol II genetic interactors able to exacerbate Pol II mutant growth defects while leaving initiation at a model TSS selection promoter unaffected.

  4. New Clue Found to Growth Factor Action.

    ERIC Educational Resources Information Center

    Hoffman, Michelle

    1991-01-01

    Discussed is the discovery which may help to explain epidermal growth factor effects on the cell skeleton. The role of a protein called profilin in the regulation of the microfilament system is described. (CW)

  5. 40 CFR Table II-1 to Subpart II of... - Emission Factors

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Emission Factors II Table II-1 to Subpart II of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment Pt. 98, Subpt. II, Table...

  6. 40 CFR Table II-1 to Subpart II of... - Emission Factors

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Emission Factors II Table II-1 to Subpart II of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Industrial Wastewater Treatment Pt. 98, Subpt. II, Table...

  7. Predictive factors for intrauterine growth restriction

    PubMed Central

    Albu, AR; Anca, AF; Horhoianu, VV; Horhoianu, IA

    2014-01-01

    Abstract Reduced fetal growth is seen in about 10% of the pregnancies but only a minority has a pathological background and is known as intrauterine growth restriction or fetal growth restriction (IUGR / FGR). Increased fetal and neonatal mortality and morbidity as well as adult pathologic conditions are often associated to IUGR. Risk factors for IUGR are easy to assess but have poor predictive value. For the diagnostic purpose, biochemical serum markers, ultrasound and Doppler study of uterine and spiral arteries, placental volume and vascularization, first trimester growth pattern are object of assessment today. Modern evaluations propose combined algorithms using these strategies, all with the goal of a better prediction of risk pregnancies. Abbreviations: SGA = small for gestational age; IUGR = intrauterine growth restriction; FGR = fetal growth restriction; IUFD = intrauterine fetal demise; HIV = human immunodeficiency virus; PAPP-A = pregnancy associated plasmatic protein A; β-hCG = beta human chorionic gonadotropin; MoM = multiple of median; ADAM-12 = A-disintegrin and metalloprotease 12; PP-13 = placental protein 13; VEGF = vascular endothelial growth factor; PlGF = placental growth factor; sFlt-1 = soluble fms-like tyrosine kinase-1; UAD = uterine arteries Doppler ultrasound; RI = resistence index; PI = pulsatility index; VOCAL = Virtual Organ Computer–Aided Analysis software; VI = vascularization index; FI = flow index; VFI = vascularization flow index; PQ = placental quotient PMID:25408721

  8. Insulin-like growth factor 1 and hair growth.

    PubMed

    Su, H Y; Hickford, J G; Bickerstaffe, R; Palmer, B R

    1999-11-01

    Insulin-like growth factor 1 (IGF-1) has been identified as an important growth factor in many biological systems.[1] It shares considerable structural homology with insulin and exerts insulin-like effects on food intake and glucose metabolism. Recently it has been suggested to play a role in regulating cellular proliferation and migration during the development of hair follicles. [2,3] To exert its biological effects, the IGF-1 is required to activate cells by binding to specific cell-surface receptors. The type I IGF receptor (IGF-1R) is the only IGF receptor to have IGF-mediated signaling functions.[1] In circulation, this growth factor mediates endocrine action of growth hormone (GH) on somatic growth and is bound to specific binding proteins (BPs). The latter control IGF transport, efflux from vascular compartments and association with cell surface receptors.[4] In tissues, IGF-1 is produced by mesenchymal type cells and acts in a paracrine and autocrine fashion by binding to the IGF-1R. This binding activates the receptor tyrosine kinase (RTK) that triggers the downstream responses and finally stimulates cell division.[5] IGF-1 may therefore be able to stimulate the proliferation of hair follicle cells through cellular signaling pathways of its receptors. Local infusion of IGF-1 into sheep has been reported to be capable of stimulating protein synthesis in the skin.[6] It may also increase the production of wool keratin. Recently, transgenic mice overexpressing IGF-1 in the skin have been shown to have earlier hair follicle development than controls.[7] In addition, this growth factor plays an important role in many cell types as a survival factor to prevent cell death.[8] This anti-apoptotic function of IGF-1 may be important to the development of follicle cells as follicles undergo a growth cycle where the regressive, catagen phase is apoptosis driven. In this review, the effects of IGF-1 on follicle cell proliferation and differentiation are discussed. In

  9. Organic growth factor requirements of some yeasts.

    PubMed

    Madan, M; Gulati, N

    1980-01-01

    Some sporogenous yeasts (Brettanomyces bruxellensis, Debaryomyces hansenii, Hansenula ciferrii, Hansenula polymorpha, Pichia polymorpha, Saccharomycopsis guttulata, and Saccharomyces chevalieri), isolated from various fruits have been examined for their organic growth factor requisites. H. ciferrii was completely deficient in thiamine, biotin, inositol, riboflavin, niacin, and partially deficient in pantothenic acid. It required an external supply of 0.1-1.0 ppm thiamine, 0.01-0.1 ppm biotin, 10.0 ppm inositol, 0.10 ppm niacin and riboflavin for its optimum growth. H. polymorpha showed partial deficiency only in xanthine. P. polymorpha gave indications of partial deficiencies in thiamine and biotin. S. guttulata was completely deficient in biotin, and partially deficient in adenine sulphate. It required 0.01 ppm biotin for optimum growth. S chevalieri was completely deficient in pyridoxine and partially deficient in thiamine. It required 0.1 ppm pyridoxine for maximum growth. D. hansenii and B bruxellensis were auxoautotrophic for the various growth factors studied. PMID:7242379

  10. The impact of a human IGF-II analog ([Leu27]IGF-II) on fetal growth in a mouse model of fetal growth restriction

    PubMed Central

    Charnock, Jayne C.; Dilworth, Mark R.; Aplin, John D.; Sibley, Colin P.; Westwood, Melissa

    2015-01-01

    Enhancing placental insulin-like growth factor (IGF) availability appears to be an attractive strategy for improving outcomes in fetal growth restriction (FGR). Our approach was the novel use of [Leu27]IGF-II, a human IGF-II analog that binds the IGF-II clearance receptor IGF-IIR in fetal growth-restricted (FGR) mice. We hypothesized that the impact of [Leu27]IGF-II infusion in C57BL/6J (wild-type) and endothelial nitric oxide synthase knockout (eNOS−/−; FGR) mice would be to enhance fetal growth and investigated this from mid- to late gestation; 1 mg·kg−1·day−1 [Leu27]IGF-II was delivered via a subcutaneous miniosmotic pump from E12.5 to E18.5. Fetal and placental weights recorded at E18.5 were used to generate frequency distribution curves; fetuses <5th centile were deemed growth restricted. Placentas were harvested for immunohistochemical analysis of the IGF system, and maternal serum was collected for measurement of exogenously administered IGF-II. In WT pregnancies, [Leu27]IGF-II treatment halved the number of FGR fetuses, reduced fetal(P = 0.028) and placental weight variations (P = 0.0032), and increased the numbers of pups close to the mean fetal weight (131 vs. 112 pups within 1 SD). Mixed-model analysis confirmed litter size to be negatively correlated with fetal and placental weight and showed that [Leu27]IGF-II preferentially improved fetal weight in the largest litters, as defined by number. Unidirectional 14CMeAIB transfer per gram placenta (System A amino acid transporter activity) was inversely correlated with fetal weight in [Leu27]IGF-II-treated WT animals (P < 0.01). In eNOS−/− mice, [Leu27]IGF-II reduced the number of FGR fetuses(1 vs. 5 in the untreated group). The observed reduction in FGR pup numbers in both C57 and eNOS−/− litters suggests the use of this analog as a means of standardizing and rescuing fetal growth, preferentially in the smallest offspring. PMID:26530156

  11. Placenta Growth Factor in Diabetic Wound Healing

    PubMed Central

    Cianfarani, Francesca; Zambruno, Giovanna; Brogelli, Laura; Sera, Francesco; Lacal, Pedro Miguel; Pesce, Maurizio; Capogrossi, Maurizio C.; Failla, Cristina Maria; Napolitano, Monica; Odorisio, Teresa

    2006-01-01

    Reduced microcirculation and diminished expression of growth factors contribute to wound healing impairment in diabetes. Placenta growth factor (PlGF), an angiogenic mediator promoting pathophysiological neovascularization, is expressed during cutaneous wound healing and improves wound closure by enhancing angiogenesis. By using streptozotocin-induced diabetic mice, we here demonstrate that PlGF induction is strongly reduced in diabetic wounds. Diabetic transgenic mice overexpressing PlGF in the skin displayed accelerated wound closure compared with diabetic wild-type littermates. Moreover, diabetic wound treatment with an adenovirus vector expressing the human PlGF gene (AdCMV.PlGF) significantly accelerated the healing process compared with wounds treated with a control vector. The analysis of treated wounds showed that PlGF gene transfer improved granulation tissue formation, maturation, and vascularization, as well as monocytes/macrophages local recruitment. Platelet-derived growth factor, fibroblast growth factor-2, and vascular endothelial growth factor mRNA levels were increased in AdCMV.PlGF-treated wounds, possibly enhancing PlGF-mediated effects. Finally, PlGF treatment stimulated cultured dermal fibroblast migration, pointing to a direct role of PlGF in accelerating granulation tissue maturation. In conclusion, our data indicate that reduced PlGF expression contributes to impaired wound healing in diabetes and that PlGF gene transfer to diabetic wounds exerts therapeutic activity by promoting different aspects of the repair process. PMID:17003476

  12. Fibrochondrogenesis of hESCs: growth factor combinations and cocultures.

    PubMed

    Hoben, Gwendolyn M; Willard, Vincent P; Athanasiou, Kyriacos A

    2009-03-01

    The successful differentiation of human embryonic stem cells (hESCs) to fibrochondrocyte-like cells and characterization of these differentiated cells is a critical step toward tissue engineering of musculoskeletal fibrocartilages (e.g., knee meniscus, temporomandibular joint disc, and intervertebral disc). In this study, growth factors and primary cell cocultures were applied to hESC embryoid bodies (EBs) for 3 weeks and evaluated for their effect on the synthesis of critical fibrocartilage matrix components: glycosaminoglycans (GAG) and collagens (types I, II, and VI). Changes in surface markers (CD105, CD44, SSEA, PDGFR alpha) after the differentiation treatments were also analyzed. The study was conducted in three phases: (1) examination of growth factors (TGF-beta 3, BMP-2, BMP-4, BMP-6, PDGF-BB, sonic hedgehog protein); (2) comparison of two cocultures (primary chondrocytes or fibrochondrocytes); and (3) the combination of the most effective growth factor and coculture regimen. TGF-beta 3 with BMP-4 yielded EBs positive for collagens I, II, and VI, with up to 6.7- and 4.8-fold increases in GAG and collagen, respectively. Analysis of cell surface markers showed a significant increase in CD44 with the TGF-beta 3 + BMP-4 treatment compared to the controls. Coculture with fibrochondrocytes resulted in up to a 9.8-fold increase in collagen II production. The combination of the growth factors BMP-4 + TGF-beta 3 with the fibrochondrocyte coculture led to an increase in cell proliferation and GAG production compared to either treatment alone. This study determined two powerful treatments for inducing fibrocartilaginous differentiation of hESCs and provides a foundation for using flow cytometry to purify these differentiated cells. PMID:18454697

  13. Translational Breast Cancer Research Consortium (TBCRC) 022: A Phase II Trial of Neratinib for Patients With Human Epidermal Growth Factor Receptor 2–Positive Breast Cancer and Brain Metastases

    PubMed Central

    Gelman, Rebecca S.; Wefel, Jeffrey S.; Melisko, Michelle E.; Hess, Kenneth R.; Connolly, Roisin M.; Van Poznak, Catherine H.; Niravath, Polly A.; Puhalla, Shannon L.; Ibrahim, Nuhad; Blackwell, Kimberly L.; Moy, Beverly; Herold, Christina; Liu, Minetta C.; Lowe, Alarice; Agar, Nathalie Y.R.; Ryabin, Nicole; Farooq, Sarah; Lawler, Elizabeth; Rimawi, Mothaffar F.; Krop, Ian E.; Wolff, Antonio C.; Winer, Eric P.; Lin, Nancy U.

    2016-01-01

    Purpose Evidence-based treatments for metastatic, human epidermal growth factor receptor 2 (HER2)–positive breast cancer in the CNS are limited. Neratinib is an irreversible inhibitor of erbB1, HER2, and erbB4, with promising activity in HER2-positive breast cancer; however, its activity in the CNS is unknown. We evaluated the efficacy of treatment with neratinib in patients with HER2-positive breast cancer brain metastases in a multicenter, phase II open-label trial. Patients and Methods Eligible patients were those with HER2-positive brain metastases (≥ 1 cm in longest dimension) who experienced progression in the CNS after one or more line of CNS-directed therapy, such as whole-brain radiotherapy, stereotactic radiosurgery, and/or surgical resection. Patients received neratinib 240 mg orally once per day, and tumors were assessed every two cycles. The primary endpoint was composite CNS objective response rate (ORR), requiring all of the following: ≥50% reduction in volumetric sum of target CNS lesions and no progression of non-target lesions, new lesions, escalating corticosteroids, progressive neurologic signs/symptoms, or non-CNS progression—the threshold for success was five of 40 responders. Results Forty patients were enrolled between February 2012 and June 2013; 78% of patients had previous whole-brain radiotherapy. Three women achieved a partial response (CNS objective response rate, 8%; 95% CI, 2% to 22%). The median number of cycles received was two (range, one to seven cycles), with a median progression-free survival of 1.9 months. Five women received six or more cycles. The most common grade ≥ 3 event was diarrhea (occurring in 21% of patients taking prespecified loperamide prophylaxis and 28% of those without prophylaxis). Patients in the study experienced a decreased quality of life over time. Conclusion Although neratinib had low activity and did not meet our threshold for success, 12.5% of patients received six or more cycles. Studies

  14. BRCA-mutated Invasive Breast Carcinomas: Immunohistochemical Analysis of Insulin-like Growth Factor II mRNA-binding Protein (IMP3), Cytokeratin 8/18, and Cytokeratin 14.

    PubMed

    Mohanty, Sambit K; Lai, Jin-Ping; Gordon, Ora K; Pradhan, Dinesh; Bose, Shikha; Dadmanesh, Farnaz

    2015-01-01

    To evaluate the expression of insulin-like growth factor II mRNA-binding protein (IMP3), CK8/18, and CK14 in BRCA mutated and sporadic invasive breast carcinoma. Immunohistochemistry for IMP3, CK8/18, and CK14 was performed on 39 cases of invasive breast carcinomas with BRCA mutation (24 BRCA1, 14 BRCA2, and 1 dual BRCA1/BRCA2) and 54 cases of sporadic invasive breast carcinomas. The relationship between the IMP3, CK8/18, and CK14 and the tumor grade and molecular phenotypes were analyzed. IMP3, CK8/18, and CK14 positivity were present in 20 (51%), 22 (56%), and 14 (36%) of 39 BRCA-mutated breast carcinomas, and 11 (20%), 53 (98%), and 24 (44%) of 54 sporadic breast carcinomas respectively. The rates of IMP3 expression and absence of CK8/18 (44% versus 2%) in BRCA-mutated breast carcinomas was significantly higher than the sporadic breast carcinomas (p = 0.002 and p < 0.001). No significant difference was observed for CK14 among the two groups (p = 0.408). No significant difference was observed among BRCA1-related and BRCA2-related breast carcinomas in the immunoprofile for IMP3, CK8/18, and CK14. No significant correlation was identified between the expression of IMP3 and CK8/18 and the tumor grade in both BRCA-mutated and sporadic breast carcinomas (p > 0.05). In cases with luminal A and B phenotypes, the rates of expression of IMP3 and loss of CK8/18 were significantly higher in BRCA-mutated as compared to sporadic breast carcinoma (p < 0.001). In cases with basal-like phenotype, the absence of CK8/18 expression was significantly higher in BRCA-mutated breast carcinomas (54% versus 0%, p = 0.001), while no difference was observed for IMP3 expression (p = 0.435). Regardless of mutation type, histologic grade, or molecular phenotype, the absence of CK8/18 expression and presence of IMP3 expression are seen at much higher rate in BRCA mutated breast carcinomas.

  15. Serum growth factors in asbestosis patients.

    PubMed

    Li, Yongliang; Karjalainen, Antti; Koskinen, Heikki; Vainio, Harri; Pukkala, Eero; Hemminki, Kari; Brandt-Rauf, Paul W

    2009-02-01

    Various growth factors, including platelet-derived growth factor (PDGF) and transforming growth factor (TGF)-beta, have been implicated in the pathogenesis of asbestos-induced disease. PDGF and TGF-beta levels were determined by enzyme-linked immunosorbent assays in the banked serum samples of a cohort of workers with asbestosis, and the relationships of the growth factor levels to the subsequent development of cancer and to the radiographic severity and progression of asbestosis in the cohort were examined. Serum levels of PDGF and TGF-beta were found to be unrelated to the development of cancer, and serum levels of PDGF were found to be unrelated to the severity and progression of asbestosis. However, serum levels of TGF-beta were found to be statistically significantly related to disease severity (p = 0.01), increasing approximately 2.4-fold from ILO radiographic category 0 to category 3, and they were marginally related to disease progression (p = 0.07), in multivariate analysis controlling for other contributory factors including cumulative asbestos exposure. This suggests that serum TGF-beta may be a useful biomarker for asbestos-induced fibrotic disease. PMID:19283526

  16. Genotypes, haplotypes and diplotypes of IGF-II SNPs and their association with growth traits in largemouth bass (Micropterus salmoides).

    PubMed

    Li, Xiaohui; Bai, Junjie; Hu, Yinchang; Ye, Xing; Li, Shengjie; Yu, Lingyun

    2012-04-01

    Insulin-like growth factor II (IGF-II) is involved in the regulation of somatic growth and metabolism in many fishes. IGF-II is an important candidate gene for growth traits in fishes and its polymorphisms were associated with the growth traits. The aim of this study is to screen single nucleotide polymorphisms (SNPs) of the largemouth bass (Micropterus salmoides) IGF-II gene and to analyze potential association between IGF-II gene polymorphisms and growth traits in largemouth bass. Four SNPs (C127T, T1012G, C1836T and C1861T) were detected and verified by DNA sequencing in the largemouth bass IGF-II gene. These SNPs were found to organize into seven haplotypes, which formed 13 diplotypes (haplotype pairs). Association analysis showed that four individual SNPs were not significantly associated with growth traits. Significant associations were, however, noted between diplotypes and growth traits (P < 0.05). The fish with H1H3 (CTCC/CGCC) and H1H5 (CTCC/TTTT) had greater body weight than those with H1H1 (CTCC/CTCC), H1H2 (CTCC/TGTT) and H4H4 (TGCT/TGCT/) did. Our data suggest a significant association between genetic variations in the largemouth bass IGF-II gene and growth traits. IGF-II SNPs could be used as potential genetic markers in future breeding programs of largemouth bass. PMID:21894518

  17. Genotypes, haplotypes and diplotypes of IGF-II SNPs and their association with growth traits in largemouth bass (Micropterus salmoides).

    PubMed

    Li, Xiaohui; Bai, Junjie; Hu, Yinchang; Ye, Xing; Li, Shengjie; Yu, Lingyun

    2012-04-01

    Insulin-like growth factor II (IGF-II) is involved in the regulation of somatic growth and metabolism in many fishes. IGF-II is an important candidate gene for growth traits in fishes and its polymorphisms were associated with the growth traits. The aim of this study is to screen single nucleotide polymorphisms (SNPs) of the largemouth bass (Micropterus salmoides) IGF-II gene and to analyze potential association between IGF-II gene polymorphisms and growth traits in largemouth bass. Four SNPs (C127T, T1012G, C1836T and C1861T) were detected and verified by DNA sequencing in the largemouth bass IGF-II gene. These SNPs were found to organize into seven haplotypes, which formed 13 diplotypes (haplotype pairs). Association analysis showed that four individual SNPs were not significantly associated with growth traits. Significant associations were, however, noted between diplotypes and growth traits (P < 0.05). The fish with H1H3 (CTCC/CGCC) and H1H5 (CTCC/TTTT) had greater body weight than those with H1H1 (CTCC/CTCC), H1H2 (CTCC/TGTT) and H4H4 (TGCT/TGCT/) did. Our data suggest a significant association between genetic variations in the largemouth bass IGF-II gene and growth traits. IGF-II SNPs could be used as potential genetic markers in future breeding programs of largemouth bass.

  18. Epidermal Growth Factor and Intestinal Barrier Function.

    PubMed

    Tang, Xiaopeng; Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng; Fang, Rejun

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  19. Epidermal Growth Factor and Intestinal Barrier Function

    PubMed Central

    Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  20. Nerve growth factor promotes human hemopoietic colony growth and differentiation

    SciTech Connect

    Matsuda, H.; Coughlin, M.D.; Bienenstock, J.; Denburg, J.A. )

    1988-09-01

    Nerve growth factor (NGF) is a neurotropic polypeptide necessary for the survival and growth of some central neurons, as well as sensory afferent and sympathetic neurons. Much is now known of the structural and functional characteristics of NGF, whose gene has recently been clones. Since it is synthesized in largest amounts by the male mouse submandibular gland, its role exclusively in nerve growth is questionable. These experiments indicate that NGF causes a significant stimulation of granulocyte colonies grown from human peripheral blood in standard hemopoietic methylcellulose assays. Further, NGF appears to act in a relatively selective fashion to induce the differentiation of eosinophils and basophils/mast cells. Depletion experiments show that the NGF effect may be T-cell dependent and that NGF augments the colony-stimulating effect of supernatants from the leukemic T-cell (Mo) line. The hemopoietic activity of NGF is blocked by {sup 125}I-polyclonal and monoclonal antibodies to NGF. The authors conclude that NGF may indirectly act as a local growth factor in tissues other than those of the nervous system by causing T cells to synthesize or secrete molecules with colony-stimulating activity. In view of the synthesis of NGF in tissue injury, the involvement of basophils/mast cells and eosinophils in allergic and other inflammatory processes, and the association of mast cells with fibrosis and tissue repair, they postulate that NGF plays an important biological role in a variety of repair processes.

  1. Endothelial Cell-Derived Basic Fibroblast Growth Factor: Synthesis and Deposition into Subendothelial Extracellular Matrix

    NASA Astrophysics Data System (ADS)

    Vlodavsky, Israel; Folkman, Judah; Sullivan, Robert; Fridman, Rafael; Ishai-Michaeli, Rivka; Sasse, Joachim; Klagsbrun, Michael

    1987-04-01

    Bovine aortic and corneal endothelial cells synthesize a growth factor that remains mostly cell-associated but can also be extracted from the subendothelial extracellular matrix (ECM) deposited by these cells. The endothelial cell-derived growth factors extracted from cell lysates and from the extracellular matrix appear to be structurally related to basic fibroblast growth factor by the criteria that they (i) bind to heparin-Sepharose and are eluted at 1.4-1.6 M NaCl, (ii) have a molecular weight of about 18,400, (iii) cross-react with anti-basic fibroblast growth factor antibodies when analyzed by electrophoretic blotting and immunoprecipitation, and (iv) are potent mitogens for bovine aortic and capillary endothelial cells. It is suggested that endothelium can store growth factors capable of autocrine growth promotion in two ways: by sequestering growth factor within the cell and by incorporating it into the underlying extracellular matrix.

  2. Clumping factors of H II, He II and He III

    NASA Astrophysics Data System (ADS)

    Jeeson-Daniel, Akila; Ciardi, Benedetta; Graziani, Luca

    2014-09-01

    Estimating the intergalactic medium ionization level of a region needs proper treatment of the reionization process for a large representative volume of the universe. The clumping factor, a parameter which accounts for the effect of recombinations in unresolved, small-scale structures, aids in achieving the required accuracy for the reionization history even in simulations with low spatial resolution. In this paper, we study for the first time the redshift evolution of clumping factors of different ionized species of H and He in a small but very high resolution simulation of the reionization process. We investigate the dependence of the value and redshift evolution of clumping factors on their definition, the ionization level of the gas, the grid resolution, box size and mean dimensionless density of the simulations.

  3. Vascular endothelial growth factor B, a novel growth factor for endothelial cells.

    PubMed Central

    Olofsson, B; Pajusola, K; Kaipainen, A; von Euler, G; Joukov, V; Saksela, O; Orpana, A; Pettersson, R F; Alitalo, K; Eriksson, U

    1996-01-01

    We have isolated and characterized a novel growth factor for endothelial cells, vascular endothelial growth factor B (VEGF-B), with structural similarities to vascular endothelial growth factor (VEGF) and placenta growth factor. VEGF-B was particularly abundant in heart and skeletal muscle and was coexpressed with VEGF in these and other tissues. VEGF-B formed cell-surface-associated disulfide-linked homodimers and heterodimerized with VEGF when coexpressed. Conditioned medium from transfected 293EBNA cells expressing VEGF-B stimulated DNA synthesis in endothelial cells. Our results suggest that VEGF-B has a role in angiogenesis and endothelial cell growth, particularly in muscle. Images Fig. 3 Fig. 4 Fig. 5 PMID:8637916

  4. Nerve Growth Factor and Diabetic Neuropathy

    PubMed Central

    Vinik, Aaron

    2003-01-01

    Neuropathy is one of the most debilitating complications of both type 1 and type 2 diabetes, with estimates of prevalence between 50–90% depending on the means of detection. Diabetic neuropathies are heterogeneous and there is variable involvement of large myelinated fibers and small, thinly myelinated fibers. Many of the neuronal abnormalities in diabetes can be duplicated by experimental depletion of specific neurotrophic factors, their receptors or their binding proteins. In experimental models of diabetes there is a reduction in the availability of these growth factors, which may be a consequence of metabolic abnormalities, or may be independent of glycemic control. These neurotrophic factors are required for the maintenance of the neurons, the ability to resist apoptosis and regenerative capacity. The best studied of the neurotrophic factors is nerve growth factor (NGF) and the related members of the neurotrophin family of peptides. There is increasing evidence that there is a deficiency of NGF in diabetes, as well as the dependent neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) that may also contribute to the clinical symptoms resulting from small fiber dysfunction. Similarly, NT3 appears to be important for large fiber and IGFs for autonomic neuropathy. Whether the observed growth factor deficiencies are due to decreased synthesis, or functional, e.g. an inability to bind to their receptor, and/or abnormalities in nerve transport and processing, remains to be established. Although early studies in humans on the role of neurotrophic factors as a therapy for diabetic neuropathy have been unsuccessful, newer agents and the possibilities uncovered by further studies should fuel clinical trials for several generations. It seems reasonable to anticipate that neurotrophic factor therapy, specifically targeted at different nerve fiber populations, might enter the therapeutic armamentarium. PMID:14668049

  5. IFPA Meeting 2012 Workshop Report II: epigenetics and imprinting in the placenta, growth factors and villous trophoblast differentiation, role of the placenta in regulating fetal exposure to xenobiotics during pregnancy, infection and the placenta.

    PubMed

    Ahmed, M S; Aleksunes, L M; Boeuf, P; Chung, M K; Daoud, G; Desoye, G; Díaz, P; Golos, T G; Illsley, N P; Kikuchi, K; Komatsu, R; Lao, T; Morales-Prieto, D M; Nanovskaya, T; Nobuzane, T; Roberts, C T; Saffery, R; Tamura, I; Tamura, K; Than, N G; Tomi, M; Umbers, A; Wang, B; Weedon-Fekjaer, M S; Yamada, S; Yamazaki, K; Yoshie, M; Lash, G E

    2013-03-01

    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2012 there were twelve themed workshops, four of which are summarized in this report. These workshops related to various aspects of placental biology: 1) epigenetics and imprinting in the placenta; 2) growth factors and villous trophoblast differentiation; 3) role of the placenta in regulating fetal exposure to xenobiotics during pregnancy; 4) infection and the placenta.

  6. Nutrition and the insulin-like growth factor system.

    PubMed

    Estívariz, C F; Ziegler, T R

    1997-08-01

    Nutritional status is a key regulator of the circulating and tissue insulin-like growth factor (IGF) system. IGF-I mRNA and protein levels decrease in tissues such as liver and intestine with fasting and are restored with refeeding. Additional studies suggest that the level of protein and calorie intake independently regulate plasma IGF-I concentrations in man. The level of nutrition effects the biological actions of recombinant growth hormone (GH) and IGF-I administration in humans. Limited data demonstrate that plasma and tissue levels of the insulin-like growth factor binding proteins (IGFBPs) are also sensitive to nutrient intake. Specific micronutrients, such as potassium, magnesium and zinc also appear to be important for optimal IGF-I synthesis and anabolic effects in animal models. Malnutrition is common in elderly patients, however, the interaction between specific nutrients, general nutritional status and the aging process on the IGF system is incompletely understood. Mechanisms of nutrient-IGF system interactions which may affect the biological actions of IGF-I, IGF-II, and the IGFBPs are increasingly being determined in basic studies. The effects of underlying nutritional status and responses to dietary intake will be important to evaluate in clinical studies of the IGF system and exogenous growth factor therapy.

  7. Growth Factors and Tension-Induced Skeletal Muscle Growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  8. New detection methods of growth hormone and growth factors.

    PubMed

    Bidlingmaier, Martin

    2012-01-01

    Human growth hormone (GH), but also GH related growth factors like the insulin-like growth factor-1 (IGF-1) are known to be abused in sports. Although the scientific evidence supporting a distinct effect of GH on performance in healthy trained subjects is limited, it has been repeatedly found with athletes or trainers, and the recent introduction of a first test to detect GH doping has led to a number of positive cases. Currently, there is no test for the detection of IGF-1 introduced worldwide, but confiscation of the drug from sports teams can be taken as indirect evidence for its abuse. The major biochemical difficulty for the detection of GH is that the recombinant form is identical in physicochemical properties to the endogenous GH secreted by the pituitary gland. Furthermore, the very short half-life of GH in circulation inherently shortens the window of opportunity where the drug can be detected. Two strategies have been followed for more than a decade to develop a test to detect the application of recombinant GH: the marker approach, which is based on the elevation of GH-dependent markers above the level seen under physiological conditions evoked by administration of recombinant GH, and the isoform approach, which is based on a change in the pattern of GH isoforms in circulation following the injection of recombinant GH.

  9. Dual delivery of vascular endothelial growth factor and hepatocyte growth factor coacervate displays strong angiogenic effects.

    PubMed

    Awada, Hassan K; Johnson, Noah R; Wang, Yadong

    2014-05-01

    Controlled delivery of multiple growth factors (GFs) holds great potential for the clinical treatment of ischemic diseases and might be more therapeutically effective to reestablish vasculature than the provision of a single GF. Vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) are two potent angiogenic factors. However, due to rapid degradation and dilution in the body, their clinical potential will rely on an effective mode of delivery. A coacervate, composed of heparin and a biodegradable polycation, which protects GFs from proteolysis and potentiates their bioactivities, is developed. Here, the coacervate incorporates VEGF and HGF and sustains their release for at least three weeks. Their strong angiogenic effects on endothelial cell proliferation and tube formation in vitro are confirmed. Furthermore, it is demonstrated that coacervate-based delivery of these factors has stronger effects than free application of both factors and to coacervate delivery of each GF separately.

  10. Growth hormone, insulin-like growth factor system and carcinogenesis.

    PubMed

    Boguszewski, Cesar Luiz; Boguszewski, Margaret Cristina da Silva; Kopchick, John J

    2016-01-01

    The growth hormone (GH) and insulin-like growth factor (IGF) system plays an important role in the regulation of cell proliferation, differentiation, apoptosis, and angiogenesis. In terms of cell cycle regulation, the GH-IGF system induces signalling pathways for cell growth that compete with other signalling systems that result in cell death; thus the final effect of these opposed forces is critical for normal and abnormal cell growth. The association of the GH-IGF system with carcinogenesis has long been hypothesised, mainly based on in vitro studies and the use of a variety of animal models of human cancer, and also on epidemiological and clinical evidence in humans. While ample experimental evidence supports a role of the GH-IGF system in tumour promotion and progression, with several of its components being currently tested as central targets for cancer therapy, the strength of evidence from patients with acromegaly, GH deficiency, or treated with GH is much weaker. In this review, we will attempt to consolidate this data. (Endokrynol Pol 2016; 67 (4): 414-426). PMID:27387246

  11. Expression of growth factors, proto-oncogenes, and p53 in nasopharyngeal angiofibromas.

    PubMed

    Nagai, M A; Butugan, O; Logullo, A; Brentani, M M

    1996-02-01

    Biopsies from 25 juvenile nasopharyngeal angiofibromas (JNAs) and respective normal inferior turbinates were examined and compared. The expression patterns of the messenger RNAs (mRNAs) for various growth factors possibly involved in the growth of mesenchymal cells, as well as angiogenesis and fibrosis, were also compared. These growth factors included insulin-like growth factor II (IGF-II), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), transforming growth factors-beta1 (TGF-beta1) and platelet-derived growth factors (PDGF-A and PDGF-B). Quantification of mRNA coding for proto-oncogenes and suppressor genes related to proliferation (i.e., c-myc, c-fos, p53) was also undertaken. Tumor and turbinates expressed similar levels of bFGF, VEGF, TGF-beta1, c-myc, c-fos, and PDGF-A mRNAs. The presence of TGF-beta1 protein was confirmed by immunohistochemistry in several structures that characterize the lesions of JNA, which suggests that TGF-beta1 may play a role in the development of the fibrous component of this tumor. PDGF-B and p53 were overexpressed (i.e., twice the mean level found in turbinates) in 50% and 32% of JNAs, respectively but there was no statistical significance when compared with controls. Statistically significant increased expression of IGF-II mRNA was observed in JNA (P = .04). IGF-II mRNA levels were correlated to p53 (P = .05) and PDGF-B (P = .034), indicating a possible synergistic action of such factors in JNA. The results of this study suggest that IGF-II might be a potential growth regulator of nasopharyngeal angiofibromas.

  12. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).

    PubMed

    Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E

    2014-08-01

    The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.

  13. Epidermal growth factor receptor signaling in tissue

    SciTech Connect

    Shvartsman, Stanislav; Wiley, H. S.; Lauffenburger, Douglas A.

    2004-08-01

    Abstract: A peptide purified from the salivary gland of a mouse was shown few years ago to accelerate incisor eruption and eyelid opening in newborn mice, and was named epidermal growth factor (EGF). The members of this family of peptide growth factors had been identified in numerous physiological and pathological contexts. EGF binds to a cell surface EGF receptor, which induces a biochemical modification (phosphorylation) of the receptor's cytoplasmic tail. There is a growing consensus in the research community that, in addition to cellular and molecular studies, the dynamics of the EGFR network and its operation must be examined in tissues. A key challenge is to integrate the existing molecular and cellular information into a system-level description of the EGFR network at the tissue and organism level. In this paper, the two examples of EGFR signaling in tissues are described, and the recent efforts to model EGFR autocrine loops, which is a predominant mode of EGFR activation in vivo, are summarized.

  14. A physiological role for HgII during phototrophic growth

    NASA Astrophysics Data System (ADS)

    Grégoire, D. S.; Poulain, A. J.

    2016-02-01

    The bioaccumulation of toxic monomethylmercury is influenced by the redox reactions that determine the amount of mercury (Hg) substrate--HgII or Hg0 (refs ,)--that is available for methylation. Phototrophic microorganisms can reduce HgII to Hg0 (ref. ). This reduction has been linked to a mixotrophic lifestyle, in which microbes gain energy photosynthetically but acquire diverse carbon compounds for biosynthesis from the environment. Photomixotrophs must maintain redox homeostasis to disperse excess reducing power due to the accumulation of reduced enzyme cofactors. Here we report laboratory experiments in which we exposed purple bacteria growing in a bioreactor to HgII and monitored Hg0 concentrations. We show that phototrophs use HgII as an electron sink to maintain redox homeostasis. Hg0 concentrations increased only when bacteria grew phototrophically, and when bacterial enzyme cofactor ratios indicated the presence of an intracellular redox imbalance. Under such conditions, bacterial growth rates increased with increasing HgII concentrations; when alternative electron sinks were added, Hg0 production decreased. We conclude that Hg can fulfil a physiological function in bacteria, and that photomixotrophs can modify the availability of Hg to methylation sites.

  15. Milk Epidermal Growth Factor and Gut Protection

    PubMed Central

    Dvorak, Bohuslav

    2010-01-01

    Maternal milk is a complex fluid with multifunctional roles within the developing gastrointestinal tract. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) are members of the family of EGF-related peptides. Biological actions of these growth factors are mediated via interaction with the EGF-receptor (EGF-R). In the early postnatal period, breast milk is the major source of EGF for the developing intestinal mucosa. HB-EGF is also detected in breast milk, but in concentrations 2 to 3 times lower than EGF. Under normal physiological conditions, the intestinal epithelium undergoes a continuing process of cell proliferation, differentiation and maturation. EGF plays an important role in these processes. In pathophysiologic situations, EGF contributes to epithelial protection from injury and post-injury mucosal repair. Necrotizing enterocolitis (NEC) is a devastating disease affecting prematurely born infants. The pathogenesis of NEC is not known and there is no effective treatment for this disease. In an experimental NEC model, oral administration of a physiological dose of EGF significantly reduces the incidence and severity of NEC. HB-EGF provides similar protection against NEC, but only when pharmacological doses are used. Further studies are necessary before EGF can be introduced as an efficient therapeutic approach of intestinal injury. PMID:20105663

  16. The suppression of fibroblast growth factor 2/fibroblast growth factor 4-dependent tumour angiogenesis and growth by the anti-growth factor activity of dextran derivative (CMDB7).

    PubMed Central

    Bagheri-Yarmand, R.; Kourbali, Y.; Mabilat, C.; Morère, J. F.; Martin, A.; Lu, H.; Soria, C.; Jozefonvicz, J.; Crépin, M.

    1998-01-01

    Our previous studies showed that carboxymethyl benzylamide dextran (CMDB7) blocks basic fibroblast growth factor (FGF-2)-dependent cell proliferation of a human breast epithelial line (HBL100), suggesting its potential role as a potent antiangiogenic substance. The derived cell line (HH9), which was transformed with the hst/FGF4 gene, has been shown to be highly proliferative in vitro and to induce angiogenic tumours in nude mice. We show here that CMDB7 inhibits the mitogenic activities of the conditioned media from HBL 100 and HH9 cells in a dose-dependent manner. When HH9 cells were injected s.c. into nude mice, CMDB7 treatment (300 mg kg(-1) week(-1)) suppressed the tumour take and the tumour growth by about 50% and 80% respectively. Immunohistochemical analysis showed a highly significant decrease, by more than threefold, in the endothelial density of viable tumour regions, together with a significant increase in the necrosis area. This antiangiogenic activity of CMDB7 was further demonstrated by direct inhibition of calf pulmonary artery (CPAE) and human umbilical vein (HUVEC) endothelial cell proliferation and migration in vitro. In addition, we showed that CMDB7 inhibits specifically the mitogenic effects of the growth factors that bind to heparin such as FGF-2, FGF-4, platelet-derived growth factor (PDGF-BB) and transforming growth factor (TGF-beta1), but not those of epidermal growth factor (EGF) and insulin-like growth factor (IGF-1). These results demonstrate that CMDB7 inhibits FGF-2/FGF-4-dependent tumour growth and angiogenesis, most likely by disrupting the autocrine and paracrine effects of growth factors released from the tumour cells. Images Figure 4 PMID:9662260

  17. [Connective tissue growth factor (CTGF): a key factor in the onset and progression of kidney damage].

    PubMed

    Sánchez-López, E; Rodrigues Díez, R; Rodríguez Vita, J; Rayego Mateos, S; Rodrigues Díez, R R; Rodríguez García, E; Lavoz Barria, C; Mezzano, S; Egido, J; Ortiz, A; Ruiz-Ortega, M; Selgas, R

    2009-01-01

    Connective tissue growth factor (CTGF) is increased in several pathologies associated with fibrosis, including multiple renal diseases. CTGF is involved in biological processes such as cell cycle regulation, migration, adhesion and angiogenesis. Its expression is regulated by various factors involved in renal damage, such as transforming growth factor- , Angiotensin II, high concentrations of glucose and cellular stress. CTGF is involved in the initiation and progression of renal damage to be able to induce an inflammatory response and promote fibrosis, identified as a potential therapeutic target in the treatment of kidney diseases. In this paper we review the main actions of CTGF in renal disease, the intracellular action mechanisms and therapeutic strategies for its blocking.

  18. Growth Hormone and Insulin-Like Growth Factor-1.

    PubMed

    Nicholls, Adam R; Holt, Richard I G

    2016-01-01

    Human growth hormone (GH) was first isolated from the human pituitary gland in 1945 and found to promote the growth of children with hypopituitarism. Since the formation of the World Anti-Doping Association, human GH has appeared on the list of forbidden substances. There is a significant amount of anecdotal evidence that human GH is misused by athletes to enhance performance, and there have been a number of high-profile cases of GH use in professional sport. GH secretagogues (GH-Ss), which increase GH secretion, and insulin-like growth factor (IGF-1), which mediates many of the effects of GH, are also misused, although there is less evidence for this. The effectiveness of GH, IGF-1, and GH-Ss as performance-enhancing drugs remains unclear. Evidence from studies of GH use in people with hypopituitarism show several desirable outcomes, including increased lean body mass, increased strength, and increased exercise capacity. These anabolic and metabolic properties, coupled with the difficulty in detecting them, make them attractive as agents of misuse. Studies in healthy young adults have also demonstrated a performance benefit with GH and IGF-1. PMID:27347885

  19. In vivo cartilage formation from growth factor modulated articular chondrocytes.

    PubMed

    Bradham, D M; Horton, W E

    1998-07-01

    Recent procedures for autologous repair of cartilage defects may be difficult in elderly patients because of the loss of stem cells and chondrocytes that occurs with age and the slow in vitro proliferation of chondrocytes from aged cartilage. In this study secondary chondroprogenitor cells were obtained by modulating the phenotype of articular chondrocytes with growth factors and stimulating the proliferation of these cells in culture. Chondrocytes isolated from the articular cartilage of mature New Zealand White rabbits were exposed to a combination of transforming growth factor beta and basic fibroblast growth factor treatment. These cells ceased the production of Collagen II (a marker for the chondrocyte phenotype) and underwent a 136-fold increase in cell number. Next, the cells were placed in high density culture and reexpressed the chondrocyte phenotype in vitro and formed hyaline cartilage in an in vivo assay. Primary chondrocytes obtained from articular cartilage of elderly humans could be manipulated in a similar fashion in vitro. These human secondary chondroprogenitor cells formed only cartilage tissue when assayed in vivo and in tissue bioreactors. This approach may be essential for autologous repair of degenerated articular cartilage in elderly patients with osteoarthritis.

  20. Subcritical crack growth under mode I, II, and III loading for Coconino sandstone

    NASA Astrophysics Data System (ADS)

    Ko, Tae Young

    In systems subjected to long-term loading, subcritical crack growth is the principal mechanism causing the time-dependent deformation and failure of rocks. Subcritical crack growth is environmentally-assisted crack growth, which can allow cracks to grow over a long period of time at stresses far smaller than their failure strength and at tectonic strain rates. The characteristics of subcritical crack growth can be described by a relationship between the stress intensity factor and the crack velocity. This study presents the results of studies conducted to validate the constant stress-rate test for determining subcritical crack growth parameters in Coconino sandstone, compared with the conventional testing method, the double torsion test. The results of the constant stress-rate test are in good agreement with the results of double torsion test. More importantly, the stress-rate tests can determine the parameter A with a much smaller standard deviation than the double torsion test. Thus the constant stress-rate test seems to be both a valid and preferred test method for determining the subcritical crack growth parameters in rocks. We investigated statistical aspects of the constant stress-rate test. The effects of the number of tests conducted on the subcritical crack growth parameters were examined and minimum specimen numbers were determined. The mean and standard deviation of the subcritical crack growth parameters were obtained by randomly selecting subsets from the original strength data. In addition, the distribution form of the subcritical crack growth parameters and the relation between the parameter n and A were determined. We extended the constant stress-rate test technique to modes II and III subcritical crack growth in rocks. The experimental results of the modes I, II and III tests show that the values of the subcritical crack growth parameters are similar to each other. The subcritical crack growth parameter n value for Coconino sandstone has the range

  1. Expression of the genes for insulin-like growth factors and their receptors in bone during skeletal growth

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Roberts, C. T.; Leroith, D.; Morey-Holton, E.

    1994-01-01

    Insulin-like growth factors (IGF) are important regulators of skeletal growth. To determine whether the capacity to produce and respond to these growth factors changes during skeletal development, we measured the protein and mRNA levels for IGF-I, IGF-II, and their receptors (IGF-IR and IGF-IIR, respectively) in the tibia and femur of rats before and up to 28 mo after birth. The mRNA levels remained high during fetal development but fell after birth, reaching a nadir by 3-6 wk. This fall was most pronounced for IGF-II and IGF-IIR mRNA and least pronounced for IGF-I mRNA. However, after 6 wk, both IGF-I and IGF-IR mRNA levels recovered toward the levels observed at birth. In the prenatal bones, the signals for the mRNAs of IGF-II and IGF-IIR were stronger than the signals for the mRNAs of IGF-I and IGF-IR, although the content of IGF-I was three- to fivefold greater than that of IGF-II. IGF-II levels fell postnatally, whereas the IGF-I content rose after birth such that the ratio IGF-I/IGF-II continued to increase with age. We conclude that, during development, rat bone changes its capacity to produce and respond to IGFs with a progressive trend toward the dominance of IGF-I.

  2. Decorin: A Growth Factor Antagonist for Tumor Growth Inhibition

    PubMed Central

    Järvinen, Tero A. H.; Prince, Stuart

    2015-01-01

    Decorin (DCN) is the best characterized member of the extracellular small leucine-rich proteoglycan family present in connective tissues, typically in association with or “decorating” collagen fibrils. It has substantial interest to clinical medicine owing to its antifibrotic, anti-inflammatory, and anticancer effects. Studies on DCN knockout mice have established that a lack of DCN is permissive for tumor development and it is regarded as a tumor suppressor gene. A reduced expression or a total disappearance of DCN has been reported to take place in various forms of human cancers during tumor progression. Furthermore, when used as a therapeutic molecule, DCN has been shown to inhibit tumor progression and metastases in experimental cancer models. DCN affects the biology of various types of cancer by targeting a number of crucial signaling molecules involved in cell growth, survival, metastasis, and angiogenesis. The active sites for the neutralization of different growth factors all reside in different parts of the DCN molecule. An emerging concept that multiple proteases, especially those produced by inflammatory cells, are capable of cleaving DCN suggests that native DCN could be inactivated in a number of pathological inflammatory conditions. In this paper, we review the role of DCN in cancer. PMID:26697491

  3. Role of growth factors in the growth of normal and transformed cells

    SciTech Connect

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both {sup 125}I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product.

  4. Transcription-dependent epidermal growth factor receptor activation by hepatocyte growth factor.

    PubMed

    Reznik, Thomas E; Sang, Yingying; Ma, Yongxian; Abounader, Roger; Rosen, Eliot M; Xia, Shuli; Laterra, John

    2008-01-01

    The mechanisms and biological implications of coordinated receptor tyrosine kinase coactivation remain poorly appreciated. Epidermal growth factor receptor (EGFR) and c-Met are frequently coexpressed in cancers, including those associated with hepatocyte growth factor (HGF) overexpression, such as malignant astrocytoma. In a previous analysis of the HGF-induced transcriptome, we found that two EGFR agonists, transforming growth factor-alpha and heparin-binding epidermal growth factor-like growth factor (HB-EGF), are prominently up-regulated by HGF in human glioma cells. We now report that stimulating human glioblastoma cells with recombinant HGF induces biologically relevant EGFR activation. EGFR phosphorylation at Tyr(845) and Tyr(1068) increased 6 to 24 h after cell stimulation with HGF and temporally coincided with the induction of transforming growth factor-alpha (~5-fold) and HB-EGF (~23-fold) expression. Tyr(845) and Tyr(1068) phosphorylation, in response to HGF, was inhibited by cycloheximide and actinomycin D, consistent with a requirement for DNA transcription and RNA translation. Specifically, blocking HB-EGF binding to EGFR with the antagonist CRM197 inhibited HGF-induced EGFR phosphorylation by 60% to 80% and inhibited HGF-induced S-G(2)-M transition. CRM197 also inhibited HGF-induced anchorage-dependent cell proliferation but had no effect on HGF-mediated cytoprotection. These findings establish that EGFR can be activated with functional consequences by HGF as a result of EGFR ligand expression. This transcription-dependent cross-talk between the HGF receptor c-Met and EGFR expands our understanding of receptor tyrosine kinase signaling networks and may have considerable consequences for oncogenic mechanisms and cancer therapeutics.

  5. Autologous Growth Factor Injections in Chronic Tendinopathy

    PubMed Central

    Sandrey, Michelle A.

    2014-01-01

    Reference: de Vos RJ, van Veldhoven PLJ, Moen MH, Weir A, Tol JL. Autologous growth factor injections in chronic tendinopathy: a systematic review. Br Med Bull. 2010;95:63–77. Clinical Question: The authors of this systematic review evaluated the literature to critically consider the effects of growth factors delivered through autologous whole-blood and platelet-rich–plasma (PRP) injections in managing wrist-flexor and -extensor tendinopathies, plantar fasciopathy, and patellar tendinopathy. The primary question was, according to the published literature, is there sufficient evidence to support the use of growth factors delivered through autologous whole-blood and PRP injections for chronic tendinopathy? Data Sources: The authors performed a comprehensive, systematic literature search in October 2009 using PubMed, MEDLINE, EMBASE, CINAHL, and the Cochrane library without time limits. The following key words were used in different combinations: tendinopathy, tendinosis, tendinitis, tendons, tennis elbow, plantar fasciitis, platelet rich plasma, platelet transfusion, and autologous blood or injection. The search was limited to human studies in English. All bibliographies from the initial literature search were also viewed to identify additional relevant studies. Study Selection: Studies were eligible based on the following criteria: (1) Articles were suitable (inclusion criteria) if the participants had been clinically diagnosed as having chronic tendinopathy; (2) the design had to be a prospective clinical study, randomized controlled trial, nonrandomized clinical trial, or prospective case series; (3) a well-described intervention in the form of a growth factor injection with either PRP or autologous whole blood was used; and (4) the outcome was reported in terms of pain or function (or both). Data Extraction: All titles and abstracts were assessed by 2 researchers, and all relevant articles were obtained. Two researchers independently read the full text of

  6. Fibroblast growth factor-10 is a mitogen for urothelial cells

    SciTech Connect

    Bagai, Shelly; Rubio, Eric; Cheng, Jang-Fang; Sweet, Robert; Thomas, Regi; Fuchs, Elaine; Grady, Richard; Mitchell, Michael; Bassuk, James A.

    2002-02-01

    Fibroblast Growth Factor (FGF)-10 plays an important role in regulating growth, differentiation, and repair of the urothelium. This process occurs through a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the epithelium (urothelium). In situ hybridization analysis demonstrated that (i) fibroblasts of the human lamina propria were the cell type that synthesized FGF-10 RNA and (ii) the FGF-10 gene is located at the 5p12-p13 locus of chromosome 5. Recombinant (r) preparations of human FGF-10 were found to induce proliferation of human urothelial cells in vitro and of transitional epithelium of wild-type and FGF7-null mice in vivo. Mechanistic studies with human cells indicated two modes of FGF-10 action: (i) translocation of rFGF-10 into urothelial cell nuclei and (ii) a signaling cascade that begins with the heparin-dependent phosphorylation of tyrosine residues of surface transmembrane receptors. The normal urothelial phenotype, that of quiescence, is proposed to be typified by negligible levels of FGF-10. During proliferative phases, levels of FGF-10 rise at the urothelial cell surface and/or within urothelial cell nuclei. An understanding of how FGF-10 works in conjunction with these other processes will lead to better management of many diseases of the bladder and urinary tract.

  7. Examining tenets of personal growth initiative using the personal growth initiative scale-II.

    PubMed

    Weigold, Ingrid K; Porfeli, Erik J; Weigold, Arne

    2013-12-01

    One promising antecedent of optimal functioning is personal growth initiative (PGI), which is the active and intentional desire to grow as a person. PGI theory and its measure, the Personal Growth Initiative Scale, have consistently shown positive relations with optimal functioning and growth. Recently, the PGI theory and its measure have been revised to account for theoretical advances. Consequently, testing of the revised theory and measure is needed to assess their capacity to predict psychological functioning and growth. The current study examined 2 tenets of PGI theory in a sample of college students. Results indicated that 3 of the 4 factors of PGI were positively related to psychological well-being and negatively related to aspects of psychological distress. In addition, the same 3 factors were related to growth in a salient domain (vocational identity development) and explained variance beyond that accounted for by more stable personality traits. PMID:23937535

  8. Systems Biology of Vascular Endothelial Growth Factors

    PubMed Central

    Mac Gabhann, Feilim; Popel, Aleksander S.

    2009-01-01

    Several cytokine families have roles in development, maintenance and remodeling of the microcirculation. Of these, the VEGF family is one of the best studied and one of the most complex. Five VEGF ligand genes and five cell surface receptor genes are known in the human, and each of these may be transcribed as multiple splice isoforms to generate an extensive family of proteins, many of which are subject to further proteolytic processing. Using the VEGF family as an example, we describe the current knowledge of growth factor expression, processing and transport in vivo. Experimental studies and computational simulations are being used to measure and predict the activity of these molecules, and we describe avenues of research that seek to fill the remaining gaps in our understanding of VEGF family behavior. PMID:18608994

  9. Epidermal growth factor (urogastrone) in human tissues.

    PubMed

    Hirata, Y; Orth, D N

    1979-04-01

    Human epidermal growth factor (hEGF), which stimulates the growth of a variety of tissues, was first isolated from mouse submandibular glands, but is also excreted in large amounts (about 50 micrograms/day) in human urine and is probably identical to human beta-urogastrone (hUG), a potent inhibitor of stimulated gastric acid secretion. However, the primary tissue source of hEGF/hUG is as yet unknown. The hEGF/hUG in homogenates of human salivary glands and a wide variety of other endocrine and nonendocrine tissues was extracted by Amberlite CG-50 cation exchange chromatography and immune affinity chromatography using the immunoglobulin fraction of rabbit anti-hEGF serum covalently bound to agarose. The extracts were subjected to homologous hEGF RIA. Immunoreactive hEGF was found in extracts of adult submandibular gland, thyroid gland, duodenum, jejunum, and kidney, but not in several fetal tissues. The tissue immunoreactive hEGF was similar to standard hEGF in terms of immunoreactivity and elution from Sephadex G-50 Fine resin, but its concentrations were very low (1.3-5.5 ng/g wet tissue). Thus, it is not certain that these tissues represent the only source of the large amounts of hEGF/hUG that appear to be filtered by the kidneys each day.

  10. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  11. [Growth Hormone-Insulin Growth Factor I (GH-IGF-I) axis and growth].

    PubMed

    Castell, A-L; Sadoul, J-L; Bouvattier, C

    2013-10-01

    Normal human linear growth results from an evolutionary process expressing the sum effect of multiple genes. The growth hormone (GH) - insulin like growth factor (IGF)-I axis is one of the main actors in the growth process. Defects in this axis can be responsible for short or tall stature. Short stature is defined as smaller than - 2 standard deviations (SD). It is a very common reason for consultation in pediatrics; indeed, 2.5 % of children are concerned. Multiple causes make diagnosis difficult. In this article, we detail the most common constitutional causes of small size, including those related to a defect in the GH-IGF-I axis. Then, we report, the first results of the clinical and genetic study conducted on 213 patients with gigantism. Tall stature is defined by a height superior to 2 SD. Finally, recent work linking epigenetics and growth - via signaling pathways of GH-IGF-I axis - will be presented. PMID:24356290

  12. [Growth Hormone-Insulin Growth Factor I (GH-IGF-I) axis and growth].

    PubMed

    Castell, A-L; Sadoul, J-L; Bouvattier, C

    2013-10-01

    Normal human linear growth results from an evolutionary process expressing the sum effect of multiple genes. The growth hormone (GH) - insulin like growth factor (IGF)-I axis is one of the main actors in the growth process. Defects in this axis can be responsible for short or tall stature. Short stature is defined as smaller than - 2 standard deviations (SD). It is a very common reason for consultation in pediatrics; indeed, 2.5 % of children are concerned. Multiple causes make diagnosis difficult. In this article, we detail the most common constitutional causes of small size, including those related to a defect in the GH-IGF-I axis. Then, we report, the first results of the clinical and genetic study conducted on 213 patients with gigantism. Tall stature is defined by a height superior to 2 SD. Finally, recent work linking epigenetics and growth - via signaling pathways of GH-IGF-I axis - will be presented.

  13. Polyelectrolyte Complex for Heparin Binding Domain Osteogenic Growth Factor Delivery.

    PubMed

    Wing Moon Lam, Raymond; Abbah, Sunny Akogwu; Ming, Wang; Naidu, Mathanapriya; Ng, Felly; Tao, Hu; Goh Cho Hong, James; Ting, Kang; Hee Kit, Wong

    2016-01-01

    During reconstructive bone surgeries, supraphysiological amounts of growth factors are empirically loaded onto scaffolds to promote successful bone fusion. Large doses of highly potent biological agents are required due to growth factor instability as a result of rapid enzymatic degradation as well as carrier inefficiencies in localizing sufficient amounts of growth factor at implant sites. Hence, strategies that prolong the stability of growth factors such as BMP-2/NELL-1, and control their release could actually lower their efficacious dose and thus reduce the need for larger doses during future bone regeneration surgeries. This in turn will reduce side effects and growth factor costs. Self-assembled PECs have been fabricated to provide better control of BMP-2/NELL-1 delivery via heparin binding and further potentiate growth factor bioactivity by enhancing in vivo stability. Here we illustrate the simplicity of PEC fabrication which aids in the delivery of a variety of growth factors during reconstructive bone surgeries. PMID:27585207

  14. Transforming growth factor-β and fibrosis

    PubMed Central

    Verrecchia, Franck; Mauviel, Alain

    2007-01-01

    Transforming growth factor-β (TGF-β), a prototype of multifunctional cytokine, is a key regulator of extracellular matrix (ECM) assembly and remodeling. Specifically, TGF-β isoforms have the ability to induce the expression of ECM proteins in mesenchymal cells, and to stimulate the production of protease inhibitors that prevent enzymatic breakdown of the ECM. Elevated TGF-β expression in affected organs, and subsequent deregulation of TGF-β functions, correlates with the abnormal connective tissue deposition observed during the onset of fibrotic diseases. During the last few years, tremendous progress has been made in the understanding of the molecular aspects of intracellular signaling downstream of the TGF-β receptors. In particular, Smad proteins, TGF-β receptor kinase substrates that translocate into the cell nucleus to act as transcription factors, have been studied extensively. The role of Smad3 in the transcriptional regulation of typeIcollagen gene expression and in the development of fibrosis, demonstrated both in vitro and in animal models with a targeted deletion of Smad3, is of critical importance because it may lead to novel therapeutic strategies against these diseases. This review focuses on the mechanisms underlying Smad modulation of fibrillar collagen expression and how it relates to fibrotic processes. PMID:17589920

  15. Design of Growth Factor Sequestering Biomaterials

    PubMed Central

    Belair, David G.; Le, Ngoc Nhi; Murphy, William L.

    2014-01-01

    Growth factors (GFs) are major regulatory proteins that can govern cell fate, migration, and organization. Numerous aspects of the cell milieu can modulate cell responses to GFs, and GF regulation is often achieved by the native extracellular matrix (ECM). For example, the ECM can sequester GFs and thereby control GF bioavailability. In addition, GFs can exert distinct effects depending on whether they are sequestered in solution, at two-dimensional interfaces, or within three-dimensional matrices. Understanding how the context of GF sequestering impacts cell function in the native ECM can instruct the design of soluble or insoluble GF sequestering moieties, which can then be used in a variety of bioengineering applications. This Feature Article provides an overview of the natural mechanisms of GF sequestering in the cell milieu, and reviews the recent bioengineering approaches that have sequestered GFs to modulate cell function. Results to date demonstrate that the cell response to GF sequestering depends on the affinity of the sequestering interaction, the spatial proximity of sequestering in relation to cells, the source of the GF (supplemented or endogenous), and the phase of the sequestering moiety (soluble or insoluble). We highlight the importance of context for the future design of biomaterials that can leverage endogenous molecules in the cell milieu and mitigate the need for supplemented factors. PMID:25182455

  16. TGF-β1 mediates the hypertrophic cardiomyocyte growth induced by angiotensin II

    PubMed Central

    Schultz, Jo El J.; Witt, Sandra A.; Glascock, Betty J.; Nieman, Michelle L.; Reiser, Peter J.; Nix, Stacey L.; Kimball, Thomas R.; Doetschman, Thomas

    2002-01-01

    Angiotensin II (Ang II), a potent hypertrophic stimulus, causes significant increases in TGFb1 gene expression. However, it is not known whether there is a causal relationship between increased levels of TGF-β1 and cardiac hypertrophy. Echocardiographic analysis revealed that TGF-β1–deficient mice subjected to chronic subpressor doses of Ang II had no significant change in left ventricular (LV) mass and percent fractional shortening during Ang IItreatment. In contrast, Ang II–treated wild-type mice showed a >20% increase in LV mass and impaired cardiac function. Cardiomyocyte cross-sectional area was also markedly increased in Ang II–treated wild-type mice but unchanged in Ang II–treated TGF-β1–deficient mice. No significant levels of fibrosis, mitotic growth, or cytokine infiltration were detected in Ang II–treated mice. Atrial natriuretic factor expression was ∼6-fold elevated in Ang II–treated wild-type, but not TGF-β1–deficient mice. However, the α- to β-myosin heavy chain switch did not occur in Ang II–treated mice, indicating that isoform switching is not obligatorily coupled with hypertrophy or TGF-β1. The Ang IIeffect on hypertrophy was shown not to result from stimulation of the endogenous renin-angiotensis system. These results indicate that TGF-β1 is an important mediator of the hypertrophic growth response of the heart to Ang II. PMID:11901187

  17. Nerve growth factor enhances Clara cell proliferation after lung injury.

    PubMed

    Sonar, S S; Schwinge, D; Kilic, A; Yildirim, A O; Conrad, M L; Seidler, K; Müller, B; Renz, H; Nockher, W A

    2010-07-01

    The lung epithelia facilitate wound closure by secretion of various cytokines and growth factors. Nerve growth factor (NGF) has been well described in airway inflammation; however, its likely role in lung repair has not been examined thus far. To investigate the repair function of NGF, experiments were performed in vitro using cultured alveolar epithelial cells and in vivo using a naphthalene-induced model of Clara epithelial cell injury. Both in vitro and in vivo experiments revealed airway epithelial cell proliferation following injury to be dependent on NGF and the expression of its receptor, tropomyosin-receptor-kinase A. Additionally, NGF also augmented in vitro migration of alveolar type II cells. In vivo, transgenic mice over-expressing NGF in Clara cells (NGFtg) did not reveal any proliferation or alteration in Clara cell phenotype. However, following Clara cell specific injury, proliferation was increased in NGFtg and impaired upon inhibition of NGF. Furthermore, NGF also promoted the expression of collagen I and fibronectin in vitro and in vivo during repair, where significantly higher levels were measured in re-epithelialising NGFtg mice. Our study demonstrates that NGF promotes the proliferation of lung epithelium in vitro and the renewal of Clara cells following lung injury in vivo.

  18. Transcriptional down-regulation of epidermal growth factor receptors by nerve growth factor treatment of PC12 cells.

    PubMed

    Shibutani, M; Lazarovici, P; Johnson, A C; Katagiri, Y; Guroff, G

    1998-03-20

    Treatment of PC12 cells with nerve growth factor leads to a decrease in the number of epidermal growth factor receptors on the cell membrane. The mRNA for the epidermal growth factor receptor decreases in a comparable fashion. This decrease appears due to a decrease in the transcription of the epidermal growth factor receptor gene because first, there is no difference in the stability of the epidermal growth factor receptor mRNA, second, newly transcribed epidermal growth factor receptor mRNA is decreased in nerve growth factor-differentiated cells, and third, constructs containing the promoter region of the epidermal growth factor receptor gene are transcribed much less readily in nerve growth factor-differentiated cells than in untreated cells. The decreases in mRNA are not seen in the p140(trk)-deficient variant PC12nnr5 cells nor in cells containing either dominant-negative Ras or dominant-negative Src. Treatment with nerve growth factor also increases the cellular content of GCF2, a putative transcription factor inhibitory for the transcription of the epidermal growth factor receptor gene. The increase in GCF2, like the decrease in the epidermal growth factor receptor mRNA, is not seen in PC12nnr5 cells nor in cells expressing either dominant-negative Ras or dominant-negative Src. The results suggest that nerve growth factor-induced down-regulation of the epidermal growth factor receptor is under transcriptional control, is p140(trk)-, Ras-, and Src-dependent, and may involve transcriptional repression by GCF2.

  19. Endorsement of Growth Factors in Experiential Training Groups

    ERIC Educational Resources Information Center

    Kiweewa, John; Gilbride, Dennis; Luke, Melissa; Seward, Derek

    2013-01-01

    The purpose of this study was to identify student growth factors during a semester long Master's level group counseling class. Results indicated that 12 growth factors accounted for 86% of the total number of critical incidents that participants reported as influencing their personal growth and awareness during the group experience. Two other…

  20. Gene Expression of Growth Factors and Growth Factor Receptors for Potential Targeted Therapy of Canine Hepatocellular Carcinoma

    PubMed Central

    IIDA, Gentoku; ASANO, Kazushi; SEKI, Mamiko; SAKAI, Manabu; KUTARA, Kenji; ISHIGAKI, Kumiko; KAGAWA, Yumiko; YOSHIDA, Orie; TESHIMA, Kenji; EDAMURA, Kazuya; WATARI, Toshihiro

    2013-01-01

    ABSTRACT The purpose of this study was to evaluate the gene expression of growth factors and growth factor receptors of primary hepatic masses, including hepatocellular carcinoma (HCC) and nodular hyperplasia (NH), in dogs. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to measure the expression of 18 genes in 18 HCCs, 10 NHs, 11 surrounding non-cancerous liver tissues and 4 healthy control liver tissues. Platelet-derived growth factor-B (PDGF-B), transforming growth factor-α, epidermal growth factor receptor, epidermal growth factor and hepatocyte growth factor were found to be differentially expressed in HCC compared with NH and the surrounding non-cancerous and healthy control liver tissues. PDGF-B is suggested to have the potential to become a valuable ancillary target for the treatment of canine HCC. PMID:24189579

  1. Assessing measurement invariance of the Personal Growth Initiative Scale-II among Hispanics, African Americans, and European Americans.

    PubMed

    Shigemoto, Yuki; Thoen, Megan A; Robitschek, Christine; Ashton, Matthew W

    2015-07-01

    This study tested the cross-cultural validity of scores on the Personal Growth Initiative Scale-II (PGIS-II; Robitschek et al., 2012) with Hispanic, African American, and European American community samples. Multigroup confirmatory factor analyses were performed on data from 218 Hispanics, 129 African Americans, and 552 European Americans to examine measurement equivalence among these groups. Measurement invariance of the PGIS-II was established with the original 4 factors of readiness for change, planfulness, using resources, and intentional behavior. These findings suggest the PGIS-II can be administered across these groups and provide meaningful comparisons and interpretations. All samples yielded good internal consistency estimates. The African American sample reported higher means than Hispanic and European American samples for all subscale and total mean scores, and Hispanics scored higher in planfulness, readiness for change, and total score than European Americans, indicating potential cultural factors influencing the scores. Implications for research and clinical practice are discussed.

  2. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman W.

    1987-01-01

    New muscle tissue culture techniques were developed to grow embryonic skeletal myofibers which are able to differentiate into more adultlike myofibers. Studies on mechanical simulation of cultured muscle cell growth will now be more directly applicable to mechanically-induced growth in adult muscle, and lead to better models for understanding muscle tissue atrophy caused by disuse in the microgravity of space.

  3. Autocrine and paracrine actions of intestinal fibroblast-derived insulin-like growth factors.

    PubMed

    Simmons, J G; Pucilowska, J B; Lund, P K

    1999-04-01

    Paracrine and autocrine actions of the insulin-like growth factors (IGFs) are inferred by local expression within the bowel. CCD-18Co cells, IEC-6 cells, and immunoneutralization were used to analyze whether IGFs have direct autocrine or paracrine effects on proliferation of cultured intestinal fibroblasts and epithelial cells. Growth factor expression was analyzed by ribonuclease protection assay and RT-PCR. Extracellular matrix (ECM) was analyzed for effects on cell proliferation. CCD-18Co cells express IGF-II mRNAs and low levels of IGF-I mRNA. Conditioned medium from CCD-18Co cells (CCD-CM) stimulated proliferation of IEC-6 and CCD-18Co cells. Neutralization of IGF immunoreactivity in CCD-CM reduced but did not abolish this effect. RT-PCR and immunoneutralization demonstrated that other growth factors contribute to mitogenic activity of CCD-CM. Preincubation of CCD-CM with ECM prepared from IEC-6 or CCD-18Co cells reduced its mitogenic activity. ECM from CCD-18Co cells enhanced growth factor-dependent proliferation of IEC-6 cells. IEC-6 cell ECM inhibited IGF-I action on CCD-18Co cells. We conclude that IGF-II is a potent autocrine mitogen for intestinal fibroblasts. IGF-II interacts with other fibroblast-derived growth factors and ECM to stimulate proliferation of intestinal epithelial cells in a paracrine manner. PMID:10198323

  4. [Stem cells and growth factors in wound healing].

    PubMed

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  5. Growth hormone and insulin-like growth factor-1 differentially stimulate the expression of preprosomatostatin mRNAs in the Brockmann bodies of rainbow trout, Oncorhynchus mykiss.

    PubMed

    Melroe, Gregory T; Ehrman, Melissa M; Kittilson, Jeffrey D; Sheridan, Mark A

    2004-05-01

    We previously characterized three cDNAs obtained from the endocrine pancreas (Brockmann body) of rainbow trout that encode for distinct preprosomatostatin (PPSS) molecules: PPSS I containing somatostain-14 (SS-14) at its C-terminus and two separate PPSS IIs, PPSS II' and PPSS II'', containing [Tyr7,Gly10]-SS-14 at their C-termini. In this study, we examined the control of PPSS I, PPSS II', and PPSS II'' mRNA expression by growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Rainbow trout implanted with GH for 21 days displayed elevated pancreatic expression of all PPSS mRNAs compared to control animals. Growth hormone directly stimulated the expression of all pancreatic PPSS mRNAs in vitro in a dose-dependent manner; however, GH was a more potent stimulator of PPSS II' expression than of PPSS I or PPSS II'' expression. Insulin-like growth factor-1 also directly stimulated the expression of PPSS mRNAs in a dose-dependent manner in Brockmann bodies incubated in vitro; IGF-1 was a more potent stimulator of PPSS I and PPSS II' expression than of PPSS II'' expression. These results indicate that the expression of PPSS mRNAs in the Brockmann body of trout is differentially regulated by GH and IGF-1 and suggest that SS mediate the feedback regulation of GH and IGF-1. PMID:15081835

  6. Epidermal growth factor receptor distribution in burn wounds. Implications for growth factor-mediated repair.

    PubMed Central

    Wenczak, B A; Lynch, J B; Nanney, L B

    1992-01-01

    Epidermal growth factor (EGF) along with several related peptide growth factors has been shown both in vivo and in vitro to accelerate events associated with epidermal wound repair. EGF and transforming growth factor alpha act by binding to a common EGF receptor tyrosine kinase thereby initiating a series of events which ultimately regulate cell proliferation. This study examined the immunohistochemical localization of EGF receptor (EGF-R) in burn wound margins, adjacent proliferating epithelium, and closely associated sweat ducts, sebaceous glands, and hair follicles. Tissue specimens removed during surgical debridement were obtained from full and partial thickness burn wounds in 32 patients with total body surface area burns ranging from 2 to 88%. In the early postburn period (days 2-4), prominent staining for EGF-R was found in undifferentiated, marginal keratinocytes, adjacent proliferating, hypertrophic epithelium, and both marginal and nonmarginal hair follicles, sweat ducts, and sebaceous glands. During the late postburn period (days 5-16), EGF-R was depleted along leading epithelial margins; however, immunoreactive EGF-R remained intensely positive in the hypertrophic epithelium and all skin appendages. Increased detection of immunoreactive EGF-R and the presence of [125I]EGF binding in the hypertrophic epithelium correlated positively with proliferating cell nuclear antigen distributions. Thus, the presence of EGF-R in the appropriate keratinocyte populations suggests a functional role for this receptor during wound repair. Dynamic modulation in EGF receptor distribution during the temporal sequence of repair provides further evidence that an EGF/transforming growth factor alpha/EGF-R-mediated pathway is activated during human wound repair. Images PMID:1361495

  7. Transcriptional modulation of transin gene expression by epidermal growth factor and transforming growth factor beta

    SciTech Connect

    Machida, C.M.; Muldoon, L.L.; Rodland, K.D.; Magun, B.E.

    1988-06-01

    Transin is a transformation-associated gene which is expressed constitutively in rat fibroblasts transformed by a variety of oncogenes and in malignant mouse skin carcinomas but not benign papillomas or normal skin. It has been demonstrated that, in nontransformed Rat-1 cells, transin RNA expression is modulated positively by epidermal growth factor (EGF) and negatively by transforming growth factor beta (TGF-BETA); other peptide growth factors were found to have no effect on transin expression. Results presented here indicate that both protein synthesis and continuous occupancy of the EGF receptor by EGF were required for sustained induction of transin RNA. Treatment with TGF-BETA inhibited the ability of EGF to induce transin, whether assayed at the transcriptional level by nuclear run-on analysis or at the level of transin RNA accumulation by Northern (RNA) blot analysis of cellular RNA. TGF-BETA both blocked initial production of transin transcription by EGF and halted established production of transin transcripts during prolonged treatment. These results suggest that TGF-BETA acts at the transcriptional level to antagonize EGF-mediated induction of transin gene expression.

  8. Direct binding of hepatocyte growth factor and vascular endothelial growth factor to CD44v6

    PubMed Central

    Volz, Yvonne; Koschut, David; Matzke-Ogi, Alexandra; Dietz, Marina S.; Karathanasis, Christos; Richert, Ludovic; Wagner, Moritz G.; Mély, Yves; Heilemann, Mike; Niemann, Hartmut H.; Orian-Rousseau, Véronique

    2015-01-01

    CD44v6, a member of the CD44 family of transmembrane glycoproteins is a co-receptor for two receptor tyrosine kinases (RTKs), Met and VEGFR-2 (vascular endothelial growth factor receptor 2). CD44v6 is not only required for the activation of these RTKs but also for signalling. In order to understand the role of CD44v6 in Met and VEGFR-2 activation and signalling we tested whether CD44v6 binds to their ligands, HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor), respectively. FACS analysis and cellular ELISA showed binding of HGF and VEGF only to cells expressing CD44v6. Direct binding of CD44v6 to HGF and VEGF was demonstrated in pull-down assays and the binding affinities were determined using MicroScale Thermophoresis, fluorescence correlation spectroscopy and fluorescence anisotropy. The binding affinity of CD44v6 to HGF is in the micromolar range in contrast with the high-affinity binding measured in the case of VEGF and CD44v6, which is in the nanomolar range. These data reveal a heparan sulfate-independent direct binding of CD44v6 to the ligands of Met and VEGFR-2 and suggest different roles of CD44v6 for these RTKs. PMID:26181364

  9. Epidermal growth factor receptors in the oesophagus.

    PubMed Central

    Jankowski, J; Murphy, S; Coghill, G; Grant, A; Wormsley, K G; Sanders, D S; Kerr, M; Hopwood, D

    1992-01-01

    The quantity and distribution of epidermal growth factor receptors (EGF-R) in oesophageal mucosa was studied in the oesophagus in order to determine its role in oesophageal disease. Fifty five biopsies were taken from different levels of the oesophagus in 25 consecutive patients undergoing endoscopy. Another group of eight patients with histologically proven Barrett's oesophagitis had a biopsy taken from the area of columnar lined oesophagus. A peripheral, membranous pattern was seen predominantly confined to the basal and immediately suprabasal cells in all of the first group of patients. In the superficial cells a few granular cytoplasmic structures were positive. All patients with Barrett's oesophagitis showed EGF-R staining of the surface epithelium. A computerised planimeter was used to determine the proportion of stained areas of squamous cells which were expressed as a percentage of the total area of squamous cells. The difference in the area of cells stained for EGF-R between normal and inflamed oesophageal mucosa (29.5% and 43.1% respectively) was significant (p less than 0.001). Images Figure 1 PMID:1582583

  10. Nerve growth factor actions on the brain

    SciTech Connect

    Martinez, H.J.

    1989-01-01

    We examined the effect of the trophic protein, nerve growth factor (NGF), on cultures of fetal rat neostriatum and basal forebrain-medial septal area (BF-MS) to define its role in brain development. Treatment of cultures with NGF resulted in an increase in the specific activity of the cholinergic enzyme choline acetyltransferase (CAT) in both brain areas. CAT was immunocytochemically localized to neurons. In the BF-MS, NGF treatment elicited a marked increase in staining intensity and an apparent increase in the number of CAT-positive neurons. Moreover, treatment of BF-MS cultures with NGF increased the activity of acetylcholinesterase, suggesting that the cholinergic neuron as a whole was affected. To begin defining mechanisms of action of NGF in the BF-MS, we detected NGF receptors by two independent methods. Receptors were localized to two different cellular populations: neuron-like cells, and non-neuron-like cells. Dissociation studies with ({sup 125}I)NGF suggested that high affinity receptors were localized to the neuron-like population. Only low-affinity receptors were localized to the non-neuron-like cells. Moreover, employing combined immunocytochemistry and ({sup 125}I)NGF autoradiography, we detected a subpopulation of CAT-containing neutrons that exhibited high-affinity binding. Unexpectedly, a gamma-aminobutyric acid (GABA)-containing cell group also expressed high affinity binding. However, only subsets of cholinergic or GABA neurons expressed high-affinity biding, suggesting that these transmitter populations are composed of differentially response subpopulations.

  11. [Epidermal growth factor, innovation and safety].

    PubMed

    Esquirol Caussa, Jordi; Herrero Vila, Elisabeth

    2015-10-01

    Bioidentical recombinant human epidermal growth factor (rhEGF) is available in concentrations and purity suitable for therapeutic use in long time stable formulations. Beneficial effects in several skin pathologies and lesions have been reported (traumatic and surgical wound healing, laser induced wounds, abnormal scars, keloids, radiation or chemotherapy induced dermatitis, post inflammatory hyperpigmentation or for skin aging damage repairing) and also may be considered for the treatment of several oropharingeal and high gastroesophageal tract mucosa diseases (mouth sores, pharyngeal fistulas, ulcers), and several corneal or conjunctive mucosa lesions. rhEGF has not shown any important side or collateral effects in humans or in laboratory experimentation animals, showing optimal tolerability and safety with continuous use for months. Compounding gives advantages of versatility, individualization, personalization, molecular stability, safety and effectiveness in ideal conditions, showing good tissue penetration, both on intact skin and skin lesions that expose the lower planes to the surface. rhEGF compounds can be considered for prevention or as a treatment of diverse skin and mucosa diseases and conditions through compounding preparations.

  12. Fibroblast Growth Factor Signaling in Metabolic Regulation.

    PubMed

    Nies, Vera J M; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T; Atkins, Annette R; Evans, Ronald M; Jonker, Johan W; Downes, Michael Robert

    2015-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  13. [Growth factors in human tooth development].

    PubMed

    Bellone, C; Barni, T; Pagni, L; Balboni, G C; Vannelli, G B

    1990-03-01

    Our research concerns the immunohistochemical localization of EGF and IGF-I receptors in the tooth germ, using monoclonal antibodies. The results show that in the early phases of human tooth development EGF and IGF-I receptors are present. At bud stage both receptors are localized at dental laminae level, in some epithelial cells of the tooth bud and in some mesenchymal cells. At cap stage the receptors are present in the outer and inner enamel epithelium, and in some cells of stellate reticulum. As far as concerns the mesenchymal cells, some cells of dental papilla in contact with enamel organ, are intensely positive. The immunopositivity is present also in some mesenchymal cells at follicular level. At late cap stage and at early bell stage receptors are not present at inner enamel epithelium level but they can be detectable in the mesenchyma of dental papilla and in some cells of the follicle. On the basis of these results it may be hypothesized that EGF and IGF-I can act as growth factors in the modulation of cellular proliferation and differentiation during the human tooth morphogenesis. Moreover, it is possible that these substances can play a role in the mesenchymal-epithelial interaction in the developing human tooth.

  14. Fibroblast Growth Factor Homologous Factors Modulate Cardiac Calcium Channels

    PubMed Central

    Hennessey, Jessica A.; Wei, Eric Q.; Pitt, Geoffrey S.

    2013-01-01

    Rationale Fibroblast growth factor (FGF) homologous factors (FHFs, FGF11-14) are intracellular modulators of voltage-gated Na+ channels, but their cellular distribution in cardiomyocytes indicated that they performed other functions. Objective We aimed to uncover novel roles for FHFs in cardiomyocytes starting with a proteomic approach to identify novel interacting proteins. Methods and Results Affinity purification of FGF13 from rodent ventricular lysates followed by mass spectroscopy revealed an interaction with Junctophilin-2, a protein that organizes the close apposition of the L-type Ca2+ channel, CaV1.2, and the ryanodine receptor, RyR2, in the dyad. Immunocytochemical analysis revealed overall T-tubule structure and localization RyR2 were unaffected by FGF13 knockdown in adult ventricular cardiomyocytes, but localization of CaV1.2 was affected. FGF13 knockdown decreased CaV1.2 current density, and reduced the amount of CaV1.2 at the surface due to aberrant localization of the channels. CaV1.2 current density and channel localization were rescued by expression of an shRNA-insensitive FGF13, indicating a specific role for FGF13. Consistent with these newly discovered effects on CaV1.2, we demonstrated that FGF13 also regulated Ca2+-induced Ca2+ release, indicated by a smaller Ca2+ transient after FGF13 knockdown. Further, FGF13 knockdown caused a profound decrease in the cardiac action potential half width. Conclusions This study demonstrates that FHFs are not only potent modulators voltage-gated Na+ channels, but also affect Ca2+ channels and their function. We predict that FHF loss-of-function mutations would adversely affect currents through both Na+ and Ca2+ channels, suggesting that FHFs may be arrhythmogenic loci, leading to arrhythmias through a novel, dual-ion channel mechanism. PMID:23804213

  15. Vascular endothelial growth factor in central nervous system injuries - a vascular growth factor getting nervous?

    PubMed

    Sköld, Mattias K; Kanje, Martin

    2008-11-01

    Vascular Endothelial Growth Factor (VEGF) is recognized as a central factor in growth, survival and permeability of blood vessels in both physiological and pathological conditions. It is as such of importance for vascular responses in various central nervous system (CNS) disorders. Accumulating evidence suggest that VEGF may also act as a neuroprotective and neurotrophic factor supporting neuronal survival and neuronal regeneration. Findings of neuropilins as shared co-receptors between molecules with such seemingly different functions as the axon guidance molecules semaphorins and VEGF has further boosted the interest in the role of VEGF in neural tissue injury and repair mechanisms. Thus, VEGF most likely act in parallel or concurrent on cells in both the vascular and nervous system. The present review gives a summary of known or potential aspects of the VEGF system in the healthy and diseased nervous system. The potential benefits but also problems and pitfalls in intervening in the actions of such a multifunctional factor as VEGF in the disordered CNS are also covered.

  16. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo.

    PubMed

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun; Zhuang, Wen-Fang

    2015-05-15

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent.

  17. Fibroblast Growth Factor Signaling in Metabolic Regulation

    PubMed Central

    Nies, Vera J. M.; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T.; Atkins, Annette R.; Evans, Ronald M.; Jonker, Johan W.; Downes, Michael Robert

    2016-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions. PMID:26834701

  18. Novel Drosophila receptor that binds multiple growth factors

    SciTech Connect

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-05-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10/sup -6/ to 10/sup -8/ M. The 100 kDa protein can be affinity-labeled with these /sup 125/I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by /sup 125/I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors.

  19. Growth factor array fabrication using a color ink jet printer.

    PubMed

    Watanabe, Kohei; Miyazaki, Takeshi; Matsuda, Ryoichi

    2003-04-01

    We have developed a novel method for growth factor analysis using a commercial color ink jet printer to fabricate substrata patterned with growth factors. We prepared substrata with insulin printed in a simple pattern or containing multiple areas of varying quantities of printed insulin. When we cultured the mouse myoblast cell line, C2C12, on the insulin-patterned substrata, the cells were grown in the same pattern with the insulin-printed pattern. Cell culture with the latter substrata demonstrated that quantity control of insulin deposition by a color ink jet printer is possible. For further applications, we developed substrata with insulin-like growth factor-I (IGF-I) and basic fibroblast growth factor (bFGF) spotted in 16 different areas in varying combinations and concentrations (growth factor array). With this growth factor array, C2C12 cells were cultured, and the onset of muscle cell differentiation was monitored for the expression of the myogenic regulator myogenin. The ratio of cells expressing myogenin varied with the doses of IGF-I and bFGF in the sections, demonstrating a feasibility of growth factor array fabrication by a color ink jet printer. Since a printer manipulates several colors, this method can be easily applied to multivariate analyses of growth factors and attachment factors affecting cell growth and differentiation. This method may provide a powerful tool for cell biology and tissue engineering, especially for stem cell research in investigating unknown conditions for differentiation.

  20. Novel Regulation of Fibroblast Growth Factor 2 (FGF2)-mediated Cell Growth by Polysialic Acid*

    PubMed Central

    Ono, Sayaka; Hane, Masaya; Kitajima, Ken; Sato, Chihiro

    2012-01-01

    Polysialic acid (polySia) is a unique polysaccharide that modifies neural cell adhesion molecule (NCAM) spatiotemporally. Recently, we demonstrated that polySia functions as a reservoir for several neurotrophic factors and neurotransmitters. Here, we showed the direct interaction between polySia and fibroblast growth factor-2 (FGF2) by native-PAGE, gel filtration, and surface plasmon resonance. The minimum chain length of polySia required for the interaction with FGF2 was 17. Compared with heparan sulfate, a well known glycosaminoglycan capable of forming a complex with FGF2, polySia formed a larger complex with distinct properties in facilitating oligomerization of FGF2, as well as in binding to FGF receptors. In polySia-NCAM-expressing NIH-3T3 cells, which were established by transfecting cells with either of the plasmids for the expression of the polysialyltransferases ST8SiaII/STX and ST8SiaIV/PST that can polysialylate NCAM, FGF2-stimulated cell growth, but not cell survival, was inhibited. Taken together, these results suggest that polySia-NCAM might be involved in the regulation of FGF2-FGF receptor signaling through the direct binding of FGF2 in a manner distinct from heparan sulfate. PMID:22158871

  1. A heteromeric transcription factor required for mammalian RNA polymerase II.

    PubMed Central

    Kitajima, S; Tanaka, Y; Kawaguchi, T; Nagaoka, T; Weissman, S M; Yasukochi, Y

    1990-01-01

    A general transcription factor, FC, essential for specific initiation of in vitro transcription by mammalian RNA polymerase II was identified and a procedure developed to purify it to near homogeneity from HeLa cell nuclei. Purified FC is composed of two polypeptides of apparent molecular masses 80 kDa and 30 kDa, on SDS-PAGE, and has a native size of 280 kDa estimated by gel filtration column. Both polypeptides were shown to be essential for reconstituting in vitro transcription activity. Biochemical analysis showed that the 80 kDa and 30 kDa components were present in a 1:1 molar ratio. FC was also demonstrated to interact directly or indirectly with purified RNA polymerase II. Similarities between FC and transcription factors reported by others from human, rat or Drosophila cells are discussed. Images PMID:2395645

  2. Presence of growth factors in palmar and plantar fibromatoses.

    PubMed

    Zamora, R L; Heights, R; Kraemer, B A; Erlich, H P; Groner, J P

    1994-05-01

    Palmar and plantar fibromatoses are disease processes in which the presence of certain growth factors has not been defined. Monoclonal antibodies against transforming growth factor-beta, epidermal growth factor, procollagen type 1, fibronectin, phosphotyrosine residues, and CD41 platelet antigen were used in standard immunoperoxidase staining to study 36 nodules and 24 cords obtained from patients with fibromatoses. The specimens were studied via light microscopy, and staining intensity was quantitated using a computer-enhanced video system. Transforming growth factor-beta staining paralleled procollagen I, fibronectin, and phosphotyrosine staining within the nodule (early stages) but not the cord (late stages) tissue. These factors showed significant increased staining in the early stage of fibromatosis when compared to the late stage. This study is a preliminary demonstration of the presence of transforming growth factor-beta in palmar and plantar fibromatoses.

  3. Angiotensin II regulates growth of the developing papillas ex vivo

    PubMed Central

    Song, Renfang; Preston, Graeme; Khalili, Ali; El-Dahr, Samir S.

    2012-01-01

    We tested the hypothesis that lack of angiotensin (ANG) II production in angiotensinogen (AGT)-deficient mice or pharmacologic antagonism of ANG II AT1 receptor (AT1R) impairs growth of the developing papillas ex vivo, thus contributing to the hypoplastic renal medulla phenotype observed in AGT- or AT1R-null mice. Papillas were dissected from Hoxb7GFP+ or AGT+/+, +/−, −/− mouse metanephroi on postnatal day P3 and grown in three-dimentional collagen matrix gels in the presence of media (control), ANG II (10−5 M), or the specific AT1R antagonist candesartan (10−6 M) for 24 h. Percent reduction in papillary length was attenuated in AGT+/+ and in AGT+/− compared with AGT−/− (−18.4 ± 1.3 vs. −32.2 ± 1.6%, P < 0.05, −22.8 ± 1.3 vs. −32.2 ± 1.6%, P < 0.05, respectively). ANG II blunted the decrease in papilla length observed in respective media-treated controls in Hoxb7GFP+ (−1.5 ± 0.3 vs. −10.0 ± 1.4%, P < 0.05) or AGT+/+, +/−, and −/− papillas (−12.8 ± 0.7 vs. −18.4 ± 1.3%, P < 0.05, −16.8 ± 1.1 vs. −23 ± 1.2%, P < 0.05; −26.2 ± 1.6 vs. −32.2 ± 1.6%, P < 0.05, respectively). In contrast, percent decrease in the length of Hoxb7GFP+ papillas in the presence of the AT1R antagonist candesartan was higher compared with control (−24.3 ± 2.1 vs. −10.5 ± 1.8%, P < 0.05). The number of proliferating phospho-histone H3 (pH3)-positive collecting duct cells was lower, whereas the number of caspase 3-positive cells undergoing apoptosis was higher in candesartan- vs. media-treated papillas (pH3: 12 ± 1.4 vs. 21 ± 2.1, P < 0.01; caspase 3: 3.8 ± 0.5 vs. 1.7 ± 0.2, P < 0.01). Using quantitative RT-PCR, we demonstrate that AT1R signaling regulates the expression of genes implicated in morphogenesis of the renal medulla. We conclude that AT1R prevents shrinkage of the developing papillas observed ex vivo via control of Wnt7b, FGF7, β-catenin, calcineurin B1, and α3 integrin gene expression, collecting duct cell

  4. Clinical application of growth factors and cytokines in wound healing.

    PubMed

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2014-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of nonhealing wounds (e.g., pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted an online search of Medline/PubMed and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies, and future research possibilities. In this review, we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include granulocyte-macrophage colony-stimulating factor, platelet-derived growth factor, vascular endothelial growth factor, and basic fibroblast growth factor. While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy.

  5. Posttranslational regulation of insulin-like growth factor binding protein-4 in normal and transformed human fibroblasts. Insulin-like growth factor dependence and biological studies.

    PubMed Central

    Conover, C A; Kiefer, M C; Zapf, J

    1993-01-01

    Insulin-like growth factor binding protein-4 (IGFBP-4) is a 24-26-kD protein expressed by a variety of cell types in vivo and in vitro. Treatment of normal adult human fibroblasts with 10 nM insulin-like growth factor II (IGF-II) for 24 h resulted in an 85% decrease in endogenous IGFBP-4, as assessed by Western ligand blot analysis of the conditioned medium. Incubation of human fibroblast-conditioned medium (HFCM) with IGF-II under cell-free conditions led to a similar loss of IGFBP-4. This posttranslationally regulated decrease in IGFBP-4 appeared to be due to a protease in HFCM: (a) It could be prevented with specific protease inhibitors or incubation at 4 degrees C; (b) proteolysis of recombinant human (rh) IGFBP-4 required HFCM; (c) immunoblotting and radiolabeling confirmed cleavage of IGFBP-4 into 18- and 14-kD IGFBP-4 fragments. The protease was specific for IGFBP-4, and was strictly dependent on IGFs for activation. IGF-II was the most effective of the natural and mutant IGFs tested, inducing complete hydrolysis of rhIGFBP-4 at a molar ratio of 0.25:1 (IGF/IGFBP-4). Simian virus 40-transformed adult human fibroblasts also expressed IGFBP-4 and IGFBP-4 protease, as well as an inhibitor of IGFBP-4 proteolysis. In biological studies, intact rhIGFBP-4 potently inhibited IGF-I-stimulated [3H]aminoisobutyric acid uptake, whereas proteolyzed rhIGFBP-4 had no inhibitory effect. In conclusion, these data provide evidence for a novel IGF-dependent IGFBP-4-specific protease that modifies IGFBP-4 structure and function, and indicate a preferential role for IGF-II in its activation. Posttranslational regulation of IGFBP-4 may provide a means for cooperative control of local cell growth by IGF-I and IGF-II. Images PMID:7680662

  6. Regulated shedding of syndecan-1 and -4 ectodomains by thrombin and growth factor receptor activation.

    PubMed

    Subramanian, S V; Fitzgerald, M L; Bernfield, M

    1997-06-01

    The syndecan family of transmembrane heparan sulfate proteoglycans is abundant on the surface of all adherent mammalian cells. Syndecans bind and modify the action of various growth factors/cytokines, proteases/antiproteases, cell adhesion molecules, and extracellular matrix components. Syndecan expression is highly regulated during wound repair, a process orchestrated by many of these effectors. Each syndecan ectodomain is shed constitutively by cultured cells, but the mechanism and significance of this shedding are not understood. Therefore, we examined (i) whether physiological agents active during wound repair influence syndecan shedding, and (ii) whether wound fluids contain shed syndecan ectodomains. Using SVEC4-10 endothelial cells we find that certain proteases and growth factors accelerate shedding of the syndecan-1 and -4 ectodomains. Protease-accelerated shedding is completely inhibited by serum-containing media. Thrombin activity is duplicated by the 14-amino acid thrombin receptor agonist peptide that directly activates the thrombin receptor and is not inhibited by serum. Epidermal growth factor family members accelerate shedding but FGF-2, platelet-derived growth factor-AB, transforming growth factor-beta, tumor necrosis factor-alpha, and vascular endothelial cell growth factor 165 do not. Shed ectodomains are soluble, stable in the conditioned medium, have the same size core proteins regardless whether shed at a basal rate, or accelerated by thrombin or epidermal growth factor-family members and are found in acute human dermal wound fluids. Thus, shedding is accelerated by activation of at least two distinct receptor classes, G protein-coupled (thrombin) and protein tyrosine kinase (epidermal growth factor). Proteases and growth factors active during wound repair can accelerate syndecan shedding from cell surfaces. Regulated shedding of syndecans suggests physiological roles for the soluble proteoglycan ectodomains.

  7. Engineering the growth factor microenvironment with fibronectin domains to promote wound and bone tissue healing.

    PubMed

    Martino, Mikaël M; Tortelli, Federico; Mochizuki, Mayumi; Traub, Stephanie; Ben-David, Dror; Kuhn, Gisela A; Müller, Ralph; Livne, Erella; Eming, Sabine A; Hubbell, Jeffrey A

    2011-09-14

    Although growth factors naturally exert their morphogenetic influences within the context of the extracellular matrix microenvironment, the interactions among growth factors, their receptors, and other extracellular matrix components are typically ignored in clinical delivery of growth factors. We present an approach for engineering the cellular microenvironment to greatly accentuate the effects of vascular endothelial growth factor-A (VEGF-A) and platelet-derived growth factor-BB (PDGF-BB) for skin repair, and of bone morphogenetic protein-2 (BMP-2) and PDGF-BB for bone repair. A multifunctional recombinant fragment of fibronectin (FN) was engineered to comprise (i) a factor XIIIa substrate fibrin-binding sequence, (ii) the 9th to 10th type III FN repeat (FN III9-10) containing the major integrin-binding domain, and (iii) the 12th to 14th type III FN repeat (FN III12-14), which binds growth factors promiscuously, including VEGF-A165, PDGF-BB, and BMP-2. We show potent synergistic signaling and morphogenesis between α5β1 integrin and the growth factor receptors, but only when FN III9-10 and FN III12-14 are proximally presented in the same polypeptide chain (FN III9-10/12-14). The multifunctional FN III9-10/12-14 greatly enhanced the regenerative effects of the growth factors in vivo in a diabetic mouse model of chronic wounds (primarily through an angiogenic mechanism) and in a rat model of critical-size bone defects (through a mesenchymal stem cell recruitment mechanism) at doses where the growth factors delivered within fibrin only had no significant effects.

  8. Delivery of growth factors for tissue regeneration and wound healing.

    PubMed

    Koria, Piyush

    2012-06-01

    Growth factors are soluble secreted proteins capable of affecting a variety of cellular processes important for tissue regeneration. Consequently, the self-healing capacity of patients can be augmented by artificially enhancing one or more processes important for healing through the application of growth factors. However, their application in clinics remains limited due to lack of robust delivery systems and biomaterial carriers. Interestingly, all clinically approved therapies involving growth factors utilize some sort of a biomaterial carrier for growth factor delivery. This suggests that biomaterial delivery systems are extremely important for successful usage of growth factors in regenerative medicine. This review outlines the role of growth factors in tissue regeneration, and their application in both pre-clinical animal models of regeneration and clinical trials is discussed. Additionally, current status of biomaterial substrates and sophisticated delivery systems such as nanoparticles for delivery of exogenous growth factors and peptides in humans are reviewed. Finally, issues and possible future research directions for growth factor therapy in regenerative medicine are discussed.

  9. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth

    PubMed Central

    1992-01-01

    Hepatocyte Growth Factor (HGF, also known as Scatter Factor) is a powerful mitogen or motility factor in different cells, acting through the tyrosine kinase receptor encoded by the MET protooncogene. Endothelial cells express the MET gene and expose at the cell surface the mature protein (p190MET) made of a 50 kD (alpha) subunit disulfide linked to a 145-kD (beta) subunit. HGF binding to endothelial cells identifies two sites with different affinities. The higher affinity binding site (Kd = 0.35 nM) corresponds to the p190MET receptor. Sub- nanomolar concentrations of HGF, but not of a recombinant inactive precursor, stimulate the receptor kinase activity, cell proliferation and motility. HGF induces repairs of a wound in endothelial cell monolayer. HGF stimulates the scatter of endothelial cells grown on three-dimensional collagen gels, inducing an elongated phenotype. In the rabbit cornea, highly purified HGF promotes neovascularization at sub-nanomolar concentrations. HGF lacks activities related to hemostasis-thrombosis, inflammation and endothelial cells accessory functions. These data show that HGF is an in vivo potent angiogenic factor and in vitro induces endothelial cells to proliferate and migrate. PMID:1383237

  10. Expression of vascular endothelial growth factor and basic fibroblast growth factor in extramammary Paget disease

    PubMed Central

    Xu, Xiaoyun; Shao, Ning; Qiao, Di; Wang, Zengjun; Song, Ningjing; Song, Ninghong

    2015-01-01

    Extramammary Paget’s disease (EMPD) is a special type of cancers. The etiology of the disease is still unclear. We aimed to study the expression differences of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in EMPD tissues and corresponding adjacent normal tissues. The mRNA expression was detected by RT-PCR and the protein expression was explored by immunohistochemistry. Higher immunostaining signal scores of bFGF and VEGF in EMPD tissues had been found (z = -3.827, P < 0.001, z = -3.729, P < 0.001, respectively). In addition, the mRNA expression of bFGF and VEGF was higher in EMPD tissues, which had been validated by RT-PCR (t = 5.771, P < 0.001, t = 3.304, P = 0.004, respectively). The VEGF and bFGF might be the key signaling proteins in angiogenesis of EMPD. How to block the VEGF and bFGF in EMPD and to destroy the blood supply of the tumor cells becomes the focus of our future research. PMID:26045818

  11. Vascular Endothelial Growth Factor is a Secreted Angiogenic Mitogen

    NASA Astrophysics Data System (ADS)

    Leung, David W.; Cachianes, George; Kuang, Wun-Jing; Goeddel, David V.; Ferrara, Napoleone

    1989-12-01

    Vascular endothelial growth factor (VEGF) was purified from media conditioned by bovine pituitary folliculostellate cells (FC). VEGF is a heparin-binding growth factor specific for vascular endothelial cells that is able to induce angiogenesis in vivo. Complementary DNA clones for bovine and human VEGF were isolated from cDNA libraries prepared from FC and HL60 leukemia cells, respectively. These cDNAs encode hydrophilic proteins with sequences related to those of the A and B chains of platelet-derived growth factor. DNA sequencing suggests the existence of several molecular species of VEGF. VEGFs are secreted proteins, in contrast to other endothelial cell mitogens such as acidic or basic fibroblast growth factors and platelet-derived endothelial cell growth factor. Human 293 cells transfected with an expression vector containing a bovine or human VEGF cDNA insert secrete an endothelial cell mitogen that behaves like native VEGF.

  12. Polymorphisms in Factor II and Factor V thrombophilia genes among Circassians in Jordan.

    PubMed

    Dajani, R; Arafat, A; Hakooz, N; Al-Abbadi, Z; Yousef, Al-Motassem; El Khateeb, M; Quadan, F

    2013-01-01

    Thrombosis is a major cause of morbidity and mortality worldwide. Genetic factors are one component of thrombosis. We studied the prevalence of two mutations that are known risk factors in the pathogenesis of arterial and venous thrombosis in the genetically isolated Circassian population in Jordan. Factor II G20210A and Factor V Leiden single nucleotide polymorphisms were analysed by polymerase chain reaction and restriction fragment length polymorphism method in 104 random unrelated subjects from the Circassian population in Jordan. The prevalence rates among the Circassian population in Jordan for Factor II G20210A was 12.2% and for Factor V Leiden was 7.7%. We have shown that the population is in Hardy-Weinberg equilibrium and that the prevalences of both mutations are within the range of other ethnic groups. This is the first study to describe Circassian health related genetic characteristics in Jordan. Such population-based studies will contribute to understanding the interaction between genetic and environmental risk factors. It will remain to be seen whether carriers of Factor II G20210A and Factor V Leiden are more likely to develop thrombosis. This issue should be studied in the future to determine the need for screening of these mutations particularly in thrombophilia patients.

  13. Material factors influencing metallic whisker growth

    NASA Astrophysics Data System (ADS)

    Rodekohr, Chad L.

    Whiskering refers to the formation of slender, long, metallic filaments, much thinner than a human hair, that grow on a metallic thin film surface. They are readily observed for pure and alloyed zinc (Zn), silver (Ag), cadmium (Cd), indium (In), and tin (Sn) surfaces. The longest reported whisker length is 4.5 mm long but most high-aspect ratio whiskers range from 1-500 mum. The focus of this research is upon Sn whiskers. Sn whiskers pose serious reliability problems for the electronics industry and are known to be the source of failure in a wide range of electronic devices, such as nuclear power facilities, heart pacemakers, commercial satellites, aviation radar, telecommunication equipment, and desktop computers. The problem with whiskering has been recently exacerbated by the worldwide shift to lead (Pb) free electronics and the continuing reduction in electrical contact pitches. A thorough understanding of the growth mechanism of Sn whiskers is urgently needed. Currently, there is no universally accepted model that explains the broad range of observations on whiskering. The goals of this research are: (1) to develop a more detailed understanding of the physical mechanisms leading to the initiation and growth of Sn whiskers and (2) to outline reasonable mitigation strategies that could be followed to reduce or eliminate the problem of Sn whiskers. The major contributions of this work are: (1) A reliable method for growing Sn whiskers with predictable incubation times has been developed and tested. (2) A surface oxide is not necessary for whisker growth. (3) Intermetallic compounds (IMC) are not necessary for whisker growth. (4) Smoother, not rougher, substrate surfaces promote whisker growth. (5) Whiskers grow under both compressive and tensile thin film stress states. (6) Whisker growth increases with externally applied compression and tension forces. (7) Sn whiskers are composed of pure Sn except for the expected thin, native Sn oxide on their surface. (8) For

  14. The emerging role of insulin-like growth factors in testis development and function.

    PubMed

    Griffeth, Richard J; Bianda, Vanessa; Nef, Serge

    2014-01-01

    The insulin-like family of growth factors (IGFs) - composed of insulin, and insulin-like growth factors I (IGF1) and II (IGF2) - provides essential signals for the control of testis development and function. In the testis, IGFs act in an autocrine-paracrine manner but the extent of their actions has been underestimated due to redundancies at both the ligand and receptor levels, and the perinatal lethality of constitutive knockout mice. This review synthesizes the current understanding of how the IGF system regulates biological processes such as primary sex determination, testis development, spermatogenesis and steroidogenesis, and highlights the questions that remain to be explored.

  15. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  16. The discovery of basic fibroblast growth factor/fibroblast growth factor-2 and its role in haematological malignancies.

    PubMed

    Ribatti, Domenico; Vacca, Angelo; Rusnati, Marco; Presta, Marco

    2007-01-01

    Basic fibroblast growth factor/fibroblast growth factor-2 is one of the best characterized of the pro-angiogenic cytokines. This review describes its history, as well as its role in tumor angiogenesis associated with haematological malignancies, as traced by the main contributions to the international medical literature.

  17. Time-dependent release of growth factors from implant surfaces treated with plasma rich in growth factors.

    PubMed

    Sánchez-Ilárduya, María Belén; Trouche, Elodie; Tejero, Ricardo; Orive, Gorka; Reviakine, Ilya; Anitua, Eduardo

    2013-05-01

    Plasma rich in growth factors (PRGFs) technology is an autologous platelet-rich plasma approach that provides a pool of growth factors and cytokines that have been shown to increase tissue regeneration and accelerate dental implant osseointegration. In this framework, the spatiotemporal release of growth factors and the establishment of a provisional fibrin matrix are likely to be key aspects governing the stimulation of the early phases of tissue regeneration around implants. We investigated the kinetics of growth factor release at implant surfaces functionalized either with PRGFs or platelet-poor plasma and correlated the results obtained with the morphology of the resulting interfaces. Our main finding is that activation and clot formation favors longer residence times of the growth factors at the interfaces studied, probably due to their retention in the adsorbed fibrin matrix. The concentration of the platelet-derived growth factors above the interfaces becomes negligible after 2-4 days and is significantly higher in the case of activated interfaces than in the case of nonactivated ones, whereas that of the plasmatic hepatocyte growth factor is independent of platelet concentration and activation, and remains significant for up to 9 days. Platelet-rich plasma preparations should be activated to permit growth factor release and thereby facilitate implant surface osseointegration.

  18. EDUCATION AS A FACTOR IN ECONOMIC GROWTH.

    ERIC Educational Resources Information Center

    MACKERTICH, ALEX

    THE VALUE OF AN EDUCATION IN THE ECONOMIC GROWTH OF AN UNDERDEVELOPED COUNTRY (INDIA) WAS INVESTIGATED USING THE CASE STUDY APPROACH. DATA WERE GATHERED AT BOTH THE CENTRAL GOVERNMENT AND VILLAGE LEVELS THROUGH INTERVIEWS WITH INDIAN GOVERNMENT OFFICIALS AND FROM OFFICIAL GOVERNMENT PUBLICATIONS CONCERNING THE NATION'S EDUCATIONAL EFFORTS, AS…

  19. Transforming growth factor-betas and vascular disorders.

    PubMed

    Bobik, Alex

    2006-08-01

    Transforming growth factor-beta (TGF-beta) superfamily members, TGF-beta and bone morphogenetic proteins (BMPs), are potent regulatory cytokines with diverse functions on vascular cells. They signal through heteromeric type I and II receptor complexes activating Smad-dependent and Smad-independent signals, which regulate proliferation, differentiation, and survival. They are potent regulators of vascular development and vessel remodeling and play key roles in atherosclerosis and restenosis, regulating endothelial, smooth muscle cell, macrophage, T cell, and probably vascular calcifying cell responses. In atherosclerosis, TGF-beta regulates lesion phenotype by controlling T-cell responses and stimulating smooth muscle cells to produce collagen. It contributes to restenosis by augmenting neointimal cell proliferation and collagen accumulation. Defective TGF-beta signaling in endothelial cells attributable to mutations in endoglin or the type I receptor ALK-1 leads to hereditary hemorrhagic telangiectasia, whereas defective BMP signaling attributable to mutations in the BMP receptor II has been associated with development of primary pulmonary hypertension. The development of mouse models with either cell type-specific or general inactivation of TGF-beta/BMP signaling has started to reveal the importance of the regulatory network of TGF-beta/BMP pathways in vivo and their significance for atherosclerosis, hereditary hemorrhagic telangiectasia, and primary pulmonary hypertension. This review highlights recent findings that have advanced our understanding of the roles of TGF-beta superfamily members in regulating vascular cell responses and provides likely avenues for future research that may lead to novel pharmacological therapies for the treatment or prevention of vascular disorders. PMID:16675726

  20. Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth

    SciTech Connect

    Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.; Russell, J.D.; Trupin, J.S.

    1988-01-01

    Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloid fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.

  1. Growth Factors Regulate Expression of Mineral Associated Genes in Cementoblasts

    PubMed Central

    Saygin, N. Esra; Tokiyasu, Yoshihiko; Giannobile, William V.; Somerman, Martha J.

    2008-01-01

    Background Knowledge of the responsiveness of cells within the periodontal region to specific bioactive agents is important for improving regenerative therapies. The aim of this study was to determine the effect of specific growth factors, insulin-like growth factor-I (IGF-I), platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β (TGF-β) on cementoblasts in vitro and ex vivo. Methods Osteocalcin (OC) promoter driven SV40 transgenic mice were used to obtain immortalized cementoblasts. Growth factor effects on DNA synthesis were assayed by [3H]-thymidine incorporation. Northern analysis was used to determine the effects of growth factors on gene expression profile. Effects of growth factors on cementoblast induced biomineralization were determined in vitro (von Kossa stain) and ex vivo (re-implantation of cells in immunodeficient (SCID) mice). Results All growth factors stimulated DNA synthesis compared to control. Twenty-four hour exposure of cells to PDGF-BB or TGF-β resulted in a decrease in bone sialoprotein (BSP) and osteocalcin (OCN) mRNAs while PDGF-BB also increased osteopontin (OPN) mRNA. Cells exposed to IGF-I for 24 hours exhibited decreased transcripts for OCN and OPN with an upregulation of BSP mRNA noted at 72 hours. In vitro mineralization was inhibited by continuous application of PDGF-BB or TGF-β, while cells exposed to these factors prior to implantation into SCID mice still promoted biomineralization. Conclusions These data indicate IGF-I, PDGF-BB, and TGF-β influence mitogenesis, phenotypic gene expression profile, and biomineralization potential of cementoblasts suggesting that such factors alone or in combination with other agents may provide trigger factors required for regenerating periodontal tissues. PMID:11063392

  2. High-growth-factor implosions (HEP4)

    SciTech Connect

    Landen, O.L.; Keane, C.J.; Hammel, B.A.

    1996-06-01

    In inertial confinement fusion (ICF), the kinetic energy of an ablating, inward-driven, solid spherical shell is used to compressionally heat the low-density fuel inside. For a given drive, the maximum achievable compressed fuel density and temperature - and hence the maximum neutron production rate depend on the degree of shell isentropy and integrity maintained during the compression. Shell integrity will be degraded by hydrodynamic instability growth of areal density imperfections in the capsule. Surface imperfections on the shell grow as a result of the Richtmyer-Meshkov and Rayleigh-Taylor (RT) instabilities when the shell is accelerated by the ablating lower-density plasma. Perturbations at the outer capsule surface are transferred hydrodynamically to the inner surface, where deceleration of the shell by the lower-density fuel gives rise to further RT growth at the pusher-fuel interface.

  3. Targeting the Insulin Growth Factor and the Vascular Endothelial Growth Factor Pathways in Ovarian Cancer

    PubMed Central

    Shao, Minghai; Hollar, Stacy; Chambliss, Daphne; Schmitt, Jordan; Emerson, Robert; Chelladurai, Bhadrani; Perkins, Susan; Ivan, Mircea; Matei, Daniela

    2015-01-01

    Antiangiogenic therapy is emerging as a highly promising strategy for the treatment of ovarian cancer, but the clinical benefits are usually transitory. The purpose of this study was to identify and target alternative angiogenic pathways that are upregulated in ovarian xenografts during treatment with bevacizumab. For this, angiogenesis-focused gene expression arrays were used to measure gene expression levels in SKOV3 and A2780 serous ovarian xenografts treated with bevacizumab or control. Reverse transcription-PCR was used for results validation. The insulin growth factor 1 (IGF-1) was found upregulated in tumor and stromal cells in the two ovarian xenograft models treated with bevacizumab. Cixutumumab was used to block IGF-1 signaling in vivo. Dual anti-VEGF and IGF blockade with bevacizumab and cixutumumab resulted in increased inhibition of tumor growth. Immunohistochemistry measured multivessel density, Akt activation, and cell proliferation, whereas terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling (TUNEL) assay measured apoptosis in ovarian cancer xenografts. Bevacizumab and cixutumumab combination increased tumor cell apoptosis in vivo compared with therapy targeting either individual pathway. The combination blocked angiogenesis and cell proliferation but not more significantly than each antibody alone. In summary, IGF-1 activation represents an important mechanism of adaptive escape during anti-VEGF therapy in ovarian cancer. This study provides the rationale for designing bevacizumab-based combination regimens to enhance antitumor activity. PMID:22700681

  4. Latent transforming growth factor binding protein 4 regulates transforming growth factor beta receptor stability.

    PubMed

    Su, Chi-Ting; Huang, Jenq-Wen; Chiang, Chih-Kang; Lawrence, Elizabeth C; Levine, Kara L; Dabovic, Branka; Jung, Christine; Davis, Elaine C; Madan-Khetarpal, Suneeta; Urban, Zsolt

    2015-07-15

    Mutations in the gene for the latent transforming growth factor beta binding protein 4 (LTBP4) cause autosomal recessive cutis laxa type 1C. To understand the molecular disease mechanisms of this disease, we investigated the impact of LTBP4 loss on transforming growth factor beta (TGFβ) signaling. Despite elevated extracellular TGFβ activity, downstream signaling molecules of the TGFβ pathway, including pSMAD2 and pERK, were down-regulated in LTBP4 mutant human dermal fibroblasts. In addition, TGFβ receptors 1 and 2 (TGFBR1 and TGFBR2) were reduced at the protein but not at the ribonucleic acid level. Treatment with exogenous TGFβ1 led to an initially rapid increase in SMAD2 phosphorylation followed by a sustained depression of phosphorylation and receptor abundance. In mutant cells TGFBR1 was co-localized with lysosomes. Treatment with a TGFBR1 kinase inhibitor, endocytosis inhibitors or a lysosome inhibitor, normalized the levels of TGFBR1 and TGFBR2. Co-immunoprecipitation demonstrated a molecular interaction between LTBP4 and TGFBR2. Knockdown of LTBP4 reduced TGFβ receptor abundance and signaling in normal cells and supplementation of recombinant LTBP4 enhanced these measures in mutant cells. In a mouse model of Ltbp4 deficiency, reduced TGFβ signaling and receptor levels were normalized upon TGFBR1 kinase inhibitor treatment. Our results show that LTBP4 interacts with TGFBR2 and stabilizes TGFβ receptors by preventing their endocytosis and lysosomal degradation in a ligand-dependent and receptor kinase activity-dependent manner. These findings identify LTBP4 as a key molecule required for the stability of the TGFβ receptor complex, and a new mechanism by which the extracellular matrix regulates cytokine receptor signaling.

  5. Latent transforming growth factor binding protein 4 regulates transforming growth factor beta receptor stability

    PubMed Central

    Su, Chi-Ting; Huang, Jenq-Wen; Chiang, Chih-Kang; Lawrence, Elizabeth C.; Levine, Kara L.; Dabovic, Branka; Jung, Christine; Davis, Elaine C.; Madan-Khetarpal, Suneeta; Urban, Zsolt

    2015-01-01

    Mutations in the gene for the latent transforming growth factor beta binding protein 4 (LTBP4) cause autosomal recessive cutis laxa type 1C. To understand the molecular disease mechanisms of this disease, we investigated the impact of LTBP4 loss on transforming growth factor beta (TGFβ) signaling. Despite elevated extracellular TGFβ activity, downstream signaling molecules of the TGFβ pathway, including pSMAD2 and pERK, were down-regulated in LTBP4 mutant human dermal fibroblasts. In addition, TGFβ receptors 1 and 2 (TGFBR1 and TGFBR2) were reduced at the protein but not at the ribonucleic acid level. Treatment with exogenous TGFβ1 led to an initially rapid increase in SMAD2 phosphorylation followed by a sustained depression of phosphorylation and receptor abundance. In mutant cells TGFBR1 was co-localized with lysosomes. Treatment with a TGFBR1 kinase inhibitor, endocytosis inhibitors or a lysosome inhibitor, normalized the levels of TGFBR1 and TGFBR2. Co-immunoprecipitation demonstrated a molecular interaction between LTBP4 and TGFBR2. Knockdown of LTBP4 reduced TGFβ receptor abundance and signaling in normal cells and supplementation of recombinant LTBP4 enhanced these measures in mutant cells. In a mouse model of Ltbp4 deficiency, reduced TGFβ signaling and receptor levels were normalized upon TGFBR1 kinase inhibitor treatment. Our results show that LTBP4 interacts with TGFBR2 and stabilizes TGFβ receptors by preventing their endocytosis and lysosomal degradation in a ligand-dependent and receptor kinase activity-dependent manner. These findings identify LTBP4 as a key molecule required for the stability of the TGFβ receptor complex, and a new mechanism by which the extracellular matrix regulates cytokine receptor signaling. PMID:25882708

  6. Pancreatitis with vascular endothelial growth factor receptor tyrosine kinase inhibitors.

    PubMed

    Ghatalia, Pooja; Morgan, Charity J; Choueiri, Toni K; Rocha, Pedro; Naik, Gurudatta; Sonpavde, Guru

    2015-04-01

    A trial-level meta-analysis was conducted to determine the relative risk (RR) of pancreatitis associated with multi-targeted vascular endothelial growth factor receptor (VEGFR) tyrosine kinase inhibitors (TKI). Eligible studies included randomized phase 2 and 3 trials comparing arms with and without an FDA-approved VEGFR TKI (sunitinib, sorafenib, pazopanib, axitinib, vandetanib, cabozantinib, ponatinib, regorafenib). Statistical analyses calculated the RR and 95% confidence intervals (CI). A total of 10,578 patients from 16 phase III trials and 6 phase II trials were selected. The RR for all grade and high-grade pancreatitis for the TKI vs. no TKI- arms was 1.95 (p=0.042, 95% CI: 1.02 to 3.70) and 1.89 (p=0.069, 95% CI: 0.95 to 373), respectively. No differential impact of malignancy type or specific TKI agent was seen on RR of all grade of high grade pancreatitis. Better patient selection and monitoring may mitigate the risk of severe pancreatitis.

  7. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  8. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  9. Platelet-rich growth factor in oral and maxillofacial surgery

    PubMed Central

    Pal, Uma Shanker; Mohammad, Shadab; Singh, Rakesh K.; Das, Somdipto; Singh, Nimisha; Singh, Mayank

    2012-01-01

    Platelet-rich growth factor is an innovative regenerative therapy used to promote hard and soft tissue healing. It involves the application of autologous platelet-leukocyte-rich plasma containing growth factors and thrombin directly to the site of treatment. It is the intrinsic growth factors released by activated platelets which are concentrated in a topical gel formula. Clinically, it is an affordable treatment with potentially broad spectrum of applications in maxillofacial surgery especially in the treatment of complex or refractory wounds. The present article reviews its various applications not only in the specialization of oral and maxillofacial surgery but also in regenerative medicine. PMID:23833484

  10. Novel biodegradable polymers for local growth factor delivery.

    PubMed

    Amsden, Brian

    2015-11-01

    Growth factors represent an important therapeutic protein drug class, and would benefit significantly from formulations that provide sustained, local release to realize their full clinical potential. Biodegradable polymer-based delivery platforms have been examined to achieve this end; however, formulations based on conventional polymers have yet to yield a clinical product. This review examines new polymer biomaterials that have been developed for growth factor delivery. The dosage forms are discussed in terms of their mechanism of release, the stability of the released growth factor, their method of preparation, and their potential for clinical translation. PMID:26614555

  11. Co-stimulation of gastrointestinal tumour cell growth by gastrin, transforming growth factor alpha and insulin like growth factor-I.

    PubMed Central

    Durrant, L. G.; Watson, S. A.; Hall, A.; Morris, D. L.

    1991-01-01

    Epidermal growth factor receptors and insulin like growth factor-I receptors were co-expressed on two gastric and three colorectal tumour cell lines. Previous studies have shown that gastrin receptors were also expressed at a low level or two of these cell lines. Both TGF alpha and IGF-I promoted cell growth in all of the cell lines tested. The cell doubling time of a colorectal cell line was reduced from 48 to 30-34 h. Furthermore the effects of the growth factors were additive. Each growth factor also increased the response of the cells to gastrin, but a combination of both growth factors and gastrin did not further increase growth. PMID:1846553

  12. Therapeutic modulation of growth factors and cytokines in regenerative medicine.

    PubMed

    Ioannidou, Effie

    2006-01-01

    Regeneration that takes place in the human body is limited throughout life. Therefore, when organs are irreparably damaged, they are usually replaced with an artificial device or donor organ. The term "regenerative medicine" covers the restoration or replacement of cells, tissues, and organs. Stem cells play a major role in regenerative medicine by providing the way to repopulate organs damaged by disease. Stem cells have the ability to self renew and to regenerate cells of diverse lineages within the tissue in which they reside. Stem cells could originate from embryos or adult tissues. Growth factors are proteins that may act locally or systemically to affect the growth of cells in several ways. Various cell activities, including division, are influenced by growth factors. Cytokines are a family of low-molecular-weight proteins that are produced by numerous cell types and are responsible for regulating the immune response, inflammation, tissue remodeling and cellular differentiation. Target cells of growth factors and cytokines are mesenchymal, epithelial and endothelial cells. These molecules frequently have overlapping activities and can act in an autocrine or paracrine fashion. A complex network of growth factors and cytokines guides cellular differentiation and regeneration in all organs and tissues. The aim of this paper is to review the role of growth factors and cytokines in different organs or systems and explore their therapeutic application in regenerative medicine. The role of stem cells combined with growth factors and cytokines in the regeneration of vascular and hematopoietic, neural, skeletal, pancreatic, periodontal, and mucosal tissue is reviewed. There is evidence that supports the use of growth factors and cytokines in the treatment of neurological diseases, diabetes, cardiovascular disease, periodontal disease, cancer and its complication, oral mucositis. After solving the ethical issues and establishing clear and reasonable regulations

  13. The effects of BMP6 overexpression on adipose stem cell chondrogenesis: Interactions with dexamethasone and exogenous growth factors.

    PubMed

    Diekman, Brian O; Estes, Bradley T; Guilak, Farshid

    2010-06-01

    Adipose-derived stem cells (ASCs) are multipotent progenitors that can be chondrogenically induced by growth factors such as bone morphogenetic protein 6 (BMP-6). We hypothesized that nonviral transfection of a BMP-6 construct (pcDNA3-BMP6) would induce chondrogenic differentiation of ASCs encapsulated in alginate beads and that differentiation would be enhanced by the presence of the synthetic glucocorticoid dexamethasone (DEX) or the combination of epidermal growth factor (EGF), fibroblast growth factor-2 (FGF-2), and transforming growth factor beta-1 (TGF-beta1), collectively termed expansion factors (EFs). Chondrogenesis was assessed using quantitative real-time polymerase chain reaction for types I, II, and X collagen, aggrecan, and BMP6. Immunohistochemistry was performed with antibodies for types I, II, and X collagen and chondroitin-4-sulfate. BMP6 overexpression alone induced a moderate chondrogenic response. The inclusion of EFs promoted robust type II collagen expression but also increased type I and X collagen deposition, consistent with a hypertrophic chondrocyte phenotype. Early gene expression data indicated that DEX was synergistic with BMP-6 for chondrogenesis, but immunohistochemistry at 28 days showed that DEX reduced glycosaminoglycan accumulation. These results suggest that chondrogenic differentiation of ASCs depends on complex interactions among various growth factors and media supplements, as well as the concentration and duration of growth factor exposure. PMID:19722282

  14. Reduced insulin/insulin-like growth factor signaling decreases translation in Drosophila and mice.

    PubMed

    Essers, Paul; Tain, Luke S; Nespital, Tobias; Goncalves, Joana; Froehlich, Jenny; Partridge, Linda

    2016-01-01

    Down-regulation of insulin/insulin-like growth factor signaling (IIS) can increase lifespan in C. elegans, Drosophila and mice. In C. elegans, reduced IIS results in down-regulation of translation, which itself can extend lifespan. However, the effect of reduced IIS on translation has yet to be determined in other multicellular organisms. Using two long-lived IIS models, namely Drosophila lacking three insulin-like peptides (dilp2-3,5(-/-)) and mice lacking insulin receptor substrate 1 (Irs1(-/-)), and two independent translation assays, polysome profiling and radiolabeled amino acid incorporation, we show that reduced IIS lowers translation in these organisms. In Drosophila, reduced IIS decreased polysome levels in fat body and gut, but reduced the rate of protein synthesis only in the fat body. Reduced IIS in mice decreased protein synthesis rate only in skeletal muscle, without reducing polysomes in any tissue. This lowered translation in muscle was independent of Irs1 loss in the muscle itself, but a secondary effect of Irs1 loss in the liver. In conclusion, down-regulation of translation is an evolutionarily conserved response to reduced IIS, but the tissues in which it occurs can vary between organisms. Furthermore, the mechanisms underlying lowered translation may differ in mice, possibly associated with the complexity of the regulatory processes. PMID:27452396

  15. Reduced insulin/insulin-like growth factor signaling decreases translation in Drosophila and mice

    PubMed Central

    Essers, Paul; Tain, Luke S.; Nespital, Tobias; Goncalves, Joana; Froehlich, Jenny; Partridge, Linda

    2016-01-01

    Down-regulation of insulin/insulin-like growth factor signaling (IIS) can increase lifespan in C. elegans, Drosophila and mice. In C. elegans, reduced IIS results in down-regulation of translation, which itself can extend lifespan. However, the effect of reduced IIS on translation has yet to be determined in other multicellular organisms. Using two long-lived IIS models, namely Drosophila lacking three insulin-like peptides (dilp2-3,5−/−) and mice lacking insulin receptor substrate 1 (Irs1−/−), and two independent translation assays, polysome profiling and radiolabeled amino acid incorporation, we show that reduced IIS lowers translation in these organisms. In Drosophila, reduced IIS decreased polysome levels in fat body and gut, but reduced the rate of protein synthesis only in the fat body. Reduced IIS in mice decreased protein synthesis rate only in skeletal muscle, without reducing polysomes in any tissue. This lowered translation in muscle was independent of Irs1 loss in the muscle itself, but a secondary effect of Irs1 loss in the liver. In conclusion, down-regulation of translation is an evolutionarily conserved response to reduced IIS, but the tissues in which it occurs can vary between organisms. Furthermore, the mechanisms underlying lowered translation may differ in mice, possibly associated with the complexity of the regulatory processes. PMID:27452396

  16. Coordinated Regulation of Apoptosis and Cell Proliferation by Transforming Growth Factor β1 in Cultured Uterine Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Rotello, Rocco J.; Lieberman, Rita C.; Purchio, Anthony F.; Gerschenson, Lazaro E.

    1991-04-01

    Cell and tissue growth is regulated through a complex interplay of stimulatory and inhibitory signals. We describe two biological actions of transforming growth factor β 1 (TGF-β 1) in primary cultures of rabbit uterine epithelial cells: (i) inhibition of cell proliferation and (ii) a concomitant increase in cells undergoing apoptosis (programmed cell death). It is proposed that proliferation and apoptosis together comprise normal cell growth regulation.

  17. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    PubMed

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma.

  18. Visualization of growth factor receptor sites in rat forebrain

    SciTech Connect

    Quirion, R.; Araujo, D.; Nair, N.P.; Chabot, J.G.

    1988-01-01

    It is now known that various growth factors may also act in the central nervous system. Among them, it has recently been shown that epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) may possess trophic effects in the mammalian brain. We report here on the respective autoradiographic distribution of (/sup 125/I)EGF and (/sup 125/I)IGF-I receptor binding sites in the rat brain, both during ontogeny and in adulthood. It appears that (/sup 125/I)EGF sites are mostly found in the rat forebrain during brain development. On the other hand, (/sup 125/I)IGF-I sites are more widely distributed both during ontogeny and in adulthood. These results reveal the plasticity of the expression of EGF and IGF-I receptor sites in the mammalian brain. This could be relevant for the respective role of these two growth factors in the development and maintenance of neuronal function.

  19. Abnormal Growth Factor/Cytokine Network in Gastric Cancer

    PubMed Central

    2008-01-01

    Gastric cancer cells express a broad spectrum of the growth factor/cytokine receptor systems that organize the complex interaction between cancer cells and stromal cells in tumor microenvironment, which confers cell growth, apoptosis, morphogenesis, angiogenesis, progression and metastasis. However, these abnormal growth factor/cytokine networks differ in the two histological types of gastric cancer. Importantly, activation of nuclear factor-kB pathway by Helicobacter pylori infection may act as a key player for induction of growth factor/cytokine networks in gastritis and pathogenesis of gastric cancer. Better understanding of these events will no doubt provide new approaches for biomarkers of diagnosis and effective therapeutic targeting of gastric cancer. PMID:19308687

  20. Cardiac Regeneration using Growth Factors: Advances and Challenges

    PubMed Central

    Rebouças, Juliana de Souza; Santos-Magalhães, Nereide Stela; Formiga, Fabio Rocha

    2016-01-01

    Myocardial infarction is the most significant manifestation of ischemic heart disease and is associated with high morbidity and mortality. Novel strategies targeting at regenerating the injured myocardium have been investigated, including gene therapy, cell therapy, and the use of growth factors. Growth factor therapy has aroused interest in cardiovascular medicine because of the regeneration mechanisms induced by these biomolecules, including angiogenesis, extracellular matrix remodeling, cardiomyocyte proliferation, stem-cell recruitment, and others. Together, these mechanisms promote myocardial repair and improvement of the cardiac function. This review aims to address the strategic role of growth factor therapy in cardiac regeneration, considering its innovative and multifactorial character in myocardial repair after ischemic injury. Different issues will be discussed, with emphasis on the regeneration mechanisms as a potential therapeutic resource mediated by growth factors, and the challenges to make these proteins therapeutically viable in the field of cardiology and regenerative medicine. PMID:27355588

  1. Insulin-like growth factor I interfaces with brain-derived neurotrophic factor-mediated synaptic plasticity to modulate aspects of exercise-induced cognitive function.

    PubMed

    Ding, Q; Vaynman, S; Akhavan, M; Ying, Z; Gomez-Pinilla, F

    2006-07-01

    The ability of exercise to benefit neuronal and cognitive plasticity is well recognized. This study reveals that the effects of exercise on brain neuronal and cognitive plasticity are in part modulated by a central source of insulin-like growth factor-I. Exercise selectively increased insulin-like growth factor-I expression without affecting insulin-like growth factor-II expression in the rat hippocampus. To determine the role that insulin-like growth factor-I holds in mediating exercise-induced neuronal and cognitive enhancement, a specific antibody against the insulin-like growth factor-I receptor was used to block the action of insulin-like growth factor-I in the hippocampus during a 5-day voluntary exercise period. A two-trial-per-day Morris water maze was performed for five consecutive days, succeeded by a probe trial 2 days later. Blocking hippocampal insulin-like growth factor-I receptors did not significantly attenuate the ability of exercise to enhance learning acquisition, but abolished the effect of exercise on augmenting recall. Blocking the insulin-like growth factor-I receptor significantly reversed the exercise-induced increase in the levels of brain-derived neurotrophic factor mRNA and protein and pro-brain-derived neurotrophic factor protein, suggesting that the effects of insulin-like growth factor-I may be partially accomplished by modulating the precursor to the mature brain-derived neurotrophic factor. A molecular analysis revealed that exercise significantly elevated proteins downstream to brain-derived neurotrophic factor activation important for synaptic function, i.e. synapsin I, and signal transduction cascades associated with memory processes, i.e. phosphorylated calcium/calmodulin protein kinase II and phosphorylated mitogen-activated protein kinase II. Blocking the insulin-like growth factor-I receptor abolished these exercise-induced increases. Our results illustrate a possible mechanism by which insulin-like growth factor-I interfaces

  2. Epidermal growth factor receptor inhibitor protects against abdominal aortic aneurysm in a mouse model.

    PubMed

    Obama, Takashi; Tsuji, Toshiyuki; Kobayashi, Tomonori; Fukuda, Yamato; Takayanagi, Takehiko; Taro, Yoshinori; Kawai, Tatsuo; Forrester, Steven J; Elliott, Katherine J; Choi, Eric; Daugherty, Alan; Rizzo, Victor; Eguchi, Satoru

    2015-05-01

    Angiotensin II (Ang II) has been implicated in the development of abdominal aortic aneurysm (AAA). In vascular smooth muscle cells (VSMC), Ang II activates epidermal growth factor receptor (EGFR) mediating growth promotion. We hypothesized that inhibition of EGFR prevents Ang II-dependent AAA. C57BL/6 mice were co-treated with Ang II and β-aminopropionitrile (BAPN) to induce AAA with or without treatment with EGFR inhibitor, erlotinib. Without erlotinib, 64.3% of mice were dead due to aortic rupture. All surviving mice had AAA associated with EGFR activation. Erlotinib-treated mice did not die and developed far fewer AAA. The maximum diameters of abdominal aortas were significantly shorter with erlotinib treatment. In contrast, both erlotinib-treated and non-treated mice developed hypertension. The erlotinib treatment of abdominal aorta was associated with lack of EGFR activation, endoplasmic reticulum (ER) stress, oxidative stress, interleukin-6 induction and matrix deposition. EGFR activation in AAA was also observed in humans. In conclusion, EGFR inhibition appears to protect mice from AAA formation induced by Ang II plus BAPN. The mechanism seems to involve suppression of vascular EGFR and ER stress. PMID:25531554

  3. Epidermal growth factor receptor inhibitor protects against abdominal aortic aneurysm in a mouse model.

    PubMed

    Obama, Takashi; Tsuji, Toshiyuki; Kobayashi, Tomonori; Fukuda, Yamato; Takayanagi, Takehiko; Taro, Yoshinori; Kawai, Tatsuo; Forrester, Steven J; Elliott, Katherine J; Choi, Eric; Daugherty, Alan; Rizzo, Victor; Eguchi, Satoru

    2015-05-01

    Angiotensin II (Ang II) has been implicated in the development of abdominal aortic aneurysm (AAA). In vascular smooth muscle cells (VSMC), Ang II activates epidermal growth factor receptor (EGFR) mediating growth promotion. We hypothesized that inhibition of EGFR prevents Ang II-dependent AAA. C57BL/6 mice were co-treated with Ang II and β-aminopropionitrile (BAPN) to induce AAA with or without treatment with EGFR inhibitor, erlotinib. Without erlotinib, 64.3% of mice were dead due to aortic rupture. All surviving mice had AAA associated with EGFR activation. Erlotinib-treated mice did not die and developed far fewer AAA. The maximum diameters of abdominal aortas were significantly shorter with erlotinib treatment. In contrast, both erlotinib-treated and non-treated mice developed hypertension. The erlotinib treatment of abdominal aorta was associated with lack of EGFR activation, endoplasmic reticulum (ER) stress, oxidative stress, interleukin-6 induction and matrix deposition. EGFR activation in AAA was also observed in humans. In conclusion, EGFR inhibition appears to protect mice from AAA formation induced by Ang II plus BAPN. The mechanism seems to involve suppression of vascular EGFR and ER stress.

  4. Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts

    SciTech Connect

    DiCicco-Bloom, E.; Black, I.B. )

    1988-06-01

    While neuronal mitosis is uniquely restricted to early development, the underlying regulation remains to be defined. The authors have now developed a dissociated, embryonic sympathetic neuron culture system that uses fully defined medium in which cells enter the mitotic cycle. The cultured cells expressed two neuronal traits, tyrosine hydroxylase and the neuron-specific 160-kDa neurofilament subunit protein, but were devoid of glial fibrillary acidic protein, a marker for non-myelin-forming Schwann cells in ganglia. Approximately one-third of the tyrosine hydroxylase-positive cells synthesized DNA in culture, specifically incorporating ({sup 3}H)thymidine into their nuclei. They used this system to define factors regulating the mitotic cycle in sympathetic neuroblasts. Members of the insulin family of growth factors, including insulin and insulin-like growth factors I and II, regulated DNA synthesis in the presumptive neuroblasts. Insulin more than doubled the proportion of tyrosine hydroxylase-positive cells entering the mitotic cycle, as indicated by autoradiography of ({sup 3}H)thymidine incorporation into nuclei. Scintillation spectrometry was an even more sensitive index of DNA synthesis. In contrast, the trophic protein nerve growth factor exhibited no mitogenic effect, suggesting that the mitogenic action of insulin growth factors is highly specific. The observations are discussed in the context of the detection of insulin growth factors and receptors in the developing brain.

  5. Comparative effects of contraction and angiotensin II on growth of adult feline cardiocytes in primary culture

    NASA Technical Reports Server (NTRS)

    Wada, H.; Zile, M. R.; Ivester, C. T.; Cooper, G. 4th; McDermott, P. J.

    1996-01-01

    The purposes of this study were 1) to determine whether angiotensin II causes growth of adult feline cardiocytes in long-term culture, 2) to compare the growth effects of angiotensin II with those resulting from electrically stimulated contraction, and 3) to determine whether the anabolic effects of contraction are exerted via the angiotensin type 1 receptor. Adult feline cardiocytes were cultured on laminin-coated trays in a serum-free medium. Cardiocytes were either electrically stimulated to contract (1 Hz, 5-ms pulse duration, alternating polarity) or were nonstimulated and quiescent. Quiescent cells were studied as controls and after treatment with angiotensin II (10(-8) M), losartan (10(-6) M; an angiotensin type 1-receptor antagonist), or angiotensin II plus losartan. Contracting cells were studied in the presence and absence of angiotensin II or losartan. In quiescent cardiocytes, angiotensin II treatment on day 7 significantly increased protein synthesis rates by 22% and protein content per cell by 17%. The effects of angiotensin II were completely blocked by losartan. Electrically stimulated contraction on days 4 and 7 in culture significantly increased protein synthesis rate by 18 and 38% and protein content per cell by 19 and 46%, respectively. Angiotensin II treatment did not further increase protein synthesis rate or protein content in contracting cardiocytes. Furthermore, losartan did not block the anabolic effects of contraction on protein synthesis rates or protein content. In conclusion, angiotensin II can exert a modest anabolic effect on adult feline cardiocytes in culture. In contracting feline cardiocytes, angiotensin II has no effect on growth. Growth caused by electrically stimulated contraction occurs more rapidly and is greater in magnitude than that caused by angiotensin II. Growth of contracting adult feline cardiocytes is not dependent on activation of the angiotensin receptor.

  6. Regulation of human amnion cell growth and morphology by sera, plasma, and growth factors.

    PubMed

    Gaffney, E V; Grimaldi, M A

    1981-01-01

    The requirements of human epithelial cells derived from the amnion membrane for serum factors were investigated. The growth promoting effects of human whole blood serum (WBS), platelet-poor defibrinogenated plasma, and plasma-derived serum (PDS) were examined in primary cultures of these ectodermal cells. The numbers of population doublings recorded after 10 days in the presence of 10% WBS, defibrinogenated plasma, or PDS were 2.3, 2.0 or 1.5, respectively. Although dialysis of sera or plasma had little effect on growth promotion, it markedly decreased the capacity of plasma to maintain cells in culture beyond 10 days. The differences in growth activities could not be attributed to the presence of anticoagulant in plasma and PDS or to the presence of excess calcium in PDS. Platelet lysates and purified platelet-derived growth factor had no effect on growth. Amnion cell growth was enhanced by epidermal growth factor (EGF) or hydrocortisone, but the glucocorticoid did not condition cells to respond to growth factors. Insulin and fibroblast growth factor singly or in combination had no effect on cell replication. Giant cell formation accompanied maintenance in hydrocortisone with defibrinogenated plasma and PDS. Discrete regions of dense population appeared in the presence of hydrocortisone, EGF, and undialyzed supplements.

  7. Developing New Markets for Growth Industries. Panel II.

    ERIC Educational Resources Information Center

    Appalachia, 1986

    1986-01-01

    Panelists discuss a ground-breaking study of new Pennsylvania firms; examine patterns/needs of small businesses during phases of start-up, growth, maturity, and decline; describe untapped markets in the federal government and through export trade; and review how states can support small business growth by legislative and regulatory change. (NEC)

  8. Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter.

    PubMed

    Zhong, Juan; Guo, Bin; Xie, Jing; Deng, Shuwen; Fu, Na; Lin, Shiyu; Li, Guo; Lin, Yunfeng; Cai, Xiaoxiao

    2016-01-01

    Adipose-derived stem cells (ASCs) and mesenchymal stem cells are promising for tissue repair because of their multilineage differentiation capacity. Our previous data confirmed that the implantation of mixed ASCs and chondrocytes into cartilage defects induced desirable in vivo healing outcomes. However, the paracrine action of ASCs on chondrocytes needs to be further elucidated. In this study, we established a co-culture system to achieve cell-to-cell and cell-to-tissue crosstalk and explored the soluble growth factors in both ASCs and chondrocytes supplemented with 1% fetal bovine serum to mimic the physiological microenvironment. In ASCs, we screened for growth factors by semi-quantitative PCR and quantitative real-time PCR and found that the expression of bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor B (VEGFB), hypoxia inducible factor-1α (HIF-1α), fibroblast growth factor-2 (FGF-2), and transforming growth factor-β1 significantly increased after co-culture in comparison with mono-culture. In chondrocytes, VEGFA was significantly enhanced after co-culture. Unexpectedly, the expression of collagen II and aggrecan was significantly down-regulated in the co-culture group compared with the mono-culture group. Meanwhile, among all the growth factors screened, we found that the BMP family members BMP-2, BMP-4, and BMP-5 were down-regulated and that VEGFB, HIF-1α, FGF-2, and PDGF were significantly decreased after co-culture. These results suggest that crosstalk between ASCs and chondrocytes is a pathway through the regulated growth factors that might have potential in cartilage repair and regeneration and could be useful for tissue engineering. PMID:26848404

  9. Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter

    PubMed Central

    Zhong, Juan; Guo, Bin; Xie, Jing; Deng, Shuwen; Fu, Na; Lin, Shiyu; Li, Guo; Lin, Yunfeng; Cai, Xiaoxiao

    2016-01-01

    Adipose-derived stem cells (ASCs) and mesenchymal stem cells are promising for tissue repair because of their multilineage differentiation capacity. Our previous data confirmed that the implantation of mixed ASCs and chondrocytes into cartilage defects induced desirable in vivo healing outcomes. However, the paracrine action of ASCs on chondrocytes needs to be further elucidated. In this study, we established a co-culture system to achieve cell-to-cell and cell-to-tissue crosstalk and explored the soluble growth factors in both ASCs and chondrocytes supplemented with 1% fetal bovine serum to mimic the physiological microenvironment. In ASCs, we screened for growth factors by semi-quantitative PCR and quantitative real-time PCR and found that the expression of bone morphogenetic protein 2 (BMP-2), vascular endothelial growth factor B (VEGFB), hypoxia inducible factor-1α (HIF-1α), fibroblast growth factor-2 (FGF-2), and transforming growth factor-β1 significantly increased after co-culture in comparison with mono-culture. In chondrocytes, VEGFA was significantly enhanced after co-culture. Unexpectedly, the expression of collagen II and aggrecan was significantly down-regulated in the co-culture group compared with the mono-culture group. Meanwhile, among all the growth factors screened, we found that the BMP family members BMP-2, BMP-4, and BMP-5 were down-regulated and that VEGFB, HIF-1α, FGF-2, and PDGF were significantly decreased after co-culture. These results suggest that crosstalk between ASCs and chondrocytes is a pathway through the regulated growth factors that might have potential in cartilage repair and regeneration and could be useful for tissue engineering. PMID:26848404

  10. Lifetime growth in wild meerkats: incorporating life history and environmental factors into a standard growth model.

    PubMed

    English, Sinéad; Bateman, Andrew W; Clutton-Brock, Tim H

    2012-05-01

    Lifetime records of changes in individual size or mass in wild animals are scarce and, as such, few studies have attempted to model variation in these traits across the lifespan or to assess the factors that affect them. However, quantifying lifetime growth is essential for understanding trade-offs between growth and other life history parameters, such as reproductive performance or survival. Here, we used model selection based on information theory to measure changes in body mass over the lifespan of wild meerkats, and compared the relative fits of several standard growth models (monomolecular, von Bertalanffy, Gompertz, logistic and Richards). We found that meerkats exhibit monomolecular growth, with the best model incorporating separate growth rates before and after nutritional independence, as well as effects of season and total rainfall in the previous nine months. Our study demonstrates how simple growth curves may be improved by considering life history and environmental factors, which may be particularly relevant when quantifying growth patterns in wild populations.

  11. Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Herman, Dave J.; James, Mark A.

    2003-01-01

    Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).

  12. Nerve growth factor binding domain of the nerve growth factor receptor

    SciTech Connect

    Welcher, A.A.; Bitler, C.M.; Radeke, M.J.; Shooter, E.M. )

    1991-01-01

    A structural analysis of the rat low-affinity nerve growth factor (NGF) receptor was undertaken to define the NGF binding domain. Mutant NGF receptor DNA constructs were expressed in mouse fibroblasts or COS cells, and the ability of the mutant receptors to bind NGF was assayed. In the first mutant, all but 16 amino acid residues of the intracellular domain of the receptor were removed. This receptor bound NGF with a K{sub d} comparable to that of the wild-type receptor. A second mutant contained only the four cysteine-rich sequences from the extracellular portion of the protein. This mutant was expressed in COS cells and the resultant protein was a secreted soluble form of the receptor that was able to bind NGF. Two N-terminal deletions, in which either the first cystein-rich sequence or the first and part of the second cystein-rich sequences were removed, bound NGF. However, a mutant lacking all four cysteine-rich sequences was unable to bind NGF. These results show that the four cysteine-rich sequences of the NGF receptor contain the NGF binding domain.

  13. Human Masseter Muscle Fiber Type Properties, Skeletal Malocclusions, and Muscle Growth Factor Expression

    PubMed Central

    Sciote, James Joseph; Horton, Michael J.; Rowlerson, Anthea M.; Ferri, Joel; Close, John M.; Raoul, Gwenael

    2013-01-01

    Purpose We identified masseter muscle fiber type property differences in subjects with dentofacial deformities. Patients and Methods Samples of masseter muscle were collected from 139 young adults during mandibular osteotomy procedures to assess mean fiber areas and percent tissue occupancies for the 4 fiber types that comprise the muscle. Subjects were classified into 1 of 6 malocclusion groups based on the presence of a skeletal Class II or III sagittal dimension malocclusion and either a skeletal open, deep, or normal bite vertical dimension malocclusion. In a subpopulation, relative quantities of the muscle growth factors IGF-I and GDF-8 gene expression were quantified by real-time polymerase chain reaction. Results Fiber properties were not different in the sagittal malocclusion groups, but were very different in the vertical malocclusion groups (P ≤ .0004). There were significant mean fiber area differences for type II (P ≤ .0004) and type neonatal—atrial (P = .001) fiber types and for fiber percent occupancy differences for both type I–II hybrid fibers and type II fibers (P ≤ .0004). Growth factor expression differed by gender for IGF-I (P = .02) and GDF-8 (P < .01). The ratio of IGF-I:GDF-8 expression associates with type I and II mean fiber areas. Conclusion Fiber type properties are very closely associated with variations in vertical growth of the face, with statistical significance for overall comparisons at P ≤ .0004. An increase in masseter muscle type II fiber mean fiber areas and percent tissue occupancies is inversely related to increases in vertical facial dimension. PMID:21821327

  14. [Novel role of growth factors in ovary function].

    PubMed

    Amsterdam, Abraham

    2010-12-01

    The development of the DNA microarray technique facilitated systematic studies of the modulation of gene function. Considerable attention has been focused on members of the growth factor family to elucidate the main regulators of oocyte maturation and ovarian follicle rupture. Among these growth factors, it was found, both in rodents and in humans, that amphiregulin (Ar) and epiregulin (Ep) of the epidermal growth factor (EGF) family were dramatically up-regulated by gonadotrophins in the intact ovary and in primary granulosa cells, respectively. Their role in cumulus expansion and oocyte maturation was established in rodents, and their synthesis under LH stimulation in granulosa cells was demonstrated in humans. To be activated, Ar and Ep must be cleaved by a disintegrin and metalloproteinases (ADAMs) family. However, the precise processing of Ar and Ep by the cumulus cells is still obscure. Future investigations using DNA microarray technique may reveal the repertoire of genes activated in Ar- and Ep-stimulated cumulus cells and may help elucidate the molecular basis of ovulation. EFG-like factors are also involved in triggering ovarian cancer The author hypothesized that the normal ovary maintains cyclicity in the formation of these growth factors preventing the ovary from developing ovarian cancer In ovarian cancer these growth factors are continuously formed in an autocrine manner, leading to transformation and subsequently to ovarian cancer. These growth factors are essential for both normal and neoplastic transformation of the ovary. Taking into consideration these growth factors in the treatment of ovarian malfunction may be one way of curing ovarian cancer. PMID:21916103

  15. Exercise and the growth hormone-insulin-like growth factor axis.

    PubMed

    Frystyk, Jan

    2010-01-01

    Exercise is a robust physiological stimulator of the pituitary secretion of growth hormone (GH), and within approximately 15 min after the onset of exercise, plasma GH starts to increase. GH and its primary downstream mediator, insulin-like growth factor I (IGF-I), play a critical role in formation, maintenance, and regeneration of skeletal muscles. Consequently, it seems logical to link the exercise-induced stimulation of GH with the hypertrophy observed in exercising muscles. GH stimulates circulating (endocrine) as well as locally produced (peripheral) IGF-I, which acts through autocrine/paracrine mechanisms. However, it remains to be clarified whether skeletal muscle hypertrophy after exercise is stimulated primarily by endocrine or paracrine/autocrine IGF-I. Early cross-sectional studies have observed positive correlations between circulating IGF-I levels and GH secretion, respectively, and indices of fitness. However, longitudinal exercise studies have shown that it is possible to increase muscle strength, performance, and VO2max without concomitant and robust changes in circulating IGF-I, indicating that the effect of exercise on skeletal muscles is mediated via paracrine/autocrine IGF-I rather than endocrine IGF-I. So far, most exercise studies have investigated the concentration of immunoreactive IGF-I in serum or plasma, obtained after extraction of the IGF-binding proteins (i.e., total IGF-I). However, several of the newer exercise studies have included measurement of free IGF-I as well as bioactive IGF-I. The aim of this review was to discuss whether measurement of free and/or bioactive IGF-I have increased our knowledge on the processes that link exercise, muscle hypertrophy, and GH/IGF-I axis. Thus, the current review will discuss (i) the different IGF-I assay methodologies and (ii) the current literature on free, bioactive, and immunoreactive (total) IGF-I in exercising subjects.

  16. The Factor Structure of the Beck Depression Inventory-II: An Evaluation

    ERIC Educational Resources Information Center

    Vanheule, Stijn; Desmet, Mattias; Groenvynck, Hans; Rosseel, Yves; Fontaine, Johnny

    2008-01-01

    The Beck Depression Inventory-II (BDI-II) is a frequently used scale for measuring depressive severity. BDI-II data (404 clinical; 695 nonclinical adults) were analyzed by means of confirmatory factor analysis to test whether the factor structure model with a somatic-affective and cognitive component of depression, formulated by Beck and…

  17. Class II malocclusion nonextraction treatment with growth control*

    PubMed Central

    Assunção, Zilda Lúcia Valentim

    2014-01-01

    The present study reports a case of Angle Class II malocclusion treatment of a male growing patient with 10-mm overjet, excessive overbite and transverse maxillary deficiency. The case was presented to the Brazilian Board of Orthodontics and Dentofacial Orthopedics (BBO), with DI equal to or greater than 10, as a requirement for the title of certified by the BBO. PMID:25628088

  18. Insulin-like 3-induced rat preantral follicular growth is mediated by growth differentiation factor 9.

    PubMed

    Xue, Kai; Kim, Ji Young; Liu, Jia-yin; Tsang, Benjamin K

    2014-01-01

    The communication of somatic cells and oocytes by intrafollicular paracrine factors is essential for follicular growth in the ovary. Insulin-like 3 (INSL3) is a theca cell-secreted paracrine factor. Androgens and growth differentiation factor 9 (GDF9), an oocyte-derived growth factor, are essential for follicular development. Using a rat preantral follicle culture model, we examined in the present study the influence of INSL3 on preantral follicular growth and the molecular mechanisms involved. We have observed that the receptor for INSL3, relaxin/insulin-like family peptide receptor 2 (RXFP2), was exclusively expressed in oocytes. Recombinant INSL3 stimulated Gdf9 expression, preantral follicular growth, and testosterone synthesis in vitro. Inhibition of the cAMP/protein kinase A signaling pathway (with cAMP antagonist, 8-bromoadenosine 3',5'-cyclic monophosphorothioate, Rp-isomer) attenuated INSL3-induced Gdf9 expression and preantral follicular growth. Moreover, knocking down Gdf9 expression (with small interfering RNA) or inhibiting GDF9 signaling (with SB431542, an activin receptor-like kinase receptor 5 inhibitor, or specific inhibitor of mothers against decapentaplegic homolog 3) or androgen action (with flutamide, an androgen receptor antagonist) suppressed INSL3-induced preantral follicular growth. In addition, LH and DHT regulated the expression of Insl3 mRNA in preantral follicles. These observations suggest that INSL3 is a key theca cell-derived growth factor for preantral follicle and that its action is mediated by GDF9.

  19. Tumor Necrosis Factor: A Mechanistic Link between Angiotensin-II-Induced Cardiac Inflammation and Fibrosis

    PubMed Central

    Duerrschmid, Clemens; Trial, JoAnn; Wang, Yanlin; Entman, Mark L.; Haudek, Sandra B.

    2015-01-01

    Background Continuous angiotensin-II (Ang-II) infusion induced the uptake of monocytic fibroblast precursors that initiated the development of cardiac fibrosis; these cells and concurrent fibrosis were absent in mice lacking tumor necrosis factor-alpha receptor 1 (TNFR1). We now investigated their cellular origin and temporal uptake, and the involvement of TNFR1 in monocyte-to-fibroblast differentiation. Methods and Results Within a day, Ang-II induced a pro-inflammatory environment characterized by production of inflammatory chemokines, cytokines, and TH1-interleukins and uptake of bone marrow-derived M1-cells. After a week, the cardiac environment changed to profibrotic with growth-factor and TH2-interleukin synthesis, uptake of bone marrow-derived M2-cells, and presence of M2-related fibroblasts. TNFR1 signaling was not necessary for early M1 uptake, but its absence diminished the amount of M2-cells. TNFR1-KO hearts also showed reduced levels of cytokine expression, but not of TH-related lymphokines. Reconstitution of wild-type bone marrow into TNFR1-KO mice was sufficient to restore M2 uptake, upregulation of pro-inflammatory and pro-fibrotic genes, and development of fibrosis in response to Ang-II. We also developed an in vitro mouse monocyte-to-fibroblast-maturation assay that confirmed the essential role of TNFR1 in the sequential progression of monocyte activation and fibroblast formation. Conclusions Development of cardiac fibrosis in response to Ang-II was mediated by myeloid precursors and consisted of two stages. A primary M1 inflammatory response was followed by a subsequent M2 fibrotic response. While the first phase appeared to be independent of TNFR1 signaling, the later phase (and development of fibrosis) was abrogated by deletion of TNFR1. PMID:25550440

  20. Phase transitions in tumor growth: II prostate cancer cell lines

    NASA Astrophysics Data System (ADS)

    Llanos-Pérez, J. A.; Betancourt-Mar, A.; De Miguel, M. P.; Izquierdo-Kulich, E.; Royuela-García, M.; Tejera, E.; Nieto-Villar, J. M.

    2015-05-01

    We propose a mechanism for prostate cancer cell lines growth, LNCaP and PC3 based on a Gompertz dynamics. This growth exhibits a multifractal behavior and a "second order" phase transition. Finally, it was found that the cellular line PC3 exhibits a higher value of entropy production rate compared to LNCaP, which is indicative of the robustness of PC3, over to LNCaP and may be a quantitative index of metastatic potential tumors.

  1. Cutaneous adverse reactions specific to epidermal growth factor receptor inhibitors

    PubMed Central

    Lupu, I; Voiculescu, VM; Bacalbasa, N; Prie, BE; Cojocaru, I; Giurcaneanu, C

    2015-01-01

    Classical antineoplastic therapy is encumbered by extensively studied adverse reactions, most often of systemic nature. The emergence of new generations of anticancer treatments, including epidermal growth factor receptor inhibitors, besides improving the response to treatment and the survival rate, is accompanied by the occurrence of new specific side effects, incompletely studied. These side effects are most often cutaneous (hand foot syndrome, acneiform reactions), and in some cases are extremely severe, requiring dose reduction or drug discontinuation. The prevention of the cutaneous adverse effects and their treatment require a close collaboration between the oncologist and the dermatologist. The occurrence of some of these skin adverse effects may be a favorable prognostic factor for the response to the cancer treatment and the overall survival. Abbreviations: EGFR = epidermal growth factor receptors; EGFRI = epidermal growth factor receptors inhibitors PMID:26361513

  2. Subcritical crack growth in soda-lime glass in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Singh, Dileep; Shetty, Dinesh K.

    1990-01-01

    Subcritical crack growth under mixed-mode loading was studied in soda-lime glass. Pure mode I, combined mode I and mode II, and pure mode II loadings were achieved in precracked disk specimens by loading in diametral compression at selected angles with respect to the symmetric radial crack. Crack growth was monitored by measuring the resistance changes in a microcircuit grid consisting of parallel, electrically conducting grid lines deposited on the surface of the disk specimens by photolithography. Subcritical crack growth rates in pure mode I, pure mode II, and combined mode I and mode II loading could be described by an exponential relationship between crack growth rate and an effective crack driving force derived from a mode I-mode II fracture toughness envelope. The effective crack driving force was based on an empirical representation of the noncoplanar strain energy release rate. Stress intensities for kinked cracks were assessed using the method of caustics and an initial decrease and a subsequent increase in the subcritical crack growth rates of kinked cracks were shown to correlate with the variations of the mode I and the mode II stress intensities.

  3. Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors.

    PubMed Central

    Hatva, E.; Kaipainen, A.; Mentula, P.; Jääskeläinen, J.; Paetau, A.; Haltia, M.; Alitalo, K.

    1995-01-01

    Key growth factor-receptor interactions involved in angiogenesis are possible targets for therapy of CNS tumors. Vascular endothelial growth factor (VEGF) is a highly specific endothelial cell mitogen that has been shown to stimulate angiogenesis, a requirement for solid tumor growth. The expression of VEGF, the closely related placental growth factor (PIGF), the newly cloned endothelial high affinity VEGF receptors KDR and FLT1, and the endothelial orphan receptors FLT4 and Tie were analyzed by in situ hybridization in normal human brain tissue and in the following CNS tumors: gliomas, grades II, III, IV; meningiomas, grades I and II; and melanoma metastases to the cerebrum. VEGF mRNA was up-regulated in the majority of low grade tumors studied and was highly expressed in cells of malignant gliomas. Significantly elevated levels of Tie, KDR, and FLT1 mRNAs, but not FLT4 mRNA, were observed in malignant tumor endothelia, as well as in endothelia of tissues directly adjacent to the tumor margin. In comparison, there was little or no receptor expression in normal brain vasculature. Our results are consistent with the hypothesis that these endothelial receptors are induced during tumor progression and may play a role in tumor angiogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7856749

  4. Analysis of growth curves of fowl. II. Ducks.

    PubMed

    Knízetová, H; Hyánek, J; Kníze, B; Procházková, H

    1991-12-01

    1. Growth curves of nine selected lines and one random-bred control population (in total, n = 1070) were evaluated by the Richards function. The ducks were weighed at 7-d intervals and, after the tenth week, every second week (up to 18 weeks). Food and water were supplied ad libitum. 2. The predicted curves closely fitted the weight data points (R2 = 0.9991-0.9997). 3. The ducks are characterized by early maturity rate. The peak of the absolute growth rate (the inflection point of the curve) occurred at 24.1-27.6 d of age (t+). A higher ratio of the inflection to the asymptotic weights (y+/A = 0.380-0.424) was found in comparison to those from the Gompertz-type function of growth (y+/A = 0.368). 4. In the selected lines the degree of maturity at a slaughter age of 7 weeks (u7 = y7/A) ranged from 0.784 to 0.835 for males and from 0.819 to 0.889 for females. 5. Ducks within the non-selected control line had a significantly lower maturing rate than the selected lines. 6. Sexual dimorphism was recorded for all growth parameters analysed. Females have faster maturation rate than males (higher values of y+/A, u7, k and a shorter auto-acceleration phase of growth). 7. High interline differences were found for body weight (A, y+, y7) and for absolute growth rate (v, v+) and smaller ones for parameters of the maturation rate (y+/A, u7, k and t+). 8. The intragroup phenotype correlation between growth parameters and the use of weight data only up to 7 weeks of age for the estimation of parameters of the Richards function are discussed. PMID:1786569

  5. Hepatocyte growth factor, hepatocyte growth factor activator and arginine in a rat fulminant colitis model

    PubMed Central

    Zwintscher, Nathan P.; Shah, Puja M.; Salgar, Shashikumar K.; Newton, Christopher R.; Maykel, Justin A.; Samy, Ahmed; Jabir, Murad; Steele, Scott R.

    2016-01-01

    Introduction Dextran sodium sulfate (DSS) is commonly used to induce a murine fulminant colitis model. Hepatocyte growth factor (HGF) has been shown to decrease the symptoms of inflammatory bowel disease (IBD) but the effect of its activator, HGFA, is not well characterized. Arginine reduces effects of oxidative stress but its effect on IBD is not well known. The primary aim is to determine whether HGF and HGFA, or arginine will decrease IBD symptoms such as pain and diarrhea in a DSS-induced fulminant colitis murine model. Methods A severe colitis was induced in young, male Fischer 344 rats with 4% (w/v) DSS oral solution for seven days; rats were sacrificed on day 10. Rats were divided into five groups of 8 animals: control, HGF (700 mcg/kg/dose), HGF and HGFA (10 mcg/dose), HGF and arginine, and high dose HGF (2800 mcg/kg/dose). Main clinical outcomes were pain, diarrhea and weight loss. Blinded pathologists scored the terminal ileum and distal colon. Results DSS reliably induced severe active colitis in 90% of animals (n = 36/40). There were no differences in injury scores between control and treatment animals. HGF led to 1.38 fewer days in pain (p = 0.036), while arginine led to 1.88 fewer days of diarrhea (P = 0.017) compared to controls. 88% of HGFA-treated rats started regaining weight (P < 0.001). Discussion/Conclusion Although treatment was unable to reverse fulminant disease, HGF and arginine were associated with decreased days of pain and diarrhea. These clinical interventions may reduce associated symptoms for severe IBD patients, even when urgent surgical intervention remains the only viable option. PMID:27144006

  6. Beclin 1 regulates growth factor receptor signaling in breast cancer.

    PubMed

    Rohatgi, R A; Janusis, J; Leonard, D; Bellvé, K D; Fogarty, K E; Baehrecke, E H; Corvera, S; Shaw, L M

    2015-10-16

    Beclin 1 is a haploinsufficient tumor suppressor that is decreased in many human tumors. The function of beclin 1 in cancer has been attributed primarily to its role in the degradative process of macroautophagy. However, beclin 1 is a core component of the vacuolar protein sorting 34 (Vps34)/class III phosphatidylinositoI-3 kinase (PI3KC3) and Vps15/p150 complex that regulates multiple membrane-trafficking events. In the current study, we describe an alternative mechanism of action for beclin 1 in breast cancer involving its control of growth factor receptor signaling. We identify a specific stage of early endosome maturation that is regulated by beclin 1, the transition of APPL1-containing phosphatidyIinositol 3-phosphate-negative (PI3P(-)) endosomes to PI3P(+) endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P(-)/APPL(+)-signaling-competent compartment. As a result, suppression of BECN1 sustains growth factor-stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Our data identify a novel role for beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of beclin 1 expression would enhance breast cancer progression.

  7. Cytokine and Growth Factor Responses After Radiotherapy for Localized Ependymoma

    SciTech Connect

    Merchant, Thomas E. Li Chenghong; Xiong Xiaoping; Gaber, M. Waleed

    2009-05-01

    Purpose: To determine the time course and clinical significance of cytokines and peptide growth factors in pediatric patients with ependymoma treated with postoperative radiotherapy (RT). Methods and Materials: We measured 15 cytokines and growth factors (fibroblast growth factor, epidermal growth factor, vascular endothelial growth factor [VEGF], interleukin [IL]-1{beta}, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, interferon-{gamma}, tumor necrosis factor-{alpha}, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and macrophage inflammatory protein-{alpha}) from 30 patients before RT and 2 and 24 h, weekly for 6 weeks, and at 3, 6, 9, and 12 months after the initiation of RT. Two longitudinal models for the trend of log-transformed measurements were fitted, one during treatment and one through 12 months. Results: During RT, log IL-8 declined at a rate of -0.10389/wk (p = 0.0068). The rate of decline was greater (p = 0.028) for patients with an infratentorial tumor location. The decline in IL-8 after RT was significant when stratified by infratentorial tumor location (p = 0.0345) and more than one surgical procedure (p = 0.0272). During RT, the decline in log VEGF was significant when stratified by the presence of a ventriculoperitoneal shunt. After RT, the log VEGF declined significantly at a rate of -0.06207/mo. The decline was significant for males (p = 0.0222), supratentorial tumors (p = 0.0158), one surgical procedure (p = 0.0222), no ventriculoperitoneal shunt (p = 0.0005), and the absence of treatment failure (p = 0.0028). Conclusion: The pro-inflammatory cytokine IL-8 declined significantly during RT and the decline differed according to tumor location. The angiogenesis factor VEGF declined significantly during the 12 months after RT. The decline was greater in males, those without a ventriculoperitoneal shunt, and in those with favorable disease factors, including one surgical procedure, supratentorial tumor location, and

  8. Growth of the eye lens: II. Allometric studies

    PubMed Central

    2014-01-01

    Purpose The purpose of this study was to examine the ontogeny and phylogeny of lens growth in a variety of species using allometry. Methods Data on the accumulation of wet and/or dry lens weight as a function of bodyweight were obtained for 40 species and subjected to allometric analysis to examine ontogenic growth and compaction. Allometric analysis was also used to compare the maximum adult lens weights for 147 species with the maximum adult bodyweight and to compare lens volumes calculated from wet and dry weights with eye volumes calculated from axial length. Results Linear allometric relationships were obtained for the comparison of ontogenic lens and bodyweight accumulation. The body mass exponent (BME) decreased with increasing animal size from around 1.0 in small rodents to 0.4 in large ungulates for both wet and dry weights. Compaction constants for the ontogenic growth ranged from 1.00 in birds and reptiles up to 1.30 in mammals. Allometric comparison of maximum lens wet and dry weights with maximum bodyweights also yielded linear plots with a BME of 0.504 for all warm blooded species except primates which had a BME of 0.25. When lens volumes were compared with eye volumes, all species yielded a scaling constant of 0.75 but the proportionality constants for primates and birds were lower. Conclusions Ontogenic lens growth is fastest, relative to body growth, in small animals and slowest in large animals. Fiber cell compaction takes place throughout life in most species, but not in birds and reptiles. Maximum adult lens size scales with eye size with the same exponent in all species, but birds and primates have smaller lenses relative to eye size than other species. Optical properties of the lens are generated through the combination of variations in the rate of growth, rate of compaction, shape and size. PMID:24715759

  9. Growth factors in porcine full and partial thickness burn repair. Differing targets and effects of keratinocyte growth factor, platelet-derived growth factor-BB, epidermal growth factor, and neu differentiation factor.

    PubMed Central

    Danilenko, D. M.; Ring, B. D.; Tarpley, J. E.; Morris, B.; Van, G. Y.; Morawiecki, A.; Callahan, W.; Goldenberg, M.; Hershenson, S.; Pierce, G. F.

    1995-01-01

    The topical application of recombinant growth factors such as epidermal growth factor, platelet-derived growth factor-BB homodimer (rPDGF-BB), keratinocyte growth factor (rKGF), and neu differentiation factor has resulted in significant acceleration of healing in several animal models of wound repair. In this study, we established highly reproducible and quantifiable full and deep partial thickness porcine burn models in which burns were escharectomized 4 or 5 days postburn and covered with an occlusive dressing to replicate the standard treatment in human burn patients. We then applied these growth factors to assess their efficacy on several parameters of wound repair: extracellular matrix and granulation tissue production, percent reepithelialization, and new epithelial area. In full thickness burns, only rPDGF-BB and the combination of rPDGF-BB and rKGF induced significant changes in burn repair. rPDGF-BB induced marked extracellular matrix and granulation tissue production (P = 0.013) such that the burn defect was filled within several days of escharectomy, but had no effect on new epithelial area or reepithelialization. The combination of rPDGF-BB and rKGF in full thickness burns resulted in a highly significant increase in extracellular matrix and granulation tissue area (P = 0.0009) and a significant increase in new epithelial area (P = 0.007), but had no effect on reepithelialization. In deep partial thickness burns, rKGF induced the most consistent changes. Daily application of rKGF induced a highly significant increase in new epithelial area (P < 0.0001) but induced only a modest increase in reepithelialization (83.7% rKGF-treated versus 70.2% control; P = 0.016) 12 days postburn. rKGF also doubled the number of fully reepithelialized burns (P = 0.02) at 13 days postburn, at least partially because of marked stimulation of both epidermal and follicular proliferation as assessed by proliferating cell nuclear antigen expression. In situ hybridization for

  10. Targeting the insulin-like growth factor pathway in hepatocellular carcinoma

    PubMed Central

    Enguita-Germán, Mónica; Fortes, Puri

    2014-01-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths worldwide. Only 30%-40% of the patients with HCC are eligible for curative treatments, which include surgical resection as the first option, liver transplantation and percutaneous ablation. Unfortunately, there is a high frequency of tumor recurrence after surgical resection and most HCC seem resistant to conventional chemotherapy and radiotherapy. Sorafenib, a multi-tyrosine kinase inhibitor, is the only chemotherapeutic option for patients with advanced hepatocellular carcinoma. Patients treated with Sorafenib have a significant increase in overall survival of about three months. Therefore, there is an urgent need to develop alternative treatments. Due to its role in cell growth and development, the insulin-like growth factor system is commonly deregulated in many cancers. Indeed, the insulin-like growth factor (IGF) axis has recently emerged as a potential target for hepatocellular carcinoma treatment. To this aim, several inhibitors of the pathway have been developed such as monoclonal antibodies, small molecules, antisense oligonucleotides or small interfering RNAs. However recent studies suggest that, unlike most tumors, HCC development requires increased signaling through insulin growth factor II rather than insulin growth factor I. This may have great implications in the future treatment of HCC. This review summarizes the role of the IGF axis in liver carcinogenesis and the current status of the strategies designed to target the IGF-I signaling pathway for hepatocellular carcinoma treatment. PMID:25349643

  11. The Factor Structure of the CIBS-II-Readiness Assessment

    ERIC Educational Resources Information Center

    Gotch, Chad M.; French, Brian F.

    2011-01-01

    The Brigance Comprehensive Inventory of Basic Skills-II (CIBS-II)-Readiness form is a diagnostic battery intended for children aged 5 and 6 years. The CIBS-II-Readiness is a new version of the CIBS-Revised-Readiness and includes updated normative information on a larger representative sample in comparison to the CIBS-Revised-Readiness. Empirical…

  12. Autocrine growth factors for human tumor clonogenic cells.

    PubMed

    Hamburger, A W; White, C P

    1985-11-01

    A human epithelial-derived cell line, SW-13, releases a soluble substance that functions as an autocrine growth factor. SW-13 cells, derived from a human adenocarcinoma of the adrenal cortex, form a few small colonies when suspended in soft agar at low densities. The number of colonies increased significantly when either viable SW-13 cells or serum-free medium conditioned by SW-13 cells (CM) was added to agar underlayers. CM increased colony formation in a dose-dependent fashion. Clonal growth at low cell densities was dependent on the presence of both horse serum and SW-13 CM. Neither activity alone was capable of sustaining growth. Even when cells were plated at high densities CM could not substitute for serum, but could reduce the threshold serum concentration. The results suggest that autocrine and serum-derived factors act in concert to maintain clonal growth of epithelial tumor cells in soft agar.

  13. Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions.

    PubMed

    Morabito, Alessandro; Piccirillo, Maria Carmela; Falasconi, Fabiano; De Feo, Gianfranco; Del Giudice, Antonia; Bryce, Jane; Di Maio, Massimo; De Maio, Ermelinda; Normanno, Nicola; Perrone, Francesco

    2009-04-01

    Vandetanib is a novel, orally available inhibitor of different intracellular signaling pathways involved in tumor growth, progression, and angiogenesis: vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and REarranged during Transfection tyrosine kinase activity. Phase I clinical trials have shown that vandetanib is well tolerated as a single agent at daily doses < or =300 mg. In the phase II setting, negative results were observed with vandetanib in small cell lung cancer, metastatic breast cancer, and multiple myeloma. In contrast, three randomized phase II studies showed that vandetanib prolonged the progression-free survival (PFS) time of patients with non-small cell lung cancer (NSCLC) as a single agent when compared with gefitinib or when added to chemotherapy. Rash, diarrhea, hypertension, fatigue, and asymptomatic QTc prolongation were the most common adverse events. Antitumor activity was also observed in medullary thyroid cancer. Four randomized phase III clinical trials in NSCLC are exploring the efficacy of vandetanib in combination with docetaxel, the Zactima in cOmbination with Docetaxel In non-small cell lung Cancer (ZODIAC) trial, or with pemetrexed, the Zactima Efficacy with Alimta in Lung cancer (ZEAL) trial, or as a single agent, the Zactima Efficacy when Studied versus Tarceva (ZEST) and the Zactima Efficacy trial for NSCLC Patients with History of EGFR-TKI chemo-Resistance (ZEPHYR) trials. Based on a press release by the sponsor of these trials, the PFS time was longer with vandetanib in the ZODIAC and ZEAL trials; the ZEST trial was negative for its primary superiority analysis, but was successful according to a preplanned noninferiority analysis of PFS. Ongoing phase II and III clinical trials will better define the appropriate schedule, the optimal setting of evaluation, and the safety of long-term use of vandetanib.

  14. Vandetanib (ZD6474), a dual inhibitor of vascular endothelial growth factor receptor (VEGFR) and epidermal growth factor receptor (EGFR) tyrosine kinases: current status and future directions.

    PubMed

    Morabito, Alessandro; Piccirillo, Maria Carmela; Falasconi, Fabiano; De Feo, Gianfranco; Del Giudice, Antonia; Bryce, Jane; Di Maio, Massimo; De Maio, Ermelinda; Normanno, Nicola; Perrone, Francesco

    2009-04-01

    Vandetanib is a novel, orally available inhibitor of different intracellular signaling pathways involved in tumor growth, progression, and angiogenesis: vascular endothelial growth factor receptor-2, epidermal growth factor receptor, and REarranged during Transfection tyrosine kinase activity. Phase I clinical trials have shown that vandetanib is well tolerated as a single agent at daily doses < or =300 mg. In the phase II setting, negative results were observed with vandetanib in small cell lung cancer, metastatic breast cancer, and multiple myeloma. In contrast, three randomized phase II studies showed that vandetanib prolonged the progression-free survival (PFS) time of patients with non-small cell lung cancer (NSCLC) as a single agent when compared with gefitinib or when added to chemotherapy. Rash, diarrhea, hypertension, fatigue, and asymptomatic QTc prolongation were the most common adverse events. Antitumor activity was also observed in medullary thyroid cancer. Four randomized phase III clinical trials in NSCLC are exploring the efficacy of vandetanib in combination with docetaxel, the Zactima in cOmbination with Docetaxel In non-small cell lung Cancer (ZODIAC) trial, or with pemetrexed, the Zactima Efficacy with Alimta in Lung cancer (ZEAL) trial, or as a single agent, the Zactima Efficacy when Studied versus Tarceva (ZEST) and the Zactima Efficacy trial for NSCLC Patients with History of EGFR-TKI chemo-Resistance (ZEPHYR) trials. Based on a press release by the sponsor of these trials, the PFS time was longer with vandetanib in the ZODIAC and ZEAL trials; the ZEST trial was negative for its primary superiority analysis, but was successful according to a preplanned noninferiority analysis of PFS. Ongoing phase II and III clinical trials will better define the appropriate schedule, the optimal setting of evaluation, and the safety of long-term use of vandetanib. PMID:19349511

  15. Hammerhead Ribozyme-Mediated Knockdown of mRNA for Fibrotic Growth Factors: Transforming Growth Factor-Beta 1 and Connective Tissue Growth Factor

    PubMed Central

    Robinson, Paulette M.; Blalock, Timothy D.; Yuan, Rong; Lewin, Alfred S.; Schultz, Gregory S.

    2013-01-01

    Excessive scarring (fibrosis) is a major cause of pathologies in multiple tissues, including lung, liver, kidney, heart, cornea, and skin. The transforming growth factor- β (TGF- β) system has been shown to play a key role in regulating the formation of scar tissue throughout the body. Furthermore, connective tissue growth factor (CTGF) has been shown to mediate most of the fibrotic actions of TGF- β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. Currently, no approved drugs selectively and specifically regulate scar formation. Thus, there is a need for a drug that selectively targets the TGF- β cascade at the molecular level and has minimal off-target side effects. This chapter focuses on the design of hammerhead ribozymes, measurement of kinetic activity, and assessment of knockdown mRNAs of TGF- β and CTGF in cell cultures. PMID:22131029

  16. Stimulatory effect of luteinizing hormone, insulin-like growth factor-1, and epidermal growth factor on vascular endothelial growth factor production in cultured bubaline luteal cells.

    PubMed

    Chouhan, V S; Dangi, S S; Babitha, V; Verma, M R; Bag, S; Singh, G; Sarkar, M

    2015-10-15

    The purpose of this study was to evaluate the temporal (24, 48, and 72 hours) and dose-dependent (0, 5, 10, and 100 ng/mL of LH, insulin-like growth factor 1 [IGF-1], and EGF) in vitro expression and secretion patterns of vascular endothelial growth factor (VEGF) in luteal cell culture during different stages of estrous cycle in water buffaloes. Corpus luteum samples from ovaries of early luteal phase (ELP; Days 1-4), midluteal phase (Days 5-10), and late luteal phase (Days 11-16) were collected from a local slaughterhouse. The samples were then processed and cultured in (serum containing) appropriate cell culture medium and incubated separately with three factors (LH, IGF-1, or EGF) at the previously mentioned three dose-duration combinations. At the end of the respective incubation periods, VEGF was assayed in the spent culture medium by ELISA, whereas the cultured cells were used for VEGF mRNA expression by quantitative real-time polymerase chain reaction. The results of the present study disclosed dose- and time-dependent stimulatory effects of LH, IGF-1, and EGF on VEGF production in bubaline luteal cells. The VEGF expression and secretion from the cultured luteal cells were highest during the ELP, intermediate in the midluteal phase, and lowest in the late luteal phase of the estrous cycle for all the three tested factors. Comparison of the results of the three treatments depicted EGF as the most potent stimulating factor followed by IGF-1 and LH. Immunocytochemistry findings in luteal cell culture of ELP agreed with the VEGF expression and secretion. In conclusion, mRNA expression, protein secretion, and immunolocalization of VEGF data clearly indicated for the first time that LH, IGF-1, and EGF play an important role in stimulating luteal angiogenesis in buffalo CL. The highest expression and secretion of VEGF in the ELP might be associated with the development of blood vessels in early growth of CL, which in turn gets augmented by the aforementioned

  17. Stimulatory effect of luteinizing hormone, insulin-like growth factor-1, and epidermal growth factor on vascular endothelial growth factor production in cultured bubaline luteal cells.

    PubMed

    Chouhan, V S; Dangi, S S; Babitha, V; Verma, M R; Bag, S; Singh, G; Sarkar, M

    2015-10-15

    The purpose of this study was to evaluate the temporal (24, 48, and 72 hours) and dose-dependent (0, 5, 10, and 100 ng/mL of LH, insulin-like growth factor 1 [IGF-1], and EGF) in vitro expression and secretion patterns of vascular endothelial growth factor (VEGF) in luteal cell culture during different stages of estrous cycle in water buffaloes. Corpus luteum samples from ovaries of early luteal phase (ELP; Days 1-4), midluteal phase (Days 5-10), and late luteal phase (Days 11-16) were collected from a local slaughterhouse. The samples were then processed and cultured in (serum containing) appropriate cell culture medium and incubated separately with three factors (LH, IGF-1, or EGF) at the previously mentioned three dose-duration combinations. At the end of the respective incubation periods, VEGF was assayed in the spent culture medium by ELISA, whereas the cultured cells were used for VEGF mRNA expression by quantitative real-time polymerase chain reaction. The results of the present study disclosed dose- and time-dependent stimulatory effects of LH, IGF-1, and EGF on VEGF production in bubaline luteal cells. The VEGF expression and secretion from the cultured luteal cells were highest during the ELP, intermediate in the midluteal phase, and lowest in the late luteal phase of the estrous cycle for all the three tested factors. Comparison of the results of the three treatments depicted EGF as the most potent stimulating factor followed by IGF-1 and LH. Immunocytochemistry findings in luteal cell culture of ELP agreed with the VEGF expression and secretion. In conclusion, mRNA expression, protein secretion, and immunolocalization of VEGF data clearly indicated for the first time that LH, IGF-1, and EGF play an important role in stimulating luteal angiogenesis in buffalo CL. The highest expression and secretion of VEGF in the ELP might be associated with the development of blood vessels in early growth of CL, which in turn gets augmented by the aforementioned

  18. Growth factors with heparin binding affinity in human synovial fluid

    SciTech Connect

    Hamerman, D.; Taylor, S.; Kirschenbaum, I.; Klagsbrun, M.; Raines, E.W.; Ross, R.; Thomas, K.A.

    1987-12-01

    Synovial effusions were obtained from the knees of 15 subjects with joint trauma, menisceal or ligamentous injury, or osteoarthritis. Heparin-Sepharose affinity chromatography of these synovial fluids revealed, in general, three major peaks of mitogenic activity as measured by incorporation of /sup 3/H-thymidine into 3T3 cells. Gradient elution patterns showed activities at 0.5M NaCl, which is characteristic of platelet derived growth factor, and at 1.1 M NaCl and 1.6M NaCl, indicative of acidic and basic fibroblast growth factors, respectively. The identities of these mitogenic fractions were confirmed by specific immunologic and receptor-binding assays. The presence of platelet derived, acidic and basic fibroblast growth factors in the synovial fluid may contribute to wound healing in the arthritic joint.

  19. Epidermal growth factor, from gene organization to bedside

    PubMed Central

    Zeng, Fenghua; Harris, Raymond C.

    2014-01-01

    In 1962, epidermal growth factor (EGF) was discovered by Dr. Stanley Cohen while studying nerve growth factor (NGF). It was soon recognized that EGF is the prototypical member of a family of peptide growth factors that activate the EGF receptors, and that the EGF/EGF receptor signaling pathway plays important roles in proliferation, differentiation and migration of a variety of cell types, especially in epithelial cells. After the basic characterization of EGF function in the first decade or so after its discovery, the studies related to EGF and its signaling pathway have extended to a broad range of investigations concerning its biological and pathophysiological roles in development and in human diseases. In this review, we briefly describe the gene organization and tissue distribution of EGF, with emphasis on its biological and pathological roles in human diseases. PMID:24513230

  20. Thymosin β4 Prevents Angiotensin II-Induced Cardiomyocyte Growth by Regulating Wnt/WISP Signaling.

    PubMed

    Li, Li; Guleria, Rakeshwar S; Thakur, Suresh; Zhang, Cheng-Lin; Pan, Jing; Baker, Kenneth M; Gupta, Sudhiranjan

    2016-08-01

    Thymosin beta-4 (Tβ4) is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. However, the role of Tβ4 in cardiomyocyte hypertrophy is currently unknown. The purpose of this study was to determine the cardio-protective effect of Tβ4 in angiotensin II (Ang II)-induced cardiomyocyte growth. Neonatal rat ventricular cardiomyocytes (NRVM) were pretreated with Tβ4 followed by Ang II stimulation. Cell size, hypertrophy marker gene expression and Wnt signaling components, β-catenin, and Wnt-induced secreted protein-1 (WISP-1) were evaluated by quantitative real-time PCR, Western blotting and fluorescent microscopy. Pre-treatment of Tβ4 resulted in reduction of cell size, hypertrophy marker genes and Wnt-associated gene expression, and protein levels; induced by Ang II in cardiomyocyte. WISP-1 was overexpressed in NRVM and, the effect of Tβ4 in Ang II-induced cardiomyocyte growth was evaluated. WISP-1 overexpression promoted cardiomyocytes growth and was reversed by pretreatment with Tβ4. This is the first report which demonstrates that Tβ4 targets Wnt/WISP-1 to protect Ang II-induced cardiomyocyte growth. J. Cell. Physiol. 231: 1737-1744, 2016. © 2015 Wiley Periodicals, Inc.

  1. Cultured human foreskin fibroblasts produce a factor that stimulates their growth with properties similar to basic fibroblast growth factor

    SciTech Connect

    Story, M.T. )

    1989-05-01

    To determine if fibroblasts could be a source of fibroblast growth factor (FGF) in tissue, cells were initiated in culture from newborn human foreskin. Fibroblast cell lysates promoted radiolabeled thymidine uptake by cultured quiescent fibroblasts. Seventy-nine percent of the growth-promoting activity of lysates was recovered from heparin-Sepharose. The heparin-binding growth factor reacted on immunoblots with antiserum to human placenta-derived basic FGF and competed with iodinated basic FGF for binding to antiserum to (1-24)bFGF synthetic peptide. To confirm that fibroblasts were the source of the growth factor, cell lysates were prepared from cells incubated with radiolabeled methionine. Heparin affinity purified material was immunoprecipitated with basic FGF antiserum and electrophoresed. Radiolabeled material was detected on gel autoradiographs in the same molecular weight region as authentic iodinated basic FGF. The findings are consistant with the notion that cultured fibroblasts express basic FGF. As these cells also respond to the mitogen, it is possible that the regulation of their growth is under autocrine control. Fibroblasts may be an important source of the growth factor in tissue.

  2. Expression and localization of epidermal growth factor, transforming growth factor-α and epidermal growth factor receptor in the canine testis

    PubMed Central

    TAMADA, Hiromichi; TAKEMOTO, Kohei; TOMINAGA, Masato; KAWATE, Noritoshi; TAKAHASHI, Masahiro; HATOYA, Shingo; MATSUYAMA, Satoshi; INABA, Toshio; SAWADA, Tsutomu

    2015-01-01

    Gene expression of epidermal growth factor (EGF), transforming growth factor-α (TGF-α) and EGF receptor (EGF-R) and the localization of the corresponding proteins in the canine testis were studied. Levels of mRNA expressions were determined by semiquantitative reverse transcription polymerase chain reaction in the testes of the peripubertal (4–6 months), young adult (3–4 years), advanced adult (7–8 years) and senescent (11–16 years) groups. The EGF-R mRNA level in the testes of the peripubertal group was significantly higher than those in the other groups, whereas there was no difference in EGF and TGF-α mRNA levels among groups. Immunohistochemical stainings for EGF, TGF-α and EGF-R in the testis revealed that immunoreactivity in the seminiferous epithelium and Sertoli cell was weak and nonspecific for the stage of spermatogenesis, and distinct staining was found in Leydig cells. These results suggest that the EGF family of growth factors may be involved in testicular maturation and function in the dog. PMID:26498203

  3. Effects of growth factors on temporomandibular joint disc cells.

    PubMed

    Detamore, Michael S; Athanasiou, Kyriacos A

    2004-07-01

    The effects of growth factors on cartilaginous tissues are well documented. An exception is the temporomandibular joint (TMJ) disc, where data for growth factor effects on proliferation and biosynthesis are very limited. The purpose of this study was to quantify proliferation of and synthesis by TMJ disc cells cultured in monolayer with either platelet derived growth factor-AB (PDGF), basic fibroblast growth factor (bFGF) or insulin-like growth factor-I (IGF), at either a low (10 ng/ml) or high (100 ng/ml) concentration. Proliferation was assessed with a DNA quantitation technique, collagen synthesis was measured via a hydroxyproline assay, and GAG synthesis was determined with a dimethylmethylene blue dye binding assay at 14 days. Overall, the most beneficial growth factor was bFGF, which was most potent in increasing proliferation and GAG synthesis, and also effective in promoting collagen synthesis. At the high concentration, bFGF resulted in 96% more cells than the control and 30 to 45% more cells than PDGF and IGF. PDGF and bFGF were the most potent upregulators of GAG synthesis, producing 2-3 times more GAG than the control. IGF had no significant effect on GAG production, although at its higher concentration it increased collagen production by 4.5 times over the control. Collagen synthesis was promoted by bFGF at its lower concentration, with levels 4.2 times higher than the control, whereas PDGF had no significant effect on collagen production. In general, higher concentrations increased proliferation, whereas lower concentrations favoured biosynthesis. PMID:15126139

  4. Epidermal Growth Factor-Like Growth Factors in the Follicular Fluid: Role in Oocyte Development and Maturation

    PubMed Central

    Hsieh, Minnie; Zamah, A. Musa; Conti, Marco

    2015-01-01

    The growth and maturation of the ovarian follicle requires the coordinate function of somatic cells and the oocyte. Over the past three decades, numerous growth factors involved in the bidirectional signals between the somatic and germ cells have been identified. A possible function of epidermal growth factor (EGF) signaling at selected stages of follicle maturation had been proposed early on and is supported by many observations of in vitro effects of this growth factor on steroidogenesis, oocyte maturation, and cumulus expansion. However, attempts to link EGF levels in the follicular fluid with the state of follicle and oocyte maturation have been inconclusive. More recently, data generated using mouse genetic models perturbing ovulation and fertility indicate that EGF-like growth factors, rather than EGF itself, accumulate in the follicle at the time of ovulation. EGF-like growth factor mRNA is regulated by the luteinizing hormone surge, and corresponding proteins are detected in the follicle. The EGF-like growth factors amphiregulin, epiregulin, and betacellulin are potent stimulators of oocyte maturation and cumulus expansion, and perturbation of this EGF network in vivo impairs ovulation. Similar findings in species other than the mouse confirm an important physiological role for this network at the time of ovulation. Whether this network also plays a critical role in humans and whether it can be used as a biological marker of follicle development or for the improvement of fertility remains to be determined. This review summarizes the most recent findings on the EGF network during ovulation and the potential clinical applications of manipulating this intercellular communication pathway in the control of fertility. PMID:19197805

  5. Immunologic studies of factor IX (Christmas factor). II. Immunoradiometric assay of factor IX antigen.

    PubMed

    Yang, H C

    1978-06-01

    A solid-phase two-site immunoradiometric assay has been developed which measures factor IX antigen levels as low as 0.0004 u per ml of plasma. In normal individuals, the factor IX antigen level correlated with the factor IX procoagulant level. In haemophilia B, 14 patients had markedly reduced antigen levels (less than 0.06 u/ml) and five had normal levels (greater than 0.60 u/ml).

  6. The angiogenic peptide vascular endothelial growth factor-basic fibroblast growth factor signaling is up-regulated in a rat pressure ulcer model.

    PubMed

    Yang, Jing-Jin; Wang, Xue-Ling; Shi, Bo-Wen; Huang, Fang

    2013-08-01

    The purpose of this study is to investigate the mRNA and protein expression levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in pressure ulcers, and to elucidate the molecular mechanism by which VEGF and bFGF are involved in pressure ulcer formation. A rat model of ischemia-reperfusion pressure ulcer was established by magnetic disk circulating compression method. Real-time fluorescence quantitative PCR and Western blot assays were conducted to detect the mRNA and protein expression of VEGF and bFGF in the tissues of rat I-, II-, and III-degree pressure ulcers, the surrounding tissues, and normal skin. Our study confirmed that the mRNA and protein expression levels of VEGF and bFGF in the tissues of rat I-degree pressure ulcer were significantly higher than that in the II- and III-degree pressure ulcer tissues (P < 0.05). The expression of VEGF and bFGF in the tissues surrounding I- and II-degree pressure ulcers were higher than the rats with normal skin. The expression of VEGF and bFGF in the tissues of rat III-degree pressure ulcer was lower than that in the surrounding tissues and normal skin (P < 0.05). There was a significant positive correlation between change in the VEGF and bFGF. The results showed that with an increase in the degree of pressure ulcers, the expression of VEGF and bFGF in pressure ulcers tissue are decreased. This leads to a reduction in angiogenesis and may be a crucial factor in the formation of pressure ulcers.

  7. Emittance growth in the DARHT Axis-II Downstream Transport

    SciTech Connect

    Ekdahl, Jr., Carl August; Schulze, Martin E.

    2015-04-14

    Using a particle-in-cell (PIC) code, we investigated the possibilities for emittance growth through the quadrupole magnets of the system used to transport the high-current electron beam from an induction accelerator to the bremsstrahlung converter target used for flash radiography. We found that even highly mismatched beams exhibited little emittance growth (< 6%), which we attribute to softening of their initial hard edge current distributions. We also used this PIC code to evaluate the accuracy of emittance measurements using a solenoid focal scan following the quadrupole magnets. If the beam is round after the solenoids, the simulations indicate that the measurement is highly accurate, but it is substantially inaccurate for elliptical beams

  8. Dendritic growth of undercooled nickel-tin. I, II

    NASA Technical Reports Server (NTRS)

    Wu, Y.; Piccone, T. J.; Shiohara, Y.; Flemings, M. C.

    1987-01-01

    A comparison is made between high speed cinematography and optical temperature measurements of the solidification of an undercooled Ni-25 wt pct Sn alloy. The first part of this study notes that solidification during the recalescence period at all undercoolings studied occurred in the form of a dendritelike front moving across the sample surface, and that the growth velocities observed agree with calculation results for the dendrite growth model of Lipton et al. (1986); it is concluded that the coarse structure observed comprises an array of much finer, solute-controlled dendrites. In the second part, attention is given to the solidification of levitated metal samples within a transparent glass medium for the cases of two undercooled Ni-Sn alloys, one of which is eutectic and another hypoeutectic. The data obtained suggest a solidification model involving dendrites of very fine structure growing into the melt at temperatures near the bulk undercooling temperature.

  9. Placental Growth Factor Administration Abolishes Placental Ischemia-Induced Hypertension.

    PubMed

    Spradley, Frank T; Tan, Adelene Y; Joo, Woo S; Daniels, Garrett; Kussie, Paul; Karumanchi, S Ananth; Granger, Joey P

    2016-04-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia because placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and vascular endothelial growth factor are both natural ligands for sFlt-1, vascular endothelial growth factor also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to 4 groups: normal pregnant or RUPP±infusion of recombinant human PlGF (180 μg/kg per day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than normal pregnant rats. Infusion of recombinant human PlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that recombinant human PlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. PMID:26831193

  10. Connecting Observations of Hematite (a Fe2O3) Growth Catalyzed by Fe(II)

    SciTech Connect

    Rosso, Kevin M.; Yanina, Svetlana; Gorski, Christopher A.; Larese-Casanova, Philip; Scherer, Michelle

    2010-01-14

    Electron exchange between aqueous Fe(II) and structural Fe(III) in iron oxides and oxyhydroxides is important for understanding degradation of environmental pollutants through its apparent constitutive role underlying highly reactive “sorbed Fe(II)” and by catalyzing phase interconversion among these minerals. Although a mechanistic understanding of relationships between interfacial Fe(II)ads-Fe(III)oxide electron transfer, bulk electron conduction, and phase transformation behavior is emerging, much remains unclear in part due to poorly interconnected investigations. The focus of this study is on reconciling two mutually similar observations of Fe(II)-catalyzed hematite growth documented spectroscopically and microscopically under substantially different chemical conditions. Here we employ iron isotopic labeling to demonstrate that hematite grown on the (001) surface in Fe(II)-oxalate solution at low pH and elevated temperature has temperature-dependent magnetic properties that closely correspond to those of hematite grown in Fe(II) solution at circumneutral pH at room temperature. The temperature evolution and extent of the Morin transition displayed in these two materials strongly suggest a mechanistic link between the two studies, and that this mechanism involves in part trace structural Fe(II) incorporation into the growing hematite. Our findings indicate that Fe(II) catalyzed growth of hematite on hematite can occur under environmentally relevant conditions and may be due to bulk electron conduction previously demonstrated for hematite single crystals.

  11. ESCRT-II controls retinal axon growth by regulating DCC receptor levels and local protein synthesis

    PubMed Central

    Konopacki, Filip A.; Dwivedy, Asha; Bellon, Anaïs; Blower, Michael D.

    2016-01-01

    Endocytosis and local protein synthesis (LPS) act coordinately to mediate the chemotropic responses of axons, but the link between these two processes is poorly understood. The endosomal sorting complex required for transport (ESCRT) is a key regulator of cargo sorting in the endocytic pathway, and here we have investigated the role of ESCRT-II, a critical ESCRT component, in Xenopus retinal ganglion cell (RGC) axons. We show that ESCRT-II is present in RGC axonal growth cones (GCs) where it co-localizes with endocytic vesicle GTPases and, unexpectedly, with the Netrin-1 receptor, deleted in colorectal cancer (DCC). ESCRT-II knockdown (KD) decreases endocytosis and, strikingly, reduces DCC in GCs and leads to axon growth and guidance defects. ESCRT-II-depleted axons fail to turn in response to a Netrin-1 gradient in vitro and many axons fail to exit the eye in vivo. These defects, similar to Netrin-1/DCC loss-of-function phenotypes, can be rescued in whole (in vitro) or in part (in vivo) by expressing DCC. In addition, ESCRT-II KD impairs LPS in GCs and live imaging reveals that ESCRT-II transports mRNAs in axons. Collectively, our results show that the ESCRT-II-mediated endocytic pathway regulates both DCC and LPS in the axonal compartment and suggest that ESCRT-II aids gradient sensing in GCs by coupling endocytosis to LPS. PMID:27248654

  12. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis.

    PubMed Central

    Connolly, D T; Heuvelman, D M; Nelson, R; Olander, J V; Eppley, B L; Delfino, J J; Siegel, N R; Leimgruber, R M; Feder, J

    1989-01-01

    Vascular permeability factor (VPF) is an Mr 40-kD protein that has been purified from the conditioned medium of guinea pig line 10 tumor cells grown in vitro, and increases fluid permeability from blood vessels when injected intradermally. Addition of VPF to cultures of vascular endothelial cells in vitro unexpectedly stimulated cellular proliferation. VPF promoted the growth of new blood vessels when administered into healing rabbit bone grafts or rat corneas. The identity of the growth factor activity with VPF was established in four ways: (a) the molecular weight of the activity in preparative SDS-PAGE was the same as VPF (Mr approximately 40 kD); (b) multiple isoforms (pI greater than or equal to 8) for both VPF and the growth-promoting activity were observed; (c) a single, unique NH2-terminal amino acid sequence was obtained; (d) both growth factor and permeability-enhancing activities were immunoadsorbed using antipeptide IgG that recognized the amino terminus of VPF. Furthermore, 125I-VPF was shown to bind specifically and with high affinity to endothelial cells in vitro and could be chemically cross-linked to a high-molecular weight cell surface receptor, thus demonstrating a mechanism whereby VPF can interact directly with endothelial cells. Unlike other endothelial cell growth factors, VPF did not stimulate [3H]thymidine incorporation or promote growth of other cell types including mouse 3T3 fibroblasts or bovine smooth muscle cells. VPF, therefore, appears to be unique in its ability to specifically promote increased vascular permeability, endothelial cell growth, and angio-genesis. Images PMID:2478587

  13. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates.

    PubMed

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2015-12-01

    This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed.

  14. Growth factors in the treatment of early osteoarthritis

    PubMed Central

    Civinini, Roberto; Nistri, Lorenzo; Martini, Caterina; Redl, Birgit; Ristori, Gabriele; Innocenti, Massimo

    2013-01-01

    Summary Regenerative medicine is the science that studies the regeneration of biological tissues obtained through use of cells, with the aid of support structures and with biomolecules such as growth factors. As regards the growth factors the PRP, or the platelet-rich plasma, obtained from a withdrawal of autologous blood, concentrating the platelets, represents a safe, economical, easy to prepare and easy to apply source of growth factors. Numerous growth factors are in fact within the platelets and in particular a large number of them have a specific activity on neo-proliferation, on cartilage regeneration and in particular also an antiapoptotic effect on chondroblasts: - The PDGF which regulates the secretion and synthesis of collagen;- The EGF that causes cellular proliferation, endothelial chemotaxis and angiogenesis;- The VEGF that increases angiogenesis and vascular permeability;- The TGF-beta that stimulates the proliferation of undifferentiated MSC, stimulates chemotaxis of endothelial cells and angiogenesis;- The bFGF that promotes the growth and differentiation of chondrocytes and osteoblasts stimulates mitogenesis of mesenchymal cells, chondrocytes and osteoblasts. These properties have led to the development of studies that evaluated the efficacy of treatment of infiltrations in the knee and hip with platelet-derived growth factors. Regarding the knee it was demonstrated that in patients with moderate degree of gonarthrosis, the PRP is able to significantly reduce the pain and improve joint function, both on placebo and towards infiltrations with hyaluronic acid. The success of the treatment was proportional to the age of and inversely proportional to the severity of osteoarthritis according to Kellgren and Lawrence classification. The possibility of infiltrations guided with ultrasound into the hip led us to extend the indications also to hip arthrosis, as already showed by Sanchez. Even in coxarthrosis preliminary results at 6 and 12 months show that

  15. Factors affecting Staphylococcus epidermidis growth in peritoneal dialysis solutions.

    PubMed Central

    McDonald, W A; Watts, J; Bowmer, M I

    1986-01-01

    Staphylococcus epidermidis is the most frequent cause of peritonitis complicating continuous ambulatory peritoneal dialysis. We studied factors that might influence the growth of S. epidermidis in commercially available peritoneal dialysis solution (PDS). Test strains were inoculated into PDS and incubated overnight at 37 degrees C. Samples were removed at appropriate intervals, bacterial counts were performed, and growth curves were constructed. We studied the effects of various osmolarities, the neutralization and acidification of fresh and spent PDS, and the effect of intraperitoneal dwell time on the ability PDS to support growth of S. epidermidis. In fresh PDS, numbers of bacteria remained constant after 24 h. No significant differences in growth were observed among PDS with 0.5, 1.5, 2.5, and 4.25% glucose. Neutralizing acidic fresh PDS had no effect on bacterial growth. However, growth did occur in spent PDS. PDS which was recovered after only 2 h in the peritoneal cavity supported growth to the same extent as did PDS recovered after 4 to 6 h. Mean log10 changes after 24 h of incubation were as follows: for fresh PDS, -1.3; after 2 h dwell time, 2.9; after 4 h dwell time, 1.9; and after 6 h dwell time, 1.3. Acidification of spent PDS to less than pH 6.35 produced less rapid growth; mean log10 increases after 24 h of incubation were 1.9 for pH 7.75, 1.6 for pH 6.35, 0.6 for pH 5.75, and 0.7 for pH 4.95. Fresh PDS of all available osmolarities neither supported the growth of S. epidermidis nor was bactericidal. Spent PDS supported bacterial growth, and this growth was partly independent of the neutralization which occurred during the dialysis. PMID:3722356

  16. Ca(2+) -induced binding of anticoagulation factor II from the venom of Agkistrodon acutus with factor IX.

    PubMed

    Shen, Deng-Ke; Xu, Xiao-Long; Zhang, Yan; Song, Jia-Jia; Yan, Xin-Cheng; Guo, Ming-Chun

    2012-10-01

    Anticoagulation factor II (ACF II), a coagulation factor X- binding protein from the venom of Agkistrodon acutus has both anticoagulant and hypotensive activities. Previous studies show that ACF II binds specifically with activated factor X (FXa) in a Ca(2+) -dependent manner and inhibits intrinsic coagulation pathway. In this study, the inhibition of extrinsic coagulation pathway by ACF II was measured in vivo by prothrombin time assay and the binding of ACF II to factor IX (FIX) was investigated by native polyacrylamide gel electrophoresis and surface plasmon resonance (SPR). The results indicate that ACF II also inhibits extrinsic coagulation pathway, but does not inhibit thrombin activity. ACF II also binds with FIX with high binding affinity in a Ca(2+) -dependent manner and their maximal binding occurs at about 0.1 mM Ca(2+) . ACF II has similar binding affinity to FIX and FX as determined by SPR. Ca(2+) has a slight effect on the secondary structure of FIX as determined by circular dichroism spectroscopy. Ca(2+) ions are required to maintain in vivo function of FIX Gla domain for its recognition of ACF II. However, Ca(2+) at high concentrations (>0.1 mM) inhibits the binding of ACF II to FIX. Ca(2+) functions as a switch for the binding between ACF II and FIX. ACF II extends activated partial thromboplastin time more strongly than prothrombin time, suggesting that the binding of ACF II with FIX may play a dominant role in the anticoagulation of ACF II in vivo. PMID:22806501

  17. Binding, sequestration, and processing of epidermal growth factor and nerve growth factor by PC12 cells. [Rats

    SciTech Connect

    Chandler, C.E.; Herschman, H.R.

    1983-03-01

    Th rat PC12 pheochromocytoma cell line exhibits biological responses to both nerve growth factor (NGF) and epidermal growth factor (EGF). The existence of receptors and biological responses on a common cell for these two well-characterized polypeptide growth factors makes this an attractive system for comparison of ligand binding and processing. Both NGF and EGF are bound to PC12 cells in a competable form at 4/sup 0/C. At 37/sup 0/C both ligands are ''sequestered,'' but at different rates and to different extents. While sequestration happens rapidly and nearly quantitatively for bound EGF, the dissociation reaction appears to compete favorably with NFG sequestration. Both EGF and NGF are degraded by PC12 cells. Sequestered EGF, however, is degraded to a greater extent than sequestered NGF.

  18. Insulin receptor substrate-1 involvement in epidermal growth factor receptor and insulin-like growth factor receptor signalling: implication for Gefitinib ('Iressa') response and resistance.

    PubMed

    Knowlden, Janice M; Jones, Helen E; Barrow, Denise; Gee, Julia M W; Nicholson, Robert I; Hutcheson, Iain R

    2008-09-01

    Classically the insulin receptor substrate-1 (IRS-1) is an essential component of insulin-like growth factor type 1 receptor (IGF-IR) signalling, providing an interface between the receptor and key downstream signalling cascades. Here, however, we show that in tamoxifen-resistant MCF-7 (Tam-R) breast cancer cells, that are highly dependent on epidermal growth factor receptor (EGFR) for growth, IRS-1 can interact with EGFR and be preferentially phosphorylated on tyrosine (Y) 896, a Grb2 binding site. Indeed, phosphorylation of this site is greatly enhanced by exposure of these cells, and other EGFR-positive cell lines, to EGF. Importantly, while IGF-II promotes phosphorylation of IRS-1 on Y612, a PI3-K recruitment site, it has limited effect on Y896 phosphorylation in Tam-R cells. Furthermore, EGF and IGF-II co-treatment, reduces the ability of IGF-II to phosphorylate Y612, whilst maintaining Y896 phosphorylation, suggesting that the EGFR is the dominant recruiter of IRS-1 in this cell line. Significantly, challenge of Tam-R cells with the EGFR-selective tyrosine kinase inhibitor gefitinib, for 7 days, reduces IRS-1/EGFR association and IRS-1 Y896 phosphorylation, while promoting IRS-1/IGF-IR association and IRS-1 Y612 phosphorylation. Furthermore, gefitinib significantly enhances IGF-II-mediated phosphorylation of IRS-1 Y612 and AKT in Tam-R cells. Importantly, induction of this pathway by gefitinib can be abrogated by inhibition/downregulation of the IGF-IR. Our data would therefore suggest a novel association exists between the EGFR and IRS-1 in several EGFR-positive cancer cell lines. This association acts to promote phosphorylation of IRS-1 at Y896 and drive MAPK signalling whilst preventing recruitment of IRS-1 by the IGF-IR and inhibiting signalling via this receptor. Treatment with gefitinib alters the dynamics of this system, promoting IGF-IR signalling, the dominant gefitinib-resistant growth regulatory pathway in Tam-R cells, thus, potentially limiting

  19. Slow crack growth in glass in combined mode I and mode II loading

    NASA Technical Reports Server (NTRS)

    Shetty, D. K.; Rosenfield, A. R.

    1991-01-01

    Slow crack growth in soda-lime glass under combined mode I and mode II loading was investigated in precracked disk specimens in which pure mode I, pure mode II, and various combinations of mode I and mode II were achieved by loading in diametral compression at selected angles with respect to symmetric radial cracks. It is shown that slow crack growth under these conditions can be described by a simple exponential relationship with elastic strain energy release rate as the effective crack-driving force parameter. It is possible to interpret this equation in terms of theoretical models that treat subcritical crack growth as a thermally activated bond-rupture process with an activation energy dependent on the environment, and the elastic energy release rate as the crack-driving force parameter.

  20. Prodomains of transforming growth factor beta (TGFbeta) superfamily members specify different functions: extracellular matrix interactions and growth factor bioavailability.

    PubMed

    Sengle, Gerhard; Ono, Robert N; Sasaki, Takako; Sakai, Lynn Y

    2011-02-18

    The specific functions of the prodomains of TGFβ superfamily members are largely unknown. Interactions are known between prodomains of TGFβ-1-3 and latent TGFβ-binding proteins and between prodomains of BMP-2, -4, -7, and -10 and GDF-5 and fibrillins, raising the possibility that latent TGFβ-binding proteins and fibrillins may mediate interactions with all other prodomains of this superfamily. This possibility is tested in this study. Results show that the prodomain of BMP-5 interacts with the N-terminal regions of fibrillin-1 and -2 in a site similar to the binding sites for other bone morphogenetic proteins. However, in contrast, the prodomain of GDF-8 (myostatin) interacts with the glycosaminoglycan side chains of perlecan. The binding site for the GDF-8 prodomain is likely the heparan sulfate chain present on perlecan domain V. These results support and extend the emerging concept that TGFβ superfamily prodomains target their growth factor dimers to extracellular matrix macromolecules. In addition, biochemical studies of prodomain·growth factor complexes were performed to identify inactive complexes. For some members of the superfamily, the prodomain is noncovalently associated with its growth factor dimer in an inactive complex; for others, the prodomain·growth factor complex is active, even though the prodomain is noncovalently associated with its growth factor dimer. Results show that the BMP-10 prodomain, in contrast to BMP-4, -5, and -7 prodomains, can inhibit the bioactivity of the BMP-10 growth factor and suggest that the BMP-10 complex is like TGFβ and GDF-8 complexes, which can be activated by cleavage of the associated prodomain.

  1. An ideal preparation for dermal regeneration: skin renewal growth factors, the growth factor composites from porcine platelets.

    PubMed

    Wang, Kuo-Hsien; Wu, Yo-Ping Greg; Lo, Wen-Cheng

    2012-12-01

    The use of growth factor composites from platelets has been introduced to many areas of clinical applications and studies. With the richest source of growth factors (GFs), beneficial effects have been shown on tissue regeneration and wound healing. However, animal and clinical studies have revealed inconsistent outcomes with the use of platelet-derived growth factors (PDGFs), which were likely due to variations in the presence and concentrations of GFs between various sources. Autologous PDGFs are considered to be safer, but they are limited by the feasibility of large-scale production to be used extensively in the acute phase, greater surface area, or general cosmetic applications. This study employed a simple process to obtain growth factor composites from activated platelets of porcine origin, namely skin renewal growth factors (SRGF). The functions of SRGF were subsequently evaluated on cultured human fibroblasts, keratinocytes, and melanocytes. Our data revealed that SRGF significantly promoted the proliferation of fibroblasts, accompanied by increased expression of collagens (types I, III, IV, and VIII) and proteoglycans. Diminished proliferation and arrested differentiation of keratinocytes were evidenced by the attenuated expression of laminin V and keratin 10. In addition, SRGF also suppressed the growth of melanocytes and reduced the expression of microphthalmia-associated transcription factor (MITF), tyrosinase, and paired box 3 (PAX3), which mediates melanogensis. Our results suggest that SRGF possesses beneficial properties and is a promising and cost-effective composition for the development of a safe cosmetic agent or topical products for skin regeneration. The development of SRGF may also provide an alternative strategy for tissue engineering.

  2. Functional upregulation of system xc- by fibroblast growth factor-2.

    PubMed

    Liu, Xiaoqian; Resch, Jon; Rush, Travis; Lobner, Doug

    2012-02-01

    The cystine/glutamate antiporter (system xc-) is a Na(+)-independent amino acid transport system. Disruption of this system may lead to multiple effects in the CNS including decreased cellular glutathione. Since multiple neurological diseases involve glutathione depletion, and disruption of growth factor signaling has also been implicated in these diseases, it is possible that some growth factors effects are mediated by regulation of system xc-. We tested the growth factors fibroblast growth factor-2 (FGF-2), insulin-like growth factor-1 (IGF-1), neuregulin-1 (NRG), neurotrophin-4 (NT-4), and brain derived neurotrophic factor (BDNF) on system xc- mediated 14C-cystine uptake in mixed neuronal and glial cortical cultures. Only FGF-2 significantly increased cystine uptake. The effect was observed in astrocyte-enriched cultures, but not in cultures of neurons or microglia. The increase was blocked by the system xc- inhibitor (s)-4-carboxyphenylglycine, required at least 12 h FGF-2 treatment, and was prevented by the protein synthesis inhibitor cycloheximide. Kinetic analysis indicated FGF-2 treatment increased the V(max) for cystine uptake while the K(m) remained the same. Quantitative PCR showed an increase in mRNA for xCT, the functional subunit of system xc-, beginning at 3 h of FGF-2 treatment, with a dramatic increase after 12 h. Blocking FGFR1 with PD 166866 blocked the FGF-2 effect. Treatment with a PI3-kinase inhibitor (LY-294002) or a MEK/ERK inhibitor (U0126) for 1 h prior to and during the FGF-2 treatment, each partially blocked the increased cystine uptake. The upregulation of system xc- by FGF-2 may be responsible for some of the known physiological actions of FGF-2. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.

  3. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion.

    PubMed

    Gorin, Caroline; Rochefort, Gael Y; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Muller, Laurent; Chaussain, Catherine; Germain, Stéphane

    2016-03-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF.

  4. Therapeutic potential of growth factors and their antagonists.

    PubMed Central

    Garner, A.

    1992-01-01

    This article describes studies with four peptides, epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), gastrin-releasing peptide/bombesin (GRP), and gastrin. The mitogenic and anti-secretory activities of EGF/TGF alpha appear to be mediated by a single class of high-affinity membrane receptors but may involve different signal transducing mechanisms. Biological activity of EGF resides in the N-terminal 42 amino acid fragment with the C-terminal undecapeptide determining binding affinity. A parenteral depot formulation of an EGF-related peptide or a small molecule agonist of the EGF receptor could have utility in treating various ulcerative disorders of the gut. Although antagonism of EGF (and thus TGF alpha) receptors and/or transducing mechanisms is frequently cited as a potential therapeutic approach to hyperproliferative diseases, blocking the action of TGF alpha, GRP, or gastrin with neutralizing antibodies or receptor antagonists did not influence the growth of a wide range of solid tumors in nude mice. These findings suggest that, unless tumor growth displays absolute dependency on one particular mitogen, antagonism of a specific growth factor is unlikely to have great effect in cancer therapy. PMID:1341074

  5. On the Factor Structure of the Beck Depression Inventory-II: G Is the Key

    ERIC Educational Resources Information Center

    Brouwer, Danny; Meijer, Rob R.; Zevalkink, Jolien

    2013-01-01

    The Beck Depression Inventory-II (BDI-II; Beck, Steer, & Brown, 1996) is intended to measure severity of depression, and because items represent a broad range of depressive symptoms, some multidimensionality exists. In recent factor-analytic studies, there has been a debate about whether the BDI-II can be considered as one scale or whether…

  6. Assessing the Factors of Regional Growth Decline of Sugar Maple

    NASA Astrophysics Data System (ADS)

    Bishop, D. A.; Beier, C. M.; Pederson, N.; Lawrence, G. B.; Stella, J. C.; Sullivan, T. J.

    2014-12-01

    Sugar maple (Acer saccharum Marsh) is among the most ecologically, economically and culturally important trees in North America, but has experienced a decline disease across much of its range. We investigated the climatic and edaphic factors associated with A. saccharum growth in the Adirondack Mountains (USA) using a well-replicated tree-ring network incorporating a range of soil fertility (base cation availability). We found that nearly 3 in 4 A. saccharum trees exhibited declining growth rates during the last several decades, regardless of tree age or size. Although diameter growth was consistently higher on base-rich soils, the negative trends in growth were largely consistent across the soil chemistry gradient. Sensitivity of sugar maple growth to climatic variability was overall weaker than expected, but were also non-stationary during the 20th century. We observed increasingly positive responses to late-winter precipitation, increasingly negative responses to growing season temperatures, and strong positive responses to moisture availability during the 1960s drought that became much weaker during the recent pluvial. Further study is needed of these factors and their interactions as potential mechanisms for sugar maple growth decline.

  7. Assaying binding of nerve growth factor to cell surface receptors

    SciTech Connect

    Vale, R.D.; Shooter, E.M.

    1985-01-01

    The paper describes methods both for the radioiodination of nerve growth factor (NGF) and for assaying NFG receptors by reversible binding techniques. Preparation of (/sup 125/I)NGF along with a rapid method for determining the amount of cell-bound ligand have allowed the detection of NGF receptors on a number of cell types.

  8. Role of fibroblast growth factors in organ regeneration and repair.

    PubMed

    El Agha, Elie; Kosanovic, Djuro; Schermuly, Ralph T; Bellusci, Saverio

    2016-05-01

    In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases.

  9. Controlled growth factor release from synthetic extracellular matrices

    NASA Astrophysics Data System (ADS)

    Lee, Kuen Yong; Peters, Martin C.; Anderson, Kenneth W.; Mooney, David J.

    2000-12-01

    Polymeric matrices can be used to grow new tissues and organs, and the delivery of growth factors from these matrices is one method to regenerate tissues. A problem with engineering tissues that exist in a mechanically dynamic environment, such as bone, muscle and blood vessels, is that most drug delivery systems have been designed to operate under static conditions. We thought that polymeric matrices, which release growth factors in response to mechanical signals, might provide a new approach to guide tissue formation in mechanically stressed environments. Critical design features for this type of system include the ability to undergo repeated deformation, and a reversible binding of the protein growth factors to polymeric matrices to allow for responses to repeated stimuli. Here we report a model delivery system that can respond to mechanical signalling and upregulate the release of a growth factor to promote blood vessel formation. This approach may find a number of applications, including regeneration and engineering of new tissues and more general drug-delivery applications.

  10. Immunocytochemical expression of growth factors by odontogenic jaw cysts.

    PubMed Central

    Li, T.; Browne, R. M.; Matthews, J. B.

    1997-01-01

    AIM: To determine the immunocytochemical pattern of expression of transforming growth factor (TGF) alpha, epidermal growth factor (EGF), and TGF beta in the three most common types of odontogenic jaw cyst. METHODS: Growth factor expression was detected in paraffin wax sections of odontogenic cysts (27 odontogenic keratocysts, 10 dentigerous cysts, and 10 radicular cysts) using a streptavidin-biotin peroxidase technique with monoclonal antibodies directed against TGF alpha (clone 213-4.4) and TGF beta (clone TB21) and a polyclonal antibody directed against EGF (Z-12). RESULTS: The epithelial linings of all cysts showed reactivity for TGF alpha which was mainly localised to basal and suprabasal layers. Odontogenic keratocyst linings expressed higher levels of TGF alpha than those of dentigerous and radicular cysts, with 89% (24/27) of odontogenic keratocysts exhibiting a strong positive reaction compared with 50% (five of 10) of dentigerous and radicular cysts, respectively. EGF reactivity was similar in all cyst groups, weaker than that for TGF alpha and predominantly suprabasal. TGF alpha and EGF were also detected in endothelial cells, fibroblasts and inflammatory cells within the cyst walls. The most intense TGF beta staining in odontogenic cysts was extracellular within the fibrous tissue capsules, irrespective of cyst type. CONCLUSIONS: These results, together with previous studies of EGF receptor, indicate differential expression of TGF alpha, EGF and their common receptor between the different types of odontogenic cyst, suggesting that these growth factors (via autocrine or paracrine, or both, pathways) may be involved in their pathogenesis. Images PMID:9208810

  11. Fibroblast Growth Factor-2 Alters the Nature of Extinction

    ERIC Educational Resources Information Center

    Graham, Bronwyn M.; Richardson, Rick

    2011-01-01

    These experiments examined the effects of the NMDA-receptor (NMDAr) antagonist MK801 on reacquisition and re-extinction of a conditioned fear that had been previously extinguished before injection of fibroblast growth factor-2 (FGF2) or vehicle. Recent findings have shown that relearning and re-extinction, unlike initial learning and extinction,…

  12. Total Chemical Synthesis of Biologically Active Vascular Endothelial Growth Factor

    SciTech Connect

    Mandal, Kalyaneswar; Kent, Stephen B.H.

    2011-09-15

    The 204-residue covalent-dimer vascular endothelial growth factor (VEGF, see picture) with full mitogenic activity was prepared from three unprotected peptide segments by one-pot native chemical ligations. The covalent structure of the synthetic VEGF was confirmed by precise mass measurement, and the three-dimensional structure of the synthetic protein was determined by high-resolution X-ray crystallography.

  13. Body Size in Early Life and Adult Levels of Insulin-like Growth Factor 1 and Insulin-like Growth Factor Binding Protein 3

    PubMed Central

    Poole, Elizabeth M.; Tworoger, Shelley S.; Hankinson, Susan E.; Schernhammer, Eva S.; Pollak, Michael N.; Baer, Heather J.

    2011-01-01

    Body size in early life has been associated with breast cancer risk. This may be partly mediated through the insulin-like growth factor (IGF) pathway. The authors assessed whether birth weight, body fatness at ages 5 and 10 years, and body mass index (BMI; weight (kg)/height (m)2) at age 18 years were associated with plasma concentrations of insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein 3 in 6,520 women aged 32–70 years at blood draw from the Nurses’ Health Study (1990–2006) and Nurses’ Health Study II (1997–2005). Birth weight, body fatness in childhood, and BMI at age 18 years were inversely associated with adult IGF-1 levels. For example, IGF-1 levels were 11.9% lower in women who reported being heaviest at age 10 years than in those who were leanest at age 10 (P-trend < 0.0001). Further, women who reported their birth weight as ≥10 pounds (≥4.5 kg) (vs. <5.5 pounds (<2.5 kg)) had 7.9% lower IGF-1 levels (P-trend = 0.002). Women whose BMI at age 18 years was ≥30 (vs. <20) had 14.1% lower IGF-1 levels (P-trend < 0.0001). Similar inverse associations were observed for insulin-like growth factor binding protein 3. These observations did not vary by adult BMI or menopausal status at blood draw. These findings suggest that altered IGF-1 levels in adulthood may be a mechanism through which early-life body size influences subsequent breast cancer risk. PMID:21828371

  14. [Relationship between endocrinology and craniofacial growth. I: Puberty and craniofacial growth. II: Growth of the craniofacial skeleton].

    PubMed

    Verdonck, A; De Ridder, L; De Zegher, F; Carine, C; Carels, C

    1994-12-01

    In this literature, a review is given of the endocrinology and morphology of the craniofacial complex. This article reviews in a first part the endocrinology of puberty and general growth aspects. Afterwards the adolescence growth spurt of the face and the hormonal regulation will be focused. In a second part the morphogenetic aspects together with growth area's and growth theories of the craniofacial complex will be discussed. At last a detailed description of the maxillary and mandibular growth is given.

  15. Megakaryocyte growth and development factor is a potent growth factor for primitive hematopoietic progenitors in the human fetus.

    PubMed

    Muench, Marcus O; Bárcena, Alicia

    2004-06-01

    Megakaryocyte growth and development factor (MGDF), or thrombopoietin, has received considerable attention as a therapeutic agent for treating thrombocytopenia or for its use in the ex vivo culture of hematopoietic stem cells. MGDF is known to support the growth of a broad spectrum of hematopoietic precursors obtained from adult or neonatal tissues, but its effects on the growth of fetal progenitors and stem cells has not been studied. Human CD38(+)CD34(2+) progenitors and CD38(-)CD34(2+) cells, a population that contains stem cells, were isolated from midgestation liver and grown under defined conditions with MGDF and various cytokines known to support the growth of primitive hematopoietic precursors. In clonal assays of colony-forming cells (CFCs), MGDF supported the growth of 15-25% of candidate stem cells when combined with granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor (GM-CSF), flk-2/flt3 ligand, or stem cell factor. MGDF was observed to strongly support the early stages of hematopoiesis and expansion of high proliferative potential CFCs. More mature progenitors were expanded nearly 78-fold in 1 wk of culture with MGDF+SCF+GM-CSF. MGDF alone was also found to support the short-term (2 d) survival of CD38(-)CD34(2+) high proliferative potential CFCs. The effects of MGDF were more modest on CD38(+)CD34(2+) progenitors with only additive increases in colony formation being observed. These findings suggest that MGDF administration in fetuses and neonates may strongly affect the growth and mobilization of primitive hematopoietic progenitors and that MGDF may find use in the ex vivo growth and expansion of fetal stem cells.

  16. Recombinant human epidermal growth factor precursor is a glycosylated membrane protein with biological activity.

    PubMed Central

    Mroczkowski, B; Reich, M; Chen, K; Bell, G I; Cohen, S

    1989-01-01

    NIH 3T3 cells were transfected with cDNA corresponding to human kidney prepro-epidermal growth factor (preproEGF) under control of the inducible mouse metallothionein promoter. The synthesis of recombinant human EGF precursor by these cells has provided us with a model system for analysis of the structure and activity of this precursor. In transfected cells, the precursor was present as an intrinsic 170-kilodalton membrane protein as well as a soluble protein in the extracellular medium; both forms were N glycosylated. Glycosylation of the EGF precursor was determined by (i) the direct incorporation of [3H]mannose and [3H]glucosamine, (ii) metabolic labeling in the presence or absence of glycosylation inhibitors, (iii) enzymatic cleavage of the precursor by N-glycanase or endoglycosidase II, and (iv) lectin chromatography. Recombinant human preproEGF was purified by affinity chromatography, using wheat germ lectin and antibodies to human EGF. The intact precursor was biologically active. Purified preparations of preproEGF (i) competed with 125I-labeled EGF for binding to the EGF receptor in intact fibroblast cells, (ii) activated the intrinsic tyrosine kinase activity of the EGF receptor in membrane preparations, and (iii) sustained the growth of a mouse keratinocyte cell line that is dependent on EGF for growth. These results suggest that proteolytic processing of the precursor may not be essential for its biological function. Images PMID:2789334

  17. Stimulation of body weight increase and epiphyseal cartilage growth by insulin like growth factor

    NASA Technical Reports Server (NTRS)

    Ellis, S.

    1981-01-01

    The ability of insulin-like growth factor (IGF) to induce growth in hypophysectomized immature rats was tested by continuous infusion of the partially purified factor at daily doses of 6, 21, and 46 mU for an 8-day period. A dose-dependent growth of the proximal epiphyseal cartilage of the tibia and an associated stimulation of the primary spongiosa were produced by these amounts of IGF. The two highest doses of IGF also resulted in dose-dependent increases of body weight. Gel permeation of the sera at neutrality showed that the large-molecular-weight IGF binding protein was not induced by the infusion of IGF, whereas it ws generated in the sera of hypophysectomized rats that were infused with daily doses of 86 mU of human growth hormone.

  18. Selective inhibition of the hypoxia-inducible factor prolyl hydroxylase PHD3 by Zn(II).

    PubMed

    Na, Yu-Ran; Woo, Dustin J; Choo, Hyunah; Chung, Hak Suk; Yang, Eun Gyeong

    2015-07-01

    We report herein that Zn(II) selectively inhibits the hypoxia-inducible factor prolyl hydroxylase PHD3 over PHD2, and does not compete with Fe(II). Independent of the oligomer formation induced by Zn(II), inhibition of the activity of PHD3 by Zn(II) involves Cys42 and Cys52 residues distantly located from the active site. PMID:26051901

  19. Induction of nerve growth factor receptors on cultured human melanocytes

    SciTech Connect

    Peacocke, M.; Yaar, M.; Mansur, C.P.; Chao, M.V.; Gilchrest, B.A. )

    1988-07-01

    Normal differentiation and malignant transformation of human melanocytes involve a complex series of interactions during which both genetic and environmental factors play roles. At present, the regulation of these processes is poorly understood. The authors have induced the expression of nerve growth factor (NGF) receptors on cultured human melanocytes with phorbol 12-tetradecanoate 13-acetate and have correlated this event with the appearance of a more differentiated, dendritic morphology. Criteria for NGF receptor expression included protein accumulation and cell-surface immunofluorescent staining with a monoclonal antibody directed against the human receptor and induction of the messenger RNA species as determined by blot-hybridization studies. The presence of the receptor could also be induced by UV irradiation or growth factor deprivation. The NGF receptor is inducible in cultured human melanocytes, and they suggest that NGF may modulate the behavior of this neural crest-derived cell in the skin.

  20. Hematopoietic growth factors in drug-induced agranulocytosis.

    PubMed

    Pavithran, K; Thomas, M

    2002-05-01

    Drug-induced agranulocytosis (DIA) is a potentially fatal disorder. Hematopoietic growth factors have been used in the treatment of DIA. We report nine cases of DIA treated with granulocyte macrophage - colony stimulating factor (GM-CSF) in a dose of 300 microg/day. All the patients had evidence of systemic infection. Mean time to reach an absolute neutrophil count of 0.5 x 10(9)/L was three days. One patient succumbed to the disease. The cause of death was multiorgan failure. No adverse events were observed with GM-CSF. We conclude that hematopoietic growth factors are useful in shortening the period of neutropenia and reducing morbidity and mortality in these patients.

  1. Thymosin increases production of T-cell growth factor by normal human peripheral blood lymphocytes.

    PubMed Central

    Zatz, M M; Oliver, J; Samuels, C; Skotnicki, A B; Sztein, M B; Goldstein, A L

    1984-01-01

    The in vitro incubation of phytohemagglutinin-stimulated peripheral blood lymphocytes with thymosin results in a marked and reproducible increase in production of T-cell growth factor, which is dose dependent and most pronounced in the first 24 hr of culture. Incubation of lymphocytes with thymosin alone failed to induce any production of T-cell growth factor. The biological activity of thymosin fraction 5 cannot be attributed to the activity of thymosin alpha 1, one of the well-characterized peptide components of fraction 5. These data provide the basis for (i) a potential mechanism for the in vivo immunorestorative effects of thymosin in primary and secondary immunodeficiencies and (ii) identification of an additional, but as yet undefined, immunoregulatory component of thymosin fraction 5. PMID:6609371

  2. Honokiol inhibits the growth of head and neck squamous cell carcinoma by targeting epidermal growth factor receptor.

    PubMed

    Singh, Tripti; Gupta, Nirzari A; Xu, Su; Prasad, Ram; Velu, Sadanandan E; Katiyar, Santosh K

    2015-08-28

    Here, we report the chemotherapeutic effect of honokiol, a phytochemical from Magnolia plant, on human head and neck squamous cell carcinoma (HNSCC). Treatment of HNSCC cell lines from different sub-sites, SCC-1 (oral cavity), SCC-5 (larynx), OSC-19 (tongue) and FaDu (pharynx) with honokiol inhibited their cell viability, which was associated with the: (i) induction of apoptosis, (ii) correction of dysregulatory cell cycle proteins of G0/G1 phase. Honokiol decreased the expression levels of epidermal growth factor receptor (EGFR), mTOR and their downstream signaling molecules. Treatment of FaDu and SCC-1 cell lines with rapamycin, an inhibitor of mTOR pathway, also reduced cell viability of HNSCC cells. Administration of honokiol by oral gavage (100 mg/kg body weight) significantly (P < 0.01-0.001) inhibited the growth of SCC-1 and FaDu xenografts in athymic nude mice, which was associated with: (i) inhibition of tumor cell proliferation, (ii) induction of apoptosis, (iii) reduced expressions of cyclins and Cdks, and (iv) inhibition of EGFR signaling pathway. Molecular docking analysis of honokiol in EGFR binding site indicated that the chemotherapeutic effect of honokiol against HNSCC is mediated through its firm binding with EGFR, which is better than that of gefitinib, a commonly used drug for HNSCC treatment.

  3. Adsorption of Cu(II), Zn(II), Cd(II) and Pb(II) by dead Avena fatua biomass and the effect of these metals on their growth.

    PubMed

    Areco, María Mar; Saleh-Medina, Leila; Trinelli, María Alcira; Marco-Brown, Jose Luis; Dos Santos Afonso, María

    2013-10-01

    The biosorption of copper(II), zinc(II), cadmium(II) and lead(II) from aqueous solutions by dead Avena fatua biomass and the effect of these metals on the growth of this wild oat were investigated. Pseudo-first- and second-order and intra-particle diffusion models were applied to describe the kinetic data and to evaluate the rate constants. The adsorption kinetics of all the metals follows a pseudo-second-order model. The adsorption capacity was determined, and the Freundlich and Langmuir models were applied. The experimental data obtained for all the metals are best described by the Langmuir model. A. fatua was characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and zeta potential. The results obtained evidence the presence of Zn(II), Cu(II), Cd(II) or Pb(II) on the surface of the weed. The growth of A. fatua was affected by the presence of all metals. The decrease in the growth rate with increasing metal concentration was more noticeable for zinc.

  4. Extrinsic Factors Influencing Fetal Deformations and Intrauterine Growth Restriction

    PubMed Central

    Moh, Wendy; Graham, John M.; Wadhawan, Isha; Sanchez-Lara, Pedro A.

    2012-01-01

    The causes of intrauterine growth restriction (IUGR) are multifactorial with both intrinsic and extrinsic influences. While many studies focus on the intrinsic pathological causes, the possible long-term consequences resulting from extrinsic intrauterine physiological constraints merit additional consideration and further investigation. Infants with IUGR can exhibit early symmetric or late asymmetric growth abnormality patterns depending on the fetal stage of development, of which the latter is most common occurring in 70–80% of growth-restricted infants. Deformation is the consequence of extrinsic biomechanical factors interfering with normal growth, functioning, or positioning of the fetus in utero, typically arising during late gestation. Biomechanical forces play a critical role in the normal morphogenesis of most tissues. The magnitude and direction of force impact the form of the developing fetus, with a specific tissue response depending on its pliability and stage of development. Major uterine constraining factors include primigravida, small maternal size, uterine malformation, uterine fibromata, early pelvic engagement of the fetal head, aberrant fetal position, oligohydramnios, and multifetal gestation. Corrective mechanical forces similar to those that gave rise to the deformation to reshape the deformed structures are often used and should take advantage of the rapid postnatal growth to correct form. PMID:22888434

  5. Human epidermal growth factor and the proliferation of human fibroblasts.

    PubMed

    Carpenter, G; Cohen, S

    1976-06-01

    The effect of human epidermal growth factor (hEGF), a 5,400 molecular weight polypeptide isolated from human urine, on the growth of human foreskin fibroblasts (HF cells) was studied by measuring cell numbers and the incorporation of labeled thymidine. The addition of hEGF to HF cells growing in a medium containing 10% calf serum resulted in a 4-fold increase in the final density. The presence of hEGF also promoted the growth of HF cells in media containing either 1% calf serum or 10% gamma globulin-free serum. The addition of hEGF to quiescent confluent monolayers of HF cells, maintained in a medium with 1% calf serum for 48 hours, resulted in a 10- to 20-fold increase in the amount of 3H-thymidine incorporation after 20-24 hours. The stimulation of thymidine incorporation was maximal at an hEGF concentration of 2 ng/ml, was dependent on the presence of serum, and was enhanced by the addition of ascorbic acid. In confluent cultures of HF cells, subject to density dependent inhibition of growth, hEGF was able to stimulate DNA synthesis more effectively than fresh calf serum. Human EGF stimulated DNA synthesis in quiescent cultures, however, regardless of cell density. The addition of rabbit anti-hEGF inhibited all effects of this growth factor on HF cells.

  6. Vascular Endothelial Growth Factor Acts Primarily via Platelet-Derived Growth Factor Receptor α to Promote Proliferative Vitreoretinopathy

    PubMed Central

    Pennock, Steven; Haddock, Luis J.; Mukai, Shizuo; Kazlauskas, Andrius

    2015-01-01

    Proliferative vitreoretinopathy (PVR) is a nonneovascular blinding disease and the leading cause for failure in surgical repair of rhegmatogenous retinal detachments. Once formed, PVR is difficult to treat. Hence, there is an acute interest in developing approaches to prevent PVR. Of the many growth factors and cytokines that accumulate in vitreous as PVR develops, neutralizing vascular endothelial growth factor (VEGF) A has recently been found to prevent PVR in at least one animal model. The goal of this study was to test if Food and Drug Administration–approved agents could protect the eye from PVR in multiple animal models and to further investigate the underlying mechanisms. Neutralizing VEGF with aflibercept (VEGF Trap-Eye) safely and effectively protected rabbits from PVR in multiple models of disease. Furthermore, aflibercept reduced the bioactivity of both experimental and clinical PVR vitreous. Finally, although VEGF could promote some PVR-associated cellular responses via VEGF receptors expressed on the retinal pigment epithelial cells that drive this disease, VEGF's major contribution to vitreal bioactivity occurred via platelet-derived growth factor receptor α. Thus, VEGF promotes PVR by a noncanonical ability to engage platelet-derived growth factor receptor α. These findings indicate that VEGF contributes to nonangiogenic diseases and that anti–VEGF-based therapies may be effective on a wider spectrum of diseases than previously appreciated. PMID:25261788

  7. Transforming growth factor (TGF)-. alpha. in human milk

    SciTech Connect

    Okada, Masaki; Wakai, Kae; Shizume, Kazuo ); Iwashita, Mitsutoshi ); Ohmura, Eiji; Kamiya, Yoshinobu; Murakami, Hitomi; Onoda, Noritaka; Tsushima, Toshio

    1991-01-01

    Transforming growth factor (TGF)-{alpha} and epidermal growth factor (EGF) were measured in human milk by means of homologous radioimmunoassay. As previously reported, EGF concentration in the colostrum was approximately 200 ng/ml and decreased to 50 ng/ml by day 7 postpartum. The value of immunoreactive (IR)-TGF-{alpha} was 2.2-7.2 ng/ml, much lower than that of EGF. In contrast to EGF, the concentration of IR-TGF-{alpha} was fairly stable during the 7 postpartum days. There was no relationship between the concentrations of IR-TGF-{alpha} and IR-EGF, suggesting that the regulatory mechanism in the release of the two growth factors is different. On gel-chromatography using a Sephadex G-50 column, IR-EGF appeared in the fraction corresponding to that of authentic human EGF, while 70%-80% of the IR-TGF-{alpha} was eluted as a species with a molecular weight greater than that of authentic human TGF-{alpha}. Although the physiological role of TGF-{alpha} in milk is not known, it is possible that it is involved in the development of the mammary gland and/or the growth of newborn infants.

  8. Vascular growth factors and receptors in capillary hemangioblastomas and hemangiopericytomas.

    PubMed Central

    Hatva, E.; Böhling, T.; Jääskeläinen, J.; Persico, M. G.; Haltia, M.; Alitalo, K.

    1996-01-01

    Capillary hemangioblastomas and hemangiopericytomas are highly vascular central nervous system tumors of controversial origin. Of interest in their pathogenesis are mechanisms regulating endothelial cell growth. The endothelial cell mitogen vascular endothelial growth factor (VEGF) stimulates angiogenesis, and together with its two receptor tyrosine kinases VEGFR-1(FLT1) and VEGFR-2(KDR), is up-regulated during the malignant progression of gliomas. We have analyzed the expression of VEGF and its receptors, the related placental growth factor (PlGF) and the endothelial receptors FLT4 and Tie by in situ hybridization in capillary hemangioblastomas and hemangiopericytomas. VEGF mRNA was up-regulated in all of the hemangiopericytomas studied and highly expressed in the stromal cells of hemangioblastomas. In addition, some hemangioblastoma tumor cells expressed high levels of PlGF. Significantly elevated levels of Tie mRNA, Tie protein, VEGFR-1, and VEGFR-2 but not FLT4 mRNAs were observed in the endothelia of both tumor types. In hemangioblastomas, however, the receptors were also highly expressed by a subpopulation of stromal cells. Consistent results were obtained for a human hemangioblastoma cell line in culture. Up-regulation of the endothelial growth factors and receptors may result in autocrine or paracrine stimulation of endothelial cells and their precursors involved in the genesis of these two vascular tumors. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8774132

  9. Therapeutic Targeting of Fibroblast Growth Factor Receptors in Gastric Cancer

    PubMed Central

    Fujimori, Yoshitaka; Otsuki, Sho; Sato, Yuya; Nakagawa, Masatoshi

    2015-01-01

    Chemotherapy has become the global standard treatment for patients with metastatic or unresectable gastric cancer (GC), although outcomes remain unfavorable. Many molecular-targeted therapies inhibiting signaling pathways of various tyrosine kinase receptors have been developed, and monoclonal antibodies targeting human epidermal growth factor receptor 2 (HER2) have become standard therapy for HER2-positive GC. An inhibitor of vascular endothelial growth factor receptor 2 or MET has also produced promising results in patients with GC. Fibroblast growth factor receptors (FGFR) play key roles in tumor growth via activated signaling pathways in GC. Genomic amplification of FGFR2 leads to the aberrant activation found in GC tumors and is related to survival in patients with GC. This review discusses the clinical relevance of FGFR in GC and examines FGFR as a potential therapeutic target in patients with GC. Preclinical studies in animal models suggest that multitargeted tyrosine kinase inhibitors (TKIs), including FGFR inhibitor, suppress tumor cell proliferation and delay tumor progression. Several TKIs are now being evaluated in clinical trials as treatment for metastatic or unresectable GC harboring FGFR2 amplification. PMID:26000013

  10. FGF19 functions as autocrine growth factor for hepatoblastoma

    PubMed Central

    Elzi, David J.; Song, Meihua; Blackman, Barron; Weintraub, Susan T.; López-Terrada, Dolores; Chen, Yidong; Tomlinson, Gail E.; Shiio, Yuzuru

    2016-01-01

    Hepatoblastoma is the most common liver cancer in children, accounting for over 65% of all childhood liver malignancies. Hepatoblastoma is distinct from adult liver cancer in that it is not associated with hepatitis virus infection, cirrhosis, or other underlying liver pathology. The paucity of appropriate cell and animal models has been hampering the mechanistic understanding of hepatoblastoma pathogenesis. Consequently, there is no molecularly targeted therapy for hepatoblastoma. To gain insight into cytokine signaling in hepatoblastoma, we employed mass spectrometry to analyze the proteins secreted from Hep293TT hepatoblastoma cell line we established and identified the specific secretion of fibroblast growth factor 19 (FGF19), a growth factor for liver cells. We determined that silencing FGF19 by shRNAs or neutralizing secreted FGF19 by anti-FGF19 antibody inhibits the proliferation of hepatoblastoma cells. Furthermore, blocking FGF19 signaling by an FGF receptor kinase inhibitor suppressed hepatoblastoma growth. RNA expression analysis in hepatoblastoma tumors revealed that the high expression of FGF19 signaling pathway components as well as the low expression of FGF19 signaling repression targets correlates with the aggressiveness of the tumors. These results suggest the role of FGF19 as autocrine growth factor for hepatoblastoma. PMID:27382436

  11. Lifetime growth in wild meerkats: incorporating life history and environmental factors into a standard growth model.

    PubMed

    English, Sinéad; Bateman, Andrew W; Clutton-Brock, Tim H

    2012-05-01

    Lifetime records of changes in individual size or mass in wild animals are scarce and, as such, few studies have attempted to model variation in these traits across the lifespan or to assess the factors that affect them. However, quantifying lifetime growth is essential for understanding trade-offs between growth and other life history parameters, such as reproductive performance or survival. Here, we used model selection based on information theory to measure changes in body mass over the lifespan of wild meerkats, and compared the relative fits of several standard growth models (monomolecular, von Bertalanffy, Gompertz, logistic and Richards). We found that meerkats exhibit monomolecular growth, with the best model incorporating separate growth rates before and after nutritional independence, as well as effects of season and total rainfall in the previous nine months. Our study demonstrates how simple growth curves may be improved by considering life history and environmental factors, which may be particularly relevant when quantifying growth patterns in wild populations. PMID:22108854

  12. Very-high-growth-factor Planar Ablative Rayleigh Taylor Experiments

    SciTech Connect

    Bradley, D K; Braun, D G; Glendinning, S G; Edwards, M J; Milovich, J L; Sorce, C M; Collins, G W; Haan, S W; Page, R H

    2006-10-30

    The Rayleigh-Taylor (RT) instability is an important factor in bounding the performance envelope of ignition targets. This paper describes an experiment for ablative RT instability that for the first time achieves growth factors close to those expected to occur in ignition targets at the National Ignition Facility (NIF). The large growth allows small seed perturbations to be detected and can be used to place an upper bound on perturbation growth at the ablation front resulting from microstructure in the preferred Be ablator. The experiments were performed on the Omega laser using a halfraum 1.2 mm long by 2 mm diameter with a 75% laser entrance hole. The halfraum was filled with {approx} 1 atm of neopentane to delay gold plasma from closing the diagnostic line of sight down the axis of the halfraum. The ablator was mounted at the base of the halfraum, and was accelerated by a two stepped X-ray pulse consisting of an early time section {approx} 100 eV to emulate the NIF foot followed by an approximately constant {approx} 150 eV drive sustained over an additional 5-7ns. It is this long pulse duration and late time observation that distinguishes the present work from previous experiments, and is responsible for the large growth that is achieved. The growth of a 2D sinusoidal perturbation machined on the drive side of the ablator was measured using face-on radiography. The diagnostic view remained open until {approx} 11 ns with maximum growth factors measured to be {approx} 200. The trajectory of the ablator was measured using streaked backlit radiography. The design and analysis of the experiments is described, and implications for experiments on ignition target ablators are discussed.

  13. GH responses to growth hormone releasing factor in depression.

    PubMed

    Thomas, R; Beer, R; Harris, B; John, R; Scanlon, M

    1989-01-01

    The growth hormone (GH), thyrotrophin (TSH) and prolactin response to growth hormone releasing factor (GRF) was investigated in 18 patients suffering from major depression with melancholia and in 18 age- and sex-matched normal controls. There was no significant difference in the GH response to GRF stimulation between the patients and controls and in neither subject group was there a demonstrable TSH or prolactin response to GRF. These findings indicate that the pathophysiology underlying the blunted GH response to pharmacological challenge, demonstrated in other studies, must lie at a suprapituitary level.

  14. Insulin-Like Growth Factor Receptor Signaling is Necessary for Epidermal Growth Factor Mediated Proliferation of SVZ Neural Precursors in vitro Following Neonatal Hypoxia–Ischemia

    PubMed Central

    Alagappan, Dhivyaa; Ziegler, Amber N.; Chidambaram, Shravanthi; Min, Jungsoo; Wood, Teresa L.; Levison, Steven W.

    2014-01-01

    In this study, we assessed the importance of insulin-like growth factor (IGF) and epidermal growth factor (EGF) receptor co-signaling for rat neural precursor (NP) cell proliferation and self-renewal in the context of a developmental brain injury that is associated with cerebral palsy. Consistent with previous studies, we found that there is an increase in the in vitro growth of subventricular zone NPs isolated acutely after cerebral hypoxia–ischemia; however, when cultured in medium that is insufficient to stimulate the IGF type 1 receptor, neurosphere formation and the proliferative capacity of those NPs was severely curtailed. This reduced growth capacity could not be attributed simply to failure to survive. The growth and self-renewal of the NPs could be restored by addition of both IGF-I and IGF-II. Since the size of the neurosphere is predominantly due to cell proliferation we hypothesized that the IGFs were regulating progression through the cell cycle. Analyses of cell cycle progression revealed that IGF-1R activation together with EGFR co-signaling decreased the percentage of cells in G1 and enhanced cell progression into S and G2. This was accompanied by increases in expression of cyclin D1, phosphorylated histone 3, and phosphorylated Rb. Based on these data, we conclude that coordinate signaling between the EGF receptor and the IGF type 1 receptor is necessary for the normal proliferation of NPs as well as for their reactive expansion after injury. These data indicate that manipulations that maintain or amplify IGF signaling in the brain during recovery from developmental brain injuries will enhance the production of new brain cells to improve neurological function in children who are at risk for developing cerebral palsy. PMID:24904523

  15. Complexation of copper(II) with chitosan nanogels: toward control of microbial growth.

    PubMed

    Brunel, Fabrice; El Gueddari, Nour Eddine; Moerschbacher, Bruno M

    2013-02-15

    Pure chitosan nanogels were produced, used to adsorb copper(II), and their antimicrobial activities were assessed. The complexation of copper(II) with chitosan solutions and dispersions was studied using UV-vis spectrometry. The adsorption capacity of chitosan nanogels was comparable to that of chitosan solutions, but copper(II)-loaded nanogels were more stable (i.e. no flocculation was observed while chitosan solutions showed macroscopic gelation at high copper concentration) and were easier to handle (i.e. no increase in viscosity). Adsorption isotherms of copper(II) onto chitosan were established and the impact of the pH on copper(II) release was investigated. The formation of a copper(II)-chitosan complex strongly depended on pH. Hence, release of copper(II) can be triggered by a decrease in pH (i.e. the protonation of chitosan amino groups). Furthermore, chitosan nanohydrogels were shown to be a suitable substrate for chitosan hydrolytic enzymes. Finally, a strong synergistic effect between chitosan and copper in inhibiting Fusarium graminearum growth was observed. The suitability of these copper(II)-chitosan colloids as a new generation of copper-based bio-pesticides, i.e. as a bio-compatible, bio-active and pH-sensitive delivery system, is discussed.

  16. Expression of neu protein, epidermal growth factor receptor, and transforming growth factor alpha in breast cancer. Correlation with clinicopathologic parameters.

    PubMed Central

    Lundy, J.; Schuss, A.; Stanick, D.; McCormack, E. S.; Kramer, S.; Sorvillo, J. M.

    1991-01-01

    The major objectives of this study were twofold: to determine 1) if growth factors or growth factor receptors were expressed similarly or differently in a clinically well-characterized group of breast cancer patients and 2) if these phenotypic characteristics were associated with any of the commonly used prognostic parameters. Formalin-fixed paraffin-embedded tumor tissue from 51 node-positive breast cancer patients were analyzed for the expression of neu, epidermal growth factor-receptor (EGF-R), and transforming growth factor alpha (TGF alpha) using immunoperoxidase staining. Positive membranous staining for neu was observed in 15 (29%) tumors. Over-expression of neu was observed in high-grade, estrogen-receptor-negative tumors (P less than 0.05). Epidermal growth factor receptor was expressed in 22 (43%) of the tumors analyzed and found to a greater degree in estrogen-receptor-negative and high-grade tumors (P less than 0.025). A significant correlation between neu and EGF-R expression was also noted. Tumors expressing membranous staining of neu had a greater than 70% chance of expressing EGF-R (P less than 0.01). Expression of TGF alpha was found in 68% of tumors and TGF alpha was detected in grade 1 and 2 tumor to a greater degree than EGF-R. The authors conclude that assaying tumors for these antigens may give additional phenotypic characteristics that can give further insight into the biology of breast cancer. Images Figure 1 Figure 2 Figure 3 PMID:1711294

  17. Divergent effects of epidermal growth factor and transforming growth factors on a human endometrial carcinoma cell line.

    PubMed

    Korc, M; Haussler, C A; Trookman, N S

    1987-09-15

    Epidermal growth factor (EGF), at concentrations ranging from 0.83 to 4.98 nM, markedly inhibited the proliferation of RL95-2 cells that were seeded at low plating densities (4.7 X 10(3) cells/cm2). Under the same incubation conditions, 16.6 pM EGF enhanced cell proliferation. At high plating densities (2.5 X 10(4) cells/cm2) 0.83 nM EGF also stimulated cell proliferation. Both the inhibitory and stimulatory effects of EGF were mimicked by transforming growth factor-alpha (TGF-alpha). However, the inhibitory action of TGF-alpha was always greater that of EGF. Binding studies with 125I-labeled TGF-alpha indicated that maximal cell surface binding of TGF-alpha occurred at 15 min, whereas maximal internalization occurred at 45 min. Both cell surface and internalized radioactivity declined sharply thereafter. Analysis of radioactivity released into the incubation medium during pulse-chase experiments indicated that RL95-2 cells extensively degraded both TGF-alpha and EGF. The lysosomotropic compound methylamine arrested the generation of low-molecular-weight degradation products of EGF, but not of TGF-alpha. In contrast to EGF and TGF-alpha, transforming growth factor-beta (TGF-beta) inhibited the proliferation of RL95-2 cells that were seeded at either low or high plating densities. Further, transforming growth factor-beta induced the appearance of large cuboidal cells that were readily distinguished from cells treated with either EGF or TGF-alpha. These findings point to complex regulatory actions of growth factors on the proliferation of RL95-2 cells and suggest that the processing of TGF-alpha following EGF receptor activation is distinct from the processing of EGF. PMID:3497713

  18. Development of a wound dressing composed of hyaluronic acid and collagen sponge with epidermal growth factor.

    PubMed

    Kondo, Shinya; Kuroyanagi, Yoshimitsu

    2012-01-01

    This study was designed to investigate the effect of a wound dressing composed of hyaluronic acid (HA) and collagen (Col) sponge containing epidermal growth factor (EGF) on various parameters of wound healing in vitro and in vivo. High-molecular-weight (HMW) HA solution, hydrolyzed low-molecular-weight (LMW) HA solution and heat-denatured Col solution were mixed, followed by freeze-drying to obtain a spongy sheet. Cross-linkage between Col molecules was induced by UV irradiation to the spongy sheet (Type-I dressing). In a similar manner, a spongy sheet containing EGF was prepared (Type-II dressing). The efficacy of these products was firstly evaluated in vitro. Fibroblast proliferation was assessed in culture medium in the presence or absence of a piece of each wound dressing. EGF stimulated cell proliferation after UV irradiation and dry sterilization at 110°C for 1 h. In the second experiment, fibroblasts-embedded Col gels were elevated to the air-liquid interface to create a wound surface model, on which wound dressings were placed and cultured for 1 week. Cell proliferation and the production of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) were investigated. With Type-II dressings, the amounts of VEGF and HGF released from fibroblasts in the Col gel were significantly increased compared with Type-I dressing. Next, the efficacy of these products was evaluated in vivo using Sprague-Dawley (SD) rats. Wound conditions after 1 and 2 weeks of treatment with the wound dressings were evaluated based on the gross and histological appearances. Type-II dressings promoted a decrease in wound size, re-epithelialization and granulation tissue formation associated with angiogenesis. These findings indicate that the combination of HA, Col and EGF promotes wound healing by stimulating fibroblast function.

  19. Growth factor choice is critical for successful functionalization of nanoparticles

    PubMed Central

    Pinkernelle, Josephine; Raffa, Vittoria; Calatayud, Maria P.; Goya, Gerado F.; Riggio, Cristina; Keilhoff, Gerburg

    2015-01-01

    Nanoparticles (NPs) show new characteristics compared to the corresponding bulk material. These nanoscale properties make them interesting for various applications in biomedicine and life sciences. One field of application is the use of magnetic NPs to support regeneration in the nervous system. Drug delivery requires a functionalization of NPs with bio-functional molecules. In our study, we functionalized self-made PEI-coated iron oxide NPs with nerve growth factor (NGF) and glial cell-line derived neurotrophic factor (GDNF). Next, we tested the bio-functionality of NGF in a rat pheochromocytoma cell line (PC12) and the bio-functionality of GDNF in an organotypic spinal cord culture. Covalent binding of NGF to PEI-NPs impaired bio-functionality of NGF, but non-covalent approach differentiated PC12 cells reliably. Non-covalent binding of GDNF showed a satisfying bio-functionality of GDNF:PEI-NPs, but turned out to be unstable in conjugation to the PEI-NPs. Taken together, our study showed the importance of assessing bio-functionality and binding stability of functionalized growth factors using proper biological models. It also shows that successful functionalization of magnetic NPs with growth factors is dependent on the used binding chemistry and that it is hardly predictable. For use as therapeutics, functionalization strategies have to be reproducible and future studies are needed. PMID:26388717

  20. Juvenile nasopharyngeal angiofibroma contain an angiogenic growth factor: basic FGF.

    PubMed

    Schiff, M; Gonzalez, A M; Ong, M; Baird, A

    1992-08-01

    The presence of an angiogenic protein basic fibroblast growth factor (FGF) was established in juvenile nasopharyngeal angiofibroma (JNF). Extracts of these tumors have the capacity to stimulate endothelial cell proliferation. This activity is indistinguishable from basic FGF. The biological activity contained in the extracts binds to heparin-Sepharose columns and is eluted with a characteristic 2 mol sodium chloride. The exact fraction of the biological activity corresponds to the location where an immunoreactive basic FGF can be detected by radioimmunoassay. These same fractions contain an 18,000-d molecule which is identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting with an antibody to basic FGF. Indeed, immunohistochemical studies localize the growth factor to the endothelium of JNF. Although these findings do not establish that basic FGF mediates the development of this angiofibroma, they do support the possibility that the pathogenesis of JNF is associated with the presence of angiogenic factors like basic FGF. If this is the case, a comprehensive study of the etiology of JNF may lead to a better understanding of how locally produced growth factors mediate proliferative disease and how its modification might lead to better treatment on a biological basis.

  1. Key roles of necroptotic factors in promoting tumor growth

    PubMed Central

    Liu, Xinjian; Zhou, Min; Mei, Ling; Ruan, Jiaying; Hu, Qian; Peng, Jing; Su, Hang; Liao, Hong; Liu, Shanling; Liu, WeiPing; Wang, He; Huang, Qian; Li, Fang; Li, Chuan-Yuan

    2016-01-01

    Necroptotic factors are generally assumed to play a positive role in tumor therapy by eliminating damaged tumor cells. Here we show that, contrary to expectation, necroptotic factors RIPK1, RIPK3, and MLKL promote tumor growth. We demonstrate that genetic knockout of necroptotic genes RIPK1, RIPK3, or MLKL in cancer cells significantly attenuated their abilities to grow in an anchorage-independent manner. In addition, they exhibited significantly enhanced radiosensitivity. The knockout cells also showed greatly reduced ability to form tumors in mice. Moreover, necrosulfonamide (NSA), a previously identified chemical inhibitor of necroptosis, could significantly delay tumor growth in a xenograft model. Mechanistically, we show that necroptoic factors play a significant role in maintaining the activity of NF-κB. Finally, we found that high levels of phosphorylated MLKL in human esophageal and colon cancers are associated with poor overall survival. Taken together, we conclude that pro-necroptic factors such as RIPK1, RIPK3, and MLKL may play a role in supporting tumor growth, and MLKL may be a promising target for cancer treatment. PMID:26959742

  2. Growth and Characteristics of Type-II InAs/GaSb Superlattice-Based Detectors

    NASA Technical Reports Server (NTRS)

    Khoshakhlagh, A.; Soibel, A.; Ting, D. Z.; Hoglund, L.; Nguyen, J.; Keo, S. A.; Liao, A.; Gunapala, S. D.

    2011-01-01

    We report on growth and device performance of infrared photodetectors based on type II InAs/Ga(In)Sb strain layer superlattices (SLs) using the complementary barrier infrared detector (CBIRD) design. The unipolar barriers on either side of the absorber in the CBIRD design in combination with the type-II InAs/GaSb superlattice material system are expected to outperform traditional III-V LWIR imaging technologies and offer significant advantages over the conventional II-VI material based FPAs. The innovative design of CBIRDS, low defect density material growth, and robust fabrication processes have resulted in the development of high performance long wave infrared (LWIR) focal plane arrays at JPL.

  3. Crystal-Phase Control by Solution-Solid-Solid Growth of II-VI Quantum Wires.

    PubMed

    Wang, Fudong; Buhro, William E

    2016-02-10

    A simple and potentially general means of eliminating the planar defects and phase alternations that typically accompany the growth of semiconductor nanowires by catalyzed methods is reported. Nearly phase-pure, defect-free wurtzite II-VI semiconductor quantum wires are grown from solid rather than liquid catalyst nanoparticles. The solid-catalyst nanoparticles are morphologically stable during growth, which minimizes the spontaneous fluctuations in nucleation barriers between zinc blende and wurtzite phases that are responsible for the defect formation and phase alternations. Growth of single-phase (in our cases the wurtzite phase) nanowires is thus favored. PMID:26731426

  4. Interaction of insulin-like growth factor I with porcine thyroid cells cultured in monolayer

    SciTech Connect

    Saji, M.; Tsushima, T.; Isozaki, O.; Murakami, H.; Ohba, Y.; Sato, K.; Arai, M.; Mariko, A.; Shizume, K.

    1987-08-01

    The interaction of insulin-like growth factor I (IGF-I) with porcine thyroid cells cultured in monolayer was studied. Specific binding of (/sup 125/I)iodo-IGF-I to thyroid cells was a reversible process dependent on the time and temperature of incubation. A steady state was achieved in 18 h at 4 C and averaged 14.2 +/- 2% (mean +/- SD)/10(6) cells. Binding of (/sup 125/I)iodo-IGF-I was inhibited by unlabeled IGF-I; half-maximal inhibition occurred at concentrations of 2-5 ng/ml. Multiplication-stimulating activity (rat IGF-II) and pork insulin had relative potencies of 1:20 and 1:300 compared with IGF-I. Scatchard analysis of binding data revealed a single class of IGF-I receptors with a Ka of 4.3 X 10(10) M-1, 49,000 binding sites were estimated per cell. Affinity cross-linking and autoradiography demonstrated the presence of type I IGF receptors. Thyroid cells also had specific receptors for insulin, but specific binding of (/sup 125/I)iodoinsulin was much lower than that of (/sup 125/I)iodo-IGF-I. Preincubation of thyroid cells with IGF-I or insulin caused a concentration-dependent decrease in (/sup 125/I)iodo-IGF-I binding due to an apparent loss of receptors. Preincubation with epidermal growth factor, fibroblast growth factor, platelet-derived growth factor, or TSH did not alter subsequent binding of (/sup 125/I)iodo-IGF-I. Low concentrations of IGF-I stimulated DNA synthesis and proliferation of thyroid cells and acted synergistically with epidermal growth factor. Multiplication-stimulating activity and insulin had relative potencies in stimulating DNA synthesis comparable to their abilities to inhibit the binding of (/sup 125/I)iodo-IGF-I to thyroid cells.

  5. Adenovirus-mediated expression of growth and differentiation factor-5 promotes chondrogenesis of adipose stem cells.

    PubMed

    Feng, Gang; Wan, Yuqing; Balian, Gary; Laurencin, Cato T; Li, Xudong

    2008-06-01

    The repair of articular cartilage injuries is impeded by the avascular and non-innervated nature of cartilage. Transplantation of autologous chondrocytes has a limited ability to augment the repair process due to the highly differentiated state of chondrocytes and the risks of donor-site morbidity. Mesenchymal stem cells can undergo chondrogenesis in the presence of growth factors for cartilage defect repair. Growth and differentiation factor-5 (GDF5) plays an important role in chondrogenesis. In this study, we examined the effects of GDF5 on chondrogenesis of adipose-derived stem cells (ADSCs) and evaluate the chondrogenic potentials of GDF5 genetically engineered ADSCs using an in vitro pellet culture model. Rat ADSCs were grown as pellet cultures and treated with chondrogenic media (CM). Induction of GDF5 by an adenovirus (Ad-GDF5) was compared with exogenous supplementation of GDF5 (100 ng/ml) and transforming growth factor-beta (TGF-beta1; 10 ng/ml). The ADSCs underwent chondrogenic differentiation in response to GDF5 exposure as demonstrated by production of proteoglycan, and up-regulation of collagen II and aggrecan at the protein and mRNA level. The chondrogenic potential of a one-time infection with Ad-GDF5 was weaker than exogenous GDF5, but equal to that of TGF-beta1. Stimulation with growth factors or CM alone induced transient expression of the mRNA for collagen X, indicating a need for optimization of the CM. Our findings indicate that GDF5 is a potent inducer of chondrogenesis in ADSCs, and that ADSCs genetically engineered to express prochondrogenic growth factors, such as GDF5, may be a promising therapeutic cell source for cartilage tissue engineering. PMID:18569021

  6. Impact of epidermal growth factor receptor and transforming growth factor-α on hepatitis C virus-induced hepatocarcinogenesis.

    PubMed

    Badawy, Afkar Abdel-Ghany; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Gabal, Samia; Said, Noha

    2015-10-01

    Epidermal growth factor receptor system plays a central hepato-protective and pro-regenerative role in liver. Transforming growth factor-α (TGF-α) is an important autocrine growth regulator of hepatocytes that plays a role in development of hepatocellular carcinoma (HCC) among patients with chronic hepatitis C (CHC). This study was done on 40 core liver biopsies from patients with CHC, 20 liver specimens from HCC cases on top of CHC as well as five normal controls. All were immunohistochemically stained with epidermal growth factor receptor (EGFR) and TGF-α antibodies. Some selected HCC cases were submitted for FISH technique to detect EGFR gene alteration. By immunohistochemistry EGFR and TGF-α were overexpressed in HCC and cirrhotic cases compared to CHC cases without cirrhosis. Also, their expression was stronger in CHC cases with higher grades of activity and stages of fibrosis compared to lower ones. FISH positive results for EGFR were detected in 33.3% of the examined HCC cases. EGFR and TGF-α can be used as predictive markers for activity, fibrosis, and carcinogenesis in CHC patients. Overexpression of EGFR in HCC patients can be promising in selecting those who can get benefit from anti-EGFR target therapy. PMID:26279457

  7. Oligomeric state regulated trafficking of human platelet-activating factor acetylhydrolase type-II.

    PubMed

    Monillas, Elizabeth S; Caplan, Jeffrey L; Thévenin, Anastasia F; Bahnson, Brian J

    2015-05-01

    The intracellular enzyme platelet-activating factor acetylhydrolase type-II (PAFAH-II) hydrolyzes platelet-activating factor and oxidatively fragmented phospholipids. PAFAH-II in its resting state is mainly cytoplasmic, and it responds to oxidative stress by becoming increasingly bound to endoplasmic reticulum and Golgi membranes. Numerous studies have indicated that this enzyme is essential for protecting cells from oxidative stress induced apoptosis. However, the regulatory mechanism of the oxidative stress response by PAFAH-II has not been fully resolved. Here, changes to the oligomeric state of human PAFAH-II were investigated as a potential regulatory mechanism toward enzyme trafficking. Native PAGE analysis in vitro and photon counting histogram within live cells showed that PAFAH-II is both monomeric and dimeric. A Gly-2-Ala site-directed mutation of PAFAH-II demonstrated that the N-terminal myristoyl group is required for homodimerization. Additionally, the distribution of oligomeric PAFAH-II is distinct within the cell; homodimers of PAFAH-II were localized to the cytoplasm while monomers were associated to the membranes of the endoplasmic reticulum and Golgi. We propose that the oligomeric state of PAFAH-II drives functional protein trafficking. PAFAH-II localization to the membrane is critical for substrate acquisition and effective oxidative stress protection. It is hypothesized that the balance between monomer and dimer serves as a regulatory mechanism of a PAFAH-II oxidative stress response.

  8. Myoferlin is required for insulin-like growth factor response and muscle growth.

    PubMed

    Demonbreun, Alexis R; Posey, Avery D; Heretis, Konstantina; Swaggart, Kayleigh A; Earley, Judy U; Pytel, Peter; McNally, Elizabeth M

    2010-04-01

    Insulin-like growth factor (IGF) is a potent stimulus of muscle growth. Myoferlin is a membrane-associated protein important for muscle development and regeneration. Myoferlin-null mice have smaller muscles and defective myoblast fusion. To understand the mechanism by which myoferlin loss retards muscle growth, we found that myoferlin-null muscle does not respond to IGF1. In vivo after IGF1 infusion, control muscle increased myofiber diameter by 25%, but myoferlin-null muscle was unresponsive. Myoblasts cultured from myoferlin-null muscle and treated with IGF1 also failed to show the expected increase in fusion to multinucleate myotubes. The IGF1 receptor colocalized with myoferlin at sites of myoblast fusion. The lack of IGF1 responsiveness in myoferlin-null myoblasts was linked directly to IGF1 receptor mistrafficking as well as decreased IGF1 signaling. In myoferlin-null myoblasts, the IGF1 receptor accumulated into large vesicular structures. These vesicles colocalized with a marker of late endosomes/lysosomes, LAMP2, specifying redirection from a recycling to a degradative pathway. Furthermore, ultrastructural analysis showed a marked increase in vacuoles in myoferlin-null muscle. These data demonstrate that IGF1 receptor recycling is required for normal myogenesis and that myoferlin is a critical mediator of postnatal muscle growth mediated by IGF1.-Demonbreun, A. R., Posey, A. D., Heretis, K., Swaggart, K. A., Earley, J. U., Pytel, P., McNally, E. M. Myoferlin is required for insulin-like growth factor response and muscle growth.

  9. Growth Factor Liberation and DPSC Response Following Dentine Conditioning.

    PubMed

    Sadaghiani, L; Gleeson, H B; Youde, S; Waddington, R J; Lynch, C D; Sloan, A J

    2016-10-01

    Liberation of the sequestrated bioactive molecules from dentine by the action of applied dental materials has been proposed as an important mechanism in inducing a dentinogenic response in teeth with viable pulps. Although adhesive restorations and dentine-bonding procedures are routinely practiced, clinical protocols to improve pulp protection and dentine regeneration are not currently driven by biological knowledge. This study investigated the effect of dentine (powder and slice) conditioning by etchants/conditioners relevant to adhesive restorative systems on growth factor solubilization and odontoblast-like cell differentiation of human dental pulp progenitor cells (DPSCs). The agents included ethylenediaminetetraacetic acid (EDTA; 10%, pH 7.2), phosphoric acid (37%, pH <1), citric acid (10%, pH 1.5), and polyacrylic acid (25%, pH 3.9). Growth factors were detected in dentine matrix extracts drawn by EDTA, phosphoric acid, and citric acid from powdered dentine. The dentine matrix extracts were shown to be bioactive, capable of stimulating odontogenic/osteogenic differentiation as observed by gene expression and phenotypic changes in DPSCs cultured in monolayer on plastic. Polyacrylic acid failed to solubilize proteins from powdered dentine and was therefore considered ineffective in triggering a growth factor-mediated response in cells. The study went on to investigate the effect of conditioning dentine slices on growth factor liberation and DPSC behavior. Conditioning by EDTA, phosphoric acid, and citric acid exposed growth factors on dentine and triggered an upregulation in genes associated with mineralized differentiation, osteopontin, and alkaline phosphatase in DPSCs cultured on dentine. The cells demonstrated odontoblast-like appearances with elongated bodies and long extracellular processes extending on dentine surface. However, phosphoric acid-treated dentine appeared strikingly less populated with cells, suggesting a detrimental impact on cell

  10. Fibroblast Growth Factor 23 in Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Bokhari, R.; Zwart, S. R.; Fields, E.; Heer, M.; Sibonga, J.; Smith, S. M.

    2015-01-01

    Many nutritional factors influence bone, from the basics of calcium and vitamin D, to factors which influence bone through acid/base balance, including protein, sodium, and more. Fibroblast growth factor 23 (FGF23) is a recently identified factor, secreted from osteocytes, which is involved in classic (albeit complex) feedback loops controlling phosphorus homeostasis through both vitamin D and parathyroid hormone (PTH) (1, 2). As osteocytes are gravity sensing cells, it is important to determine if there are changes in FGF23 during spaceflight. In extreme cases, such as chronic kidney disease, FGF23 levels are highly elevated. FGF23 imbalances, secondary to dietary influences, may contribute to skeletal demineralization and kidney stone risk during spaceflight.

  11. SphK1 inhibitor II (SKI-II) inhibits acute myelogenous leukemia cell growth in vitro and in vivo

    SciTech Connect

    Yang, Li; Weng, Wei; Sun, Zhi-Xin; Fu, Xian-Jie; Ma, Jun Zhuang, Wen-Fang

    2015-05-15

    Previous studies have identified sphingosine kinase 1 (SphK1) as a potential drug target for treatment of acute myeloid leukemia (AML). In the current study, we investigated the potential anti-leukemic activity of a novel and specific SphK1 inhibitor, SKI-II. We demonstrated that SKI-II inhibited growth and survival of human AML cell lines (HL-60 and U937 cells). SKI-II was more efficient than two known SphK1 inhibitors SK1-I and FTY720 in inhibiting AML cells. Meanwhile, it induced dramatic apoptosis in above AML cells, and the cytotoxicity by SKI-II was almost reversed by the general caspase inhibitor z-VAD-fmk. SKI-II treatment inhibited SphK1 activation, and concomitantly increased level of sphingosine-1-phosphate (S1P) precursor ceramide in AML cells. Conversely, exogenously-added S1P protected against SKI-II-induced cytotoxicity, while cell permeable short-chain ceramide (C6) aggravated SKI-II's lethality against AML cells. Notably, SKI-II induced potent apoptotic death in primary human AML cells, but was generally safe to the human peripheral blood mononuclear cells (PBMCs) isolated from healthy donors. In vivo, SKI-II administration suppressed growth of U937 leukemic xenograft tumors in severe combined immunodeficient (SCID) mice. These results suggest that SKI-II might be further investigated as a promising anti-AML agent. - Highlights: • SKI-II inhibits proliferation and survival of primary and transformed AML cells. • SKI-II induces apoptotic death of AML cells, but is safe to normal PBMCs. • SKI-II is more efficient than two known SphK1 inhibitors in inhibiting AML cells. • SKI-II inhibits SphK1 activity, while increasing ceramide production in AML cells. • SKI-II dose-dependently inhibits U937 xenograft growth in SCID mice.

  12. Nerve Growth Factor: A Focus on Neuroscience and Therapy

    PubMed Central

    Aloe, Luigi; Rocco, Maria Luisa; Omar Balzamino, Bijorn; Micera, Alessandra

    2015-01-01

    Nerve growth factor (NGF) is the firstly discovered and best characterized neurotrophic factor, known to play a critical protective role in the development and survival of sympathetic, sensory and forebrain cholinergic neurons. NGF promotes neuritis outgrowth both in vivo and in vitro and nerve cell recovery after ischemic, surgical or chemical injuries. Recently, the therapeutic property of NGF has been demonstrated on human cutaneous and corneal ulcers, pressure ulcer, glaucoma, maculopathy and retinitis pigmentosa. NGF eye drops administration is well tolerated, with no detectable clinical evidence of systemic or local adverse effects. The aim of this review is to summarize these biological properties and the potential clinical development of NGF. PMID:26411962

  13. Skeletal effects of growth hormone and insulin-like growth factor-I therapy.

    PubMed

    Lindsey, Richard C; Mohan, Subburaman

    2016-09-01

    The growth hormone/insulin-like growth factor (GH/IGF) axis is critically important for the regulation of bone formation, and deficiencies in this system have been shown to contribute to the development of osteoporosis and other diseases of low bone mass. The GH/IGF axis is regulated by a complex set of hormonal and local factors which can act to regulate this system at the level of the ligands, receptors, IGF binding proteins (IGFBPs), or IGFBP proteases. A combination of in vitro studies, transgenic animal models, and clinical human investigations has provided ample evidence of the importance of the endocrine and local actions of both GH and IGF-I, the two major components of the GH/IGF axis, in skeletal growth and maintenance. GH- and IGF-based therapies provide a useful avenue of approach for the prevention and treatment of diseases such as osteoporosis.

  14. Cytokines and growth factors cross-link heparan sulfate

    PubMed Central

    Migliorini, Elisa; Thakar, Dhruv; Kühnle, Jens; Sadir, Rabia; Dyer, Douglas P.; Li, Yong; Sun, Changye; Volkman, Brian F.; Handel, Tracy M.; Coche-Guerente, Liliane; Fernig, David G.; Lortat-Jacob, Hugues; Richter, Ralf P.

    2015-01-01

    The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors. PMID:26269427

  15. Regulation of synaptic connectivity: levels of Fasciclin II influence synaptic growth in the Drosophila CNS.

    PubMed

    Baines, Richard A; Seugnet, Laurent; Thompson, Annemarie; Salvaterra, Paul M; Bate, Michael

    2002-08-01

    Much of our understanding of synaptogenesis comes from studies that deal with the development of the neuromuscular junction (NMJ). Although well studied, it is not clear how far the NMJ represents an adequate model for the formation of synapses within the CNS. Here we investigate the role of Fasciclin II (Fas II) in the development of synapses between identified motor neurons and cholinergic interneurons in the CNS of Drosophila. Fas II is a neural cell adhesion molecule homolog that is involved in both target selection and synaptic plasticity at the NMJ in Drosophila. In this study, we show that levels of Fas II are critical determinants of synapse formation and growth in the CNS. The initial establishment of synaptic contacts between these identified neurons is seemingly independent of Fas II. The subsequent proliferation of these synaptic connections that occurs postembryonically is, in contrast, significantly retarded by the absence of Fas II. Although the initial formation of synaptic connectivity between these neurons is seemingly independent of Fas II, we show that their formation is, nevertheless, significantly affected by manipulations that alter the relative balance of Fas II in the presynaptic and postsynaptic neurons. Increasing expression of Fas II in either the presynaptic or postsynaptic neurons, during embryogenesis, is sufficient to disrupt the normal level of synaptic connectivity that occurs between these neurons. This effect of Fas II is isoform specific and, moreover, phenocopies the disruption to synaptic connectivity observed previously after tetanus toxin light chain-dependent blockade of evoked synaptic vesicle release in these neurons. PMID:12151538

  16. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation.

    PubMed

    Chen, Pei-Yu; Qin, Lingfeng; Li, Guangxin; Tellides, George; Simons, Michael

    2016-01-01

    Smooth muscle cells (SMCs) in normal blood vessels exist in a highly differentiate state characterized by expression of SMC-specific contractile proteins ("contractile phenotype"). Following blood vessel injury in vivo or when cultured in vitro in the presence of multiple growth factors, SMC undergo a phenotype switch characterized by the loss of contractile markers and appearance of expression of non-muscle proteins ("proliferative phenotype"). While a number of factors have been reported to modulate this process, its regulation remains uncertain. Here we show that induction of SMC FGF signaling inhibits TGFβ signaling and converts contractile SMCs to the proliferative phenotype. Conversely, inhibition of SMC FGF signaling induces TGFβ signaling converting proliferating SMCs to the contractile phenotype, even in the presence of various growth factors in vitro or vascular injury in vivo. The importance of this signaling cross-talk is supported by in vivo data that show that an SMC deletion of a pan-FGF receptor adaptor Frs2α (fibroblast growth factor receptor substrate 2 alpha) in mice profoundly reduces neointima formation and vascular remodelling following carotid artery ligation. These results demonstrate that FGF-TGFβ signaling antagonism is the primary regulator of the SMC phenotype switch. Manipulation of this cross-talk may be an effective strategy for treatment of SMC-proliferation related diseases. PMID:27634335

  17. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation

    PubMed Central

    Chen, Pei-Yu; Qin, Lingfeng; Li, Guangxin; Tellides, George; Simons, Michael

    2016-01-01

    Smooth muscle cells (SMCs) in normal blood vessels exist in a highly differentiate state characterized by expression of SMC-specific contractile proteins (“contractile phenotype”). Following blood vessel injury in vivo or when cultured in vitro in the presence of multiple growth factors, SMC undergo a phenotype switch characterized by the loss of contractile markers and appearance of expression of non-muscle proteins (“proliferative phenotype”). While a number of factors have been reported to modulate this process, its regulation remains uncertain. Here we show that induction of SMC FGF signaling inhibits TGFβ signaling and converts contractile SMCs to the proliferative phenotype. Conversely, inhibition of SMC FGF signaling induces TGFβ signaling converting proliferating SMCs to the contractile phenotype, even in the presence of various growth factors in vitro or vascular injury in vivo. The importance of this signaling cross-talk is supported by in vivo data that show that an SMC deletion of a pan-FGF receptor adaptor Frs2α (fibroblast growth factor receptor substrate 2 alpha) in mice profoundly reduces neointima formation and vascular remodelling following carotid artery ligation. These results demonstrate that FGF-TGFβ signaling antagonism is the primary regulator of the SMC phenotype switch. Manipulation of this cross-talk may be an effective strategy for treatment of SMC-proliferation related diseases. PMID:27634335

  18. Synergistic Action of Fibroblast Growth Factor-2 and Transforming Growth Factor-beta1 Enhances Bioprinted Human Neocartilage Formation

    PubMed Central

    Cui, Xiaofeng; Breitenkamp, Kurt; Lotz, Martin; D’Lima, Darryl

    2012-01-01

    Bioprinting as a promising but unexplored approach for cartilage tissue engineering has the advantages of high throughput, digital control, and highly accurate placement of cells and biomaterial scaffold to the targeted 3D locations with simultaneous polymerization. This study tested feasibility of using bioprinting for cartilage engineering and examined the influence of cell density, growth and differentiation factors. Human articular chondrocytes were printed at various densities, stimulated transiently with growth factors and subsequently with chondrogenic factors. Samples were cultured for up to 4 weeks to evaluate cell proliferation and viability, mechanical properties, mass swelling ratio, water content, gene expression, ECM production, DNA content, and histology. Bioprinted samples treated with FGF-2/TGF-β1 had the best chondrogenic properties among all groups apparently due to synergistic stimulation of cell proliferation and chondrogenic phenotype. ECM production per chondrocyte in low cell density was much higher than that in high cell seeding density. This finding was also verified by mechanical testing and histology. In conclusion, cell seeding density that is feasible for bioprinting also appears optimal for human neocartilage formation when combined with appropriate growth and differentiation factors. PMID:22508498

  19. Epidermal Growth Factor Receptor Transactivation: Mechanisms, Pathophysiology, and Potential Therapies in the Cardiovascular System.

    PubMed

    Forrester, Steven J; Kawai, Tatsuo; O'Brien, Shannon; Thomas, Walter; Harris, Raymond C; Eguchi, Satoru

    2016-01-01

    Epidermal growth factor receptor (EGFR) activation impacts the physiology and pathophysiology of the cardiovascular system, and inhibition of EGFR activity is emerging as a potential therapeutic strategy to treat diseases including hypertension, cardiac hypertrophy, renal fibrosis, and abdominal aortic aneurysm. The capacity of G protein-coupled receptor (GPCR) agonists, such as angiotensin II (AngII), to promote EGFR signaling is called transactivation and is well described, yet delineating the molecular processes and functional relevance of this crosstalk has been challenging. Moreover, these critical findings are dispersed among many different fields. The aim of our review is to highlight recent advancements in defining the signaling cascades and downstream consequences of EGFR transactivation in the cardiovascular renal system. We also focus on studies that link EGFR transactivation to animal models of the disease, and we discuss potential therapeutic applications.

  20. Measuring growth hormone and insulin-like growth factor-I in infants: what is normal?

    PubMed

    Hawkes, Colin Patrick; Grimberg, Adda

    2013-12-01

    The role of growth hormone (GH) and insulinlike growth factor-I (IGF-I) change through early childhood. Whereas poor growth is a later presenting feature, infants with isolated GH deficiency have a normal birth weight and length, and often present with hypoglycemia. IGF-I plays an important role antenatally and post-natally in somatic and brain growth. In order to evaluate the GH/IGF-I axis in infancy, an understanding of the normal physiology is required. Measurements of GH and IGF-I in this population should be interpreted in the context of the assays used, as well as their limitations. In this review, we summarize our current understanding of normal GH and IGF-I secretion in children under 18 months of age, and describe variations in the reported assay-specific measurements.

  1. Measuring Growth Hormone and Insulin-like Growth Factor-I in Infants: What is Normal?

    PubMed Central

    Hawkes, Colin Patrick; Grimberg, Adda

    2014-01-01

    The role of growth hormone (GH) and insulin-like growth factor-I (IGF-I) change through early childhood. Whereas poor growth is a later presenting feature, infants with isolated GH deficiency have a normal birth weight and length, and often present with hypoglycemia. IGF-I plays an important role antenatally and post-natally in somatic and brain growth. In order to evaluate the GH/IGF-I axis in infancy, an understanding of the normal physiology is required. Measurements of GH and IGF-I in this population should be interpreted in the context of the assays used, as well as their limitations. In this review, we summarize our current understanding of normal GH and IGF-I secretion in children under 18 months of age, and describe variations in the reported assay-specific measurements. PMID:24575549

  2. Epidermal growth factor receptor inhibitor therapy for recurrent respiratory papillomatosis

    PubMed Central

    Sidman, James D.

    2013-01-01

    The epidermal growth factor pathway has been implicated in various tumors, including human papillomavirus (HPV) lesions such as recurrent respiratory papillomatosis (RRP). Due to the presence of epidermal growth factor receptors in RRP, epidermal growth factor receptor (EGFR) inhibitors have been utilized as adjuvant therapy. This case series examines the response to EGFR inhibitors in RRP. Four patients with life-threatening RRP were treated with EGFR inhibitors. Operative frequency and anatomical Derkay scores were calculated prior to, and following EGFR inhibitor treatment via retrospective chart review. The anatomical Derkay score decreased for all four patients after initiation of EGFR inhibitor therapy. In one patient, the operative frequency increased after switching to an intravenous inhibitor after loss of control with an oral inhibitor. In the other patients there was a greater than 20% decrease in operative frequency in one and a more than doubling in the time between procedures in two.  This study suggests that EGFR inhibitors are a potential adjuvant therapy in RRP and deserve further study in a larger number of patients. PMID:24795806

  3. Vascular endothelial growth factor, platelet-derived endothelial cell growth factor and angiogenesis in non-small-cell lung cancer

    PubMed Central

    O'Byrne, K J; Koukourakis, M I; Giatromanolaki, A; Cox, G; Turley, H; Steward, W P; Gatter, K; Harris, A L

    2000-01-01

    High microvessel density, an indirect measure of angiogenesis, has been shown to correlate with increased tumour size, lymph node involvement and poor prognosis in non-small-cell lung cancer (NSCLC). Tumour cell vascular endothelial growth factor (VEGF) and platelet-derived endothelial cell growth factor (PD-ECGF) expression correlate with angiogenesis and a poor outcome in this disease. In a retrospective study VEGF and PD-ECGF expression and microvessel density were evaluated immunohistochemically in surgically resected specimens (T1–3, N0–2) from 223 patients with operable NSCLC using the VG1, P-GF.44C and JC70 monoclonal antibodies respectively. High VEGF immunoreactivity was seen in 104 (46.6%) and PD-ECGF in 72 (32.3%) cases and both were associated with high vascular grade tumours (P = 0.009 and P = 0.05 respectively). Linear regression analysis revealed a weak positive correlation between VEGF and PD-ECGF expression in cancer cells (r = 0.21;P = 0.002). Co-expression of VEGF and PD-ECGF was not associated with a higher microvessel density than VEGF or PD-ECGF only expressing tumours. Furthermore a proportion of high vascular grade tumours expressed neither growth factor. Univariate analysis revealed tumour size, nodal status, microvessel density and VEGF and PD-ECGF expression as significant prognostic factors. Tumour size (P< 0.02) and microvessel density (P< 0.04) remained significant on multivariate analysis. In conclusion, VEGF and PD-ECGF are important angiogenic growth factors and have prognostic significance in NSCLC. Furthermore the study underlines the prognostic significance of microvessel density in operable NSCLC. © 2000 Cancer Research Campaign PMID:10780522

  4. Nerve growth factor stimulates axon outgrowth through negative regulation of growth cone actomyosin restraint of microtubule advance

    PubMed Central

    Turney, Stephen G.; Ahmed, Mostafa; Chandrasekar, Indra; Wysolmerski, Robert B.; Goeckeler, Zoe M.; Rioux, Robert M.; Whitesides, George M.; Bridgman, Paul C.

    2016-01-01

    Nerve growth factor (NGF) promotes growth, differentiation, and survival of sensory neurons in the mammalian nervous system. Little is known about how NGF elicits faster axon outgrowth or how growth cones integrate and transform signal input to motor output. Using cultured mouse dorsal root ganglion neurons, we found that myosin II (MII) is required for NGF to stimulate faster axon outgrowth. From experiments inducing loss or gain of function of MII, specific MII isoforms, and vinculin-dependent adhesion-cytoskeletal coupling, we determined that NGF causes decreased vinculin-dependent actomyosin restraint of microtubule advance. Inhibition of MII blocked NGF stimulation, indicating the central role of restraint in directed outgrowth. The restraint consists of myosin IIB- and IIA-dependent processes: retrograde actin network flow and transverse actin bundling, respectively. The processes differentially contribute on laminin-1 and fibronectin due to selective actin tethering to adhesions. On laminin-1, NGF induced greater vinculin-dependent adhesion–cytoskeletal coupling, which slowed retrograde actin network flow (i.e., it regulated the molecular clutch). On fibronectin, NGF caused inactivation of myosin IIA, which negatively regulated actin bundling. On both substrates, the result was the same: NGF-induced weakening of MII-dependent restraint led to dynamic microtubules entering the actin-rich periphery more frequently, giving rise to faster elongation. PMID:26631553

  5. Gene silencing of endothelial von Willebrand Factor attenuates angiotensin II-induced endothelin-1 expression in porcine aortic endothelial cells

    PubMed Central

    Dushpanova, Anar; Agostini, Silvia; Ciofini, Enrica; Cabiati, Manuela; Casieri, Valentina; Matteucci, Marco; Del Ry, Silvia; Clerico, Aldo; Berti, Sergio; Lionetti, Vincenzo

    2016-01-01

    Expression of endothelin (ET)-1 is increased in endothelial cells exposed to angiotensin II (Ang II), leading to endothelial dysfunction and cardiovascular disorders. Since von Willebrand Factor (vWF) blockade improves endothelial function in coronary patients, we hypothesized that targeting endothelial vWF with short interference RNA (siRNA) prevents Ang II-induced ET-1 upregulation. Nearly 65 ± 2% silencing of vWF in porcine aortic endothelial cells (PAOECs) was achieved with vWF-specific siRNA without affecting cell viability and growth. While showing ET-1 similar to wild type cells at rest, vWF-silenced cells did not present ET-1 upregulation during exposure to Ang II (100 nM/24 h), preserving levels of endothelial nitric oxide synthase activity similar to wild type. vWF silencing prevented AngII-induced increase in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity and superoxide anion (O2−) levels, known triggers of ET-1 expression. Moreover, no increase in O2− or ET-1 levels was found in silenced cells treated with AngII or NOX-agonist phorbol ester (PMA 5 nM/48 h). Finally, vWF was required for overexpression of NOX4 and NOX2 in response to AngII and PMA. In conclusion, endothelial vWF knockdown prevented Ang II-induced ET-1 upregulation through attenuation of NOX-mediated O2− production. Our findings reveal a new role of vWF in preventing of Ang II-induced endothelial dysfunction. PMID:27443965

  6. Regulation of skeletal muscle growth in fish by the growth hormone--insulin-like growth factor system.

    PubMed

    Fuentes, Eduardo N; Valdés, Juan Antonio; Molina, Alfredo; Björnsson, Björn Thrandur

    2013-10-01

    The growth hormone (GH)-insulin-like growth factor (IGF) system is the key promoter of growth in vertebrates; however, how this system modulates muscle mass in fish is just recently becoming elucidated. In fish, the GH induces muscle growth by modulating the expression of several genes belonging to the myostatin (MSTN), atrophy, GH, and IGF systems as well as myogenic regulatory factors (MRFs). The GH controls the expression of igf1 via Janus kinase 2 (JAK2)/signal transducers and activators of the transcription 5 (STAT5) signaling pathway, but it seems that it is not the major regulator. These mild effects of the GH on igf1 expression in fish muscle seem to be related with the presence of higher contents of truncated GH receptor1 (tGHR1) than full length GHR (flGHR1). IGFs in fish stimulate myogenic cell proliferation, differentiation, and protein synthesis through the MAPK/ERK and PI3K/AKT/TOR signaling pathways, concomitant with abolishing protein degradation and atrophy via the PI3K/AKT/FOXO signaling pathway. Besides these signaling pathways control the expression of several genes belonging to the atrophy and IGF systems. Particularly, IGFs and amino acid control the expression of igf1, thus, suggesting other of alternative signaling pathways regulating the transcription of this growth factor. The possible role of IGF binding proteins (IGFBPs) and the contribution of muscle-derived versus hepatic-produced IGF1 on fish muscle growth is also addressed. Thus, a comprehensive overview on the GH-IGF system regulating fish skeletal muscle growth is presented, as well as perspectives for future research in this field.

  7. Roles of insulinlike growth factor 1 (IGF-1) and the IGF-1 receptor in epidermal growth factor-stimulated growth of 3T3 cells.

    PubMed Central

    Pietrzkowski, Z; Sell, C; Lammers, R; Ullrich, A; Baserga, R

    1992-01-01

    BALB/c3T3 cells are exquisitely growth regulated and require platelet-derived growth factor, epidermal growth factor (EGF), and insulinlike growth factor 1 (IGF-1) for growth. When BALB/c3T3 cells are transfected with plasmids constitutively expressing both EGF and the human IGF-1 receptor mRNAs, the cells are capable of growing in serum-free medium without the addition of any exogenous growth factor. These cells, called p5 cells, can grow for prolonged periods in serum-free medium. BALB/c3T3 cells transfected with only the IGF-1 receptor expression plasmid (p6 cells) do not grow in serum-free medium but do grow if IGF-1 (or insulin in supraphysiological concentrations) is added. p6 cells also grow in response to EGF, confirming that the combination of EGF and an overexpressed IGF-1 receptor is sufficient for the growth of 3T3 cells. We have found that in EGF-stimulated p6 cells there is an increase in the expression of IGF-1 mRNA, that IGF-1 is secreted into the medium, and that the growth of p5 cells and EGF-stimulated p6 cells is inhibited by exposure to antisense oligodeoxynucleotides to IGF-1 receptor RNA. Finally, while cells constitutively expressing both EGF and EGF receptor RNAs grow, albeit modestly, in serum-free medium, their growth is also inhibited by an antisense oligodeoxynucleotide to IGF-1 receptor RNA. In contrast, in cells overexpressing the IGF-1 receptor, IGF-1-mediated cell growth occurs independently of the platelet-derived growth factor and EGF receptors (Z. Pietrzkowski, R. Lammers, G. Carpenter, A. M. Soderquist, M. Limardo, P. D. Phillips, A. Ullrich, and R. Baserga, Cell Growth Differ. 3:199-205, 1992, and this paper). These data indicate that an important role for EGF is participation in the activation of an autocrine loop based on the IGF-1-IGF-1 receptor interaction, which is obligatory for the proliferation of 3T3 cells. Images PMID:1324408

  8. The Curiosity and Exploration Inventory-II: Development, Factor Structure, and Psychometrics

    PubMed Central

    Kashdan, Todd B.; Gallagher, Matthew W.; Silvia, Paul J.; Winterstein, Beate P.; Breen, William E.; Terhar, Daniel; Steger, Michael F.

    2009-01-01

    Given curiosity’s fundamental role in motivation, learning, and well-being, we sought to refine the measurement of trait curiosity with an improved version of the Curiosity and Exploration Inventory (CEI; Kashdan, Rose, & Fincham, 2004). A preliminary pool of 36 items was administered to 311 undergraduate students, who also completed measures of emotion, emotion regulation, personality, and well-being. Factor analyses indicated a two factor model—motivation to seek out knowledge and new experiences (Stretching; 5 items) and a willingness to embrace the novel, uncertain, and unpredictable nature of everyday life (Embracing; 5 items). In two additional samples (ns = 150 and 119), we cross-validated this factor structure and provided initial evidence for construct validity. This includes positive correlations with personal growth, openness to experience, autonomy, purpose in life, self-acceptance, psychological flexibility, positive affect, and positive social relations, among others. Applying item response theory (IRT) to these samples (n = 578), we showed that the items have good discrimination and a desirable breadth of difficulty. The item information functions and test information function were centered near zero, indicating that the scale assesses the mid-range of the latent curiosity trait most reliably. The findings thus far provide good evidence for the psychometric properties of the 10-item CEI-II. PMID:20160913

  9. Processing, secretion, and biological properties of a novel growth factor of the fibroblast growth factor family with oncogenic potential.

    PubMed Central

    Delli-Bovi, P; Curatola, A M; Newman, K M; Sato, Y; Moscatelli, D; Hewick, R M; Rifkin, D B; Basilico, C

    1988-01-01

    We recently reported that the protein encoded in a novel human oncogene isolated from Kaposi sarcoma DNA was a growth factor with significant homology to basic and acidic fibroblast growth factors (FGFs). To study the properties of this growth factor (referred to as K-FGF) and the mechanism by which the K-fgf oncogene transforms cells, we have studied the production and processing of K-FGF in COS-1 cells transfected with a plasmid encoding the K-fgf cDNA. The results show that, unlike basic and acidic FGFs, the K-FGF protein is cleaved after a signal peptide, glycosylated, and efficiently secreted as a mature protein of 176 or 175 amino acids. Inhibition of glycosylation impaired secretion, and the stability of the secreted K-FGF was greatly enhanced by the presence of heparin in the cultured medium. We have used the conditioned medium from transfected COS-1 cells to test K-FGF biological activity. Similar to basic FGF, the K-FGF protein was mitogenic for fibroblasts and endothelial cells and induced the growth of NIH 3T3 mouse cells in serum-free medium. Accordingly, K-fgf-transformed NIH 3T3 cells grew in serum-free medium, consistent with an autocrine mechanism of growth. We have also expressed the protein encoded in the K-fgf protooncogene in COS-1 cells, and it was indistinguishable in its molecular weight, glycosylation, secretion, and biological activity from K-FGF. Taken together, these results suggest that the mechanism of activation of this oncogene is due to overexpression rather than to mutations in the coding sequences. Images PMID:3043199

  10. Maternal parity, fetal and childhood growth, and cardiometabolic risk factors.

    PubMed

    Gaillard, Romy; Rurangirwa, Akashi A; Williams, Michelle A; Hofman, Albert; Mackenbach, Johan P; Franco, Oscar H; Steegers, Eric A P; Jaddoe, Vincent W V

    2014-08-01

    We examined the associations of maternal parity with fetal and childhood growth characteristics and childhood cardiometabolic risk factors in a population-based prospective cohort study among 9031 mothers and their children. Fetal and childhood growth were repeatedly measured. We measured childhood anthropometrics, body fat distribution, left ventricular mass, blood pressure, blood lipids, and insulin levels at the age of 6 years. Compared with nulliparous mothers, multiparous mothers had children with higher third trimester fetal head circumference, length and weight growth, and lower risks of preterm birth and small-size-for-gestational-age at birth but a higher risk of large-size-for-gestational-age at birth (P<0.05). Children from multiparous mothers had lower rates of accelerated infant growth and lower levels of childhood body mass index, total fat mass percentage, and total and low-density lipoprotein cholesterol than children of nulliparous mothers (P<0.05). They also had a lower risk of childhood overweight (odds ratio, 0.75 [95% confidence interval, 0.63–0.88]). The risk of childhood clustering of cardiometabolic risk factors was not statistically significantly different (odds ratio, 0.82; 95% confidence interval, 0.64–1.05). Among children from multiparous mothers only, we observed consistent trends toward a lower risk of childhood overweight and lower cholesterol levels with increasing parity (P<0.05). In conclusion, offspring from nulliparous mothers have lower fetal but higher infant growth rates and higher risks of childhood overweight and adverse metabolic profile. Maternal nulliparity may have persistent cardiometabolic consequences for the offspring. PMID:24866145

  11. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha.

    PubMed

    Kalthoff, H; Roeder, C; Gieseking, J; Humburg, I; Schmiegel, W

    1993-10-01

    Recombinant human tumor necrosis factor (TNF) alpha decreased the expression of ERBB2 mRNA by stimulating p55 TNF receptors of pancreatic tumor cells. This decrease contrasts with an increase in epidermal growth factor receptor (EGFR) mRNA. Both effects were selectively achieved by TNF-alpha or -beta, whereas interferon alpha or gamma or transforming growth factor beta showed no such effects. The inverse regulatory effects of TNF on ERBB2 and EGFR mRNA levels were evoked by different signaling pathways of p55 TNF receptors. The TNF-mediated ERBB2 mRNA decrease was followed by a reduction in protein. Four of five pancreatic tumor cell lines exhibited this down-regulation. This decrease of ERBB2 is a singular example of a modulation of this growth factor receptor by TNF. Overexpression of ERBB2 has been reported to cause resistance to TNF and other cytotoxic cytokines. In our study we show that the TNF-mediated down-regulation of ERBB2 in pancreatic tumor cells is accompanied by an increase in growth inhibition at low doses of TNF. The simultaneous alteration of the ERBB2/EGFR balance by TNF represents a striking model of cytokine receptor transregulation in the growth control of malignant pancreatic epithelial cells.

  12. Inverse regulation of human ERBB2 and epidermal growth factor receptors by tumor necrosis factor alpha.

    PubMed Central

    Kalthoff, H; Roeder, C; Gieseking, J; Humburg, I; Schmiegel, W

    1993-01-01

    Recombinant human tumor necrosis factor (TNF) alpha decreased the expression of ERBB2 mRNA by stimulating p55 TNF receptors of pancreatic tumor cells. This decrease contrasts with an increase in epidermal growth factor receptor (EGFR) mRNA. Both effects were selectively achieved by TNF-alpha or -beta, whereas interferon alpha or gamma or transforming growth factor beta showed no such effects. The inverse regulatory effects of TNF on ERBB2 and EGFR mRNA levels were evoked by different signaling pathways of p55 TNF receptors. The TNF-mediated ERBB2 mRNA decrease was followed by a reduction in protein. Four of five pancreatic tumor cell lines exhibited this down-regulation. This decrease of ERBB2 is a singular example of a modulation of this growth factor receptor by TNF. Overexpression of ERBB2 has been reported to cause resistance to TNF and other cytotoxic cytokines. In our study we show that the TNF-mediated down-regulation of ERBB2 in pancreatic tumor cells is accompanied by an increase in growth inhibition at low doses of TNF. The simultaneous alteration of the ERBB2/EGFR balance by TNF represents a striking model of cytokine receptor transregulation in the growth control of malignant pancreatic epithelial cells. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8105469

  13. Growth hormone, insulin-like growth factor-1 and the aging cardiovascular system.

    PubMed

    Khan, Amir S; Sane, David C; Wannenburg, Thomas; Sonntag, William E

    2002-04-01

    There is a large body of evidence that biological aging is related to a series of long-term catabolic processes resulting in decreased function and structural integrity of several physiological systems, among which is the cardiovascular system. These changes in the aging phenotype are correlated with a decline in the amplitude of pulsatile growth hormone secretion and the resulting decrease in plasma levels of its anabolic mediator, insulin like growth factor-1 (IGF-1). The relationship between growth hormone and biological aging is supported by studies demonstrating that growth hormone administration to old animals and humans raises plasma IGF-1 and results in increases in skeletal muscle and lean body mass, a decrease in adiposity, increased immune function, improvements in learning and memory, and increases in cardiovascular function. Since growth hormone and IGF-1 exert potent effects on the heart and vasculature, the relationship between age-related changes in cardiovascular function and the decline in growth hormone levels with age have become of interest. Among the age-related changes in the cardiovascular system are decreases in myocyte number, accumulation of fibrosis and collagen, decreases in stress-induced cardiac function through deterioration of the myocardial conduction system and beta-adrenergic receptor function, decreases in exercise capacity, vessel rarefaction, decreased arterial compliance and endothelial dysfunction leading to alterations in blood flow. Growth hormone has been found to exert potent effects on cardiovascular function in young animals and reverses many of the deficits in cardiovascular function in aged animals and humans. Nevertheless, it has been difficult to separate the effects of growth hormone deficiency from age-related diseases and associated pathologies. The development of novel animal models and additional research are required in order to elucidate the specific effects of growth hormone deficiency and assess its

  14. Role of membrane-anchored heparin-binding epidermal growth factor-like growth factor and CD9 on macrophages.

    PubMed Central

    Ouchi, N; Kihara, S; Yamashita, S; Higashiyama, S; Nakagawa, T; Shimomura, I; Funahashi, T; Kameda-Takemura, K; Kawata, S; Taniguchi, N; Matsuzawa, Y

    1997-01-01

    Heparin-binding epidermal-growth-factor-like growth factor (HB-EGF) is a potent mitogen for smooth-muscle cells (SMCs) belonging to the EGF family. We have previously determined that HB-EGF is expressed in macrophages and SMCs of human atherosclerotic lesions and that its membrane-anchored precursor, proHB-EGF, also has a juxtacrine mitogenic activity which is markedly enhanced by CD9, a surface marker of lymphohaemopoietic cells. Therefore, when both proHB-EGF and CD9 are expressed on macrophages, they may strongly promote the development of atherosclerosis. In the present study we have investigated the changes in proHB-EGF and CD9 in THP-1 cells during differentiation into macrophages and by the addition of oxidized low-density lipoproteins (OxLDL) and assessed juxtacrine growth activity of THP-1 macrophages for human aortic SMCs. HB-EGF and CD9 at both the mRNA and the protein level were up-regulated after differentiation into macrophages, and further expression of HB-EGF was induced by the addition of OxLDL or lysophosphatidylcholine. Juxtacrine induction by formalin-fixed growth was suppressed to control levels by an inhibitor of HB-EGF and was partially decreased by anti-CD9 antibodies. These results suggest that co-expression of proHB-EGF and CD9 on macrophages plays an important role in the development of atherosclerosis by a juxtacrine mechanism. PMID:9396739

  15. Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo.

    PubMed

    Hoe Kim, Jeong; Tsukaya, Hirokazu

    2015-10-01

    Transcription factors are key regulators of gene expression and play pivotal roles in all aspects of living organisms. Therefore, identification and functional characterization of transcription factors is a prerequisite step toward understanding life. This article reviews molecular and biological functions of the two transcription regulator families, GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF), which have only recently been recognized. A myriad of experimental evidence clearly illustrates that GRF and GIF are bona fide partner proteins and form a plant-specific transcriptional complex. One of the most conspicuous outcomes from this research field is that the GRF-GIF duo endows the primordial cells of vegetative and reproductive organs with a meristematic specification state, guaranteeing the supply of cells for organogenesis and successful reproduction. It has recently been shown that GIF1 proteins, also known as ANGUSTIFOLIA3, recruit chromatin remodelling complexes to target genes, and that AtGRF expression is directly activated by the floral identity factors, APETALA1 and SEPALLATA3, providing an important insight into understanding of the action of GRF-GIF. Moreover, GRF genes are extensively subjected to post-transcriptional control by microRNA396, revealing the presence of a complex regulatory circuit in regulation of plant growth and development by the GRF-GIF duo.

  16. Growth and differentiation in cultured human thyroid cells: effects of epidermal growth factor and thyrotropin.

    PubMed

    Errick, J E; Ing, K W; Eggo, M C; Burrow, G N

    1986-01-01

    Human thyroid cells were grown and subcultured in vitro to examine their responses to known hormones and growth factors, and to serum. The cells were obtained from surgical specimens and were either neoplastic or nonneoplastic. The effects of culture conditions on cell growth were measured by changes in cell numbers and by stimulation of [3H]thymidine incorporation. The results showed that serum (0.5%) was essential for cell proliferation, and that a mixture of insulin (10 micrograms/ml), transferrin (5 micrograms/ml), hydrocortisone (10 micrograms/ml), somatostatin (10 ng/ml), and glycyl-histidyl-lysine (10 ng/ml) enhanced the effect of serum. Maximum growth of the cells was obtained when epidermal growth factor was present at 10(-9) M. Differentiation was measured by production of thyroglobulin, which was found to be stimulated by thyrotropin. This system provides a means to study the hormonal control of growth and differentiation in human thyroid cells. PMID:3511027

  17. Astrocyte growth is regulated by neuropeptides through Tis 8 and basic fibroblast growth factor.

    PubMed Central

    Hu, R M; Levin, E R

    1994-01-01

    The important intracellular mechanisms of astrocyte growth are not well defined. Using an inhibitor of astrocyte proliferation, atrial natriuretic peptide (ANP), and the glial mitogen endothelin (ET-3), we sought a common pathway for growth regulation in these neural cells. In cultured fetal rat diencephalic astrocytes, ANP selectively and rapidly inhibited the Tis 8 immediate early gene and protein. After 4 h, ANP selectively inhibited the basic fibroblast growth factor (bFGF) gene and protein. ET-3 significantly stimulated both Tis 8 and bFGF mRNAs and protein, but also stimulated several other immediate early and growth factor/receptor genes. An antisense oligonucleotide to Tis 8 strongly prevented ET-stimulated thymidine incorporation, while the inhibitory action of ANP was enhanced. The Tis 8 antisense oligonucleotide also significantly reversed ET-stimulated bFGF transcription and enhanced the bFGF inhibition caused by ANP. In addition, an antisense oligonucleotide to bFGF significantly reversed the ET-stimulated thymidine incorporation and enhanced the ANP inhibition of DNA synthesis. The sequential modulation of Tis 8, followed by bFGF, provides a novel mechanism for both positive and negative regulation of astrocyte growth by endogenous neuropeptides. Images PMID:8163680

  18. Insulin, insulin-like growth factor-I, and platelet-derived growth factor activate extracellular signal-regulated kinase by distinct pathways in muscle cells.

    PubMed

    Tsakiridis, T; Tsiani, E; Lekas, P; Bergman, A; Cherepanov, V; Whiteside, C; Downey, G P

    2001-10-19

    We have investigated the signaling pathways initiated by insulin, insulin-like growth factor-1 (IGF-I), and platelet-derived growth factor (PDGF) leading to activation of the extracellular signal-regulated kinase (ERK) in L6 myotubes. Insulin but not IGF-I or PDGF-induced ERK activation was abrogated by Ras inhibition, either by treatment with the farnesyl transferase inhibitor FTP III, or by actin disassembly by cytochalasin D, previously shown to inhibit Ras activation. The protein kinase C (PKC) inhibitor bisindolylmaleimide abolished PDGF but not IGF-I or insulin-induced ERK activation. ERK activation by insulin, IGF-I, or PDGF was unaffected by the phosphatidylinositol 3-kinase inhibitor wortmannin but was abolished by the MEK inhibitor PD98059. In contrast, activation of the pathway involving phosphatidylinositol 3-kinase (PI3k), protein kinase B, and glycogen synthase kinase 3 (GSK3) was mediated similarly by all three receptors, through a PI 3-kinase-dependent but Ras- and actin-independent pathway. We conclude that ERK activation is mediated by distinct pathways including: (i) a cytoskeleton- and Ras-dependent, PKC-independent, pathway utilized by insulin, (ii) a PKC-dependent, cytoskeleton- and Ras-independent pathway used by PDGF, and (iii) a cytoskeleton-, Ras-, and PKC-independent pathway utilized by IGF-I.

  19. Vascular Endothelial Growth Factor A Regulates the Secretion of Different Angiogenic Factors in Lung Cancer Cells.

    PubMed

    Frezzetti, Daniela; Gallo, Marianna; Roma, Cristin; D'Alessio, Amelia; Maiello, Monica R; Bevilacqua, Simona; Normanno, Nicola; De Luca, Antonella

    2016-07-01

    Vascular endothelial growth factor A (VEGFA) is one of the main mediators of angiogenesis in non-small cell lung cancer (NSCLC). Recently, it has been described an autocrine feed-forward loop in NSCLC cells in which tumor-derived VEGFA promoted the secretion of VEGFA itself, amplifying the proangiogenic signal. In order to investigate the role of VEGFA in lung cancer progression, we assessed the effects of recombinant VEGFA on proliferation, migration, and secretion of other angiogenic factors in A549, H1975, and HCC827 NSCLC cell lines. We found that VEGFA did not affect NSCLC cell proliferation and migration. On the other hand, we demonstrated that VEGFA not only produced a strong and persistent increase of VEGFA itself but also significantly induced the secretion of a variety of angiogenic factors, including follistatin (FST), hepatocyte growth factor (HGF), angiopoietin-2 (ANGPT2), granulocyte-colony stimulating factor (G-CSF), interleukin (IL)-8, leptin (LEP), platelet/endothelial cell adhesion molecule 1 (PECAM-1), and platelet-derived growth factor bb (PDGF-BB). PI3K/AKT, RAS/ERK, and STAT3 signalling pathways were found to mediate the effects of VEGFA in NSCLC cell lines. We also observed that VEGFA regulation mainly occurred at post-transcriptional level and that NSCLC cells expressed different isoforms of VEGFA. Collectively, our data suggested that VEGFA contributes to lung cancer progression by inducing a network of angiogenic factors, which might offer potential for therapeutic intervention. PMID:26542886

  20. Vascular endothelial growth factor and fibroblast growth factor 2 delivery from spinal cord bridges to enhance angiogenesis following injury.

    PubMed

    De Laporte, Laura; des Rieux, Anne; Tuinstra, Hannah M; Zelivyanskaya, Marina L; De Clerck, Nora M; Postnov, Andrei A; Préat, Véronique; Shea, Lonnie D

    2011-09-01

    The host response to spinal cord injury can lead to an ischemic environment that can induce cell death and limits cell transplantation approaches to promote spinal cord regeneration. Spinal cord bridges that provide a localized and sustained release of vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2) were investigated for their ability to promote angiogenesis and nerve growth within the injury. Bridges were fabricated by fusion of poly(lactide-co-glycolide) microspheres using a gas foaming/particulate leaching technique, and proteins were incorporated by encapsulation into the microspheres and/or mixing with the microspheres before foaming. Compared to the mixing method, encapsulation reduced the losses during leaching and had a slower protein release, while VEGF was released more rapidly than FGF-2. In vivo implantation of bridges loaded with VEGF enhanced the levels of VEGF within the injury at 1 week, and bridges releasing VEGF and FGF-2 increased the infiltration of endothelial cells and the formation of blood vessel at 6 weeks postimplantation. Additionally, substantial neurofilament staining was observed within the bridge; however, no significant difference was observed between bridges with or without protein. Bridges releasing angiogenic factors may provide an approach to overcome an ischemic environment that limits regeneration and cell transplantation-based approaches.

  1. [Metabolic and hemodynamic effects of the growth hormone system - insulin-like growth factor].

    PubMed

    Manhylova, T A; Gafarova, N H

    2015-01-01

    Significant congenital deficiency of growth factor (GF) results in pituitary nanism (dwarfism) and its substantial excess is accompanied by the development of gigantism or acromegaly. Its impact on the growth of the whole body or its individual parts is impossible without affecting metabolic processes and hemodynamic parameters. A number of investigations have proven that GF has a direct lipolytic effect: adequate replacement therapy for pituitary nanism gives rise to a reduction in fat depots. Since the concentration of GF is lower in obesity, Whether it may be used to treat this abnormality is considered. PMID:27035002

  2. Specific immunoradiometric assay of insulin-like growth factor I with use of monoclonal antibodies.

    PubMed

    Scott, M G; Cuca, G C; Petersen, J R; Lyle, L R; Burleigh, B D; Daughaday, W H

    1987-11-01

    We identified two monoclonal antibodies that bind spatially distinct epitopes on insulin-like growth factor I (IGF-I). Using these two antibodies, we developed a simultaneous, two-site immunoradiometric assay (IRMA) specific for IGF-I. This IRMA has no detectable cross reactivity with insulin, proinsulin, prolactin, or somatotropin, and less than 2% crossreactivity with IGF-II. The assay response varies linearly with IGF-I concentrations of 0-800 micrograms/L in serum; the detection limit is about 10 micrograms/L. A comparison of 26 IGF-I serum values from the IRMA and from a previously reported IGF-I specific RIA gave a correlation coefficient of 0.96 with no substantial bias (slope = 1.10). IGF-I values for serum, as an aid in assessing growth abnormalities, are easily (only three pipetting steps) obtained in less than 4 h. PMID:2445506

  3. Transcription factor LSF (TFCP2) inhibits melanoma growth

    PubMed Central

    Goto, Yuji; Yajima, Ichiro; Kumasaka, Mayuko; Ohgami, Nobutaka; Tanaka, Asami; Tsuzuki, Toyonori; Inoue, Yuji; Fukushima, Satoshi; Ihn, Hironobu; Kyoya, Mikiko; Ohashi, Hiroyuki; Kawakami, Tamihiro; Bennett, Dorothy C.; Kato, Masashi

    2016-01-01

    Late SV40 factor 3 (LSF), a transcription factor, contributes to human hepatocellular carcinoma (HCC). However, decreased expression level of LSF in skin melanoma compared to that in benign melanocytic tumors and nevi in mice and humans was found in this study. Anchorage-dependent and -independent growth of melanoma cells was suppressed by LSF overexpression through an increased percentage of G1 phase cells and an increased p21CIP1 expression level in vitro and in vivo. Anchorage-dependent growth in LSF-overexpressed melanoma cells was promoted by depletion of LSF in the LSF-overexpressed cells. Integrated results of our EMSA and chromatin immunoprecipitation assays showed binding of LSF within a 150-bp upstream region of the transcription start site of p21CIP1 in melanoma cells. Taken together, our results suggest potential roles of LSF as a growth regulator through control of the transcription of p21CIP1 in melanocytes and melanoma cells as well as a biomarker for nevus. PMID:26506241

  4. Production of human epidermal growth factor using adenoviral based system

    PubMed Central

    Negahdari, Babak; Shahosseini, Zahra; Baniasadi, Vahid

    2016-01-01

    Epidermal growth factor (EGF), a growth factor involved in cell growth and differentiation, is a small polypeptide with molecular weight of approximately 6 kDa known to be present in a number of different mammalian species. Experimental studies in animals and humans have demonstrated that the topical application of EGF accelerates the rate of epidermal regeneration of partial-thickness wounds and second-degree burns. Due to its commercial applications, Human EGF (hEGF) has been cloned in several forms. In the present study, adenoviral based expression system was used to produce biologically active recombinant hEGF. The presence of secreted recombinant hEGF was confirmed by a dot blot and its expression level was determined by enzyme-linked immuno-sorbent assay. Moreover, biological activity of secreted hEGF was evaluated by a proliferation assay performed on A549 cells. For production of hEGF in a secretory form, a chimeric gene coding for the hEGF fused to the signal peptide was expressed using adenoviral based method. This method enables the production of hEGF at the site of interest and moreover it could be used for cell proliferation and differentiation assays in tissue engineering research experiments instead of using commercially available EGF. PMID:27051431

  5. Extracellular vimentin interacts with insulin-like growth factor 1 receptor to promote axonal growth.

    PubMed

    Shigyo, Michiko; Kuboyama, Tomoharu; Sawai, Yusuke; Tada-Umezaki, Masahito; Tohda, Chihiro

    2015-01-01

    Vimentin, an intermediate filament protein, is generally recognised as an intracellular protein. Previously, we reported that vimentin was secreted from astrocytes and promoted axonal growth. The effect of extracellular vimentin in neurons was a new finding, but its signalling pathway was unknown. In this study, we aimed to determine the signalling mechanism of extracellular vimentin that facilitates axonal growth. We first identified insulin-like growth factor 1 receptor (IGF1R) as a receptor that is highly phosphorylated by vimentin stimulation. IGF1R blockades diminished vimentin- or IGF1-induced axonal growth in cultured cortical neurons. IGF1, IGF2 and insulin were not detected in the neuron culture medium after vimentin treatment. The combined drug affinity responsive target stability method and western blotting analysis showed that vimentin and IGF1 interacted with IGF1R directly. In addition, immunoprecipitation and western blotting analyses confirmed that recombinant IGF1R bound to vimentin. The results of a molecular dynamics simulation revealed that C-terminal residues (residue number 330-407) in vimentin are the most appropriate binding sites with IGF1R. Thus, extracellular vimentin may be a novel ligand of IGF1R that promotes axonal growth in a similar manner to IGF1. Our results provide novel findings regarding the role of extracellular vimentin and IGF1R in axonal growth. PMID:26170015

  6. Immunoexpression of vascular endothelial growth factor and Ki-67 in human gingival samples: An observational study

    PubMed Central

    Kranti, K.; Mani, R.; Elizabeth, Anjana

    2015-01-01

    Aim: To evaluate immunohistochemically vascular endothelial growth factor (VEGF) and Ki-67 in human gingival samples and to compare these factors between healthy and diabetic patients. Materials and Methods: A total of 50 subjects were included in the study. They were categorized into three groups: Periodontally healthy group, periodontally diseased gingiva without any systemic disease group and periodontally diseased gingiva with controlled type II diabetes mellitus (DM) group. Gingival biopsies were performed and immunohistochemical analysis were done for VEGF and Ki-67 staining in gingival samples. Results: The present study found moderate intensity staining for VEGF in periodontitis group and periodontitis with controlled type II DM group and mild intensity staining for VEGF in periodontally healthy group. With regard to Ki-67, negative staining was observed in periodontally healthy group and mild staining in periodontitis group and periodontitis with controlled type II DM group. Conclusion: Further investigation needs to be conducted to identify how VEGF and Ki-67 are involved in the tissue inflammation associated processes and the relationship between VEGF and Ki-67 in progression of periodontitis. PMID:26097335

  7. Release characteristics of encapsulated formulations incorporating plant growth factors.

    PubMed

    Wybraniec, Slawomir; Schwartz, Liliana; Wiesman, Zeev; Markus, Arie; Wolf, David

    2002-05-01

    The release characteristics of encapsulated formulations containing a combination of plant growth factors (PGF)--plant hormones (IBA, paclobutrazol), nutrients (fertilizers, microelements), and fungicide (prochloraz)--were studied. The formulations were prepared by encapsulating the active ingredients in a polyethylene matrix and, in some cases, subsequently coating the product with polyurethane. Dissolution experiments were carried out with both coated and non-coated formulations to determine the sustained release patterns of the active ingredients. The PGF controlled-release systems obtained have been shown to promote development of root systems, vegetative growth, and reproductive development in cuttings, potted plants, or garden plants of various plant species. These beneficial effects are attributable to the lasting and balanced PGF availability provided by these systems. PMID:12009194

  8. Growth-hormone-releasing factor immunoreactivity in human endocrine tumors.

    PubMed Central

    Bostwick, D. G.; Quan, R.; Hoffman, A. R.; Webber, R. J.; Chang, J. K.; Bensch, K. G.

    1984-01-01

    Seventy-three human tumors and adjacent nonneoplastic tissues were analyzed immunohistochemically for the presence of growth-hormone-releasing factor (GRF). Four of 9 pancreatic endocrine tumors, 2 of 3 appendiceal carcinoids, and 1 of 5 cecal carcinoids were immunoreactive for GRF. One of the GRF-containing pancreatic tumors was associated with acromegaly. Histologically, the growth patterns of these tumors were variable, and the distribution of immunoreactive cells was patchy and irregular. There were no normal cells that contained GRF. These results indicate that GRF production by human tumors is more common than previously thought, although clinical acromegaly may not be apparent in patients who harbor such neoplasms. Images Figure 1 PMID:6093542

  9. Release characteristics of encapsulated formulations incorporating plant growth factors.

    PubMed

    Wybraniec, Slawomir; Schwartz, Liliana; Wiesman, Zeev; Markus, Arie; Wolf, David

    2002-05-01

    The release characteristics of encapsulated formulations containing a combination of plant growth factors (PGF)--plant hormones (IBA, paclobutrazol), nutrients (fertilizers, microelements), and fungicide (prochloraz)--were studied. The formulations were prepared by encapsulating the active ingredients in a polyethylene matrix and, in some cases, subsequently coating the product with polyurethane. Dissolution experiments were carried out with both coated and non-coated formulations to determine the sustained release patterns of the active ingredients. The PGF controlled-release systems obtained have been shown to promote development of root systems, vegetative growth, and reproductive development in cuttings, potted plants, or garden plants of various plant species. These beneficial effects are attributable to the lasting and balanced PGF availability provided by these systems.

  10. Nerve growth factor regulates gene expression by several distinct mechanisms

    SciTech Connect

    Cho, K.O.; Skarnes, W.C. ); Minsk, B.; Palmier, S. ); Jackson-Grusby, L.; Wagner, J.A. . Dept. of Biological Chemistry)

    1989-01-01

    To help elucidate the mechanisms by which nerve growth factor (NGF) regulates gene expression, the authors have identified and studied four genes (a-2, d-2, d-4, and d-5) that are positively regulated by NGF in PC12 cells, including one (d-2) which has previously been identified as a putative transcription factor (NGF I-A). Three of these genes, including d-2, were induced very rapidly at the transcriptional level, but the relative time courses of transcription and mRNA accumulation of each of these three genes were distinct. The fourth gene (d-4) displayed no apparent increase in transcription that corresponded to the increase in its mRNA, suggesting that NGF may regulate its expression at a posttranscriptional level. Thus NGF positively regulates gene expression by more than one mechanism. The study of the regulation of the expression of these and other NGF-inducible genes should provide valuable new information concerning how NGF and other growth factors cause neural differentiation.

  11. Fibroblast growth factor 15 deficiency impairs liver regeneration in mice.

    PubMed

    Kong, Bo; Huang, Jiansheng; Zhu, Yan; Li, Guodong; Williams, Jessica; Shen, Steven; Aleksunes, Lauren M; Richardson, Jason R; Apte, Udayan; Rudnick, David A; Guo, Grace L

    2014-05-15

    Fibroblast growth factor (FGF) 15 (human homolog, FGF19) is an endocrine FGF highly expressed in the small intestine of mice. Emerging evidence suggests that FGF15 is critical for regulating hepatic functions; however, the role of FGF15 in liver regeneration is unclear. This study assessed whether liver regeneration is altered in FGF15 knockout (KO) mice following 2/3 partial hepatectomy (PHx). The results showed that FGF15 KO mice had marked mortality, with the survival rate influenced by genetic background. Compared with wild-type mice, the KO mice displayed extensive liver necrosis and marked elevation of serum bile acids and bilirubin. Furthermore, hepatocyte proliferation was reduced in the KO mice because of impaired cell cycle progression. After PHx, the KO mice had weaker activation of signaling pathways that are important for liver regeneration, including signal transducer and activator of transcription 3, nuclear factor-κB, and mitogen-activated protein kinase. Examination of the KO mice at early time points after PHx revealed a reduced and/or delayed induction of immediate-early response genes, including growth-control transcription factors that are critical for liver regeneration. In conclusion, the results suggest that FGF15 deficiency severely impairs liver regeneration in mice after PHx. The underlying mechanism is likely the result of disrupted bile acid homeostasis and impaired priming of hepatocyte proliferation.

  12. Vitrification and Subsequent In Vitro Maturation of Mouse Preantral Follicles in Presence of Growth Factors

    PubMed Central

    Oryan Abkenar, Zahra; Ganji, Roya; Eghbal Khajehrahimi, Amir; Bahadori, Mohammad Hadi

    2014-01-01

    Objective Cryopreservation of ovarian tissue or follicles has been proposed as an alternative method for fertility preservation. Although successful vitrification of follicles has been reported in several mammalian species, the survival rate is generally low. The aim of this study was to investigate the effects of fibroblast growth factor (FGF) and epidermal growth factor (EGF) on in vitro preantral follicle development after vitrification. Materials and Methods In this experimental study, preantral follicles with diameter of 150-180 µm were mechanically isolated from ovaries of 18-21 days old NMRI mice. Follicles were vitrified and warmed, then cultured in a-minimal essential medium (α-MEM) without growth factor supplementation as control group (group I), while supplemented with 20 ng/ml FGF (group II), 20 ng/ml EGF (group III), and 20 ng/ml FGF +20 ng/ml EGF (group IV). After 12 days, human chorionic gonadotrophin (hCG)/EGF was added to culture medium, and after 18-20 hours, the presence of cumulus oocyte complexes (COCs) and oocyte maturation were assessed. The chi-square (Χ2) test was used to analyze survival and ovulation rates of the follicles. Results Our results showed that the rate of metaphase II (MII) oocytes in FGF group increased in comparison with control and other treatment groups (p<0.027), but there was no difference between control with EGF and EGF+FGF groups in oocyte maturation rate (p>0.05). There was a significant decrease in survival rate of follicles in EGF+FGE group in comparison with other groups (p<0.008). After in vitro ovulation induction, the follicles in EGF group showed a higher ovulation rate (p<0.008) than those cultured in other groups. Conclusion FGF has beneficial effect on oocyte maturation, and EGF increases COCs number in vitro. Combination of EGF and FGE decreases the number of survived follicles. PMID:24611145

  13. Growth properties and growth factor responsiveness in skin fibroblasts from centenarians.

    PubMed

    Tesco, G; Vergelli, M; Grassilli, E; Salomoni, P; Bellesia, E; Sikora, E; Radziszewska, E; Barbieri, D; Latorraca, S; Fagiolo, U; Santacaterina, S; Amaducci, L; Tiozzo, R; Franceschi, C; Sorbi, S

    1998-03-27

    Human fibroblast cultures, which have a finite replicative lifespan in vitro, are the most widely used model for the study of senescence at the cellular level. An inverse relationship between replicative capability and donor age has been reported in human fibroblast strains. We studied the growth capacity of fibroblast primary cultures derived from people whose lifespan was as closer as possible to the expected maximum human lifespan, i.e. people over one hundred. Our data suggest that outgrowth of fibroblasts from biopsies, growth kinetics at different population doubling levels, capability to respond to a classical mitogenic stimulus (such as 20% serum) and a variety of growth factors, were remarkably similar in fibroblasts from centenarians and young controls. On the whole, our data challenge the tenet of a simple and strict relationship between in vivo aging and in vitro proliferative capability of human fibroblasts, at least at the individual level. PMID:9535767

  14. Effects of Hypergravity Rearing on Growth Hormone and Insulin-Like Growth Factor in Rat Pups

    NASA Technical Reports Server (NTRS)

    Baer, L. A.; Chowdhury, J. H.; Grindeland, R. E.; Wade, C. E.; Ronca, A. E.

    2003-01-01

    Body weights of rat pups reared during exposure to hypergravity (hg) are significantly reduced relative to 1 g controls. In the present study, we examined in hg-reared rat pups two major contributors to growth and development, namely growth hormone (GH) and insulin-like growth factor-1 (IGF-1). Beginning on Gestational day (G)11 of the rats 22 day pregnancy, rat dams and their litters were continuously exposed to either 1.5-g or 2.0-g. On Postnatal day (P)l0, plasma GH and IGF-1 were analyzed using radioimmunoassay (RIA). Both hormones were significantly elevated in hg pups relative to 1-g control pups. Together, these findings suggest that GH and IGF-1 are not primary determinants of reduced body weights observed in hg-reared pups. The significant elevations in pup GH and IGF-1 may be related to increased physical stimulation in hypergravity.

  15. Trophic effect of human pericardial fluid on adult cardiac myocytes. Differential role of fibroblast growth factor-2 and factors related to ventricular hypertrophy.

    PubMed

    Corda, S; Mebazaa, A; Gandolfini, M P; Fitting, C; Marotte, F; Peynet, J; Charlemagne, D; Cavaillon, J M; Payen, D; Rappaport, L; Samuel, J L

    1997-11-01

    Pericardial fluid (PF) may contain myocardial growth factors that exert paracrine actions on cardiac myocytes. The aims of this study were (1) to investigate the effects of human PF and serum, collected from patients undergoing cardiac surgery, on the growth of cultured adult rat cardiac myocytes and (2) to relate the growth activity of both fluids to the adaptive changes in overloaded human hearts. Both PF and serum increased the rate of protein synthesis, measured by [14C]phenylalanine incorporation in adult rat cardiomyocytes (PF, +71.9 +/- 8.2% [n = 17]; serum, +14.9 +/- 6.5% [n = 13]; both P < .01 versus control medium). The effects of both PF and serum on cardiomyocyte growth correlated positively with the respective left ventricular (LV) mass. However, the magnitude of change with PF was 3-fold greater than with serum (P < .01). These trophic effects of PF were mimicked by exogenous basic fibroblast growth factor (FGF2) and inhibited by anti-FGF2 antibodies and transforming growth factor-beta (TGF-beta), suggesting a relationship to FGF2. In addition, FGF2 concentration in PF was 20 times greater than in serum. On the other hand, the LV mass-dependent trophic effect, present in both fluids, was independent of FGF2 concentration or other factors, such as angiotensin II, atrial natriuretic factor, and TGF-beta. These data suggest that FGF2 in human PF is a major determining factor in normal myocyte growth, whereas unidentified LV mass-dependent factor(s), present in both PF and serum, participates in the development of ventricular hypertrophy. PMID:9351441

  16. Factors Influencing College Selection by NCAA Division I, II, and III Lacrosse Players

    ERIC Educational Resources Information Center

    Pauline, Jeffrey

    2010-01-01

    The purpose of this investigation was to examine factors influencing college selection by NCAA Division I, II and III lacrosse players. The Influential Factors Survey for Student-Athletes-Revised was used to collect data from 792 male and female collegiate lacrosse players. Descriptive statistics showed the most influential factors were: career…

  17. Environmental estrogens inhibit growth of rainbow trout (Oncorhynchus mykiss) by modulating the growth hormone-insulin-like growth factor system.

    PubMed

    Hanson, Andrea M; Kittilson, Jeffrey D; Martin, Lincoln E; Sheridan, Mark A

    2014-01-15

    Although environmental estrogens (EE) have been found to disrupt a wide variety of developmental and reproductive processes in vertebrates, there is a paucity of information concerning their effects on organismal growth, particularly postembryonic growth. In this study, we exposed juvenile rainbow trout (Oncorhynchus mykiss) to 17β-estradiol (E2) β-sitosterol (βS), or 4-n-nonylphenol (NP) to assess the effects of EE on overall organismal growth and on the growth hormone-insulin-like-growth factor (GH-IGF) system. EE treatment significantly reduced food conversion, body condition, and body growth. EE-inhibited growth resulted from alterations in peripheral elements of the GH-IGF system, which includes multiple GH receptors (GHRs), IGFs, and IGF receptors (IGFRs). In general, E2, βS, and NP reduced the expression of GHRs, IGFs, and IGFRs; however, the effects varied in an EE-, tissue-, element type-specific manner. For example, in liver, E2 was more efficacious than either βS, and NP in reducing GHR expression, and the effect of E2 was greater on GHR 1 than GHR2 mRNA. By contrast, in gill, all EEs affected GHR expression in a similar manner and there was no difference in the effect on GHR1 and GHR 2 mRNA. With regard to IGF expression, all EEs reduced hepatic IGF1 and IGF2 mRNA levels, whereas as in gill, only E2 and NP significantly reduced IGF1 and IGF2 expression. Lastly, E2 and NP reduced the expression of IGFR1A and IGFR1B mRNA expression similarly in gill and red and white muscle, whereas βS had no effect on expression of IGFR mRNAs. These findings indicate that EEs disrupt post-embryonic growth by reducing GH sensitivity, IGF production, and IGF sensitivity.

  18. Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta.

    PubMed Central

    Coffey, R J; Bascom, C C; Sipes, N J; Graves-Deal, R; Weissman, B E; Moses, H L

    1988-01-01

    Transforming growth factor beta (TGF beta) is a potent inhibitor of epithelial cell proliferation. A nontumorigenic epidermal growth factor (EGF)-dependent epithelial cell line, BALB/MK, is reversibly growth arrested by TGF beta. TGF beta will also abrogate EGF-stimulated mitogenesis of quiescent BALB/MK cells. Increased levels of calcium (greater than 1.0 mM) will induce differentiation in BALB/MK cells; in contrast, TGF beta-mediated growth inhibition does not result in induction of terminal differentiation. In the present study, the effects of TGF beta and calcium on growth factor-inducible gene expression were examined. TGF beta markedly decreased c-myc and KC gene expression in rapidly growing BALB/MK cells and reduced the EGF induction of c-myc and KC in a quiescent population of cells. TGF beta exerted its control over c-myc expression at a posttranscriptional level, and this inhibitory effect was dependent on protein synthesis. TGF beta had no effect on c-fos gene expression, whereas 1.5 mM calcium attenuated EGF-induced c-fos expression in quiescent cells. Expression of beta-actin, however, was slightly increased in both rapidly growing and EGF-restimulated quiescent BALB/MK cells treated with TGF beta. Thus, in this system, TGF beta selectively reduced expression of certain genes associated with cell proliferation (c-myc and KC), and at least part of the TGF beta effect was at a posttranscriptional level. Images PMID:2463471

  19. Self-organized MBE growth of II VI epilayers on patterned GaSb substrates

    NASA Astrophysics Data System (ADS)

    Wissmann, H.; Tran Anh, T.; Rogaschewski, S.; von Ortenberg, M.

    1999-05-01

    We report on the self-organized MBE growth of II-VI epilayers on patterned and unpatterned GaSb substrates resulting in quantum wires and quantum wells, respectively. The HgSe : Fe quantum wires were grown on (0 0 1)GaSb substrates with a buffer of lattice-matched ZnTe 1- xSe x. Due to the anisotropic growth of HgSe on the A-oriented stripes roof-like overgrowth with a definite ridge was obtained. Additional Fe doping in the direct vicinity of the ridge results in a highly conductive quantum wire.

  20. Myoferlin is required for insulin-like growth factor response and muscle growth

    PubMed Central

    Demonbreun, Alexis R.; Posey, Avery D.; Heretis, Konstantina; Swaggart, Kayleigh A.; Earley, Judy U.; Pytel, Peter; McNally, Elizabeth M.

    2010-01-01

    Insulin-like growth factor (IGF) is a potent stimulus of muscle growth. Myoferlin is a membrane-associated protein important for muscle development and regeneration. Myoferlin-null mice have smaller muscles and defective myoblast fusion. To understand the mechanism by which myoferlin loss retards muscle growth, we found that myoferlin-null muscle does not respond to IGF1. In vivo after IGF1 infusion, control muscle increased myofiber diameter by 25%, but myoferlin-null muscle was unresponsive. Myoblasts cultured from myoferlin-null muscle and treated with IGF1 also failed to show the expected increase in fusion to multinucleate myotubes. The IGF1 receptor colocalized with myoferlin at sites of myoblast fusion. The lack of IGF1 responsiveness in myoferlin-null myoblasts was linked directly to IGF1 receptor mistrafficking as well as decreased IGF1 signaling. In myoferlin-null myoblasts, the IGF1 receptor accumulated into large vesicular structures. These vesicles colocalized with a marker of late endosomes/lysosomes, LAMP2, specifying redirection from a recycling to a degradative pathway. Furthermore, ultrastructural analysis showed a marked increase in vacuoles in myoferlin-null muscle. These data demonstrate that IGF1 receptor recycling is required for normal myogenesis and that myoferlin is a critical mediator of postnatal muscle growth mediated by IGF1.—Demonbreun, A. R., Posey, A. D., Heretis, K., Swaggart, K. A., Earley, J. U., Pytel, P., McNally, E. M. Myoferlin is required for insulin-like growth factor response and muscle growth. PMID:20008164

  1. Growth Factors Outside the PDGF Family Drive Experimental PVR

    PubMed Central

    Lei, Hetian; Velez, Gisela; Hovland, Peter; Hirose, Tatsuo; Gilbertson, Debra; Kazlauskas, Andrius

    2009-01-01

    Purpose Proliferative vitreoretinopathy (PVR) is a recurring and problematic disease for which there is no pharmacologic treatment. Platelet-derived growth factor (PDGF) in the vitreous is associated with experimental and clinical PVR. Furthermore, PDGF receptors (PDGFRs) are present and activated in epiretinal membranes of patient donors, and they are essential for experimental PVR. These observations suggest that PVR arises at least in part from PDGF/PDGFR-driven events. The goal of this study was to determine whether PDGFs were a potential therapeutic target for PVR. Methods Experimental PVR was induced in rabbits by injecting fibroblasts. Vitreous specimens were collected from experimental rabbits or from patients undergoing vitrectomy to repair retinal detachment. A neutralizing PDGF antibody and a PDGF Trap were tested for their ability to prevent experimental PVR. Activation of PDGFR was monitored by antiphosphotyrosine Western blot analysis of immunoprecipitated PDGFRs. Contraction of collagen gels was monitored in vitro. Results Neutralizing vitreal PDGFs did not effectively attenuate PVR, even though the reagents used potently blocked PDGF-dependent activation of the PDGF α receptor (PDGFRα). Vitreal growth factors outside the PDGF family modestly activated PDGFRα and appeared to do so without engaging the ligand-binding domain of PDGFRα. This indirect route to activate PDGFRα had profound functional consequences. It promoted the contraction of collagen gels and appeared sufficient to drive experimental PVR. Conclusions Although PDGF appears to be a poor therapeutic target, PDGFRα is particularly attractive because it can be activated by a much larger spectrum of vitreal growth factors than previously appreciated. PMID:19324843

  2. Growth factors and stem cells as treatments for stroke recovery.

    PubMed

    Cairns, Kevin; Finklestein, Seth P

    2003-02-01

    Both polypeptide growth factors and stem cell populations from bone marrow and umbilical cord blood hold promise as treatments to enhance neurologic recovery after stroke. Growth factors may exert their effects through stimulation of neural sprouting and enhancement of endogenous progenitor cell proliferation, migration, and differentiation in brain. Exogenous stem cells may exert their effects by acting as miniature "factories" for trophic substances in the poststroke brain. The combination of growth factors and stem cells may be more effective than either treatment alone. Stroke recovery represents a new and relatively untested target for stroke therapeutics. Whereas acute stroke treatments focus on agents that dissolve blot clots (thrombolytics) and antagonize cell death (neuroprotective agents), stroke recovery treatments are likely to enhance structural and functional reorganization (plasticity) of the damaged brain. Successful clinical trials of stroke recovery-promoting agents are likely to be quite different from trials testing acute stroke therapies. In particular, the time window of effective treatment to enhance stroke recovery is likely to be far longer than that for acute stroke treatments, perhaps days or weeks rather than minutes or hours after stroke. This longer time window means that time is available for careful screening and testing of potential subjects for stroke recovery trials, both in terms of size and location of cerebral infarcts and in type and severity of neurologic deficits. Detailed baseline information can be obtained for each patient against which eventual clinical outcome can be compared. Finally, separate and detailed outcome measures can be obtained in both the sensorimotor and cognitive neurologic spheres, because it is possible that these two kinds of function may recover differently or be differentially responsive to recovery-promoting treatments. Stroke recovery represents an important and underexplored opportunity for the

  3. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  4. Insulin-like signaling (IIS) responses to temperature, genetic background, and growth variation in garter snakes with divergent life histories.

    PubMed

    Reding, Dawn M; Addis, Elizabeth A; Palacios, Maria G; Schwartz, Tonia S; Bronikowski, Anne M

    2016-07-01

    The insulin/insulin-like signaling pathway (IIS) has been shown to mediate life history trade-offs in mammalian model organisms, but the function of this pathway in wild and non-mammalian organisms is understudied. Populations of western terrestrial garter snakes (Thamnophis elegans) around Eagle Lake, California, have evolved variation in growth and maturation rates, mortality senescence rates, and annual reproductive output that partition into two ecotypes: "fast-living" and "slow-living". Thus, genes associated with the IIS network are good candidates for investigating the mechanisms underlying ecological divergence in this system. We reared neonates from each ecotype for 1.5years under two thermal treatments. We then used qPCR to compare mRNA expression levels in three tissue types (brain, liver, skeletal muscle) for four genes (igf1, igf2, igf1r, igf2r), and we used radioimmunoassay to measure plasma IGF-1 and IGF-2 protein levels. Our results show that, in contrast to most mammalian model systems, igf2 mRNA and protein levels exceed those of igf1 and suggest an important role for igf2 in postnatal growth in reptiles. Thermal rearing treatment and recent growth had greater impacts on IGF levels than genetic background (i.e., ecotype), and the two ecotypes responded similarly. This suggests that observed ecotypic differences in field measures of IGFs may more strongly reflect plastic responses in different environments than evolutionary divergence. Future analyses of additional components of the IIS pathway and sequence divergence between the ecotypes will further illuminate how environmental and genetic factors influence the endocrine system and its role in mediating life history trade-offs. PMID:27181752

  5. Modulation of growth and differentiation in normal human keratinocytes by transforming growth factor-beta

    SciTech Connect

    Matsumoto, K.; Hashimoto, K.; Hashiro, M.; Yoshimasa, H.; Yoshikawa, K. )

    1990-10-01

    The effect of transforming growth factor-type beta 1(TGF-beta) on the growth and differentiation of normal human skin keratinocytes cultured in serum-free medium was investigated. TGF-beta markedly inhibited the growth of keratinocytes at the concentrations greater than 2 ng/ml under low Ca2+ conditions (0.1 mM). Growth inhibition was accompanied by changes in cell functions related to proliferation. Remarkable inhibition of DNA synthesis was demonstrated by the decrease of (3H)thymidine incorporation. The decrease of (3H)thymidine incorporation was observed as early as 3 hr after addition of TGF-beta. TGF-beta also decreased c-myc messenger RNA (mRNA) expression 30 min after addition of TGF-beta. This rapid reduction of c-myc mRNA expression by TGF-beta treatment is possibly one of the main factors in the process of TGF-beta-induced growth inhibition of human keratinocytes. Since growth inhibition and induction of differentiation are closely related in human keratinocytes, the growth-inhibitory effect of TGF-beta under high Ca2+ conditions was examined. TGF-beta inhibited the growth of keratinocytes under high Ca2+ conditions in the same manner as under low Ca2+ conditions, suggesting that it is a strong growth inhibitor in both low and high Ca2+ environments. The induction of keratinocyte differentiation was evaluated by measuring involucrin expression and cornified envelope formation: TGF-beta at 20 ng/ml increased involucrin expression from 9.3% to 18.8% under high Ca2+ conditions, while it decreased involucrin expression from 7.0% to 3.3% under low Ca2+ conditions. Cornified envelope formation was modulated in a similar way by addition of TGF-beta: TGF-beta at 20 ng/ml decreased cornified envelope formation by 53% under low Ca2+ conditions, while it enhanced cornified envelope formation by 30.7% under high Ca2+ conditions.

  6. Platelet Derived Growth Factor-B and Human Epidermal Growth Factor Receptor-2 Polymorphisms in Gall Bladder Cancer.

    PubMed

    Mishra, Kumudesh; Behari, Anu; Kapoor, Vinay Kumar; Khan, M Salman; Prakash, Swayam; Agrawal, Suraksha

    2015-01-01

    Gall bladder cancer (GBC) is a gastro-intestinal cancer with high prevalence among north Indian women. Platelet derived growth factor-B (PDGFB) and human epidermal growth factor receptor-2 (HER2) may play roles in the etiology of GBC through the inflammation-hyperplasia-dysplasia-carcinoma pathway. To study the association of PDGFB and HER2 polymorphisms with risk of GBC, 200 cases and 300 controls were considered. PDGFB +286A>G and +1135A>C polymorphisms were investigated with an amplification refractory mutation system and the HER2 Ile655Val polymorphism by restriction fragment length polymorphism. Significant risk associations for PDGFB +286 GG (OR=5.25) and PDGFB +1135 CC (OR=3.19) genotypes were observed for GBC. Gender wise stratification revealed susceptibility for recessive models of PDGFB +1135A>C (OR=3.00) and HER2 Ile655Val (OR=2.52) polymorphisms among female GBC cases. GBC cases with gall stones were predisposed to homozygous +286 GG and +1135 CC genotypes. Significant risk associations were found for ACIle (OR=1.48), GAVal (OR=1.70), GAIle (OR=2.00) haplotypes with GBC cases and GCIle haplotype with female GBC cases (OR=10.37, P=<0.0001). Pair-wise linkage disequilibrium revealed negative associations among variant alleles. On multi-dimensional reduction analysis, a three factor model revealed significant gene-gene interaction for PDGFB +286A>G, PDGFB +1135A>C and HER2 Ile165Val SNPs with GBC. Protein-protein interaction showed significant association of PDGFB and HER2 with the epidermal growth factor receptor signaling pathway. PMID:26320430

  7. Biomarkers of gene expression: growth factors and oncoproteins.

    PubMed Central

    Brandt-Rauf, P W

    1997-01-01

    This article reviews the literature on the application of methods for the detection of growth factors, oncogene proteins, and tumor-suppressor gene proteins in the blood of humans with cancer or who are at risk for the development of cancer. The research summarized here suggests that many of these biomarker assays can be used to distinguish between diseased and nondiseased states and in some instances may be able to predict susceptibility for future disease. Thus, these biomarkers could be valuable tools for monitoring at-risk populations for purposes of disease prevention and control. PMID:9255565

  8. Stochastic contribution to the growth factor in the LCDM model

    SciTech Connect

    Ribeiro, A. L.B.; Andrade, A. P.A.; Letelier, P. S.

    2009-01-01

    We study the effect of noise on the evolution of the growth factor of density perturbations in the context of the LCDM model. Stochasticity is introduced as a Wiener process amplified by an intensity parameter alpha. By comparing the evolution of deterministic and stochastic cases for different values of alpha we estimate the intensity level necessary to make noise relevant for cosmological tests based on large-scale structure data. Our results indicate that the presence of random forces underlying the fluid description can lead to significant deviations from the nonstochastic solution at late times for alpha>0.001.

  9. Growth factors: potential for the management of solid epithelial tumours.

    PubMed

    Jankowski, J A

    1996-03-01

    At present we are on the threshold of an enormous change in clinical practice. The application of molecular medicine has already started and the area of growth factor biology is particularly relevant to this endeavor (Figure 6) (Jankowski and Polak 1996). Perhaps the major limitation to this process is the rate at which the clinician can comprehend and then undertake carefully designed molecular studies in gastroenterology. In time monographs that specifically address the issue of molecular medicine in clinical gene analysis and manipulation may perhaps replace standard text books (see Jankowski and Polak, 1996). PMID:8732307

  10. Epidermal growth factor receptors in the canine antrum

    SciTech Connect

    Zimmerman, R.P.; Gates, T.S.; Boehmer, C.G.; Mantyh, P.W.

    1988-11-01

    In this study we localized receptor binding sites for /sup 125/I-human epidermal growth factor (hEGF) in the antrum of the adult canine stomach. High levels of specific /sup 125/I-hEGF binding sites were observed over the mucosa and muscularis mucosa, whereas specific binding sites were not detectable over the submucosa, external circular and longitudinal muscle or myenteric neurons. These results are in agreement with previous studies which indicated that EGF stimulates the proliferation of cultured epithelial cells and inhibits gastric acid secretion. This suggests that EGF may be a useful therapeutic agent in the healing of gastric ulcers.

  11. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells.

    PubMed Central

    Kuwabara, K; Ogawa, S; Matsumoto, M; Koga, S; Clauss, M; Pinsky, D J; Lyn, P; Leavy, J; Witte, L; Joseph-Silverstein, J

    1995-01-01

    Wound repair and tumor vascularization depend upon blood vessel growth into hypoxic tissue. Although hypoxia slows endothelial cell (EC) proliferation and suppresses EC basic fibroblast growth factor (bFGF) expression, we report that macrophages (MPs) exposed to PO2 approximately 12-14 torr (1 torr = 133.3 Pa) synthesize and release in a time-dependent manner platelet-derived growth factor (PDGF) and acidic/basic FGFs (a/bFGFs), which stimulate the growth of hypoxic ECs. Chromatography of hypoxic MP-conditioned medium on immobilized heparin with an ascending NaCl gradient resolved three peaks of mitogenic activity: activity of the first peak was neutralized by antibody to PDGF; activity of the second peak was neutralized by antibody to aFGF; and activity of the third peak was neutralized by antibody to bFGF. Metabolically labeled lysates and supernatants from MPs exposed to hypoxia showed increased synthesis and release of immunoprecipitable PDGF and a/bFGF in the absence of changes in cell viability. Possible involvement of a heme-containing oxygen sensor in MP elaboration of growth factors was suggested by the induction of bFGF and PDGF by normoxic MPs exposed to nickel or cobalt, although metabolic inhibitors such as sodium azide were without effect. These results suggest a paracrine model in which hypoxia stimulates MP release of PDGF and a/bFGF, inducing EC proliferation and potentially promoting angiogenesis in hypoxic environments. Images Fig. 1 Fig. 3 Fig. 4 PMID:7538678

  12. Appropriate Fe (II) Addition Significantly Enhances Anaerobic Ammonium Oxidation (Anammox) Activity through Improving the Bacterial Growth Rate

    PubMed Central

    Liu, Yiwen; Ni, Bing-Jie

    2015-01-01

    The application of anaerobic ammonium oxidation (Anammox) process is often limited by the slow growth rate of Anammox bacteria. As the essential substrate element that required for culturing Anammox sludge, Fe (II) is expected to affect Anammox bacterial growth. This work systematically studied the effects of Fe (II) addition on Anammox activity based on the kinetic analysis of specific growth rate using data from batch tests with an enriched Anammox sludge at different dosing levels. Results clearly demonstrated that appropriate Fe (II) dosing (i.e., 0.09 mM) significantly enhanced the specific Anammox growth rate up to 0.172 d−1 compared to 0.118 d−1 at regular Fe (II) level (0.03 mM). The relationship between Fe (II) concentration and specific Anammox growth rate was found to be well described by typical substrate inhibition kinetics, which was integrated into currently well-established Anammox model to describe the enhanced Anammox growth with Fe (II) addition. The validity of the integrated Anammox model was verified using long-term experimental data from three independent Anammox reactors with different Fe (II) dosing levels. This Fe (II)-based approach could be potentially implemented to enhance the process rate for possible mainstream application of Anammox technology, in order for an energy autarchic wastewater treatment. PMID:25644239

  13. Appropriate Fe (II) Addition Significantly Enhances Anaerobic Ammonium Oxidation (Anammox) Activity through Improving the Bacterial Growth Rate

    NASA Astrophysics Data System (ADS)

    Liu, Yiwen; Ni, Bing-Jie

    2015-02-01

    The application of anaerobic ammonium oxidation (Anammox) process is often limited by the slow growth rate of Anammox bacteria. As the essential substrate element that required for culturing Anammox sludge, Fe (II) is expected to affect Anammox bacterial growth. This work systematically studied the effects of Fe (II) addition on Anammox activity based on the kinetic analysis of specific growth rate using data from batch tests with an enriched Anammox sludge at different dosing levels. Results clearly demonstrated that appropriate Fe (II) dosing (i.e., 0.09 mM) significantly enhanced the specific Anammox growth rate up to 0.172 d-1 compared to 0.118 d-1 at regular Fe (II) level (0.03 mM). The relationship between Fe (II) concentration and specific Anammox growth rate was found to be well described by typical substrate inhibition kinetics, which was integrated into currently well-established Anammox model to describe the enhanced Anammox growth with Fe (II) addition. The validity of the integrated Anammox model was verified using long-term experimental data from three independent Anammox reactors with different Fe (II) dosing levels. This Fe (II)-based approach could be potentially implemented to enhance the process rate for possible mainstream application of Anammox technology, in order for an energy autarchic wastewater treatment.

  14. Appropriate Fe (II) addition significantly enhances anaerobic ammonium oxidation (Anammox) activity through improving the bacterial growth rate.

    PubMed

    Liu, Yiwen; Ni, Bing-Jie

    2015-01-01

    The application of anaerobic ammonium oxidation (Anammox) process is often limited by the slow growth rate of Anammox bacteria. As the essential substrate element that required for culturing Anammox sludge, Fe (II) is expected to affect Anammox bacterial growth. This work systematically studied the effects of Fe (II) addition on Anammox activity based on the kinetic analysis of specific growth rate using data from batch tests with an enriched Anammox sludge at different dosing levels. Results clearly demonstrated that appropriate Fe (II) dosing (i.e., 0.09 mM) significantly enhanced the specific Anammox growth rate up to 0.172 d(-1) compared to 0.118 d(-1) at regular Fe (II) level (0.03 mM). The relationship between Fe (II) concentration and specific Anammox growth rate was found to be well described by typical substrate inhibition kinetics, which was integrated into currently well-established Anammox model to describe the enhanced Anammox growth with Fe (II) addition. The validity of the integrated Anammox model was verified using long-term experimental data from three independent Anammox reactors with different Fe (II) dosing levels. This Fe (II)-based approach could be potentially implemented to enhance the process rate for possible mainstream application of Anammox technology, in order for an energy autarchic wastewater treatment. PMID:25644239

  15. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Min; Shea, Jill; Gale, Bruce K.; Sant, Himanshu; Larrabee, Patti; Agarwal, Jay

    2016-04-01

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6-95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps.

  16. Nordihydroguaiaretic Acid Inhibits Insulin-Like Growth Factor Signaling, Growth, and Survival in Human Neuroblastoma Cells

    PubMed Central

    Meyer, Gary E.; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A.; Goldenberg, David D.; Youngren, Jack F.; Goldfine, Ira D.; Weiss, William A.; Matthay, Katherine K.; Rosenthal, Stephen M.

    2010-01-01

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling. PMID:17486636

  17. Nordihydroguaiaretic acid inhibits insulin-like growth factor signaling, growth, and survival in human neuroblastoma cells.

    PubMed

    Meyer, Gary E; Chesler, Louis; Liu, Dandan; Gable, Karissa; Maddux, Betty A; Goldenberg, David D; Youngren, Jack F; Goldfine, Ira D; Weiss, William A; Matthay, Katherine K; Rosenthal, Stephen M

    2007-12-15

    Neuroblastoma is a common pediatric malignancy that metastasizes to the liver, bone, and other organs. Children with metastatic disease have a less than 50% chance of survival with current treatments. Insulin-like growth factors (IGFs) stimulate neuroblastoma growth, survival, and motility, and are expressed by neuroblastoma cells and the tissues they invade. Thus, therapies that disrupt the effects of IGFs on neuroblastoma tumorigenesis may slow disease progression. We show that NVP-AEW541, a specific inhibitor of the IGF-I receptor (IGF-IR), potently inhibits neuroblastoma growth in vitro. Nordihydroguaiaretic acid (NDGA), a phenolic compound isolated from the creosote bush (Larrea divaricata), has anti-tumor properties against a number of malignancies, has been shown to inhibit the phosphorylation and activation of the IGF-IR in breast cancer cells, and is currently in Phase I trials for prostate cancer. In the present study in neuroblastoma, NDGA inhibits IGF-I-mediated activation of the IGF-IR and disrupts activation of ERK and Akt signaling pathways induced by IGF-I. NDGA inhibits growth of neuroblastoma cells and induces apoptosis at higher doses, causing IGF-I-resistant activation of caspase-3 and a large increase in the fraction of sub-G0 cells. In addition, NDGA inhibits the growth of xenografted human neuroblastoma tumors in nude mice. These results indicate that NDGA may be useful in the treatment of neuroblastoma and may function in part via disruption of IGF-IR signaling.

  18. Vapor transport epitaxy: an advanced growth process for III-V and II-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Gurary, Alexander; Tompa, Gary S.; Nelson, Craig R.; Stall, Richard A.; Lu, Yicheng; Liang, Shaohua

    1992-09-01

    The Vapor Transport Epitaxy (VTE) thin film deposition technique for the deposition of III - V and II - VI compound semiconductors and material results are reviewed. The motivation for development of the VTE technique is the elimination of several problems common to molecular beam epitaxy/chemical beam epitaxy and metalorganic chemical vapor deposition systems. In VTE, vapors from sources feed through throttling valves into a common manifold which is located directly below the inverted wafer. A high degree of film uniformity is achieved by controlling the flux distribution from the common manifold. The technique operates in the 10-4 - 10-6 Torr range using elemental, metalorganic or gaseous precursors. The system is configurated for 2 inch diameter wafers but the geometry may easily be scaled for larger diameters. Using elemental sources, we have demonstrated oval defect free growth of GaAs on GaAs (100) and (111) 2 degree(s) off substrates, through several microns of thickness at growth rates up to ten microns per hour. GaAs films which were grown without the manifold exhibit classic oval defects. The deposition rate of ZnSe films as a function of elemental flux, VI/II ratio, and growth temperature are described. The ZnSe films exhibited smooth surface morphologies on GaAs (100) 2 degree(s) off substrates. X- ray analysis shows that III - V and II - VI films exhibited crystallinities comparable to films produced by molecular beam epitaxy and metalorganic chemical vapor deposition techniques.

  19. Extracellular matrix and growth factors in corneal wound healing.

    PubMed

    Nishida, T; Tanaka, T

    1996-08-01

    The crystal clear cornea has been challenged by refractive surgeries. The surgical outcome depends on the healing responses of the cornea. The factors responsible for the corneal wound healing have been characterized. The orchestrated action of extracellular matrix proteins, growth factors, cytokines, and their receptors have been investigated extensively over the past decade. The clinical results with refractive surgeries provide us various important information with regard to the physiology and pathology of the cornea. The role of basement membrane or Bowman's membrane is now challenged for the maintenance and repair of the epithelium. Furthermore, the interactions between epithelium and stroma is another field to be investigated. The regulatory mechanisms of the maintenance of stromal collagen by keratocytes is also studied. This review discusses the current advancement in the healing responses of the cornea to various injuries and refractive surgeries.

  20. [Effect of manganese (II), cobalt (II), and nickel (II) ions on the growth and production of coumarins in the suspension culture of Angelica archangelica L].

    PubMed

    Siatka, T; Kasparová, M; Sklenárová, H; Solich, P

    2005-01-01

    The plant cell reacts to an increased concentration of metals in the environment by various mechanisms. They include an increase in the formation of heat-shock proteins, metallothioneins, phytochelatins, amino acids (cysteine, histidine), organic acids (citric, malic), or secondary metabolites. The latter mechanism is being investigated for its possible use in explant cultures for the stimulation of secondary metabolism, which is the source of substances of pharmaceutical importance. The study tested manganese (II) (0, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, and 50 mM in the medium), cobalt (II), and nickel (II) ions (0, 0.1, 0.5, 1, 5, 10, 50, 100, 200, and 500 microM in the medium) as potential elicitors of coumarin production. At the same time, toxicity of these metals for the culture was examined by evaluating their effect on growth (characterized by fresh and dry weight of biomass at the end of a two-week cultivation). Cultures were cultivated in the dark and in the light. It has been found that the growth of cultures is not influenced by manganese in concentrations ranging from 0 to 2 mM, then it slightly decreases, at a concentration of 50 mM it is lower by 20 % when cultivated in the dark and by 30 % when cultivated in the light in comparison with the control. Cobalt in concentrations of 0 to 50 microM does not significantly influence the growth of the culture, higher concentrations decrease the biomass yields, more markedly when cultivated in the light (at 500 microM Co by 60 %, in the dark only by 30 % in comparison with the controls). Nickel in concentrations of 0.1 to 200 microM does not influence growth, and in a concentration of 500 microM decreases it by approximately 30 % in comparison with the control both in the light and dark. Production of coumarins was not stimulated by any metal in comparison with the control cultures, only the removal of manganese from the medium in the culture cultivated in the dark increased production by about 15 % versus the

  1. Electrospinning Growth Factor Releasing Microspheres into Fibrous Scaffolds

    PubMed Central

    Whitehead, Tonya J.; Sundararaghavan, Harini G.

    2014-01-01

    This procedure describes a method to fabricate a multifaceted substrate to direct nerve cell growth. This system incorporates mechanical, topographical, adhesive and chemical signals. Mechanical properties are controlled by the type of material used to fabricate the electrospun fibers. In this protocol we use 30% methacrylated Hyaluronic Acid (HA), which has a tensile modulus of ~500 Pa, to produce a soft fibrous scaffold. Electrospinning on to a rotating mandrel produces aligned fibers to create a topographical cue. Adhesion is achieved by coating the scaffold with fibronectin. The primary challenge addressed herein is providing a chemical signal throughout the depth of the scaffold for extended periods. This procedure describes fabricating poly(lactic-co-glycolic acid) (PLGA) microspheres that contain Nerve Growth Factor (NGF) and directly impregnating the scaffold with these microspheres during the electrospinning process. Due to the harsh production environment, including high sheer forces and electrical charges, protein viability is measured after production. The system provides protein release for over 60 days and has been shown to promote primary nerve cell growth. PMID:25178038

  2. Psychosocial factors and intrauterine fetal growth: a prospective study.

    PubMed

    Aarts, M C; Vingerhoets, A J

    1993-12-01

    This study focused on the possible role of psychosocial factors on intrauterine fetal growth. Pregnant women (n = 236) completed questionnaires on daily stressors and psychosomatic symptoms three times during pregnancy; in the 11-12th week, the 23-24th week and the 35-36th week. In addition, information was obtained on the quality of the marital relationship, social support, social class, physical work load, weight of the biological parents and life-style variables (including smoking, alcohol and coffee consumption). Birth weight corrected for gestational age, sex and parity was utilized as an index of intrauterine fetal growth. This dependent measure did not appear to be affected by exposure to daily stressors or disturbed maternal well-being on any of the measuring points. Smoking appeared to be the best predictor of fetal growth, together with maternal weight and the family's socioeconomic status. These variables accounted for 10.6% of the variance. It is postulated that the absence of a relationship between stressors and fetal development may be due to the buffering effects of adequate emotional support provided by the partners and the further social network. PMID:8142979

  3. Effect of factor VIII on tissue factor-initiated spatial clot growth.

    PubMed

    Ovanesov, Mikhail V; Lopatina, Elena G; Saenko, Evgueni L; Ananyeva, Natalya M; Ul'yanova, Ljudmila I; Plyushch, Olga P; Butilin, Andrey A; Ataullakhanov, Fazly I

    2003-02-01

    Using time-lapse videomicroscopy, we studied the role of coagulation factor VIII (fVIII) in tissue factor-initiated spatial clot growth on fibroblast monolayers in a thin layer of non-stirred recalcified plasma from healthy donors or patients with severe Haemophilia A. Analysis of temporal evolution of light-scattering profiles from a growing clot revealed existence of two phases in the clot growth-initiation phase in a narrow (0.2 mm) zone adjacent to activator surface and elongation phase in plasma volume. While the initiation phase did not differ in normal and haemophilic plasmas, the rate of clot growth in the elongation phase in haemophilic plasma constituted only 30% of that in normal plasma. Supplementation of haemophilic plasma with 0.05 U/ml fVIII restored the normal clot growth rate (44.9 +/- 2.5 microm/min) at high but not at low fibroblast density. Our results indicate that the functioning of the intrinsic tenase complex is critical for normal spatial clot growth.

  4. Injectable fibroblast growth factor-2 coacervate for persistent angiogenesis.

    PubMed

    Chu, Hunghao; Gao, Jin; Chen, Chien-Wen; Huard, Johnny; Wang, Yadong

    2011-08-16

    Enhancing the maturity of the newly formed blood vessels is critical for the success of therapeutic angiogenesis. The maturation of vasculature relies on active participation of mural cells to stabilize endothelium and a basal level of relevant growth factors. We set out to design and successfully achieved robust angiogenesis using an injectable polyvalent coacervate of a polycation, heparin, and fibroblast growth factor-2 (FGF2). FGF2 was loaded into the coacervate at nearly 100% efficiency. In vitro assays demonstrated that the matrix protected FGF2 from proteolytic degradations. FGF2 released from the coacervate was more effective in the differentiation of endothelial cells and chemotaxis of pericytes than free FGF2. One injection of 500 ng of FGF2 in the coacervate elicited comprehensive angiogenesis in vivo. The number of endothelial and mural cells increased significantly, and the local tissue contained more and larger blood vessels with increased circulation. Mural cells actively participated during the whole angiogenic process: Within 7 d of the injection, pericytes were recruited to close proximity of the endothelial cells. Mature vasculature stabilized by vascular smooth muscle cells persisted till at least 4 wk. On the other hand, bolus injection of an identical amount of free FGF2 induced weak angiogenic responses. These results demonstrate the potential of polyvalent coacervate as a new controlled delivery platform.

  5. Growth factor receptor interplay and resistance in cancer.

    PubMed

    Jones, Helen E; Gee, Julia M W; Hutcheson, Iain R; Knowlden, Janice M; Barrow, Denise; Nicholson, Robert I

    2006-12-01

    Aberrant signalling through the epidermal growth factor receptor (EGFR) plays a major role in the progression and maintenance of the malignant phenotype and the receptor is therefore a rational anti-cancer target. A variety of approaches have been developed to specifically target the EGFR which include monoclonal antibodies and small molecule tyrosine kinase inhibitors, such as gefitinib (Iressa). However, the recent clinical experience across a range of cancer types is revealing that despite the anti-EGFR agents demonstrating some anti-tumour activity, there is a high level of de novo and acquired resistance to such treatments and moreover, overexpression of the EGFR is clearly not the sole determinant of response to such therapies. Such adverse phenomena, which serve to limit the overall therapeutic impact of these new agents, implies the existence of a greater complexity involved in the regulation of EGFR signalling than was previously assumed. Indeed, evidence is accumulating which demonstrates that signalling interplay occurs between the EGFR, and the IGF-1 receptor (IGF-1R) and the review will focus on the emerging concept of growth factor pathway switching between these two receptors as a means of influencing the effectiveness of anti-EGFR agents such as gefitinib.

  6. Development of neural crest cells expressing nerve growth factor receptors

    SciTech Connect

    Greiner, C.A.

    1987-01-01

    The present study examines the ontogeny of the nerve growth factor receptor of neural crest cells in vitro and the phenotypic nature of the neural crest cells expressing this receptor. /sup 125/I-NGF binding assays and autoradiographic and immunofluorescence techniques have demonstrated the presence of a subpopulation of quail neural crest cells that express specific NGF receptors after 3-4 days in vitro. This subpopulations represents approximately 28% of the cells in 5-day primary cultures and 30-35% of the cells in secondary cultures; these cells generally exhibited a flattened, phase-dark morphology. Approximately one-third of these cells also labeled with a 2 hr pulse of /sup 3/H thymidine. Catecholamine-containing neural crest cells generally lacked NGF receptors. NGF receptor-positive cells also failed to demonstrate somatostatin-, neuron-specific enolase-, or S-100-like immunoreactivity. Melanocytes do not appear to express NGF receptors. Exogenous nerve growth factor did not influence the morphology or mitotic status of the cells in culture.

  7. Redundancy of myostatin and growth/differentiation factor 11 function

    PubMed Central

    McPherron, Alexandra C; Huynh, Thanh V; Lee, Se-Jin

    2009-01-01

    Background Myostatin (Mstn) and growth/differentiation factor 11 (Gdf11) are highly related transforming growth factor β (TGFβ) family members that play important roles in regulating embryonic development and adult tissue homeostasis. Despite their high degree of sequence identity, targeted mutations in these genes result in non-overlapping phenotypes affecting distinct biological processes. Loss of Mstn in mice causes a doubling of skeletal muscle mass while loss of Gdf11 in mice causes dramatic anterior homeotic transformations of the axial skeleton, kidney agenesis, and an increase in progenitor cell number in several tissues. In order to investigate the possible functional redundancy of myostatin and Gdf11, we analyzed the effect of eliminating the functions of both of these signaling molecules. Results We show that Mstn-/- Gdf11-/- mice have more extensive homeotic transformations of the axial skeleton than Gdf11-/- mice in addition to skeletal defects not seen in single mutants such as extra forelimbs. We also show that deletion of Gdf11 specifically in skeletal muscle in either Mstn+/+ or Mstn-/- mice does not affect muscle size, fiber number, or fiber type. Conclusion These results provide evidence that myostatin and Gdf11 have redundant functions in regulating skeletal patterning in mice but most likely not in regulating muscle size. PMID:19298661

  8. Upregulation of epidermal growth factor receptor 4 in oral leukoplakia

    PubMed Central

    Kobayashi, Hiroshi; Kumagai, Kenichi; Gotoh, Akito; Eguchi, Takanori; Yamada, Hiroyuki; Hamada, Yoshiki; Suzuki, Satsuki; Suzuki, Ryuji

    2013-01-01

    In the present study, we investigate the expression profile of the epidermal growth factor receptor family, which comprises EGFR/ErbB1, HER2/ErbB2, HER3/ErbB3 and HER4/ErbB4 in oral leukoplakia (LP). The expression of four epidermal growth factor receptor (EGFR) family genes and their ligands were measured in LP tissues from 14 patients and compared with levels in 10 patients with oral lichen planus (OLP) and normal oral mucosa (NOM) from 14 healthy donors by real-time polymerase chain reaction (PCR) and immunohistochemistry. Synchronous mRNA coexpression of ErbB1, ErbB2, ErbB3 and ErbB4 was detected in LP lesions. Out of the receptors, only ErbB4 mRNA and protein was more highly expressed in LP compared with NOM tissues. These were strongly expressed by epithelial keratinocytes in LP lesions, as shown by immunohistochemistry. Regarding the ligands, the mRNA of Neuregulin2 and 4 were more highly expressed in OLP compared with NOM tissues. Therefore, enhanced ErbB4 on the keratinocytes and synchronous modulation of EGFR family genes may contribute to the pathogenesis and carcinogenesis of LP. PMID:23492901

  9. Transgenic Soybean Production of Bioactive Human Epidermal Growth Factor (EGF)

    PubMed Central

    He, Yonghua; Schmidt, Monica A.; Erwin, Christopher; Guo, Jun; Sun, Raphael; Pendarvis, Ken; Warner, Brad W.; Herman, Eliot M.

    2016-01-01

    Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother’s breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N’ terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 μg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform. PMID:27314851

  10. Transgenic Soybean Production of Bioactive Human Epidermal Growth Factor (EGF).

    PubMed

    He, Yonghua; Schmidt, Monica A; Erwin, Christopher; Guo, Jun; Sun, Raphael; Pendarvis, Ken; Warner, Brad W; Herman, Eliot M

    2016-01-01

    Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother's breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N' terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 μg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform. PMID:27314851

  11. Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis

    PubMed Central

    Calvo, Charles-Félix; Fontaine, Romain H.; Soueid, Jihane; Tammela, Tuomas; Makinen, Taija; Alfaro-Cervello, Clara; Bonnaud, Fabien; Miguez, Andres; Benhaim, Lucile; Xu, Yunling; Barallobre, Maria-José; Moutkine, Imane; Lyytikkä, Johannes; Tatlisumak, Turgut; Pytowski, Bronislaw; Zalc, Bernard; Richardson, William; Kessaris, Nicoletta; Garcia-Verdugo, Jose Manuel; Alitalo, Kari; Eichmann, Anne; Thomas, Jean-Léon

    2011-01-01

    Neural stem cells (NSCs) are slowly dividing astrocytes that are intimately associated with capillary endothelial cells in the subventricular zone (SVZ) of the brain. Functionally, members of the vascular endothelial growth factor (VEGF) family can stimulate neurogenesis as well as angiogenesis, but it has been unclear whether they act directly via VEGF receptors (VEGFRs) expressed by neural cells, or indirectly via the release of growth factors from angiogenic capillaries. Here, we show that VEGFR-3, a receptor required for lymphangiogenesis, is expressed by NSCs and is directly required for neurogenesis. Vegfr3:YFP reporter mice show VEGFR-3 expression in multipotent NSCs, which are capable of self-renewal and are activated by the VEGFR-3 ligand VEGF-C in vitro. Overexpression of VEGF-C stimulates VEGFR-3-expressing NSCs and neurogenesis in the SVZ without affecting angiogenesis. Conversely, conditional deletion of Vegfr3 in neural cells, inducible deletion in subventricular astrocytes, and blocking of VEGFR-3 signaling with antibodies reduce SVZ neurogenesis. Therefore, VEGF-C/VEGFR-3 signaling acts directly on NSCs and regulates adult neurogenesis, opening potential approaches for treatment of neurodegenerative diseases. PMID:21498572

  12. Epidermal growth factor receptor in adult human dorsal root ganglia.

    PubMed

    Huerta, J J; Diaz-Trelles, R; Naves, F J; Llamosas, M M; Del Valle, M E; Vega, J A

    1996-09-01

    Transforming growth factor-alpha (TGFalpha) enhances neuronal survival and neurite outgrowth in cultured dorsal root ganglia (DRG) sensory neurons. It binds a membrane protein, denominated epidermal growth factor receptor (EGFr). EGFr has been localized in developing and adult human DRG. However, it remains to be elucidated whether all DRG neurons express EGFr or whether differences exist among neuronal subtypes. This study was undertaken to investigate these topics in adult human DRG using immunoblotting, and combined immunohistochemistry and image analysis techniques. A mouse monoclonal antibody (clone F4) mapping within the intracytoplasmic domain of EGFr was used. Immunoblotting revealed two main proteins with estimated molecular masses of approximately/equal to 65 kDa and 170 kDa, and thus consistent with the full-length EGFr. Additional protein bands were also encountered. Light immunohistochemistry revealed specific immunoreactivity (IR) for EGFr-like proteins in most (86%) primary sensory neurons, the intensity of immunostaining being stronger in the small- and intermediate-sized ones. Furthermore, EGFr-like IR was also observed in the satellite glial cells of the ganglia as well as in the intraganglionic and dorsal root Schwann cells. Taken together, our findings demonstrate that EGFr, and other related proteins containing the epitope labeled with the antibody F4, are responsible for the EGFr IR reported in DRG. Furthermore, we demonstrated heterogeneity in the expression of EGFr-like IR in adult human primary sensory neurons, which suggests different responsiveness to their ligands.

  13. Early signaling dynamics of the epidermal growth factor receptor

    PubMed Central

    Gajadhar, Aaron S.; Swenson, Eric J.; Rothenberg, Daniel A.; Curran, Timothy G.; White, Forest M.

    2016-01-01

    Despite extensive study of the EGF receptor (EGFR) signaling network, the immediate posttranslational changes that occur in response to growth factor stimulation remain poorly characterized; as a result, the biological mechanisms underlying signaling initiation remain obscured. To address this deficiency, we have used a mass spectrometry-based approach to measure system-wide phosphorylation changes throughout the network with 10-s resolution in the 80 s after stimulation in response to a range of eight growth factor concentrations. Significant changes were observed on proteins far downstream in the network as early as 10 s after stimulation, indicating a system capable of transmitting information quickly. Meanwhile, canonical members of the EGFR signaling network fall into clusters with distinct activation patterns. Src homology 2 domain containing transforming protein (Shc) and phosphoinositol 3-kinase (PI3K) phosphorylation levels increase rapidly, but equilibrate within 20 s, whereas proteins such as Grb2-associated binder-1 (Gab1) and SH2-containing tyrosine phosphatase (SHP2) show slower, sustained increases. Proximity ligation assays reveal that Shc and Gab1 phosphorylation patt