Science.gov

Sample records for growth factor interaction

  1. Interactions between fibroblast growth factors and Notch regulate neuronal differentiation.

    PubMed

    Faux, C H; Turnley, A M; Epa, R; Cappai, R; Bartlett, P F

    2001-08-01

    The differentiation of precursor cells into neurons has been shown to be influenced by both the Notch signaling pathway and growth factor stimulation. In this study, the regulation of neuronal differentiation by these mechanisms was examined in the embryonic day 10 neuroepithelial precursor (NEP) population. By downregulating Notch1 expression and by the addition of a Delta1 fusion protein (Delta Fc), it was shown that signaling via the Notch pathway inhibited neuron differentiation in the NEP cells, in vitro. The expression of two of the Notch receptor homologs, Notch1 and Notch3, and the ligand Delta1 in these NEP cells was found to be influenced by a number of different growth factors, indicating a potential interaction between growth factors and Notch signaling. Interestingly, none of the growth factors examined promoted neuron differentiation; however, the fibroblast growth factors (FGFs) 1 and 2 potently inhibited differentiation. FGF1 and FGF2 upregulated the expression of Notch and decreased expression of Delta1 in the NEP cells. In addition, the inhibitory response of the cells to the FGFs could be overcome by downregulating Notch1 expression and by disrupting Notch cleavage and signaling by the ablation of the Presenilin1 gene. These results indicate that FGF1 and FGF2 act via the Notch pathway, either directly or indirectly, to inhibit differentiation. Thus, signaling through the Notch receptor may be a common regulator of neuronal differentiation within the developing forebrain.

  2. Growth factor delivery: How surface interactions modulate release in vitro and in vivo

    PubMed Central

    King, William J.; Krebsbach, Paul H.

    2013-01-01

    Biomaterial scaffolds have been extensively used to deliver growth factors to induce new bone formation. The pharmacokinetics of growth factor delivery has been a critical regulator of their clinical success. This review will focus on the surface interactions that control the non-covalent incorporation of growth factors into scaffolds and the mechanisms that control growth factor release from clinically relevant biomaterials. We will focus on the delivery of recombinant human bone morphogenetic protein-2 from materials currently used in the clinical practice, but also suggest how general mechanisms that control growth factor incorporation and release delineated with this growth factor could extend to other systems. A better understanding of the changing mechanisms that control growth factor release during the different stages of preclinical development could instruct the development of future scaffolds for currently untreatable injuries and diseases. PMID:22433783

  3. Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo.

    PubMed

    Hoe Kim, Jeong; Tsukaya, Hirokazu

    2015-10-01

    Transcription factors are key regulators of gene expression and play pivotal roles in all aspects of living organisms. Therefore, identification and functional characterization of transcription factors is a prerequisite step toward understanding life. This article reviews molecular and biological functions of the two transcription regulator families, GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF), which have only recently been recognized. A myriad of experimental evidence clearly illustrates that GRF and GIF are bona fide partner proteins and form a plant-specific transcriptional complex. One of the most conspicuous outcomes from this research field is that the GRF-GIF duo endows the primordial cells of vegetative and reproductive organs with a meristematic specification state, guaranteeing the supply of cells for organogenesis and successful reproduction. It has recently been shown that GIF1 proteins, also known as ANGUSTIFOLIA3, recruit chromatin remodelling complexes to target genes, and that AtGRF expression is directly activated by the floral identity factors, APETALA1 and SEPALLATA3, providing an important insight into understanding of the action of GRF-GIF. Moreover, GRF genes are extensively subjected to post-transcriptional control by microRNA396, revealing the presence of a complex regulatory circuit in regulation of plant growth and development by the GRF-GIF duo. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Molecular Docking and Interactions of Pueraria Tuberosa with Vascular Endothelial Growth Factor Receptors

    PubMed Central

    Asthana, S.; Agarwal, T.; Singothu, S.; Samal, A.; Banerjee, I.; Pal, K.; Pramanik, K.; Ray, S. S.

    2015-01-01

    Pueraria tuberosa is known for its therapeutic potentials in cardiovascular disorders, but its effect in angiogenesis has not been studied so far. In this study, a computational approach has been applied to elucidate the role of the phytochemicals in inhibition of angiogenesis through modulation of vascular endothelial growth factor receptors: Vascular endothelial growth factor receptor-1 and vascular endothelial growth factor receptor-2, major factors responsible for angiogenesis. Metabolite structures retrieved from PubChem and KNApSAcK – 3D databases, were docked using AutoDock4.2 tool. Hydrogen bond and molecular docking, absorption, distribution, metabolism and excretion and toxicity predictions were carried out using UCSF Chimera, LigPlot+ and PreADMET server, respectively. From the docking analysis, it was observed that puerarone and tuberostan had significant binding affinity for the intracellular kinase domain of vascular endothelial growth factor receptors-1 and vascular endothelial growth factor receptor-2 respectively. It is important to mention that both the phytochemicals shared similar interaction profile as that of standard inhibitors of vascular endothelial growth factor receptors. Also, both puerarone and tuberostan interacted with Lys861/Lys868 (adenosine 5’-triphosphate binding site of vascular endothelial growth factor receptors-1/vascular endothelial growth factor receptors-2), thus providing a clue that they may enforce their inhibitory effect by blocking the adenosine 5’-triphosphate binding domain of vascular endothelial growth factor receptors. Moreover, these molecules exhibited good drug-likeness, absorption, distribution, metabolism and excretion properties without any carcinogenic and toxic effects. The interaction pattern of the puerarone and tuberostan may provide a hint for a novel drug design for vascular endothelial growth factor tyrosine kinase receptors with better specificity to treat angiogenic disorders. PMID:26664060

  5. Interaction between the GROWTH-REGULATING FACTOR and KNOTTED1-LIKE HOMEOBOX families of transcription factors.

    PubMed

    Kuijt, Suzanne J H; Greco, Raffaella; Agalou, Adamantia; Shao, Jingxia; 't Hoen, Corine C J; Overnäs, Elin; Osnato, Michela; Curiale, Serena; Meynard, Donaldo; van Gulik, Robert; de Faria Maraschin, Simone; Atallah, Mirna; de Kam, Rolf J; Lamers, Gerda E M; Guiderdoni, Emmanuel; Rossini, Laura; Meijer, Annemarie H; Ouwerkerk, Pieter B F

    2014-04-01

    KNOTTED1-LIKE HOMEOBOX (KNOX) genes are important regulators of meristem function, and a complex network of transcription factors ensures tight control of their expression. Here, we show that members of the GROWTH-REGULATING FACTOR (GRF) family act as players in this network. A yeast (Saccharomyces cerevisiae) one-hybrid screen with the upstream sequence of the KNOX gene Oskn2 from rice (Oryza sativa) resulted in isolation of OsGRF3 and OsGRF10. Specific binding to a region in the untranslated leader sequence of Oskn2 was confirmed by yeast and in vitro binding assays. ProOskn2:β-glucuronidase reporter expression was down-regulated by OsGRF3 and OsGRF10 in vivo, suggesting that these proteins function as transcriptional repressors. Likewise, we found that the GRF protein BGRF1 from barley (Hordeum vulgare) could act as a repressor on an intron sequence in the KNOX gene Hooded/Barley Knotted3 (Bkn3) and that AtGRF4, AtGRF5, and AtGRF6 from Arabidopsis (Arabidopsis thaliana) could repress KNOTTED-LIKE FROM ARABIDOPSIS THALIANA2 (KNAT2) promoter activity. OsGRF overexpression phenotypes in rice were consistent with aberrant meristematic activity, showing reduced formation of tillers and internodes and extensive adventitious root/shoot formation on nodes. These effects were associated with down-regulation of endogenous Oskn2 expression by OsGRF3. Conversely, RNA interference silencing of OsGRF3, OsGRF4, and OsGRF5 resulted in dwarfism, delayed growth and inflorescence formation, and up-regulation of Oskn2. These data demonstrate conserved interactions between the GRF and KNOX families of transcription factors in both monocot and dicot plants.

  6. Biochemical characterization of the molecular interaction between recombinant basic fibroblast growth factor and a recombinant soluble fibroblast growth factor receptor.

    PubMed Central

    Caccia, P; Cletini, O; Isacchi, A; Bergonzoni, L; Orsini, G

    1993-01-01

    The extracellular domain of human fibroblast growth factor receptor (XC-FGF-R) was expressed in Escherichia coli. The protein was purified to homogeneity and the interaction with basic fibroblast growth factor (bFGF), its physiological ligand, was examined. Using resins on which bFGF was reversibly bound, we analysed the characteristics of the binding between XC-FGF-R and immobilized bFGF. We also investigated the stoichiometry of the binding between XC-FGF-R and recombinant human bFGF (rhbFGF) applying non-denaturing gel electrophoresis, chemical cross-linking followed by SDS/PAGE, and gel-filtration chromatography. In cross-linking and gel-filtration chromatography experiments, a 1:1 complex between rhbFGF and XC-FGF-R was observed. The complex was separated from the non-complexed proteins using non-denaturing PAGE in the presence of 0.1% Triton X-100. The band corresponding to the complex was recognized by specific antibodies directed against bFGF and its receptor, blotted on poly(vinylidene difluoride) membranes and submitted to sequence and amino acid analysis. The data obtained from these determinations confirmed the formation of a 1:1 complex between rhbFGF and XC-FGF-R. Images Figure 1 Figure 2 Figure 3 Figure 5 PMID:8379918

  7. Modeling the epidermal growth factor -- epidermal growth factor receptor l2 domain interaction: implications for the ligand binding process.

    PubMed

    Jorissen, Robert N; Treutlein, Herbert R; Epa, V Chandana; Burgess, Antony W

    2002-06-01

    Signaling from the epidermal growth factor (EGF) receptor is triggered by the binding of ligands such as EGF or transforming growth factor alpha (TGF-alpha) and subsequent receptor dimerization. An understanding of these processes has been hindered by the lack of structural information about the ligand-bound, dimerized EGF receptor. Using an NMR-derived structure of EGF and a homology model of the major ligand binding domain of the EGF receptor and experimental data, we modeled the binding of EGF to this EGF receptor fragment. In this low resolution model of the complex, EGF sits across the second face of the EGF receptor L2 domain and EGF residues 10-16, 36-37, 40-47 bind to this face. The structural model is largely consistent with previously published NMR data describing the residues of TGF-alpha which interact strongly with the EGF receptor. Other EGF residues implicated in receptor binding are accounted by our proposal that the ligand binding is a two-step process with the EGF binding to at least one other site of the receptor. This three-dimensional model is expected to be useful in the design of ligand-based antagonists of the receptor.

  8. Diversification of Neu differentiation factor and epidermal growth factor signaling by combinatorial receptor interactions.

    PubMed Central

    Pinkas-Kramarski, R; Soussan, L; Waterman, H; Levkowitz, G; Alroy, I; Klapper, L; Lavi, S; Seger, R; Ratzkin, B J; Sela, M; Yarden, Y

    1996-01-01

    The ErbB family includes two receptors, ErbB-1 and ErbB-3, that respectively bind to epidermal growth factor and Neu differentiation factor, and an orphan receptor, ErbB-2. Unlike ErbB-1 and ErbB-2, the intrinsic tyrosine kinase of ErbB-3 is catalytically impaired. By using interleukin-3-dependent cells that ectopically express the three ErbB proteins or their combinations, we found that ErbB-3 is devoid of any biological activity but both ErbB-1 and ErbB-2 can reconstitute its extremely potent mitogenic activity. Transactivation of ErbB-3 correlates with heterodimer formation and is reflected in receptor phosphorylation and the transregulation of ligand affinity. Inter-receptor interactions enable graded proliferative and survival signals: heterodimers are more potent than homodimers, and ErbB-3-containing complexes, especially the ErbB-2/ErbB-3 heterodimer, are more active than ErbB-1 complexes. Nevertheless, ErbB-1 signaling displays dominance over ErbB-3 when the two receptors are coexpressed. Although all receptor combinations activate the mitogen-activated protein kinases ERK and c-Jun kinase, they differ in their rate of endocytosis and in coupling to intervening signaling proteins. It is conceivable that combinatorial receptor interactions diversify signal transduction and confer double regulation, in cis and in trans, of the superior mitogenic activity of the kinase-defective ErbB-3. Images PMID:8665853

  9. Parental Interaction As A Determining Factor in Social Growth of the Individual in the Family.

    ERIC Educational Resources Information Center

    Markowitz, Max; Kadis, Asya L.

    Parental interaction is a prime determining factor in an individual's growth. Complementary relationships of the mother and father within the family: i.e., the bringing together of both the mothering attitude and the expectation of "growing up", contribute to the individual's maturation. Many analysts, realizing the importance of triadic…

  10. Interaction of gravity with other environmental factors in growth and development: an introduction.

    PubMed

    Hoson, T

    1999-01-01

    The life of plants and other organisms is governed by the constant force of gravity on earth. The mechanism of graviperception, signal transduction, and gravireaction is one of the major themes in space biology. When gravity controls each step of the life cycle such as growth and development, it does not work alone but operates with the interaction of other environmental factors. In order to understand the role of gravity in regulation of the life cycle, such interactions also should be clarified. Under microgravity conditions in space, various changes are brought about in the process of growth and development. Some changes would be advantageous to organisms, but others would be unfavorable. For overcoming such disadvantages, it may be required to exploit some other environmental factors which substitute for gravity in some properties. In terrestrial plants, gravity can be replaced by light under certain conditions. The gravity-substituting factors may play a principal role in future space development.

  11. Characterization of the growth of murine fibroblasts that express human insulin receptors. II. Interaction of insulin with other growth factors

    SciTech Connect

    Randazzo, P.A.; Jarett, L. )

    1990-09-01

    The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetal calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity.

  12. Molecular level interaction of the human acidic fibroblast growth factor with the antiangiogenic agent, inositol hexaphosphate .

    PubMed

    Kumar, Sriramoju M; Wang, Han-Min; Mohan, Sepuru K; Chou, Ruey-Hwang; Yu, Chin

    2010-12-21

    Acidic fibroblast growth factor (FGF1) regulates a wide array of important biological phenomena such as angiogenesis, cell differentiation, tumor growth, and neurogenesis. Generally, FGFs are known for their strong affinity for the glycosaminoglycan heparin, as a prerequisite for recognition of a specific tyrosine kinase on the cell surface and are responsible for the cell signal transduction cascade. Inositol hexaphosphate (IP6) is a natural antioxidant and is known for its antiangiogenic role, in addition to its ability to control tumor growth. In the present study, we investigated the interaction of IP6 with the acidic fibroblast growth factor (FGF1) using various biophysical techniques including isothermal calorimetry, circular dichroism, and multidimensional NMR spectroscopy. Herein, we have reported the three-dimensional solution structure of the FGF1-IP6 complex. These data show that IP6 binds FGF1 and enhances its thermal stability. In addition, we also demonstrate that IP6 acts as an antagonist to acidic fibroblast growth factor by inhibiting its receptor binding and subsequently decreasing the mitogenic activity. The inhibition likely results in the ability of IP6 to antagonize the angiogenic and mitogenic activity of FGF1.

  13. The development of a serum-free medium utilizing the interaction between growth factors and biomaterials.

    PubMed

    Iwata, Kumiko; Asawa, Yukiyo; Nishizawa, Satoru; Mori, Yoshiyuki; Nagata, Satoru; Takato, Tsuyoshi; Hoshi, Kazuto

    2012-01-01

    To promote clinical application of cartilage tissue engineering, we should establish a serum-free chondrocyte growth medium. The serum-free medium would increase the cell numbers by more than 20-fold within one week, which proliferation ability almost matches that of serum-based one. For that, we examined the combinations of growth factors and the methods to enhance their effects by making use of the interaction with biomaterials. From various growth factors that are contained within the serum, we made the cocktail of FGF-2 (100 ng/mL), insulin (5 μg/mL), EGF (10 pg/mL), PDGF (625 pg/mL) and TGF-β (5 pg/mL), which increased the chondrocyte numbers by approximately 3-fold for 7 days. Moreover, we used the biomaterials including albumin and hyaluronan as the carrier of those factors. By direct mixing of those factors with biomaterials before the administration to the medium, the medium containing those mixture showed the chondrocyte growth of approximately a 25-fold increase by day 10. In this medium, the FGF-2 or insulin concentration hardly decreased, and rather enhanced the activation of ERK. Due to the optimal usage of biomaterials, this serum-free medium will realize a constant harvest of chondrocytes and could contribute to the safety and quality in regenerative medicine.

  14. Factors affecting bone growth.

    PubMed

    Gkiatas, Ioannis; Lykissas, Marios; Kostas-Agnantis, Ioannis; Korompilias, Anastasios; Batistatou, Anna; Beris, Alexandros

    2015-02-01

    Bone growth and development are products of the complex interactions of genetic and environmental factors. Longitudinal bone growth depends on the growth plate. The growth plate has 5 different zones-each with a different functional role-and is the final target organ for longitudinal growth. Bone length is affected by several systemic, local, and mechanical factors. All these regulation systems control the final length of bones in a complicated way. Despite its significance to bone stability, bone growth in width has not been studied as extensively as longitudinal bone growth. Bone growth in width is also controlled by genetic factors, but mechanical loading regulates periosteal apposition. In this article, we review the most recent data regarding bone growth from the embryonic age and analyze the factors that control bone growth. An understanding of this complex system is important in identifying metabolic and developmental bone diseases and fracture risk.

  15. Interaction of insulin-like growth factor I with porcine thyroid cells cultured in monolayer

    SciTech Connect

    Saji, M.; Tsushima, T.; Isozaki, O.; Murakami, H.; Ohba, Y.; Sato, K.; Arai, M.; Mariko, A.; Shizume, K.

    1987-08-01

    The interaction of insulin-like growth factor I (IGF-I) with porcine thyroid cells cultured in monolayer was studied. Specific binding of (/sup 125/I)iodo-IGF-I to thyroid cells was a reversible process dependent on the time and temperature of incubation. A steady state was achieved in 18 h at 4 C and averaged 14.2 +/- 2% (mean +/- SD)/10(6) cells. Binding of (/sup 125/I)iodo-IGF-I was inhibited by unlabeled IGF-I; half-maximal inhibition occurred at concentrations of 2-5 ng/ml. Multiplication-stimulating activity (rat IGF-II) and pork insulin had relative potencies of 1:20 and 1:300 compared with IGF-I. Scatchard analysis of binding data revealed a single class of IGF-I receptors with a Ka of 4.3 X 10(10) M-1, 49,000 binding sites were estimated per cell. Affinity cross-linking and autoradiography demonstrated the presence of type I IGF receptors. Thyroid cells also had specific receptors for insulin, but specific binding of (/sup 125/I)iodoinsulin was much lower than that of (/sup 125/I)iodo-IGF-I. Preincubation of thyroid cells with IGF-I or insulin caused a concentration-dependent decrease in (/sup 125/I)iodo-IGF-I binding due to an apparent loss of receptors. Preincubation with epidermal growth factor, fibroblast growth factor, platelet-derived growth factor, or TSH did not alter subsequent binding of (/sup 125/I)iodo-IGF-I. Low concentrations of IGF-I stimulated DNA synthesis and proliferation of thyroid cells and acted synergistically with epidermal growth factor. Multiplication-stimulating activity and insulin had relative potencies in stimulating DNA synthesis comparable to their abilities to inhibit the binding of (/sup 125/I)iodo-IGF-I to thyroid cells.

  16. Fluorescence techniques used to measure interactions between hydroxyapatite nanoparticles and epidermal growth factor receptors.

    PubMed

    Kathawala, Mustafa H; Khoo, Stella P K; Sudhaharan, Thankiah; Zhao, Xinxin; Say Chye Loo, Joachim; Ahmed, Sohail; Woei Ng, Kee

    2015-01-01

    The potential applications of nanomaterials in therapeutics are immense and to fully explore this potential, it is important to understand the interaction of nanoparticles with cellular components. To examine the interaction between nanoparticles and cell membrane receptors, this report describes the use of advanced fluorescence techniques to measure interactions between hydroxyapatite (HA) nanoparticles and epidermal growth factor receptors (EGFRs), as a model system. FITC-labelled HA nanoparticles and monomeric red fluorescent protein (mRFP)-conjugated EGFRs expressed in Chinese hamster ovary cells (CHO-K1) were generated and their interaction measured using acceptor photobleaching-fluorescence resonance energy transfer (AP-FRET) and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer (FLIM-FRET). Results confirmed that hydroxyapatite nanoparticles not only interacted with EGFR but also attenuated downstream EGFR signalling, possibly by hindering normal dimerization of EGFR. Furthermore, the extent of signal attenuation suggested correlation with specific surface area of the nanoparticles, whereby greater specific surface area resulted in greater downstream signal attenuation. This novel demonstration establishes fluorescence techniques as a viable method to study nanoparticle interactions with proteins such as cell surface receptors. The approach described herein can be extended to study interactions between any fluorescently labelled nanoparticle-biomolecule pair.

  17. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: mechanisms and mysteries.

    PubMed

    Billings, Paul C; Pacifici, Maurizio

    2015-01-01

    Heparan sulfate (HS) is a component of cell surface and matrix-associated proteoglycans (HSPGs) that, collectively, play crucial roles in many physiologic processes including cell differentiation, organ morphogenesis and cancer. A key function of HS is to bind and interact with signaling proteins, growth factors, plasma proteins, immune-modulators and other factors. In doing so, the HS chains and HSPGs are able to regulate protein distribution, bio-availability and action on target cells and can also serve as cell surface co-receptors, facilitating ligand-receptor interactions. These proteins contain an HS/heparin-binding domain (HBD) that mediates their association and contacts with HS. HBDs are highly diverse in sequence and predicted structure, contain clusters of basic amino acids (Lys and Arg) and possess an overall net positive charge, most often within a consensus Cardin-Weintraub (CW) motif. Interestingly, other domains and residues are now known to influence protein-HS interactions, as well as interactions with other glycosaminoglycans, such as chondroitin sulfate. In this review, we provide a description and analysis of HBDs in proteins including amphiregulin, fibroblast growth factor family members, heparanase, sclerostin and hedgehog protein family members. We discuss HBD structural and functional features and important roles carried out by other protein domains, and also provide novel conformational insights into the diversity of CW motifs present in Sonic, Indian and Desert hedgehogs. Finally, we review progress in understanding the pathogenesis of a rare pediatric skeletal disorder, Hereditary Multiple Exostoses (HME), characterized by HS deficiency and cartilage tumor formation. Advances in understanding protein-HS interactions will have broad implications for basic biology and translational medicine as well as for the development of HS-based therapeutics.

  18. Actions and interactions of alcohol and insulin-like growth factor-1 on female pubertal development.

    PubMed

    Dees, W Les; Srivastava, Vinod; Hiney, Jill K

    2009-11-01

    Alcohol (ALC) is a drug that is capable of disrupting reproductive function in adolescent humans, as well as immature rhesus monkeys and rats. Critical to determining the mechanism(s) of the effects of ALC on the pubertal process is to have a better understanding of the important events involved in the initiation of puberty. For years it has been hypothesized that there may be metabolic signals capable of linking somatic growth to the activation of the reproductive system at the time of puberty. In recent years it has been shown that insulin-like growth factor-1 (IGF-1) is one such signal that plays an early role in the pubertal process. In this review, we will describe the actions and interactions of ALC and IGF-1 on molecular and physiological processes associated with pubertal development.

  19. Interaction between human monocytes and vascular smooth muscle cells induces vascular endothelial growth factor expression.

    PubMed

    Hojo, Y; Ikeda, U; Maeda, Y; Takahashi, M; Takizawa, T; Okada, M; Funayama, H; Shimada, K

    2000-05-01

    The objective of this study was to investigate whether synthesis of vascular endothelial growth factor (VEGF), a major mitogen for vascular endothelial cells, was induced by a cell-to-cell interaction between monocytes and vascular smooth muscle cells (VSMCs). Human VSMCs and THP-1 cells (human monocytoid cell) were cocultured. VEGF levels in the coculture medium were determined by enzyme-linked immunosorbent assay. Northern blot analysis of VEGF mRNA was performed using a specific cDNA probe. Immunohistochemistry was performed to determine which types of cell produce VEGF. Adding THP-1 cells to VSMCs for 24 h increased VEGF levels of the culture media, 8- and 10-fold relative to those of THP-1 cells and VSMCs alone, respectively. Northern blot analysis showed that VEGF mRNA expression was induced in the cocultured cells and peaked after 12 h. Immunohistochemistry disclosed that both types of cell in the coculture produced VEGF. Separate coculture experiments revealed that both direct contact and a soluble factor(s) contributed to VEGF production. Neutralizing anti-interleukin (IL)-6 antibody inhibited VEGF production by the coculture of THP-1 cells and VSMCs. A cell-to-cell interaction between monocytes and VSMCs induced VEGF synthesis in both types of cell. An IL-6 mediated mechanism is at least partially involved in VEGF production by the cocultures. Local VEGF production induced by a monocyte-VSMC interaction may play an important role in atherosclerosis and vascular remodeling.

  20. Structural basis of interactions between epidermal growth factor receptor and SH2 domain proteins.

    PubMed

    Sierke, S L; Longo, G M; Koland, J G

    1993-02-26

    The structural basis of the interactions between the activated epidermal growth factor (EGF) receptor and SH2 domain proteins was investigated. The c-src SH2 domain (second domain of src homology) was expressed as a recombinant fusion protein, and an in vitro assay was developed to monitor EGF receptor/SH2 domain interactions. EGF receptor tyrosine kinase domain (TKD) forms expressed in the baculovirus/insect cell system were shown to bind to the SH2 domain when phosphorylated. These TKD/SH2 domain interactions were characterized by dissociation constants of 60-320 nM. Deletion analysis indicated that the entire SH2 domain was required for recognition of the phosphorylated TKD. The binding of a highly truncated TKD protein to the SH2 domain suggested that the sites recognized by the SH2 domain included the EGF receptor autophosphorylation site, tyr992. A phosphorylated EGF receptor peptide containing tyr992 was also shown to interact with the SH2 domain. This residue may therefore mediate interactions between the EGF receptor and tyrosine kinases in the src family.

  1. Identification of novel interaction sites that determine specificity between fibroblast growth factor homologous factors and voltage-gated sodium channels.

    PubMed

    Wang, Chaojian; Wang, Chuan; Hoch, Ethan G; Pitt, Geoffrey S

    2011-07-08

    Fibroblast growth factor homologous factors (FHFs, FGF11-14) bind to the C termini (CTs) of specific voltage-gated sodium channels (VGSC) and thereby regulate their function. The effect of an individual FHF on a specific VGSC varies greatly depending upon the individual FHF isoform. How individual FHFs impart distinctive effects on specific VGSCs is not known and the specificity of these pairwise interactions is not understood. Using several biochemical approaches combined with functional analysis, we mapped the interaction site for FGF12B on the Na(V)1.5 C terminus and discovered previously unknown determinants necessary for FGF12 interaction. Also, we demonstrated that FGF12B binds to some, but not all Na(V)1 CTs, suggesting specificity of interaction. Exploiting a human single nucleotide polymorphism in the core domain of FGF12 (P149Q), we identified a surface proline that contributes a part of this pairwise specificity. This proline is conserved among all FHFs, and mutation of the homologous residue in FGF13 also leads to loss of interaction with a specific VGSC CT (Na(V)1.1) and loss of modulation of the resultant Na(+) channel function. We hypothesized that some of the specificity mediated by this proline may result from differences in the affinity of the binding partners. Consistent with this hypothesis, surface plasmon resonance data showed that the P149Q mutation decreased the binding affinity between FHFs and VGSC CTs. Moreover, immunocytochemistry revealed that the mutation prevented proper subcellular targeting of FGF12 to the axon initial segment in neurons. Together, these results give new insights into details of the interactions between FHFs and Na(V)1.x CTs, and the consequent regulation of Na(+) channels.

  2. Novel Bioluminescent Binding Assays for Ligand–Receptor Interaction Studies of the Fibroblast Growth Factor Family

    PubMed Central

    Song, Ge; Shao, Xiao-Xia; Wu, Qing-Ping; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    We recently developed novel bioluminescent binding assays for several protein/peptide hormones to study their interactions with receptors using the so far brightest NanoLuc reporter. To validate the novel bioluminescent binding assay using a variety of protein/peptide hormones, in the present work we applied it to the fibroblast growth factor (FGF) family using the prototype member FGF2 as an example. A fully active recombinant FGF2 retaining a unique exposed cysteine (Cys) residue was chemically conjugated with an engineered NanoLuc carrying a unique exposed Cys residue at the C-terminus via formation of an intermolecular disulfide linkage. The NanoLuc-conjugated FGF2 (FGF2-Luc) retained high binding affinity to the overexpressed FGFR1 and the endogenous FGF receptor with the calculated dissociation constants of 161 ± 21 pM (n = 3) and 25 ± 4 pM (n = 3), respectively. In competition binding assays using FGF2-Luc as a tracer, receptor-binding potencies of wild-type or mutant FGF2s were accurately quantified. Thus, FGF2-Luc represents a novel non-radioactive tracer for the quantitative measurement of ligand–receptor interactions in the FGF family. These data suggest that the novel bioluminescent binding assay can be applied to a variety of protein/peptide hormones for ligand–receptor interaction studies. PMID:27414797

  3. Heparin decamer bridges a growth factor and an oligolysine by different charge-driven interactions.

    PubMed

    Minsky, Burcu Baykal; Nguyen, Thuy V; Peyton, Shelly R; Kaltashov, Igor A; Dubin, Paul L

    2013-11-11

    Full-length heparin is widely used in tissue engineering applications due its multiple protein-binding sites that allow it to retain growth factor affinity while associating with oligopeptide components of the tissue scaffold. However, the extent to which oligopeptide coupling interferes with cognate protein binding is difficult to predict. To investigate such simultaneous interactions, we examined a well-defined ternary system comprised of acidic fibroblast growth factor (FGF), tetralysine (K4), with a heparin decamer (dp10) acting as a noncovalent coupler. Electrospray ionization mass spectrometry was used to assess binding affinities and complex stoichiometries as a function of ionic strength for dp10·K4 and FGF·dp10. The ionic strength dependence of K4·dp10 formation is qualitatively consistent with binding driven by the release of condensed counterions previously suggested for native heparin with divalent oligopeptides (Mascotti, D. P.; Lohman, T. M. Biochemistry 1995, 34, 2908-2915). On the other hand, FGF binding displays more complex ionic strength dependence, with higher salt resistance. Remarkably, dp10 that can bind two FGF molecules can only bind one tetralysine. The limited binding of K4 to dp10 suggests that the tetralysine might not block growth factor binding, and the 1:1:1 ternary complex is indeed observed. The analysis of mass distribution of the bound dp10 chains in FGF·dp10, FGF2·dp10, and FGF·dp10·K4 complexes indicated that higher degrees of dp10 sulfation promote the formation of FGF2·dp10 and FGF·dp10·K4. Thus, the selectivity of appropriately chosen short heparin chains could be used to modulate growth factor sequestration and release in a way not feasible with heterogeneous native heparin. In support of this, human hepatocellular carcinoma cells (HEP3Bs) treated with FGF·dp10·K4 were found to exhibit biological activity similar to cells treated with FGF.

  4. Direct interaction of avermectin with epidermal growth factor receptor mediates the penetration resistance in Drosophila larvae

    PubMed Central

    Chen, Li-Ping; Wang, Pan; Sun, Ying-Jian; Wu, Yi-Jun

    2016-01-01

    With the widespread use of avermectins (AVMs) for managing parasitic and agricultural pests, the resistance of worms and insects to AVMs has emerged as a serious threat to human health and agriculture worldwide. The reduced penetration of AVMs is one of the main reasons for the development of the resistance to the chemicals. However, the detailed molecular mechanisms remain elusive. Here, we use the larvae of Drosophila melanogaster as the model organism to explore the molecular mechanisms underlying the development of penetration resistance to AVMs. We clearly show that the chitin layer is thickened and the efflux transporter P-glycoprotein (P-gp) is overexpressed in the AVM-resistant larvae epidermis. We reveal that the activation of the transcription factor Relish by the over-activated epidermal growth factor receptor (EGFR)/AKT/ERK pathway induces the overexpression of the chitin synthases DmeCHS1/2 and P-gp in the resistant larvae. Interestingly, we discover for the first time, to the best of our knowledge, that AVM directly interacts with EGFR and leads to the activation of the EGFR/AKT/ERK pathway, which activates the transcription factor Relish and induces the overexpression of DmeCHS1/2 and P-gp. These findings provide new insights into the molecular mechanisms underlying the development of penetration resistance to drugs. PMID:27249340

  5. Competitive Interaction Between Fibroblast Growth Factor 23 And Asymmetric Dimethylarginine in Patients With CKD

    PubMed Central

    Tripepi, Giovanni; Kollerits, Barbara; Leonardis, Daniela; Yilmaz, Mahamut Ilker; Postorino, Maurizio; Fliser, Danilo; Mallamaci, Francesca; Kronenberg, Florian

    2015-01-01

    Both fibroblast growth factor 23 (FGF-23) and asymmetric dimethylarginine (ADMA) are associated with progression of CKD. We tested the hypothesis that ADMA and FGF23 are interactive factors for CKD progression in a cohort of 758 patients with CKD in Southern Europe (mean eGFR±SD, 36±13 ml/min per 1.73 m2) and in a central European cohort of 173 patients with CKD (MMKD study, mean eGFR, 64±39 ml/min per 1.73 m2). In the first cohort, 214 patients had renal events (decrease in eGFR of >30%, dialysis, or kidney transplantation) during a 3-year follow-up. Both intact FGF-23 and ADMA predicted the incidence rate of renal events in unadjusted and adjusted analyses (P<0.001). There was a strong competitive interaction between FGF-23 and ADMA in the risk of renal events (P<0.01 in adjusted analyses); the risk associated with raised ADMA levels was highest in patients with low FGF-23 levels. These results were confirmed in the MMKD cohort, in which FGF-23 level was again an effect modifier of the relationship between plasma ADMA level and renal events (doubling of baseline serum creatinine, dialysis, or kidney transplantation) in the adjusted analyses (P<0.01). Furthermore, in the MMKD cohort there was a parallel, independent competitive interaction between symmetric dimethylarginine level and c-terminal FGF-23 level for the risk for renal events (P=0.001). These findings indicate that the association of ADMA level with the risk of CKD progression is modified by FGF-23 level and provide further evidence that dysregulation of the nitric oxide system is involved in CKD progression. PMID:25150156

  6. Synergistic interaction between the fibroblast growth factor and bone morphogenetic protein signaling pathways in lens cells.

    PubMed

    Boswell, Bruce A; Musil, Linda S

    2015-07-01

    Fibroblast growth factors (FGFs) play a central role in two processes essential for lens transparency--fiber cell differentiation and gap junction-mediated intercellular communication (GJIC). Using serum-free primary cultures of chick lens epithelial cells (DCDMLs), we investigated how the FGF and bone morphogenetic protein (BMP) signaling pathways positively cooperate to regulate lens development and function. We found that culturing DCDMLs for 6 d with the BMP blocker noggin inhibits the canonical FGF-to-ERK pathway upstream of FRS2 activation and also prevents FGF from stimulating FRS2- and ERK-independent gene expression, indicating that BMP signaling is required at the level of FGF receptors. Other experiments revealed a second type of BMP/FGF interaction by which FGF promotes expression of BMP target genes as well as of BMP4. Together these studies reveal a novel mode of cooperation between the FGF and BMP pathways in which BMP keeps lens cells in an optimally FGF-responsive state and, reciprocally, FGF enhances BMP-mediated gene expression. This interaction provides a mechanistic explanation for why disruption of either FGF or BMP signaling in the lens leads to defects in lens development and function.

  7. The interactions between nerve growth factor and gonadotrophins in bovine oviduct.

    PubMed

    Li, Chunjin; Ma, Yonghe; Yi, Kangle; Wang, Chunqiang; Li, Wanhong; Liu, Zhuo; Sun, Lina; Chen, Shuxiong; Yu, Jiaxin; Li, Hongjiao; Chen, Lu; Zhou, Xu

    2014-10-01

    Nerve growth factor promotes the survival and differentiation of nervous cells and is thought to play an important role in the development of reproductive tissues. The aims of this work were to detect the presence of NGF and its receptor NTRK1 in bovine oviduct samples, and to investigate the regulatory interactions between NGF/NTRK1 and gonadotrophins in bovine oviduct epithelial cells. Both transcripts and proteins of NGF and NTRK1 were detected by RT-PCR and Western blotting, and the corresponding proteins were specifically immunolocalized in oviduct epithelial cells. In addition, real-time PCR experiments revealed that the levels of NGF and NTRK1 mRNA in oviduct epithelial cells treated with exogenous FSH or LH were greater than those in negative control cells (P<0.05). Similarly, treatment with NGF significantly increased the expression of FSHR and LHR in oviduct epithelial cells via its effects on NTRK1 (P<0.05). This process was suppressed by treatment with the NTRK1 inhibitor K252α. We conclude that NGF/NTRK1 may have a role in regulating the function of bovine oviducts via its interactions with gonadotrophins.

  8. Potential Interactions Between Genetic Polymorphisms of the Transforming Growth Factor-β Pathway and Environmental Factors in Abdominal Aortic Aneurysms.

    PubMed

    Zuo, S; Xiong, J; Wei, Y; Chen, D; Chen, F; Liu, K; Wu, T; Hu, Y; Guo, W

    2015-07-01

    Evidence has accumulated that multiple polymorphisms in the transforming growth factor (TGF)-β pathway and renin-angiotensin system play important roles in determining susceptibility to abdominal aortic aneurysm (AAA). Few studies have considered interactions between these gene polymorphisms and environmental factors. The aim of this study was to evaluate the contribution of single nucleotide polymorphisms (SNPs) and complex gene-environment interactions in AAA. Six SNPs located in TGFB, TGFBR1, TGFBR2 and AGTR1 were selected. Genotyping of blood samples and collection of lifestyle factors were performed in 155 unrelated participants with AAAs and 310 non-AAA controls. Unconditional logistic regression was performed to assess the effects of SNPs on the risk of AAA. Generalized multifactor dimensionality reduction (GMDR) was used to evaluate gene-gene and gene-environment interactions. Participants carrying TGFB1 rs1800469 TT (odds ratio [OR] 1.83, 95% confidence interval [CI] 1.18-2.85) or AGTR1 rs12695895 TT (OR 4.21, 95% CI 1.41-12.53) genotypes had a higher risk of AAA than those with the common CC genotype. The gene-gene interaction of AGTR1 rs5182, TGFBR1 rs1626340, and TGFB1 rs1800469 was found to be the best model according to the results of the GMDR analysis (cross validation consistency [CVC]) 10/10; p = .010). Smoking, dyslipidemia, and rs1800469 together contributed to the risk of AAA, which demonstrated a potential and complex gene-environment interaction among the three variants that might affect AAA risk (CVC 6/10; p = .001). In this study of the Chinese population, homozygosity of TGFB1 rs1800469-T and AGTR1 rs12695895-T might be associated with increased risk of AAA. The complex gene-gene and gene-environment interactions might contribute to the risk of AAA. As a small study, the preliminary results need extensive validation and replication in larger populations. Copyright © 2015 European Society for Vascular Surgery. Published by Elsevier Ltd

  9. A hierarchical network of interreceptor interactions determines signal transduction by Neu differentiation factor/neuregulin and epidermal growth factor.

    PubMed Central

    Tzahar, E; Waterman, H; Chen, X; Levkowitz, G; Karunagaran, D; Lavi, S; Ratzkin, B J; Yarden, Y

    1996-01-01

    The ErbB family includes four homologous transmembrane tyrosine kinases. Whereas ErbB-1 binds to the epidermal growth factor (EGF), both ErbB-3 and ErbB-4 bind to the Neu differentiation factors (NDFs, or neuregulins), and ErbB-2, the most oncogenic family member, is an orphan receptor whose function is still unknown. Because previous lines of evidence indicated the existence of interreceptor interactions, we used ectopic expression of individual ErbB proteins and their combinations to analyze the details of receptor cross talks. We show that 8 of 10 possible homo-and heterodimeric complexes of ErbB proteins can be hierarchically induced by ligand binding. Although ErbB-2 binds neither ligand, even in a heterodimeric receptor complex, it is the preferred heterodimer partner of the three other members, and it favors interaction with ErbB-3. Selective receptor overexpression in human tumor cells appears to bias the hierarchical relationships. The ordered network is reflected in receptor transphosphorylation, ErbB-2-mediated enhancement of ligand affinities, and remarkable potentiation of mitogenesis by a coexpressed ErbB-2. The observed superior ability of ErbB-2 to form heterodimers, in conjunction with its uniquely high basal tyrosine kinase activity, may explain why ErbB-2 overexpression is associated with poor prognosis. PMID:8816440

  10. Interaction between insulin-like growth factor-1 and atherosclerosis and vascular aging.

    PubMed

    Higashi, Yusuke; Quevedo, Henry C; Tiwari, Summit; Sukhanov, Sergiy; Shai, Shaw-Yung; Anwar, Asif; Delafontaine, Patrice

    2014-01-01

    The process of vascular aging encompasses alterations in the function of endothelial (ECs) and vascular smooth muscle cells (VSMCs) via oxidation, inflammation, cell senescence and epigenetic modifications, increasing the probability of atherosclerosis. Aged vessels exhibit decreased endothelial antithrombogenic properties, increased reactive oxygen species generation, inflammatory signaling and migration of VSMCs to the subintimal space, impaired angiogenesis and increased elastin degradation. The key initiating step in atherogenesis is subendothelial accumulation of apolipoprotein B-containing low-density lipoproteins resulting in activation of ECs and recruitment of monocytes. Activated ECs secrete 'chemokines' that interact with cognate chemokine receptors on monocytes and promote directional migration. Recruitment of immune cells establishes a proinflammatory status, further causing elevated oxidative stress, which in turn triggers a series of events including apoptotic or necrotic death of vascular and nonvascular cells. Increased oxidative stress is also considered to be a key factor in mechanisms of aging-associated changes in tissue integrity and function. Experimental evidence indicates that insulin-like growth factor-1 exerts antioxidant, anti-inflammatory and pro-survival effects on the vasculature, reducing atherosclerotic plaque burden and promoting features of atherosclerotic plaque stability.

  11. Diversification of the Structural Determinants of Fibroblast Growth Factor-Heparin Interactions

    PubMed Central

    Xu, Ruoyan; Ori, Alessandro; Rudd, Timothy R.; Uniewicz, Katarzyna A.; Ahmed, Yassir A.; Guimond, Scott E.; Skidmore, Mark A.; Siligardi, Giuliano; Yates, Edwin A.; Fernig, David G.

    2012-01-01

    The functions of a large number (>435) of extracellular regulatory proteins are controlled by their interactions with heparan sulfate (HS). In the case of fibroblast growth factors (FGFs), HS binding determines their transport between cells and is required for the assembly of high affinity signaling complexes with their cognate FGF receptor. However, the specificity of the interaction of FGFs with HS is still debated. Here, we use a panel of FGFs (FGF-1, FGF-2, FGF-7, FGF-9, FGF-18, and FGF-21) spanning five FGF subfamilies to probe their specificities for HS at different levels as follows: binding parameters, identification of heparin-binding sites (HBSs) in the FGFs, changes in their secondary structure caused by heparin binding and structures in the sugar required for binding. For interaction with heparin, the FGFs exhibit KD values varying between 38 nm (FGF-18) and 620 nm (FGF-9) and association rate constants spanning over 20-fold (FGF-1, 2,900,000 m−1 s−1 and FGF-9, 130,000 m−1 s−1). The canonical HBS in FGF-1, FGF-2, FGF-7, FGF-9, and FGF-18 differs in its size, and these FGFs have a different complement of secondary HBS, ranging from none (FGF-9) to two (FGF-1). Differential scanning fluorimetry identified clear preferences in these FGFs for distinct structural features in the polysaccharide. These data suggest that the differences in heparin-binding sites in both the protein and the sugar are greatest between subfamilies and may be more restricted within a FGF subfamily in accord with the known conservation of function within FGF subfamilies. PMID:23019343

  12. Interaction between the GROWTH-REGULATING FACTOR and KNOTTED1-LIKE HOMEOBOX Families of Transcription Factors1[W

    PubMed Central

    Kuijt, Suzanne J.H.; Greco, Raffaella; Agalou, Adamantia; Shao, Jingxia; ‘t Hoen, Corine C.J.; Övernäs, Elin; Osnato, Michela; Curiale, Serena; Meynard, Donaldo; van Gulik, Robert; Maraschin, Simone de Faria; Atallah, Mirna; de Kam, Rolf J.; Lamers, Gerda E.M.; Guiderdoni, Emmanuel; Rossini, Laura; Meijer, Annemarie H.; Ouwerkerk, Pieter B.F.

    2014-01-01

    KNOTTED1-LIKE HOMEOBOX (KNOX) genes are important regulators of meristem function, and a complex network of transcription factors ensures tight control of their expression. Here, we show that members of the GROWTH-REGULATING FACTOR (GRF) family act as players in this network. A yeast (Saccharomyces cerevisiae) one-hybrid screen with the upstream sequence of the KNOX gene Oskn2 from rice (Oryza sativa) resulted in isolation of OsGRF3 and OsGRF10. Specific binding to a region in the untranslated leader sequence of Oskn2 was confirmed by yeast and in vitro binding assays. ProOskn2:β-glucuronidase reporter expression was down-regulated by OsGRF3 and OsGRF10 in vivo, suggesting that these proteins function as transcriptional repressors. Likewise, we found that the GRF protein BGRF1 from barley (Hordeum vulgare) could act as a repressor on an intron sequence in the KNOX gene Hooded/Barley Knotted3 (Bkn3) and that AtGRF4, AtGRF5, and AtGRF6 from Arabidopsis (Arabidopsis thaliana) could repress KNOTTED-LIKE FROM ARABIDOPSIS THALIANA2 (KNAT2) promoter activity. OsGRF overexpression phenotypes in rice were consistent with aberrant meristematic activity, showing reduced formation of tillers and internodes and extensive adventitious root/shoot formation on nodes. These effects were associated with down-regulation of endogenous Oskn2 expression by OsGRF3. Conversely, RNA interference silencing of OsGRF3, OsGRF4, and OsGRF5 resulted in dwarfism, delayed growth and inflorescence formation, and up-regulation of Oskn2. These data demonstrate conserved interactions between the GRF and KNOX families of transcription factors in both monocot and dicot plants. PMID:24532604

  13. Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis.

    PubMed

    Lazaridis, Iakovos; Charalampopoulos, Ioannis; Alexaki, Vassilia-Ismini; Avlonitis, Nicolaos; Pediaditakis, Iosif; Efstathopoulos, Paschalis; Calogeropoulou, Theodora; Castanas, Elias; Gravanis, Achille

    2011-04-01

    The neurosteroid dehydroepiandrosterone (DHEA), produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75(NTR) membrane receptors of neurotrophin nerve growth factor (NGF), acting as a neurotrophic factor: (1) the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2) [(3)H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75(NTR) receptors (K(D): 7.4 ± 1.75 nM and 5.6 ± 0.55 nM, respectively); (3) immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75(NTR) receptors; (4) DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75(NTR) receptors; and (5) DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor.

  14. Neurosteroid Dehydroepiandrosterone Interacts with Nerve Growth Factor (NGF) Receptors, Preventing Neuronal Apoptosis

    PubMed Central

    Alexaki, Vassilia-Ismini; Avlonitis, Nicolaos; Pediaditakis, Iosif; Efstathopoulos, Paschalis; Calogeropoulou, Theodora; Castanas, Elias; Gravanis, Achille

    2011-01-01

    The neurosteroid dehydroepiandrosterone (DHEA), produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75NTR membrane receptors of neurotrophin nerve growth factor (NGF), acting as a neurotrophic factor: (1) the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2) [3H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75NTR receptors (KD: 7.4±1.75 nM and 5.6±0.55 nM, respectively); (3) immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75NTR receptors; (4) DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75NTR receptors; and (5) DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor. PMID:21541365

  15. Epithelial-mesenchymal interactions and lung branching morphogenesis. Role of polyamines and transforming growth factor beta1.

    PubMed

    Stabellini, G; Locci, P; Calvitti, M; Evangelisti, R; Marinucci, L; Bodo, M; Caruso, A; Canaider, S; Carinci, P

    2001-01-01

    Lung branching morphogenesis is a result of epithelial-mesenchymal interactions, which are in turn dependent on extracellular matrix composition and cytokine regulation. Polyamines have recently been demonstrated as able to modify chick embryo skin differentiation. In this work we have examined the effects of putrescine and spermidine during chick embryo lung morphogenesis in organotypic cultures by morphological, histochemical and biochemical examination. To verify the role of polyamines, we used specific inhibitors, such as bis-cyclohexylammonium sulphate and alfa-difluoromethylornithine, and transforming growth factor beta1, an ornithine decarboxylase and polyamine stimulator. Our data show that lung morphogenesis is significantly altered following the induced mesenchymal glycosaminoglycan changes. The increase of mesenchymal glycosaminoglycans is correlated with a stimulation of lung development in the presence of polyamines, and with its inhibition when transforming growth factor beta1 is added to the culture medium. The morphometric data show a uniform increase of both the mesenchyme and epithelial branching with spermidine and putrescine stimulus, whereas the mesenchymal substance alone is significantly increased in apical-median lung sections with transforming growth factor beta1 and transforming growth factor beta1 + spermidine lung cultures. Transforming growth factor beta1 and transforming growth factor beta1 + spermidine confirm the blocking of epithelial branching formations and fibroblast activation, and show that polyamines are unable to prevent the blocking of epithelial cells due to the inhibitory effect of transforming growth factor beta1.

  16. Delineating the functional map of the interaction between nimotuzumab and the epidermal growth factor receptor

    PubMed Central

    Tundidor, Yaima; García-Hernández, Claudia Patricia; Pupo, Amaury; Infante, Yanelys Cabrera; Rojas, Gertrudis

    2014-01-01

    Molecular details of epidermal growth factor receptor (EGFR) targeting by nimotuzumab, a therapeutic anti-cancer antibody, have been largely unknown. The current study delineated a functional map of their interface, based on phage display and extensive mutagenesis of both the target antigen and the Fv antibody fragment. Five residues in EGFR domain III (R353, S356, F357, T358, and H359T) and the third hypervariable region of nimotuzumab heavy chain were shown to be major functional contributors to the interaction. Fine specificity differences between nimotuzumab and other anti-EGFR antibodies were revealed. Mapping information guided the generation of a plausible in silico binding model. Knowledge about the epitope/paratope interface opens new avenues for the study of tumor sensitivity/resistance to nimotuzumab and for further engineering of its binding site. The developed mapping platform, also validated with the well-known cetuximab epitope, allows a comprehensive exploration of antigenic regions and could be expanded to map other anti-EGFR antibodies. PMID:24759767

  17. Interactions of ABCG2 (BCRP) with epidermal growth factor receptor kinase inhibitors developed for molecular imaging.

    PubMed

    Qawasmi, Israa; Shmuel, Miriam; Eyal, Sara

    2014-01-01

    The objective of this study was to investigate in vitro the interactions between novel epidermal growth factor receptor kinase inhibitors (EGFRIs) developed for positron emission tomography (PET) imaging and the major efflux transporter breast cancer resistance protein (BCRP/ABCG2). Seven compounds were evaluated, using the ATPase activity assays and Madin-Darbey canine kidney (MDCK) cells overexpressing BCRP. Five of the tested compounds activated BCRP ATPase to various extent. Overexpression of BCRP conferred resistance to ML04, ML06, methoxy-Br-ML03, and PEG6-ML05 (IC50 values for inhibition of control cell proliferation 2.1 ± 0.6, 2.2 ± 0.7, 1.8 ± 1.2, and 2.8 ± 3.1 μM, respectively, compared to >50 μM in MDCK-BCRP cells). At submicromolar concentrations, none of the EGFRIs significantly inhibited BCRP. Immunoblotting studies indicated that BCRP expression is evident in cell lines utilized for in vivo tumor grafting in small animal PET imaging studies. Thus, the intensity of EGFRIs radioactivity signals previously observed in tumor xenografts reflects an interplay between transporter-mediated distribution of the probe into tumor cells and target binding. Concomitant use of efflux transporter inhibitors may help distinguish between the contribution of efflux transport and EGFR binding to the tissue signal.

  18. Interactions of ABCG2 (BCRP) with epidermal growth factor receptor kinase inhibitors developed for molecular imaging

    PubMed Central

    Qawasmi, Israa; Shmuel, Miriam; Eyal, Sara

    2014-01-01

    The objective of this study was to investigate in vitro the interactions between novel epidermal growth factor receptor kinase inhibitors (EGFRIs) developed for positron emission tomography (PET) imaging and the major efflux transporter breast cancer resistance protein (BCRP/ABCG2). Seven compounds were evaluated, using the ATPase activity assays and Madin-Darbey canine kidney (MDCK) cells overexpressing BCRP. Five of the tested compounds activated BCRP ATPase to various extent. Overexpression of BCRP conferred resistance to ML04, ML06, methoxy-Br-ML03, and PEG6-ML05 (IC50 values for inhibition of control cell proliferation 2.1 ± 0.6, 2.2 ± 0.7, 1.8 ± 1.2, and 2.8 ± 3.1 μM, respectively, compared to >50 μM in MDCK-BCRP cells). At submicromolar concentrations, none of the EGFRIs significantly inhibited BCRP. Immunoblotting studies indicated that BCRP expression is evident in cell lines utilized for in vivo tumor grafting in small animal PET imaging studies. Thus, the intensity of EGFRIs radioactivity signals previously observed in tumor xenografts reflects an interplay between transporter-mediated distribution of the probe into tumor cells and target binding. Concomitant use of efflux transporter inhibitors may help distinguish between the contribution of efflux transport and EGFR binding to the tissue signal. PMID:25484865

  19. Delineating the functional map of the interaction between nimotuzumab and the epidermal growth factor receptor.

    PubMed

    Tundidor, Yaima; García-Hernández, Claudia Patricia; Pupo, Amaury; Cabrera Infante, Yanelys; Rojas, Gertrudis

    2014-01-01

    Molecular details of epidermal growth factor receptor (EGFR) targeting by nimotuzumab, a therapeutic anti-cancer antibody, have been largely unknown. The current study delineated a functional map of their interface, based on phage display and extensive mutagenesis of both the target antigen and the Fv antibody fragment. Five residues in EGFR domain III (R353, S356, F357, T358, and H359T) and the third hypervariable region of nimotuzumab heavy chain were shown to be major functional contributors to the interaction. Fine specificity differences between nimotuzumab and other anti-EGFR antibodies were revealed. Mapping information guided the generation of a plausible in silico binding model. Knowledge about the epitope/paratope interface opens new avenues for the study of tumor sensitivity/resistance to nimotuzumab and for further engineering of its binding site. The developed mapping platform, also validated with the well-known cetuximab epitope, allows a comprehensive exploration of antigenic regions and could be expanded to map other anti-EGFR antibodies.

  20. EFFECT OF GROWTH FACTOR-FIBRONECTIN MATRIX INTERACTION ON RAT TYPE II CELL ADHESION AND DNA SYTHESIS

    EPA Science Inventory

    ABSTRACT

    Type II cells attach, migrate and proliferate on a provisional fibronectin-rich matrix during alveolar wall repair after lung injury. The combination of cell-substratum interactions via integrin receptors and exposure to local growth factors are likely to initiat...

  1. EFFECT OF GROWTH FACTOR-FIBRONECTIN MATRIX INTERACTION ON RAT TYPE II CELL ADHESION AND DNA SYTHESIS

    EPA Science Inventory

    ABSTRACT

    Type II cells attach, migrate and proliferate on a provisional fibronectin-rich matrix during alveolar wall repair after lung injury. The combination of cell-substratum interactions via integrin receptors and exposure to local growth factors are likely to initiat...

  2. PLAC1 expression increases during trophoblast differentiation: evidence for regulatory interactions with the fibroblast growth factor-7 (FGF-7) axis.

    PubMed

    Massabbal, Eltayab; Parveen, Shanaz; Weisoly, D L; Nelson, D Michael; Smith, S D; Fant, Michael

    2005-07-01

    PLAC1 is a recently described, trophoblast-specific gene that localizes to a region of the X-chromosome important in placental development. Immunohistochemical analysis demonstrated that PLAC1 polypeptide localizes to the differentiated syncytiotrophoblast throughout gestation (8-41 weeks) as well as a small population of villous cytotrophoblasts. Consistent with these observations, quantitative RT-PCR demonstrated that PLAC1 mRNA increases more than 300-fold during cytotrophoblast differentiation in culture to form syncytiotrophoblasts. Agents known to be relevant to trophoblast differentiation were then tested for the ability to influence PLAC1 expression. Fibroblast growth factor-7 (FGF-7), also known as keratinocyte growth factor (KGF), stimulated PLAC1 mRNA expression approximately two-fold in the BeWo(b30) trophoblast cell line. FGF-7 stimulation was significantly inhibited by PD-98059 and wortmannin suggesting mediation via MAP kinase and PI-3 kinase-dependent signaling pathways. Interestingly, epidermal growth factor (EGF) treatment of trophoblasts had no effect on PLAC1 expression alone, but potentiated the effect of FGF-7, suggesting the presence of a regulatory interaction of the two growth factors. FGF-7 and its receptor, FGFR-2b, exhibited spatial overlap with PLAC1 suggesting these regulatory interactions are physiologically relevant during gestation. These data demonstrate PLAC1 expression is upregulated during trophoblast differentiation, localizing primarily to the differentiated syncytiotrophoblast. Furthermore PLAC1 expression is specifically regulated by peptide growth factors relevant to trophoblast differentiation. Copyright 2005 Wiley-Liss, Inc

  3. Interactive effects of natural and anthropogenic factors on growth and physiology of southern red spruce

    SciTech Connect

    McLaughlin, S.B.; Andersen, C.P.; Hanson, P.J.; Norby, R.J.; Edwards, N.T.; Tardiff, R.R.

    1987-01-01

    Field and laboratory studies are underway to characterize physiologial changes associated with the decline of red spruce (Picea rubens Sarg.) at high elevations in the Great Smocky Mountains National Park. Two research plots have been established on Clingman's Dome at 1720 m and 1935 m elevations to document the magnitude of growth changes at sites experiencing varying degrees of growth decline and to explore the physiological basis of observed differences. The objective is to evaluate likely mechanisms of action and identify natural and anthropogenic factors influencing the observed growth patterns. Field measurements include historical and current radial growth of mature trees and saplings, and seasonal patterns of carbon assimilation, carbon allocation, and water relations of saplings. Laboratory experiments include dose response exposures with H/sub 2/O/sub 2/, toxicity screening studies with Al, Mn, and Ca, and characterization of the foliar uptake and metabolism of nitrogen oxides. 9 refs., 2 figs., 6 tabs.

  4. Schwann cell-neuronal interactions in the rat involve nerve growth factor.

    PubMed

    Urschel, B A; Hulsebosch, C E

    1990-06-01

    To gain some insight into possible functions of nerve growth factor (NGF), we suppressed the endogenous levels of NGF in newborn rats by subcutaneous injections (3 microliters/g body weight) of rabbit antibodies to purified mouse beta-NGF (ANTI-NGF). Fiber and axonal areas and perimeters were measured for unmyelinated and myelinated sensory fibers in T9 dorsal roots (DR) in three groups of animals: 1) ANTI-NGF treated littermates, 2) preimmune sera treated littermates (PREIMM), and 3) untreated littermates (UNTR). In some rats, fibers in ventral roots (VR) were measured and, in other rats, sensory processes in peripheral nerves (PN) were measured following radical ventral rhizotomy. The only outer area and perimeter measurements that were statistically different were those in the ventral root (P less than 0.013 and P less than 0.043, respectively). However, myelin thickness was significantly thinner in the dorsal roots of the ANTI-NGF group than in the dorsal roots of the UNTR and PREIMM groups (P less than 0.000009 and P less than 10(-6), respectively). Myelin thickness in the ventral roots of the ANTI-NGF group was also statistically thinner than that in the UNTR group (P less than 0.001). There were no statistically significant differences when comparing the UNTR group to the PREIMM group. In the peripheral nerves studied, there was no significant change in the myelin thickness between the ANTI-NGF and UNTR groups of animals. These results indicate that Schwann cell-neuronal interactions are altered by the inactivation of NGF, and that 1) the central processes of sensory fibers are affected and not the peripheral processes and 2) motor fiber myelination is altered.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Real-time studies of the interactions between epidermal growth factor and its receptor during endocytic trafficking.

    PubMed

    Martin-Fernandez, M L; Clarke, D T; Tobin, M J; Jones, G R

    2000-09-01

    The interactions of growth factors with cell surface receptors regulate fundamental cell processes, such as growth, differentiation and transformation. Understanding the nature of these interactions at the molecular level is of fundamental importance in cell biology. This is not only from the point of view of basic science, but also because of the repercussions such knowledge might have in understanding the mode of action of drugs in cells. Receptor mediated endocytosis has been implicated in the downregulation of the mitogenic signal. However, no data are thus far available on how growth factor/receptor interactions might control endocytic trafficking. Here we show that information on modes of binding and receptor conformational changes can be obtained using time-resolved fluorescence methods. We have found that fluorescent probes bound to epidermal growth factor (EGF) show dynamic fluorescence quenching when EGF is bound to internalising EGF receptors (EGFR). We propose that this dynamic quenching takes place because EGF-bound probes interact with tryptophan residues in the extracellular domain of the EGF-EGFR complex. Real-time accumulation of fluorescent decays has also allowed us to follow the time course of a conformational change in EGFR occurring during endocytosis, and correlate this information with endosomal trafficking and EGFR recycling.

  6. The Role of Growth Factors and Cytokines during Implantation: Endocrine and Paracrine Interactions

    PubMed Central

    Guzeloglu-Kayisli, Ozlem; Kayisli, Umit Ali; Taylor, Hugh S.

    2011-01-01

    Implantation, a critical step for establishing pregnancy, requires molecular and cellular events resulting in uterine growth and differentiation, blastocyst adhesion, invasion, and placental formation. Successful implantation requires a receptive endometrium, a normal and functional embryo at the blastocyst stage, and a synchronized dialogue between maternal and embryonic tissues. In addition to the well-characterized role of sex steroids, the complexity of embryo implantation and placentation is exemplified by the number of cytokines and growth factors with demonstrated roles in these processes. Disturbances in the normal expression and action of these cytokines result in an absolute or partial failure of implantation and abnormal placental formation in mice and human. Members of the gp130 cytokine family, interleukin-11 (IL-11) and leukemia inhibitory factor, the transforming growth factor beta superfamily, the colony-stimulating factors, and the IL-1 and IL-15 systems are crucial molecules for a successful implantation. Chemokines are also important, both in recruiting specific cohorts of leukocytes to the implantation site and in trophoblast trafficking and differentiation. This review provides discussion of the embryonic and uterine factors that are involved in the process of implantation in autocrine, paracrine, and/or juxtacrine manners at the hormonal, cellular, and molecular levels. PMID:19197806

  7. Molecular cloning of the mouse grb2 gene: differential interaction of the Grb2 adaptor protein with epidermal growth factor and nerve growth factor receptors.

    PubMed Central

    Suen, K L; Bustelo, X R; Pawson, T; Barbacid, M

    1993-01-01

    We report the isolation and molecular characterization of the mouse grb2 gene. The product of this gene, the Grb2 protein, is highly related to the Caenorhabditis elegans sem-5 gene product and the human GRB2 protein and displays the same SH3-SH2-SH3 structural motifs. In situ hybridization studies revealed that the mouse grb2 gene is widely expressed throughout embryonic development (E9.5 to P0). However, grb2 transcripts are not uniformly distributed, and in certain tissues (e.g., thymus) they appear to be regulated during development. Recent genetic and biochemical evidence has implicated the Grb2 protein in the signaling pathways that link cell surface tyrosine kinase receptors with Ras. We have investigated the association of the Grb2 protein with epidermal growth factor (EGF) and nerve growth factor (NGF) receptors in PC12 pheochromocytoma cells. EGF treatment of PC12 cells results in the rapid association of Grb2 with the activated EGF receptors, an interaction mediated by the Grb2 SH2 domain. However, Grb2 does not bind to NGF-activated Trk receptors. Mitogenic signaling of NGF in NIH 3T3 cells ectopically expressing Trk receptors also takes place without detectable association between Grb2 and Trk. These results suggest that whereas EGF and NGF can activate the Ras signaling pathway in PC12 cells, only the EGF receptor is likely to do so through a direct interaction with Grb2. Finally, binding studies with glutathione S-transferase fusion proteins indicate that Grb2 binds two distinct subsets of proteins which are individually recognized by its SH2 and SH3 domains. These observations add further support to the concept that Grb2 is a modular adaptor protein. Images PMID:7689150

  8. Modeling of growth factor-receptor systems: from molecular-level protein interaction networks to whole-body compartment models

    PubMed Central

    Wu, Florence T.H.; Stefanini, Marianne O.; Mac Gabhann, Feilim; Popel, Aleksander S.

    2010-01-01

    Most physiological processes are subjected to molecular regulation by growth factors, which are secreted proteins that activate chemical signal transduction pathways through binding of specific cell-surface receptors. One particular growth factor system involved in the in vivo regulation of blood vessel growth is called the vascular endothelial growth factor (VEGF) system. Computational and numerical techniques are well-suited to handle the molecular complexity (the number of binding partners involved, including ligands, receptors, and inert binding sites) and multi-scale nature (intra-tissue vs. inter-tissue transport and local vs. systemic effects within an organism) involved in modeling growth factor system interactions and effects. This paper introduces a variety of in silico models that seek to recapitulate different aspects of VEGF system biology at various spatial and temporal scales: molecular-level kinetic models focus on VEGF ligand-receptor interactions at and near the endothelial cell surface; meso-scale single-tissue 3D models can simulate the effects of multi-cellular tissue architecture on the spatial variation in VEGF ligand production and receptor activation; compartmental modeling allows efficient prediction of average interstitial VEGF concentrations and cell-surface VEGF signaling intensities across multiple large tissue volumes, permitting the investigation of whole-body inter-tissue transport (e.g., vascular permeability and lymphatic drainage). The given examples will demonstrate the utility of computational models in aiding both basic science and clinical research on VEGF systems biology. PMID:19897104

  9. Protein kinase A modulates transforming growth factor-β signaling through a direct interaction with Smad4 protein.

    PubMed

    Yang, Huibin; Li, Gangyong; Wu, Jing-Jiang; Wang, Lidong; Uhler, Michael; Simeone, Diane M

    2013-03-22

    Transforming growth factor β (TGFβ) signaling normally functions to regulate embryonic development and cellular homeostasis. It is increasingly recognized that TGFβ signaling is regulated by cross-talk with other signaling pathways. We previously reported that TGFβ activates protein kinase A (PKA) independent of cAMP through an interaction of an activated Smad3-Smad4 complex and the regulatory subunit of the PKA holoenzyme (PKA-R). Here we define the interaction domains of Smad4 and PKA-R and the functional consequences of this interaction. Using a series of Smad4 and PKA-R truncation mutants, we identified amino acids 290-300 of the Smad4 linker region as critical for the specific interaction of Smad4 and PKA-R. Co-immunoprecipitation assays showed that the B cAMP binding domain of PKA-R was sufficient for interaction with Smad4. Targeting of B domain regions conserved among all PKA-R isoforms and exposed on the molecular surface demonstrated that amino acids 281-285 and 320-329 were required for complex formation with Smad4. Interactions of these specific regions of Smad4 and PKA-R were necessary for TGFβ-mediated increases in PKA activity, CREB (cAMP-response element-binding protein) phosphorylation, induction of p21, and growth inhibition. Moreover, this Smad4-PKA interaction was required for TGFβ-induced epithelial mesenchymal transition, invasion of pancreatic tumor cells, and regulation of tumor growth in vivo.

  10. Decorin Interacts with Connective Tissue Growth Factor (CTGF)/CCN2 by LRR12 Inhibiting Its Biological Activity*

    PubMed Central

    Vial, Cecilia; Gutiérrez, Jaime; Santander, Cristian; Cabrera, Daniel; Brandan, Enrique

    2011-01-01

    Fibrotic disorders are the end point of many chronic diseases in different tissues, where an accumulation of the extracellular matrix occurs, mainly because of the action of the connective tissue growth factor (CTGF/CCN2). Little is known about how this growth factor activity is regulated. We found that decorin null myoblasts are more sensitive to CTGF than wild type myoblasts, as evaluated by the accumulation of fibronectin or collagen III. Decorin added exogenously negatively regulated CTGF pro-fibrotic activity and the induction of actin stress fibers. Using co-immunoprecipitation and in vitro interaction assays, decorin and CTGF were shown to interact in a saturable manner with a Kd of 4.4 nm. This interaction requires the core protein of decorin. Experiments using the deletion mutant decorin indicated that the leucine-rich repeats (LRR) 10–12 are important for the interaction with CTGF and the negative regulation of the cytokine activity, moreover, a peptide derived from the LRR12 was able to inhibit CTGF-decorin complex formation and CTGF activity. Finally, we showed that CTGF specifically induced the synthesis of decorin, suggesting a mechanism of autoregulation. These results suggest that decorin interacts with CTGF and regulates its biological activity. PMID:21454550

  11. Curcumin inhibition of the functional interaction between integrin α6β4 and the epidermal growth factor receptor.

    PubMed

    Soung, Young Hwa; Chung, Jun

    2011-05-01

    The functional interaction between integrin α6β4 and growth factor receptors has been implicated in key signaling pathways important for cancer cell function. However, few attempts have been made to selectively target this interaction for therapeutic intervention. Previous studies showed that curcumin, a yellow pigment isolated from turmeric, inhibits integrin α6β4 signaling important for breast carcinoma cell motility and invasion, but the mechanism is not currently known. To address this issue, we tested the hypothesis that curcumin inhibits the functional interaction between α6β4 and the epidermal growth factor receptor (EGFR). In this study, we found that curcumin disrupts functional and physical interactions between α6β4 and EGFR, and blocks α6β4/EGFR-dependent functions of carcinoma cells expressing the signaling competent form of α6β4. We further showed that curcumin inhibits EGF-dependent mobilization of α6β4 from hemidesmosomes to the leading edges of migrating cells such as lammelipodia and filopodia, and thereby prevents α6β4 distribution to lipid rafts where functional interactions between α6β4 and EGFR occur. These data suggest a novel paradigm in which curcumin inhibits α6β4 signaling and functions by altering intracellular localization of α6β4, thus preventing its association with signaling receptors such as EGFR.

  12. Interactions between Growth Factors and Integrins: Latent Forms of Transforming Growth Factor-β Are Ligands for the Integrin αvβ1

    PubMed Central

    Munger, John S.; Harpel, John G.; Giancotti, Filippo G.; Rifkin, Daniel B.

    1998-01-01

    The multipotential cytokine transforming growth factor-β (TGF-β) is secreted in a latent form. Latency results from the noncovalent association of TGF-β with its processed propeptide dimer, called the latency-associated peptide (LAP); the complex of the two proteins is termed the small latent complex. Disulfide bonding between LAP and latent TGF-β–binding protein (LTBP) produces the most common form of latent TGF-β, the large latent complex. The extracellular matrix (ECM) modulates the activity of TGF-β. LTBP and the LAP propeptides of TGF-β (isoforms 1 and 3), like many ECM proteins, contain the common integrin-binding sequence RGD. To increase our understanding of latent TGF-β function in the ECM, we determined whether latent TGF-β1 interacts with integrins. A549 cells adhered and spread on plastic coated with LAP, small latent complex, and large latent complex but not on LTBP-coated plastic. Adhesion was blocked by an RGD peptide, and cells were unable to attach to a mutant form of recombinant LAP lacking the RGD sequence. Adhesion was also blocked by mAbs to integrin subunits αv and β1. We purified LAP-binding integrins from extracts of A549 cells using LAP bound to Sepharose. αvβ1 eluted with EDTA. After purification in the presence of Mn2+, a small amount of αvβ5 was also detected. A549 cells migrated equally on fibronectin- and LAP-coated surfaces; migration on LAP was αvβ1 dependent. These results establish αvβ1 as a LAP-β1 receptor. Interactions between latent TGF-β and αvβ1 may localize latent TGF-β to the surface of specific cells and may allow the TGF-β1 gene product to initiate signals by both TGF-β receptor and integrin pathways. PMID:9725916

  13. Apple FLOWERING LOCUS T proteins interact with transcription factors implicated in cell growth and organ development.

    PubMed

    Mimida, Naozumi; Kidou, Shin-Ichiro; Iwanami, Hiroshi; Moriya, Shigeki; Abe, Kazuyuki; Voogd, Charlotte; Varkonyi-Gasic, Erika; Kotoda, Nobuhiro

    2011-05-01

    Understanding the flowering process in apple (Malus × domestica Borkh.) is essential for developing methods to shorten the breeding period and regulate fruit yield. It is known that FLOWERING LOCUS T (FT) acts as a transmissible floral inducer in the Arabidopsis flowering network system. To clarify the molecular network of two apple FT orthologues, MdFT1 and MdFT2, we performed a yeast two-hybrid screen to identify proteins that interact with MdFT1. We identified several transcription factors, including two members of the TCP (TEOSINTE BRANCHED1, CYCLOIDEA and PROLIFERATING CELL FACTORs) family, designated MdTCP2 and MdTCP4, and an Arabidopsis thaliana VOZ1 (Vascular plant One Zinc finger protein1)-like protein, designated MdVOZ1. MdTCP2 and MdVOZ1 also interacted with MdFT2 in yeast. The expression domain of MdTCP2 and MdVOZ1 partially overlapped with that of MdFT1 and MdFT2, most strikingly in apple fruit tissue, further suggesting a potential interaction in vivo. Constitutive expression of MdTCP2, MdTCP4 and MdVOZ1 in Arabidopsis affected plant size, leaf morphology and the formation of leaf primordia on the adaxial side of cotyledons. On the other hand, chimeric MdTCP2, MdTCP4 and MdVOZ1 repressors that included the ethylene-responsive transcription factors (ERF)-associated amphiphilic repression (EAR) domain motif influenced reproduction and inflorescence architecture in transgenic Arabidopsis. These results suggest that MdFT1 and/or MdFT2 might be involved in the regulation of cellular proliferation and the formation of new tissues and that they might affect leaf and fruit development by interacting with TCP- and VOZ-family proteins. DDBJ accession nos. AB531019 (MdTCP2a mRNA), AB531020 (MdTCP2b mRNA), AB531021 (MdTCP4a mRNA), AB531022 (MdTCP4b mRNA) and AB531023 (MdVOZ1a mRNA).

  14. Interaction of transforming growth factor beta (TGF beta) with proteinase 3.

    PubMed

    Kekow, J; Csernok, E; Szymkowiak, C; Gross, W L

    1997-01-01

    TGF beta is a multifunctional cytokine modulating onset and course of autoimmune diseases as shown in experimental models. Aim of this study was to investigate possible interactions of TGF beta with lysosomal enzymes identified as ANCA autoantigens (e.g. proteinase 3, PR3). This included TGF beta effects on the translocation the lysosomal enzymes to the cell surface of polymorphonuclear cells (PMN), and the presumabe activation of non bioactive, latent TGF beta by these enzymes. Flow cytometry analysis showed TGF beta 1 to be a potent translocation factor for PR3 comparable with other neutrophil activating factors such as interleukin 8 (IL8). The PR3 membrane expression on primed PMN increased by up to 51% after incubation with TGF beta 1. PR3 itself was revealed as a potent activator of latent TGF beta, thus mediating bioeffects of this cytokine. Patients with various types of systemic vasculitis (SV) showed marked TGF beta overexpression correlating with disease. Mean TGF beta 1 plasma levels in the ANCA associated vasculitis (AAV) patients ranged from 8.9 (Wegeners granulomatosis, WG) to 13.3 ng/ml (Churg-Strauss syndrome, CSS)(control: 4.2 ng/ml, p < 0.01) while TGF beta 2 levels were not elevated. Our findings, together with other features of TGF beta's such as induction of angiogenesis and its strong chemotactic capacity, indicate that TGF beta might serve as a proinflammatory factor in SV, especially in AAV.

  15. Nerve growth factor-endothelial cell interaction leads to angiogenesis in vitro and in vivo.

    PubMed

    Cantarella, Giuseppina; Lempereur, Laurence; Presta, Marco; Ribatti, Domenico; Lombardo, Gabriella; Lazarovici, Philip; Zappalà, Giovanna; Pafumi, Carlo; Bernardini, Renato

    2002-08-01

    Nerve growth factor (NGF) has important functions during embryonic development and on various tissues and organs under normal and pathological conditions during the extrauterine life. RT-PCR analysis and immunological methods demonstrate that human umbilical vein endothelial cells (HUVECs) express the NGF receptors trkA(NGFR) and p75NTR. NGF treatment caused a rapid phosphorylation of trkA(NGFR) in HUVECs, determining a parallel increase of phosphorylated ERK1/2. Accordingly, NGF induced a significant increase in HUVEC proliferation that was abolished by the trkA(NGFR) inhibitor K252a. Also, HUVECs express significant levels of NGF under standard culture conditions that were up-regulated during serum starvation. Endogenous NGF was responsible for the basal levels of trkA(NGFR) and ERK1/2 phosphorylation observed in untreated HUVEC cultures. Finally, NGF exerted a potent, direct, angiogenic activity in vivo when delivered onto the chorioallantoic membrane of the chicken embryo. The data indicate that NGF may play an important role in blood vessel formation in the nervous system and in several pathological processes, including tumors and inflammatory diseases. Unraveling mechanisms of NGF-dependent angiogenesis could provide valuable tools for novel therapeutic approaches in antiangiogenic therapy.

  16. The role of vascular endothelial growth factor in neurodegeneration and cognitive decline: exploring interactions with biomarkers of Alzheimer disease.

    PubMed

    Hohman, Timothy J; Bell, Susan P; Jefferson, Angela L

    2015-05-01

    A subset of older adults present post mortem with Alzheimer disease (AD) pathologic features but without any significant clinical manifestation of dementia. Vascular endothelial growth factor (VEGF) has been implicated in staving off AD-related neurodegeneration. To evaluate whether VEGF levels are associated with brain aging outcomes (hippocampal volume and cognition) and to further evaluate whether VEGF modifies relations between AD biomarkers and brain aging outcomes. Biomarker analysis using neuroimaging and neuropsychological outcomes from the Alzheimer's Disease Neuroimaging Initiative. This prospective longitudinal study across North America included individuals with normal cognition (n = 90), mild cognitive impairment (n = 130), and AD (n = 59) and began in October 2004, with follow-up ongoing. Cerebrospinal fluid VEGF was cross-sectionally related to brain aging outcomes (hippocampal volume, episodic memory, and executive function) using a general linear model and longitudinally using mixed-effects regression. Alzheimer disease biomarker (cerebrospinal fluid β-amyloid 42 and total tau)-by-VEGF interactions evaluated the effect of VEGF on brain aging outcomes in the presence of enhanced AD biomarkers. Vascular endothelial growth factor was associated with baseline hippocampal volume (t277 = 2.62; P = .009), longitudinal hippocampal atrophy (t858 = 2.48; P = .01), and longitudinal decline in memory (t1629 = 4.09; P < .001) and executive function (t1616 = 3.00; P = .003). Vascular endothelial growth factor interacted with tau in predicting longitudinal hippocampal atrophy (t845 = 4.17; P < .001), memory decline (t1610 = 2.49; P = .01), and executive function decline (t1597 = 3.71; P < .001). Vascular endothelial growth factor interacted with β-amyloid 42 in predicting longitudinal memory decline (t1618 = -2.53; P = .01). Elevated cerebrospinal fluid VEGF was associated with more optimal brain aging in vivo. The neuroprotective effect appeared

  17. Physician-Industry Interactions and Anti-Vascular Endothelial Growth Factor Use Among US Ophthalmologists.

    PubMed

    Taylor, Stanford C; Huecker, Julia B; Gordon, Mae O; Vollman, David E; Apte, Rajendra S

    2016-08-01

    The publication of the US Physician Payments Sunshine Act provides insight into the financial relationship between physicians and the pharmaceutical industry. This added transparency creates new opportunities of using objective data to better understand prior research that implicates pharmaceutical promotions as an important factor in a physician's decision-making process. To assess the association between reported industry payments and physician-prescribing habits by comparing the use of anti-vascular endothelial growth factor (VEGF) intravitreal injections by US ophthalmologists to the industry payments these same physicians received. This study reviews data from the Centers for Medicare & Medicaid Services (CMS) 2013 Medicare Provider Utilization and Payment Data: Physician and Other Supplier Public Use File and the CMS-sponsored August through December 2013 Open Payments program (Physician Payments Sunshine Act). Ophthalmologists who prescribe anti-VEGF injections for all indications were analyzed. Association between industry payments reportedly received and the number and type of anti-VEGF injections administered. A total of 3011 US ophthalmologists were reimbursed by CMS for 2.2 million anti-VEGF injections in 2013. Of these physicians, 38.0% reportedly received $1.3 million in industry payments for ranibizumab and aflibercept. Analysis revealed positive associations between increasing numbers of reported industry payments and total injection use (r = 0.24; 95% CI, 0.22-0.26; P < .001), aflibercept and ranibizumab injection use (r = 0.32; 95% CI, 0.29-0.34; P < .001), and percentage of injections per physician that were aflibercept or ranibizumab (r = 0.27; 95% CI, 0.25-0.29; P < .001). A smaller association was noted between greater number of industry payments and bevacizumab injection use (r = 0.07; 95% CI, 0.04-0.09; P < .001). Similar associations were found between the total dollars of reported industry payments received

  18. Low dose radiation interactions with the transformation growth factor (TFG)-beta pathway

    NASA Astrophysics Data System (ADS)

    Maslowski, Amy Jesse

    A major limiting factor for long-term, deep-space missions is the radiation dose to astronauts. Because the dose to the astronauts is a mixed field of low- and high-LET radiation, there is a need to understand the effects of both radiation types on whole tissue; however, there are limited published data on the effects of high-LET (linear-energy-transfer) radiation on tissue. Thus, we designed a perfusion chamber system for rat trachea in order to mimic in vivo respiratory tissue. We successfully maintained the perfused tracheal tissue ex vivo in a healthy and viable condition for up to three days. In addition, this project studied the effects of high-LET Fe particles on the overall transformation growth factor (TGF)-beta response after TGF-beta inactivation and compared the results to the TGF-beta response post x-ray irradiation. It was found that a TGF-beta response could be measured in the perfused tracheal tissue, for x-ray and Fe particle irradiations, despite the high autofluorescent background intrinsic to tissue. However, after comparing the TGF-beta response of x-ray irradiation to High-Z-High-energy (HZE) irradiation, there was not a significant difference in radiation types. The TGF-beta response in x-ray and HZE irradiated perfusion chambers was also measured over time post irradiation. It was found that for 6 hour and 8 hour post irradiation, the TGF-beta response was higher for lower doses of radiation than for higher doses. This is in contrast to the 0 hour fixation which found the TGF-beta response to increase with increased dose. The inverse relationship found for 6 hour and 8 hour fixation times may indicate a threshold response for TGF-beta response; i.e., for low doses, a threshold of dose must be reached for an immediate TGF-beta response, otherwise the tissue responds more slowly to the irradiation damage. This result was unexpected and will require further investigation to determine if the threshold can be determined for the 250 kVp x-rays and

  19. Calcitriol, calcidiol, parathyroid hormone, and fibroblast growth factor-23 interactions in chronic kidney disease

    PubMed Central

    Brito Galvao, Joao F; Nagode, Larry A; Schenck, Patricia A; Chew, Dennis J

    2013-01-01

    Objective To review the inter-relationships between calcium, phosphorus, parathyroid hormone (PTH), parent and activated vitamin D metabolites (vitamin D, 25(OH)-vitamin D, 1,25(OH)2-vitamin D, 24,25(OH)2-vitamin D), and fibroblast growth factor-23 (FGF-23) during chronic kidney disease (CKD) in dogs and cats. Data Sources Human and veterinary literature. Human Data Synthesis Beneficial effects of calcitriol treatment during CKD have traditionally been attributed to regulation of PTH but new perspectives emphasize direct renoprotective actions independent of PTH and calcium. It is now apparent that calcitriol exerts an important effect on renal tubular reclamation of filtered 25(OH)-vitamin D, which may be important in maintaining adequate circulating 25(OH)-vitamin D. This in turn may be vital for important pleiotropic actions in peripheral tissues through autocrine/paracrine mechanisms that impact the health of those local tissues. Veterinary Data Synthesis Limited information is available reporting the benefit of calcitriol treatment in dogs and cats with CKD. Conclusions A survival benefit has been shown for dogs with CKD treated with calcitriol compared to placebo. The concentrations of circulating 25(OH)-vitamin D have recently been shown to be low in people and dogs with CKD and are related to survival in people with CKD. Combination therapy for people with CKD using both parental and activated vitamin D compounds is common in human nephrology and there is a developing emphasis using combination treatment with activated vitamin D and renin-angiotensin-aldosterone-system (RAAS) inhibitors. PMID:23566108

  20. Structural basis for the interaction of a vascular endothelial growth factor mimic peptide motif and its corresponding receptors.

    PubMed

    Giordano, Ricardo J; Anobom, Cristiane D; Cardó-Vila, Marina; Kalil, Jorge; Valente, Ana P; Pasqualini, Renata; Almeida, Fabio C L; Arap, Wadih

    2005-10-01

    Vascular endothelial growth factor (VEGF) is central to the survival and development of the vascular and nervous systems. We screened phage display libraries and built a peptide-based ligand-receptor map of binding sites within the VEGF family. We then validated a cyclic peptide, CPQPRPLC, as a VEGF-mimic that binds specifically to neuropilin-1 and VEGF receptor-1. Here, we use NMR spectroscopy to understand the structural basis of the interaction between our mimic peptide and the VEGF receptors. We show that: (1) CPQPRPLC has multiple interactive conformations; (2) receptor binding is mediated by the motif Arg-Pro-Leu; and (3) the Pro residue within Arg-Pro-Leu participates in binding to neuropilin-1 but not to VEGF receptor-1, perhaps representing an evolutionary gain-of-function. Therefore, Arg-Pro-Leu is a differential ligand motif to VEGF receptors and a candidate peptidomimetic lead for VEGF pathway modulation.

  1. Amlexanox Blocks the Interaction between S100A4 and Epidermal Growth Factor and Inhibits Cell Proliferation

    PubMed Central

    Cho, Ching Chang; Chou, Ruey-Hwang; Yu, Chin

    2016-01-01

    The human S100A4 protein binds calcium, resulting in a change in its conformation to promote the interaction with its target protein. Human epidermal growth factor (EGF) is the target protein of S100A4 and a critical ligand of the receptor EGFR. The EGF/EGFR system promotes cell survival, differentiation, and growth by activating several signaling pathways. Amlexanox is an anti-inflammatory and anti-allergic drug that is used to treat recurrent aphthous ulcers. In the present study, we determined that amlexanox interacts with S100A4 using heteronuclear single quantum correlation titration. We elucidated the interactions of S100A4 with EGF and amlexanox using fluorescence and nuclear magnetic resonance spectroscopy. We generated two binary models (for the S100A4-EGF and S100A4-amlexanox complexes) and observed that amlexanox and EGF share a similar binding region in mS100A4. We also used a WST-1 assay to investigate the bioactivity of S100A4, EGF, and amlexanox, and found that amlexanox blocks the binding between S100A4 and EGF, and is therefore useful for the development of new anti-proliferation drugs. PMID:27559743

  2. Regulation of growth by a nerve growth factor-like protein which modulates paracrine interactions between a neoplastic epithelial cell line and stromal cells of the human prostate.

    PubMed

    Djakiew, D; Delsite, R; Pflug, B; Wrathall, J; Lynch, J H; Onoda, M

    1991-06-15

    Nerve growth factor-like substance(s) were identified in both conditioned media of a human prostatic tumor epithelial cell line (TSU-pr1) and a human prostatic stromal cell line (HPS) by Western blot analysis and bioassay of neurite outgrowth of PC12 cells. Nerve growth factor-beta (NGF) immunofluorescence was also localized to secretory vesicles in the cytoplasm of both the TSU-pr1 and HPS cells. Western blot of the TSU-pr1 and HPS cell-secreted protein identified an Mr 65,000 major protein which immunoreacted with murine NGF antibody. NGF Western blot of HPS cell-secreted protein also identified an Mr 42,000 minor band under reduced and nonreduced conditions and an Mr 61,000 minor band under reduced conditions. The secreted protein from the TSU-pr1 cells (50 micrograms/ml) and HPS (50 micrograms/ml), as well as murine NGF (50 ng/ml) or human recombinant NGF (50 ng/ml), stimulated neurite outgrowth from PC12 cells. This neurite outgrowth activity was partially inhibited by treatment with NGF antibody. Neither the serum containing growth medium nor bovine serum albumin (50 micrograms/ml) stimulated neurite outgrowth. The NGF-like secretory protein appeared to play a role in the paracrine regulation of prostatic growth between TSU-pr1 cells and HPS cells. The relative growth of TSU-pr1 cells, as indicated by [3H]thymidine incorporation, in response to HPS secretory protein was stimulated 2.8-fold in a dose-dependent manner. In the converse interaction, the relative growth of HPS cells in response to TSU-pr1 secretory protein was stimulated 1.8-fold in a dose-dependent manner. Immunoneutralization of TSU-pr1 and HPS secretory protein was performed with antibody against NGF, acidic fibroblast growth factor, and basic fibroblast growth factor. Removal of the NGF-like protein from the maximal stimulatory dose of TSU-pr1 secretory protein (100 micrograms/ml) with NGF antibody reduced HPS proliferation to 52% of maximal levels, and immunoneutralization of the NGF

  3. The length of the linker between the epidermal growth factor-like domains in factor VIIa is critical for a productive interaction with tissue factor

    PubMed Central

    Persson, Egon; Madsen, Jesper J; Olsen, Ole H

    2014-01-01

    Formation of the factor VIIa (FVIIa)-tissue factor (TF) complex triggers the blood coagulation cascade. Using a structure-based rationale, we investigated how the length of the linker region between the two epidermal growth factor (EGF)-like domains in FVIIa influences TF binding and the allosteric activity enhancement, as well as the interplay between the γ-carboxyglutamic acid (Gla)-containing and protease domains. Removal of two residues from the native linker was compatible with normal cofactor binding and accompanying stimulation of the enzymatic activity, as was extension by two (Gly-Ser) residues. In sharp contrast, truncation by three or four residues abolished the TF-mediated stabilization of the active conformation of FVIIa and abrogated TF-induced activity enhancement. In addition, FVIIa variants with short linkers associated 80-fold slower with soluble TF (sTF) as compared with wild-type FVIIa, resulting in a corresponding increase in the equilibrium dissociation constant. Molecular modeling suggested that the shortest FVIIa variants would have to be forced into a tense and energetically unfavorable conformation in order to be able to interact productively with TF, explaining our experimental observations. We also found a correlation between linker length and the residual intrinsic enzymatic activity of Ca2+-free FVIIa; stepwise truncation resulting in gradually higher activity with des(83–86)-FVIIa reaching the level of Gla-domainless FVIIa. The linker appears to determine the average distance between the negatively charged Gla domain and a structural element in the protease domain, presumably of opposite charge, and proximity has a negative impact on apo-FVIIa activity. PMID:25234571

  4. The direct interaction of phospholipase C-gamma 1 with phospholipase D2 is important for epidermal growth factor signaling.

    PubMed

    Jang, Il Ho; Lee, Sukmook; Park, Jong Bae; Kim, Jong Hyun; Lee, Chang Sup; Hur, Eun-Mi; Kim, Il Shin; Kim, Kyong-Tai; Yagisawa, Hitoshi; Suh, Pann-Ghill; Ryu, Sung Ho

    2003-05-16

    The epidermal growth factor (EGF) receptor has an important role in cellular proliferation, and the enzymatic activity of phospholipase C (PLC)-gamma1 is regarded to be critical for EGF-induced mitogenesis. In this study, we report for the first time a phospholipase complex composed of PLC-gamma1 and phospholipase D2 (PLD2). PLC-gamma1 is co-immunoprecipitated with PLD2 in COS-7 cells. The results of in vitro binding analysis and co-immunoprecipitation analysis in COS-7 cells show that the Src homology (SH) 3 domain of PLC-gamma1 binds to the proline-rich motif within the Phox homology (PX) domain of PLD2. The interaction between PLC-gamma1 and PLD2 is EGF stimulation-dependent and potentiates EGF-induced inositol 1,4,5-trisphosphate (IP(3)) formation and Ca(2+) increase. Mutating Pro-145 and Pro-148 within the PX domain of PLD2 to leucines disrupts the interaction between PLC-gamma1 and PLD2 and fails to potentiate EGF-induced IP(3) formation and Ca(2+) increase. However, neither PLD2 wild type nor PLD2 mutant affects the EGF-induced tyrosine phosphorylation of PLC-gamma1. These findings suggest that, upon EGF stimulation, PLC-gamma1 directly interacts with PLD2 and this interaction is important for PLC-gamma1 activity.

  5. Functional interaction between SNPs and microsatellite in the transcriptional regulation of insulin-like growth factor 1.

    PubMed

    Chen, Holly Y; Huang, Wei; Leung, Vincent H K; Fung, Simon L M; Ma, Suk Ling; Jiang, Hongling; Tang, Nelson L S

    2013-09-01

    A CA-repeat microsatellite in insulin-like growth factor 1 (IGF1) promoter was associated with interindividual variation of circulating IGF1 level. Previously, we reported that such association was due to variation of haplotype unit in a linkage disequilibrium block composed of microsatellite and single-nucleotide polymorphisms (SNPs), suggesting the presence of an interaction between them. In this study, reporter assays were performed to investigate the regulatory effect and interaction of genetic variants on gene expression. We used an in vitro system to compare the transcriptional activities of haplotypes (rs35767:T>C, the CA-repeat microsatellite, rs5742612:T>C, and rs2288377:T>A) in evolutionarily conserved region of IGF1 promoter. In haplotype C-T-T, a longer microsatellite had a lower transcriptional activity (17.6 ± 2.4-fold for 17 repeats and 8.3 ± 1.1-fold for 21 repeats), whereas in haplotype T-C-A, such trend could not be observed, as the microsatellite with 21 repeats had the highest transcriptional activity (17.5 ± 2.3-fold). Because the microsatellite and SNPs affected the transcriptional activity of each other, there may be an interaction between them in the regulation of IGF1 expression. For the first time, we demonstrated that a noncoding microsatellite polymorphism could act as a functional unit and interact with SNPs in the regulation of transcription in human genome.

  6. Membrane contacts between endosomes and ER provide sites for PTP1B-epidermal growth factor receptor interaction.

    PubMed

    Eden, Emily R; White, Ian J; Tsapara, Anna; Futter, Clare E

    2010-03-01

    The epidermal growth factor receptor (EGFR) is a critical determinator of cell fate. Signalling from this receptor tyrosine kinase is spatially regulated by progression through the endocytic pathway, governing receptor half-life and accessibility to signalling proteins and phosphatases. Endocytosis of EGFR is required for interaction with the protein tyrosine phosphatase PTP1B (ref. 1), which localizes to the cytoplasmic face of the endoplasmic reticulum (ER), raising the question of how PTP1B comes into contact with endosomal EGFR. We show that EGFR-PTP1B interaction occurs by means of direct membrane contacts between the perimeter membrane of multivesicular bodies (MVBs) and the ER. The population of EGFR interacting with PTP1B is the same population that undergo ESCRT-mediated (endosomal sorting complex required for transport) sorting within MVBs, and PTP1B activity promotes the sequestration of EGFR on to MVB internal vesicles. Membrane contacts between endosomes and the ER form in both the presence and absence of stimulation by EGF. Thus membrane contacts between endosomes and the ER may represent a global mechanism for direct interaction between proteins on these two organelles.

  7. The interactions and essential effects of intrinsic insulin-like growth factor-I on Leishmania (Leishmania) major growth within macrophages.

    PubMed

    Reis, L C; Ramos-Sanchez, E M; Goto, H

    2013-07-01

    Previously, we showed in Leishmania infections that extrinsic insulin-like growth factor (IGF)-I favored Leishmania proliferation and leishmaniasis development. In this study, the interaction of intrinsically expressed IGF-I and Leishmania (Leishmania) major in macrophages was addressed, and a key finding was the observation, using confocal microscopy, of the co-localization of IGF-I and parasites within macrophages. Following stimulation with interferon-γ (IFN-γ), which is known to inhibit IGF-I production in macrophages, we observed a reduction in the expression of both IGF-I mRNA and protein. This reduced expression was accompanied by a reduction in the cellular parasite load that was completely recovered with the addition of extrinsic IGF-I, which suggests an essential role for IGF-I in Leishmania growth. © 2013 The Authors. Parasite Immunology published by John Wiley & Sons Ltd.

  8. Interactions between stromal cell--derived keratinocyte growth factor and epithelial transforming growth factor in immune-mediated crypt cell hyperplasia.

    PubMed Central

    Bajaj-Elliott, M; Poulsom, R; Pender, S L; Wathen, N C; MacDonald, T T

    1998-01-01

    Immune reactions in the gut are associated with increased epithelial cell proliferation. Here we have studied the role of keratinocyte growth factor (KGF; FGF7) and transforming growth factor-alpha (TGF-alpha) in the epithelial cell hyperplasia seen in explants of fetal human small intestine after activation of lamina propria T cells with the superantigen Staphylococcus aureus enterotoxin B (SEB). After the addition of SEB to the explants there is a 10-fold increase in KGF mRNA by 72 h of culture. KGF transcripts were abundant in the lamina propria using in situ hybridization and the culture supernatants contained elevated amounts of KGF protein. SEB had no direct effect on KGF mRNA and protein production by cultured lamina propria mesenchymal cells, but both were upregulated by TNF-alpha. Accompanying the increase in KGF there was also an increase in TGF-alpha precursor proteins in the culture supernatants and the phosphorylated form of the EGFR receptor was also detected in the tissue. Increased TGF-alpha precursor proteins were also detected in the supernatants of control explants stimulated with KGF alone. The direct addition of KGF and TGF-alpha enhanced epithelial cell proliferation and antibodies against KGF and TGF-alpha partially inhibited SEB-induced crypt hyperplasia. These results suggest molecular cross-talk between the KGF/KGFR and the TGF-alpha/EGFR in immune-mediated crypt cell hyperplasia. PMID:9788959

  9. Tumor necrosis factor-alpha regulates transforming growth factor-beta-dependent epithelial-mesenchymal transition by promoting hyaluronan-CD44-moesin interaction.

    PubMed

    Takahashi, Eri; Nagano, Osamu; Ishimoto, Takatsugu; Yae, Toshifumi; Suzuki, Yoshimi; Shinoda, Takeshi; Nakamura, Satoshi; Niwa, Shinichiro; Ikeda, Shun; Koga, Hisashi; Tanihara, Hidenobu; Saya, Hideyuki

    2010-02-05

    Aberrant epithelial-mesenchymal transition (EMT) is involved in development of fibrotic disorders and cancer invasion. Alterations of cell-extracellular matrix interaction also contribute to those pathological conditions. However, the functional interplay between EMT and cell-extracellular matrix interactions remains poorly understood. We now show that the inflammatory mediator tumor necrosis factor-alpha (TNF-alpha) induces the formation of fibrotic foci by cultured retinal pigment epithelial cells through activation of transforming growth factor-beta (TGF-beta) signaling in a manner dependent on hyaluronan-CD44-moesin interaction. TNF-alpha promoted CD44 expression and moesin phosphorylation by protein kinase C, leading to the pericellular interaction of hyaluronan and CD44. Formation of the hyaluronan-CD44-moesin complex resulted in both cell-cell dissociation and increased cellular motility through actin remodeling. Furthermore, this complex was found to be associated with TGF-beta receptor II and clathrin at actin microdomains, leading to activation of TGF-beta signaling. We established an in vivo model of TNF-alpha-induced fibrosis in the mouse eye, and such ocular fibrosis was attenuated in CD44-null mice. The production of hyaluronan and its interaction with CD44, thus, play an essential role in TNF-alpha-induced EMT and are potential therapeutic targets in fibrotic disorders.

  10. Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity.

    PubMed

    Tremblay, Michel G; Herdman, Chelsea; Guillou, François; Mishra, Prakash K; Baril, Joëlle; Bellenfant, Sabrina; Moss, Tom

    2015-06-26

    We previously demonstrated that ESyt2 interacts specifically with the activated FGF receptor and is required for a rapid phase of receptor internalization and for functional signaling via the ERK pathway in early Xenopus embryos. ESyt2 is one of the three-member family of Extended Synaptotagmins that were recently shown to be implicated in the formation of endoplasmic reticulum (ER)-plasma membrane (PM) junctions and in the Ca(2+) dependent regulation of these junctions. Here we show that ESyt2 is directed to the ER by its putative transmembrane domain, that the ESyts hetero- and homodimerize, and that ESyt2 homodimerization in vivo requires a TM adjacent sequence but not the SMP domain. ESyt2 and ESyt3, but not ESyt1, selectively interact in vivo with activated FGFR1. In the case of ESyt2, this interaction requires a short TM adjacent sequence and is independent of receptor autophosphorylation, but dependent on receptor conformation. The data show that ESyt2 recognizes a site in the upper kinase lobe of FGFR1 that is revealed by displacement of the kinase domain activation loop during receptor activation.

  11. Expression of nerve growth factor in rat stomach. Implications for interactions between endothelial, neural and epithelial cells.

    PubMed

    Tarnawski, A S; Ahluwalia, A; Jones, M K; Brzozowski, T

    2016-12-01

    This study was aimed to determine the expression and localization of nerve growth factor (NGF) in the gastric mucosa. Transmural gastric specimens were obtained from euthanized rats. 1) expression of NGF and TrkA receptor by Western blotting; 2) histological evaluation of gastric wall architecture; 3) expression of NGF using immunostaining. Immunostaining showed strong and differential expression of NGF in neural elements of gastric myenteric and submucosal plexuses; in epithelial cells: mainly in chief and progenitor cells, in enterochromaffin-like (ECL) cells; and, in endothelial cells (ECs) lining blood vessels. We concluded that NGF expression in neural elements, epithelial cells and endothelial cells of blood vessels indicated a complex local interaction between neural, epithelial and endothelial cells that regulated gastric mucosal homeostasis and, likely, the protection against gastric injury and ulcer healing.

  12. Temperature trumps light: Teasing apart interactive factors controlling non-indigenous Zostera japonica growth

    EPA Science Inventory

    In the Pacific Northwest Zostera marina and Z. japonica co-exist by occupying separate elevation niches. We conducted two mesocosm experiments to evaluate light and temperature as factors controlling the disjunct distribution of congeners. The first study tests the hypothesis t...

  13. Temperature trumps light: Teasing apart interactive factors controlling non-indigenous Zostera japonica growth

    EPA Science Inventory

    In the Pacific Northwest Zostera marina and Z. japonica co-exist by occupying separate elevation niches. We conducted two mesocosm experiments to evaluate light and temperature as factors controlling the disjunct distribution of congeners. The first study tests the hypothesis t...

  14. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila.

    PubMed

    Jeon, Mili; Scott, Matthew P; Zinn, Kai

    2012-06-15

    The respiratory (tracheal) system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr) tyrosine kinase (TK). Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways.

  15. Interactions between Type III receptor tyrosine phosphatases and growth factor receptor tyrosine kinases regulate tracheal tube formation in Drosophila

    PubMed Central

    Jeon, Mili; Scott, Matthew P.; Zinn, Kai

    2012-01-01

    Summary The respiratory (tracheal) system of the Drosophila melanogaster larva is an intricate branched network of air-filled tubes. Its developmental logic is similar in some ways to that of the vertebrate vascular system. We previously described a unique embryonic tracheal tubulogenesis phenotype caused by loss of both of the Type III receptor tyrosine phosphatases (RPTPs), Ptp4E and Ptp10D. In Ptp4E Ptp10D double mutants, the linear tubes in unicellular and terminal tracheal branches are converted into bubble-like cysts that incorporate apical cell surface markers. This tube geometry phenotype is modulated by changes in the activity or expression of the epidermal growth factor receptor (Egfr) tyrosine kinase (TK). Ptp10D physically interacts with Egfr. Here we demonstrate that the Ptp4E Ptp10D phenotype is the consequence of the loss of negative regulation by the RPTPs of three growth factor receptor TKs: Egfr, Breathless and Pvr. Reducing the activity of any of the three kinases by tracheal expression of dominant-negative mutants suppresses cyst formation. By competing dominant-negative and constitutively active kinase mutants against each other, we show that the three RTKs have partially interchangeable activities, so that increasing the activity of one kinase can compensate for the effects of reducing the activity of another. This implies that SH2-domain downstream effectors that are required for the phenotype are likely to be able to interact with phosphotyrosine sites on all three receptor TKs. We also show that the phenotype involves increases in signaling through the MAP kinase and Rho GTPase pathways. PMID:23213447

  16. Keratinocyte growth factor causes cystic dilation of the mammary glands of mice. Interactions of keratinocyte growth factor, estrogen, and progesterone in vivo.

    PubMed

    Yi, E S; Bedoya, A A; Lee, H; Kim, S; Housley, R M; Aukerman, S L; Tarpley, J E; Starnes, C; Yin, S; Pierce, G F

    1994-11-01

    Keratinocyte growth factor (KGF) is a paracrine mediator of epithelial cell proliferation that has been reported to induce marked proliferation of mammary epithelium in rats. In this study, systemic administration of KGF into naive and oophorectomized mice causes mammary gland proliferation, as evidenced histologically by the appearance of cysts lined by a single layer of epithelium and by hyperplastic epithelium. Whole mount preparations of the mammary glands reveal that the histologically noted cysts are actually ducts that are dilated along much of their length. The histology of the mammary glands of KGF-treated mice is similar to the histology of fibrocystic disease in the human female breast. The response in mice differs significantly from the appearance of the mammary glands in KGF-treated rats in which ductal epithelial proliferation is most prominent. Estrogen and progesterone when administered in combination but not alone cause the development of numerous endbuds in the mouse mammary gland. KGF in estrogen- and progesterone-pretreated mice causes the growth of dilated ducts, hyperplastic epithelium within ducts and endbuds, and a fibrous metamorphosis of periductal adipose tissue. The mammary epithelial hyperplasia caused by KGF is rapidly reversible in both mice and rats after cessation of KGF treatment. The spectrum of KGF-, estrogen-, and progesterone-induced mammary histopathology in mice provides a model for the study of fibrocystic and hyperplastic breast disease.

  17. Central Nodes in Protein Interaction Networks Drive Critical Functions in Transforming Growth Factor Beta-1 Stimulated Kidney Cells

    PubMed Central

    Gheisari, Yousof

    2017-01-01

    Objective Despite the huge efforts, chronic kidney disease (CKD) remains as an unsolved problem in medicine. Many studies have shown a central role for transforming growth factor beta-1 (TGFβ-1) and its downstream signaling cascades in the pathogenesis of CKD. In this study, we have reanalyzed a microarray dataset to recognize critical signaling pathways controlled by TGFβ-1. Materials and Methods This study is a bioinformatics reanalysis for a microarray data. The GSE23338 dataset was downloaded from the gene expression omnibus (GEO) database which assesses the mRNA expression profile of TGFβ-1 treated human kidney cells after 24 and 48 hours incubation. The protein interaction networks for differentially expressed (DE) genes in both time points were constructed and enriched. In addition, by network topology analysis, genes with high centrality were identified and then pathway enrichment analysis was performed with either the total network genes or with the central nodes. Results We found 110 and 170 genes differentially expressed in the time points 24 and 48 hours, respectively. As the genes in each time point had few interactions, the networks were enriched by adding previously known genes interacting with the differentially expressed ones. In terms of degree, betweenness, and closeness centrality parameters 62 and 60 nodes were considered to be central in the enriched networks of 24 hours and 48 hours treatment, respectively. Pathway enrichment analysis with the central nodes was more informative than those with all network nodes or even initial DE genes, revealing key signaling pathways. Conclusion We here introduced a method for the analysis of microarray data that integrates the expression pattern of genes with their topological properties in protein interaction networks. This holistic novel approach allows extracting knowledge from raw bulk omics data. PMID:28042536

  18. Spiroplasma eriocheiris Adhesin-Like Protein (ALP) Interacts with Epidermal Growth Factor (EGF) Domain Proteins to Facilitate Infection

    PubMed Central

    Hou, Libo; Liu, Yuhan; Gao, Qi; Xu, Xuechuan; Ning, Mingxiao; Bi, Jingxiu; Liu, Hui; Liu, Min; Gu, Wei; Wang, Wen; Meng, Qingguo

    2017-01-01

    Spiroplasma eriocheiris is a novel pathogen found in recent years, causing the tremor disease (TD) of Chinese mitten crab Eriocheir sinensis. Like Spiroplasma mirum, S. eriocheiris infects the newborn mouse (adult mice are not infected) and can cause cataract. Adhesion-related protein is an important protein involved in the interaction between pathogen and host. In this study, the Adhesin-like Protein (ALP) of S. eriocheiris was detected on its outer membrane by using immune electron microscopy, and was found to be involved in the bacterium's infection of mouse embryo fibroblasts (3T6-Swiss albino). Yeast two-hybrid analysis demonstrated that ALP interacts with a diverse group of mouse proteins. The interactions between recombinant partial fibulin7 (FBLN7; including two epidermal growth factor [EGF] domains) and ALP were confirmed by Far-western blotting and colocalization. We synthetized the domains of FBLN7 [EGF domain: amino acids 136–172 and complement control protein (CCP) domain: 81–134 amino acids], and demonstrated that only EGF domain of FBLN7 can interact with ALP. Because the EGF domain has high degree of similarity to EGF, it can activate the downstream EGFR signaling pathway, in key site amino acids. The EGFR pathway in 3T6 cells was restrained after rALP stimulation resulting from competitive binding of ALP to EGF. The unborn mouse, newborn mouse, and the adult mouse with cataract have a small amount of expressed FBLN7; however, none was detected in the brain and very little expression was seen in the eye of normal adult mice. In short, ALP as a S. eriocheiris surface protein, is critical for infection and further supports the role of ALP in S. eriocheiris infection by competitive effection of the EGF/EGFR axis of the target cells. PMID:28184355

  19. Structural model for the interaction of a designed Ankyrin Repeat Protein with the human epidermal growth factor receptor 2.

    PubMed

    Epa, V Chandana; Dolezal, Olan; Doughty, Larissa; Xiao, Xiaowen; Jost, Christian; Plückthun, Andreas; Adams, Timothy E

    2013-01-01

    Designed Ankyrin Repeat Proteins are a class of novel binding proteins that can be selected and evolved to bind to targets with high affinity and specificity. We are interested in the DARPin H10-2-G3, which has been evolved to bind with very high affinity to the human epidermal growth factor receptor 2 (HER2). HER2 is found to be over-expressed in 30% of breast cancers, and is the target for the FDA-approved therapeutic monoclonal antibodies trastuzumab and pertuzumab and small molecule tyrosine kinase inhibitors. Here, we use computational macromolecular docking, coupled with several interface metrics such as shape complementarity, interaction energy, and electrostatic complementarity, to model the structure of the complex between the DARPin H10-2-G3 and HER2. We analyzed the interface between the two proteins and then validated the structural model by showing that selected HER2 point mutations at the putative interface with H10-2-G3 reduce the affinity of binding up to 100-fold without affecting the binding of trastuzumab. Comparisons made with a subsequently solved X-ray crystal structure of the complex yielded a backbone atom root mean square deviation of 0.84-1.14 Ångstroms. The study presented here demonstrates the capability of the computational techniques of structural bioinformatics in generating useful structural models of protein-protein interactions.

  20. Structural Model for the Interaction of a Designed Ankyrin Repeat Protein with the Human Epidermal Growth Factor Receptor 2

    PubMed Central

    Epa, V. Chandana; Dolezal, Olan; Doughty, Larissa; Xiao, Xiaowen; Jost, Christian; Plückthun, Andreas; Adams, Timothy E.

    2013-01-01

    Designed Ankyrin Repeat Proteins are a class of novel binding proteins that can be selected and evolved to bind to targets with high affinity and specificity. We are interested in the DARPin H10-2-G3, which has been evolved to bind with very high affinity to the human epidermal growth factor receptor 2 (HER2). HER2 is found to be over-expressed in 30% of breast cancers, and is the target for the FDA-approved therapeutic monoclonal antibodies trastuzumab and pertuzumab and small molecule tyrosine kinase inhibitors. Here, we use computational macromolecular docking, coupled with several interface metrics such as shape complementarity, interaction energy, and electrostatic complementarity, to model the structure of the complex between the DARPin H10-2-G3 and HER2. We analyzed the interface between the two proteins and then validated the structural model by showing that selected HER2 point mutations at the putative interface with H10-2-G3 reduce the affinity of binding up to 100-fold without affecting the binding of trastuzumab. Comparisons made with a subsequently solved X-ray crystal structure of the complex yielded a backbone atom root mean square deviation of 0.84–1.14 Ångstroms. The study presented here demonstrates the capability of the computational techniques of structural bioinformatics in generating useful structural models of protein-protein interactions. PMID:23527120

  1. Interaction between Fibrinogen and Insulin-Like Growth Factor-Binding Protein-1 in Human Plasma under Physiological Conditions.

    PubMed

    Gligorijević, N; Nedić, O

    2016-02-01

    Fibrinogen is a plasma glycoprotein and one of the principle participants in blood coagulation. It interacts with many proteins during formation of a blood clot, including insulin-like growth factors (IGFs) and their binding proteins (IGFBP). Fibrinogen complexes were found as minor fractions in fibrinogen preparations independently of the coagulation process, and their presence influences the kinetics of polymerization. The idea of this work was to investigate whether fibrinogen in human plasma interacts with IGFBPs independently of the tissue injury or coagulation process. The results have shown that fibrinogen forms complexes with IGFBP-1 under physiological conditions. Several experimental approaches have confirmed that complexes are co-isolated with fibrinogen from plasma, they are relatively stable, and they appear as a general feature of human plasma. Several other experiments excluded the possibility that alpha-2 macroglobulin/IGFBP-1 complexes or IGFBP-1 oligomers contributed to IGFBP-1 immunoreactivity. The role of fibrinogen/IGFBP-1 complexes is still unknown. Further investigation in individuals expressing both impaired glucose control and coagulopathy could contribute to identification and understanding of their possible physiological role.

  2. Does the interaction between glucocorticoids and insulin-like growth factor 1 predict nestling fitness in a wild passerine?

    PubMed

    Lodjak, Jaanis; Tilgar, Vallo; Mägi, Marko

    2016-01-01

    The crucial question in evolutionary ecology is to find out how physiological traits have coevolved so animals fit their stochastic environments. The plasticity of these different physiological mechanisms is largely mediated by hormones, like glucocorticoids and insulin-like growth factor 1 (IGF-1). Brood size manipulation with nestlings of free-living great tits (Parus major) was carried out to see the way in which plasma IGF-1 and feather corticosterone, a predictor of long-term sustained plasma corticosterone level, are associated across different nutritional conditions and how this association predicts survival during the nestling phase. We showed that the association between levels of IGF-1 and corticosterone depended on physiological condition of nestlings. Namely, there was a positive association between the hormones in nestlings from the decreased broods and a negative association in nestlings from the enlarged broods. Furthermore, we showed that the interaction between levels of IGF-1 and corticosterone was also related with the survival of the nestlings. Our results suggest that signalling pathways of IGF-1 and corticosterone most likely interact with each other in a nutrition-dependent way to maximize the rate of development and survival of nestlings in their stochastic environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Plasticity in Interactions of Fibroblast Growth Factor 1 (FGF1) N Terminus with FGF Receptors Underlies Promiscuity of FGF1*

    PubMed Central

    Beenken, Andrew; Eliseenkova, Anna V.; Ibrahimi, Omar A.; Olsen, Shaun K.; Mohammadi, Moosa

    2012-01-01

    Tissue-specific alternative splicing in the second half of Ig-like domain 3 (D3) of fibroblast growth factor receptors 1–3 (FGFR1 to -3) generates epithelial FGFR1b-FGFR3b and mesenchymal FGFR1c-FGFR3c splice isoforms. This splicing event establishes a selectivity filter to restrict the ligand binding specificity of FGFRb and FGFRc isoforms to mesenchymally and epithelially derived fibroblast growth factors (FGFs), respectively. FGF1 is termed the “universal FGFR ligand” because it overrides this specificity barrier. To elucidate the molecular basis for FGF1 cross-reactivity with the “b” and “c” splice isoforms of FGFRs, we determined the first crystal structure of FGF1 in complex with an FGFRb isoform, FGFR2b, at 2.1 Å resolution. Comparison of the FGF1-FGFR2b structure with the three previously published FGF1-FGFRc structures reveals that plasticity in the interactions of the N-terminal region of FGF1 with FGFR D3 is the main determinant of FGF1 cross-reactivity with both isoforms of FGFRs. In support of our structural data, we demonstrate that substitution of three N-terminal residues (Gly-19, His-25, and Phe-26) of FGF2 (a ligand that does not bind FGFR2b) for the corresponding residues of FGF1 (Phe-16, Asn-22, and Tyr-23) enables the FGF2 triple mutant to bind and activate FGFR2b. These findings taken together with our previous structural data on receptor binding specificity of FGF2, FGF8, and FGF10 conclusively show that sequence divergence at the N termini of FGFs is the primary regulator of the receptor binding specificity and promiscuity of FGFs. PMID:22057274

  4. FGF growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  5. Estrogen and brain-derived neurotrophic factor (BDNF) in hippocampus: complexity of steroid hormone-growth factor interactions in the adult CNS.

    PubMed

    Scharfman, Helen E; MacLusky, Neil J

    2006-12-01

    In the CNS, there are widespread and diverse interactions between growth factors and estrogen. Here we examine the interactions of estrogen and brain-derived neurotrophic factor (BDNF), two molecules that have historically been studied separately, despite the fact that they seem to share common targets, effects, and mechanisms of action. The demonstration of an estrogen-sensitive response element on the BDNF gene provided an impetus to explore a direct relationship between estrogen and BDNF, and predicted that the effects of estrogen, at least in part, might be due to the induction of BDNF. This hypothesis is discussed with respect to the hippocampus, where substantial evidence has accumulated in favor of it, but alternate hypotheses are also raised. It is suggested that some of the interactions between estrogen and BDNF, as well as the controversies and implications associated with their respective actions, may be best appreciated in light of the ability of BDNF to induce neuropeptide Y (NPY) synthesis in hippocampal neurons. Taken together, this tri-molecular cascade, estrogen-BDNF-NPY, may be important in understanding the hormonal regulation of hippocampal function. It may also be relevant to other regions of the CNS where estrogen is known to exert profound effects, such as amygdala and hypothalamus; and may provide greater insight into neurological disorders and psychiatric illness, including Alzheimer's disease, depression and epilepsy.

  6. Growth factors for nanobacteria

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Kajander, E. Olavi

    1999-12-01

    Nanobacteria are novel microorganisms recently isolated from fetal bovine serum and blood of cows and humans. These coccoid, gram negative bacteria in alpha-2 subgroup of Proteobacteria grow slowly under mammalian cell culture conditions but not in common media for microbes. Now we have found two different kinds of culture supplement preparations that improve their growth and make them culturable in the classical sense. These are supernatant fractions of conditioned media obtained from 1 - 3 months old nanobacteria cultures and from about a 2 weeks old Bacillus species culture. Both improved multiplication and particle yields and the latter increased their resistance to gentamicin. Nanobacteria cultured with any of the methods shared similar immunological property, structure and protein pattern. The growth supporting factors were heat-stabile and nondialyzable, and dialysis improved the growth promoting action. Nanobacteria formed stony colonies in a bacteriological medium supplemented with the growth factors. This is an implication that nanobacterial growth is influenced by pre-existing bacterial flora.

  7. Peptide growth factors, part A

    SciTech Connect

    Barnes, D.; Sirbasku, D.A.

    1987-01-01

    This book contains information on the following topics: Epidermal Growth Factor;Transforming Growth Factors;Bone and Cartilage Growth Factors;Somatomedin/Insulin-Like Growth Factors;Techniques for the Study of Growth Factor Activity;Assays, Phosphorylation, and Surface Membrane Effects.

  8. Genomic analysis of circadian clock-, light-, and growth-correlated genes reveals PHYTOCHROME-INTERACTING FACTOR5 as a modulator of auxin signaling in Arabidopsis.

    PubMed

    Nozue, Kazunari; Harmer, Stacey L; Maloof, Julin N

    2011-05-01

    Plants exhibit daily rhythms in their growth, providing an ideal system for the study of interactions between environmental stimuli such as light and internal regulators such as the circadian clock. We previously found that two basic loop-helix-loop transcription factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, integrate light and circadian clock signaling to generate rhythmic plant growth in Arabidopsis (Arabidopsis thaliana). Here, we use expression profiling and real-time growth assays to identify growth regulatory networks downstream of PIF4 and PIF5. Genome-wide analysis of light-, clock-, or growth-correlated genes showed significant overlap between the transcriptomes of clock-, light-, and growth-related pathways. Overrepresentation analysis of growth-correlated genes predicted that the auxin and gibberellic acid (GA) hormone pathways both contribute to diurnal growth control. Indeed, lesions of GA biosynthesis genes retarded rhythmic growth. Surprisingly, GA-responsive genes are not enriched among genes regulated by PIF4 and PIF5, whereas auxin pathway and response genes are. Consistent with this finding, the auxin response is more severely affected than the GA response in pif4 pif5 double mutants and in PIF5-overexpressing lines. We conclude that at least two downstream modules participate in diurnal rhythmic hypocotyl growth: PIF4 and/or PIF5 modulation of auxin-related pathways and PIF-independent regulation of the GA pathway.

  9. New microbial growth factor.

    PubMed Central

    Bok, S H; Casida, L E

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a new microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight, and it has high specific activity. When added to the diets for a meadow vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain. PMID:327929

  10. New microbial growth factor

    NASA Technical Reports Server (NTRS)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  11. New microbial growth factor

    NASA Technical Reports Server (NTRS)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  12. Interaction of Mechanical Load with Growth Hormone (GH) and Insulin-Like Growth Factor I (IGF-I) on Slow-Twitch Skeletal Muscle and Bone

    NASA Technical Reports Server (NTRS)

    Linderman, Jon K.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Grindeland, Richard E.

    1994-01-01

    Exogenous humoral growth factors, combined with increased mechanical loading, reportedly induce hypertrophy of fast-, but not slow-twitch skeletal muscles, and have little effect in attenuating atrophy of slow-twitch muscle associated with exposure to microgravity in animals with intact neuroendocrine systems. These observations suggest that anabolic adjuvants and muscle tension do not interact to stimulate growth or maintenance of slow-twitch skeletal muscle. The purpose of the present study was to determine whether a chronic increase in mechanical loading (synergistic ablation) or hindlimb unweighting (hindlimb suspension) interact with exogenous GH and IGF-I (Genentech, So San Francisco, CA) in the slow-twitch soleus muscles of female rats (approx. 250 g). Bilateral ablation of the plantaris and gastrocnemius muscles induced 38% and 40% increases in the absolute (mg/pair) and relative (mg/100 g body weight) weights of the soleus, respectively (p less than or = 0.05), in ambulatory rats. GH and IGF-I interacted with chronic loading to increase absolute soleus mass an additional 20% (p less than or = 0.05), and mixed and myofibrillar protein contents an additional 12% and 7%, respectively (NS). In contrast, hindlimb suspension (HLS) resulted in 20% and 18% decreases in the absolute and relative weights of the soleus, respectively (p less than or = 0.05); GH and IGF-I did not spare loss of soleus mass or protein content in HLS rats. HLS decreased tibial plate thickness approx. 11% (p less than or = 0.05), but not weights of the tibia or femus. GH and IGF-I increased tibial plate thickness approx. 30% (p less than or = 0.05), in ambulatory and HLS rats, and increased femur and tibial weights 12% (p less than or = 0.05) and 8% (NS), respectively, in ambulatory rats, but had no effect in HLS rats. Results of the present investigation suggest that GH and IGF-I can stimulate hypertrophy of slow-twitch skeletal muscle when chronically overloaded, but can also stimulate

  13. Interaction of Mechanical Load with Growth Hormone (GH) and Insulin-Like Growth Factor I (IGF-I) on Slow-Twitch Skeletal Muscle and Bone

    NASA Technical Reports Server (NTRS)

    Linderman, Jon K.; Gosselink, Kristin L.; Wang, Tommy J.; Mukku, Venkat R.; Grindeland, Richard E.

    1994-01-01

    Exogenous humoral growth factors, combined with increased mechanical loading, reportedly induce hypertrophy of fast-, but not slow-twitch skeletal muscles, and have little effect in attenuating atrophy of slow-twitch muscle associated with exposure to microgravity in animals with intact neuroendocrine systems. These observations suggest that anabolic adjuvants and muscle tension do not interact to stimulate growth or maintenance of slow-twitch skeletal muscle. The purpose of the present study was to determine whether a chronic increase in mechanical loading (synergistic ablation) or hindlimb unweighting (hindlimb suspension) interact with exogenous GH and IGF-I (Genentech, So San Francisco, CA) in the slow-twitch soleus muscles of female rats (approx. 250 g). Bilateral ablation of the plantaris and gastrocnemius muscles induced 38% and 40% increases in the absolute (mg/pair) and relative (mg/100 g body weight) weights of the soleus, respectively (p less than or = 0.05), in ambulatory rats. GH and IGF-I interacted with chronic loading to increase absolute soleus mass an additional 20% (p less than or = 0.05), and mixed and myofibrillar protein contents an additional 12% and 7%, respectively (NS). In contrast, hindlimb suspension (HLS) resulted in 20% and 18% decreases in the absolute and relative weights of the soleus, respectively (p less than or = 0.05); GH and IGF-I did not spare loss of soleus mass or protein content in HLS rats. HLS decreased tibial plate thickness approx. 11% (p less than or = 0.05), but not weights of the tibia or femus. GH and IGF-I increased tibial plate thickness approx. 30% (p less than or = 0.05), in ambulatory and HLS rats, and increased femur and tibial weights 12% (p less than or = 0.05) and 8% (NS), respectively, in ambulatory rats, but had no effect in HLS rats. Results of the present investigation suggest that GH and IGF-I can stimulate hypertrophy of slow-twitch skeletal muscle when chronically overloaded, but can also stimulate

  14. Colorimetric detection of platelet-derived growth factors through competitive interactions between proteins and functional gold nanoparticles.

    PubMed

    Lin, Tzu-En; Chen, Wei-His; Shiang, Yen-Chun; Huang, Chih-Ching; Chang, Huan-Tsung

    2011-11-15

    We have developed a colorimetric assay-using aptamer modified 13-nm gold nanoparticles (Apt-Au NPs) and fibrinogen adsorbed Au NPs (Fib-Au NPs, 56nm)-for the highly selective and sensitive detection of platelet-derived growth factors (PDGF). Apt-Au NPs and Fib-Au NPs act as recognition and reporting units, respectively. PDGF-binding-aptamer (Apt(PDGF)) and 29-base-long thrombin-binding-aptamer (Apt(thr29)) are conjugated with Au NPs to prepare functional Apt-Au NPs (Apt(PDGF)/Apt(thr29)-Au NPs) for specific interaction with PDGF and thrombin, respectively. Thrombin interacts with Fib-Au NPs in solutions to catalyze the formation of insoluble fibrillar fibrin-Au NPs agglutinates through the polymerization of the unconjugated and conjugated fibrinogen. The activity of thrombin is suppressed once it interacts with the Apt(PDGF)/Apt(thr29)-Au NPs. The suppression decreases due to steric effects through the specific interaction of PDGF with Apt(PDGF), occurring on the surfaces of Apt(PDGF)/Apt(thr29)-Au NPs. Under optimal conditions [Apt(PDGF)/Apt(thr29)-Au NPs (25pM), thrombin (400pM) and Fib-Au NPs (30pM)], the Apt(PDGF)/Apt(thr29)-Au NPs/Fib-Au NPs probe responds linearly to PDGF over the concentration range of 0.5-20nM with a correlation coefficient of 0.96. The limit of detection (LOD, signal-to-noise ratio=3) for each of the three PDGF isoforms is 0.3nM in the presence of bovine serum albumin at 100μM. When using the Apt(PDGF)/Apt(thr29)-Au NPs as selectors for the enrichment of PDGF and for the removal of interferences from cell media, the LOD for PDGF provided by this probe is 35pM. The present probe reveals that the concentration of PDGF in the three cell media is 230 (±20)pM, showing its advantages of simplicity, sensitivity, and specificity.

  15. Role of connective tissue growth factor in vascular and renal damage associated with hypertension in rats. Interactions with angiotensin II.

    PubMed

    de las Heras, Natalia; Ruiz-Ortega, Marta; Rupérez, Mónica; Sanz-Rosa, David; Miana, María; Aragoncillo, Paloma; Mezzano, Sergio; Lahera, Vicente; Egido, Jesus; Cachofeiro, Victoria

    2006-12-01

    We have evaluated the role of connective tissue growth factor (CTGF) in vascular and renal damage associated with hypertension and possible interactions with angiotensin II (Ang II). Spontaneously hypertensive rats (SHR) were treated with either the Ang II receptor antagonist candesartan (C;2 mg/Kg(-1)/day(-1)) or antihypertensive triple therapy (TT; in mg/Kg(-1)/day(-1);20 hydralazine +7 hydrochlorothiazide +0.15 reserpine) for 10 weeks. Wistar Kyoto rats were used as a normotensive control group. Hypertension was associated with an increase in aortic media area, media-to-lumen ratio and collagen density. Kidneys from SHR showed minimum renal alterations. Aorta and renal gene expression and immunostaining of CTGF were higher in SHR. Candesartan decreased arterial pressure, aortic media area, media-to-lumen ratio and collagen density. However, although arterial pressure decrease was comparable for both treatments, TT partially reduced these parameters. Candesartan-treated rats showed lower levels of vascular CTGF expression, aortic media area, media-to-lumen ratio and collagen density than TT-treated animals. Treatments improve renal damage and reduce renal gene expression and CTGF immunostaining in SHR in a similar manner. The results show that vascular and renal damage is associated with stimulation of CTGF gene and protein content. These results also might suggest that CTGF could be one downstream mediator of Ang II in hypertension-associated organ damage in SHR.

  16. Fibroblast growth factor 3, a protein with a dual subcellular fate, is interacting with human ribosomal protein S2

    SciTech Connect

    Antoine, Marianne; Reimers, Kerstin; Wirz, Werner; Gressner, Axel M.; Mueller, Robert; Kiefer, Paul . E-mail: pkiefer@ukaachen.de

    2005-12-16

    The secreted isoform of fibroblast growth factor 3 (FGF3) induces a mitogenic cell response, while the nuclear form inhibits cell proliferation. Recently, we identified a nucleolar FGF3-binding protein which is implicated in processing of pre-rRNA as a possible target of nuclear FGF3 signalling. Here, we report a second candidate protein identified by a yeast two-hybrid screen for nuclear FGF3 action, ribosomal protein S2, rpS2. Recombinant rpS2 binds to in vitro translated FGF3 and to nuclear FGF3 extracted from transfected COS-1 cells. Characterization of the FGF3 binding domain of rpS2 showed that both the Arg-Gly-rich N-terminal region and a short carboxyl-terminal sequence of rpS2 are necessary for FGF3 binding. Mapping the S2 binding domains of FGF3 revealed that these domains are important for both NoBP and rpS2 interaction. Transient co-expression of rpS2 and nuclear FGF3 resulted in a reduced nucleolar localization of the FGF. These findings suggest that the nuclear form of FGF3 inhibits cell proliferation by interfering with ribosomal biogenesis.

  17. Interaction of insulin-like growth factor-I and insulin resistance-related genetic variants with lifestyle factors on postmenopausal breast cancer risk.

    PubMed

    Jung, Su Yon; Ho, Gloria; Rohan, Thomas; Strickler, Howard; Bea, Jennifer; Papp, Jeanette; Sobel, Eric; Zhang, Zuo-Feng; Crandall, Carolyn

    2017-07-01

    Genetic variants and traits in metabolic signaling pathways may interact with obesity, physical activity, and exogenous estrogen (E), influencing postmenopausal breast cancer risk, but these inter-related pathways are incompletely understood. We used 75 single-nucleotide polymorphisms (SNPs) in genes related to insulin-like growth factor-I (IGF-I)/insulin resistance (IR) traits and signaling pathways, and data from 1003 postmenopausal women in Women's Health Initiative Observation ancillary studies. Stratifying via obesity and lifestyle modifiers, we assessed the role of IGF-I/IR traits (fasting IGF-I, IGF-binding protein 3, insulin, glucose, and homeostatic model assessment-insulin resistance) in breast cancer risk as a mediator or influencing factor. Seven SNPs in IGF-I and INS genes were associated with breast cancer risk. These associations differed between non-obese/active and obese/inactive women and between exogenous E non-users and users. The mediation effects of IGF-I/IR traits on the relationship between these SNPs and cancer differed between strata, but only roughly 35% of the cancer risk due to the SNPs was mediated by traits. Similarly, carriers of 20 SNPs in PIK3R1, AKT1/2, and MAPK1 genes (signaling pathways-genetic variants) had different associations with breast cancer between strata, and the proportion of the SNP-cancer relationship explained by traits varied 45-50% between the strata. Our findings suggest that IGF-I/IR genetic variants interact with obesity and lifestyle factors, altering cancer risk partially through pathways other than IGF-I/IR traits. Unraveling gene-phenotype-lifestyle interactions will provide data on potential genetic targets in clinical trials for cancer prevention and intervention strategies to reduce breast cancer risk.

  18. Interaction of Fibroblast Growth Factor-2 (FGF-2) with Free Gangliosides: Biochemical Characterization and Biological Consequences in Endothelial Cell Cultures

    PubMed Central

    Rusnati, Marco; Tanghetti, Elena; Urbinati, Chiara; Tulipano, Giovanni; Marchesini, Sergio; Ziche, Marina; Presta, Marco

    1999-01-01

    Exogenous gangliosides affect the angiogenic activity of fibroblast growth factor-2 (FGF-2), but their mechanism of action has not been elucidated. Here, a possible direct interaction of sialo-glycolipids with FGF-2 has been investigated. Size exclusion chromatography demonstrates that native, but not heat-denatured, 125I-FGF-2 binds to micelles formed by gangliosides GT1b, GD1b, or GM1. Also, gangliosides protect native FGF-2 from trypsin digestion at micromolar concentrations, the order of relative potency being GT1b > GD1b > GM1 = GM2 = sulfatide > GM3 = galactosyl-ceramide, whereas asialo-GM1, neuraminic acid, and N-acetylneuramin-lactose were ineffective. Scatchard plot analysis of the binding data of fluorochrome-labeled GM1 to immobilized FGF-2 indicates that FGF–2/GM1 interaction occurs with a Kd equal to 6 μM. This interaction is inhibited by the sialic acid-binding peptide mastoparan and by the synthetic fragments FGF-2(112–129) and, to a lesser extent, FGF-2(130–155), whereas peptides FGF-2(10–33), FGF-2(39–59), FGF-2(86–96), and the basic peptide HIV-1 Tat(41–60) were ineffective. These data identify the COOH terminus of FGF-2 as a putative ganglioside-binding region. Exogenous gangliosides inhibit the binding of 125I-FGF-2 to high-affinity tyrosine-kinase FGF-receptors (FGFRs) of endothelial GM 7373 cells at micromolar concentrations. The order of relative potency was GT1b > GD1b > GM1 > sulfatide a = sialo-GM1. Accordingly, GT1b,GD1b, GM1, and GM2, but not GM3 and asialo-GM1, prevent the binding of 125I-FGF-2 to a soluble, recombinant form of extracellular FGFR-1. Conversely, the soluble receptor and free heparin inhibit the interaction of fluorochrome-labeled GM1 to immobilized FGF-2. In agreement with their FGFR antagonist activity, free gangliosides inhibit the mitogenic activity exerted by FGF-2 on endothelial cells in the same range of concentrations. Also in this case, GT1b was the most effective among the gangliosides tested

  19. Interleukin 2 interacts with myeloid growth factors in serum-free long-term bone marrow culture.

    PubMed

    Douay, L; Giarratana, M C; Mary, J Y; Gorin, N C

    1994-03-01

    IL2 infusion may benefit patients with haematological malignancies by lowering the disease burden. However, conflicting data have been reported on IL2 effects on myelopoiesis, in vitro as well as in vivo. In the present study we investigated the ability of IL2 to act on committed and primitive bone marrow progenitor cells in defined serum-free (SF) culture conditions which avoid many technical biases such as interference by exogenous stimulating or inhibiting factors. Low doses of IL2 (0.1-1000 U/ml) were studied without or in combination with recombinant IL3, GM-CSF and erythropoietin, in SF long-term marrow culture (LTMC). We report data in favour of an inhibitory activity of IL2 limited to committed progenitors and excluding more primitive haemopoietic stem cells, as shown by an alteration of CFU-GM proliferation during the first 5 weeks of LTMC, decreasing with time, unaffected BFU-E and increased nucleated cell production. Beyond week 5, no difference was observed between IL2 supplemented cultures and the SF control cultures. In parallel, IL2 induced the adherence of fibroblastic cells and their progeny. In addition to the inhibitory effect, IL2 appeared to limit the stimulating effect on granulopoiesis and erythropoiesis of myeloid growth factors (GF) such as combination of IL3, GM-CSF and EPO. Indeed, in SF-LTMC conditions, IL2 inhibitory effect is effective on CFU-GM production throughout the 7 weeks of LTMC and on BFU-E during the first 2 weeks only. These data confirm the interaction of IL2 with other GFs in the complex interplay of the cytokine network.

  20. Electrostatic Forces as Dominant Interactions Between Proteins and Polyanions: an ESI MS Study of Fibroblast Growth Factor Binding to Heparin Oligomers

    NASA Astrophysics Data System (ADS)

    Minsky, Burcu Baykal; Dubin, Paul L.; Kaltashov, Igor A.

    2017-04-01

    The interactions between fibroblast growth factors (FGFs) and their receptors (FGFRs) are facilitated by heparan sulfate (HS) and heparin (Hp), highly sulfated biological polyelectrolytes. The molecular basis of FGF interactions with these polyelectrolytes is highly complex due to the structural heterogeneity of HS/Hp, and many details still remain elusive, especially the significance of charge density and minimal chain length of HS/Hp in growth factor recognition and multimerization. In this work, we use electrospray ionization mass spectrometry (ESI MS) to investigate the association of relatively homogeneous oligoheparins (octamer, dp8, and decamer, dp10) with acidic fibroblast growth factor (FGF-1). This growth factor forms 1:1, 2:1, and 3:1 protein/heparinoid complexes with both dp8 and dp10, and the fraction of bound protein is highly dependent on protein/heparinoid molar ratio. Multimeric complexes are preferentially formed on the highly sulfated Hp oligomers. Although a variety of oligomers appear to be binding-competent, there is a strong correlation between the affinity and the overall level of sulfation (the highest charge density polyanions binding FGF most strongly via multivalent interactions). These results show that the interactions between FGF-1 and Hp oligomers are primarily directed by electrostatics, and also demonstrate the power of ESI MS as a tool to study multiple binding equilibria between proteins and structurally heterogeneous polyanions.

  1. Electrostatic Forces as Dominant Interactions Between Proteins and Polyanions: an ESI MS Study of Fibroblast Growth Factor Binding to Heparin Oligomers.

    PubMed

    Minsky, Burcu Baykal; Dubin, Paul L; Kaltashov, Igor A

    2017-04-01

    The interactions between fibroblast growth factors (FGFs) and their receptors (FGFRs) are facilitated by heparan sulfate (HS) and heparin (Hp), highly sulfated biological polyelectrolytes. The molecular basis of FGF interactions with these polyelectrolytes is highly complex due to the structural heterogeneity of HS/Hp, and many details still remain elusive, especially the significance of charge density and minimal chain length of HS/Hp in growth factor recognition and multimerization. In this work, we use electrospray ionization mass spectrometry (ESI MS) to investigate the association of relatively homogeneous oligoheparins (octamer, dp8, and decamer, dp10) with acidic fibroblast growth factor (FGF-1). This growth factor forms 1:1, 2:1, and 3:1 protein/heparinoid complexes with both dp8 and dp10, and the fraction of bound protein is highly dependent on protein/heparinoid molar ratio. Multimeric complexes are preferentially formed on the highly sulfated Hp oligomers. Although a variety of oligomers appear to be binding-competent, there is a strong correlation between the affinity and the overall level of sulfation (the highest charge density polyanions binding FGF most strongly via multivalent interactions). These results show that the interactions between FGF-1 and Hp oligomers are primarily directed by electrostatics, and also demonstrate the power of ESI MS as a tool to study multiple binding equilibria between proteins and structurally heterogeneous polyanions. Graphical Abstract ᅟ.

  2. Electrostatic Forces as Dominant Interactions Between Proteins and Polyanions: an ESI MS Study of Fibroblast Growth Factor Binding to Heparin Oligomers

    NASA Astrophysics Data System (ADS)

    Minsky, Burcu Baykal; Dubin, Paul L.; Kaltashov, Igor A.

    2017-02-01

    The interactions between fibroblast growth factors (FGFs) and their receptors (FGFRs) are facilitated by heparan sulfate (HS) and heparin (Hp), highly sulfated biological polyelectrolytes. The molecular basis of FGF interactions with these polyelectrolytes is highly complex due to the structural heterogeneity of HS/Hp, and many details still remain elusive, especially the significance of charge density and minimal chain length of HS/Hp in growth factor recognition and multimerization. In this work, we use electrospray ionization mass spectrometry (ESI MS) to investigate the association of relatively homogeneous oligoheparins (octamer, dp8, and decamer, dp10) with acidic fibroblast growth factor (FGF-1). This growth factor forms 1:1, 2:1, and 3:1 protein/heparinoid complexes with both dp8 and dp10, and the fraction of bound protein is highly dependent on protein/heparinoid molar ratio. Multimeric complexes are preferentially formed on the highly sulfated Hp oligomers. Although a variety of oligomers appear to be binding-competent, there is a strong correlation between the affinity and the overall level of sulfation (the highest charge density polyanions binding FGF most strongly via multivalent interactions). These results show that the interactions between FGF-1 and Hp oligomers are primarily directed by electrostatics, and also demonstrate the power of ESI MS as a tool to study multiple binding equilibria between proteins and structurally heterogeneous polyanions.

  3. Interaction of the. alpha. beta. dimers of the insulin-like growth factor I receptor required for receptor autophosphorylation

    SciTech Connect

    Tollesfsen, S.E.; Stoszek, R.M.; Thompson, K. )

    1991-01-01

    The authors have recently found that association of the two {alpha}{beta} dimers of the insulin-like growth factor I (IGF I) receptor is required for formation of a high-affinity binding site for IGF I. To determine the structural requirements for IGF I activated kinase activity, they have examined the effect of dissociation of the two {alpha}{beta} dimers of the IGF I receptor on {beta} subunit autophosphorylation. The {alpha}{beta} dimers formed after treatment with 2 mM dithiothreitol (DTT) at pH 8.75 for 5 min were separated from IGF I receptor remaining as tetramers after DTT treatment by fast protein liquid chromatography on a Superose 6 gel filtration column. Purification of the {alpha}{beta} dimers was confirmed by Western blot analysis using {sup 125}I-labeled {alpha}IR-3, a monoclonal antibody to the IGF I receptor. Autophosphorylation of the IGF I receptor ({alpha}{beta}){sub 2} tetramer, treated without DTT or remaining after DTT treatment, is stimulated 1.6-2.9-fold by IGF I. In contrast, autophosporylation of the {alpha}{beta} dimers incubated in the presence or absence of IGF I (100 ng/mL) does not occur. Both IGF I receptor dimers and tetramers exhibit similar kinase activities using the synthetic substrate Arg-Arg-Leu-Ile-Glu-Asp-Ala-Glu-Tyr-Ala-Ala-Arg-Gly, indicating that the failure to detect autophosphorylation of the IGF I receptor dimers does not result from inactivation of the kinase by DTT treatment. They conclude that autophosphorylation of the IGF I receptor depends upon the interaction of the two {alpha}{beta} dimers.

  4. Structural determinants of heparin-transforming growth factor-β1 interactions and their effects on signaling.

    PubMed

    Lee, Jonathan; Wee, Sheena; Gunaratne, Jayantha; Chua, R J E; Smith, Raymond A A; Ling, Ling; Fernig, David G; Swaminathan, Kunchithapadam; Nurcombe, Victor; Cool, Simon M

    2015-12-01

    Transforming growth factor-β1 (TGF-β1, Uniprot: P01137) is a heparin-binding protein that has been implicated in a number of physiological processes, including the initiation of chondrogenesis by human mesenchymal stem cells (hMSCs). Here, we identify the molecular features in the protein and in heparin required for binding and their effects on the potentiation of TGF-β1's activity on hMSCs. Using a proteomics "Protect and Label" approach, lysines K291, K304, K309, K315, K338, K373, K375 and K388 were identified as being directly involved in binding heparin (Data are available via ProteomeXchange with identifier PXD002772). Competition assays in an optical biosensor demonstrated that TGF-β1 does require N- and 6-O-sulfate groups for binding but that 2-O-sulfate groups are unlikely to underpin the interaction. Heparin-derived oligosaccharides as short as degree of polymerization (dp) 4 have a weak ability to compete for TGF-β1 binding to heparin, which increases with the length of the oligosaccharide to reach a maximum between dp18 and dp24. In cell-based assays, heparin, 2-O-, 6-O- and N-desulfated re-N-acetylated heparin and oligosaccharides 14-24 saccharides (dp14-24) in length all increased the phosphorylation of mothers against decapentaplegic homolog 2 (SMAD2) after 6 h of stimulation with TGF-β1. The results provide the structural basis for a model of heparin/heparan sulfate binding to TGF-β1 and demonstrate that the features in the polysaccharide required for binding are not identical to those required for sustaining the signaling by TGF-β1 in hMSCs.

  5. Analysis of small latent transforming growth factor-beta complex formation and dissociation by surface plasmon resonance. Absence of direct interaction with thrombospondins.

    PubMed

    Bailly, S; Brand, C; Chambaz, E M; Feige, J J

    1997-06-27

    Transforming growth factor-beta (TGFbeta) is a pluripotent regulator of cell growth and differentiation. The growth factor is expressed as a latent complex that must be converted to an active form before interacting with its ubiquitous high affinity receptors. This conversion involves the release of the mature TGFbeta through disruption of the noncovalent interactions with its propeptide or latency associated protein (LAP). Complex formation or dissociation between LAP and TGFbeta plays a very important role in TGFbeta biological activity at different steps. To further characterize the kinetic parameters of this interaction, we have employed surface plasmon resonance biosensor methodology. Using this technique, we observed real time association of LAP with mature TGFbeta1. The complex formation showed an equilibrium Kd around 3-7 nM. Furthermore, we observed dissociation of the complex in the presence of extreme pH, chaotropic agents, or plasmin, confirming their effects on TGFbeta activation. The same approach was used to examine whether latent TGFbeta1 could interact with thrombospondins, previously described as activators of latent TGFbeta. Using this method, we could not detect any direct interaction of thrombospondins with either LAP alone, TGFbeta1 alone, or the small latent TGFbeta1 complex. This suggests that activation of latent TGFbeta1 complex by thrombospondins is through an indirect mechanism.

  6. Epithelial-mesenchymal interactions in fibrosis and repair. Transforming growth factor-β activation by epithelial cells and fibroblasts.

    PubMed

    Sheppard, Dean

    2015-03-01

    Transforming growth factor-β (TGF-β) plays a central role in driving tissue fibrosis. TGF-β is secreted in a latent form, held latent by noncovalent association of the active cytokine with a peptide derived from cleavage of the N-terminal domain of the same gene product, and needs to be activated extracellularly to exert any of its diverse biological effects. We have shown that two of the three mammalian isoforms of TGF-β, TGF-β1 and TGF-β3, depend on interactions with cell surface integrins for activation. We found that the integrin αvβ6 is highly induced on injured alveolar epithelial cells, potently induces TGF-β activation, and is critical for the development of pulmonary fibrosis and acute lung injury. However, although TGF-β drives fibrosis in virtually every anatomic site, αvβ6-mediated TGF-β activation is much more restricted. For example, αvβ6 is not induced on injured hepatocytes and plays little or no role in cirrhosis induced by repetitive hepatocyte injury. Fibroblasts are highly contractile cells that express multiple integrins closely related to αvβ6, which share the promiscuous αv subunit, so we reasoned that perhaps one or more of these αv integrins on fibroblasts might substitute for αvβ6 and activate the TGF-β required to drive liver fibrosis. Indeed, deletion of the αv subunit from activated fibroblasts protected mice from carbon tetrachloride-induced liver fibrosis. Importantly, these same mice were protected from bleomycin-induced pulmonary fibrosis and renal fibrosis caused by unilateral ureteral obstruction, despite the presence of epithelial αvβ6 in these mice. These results suggest that the generation and maintenance of sufficient quantities of active TGF-β to cause tissue fibrosis in multiple organs probably depends on at least two sources-TGF-β activation by injured epithelial cells that drives fibroblast expansion and activation and an amplification step that involves TGF-β activation by an αv integrin on

  7. [Fibroblast growth factor-2].

    PubMed

    Faitová, J

    2004-01-01

    Fibroblast growth factor-2 is a member of a large family of proteins that bind heparin and heparan sulfate and modulate the function of a wide range of cell types. FGF-2 occurs in several isoforms resulting from alternative initiations of traslation: an 18 kDa cytoplasmic isoform and four larger molecular weight nuclear isoforms (22, 22.5, 24 and 34 kDa). It acts mainly through a paracrine/autocrine mechanism involving high affinity transmembrane receptors and heparan sulfate proteoglycan low affinity receptors. It is expressed mostly in tissues of mesoderm and neuroectoderm origin, and plays an important role in mesoderm induction, stimulates the growth and development of the new blood vessels (angiogenesis), normal wound healing and tissue development. FGF-2 positively regulates hematopoiesis by acting on various cellular targets: stromal cells, early and committed hematopoietic progenitors and possibly some mature blood cells. FGF-2 is a potent hematopoietic growth factor that is likely to play an important role in physiological and pathological hematopoiesis.

  8. Differential Effects of Hepatocyte Nuclear Factor 4α Isoforms on Tumor Growth and T-Cell Factor 4/AP-1 Interactions in Human Colorectal Cancer Cells.

    PubMed

    Vuong, Linh M; Chellappa, Karthikeyani; Dhahbi, Joseph M; Deans, Jonathan R; Fang, Bin; Bolotin, Eugene; Titova, Nina V; Hoverter, Nate P; Spindler, Stephen R; Waterman, Marian L; Sladek, Frances M

    2015-10-01

    The nuclear receptor hepatocyte nuclear factor 4α (HNF4α) is tumor suppressive in the liver but amplified in colon cancer, suggesting that it also might be oncogenic. To investigate whether this discrepancy is due to different HNF4α isoforms derived from its two promoters (P1 and P2), we generated Tet-On-inducible human colon cancer (HCT116) cell lines that express either the P1-driven (HNF4α2) or P2-driven (HNF4α8) isoform and analyzed them for tumor growth and global changes in gene expression (transcriptome sequencing [RNA-seq] and chromatin immunoprecipitation sequencing [ChIP-seq]). The results show that while HNF4α2 acts as a tumor suppressor in the HCT116 tumor xenograft model, HNF4α8 does not. Each isoform regulates the expression of distinct sets of genes and recruits, colocalizes, and competes in a distinct fashion with the Wnt/β-catenin mediator T-cell factor 4 (TCF4) at CTTTG motifs as well as at AP-1 motifs (TGAXTCA). Protein binding microarrays (PBMs) show that HNF4α and TCF4 share some but not all binding motifs and that single nucleotide polymorphisms (SNPs) in sites bound by both HNF4α and TCF4 can alter binding affinity in vitro, suggesting that they could play a role in cancer susceptibility in vivo. Thus, the HNF4α isoforms play distinct roles in colon cancer, which could be due to differential interactions with the Wnt/β-catenin/TCF4 and AP-1 pathways. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Differential Effects of Hepatocyte Nuclear Factor 4α Isoforms on Tumor Growth and T-Cell Factor 4/AP-1 Interactions in Human Colorectal Cancer Cells

    PubMed Central

    Vuong, Linh M.; Chellappa, Karthikeyani; Dhahbi, Joseph M.; Deans, Jonathan R.; Fang, Bin; Bolotin, Eugene; Titova, Nina V.; Hoverter, Nate P.; Spindler, Stephen R.; Waterman, Marian L.

    2015-01-01

    The nuclear receptor hepatocyte nuclear factor 4α (HNF4α) is tumor suppressive in the liver but amplified in colon cancer, suggesting that it also might be oncogenic. To investigate whether this discrepancy is due to different HNF4α isoforms derived from its two promoters (P1 and P2), we generated Tet-On-inducible human colon cancer (HCT116) cell lines that express either the P1-driven (HNF4α2) or P2-driven (HNF4α8) isoform and analyzed them for tumor growth and global changes in gene expression (transcriptome sequencing [RNA-seq] and chromatin immunoprecipitation sequencing [ChIP-seq]). The results show that while HNF4α2 acts as a tumor suppressor in the HCT116 tumor xenograft model, HNF4α8 does not. Each isoform regulates the expression of distinct sets of genes and recruits, colocalizes, and competes in a distinct fashion with the Wnt/β-catenin mediator T-cell factor 4 (TCF4) at CTTTG motifs as well as at AP-1 motifs (TGAXTCA). Protein binding microarrays (PBMs) show that HNF4α and TCF4 share some but not all binding motifs and that single nucleotide polymorphisms (SNPs) in sites bound by both HNF4α and TCF4 can alter binding affinity in vitro, suggesting that they could play a role in cancer susceptibility in vivo. Thus, the HNF4α isoforms play distinct roles in colon cancer, which could be due to differential interactions with the Wnt/β-catenin/TCF4 and AP-1 pathways. PMID:26240283

  10. Stromal-epithelial interaction study: The effect of corneal epithelial cells on growth factor expression in stromal cells using organotypic culture model.

    PubMed

    Kobayashi, Takeshi; Shiraishi, Atsushi; Hara, Yuko; Kadota, Yuko; Yang, Lujun; Inoue, Tomoyuki; Shirakata, Yuji; Ohashi, Yuichi

    2015-06-01

    Interactions between stromal and epithelial cells play important roles in the development, homeostasis, and pathological conditions of the cornea. Soluble cytokines are critical factors in stromal-epithelial interactions, and growth factors secreted from corneal stromal cells contribute to the regulation of proliferation and differentiation of corneal epithelial cells (CECs). However, the manner in which the expression of growth factors is regulated in stromal cells has not been completely determined. To study stromal-epithelial cell interactions, we used an organotypic culture model. Human or rabbit CECs (HCECs or RCECs) were cultured on amniotic membranes placed on human corneal fibroblasts (HCFs) embedded in a collagen gel. The properties of the organotypic culture were examined by hematoxylin-eosin staining and immunofluorescence. In the organotypic culture, HCECs or RCECs were stratified into two-three layers after five days and five-seven layers after nine days. However, stratification was not observed when the HCECs were seeded on a collagen gel without fibroblasts. K3/K12 were expressed on day 9. The HCF-embedded collagen gels were collected on days 3, 5, or 9 after seeding the RCECs, and mRNA expression of growth factors FGF7, HGF, NGF, EGF, TGF-α, SCF, TGF-β1, TGF-β2, and TGF-β3 were quantified by real-time PCR. mRNA expression of the growth factors in HCFs cultured with RCECs were compared with those cultured without RCECs, as well as in monolayer cultures. mRNA expression of TGF-α was markedly increased in HCFs cultured with RCECs. However, mRNA expression of the TGF-β family was suppressed in HCFs cultured with RCECs. Principal component analysis revealed that mRNA expression of the growth factors in HCFs were generally similar when they were cultured with RCECs. In organotypic cultures, the morphological changes in the CECs and the expression patterns of the growth factors in the stromal cells clearly demonstrated stromal-epithelial cell

  11. Transforming Growth Factor-Beta and Matrix Metalloproteinases: Functional Interactions in Tumor Stroma-Infiltrating Myeloid Cells

    PubMed Central

    Santibanez, Juan F.

    2014-01-01

    Transforming growth factor-beta (TGF-β) is a pleiotropic factor with several different roles in health and disease. In tumorigenesis, it may act as a protumorigenic factor and have a profound impact on the regulation of the immune system response. Matrix metalloproteinases (MMPs) are a family that comprises more than 25 members, which have recently been proposed as important regulators acting in tumor stroma by regulating the response of noncellular and cellular microenvironment. Tumor stroma consists of several types of resident cells and infiltrating cells derived from bone marrow, which together play crucial roles in the promotion of tumor growth and metastasis. In cancer cells, TGF-β regulates MMPs expression, while MMPs, produced by either cancer cells or residents' stroma cells, activate latent TGF-β in the extracellular matrix, together facilitating the enhancement of tumor progression. In this review we will focus on the compartment of myeloid stroma cells, such as tumor-associated macrophages, neutrophils, and dendritic and mast cells, which are potently regulated by TGF-β and produce large amounts of MMPs. Their interplay and mutual implications in the generation of pro-tumorigenic cancer microenvironment will be analyzed. PMID:24578639

  12. Demonstration of the interaction of transforming growth factor beta 2 and type X collagen using a modified tandem affinity purification tag

    PubMed Central

    Yang, Maozhou; Wang, Xinli; Zhang, Liang; Yu, Chiyang; Zhang, Bingbing; Cole, William; Cavey, Grey; Davidson, Paula; Gibson, Gary

    2008-01-01

    Like other members of the transforming growth factor beta (TGF-β) family of growth factors, the biological activity of TGF-β2 is believed to be regulated by the formation and dissociation of multiprotein complexes. To isolate the molecular complex formed by TGF-β2 secreted by hypertrophic chondrocytes we have used expression of TGF-β2 fused with the humanized, tandem-affinity-purification tag (hTAP) and mass spectrometry for the identification of interacting proteins. The hTAP synthetic gene was assembled by systematically replacing the rare codons of the original TAP tag with codons most preferred in highly expressed human genes to circumvent the poor translation efficiency of the original TAP tag in animal cells. TGF-β2 was shown to interact with Type X collagen and this interaction confirmed using V5 tagged TGF-β2. Functional interaction was suggested by the inhibition of TGF-β2 activity by type X collagen in culture and the influence of a mutation in type X collagen on the distribution of TGF-β2 in growth cartilage. PMID:18952512

  13. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER)

    PubMed Central

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L.; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-01-01

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics. PMID:26079946

  14. A distinct basic fibroblast growth factor (FGF-2)/FGF receptor interaction distinguishes urokinase-type plasminogen activator induction from mitogenicity in endothelial cells.

    PubMed Central

    Rusnati, M; Dell'Era, P; Urbinati, C; Tanghetti, E; Massardi, M L; Nagamine, Y; Monti, E; Presta, M

    1996-01-01

    Basic fibroblast growth factor (FGF-2) induces cell proliferation and urokinase-type plasminogen activator (uPA) production in fetal bovine aortic endothelial GM 7373 cells. In the present paper we investigated the role of the interaction of FGF-2 with tyrosine-kinase (TK) FGF receptors (FGFRs) in mediating uPA up-regulation in these cells. The results show that FGF-2 antagonists suramin, protamine, heparin, the synthetic peptide FGF-2(112-155), and a soluble form of FGFR-1 do not inhibit FGF-2-mediated uPA up-regulation at concentrations that affect growth factor binding to cell surface receptors and mitogenic activity. In contrast, tyrosine phosphorylation inhibitors and overexpression of a dominant negative TK- mutant of FGFR-1 abolish the uPA-inducing activity of FGF-2, indicating that FGFR and its TK activity are essential in mediating uPA induction. Accordingly, FGF-2 induces uPA up-regulation in Chinese hamster ovary cells transfected with wild-type FGFR-1, -2, -3, or -4 but not with TK- FGFR-1 mutant. Small unilamellar phosphatidyl choline:cholesterol vesicles loaded with FGF-2 increased uPA production in GM 7373 cells in the absence of a mitogenic response. Liposome-encapsulated FGF-2 showed a limited but significant capacity, relative to free FGF-2, to interact with FGFR both at 4 degrees C and 37 degrees C and to be internalized within the cell. uPA up-regulation by liposome-encapsulated FGF-2 was quenched by neutralizing anti-FGF-2 antibodies, indicating that the activity of liposome-delivered FGF-2 is mediated by an extracellular action of the growth factor. Taken together, the data indicate that a distinct interaction of FGF-2 with FGFR, quantitatively and/or qualitatively different from the one that leads to mitogenicity, is responsible for the uPA-inducing activity of the growth factor. Images PMID:8868466

  15. Growth factors and acute renal failure.

    PubMed

    Hirschberg, R; Ding, H

    1998-03-01

    During acute renal injury, there are alterations in the expression of several growth factors and their receptors in the kidney. The increased expression of several growth factors and/or their receptors at sites of nephron injury suggests important contributions to repair. Exogenous administration of some growth factors, such as IGF-I, EGF and HGF, accelerates recovery of renal function in experimental acute renal failure (ARF). In ARF growth factors act through several mechanisms, which may include altered cell cycle regulation and mitogenesis, differentiation of recovered cells, regulation of apoptosis, improved renal hemodynamics, and others. There is evidence for interactions of growth factors with other growth factors as well as with other genes resulting in complex orchestration of biologic events contributing to recovery from ARF.

  16. Grb2 negatively regulates epidermal growth factor-induced phospholipase C-gamma1 activity through the direct interaction with tyrosine-phosphorylated phospholipase C-gamma1.

    PubMed

    Choi, Jang Hyun; Hong, Won-Pyo; Yun, Sanguk; Kim, Hyeon Soo; Lee, Jong-Ryul; Park, Jong Bae; Bae, Yun Soo; Ryu, Sung Ho; Suh, Pann-Ghill

    2005-10-01

    Phospholipase C-gamma1 (PLC-gamma1) plays pivotal roles in cellular growth and proliferation. Upon the stimulation of growth factors and hormones, PLC-gamma1 is rapidly phosphorylated at three known sites; Tyr771, Tyr783 and Tyr1254 and its enzymatic activity is up-regulated. In this study, we demonstrate for the first time that Grb2, an adaptor protein, specifically interacts with tyrosine-phosphorylated PLC-gamma1 at Tyr783. The association of Grb2 with PLC-gamma1 was induced by the treatment with epidermal growth factor (EGF). Replacement of Tyr783 with Phe completely blocked EGF-induced interaction of PLC-gamma1 with Grb2, indicating that tyrosine phosphorylation of PLC-gamma1 at Tyr783 is essential for the interaction with Grb2. Interestingly, the depletion of Grb2 from HEK-293 cells by RNA interference significantly enhanced increased EGF-induced PLC-gamma1 enzymatic activity and mobilization of the intracellular Ca2+, while it did not affect EGF-induced tyrosine phosphorylation of PLC-gamma1. Furthermore, overexpression of Grb2 inhibited PLC-gamma1 enzymatic activity. Taken together, these results suggest Grb2, in addition to its key function in signaling through Ras, may have a negatively regulatory role on EGF-induced PLC-gamma1 activation.

  17. Growth differentiation factor-9 mediates follicle-stimulating hormone-thyroid hormone interaction in the regulation of rat preantral follicular development.

    PubMed

    Kobayashi, Noriko; Orisaka, Makoto; Cao, Mingju; Kotsuji, Fumikazu; Leader, Arthur; Sakuragi, Noriaki; Tsang, Benjamin K

    2009-12-01

    FSH regulates follicular growth in a stage-development fashion. Although preantral follicle stage is gonadotropin responsive, FSH is not required for preantral follicular growth. With the antrum, the follicles continue growing under the influence of FSH and become gonadotropin dependent. Although thyroid hormone is important for normal female reproductive function, its role and interaction with FSH in the regulation of preantral ovarian follicular growth is yet to be defined. In the present study, we have examined the action and interaction of FSH and T(3) in the regulation of the growth of preantral follicles, especially in their transition from preantral to early antral stage, using an established follicle culture system and evaluated the involvement of growth differentiation factor-9 (GDF-9) in this process in vitro. We have demonstrated that although T(3) alone had no effect on follicular development, it markedly enhanced FSH-induced preantral follicular growth. Although FSH alone significantly down-regulated FSH receptor (FSHR) mRNA abundance in the preantral follicles and T(3) alone was ineffective, expression of the message was significantly increased in the presence of both hormones. In addition, intra-oocyte injection of GDF-9 antisense oligonucleotides (GDF-9 morpholino) induced follicular cell apoptosis and suppressed follicular growth induced by FSH and T(3). These responses were attenuated by exogenous GDF-9. Our findings support the concept that thyroid hormone regulates ovarian follicular development through its direct action on the ovary and that promotes FSH-induced preantral follicular growth through up-regulation of FSHR, a mechanism dependent on the expression and action of oocyte-derived GDF-9.

  18. Immunotherapy of human tumour xenografts overexpressing the EGF receptor with rat antibodies that block growth factor-receptor interaction.

    PubMed Central

    Modjtahedi, H.; Eccles, S.; Box, G.; Styles, J.; Dean, C.

    1993-01-01

    Athymic mice bearing xenografts of human tumours that overexpress the receptor (EGFR) for EGF and TGF alpha have been used to evaluate the therapeutic potential of three new rat monoclonal antibodies (mAbs) directed against two distinct epitopes on the extracellular domain of the human EGFR. The antibodies, ICR16 (IgG2a), ICR62 (IgG2b) and ICR64 (IgG1), have been shown (Modjtahedi et al., 1993) to be potent inhibitors of the growth in vitro of a number of human squamous cell carcinomas because they block receptor-ligand interaction. When given i.p. at 200 micrograms dose, the three antibodies were found to induce complete regression of xenografts of the HN5 tumour if treatment with antibody commenced at the time of tumour implantation (total doses: ICR16, 3.0 mg; ICR62, 1.2 mg; ICR64, 2.2 mg). More importantly when treatment was delayed until the tumours were established (mean diam. 0.5 cm) both ICR16 and ICR62 induced complete or almost complete regression of the tumours. Furthermore, treatment with a total dose of only 0.44 mg of ICR62 was found to induce complete remission of xenografts of the breast carcinoma MDA-MB 468, but ICR16 was less effective at this dose of antibody and only 4/8 tumours regressed completely. ICR16 and ICR62 were poor inhibitors of the growth in vitro of the vulval carcinoma A431, but both induced a substantial delay in the growth of xenografts of this tumour and 4/8 tumours regressed completely in the mice treated with ICR62 (total dose 2.2 mg). Although ICR16 and ICR64 were more effective than ICR62 as growth inhibitors in vitro, ICR62 was found to be substantially better at inducing regression of the tumour xenografts due perhaps to additional activation of host immune effector functions by the IgG2b antibody. We conclude that these antibodies may be useful therapeutic agents that can be used alone without conjugation to other cytotoxic moieties. PMID:7679281

  19. The transcription factor GATA1 and the histone methyltransferase SET7 interact to promote VEGF-mediated angiogenesis and tumor growth and predict clinical outcome of breast cancer.

    PubMed

    Zhang, Yanan; Liu, Jie; Lin, Jing; Zhou, Lei; Song, Yuhua; Wei, Bo; Luo, Xiaoli; Chen, Zhida; Chen, Yingjie; Xiong, Jiaxiu; Xu, Xiaojie; Ding, Lihua; Ye, Qinong

    2016-03-01

    Angiogenesis is essential for tumor growth. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis. However, how transcription factors interact with histone-modifying enzymes to regulate VEGF transcription and tumor angiogenesis remains unclear. Here, we show that transcription factor GATA1 associates with the histone methyltransferase SET7 to promote VEGF transcription and breast tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that GATA1 was required for recruitment of SET7, RNA polymerase II and transcription factor II B to VEGF core promoter. GATA1 enhanced breast cancer cell (MCF7, ZR75-1 and MDA-MB-231)-secreted VEGF via SET7, which promoted vascular endothelial cell (HUVEC) proliferation, migration and tube formation. SET7 was required for GATA1-induced breast tumor angiogenesis and growth in nude mice. Immunohistochemical staining showed that expression of GATA1 and SET7 was upregulated and positively correlated with VEGF expression and microvessel number in 80 breast cancer patients. GATA1 and SET7 are independent poor prognostic factors in breast cancer. Our data provide novel insights into VEGF transcriptional regulation and suggest GATA1/SET7 as cancer therapeutic targets.

  20. Premature Ligand-Receptor Interaction during Biosynthesis Limits the Production of Growth Factor Midkine and Its Receptor LDL Receptor-related Protein 1*

    PubMed Central

    Sakamoto, Kazuma; Bu, Guojun; Chen, Sen; Takei, Yoshifumi; Hibi, Kenji; Kodera, Yasuhiro; McCormick, Lynn M.; Nakao, Akimasa; Noda, Masaharu; Muramatsu, Takashi; Kadomatsu, Kenji

    2011-01-01

    Protein production within the secretory pathway is accomplished by complex but organized processes. Here, we demonstrate that the growth factor midkine interacts with LDL receptor-related protein 1 (LRP1) at high affinity (Kd value, 2.7 nm) not only at the cell surface but also within the secretory pathway during biosynthesis. The latter premature ligand-receptor interaction resulted in aggregate formation and consequently suppressed midkine secretion and LRP1 maturation. We utilized an endoplasmic reticulum (ER) retrieval signal and an LRP1 fragment, which strongly bound to midkine and the LRP1-specialized chaperone receptor-associated protein (RAP), to construct an ER trapper. The ER trapper efficiently trapped midkine and RAP and mimicked the premature ligand-receptor interaction, i.e. suppressed maturation of the ligand and receptor. The ER trapper also diminished the inhibitory function of LRP1 on platelet-derived growth factor-mediated cell migration. Complementary to these results, an increased expression of RAP was closely associated with midkine expression in human colorectal carcinomas (33 of 39 cases examined). Our results suggest that the premature ligand-receptor interaction plays a role in protein production within the secretory pathway. PMID:21212259

  1. Lens Epithelium-derived Growth Factor/p75 Interacts with the Transposase-derived DDE Domain of PogZ*S⃞

    PubMed Central

    Bartholomeeusen, Koen; Christ, Frauke; Hendrix, Jelle; Rain, Jean-Christophe; Emiliani, Stéphane; Benarous, Richard; Debyser, Zeger; Gijsbers, Rik; De Rijck, Jan

    2009-01-01

    Lens epithelium-derived growth factor/p75 (LEDGF/p75) is a prominent cellular interaction partner of human immunodeficiency virus-1 (HIV-1) integrase, tethering the preintegration complex to the host chromosome. In light of the development of LEDGF/p75-integrase interaction inhibitors, it is essential to understand the cell biology of LEDGF/p75. We identified pogZ as new cellular interaction partner of LEDGF/p75. Analogous to lentiviral integrase, pogZ, a domesticated transposase, carries a DDE domain, the major determinant for LEDGF/p75 interaction. Using different in vitro and in vivo approaches, we corroborated the interaction between the C terminus of LEDGF/p75 and the DDE domain of pogZ, revealing an overlap in the binding of pogZ and HIV-1 integrase. Competition experiments showed that integrase is efficient in displacing pogZ from LEDGF/p75. Moreover, pogZ does not seem to play a role as a restriction factor of HIV. The finding that LEDGF/p75 is capable of interacting with a DDE domain protein that is not a lentiviral integrase points to a profound role of LEDGF/p75 in DDE domain protein function. PMID:19244240

  2. Oocyte–somatic cell interactions in the human ovary—novel role of bone morphogenetic proteins and growth differentiation factors

    PubMed Central

    Chang, Hsun-Ming; Qiao, Jie; Leung, Peter C.K.

    2017-01-01

    BACKGROUND Initially identified for their capability to induce heterotopic bone formation, bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor β superfamily. Using cellular and molecular genetic approaches, recent studies have implicated intra-ovarian BMPs as potent regulators of ovarian follicular function. The bi-directional communication of oocytes and the surrounding somatic cells is mandatory for normal follicle development and oocyte maturation. This review summarizes the current knowledge on the physiological role and molecular determinants of these ovarian regulatory factors within the human germline-somatic regulatory loop. OBJECTIVE AND RATIONALE The regulation of ovarian function remains poorly characterized in humans because, while the fundamental process of follicular development and oocyte maturation is highly similar across species, most information on the regulation of ovarian function is obtained from studies using rodent models. Thus, this review focuses on the studies that used human biological materials to gain knowledge about human ovarian biology and disorders and to develop strategies for preventing, diagnosing and treating these abnormalities. SEARCH METHODS Relevant English-language publications describing the roles of BMPs or growth differentiation factors (GDFs) in human ovarian biology and phenotypes were comprehensively searched using PubMed and the Google Scholar database. The publications included those published since the initial identification of BMPs in the mammalian ovary in 1999 through July 2016. OUTCOMES Studies using human biological materials have revealed the expression of BMPs, GDFs and their putative receptors as well as their molecular signaling in the fundamental cells (oocyte, cumulus/granulosa cells (GCs) and theca/stroma cells) of the ovarian follicles throughout follicle development. With the availability of recombinant human BMPs/GDFs and the

  3. Oocyte-somatic cell interactions in the human ovary-novel role of bone morphogenetic proteins and growth differentiation factors.

    PubMed

    Chang, Hsun-Ming; Qiao, Jie; Leung, Peter C K

    2016-12-01

    Initially identified for their capability to induce heterotopic bone formation, bone morphogenetic proteins (BMPs) are multifunctional growth factors that belong to the transforming growth factor β superfamily. Using cellular and molecular genetic approaches, recent studies have implicated intra-ovarian BMPs as potent regulators of ovarian follicular function. The bi-directional communication of oocytes and the surrounding somatic cells is mandatory for normal follicle development and oocyte maturation. This review summarizes the current knowledge on the physiological role and molecular determinants of these ovarian regulatory factors within the human germline-somatic regulatory loop. The regulation of ovarian function remains poorly characterized in humans because, while the fundamental process of follicular development and oocyte maturation is highly similar across species, most information on the regulation of ovarian function is obtained from studies using rodent models. Thus, this review focuses on the studies that used human biological materials to gain knowledge about human ovarian biology and disorders and to develop strategies for preventing, diagnosing and treating these abnormalities. Relevant English-language publications describing the roles of BMPs or growth differentiation factors (GDFs) in human ovarian biology and phenotypes were comprehensively searched using PubMed and the Google Scholar database. The publications included those published since the initial identification of BMPs in the mammalian ovary in 1999 through July 2016. Studies using human biological materials have revealed the expression of BMPs, GDFs and their putative receptors as well as their molecular signaling in the fundamental cells (oocyte, cumulus/granulosa cells (GCs) and theca/stroma cells) of the ovarian follicles throughout follicle development. With the availability of recombinant human BMPs/GDFs and the development of immortalized human cell lines, functional studies

  4. Interaction of a novel sex-dependent, growth hormone-regulated liver nuclear factor with CYP2C12 promoter.

    PubMed

    Waxman, D J; Zhao, S; Choi, H K

    1996-11-22

    CYP2C12 is a steroid hydroxylase cytochrome P450 whose female-specific expression in adult rat liver is transcriptionally activated by the continuous plasma growth hormone (GH) profile characteristic of adult female rats. DNase I footprinting and gel mobility shift analysis of the 5'-flank of the CYP2C12 gene were carried out to identify cis-acting elements and trans-acting factors that may contribute to the GH-regulated, sex-dependent transcription of this P450 gene. DNase I footprinting analysis revealed sex- and GH-regulated DNase I hypersensitivity sites at the boundaries of several protein binding sites detected along a 1560-nucleotide upstream segment of CYP2C12. Five distinct sites bound a novel continuous GH-regulated nuclear factor, GHNF, which is enriched in adult female and continuous GH-treated male liver nuclear extracts compared to untreated male liver nuclear extracts. Two other footprinted sites correspond to binding sites for the liver transcription factors C/EBP and albumin D element-binding protein and a third to an HNF1 binding site. A specific binding site for GHNF was also found in the 5'-proximal promoter of CYP2C11, an adult male-specific liver P450 gene, suggesting that GHNF may contribute to the down-regulation of that gene by continuous GH. GHNF was distinguished from the nuclear factors that bind to a GH response element upstream of the rat Spi 2.1 gene and is also distinct from the GH-activatable latent cytoplasmic transcription factors STAT 1, STAT 3, and STAT 5. These findings support the hypothesis that continuous GH-activated transcription of CYP2C12 in adult female rat liver (a) involves the activation of a novel GH-regulated nuclear factor which binds to multiple sites along the 5'-flank of this cytochrome P450 gene, and (b) proceeds via a signaling pathway distinct from the GH pulse-activated STAT5 pathway proposed to induce CYP2C11 and other male-expressed liver genes.

  5. Growth hormone, growth factors, and acromegaly

    SciTech Connect

    Ludecke, D.K.; Tolis, G.T.

    1987-01-01

    This book contains five sections, each consisting of several papers. The section headings are: Biochemistry and Physiology of GH and Growth Factors, Pathology of Acromegaly, Clinical Endocrinology of Acromegaly, Nonsurgical Therapy of Acromegaly, and Surgical Therapy of Acromegaly.

  6. Interaction between cyclooxygenase-2 and insulin-like growth factor in breast cancer: A new field for prevention and treatment

    PubMed Central

    TAROMARU, GIULIANA CÁSSIA MORRONE; DE OLIVEIRA, VILMAR MARQUES; SILVA, MARIA ANTONIETA LONGO GALVÃO; MONTOR, WAGNER RICARDO; BAGNOLI, FABIO; RINALDI, JOSÉ FRANCISCO; AOKI, TSUTOMU

    2011-01-01

    The objective of this study was to evaluate the correlation between cyclooxygenase-2 (COX-2) and markers of cell proliferation and apoptosis, including, Bcl-2, Bax, Ki-67 and the type I insulin-like growth factor (IGF) receptor (IGF1-R) in ductal carcinoma in situ (DCIS) and infiltrating ductal carcinoma (IDC), present in the same surgical specimen. A total of 110 cases were evaluated using tissue microarrays. Cases were classified in scores from 0 to 3 according to pre-defined methods. The results showed that the positivity rates were COX-2 in 87% of cases in DCIS and IDC; Bcl-2 in 55% of cases in DCIS and IDC; Bax in 23% of cases in IDC and 19% in DCIS, IGF-1 in 24% of cases in DCIS and IDC; and Ki-67 in 81% of cases in DCIS and IDC. We also observed a positive correlation between the expression of COX-2 and IGF1-R (p=0.045). Our results demonstrate a positive correlation between the expression of COX-2 and IGF1-R in DCIS and IDC, demonstrating that they are involved in breast cancer carcinogenesis. Further studies are required to prove the effectiveness of COX-2 and IGF1-R inhibitors for the prevention and treatment of breast cancer, as well as to explain their mechanism of action. PMID:22740976

  7. Monomeric ß-amyloid interacts with type-1 insulin-like growth factor receptors to provide energy supply to neurons

    PubMed Central

    Giuffrida, Maria L.; Tomasello, Marianna F.; Pandini, Giuseppe; Caraci, Filippo; Battaglia, Giuseppe; Busceti, Carla; Di Pietro, Paola; Pappalardo, Giuseppe; Attanasio, Francesco; Chiechio, Santina; Bagnoli, Silvia; Nacmias, Benedetta; Sorbi, Sandro; Vigneri, Riccardo; Rizzarelli, Enrico; Nicoletti, Ferdinando; Copani, Agata

    2015-01-01

    ß-amyloid (Aß1−42) is produced by proteolytic cleavage of the transmembrane type-1 protein, amyloid precursor protein. Under pathological conditions, Aß1−42self-aggregates into oligomers, which cause synaptic dysfunction and neuronal loss, and are considered the culprit of Alzheimer's disease (AD). However, Aß1−42 is mainly monomeric at physiological concentrations, and the precise role of monomeric Aß1−42 in neuronal function is largely unknown. We report that the monomer of Aß1−42 activates type-1 insulin-like growth factor receptors and enhances glucose uptake in neurons and peripheral cells by promoting the translocation of the Glut3 glucose transporter from the cytosol to the plasma membrane. In neurons, activity-dependent glucose uptake was blunted after blocking endogenous Aß production, and re-established in the presence of cerebrospinal fluid Aß. APP-null neurons failed to enhance depolarization-stimulated glucose uptake unless exogenous monomeric Aß1−42 was added. These data suggest that Aß1−42 monomers were critical for maintaining neuronal glucose homeostasis. Accordingly, exogenous Aß1−42 monomers were able to rescue the low levels of glucose consumption observed in brain slices from AD mutant mice. PMID:26300732

  8. Systems Biology Model of Interactions Between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFbeta and ATM Signaling

    SciTech Connect

    O'Neill, Peter; Anderson, Jennifer

    2014-10-02

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low dose responses and cross-talk between the ATM and TGFβ pathways initiated by low and high LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to cross- talk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  9. Systems Biology Model of Interactions between Tissue Growth Factors and DNA Damage Pathways: Low Dose Response and Cross-Talk in TGFβ and ATM Signaling

    SciTech Connect

    Cucinotta, Francis A

    2016-09-01

    The etiology of radiation carcinogenesis has been described in terms of aberrant changes that span several levels of biological organization. Growth factors regulate many important cellular and tissue functions including apoptosis, differentiation and proliferation. A variety of genetic and epigenetic changes of growth factors have been shown to contribute to cancer initiation and progression. It is known that cellular and tissue damage to ionizing radiation is in part initiated by the production of reactive oxygen species, which can activate cytokine signaling, and the DNA damage response pathways, most notably the ATM signaling pathway. Recently, the transforming growth factor β (TGFβ) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation. The relevance of this interaction with the ATM pathway is not known although p53 becomes phosphorylated and DNA damage responses are involved. However, growth factor interactions with DNA damage responses have not been elucidated particularly at low doses, and further characterization of their relationship to cancer processes is warranted. Our goal will be to use a systems biology approach to mathematically and experimentally describe the low-dose responses and cross-talk between the ATM and TGFβ pathways initiated by low- and high-LET radiation. We will characterize ATM and TGFβ signaling in epithelial and fibroblast cells using 2D models and ultimately extending to 3D organotypic cell culture models to begin to elucidate possible differences that may occur for different cell types and/or inter-cellular communication. We will investigate the roles of the Smad and Activating transcription factor 2 (ATF2) proteins as the potential major contributors to crosstalk between the TGFβ and ATM pathways, and links to cell cycle control and/or the DNA damage response, and potential differences in their responses at low and high doses. We have developed various experimental

  10. Hepatocyte Growth Factor Modulates MET Receptor Tyrosine Kinase and β-Catenin Functional Interactions to Enhance Synapse Formation

    PubMed Central

    Xie, Zhihui; Eagleson, Kathie L.

    2016-01-01

    MET, a pleiotropic receptor tyrosine kinase implicated in autism risk, influences multiple neurodevelopmental processes. There is a knowledge gap, however, in the molecular mechanism through which MET mediates developmental events related to disorder risk. In the neocortex, MET is expressed transiently during periods of peak dendritic outgrowth and synaptogenesis, with expression enriched at developing synapses, consistent with demonstrated roles in dendritic morphogenesis, modulation of spine volume, and excitatory synapse development. In a recent coimmunoprecipitation/mass spectrometry screen, β-catenin was identified as part of the MET interactome in developing neocortical synaptosomes. Here, we investigated the influence of the MET/β-catenin complex in mouse neocortical synaptogenesis. Western blot analysis confirms that MET and β-catenin coimmunoprecipitate, but N-cadherin is not associated with the MET complex. Following stimulation with hepatocyte growth factor (HGF), β-catenin is phosphorylated at tyrosine142 (Y142) and dissociates from MET, accompanied by an increase in β-catenin/N-cadherin and MET/synapsin 1 protein complexes. In neocortical neurons in vitro, proximity ligation assays confirmed the close proximity of these proteins. Moreover, in neurons transfected with synaptophysin-GFP, HGF stimulation increases the density of synaptophysin/bassoon (a presynaptic marker) and synaptophysin/PSD-95 (a postsynaptic marker) clusters. Mutation of β-catenin at Y142 disrupts the dissociation of the MET/β-catenin complex and prevents the increase in clusters in response to HGF. The data demonstrate a new mechanism for the modulation of synapse formation, whereby MET activation induces an alignment of presynaptic and postsynaptic elements that are necessary for assembly and formation of functional synapses by subsets of neocortical neurons that express MET/β-catenin complex. PMID:27595133

  11. Solution structure of human insulin-like growth factor II. Relationship to receptor and binding protein interactions.

    PubMed

    Torres, A M; Forbes, B E; Aplin, S E; Wallace, J C; Francis, G L; Norton, R S

    1995-04-28

    The three-dimensional structure of human insulin-like growth factor (IGF) II in aqueous solution at pH 3.1 and 300 K has been determined from nuclear magnetic resonance data and restrained molecular dynamics calculations. Structural constraints consisting of 502 NOE-derived distance constraints, 11 dihedral angle restraints, and three disulfide bridges were used as input for distance geometry calculations in DIANA and X-PLOR, followed by simulated annealing refinement and energy minimization in X-PLOR. The resulting family of 20 structures was well defined in the regions of residues 5 to 28 and 41 to 62, with an average pairwise root-mean-square deviation of 1.24 A for the backbone heavy-atoms (N, C2, C) and 1.90 A for all heavy atoms. The poorly defined regions consist of the N and C termini, part of the B-domain, and the C-domain loop. Resonances from these regions of the protein gave stronger cross peaks in two dimensional NMR spectra, consistent with significant motional averaging. The main secondary structure elements in IGF-II are alpha-helices encompassing residues 11 to 21, 42 to 49 and 53 to 59. A small anti-parallel beta-sheet is formed by residues 59 to 61 and 25 to 27, while residues 26 to 28 appear to participate in intermolecular beta-sheet formation. The structure of IGF-II in the well-defined regions is very similar to those of the corresponding regions of insulin and IGF-I. Significant differences between IGF-II and IGF-I occur near the start of the third helix, in a region known to modulate affinity for the type 2 IGF receptor, and at the C terminus. The IGF II structure is discussed in relation to its binding sites for the insulin and IGF receptors and the IGF binding proteins.

  12. Progressive interdigital cell death: regulation by the antagonistic interaction between fibroblast growth factor 8 and retinoic acid.

    PubMed

    Hernández-Martínez, Rocío; Castro-Obregón, Susana; Covarrubias, Luis

    2009-11-01

    The complete cohort of molecules involved in interdigital cell death (ICD) and their interactions are yet to be defined. Bmp proteins, retinoic acid (RA) and Fgf8 have been previously identified as relevant factors in the control of ICD. Here we determined that downregulation of Fgf8 expression in the ectoderm overlying the interdigital areas is the event that triggers ICD, whereas RA is the persistent cell death-inducing molecule that acts on the distal mesenchyme by a mechanism involving the induction of Bax expression. Inhibition of the mitogen-activated protein kinase (Mapk) pathway prevents the survival effect of Fgf8 on interdigital cells and the accompanying Erk1/2 phosphorylation and induction of Mkp3 expression. Fgf8 regulates the levels of RA by both decreasing the expression of Raldh2 and increasing the expression of Cyp26b1, whereas RA reduces Fgfr1 expression and Erk1/2 phosphorylation. In the mouse limb, inhibition of Bmp signaling in the mesenchyme does not affect ICD. However, noggin in the distal ectoderm induces Fgf8 expression and reduces interdigit regression. In the chick limb, exogenous noggin reduces ICD, but, when applied to the distal mesenchyme, this reduction is associated with an increase in Fgf8 expression. In agreement with the critical decline in Fgf8 expression for the activation of ICD, distal interdigital cells acquire a proximal position as interdigit regression occurs. We identified proliferating distal mesenchymal cells as those that give rise to the interdigital cells fated to die. Thus, ICD is determined by the antagonistic regulation of cell death by Fgf8 and RA and occurs through a progressive, rather than massive, cell death mechanism.

  13. Identification of the Matriptase Second CUB Domain as the Secondary Site for Interaction with Hepatocyte Growth Factor Activator Inhibitor Type-1*

    PubMed Central

    Inouye, Kuniyo; Tsuzuki, Satoshi; Yasumoto, Makoto; Kojima, Kenji; Mochida, Seiya; Fushiki, Tohru

    2010-01-01

    Matriptase is a type II transmembrane serine protease comprising 855 amino acid residues. The extracellular region of matriptase comprises a noncatalytic stem domain (containing two tandem repeats of complement proteases C1r/C1s-urchin embryonic growth factor-bone morphogenetic protein (CUB) domain) and a catalytic serine protease domain. The stem domain of matriptase contains site(s) for facilitating the interaction of this protease with the endogenous inhibitor, hepatocyte growth factor activator inhibitor type-1 (HAI-1). The present study aimed to identify these site(s). Analyses using a secreted variant of recombinant matriptase comprising the entire extracellular domain (MAT), its truncated variants, and a recombinant HAI-1 variant with an entire extracellular domain (HAI-1–58K) revealed that the second CUB domain (CUB domain II, Cys340–Pro452) likely contains the site(s) of interest. We also found that MAT undergoes cleavage between Lys379 and Val380 within CUB domain II and that the C-terminal residues after Val380 are responsible for facilitating the interaction with HAI-1–58K. A synthetic peptide corresponding to Val380–Asp390 markedly increased the matriptase-inhibiting activity of HAI-1–58K, whereas the peptides corresponding to Val380–Val389 and Phe382–Asp390 had no effect. HAI-1–58K precipitated with immobilized streptavidin resins to which a synthetic peptide Val380–Pro392 with a biotinylated lysine residue at its C terminus was bound, suggesting direct interaction between CUB domain II and HAI-1. These results led to the identification of the matriptase CUB domain II, which facilitates the primary inhibitory interaction between this protease and HAI-1. PMID:20682770

  14. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  15. Control of cell motility by interaction of gangliosides, tetraspanins, and epidermal growth factor receptor in A431 versus KB epidermoid tumor cells.

    PubMed

    Park, Seung-Yeol; Yoon, Seon-Joo; Freire-de-Lima, Leonardo; Kim, Jung-Hoe; Hakomori, Sen-itiroh

    2009-08-17

    Growth of epidermoid carcinoma cell lines, A431 and KB, has been known to be controlled by the interaction of epidermal growth factor (EGF) and its receptor (EGFR) with tyrosine kinase. Ganglioside GM3 was previously found to interact with EGFR and to inhibit EGFR tyrosine kinase. However, motility of these cells, controlled by EGFR and ganglioside, was not studied. The present study is focused on the control mechanism of the motility of these cells through interaction of ganglioside, tetraspanin (TSP), and EGFR. Key results are as follows: (i) The level of EGFR expressed in A431 cells is approximately 6 times higher than that expressed in KB cells, and motility of A431 cells is also much higher than that of KB cells, yet growth of A431 cells is either not affected or is inhibited by EGF. In contrast, growth of KB cells is enhanced by EGF. (ii) Levels of TSPs (CD9, CD82, and CD81) expressed in A431 cells are much higher than those expressed in KB cells, and TSPs expressed in A431 cells are reduced by treatment of cells with EtDO-P4, which inhibits the synthesis of glycosphingolipids (GSLs) and gangliosides. (iii) These TSPs are co-immunoprecipitated with EGFR in both A431 and KB cells, indicating that TSPs are closely associated with EGFR. (iv) High motility of A431 cells is greatly reduced, while low motility of KB cells is not affected, by treatment of cells with EtDO-P4. These results, taken together, suggest that there is a close correlation between high motility of A431 cells and high expression of EGFR and TSPs, and between ganglioside GM3/GM2 and TSP. A similar correlation was suggested between the low motility of KB cells and low levels of EGFR and TSP. The correlation between high motility and high level of EGFR with the ganglioside-TSP complex in A431 cells is unique. This is in contrast to our previous studies that indicate that motility of many types of tumor cells is inhibited by a high level of CD9 or CD82, together with growth factor receptors and

  16. Control of leptin by metabolic state and its regulatory interactions with pituitary growth hormone and hepatic growth hormone receptors and insulin like growth factors in the tilapia (Oreochromis mossambicus).

    PubMed

    Douros, Jonathan D; Baltzegar, David A; Mankiewicz, Jamie; Taylor, Jordan; Yamaguchi, Yoko; Lerner, Darren T; Seale, Andre P; Grau, E Gordon; Breves, Jason P; Borski, Russell J

    2017-01-01

    Leptin is an important cytokine for regulating energy homeostasis, however, relatively little is known about its function and control in teleost fishes or other ectotherms, particularly with regard to interactions with the growth hormone (GH)/insulin-like growth factors (IGFs) growth regulatory axis. Here we assessed the regulation of LepA, the dominant paralog in tilapia (Oreochromis mossambicus) and other teleosts under altered nutritional state, and evaluated how LepA might alter pituitary growth hormone (GH) and hepatic insulin-like growth factors (IGFs) that are known to be disparately regulated by metabolic state. Circulating LepA, and lepa and lepr gene expression increased after 3-weeks fasting and declined to control levels 10days following refeeding. This pattern of leptin regulation by metabolic state is similar to that previously observed for pituitary GH and opposite that of hepatic GHR and/or IGF dynamics in tilapia and other fishes. We therefore evaluated if LepA might differentially regulate pituitary GH, and hepatic GH receptors (GHRs) and IGFs. Recombinant tilapia LepA (rtLepA) increased hepatic gene expression of igf-1, igf-2, ghr-1, and ghr-2 from isolated hepatocytes following 24h incubation. Intraperitoneal rtLepA injection, on the other hand, stimulated hepatic igf-1, but had little effect on hepatic igf-2, ghr1, or ghr2 mRNA abundance. LepA suppressed GH accumulation and gh mRNA in pituitaries in vitro, but had no effect on GH release. We next sought to test if abolition of pituitary GH via hypophysectomy (Hx) affects the expression of hepatic lepa and lepr. Hypophysectomy significantly increases hepatic lepa mRNA abundance, while GH replacement in Hx fish restores lepa mRNA levels to that of sham controls. Leptin receptor (lepr) mRNA was unchanged by Hx. In in vitro hepatocyte incubations, GH inhibits lepa and lepr mRNA expression at low concentrations, while higher concentration stimulates lepa expression. Taken together, these findings

  17. Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily.

    PubMed

    Barbara, N P; Wrana, J L; Letarte, M

    1999-01-08

    Endoglin (CD105) is a transmembrane glycoprotein that binds transforming growth factor (TGF)-beta1 and -beta3, and coprecipitates with the Ser/Thr kinase signaling receptor complex by affinity labeling of endothelial and leukemic cells. The present study shows that in addition to TGF-beta1 and -beta3, endoglin interacts with activin-A, bone morphogenetic protein (BMP)-7, and BMP-2 but requires coexpression of the respective ligand binding kinase receptor for this association. Endoglin cannot bind ligands on its own and does not alter binding to the kinase receptors. It binds TGF-beta1 and -beta3 by associating with the TGF-beta type II receptor and interacts with activin-A and BMP-7 via activin type II receptors, ActRII and ActRIIB, regardless of which type I receptor partner is coexpressed. However, endoglin binds BMP-2 by interacting with the ligand binding type I receptors, ALK3 and ALK6. The formation of heteromeric signaling complexes was not altered by the presence of endoglin, although it was coprecipitated with these complexes. Endoglin did not interact with BMP-7 through complexes containing the BMP type II receptor, demonstrating specificity of its action. Our data suggest that endoglin is an accessory protein of multiple kinase receptor complexes of the TGF-beta superfamily.

  18. Virtual-screening targeting Human Immunodeficiency Virus type 1 integrase-lens epithelium-derived growth factor/p75 interaction for drug development.

    PubMed

    Gu, Wan-Gang; Liu, Bai-Nan; Yuan, Jun-Fa

    2015-02-01

    Three integrase (IN) inhibitors have been approved by FDA for clinical treatment of Human Immunodeficiency Virus (HIV) infection. This stimulates more researchers to focus their studies on this target for anti-HIV drug development. Three steps regarding of IN activity have been validated for inhibitor discovery: strand transfer, 3'-terminal processing, and IN-lens epithelium-derived growth factor (LEDGF)/p75 interaction. Among them, IN-LEDGF/p75 interaction is a new target validated in recent years. Emergence of drug-resistant virus strains makes this target appealing to pharmacologists. Compared with the traditional screening methods such as AlphaScreen and cell-based screening developed for IN inhibitor discovery, virtual screening is a powerful technique in modern drug discovery. Here we summarized the recent advances of virtual-screening targeting IN-LEDFG/p75 interaction. The combined application of virtual screening and experiments in drug discovery against IN-LEDFG/p75 interaction sheds light on anti-HIV research and drug discovery.

  19. The non-ankyrin C terminus of Ikappa Balpha physically interacts with p53 in vivo and dissociates in response to apoptotic stress, hypoxia, DNA damage, and transforming growth factor-beta 1-mediated growth suppression.

    PubMed

    Chang, Nan-Shan

    2002-03-22

    Transforming growth factor beta (TGF-beta1) suppresses the growth of mink lung Mv1Lu epithelial cells, whereas testicular hyaluronidase abolishes the growth inhibition. Exposure of Mv1Lu cells to TGF-beta1 rapidly resulted in down-regulation of cytosolic IkappaBalpha and hyaluronidase prevented this effect, suggesting a possible role of IkappaBalpha in the growth regulation. Ectopic expression of wild-type and dominant negative IkappaBalpha prevented TGF-beta1-mediated growth suppression. Nonetheless, the blocking effect of IkappaBalpha is not related to regulation of NF-kappaB function by its N-terminal ankyrin-repeat region (amino acids 1-243). Removal of the PEST (proline-glutamic acid-serine-threonine) domain-containing C terminus (amino acids 244-314) abolished the IkappaBalpha function, and the C terminus alone blocked the TGF-beta1 growth-inhibitory effect. Co-immunoprecipitation by anti-p53 antibody using Mv1Lu and other types of cells, as well as rat liver and spleen, revealed that a portion of cytosolic IkappaBalpha physically interacted with p53. In contrast, Mdm2, an inhibitor of p53, was barely detectable in the immunoprecipitates. The cytosolic p53 x IkappaBalpha complex rapidly dissociated in response to apoptotic stress, etoposide- and UV-mediated DNA damage, hypoxia, and TGF-beta1-mediated growth suppression. Also, a rapid increase in the formation of the nuclear p53 x IkappaBalpha complex was observed during exposure to etoposide and UV. In contrast, TGF-beta1-mediated promotion of fibroblast growth failed to mediate p53 x IkappaBalpha dissociation. Mapping by yeast two-hybrid showed that the non-ankyrin C terminus of IkappaBalpha physically interacted with the proline-rich region and a phosphorylation site, serine 46, in p53. Deletion of serine 46 or alteration of serine 46 to glycine abolished the p53 x IkappaBalpha interaction. Alteration to threonine retained the binding interaction, suggesting that serine 46 phosphorylation is involved in the

  20. Inhibition of the focal adhesion kinase and vascular endothelial growth factor receptor-3 interaction leads to decreased survival in human neuroblastoma cell lines.

    PubMed

    Beierle, Elizabeth A; Ma, Xiaojie; Stewart, Jerry E; Megison, Michael; Cance, William G; Kurenova, Elena V

    2014-03-01

    Neuroblastoma continues to be a devastating childhood solid tumor and is responsible for over 15% of all childhood cancer-related deaths. Focal adhesion kinase (FAK) and vascular endothelial growth factor receptor-3 (VEGFR-3) are protein tyrosine kinases that are overexpressed in a number of human cancers, including neuroblastoma. These two kinases can directly interact and provide survival signals to cancer cells. In this study, we utilized siRNA to VEGFR-3 to demonstrate the biologic importance of this kinase in neuroblastoma cell survival. We also used confocal microscopy and immunoprecipitation to show that FAK and VEGFR-3 bind in neuroblastoma. Finally, employing a 12-amino-acid peptide (AV3) specific to VEGFR-3, we showed that the colocalization between FAK and VEGFR-3 could be disrupted, and that disruption resulted in decreased neuroblastoma cell survival. These studies provide insight to the FAK-VEGFR-3 interaction in neuroblastoma and demonstrate its importance in this tumor type. Focusing upon the FAK-VEGFR-3 interaction may provide a novel therapeutic target for the development of new strategies for treatment of neuroblastoma.

  1. Pyrrolidine dithiocarbamate attenuates paraquat-induced acute pulmonary poisoning in vivo via transforming growth factor β1 and nuclear factor κB pathway interaction.

    PubMed

    Huang, M; Lou, D; Li, H-H; Cai, Q; Wang, Y-P; Yang, H-F

    2016-12-01

    Paraquat (PQ) exposure could cause pulmonary fibrosis. The aim of this study was to investigate the protective effect of pyrrolidine dithiocarbamate (PDTC) in an acute PQ poison model. One hundred and forty-four Sprague Dawley rats were equally divided into three experimental groups: control group, PQ group, and PQ + PDTC group. At days 1, 3, 7, 14, 28, and 56 of treatment, the serum levels of transforming growth factor β1 (TGF-β1), the levels of hydroxyproline, the protein expression of nuclear factor κB (NF-κB) pathway, and histopathological change in lung tissue were assessed. The survival rate of rats treated with PQ + PDTC was increased compared with that of rats treated only with PQ (p < 0.05), and the occurrence of pathological changes was dramatically attenuated in the PQ + PDTC group. The serum levels of TGF-β1 and the hydroxyproline levels in the PQ group were significantly increased in a time-dependent manner compared with those in the control and PQ + PDTC groups on days 7, 14, 28, and 56 (p < 0.05). Additionally, the protein levels of NF-κB proteins p65, inhibitor of κB (IκB) kinase (IKKβ, and IκB-α were significantly downregulated in the PQ + PDTC group as determined by array analysis. The present findings suggest that overexpression of TGF-β1 may play an important role in PQ-induced lung injury and that PDTC, a strong NF-κB inhibitor, can rescue PQ-induced pulmonary fibrosis by influencing the protein expression of NF-κB pathway. © The Author(s) 2016.

  2. An apparent clinical pharmacokinetic drug-drug interaction between bevacizumab and the anti-placental growth factor monoclonal antibody RO5323441 via a target-trapping mechanism.

    PubMed

    Wang, Ka; Stark, Franziska Schaedeli; Schlothauer, Tilman; Lahr, Angelika; Cosson, Valerie; Zhi, Jianguo; Habben, Kai; Tessier, Jean; Schick, Eginhard; Staack, Roland F; Krieter, Oliver

    2017-04-01

    RO5323441 is a humanized anti-placental growth factor (PlGF) monoclonal antibody that has shown preclinical activity in several cancer models. The objective of this analysis is to examine the pharmacokinetic (PK) results from four Phase I studies that have been conducted with RO5323441 (n = 61) and to report an apparent drug-drug interaction observed when RO5323441 was administered in combination with bevacizumab. The four Phase I studies were a multiple-ascending dose study in 23 patients with solid tumors (Study 1), an open-label study in seven patients with colorectal/ovarian cancer (Study 2), a sorafenib combination study in nine patients with hepatocellular carcinoma (Study 3), and a bevacizumab combination study in 22 patients with recurrent glioblastoma (Study 4). A two-compartment linear population PK model was developed from these four studies to characterize the PK of RO5323441 in patients with cancer. The PK properties of RO5323441 were similar in the first three studies. However, substantially higher RO5323441 exposures were observed in Study 4 when RO5323441 was administered in combination with bevacizumab. A linear two-compartmental population PK model indicated that the co-administration of bevacizumab would decrease the clearance of RO5323441 by 53%. Clinical data suggested that the decrease in RO5323441 clearance was inversely associated with bevacizumab exposure. The exact reason for the increase in RO5323441 exposure following bevacizumab co-administration is not currently known. One possibility is a drug-drug interaction via a target-trapping mechanism that is mediated by the vascular endothelial growth factor receptor-1 (VEGFR-1).

  3. The transcription factor GLI1 interacts with SMAD proteins to modulate transforming growth factor β-induced gene expression in a p300/CREB-binding protein-associated factor (PCAF)-dependent manner.

    PubMed

    Nye, Monica D; Almada, Luciana L; Fernandez-Barrena, Maite G; Marks, David L; Elsawa, Sherine F; Vrabel, Anne; Tolosa, Ezequiel J; Ellenrieder, Volker; Fernandez-Zapico, Martin E

    2014-05-30

    The biological role of the transcription factor GLI1 in the regulation of tumor growth is well established; however, the molecular events modulating this phenomenon remain elusive. Here, we demonstrate a novel mechanism underlying the role of GLI1 as an effector of TGFβ signaling in the regulation of gene expression in cancer cells. TGFβ stimulates GLI1 activity in cancer cells and requires its transcriptional activity to induce BCL2 expression. Analysis of the mechanism regulating this interplay identified a new transcriptional complex including GLI1 and the TGFβ-regulated transcription factor, SMAD4. We demonstrate that SMAD4 physically interacts with GLI1 for concerted regulation of gene expression and cellular survival. Activation of the TGFβ pathway induces GLI1-SMAD4 complex binding to the BCL2 promoter whereas disruption of the complex through SMAD4 RNAi depletion impairs GLI1-mediated transcription of BCL2 and cellular survival. Further characterization demonstrated that SMAD2 and the histone acetyltransferase, PCAF, participate in this regulatory mechanism. Both proteins bind to the BCL2 promoter and are required for TGFβ- and GLI1-stimulated gene expression. Moreover, SMAD2/4 RNAi experiments showed that these factors are required for the recruitment of GLI1 to the BCL2 promoter. Finally, we determined whether this novel GLI1 transcriptional pathway could regulate other TGFβ targets. We found that two additional TGFβ-stimulated genes, INTERLEUKIN-7 and CYCLIN D1, are dependent upon the intact GLI1-SMAD-PCAF complex for transcriptional activation. Collectively, these results define a novel epigenetic mechanism that uses the transcription factor GLI1 and its associated complex as a central effector to regulate gene expression in cancer cells.

  4. The Transcription Factor GLI1 Interacts with SMAD Proteins to Modulate Transforming Growth Factor β-Induced Gene Expression in a p300/CREB-binding Protein-associated Factor (PCAF)-dependent Manner*

    PubMed Central

    Nye, Monica D.; Almada, Luciana L.; Fernandez-Barrena, Maite G.; Marks, David L.; Elsawa, Sherine F.; Vrabel, Anne; Tolosa, Ezequiel J.; Ellenrieder, Volker; Fernandez-Zapico, Martin E.

    2014-01-01

    The biological role of the transcription factor GLI1 in the regulation of tumor growth is well established; however, the molecular events modulating this phenomenon remain elusive. Here, we demonstrate a novel mechanism underlying the role of GLI1 as an effector of TGFβ signaling in the regulation of gene expression in cancer cells. TGFβ stimulates GLI1 activity in cancer cells and requires its transcriptional activity to induce BCL2 expression. Analysis of the mechanism regulating this interplay identified a new transcriptional complex including GLI1 and the TGFβ-regulated transcription factor, SMAD4. We demonstrate that SMAD4 physically interacts with GLI1 for concerted regulation of gene expression and cellular survival. Activation of the TGFβ pathway induces GLI1-SMAD4 complex binding to the BCL2 promoter whereas disruption of the complex through SMAD4 RNAi depletion impairs GLI1-mediated transcription of BCL2 and cellular survival. Further characterization demonstrated that SMAD2 and the histone acetyltransferase, PCAF, participate in this regulatory mechanism. Both proteins bind to the BCL2 promoter and are required for TGFβ- and GLI1-stimulated gene expression. Moreover, SMAD2/4 RNAi experiments showed that these factors are required for the recruitment of GLI1 to the BCL2 promoter. Finally, we determined whether this novel GLI1 transcriptional pathway could regulate other TGFβ targets. We found that two additional TGFβ-stimulated genes, INTERLEUKIN-7 and CYCLIN D1, are dependent upon the intact GLI1-SMAD-PCAF complex for transcriptional activation. Collectively, these results define a novel epigenetic mechanism that uses the transcription factor GLI1 and its associated complex as a central effector to regulate gene expression in cancer cells. PMID:24739390

  5. Interstitial fibrosis and growth factors.

    PubMed Central

    Lasky, J A; Brody, A R

    2000-01-01

    Interstitial pulmonary fibrosis (IPF) is scarring of the lung caused by a variety of inhaled agents including mineral particles, organic dusts, and oxidant gases. The disease afflicts millions of individuals worldwide, and there are no effective therapeutic approaches. A major reason for this lack of useful treatments is that few of the molecular mechanisms of disease have been defined sufficiently to design appropriate targets for therapy. Our laboratory has focused on the molecular mechanisms through which three selected peptide growth factors could play a role in the development of IPF. Hundreds of growth factors and cytokines could be involved in the complex disease process. We are studying platelet-derived growth factor because it is the most potent mesenchymal cell mitogen yet described, transforming growth factor beta because it is a powerful inducer of extracellular matrix (scar tissue) components by mesenchymal cells, and tumor necrosis factor alpha because it is a pleiotropic cytokine that we and others have shown is essential for the development of IPF in animal models. This review describes some of the evidence from studies in humans, in animal models, and in vitro, that supports the growth factor hypothesis. The use of modern molecular and transgenic technologies could elucidate those targets that will allow effective therapeutic approaches. Images Figure 1 Figure 2 PMID:10931794

  6. Interaction between season and culture with insulin-like growth factor-1 on survival of in vitro produced embryos following transfer to lactating dairy cows.

    PubMed

    Block, J; Hansen, P J

    2007-06-01

    Culture of bovine embryos in the presence of insulin-like growth factor-1 (IGF-1) can increase pregnancy rates following transfer to heat-stressed, lactating dairy cows. The objective of the present experiment was to determine whether the effect of IGF-1 on post-transfer embryo survival was a general effect or one specific to heat stress. Lactating recipients (n=311) were synchronized for timed-embryo transfer at four locations. Embryos were produced in vitro and cultured with or without 100 ng/mL IGF-1. At Day 7 after anticipated ovulation (Day 0), a single embryo was randomly transferred to each recipient. Pregnancy was diagnosed at Day 21 by elevated plasma progesterone concentrations, at Days 27-32 by ultrasonography, and at Days 41-49 by transrectal palpation. Transfers were categorized into two seasons, hot or cool (based on the month of transfer). There was a tendency (P<0.09) for an interaction between embryo treatment and season for pregnancy rate at Day 21; this interaction was significant at Days 30 and 45 (P<0.02). Recipients receiving IGF-1 treated embryos had higher pregnancy rates in the hot season but not in the cool season. There was a similar interaction between embryo treatment and season for overall calving rate (P<0.05). There was also an interaction between season and treatment affecting pregnancy loss between Days 21 and 30; recipients that received IGF-1 treated embryos had less pregnancy loss during this time period in the hot season but not in the cool season. The overall proportion of male calves born was 77.5%. In conclusion, treatment of embryos with IGF-1 improved pregnancy and calving rates following the transfer of in vitro produced embryos into lactating recipients, but only under heat-stress conditions.

  7. Growth factors in synaptic function

    PubMed Central

    Poon, Vivian Y.; Choi, Sojoong; Park, Mikyoung

    2013-01-01

    Synapses are increasingly recognized as key structures that malfunction in disorders like schizophrenia, mental retardation, and neurodegenerative diseases. The importance and complexity of the synapse has fuelled research into the molecular mechanisms underlying synaptogenesis, synaptic transmission, and plasticity. In this regard, neurotrophic factors such as netrin, Wnt, transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and others have gained prominence for their ability to regulate synaptic function. Several of these factors were first implicated in neuroprotection, neuronal growth, and axon guidance. However, their roles in synaptic development and function have become increasingly clear, and the downstream signaling pathways employed by these factors have begun to be elucidated. In this review, we will address the role of these factors and their downstream effectors in synaptic function in vivo and in cultured neurons. PMID:24065916

  8. The extracellular glycoprotein SPARC interacts with platelet-derived growth factor (PDGF)-AB and -BB and inhibits the binding of PDGF to its receptors.

    PubMed Central

    Raines, E W; Lane, T F; Iruela-Arispe, M L; Ross, R; Sage, E H

    1992-01-01

    Interactions among growth factors, cells, and extracellular matrix are critical to the regulation of directed cell migration and proliferation associated with development, wound healing, and pathologic processes. Here we report the association of PDGF-AB and -BB, but not PDGF-AA, with the extracellular glycoprotein SPARC. Complexes of SPARC and 125I-labeled PDGF-BB or -AB were specifically immunoprecipitated by anti-SPARC immunoglobulins. 125I-PDGF-BB and -AB also bound specifically to SPARC that was immobilized on microtiter wells or bound to nitrocellulose after transfer from SDS/polyacrylamide gels. The binding of PDGF-BB to SPARC was pH-dependent; significant binding was detectable only above pH 6.6. The interaction of SPARC with specific dimeric forms of PDGF affected the activity of this mitogen. SPARC inhibited the binding of PDGF-BB and PDGF-AB, but not PDGF-AA, to human dermal fibroblasts in a dose-dependent manner. The expression of SPARC and PDGF was minimal in most normal adult tissues but was increased after injury. Enhanced expression of both PDGF-B chain and SPARC was seen in advanced lesions of atherosclerosis. We suggest that the coordinate expression of SPARC and PDGF-B-containing dimers following vascular injury may regulate the activity of specific dimeric forms of PDGF in vivo. Images PMID:1311092

  9. Negative Regulation of Grb10 Interacting GYF Protein 2 on Insulin-Like Growth Factor-1 Receptor Signaling Pathway Caused Diabetic Mice Cognitive Impairment

    PubMed Central

    Xie, Jing; Wei, Qianping; Deng, Huacong; Li, Gang; Ma, Lingli; Zeng, Hui

    2014-01-01

    Heterozygous Gigyf2+/− mice exhibits histopathological evidence of neurodegeneration such as motor dysfunction. Several lines of evidence have demonstrated the important role of insulin-like growth factor-1 receptor (IGF1R) signaling pathway in the neuropathogenic process of cognitive impairment, while decreased Grb10-Interacting GYF Protein 2 (GIGYF2) expression can alter IGF1R trafficking and its downstream signaling pathways. Growth factor receptor-bound protein 10 (Grb10), a suppressor of IGF1R pathway, has been shown to play a critical role in regulating diabetes-associated cognitive impairment. It remains unknown whether endogenous GIGYF2 expression contributes to the development of diabetes-associated cognitive impairment. Using streptozotocin (STZ)-induced diabetic mice model, we first demonstrated that a significantly increased level of GIGYF2 expression was correlated with a significant decrease in the expression of phosphorylated IGF1R as well as the phosphorylation of AKT and ERK1/2, two signaling pathways downstream of IGF1R, in the hippocampus of diabetic mice. On the contrary, in situ knockdown of GIGYF2 expression in hippocampus resulted in increased expression of phosphorylated IGF1R expression and correspondingly reversed the down-regulation of ERK1/2 phsophorylation but had no obvious effect on Grb10 expression. Functionally, knockdown of GIGYF2 expression markedly ameliorated diabetes-associated cognitive dysfunction as well as the ultrastructural pathology and abnormal neurobehavioral changes. These results suggest that increased expression of GIGYF2 might contribute to the development of diabetes-associated cognitive disorder via negatively regulating IGF1R signaling pathway. Therefore, down-regulation of GIGYF2 expression may provide a potential novel approach to treat diabetes-associated cognitive impairment caused by aberrant IGF1R signaling pathway. PMID:25268761

  10. The interaction between the Drosophila secreted protein argos and the epidermal growth factor receptor inhibits dimerization of the receptor and binding of secreted spitz to the receptor.

    PubMed

    Jin, M H; Sawamoto, K; Ito, M; Okano, H

    2000-03-01

    Drosophila Argos (Aos), a secreted protein with an epidermal growth factor (EGF)-like domain, has been shown to inhibit the activation of the Drosophila EGF receptor (DER). However, it has not been determined whether Aos binds directly to DER or whether regulation of the DER activation occurs through some other mechanism. Using DER-expressing cells (DER/S2) and a recombinant DER extracellular domain-Fc fusion protein (DER-Fc), we have shown that Aos binds directly to the extracellular domain of DER with its carboxyl-terminal region, including the EGF-like domain. Furthermore, Aos can block the binding of secreted Spitz (sSpi), a transforming growth factor alpha-like ligand of DER, to the extracellular domain of DER. We observed that sSpi stimulates the dimerization of both the soluble DER extracellular domain (sDER) and the intact DER in the DER/S2 cells and that Aos can block the sSpi-induced dimerization of both sDER and intact DER. Moreover, we have shown that, by directly interacting with DER, Aos and SpiAos (a chimeric protein that is composed of the N-terminal region of Spi and the C-terminal region of Aos) inhibit the dimerization and phosphorylation of DER that are induced by DER's overexpression in the absence of sSpi. These results indicate that Aos exerts its inhibitory function through dual molecular mechanisms: by blocking both the receptor dimerization and the binding of activating ligand to the receptor. This is the first description of this novel inhibitory mechanism for receptor tyrosine kinases.

  11. Filamin B Plays a Key Role in Vascular Endothelial Growth Factor-induced Endothelial Cell Motility through Its Interaction with Rac-1 and Vav-2*

    PubMed Central

    del Valle-Pérez, Beatriz; Martínez, Vanesa Gabriela; Lacasa-Salavert, Cristina; Figueras, Agnès; Shapiro, Sandor S.; Takafuta, Toshiro; Casanovas, Oriol; Capellà, Gabriel; Ventura, Francesc; Viñals, Francesc

    2010-01-01

    Actin-binding proteins filamin A (FLNA) and B (FLNB) are expressed in endothelial cells and play an essential role during vascular development. In order to investigate their role in adult endothelial cell function, we initially confirmed their expression pattern in different adult mouse tissues and cultured cell lines and found that FLNB expression is concentrated mainly in endothelial cells, whereas FLNA is more ubiquitously expressed. Functionally, small interfering RNA knockdown of endogenous FLNB in human umbilical vein endothelial cells inhibited vascular endothelial growth factor (VEGF)-induced in vitro angiogenesis by decreasing endothelial cell migration capacity, whereas FLNA ablation did not alter these parameters. Moreover, FLNB-depleted cells increased their substrate adhesion with more focal adhesions. The molecular mechanism underlying this effect implicates modulation of small GTP-binding protein Rac-1 localization and activity, with altered activation of its downstream effectors p21 protein Cdc42/Rac-activated kinase (PAK)-4/5/6 and its activating guanine nucleotide exchange factor Vav-2. Moreover, our results suggest the existence of a signaling complex, including FLNB, Rac-1, and Vav-2, under basal conditions that would further interact with VEGFR2 and integrin αvβ5 after VEGF stimulation. In conclusion, our results reveal a crucial role for FLNB in endothelial cell migration and in the angiogenic process in adult endothelial cells. PMID:20110358

  12. M10, a Caspase Cleavage Product of the Hepatocyte Growth Factor Receptor, Interacts with Smad2 and Demonstrates Anti-Fibrotic Properties in Vitro and in Vivo

    PubMed Central

    Atanelishvili, Ilia; Shirai, Yuichiro; Akter, Tanjina; Buckner, Taylor; Noguchi, Atsushi; Silver, Richard M.; Bogatkevich, Galina S.

    2016-01-01

    Hepatocyte growth factor receptor, also known as cellular mesenchymal-epithelial transition factor (c-MET, MET), is an important antifibrotic molecule that protects various tissues, including lung, from injury and fibrosis. The intracellular cytoplasmic tail of MET contains a caspase-3 recognition motif “DEVD-T” that upon cleavage by caspase-3 generates a 10 amino acid peptide, TRPASFWETS, designated as “M10”. M10 contains at its N-terminus the uncharged amino acid proline (P) directly after a cationic amino acid arginine (R) which favors the transport of the peptide through membranes. M10, when added to cell culture medium, remains in the cytoplasm and nuclei of cells for up to 24 hours. M10 effectively decreases collagen in both scleroderma and TGFβ-stimulated normal lung and skin fibroblasts. M10 interacts with the MH2 domain of Smad2 and inhibits TGFβ-induced Smad2 phosphorylation, suggesting that the antifibrotic effects of M10 are mediated in part by counteracting Smad-dependent fibrogenic pathways. In the bleomycin murine model of pulmonary fibrosis, M10 noticeably reduced lung inflammation and fibrosis. Ashcroft fibrosis scores and lung collagen content were significantly lower in bleomycin-treated mice receiving M10 as compared with bleomycin-treated mice receiving scrambled peptide. We conclude that M10 peptide interacts with Smad2 and demonstrates strong antifibrotic effects in vitro and in vivo in an animal model of lung fibrosis and should be considered as a potential therapeutic agent for systemic sclerosis and other fibrosing diseases. PMID:26772959

  13. M10, a caspase cleavage product of the hepatocyte growth factor receptor, interacts with Smad2 and demonstrates antifibrotic properties in vitro and in vivo.

    PubMed

    Atanelishvili, Ilia; Shirai, Yuichiro; Akter, Tanjina; Buckner, Taylor; Noguchi, Atsushi; Silver, Richard M; Bogatkevich, Galina S

    2016-04-01

    Hepatocyte growth factor receptor, also known as cellular mesenchymal-epithelial transition factor (c-MET, MET), is an important antifibrotic molecule that protects various tissues, including lung, from injury and fibrosis. The intracellular cytoplasmic tail of MET contains a caspase-3 recognition motif "DEVD-T" that on cleavage by caspase-3 generates a 10-amino acid peptide, TRPASFWETS, designated as "M10". M10 contains at its N-terminus the uncharged amino acid proline (P) directly after a cationic amino acid arginine (R) which favors the transport of the peptide through membranes. M10, when added to cell culture medium, remains in the cytoplasm and nuclei of cells for up to 24 hours. M10 effectively decreases collagen in both scleroderma and TGFβ-stimulated normal lung and skin fibroblasts. M10 interacts with the Mad Homology 2 domain of Smad2 and inhibits TGFβ-induced Smad2 phosphorylation, suggesting that the antifibrotic effects of M10 are mediated in part by counteracting Smad-dependent fibrogenic pathways. In the bleomycin murine model of pulmonary fibrosis, M10 noticeably reduced lung inflammation and fibrosis. Ashcroft fibrosis scores and lung collagen content were significantly lower in bleomycin-treated mice receiving M10 as compared with bleomycin-treated mice receiving scrambled peptide. We conclude that M10 peptide interacts with Smad2 and demonstrates strong antifibrotic effects in vitro and in vivo in an animal model of lung fibrosis and should be considered as a potential therapeutic agent for systemic sclerosis and other fibrosing diseases.

  14. Direct interaction between surface β1,4-galactosyltransferase 1 and epidermal growth factor receptor (EGFR) inhibits EGFR activation in hepatocellular carcinoma

    SciTech Connect

    Tang, Wenqing; Weng, Shuqiang; Zhang, Si; Wu, Weibing; Dong, Ling; Shen, Xizhong; Zhang, Songwen; Gu, Jianxin; Xue, Ruyi

    2013-05-10

    Highlights: •β1,4GT1 interacts with EGFR both in vitro and in vivo. •β1,4GT1 co-localizes with EGFR on the cell surface. •β1,4GT1 inhibits {sup 125}I-EGF binding to EGFR. •β1,4GT1 inhibits EGF induced EGFR dimerization and phosphorylation. -- Abstract: Our previous studies showed that cell surface β1,4-galactosyltransferase 1 (β1,4GT1) negatively regulated cell survival through inhibition and modulation of the epidermal growth factor receptor (EGFR) signaling pathway in human hepatocellular carcinoma (HCC) SMMC-7721 cells. However, the underlying mechanism remains unclear. Here we demonstrated that β1,4-galactosyltransferase 1 (β1,4GT1) interacted with EGFR in vitro by GST pull-down analysis. Furthermore, we demonstrated that β1,4GT1 bound to EGFR in vivo by co-immunoprecipitation and determined the co-localization of β1,4GT1 and EGFR on the cell surface via confocal laser scanning microscopy analysis. Finally, using {sup 125}I-EGF binding experiments and Western blot analysis, we found that overexpression of β1,4GT1 inhibited {sup 125}I-EGF binding to EGFR, and consequently reduced the levels of EGFR dimerization and phosphorylation. In contrast, RNAi-mediated knockdown of β1,4GT1 increased the levels of EGFR dimerization and phosphorylation. These data suggest that cell surface β1,4GT1 interacts with EGFR and inhibits EGFR activation.

  15. The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-beta.

    PubMed

    Ribeiro, S M; Poczatek, M; Schultz-Cherry, S; Villain, M; Murphy-Ullrich, J E

    1999-05-07

    One of the primary points of regulation of transforming growth factor-beta (TGF-beta) activity is control of its conversion from the latent precursor to the biologically active form. We have identified thrombospondin-1 as a major physiological regulator of latent TGF-beta activation. Activation is dependent on the interaction of a specific sequence in thrombospondin-1 (K412RFK415) with the latent TGF-beta complex. Platelet thrombospon-din-1 has TGF-beta activity and immunoreactive mature TGF-beta associated with it. We now report that the latency-associated peptide (LAP) of the latent TGF-beta complex also interacts with thrombospondin-1 as part of a biologically active complex. Thrombospondin.LAP complex formation involves the activation sequence of thrombospondin-1 (KRFK) and a sequence (LSKL) near the amino terminus of LAP that is conserved in TGF-beta1-5. The interactions of LAP with thrombospondin-1 through the LSKL and KRFK sequences are important for thrombospondin-mediated activation of latent TGF-beta since LSKL peptides can competitively inhibit latent TGF-beta activation by thrombospondin or KRFK-containing peptides. In addition, the association of LAP with thrombospondin-1 may function to prevent the re-formation of an inactive LAP.TGF-beta complex since thrombospondin-bound LAP no longer confers latency on active TGF-beta. The mechanism of TGF-beta activation by thrombospondin-1 appears to be conserved among TGF-beta isoforms as latent TGF-beta2 can also be activated by thrombospondin-1 or KRFK peptides in a manner that is sensitive to inhibition by LSKL peptides.

  16. BAT3 interacts with transforming growth factor-beta (TGF-beta) receptors and enhances TGF-beta1-induced type I collagen expression in mesangial cells.

    PubMed

    Kwak, Joon Hyeok; Kim, Sung Il; Kim, Jin Kuk; Choi, Mary E

    2008-07-11

    Transforming growth factor-beta1 (TGF-beta1) plays essential roles in a wide array of cellular processes, such as in development and the pathogenesis of tissue fibrosis, including that associated with progressive kidney diseases. Tight regulation of its signaling pathways is critical, and proteins that associate with the TGF-beta receptors may exert positive or negative regulatory effects on TGF-beta signaling. In the present study we employed a yeast-based two-hybrid screening system to identify BAT3 (HLA-B-associated transcript 3) as a TGF-beta receptor-interacting protein. Analysis of endogenously expressed BAT3 in various tissues including the kidney reveals the existence of approximately 140-kDa full-length protein as well as truncated forms of BAT3 whose expression is developmentally regulated. Endogenous BAT3 protein interacts with TGF-beta receptors type I and type II in renal mesangial cells. Functional assays show that expression of full-length BAT3 results in enhancement of TGF-beta1-stimulated transcriptional activation of p3TP-Lux reporter, and these effects require the presence of functional TGF-beta signaling receptors as demonstrated in R-1B and DR-26 mutant cells. Moreover, expression of full-length BAT3, but not C-terminal truncated mutant of BAT3, enhanced TGF-beta1-induced type I collagen expression in mesangial cells, whereas knock down of BAT3 protein expression by small interfering RNA suppressed the expression of type I collagen induced by TGF-beta1. Our findings suggest that BAT3, a TGF-beta receptor-interacting protein, is capable of modulating TGF-beta signaling and acts as a positive regulator of TGF-beta1 stimulation of type I collagen expression in mesangial cells.

  17. Genomic Analysis of Circadian Clock-, Light-, and Growth-Correlated Genes Reveals PHYTOCHROME-INTERACTING FACTOR5 as a Modulator of Auxin Signaling in Arabidopsis1[C][W][OA

    PubMed Central

    Nozue, Kazunari; Harmer, Stacey L.; Maloof, Julin N.

    2011-01-01

    Plants exhibit daily rhythms in their growth, providing an ideal system for the study of interactions between environmental stimuli such as light and internal regulators such as the circadian clock. We previously found that two basic loop-helix-loop transcription factors, PHYTOCHROME-INTERACTING FACTOR4 (PIF4) and PIF5, integrate light and circadian clock signaling to generate rhythmic plant growth in Arabidopsis (Arabidopsis thaliana). Here, we use expression profiling and real-time growth assays to identify growth regulatory networks downstream of PIF4 and PIF5. Genome-wide analysis of light-, clock-, or growth-correlated genes showed significant overlap between the transcriptomes of clock-, light-, and growth-related pathways. Overrepresentation analysis of growth-correlated genes predicted that the auxin and gibberellic acid (GA) hormone pathways both contribute to diurnal growth control. Indeed, lesions of GA biosynthesis genes retarded rhythmic growth. Surprisingly, GA-responsive genes are not enriched among genes regulated by PIF4 and PIF5, whereas auxin pathway and response genes are. Consistent with this finding, the auxin response is more severely affected than the GA response in pif4 pif5 double mutants and in PIF5-overexpressing lines. We conclude that at least two downstream modules participate in diurnal rhythmic hypocotyl growth: PIF4 and/or PIF5 modulation of auxin-related pathways and PIF-independent regulation of the GA pathway. PMID:21430186

  18. Plant polyphenols regulate chemokine expression and tissue repair in human keratinocytes through interaction with cytoplasmic and nuclear components of epidermal growth factor receptor system.

    PubMed

    Pastore, Saveria; Lulli, Daniela; Fidanza, Paolo; Potapovich, Alla I; Kostyuk, Vladimir A; De Luca, Chiara; Mikhal'chik, Elena; Korkina, Liudmila G

    2012-02-15

    To evaluate mechanisms underlying modulation of inflammatory chemokines in primary human keratinocytes (normal human epidermal keratinocytes) and repair-related processes in wound models by plant polyphenols (PPs) with antioxidant and superoxide scavenging properties (verbascoside [Vb], resveratrol [Rv], polydatin [Pd], quercetin [Qr], and rutin). Epidermal growth factor receptor (EGFR)-controlled chemokines CXCL8/interleukin 8 (IL-8), CCL2/monocyte chemotactic protein-1 (MCP-1), and CXCL10/interferon gamma-produced protein of 10 kDa (IP-10) were modulated by transforming growth factor alpha (TGF-α) and by the tumor necrosis factor alpha/interferon gamma combination (T/I). EGFR phosphorylation, nuclear translocation, and downstream cytoplasmic signaling pathways (extracellular regulation kinase [ERK]1/2, p38, STAT3, and PI-3K) were studied. All PPs did not affect TGF-α-induced STAT3 phosphorylation, whereas they suppressed T/I-activated NFkappaB and constitutive and T/I-induced but not TGF-α-induced ERK1/2 phosphorylation. Vb and Qr suppressed total EGFR phosphorylation, but they synergized with TGF-α to enhance nuclear accumulation of phosphorylated EGFR. Vb strongly inhibited TGF-α-induced p38 phosphorylation and T/I-induced NFkappaB and activator protein-1 (AP-1) binding to DNA. Vb was an effective inhibitor of T/I-stimulated chemokine synthesis, and it accelerated scratch wound healing in vitro. Anti-inflammatory and wound healing activities of Vb were confirmed in vivo in the full-thickness excision wound. Although Pd and Rv did not affect EGFR activation/translocation, they and Qr synergized with TGF-α and T/I in the induction of IL-8 transcription/synthesis while opposing enhanced MCP-1 and IP-10 transcription/synthesis connected with pharmacologically impaired EGFR functioning. PPs perturb the EGFR system in human keratinocytes, and this effect may be implicated in the regulation of inflammatory and repair-related processes in the skin. Anti

  19. Arylsulfonamide KCN1 inhibits in vivo glioma growth and interferes with HIF signaling by disrupting HIF-1α interaction with co-factors p300/CBP

    PubMed Central

    Yin, Shaoman; Kaluz, Stefan; Devi, Narra S.; Jabbar, Adnan A.; de Noronha, Rita G.; Mun, Jiyoung; Zhang, Zhaobin; Boreddy, Purushotham R.; Wang, Wei; Wang, Zhibo; Abbruscato, Thomas; Chen, Zhengjia; Olson, Jeffrey J.; Zhang, Ruiwen; Goodman, Mark M.; Nicolaou, K.C.; Van Meir, Erwin G.

    2012-01-01

    Purpose The hypoxia inducible factor-1 (HIF-1) plays a critical role in tumor adaptation to hypoxia, and its elevated expression correlates with poor prognosis and treatment failure in cancer patients. In this study, we determined whether 3,4-dimethoxy-N-[(2,2-dimethyl-2H-chromen-6-yl)methyl]-N-phenylbenzenesulfonamide, KCN1, the lead inhibitor in a novel class of arylsulfonamide inhibitors of the HIF-1 pathway, had anti-tumorigenic properties in vivo and further defined its mechanism of action. Experimental Design We studied the inhibitory effect of systemic KCN1 delivery on the growth of human brain tumors in mice. To define mechanisms of KCN1 anti-HIF activities, we examined its influence on the assembly of a functional HIF1α/HIF1β/p300 transcription complex. Results KCN1 specifically inhibited HIF reporter gene activity in several glioma cell lines at the nanomolar level. KCN1 also downregulated transcription of endogenous HIF-1 target genes, such as VEGF, Glut-1 and carbonic anhydrase 9, in an HRE-dependent manner. KCN1 potently inhibited the growth of subcutaneous malignant glioma tumor xenografts with minimal adverse effects on the host. It also induced a temporary survival benefit in an intracranial model of glioma but had no effect in a model of melanoma metastasis to the brain. Mechanistically, KCN1 did not down-regulate levels of HIF-1α or other components of the HIF transcriptional complex; rather, it antagonized hypoxia-inducible transcription by disrupting the interaction of HIF-1α with transcriptional co-activators p300/CBP. Conclusions Our results suggest that the new HIF pathway inhibitor KCN1 has antitumor activity in mouse models, supporting its further translation for the treatment of human tumors displaying hypoxia or HIF overexpression. PMID:22923450

  20. The extracellular glycoprotein SPARC interacts with platelet-derived growth factor (PDGF)-AB and -BB and inhibits the binding of PDGF to its receptors

    SciTech Connect

    Raines, E.W.; Lane, T.F.; Iruela-Arispe, M.L.; Ross, R.; Sage, E.H. )

    1992-02-15

    Interactions among growth factors, cells, and extracellular matrix are critical to the regulation of directed cell migration and proliferation associated with development wound healing, and pathologic processes. Here the authors report the association of PDGF-AB and -BB, but not PDGF-AA, with the extracellular glycoprotein SPARC. Complexes of SPARC and {sup 125}I-labeled PDGF-BB or -AB were specifically immunoprecipitated by anti-SPARC immunoglobulins. {sup 125}I-PDGF-BB and -AB also bound specifically to SPARC that was immobilized on microtiter wells or bound to nitrocellulose after transfer from SDS/polyacrylamide gels. The binding of PDGF-BB to SPARC was pH-dependent; significant binding was detectable only above pH 6.6. Enhanced expression of both PDGF-B chain and SPARC was seen in advanced lesions of atherosclerosis. They suggest that the coordinate expression of SPARC and PDGF-B-containing dimers following vascular injury may regulate the activity of specific dimeric forms of PDGF in vivo.

  1. Cross talk between Id1 and its interactive protein Dril1 mediate fibroblast responses to transforming growth factor-beta in pulmonary fibrosis.

    PubMed

    Lin, Ling; Zhou, Zhihong; Zheng, Liang; Alber, Sean; Watkins, Simon; Ray, Prabir; Kaminski, Naftali; Zhang, Yingze; Morse, Danielle

    2008-08-01

    The presence of activated fibroblasts or myofibroblasts represents a hallmark of progressive lung fibrosis. Because the transcriptional response of fibroblasts to transforming growth factor-beta(1) (TGF-beta(1)) is a determinant of disease progression, we investigated the role of the transcriptional regulator inhibitor of differentiation-1 (Id1) in the setting of lung fibrosis. Mice lacking the gene for Id1 had increased susceptibility to bleomycin-induced lung fibrosis, and fibroblasts lacking Id1 exhibited enhanced responses to TGF-beta(1). Because the effect of Id1 on fibrosis could not be explained by known mechanisms, we performed protein interaction screening and identified a novel binding partner for Id1, known as dead ringer-like-1 (Dril1). Dril1 shares structural similarities with Id1 and was recently implicated in TGF-beta(1) signaling during embryogenesis. To date, little is known about the function of Dril1 in humans. Although it has not been previously implicated in fibrotic disease, we found that Dril1 was highly expressed in lungs from patients with idiopathic pulmonary fibrosis and was regulated by TGF-beta(1) in human fibroblasts. Dril1 enhanced activation of TGF-beta(1) target genes, whereas Id1 decreased expression of these same molecules. Id1 inhibited DNA binding by Dril1, and the two proteins co-localized in vitro and in vivo, providing a potential mechanism for suppression of fibrosis by Id1 through inhibition of the profibrotic function of Dril1.

  2. Long-range RNA interaction of two sequence elements required for endonucleolytic cleavage of human insulin-like growth factor II mRNAs.

    PubMed Central

    Scheper, W; Meinsma, D; Holthuizen, P E; Sussenbach, J S

    1995-01-01

    Human insulin-like growth factor II (IGF-II) mRNAs are subject to site-specific endonucleolytic cleavage in the 3' untranslated region, leading to an unstable 5' cleavage product containing the IGF-II coding region and a very stable 3' cleavage product of 1.8 kb. This endonucleolytic cleavage is most probably the first and rate-limiting step in degradation of IGF-II mRNAs. Two sequence elements within the 3' untranslated region are required for cleavage: element I, located approximately 2 kb upstream of the cleavage site, and element II, encompassing the cleavage site itself. We have identified a stable double-stranded RNA stem structure (delta G = -100 kcal/mol [418.4 kJ/mol]) that can be formed between element I and a region downstream of the cleavage site in element II. This structure is conserved among human, rat, and mouse mRNAs. Detailed analysis of the requirements for cleavage shows that the relative position of the elements is not essential for cleavage. Furthermore, the distance between the coding region and the cleavage site does not affect the cleavage reaction. Mutational analysis of the long-range RNA-RNA interaction shows that not only the double-stranded character but also the sequence of the stable RNA stem is important for cleavage. PMID:7799930

  3. The mitogen-activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21ras.

    PubMed Central

    Jaiswal, R K; Moodie, S A; Wolfman, A; Landreth, G E

    1994-01-01

    Nerve growth factor (NGF) activates the mitogen-activated protein (MAP) kinase cascade through a p21ras-dependent signal transduction pathway in PC12 cells. The linkage between p21ras and MEK1 was investigated to identify those elements which participate in the regulation of MEK1 activity. We have screened for MEK activators using a coupled assay in which the MAP kinase cascade has been reconstituted in vitro. We report that we have detected a single NGF-stimulated MEK-activating activity which has been identified as B-Raf. PC12 cells express both B-Raf and c-Raf1; however, the MEK-activating activity was found only in fractions containing B-Raf. c-Raf1-containing fractions did not exhibit a MEK-activating activity. Gel filtration analysis revealed that the B-Raf eluted with an apparent M(r) of 250,000 to 300,000, indicating that it is present within a stable complex with other unidentified proteins. Immunoprecipitation with B-Raf-specific antisera quantitatively precipitated all MEK activator activity from these fractions. We also demonstrate that B-Raf, as well as c-Raf1, directly interacted with activated p21ras immobilized on silica beads. NGF treatment of the cells had no effect on the ability of B-Raf or c-Raf1 to bind to activated p21ras. These data indicate that this interaction was not dependent upon the activation state of these enzymes; however, MEK kinase activity was found to be associated with p21ras following incubation with NGF-treated samples at levels higher than those obtained from unstimulated cells. These data provide direct evidence that NGF-stimulated B-Raf is responsible for the activation of the MAP kinase cascade in PC12 cells, whereas c-Raf1 activity was not found to function within this pathway. Images PMID:7935411

  4. CCN Family 2/Connective Tissue Growth Factor (CCN2/CTGF) Promotes Osteoclastogenesis via Induction of and Interaction with Dendritic Cell–Specific Transmembrane Protein (DC-STAMP)

    PubMed Central

    Nishida, Takashi; Emura, Kenji; Kubota, Satoshi; Lyons, Karen M; Takigawa, Masaharu

    2013-01-01

    CCN family 2/connective tissue growth factor (CCN2/CTGF) promotes endochondral ossification. However, the role of CCN2 in the replacement of hypertrophic cartilage with bone is still unclear. The phenotype of Ccn2 null mice, having an expanded hypertrophic zone, indicates that the resorption of the cartilage extracellular matrix is impaired therein. Therefore, we analyzed the role of CCN2 in osteoclastogenesis because cartilage extracellular matrix is resorbed mainly by osteoclasts during endochondral ossification. Expression of the Ccn2 gene was upregulated in mouse macrophage cell line RAW264.7 on day 6 after treatment of glutathione S transferase (GST) fusion mouse receptor activator of NF-κB ligand (GST-RANKL), and a combination of recombinant CCN2 (rCCN2) and GST-RANKL significantly enhanced tartrate-resistant acid phosphatase (TRACP)–positive multinucleated cell formation compared with GST-RANKL alone. Therefore, we suspected the involvement of CCN2 in cell-cell fusion during osteoclastogenesis. To clarify the mechanism, we performed real-time PCR analysis of gene expression, coimmunoprecipitation analysis, and solid-phase binding assay of CCN2 and dendritic cell–specific transmembrane protein (DC-STAMP), which is involved in cell-cell fusion. The results showed that CCN2 induced and interacted with DC-STAMP. Furthermore, GST-RANKL–induced osteoclastogenesis was impaired in fetal liver cells from Ccn2 null mice, and the impaired osteoclast formation was rescued by the addition of exogenous rCCN2 or the forced expression of DC-STAMP by a retroviral vector. These results suggest that CCN2 expressed during osteoclastogenesis promotes osteoclast formation via induction of and interaction with DC-STAMP. PMID:20721934

  5. Gene–Environment Interactions on Growth Trajectories

    PubMed Central

    Wang, Shuang; Xiong, Wei; Ma, Weiping; Chanock, Stephen; Jedrychowski, Wieslaw; Wu, Rongling; Perera, Frederica P.

    2012-01-01

    It has been suggested that children with larger brains tend to perform better on IQ tests or cognitive function tests. Prenatal head growth and head growth in infancy are two crucial periods for subsequent intelligence. Studies have shown that environmental exposure to air pollutants during pregnancy is associated with fetal growth reduction, developmental delay, and reduced IQ. Meanwhile, genetic polymorphisms may modify the effect of environment on head growth. However, studies on gene–environment or gene–gene interactions on growth trajectories have been quite limited partly due to the difficulty to quantitatively measure interactions on growth trajectories. Moreover, it is known that assessing the significance of gene–environment or gene–gene interactions on cross-sectional outcomes empirically using the permutation procedures may bring substantial errors in the tests. We proposed a score that quantitatively measures interactions on growth trajectories and developed an algorithm with a parametric bootstrap procedure to empirically assess the significance of the interactions on growth trajectories under the likelihood framework. We also derived a Wald statistic to test for interactions on growth trajectories and compared it to the proposed parametric bootstrap procedure. Through extensive simulation studies, we demonstrated the feasibility and power of the proposed testing procedures. We applied our method to a real dataset with head circumference measures from birth to age 7 on a cohort currently being conducted by the Columbia Center for Children's Environmental Health (CCCEH) in Krakow, Poland, and identified several significant gene–environment interactions on head circumference growth trajectories. PMID:22311237

  6. The von Hippel-Lindau tumor suppressor gene product interacts with Sp1 to repress vascular endothelial growth factor promoter activity.

    PubMed Central

    Mukhopadhyay, D; Knebelmann, B; Cohen, H T; Ananth, S; Sukhatme, V P

    1997-01-01

    The von Hippel-Lindau tumor suppressor gene (VHL) has a critical role in the pathogenesis of clear-cell renal cell carcinoma (RCC), as VHL mutations have been found in both von Hippel-Lindau disease-associated and sporadic RCCs. Recent studies suggest that vascular endothelial growth factor (VEGF) mRNA is upregulated in RCC- and von Hippel-Lindau disease-associated tumors. We have therefore assessed the effect of the VHL gene product on VEGF expression. VEGF promoter-luciferase constructs were transiently cotransfected with a wild-type VHL (wt-VHL) vector in several cell lines, including 293 embryonic kidney and RCC cell lines. wt-VHL protein inhibited VEGF promoter activity in a dose-dependent manner up to 5- to 10-fold. Deletion analysis defined a 144-bp region of the VEGF promoter necessary for VHL repression. This VHL-responsive element is GC rich and specifically binds the transcription factor Sp1 in crude nuclear extracts. In Drosophila cells, cotransfected VHL represses Sp1-mediated activation but not basal activity of the VEGF promoter. We next demonstrated in coimmunoprecipitates that VHL and Sp1 were part of the same complex and, by using a glutathione-S-transferase-VHL fusion protein and purified Sp1, that VHL and Sp1 directly interact. Furthermore, endogenous VEGF mRNA levels were suppressed in permanent RCC cell lines expressing wt-VHL, and nuclear run-on studies indicated that VHL regulation of VEGF occurs at least partly at the transcriptional level. These observations support a new mechanism for VHL-mediated transcriptional repression via a direct inhibitory action on Sp1 and suggest that loss of Sp1 inhibition may be important in the pathogenesis of von Hippel-Lindau disease and RCC. PMID:9271438

  7. Oocyte-secreted growth differentiation factor 9 inhibits BCL-2-interacting mediator of cell death-extra long expression in porcine cumulus cell.

    PubMed

    Wang, Xian-Long; Wang, Kun; Zhao, Shuan; Wu, Yi; Gao, Hui; Zeng, Shen-Ming

    2013-09-01

    Oocyte-secreted factors (OSFs) maintain the low incidence of cumulus cell apoptosis. In this report, we described that the presence of oocytes suppressed the expression of proapoptotic protein BCL-2-interacting mediator of cell death-extra long (BIMEL) in porcine cumulus cells. Atretic (terminal deoxynucleotidyl transferase dUTP nick end labeling-positive) cumulus cells strongly expressed BIMEL protein. The healthy cumulus- oocyte complex exhibited a low BIMEL expression in cumulus cell while the removal of oocyte led to an about 2.5-fold (P < 0.5) increased expression in oocytectomized complex (OOX). Coculturing OOXs with denuded oocytes decreased BIMEL expression to the normal level. The similar expression pattern could also be achieved in OOXs treated with exogenous recombinant mouse growth differentiation factor 9 (GDF9), a well-characterized OSF. This inhibitory action of GDF9 was prevented by the addition of a phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. Luciferase assay further demonstrated that BIM gene expression was forkhead box O3a (FOXO3a)-dependent because mutation of FOXO3a-binding site on the BIM promoter inhibited luciferase activities. Moreover, the activity of BIM promoter encompassing the FOXO3a-binding site could be regulated by GDF9. Additionally, we found that GDF9 elevated the levels of phosphorylated AKT and FOXO3a, and this process was independent of the SMAD signal pathway. Taken together, we concluded that OSFs, particularly GDF9, maintained the low level of BIMEL expression in cumulus cell through activation of the PI3K/FOXO3a pathway.

  8. Angiopoietin-related growth factor (AGF) supports adhesion, spreading, and migration of keratinocytes, fibroblasts, and endothelial cells through interaction with RGD-binding integrins

    SciTech Connect

    Zhang Yueqing; Hu Xiaobo; Tian Ruiyang; Wei Wangui; Hu Wei; Chen Xia; Han Wei; Chen Huayou; Gong Yi . E-mail: ygong@sibs.ac.cn

    2006-08-18

    Angiopoietin-related growth factor (AGF) is a newly identified member of angiopoietin-related proteins (ARPs)/angiopoietin-like proteins (Angptls). AGF has been considered as a novel growth factor in accelerating cutaneous wound healing, as it is capable of stimulating keratinocytes proliferation as well as angiogenesis. But in our paper, we demonstrate that AGF stimulates keratinocytes proliferation only at high protein concentration, however, it can potently promote adhesion, spreading, and migration of keratinocytes, fibroblasts, and endothelial cells. Furthermore, we confirm that the adhesion and migration cellular events are mediated by RGD-binding integrins, most possibly the {alpha}{sub v}-containing integrins, by in vitro inhibition assays using synthetic competitive peptides. Our results strongly suggest that AGF is an integrin ligand as well as a mitogenic growth factor and theoretically participates in cutaneous wound healing in a more complex mechanism.

  9. Environmental factors and interactions with mycobiota of grain and grapes: effects on growth, deoxynivalenol and ochratoxin production by Fusarium culmorum and Aspergillus carbonarius.

    PubMed

    Magan, Naresh; Aldred, David; Hope, Russell; Mitchell, David

    2010-03-01

    Mycotoxigenic fungi colonizing food matrices are inevitably competing with a wide range of other resident fungi. The outcomes of these interactions are influenced by the prevailing environmental conditions and the competing species. We have evaluated the competitiveness of F. culmorum and A. carbonarius in the grain and grape food chain for their in vitro and in situ dominance in the presence of other fungi, and the effect that such interactions have on colony interactions, growth and deoxynivalenol (DON) and ochratoxin A (OTA) production. The Index of Dominance shows that changes in water activity (a(w)) and temperature affect the competitiveness of F. culmorum and A. carbonarius against up to nine different fungi. Growth of both mycotoxigenic species was sometimes inhibited by the presence of other competing fungi. For example, A. niger uniseriate and biseriate species decreased growth of A. carbonarius, while Aureobasidium pullulans and Cladosporium species stimulated growth. Similar changes were observed when F. graminearum was interacting with other grain fungi such as Alternaria alternata, Cladopsorium herbarum and Epicoccum nigrum. The impact on DON and OTA production was very different. For F. culmorum, the presence of other species often inhibited DON production over a range of environmental conditions. For A. carbonarius, on a grape-based medium, the presence of certain species resulted in a significant stimulation of OTA production. However, this was influenced by both temperature and a(w) level. This suggests that the final mycotoxin concentrations observed in food matrices may be due to complex interactions between species and the environmental history of the samples analyzed.

  10. [Regulation of uterine cellular proliferation with estrogens and growth factors].

    PubMed

    Alvarez-Rodríguez, C; Baiza-Guzmán, L A

    1996-09-01

    In this paper the role of estrogen and growth factors in the uterine cellular proliferation is analyzed. The evidences indicate that the estradiol-stimulate cell division is associated with the induction of expression of a variety of growth factors from the all major uterine cell types (epithelia, stroma and myometrium). These growth factors amplify the estrogen proliferation signal in autocrine and/or paracrin fashion. The best-studied growth factors in the uterine response to estradiol are epidermal growth factor (EGF) and insulin-like growth factor (IGF-1). Uterine cell proliferation is a complex process that involves interactions of several growth factors, ovarian steroids hormones action and cell to cell signaling.

  11. Physiological factors influencing capillary growth.

    PubMed

    Egginton, S

    2011-07-01

    (1) Angiogenesis (growth of new capillaries from an existing capillary bed) may result from a mismatch in microvascular supply and metabolic demand (metabolic error signal). Krogh examined the distribution and number of capillaries to explore the correlation between O(2) delivery and O(2) consumption. Subsequently, the heterogeneity in angiogenic response within a muscle has been shown to reflect either differences in fibre type composition or mechanical load. However, local control leads to targetted angiogenesis in the vicinity of glycolytic fibre types following muscle stimulation, or oxidative fibres following endurance training, while heterogeneity of capillary spacing is maintained during ontogenetic growth. (2) Despite limited microscopy resolution and lack of specific markers, Krogh's interest in the structure of the capillary wall paved the way for understanding the mechanisms of capillary growth. Angiogenesis may be influenced by the response of perivascular or stromal cells (fibroblasts, macrophages and pericytes) to altered activity, likely acting as a source for chemical signals modulating capillary growth such as vascular endothelial growth factor. In addition, haemodynamic factors such as shear stress and muscle stretch play a significant role in adaptive remodelling of the microcirculation. (3) Most indices of capillarity are highly dependent on fibre size, resulting in possible bias because of scaling. To examine the consequences of capillary distribution, it is therefore helpful to quantify the area of tissue supplied by individual capillaries. This allows the spatial limitations inherent in most models of tissue oxygenation to be overcome generating an alternative approach to Krogh's tissue cylinder, the capillary domain, to improve descriptions of intracellular oxygen diffusion. © 2010 The Author. Acta Physiologica © 2010 Scandinavian Physiological Society.

  12. Tumor cell and connective tissue cell interactions in human colorectal adenocarcinoma. Transfer of platelet-derived growth factor-AB/BB to stromal cells.

    PubMed Central

    Sundberg, C.; Branting, M.; Gerdin, B.; Rubin, K.

    1997-01-01

    Mechanisms underlying stimulation of platelet-derived growth factor (PDGF) beta-receptors expressed on connective tissue cells in human colorectal adenocarcinoma were investigated in this study. PDGF-AB/BB, but not PDGF receptors, was expressed by tumor cells in situ, as well as in tumor cell isolates of low passage from human colorectal adenocarcinoma. In an experimental co-culture system, conditioned medium from tumor cells only marginally activated PDGF beta-receptors expressed on fibroblasts. In contrast, co-culturing of the two cell types led to a marked PDGF beta-receptor activation. Functional PDGF-AB/BB was found to be associated with heparinase-I-sensitive components on the tumor cell surface. PDGF-AB/BB, isolated from heparinase-I-sensitive cell surface components, induced a marked activation of PDGF beta-receptors. Furthermore, co-culturing tumor cells together with fibroblasts led to a sustained activation of PDGF beta-receptors expressed on fibroblasts. Double immunofluorescence staining of tissue sections from human colorectal adenocarcinoma, combined with computer-aided image analysis, revealed that nonproliferating tumor cells were the predominant cellular source of PDGF-AB/BB in the tumor stroma. In addition, PDGF-AB/BB-expressing tumor cells were found juxtapositioned to microvascular cells expressing activated PDGF beta-receptors. Confocal microscopy revealed a cytoplasmic and cell-membrane-associated expression of PDGF-AB/BB in tumor cells situated in the stroma. In contrast, epithelial cells situated in normal or tumorous acinar structures revealed only a cell-membrane-associated PDGF-AB/BB expression. The is vitro and in situ results demonstrate that tumor cells not only facilitate but also have the ability to modulate connective tissue cell responsiveness to PDGF-AB/BB in a paracrine fashion, through direct cell-cell interactions in human colorectal adenocarcinoma. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9250160

  13. Development of Nano-Liposomal Formulations of Epidermal Growth Factor Receptor Inhibitors and their Pharmacological Interactions on Drug-Sensitive and Drug-Resistant Cancer Cell Lines

    NASA Astrophysics Data System (ADS)

    Trummer, Brian J.

    A rapidly expanding understanding of molecular derangements in cancer cell function has led to the development of selective, targeted chemotherapeutic agents. Growth factor signal transduction networks are frequently activated in an aberrant fashion, particularly through the activity of receptor tyrosine kinases (RTK). This has spurred an intensive effort to develop receptor tyrosine kinase inhibitors (RTKI) that are targeted to specific receptors, or receptor subfamilies. Chapter 1 reviews the pharmacology, preclinical, and clinical aspects of RTKIs that target the epidermal growth factor receptor (EGFR). EGFR inhibitors demonstrate significant success at inhibiting phosphorylation-based signaling pathways that promote cancer cell proliferation. Additionally RTKIs have physicochemical and structural characteristics that enable them to function as inhibitors of multi-drug resistance transport proteins. Thus EGFR inhibitors and other RTKIs have both on-target and off-target activities that could be beneficial in cancer therapy. However, these agents exert a number of side effects, some of which arise from their hydrophobic nature and large in vivo volume of distribution. Side effects of the EGFR inhibitor gefitinib include skin rash, severe myelotoxicity when combined with certain chemotherapeutic agents, and impairment of the blood brain barrier to xenobiotics. Weighing the preclinical and clinical observations with the EGFR inhibitors, we developed the primary overall hypothesis of this research: that drug-carrier formulations of RTKIs such as the EGFR inhibitors could be developed based on nanoparticulate liposomal carriers. Theoretically, this carrier strategy would ameliorate toxicity and improve the biodistribution and tumor selectivity of these agents. We hypothesized specifically that liposomal formulations could shift the biodistribution of EGFR inhibitors such as gefitinib away from skin, bone marrow, and the blood brain barrier, and toward solid tumors

  14. Maternal and fetal insulin-like growth factor system and embryonic survival during pregnancy in rats: interaction between dietary chromium and diabetes.

    PubMed

    Spicer, M T; Stoecker, B J; Chen, T; Spicer, L J

    1998-12-01

    Chromium (Cr) depletion may exacerbate hyperglycemia and negative outcomes of pregnancy in the streptozotocin (STZ) diabetic pregnant rat model through the regulation of the insulin-like growth factor (IGF) system. To test this hypothesis, 40 female rats, all fed a low Cr diet (i.e., 70 microgram Cr/kg diet ) from 21 d of age, were randomly assigned one of four treatments, applied on Day 1 of pregnancy, in a 2 x 2 factorial design: 1) very low Cr diet (40 microgram Cr/kg diet) + citrate buffer injection, 2) very low Cr diet + STZ injection (30 mg STZ/kg body wt in citrate buffer), 3) adequate Cr diet (2 mg Cr [from added CrK(SO4)2]/kg diet) + citrate buffer injectionand 4) adequate Cr diet + STZ injection. Blood and tissues were collected on Day 20 of pregnancy. Chromium depletion increased (P < 0.05) urinary hydroxyproline excretion, 22-kDa IGF binding protein (IGFBP) concentration and litter size but decreased (P < 0. 05) placental wt, percentage of protein per fetus, and fetal IGF-I and -II concentrations. Chromium had no effect (P > 0.10) on maternal hormones, 32-kDa IGFBP, glucose, or placental and fetal hydroxyproline concentrations. Diabetes decreased (P < 0.05) maternal wt gain, embryonic survival, litter size, mean pup wt and maternal insulin concentrations, increased (P < 0.05) maternal blood glucose, IGF-I concentrations and maternal hydroxyproline excretion but did not affect fetal concentrations of hormones, IGFBP, glucose or hydroxyproline. Interaction between chromium and diabetes tended (P < 0.10) to affect maternal IGF-II concentrations, but had no effect on other maternal or fetal variables. In conclusion, maternal chromium depletion did not exacerbate hyperglycemia or pregnancy outcome in STZ-induced diabetic rats, but may negatively affect fetal protein content by decreasing fetal IGF-II concentrations. Diabetes may negatively affect fetal growth through its effect on maternal glucose, insulin and IGF-I.

  15. [Neuronal growth factors--neurotrophins].

    PubMed

    Meyer, M; Rasmussen, J Z

    1999-04-05

    Neurotrophic factors are polypeptides primarily known to regulate the survival and differentiation of nerve cells during the development of the peripheral and central nervous systems. The neurotrophic factors act via specific receptors after retrograde axonal transport from the nerve fibre target areas back to the cell bodies, and locally through autocrine and paracrine mechanisms linked to nerve cell activity. In the mature nervous system, neurotrophic factors maintain morphological and neurochemical characteristics of nerve cells and promote activity-dependent dynamic/plastic changes in the synaptic contacts between nerve cells by strengthening functionally active synaptic connections. Induction and increased production of neurotrophic factors in relation to neural injuries are thought to serve protective and reparative purposes. Specific neurotrophic factors have thus been shown to protect nerve cells in a number of experimental models for neurodegenerative diseases, such as Parkinson disease, Alzheimer disease, and amyotrophic lateral sclerosis, just as specific neurotrophic factors have been shown to stimulate regenerative growth of both peripheral and central nerve fibres. Today, problems with continuous and localized delivery of specific neurotrophins or combinations thereof into the nervous system appear to be the most important obstacle for more widespread clinical application.

  16. Effects of insulin, recombinant bovine somatotropin, and their interaction on insulin-like growth factor-I secretion and milk protein production in dairy cows.

    PubMed

    Molento, C F M; Block, E; Cue, R I; Petitclerc, D

    2002-04-01

    , which were 122.5, 181.3, 342.3, and 492.2 ng/ml for saline, insulin, rbST, and insulin combined with rbST, respectively. In conclusion, these results clearly demonstrated that insulin interacts with bST in early lactation to improve milk protein synthesis and yield in dairy cows. These effects are probably mediated through a combination of bST nutrient mobilization, bST-induced gluconeogenesis, bST-induced insulin peripheral resistance, and bST/insulin synergism on insulin-like growth factor-I secretion and on mammary epithelial tissue.

  17. Growth and growth factors in diabetes mellitus.

    PubMed Central

    Salardi, S; Tonioli, S; Tassoni, P; Tellarini, M; Mazzanti, L; Cacciari, E

    1987-01-01

    Growth of 79 children with diabetes was analysed at diagnosis and again after one to 10.7 years of treatment with insulin. Both sexes were tall at onset, whereas at the last observation boys alone showed significant growth retardation. Height standard deviation score (SDS), however, showed no significant fall either in 32 subjects reassessed after five years of disease or in 18 subjects examined at full stature. Skeletal maturity was not significantly impaired after treatment. Pubertal growth spurt was reduced, especially in girls and in subjects with onset of disease at or around puberty. We found no significant correlation between height and height velocity SDS and glycosylated haemoglobin values or secretion of growth hormone during the arginine test. Somatomedin C values were correlated with height velocity SDS in prepubertal boys. The results of this study suggest that there are interferences in the growth of children with diabetes but that they do not seem to have a significant influence on adult height. PMID:3813637

  18. Identification of Amino Acid Residues in Fibroblast Growth Factor 14 (FGF14) Required for Structure-Function Interactions with Voltage-gated Sodium Channel Nav1.6.

    PubMed

    Ali, Syed R; Singh, Aditya K; Laezza, Fernanda

    2016-05-20

    The voltage-gated Na(+) (Nav) channel provides the basis for electrical excitability in the brain. This channel is regulated by a number of accessory proteins including fibroblast growth factor 14 (FGF14), a member of the intracellular FGF family. In addition to forming homodimers, FGF14 binds directly to the Nav1.6 channel C-tail, regulating channel gating and expression, properties that are required for intrinsic excitability in neurons. Seeking amino acid residues with unique roles at the protein-protein interaction interface (PPI) of FGF14·Nav1.6, we engineered model-guided mutations of FGF14 and validated their impact on the FGF14·Nav1.6 complex and the FGF14:FGF14 dimer formation using a luciferase assay. Divergence was found in the β-9 sheet of FGF14 where an alanine (Ala) mutation of Val-160 impaired binding to Nav1.6 but had no effect on FGF14:FGF14 dimer formation. Additional analysis revealed also a key role of residues Lys-74/Ile-76 at the N-terminal of FGF14 in the FGF14·Nav1.6 complex and FGF14:FGF14 dimer formation. Using whole-cell patch clamp electrophysiology, we demonstrated that either the FGF14(V160A) or the FGF14(K74A/I76A) mutation was sufficient to abolish the FGF14-dependent regulation of peak transient Na(+) currents and the voltage-dependent activation and steady-state inactivation of Nav1.6; but only V160A with a concomitant alanine mutation at Tyr-158 could impede FGF14-dependent modulation of the channel fast inactivation. Intrinsic fluorescence spectroscopy of purified proteins confirmed a stronger binding reduction of FGF14(V160A) to the Nav1.6 C-tail compared with FGF14(K74A/I76A) Altogether these studies indicate that the β-9 sheet and the N terminus of FGF14 are well positioned targets for drug development of PPI-based allosteric modulators of Nav channels.

  19. Identification of Amino Acid Residues in Fibroblast Growth Factor 14 (FGF14) Required for Structure-Function Interactions with Voltage-gated Sodium Channel Nav1.6*

    PubMed Central

    Ali, Syed R.; Singh, Aditya K.; Laezza, Fernanda

    2016-01-01

    The voltage-gated Na+ (Nav) channel provides the basis for electrical excitability in the brain. This channel is regulated by a number of accessory proteins including fibroblast growth factor 14 (FGF14), a member of the intracellular FGF family. In addition to forming homodimers, FGF14 binds directly to the Nav1.6 channel C-tail, regulating channel gating and expression, properties that are required for intrinsic excitability in neurons. Seeking amino acid residues with unique roles at the protein-protein interaction interface (PPI) of FGF14·Nav1.6, we engineered model-guided mutations of FGF14 and validated their impact on the FGF14·Nav1.6 complex and the FGF14:FGF14 dimer formation using a luciferase assay. Divergence was found in the β-9 sheet of FGF14 where an alanine (Ala) mutation of Val-160 impaired binding to Nav1.6 but had no effect on FGF14:FGF14 dimer formation. Additional analysis revealed also a key role of residues Lys-74/Ile-76 at the N-terminal of FGF14 in the FGF14·Nav1.6 complex and FGF14:FGF14 dimer formation. Using whole-cell patch clamp electrophysiology, we demonstrated that either the FGF14V160A or the FGF14K74A/I76A mutation was sufficient to abolish the FGF14-dependent regulation of peak transient Na+ currents and the voltage-dependent activation and steady-state inactivation of Nav1.6; but only V160A with a concomitant alanine mutation at Tyr-158 could impede FGF14-dependent modulation of the channel fast inactivation. Intrinsic fluorescence spectroscopy of purified proteins confirmed a stronger binding reduction of FGF14V160A to the Nav1.6 C-tail compared with FGF14K74A/I76A. Altogether these studies indicate that the β-9 sheet and the N terminus of FGF14 are well positioned targets for drug development of PPI-based allosteric modulators of Nav channels. PMID:26994141

  20. Interactions Between Genome-wide Significant Genetic Variants and Circulating Concentrations of Insulin-like Growth Factor 1, Sex Hormones, and Binding Proteins in Relation to Prostate Cancer Risk in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium

    PubMed Central

    Tsilidis, Konstantinos K.; Travis, Ruth C.; Appleby, Paul N.; Allen, Naomi E.; Lindstrom, Sara; Schumacher, Fredrick R.; Cox, David; Hsing, Ann W.; Ma, Jing; Severi, Gianluca; Albanes, Demetrius; Virtamo, Jarmo; Boeing, Heiner; Bueno-de-Mesquita, H. Bas; Johansson, Mattias; Quirós, J. Ramón; Riboli, Elio; Siddiq, Afshan; Tjønneland, Anne; Trichopoulos, Dimitrios; Tumino, Rosario; Gaziano, J. Michael; Giovannucci, Edward; Hunter, David J.; Kraft, Peter; Stampfer, Meir J.; Giles, Graham G.; Andriole, Gerald L.; Berndt, Sonja I.; Chanock, Stephen J.; Hayes, Richard B.; Key, Timothy J.

    2012-01-01

    Genome-wide association studies (GWAS) have identified many single nucleotide polymorphisms (SNPs) associated with prostate cancer risk. There is limited information on the mechanistic basis of these associations, particularly about whether they interact with circulating concentrations of growth factors and sex hormones, which may be important in prostate cancer etiology. Using conditional logistic regression, the authors compared per-allele odds ratios for prostate cancer for 39 GWAS-identified SNPs across thirds (tertile groups) of circulating concentrations of insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3), testosterone, androstenedione, androstanediol glucuronide, estradiol, and sex hormone-binding globulin (SHBG) for 3,043 cases and 3,478 controls in the Breast and Prostate Cancer Cohort Consortium. After allowing for multiple testing, none of the SNPs examined were significantly associated with growth factor or hormone concentrations, and the SNP-prostate cancer associations did not differ by these concentrations, although 4 interactions were marginally significant (MSMB-rs10993994 with androstenedione (uncorrected P = 0.008); CTBP2-rs4962416 with IGFBP-3 (uncorrected P = 0.003); 11q13.2-rs12418451 with IGF-1 (uncorrected P = 0.006); and 11q13.2-rs10896449 with SHBG (uncorrected P = 0.005)). The authors found no strong evidence that associations between GWAS-identified SNPs and prostate cancer are modified by circulating concentrations of IGF-1, sex hormones, or their major binding proteins. PMID:22459122

  1. Extracellular matrix and growth factors in branching morphogenesis

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1993-01-01

    The unifying hypothesis of the NSCORT in gravitational biology postulates that the ECM and growth factors are key interrelated components of a macromolecular regulatory system. The ECM is known to be important in growth and branching morphogenesis of embryonic organs. Growth factors have been detected in the developing embryo, and often the pattern of localization is associated with areas undergoing epithelial-mesenchymal interactions. Causal relationships between these components may be of fundamental importance in control of branching morphogenesis.

  2. Extracellular matrix and growth factors in branching morphogenesis

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1993-01-01

    The unifying hypothesis of the NSCORT in gravitational biology postulates that the ECM and growth factors are key interrelated components of a macromolecular regulatory system. The ECM is known to be important in growth and branching morphogenesis of embryonic organs. Growth factors have been detected in the developing embryo, and often the pattern of localization is associated with areas undergoing epithelial-mesenchymal interactions. Causal relationships between these components may be of fundamental importance in control of branching morphogenesis.

  3. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  4. Interactive Effects of UV-B Light with Abiotic Factors on Plant Growth and Chemistry, and Their Consequences for Defense against Arthropod Herbivores

    PubMed Central

    Escobar-Bravo, Rocio; Klinkhamer, Peter G. L.; Leiss, Kirsten A.

    2017-01-01

    Ultraviolet-B (UV-B) light plays a crucial role in plant–herbivorous arthropods interactions by inducing changes in constitutive and inducible plant defenses. In particular, constitutive defenses can be modulated by UV-B-induced photomorphogenic responses and changes in the plant metabolome. In accordance, the prospective use of UV-B light as a tool to increase plant protection in agricultural practice has gained increasing interest. Changes in the environmental conditions might, however, modulate the UV-B -induced plant responses. While in some cases plant responses to UV-B can increase adaptation to changes in certain abiotic factors, UV-B-induced responses might be also antagonized by the changing environment. The outcome of these interactions might have a great influence on how plants interact with their enemies, e.g., herbivorous arthropods. Here, we provide a review on the interactive effects of UV-B and light quantity and quality, increased temperature and drought stress on plant biochemistry, and we discuss the implications of the outcome of these interactions for plant resistance to arthropod pests. PMID:28303147

  5. Interactive Effects of UV-B Light with Abiotic Factors on Plant Growth and Chemistry, and Their Consequences for Defense against Arthropod Herbivores.

    PubMed

    Escobar-Bravo, Rocio; Klinkhamer, Peter G L; Leiss, Kirsten A

    2017-01-01

    Ultraviolet-B (UV-B) light plays a crucial role in plant-herbivorous arthropods interactions by inducing changes in constitutive and inducible plant defenses. In particular, constitutive defenses can be modulated by UV-B-induced photomorphogenic responses and changes in the plant metabolome. In accordance, the prospective use of UV-B light as a tool to increase plant protection in agricultural practice has gained increasing interest. Changes in the environmental conditions might, however, modulate the UV-B -induced plant responses. While in some cases plant responses to UV-B can increase adaptation to changes in certain abiotic factors, UV-B-induced responses might be also antagonized by the changing environment. The outcome of these interactions might have a great influence on how plants interact with their enemies, e.g., herbivorous arthropods. Here, we provide a review on the interactive effects of UV-B and light quantity and quality, increased temperature and drought stress on plant biochemistry, and we discuss the implications of the outcome of these interactions for plant resistance to arthropod pests.

  6. Reciprocal interactions between Beta1-integrin and epidermal growth factor in three-dimensional basement membrane breast cultures: A different perspective in epithelial biology

    SciTech Connect

    Wang, F.; Weaver, V.M.; Petersen, O.W.; Larabell, C.A.; Dedhar, S.; Briand, P.; Lupu, R.; Bissell, M.J.

    1998-09-30

    Anchorage and growth factor independence are cardinal features of the transformed phenotype. Although it is logical that the two pathways must be coregulated in normal tissues to maintain homeostasis, this has not been demonstrated directly. We showed previously that down-modulation of {beta}1-integrin signaling reverted the malignant behavior of a human breast tumor cell line (T4-2) derived from phenotypically normal cells (HMT-3522) and led to growth arrest in a threedimensional (3D) basement membrane assay in which the cells formed tissue-like acini (14). Here, we show that there is a bidirectional cross-modulation of {beta}1-integrin and epidermal growth factor receptor (EGFR) signaling via the mitogenactivated protein kinase (MAPK) pathway. The reciprocal modulation does not occur in monolayer (2D) cultures. Antibodymediated inhibition of either of these receptors in the tumor cells, or inhibition of MAPK kinase, induced a concomitant downregulation of both receptors, followed by growth-arrest and restoration of normal breast tissue morphogenesis. Crossmodulation and tissue morphogenesis were associated with attenuation of EGF-induced transient MAPK activation. To specifically test EGFR and {beta}1-integrin interdependency, EGFR was overexpressed in nonmalignant cells, leading to disruption of morphogenesis and a compensatory up-regulation of {beta}1-integrin expression, again only in 3D. Our results indicate that when breast cells are spatially organized as a result of contact with basement membrane, the signaling pathways become coupled and bidirectional. They further explain why breast cells fail to differentiate in monolayer cultures in which these events are mostly uncoupled. Moreover, in a subset of tumor cells in which these pathways are misregulated but functional, the cells could be 'normalized' by manipulating either pathway.

  7. The influence of environmental factors on growth and interactions between Embellisia allii and Fusarium oxysporum f. sp. cepae isolated from garlic.

    PubMed

    Lee, Hyang Burm; Magan, Naresh

    2010-04-15

    Embellisia allii results in the formation of a bulb canker and black soot on the surface of different alliums and it has been frequently detected on garlic bulbs together with the spoilage fungus, Fusarium oxysporum f. sp. cepae, which causes bulb basal plate rot. In this study, the influence of water activity (a(w)) and temperature on mycelial growth of E. allii and F. oxysporum f. sp. cepae, conidial size and sporulation of E. allii, interactions between E. allii and F. oxysporum f. sp. cepae, Index of Dominance (I(D)), and in situ virulence on garlic were examined. Mycelial growth of E. allii was optimal (5.97 mm/day) at 0.995 a(w) and 25 degrees C, slower at 30 degrees C. However, almost no growth occurred at 0.937 a(w)/30 degrees C. F. oxysporum f. sp. cepae grew faster than E. allii, (6.3-7.4mm/day) at 30 degrees C. Interactions between E. allii and F. oxysporum f. sp. cepae were influenced by a(w) and temperature. Sporulation of E. allii was more abundant on PDA than on MEA, especially at high a(w) (0.995) and low temperature (20 degrees C), but almost no sporulation occurred at 30 degrees C regardless of nutritional medium or a(w) level. The spore length of E. allii was longer on PDA than MEA, and was significantly influenced by water availability. F. oxysporum f. sp. cepae was competitive against E. allii and had a higher I(D) value in comparison with E. allii especially at a higher temperature (30 degrees C). In situ virulence tests showed that E. allii was weakly virulent on the garlic bulb cloves while that of F. oxysporum f. sp. cepae was highly dependent on a(w). (c) 2010 Elsevier B.V. All rights reserved.

  8. Comparing nonsynergistic gamma models with interaction models to predict growth of emetic Bacillus cereus when using combinations of pH and individual undissociated acids as growth-limiting factors.

    PubMed

    Biesta-Peters, Elisabeth G; Reij, Martine W; Gorris, Leon G M; Zwietering, Marcel H

    2010-09-01

    A combination of multiple hurdles to limit microbial growth is frequently applied in foods to achieve an overall level of protection. Quantification of hurdle technology aims at identifying synergistic or multiplicative effects and is still being developed. The gamma hypothesis states that inhibitory environmental factors aiming at limiting microbial growth rates combine in a multiplicative manner rather than synergistically. Its validity was tested here with respect to the use of pH and various concentrations of undissociated acids, i.e., acetic, lactic, propionic, and formic acids, to control growth of Bacillus cereus in brain heart infusion broth. The key growth parameter considered was the maximum specific growth rate, mu(max), as observed by determination of optical density. A variety of models from the literature describing the effects of various pH values and undissociated acid concentrations on mu(max) were fitted to experimental data sets and compared based on a predefined set of selection criteria, and the best models were selected. The cardinal model developed by Rosso (for pH dependency) and the model developed by Luong (for undissociated acid) were found to provide the best fit and were combined in a gamma model with good predictive performance. The introduction of synergy factors into the models was not able to improve the quality of the prediction. On the contrary, inclusion of synergy factors led to an overestimation of the growth boundary, with the inherent possibility of leading to underestimation of the risk under the conditions tested in this research.

  9. Insulin-like growth factor and epidermal growth factor signaling in breast cancer cell growth: focus on endocrine resistant disease.

    PubMed

    Voudouri, Kallirroi; Berdiaki, Aikaterini; Tzardi, Maria; Tzanakakis, George N; Nikitovic, Dragana

    2015-01-01

    Breast cancer is the most common type of cancer for women worldwide with a lifetime risk amounting to a staggering total of 10%. It is well established that the endogenous synthesis of insulin-like growth factor (IGF) and epidermal growth factor (EGF) polypeptide growth factors are closely correlated to malignant transformation and all the steps of the breast cancer metastatic cascade. Numerous studies have demonstrated that both estrogens and growth factors stimulate the proliferation of steroid-dependent tumor cells, and that the interaction between these signaling pathways occurs at several levels. Importantly, the majority of breast cancer cases are estrogen receptor- (ER-) positive which have a more favorable prognosis and pattern of recurrence with endocrine therapy being the backbone of treatment. Unfortunately, the majority of patients progress to endocrine therapy resistant disease (acquired resistance) whereas a proportion of patients may fail to respond to initial therapy (de novo resistance). The IGF-I and EGF downstream signaling pathways are closely involved in the process of progression to therapy resistant disease. Modifications in the bioavailability of these growth factors contribute critically to disease progression. In the present review therefore, we will discuss in depth how IGF and EGF signaling participate in breast cancer pathogenesis and progression to endocrine resistant disease.

  10. Proteolytic Processing Regulates Placental Growth Factor Activities*

    PubMed Central

    Hoffmann, Daniel C.; Willenborg, Sebastian; Koch, Manuel; Zwolanek, Daniela; Müller, Stefan; Becker, Ann-Kathrin A.; Metzger, Stephanie; Ehrbar, Martin; Kurschat, Peter; Hellmich, Martin; Hubbell, Jeffrey A.; Eming, Sabine A.

    2013-01-01

    Placental growth factor (PlGF) is a critical mediator of blood vessel formation, yet mechanisms of its action and regulation are incompletely understood. Here we demonstrate that proteolytic processing regulates the biological activity of PlGF. Specifically, we show that plasmin processing of PlGF-2 yields a protease-resistant core fragment comprising the vascular endothelial growth factor receptor-1 binding site but lacking the carboxyl-terminal domain encoding the heparin-binding domain and an 8-amino acid peptide encoded by exon 7. We have identified plasmin cleavage sites, generated a truncated PlGF118 isoform mimicking plasmin-processed PlGF, and explored its biological function in comparison with that of PlGF-1 and -2. The angiogenic responses induced by the diverse PlGF forms were distinct. Whereas PlGF-2 increased endothelial cell chemotaxis, vascular sprouting, and granulation tissue formation upon skin injury, these activities were abrogated following plasmin digestion. Investigation of PlGF/Neuropilin-1 binding and function suggests a critical role for heparin-binding domain/Neuropilin-1 interaction and its regulation by plasmin processing. Collectively, here we provide new mechanistic insights into the regulation of PlGF-2/Neuropilin-1-mediated tissue vascularization and growth. PMID:23645683

  11. Transforming growth factor alpha, Shope fibroma growth factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits.

    PubMed

    Opgenorth, A; Nation, N; Graham, K; McFadden, G

    1993-02-01

    The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.

  12. Growth Factors in Proliferative Diabetic Retinopathy

    PubMed Central

    Khan, Zia Ali

    2003-01-01

    Many growth factors are implicated in the pathogenesis of proliferative diabetic retinopathy. Alteration of growth factors and their receptors in diabetes has been shown in both experimental and clinical studies. Sustained hyperglycemia resulting from long-standing diabetes leads to several biochemical abnormalities that consequently result in retinal hypoxia. Retinal oxygenation state regulates various growth factors that promote angiogenesis in order to meet the oxygen demands of the tissue. However, unregulated expression of these growth factors and induction of complex cascades leading to augmentation of other proangiogenic factors, which may not be regulated by tissue oxygenation, leads to uncontrolled retinal neovascularization and blindness in diabetic patients. PMID:14668050

  13. Transforming growth factor-β, matrix metalloproteinases, and urokinase-type plasminogen activator interaction in the cancer epithelial to mesenchymal transition.

    PubMed

    Santibanez, Juan F; Obradović, Hristina; Kukolj, Tamara; Krstić, Jelena

    2017-07-19

    Transforming growth factor-β (TGF-β) is a pleiotropic factor that acts as a tumor suppressor in the early stages, while it exerts tumor promoting activities in advanced stages of cancer development. One of the hallmarks of cancer progression is the capacity of cancer cells to migrate and invade surrounding tissues with subsequent metastasis to different organs. Matrix metalloproteinases (MMPs) together with urokinase-type plasminogen activator (uPA) and its receptor (uPAR), whose main original function described is the proteolytic degradation of the extracellular matrix, play key cellular roles in the enhancement of cell malignancy during cancer progression. TGF-β tightly regulates the expression of several MMPs and uPA/uPAR in cancer cells, which in return can participate in TGF-β activation, thus contributing to tumor malignancy. TGF-β is one of the master factors in the induction of cancer-associated epithelial to mesenchymal transition (EMT), and recently both MMPs and uPA/uPAR have also been shown to be implicated in the cancer-associated EMT process. In this review, we analyze the main molecular mechanisms underlying MMPs and uPA/uPAR regulation by TGF-β, as well as their mutual implication in the development of EMT in cancer cells. Developmental Dynamics, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  15. The growth of structure in interacting dark energy models

    SciTech Connect

    Caldera-Cabral, Gabriela; Maartens, Roy; Schaefer, Bjoern Malte E-mail: roy.maartens@port.ac.uk

    2009-07-01

    If dark energy interacts with dark matter, there is a change in the background evolution of the universe, since the dark matter density no longer evolves as a{sup −3}. In addition, the non-gravitational interaction affects the growth of structure. In principle, these changes allow us to detect and constrain an interaction in the dark sector. Here we investigate the growth factor and the weak lensing signal for a new class of interacting dark energy models. In these models, the interaction generalises the simple cases where one dark fluid decays into the other. In order to calculate the effect on structure formation, we perform a careful analysis of the perturbed interaction and its effect on peculiar velocities. Assuming a normalization to today's values of dark matter density and overdensity, the signal of the interaction is an enhancement (suppression) of both the growth factor and the lensing power, when the energy transfer in the background is from dark matter to dark energy (dark energy to dark matter)

  16. Metabolic regulator betaKlotho interacts with fibroblast growth factor receptor 4 (FGFR4) to induce apoptosis and inhibit tumor cell proliferation.

    PubMed

    Luo, Yongde; Yang, Chaofeng; Lu, Weiqin; Xie, Rui; Jin, Chengliu; Huang, Peng; Wang, Fen; McKeehan, Wallace L

    2010-09-24

    In organs involved in metabolic homeostasis, transmembrane α and βklothos direct FGFR signaling to control of metabolic pathways. Coordinate expression of βklotho and FGFR4 is a property of mature hepatocytes. Genetic deletion of FGFR4 or βklotho in mice disrupts hepatic cholesterol/bile acid and lipid metabolism. The deletion of FGFR4 has no effect on the proliferative response of hepatocytes after liver injury. However, its absence results in accelerated progression of dimethynitrosamine-initiated hepatocellular carcinomas, indicating that FGFR4 suppresses hepatoma proliferation. The mechanism underlying the FGFR4-mediated hepatoma suppression has not been addressed. Here we show that βklotho expression is more consistently down-regulated in human and mouse hepatomas than FGFR4. Co-expression and activation by either endocrine FGF19 or cellular FGF1 of the FGFR4 kinase in a complex with βklotho restricts cell population growth through induction of apoptotic cell death in both hepatic and nonhepatic cells. The βklotho-FGFR4 partnership caused a depression of activated AKT and mammalian target of rapamycin while activating ERK1/2 that may underlie the pro-apoptotic effect. Our results show that βklotho not only interacts with heparan sulfate-FGFR4 to form a complex with high affinity for endocrine FGF19 but also impacts the quality of downstream signaling and biological end points activated by either FGF19 or canonical FGF1. Thus the same βklotho-heparan sulfate-FGFR4 partnership that mediates endocrine control of hepatic metabolism plays a role in cellular homeostasis and hepatoma suppression through negative control of cell population growth mediated by pro-apoptotic signaling.

  17. Growth factors, nutrient signaling, and cardiovascular aging

    PubMed Central

    Fontana, Luigi; Vinciguerra, Manlio; Longo, Valter D.

    2012-01-01

    Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the great majority of the organisms studied. In particular, the enzymes activated by growth hormone (GH), insulin and insulin-like growth factor 1 (IGF-I) in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction (DR), which reduces the level of IGF-I and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases and deficiencies in GH signaling and IGF-I are strongly associated with protection from cancer and diabetes in both mice and humans, but their role in cardiac function and cardiovascular diseases is controversial. Here we review the link between growth factors, cardiac function and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans. PMID:22499903

  18. Autocrine growth factors and solid tumor malignancy.

    PubMed Central

    Walsh, J. H.; Karnes, W. E.; Cuttitta, F.; Walker, A.

    1991-01-01

    The ability of malignant cells to escape the constraint that normally regulate cell growth and differentiation has been a primary focus of attention for investigators of cancer cell biology. An outcome of this attention has been the discovery that the protein products of oncogenes play a role in the activation of growth signal pathways. A second outcome, possibly related to abnormal oncogene expression, has been the discovery that malignant cells frequently show an ability to regulate their own growth by the release of autocrine growth modulatory substances. Most important, the growth of certain malignant cell types has been shown to depend on autocrine growth circuits. A malignant tumor whose continued growth depends on the release of an autocrine growth factor may be vulnerable to treatment with specific receptor antagonists or immunoneutralizing antibodies designed to break the autocrine circuit. Information is rapidly emerging concerning autocrine growth factors in selected human solid tissue malignancy. Images PMID:1926844

  19. Site-specific interactions of neurotrophin-3 and fibroblast growth factor (FGF2) in the embryonic development of the mouse cochlear nucleus.

    PubMed

    Hossain, Waheeda A; D'Sa, Chrystal; Morest, D Kent

    2006-08-01

    Neurotrophins and FGF2 contribute to formation of the cochlea, but their roles in cochlear nucleus development are unknown. The effects of these factors may differ in the cochlea and cochlear nucleus, which may influence each other's development. It is important to analyze the effects of these factors on cellular structures at well-defined steps in the normal morphogenetic sequence. The present study used immunohistochemistry to localize factors in situ and to test hypotheses about their roles in an in vitro model. Specific antibody staining revealed that TrkC, the NT3 receptor, is present in neural precursors prior to embryonic day E11 until after birth. NT3 appeared in precursor cells during migration (E13-E15) and disappeared at birth. TrkC and NT3 occurred in the same structures, including growing axons, terminals, and their synaptic targets. Thus, NT3 tracks the migration routes and the morphogenetic sequences within a window defined by TrkC. In vitro, the cochlear nucleus anlage was explanted from E11 embryos. Cultures were divided into groups fed with defined medium, with or without FGF2, BDNF, and NT3 supplements, alone or in combinations, for 7 days. When neuroblasts migrated and differentiated, immunostaining was used for locating NT3 and TrkC in the morphogenetic sequence, bromodeoxyuridine for proliferation, and synaptic vesicle protein for synaptogenesis. By time-lapse imaging and quantitative measures, the results support the hypothesis that FGF2 promotes proliferation and migration. NT3 interacts with FGF2 and BDNF to promote neurite outgrowth, fasciculation, and synapse formation. Factors and receptors localize to the structural sites undergoing critical changes.

  20. Roles for Growth Factors in Cancer Progression

    PubMed Central

    Witsch, Esther; Sela, Michael; Yarden, Yosef

    2011-01-01

    Under physiological conditions, cells receive fate-determining signals from their tissue surroundings, primarily in the form of polypeptide growth factors. Integration of these extracellular signals underlies tissue homeostasis. Although departure from homeostasis and tumor initiation are instigated by oncogenic mutations rather than by growth factors, the latter are the major regulators of all subsequent steps of tumor progression, namely clonal expansion, invasion across tissue barriers, angiogenesis, and colonization of distant niches. Here, we discuss the relevant growth factor families, their roles in tumor biology, as well as the respective downstream signaling pathways. Importantly, cancer-associated activating mutations that impinge on these pathways often relieve, in part, the reliance of tumors on growth factors. On the other hand, growth factors are frequently involved in evolvement of resistance to therapeutic regimens, which extends the roles for polypeptide factors to very late phases of tumor progression and offers opportunities for cancer therapy. PMID:20430953

  1. Maternal growth factor regulation of human placental development and fetal growth.

    PubMed

    Forbes, Karen; Westwood, Melissa

    2010-10-01

    Normal development and function of the placenta is critical to achieving a successful pregnancy, as normal fetal growth depends directly on the transfer of nutrients from mother to fetus via this organ. Recently, it has become apparent from both animal and human studies that growth factors within the maternal circulation, for example the IGFs, are important regulators of placental development and function. Although these factors act via distinct receptors to exert their effects, the downstream molecules activated upon ligand/receptor interaction are common to many growth factors. The expression of numerous signaling molecules is altered in the placentas from pregnancies affected by the fetal growth complications, fetal growth restriction, and macrosomia. Thus, targeting these molecules may lead to more effective treatments for complications of pregnancy associated with altered placental development. Here, we review the maternal growth factors required for placental development and discuss their mechanism of action.

  2. Endosomal Interactions during Root Hair Growth

    PubMed Central

    von Wangenheim, Daniel; Rosero, Amparo; Komis, George; Šamajová, Olga; Ovečka, Miroslav; Voigt, Boris; Šamaj, Jozef

    2016-01-01

    The dynamic localization of endosomal compartments labeled with targeted fluorescent protein tags is routinely followed by time lapse fluorescence microscopy approaches and single particle tracking algorithms. In this way trajectories of individual endosomes can be mapped and linked to physiological processes as cell growth. However, other aspects of dynamic behavior including endosomal interactions are difficult to follow in this manner. Therefore, we characterized the localization and dynamic properties of early and late endosomes throughout the entire course of root hair formation by means of spinning disc time lapse imaging and post-acquisition automated multitracking and quantitative analysis. Our results show differential motile behavior of early and late endosomes and interactions of late endosomes that may be specified to particular root hair domains. Detailed data analysis revealed a particular transient interaction between late endosomes—termed herein as dancing-endosomes—which is not concluding to vesicular fusion. Endosomes preferentially located in the root hair tip interacted as dancing-endosomes and traveled short distances during this interaction. Finally, sizes of early and late endosomes were addressed by means of super-resolution structured illumination microscopy (SIM) to corroborate measurements on the spinning disc. This is a first study providing quantitative microscopic data on dynamic spatio-temporal interactions of endosomes during root hair tip growth. PMID:26858728

  3. Growth factor gene therapy for Alzheimer disease.

    PubMed

    Tuszynski, Mark H; U, Hoi Sang; Alksne, John; Bakay, Roy A; Pay, Mary Margaret; Merrill, David; Thal, Leon J

    2002-11-15

    The capacity to prevent neuronal degeneration and death during the course of progressive neurological disorders such as Alzheimer disease (AD) would represent a significant advance in therapy. Nervous system growth factors are families of naturally produced proteins that, in animal models, exhibit extensive potency in preventing neuronal death due to a variety of causes, reversing age-related atrophy of neurons, and ameliorating functional deficits. The main challenge in translating growth factor therapy to the clinic has been delivery of growth factors to the brain in sufficient concentrations to influence neuronal function. One means of achieving growth factor delivery to the central nervous system in a highly targeted, effective manner may be gene therapy. In this article the authors summarize the development and implementation of nerve growth factor gene delivery as a potential means of reducing cell loss in AD.

  4. Chronic Lead Exposure and Mixed Factors of Gender×Age×Brain Regions Interactions on Dendrite Growth, Spine Maturity and NDR Kinase

    PubMed Central

    Xue, Weizhen; Yang, Qian-Qian; Wang, Shuang; Xu, Yi; Wang, Hui-Li

    2015-01-01

    NDR1/2 kinase is essential in dendrite morphology and spine formation, which is regulated by cellular Ca2+. Lead (Pb) is a potent blocker of L-type calcium channel and our recent work showed Pb exposure impairs dendritic spine outgrowth in hippocampal neurons in rats. But the sensitivity of Pb-induced spine maturity with mixed factors (gender×age×brain regions) remains unknown. This study aimed to systematically investigate the effect of Pb exposure on spine maturity in rat brain with three factors (gender×age×brain regions), as well as the NDR1/2 kinase expression. Sprague–Dawley rats were exposed to Pb from parturition to postnatal day 30, 60, 90, respectively. Golgi-Cox staining was used to examine spine maturity. Western blot assay was applied to measure protein expression and real-time fluorescence quantitative PCR assay was used to examine mRNA levels. The results showed chronic Pb exposure significantly decreased dendritic length and impaired spine maturity in both rat hippocampus and medial prefrontal cortex. The impairment of dendritic length induced by Pb exposure tended to adolescence > adulthood, hippocampus > medial prefrontal cortex and female > male. Pb exposure induced significant damage in spine maturity during adolescence and early adult while little damage during adult in male rat brain and female medial prefrontal cortex. Besides, there was sustained impairment from adolescence to adulthood in female hippocampus. Interestingly, impairment of spine maturity followed by Pb exposure was correlated with NDR1/2 kinase. The reduction of NDR1/2 kinase protein expression after Pb exposure was similar to the result of spine maturity. In addition, NDR2 and their substrate Rabin3 mRNA levels were significantly decreased by Pb exposure in developmental rat brain. Taken together, Pb exposure impaired dendrite growth and maturity which was subject to gender×age×brain regions effects and related to NDR1/2 signal expression. PMID:26368815

  5. Chronic Lead Exposure and Mixed Factors of Gender×Age×Brain Regions Interactions on Dendrite Growth, Spine Maturity and NDR Kinase.

    PubMed

    Du, Yang; Ge, Meng-Meng; Xue, Weizhen; Yang, Qian-Qian; Wang, Shuang; Xu, Yi; Wang, Hui-Li

    2015-01-01

    NDR1/2 kinase is essential in dendrite morphology and spine formation, which is regulated by cellular Ca2+. Lead (Pb) is a potent blocker of L-type calcium channel and our recent work showed Pb exposure impairs dendritic spine outgrowth in hippocampal neurons in rats. But the sensitivity of Pb-induced spine maturity with mixed factors (gender×age×brain regions) remains unknown. This study aimed to systematically investigate the effect of Pb exposure on spine maturity in rat brain with three factors (gender×age×brain regions), as well as the NDR1/2 kinase expression. Sprague-Dawley rats were exposed to Pb from parturition to postnatal day 30, 60, 90, respectively. Golgi-Cox staining was used to examine spine maturity. Western blot assay was applied to measure protein expression and real-time fluorescence quantitative PCR assay was used to examine mRNA levels. The results showed chronic Pb exposure significantly decreased dendritic length and impaired spine maturity in both rat hippocampus and medial prefrontal cortex. The impairment of dendritic length induced by Pb exposure tended to adolescence > adulthood, hippocampus > medial prefrontal cortex and female > male. Pb exposure induced significant damage in spine maturity during adolescence and early adult while little damage during adult in male rat brain and female medial prefrontal cortex. Besides, there was sustained impairment from adolescence to adulthood in female hippocampus. Interestingly, impairment of spine maturity followed by Pb exposure was correlated with NDR1/2 kinase. The reduction of NDR1/2 kinase protein expression after Pb exposure was similar to the result of spine maturity. In addition, NDR2 and their substrate Rabin3 mRNA levels were significantly decreased by Pb exposure in developmental rat brain. Taken together, Pb exposure impaired dendrite growth and maturity which was subject to gender×age×brain regions effects and related to NDR1/2 signal expression.

  6. Characterization of the interaction of 5'-p-fluorosulfonylbenzoyl adenosine with the epidermal growth factor receptor/protein kinase in A431 cell membranes.

    PubMed

    Buhrow, S A; Cohen, S; Garbers, D L; Staros, J V

    1983-06-25

    Treatment of membrane vesicles from A431 cells, a human epidermoid carcinoma line, with the affinity label 5'-p-fluorosulfonylbenzoyl [8-14C]adenosine (5'-p-FSO2Bz[14C]Ado) results in an inhibition of the epidermal growth factor (EGF)-stimulable protein kinase and in the modification of proteins having the same molecular weight (Mr = 170,000 and 150,000) as the receptor for EGF (Buhrow, S. A., Cohen, S., and Staros, J. V. (1982) J. Biol. Chem. 257, 4019-4022). Modification of the vesicles with 5'-p-FSO2BzAdo inhibits not only the EGF-stimulated phosphorylation of endogenous membrane proteins but also the EGF-stimulated phosphorylation of an exogenous synthetic tyrosine-containing peptide substrate. This indicates that the EGF-stimulable protein kinase is modified by 5'-p-FSO2BzAdo at a site affecting catalytic activity. Membrane vesicles were treated with 5'-p-FSO2Bz-[14C]Ado to affinity label the kinase, then the EGF receptor was purified by affinity chromatography on immobilized EGF. The EGF receptor thus purified contains the 5'-p-SO2Bz[14C]Ado moiety. These data strongly support our hypothesis that the EGF receptor and EGF-stimulable kinase are two parts of the same polypeptide chain.

  7. Growth factors from genes to clinical application

    SciTech Connect

    Sara, V.R. ); Hall, K.; Low, H. )

    1990-01-01

    The last decade has witnessed an explosion in the identification of growth factors and their receptors. This has been greatly facilitated by recombinant DNA technology, which has provided the tools not only to identify these proteins at the gene level but also to produce recombinant proteins for evaluating their biological activities. With the help of such techniques, we are moving toward an understanding of the biosynthesis of growth factors and their receptors, structure-function relationships, as well as mechanisms for intracellular signal transmission. The possibility of modifying these factors has opened new fields of clinical application. In this paper, four major areas of growth factor research are presented: the characterization of growth factor genes and their protein products, growth factor receptors and signal transduction by the receptors to mediate biological action, the biological actions of the various growth factors, and the role of growth factors in health and disease and their possible clinical application. Some of the topics covered include: structure of the IGFs and their variants; isoforms of PDGF receptor types; tyrosine kinase activation; structure of G-proteins in biological membranes; possible therapeutic application of NGF in the treatment of Parkinson's and Alzheimer's diseases; PDGF's possible role in the development of several fibroproliferative diseases and its therapeutic application in wound healing; and the possible use of angiogenic inhibitors in tumor treatment.

  8. [Transforming growth factor of beta-type].

    PubMed

    Stoĭka, R S

    1988-01-01

    Recent data about the structure and properties of the beta-type transforming growth factor as well as evidence about its influence on different target cells are presented. The regulatory action of the factor is shown to depend mainly on the type of tested cells, conditions of their culturing and the presence of other bioregulators of cell proliferation in the medium. The prospects of the beta-type transforming growth factor use in practice are considered.

  9. Growth factors for the treatment of ischemic brain injury (growth factor treatment).

    PubMed

    Larpthaveesarp, Amara; Ferriero, Donna M; Gonzalez, Fernando F

    2015-04-30

    In recent years, growth factor therapy has emerged as a potential treatment for ischemic brain injury. The efficacy of therapies that either directly introduce or stimulate local production of growth factors and their receptors in damaged brain tissue has been tested in a multitude of models for different Central Nervous System (CNS) diseases. These growth factors include erythropoietin (EPO), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor (IGF-1), among others. Despite the promise shown in animal models, the particular growth factors that should be used to maximize both brain protection and repair, and the therapeutic critical period, are not well defined. We will review current pre-clinical and clinical evidence for growth factor therapies in treating different causes of brain injury, as well as issues to be addressed prior to application in humans.

  10. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  11. Neuropeptides as lung cancer growth factors.

    PubMed

    Moody, Terry W; Moreno, Paola; Jensen, Robert T

    2015-10-01

    This manuscript is written in honor of the Festschrift for Abba Kastin. I met Abba at a Society for Neuroscience meeting and learned that he was Editor-in-Chief of the Journal Peptides. I submitted manuscripts to the journal on "Neuropeptides as Growth Factors in Cancer" and subsequently was named to the Editorial Advisory Board. Over the past 30 years I have published dozens of manuscripts in Peptides and reviewed hundreds of submitted manuscripts. It was always rewarding to interact with Abba, a consummate professional. When I attended meetings in New Orleans I would sometimes go out to dinner with him at the restaurant "Commanders Palace". When I chaired the Summer Neuropeptide Conference we were honored to have him receive the Fleur Strand Award one year in Israel. I think that his biggest editorial contribution has been the "Handbook of Biologically Active Peptides." I served as a Section Editor on "Cancer/Anticancer Peptides" and again found that it was a pleasure working with him. This review focuses on the mechanisms by which bombesin-like peptides, neurotensin and vasoactive intestinal peptide regulate the growth of lung cancer. Published by Elsevier Inc.

  12. Angiogenic growth factors in preinvasive breast disease.

    PubMed

    Heffelfinger, S C; Miller, M A; Yassin, R; Gear, R

    1999-10-01

    Recently, we showed that preinvasive breast pathologies, such as usual hyperplasia, atypical hyperplasia, and carcinoma in situ, have an increased vascularity when compared with normal breast tissue (S. C. Heffelfinger et al., Clinical Cancer Res., 2: 1873-1878, 1996). To understand the mechanism of this increased vascularity, we examined by immunohistochemistry each of these pathological lesions for the expression of angiogenic growth factors. These studies showed that normal breast tissue contains numerous angiogenic agents, particularly vascular endothelial cell growth factor and basic fibroblast growth factor. At the transition from normal epithelium to proliferative breast disease, insulin-like growth factor (IGF) II expression was increased, primarily in the stroma and infiltrating leukocytes. However, among proliferative tissues, IGF I decreased with increasing vascularity. Finally, both epithelial vascular endothelial growth factor and epithelial and leukocytic platelet-derived endothelial cell growth factor increased at the transition to carcinoma in situ, whereas stromal and leukocytic basic fibroblast growth factor were elevated only in invasive carcinoma. Therefore, during histological progression there is also a complex progression of angiogenic growth factors. For CIS, two forms of vascularity are found: stromal microvascular density (MVD), and vascularity associated with the epithelial basement membrane (vascular score). There was 35% discordance between these two measurement systems. Among carcinoma in situ cases, decreases in stromal IGF II were associated with increasing vascular scores but not MVD, and increases in platelet-derived endothelial cell growth factor were associated with increasing MVD but not the vascular score. The presence of discordance and differential association with specific angiogenic agents suggests that these two forms of vascularity may be differentially regulated.

  13. Nck-2, a Novel Src Homology2/3-containing Adaptor Protein That Interacts with the LIM-only Protein PINCH and Components of Growth Factor Receptor Kinase-signaling Pathways

    PubMed Central

    Tu, Yizeng; Li, Fugang; Wu, Chuanyue

    1998-01-01

    Many of the protein–protein interactions that are essential for eukaryotic intracellular signal transduction are mediated by protein binding modules including SH2, SH3, and LIM domains. Nck is a SH3- and SH2-containing adaptor protein implicated in coordinating various signaling pathways, including those of growth factor receptors and cell adhesion receptors. We report here the identification, cloning, and characterization of a widely expressed, Nck-related adaptor protein termed Nck-2. Nck-2 comprises primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We show that Nck-2 interacts with PINCH, a LIM-only protein implicated in integrin-linked kinase signaling. The PINCH-Nck-2 interaction is mediated by the fourth LIM domain of PINCH and the third SH3 domain of Nck-2. Furthermore, we show that Nck-2 is capable of recognizing several key components of growth factor receptor kinase-signaling pathways including EGF receptors, PDGF receptor-β, and IRS-1. The association of Nck-2 with EGF receptors was regulated by EGF stimulation and involved largely the SH2 domain of Nck-2, although the SH3 domains of Nck-2 also contributed to the complex formation. The association of Nck-2 with PDGF receptor-β was dependent on PDGF activation and was mediated solely by the SH2 domain of Nck-2. Additionally, we have detected a stable association between Nck-2 and IRS-1 that was mediated primarily via the second and third SH3 domain of Nck-2. Thus, Nck-2 associates with PINCH and components of different growth factor receptor-signaling pathways via distinct mechanisms. Finally, we provide evidence indicating that a fraction of the Nck-2 and/or Nck-1 proteins are associated with the cytoskeleton. These results identify a novel Nck-related SH2- and SH3-domain–containing protein and suggest that it may function as an adaptor protein connecting the growth factor receptor-signaling pathways with the integrin-signaling pathways. PMID:9843575

  14. Antagonistic regulation of growth and immunity by the Arabidopsis basic helix-loop-helix transcription factor homolog of brassinosteroid enhanced expression2 interacting with increased leaf inclination1 binding bHLH1.

    PubMed

    Malinovsky, Frederikke Gro; Batoux, Martine; Schwessinger, Benjamin; Youn, Ji Hyun; Stransfeld, Lena; Win, Joe; Kim, Seong-Ki; Zipfel, Cyril

    2014-03-01

    Plants need to finely balance resources allocated to growth and immunity to achieve optimal fitness. A tradeoff between pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and brassinosteroid (BR)-mediated growth was recently reported, but more information about the underlying mechanisms is needed. Here, we identify the basic helix-loop-helix (bHLH) transcription factor homolog of brassinosteroid enhanced expression2 interacting with IBH1 (HBI1) as a negative regulator of PTI signaling in Arabidopsis (Arabidopsis thaliana). HBI1 expression is down-regulated in response to different PAMPs. HBI1 overexpression leads to reduced PAMP-triggered responses. This inhibition correlates with reduced steady-state expression of immune marker genes, leading to increased susceptibility to the bacterium Pseudomonas syringae. Overexpression of the HBI1-related bHLHs brassinosteroid enhanced expression2 (BEE2) and cryptochrome-interacting bHLH (CIB1) partially inhibits immunity, indicating that BEE2 and CIB1 may act redundantly with HBI1. In contrast to its expression pattern upon PAMP treatment, HBI1 expression is enhanced by BR treatment. Also, HBI1-overexpressing plants are hyperresponsive to BR and more resistant to the BR biosynthetic inhibitor brassinazole. HBI1 is nucleus localized, and a mutation in a conserved leucine residue within the first helix of the protein interaction domain impairs its function in BR signaling. Interestingly, HBI1 interacts with several inhibitory atypical bHLHs, which likely keep HBI1 under negative control. Hence, HBI1 is a positive regulator of BR-triggered responses, and the negative effect of PTI is likely due to the antagonism between BR and PTI signaling. This study identifies a novel component involved in the complex tradeoff between innate immunity and BR-regulated growth.

  15. Platelet Activating Factor: A Growth Factor for Breast Cancer

    DTIC Science & Technology

    2006-09-01

    Factor for Breast Cancer PRINCIPAL INVESTIGATOR: Larry W. Daniel, Ph.D. CONTRACTING ORGANIZATION: Wake Forest University...A Growth Factor for Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-04-1-0682 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Larry W...Relevance: If PAF is found to be a growth and angiogenic factor for breast cancer cells, these studies can be followed up by in vivo studies in nude

  16. Modeling the effect of insulin-like growth factor-1 on human cell growth.

    PubMed

    Phillips, Gemma M A; Shorten, Paul R; Wake, Graeme C; Guan, Jian

    2015-01-01

    Insulin-like growth factor-1 (IGF-1) plays a key role in human growth and development. The interactions of IGF-1 with IGF-1 receptors and IGF-1 binding proteins (IGFBPs) regulate IGF-1 function. Recent research suggests that a metabolite of IGF-1, cyclo-glycyl-proline (cGP), has a role in regulating IGF-1 homeostasis. A component of this interaction is believed to be the competitive binding of IGF-1 and cGP to IGFBPs. In this paper we describe a mathematical model of the interaction between IGF-1 and cGP on human cell growth. The model can be used to understand the interaction between IGF-1, IGFBPs, cGP and IGF-1 receptors along with the kinetics of cell growth. An explicit model of the known interactions between IGF-1, cGP, IGFBPs, IGF-1 receptors explained a large portion of the variance in cell growth (R(2) = 0.83). An implicit model of the interactions between IGF-1, cGP, IGFBPs, IGF-1 receptors that included a hypothesized feedback of cGP on IGF-1 receptors explained nonlinear features of interaction between IGF-1 and cGP not described by the explicit model (R(2) = 0.84). The model also explained the effect of IGFBP antibody on the interaction between cGP and IGF-1 (R(2) = 0.78). This demonstrates that the competitive binding of IGF-1 and cGP to IGFBPs plays a large role in the interaction between IGF-1 and cGP, but that other factors potentially play a role in the interaction between cGP and IGF-1. These models can be used to predict the complex interaction between IGF-1 and cGP on human cell growth and form a basis for further research in this field.

  17. The Internal Region Leucine-rich Repeat 6 of Decorin Interacts with Low Density Lipoprotein Receptor-related Protein-1, Modulates Transforming Growth Factor (TGF)-β-dependent Signaling, and Inhibits TGF-β-dependent Fibrotic Response in Skeletal Muscles*

    PubMed Central

    Cabello-Verrugio, Claudio; Santander, Cristian; Cofré, Catalina; Acuña, Maria José; Melo, Francisco; Brandan, Enrique

    2012-01-01

    Decorin is a small proteoglycan, composed of 12 leucine-rich repeats (LRRs) that modulates the activity of transforming growth factor type β (TGF-β) and other growth factors, and thereby influences proliferation and differentiation in a wide array of physiological and pathological processes, such as fibrosis, in several tissues and organs. Previously we described two novel modulators of the TGF-β-dependent signaling pathway: LDL receptor-related protein (LRP-1) and decorin. Here we have determined the regions in decorin that are responsible for interaction with LRP-1 and are involved in TGF-β-dependent binding and signaling. Specifically, we used decorin deletion mutants, as well as peptides derived from internal LRR regions, to determine the LRRs responsible for these decorin functions. Our results indicate that LRR6 and LRR5 participate in the interaction with LRP-1 and TGF-β as well as in its dependent signaling. Furthermore, the internal region (LRR6i), composed of 11 amino acids, is responsible for decorin binding to LRP-1 and subsequent TGF-β-dependent signaling. Furthermore, using an in vivo approach, we also demonstrate that the LRR6 region of decorin can inhibit TGF-β mediated action in response to skeletal muscle injury. PMID:22203668

  18. The internal region leucine-rich repeat 6 of decorin interacts with low density lipoprotein receptor-related protein-1, modulates transforming growth factor (TGF)-β-dependent signaling, and inhibits TGF-β-dependent fibrotic response in skeletal muscles.

    PubMed

    Cabello-Verrugio, Claudio; Santander, Cristian; Cofré, Catalina; Acuña, Maria José; Melo, Francisco; Brandan, Enrique

    2012-02-24

    Decorin is a small proteoglycan, composed of 12 leucine-rich repeats (LRRs) that modulates the activity of transforming growth factor type β (TGF-β) and other growth factors, and thereby influences proliferation and differentiation in a wide array of physiological and pathological processes, such as fibrosis, in several tissues and organs. Previously we described two novel modulators of the TGF-β-dependent signaling pathway: LDL receptor-related protein (LRP-1) and decorin. Here we have determined the regions in decorin that are responsible for interaction with LRP-1 and are involved in TGF-β-dependent binding and signaling. Specifically, we used decorin deletion mutants, as well as peptides derived from internal LRR regions, to determine the LRRs responsible for these decorin functions. Our results indicate that LRR6 and LRR5 participate in the interaction with LRP-1 and TGF-β as well as in its dependent signaling. Furthermore, the internal region (LRR6i), composed of 11 amino acids, is responsible for decorin binding to LRP-1 and subsequent TGF-β-dependent signaling. Furthermore, using an in vivo approach, we also demonstrate that the LRR6 region of decorin can inhibit TGF-β mediated action in response to skeletal muscle injury.

  19. The role of fibroblast growth factors in tumor growth.

    PubMed

    Korc, M; Friesel, R E

    2009-08-01

    Biological processes that drive cell growth are exciting targets for cancer therapy. The fibroblast growth factor (FGF) signaling network plays a ubiquitous role in normal cell growth, survival, differentiation, and angiogenesis, but has also been implicated in tumor development. Elucidation of the roles and relationships within the diverse FGF family and of their links to tumor growth and progression will be critical in designing new drug therapies to target FGF receptor (FGFR) pathways. Recent studies have shown that FGF can act synergistically with vascular endothelial growth factor (VEGF) to amplify tumor angiogenesis, highlighting that targeting of both the FGF and VEGF pathways may be more efficient in suppressing tumor growth and angiogenesis than targeting either factor alone. In addition, through inducing tumor cell survival, FGF has the potential to overcome chemotherapy resistance highlighting that chemotherapy may be more effective when used in combination with FGF inhibitor therapy. Furthermore, FGFRs have variable activity in promoting angiogenesis, with the FGFR-1 subgroup being associated with tumor progression and the FGFR-2 subgroup being associated with either early tumor development or decreased tumor progression. This review highlights the growing knowledge of FGFs in tumor cell growth and survival, including an overview of FGF intracellular signaling pathways, the role of FGFs in angiogenesis, patterns of FGF and FGFR expression in various tumor types, and the role of FGFs in tumor progression.

  20. Design of Growth Factor Sequestering Biomaterials

    PubMed Central

    Belair, David G.; Le, Ngoc Nhi; Murphy, William L.

    2014-01-01

    Growth factors (GFs) are major regulatory proteins that can govern cell fate, migration, and organization. Numerous aspects of the cell milieu can modulate cell responses to GFs, and GF regulation is often achieved by the native extracellular matrix (ECM). For example, the ECM can sequester GFs and thereby control GF bioavailability. In addition, GFs can exert distinct effects depending on whether they are sequestered in solution, at two-dimensional interfaces, or within three-dimensional matrices. Understanding how the context of GF sequestering impacts cell function in the native ECM can instruct the design of soluble or insoluble GF sequestering moieties, which can then be used in a variety of bioengineering applications. This Feature Article provides an overview of the natural mechanisms of GF sequestering in the cell milieu, and reviews the recent bioengineering approaches that have sequestered GFs to modulate cell function. Results to date demonstrate that the cell response to GF sequestering depends on the affinity of the sequestering interaction, the spatial proximity of sequestering in relation to cells, the source of the GF (supplemented or endogenous), and the phase of the sequestering moiety (soluble or insoluble). We highlight the importance of context for the future design of biomaterials that can leverage endogenous molecules in the cell milieu and mitigate the need for supplemented factors. PMID:25182455

  1. An unnatural PIP simulates growth factor signaling.

    PubMed

    Swan, Laura

    2009-11-25

    In this issue of Chemistry & Biology, Laketa et al. describe the synthesis of a membrane permeant phosphoinositide lipid that acts to stimulate PI(3,4,5)P(3)-dependent signaling without the need of growth factor stimulation.

  2. New Clue Found to Growth Factor Action.

    ERIC Educational Resources Information Center

    Hoffman, Michelle

    1991-01-01

    Discussed is the discovery which may help to explain epidermal growth factor effects on the cell skeleton. The role of a protein called profilin in the regulation of the microfilament system is described. (CW)

  3. New Clue Found to Growth Factor Action.

    ERIC Educational Resources Information Center

    Hoffman, Michelle

    1991-01-01

    Discussed is the discovery which may help to explain epidermal growth factor effects on the cell skeleton. The role of a protein called profilin in the regulation of the microfilament system is described. (CW)

  4. The function of vascular endothelial growth factor.

    PubMed

    Nieves, Bonnie J; D'Amore, Patricia A; Bryan, Brad A

    2009-01-01

    Vascular endothelial growth factor (VEGF) is considered the master regulator of angiogenesis during growth and development, as well as in disease states such as cancer, diabetes, and macular degeneration. This review details our current understanding of VEGF signaling and discusses the benefits and unexpected side effects of promising anti-angiogenic therapeutics that are currently being used to inhibit neovacularization in tumors.

  5. Placental growth factor and vascular endothelial growth factor receptor-2 in human lung development.

    PubMed

    Janér, Joakim; Andersson, Sture; Haglund, Caj; Karikoski, Riitta; Lassus, Patrik

    2008-08-01

    We examined the pulmonary expression of 2 proangiogenic factors, namely, placental growth factor and vascular endothelial growth factor receptor-2, during lung development and acute and chronic lung injury in newborn infants. Six groups were included in an immunohistochemical study of placental growth factor and vascular endothelial growth factor receptor-2, that is, 9 fetuses, 4 preterm and 8 term infants without lung injury who died soon after birth, 5 preterm infants with respiratory distress syndrome of <2 days and 7 with respiratory distress syndrome of >10 days, and 6 with bronchopulmonary dysplasia. Placental growth factor concentrations in tracheal aspirate fluid were measured in 70 samples from 20 preterm infants during the first postnatal week. In immunohistochemical analyses, placental growth factor staining was seen in bronchial epithelium and macrophages in all groups. Distal airway epithelium positivity was observed mostly in fetuses and in preterm infants who died soon after birth. Vascular endothelial growth factor receptor-2 staining was seen in vascular endothelium in all groups and also in lymphatic endothelium in fetuses. Vascular endothelial growth factor receptor-2 staining in arterial endothelium was associated with higher and staining in venous endothelium with lower gestational age. In capillaries, less vascular endothelial growth factor receptor-2 staining was seen in bronchopulmonary dysplasia. The mean placental growth factor protein concentration in tracheal aspirate fluid during the first postnatal week was 0.64 +/- 0.42 pg/mL per IgA-secretory component unit. Concentrations during the first postnatal week were stable. Lower placental growth factor concentrations correlated with chorioamnionitis and lactosyl ceramide positivity. The vascular endothelial growth factor receptor-2 staining pattern seems to reflect ongoing differentiation and activity of different endothelia. Lower vascular endothelial growth factor receptor-2 expression

  6. Cancer cells. 3: Growth factors and transformation

    SciTech Connect

    Feramisco, J.; Ozanne, B.; Stiles, C.

    1985-01-01

    This book contains over 50 papers. Some of the titles are: Structure of Human Epidermal Growth Factor and Expression of Normal and Variant mRNAs in Epdermoid Carcinoma Cells; Tyrosine Kinase Activity Associated with the v-erb-B Gene Product; Cloning and Characterization of Human Epidermal Growth Factor-Receptor Gene Sequences in A431 Carcinoma Cells; Anti-oncogenes and the Suppression of Tumor Formation; and Normal Human sis/PDGF-2 Gene Expression Induces Cellular Transformation.

  7. Growth factors and growth factor receptors in the hippocampus. Role in plasticity and response to injury.

    PubMed

    Nieto-Sampedro, M; Bovolenta, P

    1990-01-01

    Various growth factors are present in the hippocampal formation and appear responsible for the prominent plasticity of this brain area. Although hormone-like growth-promoting polypeptides are the best known, recent studies emphasize the importance in the growth response of molecules such as laminin proteoglycans, neurotransmitters and growth inhibitors. The progress and problems in the study of these substances are reviewed.

  8. 1,4-Bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene, a small molecule, functions as a novel anti-HIV-1 inhibitor targeting the interaction between integrase and cellular Lens epithelium-derived growth factor.

    PubMed

    Gu, Wan-gang; Ip, Denis Tsz-Ming; Liu, Si-jie; Chan, Joseph H; Wang, Yan; Zhang, Xuan; Zheng, Yong-tang; Wan, David Chi-Cheong

    2014-04-25

    Translocation of viral integrase (IN) into the nucleus is a critical precondition of integration during the life cycle of HIV, a causative agent of Acquired Immunodeficiency Syndromes (AIDS). As the first discovered cellular factor to interact with IN, Lens epithelium-derived growth factor (LEDGF/p75) plays an important role in the process of integration. Disruption of the LEDGF/p75-IN interaction has provided a great interest for anti-HIV agent discovery. In this work, we reported that one small molecular compound, 1,4-bis(5-(naphthalen-1-yl)thiophen-2-yl)naphthalene(Compound 15), potently inhibit the IN-LEDGF/p75 interaction and affect the HIV-1 IN nuclear distribution at 1 μM. The putative binding mode of Compound 15 was constructed by a molecular docking simulation to provide structural insights into the ligand-binding mechanism. Compound 15 suppressed viral replication by measuring p24 antigen production in HIV-1IIIB acute infected C8166 cells with EC50 value of 11.19 μM. Compound 15 might supply useful structural information for further anti-HIV agent discovery. Copyright © 2014. Published by Elsevier Ireland Ltd.

  9. Insulin-like growth factor 1 and hair growth.

    PubMed

    Su, H Y; Hickford, J G; Bickerstaffe, R; Palmer, B R

    1999-11-01

    Insulin-like growth factor 1 (IGF-1) has been identified as an important growth factor in many biological systems.[1] It shares considerable structural homology with insulin and exerts insulin-like effects on food intake and glucose metabolism. Recently it has been suggested to play a role in regulating cellular proliferation and migration during the development of hair follicles. [2,3] To exert its biological effects, the IGF-1 is required to activate cells by binding to specific cell-surface receptors. The type I IGF receptor (IGF-1R) is the only IGF receptor to have IGF-mediated signaling functions.[1] In circulation, this growth factor mediates endocrine action of growth hormone (GH) on somatic growth and is bound to specific binding proteins (BPs). The latter control IGF transport, efflux from vascular compartments and association with cell surface receptors.[4] In tissues, IGF-1 is produced by mesenchymal type cells and acts in a paracrine and autocrine fashion by binding to the IGF-1R. This binding activates the receptor tyrosine kinase (RTK) that triggers the downstream responses and finally stimulates cell division.[5] IGF-1 may therefore be able to stimulate the proliferation of hair follicle cells through cellular signaling pathways of its receptors. Local infusion of IGF-1 into sheep has been reported to be capable of stimulating protein synthesis in the skin.[6] It may also increase the production of wool keratin. Recently, transgenic mice overexpressing IGF-1 in the skin have been shown to have earlier hair follicle development than controls.[7] In addition, this growth factor plays an important role in many cell types as a survival factor to prevent cell death.[8] This anti-apoptotic function of IGF-1 may be important to the development of follicle cells as follicles undergo a growth cycle where the regressive, catagen phase is apoptosis driven. In this review, the effects of IGF-1 on follicle cell proliferation and differentiation are discussed. In

  10. Interacting factors in the control of the crustacean molt cycle

    SciTech Connect

    Skinner, D.M.

    1985-01-01

    In order to account for the known phenomena of the crustacean molt cycle, at least six factors must be postulated: a molting hormone (20-OH-ecdysone), a molt-inhibiting hormone (MIH), an anecdysial limb autotomy factor, a proecdysial limb-autotomy factor, a limb growth-inhibiting factor and an exuviation factor. Only the molting hormone and its derivatives have been chemically well defined. The various factors interact in complex ways to maintain not only a coordinated proecdysial period in preparation for exuviation but also a proecdysial period with the flexibility to respond to such interim hazards as the loss of partially regenerated limbs. 79 references, 2 figures, 1 table.

  11. Interacting factors in the control of the crustacean molt cycle

    SciTech Connect

    Skinner, D.M.

    1983-01-01

    In order to account for the known phenomena of the crustacean molt cycle, at least six factors must be postulated: a molting hormone (20-OH-ecdysone), a molt inhibiting hormone (MIH), an anecdysial limb autotomy factor, a proecdysial limb autotomy factor, a limb growth inhibiting factor and an exuviation factor. Only the molting hormone and its derivatives have been chemically well defined. The various factors interact in complex ways to maintain not only a coordinated proecdysial period in preparation for exuviation but also a proecdysial period with the flexibility to respond to such interim hazards as the loss of partially regenerated limbs. 78 references, 2 figures, 1 table.

  12. Cell surface interaction of annexin A2 and galectin-3 modulates epidermal growth factor receptor signaling in Her-2 negative breast cancer cells.

    PubMed

    Shetty, Praveenkumar; Bargale, Anil; Patil, Basavraj R; Mohan, Rajashekar; Dinesh, U S; Vishwanatha, Jamboor K; Gai, Pramod B; Patil, Vidya S; Amsavardani, T S

    2016-01-01

    Overexpression and activation of tyrosine kinase receptors like EGFR and Src regulate the progression and metastasis of Her-2 negative breast cancer. Recently we have reported the role of cell membrane interaction of phospholipid-binding protein annexin A2 (AnxA2) and EGFR in regulating cellular signaling in the activation of angiogenesis, matrix degradation, invasion, and cancer metastasis. Beta-galactoside-specific animal lectin galectin-3 is an apoptosis inhibitor, and cell surface-associated extracellular galectin-3 also has a role in cell migration, cancer progression, and metastasis. Similar expression pattern and membrane co-localization of these two proteins made us to hypothesize in the current study that galectin-3 and AnxA2 interaction is critical for Her-2 negative breast cancer progression. By various experimental analyses, we confirm that glycosylated AnxA2 at the membrane surface interacts with galectin-3. N-linked glycosylation inhibitor tunicamycin treatment convincingly blocked AnxA2 membrane translocation and its association with galectin-3. To analyze whether this interaction has any functional relevance, we tried to dissociate this interaction with purified plant lectin from chickpea (Cicer arietinum agglutinin). This highly specific 30 kDa plant lectin could dissociate AnxA2 from endogenous lectin galectin-3 interaction at the cell surface. This dissociation could down-regulate Bcl-2 family proteins, cell proliferation, and migration simultaneously triggering cell apoptosis. Targeting this interaction of membrane surface glycoprotein and its animal lectin in Her-2 negative breast cancer may be of therapeutic value.

  13. Specificity in transforming growth factor beta-induced transcription of the plasminogen activator inhibitor-1 gene: interactions of promoter DNA, transcription factor muE3, and Smad proteins.

    PubMed

    Hua, X; Miller, Z A; Wu, G; Shi, Y; Lodish, H F

    1999-11-09

    Transforming growth factor beta (TGF-beta) regulates a broad range of biological processes, including cell growth, development, differentiation, and immunity. TGF-beta signals through its cell surface receptor serine kinases that phosphorylate Smad2 or Smad3 proteins. Because Smad3 and its partner Smad4 bind to only 4-bp Smad binding elements (SBEs) in DNA, a central question is how specificity of TGF-beta-induced transcription is achieved. We show that Smad3 selectively binds to two of the three SBEs in PE2.1, a TGF-beta-inducible fragment of the plasminogen activator inhibitor-1 promoter, to mediate TGF-beta-induced transcription; moreover, a precise 3-bp spacer between one SBE and the E-box, a binding site for transcription factor muE3 (TFE3), is essential for TGF-beta-induced transcription. Whereas an isolated Smad3 MH1 domain binds to TFE3, TGF-beta receptor-mediated phosphorylation of full-length Smad3 enhances its binding to TFE3. Together, these studies elucidate an important mechanism for specificity in TGF-beta-induced transcription of the plasminogen activator inhibitor-1 gene.

  14. Endocrine interactions in the control of fetal growth.

    PubMed

    Fowden, Abigail L; Forhead, Alison J

    2013-01-01

    Hormones are both growth stimulatory and growth inhibitory in utero. They act as environmental and maturational signals in regulating tissue accretion and differentiation during late gestation. They ensure that fetal development is appropriate for the nutrient supply and is optimal for neonatal survival. Growth-stimulatory hormones, such as insulin, the insulin-like growth factors and the thyroid hormones, have anabolic effects on fetal metabolism and increase cellular nutrient uptake and energy production for tissue accretion. Thyroid hormones also have specific effects on tissue differentiation at key developmental milestones. Similarly, leptin appears to affect development of specific fetal tissues and may counterbalance the maturational actions of other hormones near term. Glucocorticoids inhibit growth in utero but are essential for prepartum tissue differentiation in preparation for delivery. They also affect fetal bioavailability of most of the other growth-regulatory hormones. In addition, many of these hormones alter the placental capacity to supply nutrients for fetal growth. In producing a fetoplacental epigenome specific to the prevailing intrauterine environment, hormones interact to produce phenotypical diversity with potential health consequences long after birth.

  15. [Growth factors in human tooth development].

    PubMed

    Bellone, C; Barni, T; Pagni, L; Balboni, G C; Vannelli, G B

    1990-03-01

    Our research concerns the immunohistochemical localization of EGF and IGF-I receptors in the tooth germ, using monoclonal antibodies. The results show that in the early phases of human tooth development EGF and IGF-I receptors are present. At bud stage both receptors are localized at dental laminae level, in some epithelial cells of the tooth bud and in some mesenchymal cells. At cap stage the receptors are present in the outer and inner enamel epithelium, and in some cells of stellate reticulum. As far as concerns the mesenchymal cells, some cells of dental papilla in contact with enamel organ, are intensely positive. The immunopositivity is present also in some mesenchymal cells at follicular level. At late cap stage and at early bell stage receptors are not present at inner enamel epithelium level but they can be detectable in the mesenchyma of dental papilla and in some cells of the follicle. On the basis of these results it may be hypothesized that EGF and IGF-I can act as growth factors in the modulation of cellular proliferation and differentiation during the human tooth morphogenesis. Moreover, it is possible that these substances can play a role in the mesenchymal-epithelial interaction in the developing human tooth.

  16. Urokinase-type plasminogen activator receptor interaction with β1 integrin is required for platelet-derived growth factor-AB-induced human mesenchymal stem/stromal cell migration.

    PubMed

    Chabot, Valérie; Dromard, Cécile; Rico, Angélique; Langonné, Alain; Gaillard, Julien; Guilloton, Fabien; Casteilla, Louis; Sensebé, Luc

    2015-09-29

    Mesenchymal stem cells (MSC) are well described for their role in tissue regeneration following injury. Migratory properties of endogenous or administrated MSC are critical for tissue repair processes. Platelet-derived growth factor (PDGF) is a chemotactic growth factor that elicits mesenchymal cell migration. However, it is yet to be elucidated if signaling pathways other than direct activation of PDGF receptor (PDGF-R) are involved in PDGF-induced cell migration. Knocking down and co-immunoprecipitation approaches were used to evaluate urokinase-type plasminogen activator receptor (uPAR) requirement and its interactions with proteins involved in migration mechanisms, in human MSC induced to migrate under PDGF-AB effect. We demonstrated that uPAR activation and its association with β1-integrin are required for PDGF-AB-induced migration. This phenomenon takes place in MSC derived from bone marrow and from adipose tissue. We showed that PDGF-AB downstream signaling requires other effector molecules in MSC such as the uPA/uPAR system and β1 integrin signaling pathway known for their role in migration. These findings provide new insights in molecular mechanisms of PDGF-AB-induced migration of human MSC that may be relevant to control MSC function and tissue remodeling after injury.

  17. Engineering growth factors for regenerative medicine applications.

    SciTech Connect

    Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.; Cochran, Jennifer R.

    2016-01-15

    Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell trafficking behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.

  18. Placenta Growth Factor in Diabetic Wound Healing

    PubMed Central

    Cianfarani, Francesca; Zambruno, Giovanna; Brogelli, Laura; Sera, Francesco; Lacal, Pedro Miguel; Pesce, Maurizio; Capogrossi, Maurizio C.; Failla, Cristina Maria; Napolitano, Monica; Odorisio, Teresa

    2006-01-01

    Reduced microcirculation and diminished expression of growth factors contribute to wound healing impairment in diabetes. Placenta growth factor (PlGF), an angiogenic mediator promoting pathophysiological neovascularization, is expressed during cutaneous wound healing and improves wound closure by enhancing angiogenesis. By using streptozotocin-induced diabetic mice, we here demonstrate that PlGF induction is strongly reduced in diabetic wounds. Diabetic transgenic mice overexpressing PlGF in the skin displayed accelerated wound closure compared with diabetic wild-type littermates. Moreover, diabetic wound treatment with an adenovirus vector expressing the human PlGF gene (AdCMV.PlGF) significantly accelerated the healing process compared with wounds treated with a control vector. The analysis of treated wounds showed that PlGF gene transfer improved granulation tissue formation, maturation, and vascularization, as well as monocytes/macrophages local recruitment. Platelet-derived growth factor, fibroblast growth factor-2, and vascular endothelial growth factor mRNA levels were increased in AdCMV.PlGF-treated wounds, possibly enhancing PlGF-mediated effects. Finally, PlGF treatment stimulated cultured dermal fibroblast migration, pointing to a direct role of PlGF in accelerating granulation tissue maturation. In conclusion, our data indicate that reduced PlGF expression contributes to impaired wound healing in diabetes and that PlGF gene transfer to diabetic wounds exerts therapeutic activity by promoting different aspects of the repair process. PMID:17003476

  19. Epithelial - Mesenchymal Interactions in Tooth Development and the Significant Role of Growth Factors and Genes with Emphasis on Mesenchyme - A Review.

    PubMed

    Puthiyaveetil, Jaya Sekharan Vannadil; Kota, Kasim; Chakkarayan, Roopesh; Chakkarayan, Jithesh; Thodiyil, Abdul Kabeer Padinhare

    2016-09-01

    The recent advancements in medical research field mainly highlights the genetic and molecular aspects of various disease processes and related treatment options, in a specialized "custom-made" approach. The medical and dental field has made tremendous progress in providing even with the smallest insight into pathological entities, thus, making patient management more fruitful. But, short comings have occurred in dental treatments involving odontogenic lesions mainly due to poor understanding of the developmental cycle involved during early stages of developmental process. Multiple numbers of interactions take place during embryo formation and further proliferation of tissue. One such important step is the interaction between epithelium and mesenchyme which tantamount to functional requirements of an individual tooth. The role of extra cellular molecules and genes has to be studied in depth to assess the impact and significance attached to it as the synergistic function of various elements underlines the complex process of development.

  20. Epithelial – Mesenchymal Interactions in Tooth Development and the Significant Role of Growth Factors and Genes with Emphasis on Mesenchyme – A Review

    PubMed Central

    Kota, Kasim; Chakkarayan, Roopesh; Chakkarayan, Jithesh; Thodiyil, Abdul Kabeer Padinhare

    2016-01-01

    The recent advancements in medical research field mainly highlights the genetic and molecular aspects of various disease processes and related treatment options, in a specialized “custom-made” approach. The medical and dental field has made tremendous progress in providing even with the smallest insight into pathological entities, thus, making patient management more fruitful. But, short comings have occurred in dental treatments involving odontogenic lesions mainly due to poor understanding of the developmental cycle involved during early stages of developmental process. Multiple numbers of interactions take place during embryo formation and further proliferation of tissue. One such important step is the interaction between epithelium and mesenchyme which tantamount to functional requirements of an individual tooth. The role of extra cellular molecules and genes has to be studied in depth to assess the impact and significance attached to it as the synergistic function of various elements underlines the complex process of development. PMID:27790596

  1. ALK5-mediated transforming growth factor β signaling in neural crest cells controls craniofacial muscle development via tissue-tissue interactions.

    PubMed

    Han, Arum; Zhao, Hu; Li, Jingyuan; Pelikan, Richard; Chai, Yang

    2014-08-01

    The development of the craniofacial muscles requires reciprocal interactions with surrounding craniofacial tissues that originate from cranial neural crest cells (CNCCs). However, the molecular mechanism involved in the tissue-tissue interactions between CNCCs and muscle progenitors during craniofacial muscle development is largely unknown. In the current study, we address how CNCCs regulate the development of the tongue and other craniofacial muscles using Wnt1-Cre; Alk5(fl/fl) mice, in which loss of Alk5 in CNCCs results in severely disrupted muscle formation. We found that Bmp4 is responsible for reduced proliferation of the myogenic progenitor cells in Wnt1-Cre; Alk5(fl/fl) mice during early myogenesis. In addition, Fgf4 and Fgf6 ligands were reduced in Wnt1-Cre; Alk5(fl/fl) mice and are critical for differentiation of the myogenic cells. Addition of Bmp4 or Fgf ligands rescues the proliferation and differentiation defects in the craniofacial muscles of Alk5 mutant mice in vitro. Taken together, our results indicate that CNCCs play critical roles in controlling craniofacial myogenic proliferation and differentiation through tissue-tissue interactions. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. ALK5-Mediated Transforming Growth Factor β Signaling in Neural Crest Cells Controls Craniofacial Muscle Development via Tissue-Tissue Interactions

    PubMed Central

    Han, Arum; Zhao, Hu; Li, Jingyuan; Pelikan, Richard

    2014-01-01

    The development of the craniofacial muscles requires reciprocal interactions with surrounding craniofacial tissues that originate from cranial neural crest cells (CNCCs). However, the molecular mechanism involved in the tissue-tissue interactions between CNCCs and muscle progenitors during craniofacial muscle development is largely unknown. In the current study, we address how CNCCs regulate the development of the tongue and other craniofacial muscles using Wnt1-Cre; Alk5fl/fl mice, in which loss of Alk5 in CNCCs results in severely disrupted muscle formation. We found that Bmp4 is responsible for reduced proliferation of the myogenic progenitor cells in Wnt1-Cre; Alk5fl/fl mice during early myogenesis. In addition, Fgf4 and Fgf6 ligands were reduced in Wnt1-Cre; Alk5fl/fl mice and are critical for differentiation of the myogenic cells. Addition of Bmp4 or Fgf ligands rescues the proliferation and differentiation defects in the craniofacial muscles of Alk5 mutant mice in vitro. Taken together, our results indicate that CNCCs play critical roles in controlling craniofacial myogenic proliferation and differentiation through tissue-tissue interactions. PMID:24912677

  3. FACTORS WHICH CONTROL MAXIMAL GROWTH OF BACTERIA

    PubMed Central

    Sinclair, N. A.; Stokes, J. L.

    1962-01-01

    Sinclair, N. A. (Washington State University, Pullman) and J. L. Stokes. Factors which control maximal growth of bacteria. J. Bacteriol. 83:1147–1154. 1962.—In a chemically defined medium containing 1% glucose and 0.1% (NH4)2SO4, both of these compounds are virtually exhausted by the growth of Pseudomonas fluorescens. If these carbon, energy, and nitrogen sources are added back to the culture filtrate, maximal growth to the level of the original culture is obtained. This process can be repeated several times with the same results. Eventually, however, the supply of minerals in the culture limits growth. When the nutrient levels are raised to 3% glucose and 0.3% (NH4)2SO4, lack of oxygen and low pH limit growth before the supply of nutrients is exhausted. There is no evidence that specific autoinhibitory substances are produced either in chemically defined or complex nitrogenous media or that physical crowding of the cells limits growth. The results with Escherichia coli are similar to those with P. fluorescens. However, after a few growth cycles aerobically and after only one growth cycle anaerobically, inhibitory substances, probably organic acids, accumulate and limit growth. PMID:13913264

  4. PROSPECT - GROWTH FACTOR CONTROL OF BONE MASS

    PubMed Central

    Canalis, Ernesto

    2010-01-01

    Bone formation is determined by the number and function of osteoblasts. Cell number is governed by factors that regulate the replication and differentiation of pre-osteoblasts and factors that regulate osteoblastic cell death. Cell function is controlled by signals acting on the mature osteoblast. Platelet derived and fibroblast growth factors are bone cell mitogens. Bone morphogenetic proteins (BMP) and Wnt induce the differentiation of mesenchymal cells toward osteoblasts, and insulin-like growth factor (IGF)-I stimulates the function of mature osteoblasts and prevents their death. The activity of BMP, Wnt and IGF-I is modulated by extracellular antagonists or binding proteins. Changes in growth factor synthesis and activity may play a role in the pathogenesis of selected forms of osteoporosis, and alterations in the expression or binding of the extracellular antagonists can be associated with changes in bone mass. Current approaches to bone anabolic therapies for osteoporosis include the administration of a growth factor, such as IGF-I, or the neutralization of an antagonist. Ideally, the targeting of an anabolic agent should be specific to bone to preclude non-skeletal unwanted side effects. Clinical trials are needed to determine the long-term effectiveness and safety of novel anabolic agents for the management of osteoporosis. PMID:19718659

  5. Interactions of subsoiling and solid sludge on soil physical and chemical factors and growth of Pinus taeda L. and a Festuca sp. Progress report

    SciTech Connect

    Berry, C.R.

    1981-01-01

    Data show that 15,000 lb/acre of dried sewage sludge induces more growth of loblolly pine seedlings after 2 years than 1000 lb/acre of 10-10-10 fertilizer combined with 2000 lb/acre of lime. Data also show: any subsoiling is better than disking; using fertilizer and lime, subsoiling to 18 inches was superior to 36 inch subsoiling; using sewage sludge, 36 inch subsoiling was superior; and roots grow freely in the subsoiled material. Biomass data indicate that twice as much weed and grass is produced on the sludge plots. Pelletized sludge with increased N was superior to pelletized fertilizer but not as good as broadcast fertilizer or sludge. 2 tables. (MF)

  6. Growth and stability of interacting surface flaws of arbitrary shape

    NASA Technical Reports Server (NTRS)

    Murakami, Y.; Nemat-Nasser, S.

    1983-01-01

    Growth regimes of interacting surface flaws of arbitrary shape are analyzed with the aid of the body force method, and the stability of the process is assessed on the basis of the variation of the load during the growth. It is shown that irregularly shaped flaws are often associated with very high stress intensity factors locally, which tend to change as the flaws grow into more regular shapes. Several examples of various flaw shapes are worked out for illustration, and it is shown that a simple formula seems to provide an accurate estimate of the maximum stress intensity factor for surface flaws of various shapes, which are not very slender. The formula involves the overall maximum tension, as well as the area of the projection of the flaw on the plane normal to the maximum tension.

  7. Sex steroids and growth hormone interactions.

    PubMed

    Fernández-Pérez, Leandro; de Mirecki-Garrido, Mercedes; Guerra, Borja; Díaz, Mario; Díaz-Chico, Juan Carlos

    2016-04-01

    GH and sex hormones are critical regulators of body growth and composition, somatic development, intermediate metabolism, and sexual dimorphism. Deficiencies in GH- or sex hormone-dependent signaling and the influence of sex hormones on GH biology may have a dramatic impact on liver physiology during somatic development and in adulthood. Effects of sex hormones on the liver may be direct, through hepatic receptors, or indirect by modulating endocrine, metabolic, and gender-differentiated functions of GH. Sex hormones can modulate GH actions by acting centrally, regulating pituitary GH secretion, and peripherally, by modulating GH signaling pathways. The endocrine and/or metabolic consequences of long-term exposure to sex hormone-related compounds and their influence on the GH-liver axis are largely unknown. A better understanding of these interactions in physiological and pathological states will contribute to preserve health and to improve clinical management of patients with growth, developmental, and metabolic disorders. Copyright © 2015 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  8. Extracellular matrix-inspired growth factor delivery systems for bone regeneration.

    PubMed

    Martino, Mikaël M; Briquez, Priscilla S; Maruyama, Kenta; Hubbell, Jeffrey A

    2015-11-01

    Growth factors are very promising molecules to enhance bone regeneration. However, their translation to clinical use has been seriously limited, facing issues related to safety and cost-effectiveness. These problems derive from the vastly supra-physiological doses of growth factor used without optimized delivery systems. Therefore, these issues have motivated the development of new delivery systems allowing better control of the spatiotemporal release and signaling of growth factors. Because the extracellular matrix (ECM) naturally plays a fundamental role in coordinating growth factor activity in vivo, a number of novel delivery systems have been inspired by the growth factor regulatory function of the ECM. After introducing the role of growth factors during the bone regeneration process, this review exposes different issues that growth factor-based therapies have encountered in the clinic and highlights recent delivery approaches based on the natural interaction between growth factor and the ECM. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Extracellular matrix-inspired growth factor delivery systems for bone regeneration

    SciTech Connect

    Martino, Mikaël M.; Briquez, Priscilla S.; Maruyama, Kenta; Hubbell, Jeffrey A.

    2015-04-17

    Growth factors are very promising molecules to enhance bone regeneration. However, their translation to clinical use has been seriously limited, facing issues related to safety and cost-effectiveness. These problems derive from the vastly supra-physiological doses of growth factor used without optimized delivery systems. Therefore, these issues have motivated the development of new delivery systems allowing better control of the spatio-temporal release and signaling of growth factors. Because the extracellular matrix (ECM) naturally plays a fundamental role in coordinating growth factor activity in vivo, a number of novel delivery systems have been inspired by the growth factor regulatory function of the ECM. After introducing the role of growth factors during the bone regeneration process, this review exposes different issues that growth factor-based therapies have encountered in the clinic and highlights recent delivery approaches based on the natural interaction between growth factor and the ECM.

  10. Structure based Virtual Screening toward the discovery of novel inhibitors for impeding the protein-protein interaction between HIV-1 integrase and human lens epithelium-derived growth factor (LEDGF/p75).

    PubMed

    Panwar, Umesh; Singh, Sanjeev Kumar

    2017-09-26

    HIV -1 integrase is a unique promising component of the viral replication cycle, catalyzing the integration of reverse transcribed viral cDNA into the host cell genome. Generally, IN activity requires both viral as well as a cellular co-factor in the processing replication cycle. Among them, the human lens epithelium-derived growth factor (LEDGF/p75) represented as promising cellular co-factor which supports the viral replication by tethering IN to the chromatin. Due to because of its major importance in the early steps of HIV replication, the interaction between IN and LEDGF/p75 has become a pleasing target for anti-HIV drug discovery. The present study involves the finding of novel inhibitor based on the information of dimeric CCD of IN in complex with known inhibitor, which were carried out by applying a structure based virtual screening concept with molecular docking. Additionally, Free binding energy, ADME properties, PAINS analysis, Density Functional Theory and Enrichment Calculations were performed on selected compounds for getting a best lead molecule. On the basis of these analyses, the current study proposes top 3 compounds: Enamine- Z742267384, Maybridge- HTS02400, and Specs- AE-848/37125099 with acceptable pharmacological properties and enhanced binding affinity to inhibit the interaction between IN and LEDGF/p75. Furthermore, Simulation studies were carried out on these molecules to expose their dynamics behaviour and stability. We expect that the findings obtained here could be future therapeutic agents and may provide an outline for the experimental studies to stimulate the innovative strategy for research community.

  11. Cross-scale interactions affect tree growth and intrinsic water ...

    EPA Pesticide Factsheets

    1. We investigated the potential of cross-scale interactions to affect the outcome of density reduction in a large-scale silvicultural experiment. 2. We measured tree growth and intrinsic water-use efficiency (iWUE) based on stable carbon isotopes (13C) to investigate the impacts of thinning across a range of progressively finer spatial scales: site, stand, hillslope position, and neighborhood position. In particular, we focused on the influence of thinning beyond the boundaries of thinned stands to include impacts on downslope and neighboring stands across sites varying in soil moisture. 3. Trees at the wet site responded to thinning with increased growth when compared with trees at the dry site. Additionally, trees in thinned stands at the dry site responded with increased iWUE while trees in thinned stands at the wet site showed no difference in iWUE compared to unthinned stands. 4. We hypothesized that water is not the primary limiting factor for growth at our sites, but that thinning released other resources, such as growing space or nutrients to drive the growth response. At progressively finer spatial scales we found that the responses of trees was not driven by hillslope location (i.e., downslope of thinning) but to changes in local neighborhood tree density. 5. The results of this study demonstrated that water can be viewed as an “agent” that allows us to investigate cross-scale interactions as it links coarse to finer spatial scales and vice ver

  12. Epidermal Growth Factor and Intestinal Barrier Function

    PubMed Central

    Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  13. Role of hematopoietic growth factors in angiogenesis.

    PubMed

    Ribatti, D; Vacca, A; De Falco, G; Ria, R; Roncali, L; Dammacco, F

    2001-01-01

    In early ontogeny, hematopoiesis is closely associated with angiogenesis. This article reviews recent studies of the effect of hematopoietic growth factors on several endothelial cell functions together with recent findings about angiogenesis and antiangiogenic therapies in hematopoietic malignancies such as leukemia, lymphoma and myeloma. Copyright 2001 S. Karger AG, Basel

  14. Transforming growth factor-β and Smads.

    PubMed

    Lan, Hui Yao; Chung, Arthur C K

    2011-01-01

    Diabetic nephropathy (DN) is a major diabetic complication. Transforming growth factor-β(TGF-β) is a key mediator in the development of diabetic complications. It is well known that TGF-β exerts its biological effects by activating downstream mediators, called Smad2and Smad3, which is negatively regulated by an inhibitory Smad7. Recent studies also demonstrated that under disease conditions Smads act as signal integrators and interact with other signaling pathways such as the MAPK and NF-κB pathways. In addition, Smad2and Smad3 can reciprocally regulate target genes of TGF-β signaling. Novel research into microRNA has revealed the complexity of TGF-β signaling during DN. It has been found that TGF-β and elevated glucose concentration can positively regulate miR-192 and miR-377, but negatively regulate miR-29a in a diabetic milieu. These microRNAs are found to contribute to DN. Although targeting TGF-β may exert adverse effects on immune system, therapeutic approach against TGF-β signaling during DN still draws much attention. Blocking TGF-β signaling by neutralizing antibody, anti-sense oligonucleotides, and soluble receptors have been tested, but effects are limited. Gene transfer of Smad7 into diseased kidneys demonstrates a prominent inhibition on renal fibrosis and amelioration of renal impairment. Alteration of TGF-β-regulated microRNA expression in diseased kidneys may provide an alternative therapeutic approach against DN. In conclusion, TGF-β/Smad signaling plays a critical role in DN. A better understanding of the role of TGF-β/Smad signaling in the development of DN should provide an effective therapeutic strategy to combat DN.

  15. Nerve Growth Factor and Diabetic Neuropathy

    PubMed Central

    Vinik, Aaron

    2003-01-01

    Neuropathy is one of the most debilitating complications of both type 1 and type 2 diabetes, with estimates of prevalence between 50–90% depending on the means of detection. Diabetic neuropathies are heterogeneous and there is variable involvement of large myelinated fibers and small, thinly myelinated fibers. Many of the neuronal abnormalities in diabetes can be duplicated by experimental depletion of specific neurotrophic factors, their receptors or their binding proteins. In experimental models of diabetes there is a reduction in the availability of these growth factors, which may be a consequence of metabolic abnormalities, or may be independent of glycemic control. These neurotrophic factors are required for the maintenance of the neurons, the ability to resist apoptosis and regenerative capacity. The best studied of the neurotrophic factors is nerve growth factor (NGF) and the related members of the neurotrophin family of peptides. There is increasing evidence that there is a deficiency of NGF in diabetes, as well as the dependent neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) that may also contribute to the clinical symptoms resulting from small fiber dysfunction. Similarly, NT3 appears to be important for large fiber and IGFs for autonomic neuropathy. Whether the observed growth factor deficiencies are due to decreased synthesis, or functional, e.g. an inability to bind to their receptor, and/or abnormalities in nerve transport and processing, remains to be established. Although early studies in humans on the role of neurotrophic factors as a therapy for diabetic neuropathy have been unsuccessful, newer agents and the possibilities uncovered by further studies should fuel clinical trials for several generations. It seems reasonable to anticipate that neurotrophic factor therapy, specifically targeted at different nerve fiber populations, might enter the therapeutic armamentarium. PMID:14668049

  16. Transforming growth factor alpha and epidermal growth factor levels in bladder cancer and their relationship to epidermal growth factor receptor.

    PubMed Central

    Mellon, J. K.; Cook, S.; Chambers, P.; Neal, D. E.

    1996-01-01

    We have examined levels of epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha) in neoplastic and non-neoplastic bladder tissue using a standard radioimmunoassay technique. Tumour samples had much higher TGF-alpha levels compared with EGF and TGF-alpha levels in malignant tissue were significantly higher than in benign bladder samples. There was, in addition, a difference in mean EGF levels from 'normal' bladder samples from non-tumour bearing areas of bladder in patients with bladder cancer compared with 'normal' bladder tissue obtained at the time of organ retrieval surgery. Levels of EGF and TGF-alpha did not correlate with levels of EGF receptor (EGFR) as determined by a radioligand binding method but levels of TGF-alpha > 10 ng gm-1 of tumour tissue did correlate with EGFR positivity defined using immunohistochemistry. These data suggest that TGF-alpha is the likely ligand for EGFR in bladder tumours. PMID:8605103

  17. Cytoplasmic Domain Interactions of Syndecan-1 and Syndecan-4 with α6β4 Integrin Mediate Human Epidermal Growth Factor Receptor (HER1 and HER2)-dependent Motility and Survival*♦

    PubMed Central

    Wang, Haiyao; Jin, Haining; Beauvais, DeannaLee M.; Rapraeger, Alan C.

    2014-01-01

    Epithelial cells are highly dependent during wound healing and tumorigenesis on the α6β4 integrin and its association with receptor tyrosine kinases. Previous work showed that phosphorylation of the β4 subunit upon matrix engagement depends on the matrix receptor syndecan (Sdc)-1 engaging the cytoplasmic domain of the β4 integrin and coupling of the integrin to human epidermal growth factor receptor-2 (HER2). In this study, HER2-dependent migration activated by matrix engagement is compared with migration stimulated by EGF. We find that whereas HER2-dependent migration depends on Sdc1, EGF-dependent migration depends on a complex consisting of human epidermal growth factor receptor-1 (HER1, commonly known as EGFR), α6β4, and Sdc4. The two syndecans recognize distinct sites at the extreme C terminus of the β4 integrin cytoplasmic domain. The binding motif in Sdc1 is QEEXYX, composed in part by its syndecan-specific variable (V) region and in part by the second conserved (C2) region that it shares with other syndecans. A cell-penetrating peptide containing this sequence competes for HER2-dependent epithelial migration and carcinoma survival, although it is without effect on the EGFR-stimulated mechanism. β4 mutants bearing mutations specific for Sdc1 and Sdc4 recognition act as dominant negative mutants to block cell spreading or cell migration that depends on HER2 or EGFR, respectively. The interaction of the α6β4 integrin with the syndecans appears critical for it to be utilized as a signaling platform; migration depends on α3β1 integrin binding to laminin 332 (LN332; also known as laminin 5), whereas antibodies that block α6β4 binding are without effect. These findings indicate that specific syndecan family members are likely to have key roles in α6β4 integrin activation by receptor tyrosine kinases. PMID:25202019

  18. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    PubMed

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-02-07

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low Schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

  19. Growth Factors and Tension-Induced Skeletal Muscle Growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  20. A novel mechanism for regulating transforming growth factor beta (TGF-beta) signaling. Functional modulation of type III TGF-beta receptor expression through interaction with the PDZ domain protein, GIPC.

    PubMed

    Blobe, G C; Liu, X; Fang, S J; How, T; Lodish, H F

    2001-10-26

    Transforming growth factor beta (TGF-beta) mediates its biological effects through three high-affinity cell surface receptors, the TGF-beta type I, type II, and type III receptors, and the Smad family of transcription factors. Although the functions of the type II and type I receptors are well established, the precise role of the type III receptor in TGF-beta signaling remains to be established. While expression cloning signaling molecules downstream of TGF-beta, we cloned GIPC (GAIP-interacting protein, C terminus), a PDZ domain-containing protein. GIPC binds a Class I PDZ binding motif in the cytoplasmic domain of the type III receptor resulting in regulation of expression of the type III receptor at the cell surface. Increased expression of the type III receptor mediated by GIPC enhanced cellular responsiveness to TGF-beta both in terms of inhibition of proliferation and in plasminogen-activating inhibitor (PAI)-based promoter gene induction assays. In all cases, deletion of the Class I PDZ binding motif of the type III receptor prevented the type III receptor from binding to GIPC and abrogated the effects of GIPC on type III receptor expressing cells. These results establish, for the first time, a protein that interacts with the cytoplasmic domain of the type III receptor, determine that expression of the type III receptor is regulated at the protein level and that increased expression of the type III receptor is sufficient to enhance TGF-beta signaling. These results further support an essential, non-redundant role for the type III receptor in TGF-beta signaling.

  1. Growth factor expression in degenerated intervertebral disc tissue. An immunohistochemical analysis of transforming growth factor beta, fibroblast growth factor and platelet-derived growth factor.

    PubMed

    Tolonen, Jukka; Grönblad, Mats; Vanharanta, Heikki; Virri, Johanna; Guyer, Richard D; Rytömaa, Tapio; Karaharju, Erkki O

    2006-05-01

    Degenerated intervertebral disc has lost its normal architecture, and there are changes both in the nuclear and annular parts of the disc. Changes in cell shape, especially in the annulus fibrosus, have been reported. During degeneration the cells become more rounded, chondrocyte-like, whereas in the normal condition annular cells are more spindle shaped. These chondrocyte-like cells, often forming clusters, affect extracellular matrix turnover. In previous studies transforming growth factor beta (TGFbeta) -1 and -2, basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) have been highlighted in herniated intervertebral disc tissue. In the present study the same growth factors are analysed immunohistochemically in degenerated intervertebral disc tissue. Disc material was obtained from 16 discs operated for painful degenerative disc disease. Discs were classified according to the Dallas Discogram Description. Different disc regions were analysed in parallel. As normal control disc tissue material from eight organ donors was used. Polyclonal antibodies against different growth factors and TGFbeta receptor type II were used, and the immunoreaction was detected by the avidin biotin complex method. All studied degenerated discs showed immunoreactivity for TGFbeta receptor type II and bFGF. Fifteen of 16 discs were immunopositive for TGFbeta-1 and -2, respectively, and none showed immunoreaction for PDGF. Immunopositivity was located in blood vessels and in disc cells. In the nucleus pulposus the immunoreaction was located almost exclusively in chondrocyte-like disc cells, whereas in the annular region this reaction was either in chondrocyte-like disc cells, often forming clusters, or in fibroblast-like disc cells. Chondrocyte-like disc cells were especially prevalent in the posterior disrupted area. In the anterior area of the annulus fibrosus the distribution was more even between these two cell types. bFGF was expressed in the anterior annulus

  2. Nerve growth factor promotes human hemopoietic colony growth and differentiation.

    PubMed Central

    Matsuda, H; Coughlin, M D; Bienenstock, J; Denburg, J A

    1988-01-01

    Nerve growth factor (NGF) is a neurotropic polypeptide necessary for the survival and growth of some central neurons, as well as sensory afferent and sympathetic neurons. Much is now known of the structural and functional characteristics of NGF, whose gene has recently been cloned. Since it is synthesized in largest amounts by the male mouse submandibular gland, its role exclusively in nerve growth is questionable. NGF also causes histamine release from rat peritoneal mast cells in vitro, and we have shown elsewhere that it causes significant, dose-dependent, generalized mast cell proliferation in the rat in vivo when administered neonatally. Our experiments now indicate that NGF causes a significant stimulation of granulocyte colonies grown from human peripheral blood in standard hemopoietic methylcellulose assays. Further, NGF appears to act in a relatively selective fashion to induce the differentiation of eosinophils and basophils/mast cells. Depletion experiments show that the NGF effect may be T-cell dependent and that NGF augments the colony-stimulating effect of supernatants from the leukemic T-cell (Mo) line. The hemopoietic activity of NGF is blocked by polyclonal and monoclonal antibodies to NGF. We conclude that NGF may indirectly act as a local growth factor in tissues other than those of the nervous system by causing T cells to synthesize or secrete molecules with colony-stimulating activity. In view of the synthesis of NGF in tissue injury, the involvement of basophils/mast cells and eosinophils in allergic and other inflammatory processes, and the association of mast cells with fibrosis and tissue repair, we postulate that NGF plays an important biological role in a variety of repair processes. PMID:3413109

  3. Epidermal growth factor receptor signaling in tissue

    SciTech Connect

    Shvartsman, Stanislav; Wiley, H. S.; Lauffenburger, Douglas A.

    2004-08-01

    Abstract: A peptide purified from the salivary gland of a mouse was shown few years ago to accelerate incisor eruption and eyelid opening in newborn mice, and was named epidermal growth factor (EGF). The members of this family of peptide growth factors had been identified in numerous physiological and pathological contexts. EGF binds to a cell surface EGF receptor, which induces a biochemical modification (phosphorylation) of the receptor's cytoplasmic tail. There is a growing consensus in the research community that, in addition to cellular and molecular studies, the dynamics of the EGFR network and its operation must be examined in tissues. A key challenge is to integrate the existing molecular and cellular information into a system-level description of the EGFR network at the tissue and organism level. In this paper, the two examples of EGFR signaling in tissues are described, and the recent efforts to model EGFR autocrine loops, which is a predominant mode of EGFR activation in vivo, are summarized.

  4. Induction of nerve growth factor receptors on cultured human melanocytes

    SciTech Connect

    Peacocke, M.; Yaar, M.; Mansur, C.P.; Chao, M.V.; Gilchrest, B.A. )

    1988-07-01

    Normal differentiation and malignant transformation of human melanocytes involve a complex series of interactions during which both genetic and environmental factors play roles. At present, the regulation of these processes is poorly understood. The authors have induced the expression of nerve growth factor (NGF) receptors on cultured human melanocytes with phorbol 12-tetradecanoate 13-acetate and have correlated this event with the appearance of a more differentiated, dendritic morphology. Criteria for NGF receptor expression included protein accumulation and cell-surface immunofluorescent staining with a monoclonal antibody directed against the human receptor and induction of the messenger RNA species as determined by blot-hybridization studies. The presence of the receptor could also be induced by UV irradiation or growth factor deprivation. The NGF receptor is inducible in cultured human melanocytes, and they suggest that NGF may modulate the behavior of this neural crest-derived cell in the skin.

  5. Control of transforming growth factor-beta activity: latency vs. activation.

    PubMed

    Harpel, J G; Metz, C N; Kojima, S; Rifkin, D B

    1992-01-01

    Transforming growth factor-beta is a pluripotent regulator of cell growth and differentiation. The growth factor is expressed as a latent complex that must be converted to an active form before interacting with its ubiquitous high affinity receptors. This conversion involves the release of the mature growth factor through disruption of the non-covalent interactions with its pro-peptide or latency associated peptide. The mechanisms for this release in vivo have not been fully characterized but appear to be cell specific and might involve processes such as acidification or proteolysis. Although several factors including transcriptional regulation, receptor modulation and scavenging of the active growth factor have been implicated, the critical step controlling the biological effects of transforming growth factor-beta may be the activation of the latent molecule.

  6. Role of various cytokines and growth factors in pubertal development.

    PubMed

    Casazza, Krista; Hanks, Lynae J; Alvarez, Jessica A

    2010-01-01

    Historical data suggest that body composition is intricately involved in pubertal development. Progression through puberty is dependent on the interaction between the growth hormone-insulin-like growth factor-1 (GH-IGF-1) axis, reproductive and metabolic hormones as well as pro- and anti-inflammatory cytokines which induce alterations in feedback mechanisms and therefore mediate body composition and growth. Simultaneous increases in GH and IGF-1, and the concomitant changes in the hormonal milieu (i.e. reproductive hormones, testosterone and estrogen, and insulin)are the major contributors to anabolic effects seen throughout the pubertal transition, and are affected by various factors including (but not limited to) energy status and body composition. Orexigenic agents (i.e. ghrelin and leptin) also play a role at the level of the hypothalamus affecting not only energy intake, but also pubertal onset and progression. Effects of cytokines, many of which may be considered catabolic, extend beyond their traditionally viewed role involving the immune system, accompanying reproductive maturity further regulating aspects of energy and bone metabolism. As such, the signal(s) initiating the hypothalamic response that triggers puberty is likely reliant on a number of neural, metabolic and endocrine networks, all of which are at least partially influenced by pubertal growth factors, and act independently, antagonistically and/or synergistically to regulate anabolic pathways, therefore modifying body composition trajectory and growth during adolescence.

  7. Assessing the Factors of Regional Growth Decline of Sugar Maple

    NASA Astrophysics Data System (ADS)

    Bishop, D. A.; Beier, C. M.; Pederson, N.; Lawrence, G. B.; Stella, J. C.; Sullivan, T. J.

    2014-12-01

    Sugar maple (Acer saccharum Marsh) is among the most ecologically, economically and culturally important trees in North America, but has experienced a decline disease across much of its range. We investigated the climatic and edaphic factors associated with A. saccharum growth in the Adirondack Mountains (USA) using a well-replicated tree-ring network incorporating a range of soil fertility (base cation availability). We found that nearly 3 in 4 A. saccharum trees exhibited declining growth rates during the last several decades, regardless of tree age or size. Although diameter growth was consistently higher on base-rich soils, the negative trends in growth were largely consistent across the soil chemistry gradient. Sensitivity of sugar maple growth to climatic variability was overall weaker than expected, but were also non-stationary during the 20th century. We observed increasingly positive responses to late-winter precipitation, increasingly negative responses to growing season temperatures, and strong positive responses to moisture availability during the 1960s drought that became much weaker during the recent pluvial. Further study is needed of these factors and their interactions as potential mechanisms for sugar maple growth decline.

  8. Methods for studying the platelet-derived growth factor receptor

    SciTech Connect

    Bowen-Pope, D.F.; Ross, R.

    1985-01-01

    Platelet-derived growth factor (PDGF) is a basic 30,000-dalton protein circulating in normal blood sequestered within the platelet alpha granule. Radioiodinated PDGF shows saturable (e.g., 60,000-120,000 receptors per diploid human fibroblast) high affinity binding to culture PDGF-responsive cells. The apparent dissociation constant reported for this binding interaction has varied widely. This paper focuses on factors which affect (/sup 125/I)PGDF binding and on the development of a radioreceptor assay for PDGF.

  9. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors

    PubMed Central

    Bortvedt, Sarah F.; Lund, P. Kay

    2013-01-01

    Purpose of review To summarize recent evidence that IGF1 mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent findings Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogues in short bowel syndrome and Crohn’s disease. This review highlights evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn’s disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that SOCS protein induction by GH or GLP2 in normal or inflamed intestine, may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. Summary IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed. PMID:22241077

  10. GAIP-Interacting Protein, C-Terminus Is Involved in the Induction of Zinc-Finger Protein 143 in Response to Insulin-like Growth Factor-1 in Colon Cancer Cells

    PubMed Central

    Paek, A Rome; You, Hye Jin

    2011-01-01

    Previously, we reported that the expression of zinc-finger protein 143 (ZNF143) was induced by insulin-like growth factor-1 (IGF-1) via reactive oxygen species (ROS)- and phosphatidylinositide-3-kinase (PI3-kinase)-linked pathways in colon cancer cells. Here, we investigated whether GAIP-interacting protein, C-terminus (GIPC), a binding partner of IGF-1R, is involved in ZNF143 expression through IGF-1 and IGF-1R signaling in colon cancer cells. The knockdown of GIPC in colon cancer cells reduced ZNF143 expression in response to IGF-1. IGF-1 signaling through its receptor, leading to the phosphorylation and activation of the PI3-kinase-Akt pathway and mitogenactivated protein kinases (MAPKs) was unaffected by the knockdown of GIPC, indicating the independence of the GIPC-linked pathway from PI3-kinase- and MAPK-linked signaling in IGF-1-induced ZNF143 expression. In accordance with previous results in breast cancer cells (Choi et al., 2010), the knockdown of GIPC reduced ROS production in response to IGF-1 in colon cancer cells. Furthermore, the knockdown of GIPC reduced the expression of Rad51, which is regulated by ZNF143, in response to IGF-1 in colon cancer cells. Taken together, these data suggest that GIPC is involved in IGF-1 signaling leading to ZNF143 expression through the regulation of ROS production, which may play a role for colon cancer tumorigenesis. PMID:21909943

  11. GAIP-interacting protein, C-terminus is involved in the induction of zinc-finger protein 143 in response to insulin-like growth factor-1 in colon cancer cells.

    PubMed

    Paek, A Rome; You, Hye Jin

    2011-11-01

    Previously, we reported that the expression of zinc-finger protein 143 (ZNF143) was induced by insulin-like growth factor-1 (IGF-1) via reactive oxygen species (ROS)- and phosphatidylinositide-3-kinase (PI3-kinase)-linked pathways in colon cancer cells. Here, we investigated whether GAIP-interacting protein, C-terminus (GIPC), a binding partner of IGF-1R, is involved in ZNF143 expression through IGF-1 and IGF-1R signaling in colon cancer cells. The knockdown of GIPC in colon cancer cells reduced ZNF143 expression in response to IGF-1. IGF-1 signaling through its receptor, leading to the phosphorylation and activation of the PI3-kinase-Akt pathway and mitogenactivated protein kinases (MAPKs) was unaffected by the knockdown of GIPC, indicating the independence of the GIPC-linked pathway from PI3-kinase- and MAPK-linked signaling in IGF-1-induced ZNF143 expression. In accordance with previous results in breast cancer cells (Choi et al., 2010), the knockdown of GIPC reduced ROS production in response to IGF-1 in colon cancer cells. Furthermore, the knockdown of GIPC reduced the expression of Rad51, which is regulated by ZNF143, in response to IGF-1 in colon cancer cells. Taken together, these data suggest that GIPC is involved in IGF-1 signaling leading to ZNF143 expression through the regulation of ROS production, which may play a role for colon cancer tumorigenesis.

  12. A genotypic difference in primary root length is associated with the inhibitory role of transforming growth factor-beta receptor-interacting protein-1 on root meristem size in wheat.

    PubMed

    He, Xue; Fang, Jingjing; Li, Jingjuan; Qu, Baoyuan; Ren, Yongzhe; Ma, Wenying; Zhao, Xueqiang; Li, Bin; Wang, Daowen; Li, Zhensheng; Tong, Yiping

    2014-03-01

    Previously we identified a major quantitative trait locus (QTL) qTaLRO-B1 for primary root length (PRL) in wheat. Here we compare proteomics in the roots of the qTaLRO-B1 QTL isolines 178A, with short PRL and small meristem size, and 178B, with long PRL and large meristem size. A total of 16 differentially expressed proteins were identified: one, transforming growth factor (TGF)-beta receptor-interacting protein-1 (TaTRIP1), was enriched in 178A, while various peroxidases (PODs) were more abundantly expressed in 178B. The 178A roots showed higher TaTRIP1 expression and lower levels of the unphosphorylated form of the brassinosteroid (BR) signaling component BZR1, lower expression of POD genes and reduced POD activity and accumulation of the superoxide anion O2(-) in the root elongation zone compared with the 178B roots. Low levels of 24-epibrassinolide increased POD gene expression and root meristem size, and rescued the short PRL phenotype of 178A. TaTRIP1 directly interacted with the BR receptor TaBRI1 of wheat. Moreover, overexpressing TaTRIP1 in Arabidopsis reduced the abundance of unphosphorylated BZR1 protein, altered the expression of BR-responsive genes, inhibited POD activity and accumulation of the O2(-) in the root tip and inhibited root meristem size. Our data suggested that TaTRIP1 is involved in BR signaling and inhibited root meristem size, possibly by reducing POD activity and accumulation of O2(-) in the root tip. We further demonstrated a negative correlation between the level of TaTRIP1 mRNA and PRL of landraces and modern wheat varieties, providing a valuable insight for better understanding of the molecular mechanism underlying the genotypic differences in root morphology of wheat in the future. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  13. A comprehensive pathway map of epidermal growth factor receptor signaling

    PubMed Central

    Oda, Kanae; Matsuoka, Yukiko; Funahashi, Akira; Kitano, Hiroaki

    2005-01-01

    The epidermal growth factor receptor (EGFR) signaling pathway is one of the most important pathways that regulate growth, survival, proliferation, and differentiation in mammalian cells. Reflecting this importance, it is one of the best-investigated signaling systems, both experimentally and computationally, and several computational models have been developed for dynamic analysis. A map of molecular interactions of the EGFR signaling system is a valuable resource for research in this area. In this paper, we present a comprehensive pathway map of EGFR signaling and other related pathways. The map reveals that the overall architecture of the pathway is a bow-tie (or hourglass) structure with several feedback loops. The map is created using CellDesigner software that enables us to graphically represent interactions using a well-defined and consistent graphical notation, and to store it in Systems Biology Markup Language (SBML). PMID:16729045

  14. The role of transforming growth factor-beta, insulin-like growth factor I, and basic fibroblast growth factor in distraction osteogenesis of the mandible.

    PubMed

    Farhadieh, R D; Dickinson, R; Yu, Y; Gianoutsos, M P; Walsh, W R

    1999-01-01

    Distraction osteogenesis is a viable method for regenerating large amounts of bone. In contrast to fracture healing, the mode of bone formation in distraction osteogenesis is primarily intramembranous ossification. The basic biology of the process is still not well understood. The growth factor cascade is likely to play an important role in distraction. This study examines the growth factor cascade in a lengthened ovine mandible model. Twenty-four animals were divided into four groups with varying rates of distraction (1, 2, 3, and 4 mm/day). A unilateral distractor at the angle of the mandible was used. The mandibles were lengthened to 24 mm and fixed for a period of 5 weeks, after which the animals were killed. The sections were probed for transforming growth factor-beta, basic fibroblast growth factor, and insulin-like growth factor I. The growth factors studied were present in all four groups. Transforming growth factor-beta, basic fibroblast growth factor, and insulin-like growth factor I were present in both the bony matrix of the sections and the cytoplasm of the cells, osteoblasts, and a small number of mesenchymal cells. The sections obtained from groups distracted at faster rates showed stronger presence of the growth factors examined by more intense staining. In fracture healing, the localization of transforming growth factor-beta in stage I of healing corresponded with the precise region of intramembranous ossification in stage II. Diffuse presence of transforming growth factor-beta throughout the lengthened region corresponded with the process of intramembranous ossification observed in distraction. In fracture healing, insulin-like growth factor I and basic fibroblast growth factor have been shown to promote proliferation and differentiation of osteoblasts from precursor cells. The intense presence of insulin-like growth factor I and basic fibroblast growth factor in the distracted region may account for osteoblast proliferation and formation from

  15. Insulin-like growth factor- I and factors affecting it in thalassemia major

    PubMed Central

    Soliman, Ashraf T.; Sanctis, Vincenzo De; Elalaily, Rania; Yassin, Mohamed

    2015-01-01

    Despite improvement of blood transfusion regimens and iron chelation therapy growth and maturational delay, cardiomyopathy, endocrinopathies and osteoporosis still occur in good number of thalassemic patients. Decreased IGF-1 secretion occurs in the majority of the thalassemic patients particularly those with growth and pubertal delay. Many factors contribute to this decreased synthesis of IGF-I including disturbed growth hormone (GH) - insulin-like growth factor - I (IGF-I) axis. The possible factors contributing to low IGF-I synthesis in thalassemia and the possible interaction between low IGF-I secretion and the occurrence of these complications is discussed in this mini-review. Improvement of IGF-I secretion in thalassemic patients should be intended to improve linear growth and bone mineral accretion in thalassemic patients. This can be attained through adequate correction of anemia and proper chelation, nutritional supplementation (increasing caloric intake), correction of vitamin D and zinc deficiencies, induction of puberty and correction of hypogonadism at the proper time and treating GH deficiency. This review paper provides a summary of the current state of knowledge regarding IGF-I and factors affecting it in patients with thalassaemia major (TM). Search on PubMed and reference lists of articles with the term ‘IGF-I, GH, growth, thalassemia, thyroxine, anemia, vitamin D, and zinc’ was carried out. A hundred and forty-eight articles were found and used in the write up and the data analyzed was included in this report. PMID:25729686

  16. Insulin-like growth factor- I and factors affecting it in thalassemia major.

    PubMed

    Soliman, Ashraf T; De Sanctis, Vincenzo; Elalaily, Rania; Yassin, Mohamed

    2015-01-01

    Despite improvement of blood transfusion regimens and iron chelation therapy growth and maturational delay, cardiomyopathy, endocrinopathies and osteoporosis still occur in good number of thalassemic patients. Decreased IGF-1 secretion occurs in the majority of the thalassemic patients particularly those with growth and pubertal delay. Many factors contribute to this decreased synthesis of IGF-I including disturbed growth hormone (GH) - insulin-like growth factor - I (IGF-I) axis. The possible factors contributing to low IGF-I synthesis in thalassemia and the possible interaction between low IGF-I secretion and the occurrence of these complications is discussed in this mini-review. Improvement of IGF-I secretion in thalassemic patients should be intended to improve linear growth and bone mineral accretion in thalassemic patients. This can be attained through adequate correction of anemia and proper chelation, nutritional supplementation (increasing caloric intake), correction of vitamin D and zinc deficiencies, induction of puberty and correction of hypogonadism at the proper time and treating GH deficiency. This review paper provides a summary of the current state of knowledge regarding IGF-I and factors affecting it in patients with thalassaemia major (TM). Search on PubMed and reference lists of articles with the term 'IGF-I, GH, growth, thalassemia, thyroxine, anemia, vitamin D, and zinc' was carried out. A hundred and forty-eight articles were found and used in the write up and the data analyzed was included in this report.

  17. Expression of transforming growth factor alpha, epidermal growth factor receptor and epidermal growth factor in precursor lesions to gastric carcinoma.

    PubMed Central

    Filipe, M. I.; Osborn, M.; Linehan, J.; Sanidas, E.; Brito, M. J.; Jankowski, J.

    1995-01-01

    Epidermal growth factor (EGF), its related peptide transforming growth factor (TGF-alpha) and their common receptor (EGFR) have been implicated in the control of cell proliferation and differentiation in the gastrointestinal epithelium and may play an important role in gastric carcinogenesis. We compared the immunohistochemical expression and topographic distribution of these peptides using Western blot analysis in gastric carcinoma precursor lesions and in non-cancer tissue. We observed: (i) increased and extended expression of TGF-alpha in normal mucosa and hyperplasia in carcinoma fields compared with non-cancer controls; (ii) increased expression of EGFR in intestinal metaplasia (IM) from carcinoma fields compared with controls; (iii) EGF expression was not detected in normal mucosa and only weakly in IM; (iv) coexpression of TGF-alpha/EGFR and EGF/EGFR was higher in intestinal metaplasia in carcinoma fields than in non-cancer controls. We conclude that altered expression of TGF-alpha/EGFR is associated with morphological changes during gastric carcinogenesis. In this regard increased expression of TGF-alpha is a very early event which is subsequently followed by up-regulation of EGFR and this has important biological and clinical implications. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:7819044

  18. Comparison of signaling interactions determining annual and perennial plant growth in response to low temperature

    PubMed Central

    Wingler, Astrid

    2015-01-01

    Low temperature inhibits plant growth despite the fact that considerable rates of photosynthetic activity can be maintained. Instead of lower rates of photosynthesis, active inhibition of cell division and expansion is primarily responsible for reduced growth. This results in sink limitation and enables plants to accumulate carbohydrates that act as compatible solutes or are stored throughout the winter to enable re-growth in spring. Regulation of growth in response to temperature therefore requires coordination with carbon metabolism, e.g., via the signaling metabolite trehalose-6-phosphate. The phytohormones gibberellin (GA) and jasmonate (JA) play an important role in regulating growth in response to temperature. Growth restriction at low temperature is mainly mediated by DELLA proteins, whose degradation is promoted by GA. For annual plants, it has been shown that the GA/DELLA pathway interacts with JA signaling and C-repeat binding factor dependent cold acclimation, but these interactions have not been explored in detail for perennials. Growth regulation in response to seasonal factors is, however, particularly important in perennials, especially at high latitudes. In autumn, growth cessation in trees is caused by shortening of the daylength in interaction with phytohormone signaling. In perennial grasses seasonal differences in the sensitivity to GA may enable enhanced growth in spring. This review provides an overview of the signaling interactions that determine plant growth at low temperature and highlights gaps in our knowledge, especially concerning the seasonality of signaling responses in perennial plants. PMID:25628637

  19. Transforming growth factor beta in Alzheimer's disease.

    PubMed Central

    Chao, C C; Hu, S; Frey, W H; Ala, T A; Tourtellotte, W W; Peterson, P K

    1994-01-01

    Alzheimer's disease (AD) has been hypothesized to be an inflammatory condition. We hypothesized that anti-inflammatory cytokines, such as transforming growth factor beta (TGF-beta), counteract the inflammatory process. In the present study, we found that TGF-beta levels were elevated in both cerebrospinal fluid and serum samples obtained from AD patients < 6 h after death. Serum TGF-beta levels were also markedly elevated before death. These results suggest that elevated TGF-beta levels in AD may represent a protective host response to immunologically mediated neuronal injury. PMID:7496909

  20. Self-assembling peptide amphiphiles and related methods for growth factor delivery

    DOEpatents

    Stupp, Samuel I [Chicago, IL; Donners, Jack J. J. M.; Silva, Gabriel A [Chicago, IL; Behanna, Heather A [Chicago, IL; Anthony, Shawn G [New Stanton, PA

    2009-06-09

    Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.

  1. Self-assembling peptide amphiphiles and related methods for growth factor delivery

    DOEpatents

    Stupp, Samuel I [Chicago, IL; Donners, Jack J. J. M.; Silva, Gabriel A [Chicago, IL; Behanna, Heather A [Chicago, IL; Anthony, Shawn G [New Stanton, PA

    2012-03-20

    Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.

  2. Self-assembling peptide amphiphiles and related methods for growth factor delivery

    DOEpatents

    Stupp, Samuel I; Donners, Jack J.J.M.; Silva, Gabriel A; Behanna, Heather A; Anthony, Shawn G

    2013-11-12

    Amphiphilic peptide compounds comprising one or more epitope sequences for binding interaction with one or more corresponding growth factors, micellar assemblies of such compounds and related methods of use.

  3. Global Quantitative Modeling of Chromatin Factor Interactions

    PubMed Central

    Zhou, Jian; Troyanskaya, Olga G.

    2014-01-01

    Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor combinatorial patterns (or the “chromatin codes”) remains a fundamental challenge in chromatin biology. Here we developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin profiles — we demonstrated that with this approach we can leverage data from well-characterized cell types to help understand less-studied cell type or conditions. PMID:24675896

  4. Pion form factor from a contact interaction

    SciTech Connect

    Gutierrez-Guerrero, L. X.; Bashir, A.; Cloeet, I. C.; Roberts, C. D.

    2010-06-15

    In a Poincare-covariant vector-boson-exchange theory, the pion possesses components of pseudovector origin, which materially influence its observable properties. For a range of such quantities, we explore the consequences of a momentum-independent interaction, regularized in a symmetry-preserving manner. The contact interaction, while capable of describing pion static properties, produces a form factor whose evolution for Q{sup 2}>0.17 GeV{sup 2} disagrees markedly with experiment and whose asymptotic power-law behavior conflicts strongly with perturbative QCD.

  5. Nerve Growth Factor Potentiates the Neurotoxicity of β Amyloid

    NASA Astrophysics Data System (ADS)

    Yankner, Bruce A.; Caceres, Alfredo; Duffy, Lawrence K.

    1990-11-01

    The role of growth factors in the pathogenesis of Alzheimer disease is unknown. The β-amyloid protein accumulates abnormally in the brain in Alzheimer disease and is neurotoxic to differentiated hippocampal neurons in culture. Nerve growth factor (NGF) increased the neurotoxic potency of a β-amyloid polypeptide by a factor of ≈100,000, which resulted in a reduction of the β-amyloid neurotoxic EC50 from 0.1 μM to 1 pM. This potentiating effect of NGF was reversed by a monoclonal antibody against NGF and was not observed for a variety of other neurotrophic growth factors. Exposure of hippocampal neurons to very low concentrations of β amyloid alone resulted in a marked induction of immunoreactive NGF receptors. Addition of NGF with β amyloid resulted in the appearance of neurodegenerative changes in NGF receptor-positive neurons. The early and profound degeneration of hippocampal and basal forebrain cholinergic neurons that occurs in Alzheimer disease may result from a neurotoxic interaction of β amyloid with NGF.

  6. Autologous Growth Factor Injections in Chronic Tendinopathy

    PubMed Central

    Sandrey, Michelle A.

    2014-01-01

    Reference: de Vos RJ, van Veldhoven PLJ, Moen MH, Weir A, Tol JL. Autologous growth factor injections in chronic tendinopathy: a systematic review. Br Med Bull. 2010;95:63–77. Clinical Question: The authors of this systematic review evaluated the literature to critically consider the effects of growth factors delivered through autologous whole-blood and platelet-rich–plasma (PRP) injections in managing wrist-flexor and -extensor tendinopathies, plantar fasciopathy, and patellar tendinopathy. The primary question was, according to the published literature, is there sufficient evidence to support the use of growth factors delivered through autologous whole-blood and PRP injections for chronic tendinopathy? Data Sources: The authors performed a comprehensive, systematic literature search in October 2009 using PubMed, MEDLINE, EMBASE, CINAHL, and the Cochrane library without time limits. The following key words were used in different combinations: tendinopathy, tendinosis, tendinitis, tendons, tennis elbow, plantar fasciitis, platelet rich plasma, platelet transfusion, and autologous blood or injection. The search was limited to human studies in English. All bibliographies from the initial literature search were also viewed to identify additional relevant studies. Study Selection: Studies were eligible based on the following criteria: (1) Articles were suitable (inclusion criteria) if the participants had been clinically diagnosed as having chronic tendinopathy; (2) the design had to be a prospective clinical study, randomized controlled trial, nonrandomized clinical trial, or prospective case series; (3) a well-described intervention in the form of a growth factor injection with either PRP or autologous whole blood was used; and (4) the outcome was reported in terms of pain or function (or both). Data Extraction: All titles and abstracts were assessed by 2 researchers, and all relevant articles were obtained. Two researchers independently read the full text of

  7. Autologous growth factor injections in chronic tendinopathy.

    PubMed

    Sandrey, Michelle A

    2014-01-01

    de Vos RJ, van Veldhoven PLJ, Moen MH, Weir A, Tol JL. Autologous growth factor injections in chronic tendinopathy: a systematic review. Br Med Bull. 2010;95:63-77. The authors of this systematic review evaluated the literature to critically consider the effects of growth factors delivered through autologous whole-blood and platelet-rich-plasma (PRP) injections in managing wrist-flexor and -extensor tendinopathies, plantar fasciopathy, and patellar tendinopathy. The primary question was, according to the published literature, is there sufficient evidence to support the use of growth factors delivered through autologous whole-blood and PRP injections for chronic tendinopathy? The authors performed a comprehensive, systematic literature search in October 2009 using PubMed, MEDLINE, EMBASE, CINAHL, and the Cochrane library without time limits. The following key words were used in different combinations: tendinopathy, tendinosis, tendinitis, tendons, tennis elbow, plantar fasciitis, platelet rich plasma, platelet transfusion, and autologous blood or injection. The search was limited to human studies in English. All bibliographies from the initial literature search were also viewed to identify additional relevant studies. Studies were eligible based on the following criteria: (1) Articles were suitable (inclusion criteria) if the participants had been clinically diagnosed as having chronic tendinopathy; (2) the design had to be a prospective clinical study, randomized controlled trial, nonrandomized clinical trial, or prospective case series; (3) a well-described intervention in the form of a growth factor injection with either PRP or autologous whole blood was used; and (4) the outcome was reported in terms of pain or function (or both). All titles and abstracts were assessed by 2 researchers, and all relevant articles were obtained. Two researchers independently read the full text of each article to determine if it met the inclusion criteria. If opinions differed on

  8. Transforming growth factor beta regulates thyroid growth. Role in the pathogenesis of nontoxic goiter.

    PubMed Central

    Grubeck-Loebenstein, B; Buchan, G; Sadeghi, R; Kissonerghis, M; Londei, M; Turner, M; Pirich, K; Roka, R; Niederle, B; Kassal, H

    1989-01-01

    The production and growth regulatory activity of transforming growth factor beta were studied in human thyroid tissue. As estimated by its mRNA expression in fresh tissue samples, transforming growth factor beta was produced in normal and in diseased thyroid glands. Transforming growth factor beta mRNA was mainly produced by thyroid follicular cells and in lesser quantities by thyroid infiltrating mononuclear cells. The concentrations of transforming growth factor beta mRNA were lower in iodine-deficient nontoxic goiter than in Graves' disease and normal thyroid tissue. Transforming growth factor beta protein secretion by cultured thyroid follicular cells was also low in nontoxic goiter, but could be increased by addition of sodium iodide (10 microM) to the culture medium. Recombinant transforming growth factor beta did not affect basal tritiated thymidine incorporation in cultured thyroid follicular cells, but inhibited, at a concentration of 10 ng/ml, the growth stimulatory influence of insulin-like growth factor I, epidermal growth factor, transforming growth factor alpha, TSH, and partly that of normal human serum on cultured thyroid follicular cells. This inhibition was greater in Graves' disease than in nontoxic goiter. These results suggest that transforming growth factor beta may act as an autocrine growth inhibitor on thyroid follicular cells. Decreased transforming growth factor beta production and decreased responsiveness to transforming growth factor beta may be cofactors in the pathogenesis of iodine-deficient nontoxic goiter. Images PMID:2921318

  9. Lactoferrin – A Novel Bone Growth Factor

    PubMed Central

    Naot, Dorit; Grey, Andrew; Reid, Ian R; Cornish, Jillian

    2005-01-01

    Lactoferrin is an iron-binding glycoprotein that belongs to the transferrin family. It is present in breast milk, in epithelial secretions, and in the secondary granules of neutrophils. In healthy subjects lactoferrin circulates at concentrations of 2–7 x 10−6 g/ml. Lactoferrin is a pleiotropic factor with potent antimicrobial and immunomodulatory activities. Recently, we have shown that lactoferrin can also promote bone growth. At physiological concentrations, lactoferrin potently stimulates the proliferation and differentiation of primary osteoblasts and also acts as a survival factor inhibiting apoptosis induced by serum withdrawal. Lactoferrin also affects osteoclast formation and, in murine bone marrow culture, lactoferrin potently inhibits osteoclastogenesis. In vivo, local injection of lactoferrin above the hemicalvaria of adult mice results in substantial increases in the dynamic histomorphometric indices of bone formation and bone area. The mitogenic effect of lactoferrin in osteoblast-like cells is mediated mainly through LRP1, a member of the family of low-density lipoprotein receptor-related proteins that are primarily known as endocytic receptors. Using confocal laser scanning microscopy, we demonstrated that fluorescently labeled lactoferrin is endocytosed and can be visualized in the cytoplasm of primary osteoblastic cells. Lactoferrin also induces activation of p42/44 MAPK signaling in primary osteoblasts, but the two pathways seem to operate independently as activation of MAPK signaling, but not endocytosis, is necessary for the mitogenic effect of lactoferrin. We conclude that lactoferrin may have a physiological role in bone growth and healing, and a potential therapeutic role as an anabolic factor in osteoporosis. PMID:16012127

  10. Parathyroid Hormone-Related Protein Interacts With the Transforming Growth Factor-β/Bone Morphogenetic Protein-2/Gremlin Signaling Pathway to Regulate Proinflammatory and Profibrotic Mediators in Pancreatic Acinar and Stellate Cells.

    PubMed

    Bhatia, Vandanajay; Cao, Yanna; Ko, Tien C; Falzon, Miriam

    2016-01-01

    Transforming growth factor β (TGF-β) regulates immune and fibrotic responses of chronic pancreatitis. The bone morphogenetic protein 2 (BMP-2) antagonist gremlin is regulated by TGF-β. Parathyroid hormone-related protein (PTHrP) levels are elevated in chronic pancreatitis. Here, we investigated the cross-talk between TGF-β/BMP-2/gremlin and PTHrP signaling. Reverse transcription/real-time polymerase chain reaction, chromatin immunoprecipitation, Western blotting, and transient transfection were used to investigate PTHrP regulation by TGF-β and BMP-2 and gremlin regulation by PTHrP. The PTHrP antagonist PTHrP (7-34) and acinar cells with conditional Pthrp gene deletion (PTHrP) were used to assess PTHrP's role in the proinflammatory and profibrotic effects of TGF-β and gremlin. Transforming growth factor β increased PTHrP levels in acinar cells and pancreatic stellate cells (PSCs) through a Smad3-dependent pathway. Transforming growth factor β's effects on levels of IL-6 and intercellular adhesion molecule 1 (ICAM-1) (acinar cells) and procollagen I and fibronectin (PSCs) were inhibited by PTHrP (7-34). PTHrP suppressed TGF-β's effects on IL-6 and ICAM-1. Parathyroid hormone-related hormone increased gremlin in acinar cells, and inhibiting gremlin action suppressed TGF-β's and PTHrP's effects on IL-6 and ICAM-1. Transforming growth factor β-mediated gremlin up-regulation was suppressed in PTHrP cells. Bone morphogenetic protein 2 suppressed PTHrP levels in PSCs. Parathyroid hormone-related hormone functions as a novel mediator of the proinflammatory and profibrotic effects of TGF-β. Transforming growth factor β and BMP-2 regulate PTHrP expression, and PTHrP regulates gremlin levels.

  11. [Growth Hormone-Insulin Growth Factor I (GH-IGF-I) axis and growth].

    PubMed

    Castell, A-L; Sadoul, J-L; Bouvattier, C

    2013-10-01

    Normal human linear growth results from an evolutionary process expressing the sum effect of multiple genes. The growth hormone (GH) - insulin like growth factor (IGF)-I axis is one of the main actors in the growth process. Defects in this axis can be responsible for short or tall stature. Short stature is defined as smaller than - 2 standard deviations (SD). It is a very common reason for consultation in pediatrics; indeed, 2.5 % of children are concerned. Multiple causes make diagnosis difficult. In this article, we detail the most common constitutional causes of small size, including those related to a defect in the GH-IGF-I axis. Then, we report, the first results of the clinical and genetic study conducted on 213 patients with gigantism. Tall stature is defined by a height superior to 2 SD. Finally, recent work linking epigenetics and growth - via signaling pathways of GH-IGF-I axis - will be presented.

  12. Growth factor control of epidermal growth factor receptor kinase activity via an intramolecular mechanism.

    PubMed

    Koland, J G; Cerione, R A

    1988-02-15

    The mechanism by which the protein kinase activity of the epidermal growth factor (EGF) receptor is activated by binding of growth factor was investigated. Detergent-solubilized receptor in monomeric form was isolated by sucrose density gradient centrifugation and both its kinase and autophosphorylation activities monitored. In a low ionic strength medium and with MnCl2 as an activator, the activity of the monomeric receptor was EGF-independent. However, with 0.25 M ammonium sulfate present, the MnCl2-stimulated kinase activity was strikingly EGF-dependent. In contrast, the kinase activity expressed in the presence of MgCl2 showed growth factor control in the absence of added salt. Under the conditions of these experiments there was apparently little tendency for growth factor to induce aggregation of the receptor, indicating that the allosteric activation of the receptor kinase by EGF occurred via an intramolecular mechanism. Whereas detergent-solubilized receptor was the subject of these studies, the kinase activity of cell surface receptors might also be controlled by an intramolecular mechanism. These results indicate that an individual receptor molecule has the potential to function as a transmembrane signal transducer.

  13. Factors affecting alum-protein interactions.

    PubMed

    Huang, Min; Wang, Wei

    2014-05-15

    Alum (or aluminum-containing) adjuvants are key components of many vaccines currently on the market. The immuno-potentiation effect of alum adjuvants is presumably due to their interaction with antigens, leading to adsorption on the alum particle surface. Understanding the mechanism of antigen adsorption/desorption and its influencing factors could provide guidance on formulation design and ensure proper in-vivo immuno-potentiation effect. In this paper, surface adsorption of several model proteins on two types of aluminum adjuvants (Alhydrogel(®) and Adjuphos(®)) are investigated to understand the underlying adsorption mechanisms, capacities, and potential influencing factors. It was found that electrostatic interactions are the major driving force for surface adsorption of all the model proteins except ovalbumin. Alhydrogel has a significantly higher adsorption capacity than Adjuphos. Several factors significantly change the adsorption capacity of both Alhydrogel and Adjuphos, including molecular weight of protein antigens, sodium chloride, phosphate buffer, denaturing agents, and size of aluminum particles. These important factors need to be carefully considered in the design of an effective protein antigen-based vaccine. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Nerve growth factor: neurotrophin or cytokine?

    PubMed

    Bonini, S; Rasi, G; Bracci-Laudiero, M L; Procoli, A; Aloe, L

    2003-06-01

    Nerve growth factor (NGF) is a neutrophin exerting an important role in the development and functions of the central and peripheral nervous system. However, it has recently been documented that several immune cells - such as mast cells, lymphocytes and eosinophils - produce, store and release NGF. Moreover, NGF high and low affinity receptors are widely expressed in the immune system, thus indicating the potential of responding to this neurotrophin through an autocrine mechanism. In fact, NGF influences development differentiation, chemotaxis and mediator release of inflammatory cells as well as fibroblast activation through a complex network influenced by other pro-inflammatory cytokines. Finally, NGF is increased in biological fluids of several allergic, immune and inflammatory diseases. Data reviewed suggest, therefore, that NGF might also be viewed as a (Th2?) cytokine with a modulatory role in allergic inflammation and tissue remodeling. Copyright 2003 S. Karger AG, Basel

  15. Growth factors and cytokines in acute renal failure.

    PubMed

    Harris, R C

    1997-04-01

    The mammalian kidney is susceptible to injury by ischemia/reperfusion and toxins, and regeneration after injury is characterized by hyperplasia and recovery of the damaged epithelial cells that line the tubules. Locally produced growth factors may serve as mediators of nephrogenesis and differentiation during renal development and of renal regeneration after acute injury. In cultured cells, administration of one or a mixture of growth factors to quiescent cells will initiate progression through the cell cycle and cell division. In the adult kidney, cell division normally is very low, but will increase up to 10-fold after acute injury. In addition to proliferation after lethal injury, there also is cellular repair in cells that have undergone sublethal injury. Recent studies indicate that growth factors inhibit programmed cell death in response to acute injury. Growth factors also may initiate or promote protein and lipid biosynthesis and provide an intracellular milieu that promotes cellular repair. In addition to cellular repair, growth factors also may be involved in the re-establishment of cell-extracellular matrix and cell-cell integrity. Finally, growth factors may limit injury by decreasing the factors that induce damage. Increased local renal expression of growth factors in response to acute injury include heparin binding epidermal growth factor (HB-EGF), hepatocyte growth factor (HGF), insulin-like growth factor-I (IGF-I), transforming growth factor-beta, parathyroid hormone-related peptide, and acidic fibroblast growth factor. In a number of experimental models of acute renal injury, administration of exogenous growth factors has been shown to accelerate both structural and functional recovery. Specifically, EGF, IGF-1, and HGF all have been shown to be effective in this regard. These studies are reviewed and potential therapeutic uses of growth factors and cytokines will be discussed.

  16. Time- and dose-related interactions between glucocorticoid and cyclic adenosine 3',5'-monophosphate on CCAAT/enhancer-binding protein-dependent insulin-like growth factor I expression by osteoblasts

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Ji, C.; Chen, Y.; Kim, K.; Centrella, M.

    2000-01-01

    Glucocorticoid has complex effects on osteoblasts. Several of these changes appear to be related to steroid concentration, duration of exposure, or specific effects on growth factor expression or activity within bone. One important bone growth factor, insulin-like growth factor I (IGF-I), is induced in osteoblasts by hormones such as PGE2 that increase intracellular cAMP levels. In this way, PGE2 activates transcription factor CCAAT/enhancer-binding protein-delta (C/EBPdelta) and enhances its binding to a specific control element found in exon 1 in the IGF-I gene. Our current studies show that preexposure to glucocorticoid enhanced C/EBPdelta and C/EBPbeta expression by osteoblasts and thereby potentiated IGF-I gene promoter activation in response to PGE2. Importantly, this directly contrasts with inhibitory effects on IGF-I expression that result from sustained or pharmacologically high levels of glucocorticoid exposure. Consistent with the stimulatory effect of IGF-I on bone protein synthesis, pretreatment with glucocorticoid sensitized osteoblasts to PGE2, and in this context significantly enhanced new collagen and noncollagen protein synthesis. Therefore, pharmacological levels of glucocorticoid may reduce IGF-I expression by osteoblasts and cause osteopenic disease, whereas physiological transient increases in glucocorticoid may permit or amplify the effectiveness of hormones that regulate skeletal tissue integrity. These events appear to converge on the important role of C/EBPdelta and C/EBPbeta on IGF-I expression by osteoblasts.

  17. Time- and dose-related interactions between glucocorticoid and cyclic adenosine 3',5'-monophosphate on CCAAT/enhancer-binding protein-dependent insulin-like growth factor I expression by osteoblasts

    NASA Technical Reports Server (NTRS)

    McCarthy, T. L.; Ji, C.; Chen, Y.; Kim, K.; Centrella, M.

    2000-01-01

    Glucocorticoid has complex effects on osteoblasts. Several of these changes appear to be related to steroid concentration, duration of exposure, or specific effects on growth factor expression or activity within bone. One important bone growth factor, insulin-like growth factor I (IGF-I), is induced in osteoblasts by hormones such as PGE2 that increase intracellular cAMP levels. In this way, PGE2 activates transcription factor CCAAT/enhancer-binding protein-delta (C/EBPdelta) and enhances its binding to a specific control element found in exon 1 in the IGF-I gene. Our current studies show that preexposure to glucocorticoid enhanced C/EBPdelta and C/EBPbeta expression by osteoblasts and thereby potentiated IGF-I gene promoter activation in response to PGE2. Importantly, this directly contrasts with inhibitory effects on IGF-I expression that result from sustained or pharmacologically high levels of glucocorticoid exposure. Consistent with the stimulatory effect of IGF-I on bone protein synthesis, pretreatment with glucocorticoid sensitized osteoblasts to PGE2, and in this context significantly enhanced new collagen and noncollagen protein synthesis. Therefore, pharmacological levels of glucocorticoid may reduce IGF-I expression by osteoblasts and cause osteopenic disease, whereas physiological transient increases in glucocorticoid may permit or amplify the effectiveness of hormones that regulate skeletal tissue integrity. These events appear to converge on the important role of C/EBPdelta and C/EBPbeta on IGF-I expression by osteoblasts.

  18. Cytokines and growth factors cross-link heparan sulfate

    PubMed Central

    Migliorini, Elisa; Thakar, Dhruv; Kühnle, Jens; Sadir, Rabia; Dyer, Douglas P.; Li, Yong; Sun, Changye; Volkman, Brian F.; Handel, Tracy M.; Coche-Guerente, Liliane; Fernig, David G.; Lortat-Jacob, Hugues; Richter, Ralf P.

    2015-01-01

    The glycosaminoglycan heparan sulfate (HS), present at the surface of most cells and ubiquitous in extracellular matrix, binds many soluble extracellular signalling molecules such as chemokines and growth factors, and regulates their transport and effector functions. It is, however, unknown whether upon binding HS these proteins can affect the long-range structure of HS. To test this idea, we interrogated a supramolecular model system, in which HS chains grafted to streptavidin-functionalized oligoethylene glycol monolayers or supported lipid bilayers mimic the HS-rich pericellular or extracellular matrix, with the biophysical techniques quartz crystal microbalance (QCM-D) and fluorescence recovery after photobleaching (FRAP). We were able to control and characterize the supramolecular presentation of HS chains—their local density, orientation, conformation and lateral mobility—and their interaction with proteins. The chemokine CXCL12α (or SDF-1α) rigidified the HS film, and this effect was due to protein-mediated cross-linking of HS chains. Complementary measurements with CXCL12α mutants and the CXCL12γ isoform provided insight into the molecular mechanism underlying cross-linking. Fibroblast growth factor 2 (FGF-2), which has three HS binding sites, was also found to cross-link HS, but FGF-9, which has just one binding site, did not. Based on these data, we propose that the ability to cross-link HS is a generic feature of many cytokines and growth factors, which depends on the architecture of their HS binding sites. The ability to change matrix organization and physico-chemical properties (e.g. permeability and rigidification) implies that the functions of cytokines and growth factors may not simply be confined to the activation of cognate cellular receptors. PMID:26269427

  19. Modeling Interaction Effects in Latent Growth Curve Models.

    ERIC Educational Resources Information Center

    Li, Fuzhong; Duncan, Terry E.; Acock, Alan

    2000-01-01

    Presents an extension of the method of estimating interaction effects among latent variables to latent growth curve models developed by K. Joreskog and F. Yang (1996). Illustrates the procedure and discusses results in terms of practical and statistical problems associated with interaction analyses in latent curve models and structural equation…

  20. Modeling Interaction Effects in Latent Growth Curve Models.

    ERIC Educational Resources Information Center

    Li, Fuzhong; Duncan, Terry E.; Acock, Alan

    2000-01-01

    Presents an extension of the method of estimating interaction effects among latent variables to latent growth curve models developed by K. Joreskog and F. Yang (1996). Illustrates the procedure and discusses results in terms of practical and statistical problems associated with interaction analyses in latent curve models and structural equation…

  1. Role of growth factors in the growth of normal and transformed cells

    SciTech Connect

    Lokeshwar, V.B.

    1989-01-01

    Growth factors play an important role in the growth of normal cells. However, their untimely and/or excess production leads to neoplastic transformation. The role of growth factors in the growth of normal cells was studied by investigating the mechanism of transmodulation of the cell surface EGF receptor number by protamine. Protamine increased the EGF stimulated mitogenic response in Swiss mouse 3T3 cells and A431 cells by increasing the number of functionally active EGF receptors. Protamine also increased EGF receptor number in plasma membranes and solubilized membranes. This was evidenced by an increase in both {sup 125}I-EGF-EGF-receptor complex and EGF stimulated phosphorylation of the EGF receptor. The solubilized EGF receptor was retained on a protamine-agarose gel indicating that protamine might increase EGF receptor number by directly activating cryptic EGF receptors in the plasma membranes. The role of growth factors in neoplastic transformation was studied by investigating the role of the oncogene v-sis in the growth of Simian sarcoma virus (SSV) transformed cells. The product of the oncogene v-sis is 94% homologous to the B chain of PDGF. This study found that (i) v-sis gene product is synthesized as a 32 kDa unglycosylated monomer which is glycosylated, dimerized and proteolytically processed into p36, p72, p68, p58, p44 and p27 mol. wt. species respectively. (ii) p36, p72, p68 and p58 are very likely formed in the endoplasmic reticulum and/or Golgi complex. A fraction of newly synthesized p72, p68 and p58 is degraded intracellularly at a fast rate. (iii) p44 is a secretory product which remains tightly associated with the cell surface. p44 is recaptured by the cells through interaction with cell surface PDGF receptors and degraded into p27. (iv) During long term cultures p44 is extracellularly cleaved into a 27 kDa product.

  2. Hepatocyte growth factor, vascular endothelial growth factor, glial cell-derived neurotrophic factor and nerve growth factor are differentially affected by early chronic ethanol or red wine intake.

    PubMed

    Fiore, Marco; Mancinelli, Rosanna; Aloe, Luigi; Laviola, Giovanni; Sornelli, Federica; Vitali, Mario; Ceccanti, Mauro

    2009-08-10

    Ethanol intake during pregnancy and lactation induces severe changes in brain and liver throughout mechanisms involving growth factors. These are signaling molecules regulating survival, differentiation, maintenance and connectivity of brain and liver cells. Ethanol is an element of red wine which contains also compounds with antioxidant properties. Aim of the study was to investigate differences in hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), glial cell-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) in brain areas and liver by ELISA of 1-month-old male mice exposed perinatally to ethanol at 11 vol.% or to red wine at same ethanol concentration. Ethanol was administered before and during pregnancy up to pups' weaning. Ethanol per se elevated HGF in liver and cortex, potentiated liver VEGF, reduced GDNF in the liver and decreased NGF content in hippocampus and cortex in the offspring. We did not find changes in HGF or NGF due to red wine exposure. However, we revealed elevation in VEGF levels in liver and reduced GDNF in the cortex of animals exposed to red wine but the VEGF liver increase was more marked in animals exposed to ethanol only compared to the red wine group. In conclusion the present findings in the mouse show differences in ethanol-induced toxicity when ethanol is administered alone or in red wine that may be related to compounds with antioxidant properties present in the red wine.

  3. Insulin-Like Growth Factor Binding Proteins: A Structural Perspective

    PubMed Central

    Forbes, Briony E.; McCarthy, Peter; Norton, Raymond S.

    2012-01-01

    Insulin-like growth factor binding proteins (IGFBP-1 to -6) bind insulin-like growth factors-I and -II (IGF-I and IGF-II) with high affinity. These binding proteins maintain IGFs in the circulation and direct them to target tissues, where they promote cell growth, proliferation, differentiation, and survival via the type 1 IGF receptor. IGFBPs also interact with many other molecules, which not only influence their modulation of IGF action but also mediate IGF-independent activities that regulate processes such as cell migration and apoptosis by modulating gene transcription. IGFBPs-1 to -6 are structurally similar proteins consisting of three distinct domains, N-terminal, linker, and C-terminal. There have been major advances in our understanding of IGFBP structure in the last decade and a half. While there is still no structure of an intact IGFBP, several structures of individual N- and C-domains have been solved. The structure of a complex of N-BP-4:IGF-I:C-BP-4 has also been solved, providing a detailed picture of the structural features of the IGF binding site and the mechanism of binding. Structural studies have also identified features important for interaction with extracellular matrix components and integrins. This review summarizes structural studies reported so far and highlights features important for binding not only IGF but also other partners. We also highlight future directions in which structural studies will add to our knowledge of the role played by the IGFBP family in normal growth and development, as well as in disease. PMID:22654863

  4. Platelet Derived Growth Factor-B and Human Epidermal Growth Factor Receptor-2 Polymorphisms in Gall Bladder Cancer.

    PubMed

    Mishra, Kumudesh; Behari, Anu; Kapoor, Vinay Kumar; Khan, M Salman; Prakash, Swayam; Agrawal, Suraksha

    2015-01-01

    Gall bladder cancer (GBC) is a gastro-intestinal cancer with high prevalence among north Indian women. Platelet derived growth factor-B (PDGFB) and human epidermal growth factor receptor-2 (HER2) may play roles in the etiology of GBC through the inflammation-hyperplasia-dysplasia-carcinoma pathway. To study the association of PDGFB and HER2 polymorphisms with risk of GBC, 200 cases and 300 controls were considered. PDGFB +286A>G and +1135A>C polymorphisms were investigated with an amplification refractory mutation system and the HER2 Ile655Val polymorphism by restriction fragment length polymorphism. Significant risk associations for PDGFB +286 GG (OR=5.25) and PDGFB +1135 CC (OR=3.19) genotypes were observed for GBC. Gender wise stratification revealed susceptibility for recessive models of PDGFB +1135A>C (OR=3.00) and HER2 Ile655Val (OR=2.52) polymorphisms among female GBC cases. GBC cases with gall stones were predisposed to homozygous +286 GG and +1135 CC genotypes. Significant risk associations were found for ACIle (OR=1.48), GAVal (OR=1.70), GAIle (OR=2.00) haplotypes with GBC cases and GCIle haplotype with female GBC cases (OR=10.37, P=<0.0001). Pair-wise linkage disequilibrium revealed negative associations among variant alleles. On multi-dimensional reduction analysis, a three factor model revealed significant gene-gene interaction for PDGFB +286A>G, PDGFB +1135A>C and HER2 Ile165Val SNPs with GBC. Protein-protein interaction showed significant association of PDGFB and HER2 with the epidermal growth factor receptor signaling pathway.

  5. Human transforming growth factor. beta. -. cap alpha. /sub 2/-macroglobulin complex is a latent form of transforming growth factor. beta

    SciTech Connect

    Huang, S.S.; O'Grady, P.; Huang, J.S.

    1987-05-01

    Human platelet-derived transforming growth factor ..beta.. (TGF..beta..) has been shown to be present as a high molecular weight latent form in human serum. Appearance of transforming growth factor activity, along with the change from high molecular weight form to low molecular weight form, was observed following treatment of the latent form of TGF..beta.. with acid or urea, suggesting that the latent form of TGF..beta.. is a complex of TGF..beta.. and a high molecular weight binding protein. Human ..cap alpha../sub 2/-M has been found to be a plasma binding protein for platelet-derived growth factor (PDGF) in serum or plasma. TGF..beta.. and PDGF share similar properties. They, therefore, investigated the interaction between /sup 125/I-TGF..beta.. and ..cap alpha../sub 2/M. /sup 125/I-TGF..beta.. and purified human ..cap alpha../sub 2/M formed a complex as demonstrated by polyacrylamide gel electrophoresis. Most of the /sup 125/I-TGF..beta..-..cap alpha../sub 2/M complex could be dissociated by acid or urea treatment. These results suggest that ..cap alpha../sub 2/M is a binding protein for TGF..beta.. and that TGF..beta..-..cap alpha../sub 2/M complex may be the latent form of TGF..beta.. in serum.

  6. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman W.

    1987-01-01

    New muscle tissue culture techniques were developed to grow embryonic skeletal myofibers which are able to differentiate into more adultlike myofibers. Studies on mechanical simulation of cultured muscle cell growth will now be more directly applicable to mechanically-induced growth in adult muscle, and lead to better models for understanding muscle tissue atrophy caused by disuse in the microgravity of space.

  7. Evolutionary game theory of growth factor production: implications for tumour heterogeneity and resistance to therapies.

    PubMed

    Archetti, M

    2013-08-20

    Tumour heterogeneity is documented for many characters, including the production of growth factors, one of the hallmarks of cancer. What maintains heterogeneity remains an open question that has implications for diagnosis and treatment, as drugs that target growth factors are susceptible to the evolution of resistance. I use evolutionary game theory to model collective interactions between cancer cells, to analyse the dynamics of the production of growth factors and the effect of therapies that reduce their amount. Five types of dynamics are possible, including the coexistence of producer and non-producer cells, depending on the production cost of the growth factor, on its diffusion range and on the degree of synergy of the benefit it confers to the cells. Perturbations of the equilibrium mimicking therapies that target growth factors are effective in reducing the amount of growth factor in the long term only if the reduction is extremely efficient and immediate. Collective interactions within the tumour can maintain heterogeneity for the production of growth factors and explain why therapies like anti-angiogenic drugs and RNA interference that reduce the amount of available growth factors are effective in the short term but often lead to relapse. Alternative strategies for evolutionarily stable treatments are discussed.

  8. Growth factors and their relationship to neoplastic and paraneoplastic disease.

    PubMed

    Badawi, R A; Birns, J; Watson, T; Kalra, L

    2005-04-01

    Growth factors are extracellular signaling molecules that act in an autocrine and paracrine fashion to regulate growth, proliferation, differentiation, and survival of cells. Dysregulation of the growth factor networks is intimately related to the molecular pathogenesis of neoplastic and paraneoplastic disease. Increasing knowledge of the molecular mechanisms underlying growth factors and their actions on cell cycling, cell division, and cell death is shedding light on new therapeutic avenues for molecular targeting of tumors. Epidermal growth factor and vascular endothelial growth factor both offer examples of how growth factor biology and its relationship to cancer can be harnessed to create effective clinical therapeutic tools such as monoclonal antibodies. This approach heralds a future in which rational molecular oncological therapy may increasingly become the norm.

  9. Kinetics of epidermal growth factor in saliva.

    PubMed

    Ino, M; Ushiro, K; Ino, C; Yamashita, T; Kumazawa, T

    1993-01-01

    Human epidermal growth factor (hEGF) stimulates the growth and differentiation of various tissues. We measured EGF levels in saliva (n = 128), urine (n = 94), and serum (n = 99) with radioimmunoassay in order to study the kinetics of hEGF in saliva of normal subjects and patients with oral disease. Salivary EGF levels showed an apparent diurnal rhythm related to the taking of meals. Urinary and serum EGF levels showed no obvious diurnal rhythm. There was no significant correlation between salivary and urinary EGF levels, nor between salivary and serum EGF levels. Salivary EGF levels were significantly lower in the younger group (0-9 years old, 3.06 +/- 0.32 ng/ml, p < 0.05) than in the elder group (10-79 years old, 4.78 +/- 3.5 ng/ml), but did not correlate with age in the elder group. There was no significant difference between males and females between EGF levels in saliva, urine or serum. The relative proportion of EGF levels in submandibular gland saliva, parotid saliva, and whole saliva was 1:6:4. The positive rate of immunohistochemical EGF showed no significant differences between submandibular gland, parotid gland, sublingual gland or minor salivary gland. Salivary EGF levels were markedly low in patients with oral inflammations (stomatitis aphthosa, or peritonsillar abscess) or head and neck tumors (squamous cell carcinoma of the tongue, oral cavity, hypopharynx or larynx). These findings may be significant pathophysiologically. Low salivary EGF levels may reduce the capacity of oral mucosal defense mechanisms to fight against injury by physiochemical agents.

  10. Endorsement of Growth Factors in Experiential Training Groups

    ERIC Educational Resources Information Center

    Kiweewa, John; Gilbride, Dennis; Luke, Melissa; Seward, Derek

    2013-01-01

    The purpose of this study was to identify student growth factors during a semester long Master's level group counseling class. Results indicated that 12 growth factors accounted for 86% of the total number of critical incidents that participants reported as influencing their personal growth and awareness during the group experience. Two other…

  11. Endorsement of Growth Factors in Experiential Training Groups

    ERIC Educational Resources Information Center

    Kiweewa, John; Gilbride, Dennis; Luke, Melissa; Seward, Derek

    2013-01-01

    The purpose of this study was to identify student growth factors during a semester long Master's level group counseling class. Results indicated that 12 growth factors accounted for 86% of the total number of critical incidents that participants reported as influencing their personal growth and awareness during the group experience. Two other…

  12. Gene expression of growth factors and growth factor receptors for potential targeted therapy of canine hepatocellular carcinoma.

    PubMed

    Iida, Gentoku; Asano, Kazushi; Seki, Mamiko; Sakai, Manabu; Kutara, Kenji; Ishigaki, Kumiko; Kagawa, Yumiko; Yoshida, Orie; Teshima, Kenji; Edamura, Kazuya; Watari, Toshihiro

    2014-03-01

    The purpose of this study was to evaluate the gene expression of growth factors and growth factor receptors of primary hepatic masses, including hepatocellular carcinoma (HCC) and nodular hyperplasia (NH), in dogs. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to measure the expression of 18 genes in 18 HCCs, 10 NHs, 11 surrounding non-cancerous liver tissues and 4 healthy control liver tissues. Platelet-derived growth factor-B (PDGF-B), transforming growth factor-α, epidermal growth factor receptor, epidermal growth factor and hepatocyte growth factor were found to be differentially expressed in HCC compared with NH and the surrounding non-cancerous and healthy control liver tissues. PDGF-B is suggested to have the potential to become a valuable ancillary target for the treatment of canine HCC.

  13. Diabetes, growth hormone-insulin-like growth factor pathways and association to benign prostatic hyperplasia.

    PubMed

    Wang, Zongwei; Olumi, Aria F

    2011-01-01

    Diabetes significantly increases the risk of benign prostatic hyperplasia (BPH) and low urinary tract symptoms (LUTS). The major endocrine aberration in connection with the metabolic syndrome is hyperinsulinemia. Insulin is an independent risk factor and a promoter of BPH. Insulin resistance may change the risk of BPH through several biological pathways. Hyperinsulinemia stimulates the liver to produce more insulin-like growth factor (IGF), another mitogen and an anti-apoptotic agent which binds insulin receptor/IGF receptor and stimulates prostate growth. The levels of IGFs and IGF binding proteins (IGFBPs) in prostate tissue and in blood are associated with BPH risk, with the regulation of circulating androgen and growth hormone. Stromal-epithelial interactions play a critical role in the development and growth of the prostate gland and BPH. Previously, we have shown that the expression of c-Jun in the fibroblastic stroma can promote secretion of IGF-I, which stimulates prostate epithelial cell proliferation through activating specific target genes. Here, we will review the epidemiologic, clinical, and molecular findings which have evaluated the relation between diabetes and development of BPH.

  14. Interactions of transcription factors with chromatin.

    PubMed

    van Bakel, Harm

    2011-01-01

    Sequence-specific transcription factors (TFs) play a central role in regulating transcription initiation by directing the recruitment and activity of the general transcription machinery and accessory factors. It is now well established that many of the effects exerted by TFs in eukaryotes are mediated through interactions with a host of coregulators that modify the chromatin state, resulting in a more open (in case of activation) or closed conformation (in case of repression). The relationship between TFs and chromatin is a two-way street, however, as chromatin can in turn influence the recognition and binding of target sequences by TFs. The aim of this chapter is to highlight how this dynamic interplay between TF-directed remodelling of chromatin and chromatin-adjusted targeting of TF binding determines where and how transcription is initiated, and to what degree it is productive.

  15. Effect of transforming growth factor-β1 on human intrahepatic cholangiocarcinoma cell growth

    PubMed Central

    Shimizu, Tetsuya; Yokomuro, Shigeki; Mizuguchi, Yoshiaki; Kawahigashi, Yutaka; Arima, Yasuo; Taniai, Nobuhiko; Mamada, Yasuhiro; Yoshida, Hiroshi; Akimaru, Koho; Tajiri, Takashi

    2006-01-01

    AIM: To elucidate the biological effects of transforming growth factor-β1 (TGF-β1) on intrahepatic cholan-giocarcinoma (ICC). METHODS: We investigated the effects of TGF-β1 on human ICC cell lines (HuCCT1, MEC, and HuH-28) by monitoring the influence of TGF-β1 on tumor growth and interleukin-6 (IL-6) expression in ICC cells. RESULTS: All three human ICC cell lines produced TGF-β1 and demonstrated accelerated growth in the presence of TGF-β1 with no apoptotic effect. Studies on HuCCT1 revealed a TGF-β1-induced stimulation of the expression of TGF-β1, as well as a decrease in TGF-β1 mRNA expression induced by neutralizing anti-TGF-β1 antibody. These results indicate that TGF-β1 stimulates the production and function of TGF-β1 in an autocrine fashion. Further, IL-6 secretion was observed in all three cell lines and exhibited an inhibitory response to neutralizing anti-TGF-β1 antibody. Experiments using HuCCT1 revealed a TGF-β1-induced acceleration of IL-6 protein expression and mRNA levels. These findings demonstrate a functional interaction between TGF-β1 and IL-6. All three cell lines proliferated in the presence of IL-6. In contrast, TGF-β1 induced no growth effect in HuCCT1 in the presence of small interfering RNA against a specific cell surface receptor of IL-6 and signal transducer and activator of transcription-3. CONCLUSION: ICC cells produce TGF-β1 and confer a TGF-β1-induced growth effect in an autocrine fashion. TGF-β1 activates IL-6 production, and the functional interaction between TGF-β1 and IL-6 contributes to ICC cell growth by TGF-β1. PMID:17072955

  16. Insulin-like growth factors and kidney disease.

    PubMed

    Bach, Leon A; Hale, Lorna J

    2015-02-01

    Insulin-like growth factors (IGF-1 and IGF-2) are necessary for normal growth and development. They are related structurally to proinsulin and promote cell proliferation, differentiation, and survival, as well as insulin-like metabolic effects, in most cell types and tissues. In particular, IGFs are important for normal pre- and postnatal kidney development. IGF-1 mediates many growth hormone actions, and both growth hormone excess and deficiency are associated with perturbed kidney function. IGFs affect renal hemodynamics both directly and indirectly by interacting with the renin-angiotensin system. In addition to the IGF ligands, the IGF system includes receptors for IGF-1, IGF-2/mannose-6-phosphate, and insulin, and a family of 6 high-affinity IGF-binding proteins that modulate IGF action. Disordered regulation of the IGF system has been implicated in a number of kidney diseases. IGF activity is enhanced in early diabetic nephropathy and polycystic kidneys, whereas IGF resistance is found in chronic kidney failure. IGFs have a potential role in enhancing stem cell repair of kidney injury. Most IGF actions are mediated by the tyrosine kinase IGF-1 receptor, and inhibitors recently have been developed. Further studies are needed to determine the optimal role of IGF-based therapies in kidney disease. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  17. [Stem cells and growth factors in wound healing].

    PubMed

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  18. Transforming growth factor alpha and epidermal growth factor levels in normal human gastrointestinal mucosa.

    PubMed Central

    Cartlidge, S. A.; Elder, J. B.

    1989-01-01

    Acid soluble proteins from 23 samples of normal human gastrointestinal mucosa derived from four normal adult organ donors were extracted and subjected to specific radiommunoassays for transforming growth factor alpha (TGF alpha) and urogastrone epidermal growth factor (URO-EGF). All tissues were found to contain immunoreactive TGF alpha and levels ranged from 57 to 4,776 pg-1 wet weight of tissue. Although levels varied between tissue donors, the distribution of TGF alpha throughout the gastrointestinal tract appeared similar in all cases. URO-EGF levels were much lower (0-216 pg g-1 wet weight). TGF alpha levels in extracts of gastrointestinal mucosa from a 7-year-old female donor were higher and the observed distribution was markedly different from adult levels. URO-EGF was not detected in mucosal or submucosal tissue extracts from this patient. Further studies in juveniles are indicated. PMID:2803941

  19. Direct binding of hepatocyte growth factor and vascular endothelial growth factor to CD44v6.

    PubMed

    Volz, Yvonne; Koschut, David; Matzke-Ogi, Alexandra; Dietz, Marina S; Karathanasis, Christos; Richert, Ludovic; Wagner, Moritz G; Mély, Yves; Heilemann, Mike; Niemann, Hartmut H; Orian-Rousseau, Véronique

    2015-06-29

    CD44v6, a member of the CD44 family of transmembrane glycoproteins is a co-receptor for two receptor tyrosine kinases (RTKs), Met and VEGFR-2 (vascular endothelial growth factor receptor 2). CD44v6 is not only required for the activation of these RTKs but also for signalling. In order to understand the role of CD44v6 in Met and VEGFR-2 activation and signalling we tested whether CD44v6 binds to their ligands, HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor), respectively. FACS analysis and cellular ELISA showed binding of HGF and VEGF only to cells expressing CD44v6. Direct binding of CD44v6 to HGF and VEGF was demonstrated in pull-down assays and the binding affinities were determined using MicroScale Thermophoresis, fluorescence correlation spectroscopy and fluorescence anisotropy. The binding affinity of CD44v6 to HGF is in the micromolar range in contrast with the high-affinity binding measured in the case of VEGF and CD44v6, which is in the nanomolar range. These data reveal a heparan sulfate-independent direct binding of CD44v6 to the ligands of Met and VEGFR-2 and suggest different roles of CD44v6 for these RTKs.

  20. Transforming growth factor beta1 and aldosterone

    PubMed Central

    Matsuki, Kota; Hathaway, Catherine K.; Chang, Albert S.; Smithies, Oliver; Kakoki, Masao

    2016-01-01

    Purpose of review It is well established that blocking renin-angiotensin II-aldosterone system (RAAS) is effective for the treatment of cardiovascular and renal complications in hypertension and diabetes mellitus. Although the induction of transforming growth factor beta1 (TGFbeta1) by components of RAAS mediates the hypertrophic and fibrogenic changes in cardiovascular-renal complications, it is still controversial as to whether TGFbeta1 can be a target to prevent such complications. Here we review recent findings on the role of TGFbeta1 in fluid homeostasis, focusing on the relationship with aldosterone. Recent findings TGFbeta1 suppresses adrenal production of aldosterone and renal tubular sodium reabsorption. We have generated mice with TGFbeta1 mRNA expression graded in five steps from 10% to 300% normal, and found that blood pressure and plasma volume are negatively regulated by TGFbeta1. Notably, the 10 % hypomorph exhibits primary aldosteronism and sodium and water retention due to markedly impaired urinary excretion of water and electrolytes. Summary These results identify TGFbeta signaling as an important counterregulatory system against aldosterone. Understanding the molecular mechanisms for the suppressive effects of TGFbeta1 on adrenocortical and renal function may further our understanding of primary aldosteronism as well as assist in the development of novel therapeutic strategies for hypertension. PMID:25587902

  1. Vascular Endothelial Growth Factor in Eye Disease

    PubMed Central

    Penn, J.S.; Madan, A.; Caldwell, R.B.; Bartoli, M.; Caldwell, R.W.; Hartnett, M.E.

    2012-01-01

    Collectively, angiogenic ocular conditions represent the leading cause of irreversible vision loss in developed countries. In the U.S., for example, retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration are the principal causes of blindness in the infant, working age and elderly populations, respectively. Evidence suggests that vascular endothelial growth factor (VEGF), a 40 kDa dimeric glycoprotein, promotes angiogenesis in each of these conditions, making it a highly significant therapeutic target. However, VEGF is pleiotropic, affecting a broad spectrum of endothelial, neuronal and glial behaviors, and confounding the validity of anti-VEGF strategies, particularly under chronic disease conditions. In fact, among other functions VEGF can influence cell proliferation, cell migration, proteolysis, cell survival and vessel permeability in a wide variety of biological contexts. This article will describe the roles played by VEGF in the pathogenesis of retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration. The potential disadvantages of inhibiting VEGF will be discussed, as will the rationales for targeting other VEGF-related modulators of angiogenesis. PMID:18653375

  2. Nerve growth factor actions on the brain

    SciTech Connect

    Martinez, H.J.

    1989-01-01

    We examined the effect of the trophic protein, nerve growth factor (NGF), on cultures of fetal rat neostriatum and basal forebrain-medial septal area (BF-MS) to define its role in brain development. Treatment of cultures with NGF resulted in an increase in the specific activity of the cholinergic enzyme choline acetyltransferase (CAT) in both brain areas. CAT was immunocytochemically localized to neurons. In the BF-MS, NGF treatment elicited a marked increase in staining intensity and an apparent increase in the number of CAT-positive neurons. Moreover, treatment of BF-MS cultures with NGF increased the activity of acetylcholinesterase, suggesting that the cholinergic neuron as a whole was affected. To begin defining mechanisms of action of NGF in the BF-MS, we detected NGF receptors by two independent methods. Receptors were localized to two different cellular populations: neuron-like cells, and non-neuron-like cells. Dissociation studies with ({sup 125}I)NGF suggested that high affinity receptors were localized to the neuron-like population. Only low-affinity receptors were localized to the non-neuron-like cells. Moreover, employing combined immunocytochemistry and ({sup 125}I)NGF autoradiography, we detected a subpopulation of CAT-containing neutrons that exhibited high-affinity binding. Unexpectedly, a gamma-aminobutyric acid (GABA)-containing cell group also expressed high affinity binding. However, only subsets of cholinergic or GABA neurons expressed high-affinity biding, suggesting that these transmitter populations are composed of differentially response subpopulations.

  3. Nerve growth factor enhances sleep in rabbits.

    PubMed

    Takahashi, S; Krueger, J M

    1999-04-02

    Nerve growth factor (NGF) elicits rapid-eye-movement sleep (REMS) in cats. Removal of NGF receptor-positive cholinergic basal forebrain neurons inhibits REMS in rats. The aim of the present study was to determine the effects of NGF on sleep and brain temperature (Tbr) in rabbits. Male rabbits were implanted with electroencephalograph (EEG) electrodes, a brain thermistor and an intraventricular (i.c.v.) guide cannula. Rabbits received human beta-NGF i.c.v. (0.01, 0.1, 1.0 or 10 microg] and on a separate day, 25 microl pyrogen-free saline i.c.v. as control. EEG and Tbr were recorded for 23 h after injections. The highest two doses of NGF increased both non-REMS and REMS across the 23-h recording period. REMS was enhanced dose-dependently. Tbr was not affected by any dose of NGF. These results suggest that NGF is involved in both REMS and non-REMS regulation.

  4. [Epidermal growth factor, innovation and safety].

    PubMed

    Esquirol Caussa, Jordi; Herrero Vila, Elisabeth

    2015-10-05

    Bioidentical recombinant human epidermal growth factor (rhEGF) is available in concentrations and purity suitable for therapeutic use in long time stable formulations. Beneficial effects in several skin pathologies and lesions have been reported (traumatic and surgical wound healing, laser induced wounds, abnormal scars, keloids, radiation or chemotherapy induced dermatitis, post inflammatory hyperpigmentation or for skin aging damage repairing) and also may be considered for the treatment of several oropharingeal and high gastroesophageal tract mucosa diseases (mouth sores, pharyngeal fistulas, ulcers), and several corneal or conjunctive mucosa lesions. rhEGF has not shown any important side or collateral effects in humans or in laboratory experimentation animals, showing optimal tolerability and safety with continuous use for months. Compounding gives advantages of versatility, individualization, personalization, molecular stability, safety and effectiveness in ideal conditions, showing good tissue penetration, both on intact skin and skin lesions that expose the lower planes to the surface. rhEGF compounds can be considered for prevention or as a treatment of diverse skin and mucosa diseases and conditions through compounding preparations.

  5. The Role of the Growth Hormone/Insulin-Like Growth Factor System in Visceral Adiposity

    PubMed Central

    Lewitt, Moira S

    2017-01-01

    There is substantial evidence that the growth hormone (GH)/insulin-like growth factor (IGF) system is involved in the pathophysiology of obesity. Both GH and IGF-I have direct effects on adipocyte proliferation and differentiation, and this system is involved in the cross-talk between adipose tissue, liver, and pituitary. Transgenic animal models have been of importance in identifying mechanisms underlying these interactions. It emerges that this system has key roles in visceral adiposity, and there is a rationale for targeting this system in the treatment of visceral obesity associated with GH deficiency, metabolic syndrome, and lipodystrophies. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research. PMID:28469442

  6. Mechanotransduction and Growth Factor Signalling to Engineer Cellular Microenvironments.

    PubMed

    Cipitria, Amaia; Salmeron-Sanchez, Manuel

    2017-08-01

    Engineering cellular microenvironments involves biochemical factors, the extracellular matrix (ECM) and the interaction with neighbouring cells. This progress report provides a critical overview of key studies that incorporate growth factor (GF) signalling and mechanotransduction into the design of advanced microenvironments. Materials systems have been developed for surface-bound presentation of GFs, either covalently tethered or sequestered through physico-chemical affinity to the matrix, as an alternative to soluble GFs. Furthermore, some materials contain both GF and integrin binding regions and thereby enable synergistic signalling between the two. Mechanotransduction refers to the ability of the cells to sense physical properties of the ECM and to transduce them into biochemical signals. Various aspects of the physics of the ECM, i.e. stiffness, geometry and ligand spacing, as well as time-dependent properties, such as matrix stiffening, degradability, viscoelasticity, surface mobility as well as spatial patterns and gradients of physical cues are discussed. To conclude, various examples illustrate the potential for cooperative signalling of growth factors and the physical properties of the microenvironment for potential applications in regenerative medicine, cancer research and drug testing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. [Periodontal regeneration: the use of polypeptide growth factors].

    PubMed

    Di Genio, M; Barone, A; Ramaglia, L; Sbordone, L

    1994-10-01

    Polypeptide growth factors are a class of potent natural biologic mediators which regulate many of the activities of wound healing including cell proliferation, migration and metabolism. Periodontal regeneration is thought to require the migration and proliferation of periodontal ligament cells on the root surface. In fact, repopulation of the detached root surface by cells from periodontal ligament (PDL) is a prerequisite for new attachment formation. Many studies suggested that Polypeptide Growth Factors (PGF) such as Insulin-like Growth Factor I (IGF-I), Platelet Derived Growth Factor (PDGF), Transforming Growth Factor B (TGF-B), Epidermal Growth Factor (EGF), are important mediators of cellular events in wound healing. Studies in vitro analysed the mitogenic effects determined on periodontal ligament cells by growth factors using (3H) Thymidine incorporation during DNA synthesis. The results suggested that recombinant human PDGF and IGF-I stimulate the proliferation of PDL fibroblastic cells and the combination of these growth factors showed a synergistic effect revealing the highest mitogenic effect among all individual growth factors as well as any combination of the growth factors tested. Furthermore these studies demonstrated that rh-PDGF and IGF-I stimulate chemotaxis of PDL fibroblastic cells, and supported a role for TGF-B as a regulator of the mitogenic response to PDGF in these cells. Other studies in vivo showed periodontal tissues regeneration introducing mixtures of recombinant human platelet derived growth factor and insulin-like growth factor into lesions of experimentally induced periodontitis in beagle dogs and monkeys.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Nerve growth factor gene therapy in Alzheimer disease.

    PubMed

    Tuszynski, Mark H

    2007-01-01

    Nervous system growth factors potently stimulate cell function and prevent neuronal death. These broad effects on survival and function arise from direct downstream activation of antiapoptotic pathways, inhibition of proapoptotic pathways, and stimulation of functionally important cellular mechanisms including ERK/MAP kinase and CREB. Thus, as a class, growth factors offer the potential to treat neurodegenerative disorders for the first time by preventing neuronal degeneration rather than compensating for cell loss after it has occurred. Different growth factors affect distinct and specific populations of neurons: the first nervous system growth factor identified, nerve growth factor, potentially stimulates the survival and function of basal forebrain cholinergic neurons, suggesting that nerve growth factor could be a means for reducing the cholinergic component of cell degeneration in Alzheimer disease. This review will discuss the transition of growth factors from preclinical studies to human clinical trials in Alzheimer disease. The implementation of clinical testing of growth factor therapy for neurologic disease has been constrained by the dual need to achieve adequate concentrations of these proteins in specific brain regions containing degenerating neurons, and preventing growth factor spread to nontargeted regions to avoid adverse effects. Gene therapy is one of a limited number of potential methods for achieving these requirements.

  9. Novel Drosophila receptor that binds multiple growth factors

    SciTech Connect

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-05-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10/sup -6/ to 10/sup -8/ M. The 100 kDa protein can be affinity-labeled with these /sup 125/I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by /sup 125/I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors.

  10. Role of tissue growth factors in aqueous humor homeostasis.

    PubMed

    Welge-Lüssen, U; May, C A; Neubauer, A S; Priglinger, S

    2001-04-01

    The aqueous humor supplies nutrients to the nonvascularized cornea, lens, and trabecular meshwork. A number of tissue growth factors have been detected in this fluid. The composition of these proteins changes dramatically with different ocular conditions, such as inflammation and glaucoma. In this review, an overview of new findings regarding effects of aqueous humor growth factors is given. Our main emphasis is on the regulation of the avascular anterior eye compartment, the possible role of growth factors in the pathogenesis of glaucoma, and the importance of growth factors for the special immunosuppressive status of the anterior chamber.

  11. Insulin-Like Growth Factor-Independent Effects of Growth Hormone on Growth Plate Chondrogenesis and Longitudinal Bone Growth.

    PubMed

    Wu, Shufang; Yang, Wei; De Luca, Francesco

    2015-07-01

    GH stimulates growth plate chondrogenesis and longitudinal bone growth directly at the growth plate. However, it is not clear yet whether these effects are entirely mediated by the local expression and action of IGF-1 and IGF-2. To determine whether GH has any IGF-independent growth-promoting effects, we generated (TamCart)Igf1r(flox/flox) mice. The systemic injection of tamoxifen in these mice postnatally resulted in the excision of the IGF-1 receptor (Igf1r) gene exclusively in the growth plate. (TamCart)Igf1r(flox/flox) tamoxifen-treated mice [knockout (KO) mice] and their Igf1r(flox/flox) control littermates (C mice) were injected for 4 weeks with GH. At the end of the 4-week period, the tibial growth and growth plate height of GH-treated KO mice were greater than those of untreated C or untreated KO mice. The systemic injection of GH increased the phosphorylation of Janus kinase 2 and signal transducer and activator of transcription 5B in the tibial growth plate of the C and KO mice. In addition, GH increased the mRNA expression of bone morphogenetic protein-2 and the mRNA expression and protein phosphorylation of nuclear factor-κB p65 in both C and KO mice. In cultured chondrocytes transfected with Igf1r small interfering RNA, the addition of GH in the culture medium significantly induced thymidine incorporation and collagen X mRNA expression. In conclusion, our findings demonstrate that GH can promote growth plate chondrogenesis and longitudinal bone growth directly at the growth plate, even when the local effects of IGF-1 and IGF-2 are prevented. Further studies are warranted to elucidate the intracellular molecular mechanisms mediating the IGF-independent, growth-promoting GH effects.

  12. Fibroblast Growth Factor Signaling in Metabolic Regulation

    PubMed Central

    Nies, Vera J. M.; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T.; Atkins, Annette R.; Evans, Ronald M.; Jonker, Johan W.; Downes, Michael Robert

    2016-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions. PMID:26834701

  13. Phospholipase C-epsilon augments epidermal growth factor-dependent cell growth by inhibiting epidermal growth factor receptor down-regulation.

    PubMed

    Yun, Sanguk; Hong, Won-Pyo; Choi, Jang Hyun; Yi, Kye Sook; Chae, Suhn-Kee; Ryu, Sung Ho; Suh, Pann-Ghill

    2008-01-04

    The down-regulation of the epidermal growth factor (EGF) receptor is critical for the termination of EGF-dependent signaling, and the dysregulation of this process can lead to oncogenesis. In the present study, we suggest a novel mechanism for the regulation of EGF receptor down-regulation by phospholipase C-epsilon. The overexpression of PLC-epsilon led to an increase in receptor recycling and decreased the down-regulation of the EGF receptor in COS-7 cells. Adaptor protein complex 2 (AP2) was identified as a novel binding protein that associates with the PLC-epsilon RA2 domain independently of Ras. The interaction of PLC-epsilon with AP2 was responsible for the suppression of EGF receptor down-regulation, since a perturbation in this interaction abolished this effect. Enhanced EGF receptor stability by PLC-epsilon led to the potentiation of EGF-dependent growth in COS-7 cells. Finally, the knockdown of PLC-epsilon in mouse embryo fibroblast cells elicited a severe defect in EGF-dependent growth. Our results indicated that PLC-epsilon could promote EGF-dependent cell growth by suppressing receptor down-regulation.

  14. In vivo growth of a bioengineered internal anal sphincter: comparison of growth factors for optimization of growth and survival.

    PubMed

    Miyasaka, Eiichi A; Raghavan, Shreya; Gilmont, Robert R; Mittal, Krittika; Somara, Sita; Bitar, Khalil N; Teitelbaum, Daniel H

    2011-02-01

    Our laboratory has developed and implanted a novel bioengineered internal anal sphincter (IAS) to treat anal incontinence. Fibroblast growth factor-2 (FGF-2) has been used in mice; however, the optimal growth factor for successful IAS implantation is unclear. This study compares several growth factors in order to optimize IAS viability and functionality. Bioengineered IAS rings were implanted subcutaneously into the dorsum of wildtype C57Bl/6 mice, with an osmotic pump dispensing FGF-2, vascular endothelial growth factor (VEGF), or platelet-derived growth factor (PDGF) (n = 4 per group). Control mice received IAS implants but no growth factor. The IAS was harvested approximately 25 days post-implantation. Tissue was subjected to physiologic testing, then histologically analyzed. Muscle phenotype was confirmed by immunofluorescence. All implants supplemented with growth factors maintained smooth muscle phenotype. Histological scores, blood vessel density and muscle fiber thickness were all markedly better with growth factors. Neovascularization was comparable between the three growth factors. Basal tonic force of the constructs was highest with VEGF or PDGF. All growth factors demonstrated excellent performance. As our ultimate goal is clinical implantation, our strong results with PDGF, a drug approved for use in the United States and the European Union, pave the way for translating bioengineered IAS implantation to the clinical realm.

  15. Nature of Interaction between basic fibroblast growth factor and the antiangiogenic drug 7,7-(carbonyl-bis[imino-N-methyl-4,2-pyrrolecarbonylimino[N-methyl-4,2-pyrrole]-carbonylimino])-bis-(1,3-naphtalene disulfonate). II. Removal of polar interactions affects protein folding.

    PubMed Central

    Zamai, Moreno; Hariharan, Chithra; Pines, Dina; Safran, Michal; Yayon, Avner; Caiolfa, Valeria R; Cohen-Luria, Rivka; Pines, Ehud; Parola, Abraham H

    2002-01-01

    Fibroblast growth factor-2 (basic FGF), a potent inducer of angiogenesis, and the naphthalene sulfonic distamycin A derivative, 7,7-(carbonyl-bis[imino-N-methyl-4,2-pyrrolecarbonylimino[N-methyl-4,2-pyrrole]-carbonylimino])-bis-(1,3-naphtalene disulfonate) (PNU145156E), which exhibits in vivo antiangiogenic activity, form a tight reversible (1:1) complex. PNU145156E binds to the heparin and the selenate-binding sites on bFGF. The cis bFGF-heparin (2:1) complex, essential for the activation of the angiogenic process, is thus prevented. The nature of the forces involved in bFGF:PNU145156E complex, using the wild-type and the K128Q, K138Q, K134Q, and K128Q-K138Q point mutated bFGFs was sought. Based on thermodynamic analysis of the complexation constants, protein temperature stability profiles by ultraviolet absorption, circular dichroism measurements, fluorescence Förster energy-transfer, and anisotropy studies, in harmony with the published x-ray crystallographic structure, the following molecular interactions are proposed: reduced coulombic interactions, hence loosening of the complex by the removal of charged polar groups from the bFGF-heparin binding cleft resulted in decreased binding constants and in a change in the binding mode from polar to nonpolar. Concomitantly, upon mutation, the protein was rendered more compact, less flexible, and less aqueously exposed compared with the wild type. These were further pronounced with the double mutant: weaker dominantly nonpolar protein-drug interactions were accompanied by conspicuous folding. With heparin, however, wild-type bFGF forms a tighter complex with a more compact structure. PMID:11964252

  16. A novel tumor necrosis factor-responsive transcription factor which recognizes a regulatory element in hemopoietic growth factor genes

    SciTech Connect

    Shannon, M.F.; Pell, L.M.; Kuczek, E.S.; Occhiodoro, F.S.; Dunn, S.M.; Vadas, M.A. ); Lenardo, M.J. )

    1990-06-01

    A conserved DNA sequence element, termed cytokine 1 (CK-1), is found in the promoter regions of many hemopoietic growth factor (HGF) genes. Mutational analyses and modification interference experiments show that this sequence specifically binds a nuclear transcription factor, NF-GMa, which is a protein with a molecular mass of 43 kilodaltons. It interacts with different affinities with the CK-1-like sequence from a number of HGF genes, including granulocyte macrophage colony-stimulating factor (GM-CSF), granulocyte (G)-CSF, interleukin 3 (IL-3), and IL-5. The authors show that the level of NF-GMa binding is induced in embryonic fibroblasts by tumor necrosis factor {alpha} (TNF-{alpha}) treatment and that the CK-1 sequence from the G-CSF gene is a TNF-{alpha}-responsive enhancer in these cells.

  17. Expression of growth factors and growth factor receptors in human cleft-affected tissue.

    PubMed

    Krivicka, Benita; Pilmane, Mara; Akota, Ilze

    2013-01-01

    OBJECTIVE. To investigate cleft disordered tissue in children with cleft palate and cleft lip with or without alveolar clefting for detection of local tissue growth factors and growth factor receptors and compare findings. Design. Morphological analysis of human tissue. Patients. Three groups were studied: 14 patients with cleft palate at the age from eight months to 18 years and two months, 12 patients with cleft lip with or without alveolar clefting in the age from four months to 15 years and four months and 11 control patients. RESULTS. In general, cleft palate disordered tissue showed more prominent expression of BMP2/4 (z=3.574; p=0.0004) and TGFβ (z=2.127; p=0.033), while expression of TGFBR3 significantly higher was only in connective tissue (z=3.822; p=0.0001). Cleft lip affected tissue showed significantly pronounced expression of FGFR1 in general as well as separately in epithelium. CONCLUSIONS. The marked and statistically significant expression of BMP 2/4 in cleft palate disordered soft tissue probably is delayed, but still proliferation and differentiation as well as tissue, especially, bone remodeling contributing signal. Cleft palate affected tissue show more prominent expression of TGFβ, still the weak regional expression of TGFβ type III receptors prove the disordered tissue growth and changed TGFβ signalling pathway in postnatal pathogenesis. In general, expression of TGFβ, BMP 2/4 and FGFR1 is significantly different, giving evidence to the involvement of these mentioned factors in the cleft severity morphopathogenesis.

  18. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel

    NASA Astrophysics Data System (ADS)

    Bruggeman, Kiara F.; Rodriguez, Alexandra L.; Parish, Clare L.; Williams, Richard J.; Nisbet, David R.

    2016-09-01

    Protein growth factors have demonstrated great potential for tissue repair, but their inherent instability and large size prevents meaningful presentation to biologically protected nervous tissue. Here, we create a nanofibrous network from a self-assembling peptide (SAP) hydrogel to carry and stabilize the growth factors. We significantly reduced growth factor degradation to increase their lifespan by over 40 times. To control the temporal release profile we covalently attached polysaccharide chitosan molecules to the growth factor to increase its interactions with the hydrogel nanofibers and achieved a 4 h delay, demonstrating the potential of this method to provide temporally controlled growth factor delivery. We also describe release rate based analysis to examine the growth factor delivery in more detail than standard cumulative release profiles allow and show that the chitosan attachment method provided a more consistent release profile with a 60% reduction in fluctuations. To prove the potential of this system as a complex growth factor delivery platform we demonstrate for the first time temporally distinct release of multiple growth factors from a single tissue specific SAP hydrogel: a significant goal in regenerative medicine.

  19. Clinical Application of Growth Factors and Cytokines in Wound Healing

    PubMed Central

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2016-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies and future research possibilities. In this review we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include: granulocyte-macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy. PMID:24942811

  20. An Exploratory Study of Factors Differentiating Freshmen Educational Growth.

    ERIC Educational Resources Information Center

    Lenning, Oscar T.

    The present study was an exploratory investigation of factors that differentiate students who exhibit "negative educational growth" from a group of equally able students who exhibit marked "positive educational growth." Educational growth was operationally defined as estimated true test-retest change on American College Tests (ACT) composite…

  1. Interactions of cosmic rays in the atmosphere: growth curves revisited

    SciTech Connect

    Obermeier, A.; Boyle, P.; Müller, D.; Hörandel, J.

    2013-12-01

    Measurements of cosmic-ray abundances on balloons are affected by interactions in the residual atmosphere above the balloon. Corrections for such interactions are particularly important for observations of rare secondary particles such as boron, antiprotons, and positrons. These corrections either can be calculated if the relevant cross sections in the atmosphere are known or may be empirically determined by extrapolation of the 'growth curves', i.e., the individual particle intensities as functions of atmospheric depth. The growth-curve technique is particularly attractive for long-duration balloon flights where the periodic daily altitude variations permit rather precise determinations of the corresponding particle intensity variations. We determine growth curves for nuclei from boron (Z = 5) to iron (Z = 26) using data from the 2006 Arctic balloon flight of the TRACER detector for cosmic-ray nuclei, and we compare the growth curves with predictions from published cross section values. In general, good agreement is observed. We then study the boron/carbon abundance ratio and derive a simple and energy-independent correction term for this ratio. We emphasize that the growth-curve technique can be developed further to provide highly accurate tests of published interaction cross section values.

  2. Interaction Effects in Growth Modeling: A Full Model.

    ERIC Educational Resources Information Center

    Wen, Zhonglin; Marsh, Herbert W.; Hau, Kit-Tai

    2002-01-01

    Points out two concerns with recent research by F. Li and others (2000) and T. Duncan and others (1999) that extended the structural equation model of latent interactions developed by K. Joreskog and F. Yang (1996) to latent growth modeling. Used mathematical derivation and a comparison of alternative models fitted to simulated data to develop a…

  3. Fibroblast growth factor signaling in skeletal development and disease

    PubMed Central

    Ornitz, David M.; Marie, Pierre J.

    2015-01-01

    Fibroblast growth factor (FGF) signaling pathways are essential regulators of vertebrate skeletal development. FGF signaling regulates development of the limb bud and formation of the mesenchymal condensation and has key roles in regulating chondrogenesis, osteogenesis, and bone and mineral homeostasis. This review updates our review on FGFs in skeletal development published in Genes & Development in 2002, examines progress made on understanding the functions of the FGF signaling pathway during critical stages of skeletogenesis, and explores the mechanisms by which mutations in FGF signaling molecules cause skeletal malformations in humans. Links between FGF signaling pathways and other interacting pathways that are critical for skeletal development and could be exploited to treat genetic diseases and repair bone are also explored. PMID:26220993

  4. An integrated and disease-oriented growth factor-regulated signal transduction network.

    PubMed

    Erol, A

    2013-01-01

    The importance of Akt, Erk, and their downstream effectors-mediated signaling is indisputable for the proliferation of cell. Growth factor-induced activation of Akt and Erk pathways interacts with each other to regulate proliferation. However, an instructive model, wiring the crucial signaling nodes working in cellular growth and division, is still absent or controversial. Although growth factor-mediated mTORC1 regulation is defined considerably, debates still exist formTORC2. TSC1-TSC2 complex integrates both nutrient and mitogenic signals coming from growth factor receptors. Growth factor-induced PI3K/Akt- and Ras/Erk-mediated TSC2 inhibition is well defined. However, the interaction between TSC complex and new molecules such as Pin1 and DAPK requires further clarifications. Furthermore, the Wnt-β-catenin signaling pathway also intersects with the growth factor signaling at TSC1/TSC2 junction. Therefore, the aim of this perspective paper is to suggest an integrated model, linking growth factor-activated crucial signaling nodes in order to supply key molecular connections to degenerative diseases.

  5. Expression of vascular endothelial growth factor and basic fibroblast growth factor in extramammary Paget disease.

    PubMed

    Xu, Xiaoyun; Shao, Ning; Qiao, Di; Wang, Zengjun; Song, Ningjing; Song, Ninghong

    2015-01-01

    Extramammary Paget's disease (EMPD) is a special type of cancers. The etiology of the disease is still unclear. We aimed to study the expression differences of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in EMPD tissues and corresponding adjacent normal tissues. The mRNA expression was detected by RT-PCR and the protein expression was explored by immunohistochemistry. Higher immunostaining signal scores of bFGF and VEGF in EMPD tissues had been found (z=-3.827, P<0.001, z=-3.729, P<0.001, respectively). In addition, the mRNA expression of bFGF and VEGF was higher in EMPD tissues, which had been validated by RT-PCR (t=5.771, P<0.001, t=3.304, P=0.004, respectively). The VEGF and bFGF might be the key signaling proteins in angiogenesis of EMPD. How to block the VEGF and bFGF in EMPD and to destroy the blood supply of the tumor cells becomes the focus of our future research.

  6. Nerve growth factor-mediated vascular endothelial growth factor expression of astrocyte in retinal vascular development.

    PubMed

    Kim, You Sun; Jo, Dong Hyun; Lee, Hanjae; Kim, Jin Hyoung; Kim, Kyu-Won; Kim, Jeong Hun

    2013-02-22

    The angiogenic aspect of neurotrophins and their receptors rather than the neuroscientific aspect has been focused. However, their role in retinal vascular development is underdiscovered. The purpose of this study is to understand the role of neurotrophin receptors in retinal vascular development and the mechanisms of their action. To identify the expression of tropomyosin receptor kinase receptor (Trk) in developing retina, tissues of 4, 8, 12, 16 and 26 day-old mice were prepared for experiments. Immunohistochemistry and immunofluorescence double staining against glial fibrillary acidic protein and type IV collagen were performed. TrkA was expressed mainly along the vessel structure in inner part of retina, especially in retinal astrocyte. In cultured primary astrocyte, recombinant nerve growth factor (NGF) was used to activate TrkA. NGF induced the phosphorylation of TrkA, and it also enhanced the level of activated Akt and vascular endothelial growth factor (VEGF) mRNA. Inhibition of phosphoinositide 3-kinase (PI3K) reversed the NGF-induced activation of these two molecules. This study demonstrated that TrkA activation on NGF leads to VEGF elevation by PI3K-Akt pathway and therefore suggested that TrkA could be a stimulator of retinal vascular development. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Epidermal growth factor receptor mutation enhances expression of vascular endothelial growth factor in lung cancer.

    PubMed

    Hung, Ming-Szu; Chen, I-Chuan; Lin, Paul-Yann; Lung, Jr-Hau; Li, Ya-Chin; Lin, Yu-Ching; Yang, Cheng-Ta; Tsai, Ying-Huang

    2016-12-01

    Epidermal growth factor receptor (EGFR) activation has been demonstrated to have a critical role in tumor angiogenesis. In the present study, the correlation between EGFR mutations and vascular endothelial growth factor (VEGF) was investigated in lung cancer cell lines and non-small-cell lung cancer (NSCLC) tumor tissues. VEGF levels were significantly increased in culture medium of lung cancer cells and NSCLC tissues with EGFR mutations (H1650 vs. A549, P=0.0399; H1975 vs. A549, P<0.0001). Stable lung cancer cell lines expressing mutant (exon 19 deletion, E746-A750; exon 21 missense mutation, L858R) and wild-type EGFR genes were established. Significantly increased expression of VEGF and stronger inhibitory effects of gefitinib to VEGF expression were observed in exon 19 deletion stable lung cancer cells (exon 19 deletion vs. wild-type EGFR, P=0.0005). The results of the present study may provide an insight into the association of mutant EGFR and VEGF expression in lung cancer, and may assist with further development of targeted therapy for NSCLC in the future.

  8. Mammary tumorigenesis induced by fibroblast growth factor receptor 1 requires activation of the epidermal growth factor receptor.

    PubMed

    Bade, Lindsey K; Goldberg, Jodi E; Dehut, Hazel A; Hall, Majken K; Schwertfeger, Kathryn L

    2011-09-15

    Fibroblast growth factor receptor 1 (FGFR1) is an oncoprotein with known involvement in mammary tumorigenesis. To understand how FGFR1 signaling promotes mammary tumorigenesis, an inducible FGFR1 (iFGFR1) system was created previously. Previous studies have demonstrated that upon iFGFR1 activation in vivo, the epidermal growth factor (EGF) ligands amphiregulin (AREG) and epiregulin (EREG) are upregulated. Both AREG and EREG interact with the EGF receptor (EGFR). Here, we investigated whether the FGFR1-induced increase in AREG and EREG expression might coordinately increase EGFR signaling to promote mammary tumorigenesis. Treatment of mouse mammary epithelial cells with either AREG or EREG conferred a greater migratory potential, increased cellular proliferation and increased extracellular regulated kinase 1/2 (ERK1/2) activation. These effects could be blocked with the EGFR-specific inhibitor erlotinib, suggesting that they are EGFR-dependent. In transgenic mice with iFGFR1 under the control of the mouse mammary tumor virus (MMTV) promoter, iFGFR1 activation also led to increased mammary epithelial cell proliferation that was inhibited with erlotinib. Taken together, these data suggest that AREG and EREG mediate tumorigenic phenotypes by activating EGFR signaling, and that the oncogenic potential of FGFR1 requires EGFR activation to promote mammary tumorigenesis.

  9. Systemic inflammation, growth factors, and linear growth in the setting of infection and malnutrition.

    PubMed

    DeBoer, Mark D; Scharf, Rebecca J; Leite, Alvaro M; Férrer, Alessandra; Havt, Alexandre; Pinkerton, Relana; Lima, Aldo A; Guerrant, Richard L

    2017-01-01

    Deficits in weight gain and linear growth are seen frequently among children in areas where malnutrition and recurrent infections are common. Although both inflammation and malnutrition can result in growth hormone (GH) resistance, the interrelationships of infection, inflammation, and growth deficits in developing areas remain unclear. The aim of this study was to evaluate relationships between low levels of systemic inflammation, growth factors, and anthropometry in a case-control cohort of underweight and normal weight children in northern Brazil. We evaluated data from 147 children ages 6 to 24 mo evaluated in the MAL-ED (Interactions of Malnutrition and Enteric Disease) case-control study following recruitment from a nutrition clinic for impoverished families in Fortaleza, Brazil. We used nonparametric tests and linear regression to evaluate relationships between current symptoms of infections (assessed by questionnaire), systemic inflammation (assessed by high-sensitivity C-reactive protein [hsCRP]), the GH insulin-like growth factor-1 (IGF-1) axis, and measures of anthropometry. All models were adjusted for age and sex. Children with recent symptoms of diarrhea, cough, and fever (compared with those without symptoms) had higher hsCRP levels; those with recent diarrhea and fever also had lower IGF-1 and higher GH levels. Stool myeloperoxidase was positively associated with serum hsCRP. hsCRP was in turn positively associated with GH and negatively associated with IGF-1 and IGF-binding protein-3 (IGFBP-3), suggesting a state of GH resistance. After adjustment for hsCRP, IGF-1 and IGFBP-3 were positively and GH was negatively associated with Z scores for height and weight. Infection and inflammation were linked to evidence of GH resistance, whereas levels of GH, IGF-1, and IGFBP-3 were associated with growth indices independent of hsCRP. These data implicate complex interrelationships between infection, nutritional status, GH axis, and linear growth in

  10. [Cytokines and growth factors as autocrine and paracrine modulators in the peri-implantation period].

    PubMed

    Alvarez Rodríguez, C; Hernández Padilla, M; Baiza Gutman, L A

    1999-02-01

    The embryo implantation is a complex event that involve a interactions sequence among conceptus and uterine endometrium. Several cytokines and growth factors participate as autocrine/paracrine modulators in such interrelations. In this paper the role and expression and functions of cytokines and growth factors in early pregnancy are analyzed. Post-coito expression of cytokines in uterine cells and leukocytes promoting a uterine inflammatory response to semen. The growth factors are expressed in early pregnancy for several uterine tissues. The ovarian steroid hormones modulate the synthesis and secretion of this molecules in uterus. Autocrine and paracrine regulation are require for embryo implantation. At least interleukin-1, leukemia inhibitor factor and epidermal growth factor receptor are indispensable to mice embryo implantation.

  11. Material factors influencing metallic whisker growth

    NASA Astrophysics Data System (ADS)

    Rodekohr, Chad L.

    Whiskering refers to the formation of slender, long, metallic filaments, much thinner than a human hair, that grow on a metallic thin film surface. They are readily observed for pure and alloyed zinc (Zn), silver (Ag), cadmium (Cd), indium (In), and tin (Sn) surfaces. The longest reported whisker length is 4.5 mm long but most high-aspect ratio whiskers range from 1-500 mum. The focus of this research is upon Sn whiskers. Sn whiskers pose serious reliability problems for the electronics industry and are known to be the source of failure in a wide range of electronic devices, such as nuclear power facilities, heart pacemakers, commercial satellites, aviation radar, telecommunication equipment, and desktop computers. The problem with whiskering has been recently exacerbated by the worldwide shift to lead (Pb) free electronics and the continuing reduction in electrical contact pitches. A thorough understanding of the growth mechanism of Sn whiskers is urgently needed. Currently, there is no universally accepted model that explains the broad range of observations on whiskering. The goals of this research are: (1) to develop a more detailed understanding of the physical mechanisms leading to the initiation and growth of Sn whiskers and (2) to outline reasonable mitigation strategies that could be followed to reduce or eliminate the problem of Sn whiskers. The major contributions of this work are: (1) A reliable method for growing Sn whiskers with predictable incubation times has been developed and tested. (2) A surface oxide is not necessary for whisker growth. (3) Intermetallic compounds (IMC) are not necessary for whisker growth. (4) Smoother, not rougher, substrate surfaces promote whisker growth. (5) Whiskers grow under both compressive and tensile thin film stress states. (6) Whisker growth increases with externally applied compression and tension forces. (7) Sn whiskers are composed of pure Sn except for the expected thin, native Sn oxide on their surface. (8) For

  12. Nerve growth factor and epidermal growth factor stimulate clusterin gene expression in PC12 cells.

    PubMed Central

    Gutacker, C; Klock, G; Diel, P; Koch-Brandt, C

    1999-01-01

    Clusterin (apolipoprotein J) is an extracellular glycoprotein that might exert functions in development, cell death and lipid transport. Clusterin gene expression is elevated at sites of tissue remodelling, such as differentiation and apoptosis; however, the signals responsible for this regulation have not been identified. We use here the clusterin gene as a model system to examine expression in PC12 cells under the control of differentiation and proliferation signals produced by nerve growth factor (NGF) and by epidermal growth factor (EGF) respectively. NGF induced clusterin mRNA, which preceded neurite outgrowth typical of neuronal differentiation. EGF also activated the clusterin mRNA, demonstrating that both proliferation and differentiation signals regulate the gene. To localize NGF- and EGF-responsive elements we isolated the clusterin promoter and tested it in PC12 cell transfections. A 2.5 kb promoter fragment and two 1.5 and 0.3 kb deletion mutants were inducible by NGF and EGF. The contribution to this response of a conserved activator protein 1 (AP-1) motif located in the 0.3 kb fragment was analysed by mutagenesis. The mutant promoter was not inducible by NGF or EGF, which identifies the AP-1 motif as an element responding to both factors. Binding studies with PC12 nuclear extracts showed that AP-1 binds to this sequence in the clusterin promoter. These findings suggest that NGF and EGF, which give differential gene regulation in PC12 cells, resulting in neuronal differentiation and proliferation respectively, use the common Ras/extracellular signal-regulated kinase/AP-1 signalling pathway to activate clusterin expression. PMID:10215617

  13. Recombinant pigment epithelium-derived factor PEDF binds vascular endothelial growth factor receptors 1 and 2.

    PubMed

    Johnston, Erin K; Francis, Mary K; Knepper, Janice E

    2015-08-01

    Angiogenesis, or the formation of new blood vessels, is stimulated by angiogenic factors such as vascular endothelial growth factor (VEGF). Pigment epithelium-derived factor (PEDF) is a potent inhibitor of angiogenesis. To explore the mechanism by which PEDF acts, recombinant PEDF was expressed with a 6x-His tag (for purification) and a green fluorescent protein (GFP) tag. The PEDF fusion protein was confirmed to be active in inhibition of endothelial cell proliferation and migration. Direct binding of PEDF to both vascular endothelial growth factor receptor-1 (VEGFR-1) and VEGFR-2 was demonstrated in an in vitro assay similar to an enzyme-linked immunosorbent assay (ELISA). PEDF was shown by immune-confocal microscopy to be localized within treated endothelial cells. When VEGF-stimulated endothelial cells were incubated with PEDF the VEGF receptors showed intracellular localization. These data suggest that the interaction between PEDF and VEGFR-1 or VEGFR-2 may be a possible mechanism for inhibiting angiogenesis. PEDF may be binding to the VEGF receptors to promote their internalization and/or degradation to limit VEGF responses in treated cells.

  14. Heparin-binding epidermal growth factor-like growth factor and hepatocyte growth factor inhibit cholestatic liver injury in mice through different mechanisms

    PubMed Central

    Sakamoto, Kouichi; Khai, Ngin Cin; Wang, Yuqing; Irie, Rie; Takamatsu, Hideo; Matsufuji, Hiroshi; Kosai, Ken-Ichiro

    2016-01-01

    In contrast to hepatocyte growth factor (HGF), the therapeutic potential and pathophysiologic roles of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in liver diseases remain relatively unknown. To address the lack of effective pharmacologic treatments for cholestatic liver injuries, as well as to clarify the biologic features of these growth factors, we explored the effects of HB-EGF and HGF in mice with cholestatic liver injury induced by bile duct ligation (BDL). The mice were assessed 3, 5 and/or 14 days after BDL (acute, subacute and/or chronic phases, respectively) and intravenous injection of adenoviral vector expressing LacZ (control), HB-EGF, HGF, or HB-EGF and HGF. HB-EGF, HGF, or a combination of the growth factors exerted potent antioncotic (antinecrotic), antiapoptotic, anticholestatic, and regenerative effects on hepatocytes in vivo, whereas no robust antiapoptotic or regenerative effects were detected in interlobular bile ducts. Based on serum transaminase levels, the acute protective effects of HB-EGF on hepatocytes were greater than those of HGF. On the other hand, liver fibrosis and cholestasis during the chronic phase were more potently inhibited by HGF compared with HB-EGF. Compared with either growth factor alone, combining HB-EGF and HGF produced greater anticholestatic and regenerative effects during the chronic phase. Taken together, these findings suggest that HB-EGF and HGF inhibited BDL-induced cholestatic liver injury, predominantly by exerting acute cytoprotective and chronic antifibrotic effects, respectively; combining the growth factors enhanced the anticholestatic effects and liver regeneration during the chronic phase. Our results contribute to a better understanding of the pathophysiologic roles of HB-EGF and HGF, as well as to the development of novel effective therapies for cholestatic liver injuries. PMID:27779646

  15. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  16. The discovery of basic fibroblast growth factor/fibroblast growth factor-2 and its role in haematological malignancies.

    PubMed

    Ribatti, Domenico; Vacca, Angelo; Rusnati, Marco; Presta, Marco

    2007-01-01

    Basic fibroblast growth factor/fibroblast growth factor-2 is one of the best characterized of the pro-angiogenic cytokines. This review describes its history, as well as its role in tumor angiogenesis associated with haematological malignancies, as traced by the main contributions to the international medical literature.

  17. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  18. Endogenous versus Exogenous Growth Factor Regulation of Articular Chondrocytes

    PubMed Central

    Shi, Shuiliang; Chan, Albert G.; Mercer, Scott; Eckert, George J.; Trippel, Stephen B.

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-ß1 stimulated these reparative functions, while endogenous TGF-ß1 had little effect. Endogenous TGF-ß1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-ß1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. PMID:24105960

  19. Structure of the IGF-binding domain of the insulin-like growth factor-binding protein-5 (IGFBP-5): implications for IGF and IGF-I receptor interactions.

    PubMed Central

    Kalus, W; Zweckstetter, M; Renner, C; Sanchez, Y; Georgescu, J; Grol, M; Demuth, D; Schumacher, R; Dony, C; Lang, K; Holak, T A

    1998-01-01

    Binding proteins for insulin-like growth factors (IGFs) IGF-I and IGF-II, known as IGFBPs, control the distribution, function and activity of IGFs in various cell tissues and body fluids. Insulin-like growth factor-binding protein-5 (IGFBP-5) is known to modulate the stimulatory effects of IGFs and is the major IGF-binding protein in bone tissue. We have expressed two N-terminal fragments of IGFBP-5 in Escherichia coli; the first encodes the N-terminal domain of the protein (residues 1-104) and the second, mini-IGFBP-5, comprises residues Ala40 to Ile92. We show that the entire IGFBP-5 protein contains only one high-affinity binding site for IGFs, located in mini-IGFBP-5. The solution structure of mini-IGFBP-5, determined by nuclear magnetic resonance spectroscopy, discloses a rigid, globular structure that consists of a centrally located three-stranded anti-parallel beta-sheet. Its scaffold is stabilized further by two inside packed disulfide bridges. The binding to IGFs, which is in the nanomolar range, involves conserved Leu and Val residues localized in a hydrophobic patch on the surface of the IGFBP-5 protein. Remarkably, the IGF-I receptor binding assays of IGFBP-5 showed that IGFBP-5 inhibits the binding of IGFs to the IGF-I receptor, resulting in reduction of receptor stimulation and autophosphorylation. Compared with the full-length IGFBP-5, the smaller N-terminal fragments were less efficient inhibitors of the IGF-I receptor binding of IGFs. PMID:9822601

  20. Mathematical Modeling of Tumor Cell Growth and Immune System Interactions

    NASA Astrophysics Data System (ADS)

    Rihan, Fathalla A.; Safan, Muntaser; Abdeen, Mohamed A.; Abdel-Rahman, Duaa H.

    In this paper, we provide a family of ordinary and delay differential equations to describe the dynamics of tumor-growth and immunotherapy interactions. We explore the effects of adoptive cellular immunotherapy on the model and describe under what circumstances the tumor can be eliminated. The possibility of clearing the tumor, with a strategy, is based on two parameters in the model: the rate of influx of the effector cells, and the rate of influx of IL2. The critical tumor-growth rate, below which endemic tumor does not exist, has been found. One can use the model to make predictions about tumor-dormancy.

  1. Latent Factors in Student-Teacher Interaction Factor Analysis

    ERIC Educational Resources Information Center

    Le, Thu; Bolt, Daniel; Camburn, Eric; Goff, Peter; Rohe, Karl

    2017-01-01

    Classroom interactions between students and teachers form a two-way or dyadic network. Measurements such as days absent, test scores, student ratings, or student grades can indicate the "quality" of the interaction. Together with the underlying bipartite graph, these values create a valued student-teacher dyadic interaction network. To…

  2. Laying the groundwork for growth: Cell-cell and cell-ECM interactions in cardiovascular development.

    PubMed

    Bowers, Stephanie L K; Baudino, Troy A

    2010-03-01

    Cardiac development is reliant upon the spatial and temporal regulation of both genetic and chemical signals. Central to the communication of these signals are direct interactions between cells and their surrounding environment. The extracellular matrix (ECM) plays an integral role in cell communication and tissue growth throughout development by providing both structural support and chemical signaling factors. The present review discusses elements of cell-cell and cell-ECM interactions involved in cardiogenesis, and how disruption of these interactions can result in numerous heart defects. Examining the relationships between cells and their immediate environment has implications for novel and existing therapeutic strategies to combating congenital disorders.

  3. Regulation of transferrin receptor expression at the cell surface by insulin-like growth factors, epidermal growth factor and platelet-derived growth factor

    SciTech Connect

    Davis, R.J.; Kuck, L.; Faucher, M.; Czech, M.P.

    1986-05-01

    Addition of platelet-derived growth factor (PDGF), recombinant insulin-like growth factor I (rIGF-I) or epidermal growth factor (EGF) to BALB/c 3T3 fibroblasts causes a marked increase in the binding of (/sup 125/I) diferric transferrin to cell surface receptors. This effect is very rapid and is complete within 5 minutes. The effect is transient with (/sup 125/I) diferric transferrin binding returning to control values within 25 minutes. In contrast, PDGF and rIGF-I cause a prolonged stimulation of (/sup 125/I) diferric transferrin binding that could be observed up to 2 hours. The increase in the binding of (/sup 125/I) diferric transferrin caused by growth factors was investigated by analysis of the binding isotherm. EGF, PDGF and rIGF-I were found to increase the cell surface expression of transferrin receptors rather than to alter the affinity of the transferrin receptors. Furthermore, PDGF and rIGF-I stimulated the sustained uptake of (/sup 59/Fe) diferric transferrin by BALB/c 3T3 fibroblasts. Thus, the effect of these growth factors to increase the cell surface expression of the transferrin receptor appears to have an important physiological consequence.

  4. High-growth-factor implosions (HEP4)

    SciTech Connect

    Landen, O.L.; Keane, C.J.; Hammel, B.A.

    1996-06-01

    In inertial confinement fusion (ICF), the kinetic energy of an ablating, inward-driven, solid spherical shell is used to compressionally heat the low-density fuel inside. For a given drive, the maximum achievable compressed fuel density and temperature - and hence the maximum neutron production rate depend on the degree of shell isentropy and integrity maintained during the compression. Shell integrity will be degraded by hydrodynamic instability growth of areal density imperfections in the capsule. Surface imperfections on the shell grow as a result of the Richtmyer-Meshkov and Rayleigh-Taylor (RT) instabilities when the shell is accelerated by the ablating lower-density plasma. Perturbations at the outer capsule surface are transferred hydrodynamically to the inner surface, where deceleration of the shell by the lower-density fuel gives rise to further RT growth at the pusher-fuel interface.

  5. Structural basis for agonism and antagonism of hepatocyte growth factor

    SciTech Connect

    Tolbert, W. David; Daugherty-Holtrop, Jennifer; Gherardi, Ermanno; Vande Woude, George; Xu, H. Eric

    2010-11-01

    Hepatocyte growth factor (HGF) is an activating ligand of the Met receptor tyrosine kinase, whose activity is essential for normal tissue development and organ regeneration but abnormal activation of Met has been implicated in growth, invasion, and metastasis of many types of solid tumors. HGF has two natural splice variants, NK1 and NK2, which contain the N-terminal domain (N) and the first kringle (K1) or the first two kringle domains of HGF. NK1, which is a Met agonist, forms a head-to-tail dimer complex in crystal structures and mutations in the NK1 dimer interface convert NK1 to a Met antagonist. In contrast, NK2 is a Met antagonist, capable of inhibiting HGF's activity in cell proliferation without clear mechanism. Here we report the crystal structure of NK2, which forms a 'closed' monomeric conformation through interdomain interactions between the N- domain and the second kringle domain (K2). Mutations that were designed to open up the NK2 closed conformation by disrupting the N/K2 interface convert NK2 from a Met antagonist to an agonist. Remarkably, this mutated NK2 agonist can be converted back to an antagonist by a mutation that disrupts the NK1/NK1 dimer interface. These results reveal the molecular determinants that regulate the agonist/antagonist properties of HGF NK2 and provide critical insights into the dimerization mechanism that regulates the Met receptor activation by HGF.

  6. Transforming growth factor beta-3 and environmental factors and cleft lip with/without cleft palate.

    PubMed

    Guo, Zeqiang; Huang, Chengle; Ding, Kaihong; Lin, Jianyan; Gong, Binzhong

    2010-07-01

    To identify the interactions among two loci (C641A and G15572-) of transforming growth factor beta 3 (TGFbeta3), and exposures in pregnancy with cleft lip with/without cleft palate (CL/P), a hospital-based case-control study was conducted. Associations among offspring polymorphisms of TGFbeta3 C641A and G15572-, paternal smoking, paternal high-risk drinking, maternal passive smoking, and maternal multivitamin supplement with CL/P were analyzed by logistic regression analysis, and the results showed that maternal passive smoking exposures and maternal multivitamin use were associated with the risk of CL/P but offspring polymorphisms of TGFbeta3 C641A and G15572-, paternal smoking, and paternal high-risk drinking were not. Interactions among these variables were analyzed using the multifactor dimensionality reduction method, and the results showed that the two-factor model, including maternal passive smoking and TGFbeta3 C641A, among all models evaluated had the best ability to predict CL/P risk with a maximum cross-validation consistency (9/10) and a maximum average testing accuracy (0.5892; p = 0.0010). These findings suggested that maternal passive smoking exposure is a risk factor for CL/P, whereas maternal multivitamin supplement is a protective factor. The polymorphism of TGFbeta3 C641A participates in interaction effect for CL/P with environmental exposures, although the polymorphism was not associated with CL/P in single-locus analysis, and synergistic effect of TGFbeta3 C641A and maternal passive smoking could provide a new tool for identifying high-risk individuals of CL/P and also an additional evidence that CL/P is determined by both genetic and environmental factors.

  7. Efficacy of glial growth factor and nerve growth factor on the recovery of traumatic facial paralysis.

    PubMed

    Yildiz, Mucahit; Karlidag, Turgut; Yalcin, Sinasi; Ozogul, Candan; Keles, Erol; Alpay, Hayrettin Cengiz; Yanilmaz, Muhammed

    2011-08-01

    The aim of this study was to assess the effects of Glial growth factor (GGF) and nerve growth factor (NGF) on nerve regeneration in facial nerve anastomosis. In this study, approximately a 1-mm segment was resected from the facial nerve and the free ends were anastomosed. All animals underwent the same surgical procedure and 30 rabbits were grouped randomly in three groups. Control group, the group without any medications; NGF group, the group receiving 250 ng/0.1 ml NGF in the epineurium at the site of anastomosis; GBF group, the group receiving 500 ng/0.1 ml GGF in the epineurium at the site of anastomosis. Medications were given at the time of surgery, and at 24 and 48 h postoperatively. After 2 months, the sites of anastomosis were excised and examined using the electron microscope. It was found that the best regeneration was in the group receiving GGF as compared to the control group in terms of nerve regeneration. Schwann cell and glial cell proliferation were found to be significantly higher in the group receiving GGF as compared to the group receiving NGF. Besides, the number of myelin debris, an indicator of degeneration, was significantly lower in the group with GGF as compared to NGF and control groups (p < 0.005). Using GGF and NGF in order to increase regeneration after nerve anastomosis in experimental traumatic facial nerve paralysis may be a hopeful alternative treatment option in the future. However, further studies on human studies are required to support these results.

  8. Aggrecan-mimetic, glycosaminoglycan-containing nanoparticles for growth factor stabilization and delivery.

    PubMed

    Place, Laura W; Sekyi, Maria; Kipper, Matt J

    2014-02-10

    The direct delivery of growth factors to sites of tissue healing is complicated by their relative instability. In many tissues, the glycosaminoglycan (GAG) side chains of proteoglycans like aggrecan stabilize growth factors in the pericellular and extracellular space, creating a local reservoir that can be accessed during a wound healing response. GAGs also regulate growth factor-receptor interactions at the cell surface. Here we report the development of nanoparticles for growth factor delivery that mimic the size, GAG composition, and growth factor binding and stabilization of aggrecan. The aggrecan-mimetic nanoparticles are easy to assemble, and their structure and composition can be readily tuned to alter their physical and biological properties. We use basic fibroblast growth factor (FGF-2) as a model heparin-binding growth factor, demonstrating that aggrecan-mimetic nanoparticles can preserve its activity for more than three weeks. We evaluate FGF-2 activity by measuring both the proliferation and metabolic activity of bone marrow stromal cells to demonstrate that chondroitin sulfate-based aggrecan mimics are as effective as aggrecan, and heparin-based aggrecan mimics are superior to aggrecan as delivery vehicles for FGF-2.

  9. Guanine is a growth factor for Legionella species.

    PubMed Central

    Pine, L; Franzus, M J; Malcolm, G B

    1986-01-01

    Evaluation of previously described chemically defined media for the growth of Legionella pneumophila showed that these media supported poor growth of several strains of L. pneumophila and did not support growth of certain of the Legionella species described later. Growth was stimulated by the dialysate from yeast extract but not by the nondialyzable fraction. Further investigations indicated that the active factors from the yeast extract dialysate were purine or pyrimidine derivatives, and certain known purines and pyrimidines were found to stimulate growth. Of these, guanine universally stimulated growth of all Legionella strains and was a growth requirement for several of the species tested. A balanced, N-(2-acetamido)-2-aminoethanesulfonic acid-buffered, chemically defined medium having guanine or a purine-pyrimidine mix is presented for the general growth of Legionella species. PMID:3700600

  10. Joint fitting reveals hidden interactions in tumor growth.

    PubMed

    Barberis, L; Pasquale, M A; Condat, C A

    2015-01-21

    Tumor growth is often the result of the simultaneous development of two or more cancer cell populations. Crucial to the system evolution are the interactions between these populations. To obtain information about these interactions we apply the recently developed vector universality (VUN) formalism to various instances of competition between tumor populations. The formalism allows us (a) to quantify the growth mechanisms of a HeLa cell colony, describing the phenotype switching responsible for its fast expansion, (b) to reliably reconstruct the evolution of the necrotic and viable fractions in both in vitro and in vivo tumors using data for the time dependences of the total masses alone, and (c) to show how the shedding of cells leading to subspheroid formation is beneficial to both the spheroid and subspheroid populations, suggesting that shedding is a strong positive influence on cancer dissemination.

  11. Platelet-rich growth factor in oral and maxillofacial surgery

    PubMed Central

    Pal, Uma Shanker; Mohammad, Shadab; Singh, Rakesh K.; Das, Somdipto; Singh, Nimisha; Singh, Mayank

    2012-01-01

    Platelet-rich growth factor is an innovative regenerative therapy used to promote hard and soft tissue healing. It involves the application of autologous platelet-leukocyte-rich plasma containing growth factors and thrombin directly to the site of treatment. It is the intrinsic growth factors released by activated platelets which are concentrated in a topical gel formula. Clinically, it is an affordable treatment with potentially broad spectrum of applications in maxillofacial surgery especially in the treatment of complex or refractory wounds. The present article reviews its various applications not only in the specialization of oral and maxillofacial surgery but also in regenerative medicine. PMID:23833484

  12. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  13. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  14. Vascular endothelial growth factor enhances macrophage clearance of apoptotic cells

    PubMed Central

    Dalal, Samay; Horstmann, Sarah A.; Richens, Tiffany R.; Tanaka, Takeshi; Doe, Jenna M.; Boe, Darren M.; Voelkel, Norbert F.; Taraseviciene-Stewart, Laimute; Janssen, William J.; Lee, Chun G.; Elias, Jack A.; Bratton, Donna; Tuder, Rubin M.; Henson, Peter M.; Vandivier, R. William

    2012-01-01

    Efficient clearance of apoptotic cells from the lung by alveolar macrophages is important for the maintenance of tissue structure and function. Lung tissue from humans with emphysema contains increased numbers of apoptotic cells and decreased levels of vascular endothelial growth factor (VEGF). Mice treated with VEGF receptor inhibitors have increased numbers of apoptotic cells and develop emphysema. We hypothesized that VEGF regulates apoptotic cell clearance by alveolar macrophages (AM) via its interaction with VEGF receptor 1 (VEGF R1). Our data show that the uptake of apoptotic cells by murine AMs and human monocyte-derived macrophages is inhibited by depletion of VEGF and that VEGF activates Rac1. Antibody blockade or pharmacological inhibition of VEGF R1 activity also decreased apoptotic cell uptake ex vivo. Conversely, overexpression of VEGF significantly enhanced apoptotic cell uptake by AMs in vivo. These results indicate that VEGF serves a positive regulatory role via its interaction with VEGF R1 to activate Rac1 and enhance AM apoptotic cell clearance. PMID:22307908

  15. Mast Cells Synthesize, Store, and Release Nerve Growth Factor

    NASA Astrophysics Data System (ADS)

    Leon, A.; Buriani, A.; dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R.

    1994-04-01

    Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation. In many peripheral tissues, mast cells interact with the innervating fibers. Changes in the behaviors of both of these elements occur after tissue injury/inflammation. As such conditions are typically associated with rapid mast cell activation and NGF accumulation in inflammatory exudates, we hypothesized that mast cells may be capable of producing NGF. Here we report that (i) NGF mRNA is expressed in adult rat peritoneal mast cells; (ii) anti-NGF antibodies clearly stain vesicular compartments of purified mast cells and mast cells in histological sections of adult rodent mesenchymal tissues; and (iii) medium conditioned by peritoneal mast cells contains biologically active NGF. Mast cells thus represent a newly recognized source of NGF. The known actions of NGF on peripheral nerve fibers and immune cells suggest that mast cell-derived NGF may control adaptive/reactive responses of the nervous and immune systems toward noxious tissue perturbations. Conversely, alterations in normal mast cell behaviors may provoke maladaptive neuroimmune tissue responses whose consequences could have profound implications in inflammatory disease states, including those of an autoimmune nature.

  16. Sideband growth in nonlinear Landau wave-particle interaction.

    NASA Technical Reports Server (NTRS)

    Brinca, A. L.

    1972-01-01

    The distortion of the electron velocity distribution caused by a large amplitude Landau wave is determined analytically for the initial-value problem. The resulting stability of electrostatic perturbations impressed on the evolving plasma is studied. Narrow sidebands of the applied frequency experience consecutive growths of large magnitude during the early stages of the nonlinear wave-particle interaction. The significance of the derived results to both wave propagation experiments and triggered VLF emissions in the magnetosphere is discussed.

  17. Molecular cloning of a human gene that is a member of the nerve growth factor family

    SciTech Connect

    Jones, K.R.; Reichardt, L.F. )

    1990-10-01

    Cell death within the developing vertebrate nervous system is regulated in part by interactions between neurons and their innervation targets that are mediated by neurotrophic factors. These factors also appear to have a role in the maintenance of the adult nervous system. Two neurotrophic factors, nerve growth factor and brain-derived neurotrophic factor, share substantial amino acid sequence identity. The authors have used a screen that combines polymerase chain reaction amplification of genomic DNA and low-stringency hybridization with degenerate oligonucleotides to isolate human BDNF and a human gene, neurotrophin-3, that is closely related to both nerve growth factor and brain-derived neurotrophic factor. mRNA products of the brain-derived neurotrophic factor and neurotrophin-3 genes were detected in the adult human brain, suggesting that these proteins are involved in the maintenance of the adult nervous system. Neurotrophin-3 is also expected to function in embryonic neural development.

  18. Mutual effects of growth hormone and growth factors on avian skeletal muscle satellite cells.

    PubMed

    Hodik, V; Mett, A; Halevy, O

    1997-10-01

    Chicken growth hormone (cGH) has been shown to affect chicken skeletal muscle satellite cell proliferation and differentiation in vitro. This study describes the interactions of cGH with basic fibroblast growth factor (bFGF) and insulin-like growth factor I (IGF-I). Both cGH and bFGF induced cGH receptor (cGH-R) gene expression as well as that of the avian FGF receptor, FREK, when added at low concentrations to satellite cells. bFGF caused a rapid induction of cGH-R mRNA. Combinations of low levels of bFGF and cGH caused a further increase in receptor mRNA expression levels, relative to that caused by each peptide alone, and their effect on DNA synthesis was synergistic. However, combinations of cGH and bFGF at high concentrations decreased cGH-R and FREK mRNA levels and DNA synthesis in a dose-dependent manner. These results imply that the mutual effects of bFGF and cGH on satellite cell proliferation are receptor-mediated and that each peptide regulates both receptors gene expression. IGF-I induced DNA synthesis in satellite cells but did not affect cGH-R gene expression at any of the concentrations tested. Coincubation of 3.5 ng/ml cGH and various concentrations of IGF-I did not significantly change DNA synthesis relative to the effect of cGH alone. However, combinations with high levels of cGH abolished it. Similar time-course (up to 6 hr) induction of DNA synthesis in serum-starved cells was observed in the presence of cGH or IGF-I, suggesting that cGH affects satellite cell proliferation in an IGF-I-independent manner.

  19. Body size regulation and insulin-like growth factor signaling.

    PubMed

    Hyun, Seogang

    2013-07-01

    How animals achieve their specific body size is a fundamental, but still largely unresolved, biological question. Over the past decades, studies on the insect model system have provided some important insights into the process of body size determination and highlighted the importance of insulin/insulin-like growth factor signaling. Fat body, the Drosophila counterpart of liver and adipose tissue, senses nutrient availability and controls larval growth rate by modulating peripheral insulin signaling. Similarly, insulin-like growth factor I produced from liver and muscle promotes postnatal body growth in mammals. Organismal growth is tightly coupled with the process of sexual maturation wherein the sex steroid hormone attenuates body growth. This review summarizes some important findings from Drosophila and mammalian studies that shed light on the general mechanism of animal size determination.

  20. Dual control of cell growth by somatomedins and platelet-derived growth factor.

    PubMed Central

    Stiles, C D; Capone, G T; Scher, C D; Antoniades, H N; Van Wyk, J J; Pledger, W J

    1979-01-01

    Quiescent BALB/c 3T3 cells exposed briefly to a platelet-derived growth factor (PDGF) become "competent" to replicate their DNA but do not "progress" into S phase unless incubated with growth factors contained in platelet-poor plasma. Plasma from hypophysectomized rats is deficient in progression activity; it does not stimulate PDGF-treated competent cells to synthesize DNA, demonstrating that somatomedin C is required for progression. Various growth factors were tested for progression activity and competence activity by using BALB/c 3T3 tissue culture assays. Multiplication stimulating activity and other members of the somatomedin family of growth factors are (like somatomedin C) potent mediators of progression. Other mitogenic agents, such as fibroblast growth factor, are (like PDGF) potent inducers of competence. Growth factors with potent progression activity have little or no competence activity and vice versa. In contrast, simian virus 40 provides both competence and progression activity. Coordinate control of BALB/c 3T3 cell growth in vitro by competence factors and somatomedins may be a specific example of a common pattern of growth regulation in animal tissues. PMID:312500

  1. Insulin-like growth factor-I gene expression in three models of accelerated lung growth.

    PubMed

    Nobuhara, K K; DiFiore, J W; Ibla, J C; Siddiqui, A M; Ferretti, M L; Fauza, D O; Schnitzer, J J; Wilson, J M

    1998-07-01

    We have learned previously that in utero tracheal ligation reverses the structural and physiological effects of surgically created congenital diaphragmatic hernia. In addition, we have discovered that postnatal lung growth similarly can be accelerated using liquid-based airway distension with perfluorocarbon. Another model of accelerated lung growth is that of compensatory growth seen after neonatal pneumonectomy. In all of these models, growth has occurred because of an increase in alveolar number rather than enlargement of preexisting alveoli. However, the molecular mechanisms underlying these processes remain unknown. The purpose of this study was to determine if gene expression could be altered by changes in physical forces in the prenatal and postnatal lung. The three models of accelerated lung growth studied were the following: (1) The prenatal group, consisted of fetal lambs (n = 12) that underwent the surgical creation of a left diaphragmatic hernia at 90 days' gestation. Six of these animals also underwent simultaneous tracheal ligation. (2) The PFC group consisted of five neonatal animals that underwent isolation of the superior segment of the right upper lobe, with intrabronchial distension with perfluorocarbon to 7 to 10 mm Hg pressure for a 3-week period. (3) The postpneumonectomy group consisted of four neonatal animals that underwent left pneumonectomy. In the fetal study, lungs were retrieved at term (130 days), and in the postnatal study, lungs were retrieved 3 weeks after initial intervention. In all cases, RNA was extracted from snap-frozen lung samples and Northern blot analysis performed. Insulinlike growth factor-I, insulinlike growth factor-II, and vascular endothelial growth factor gene expression were analyzed by densitometry. Insulinlike growth factor-I gene expression was found to be decreased in association with experimental diaphragmatic hernia (P = .005), but restored to normal with tracheal ligation. Insulinlike growth factor-I gene

  2. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    PubMed

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma.

  3. Muscle growth in young horses: Effects of age, cytokines, and growth factors.

    PubMed

    LaVigne, E K; Jones, A K; Londoño, A Sanchez; Schauer, A S; Patterson, D F; Nadeau, J A; Reed, S A

    2015-12-01

    Success as equine athletes requires proper muscle growth in young horses. Muscle hypertrophy occurs through protein synthesis and the contribution of muscle satellite cells, which can be stimulated or inhibited by cytokines and growth factors present during exercise and growth. The hypotheses of this study were that 1) the LM area in young horses would increase over 1 yr, and 2) specific cytokines and growth factors (IL-1β, IL-6, tumor necrosis factor [TNF]-α, IGF-I, and fibroblast growth factor [FGF]-2) would alter proliferation and differentiation of satellite cells isolated from young horses. Fourteen horses were divided into 3 age groups: weanlings ( = 5), yearlings to 2 yr olds ( = 4), and 3 to 4 yr olds ( = 5). The area, height, and subcutaneous fat depth of the LM were measured using ultrasonography, and BW and BCS were taken in October (Fall1), April (Spring), and October of the following year (Fall2). Satellite cells obtained from 10-d-old foals ( = 4) were cultured in the presence of IL-6, IL-1β, TNF-α, IGF-I, or FGF-2 before evaluation of proliferation and differentiation. Data were analyzed using PROC MIXED in SAS. Body weight increased from Fall1 to Spring in weanlings ( < 0.001) and increased in all horses from Spring to Fall2 ( ≤ 0.02). Area and height of the LM increased over time ( < 0.001) and with increasing age group of horse ( ≤ 0.03), although there was no interaction of time and age ( > 0.61). There was a significant increase in LM area in all animals from Spring to Fall2 ( < 0.001) but not from Fall1 to Spring. Interleukin-6 and TNF-α decreased satellite cell proliferation by 14.9 and 11.5%, respectively ( ≤ 0.01). Interleukin-6 increased fusion 6.2%, whereas TNF-α decreased fusion 8.7% compared with control cells ( ≤ 0.001). Interleukin-1β had no effect on proliferation ( = 0.32) but tended to decrease fusion ( = 0.06). Satellite cell proliferation was increased 28.8 and 73.0% by IGF-I and FGF-2, respectively ( < 0

  4. Cardiac Regeneration using Growth Factors: Advances and Challenges

    PubMed Central

    Rebouças, Juliana de Souza; Santos-Magalhães, Nereide Stela; Formiga, Fabio Rocha

    2016-01-01

    Myocardial infarction is the most significant manifestation of ischemic heart disease and is associated with high morbidity and mortality. Novel strategies targeting at regenerating the injured myocardium have been investigated, including gene therapy, cell therapy, and the use of growth factors. Growth factor therapy has aroused interest in cardiovascular medicine because of the regeneration mechanisms induced by these biomolecules, including angiogenesis, extracellular matrix remodeling, cardiomyocyte proliferation, stem-cell recruitment, and others. Together, these mechanisms promote myocardial repair and improvement of the cardiac function. This review aims to address the strategic role of growth factor therapy in cardiac regeneration, considering its innovative and multifactorial character in myocardial repair after ischemic injury. Different issues will be discussed, with emphasis on the regeneration mechanisms as a potential therapeutic resource mediated by growth factors, and the challenges to make these proteins therapeutically viable in the field of cardiology and regenerative medicine. PMID:27355588

  5. He bubble growth and interaction in W nano-tendrils

    NASA Astrophysics Data System (ADS)

    Smirnov, R. D.; Krasheninnikov, S. I.

    2015-11-01

    Tungsten plasma-facing components (PFCs) in fusion devices are exposed to variety of extreme plasma conditions, which can lead to alteration of tungsten micro-structure and degradation of the PFCs. In particular, it is known that filamentary nano-structures called fuzz can grow on helium plasma exposed tungsten surfaces. However, mechanism of the fuzz growth is still not fully understood. Existing experimental observations indicate that formation of helium nano-bubbles in tungsten plays essential role in fuzz formation and growth. In this work we investigate mechanisms of growth and interaction of helium bubbles in fuzz-like nano-tendrils using molecular dynamics simulations with LAMMPS code. We show that growth of the bubbles has anisotropic character producing complex stress field in the nano-tendrils with distinct compression and tension regions. We found that formation of large inter-bubble tension regions can cause lateral stretching and bending of the tendrils that consequently lead to their elongation and thinning at the stretching sites. The rate of nano-tendril growth due to the described mechanism is also evaluated from the simulations.

  6. Early child growth: how do nutrition and infection interact?

    PubMed

    Dewey, Kathryn G; Mayers, Daniel R

    2011-10-01

    It is well known that the relationship between child nutrition and infection is bidirectional, i.e. frequent illness can impair nutritional status and poor nutrition can increase the risk of infection. What is less clear is whether infection reduces the effectiveness of nutrition interventions or, vice versa, whether malnutrition lessens the impact of infection control strategies. The objective of this paper is to review the evidence regarding this interaction between nutrition and infection with respect to child growth in low-income populations. Even when there are no obvious symptoms, physiological conditions associated with infections can impair growth by suppressing appetite, impairing absorption of nutrients, increasing nutrient losses and diverting nutrients away from growth. However, there is little direct evidence that nutrition interventions are less effective when infection is common; more research is needed on this question. On the other hand, evidence from four intervention trials suggests that the adverse effects of certain infections (e.g. diarrhoea) on growth can be reduced or eliminated by improving nutrition. Interventions that combine improved nutrition with prevention and control of infections are likely to be most effective for enhancing child growth and development.

  7. Polyamines: essential factors for growth and survival.

    PubMed

    Kusano, T; Berberich, T; Tateda, C; Takahashi, Y

    2008-08-01

    Polyamines are low molecular weight, aliphatic polycations found in the cells of all living organisms. Due to their positive charges, polyamines bind to macromolecules such as DNA, RNA, and proteins. They are involved in diverse processes, including regulation of gene expression, translation, cell proliferation, modulation of cell signalling, and membrane stabilization. They also modulate the activities of certain sets of ion channels. Because of these multifaceted functions, the homeostasis of polyamines is crucial and is ensured through regulation of biosynthesis, catabolism, and transport. Through isolation of the genes involved in plant polyamine biosynthesis and loss-of-function experiments on the corresponding genes, their essentiality for growth is reconfirmed. Polyamines are also involved in stress responses and diseases in plants, indicating their importance for plant survival. This review summarizes the recent advances in polyamine research in the field of plant science compared with the knowledge obtained in microorganisms and animal systems.

  8. Actions of activin A, connective tissue growth factor, hepatocyte growth factor and teratocarcinoma-derived growth factor 1 on the development of the bovine preimplantation embryo.

    PubMed

    Kannampuzha-Francis, Jasmine; Tribulo, Paula; Hansen, Peter J

    2016-05-17

    The reproductive tract secretes bioactive molecules collectively known as embryokines that can regulate embryonic growth and development. In the present study we tested four growth factors expressed in the endometrium for their ability to modify the development of the bovine embryo to the blastocyst stage and alter the expression of genes found to be upregulated (bone morphogenetic protein 15 (BMP15) and keratin 8, type II (KRT8)) or downregulated (NADH dehydrogenase 1 (ND1) and S100 calcium binding protein A10 (S100A10)) in embryos competent to develop to term. Zygotes were treated at Day 5 with 0.01, 0.1 or 1.0 nM growth factor. The highest concentration of activin A increased the percentage of putative zygotes that developed to the blastocyst stage. Connective tissue growth factor (CTGF) increased the number of cells in the inner cell mass (ICM), decreased the trophectoderm : ICM ratio and increased blastocyst expression of KRT8 and ND1. The lowest concentration of hepatocyte growth factor (HGF) reduced the percentage of putative zygotes becoming blastocysts. Teratocarcinoma-derived growth factor 1 increased total cell number at 0.01 nM and expression of S100A10 at 1.0 nM, but otherwise had no effects. Results confirm the prodevelopmental actions of activin A and indicate that CTGF may also function as an embryokine by regulating the number of ICM cells in the blastocyst and altering gene expression. Low concentrations of HGF were inhibitory to development.

  9. Effect of sericin on diabetic hippocampal growth hormone/insulin-like growth factor 1 axis

    PubMed Central

    Chen, Zhihong; Yang, Songhe; He, Yaqiang; Song, Chengjun; Liu, Yongping

    2013-01-01

    Previous studies have shown that sericin extracted from silk cocoon significantly reduces blood glucose levels and protects the nervous system against diabetes mellitus. In this study, a rat type 2 diabetes mellitus model was established by intraperitoneal injection of 25 mg/kg streptozotocin for 3 successive days, following which the rats were treated with sericin for 35 days. After treatment, the blood glucose levels of the diabetic rats decreased significantly, the growth hormone level in serum and its expression in the hippocampus decreased significantly, while the insulin-like growth factor-1 level in serum and insulin-like growth factor-1 and growth hormone receptor expression in the hippocampus increased significantly. The experimental findings indicate that sericin improves disorders of the growth hormone/insulin-like growth factor 1 axis to alleviate hippocampal damage in diabetic rats. PMID:25206472

  10. MICAL-like1 mediates epidermal growth factor receptor endocytosis

    PubMed Central

    Abou-Zeid, Nancy; Pandjaitan, Rudy; Sengmanivong, Lucie; David, Violaine; Le Pavec, Gwenaelle; Salamero, Jean; Zahraoui, Ahmed

    2011-01-01

    Small GTPase Rabs are required for membrane protein sorting/delivery to precise membrane domains. Rab13 regulates epithelial tight junction assembly and polarized membrane transport. Here we report that Molecule Interacting with CasL (MICAL)-like1 (MICAL-L1) interacts with GTP-Rab13 and shares a similar domain organization with MICAL. MICAL-L1 has a calponin homology (CH), LIM, proline rich and coiled-coil domains. It is associated with late endosomes. Time-lapse video microscopy shows that green fluorescent protein–Rab7 and mcherry-MICAL-L1 are present within vesicles that move rapidly in the cytoplasm. Depletion of MICAL-L1 by short hairpin RNA does not alter the distribution of a late endosome/lysosome-associated protein but affects the trafficking of epidermal growth factor receptor (EGFR). Overexpression of MICAL-L1 leads to the accumulation of EGFR in the late endosomal compartment. In contrast, knocking down MICAL-L1 results in the distribution of internalized EGFR in vesicles spread throughout the cytoplasm and promotes its degradation. Our data suggest that the N-terminal CH domain associates with the C-terminal Rab13 binding domain (RBD) of MICAL-L1. The binding of Rab13 to RBD disrupts the CH/RBD interaction, and may induce a conformational change in MICAL-L1, promoting its activation. Our results provide novel insights into the MICAL-L1/Rab protein complex that can regulate EGFR trafficking at late endocytic pathways. PMID:21795389

  11. A growth factor phenotype map for ovine preimplantation development.

    PubMed

    Watson, A J; Watson, P H; Arcellana-Panlilio, M; Warnes, D; Walker, S K; Schultz, G A; Armstrong, D T; Seamark, R F

    1994-04-01

    The reverse transcription-polymerase chain reaction (RT-PCR) was used to determine the patterns of expression for several growth factor ligand and receptor genes during ovine preimplantation development. Transcripts for insulin-like growth factor (IGF)-I, IGF-II, and the receptors for insulin and IGF-I were detected throughout ovine preimplantation development from the 1-cell to the blastocyst stage. Transforming growth factor alpha (TGF alpha) transcripts were also detected throughout ovine preimplantation development. The mRNAs encoding basic fibroblast growth factor (bFGF) were detected in all stages of the ovine preimplantation embryo, although the relative abundance of this transcript consistently decreased from the 1-cell to the blastocyst stage, suggesting that it may represent a maternal transcript in early sheep embryos. Transcripts encoding ovine trophoblast protein (oTP) were detected only within blastocyst-stage embryos. Primary ovine oviduct cell cultures express the transcripts for IGF-II, IGF-I, TGF alpha, bFGF, TGF beta 1, and the receptors for insulin and IGF-I, suggesting that paracrine growth factor circuits may exist between the oviduct epithelium and the early ovine embryo. Transcripts for insulin, epidermal growth factor (EGF), and nerve growth factor (NGF) were not detected in any stage of the ovine preimplantation embryo or within the oviduct cell preparations. The expression of growth factor transcripts very early in mammalian development would predict that these molecules fulfil a necessary role(s) in supporting the progression of early embryos through the preimplantation interval. Our future efforts will be directed to understanding the nature of these putative regulatory pathways.

  12. Lifetime growth in wild meerkats: incorporating life history and environmental factors into a standard growth model.

    PubMed

    English, Sinéad; Bateman, Andrew W; Clutton-Brock, Tim H

    2012-05-01

    Lifetime records of changes in individual size or mass in wild animals are scarce and, as such, few studies have attempted to model variation in these traits across the lifespan or to assess the factors that affect them. However, quantifying lifetime growth is essential for understanding trade-offs between growth and other life history parameters, such as reproductive performance or survival. Here, we used model selection based on information theory to measure changes in body mass over the lifespan of wild meerkats, and compared the relative fits of several standard growth models (monomolecular, von Bertalanffy, Gompertz, logistic and Richards). We found that meerkats exhibit monomolecular growth, with the best model incorporating separate growth rates before and after nutritional independence, as well as effects of season and total rainfall in the previous nine months. Our study demonstrates how simple growth curves may be improved by considering life history and environmental factors, which may be particularly relevant when quantifying growth patterns in wild populations.

  13. The neglected role of insulin-like growth factors in the maternal circulation regulating fetal growth.

    PubMed

    Sferruzzi-Perri, A N; Owens, J A; Pringle, K G; Roberts, C T

    2011-01-01

    Maternal insulin-like growth factors (IGFs) play a pivotal role in modulating fetal growth via their actions on both the mother and the placenta. Circulating IGFs influence maternal tissue growth and metabolism, thereby regulating nutrient availability for the growth of the conceptus. Maternal IGFs also regulate placental morphogenesis, substrate transport and hormone secretion, all of which influence fetal growth either via indirect effects on maternal substrate availability, or through direct effects on the placenta and its capacity to supply nutrients to the fetus. The extent to which IGFs influence the mother and/or placenta are dependent on the species and maternal factors, including age and nutrition. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing degenerative diseases in adult life, understanding the role of maternal IGFs during pregnancy is essential in order to identify mechanisms underlying altered fetal growth and offspring programming.

  14. The neglected role of insulin-like growth factors in the maternal circulation regulating fetal growth

    PubMed Central

    Sferruzzi-Perri, A N; Owens, J A; Pringle, K G; Roberts, C T

    2011-01-01

    Maternal insulin-like growth factors (IGFs) play a pivotal role in modulating fetal growth via their actions on both the mother and the placenta. Circulating IGFs influence maternal tissue growth and metabolism, thereby regulating nutrient availability for the growth of the conceptus. Maternal IGFs also regulate placental morphogenesis, substrate transport and hormone secretion, all of which influence fetal growth either via indirect effects on maternal substrate availability, or through direct effects on the placenta and its capacity to supply nutrients to the fetus. The extent to which IGFs influence the mother and/or placenta are dependent on the species and maternal factors, including age and nutrition. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing degenerative diseases in adult life, understanding the role of maternal IGFs during pregnancy is essential in order to identify mechanisms underlying altered fetal growth and offspring programming. PMID:20921199

  15. Regulation of growth factor receptor degradation by ADP-ribosylation factor domain protein (ARD) 1.

    PubMed

    Meza-Carmen, Victor; Pacheco-Rodriguez, Gustavo; Kang, Gi Soo; Kato, Jiro; Donati, Chiara; Zhang, Chun-Yi; Vichi, Alessandro; Payne, D Michael; El-Chemaly, Souheil; Stylianou, Mario; Moss, Joel; Vaughan, Martha

    2011-06-28

    ADP-ribosylation factor domain protein 1 (ARD1) is a 64-kDa protein containing a functional ADP-ribosylation factor (GTP hydrolase, GTPase), GTPase-activating protein, and E3 ubiquitin ligase domains. ARD1 activation by the guanine nucleotide-exchange factor cytohesin-1 was known. GTPase and E3 ligase activities of ARD1 suggest roles in protein transport and turnover. To explore this hypothesis, we used mouse embryo fibroblasts (MEFs) from ARD1-/- mice stably transfected with plasmids for inducible expression of wild-type ARD1 protein (KO-WT), or ARD1 protein with inactivating mutations in E3 ligase domain (KO-E3), or containing persistently active GTP-bound (KO-GTP), or inactive GDP-bound (KO-GDP) GTPase domains. Inhibition of proteasomal proteases in mifepristone-induced KO-WT, KO-GDP, or KO-GTP MEFs resulted in accumulation of these ARD1 proteins, whereas KO-E3 accumulated without inhibitors. All data were consistent with the conclusion that ARD1 regulates its own steady-state levels in cells by autoubiquitination. Based on reported growth factor receptor-cytohesin interactions, EGF receptor (EGFR) was investigated in induced MEFs. Amounts of cell-surface and total EGFR were higher in KO-GDP and lower in KO-GTP than in KO-WT MEFs, with levels in both mutants greater (p = 0.001) after proteasomal inhibition. Significant differences among MEF lines in content of TGF-β receptor III were similar to those in EGFR, albeit not as large. Differences in amounts of insulin receptor mirrored those in EGFR, but did not reach statistical significance. Overall, the capacity of ARD1 GTPase to cycle between active and inactive forms and its autoubiquitination both appear to be necessary for the appropriate turnover of EGFR and perhaps additional growth factor receptors.

  16. Therapeutic angiogenesis using novel vascular endothelial growth factor-E/human placental growth factor chimera genes.

    PubMed

    Inoue, Natsuo; Kondo, Takahisa; Kobayashi, Koichi; Aoki, Mika; Numaguchi, Yasushi; Shibuya, Masabumi; Murohara, Toyoaki

    2007-01-01

    Vascular endothelial growth factor-A (VEGF-A) promotes angiogenesis but causes adverse side effects such as edema or tissue inflammation. VEGF-E, found in the genome of the Orf virus, specifically binds to VEGF receptor-2 and shows mitotic activity on endothelial cells. Recently, we created two forms of VEGF-E and human placental growth factor (PlGF) chimera genes (VEGF-E chimera #9 and VEGF-E chimera #33), which are humanized genes with VEGF-E function but showing less antigenicity. We examined potential proangiogenic activities of these chimera genes. Four types of expression plasmids (pCDNA3.1-LacZ, phVEGF-A, pVEGF-Echimera#9, and pVEGF-Echimera#33) were administered in a rat model of hindlimb ischemia. Either pVEGF-Echimera#9, pVEGF-Echimera#33, or phVEGF-A significantly increased the ratio of ischemic/normal hindlimb blood-flow compared with the control pCDNA3.1-LacZ treated group (by 1.5-fold, 1.5-fold, and 1.4-fold, respectively, P<0.05). Histochemical staining by alkaline phosphatase also revealed that either pVEGF-Echimera#9, pVEGF-Echimera#33, or phVEGF-A increased the capillary density compared with the pCDNA3.1-LacZ treated group (1.4-fold, 1.5-fold, and 1.5-fold, respectively, P<0.05). Furthermore, immunostaining for anti-ED1 revealed that fewer macrophages had infiltrated in both pVEGF-Echimera#9 and pVEGF-Echimera#33 groups compared with the phVEGF-A group (P<0.05). Novel VEGF-E/human PlGF chimera genes, pVEGF-Echimera#9, and pVEGF-Echimera#33 significantly stimulated angiogenesis in response to tissue ischemia to an almost identical extent to that induced by phVEGF-A with fewer tissue inflammation responses.

  17. Cbl competitively inhibits epidermal growth factor-induced activation of phospholipase C-gamma1.

    PubMed

    Choi, Jang Hyun; Bae, Sun Sik; Park, Jong Bae; Ha, Sang Hoon; Song, Hebok; Kim, Jae-Ho; Cocco, Lucio; Ryu, Sung Ho; Suh, Pann-Ghill

    2003-04-30

    Phospholipase C-gamma1 (PLC-gamma1) plays pivotal roles in cellular growth and proliferation through its two Src homology (SH) 2 domains and its single SH3 domain, which interact with signaling molecules in response to various growth factors and hormones. However, the role of the SH domains in the growth factor-induced regulation of PLC-gamma1 is unclear. By peptide-mass fingerprinting analysis we have identified Cbl as a binding protein for the SH3 domain of PLC-gamma1 from rat pheochromatocyte PC12 cells. Association of Cbl with PLC-gamma1 was induced by epidermal growth factor (EGF) but not by nerve growth factor (NGF). Upon EGF stimulation, both Cbl and PLC-gamma1 were recruited to the activated EGF receptor through their SH2 domains. Mutation of the SH2 domains of either Cbl or PLC-gamma1 abrogated the EGF-induced interaction of PLC-gamma1 with Cbl, indicating that SH2-mediated translocation is essential for the association of PLC-gamma1 and Cbl. Overexpression of Cbl attenuated EGF-induced tyrosine phosphorylation and the subsequent activation of PLC-gamma1 by interfering competitively with the interaction between PLC-gamma1 and EGFR. Taken together, these results provide the first indications that Cbl may be a negative regulator of intracellular signaling following EGF-induced PLC-gamma1 activation.

  18. Growth Factor Signaling and Memory Formation: Temporal and Spatial Integration of a Molecular Network

    ERIC Educational Resources Information Center

    Kopec, Ashley M.; Carew, Thomas J.

    2013-01-01

    Growth factor (GF) signaling is critically important for developmental plasticity. It also plays a crucial role in adult plasticity, such as that required for memory formation. Although different GFs interact with receptors containing distinct types of kinase domains, they typically signal through converging intracellular cascades (e.g.,…

  19. Growth Factor Signaling and Memory Formation: Temporal and Spatial Integration of a Molecular Network

    ERIC Educational Resources Information Center

    Kopec, Ashley M.; Carew, Thomas J.

    2013-01-01

    Growth factor (GF) signaling is critically important for developmental plasticity. It also plays a crucial role in adult plasticity, such as that required for memory formation. Although different GFs interact with receptors containing distinct types of kinase domains, they typically signal through converging intracellular cascades (e.g.,…

  20. Intrauterine growth correlation to postnatal growth--influence of risk factors and complications in pregnancy.

    PubMed

    Larsen, T; Greisen, G; Petersen, S

    1997-01-20

    In a population of 616 pregnant women with increased risk of intrauterine growth retardation, we examined the relationship of third trimester fetal growth to maternal and pregnancy risk factors, the infants condition at birth, and postnatal growth. Intrauterine growth velocity was calculated from repeated estimations of fetal weight using ultrasound. Postnatal growth up to 3 months was measured in 313 of the infants. Intrauterine growth velocity was directly correlated to birth weight deviation (R = 0.35, P < 0.0001) and inversely correlated to postnatal growth (R = 0.21, P = 0.0001). Heavy smoking throughout pregnancy was the most pronounced factor associated with loss of fetal growth percentiles (P = 0.006), and it was also associated with postnatal catchup (P = 0.01). Infants who needed neonatal care had significantly lower intrauterine growth velocities compared to the rest of the study group; no correlation was found between intrauterine growth velocity and Apgar scores or umbilical pH. It is concluded that growth retardation in the third trimester can be identified by ultrasound fetometry, and is associated with maladaptation at birth and postnatal catchup. However, the correlations were weak suggesting that deviation at birth reflects, only to a limited degree, acceleration or deceleration of growth in the third trimester.

  1. Heparin-binding epidermal growth factor-like growth factor regulates fibroblast growth factor-2 expression in aortic smooth muscle cells.

    PubMed

    Peifley, K A; Alberts, G F; Hsu, D K; Feng, S L; Winkles, J A

    1996-08-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a vascular smooth muscle cell (SMC) mitogen and chemotactic factor that is expressed by endothelial cells, SMCs, monocytes/macrophages, and T lymphocytes. Both the membrane-anchored HB-EGF precursor and the secreted mature HB-EGF protein are biologically active; thus, HB-EGF may stimulate SMC growth via autocrine, paracrine, and juxtacrine mechanisms. In the present study, we report that HB-EGF treatment of serum-starved at aortic SMCs can induce fibroblast growth factor (FGF)-2 (basic FGF) gene expression but not FGF-1 (acidic FGF) gene expression. Increased FGF-2 mRNA expression is first detectable at 1 hour after HB-EGF addition, and maximal FGF-2 mRNA levels, corresponding to an approximately 46-fold level of induction, are present at 4 hours. The effect of HB-EGF on FGF-2 mRNA levels appears to be mediated primarily by a transcriptional mechanism and requires de novo synthesized proteins. HB-EGF induction of FGF-2 mRNA levels can be inhibited by treating cells with the anti-inflammatory glucocorticoid dexamethasone or the glycosaminoglycan heparin. Finally, Western blot analyses indicate that HB-EGF-treated SMCs also produce an increased amount of FGF-2 protein. These results indicate that HB-EGF expressed at sites of vascular injury or inflammation in vivo may upregulate FGF-2 production by SMCs.

  2. Transforming growth factor β signaling in uterine development and function.

    PubMed

    Li, Qinglei

    2014-01-01

    Transforming growth factor β (TGFβ) superfamily is evolutionarily conserved and plays fundamental roles in cell growth and differentiation. Mounting evidence supports its important role in female reproduction and development. TGFBs1-3 are founding members of this growth factor family, however, the in vivo function of TGFβ signaling in the uterus remains poorly defined. By drawing on mouse and human studies as a main source, this review focuses on the recent progress on understanding TGFβ signaling in the uterus. The review also considers the involvement of dysregulated TGFβ signaling in pathological conditions that cause pregnancy loss and fertility problems in women.

  3. [The changes of the attributable factors of child growth].

    PubMed

    Chen, Chun-ming; He, Wu; Chang, Su-ying

    2006-11-01

    To rule out the attributable factors of child growth in China and the changes of the factors in the past 15 years for the planning of future nutrition improvement of children in China. The datasets of 1990 - 2005 China Food and Nutrition Surveillance were used and the Multi-factorial Logistic Regression analysis was used. The AR% of these factors and the changes of the attributable factors during the past 15 years were presented. The main factors attributed to the growth of children under 5 in year 2005 were low education level of mothers (AR = 40.5%), floating out-for-job mothers (AR% = 35.5%), No egg introduction in the past 24 hours (AR = 24.2%), No milk introduction in the past 24 hours(18.7%) and household income below national poverty line (21.9%). Many of the attributable factors have improved significantly during the past 15 years. However, the increasing number of floating out-for-job mothers will have more impact on the quality of child feeding and child care. Social economic development is the direct factors to child growth, while other factors such as feeding and mother care are critical factors could either accelerate or counteract the positive effects of the favorable socioeconomic development. To improve height growth is essential to further enhance health and fitness of children under 5 focused nutrition and dietary intervention should be implemented.

  4. Neutrophil biology and the next generation of myeloid growth factors.

    PubMed

    Dale, David C

    2009-01-01

    Neutrophils are the body's critical phagocytic cells for defense against bacterial and fungal infections; bone marrow must produce approximately 10 x 10(9) neutrophils/kg/d to maintain normal blood neutrophil counts. Production of neutrophils depends on myeloid growth factors, particularly granulocyte colony-stimulating factor (G-CSF). After the original phase of development, researchers modified these growth factors to increase their size and delay renal clearance, increase their biologic potency, and create unique molecules for business purposes. Pegylated G-CSF is a successful product of these efforts. Researchers have also tried to identify small molecules to serve as oral agents that mimic the parent molecules, but these programs have been less successful. In 2006, the European Medicines Agency established guidelines for the introduction of new biologic medicinal products claimed to be similar to reference products that had previously been granted marketing authorization in the European community, called bio-similars. Globally, new and copied versions of G-CSF and other myeloid growth factors are now appearing. Some properties of the myeloid growth factors are similar to other agents, offering opportunities for the development of alternative drugs and treatments. For example, recent research shows that hematopoietic progenitor cells can be mobilized with a chemokine receptor antagonist, chemotherapy, G-CSF, and granulocyte macrophage colony-stimulating factor. Advances in neutrophil biology coupled with better understanding and development of myeloid growth factors offer great promise for improving the care of patients with cancer and many other disorders.

  5. Growth factor signaling alters the morphology of the zebrafish ethmoid plate.

    PubMed

    Cusack, Brian J; Parsons, Trish E; Weinberg, Seth M; Vieira, Alexandre R; Szabo-Rogers, Heather L

    2017-02-28

    Craniofacial development relies on coordinated tissue interactions that allow for patterning and growth of the face. We know a priori that the Wingless, fibroblast growth factor, Hedgehog and transforming growth factor-beta growth factor signaling pathways are required for the development of the face, but how they contribute to the shape of the face is largely untested. Here, we test how each signaling pathway contributes to the overall morphology of the zebrafish anterior neurocranium. We tested the contribution of each signaling pathway to the development of the ethmoid plate during three distinct time periods: the time of neural crest migration [10 hour post fertilization (hpf)]; once the neural crest is resident in the face (20 hpf); and finally at the time at which the cartilaginous condensations are being initiated (48 hpf). Using geometric morphometric analysis, we conclude that each signaling pathway contributes to the shape, size and morphology of the ethmoid plate in a dose-, and time-dependent fashion.

  6. Modelling the interaction between flooding events and economic growth

    NASA Astrophysics Data System (ADS)

    Grames, J.; Prskawetz, A.; Grass, D.; Blöschl, G.

    2015-06-01

    Socio-hydrology describes the interaction between the socio-economy and water. Recent models analyze the interplay of community risk-coping culture, flooding damage and economic growth (Di Baldassarre et al., 2013; Viglione et al., 2014). These models descriptively explain the feedbacks between socio-economic development and natural disasters like floods. Contrary to these descriptive models, our approach develops an optimization model, where the intertemporal decision of an economic agent interacts with the hydrological system. In order to build this first economic growth model describing the interaction between the consumption and investment decisions of an economic agent and the occurrence of flooding events, we transform an existing descriptive stochastic model into an optimal deterministic model. The intermediate step is to formulate and simulate a descriptive deterministic model. We develop a periodic water function to approximate the former discrete stochastic time series of rainfall events. Due to the non-autonomous exogenous periodic rainfall function the long-term path of consumption and investment will be periodic.

  7. [Novel role of growth factors in ovary function].

    PubMed

    Amsterdam, Abraham

    2010-12-01

    The development of the DNA microarray technique facilitated systematic studies of the modulation of gene function. Considerable attention has been focused on members of the growth factor family to elucidate the main regulators of oocyte maturation and ovarian follicle rupture. Among these growth factors, it was found, both in rodents and in humans, that amphiregulin (Ar) and epiregulin (Ep) of the epidermal growth factor (EGF) family were dramatically up-regulated by gonadotrophins in the intact ovary and in primary granulosa cells, respectively. Their role in cumulus expansion and oocyte maturation was established in rodents, and their synthesis under LH stimulation in granulosa cells was demonstrated in humans. To be activated, Ar and Ep must be cleaved by a disintegrin and metalloproteinases (ADAMs) family. However, the precise processing of Ar and Ep by the cumulus cells is still obscure. Future investigations using DNA microarray technique may reveal the repertoire of genes activated in Ar- and Ep-stimulated cumulus cells and may help elucidate the molecular basis of ovulation. EFG-like factors are also involved in triggering ovarian cancer The author hypothesized that the normal ovary maintains cyclicity in the formation of these growth factors preventing the ovary from developing ovarian cancer In ovarian cancer these growth factors are continuously formed in an autocrine manner, leading to transformation and subsequently to ovarian cancer. These growth factors are essential for both normal and neoplastic transformation of the ovary. Taking into consideration these growth factors in the treatment of ovarian malfunction may be one way of curing ovarian cancer.

  8. Effective Factors in Interactions within Japanese EFL Classrooms

    ERIC Educational Resources Information Center

    Maftoon, Parviz; Ziafar, Meisam

    2013-01-01

    Classroom interactional patterns depend on some contextual, cultural and local factors in addition to the methodologies employed in the classroom. In order to delineate such factors, the focus of classroom interaction research needs to shift from the observables to the unobservables like teachers' and learners' psychological states and cultural…

  9. Effective Factors in Interactions within Japanese EFL Classrooms

    ERIC Educational Resources Information Center

    Maftoon, Parviz; Ziafar, Meisam

    2013-01-01

    Classroom interactional patterns depend on some contextual, cultural and local factors in addition to the methodologies employed in the classroom. In order to delineate such factors, the focus of classroom interaction research needs to shift from the observables to the unobservables like teachers' and learners' psychological states and cultural…

  10. Skeletal muscle hypertrophy and regeneration: interplay between the myogenic regulatory factors (MRFs) and insulin-like growth factors (IGFs) pathways.

    PubMed

    Zanou, Nadège; Gailly, Philippe

    2013-11-01

    Adult skeletal muscle can regenerate in response to muscle damage. This ability is conferred by the presence of myogenic stem cells called satellite cells. In response to stimuli such as injury or exercise, these cells become activated and express myogenic regulatory factors (MRFs), i.e., transcription factors of the myogenic lineage including Myf5, MyoD, myogenin, and Mrf4 to proliferate and differentiate into myofibers. The MRF family of proteins controls the transcription of important muscle-specific proteins such as myosin heavy chain and muscle creatine kinase. Different growth factors are secreted during muscle repair among which insulin-like growth factors (IGFs) are the only ones that promote both muscle cell proliferation and differentiation and that play a key role in muscle regeneration and hypertrophy. Different isoforms of IGFs are expressed during muscle repair: IGF-IEa, IGF-IEb, or IGF-IEc (also known as mechano growth factor, MGF) and IGF-II. MGF is expressed first and is observed in satellite cells and in proliferating myoblasts whereas IGF-Ia and IGF-II expression occurs at the state of muscle fiber formation. Interestingly, several studies report the induction of MRFs in response to IGFs stimulation. Inversely, IGFs expression may also be regulated by MRFs. Various mechanisms are proposed to support these interactions. In this review, we describe the general process of muscle hypertrophy and regeneration and decipher the interactions between the two groups of factors involved in the process.

  11. Molecular interactions between light and hormone signaling to control plant growth.

    PubMed

    Alabadí, David; Blázquez, Miguel A

    2009-03-01

    As sessile organisms, plants modulate their growth rate and development according to the continuous variation in the conditions of their surrounding environment, an ability referred to as plasticity. This ability relies on a web of interactions between signaling pathways triggered by endogenous and environmental cues. How changes in environmental factors are interpreted by the plant in terms of developmental or growth cues or, in other words, how they contribute to plant plasticity is a current, major question in plant biology. Light stands out among the environmental factors that shape plant development. Plants have evolved systems that allow them to monitor both quantitative and qualitative differences in the light that they perceive, that render important changes in their growth habit. In this review we focus on recent findings about how information from this environmental cue is integrated during de-etiolation and in the shade-avoidance syndrome, and modulated by several hormone pathways-the endogenous cues. In some cases the interaction between a hormone and the light signaling pathways is reciprocal, as is the case of the gibberellin pathway, whereas in other cases hormone pathways act downstream of the environmental cue to regulate growth. Moreover, the circadian clock adds an additional layer of regulation, which has been proposed to integrate the information provided by light with that provided by hormone pathways, to regulate daily growth.

  12. [Enhancement of epidermal regeneration by recombinant vaccinia virus growth factor].

    PubMed

    Petrov, V S; Cheshenko, I O; Omigov, V V; Azaev, M Sh; Krendel'shchikov, A V; Ovechkina, L G; Cheshenko, N V; Malygin, E G

    1998-01-01

    Examining the specific activity has showed that recombinant vaccinia virus growth factor binds to appropriate receptors on the A-431 cell surface and prompts the healing acceleration of degree III burns in rats. This recombinant factor did not demonstrate pyrogenicity or toxicogenicity in tests on rabbits, guinea-pits, noninbred albino mice.

  13. A highly versatile adaptor protein for the tethering of growth factors to gelatin-based biomaterials.

    PubMed

    Addi, Cyril; Murschel, Frédéric; Liberelle, Benoît; Riahi, Nesrine; De Crescenzo, Gregory

    2017-03-01

    In the field of tissue engineering, the tethering of growth factors to tissue scaffolds in an oriented manner can enhance their activity and increase their half-life. We chose to investigate the capture of the basic Fibroblast Growth Factor (bFGF) and the Epidermal Growth Factor (EGF) on a gelatin layer, as a model for the functionalization of collagen-based biomaterials. Our strategy relies on the use of two high affinity interactions, that is, the one between two distinct coil peptides as well as the one occurring between a collagen-binding domain (CBD) and gelatin. We expressed a chimeric protein to be used as an adaptor that comprises one of the coil peptides and a CBD derived from the human fibronectin. We proved that it has the ability to bind simultaneously to a gelatin substrate and to form a heterodimeric coiled-coil domain with recombinant growth factors being tagged with the complementary coil peptide. The tethering of the growth factors was characterized by ELISA and surface plasmon resonance-based biosensing. The bioactivity of the immobilized bFGF and EGF was evaluated by a human umbilical vein endothelial cell proliferation assay and a vascular smooth muscle cell survival assay. We found that the tethering of EGF preserved its mitogenic and anti-apoptotic activity. In the case of bFGF, when captured via our adaptor protein, changes in its natural mode of interaction with gelatin were observed.

  14. Transforming growth factor-β induces vascular endothelial growth factor-C expression leading to lymphangiogenesis in rat unilateral ureteral obstruction.

    PubMed

    Suzuki, Yasuhiro; Ito, Yasuhiko; Mizuno, Masashi; Kinashi, Hiroshi; Sawai, Akiho; Noda, Yukihiro; Mizuno, Tomohiro; Shimizu, Hideaki; Fujita, Yoshiro; Matsui, Katsuyuki; Maruyama, Shoichi; Imai, Enyu; Matsuo, Seiichi; Takei, Yoshifumi

    2012-05-01

    Inflammation is recognized as an important contributor to lymphangiogenesis; however, in tubulointerstitial lesions in human chronic kidney diseases, this process is better correlated with the presence of myofibroblasts rather than macrophages. As little is known about the interaction between lymphangiogenesis and renal fibrosis, we utilized the rat unilateral ureteral obstruction model to analyze inflammation, fibrosis, lymphangiogenesis, and growth factor expression. Additionally, we determined the relationship between vascular endothelial growth factor-C (VEGF-C), an inducer of lymphangiogenesis, and the profibrotic factor, transforming growth factor-β1 (TGF-β1). The expression of both TGF-β1 and VEGF-C was detected in tubular epithelial and mononuclear cells, and gradually increased, peaking 14 days after ureteral obstruction. The kinetics and localization of VEGF-C were similar to those of TGF-β1, and the expression of these growth factors and lymphangiogenesis were linked with the progression of fibrosis. VEGF-C expression was upregulated by TGF-β1 in cultured proximal tubular epithelial cells, collecting duct cells, and macrophages. Both in vitro and in vivo, the induction of VEGF-C along with the overall appearance of lymphatics in vivo was specifically suppressed by the TGF-β type I receptor inhibitor LY364947. Thus, TGF-β1 induces VEGF-C expression, which leads to lymphangiogenesis.

  15. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion

    PubMed Central

    Gorin, Caroline; Rochefort, Gael Y.; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Germain, Stéphane

    2016-01-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. Significance The results from the present study show that fibroblast growth factor-2 (FGF-2) priming is more

  16. In situ formation of poly(vinyl alcohol)–heparin hydrogels for mild encapsulation and prolonged release of basic fibroblast growth factor and vascular endothelial growth factor

    PubMed Central

    Roberts, Justine J; Farrugia, Brooke L; Green, Rylie A; Rnjak-Kovacina, Jelena; Martens, Penny J

    2016-01-01

    Heparin-based hydrogels are attractive for controlled growth factor delivery, due to the native ability of heparin to bind and stabilize growth factors. Basic fibroblast growth factor and vascular endothelial growth factor are heparin-binding growth factors that synergistically enhance angiogenesis. Mild, in situ encapsulation of both basic fibroblast growth factor and vascular endothelial growth factor and subsequent bioactive dual release has not been demonstrated from heparin-crosslinked hydrogels, and the combined long-term delivery of both growth factors from biomaterials is still a major challenge. Both basic fibroblast growth factor and vascular endothelial growth factor were encapsulated in poly(vinyl alcohol)-heparin hydrogels and demonstrated controlled release. A model cell line, BaF32, was used to show bioactivity of heparin and basic fibroblast growth factor released from the gels over multiple days. Released basic fibroblast growth factor promoted higher human umbilical vein endothelial cell outgrowth over 24 h and proliferation for 3 days than the poly(vinyl alcohol)-heparin hydrogels alone. The release of vascular endothelial growth factor from poly(vinyl alcohol)-heparin hydrogels promoted human umbilical vein endothelial cell outgrowth but not significant proliferation. Dual-growth factor release of basic fibroblast growth factor and vascular endothelial growth factor from poly(vinyl alcohol)-heparin hydrogels resulted in a synergistic effect with significantly higher human umbilical vein endothelial cell outgrowth compared to basic fibroblast growth factor or vascular endothelial growth factor alone. Poly(vinyl alcohol)-heparin hydrogels allowed bioactive growth factor encapsulation and provided controlled release of multiple growth factors which is beneficial toward tissue regeneration applications. PMID:27895888

  17. In situ formation of poly(vinyl alcohol)-heparin hydrogels for mild encapsulation and prolonged release of basic fibroblast growth factor and vascular endothelial growth factor.

    PubMed

    Roberts, Justine J; Farrugia, Brooke L; Green, Rylie A; Rnjak-Kovacina, Jelena; Martens, Penny J

    2016-01-01

    Heparin-based hydrogels are attractive for controlled growth factor delivery, due to the native ability of heparin to bind and stabilize growth factors. Basic fibroblast growth factor and vascular endothelial growth factor are heparin-binding growth factors that synergistically enhance angiogenesis. Mild, in situ encapsulation of both basic fibroblast growth factor and vascular endothelial growth factor and subsequent bioactive dual release has not been demonstrated from heparin-crosslinked hydrogels, and the combined long-term delivery of both growth factors from biomaterials is still a major challenge. Both basic fibroblast growth factor and vascular endothelial growth factor were encapsulated in poly(vinyl alcohol)-heparin hydrogels and demonstrated controlled release. A model cell line, BaF32, was used to show bioactivity of heparin and basic fibroblast growth factor released from the gels over multiple days. Released basic fibroblast growth factor promoted higher human umbilical vein endothelial cell outgrowth over 24 h and proliferation for 3 days than the poly(vinyl alcohol)-heparin hydrogels alone. The release of vascular endothelial growth factor from poly(vinyl alcohol)-heparin hydrogels promoted human umbilical vein endothelial cell outgrowth but not significant proliferation. Dual-growth factor release of basic fibroblast growth factor and vascular endothelial growth factor from poly(vinyl alcohol)-heparin hydrogels resulted in a synergistic effect with significantly higher human umbilical vein endothelial cell outgrowth compared to basic fibroblast growth factor or vascular endothelial growth factor alone. Poly(vinyl alcohol)-heparin hydrogels allowed bioactive growth factor encapsulation and provided controlled release of multiple growth factors which is beneficial toward tissue regeneration applications.

  18. [Growth factors and cell cultures: a new approach for research in ophthalmology].

    PubMed

    Courtois, Y; Barritault, D; Arruti, C; Tassin, J

    1980-01-01

    Tissue culture technology applied to ophtalmology has produced an extensive knowledge of ocular cell physiology. In this work, we review the various factors known to control proliferation and differentiation in lens epithelial cells and corneal endothelial cells. We discuss the role of a new ocular growth factor that we discovered in the retina and whose ubiquitous distribution suggests that it could be involved in tissue-tissue interactions.

  19. Charm form factors in hadronic interactions

    SciTech Connect

    Bracco, M. E.; Navarra, F. S.; Nielsen, M.; Chiapparini, M.

    2010-12-28

    We calculate the form factors and the coupling constants in vertices with charm mesons, such as {rho}D*D*, in the framework of QCD sum rules. We first discuss the applications of these form factors in heavy ion collisions and in B decays. We then present an introduction to the method of QCD sum rules and describe how to work with the three-point function. We give special attention to the procedure employed to extrapolate results obtained in the deep euclidean region to the poles of the particles, located in the time-like region. Finally we present a table of ready-to-use parametrizations of all the form factors, which are relevant for the processes mentioned in the introduction. We also give the coupling constants.

  20. Anti-nerve growth factor in pain management: current evidence

    PubMed Central

    Chang, David S; Hsu, Eugene; Hottinger, Daniel G; Cohen, Steven P

    2016-01-01

    There continues to be an unmet need for safe and effective pain medications. Opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) dominate the clinical landscape despite limited effectiveness and considerable side-effect profiles. Although significant advancements have identified myriad potential pain targets over the past several decades, the majority of new pain pharmacotherapies have failed to come to market. The discovery of nerve growth factor (NGF) and its interaction with tropomyosin receptor kinase A (trkA) have been well characterized as important mediators of pain initiation and maintenance, and pharmacotherapies targeting this pathway have the potential to be considered promising methods in the treatment of a variety of nociceptive and neuropathic pain conditions. Several methodologic approaches, including sequestration of free NGF, prevention of NGF binding and trkA activation, and inhibition of trkA function, have been investigated in the development of new pharmacotherapies. Among these, NGF-sequestering antibodies have exhibited the most promise in clinical trials. However, in 2010, reports of rapid joint destruction leading to joint replacement prompted the US Food and Drug Administration (FDA) to place a hold on all clinical trials involving anti-NGF antibodies. Although the FDA has since lifted this hold and a number of new trials are under way, the long-term efficacy and safety profile of anti-NGF antibodies are yet to be established. PMID:27354823

  1. An endothelial growth factor involved in rat renal development.

    PubMed Central

    Oliver, J A; Al-Awqati, Q

    1998-01-01

    In the kidney, there is a close and intricate association between epithelial and endothelial cells, suggesting that a complex reciprocal interaction may exist between these two cell types during renal ontogeny. Thus, we examined whether metanephrogenic mesenchymal cells secrete endothelial mitogens. With an endothelial mitogenic assay and sequential chromatography of the proteins in the media conditioned by a cell line of rat metanephrogenic mesenchymal cells (7.1.1 cells), we isolated a protein whose amino acid analysis identified it as hepatoma-derived growth factor (HDGF). Media conditioned with Cos-7 cell transfected with HDGF cDNA stimulated endothelial DNA synthesis. With immunoaffinity purified antipeptide antibodies, we found that HDGF was widely distributed in the renal anlage at early stages of development but soon concentrated at sites of active morphogenesis and, except for some renal tubules, disappeared from the adult kidney. From a 7.1.1 cells cDNA library, a clone of most of the translatable region of HDGF was obtained and used to synthesize digoxigenin-labeled riboprobes. In situ hybridization showed that during kidney development mRNA for HDGF was most abundant at sites of nephron morphogenesis and in ureteric bud cells while in the adult kidney transcripts disappeared except for a small population of distal tubules. Thus, HDGF is an endothelial mitogen that is present in embryonic kidney, and its expression is synchronous with nephrogenesis. PMID:9739055

  2. Anti-nerve growth factor in pain management: current evidence.

    PubMed

    Chang, David S; Hsu, Eugene; Hottinger, Daniel G; Cohen, Steven P

    2016-01-01

    There continues to be an unmet need for safe and effective pain medications. Opioids and nonsteroidal anti-inflammatory drugs (NSAIDs) dominate the clinical landscape despite limited effectiveness and considerable side-effect profiles. Although significant advancements have identified myriad potential pain targets over the past several decades, the majority of new pain pharmacotherapies have failed to come to market. The discovery of nerve growth factor (NGF) and its interaction with tropomyosin receptor kinase A (trkA) have been well characterized as important mediators of pain initiation and maintenance, and pharmacotherapies targeting this pathway have the potential to be considered promising methods in the treatment of a variety of nociceptive and neuropathic pain conditions. Several methodologic approaches, including sequestration of free NGF, prevention of NGF binding and trkA activation, and inhibition of trkA function, have been investigated in the development of new pharmacotherapies. Among these, NGF-sequestering antibodies have exhibited the most promise in clinical trials. However, in 2010, reports of rapid joint destruction leading to joint replacement prompted the US Food and Drug Administration (FDA) to place a hold on all clinical trials involving anti-NGF antibodies. Although the FDA has since lifted this hold and a number of new trials are under way, the long-term efficacy and safety profile of anti-NGF antibodies are yet to be established.

  3. Argos inhibits epidermal growth factor receptor signalling by ligand sequestration.

    PubMed

    Klein, Daryl E; Nappi, Valerie M; Reeves, Gregory T; Shvartsman, Stanislav Y; Lemmon, Mark A

    2004-08-26

    The epidermal growth factor receptor (EGFR) has critical functions in development and in many human cancers. During development, the spatial extent of EGFR signalling is regulated by feedback loops comprising both well-understood activators and less well-characterized inhibitors. In Drosophila melanogaster the secreted protein Argos functions as the only known extracellular inhibitor of EGFR, with clearly identified roles in multiple stages of development. Argos is only expressed when the Drosophila EGFR (DER) is activated at high levels, and downregulates further DER signalling. Although there is ample genetic evidence that Argos inhibits DER activation, the biochemical mechanism has not been established. Here we show that Argos inhibits DER signalling without interacting directly with the receptor, but instead by sequestering the DER-activating ligand Spitz. Argos binds tightly to the EGF motif of Spitz and forms a 1:1 (Spitz:Argos) complex that does not bind DER in vitro or at the cell surface. Our results provide an insight into the mechanism of Argos function, and suggest new strategies for EGFR inhibitor design.

  4. Epithelial expression of keratinocytes growth factor in oral precancer lesions.

    PubMed

    Jimson, Sudha; Murali, S; Zunt, Susan L; Goldblatt, Lawrence I; Srinivasan, Mythily

    2016-01-01

    Keratinocyte growth factor (KGF) is a potent epithelial mitogen that acts by binding the KGF receptors (KGFRs) expressed on epithelial cells and regulates proliferation and differentiation. The objective of this study was to investigate the expression of KGF in the epithelium in oral precancer. Archival tissues of oral submucous fibrosis (SMF) and leukoplakia were assessed for epithelial KGF expression by immunohistochemistry and real-time quantitative polymerase chain reaction. KGF was predominantly expressed in the basal and parabasal cells in the epithelium of SMF tissues. KGF transcript in the epithelial cells increased with increasing severity of epithelial dysplasia in oral leukoplakia. Although widely reported as a product secreted by the mesenchymal cells, our data suggest that the KGF is also expressed in oral epithelial cells much like the expression in ovarian epithelial cells. Based on the localization of KGF in cells at the epithelial mesenchymal junction and that of the reported presence of KGFR in oral keratinocytes, a potential mechanism involving paracrine and autocrine interactions of KGF and KGFR in early stages of oral precancer is postulated.

  5. Epithelial expression of keratinocytes growth factor in oral precancer lesions

    PubMed Central

    Jimson, Sudha; Murali, S.; Zunt, Susan L.; Goldblatt, Lawrence I.; Srinivasan, Mythily

    2016-01-01

    Background: Keratinocyte growth factor (KGF) is a potent epithelial mitogen that acts by binding the KGF receptors (KGFRs) expressed on epithelial cells and regulates proliferation and differentiation. The objective of this study was to investigate the expression of KGF in the epithelium in oral precancer. Materials and Methods: Archival tissues of oral submucous fibrosis (SMF) and leukoplakia were assessed for epithelial KGF expression by immunohistochemistry and real-time quantitative polymerase chain reaction. Results: KGF was predominantly expressed in the basal and parabasal cells in the epithelium of SMF tissues. KGF transcript in the epithelial cells increased with increasing severity of epithelial dysplasia in oral leukoplakia. Conclusion: Although widely reported as a product secreted by the mesenchymal cells, our data suggest that the KGF is also expressed in oral epithelial cells much like the expression in ovarian epithelial cells. Based on the localization of KGF in cells at the epithelial mesenchymal junction and that of the reported presence of KGFR in oral keratinocytes, a potential mechanism involving paracrine and autocrine interactions of KGF and KGFR in early stages of oral precancer is postulated. PMID:27274338

  6. Advances in pubertal growth and factors influencing it: Can we increase pubertal growth?

    PubMed

    Soliman, Ashraf; De Sanctis, Vincenzo; Elalaily, Rania; Bedair, Said

    2014-11-01

    Puberty is a period of development characterized by partially concurrent changes which includes growth acceleration, alteration in body composition and appearance of secondary sex characteristics. Puberty is characterized by an acceleration and then deceleration in skeletal growth. The initiation, duration and amount of growth vary considerably during the growth spurt. Pubertal growth and biological maturation are dynamic processes regulated by a variety of genetic and environmental factors. Changes in skeletal maturation and bone mineral accretion concomitant with the stage of pubertal development constitute essential components in the evaluation of growth during this pubertal period. Genetic, endocrine and nutritional factors and ethnicity contribute variably to the amount of growth gained during this important period of rapid changes. Many studies investigated the possibility of increasing pubertal growth to gain taller final adult height in adolescents with idiopathic short stature (ISS). The pattern of pubertal growth, its relation to sex maturity rating and factors affecting them has been addressed in this review. The results of different trials to increase final adult height of adolescents using different hormones have been summarized. These data enables Endocrinologists to give in-depth explanations to patients and families about the efficacy and clinical significance as well as the safety of using these therapies in the treatment of adolescents with ISS.

  7. Advances in pubertal growth and factors influencing it: Can we increase pubertal growth?

    PubMed Central

    Soliman, Ashraf; De Sanctis, Vincenzo; Elalaily, Rania; Bedair, Said

    2014-01-01

    Puberty is a period of development characterized by partially concurrent changes which includes growth acceleration, alteration in body composition and appearance of secondary sex characteristics. Puberty is characterized by an acceleration and then deceleration in skeletal growth. The initiation, duration and amount of growth vary considerably during the growth spurt. Pubertal growth and biological maturation are dynamic processes regulated by a variety of genetic and environmental factors. Changes in skeletal maturation and bone mineral accretion concomitant with the stage of pubertal development constitute essential components in the evaluation of growth during this pubertal period. Genetic, endocrine and nutritional factors and ethnicity contribute variably to the amount of growth gained during this important period of rapid changes. Many studies investigated the possibility of increasing pubertal growth to gain taller final adult height in adolescents with idiopathic short stature (ISS). The pattern of pubertal growth, its relation to sex maturity rating and factors affecting them has been addressed in this review. The results of different trials to increase final adult height of adolescents using different hormones have been summarized. These data enables Endocrinologists to give in-depth explanations to patients and families about the efficacy and clinical significance as well as the safety of using these therapies in the treatment of adolescents with ISS. PMID:25538878

  8. Transforming growth factor alpha controls the transition from hypertrophic cartilage to bone during endochondral bone growth.

    PubMed

    Usmani, Shirine E; Pest, Michael A; Kim, Gunwoo; Ohora, Sara N; Qin, Ling; Beier, Frank

    2012-07-01

    We have recently identified transforming growth factor alpha (TGFα) as a novel growth factor involved in the joint disease osteoarthritis. The role of TGFα in normal cartilage and bone physiology however, has not been well defined. The objective of this study was to determine the role of TGFα in bone development through investigation of the Tgfa knockout mouse. The gross skeletons as well as the cartilage growth plates of Tgfa knockout mice and their control littermates were examined during several developmental stages ranging from newborn to ten weeks old. Knockout mice experienced skeletal growth retardation and expansion of the hypertrophic zone of the growth plate. These phenotypes were transient and spontaneously resolved by ten weeks of age. Tgfa knockout growth plates also had fewer osteoclasts along the cartilage/bone interface. Furthermore, knockout mice expressed less RUNX2, RANKL, and MMP13 mRNA in their cartilage growth plates than controls did. Tgfa knockout mice experience a delay in bone development, specifically the conversion of hypertrophic cartilage to true bone. The persistence of the hypertrophic zone of the growth plate appears to be mediated by a decrease in MMP13 and RANKL expression in hypertrophic chondrocytes and a resulting reduction in osteoclast recruitment. Overall, TGFα appears to be an important growth factor regulating the conversion of cartilage to bone during the process of endochondral ossification. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. [Role of maternal risk factors in foetal growth impairment].

    PubMed

    Cieślik, Krystyna; Waszak, Małgorzata

    2007-01-01

    Clinical goal of foetal growth evaluation is primarily to identify foetuses with an accelerated or decelerated growth rate. Chief criterion of normal intrauterine development is a timely delivery of a neonate meeting applicable health norms. Obstetrician's decisions on how a pregnancy should be handled are based on foetal development and growth forecast and take into account whether foetal growth is normal, accelerated or decelerated. Such assessment requires correct determination of foetal age, selection of the most appropriate growth rate standards and defining potential risk factors. The aim of this study was to evaluate the impact of pre-selected risk factors on foetal growth. Material was 3889 foetuses (2203 males and 1686 females) stillborn between 20th and 42nd week of pregnancy. Morphological development of the study material was characterised based upon the values of seven pre-defined somatic features and the weight of eight internal organs. Clinical classification of maternal risk factors revealed four factors of most potent impact on foetal development, ie. maternal age, number of pregnancy and artificial and natural miscarriage history. Verification of developmental status of foetuses, ie. exposed vs. non-exposed to risk factors, allowed to determine the potency of selected risk factors. The non-exposed group was characterised by normal growth rate during each of stage of development meaning that despite being stillborn these foetuses did not differ significantly in their development of the selected features from live born foetuses. In the exposed group, however, the rate of development, compared to the standard, was significantly reduced and starting from the 35th week it was below the 5th percentile. It can, therefore, be seen that the exposed group development was significantly influenced by an adverse impact of risk factors. Our results show that the risk factors for the exposed group are a group of maternal risk factors impairing foetal growth and

  10. The basic amino acids in the coiled-coil domain of CIN85 regulate its interaction with c-Cbl and phosphatidic acid during epidermal growth factor receptor (EGFR) endocytosis.

    PubMed

    Zheng, Xiudan; Zhang, Jing; Liao, Kan

    2014-07-08

    During EGFR internalization CIN85 bridges EGFR-Cbl complex, endocytic machinery and fusible membrane through the interactions of CIN85 with c-Cbl, endophilins and phosphatidic acid. These protein-protein and protein-lipid interactions are mediated or regulated by the positively charged C-terminal coiled-coil domain of CIN85. However, the details of CIN85-lipid interaction remain unknown. The present study suggested a possible electric interaction between the negative charge of phosphatidic acid and the positive charge of basic amino acids in coiled-coil domain. Mutations of the basic amino acids in the coiled-coil domain, especially K645, K646, R648 and R650, into neutral amino acid alanine completely blocked the interaction of CIN85 with c-Cbl or phosphatidic acid. However, they did not affect CIN85-endophilin interaction. In addition, CIN85 was found to associate with the internalized EGFR endosomes. It interacted with several ESCRT (Endosomal Sorting Complex Required for Transport) component proteins for ESCRT assembly on endosomal membrane. Mutations in the coiled-coil domain (deletion of the coiled-coil domain or point mutations of the basic amino acids) dissociated CIN85 from endosomes. These mutants bound the ESCRT components in cytoplasm to prevent them from assembly on endosomal membrane and inhibited EGFR sorting for degradation. As an adaptor protein, CIN85 interacts with variety of partners through several domains. The positive charges of basic amino acids in the coiled-coil domain are not only involved in the interaction with phosphatidic acid, but also regulate the interaction of CIN85 with c-Cbl. CIN85 also interacts with ESCRT components for protein sorting in endosomes. These CIN85-protein and CIN85-lipid interactions enable CIN85 to link EGFR-Cbl endocytic complex with fusible membrane during EGFR endocytosis and subsequently to facilitate ESCRT formation on endosomal membrane for EGFR sorting and degradation.

  11. Transforming growth factor (TGF. beta. ) decreases the proliferation of human bone marrow fibroblasts by inhibiting the platelet-derived growth factor (PDGF) binding

    SciTech Connect

    Bryckaert, M.C.; Tobelem, G. ); Lindroth, M.; Loenn, A.; Wasteson, A. )

    1988-12-01

    Human bone marrow fibroblasts were cultivated and characterized by immunofluorescent staining and electron microscopy. Their interactions with PDGF and TGF{beta} were studied. While a positive intracellular antifibronectin staining was observed, the cultured cells were not labeled with specific antibodies toward factor VIII von Willebrand factor (F VIII/vWF), desmin, and macrophage antigen. The binding of pure human PDGF to the cultured bone marrow fibroblasts was investigated. Addition of an excess of unlabeled PDGF decreased the binding to 75 and 80%, which means that the nonspecific binding represented 20-25% of total binding, whereas epidermal growth factor (EGF) had no effect. Two classes of sites were detected by Scatchard analysis. The stimulation of DNA synthesis of PDGF was quantified by ({sup 3}H)thymidine incorporation. The results suggested that PDGF and TGF{beta} could modulate the growth of bone marrow fibroblasts.

  12. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation.

    PubMed Central

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h and immunocytochemical staining of cell nuclei. After 6 days in culture in the absence of growth factors, nuclear BrdUrd incorporation was detected in 30% of fetal chromaffin cells, 1.5% of neonatal cells, and 0.1% of adult cells. Addition of 10 nM IGF-I or IGF-II increased the fraction of BrdUrd-labeled nuclei to 50% of fetal, 20% of neonatal, and 2% of adult chromaffin cells. The ED50 value of IGF-I- and IGF-II-stimulated BrdUrd labeling in neonatal chromaffin cells was 0.3 nM and 0.8 nM, respectively. In neonatal and adult chromaffin cells, addition of 1 nM bFGF or 2 nM NGF stimulated nuclear BrdUrd incorporation to approximately the same level as 10 nM IGF-I or IGF-II. However, the response to bFGF or NGF in combination with either IGF-I or IGF-II was more than additive, indicating that the combined effect of the IGFs and bFGF or NGF is synergistic. The degree of synergism was 2- to 4-fold in neonatal chromaffin cells and 10- to 20-fold in adult chromaffin cells compared with the effect of each growth factor alone. In contrast, the action of bFGF and NGF added together in the absence of IGFs was not synergistic or additive. IGF-II acted also as a survival factor on neonatal chromaffin cells and the cell survival was further improved when bFGF or NGF was added together with IGF-II. In conclusion, we propose that IGF-I and IGF-II act in synergy with bFGF and NGF to stimulate proliferation and survival of chromaffin cells during neonatal growth and adult maintenance of the adrenal medulla. Our findings may have implications for improving the survival of chromaffin cell implants in diseased human brain. PMID:8127879

  13. The granulin-epithelin precursor/PC-cell-derived growth factor is a growth factor for epithelial ovarian cancer.

    PubMed

    Jones, Monica Brown; Michener, Chad M; Blanchette, James O; Kuznetsov, Vladimir A; Raffeld, Mark; Serrero, Ginette; Emmert-Buck, Michael R; Petricoin, Emanuel F; Krizman, David B; Liotta, Lance A; Kohn, Elise C

    2003-01-01

    The role of growth factors in ovarian cancer development and progression is complex and multifactorial. We hypothesized that new growth factors may be identified through the molecular analysis of ovarian tumors as they exist in their native environment. RNA extracted from microdissected serous low malignant potential (LMP) and invasive ovarian tumors was used to construct cDNA libraries. A total of 7300 transcripts were randomly chosen for sequencing, and those transcripts were statistically evaluated. Reverse transcription-PCR and immunohistochemistry were used to validate the findings in tumor tissue samples. Ovarian cancer cell lines were used to test gene effects on monolayer growth, proliferative capacity, and density-independent growth. Analysis of the pooled library transcripts revealed 26 genes differentially expressed between LMP and invasive ovarian cancers. The granulin-epithelin precursor [GEP/PC-cell derived growth factor (PCDGF)] was expressed only in the invasive ovarian cancer libraries (P < 0.028) and was absent in the LMP libraries (0 of 2872 clones). All of the invasive tumor epithelia, 20% of the LMP tumor epithelia, and all of the stroma from both subsets expressed GEP by reverse transcription-PCR. Immunohistochemical staining for GEP was diffuse and cytosolic in invasive ovarian cancer tumor cells compared with occasional, punctate, and apical staining in LMP tumor epithelia. Antisense transfection of GEP into ovarian cancer cell lines resulted in down-regulation of GEP production, reduction in cell growth (P < 0.002), decrease in the S-phase fraction (P < 0.04), and loss of density-independent growth potential (P < 0.01). cDNA library preparation from microdissected tumor epithelium provided a selective advantage for the identification of growth factors for epithelial ovarian cancer. Differential granulin expression in tumor samples and the antiproliferative effects of its antisense down-regulation suggest that GEP may be a new autocrine

  14. Discerning environmental factors affecting current tree growth in Central Europe.

    PubMed

    Cienciala, Emil; Russ, Radek; Šantrůčková, Hana; Altman, Jan; Kopáček, Jiří; Hůnová, Iva; Štěpánek, Petr; Oulehle, Filip; Tumajer, Jan; Ståhl, Göran

    2016-12-15

    We examined the effect of individual environmental factors on the current spruce tree growth assessed from a repeated country-level statistical landscape (incl. forest) survey in the Czech Republic. An extensive set of variables related to tree size, competition, site characteristics including soil texture, chemistry, N deposition and climate was tested within a random-effect model to explain growth in the conditions of dominantly managed forest ecosystems. The current spruce basal area increment was assessed from two consecutive landscape surveys conducted in 2008/2009 and six years later in 2014/2015. Tree size, age and competition within forest stands were found to be the dominant explanatory variables, whereas the expression of site characteristics, environmental and climatic drives was weaker. The significant site variables affecting growth included soil C/N ratio and soil exchangeable acidity (pH KCl; positive response) reflecting soil chemistry, long-term N-deposition (averaged since 1975) in combination with soil texture (clay content) and Standardized Precipitation Index (SPI), a drought index expressing moisture conditions. Sensitivity of growth to N-deposition was positive, although weak. SPI was positively related to and significant in explaining tree growth when expressed for the growth season. Except SPI, no significant relation of growth was determined to altitude-related variables (temperature, growth season length). We identified the current spruce growth optimum at elevations about 800ma.s.l. or higher in the conditions of the country. This suggests that at lower elevations, limitation by a more pronounced water deficit dominates, whereas direct temperature limitation may concern the less frequent higher elevations. The mixed linear model of spruce tree growth explained 55 and 65% of the variability with fixed and random effects included, respectively, and provided new insights on the current spruce tree growth and factors affecting it within the

  15. Viability and growth of feline preantral follicles in vitro cultured with insulin growth factor and epidermal growth factor supplemented medium.

    PubMed

    Alves, A E; Padilha-Nakaghi, L C; Pires-Butler, E A; Apparicio, M; Silva, Nam; Motheo, T F; Vicente, Wrr; Luvoni, G C

    2017-04-01

    In vitro culture of ovarian preantral follicles has emerged as a reproductive technology aimed at obtaining large amount of oocytes for in vitro embryo production. The addition of growth factors (GF) in the in vitro culture of preantral follicles of different species has provided superior results of follicular development, antrum formation and proliferation of granulosa cells. However, there are only few reports regarding the use of these factors on feline preantral follicle in vitro culture. Thus, the aim of this study was to investigate the effect of a combination of IGF-1 and EGF on in vitro viability and growth of preantral follicles and enclosed oocytes collected from domestic cats. A total of 64 follicles characterized by multilayer granulosa cells were isolated and individually cultured for 6 days (T6) in minimum essential medium supplemented with IGF-1+ EGF (100 ng/ml each) or without (control). A higher percentage of follicles were viable after culture with GF than without, and an increase in size when IGF-1+ EGF were added to the medium (170 ± 32.4 μm (T0) vs. 201 ± 22.3 μm (T6); p < .05) was observed. An increase in the diameter was also observed in follicles cultured without GF, but this increase was only 8.3% compared to 15.4% of those cultured with GF (p < .05). No differences were found in the diameter of oocytes contained in follicles cultured in the non-supplemented or supplemented media (107.9 ± 11.8 μm (T0) vs. 113.2 ± 15.6 μm (T6); p > .05). These data suggest that the addition of IGF-1 and EGF to the culture medium promotes the in vitro development of preantral follicles of cats. © 2016 Blackwell Verlag GmbH.

  16. Cytokine and Growth Factor Responses After Radiotherapy for Localized Ependymoma

    SciTech Connect

    Merchant, Thomas E. Li Chenghong; Xiong Xiaoping; Gaber, M. Waleed

    2009-05-01

    Purpose: To determine the time course and clinical significance of cytokines and peptide growth factors in pediatric patients with ependymoma treated with postoperative radiotherapy (RT). Methods and Materials: We measured 15 cytokines and growth factors (fibroblast growth factor, epidermal growth factor, vascular endothelial growth factor [VEGF], interleukin [IL]-1{beta}, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, interferon-{gamma}, tumor necrosis factor-{alpha}, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and macrophage inflammatory protein-{alpha}) from 30 patients before RT and 2 and 24 h, weekly for 6 weeks, and at 3, 6, 9, and 12 months after the initiation of RT. Two longitudinal models for the trend of log-transformed measurements were fitted, one during treatment and one through 12 months. Results: During RT, log IL-8 declined at a rate of -0.10389/wk (p = 0.0068). The rate of decline was greater (p = 0.028) for patients with an infratentorial tumor location. The decline in IL-8 after RT was significant when stratified by infratentorial tumor location (p = 0.0345) and more than one surgical procedure (p = 0.0272). During RT, the decline in log VEGF was significant when stratified by the presence of a ventriculoperitoneal shunt. After RT, the log VEGF declined significantly at a rate of -0.06207/mo. The decline was significant for males (p = 0.0222), supratentorial tumors (p = 0.0158), one surgical procedure (p = 0.0222), no ventriculoperitoneal shunt (p = 0.0005), and the absence of treatment failure (p = 0.0028). Conclusion: The pro-inflammatory cytokine IL-8 declined significantly during RT and the decline differed according to tumor location. The angiogenesis factor VEGF declined significantly during the 12 months after RT. The decline was greater in males, those without a ventriculoperitoneal shunt, and in those with favorable disease factors, including one surgical procedure, supratentorial tumor location, and

  17. Insulin-like growth factor I acts as an angiogenic agent in rabbit cornea and retina: comparative studies with basic fibroblast growth factor.

    PubMed

    Grant, M B; Mames, R N; Fitzgerald, C; Ellis, E A; Aboufriekha, M; Guy, J

    1993-04-01

    The release of growth factors from ischaemic retina has been hypothesized as the central stimulus for retinal neovascularization in proliferative diabetic retinopathy. Two of the growth factors implicated are insulin-like growth factor-I and basic fibroblast growth factor. We examined the effect of insulin-like growth factor-I on in vivo neovascularization using the established angiogenic model of the rabbit cornea (n = 30), and also compared the effects of insulin-like growth factor-I and basic fibroblast growth factor using two new in vivo systems. Either supraphysiologic concentrations of each growth factor (600 micrograms) were injected intravitreally into pigmented rabbits (n = 21) or porous polyfluorotetraethylene chambers filled with an emulsion containing collagen and growth factor (500 ng) were placed on the retina surface (n = 8). Our results demonstrate that when insulin-like growth factor-I was implanted together with a slow release carrier into the pocket of the normally avascular cornea, insulin-like growth factor-I (10 micrograms/pellet) induced angiogenesis in all rabbits. This degree of angiogenesis was comparable to that previously shown for basic fibroblast growth factor. For the intravitreal studies, the fibrotic component was greater in the basic fibroblast growth factor injected eyes, whereas the vascular component was accentuated in the eyes injected with insulin-like growth factor-I. Light and electron microscopy demonstrated areas of vascular proliferation in both groups. Porous polyfluorotetraethylene chamber studies with insulin-like growth factor-I and basic fibroblast growth factor demonstrated vascular proliferation in the vicinity of the chamber similar to the intravitreal injected eyes, but to a lesser degree than the injected eyes. Our experiments overall support the angiogenic potential of both insulin-like growth factor-I and basic fibroblast growth factor and support distinct but complimentary roles for each growth factor in the

  18. Growth factors