Science.gov

Sample records for growth factor mrna

  1. Nerve growth factor (NGF) and NGF mRNA change in rat uterus during pregnancy.

    PubMed

    Varol, F G; Duchemin, A M; Neff, N H; Hadjiconstantinou, M

    2000-11-10

    During pregnancy, the uterus undergoes a profound sympathetic denervation. To explore whether this is associated with changes in neurotrophic factors, we assayed nerve growth factor (NGF) and NGF mRNA in the uterus of non-pregnant and pregnant rats. In the uterine horn, the concentration of NGF and its mRNA decreased during middle and late pregnancy. However, when values were corrected for the increase of uterine weight and total RNA yield during pregnancy, NGF content and mRNA per horn increased during middle and late pregnancy. Similar, but less pronounced, changes were observed in the cervix. By seven days postpartum, both parameters returned to near normal.

  2. Vascular-specific growth factor mRNA levels in the human diaphragm.

    PubMed

    Alexopoulou, Christina; Mitrouska, Ioanna; Arvanitis, Dimitrios; Tzanakis, Nikolaos; Chalkiadakis, George; Melissas, John; Zervou, Maria; Siafakas, Nikolaos

    2005-01-01

    Angiogenesis is an adaptation mechanism of skeletal muscles to increased load. Animal data have shown increased vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and transforming growth factor-beta(1) (TGF-beta(1)) mRNA levels in the diaphragm as a result of increased minute ventilation, but there are no data concerning the human diaphragm. The purpose of this study was to investigate the VEGF, bFGF, TGF-beta(1) mRNA levels in the human diaphragm of normal subjects and patients with altered respiratory mechanics. We studied 9 patients with chronic obstructive pulmonary disease (COPD), 4 obese patients and 12 controls. We performed multiplex semiquantitative reverse transcription polymerase chain reaction to determine the VEGF, bFGF and TGF-beta(1) mRNA levels in specimens taken from their diaphragm. VEGF mRNA levels were 18% higher in COPD patients compared with controls (p = 0.04), while for the obese patients, these levels were not statistically significantly different. bFGF and TGF-beta(1) mRNA levels in COPD patients or obese individuals compared with controls did not differ significantly either. The results of our study showed that TGF-beta(1), VEGF and bFGF mRNA was detected in the human diaphragm. The VEGF levels were higher in COPD patients than in normal subjects. This upregulation of VEGF may suggest an enhancement of angiogenesis in the diaphragm in COPD patients.

  3. Hammerhead ribozyme targeting connective tissue growth factor mRNA blocks transforming growth factor-beta mediated cell proliferation.

    PubMed

    Blalock, Timothy D; Yuan, Rong; Lewin, Alfred S; Schultz, Gregory S

    2004-06-01

    Excessive scarring following trauma or surgery of cornea, conjunctiva or retina can greatly impair visual outcome. At present, no agents are clinically available that selectively reduce activity of genes that regulate fibrosis. Connective tissue growth factor (CTGF) has been linked to fibrosis in several tissues, including cornea and conjunctiva. In this study, hammerhead ribozymes targeting CTGF mRNA were synthesized, kinetic parameters were measured, and the effect on TGF-beta-mediated cell proliferation was measured in cultured human fibroblasts. The mRNA sequence of human CTGF was scanned for potential hammerhead ribozyme cleavage sites, and predicted secondary folding structures around the sites were calculated. Synthetic 12mer ribozymes and 33mer oligonucleotide mRNA targets corresponding to two sites were synthesized, and kinetic constants calculated from Hanes-Wolff plots of in vitro cleavage reactions. The ribozyme with higher percentage cleavage and kinetic rate was cloned into an expression plasmid (pTR-UF21) and stably transfected into cultured human fibroblasts. An inactive ribozyme plasmid served as a negative control. The effects of the ribozyme on expression of TGF-beta-induced CTGF mRNA and protein levels were measured using ELISA and real-time TaqMan quantitative RT-PCR. Finally, the effect of the CTGF ribozyme on TGF-beta-mediated proliferation of fibroblasts was measured using a non-radioactive cell proliferation microtiter assay. Of the eight potential hammerhead ribozyme cleavage sites in human CTGF mRNA, two sites (CHR 745, and CHR 859) were identified with optimal secondary folding. CHR 859 cleaved 94% of the target mRNA, compared to 46% cleavage for CHR 745 after 16 hr of reaction. CHR 859 had a K(m) of 1.56 microM and a K(cat) of 2.97 min(-1), while CHR 745 had a K(m) of 7.80 microM and a K(cat) of 5.7 min(-1). The turnover numbers (K(cat)/K(m)) of CHR 859 and CHR 745 were 1.9 x 10(6) M min(-1) and 7.4 x 10(5) M min(-1), respectively

  4. Differential in vitro phenotype pattern, transforming growth factor-beta(1) activity and mRNA expression of transforming growth factor-beta(1) in Apert osteoblasts.

    PubMed

    Locci, P; Baroni, T; Pezzetti, F; Lilli, C; Marinucci, L; Martinese, D; Becchetti, E; Calvitti, M; Carinci, F

    1999-09-01

    The phenotype of Apert osteoblasts differs from that of normal osteoblasts in the accumulation of macromolecules in the extracellular matrix. Apert osteoblasts increase type I collagen, fibronectin and glycosaminoglycans secretion compared with normal osteoblasts. Because the extracellular matrix macromolecule accumulation is greatly modulated by transforming growth factor-beta(1), we examined the ability of normal and Apert osteoblasts to secrete transforming growth factor-beta(1) by CCL-64 assay and to produce transforming growth factor-beta(1 )by analysis of the mRNA expression of transforming growth factor-beta(1). Northern blot analysis revealed an increased amount of transforming growth factor-beta(1) mRNA expression in Apert osteoblasts compared with normal ones. Moreover, the level of the active transforming growth factor-beta(1) isoform was higher in Apert than in normal media. In pathologic cells, the increase in transforming growth factor-beta(1) gene expression was associated with a parallel increase in the factor secreted into the medium. The level of transforming growth factor-beta(1) was decreased by the addition of basic fibroblast growth factor. Transforming growth factor-beta(1) is controlled temporally and spatially during skeletal tissue development and produces complex stimulatory and inhibitory changes in osteoblast functions. We hypothesise that in vitro differences between normal and Apert osteoblasts may be correlated to different transforming growth factor-beta(1) cascade patterns, probably due to an altered balance between transforming growth factor-beta(1) and basic fibroblast growth factor.

  5. Expression of vascular endothelial growth factor mRNA in non-small-cell lung carcinomas

    PubMed Central

    Fontanini, G; Boldrini, L; Chinè, S; Pisaturo, F; Basolo, F; Calcinai, A; Lucchi, M; Mussi, A; Angeletti, C A; Bevilacqua, G

    1999-01-01

    The vascular endothelial growth factor (VEGF) has been shown to be strictly related to vascular permeability and endothelial cell growth under physiological and pathological conditions. In tumour development and progression, VEGF plays a pivotal role in the development of the tumoral vascular network, and useful information in the progression of human cancer can be obtained by analysing the vascular endothelial growth factor expression of the tumours. In this study, we investigated the vascular endothelial growth factor transcript expression in non-small-cell lung carcinomas to evaluate the significance of this factor in a group of cancers in which the vascular pattern has been shown to significantly affect progression. Surgical samples of 42 patients with NSCLC were studied using reverse transcription polymerase chain reaction (PCR) analysis and in situ hybridization. Thirty-three out of 42 cases (78.6%) showed VEGF transcript expression predominantly as transcripts for the secretory forms of VEGF (isoforms 121 and 165). In situ hybridization, performed on 24 out of 42 samples, showed that the VEGF transcript expression was in several cases present in the cytoplasm both of neoplastic and normal cells, even if the VEGF mRNA was less expressed in the corresponding non-tumoral part. The VEGF 121 expression was associated with hilar and/or mediastinal nodal involvement (P = 0.02), and, taken together, the VEGF isoforms were shown to significantly influence overall (P = 0.02) and disease-free survival (P = 0.03). As a regulator of tumour angiogenesis, VEGF may represent a useful indicator of progression and poor prognosis in non-small-cell lung carcinomas. © 1999 Cancer Research Campaign PMID:9888482

  6. Vascular endothelial growth factor-A mRNA gene expression in clinical phases of multiple sclerosis.

    PubMed

    Rasol, Hoiyda A Abdel; Helmy, Hanan; El-Mously, Sherine; Aziz, Margeret A; El Bahaie, Hossam

    2016-03-01

    Vascular endothelial growth factor A stimulates angiogenesis, but is also pro-inflammatory and plays an important role in the development of neurological disease. This study aimed to investigate whether vascular endothelial growth factor A mRNA expression could be used as a marker for the prediction of susceptibility to multiple sclerosis and relate vascular endothelial growth factor to the clinical phases of multiple sclerosis. This was a cross-sectional study, consisting of a total of 60 subjects with multiple sclerosis and 20 healthy controls. Subjects were subjected to history taking, neurological examination and peripheral blood sampling for vascular endothelial growth factor A mRNA gene expression. Vascular endothelial growth factor A gene expression was measured by real-time polymerase chain reaction using the SYBR Green technique. Vascular endothelial growth factor A mRNA gene expression level was significantly lower in the multiple sclerosis group than in the healthy control group (P < 0.001). Vascular endothelial growth factor A mRNA gene expression level was higher in relapsing remitting multiple sclerosis (RRMS) patients than in those in remission (P < 0.001) and in relapsing remitting multiple sclerosis compared with secondary progressive multiple sclerosis (P < 0.001). There was no correlation between vascular endothelial growth factor A gene expression levels and duration of disease, multiple sclerosis progression index or expanded disability status scale. A lower vascular endothelial growth factor A mRNA gene expression level was independently associated with a higher risk of multiple sclerosis. © The Author(s) 2015.

  7. Effect of gamma radiation on the expression of mRNA growth factors in glycerol cryopreserved human amniotic membrane.

    PubMed

    Yatim, Rusidah Mat; Kannan, Thirumulu Ponnuraj; Ab Hamid, Suzina Sheikh

    2016-12-01

    Human amniotic membrane (HAM) due to its high biocompatibility, low immunogenicity, anti-microbial, anti-viral properties as well as the presence of growth factors has been used in various clinical applications. The growth factors play an important role in wound healing. The current study aimed to explore the effect of 15 kGy gamma radiation dose on selected growth factors and receptors mRNA present in HAM. Eight growth factors, namely, EGF, HGF, KGF, TGF-α, TGF-β1, TGF-β2, TGF-β3 and bFGF and two growth factor receptors, HGFR and KGFR were evaluated in this study. The total RNA was extracted and converted to complimentary DNA using commercial kits. Subsequently, the mRNA expressions of these growth factors were evaluated using real-time PCR and the results were statistically analyzed using REST-MCS software. This study confirmed the presence of these mRNA growth factors and receptors in fresh, glycerol cryopreserved and irradiated glycerol cryopreserved HAM. In glycerol cryopreserved HAM, the results showed up-regulation of HGF and bFGF and down-regulation of EGF, HGFR, KGF, KGFR, TGF-α, TGF-β1, TGF-β2 and TGF-β3 relative to the fresh HAM which acted as the control, whereas in irradiated glycerol cryopreserved HAM, the results showed up-regulation of EGF, HGF, KGF, KGFR, TGF-β1, TGF-β2 and TGF-β3 and down-regulation of HGFR, TGF-α and bFGF relative to the glycerol cryopreserved HAM which acted as the control. However, these mRNA expressions did not show any statistical significant difference compared to the control groups. This study concluded that a dose of 15 kGy of gamma radiation did not affect the mRNA expression for the growth factors' and receptors' in the glycerol cryopreserved HAM.

  8. Effects of epidermal growth factor and platelet-derived growth factor on c-fos and c-myc mRNA levels in normal human fibroblasts

    SciTech Connect

    Paulsson, Y.; Bywater, M.; Westermark, B. ); Heldin, C.H. )

    1987-07-01

    The mRNA levels of two proto-oncogenes, c-fos and c-myc, were determined in human foreskin fibroblasts exposed to epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) in a serum-free, defined medium (MCDB 104). Untreated, quiescent cells were found to have low or undetectable levels of c-fos and c-myc mRNA. Within 10 min after the addition of EGF or PDGF the c-fos mRNA level increased, reached a peak at 30 min, and then declined to the control level after 60 min. The level of c-myc mRNA increased somewhat later and peaked after 8 h in cultures treated with either of the growth factors. The c-myc mRNA level remained elevated throughout the 24 h of investigation. The concentrations of EGF and PDGF required for a maximal effect on c-fos or c-myc expression were found to be similar to those that give maximal effect on cell proliferation. Both c-fos and c-myc mRNA expression were superinduced by the addition of cycloheximide. The present results conform to the view that the c-fos and c-myc proto-oncogenes may be important (or necessary) but not sufficient for the initiation of DNA synthesis. Moreover, the finding that both EGF and PDGF increase c-fos and c-myc expression supports the previous suggestion that these two growth factors may in part act via a common intracellular pathway in the prereplicative phase of human fibroblasts.

  9. Chemokines mRNA expression in relation to the Macrophage Migration Inhibitory Factor (MIF) mRNA and Vascular Endothelial Growth Factor (VEGF) mRNA expression in the microenvironment of endometrial cancer tissue and normal endometrium: a pilot study.

    PubMed

    Giannice, Raffaella; Erreni, Marco; Allavena, Paola; Buscaglia, Mauro; Tozzi, Roberto

    2013-11-01

    Tumor microenvironment inflammatory cells play a major role in cancer progression. Among these, the Tumor Associated Macrophages (TAMs) infiltration depends on the kind of chemokine, cytokines and growth factors secreted by the tumor cells and by the stroma in response to the cancer invasion. TAMs have been found to promote anti-tumor response in early stages and to stimulate neovascularization and metastases in advanced disease. In the microenvironment chemo-attractants of many human cancers, MIF and VEGF correlate with an increased TAMs recruitment. In addition, MIF enhances tumor cells metastases by modulating the immune responses and by promoting the angiogenesis related to VEGF. On the contrary the inhibition of MIF can lead to cell cycle arrest and apoptosis. Some chemokines (e.g. CXCL12, CXCL11, CXCL8) and their receptors, thanks to their ability to modulate migration and proliferation, are involved in the angiogenetic process. In this study we compared the expression of MIF mRNA with VEGF mRNA expression and with mRNA expression of other chemokines related to neo-angiogenesis, such as CXCL12, CXCL11, CXCL8 and CXCR4, in human endometrial cancer tissue (EC) and normal endometrium (NE). Fresh samples of EC tissue and NE were extracted from 15 patients with FIGO stage I-III undergoing primary surgery. Some of the tissue was sent for histology and part of it was treated with RNA later and stored at -80°C. Four patients dropped out. A significant up-regulation of MIF mRNA in EC tissue versus NE samples (P=0.01) was observed in all 11 patients. The MIF mRNA over-expression was coincident with a VEGF mRNA overexpression in 54% of patients (P=NS). MIF mRNA was inversely related to CXCL12 mRNA expression (P=0.01). MIF over-expression was significantly related to low grading G1-2 (P=0.01), endometrial type I (P=0.05), no lymphovascular spaces invasion (P=0.01) and 3years DFS (P=0.01). As reported in previous studies on patients with breast cancer, our data suggest

  10. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines.

    PubMed Central

    Nørgaard, P.; Spang-Thomsen, M.; Poulsen, H. S.

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II mRNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF-beta receptor proteins beta-glycan mRNA was rapidly down-regulated and this effect was sustained throughout the 24 h observation period. RI and RII mRNAs were slightly increased 24 h after treatment. In one cell line sensitive to growth inhibition by TGF-beta, 1 but lacking beta-glycan expression, and one cell line expressing only beta-glycan and thus TGF-beta 1 -resistant, no autoregulation of mRNA of either TGF-beta receptor was demonstrated. The results suggest that TGF-beta 1 regulates the expression of its receptors, in particular beta-glycan, and that this effect is dependent on co-expression of beta-glycan, RI and RII. Images Figure 1 Figure 2 Figure 4 PMID:8624260

  11. Platelet-derived growth factor activity and mRNA expression in healing vascular grafts in baboons. Association in vivo of platelet-derived growth factor mRNA and protein with cellular proliferation.

    PubMed Central

    Golden, M A; Au, Y P; Kirkman, T R; Wilcox, J N; Raines, E W; Ross, R; Clowes, A W

    1991-01-01

    In a baboon graft model of arterial intimal thickening, smooth muscle cells (SMC) have been observed to proliferate underneath an intact monolayer of endothelium and in the absence of platelet adherence. Because platelets are not present and therefore cannot be a major source of growth stimulus, we have proposed that the vascular wall cells in the graft intima express mitogens and regulate SMC proliferation. To test this hypothesis, we assayed the grafts for mitogenic activity and expression of growth factor genes. Segments of healing graft and of normal artery, when perfused ex vivo, released mitogenic activity into the perfusate. The graft released more mitogen than the normal arterial segment, and some of the activity was inhibitable with an antibody to human platelet-derived growth factor (PDGF). In addition, Northern analysis of total RNA demonstrated higher expression of PDGF-A chain mRNA in the graft intima compared to normal artery. PDGF-B chain mRNA was barely detectable in both tissues. PDGF mRNA levels within the graft interstices were not measured. In situ hybridization of 7.5- or 12-wk grafts indicated that some luminal endothelial cells and adjacent intimal SMC contained PDGF-A chain mRNA. By thymidine autoradiography, intimal SMC were observed to be proliferating in the inner third of the intima. These data demonstrate a difference in the pattern of PDGF transcript expression and luminal perfusate activity in graft as compared with control arteries. The association of intimal smooth muscle cell proliferation with intimal PDGF mRNA expression and release of PDGF-like protein supports the hypothesis that factors from cells that have grown into the graft or populated its surface rather than platelets may regulate intimal smooth muscle cell proliferation in this model. Images PMID:1825089

  12. Enhanced translational efficiency of a novel transforming growth factor beta 3 mRNA in human breast cancer cells.

    PubMed Central

    Arrick, B A; Grendell, R L; Griffin, L A

    1994-01-01

    The mRNA for transforming growth factor beta 3 (TGF-beta 3) includes a long (1.1-kb) 5' noncoding region which exerts a potent inhibitory effect on translational efficiency. We now report that many human breast cancer cell lines (T47-D, SK-BR-3, ZR-75-1, and BT-474) express two mRNA species for TGF-beta 3: the 3.5-kb transcript previously described as the only TGF-beta 3 mRNA species in cells and a novel 2.6-kb transcript which lacks approximately 870 nucleotides from the 5' noncoding region. The 5' end of the shorter transcript was sequenced, establishing it to be a 5' truncation of the full-length TGF-beta 3 transcript. Estradiol decreased mRNA levels of both TGF-beta 3 mRNA transcripts to an equivalent degree in estrogen receptor-positive cells. In contrast, the synthetic progestin gestodene altered the relative abundance of the two transcripts, preferentially diminishing the expression of the 2.6-kb transcript. The potential for enhanced mRNA translation attributable to the shorter 5' noncoding region was evaluated by transfection of cells with chimeric plasmid constructs in which the transcription unit consisted of coding sequence for chloramphenicol acetyltransferase downstream of the 5' noncoding sequence from TGF-beta 3. The translational efficiency of chloramphenicol acetyltransferase-encoding mRNA containing the shorter 5' noncoding region of the 2.6-kb TGF-beta 3 transcript was approximately seven times greater than with the full-length 5' noncoding region of TGF-beta 3. Polysome analysis of TGF-beta 3 mRNA in SK-BR-3 cells supported the hypothesis that the 2.6-kb transcript was more actively engaged in translation. Images PMID:8264630

  13. Localization of fibroblast growth factor I (acid fibroblast growth factor) and its mRNA in the bovine mammary gland during mammogenesis, lactation and involution.

    PubMed

    Sinowatz, F; Schams, D; Habermann, F; Berisha, B; Vermehren, M

    2006-06-01

    Growth factors are involved in development and function of the mammary gland. The aim of this study was the localization of fibroblast growth factor 1 (FGF-1) and its mRNA in the bovine mammary gland during different developmental and functional stages. Mammary tissue was obtained from German Brown Swiss cows (n = 23) during defined stages of mammogenesis (before and during pregnancy), lactogenesis, peak lactation and involution. The distribution of FGF-1 mRNA was studied using non-radioactive in situ hybridization, the corresponding FGF-protein was analysed using immunohistochemistry [avidin-biotin peroxidase complex (ABC)-method]. A moderate to distinct staining for FGF-mRNA was found in the epithelium of ducts and developing alveoli during mammogenesis. Post-partum at the same cellular locations, a considerable amount of FGF-1 mRNA, was seen that decreased during lactation. Also during early involution clear staining for FGF-mRNA could still be observed. Immunoreactive FGF-1 was found in considerable concentration in the epithelium of the mammary gland in heifers. The staining intensity generally decreased somewhat during mammogenesis and lactation, but could be always clearly demonstrated in the secretory epithelial cells of alveoli and glandular ducts. Also during the first day after the end of milking, the epithelium displayed a moderate to distinct epithelial immunostaining. Notably, After 4 weeks of involution, in many alveoli a shedding of the FGF-1 positive luminal cell layer was found. In our localization studies, no strict correlation between FGF-1 mRNA and its corresponding protein was found. The various reasons for this finding are discussed.

  14. Hammerhead Ribozyme-Mediated Knockdown of mRNA for Fibrotic Growth Factors: Transforming Growth Factor-Beta 1 and Connective Tissue Growth Factor

    PubMed Central

    Robinson, Paulette M.; Blalock, Timothy D.; Yuan, Rong; Lewin, Alfred S.; Schultz, Gregory S.

    2013-01-01

    Excessive scarring (fibrosis) is a major cause of pathologies in multiple tissues, including lung, liver, kidney, heart, cornea, and skin. The transforming growth factor- β (TGF- β) system has been shown to play a key role in regulating the formation of scar tissue throughout the body. Furthermore, connective tissue growth factor (CTGF) has been shown to mediate most of the fibrotic actions of TGF- β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. Currently, no approved drugs selectively and specifically regulate scar formation. Thus, there is a need for a drug that selectively targets the TGF- β cascade at the molecular level and has minimal off-target side effects. This chapter focuses on the design of hammerhead ribozymes, measurement of kinetic activity, and assessment of knockdown mRNAs of TGF- β and CTGF in cell cultures. PMID:22131029

  15. Effect of recombinant growth hormone on expression of growth hormone receptor, insulin-like growth factor mRNA and serum level of leptin in growing pigs.

    PubMed

    Xu, Qingfu; Zhao, Zhihui; Ni, Yingdong; Zhao, Ruqian; Chen, Jie

    2003-04-01

    Sixteen Large White x Landrace castrated male pigs were allotted into treatment and control group. The treatment group was injected intramuscularly with recombinant porcine growth hormone (rpGH, 4 mg d(-1)) and the control group with vehicle for 28 days. Animals were slaughtered 4 h after final injection for liver, longissimus dorsi (LD) muscle and blood sampling. Serum concentration of insulin-like growth factor 1 (IGF-I) and leptin were determined by RIA. The total RNA was extracted from tissues to measure the abundance of growth hormone receptor (GHR), IGF-I mRNA by RT-PCR with 18S rRNA internal standard. Results showed that rpGH enhanced the average daily weight gain by 26.1% (P < 0.05), the serum IGF-I concentration by 70.94% (P < 0.01), decreased serum leptin by 34.8% (P < 0.01). The relative abundance of GHR and IGF-I mRNA in liver were increased by 24.45% (P < 0.05) and 45.30% (P < 0.01), respectively, but no difference of GHR (P > 0.05) and IGF-I mRNA (P > 0.05) in LD between GH treated and control group was found. These results suggest that rpGH can up-regulate hepatic GHR and IGF-I gene expression and improve animal growth. However the effect of rpGH on GHR and IGF-I gene expression are tissue-specific.

  16. Inverse relationship between estrogen receptor and epidermal growth factor receptor mRNA levels in human breast cancer cell lines.

    PubMed

    Lee, C S; Hall, R E; Alexander, I E; Koga, M; Shine, J; Sutherland, R L

    1990-01-01

    Epidermal growth factor receptors (EGF-R) are present in a number of human breast cancer cell lines and tumor biopsies. Furthermore, it has been suggested that EGF-R levels are higher in estrogen receptor negative (ER-) than in ER+ human breast tumors and that EGF-R status may be a prognostic indicator in breast cancer. The present study was undertaken to establish whether there is a quantitative relationship between EGF-R and ER mRNA concentrations in a series of 10 well-characterized human breast cancer cell lines. All cell lines expressed detectable quantities of EGF-R mRNA by Northern analysis but the relative abundance of EGF-R mRNA varied more than 50-fold. Two transcripts corresponding to the 10.5- and 5.8-kb mRNAs described in other cell types were present but in different relative proportions in different cell lines. When these lines were divided into an ER+ and an ER- group based on their ability to bind estradiol, ER- cell lines were shown to express significantly higher concentrations of EGF-R mRNA than did ER+ cell lines (p less than 0.005). Furthermore, linear-regression analysis revealed a significant inverse relationship between ER and EGF-R mRNA concentrations both within the group of 10 human breast cancer cell lines as a whole (r = 0.66) and within the 6 functionally ER + lines (r = 0.77). This demonstration of a significant (p less than 0.005) inverse relationship between the concentrations of ER and EGF-R mRNAs in ER + cell lines raises the possibility of reciprocal regulation of the expression of these genes in human breast cancer.

  17. Erythromycin and clarithromycin modulation of growth factor-induced expression of heparanase mRNA on human lung cancer cells in vitro.

    PubMed Central

    Sasaki, M; Ito, T; Kashima, M; Fukui, S; Izumiyama, N; Watanabe, A; Sano, M; Fujiwara, Y; Miura, M

    2001-01-01

    Heparanase activity is correlated with the metastatic potential of several cancer cells and is a key enzyme in the breakdown of tissue barriers. It is also involved in the regulation of growth factor and cytokine activity. However, little is known about the factors that induce heparanase in cancer cells. We investigated the effect of three growth factors, platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), on heparanase mRNA induction in lung cancer cells in vitro. In addition, we examined the effect of erythromycin (EM) and clarithromycin (CAM), which are 14-membered ring macrolide antibiotics that act as biological response modifiers, on the expression of heparanase mRNA induced by growth factors. PDGF, HGF and bFGF stimulated cell migration activity and enhanced the expression of heparanase mRNA in the human lung adenocarcinoma cell line A549. Via different mechanisms, EM and CAM modulate the induction by these factors of heparanase mRNA expression on A549 cells. EM also significantly suppressed A549 cell migration induced by PDGF and HGF, and CAM significantly suppressed A549cell migration induced by bFGF. The results suggest that the growth factors PDGF, HGF and bFGF are important inducers of heparanase in potentially invasive and metastatic cancer cells. The suppressive effect of heparanase mRNA expression by EM and CAM may have interestingtherapeutic applications in the prevention of metastasis. PMID:11759110

  18. Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability.

    PubMed

    Vytvytska, O; Jakobsen, J S; Balcunaite, G; Andersen, J S; Baccarini, M; von Gabain, A

    1998-11-24

    The stability of the ompA mRNA depends on the bacterial growth rate. The 5' untranslated region is the stability determinant of this transcript and the target of the endoribonuclease, RNase E, the key player of mRNA degradation. An RNA-binding protein with affinity for the 5' untranslated region ompA was purified and identified as Hfq, a host factor initially recognized for its function in phage Qbeta replication. The ompA RNA-binding activity parallels the amount of Hfq, which is elevated in bacteria cultured at slow growth rate, a condition leading to facilitated degradation of the ompA mRNA. In hfq mutant cells with a deficient Hfq gene product, the RNA-binding activity is missing, and analysis of the ompA mRNA showed that the growth-rate dependence of degradation is lost. Furthermore, the half-life of the ompA mRNA is prolonged in the mutant cells, irrespective of growth rate. Hfq has no affinity for the lpp transcript whose degradation, like that of bulk mRNA, is not affected by bacterial growth rate. Compatible with our results, we found that the intracellular concentration of RNase E and its associated degradosome components is independent of bacterial growth rate. Thus our results suggest a regulatory role for Hfq that specifically facilitates the ompA mRNA degradation in a growth rate-dependent manner.

  19. Activin Acts with Nerve Growth Factor to Regulate Calcitonin Gene-Related Peptide mRNA in Sensory Neurons

    PubMed Central

    Xu, Pin; Hall, Alison K.

    2009-01-01

    Calcitonin Gene-Related Peptide (CGRP) increases in sensory neurons after inflammation and plays an important role in abnormal pain responses, but how this neuropeptide is regulated is not well understood. Both activin A and Nerve Growth Factor (NGF) increase in skin after inflammation and induce CGRP in neurons in vivo and in vitro. This study was designed to understand how neurons integrate these two signals to regulate the neuropeptide important for inflammatory pain. In adult dorsal root ganglion neurons, NGF but not activin alone produced a dose-dependent increase in CGRP mRNA. When added together with NGF, activin synergistically increased CGRP mRNA, indicating that sensory neurons combine these signals. Studies were then designed to learn if that combination occurred at a common receptor or shared intracellular signals. Studies with Activin IB receptor or trkA inhibitors suggested that each ligand required its cognate receptor to stimulate the neuropeptide. Further, activin did not augment NGF-initiated intracellular MAPK signals but instead stimulated Smad phosphorylation, suggesting these ligands initiated parallel signals in the cytoplasm. Activin synergy required several NGF intracellular signals to be present. Because activin did not further stimulate, but did require NGF intracellular signals, it appears that activin and NGF converge not in receptor or cytoplasmic signals, but in transcriptional mechanisms to regulate CGRP in sensory neurons after inflammation. PMID:17964731

  20. Deduced primary structure of rat hepatocyte growth factor and expression of the mRNA in rat tissues.

    PubMed Central

    Tashiro, K; Hagiya, M; Nishizawa, T; Seki, T; Shimonishi, M; Shimizu, S; Nakamura, T

    1990-01-01

    The primary structure of rat hepatocyte growth factor (HGF) was elucidated by determining the base sequence of the complementary DNA (cDNA) of HGF. The cDNA for rat HGF was isolated by screening a liver cDNA library with oligonucleotides based on the partial N-terminal amino acid sequence of the beta subunit of purified rat HGF. HGF is encoded in an mRNA of about 6 kilobases. Both alpha and beta subunits of HGF are specified in a single open reading frame for a 728-amino acid protein with a calculated molecular weight of 82,904. The N-terminal part of HGF has a signal sequence and a prosequence with 30 and 25 amino acid residues, respectively. The mature heterodimer structure is derived proteolytically from this single pre-pro precursor polypeptide. The calculated molecular weights of the alpha and beta subunits are 50,664 and 25,883, respectively, and each subunit has two potential N-linked glycosylation sites. The amino acid sequence of HGF is 38% identical with that of plasminogen. The alpha subunit of HGF contains four "kringle" structures, and the beta subunit has 37% amino acid identity with the serine protease domain of plasmin. Northern blot analysis revealed that HGF mRNA was expressed in rat various tissues, including the liver, kidney, lung, and brain. Images PMID:2139229

  1. Epidermal growth factor-nonresponsive 3T3 variants do not contain epidermal growth factor receptor-related antigens or mRNA

    SciTech Connect

    Schneider, C.A.; Lim, R.W.; Terwilliger, E.; Herschman, H.R.

    1986-01-01

    The authors have previously isolated three independent variants of Swiss 3T3 cells that are unable to generate a mitogenic response to epidermal growth factor (EGF). Each of the variants is unable to bind /sup 125/I-labeled EGF; each lacks a functional EGF receptor. They used an antiserum to murine EGF receptor to look for an EGF-receptor gene product in wild-type 3T3 cells and in the three EGF-nonresponsive variants. No cross-reactive material could be detected in any of the three variants, either in /sup 125/I-labeled cell extracts or in (/sup 35/S)methionine metabolically labeled cells. 3T3 cells contained mRNA molecules homologous to a cDNA probe for the human EGF-receptor coding region. In contrast, no homologous RNA could be detected in any of the three variants. Analysis of genomic Southern blots of the DNA from 3T3 cells and the three EGF-nonresponsive variants indicated sequences from the EGF-receptor gene are present in the DNA of all four cell lines. These EGF-nonresponsive lines, which demonstrate proliferative responses to a variety of mitogens, will be ideal recipients for structure-function studies of the EGF receptor by transfection of the cloned gene.

  2. Vascular endothelial growth factor C mRNA expression correlates with stage of progression in patients with melanoma.

    PubMed

    Goydos, James S; Gorski, David H

    2003-12-01

    Vascular endothelial growth factor (VEGF)-C promotes the ingrowth and invasion of lymphatics in many different tumor types, including melanoma. To determine whether expression of VEGF-C correlates with stage of progression, we measured VEGF-C mRNA levels in melanomas representing different stages of progression and from the vertical and horizontal growth-phase of individual primary melanomas. Total RNA was extracted from human melanoma specimens taken from operative specimens and subjected to quantitative real-time PCR. VEGF-C levels were determined for 54 melanoma samples, including primary melanomas (n=15), local recurrences (n=6), regional dermal metastases (n=11), nodal metastases (n=12), and distant metastases (n=10). As a surrogate for lymphatic density, we also measured the expression of the lymphatic endothelial marker LYVE-1 and correlated its expression with previously measured VEGF-C levels. Vertical growth phase melanomas expressed significantly higher levels of VEGF-C than horizontal growth phase melanomas. Nodal metastases expressed the highest level of VEGF-C, followed by regional dermal metastases. Primary and local recurrences expressed a relatively low level of VEGF-C, as did negative lymph nodes and distant metastases. In addition, VEGF-C expression correlated well with LYVE-1 expression (r=0.611; P<0.0001). These data suggest that high levels of VEGF-C may be important in regional lymphatic disease in melanoma and that VEGF-C and LYVE-1 levels may identify tumors with a high risk for nodal metastases, for which antilymphangiogenic therapy may be more effective.

  3. Growth hormone stimulates protein synthesis in bovine skeletal muscle cells without altering insulin-like growth factor-I mRNA expression.

    PubMed

    Ge, X; Yu, J; Jiang, H

    2012-04-01

    Growth hormone is a major stimulator of skeletal muscle growth in animals, including cattle. In this study, we determined whether GH stimulates skeletal muscle growth in cattle by direct stimulation of proliferation or fusion of myoblasts, by direct stimulation of protein synthesis, or by direct inhibition of protein degradation in myotubes. We also determined whether these direct effects of GH are mediated by IGF-I produced by myoblasts or myotubes. Satellite cells were isolated from cattle skeletal muscle and were allowed to proliferate as myoblasts or induced to fuse into myotubes in culture. Growth hormone at 10 and 100 ng/mL increased protein synthesis in myotubes (P < 0.05), but had no effect on protein degradation in myotubes or proliferation of myoblasts (P > 0.05). Insulin-like growth factor-I at 50 and 500 ng/mL stimulated protein synthesis (P < 0.01), and this effect of IGF-I was much greater than that of GH (P < 0.05). Besides stimulating protein synthesis, IGF-I at 50 and 500 ng/mL also inhibited protein degradation in myotubes (P < 0.01), and IGF-I at 500 ng/mL stimulated proliferation of myoblasts (P < 0.05). Neither GH nor IGF-I had effects on fusion of myoblasts into myotubes (P > 0.1). These data indicate that GH and IGF-I have largely different direct effects on bovine muscle cells. Growth hormone at 10 and 100 ng/mL had no effect on IGF-I mRNA expression in either myoblasts or myotubes (P > 0.1). This lack of effect was not because the cultured myoblasts or myotubes were not responsive to GH; GH receptor mRNA was detectable in them and the expression of the cytokine-inducible SH2-containing protein (CISH) gene, a well-established GH target gene, was increased by GH in bovine myoblasts (P < 0.05). Overall, the data suggest that GH stimulates skeletal muscle growth in cattle in part through stimulation of protein synthesis in the muscle and that this stimulation is not mediated through increased IGF-I mRNA expression in the muscle.

  4. Effect of dietary methionine on growth performance and insulin-like growth factor-I mRNA expression of growing meat rabbits.

    PubMed

    Zhang, Y C; Li, F C

    2010-12-01

    An experiment was conducted to determine the effects of different amounts of dietary methionine on growth performance, serum protein, growth hormone (GH), insulin-like growth factor-I (IGF-I) concentrations and IGF-I mRNA expression of growing meat rabbits. One hundred weaned growing meat rabbits were allocated to individual cages and randomly divided into five groups. The methionine addition concentrations of the five groups were 0, 2, 4, 6 and 8 g/kg diet (as-fed basis) and sulphur amino acids (SAA) concentrations ranging from 3.8 to 11.6 g/kg diet, respectively. The results obtained were as follows: the average daily gain of 2, 4 and 6 g/kg diet groups was higher than that of 0 g/kg diet group (p < 0.01). The feed gain ratio of the 4 g/kg diet group was lower than those of 0 and 8 g/kg diet group (p < 0.01). Methionine concentrations did not affect serum urea nitrogen, total protein, insulin and IGF-I concentration (p > 0.05). The quadratic effects of methionine on the serum concentration of albumin (Alb) and GH were obtained (p = 0.013, p = 0.018). The quadratic effect of methionine amount on IGF-I mRNA expression was obtained (p = 0.045). The serum concentration of Alb of the 4 g/kg diet group was higher than those of 0 and 8 g/kg diet group (p < 0.01). The serum concentration of GH of 8 g/kg diet group was higher than that of the 0 g/kg diet group (p < 0.05). The liver IGF-I mRNA expression of 4 g/kg diet group was higher than those of the 0 and 8 g/kg diet group (p < 0.05). Providing a diet mainly consisted of corn, wheat bran and peanut vine, the optimum dietary methionine addition concentration and SAA concentration for a weaner to 2-month-old growing meat rabbits were shown to be 2 and 5.7 g/kg diet respectively.

  5. Effects of growth differentiation factor-9 and FSH on in vitro development, viability and mRNA expression in bovine preantral follicles.

    PubMed

    Vasconcelos, G L; Saraiva, M V A; Costa, J J N; Passos, M J; Silva, A W B; Rossi, R O D S; Portela, A M L R; Duarte, A B G; Magalhães-Padilha, D M; Campelo, C C; Figueiredo, J R; van den Hurk, R; Silva, J R V

    2013-01-01

    The present study investigated the role of growth differentiation factor (GDF)-9 and FSH, alone or in combination, on the growth, viability and mRNA expression of FSH receptor, proliferating cell nuclear antigen (PCNA) and proteoglycan-related factors (i.e., hyaluronan synthase (HAS) 1, HAS2, versican, perlecan) in bovine secondary follicles before and after in vitro culture. After 12 days culture, sequential FSH (100 ng mL⁻¹) from Days 0 to 6 and 500 ng mL⁻¹ from Days 7 to 12) increased follicular diameter and resulted in increased antrum formation (P<0.05). Alone, 200 ng mL⁻¹ GDF-9 significantly reduced HAS1 mRNA levels, but increased versican and perlecan mRNA levels in whole follicles, which included the oocyte, theca and granulosa cells. Together, FSH and GDF-9 increased HAS2 and versican (VCAN) mRNA levels, but decreased PCNA mRNA expression, compared with levels in follicles cultured in α-minimum essential medium supplemented with 3.0 mg mL⁻¹ bovine serum albumin, 10 µg mL⁻¹ insulin, 5.5 µg mL⁻¹ transferrin, 5 ng mL⁻¹ selenium, 2 mM glutamine, 2mM hypoxanthine and 50 μg mL⁻¹ ascorbic acid (α-MEM⁺). Comparisons of uncultured (0.2 mm) and α-MEM⁺ cultured follicles revealed that HAS1 mRNA expression was higher, whereas VCAN expression was lower, in cultured follicles (P<0.05). Expression of HAS1, VCAN and perlecan (HSPG2) was higher in cultured than in vivo-grown (0.3 mm) follicles. In conclusion, FSH and/or GDF-9 promote follicular growth and antrum formation. Moreover, GDF-9 stimulates expression of versican and perlecan and interacts positively with FSH to increase HAS2 expression.

  6. Fibroblast growth factor-1 induces phosphofructokinase, fatty acid synthase and Ca(2+)-ATPase mRNA expression in NIH 3T3 cells.

    PubMed

    Hsu, D K; Donohue, P J; Alberts, G F; Winkles, J A

    1993-12-30

    Polypeptide growth factors act in part by inducing the expression of specific proteins that perform functions critical to cell cycle progression. We have used a differential display technique to identify genes that are expressed at higher levels following fibroblast growth factor (FGF)-1 (acidic FGF) stimulation of quiescent murine NIH 3T3 fibroblasts. Three such genes--liver (B-type) phosphofructokinase (PFK), fatty acid synthase (FAS) and sarco(endo)plasmic reticulum Ca(2+)-ATPase type 2 (SERCA2)--are described in this report. The level of FAS and SERCA2 mRNA expression is increased rapidly after FGF-1 addition; in contrast, PFK mRNA is induced with kinetics more typical of delayed-early genes. These results indicate that enhanced expression of the PFK, FAS and SERCA2 proteins may be important for FGF-1-stimulated cell proliferation.

  7. Evidence for mRNA expression of vascular endothelial growth factor by X-ray irradiation in a lung squamous carcinoma cell line.

    PubMed

    Ando, S; Nojima, K; Majima, H; Ishihara, H; Suzuki, M; Furusawa, Y; Yamaguchi, H; Koike, S; Ando, K; Yamauchi, M; Kuriyama, T

    1998-10-23

    Vascular endothelial growth factor (VEGF) is a multipotent cytokine which plays an important role in various angiogenic conditions as well as in some tumor behaviors. Here we examined the induction of VEGF mRNA by X-ray irradiation in a lung squamous cell carcinoma cell line (RERF-LC-AI). Irradiating the cells with 15 Gy X-rays significantly increased the mRNA expression up to 2.5-fold of control at a post-irradiation time of 16-24 h. The induction of VEGF mRNA by X-ray irradiation was completely blocked by treating cells with either genistein (Src tyrosine kinase inhibitor) or H7 (protein kinase C inhibitor). This suggests that the mechanism of induction might be concerned with the pathway which triggers Src tyrosine kinase of the cell surface and the protein kinase C pathway.

  8. Insulin-like growth factor-1 and myostatin mRNA expression in muscle: comparison between 62-77 and 21-31 yr old men.

    PubMed

    Welle, Stephen; Bhatt, Kirti; Shah, Bharati; Thornton, Charles

    2002-06-01

    The present study was done to determine the effect of age on muscle concentrations of mRNAs encoding two growth factors that are thought to be important regulators of muscle mass: insulin-like growth factor-1 (IGF-1) and myostatin. Quantitative RT-PCR assays indicated that the mean IGF-1 mRNA concentration in older muscle (62-77 yr, n=15 men) was approximately 25% less, per ng total RNA (P<0.005), than in young adult muscle (21-31 yr, n=12 men). One third of the older men had IGF-1 mRNA levels below the lowest concentration observed in young muscle. Myostatin mRNA concentrations were similar in young and old muscle. Muscle mass and myofibrillar protein synthesis rates among eight older men did not correlate with either IGF-1 or myostatin mRNA levels. We conclude that IGF-1 gene expression in muscle tends to decline with normal aging. The functional significance is uncertain.

  9. Treatment with a Ca(2+) channel blocker, barnidipine, reduces platelet-derived growth factor B-chain mRNA in glomeruli of spontaneously hypertensive rats.

    PubMed

    Hashimoto, M; Yamauchi, T; Ogura, T; Oishi, T; Mimura, Y; Otsuka, F; Kashihara, N; Makino, H

    1999-01-01

    We investigated the effect of barnidipine hydrochloride, a Ca(2+) channel blocker, on the glomerular level of mRNA expression of platelet-derived growth factor (PDGF) B-chain and transforming growth factor (TGF)-beta(1) in spontaneously hypertensive rats (SHR) with reverse transcription and polymerase chain reaction. Thirteen-week-old SHR were provided with food containing barnidipine (0.6 mg/g of food, average dose during treatment: 53 mg/kg of body mass/day) for 3 weeks. A stable reduction in systolic blood pressure relative to that of age-matched control SHR was recorded after week 1 of therapy. Although no renal histological changes were observed after 3 weeks of treatment with barnidipine, the level of expression of PDGF B-chain mRNA in glomeruli was significantly reduced relative to that in control SHR. The glomerular level of TGF-beta(1) mRNA expression was not affected by the treatment. Treatment with barnidipine significantly reduced the excretion of urinary protein. Thus, the stable reduction in systemic blood pressure by barnidipine is associated with a reduction in PDGF B-chain mRNA expression in the glomerulus and reduction in urinary protein excretion in SHR.

  10. Chimeric DNA-RNA hammerhead ribozyme targeting transforming growth factor-beta 1 mRNA inhibits neointima formation in rat carotid artery after balloon injury.

    PubMed

    Ando, Hideyuki; Fukuda, Noboru; Kotani, Motoko; Yokoyama, Shin ichiro; Kunimoto, Satoshi; Matsumoto, Koichi; Saito, Satoshi; Kanmatsuse, Katsuo; Mugishima, Hideo

    2004-01-12

    We designed and synthesized a chimeric DNA-RNA hammerhead ribozyme targeting transforming growth factor (TGF)-beta 1 mRNA and found that this ribozyme effectively and specifically inhibited growth of vascular smooth muscle cells. We examined the effects of the chimeric DNA-RNA hammerhead ribozyme targeting TGF-beta 1 mRNA on neointima formation and investigated the underlying mechanism to develop a possible gene therapy for coronary artery restenosis after percutaneous transluminal coronary angioplasty. Expression of mRNAs encoding TGF-beta 1, p27kip1, and connective tissue growth factor (CTGF) in carotid artery increased after balloon injury. Fluorescein-isothiocyanate (FITC)-labeled ribozyme was taken up into the midlayer smooth muscle of the injured carotid artery. Both 2 and 5 mg of ribozyme reduced neointima formation by 65% compared to that of controls. Ribozyme markedly decreased expression of TGF-beta 1 mRNA and protein in injured vessel. Mismatch ribozyme had no effect on expression of TGF-beta 1 mRNA protein in injured vessel. Ribozyme markedly decreased expression of fibronectin, p27kip1, and CTGF mRNAs in injured vessel, whereas a mismatch ribozyme had no effect on these mRNAs. These findings indicate that the chimeric DNA-RNA hammerhead ribozyme targeting TGF-beta 1 mRNA inhibits neointima formation in rat carotid artery after balloon injury with suppression of TGF-beta 1 and inhibition of extracellular matrix and CTGF. In conclusion, the hammerhead ribozyme against TGF-beta 1 may have promise as a therapy for coronary artery restenosis after percutaneous transluminal coronary angioplasty.

  11. The relative expression levels of insulin-like growth factor 1 and myostatin mRNA in the asynchronous development of skeletal muscle in ducks during early development.

    PubMed

    Hu, Yan; Liu, Hongxiang; Shan, Yanju; Ji, Gaige; Xu, Wenjuan; Shu, Jingting; Li, Huifang

    2015-08-10

    Genetic selection is a powerful tool for modifying poultry muscle yield. Insulin-like growth factor I (IGF-I) and myostatin (MSTN) are important regulators of muscle growth, especially in the myogenesis stage. This study compared the developmental pattern of the pectoralis major (PM) and lateral gastrocnemius (LM) muscles, mRNA expression characterization of IGF-I and MSTN-A and their correlation between 14 days in ovo and 1 week post-hatch in two Chinese local duck breeds. During early development, the growth of duck PM and LM followed an asynchronous pattern. Variations in PM growth rate observed with development followed the relative variations of MSTN and IGF-I expression; however, the same behavior was not observed in LM. Moreover, the profile of IGF-I expression in duck skeletal muscles indicated that genetic selection for high meat-yield poultry has altered the temporal expression of IGF-I and affected cellular characteristics and mass by hatch in a PM-specific manner. The MSTN-A expression profile showed synchronization with the growth of skeletal muscle and peaks of myofiber proliferation. The expression patterns of IGF-I and MSTN suggest that duck pectoralis fibers are prioritized for proliferation in embryogenesis. The IGF-1/MSTN-A mRNA ratios in PM and LM presented very similar trends in the changes of myofiber characteristics, and differences in the IGF-1/MSTN-A mRNA ratio in PM between the two breeds corresponded to the timing of differences in PM mass between the varieties. Our results support the hypothesis that relative levels of IGF-I and MSTN mRNA may participate in ordering muscle growth rates with selected development. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Isoform-specific regulation of transforming growth factormRNA expression in macrophages in response to adrenoceptor stimulation.

    PubMed

    Yanagawa, Yoshiki; Hiraide, Sachiko; Iizuka, Kenji

    2016-01-01

    Transforming growth factor-beta (TGF-β) is a multifunctional cytokine responsible for both immune regulation and tissue repair. Although TGF-β consists of TGF-β1, -β2, and -β3 in mammals, isoform-selective transcriptional regulation is less well documented in myeloid linage cells such as macrophages. In the present study, the effect of the stress-related catecholamine adrenaline on the expression of TGF-β isoforms in RAW264.7 macrophages and murine bone marrow-derived macrophages was examined. Treatment with adrenaline markedly increased the mRNA expression of TGF-β3 but not of TGF-β1 and -β2. Agonist and antagonist studies indicated that adrenaline-induced TGF-β3 mRNA expression is mediated via β2 -adrenoceptor. Protein kinase A (PKA) inhibitor H89 was found to block an increase in adrenoceptor-mediated TGF-β3 mRNA expression. The membrane-permeable cAMP analog 8-Br-cAMP increased the mRNA expression of TGF-β3 but not of TGF-β1 and -β2. Thus, the β2 -adrenoceptor-mediated cAMP-PKA pathway appears to enhance TGF-β3 mRNA expression in macrophages. Adrenoceptor-mediated TGF-β3 expression by macrophages may influence immune regulation and tissue repair in conditions of stress, during which the sympathetic-nervous system releases catecholamines.

  13. Suppressed expression of insulin-like growth factor binding protein-1 mRNA in the endometrium: a molecular mechanism associating endometrial cancer with its risk factors.

    PubMed

    Rutanen, E M; Nyman, T; Lehtovirta, P; Ammälä, M; Pekonen, F

    1994-11-01

    The insulin-like growth factor (IGF) system is thought to function as a mediator of steroid hormone actions in the endometrium. IGFs (IGF-I and IGF-II) are also potent mitogens in endometrial cancer. The biological actions of IGFs are modulated by specific binding proteins (IGFBP)--6 cloned and sequenced so far--which may either inhibit or enhance the effects of IGF at the cellular level. In the endometrium, IGFBP-1 gene expression is stimulated by progesterone and inhibited by insulin, while IGFBP-1 inhibits the mitogenic action of IGF-I. In this study, we used a quantitative reverse transcriptase polymerase chain reaction (RT-PCR) to investigate IGFBP-1, IGFBP-2, IGFBP-4, IGFBP-5 and IGFBP-6 gene expression in endometrial cancer tissues. Endometrial cancer tissue samples were collected from 20 women (aged 54-79 yrs) with stage I to II well-differentiated endometrial adenocarcinoma. Samples of normal endometrium (n = 14) obtained from women undergoing tubal ligation in various phases of the menstrual cycle, and normal early-pregnancy endometrium (decidua) were studied for comparison. In endometrial cancer tissues, the IGFBP-1 mRNA was undetectable or minimally expressed when studied by RT-PCR. The mean (+ SD) levels of IGFBP-2 and IGFBP-4 and IGFBP-5 mRNAs in endometrial cancer tissues did not differ from those in normal endometrium, in which no cyclic variation was observed, suggesting that the genes encoding IGFBP-2, IGFBP-4 and IGFBP-5 are not hormonally regulated in the endometrium. The IGFBP-6 mRNA expression showed a significant cyclic variation in normal endometrium, with low levels in late-proliferative and early- to mid-secretory phases and high expression in late-secretory and early-proliferative phases. In endometrial cancer tissues, the mean IGFBP-6 mRNA level was similar to that in cycling endometrium during the peri-ovulatory period. In summary, a continuous stimulation of the endometrial epithelial cells by IGFs with suppressed IGFBP-1 expression

  14. Human Epidermal Growth Factor Receptor-3 mRNA Expression as a Prognostic Marker for Invasive Duct Carcinoma not Otherwise Specified

    PubMed Central

    Hammoda, Ghada Ezat; El-Hefnawy, Sally Mohammed; Abdallah, Rania Abdallah

    2017-01-01

    Introduction Breast cancer is the most common cancer in women and the Erythroblastosis Oncogene B(ErbB) receptor family holds crucial role in its pathogenesis. Human Epidermal Growth Factor Receptor 3 (HER-3) gene over expression in breast tissue has been associated with aggressive clinical behaviour and bad prognosis. Aim To evaluate HER-3 mRNA expression level as a prognostic marker for breast cancer and to correlate its level with other established prognostic parameters. Materials and Methods This study was carried out on specimens of 100 cases that were divided into 40 patients presented with fibroadenoma and 60 patients presented with Invasive Ductal Carcinoma (IDC) not otherwise specified and underwent modified radical mastectomy. All specimens were investigated for HER-2/neu, ER and PR expression by Immunohistochemistry (IHC) and quantitative assay of HER-3 mRNA expression using real time PCR technique. Results There was a significant high HER3 mRNA level in carcinoma cases compared to fibroadenoma. In malignant cases, HER3 mRNA level was significantly associated with advanced T stage, advanced N stage, number of positive lymph nodes, large tumour size and cases associated with an adjacent in situ component. Moreover, HER-3 mRNA level was of highest values in Her-2/neu positive group followed by triple negative cases with the lowest level in luminal group (p<0.05). Conclusion HER-3 gene is upregulated in IDC especially those carrying poor prognostic features. HER-3 mRNA level may identify a subset of patients with a poor prognosis, and who could undergo further evaluation for the efficacy of HER3 targeted anticancer therapy. PMID:28384967

  15. Insulin-like growth factor I stimulates degradation of an mRNA transcript encoding the 14 kDa ubiquitin-conjugating enzyme.

    PubMed Central

    Wing, S S; Bedard, N

    1996-01-01

    Upon fasting, the ubiquitin-dependent proteolytic system is activated in skeletal muscle in parallel with the increases in rates of proteolysis. Levels of mRNA encoding the 14 kDa ubiquitin-conjugating enzyme (E2(14K)), which can catalyse the first irreversible reaction in this pathway, rise and fall in parallel with the rates of proteolysis [Wing and Banville (1994) Am.J. Physiol. 267, E39-E48], indicating that the conjugation of ubiquitin to proteins is a regulated step. To characterize the mechanisms of this regulation, we have examined the effects of insulin, insulin-like growth factor I (IGF-I) and des(1-3) insulin-like growth factor I (DES-IGF-I), which does not bind IGF-binding proteins, on E2(14K) mRNA levels in L6 myotubes. Insulin suppressed levels of E2(14K) mRNA with an IC50 of 4 x 10(-9) M, but had no effects on mRNAs encoding polyubiquitin and proteasome subunits C2 and C8, which, like E2(14K), also increase in skeletal muscle upon fasting. Reduction of E2(14K) mRNA levels was more sensitive to IGF-I with an IC50 of approx. 5 x 10(-10) M. During the incubation of these cells for 12 h there was significant secretion of IGF-I-binding proteins into the medium. DES-IGF-I, which has markedly reduced affinity for these binding proteins, was found to potently reduce E2(14K) mRNA levels with an IC50 of 3 x 10(-11) M. DES-IGF-I did not alter rates of transcription of the E2(14K) gene, but enhanced the rate of degradation of the 1.2 kb mRNA transcript. The half-life of the 1.2 kb transcript was approximately one-third that of the 1.8 kb transcript and can explain the more marked regulation of this transcript observed previously. This indicates that the additional 3' non-coding sequence in the 1.8 kb transcript confers stability. These observations suggest that IGF-I is an important regulator of E2(14K) expression and demonstrate, for the first time, stimulation of degradation of a specific mRNA transcript by this hormone, while overall RNA accumulates. PMID

  16. Relative mRNA expression and immunolocalization for transforming growth factor-beta (TGF-β) and their effect on in vitro development of caprine preantral follicles.

    PubMed

    Rodrigues, G Q; Bertoldo, M J; Brito, I R; Silva, C M G; Sales, A D; Castro, S V; Duffard, N; Locatelli, Y; Mermillod, P; Lobo, C H; Campello, C C; Rodrigues, A P R; Freitas, V J F; Figueiredo, J R

    2014-09-01

    This study aimed to evaluate the immunolocalization and messenger RNA (mRNA) expression for transforming growth factor-beta (TGF-β) and its receptors (TGF-βRI and RII), as well as mRNA expression for P450 aromatase and FSH receptor in caprine preantral follicles. The effects of TGF-β, FSH alone, or in association on the in vitro follicular development were also assessed. Immunohistochemical analyses showed the expression of TGF-β and its receptors in oocytes of all follicle stages and granulosa cells of primary and secondary follicles. mRNA for TGF-β receptors and for FSH receptor (FSHR) was present in preantral follicles as well as in oocytes and granulosa cells of antral follicles. Isolated secondary follicles were cultured in α-minimum essential medium (MEM) alone or supplemented with either FSH (100 ng/ml), TGF-β (10 ng/ml), or TGF-β + FSH for 18 d. TGF-β increased significantly oocyte diameter when compared to FSH alone and control. After 18 d of culture, all groups showed a significant reduction in P450 aromatase and FSHR mRNA levels in comparison to fresh control. In contrast, treatment with FSH significantly increased the mRNA expression for TGF-β in comparison to fresh control and other treatments. In conclusion, the findings showed that TGF-β and its receptors are present in caprine ovarian follicles. Furthermore, they showed a positive effect on oocyte growth in vitro.

  17. An RT-PCR analysis of mRNA for growth factor receptors in damaged and control sensory epithelia of rat utricles.

    PubMed

    Saffer, L D; Gu, R; Corwin, J T

    1996-05-01

    Sensory epithelia from normal rat utricles and those cultured with and without neomycin treatment were assayed for the presence of growth factor receptor mRNAs by RT-PCR (reverse transcriptase-polymerase chain reaction). Both undamaged and damaged utricles showed mRNA for Insulin receptor, IGF-I receptor, FGF receptor 1, EGF receptor, and PDGF alpha receptor. Neomycin-damaged sensory epithelia showed less PDGF alpha receptor mRNA than undamaged epithelia, suggesting that this message by expressed at higher copy levels in hair cells than in supporting cells. Consistent with that hypothesis, immunohistochemistry revealed much stronger PDGF alpha receptor staining in the hair cells than in the supporting cells. Preliminary evidence suggests that IGF-I receptor message also may be lowered in neomycin-damaged epithelia.

  18. Inhibited expression of insulin-like growth factor I mRNA and attenuated cardiac hypertrophy in volume overloaded hearts treated with difluoromethylornithine.

    PubMed

    Friberg, P; Isgaard, J; Wåhlander, A; Wickman, A; Adams, M A

    1998-04-01

    The present study examined whether the previously reported hypertrophy and increased expression of insulin-like growth factor I (IGF-I) mRNA in the volume-overloaded right ventricle was dependent on an intact production of polyamines. Volume overload was created in normotensive Wistar rats by means of an aorto-caval fistula. Difluoromethylornithine (DFMO) 2%, which is a specific, irreversible blocker of ornithine decarboxylase, was administered in the drinking water to intervention groups and one sham group, respectively, 24 h prior to surgery and for up to 26 days. DFMO blocked transiently the early over-expression of right ventricular IGF-I mRNA and attenuated the rapid development of both right and left ventricular hypertrophy during volume overload. Expression of IGF-I mRNA in the right ventricle in the early phase of volume overload appears to be dependent on activation of ornithine decarboxylase, whereas other pathways are involved in the later phase of cardiac structural adaptation. Thus, these findings link together early and late growth responses potentially important for compensatory cardiac hypertrophy.

  19. The mRNA expression of insulin-like growth factor-1 (Igf1) is decreased in the rat frontal cortex following gamma-hydroxybutyrate (GHB) administration.

    PubMed

    Brolin, Erika; Johansson, Jenny; Zelleroth, Sofia; Diwakarla, Shanti; Nyberg, Fred; Grönbladh, Alfhild; Hallberg, Mathias

    2017-02-26

    In recent years, growth hormone (GH), together with its secondary mediators insulin-like growth factor-1 (IGF-1) and insulin-like growth factor-2 (IGF-2), have been highlighted for their beneficial effects in the central nervous system (CNS), in particular as cognitive enhancers. Cognitive processes, such as learning and memory, are known to be impaired in individuals suffering from substance abuse. In the present study, we investigated the effect of gamma-hydroxybuturate (GHB), an illicit drug used for its sedating and euphoric properties, on genes associated with the somatotrophic axis in regions of the brain important for cognitive function. Sprague Dawley rats (n=36) were divided into three groups and administered either saline, GHB 50mg/kg or GHB 300mg/kg orally for seven days. The levels of Ghr, Igf1 and Igf2 gene transcripts were analyzed using qPCR in brain regions involved in cognition and dependence. The levels of IGF-1 in blood plasma were also determined using ELISA. The results demonstrated a significant down-regulation of Igf1 mRNA expression in the frontal cortex in high-dose treated rats. Moreover, a significant correlation between Igf1 and Ghr mRNA expression was found in the hippocampus, the frontal cortex, and the caudate putamen, indicating local regulation of the GH/IGF-1 axis. To summarize, the current study concludes that chronic GHB treatment influences gene expression of Ghr and Igf1 in brain regions involved in cognitive function.

  20. A Novel Tumor-Promoting Function Residing in the 5′ Non-coding Region of vascular endothelial growth factor mRNA

    PubMed Central

    Masuda, Kiyoshi; Teshima-Kondo, Shigetada; Mukaijo, Mina; Yamagishi, Naoko; Nishikawa, Yoshiko; Nishida, Kensei; Kawai, Tomoko; Rokutan, Kazuhito

    2008-01-01

    Background Vascular endothelial growth factor-A (VEGF) is one of the key regulators of tumor development, hence it is considered to be an important therapeutic target for cancer treatment. However, clinical trials have suggested that anti-VEGF monotherapy was less effective than standard chemotherapy. On the basis of the evidence, we hypothesized that vegf mRNA may have unrecognized function(s) in cancer cells. Methods and Findings Knockdown of VEGF with vegf-targeting small-interfering (si) RNAs increased susceptibility of human colon cancer cell line (HCT116) to apoptosis caused with 5-fluorouracil, etoposide, or doxorubicin. Recombinant human VEGF165 did not completely inhibit this apoptosis. Conversely, overexpression of VEGF165 increased resistance to anti-cancer drug-induced apoptosis, while an anti-VEGF165-neutralizing antibody did not completely block the resistance. We prepared plasmids encoding full-length vegf mRNA with mutation of signal sequence, vegf mRNAs lacking untranslated regions (UTRs), or mutated 5′UTRs. Using these plasmids, we revealed that the 5′UTR of vegf mRNA possessed anti-apoptotic activity. The 5′UTR-mediated activity was not affected by a protein synthesis inhibitor, cycloheximide. We established HCT116 clones stably expressing either the vegf 5′UTR or the mutated 5′UTR. The clones expressing the 5′UTR, but not the mutated one, showed increased anchorage-independent growth in vitro and formed progressive tumors when implanted in athymic nude mice. Microarray and quantitative real-time PCR analyses indicated that the vegf 5′UTR-expressing tumors had up-regulated anti-apoptotic genes, multidrug-resistant genes, and growth-promoting genes, while pro-apoptotic genes were down-regulated. Notably, expression of signal transducers and activators of transcription 1 (STAT1) was markedly repressed in the 5′UTR-expressing tumors, resulting in down-regulation of a STAT1-responsive cluster of genes (43 genes). As a result, the

  1. Pattern of expression of transforming growth factor-beta 4 mRNA and protein in the developing chicken embryo.

    PubMed

    Jakowlew, S B; Ciment, G; Tuan, R S; Sporn, M B; Roberts, A B

    1992-12-01

    Expression of TGF-beta 4 mRNA and protein was studied in the developing chicken embryo using specific cDNA probes and antibodies for chicken TGF-beta 4. Expression of TGF-beta 4 mRNA was detected by day 4 of incubation (Hamburger and Hamilton stage 22, E4) by RNA Northern blot analysis and increased with developmental age until day 12 of incubation (stage 38, E12) where it was detected in every embryonic tissue examined, with expression being highest in smooth muscle and lowest in the kidney. The steady-state level of expression of TGF-beta 4 mRNA remained relatively constant in most embryonic tissues through day 19 (stage 45, E19). In situ hybridization analysis detected TGF-beta 4 mRNA as early as the "definitive primitive streak" stage (stage 4); during neurulation (stage 10), TGF-beta 4 mRNA was detected in all three germ layers, including neuroectoderm. Following neurulation, TGF-beta 4 mRNA was detected in the neural tube, notochord, ectoderm, endoderm, sclerotome, and myotome, but not dermotome at stage 16. By day 6 of incubation (stage 29, E6), TGF-beta 4 mRNA was localized in several tissues including heart, lung, and gizzard. Immunohistochemical staining analysis also showed expression of TGF-beta 4 protein in all three germ layers as early as stage 4 in various cell types in qualitatively similar locations as TGF-beta 4 mRNA. These results suggest that TGF-beta 4 may play an important role in the development of many tissues in the chicken.

  2. Epidermal growth factor and phorbol myristate acetate increase expression of the mRNA for cytosolic phospholipase A2 in glomerular mesangial cells.

    PubMed Central

    Maxwell, A P; Goldberg, H J; Tay, A H; Li, Z G; Arbus, G S; Skorecki, K L

    1993-01-01

    We have previously shown that phospholipase A2 (PLA2) activity is rapidly activated by epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA) in renal mesangial cells and other cell systems in a manner that suggests a covalent modification of the PLA2 enzyme(s). This PLA2 activity is cytosolic (cPLA2) and is distinct from secretory forms of PLA2, which are also stimulated in mesangial cells in response to cytokines and other agonists. However, longer-term regulation of cPLA2 in renal cells may also occur at the level of gene expression. Cultured rat mesangial cells were used as a model system to test the effects of EGF and PMA on the regulation of cPLA2 gene expression. EGF and PMA both produced sustained increases in cPLA2 mRNA levels, with a parallel increase in enzyme activity over time. Inhibition of protein synthesis by cycloheximide increased basal cPLA2 mRNA accumulation in serum-starved mesangial cells, and the combination of EGF and cycloheximide resulted in super-induction of cPLA2 gene expression compared with EGF alone. Actinomycin D treatment entirely abrogated the effect of EGF on cPLA2 mRNA accumulation. These findings suggest that regulation of cPLA2 is achieved by factors controlling gene transcription and possibly mRNA stability, in addition to previously characterized posttranslational modifications. Images Figure 1 Figure 2 PMID:8240289

  3. Developmental and tissue-specific expression of a family of transcripts related to rat insulin-like growth factor II mRNA.

    PubMed Central

    Soares, M B; Ishii, D N; Efstratiadis, A

    1985-01-01

    We have constructed a cDNA library from the mRNA of a rat liver cell line (BRL-3A) and characterized cDNA clones encoding the protein precursor of the rat insulin-like growth factor II (pre-pro-rIGF-II). This precursor, inferred from the nucleotide sequence, consists of a signal peptide, the rIGF-II sequence, and a trailer polypeptide of unknown significance. The characterized cDNA sequence (1016 nt) is part of a 3.4 kb mRNA species. Northern analysis reveals that a probe containing the extreme 5' noncoding region hybridizes to a second RNA (1.6 kb), while a probe corresponding to the 5' noncoding region proximal to the coding region hybridizes to two other RNA species (1.75 and 1.1 kb). All four RNAs are differentially expressed in all of the neonatal tissues that were examined, while the 3.4 kb pre-pro-rIGF-II mRNA and the 1.1 kb transcript are absent from adult tissues. Images PMID:3889836

  4. Correlation of transforming growth factor-β messenger RNA (TGF-β mRNA) expression with cellular immunoassays in Triamcinolone-treated captive hybrid striped bass

    USGS Publications Warehouse

    Harms, Craig A.; Ottinger, Christopher A.; Kennedy-Stoskopf, S.

    2000-01-01

    Assessing fish immune status with molecular markers has been hampered by a lack of specific reagents. A quantitative polymerase chain reaction (PCR) method (reverse transcription quantitative–competitive PCR, RT-qcPCR) for measuring transforming growth factor-β (TGF-β) transcription from a broad range of teleost fish has recently been developed. The quantitative PCR now permits monitoring production of this important immunosuppressive cytokine in response to immunomodulating agents and conditions. We examined anterior kidney and spleen mononuclear cells from hybrid striped bass (female striped bass Morone saxatilis× male white bass M. chrysops) for production of TGF-β messenger RNA (mRNA) in response to administration of the synthetic glucocorticoid triamcinolone. We also compared TGF-β transcription with anterior kidney macrophage bactericidal activity and splenic lymphocyte blastogenesis. Anterior kidney mononuclear cell TGF-β mRNA levels decreased, whereas bactericidal activity increased. Spleen TGF-β mRNA levels did not change significantly, and splenic lymphocyte pokeweed mitogen stimulation index increased in triamcinolone-treated fish. Since triamcinolone is used therapeutically as a suppressive immunomodulator, the enhanced immune functions indicated by the cellular immunoassays were unexpected; however, the inverse response of TGF-β production and macrophage bactericidal activity was consistent with the known relationship between TGF-β and macrophage activation in mammals. Induced immunomodulation in hybrid striped bass was detectable by both traditional cellular immunoassays and the new RT-qcPCR for TGF-β.

  5. Induction of c-fos and c-myc mRNA by epidermal growth factor or calcium ionophore is cAMP dependent.

    PubMed Central

    Ran, W; Dean, M; Levine, R A; Henkle, C; Campisi, J

    1986-01-01

    Phorbol esters activate protein kinase C and induce expression of the c-fos and c-myc protooncogenes in density-arrested BALB/c 3T3 (A31) cells; in contrast, epidermal growth factor (EGF) does not activate protein kinase C and is a poor inducer of c-fos and c-myc in these confluent cells. We show that, when A31 cells were subconfluent and made quiescent by serum deprivation, the phorbol ester phorbol 12-myristate 13-acetate induced c-fos and c-myc mRNA poorly, whereas EGF was a better inducer. Another platelet-derived growth factor-inducible gene, JE, did not show this differential regulation by phorbol 12-myristate 13-acetate and EGF. The ability of EGF to induce protooncogene mRNA was associated with elevated levels of intracellular cAMP. First, serum-deprived cells maintained cAMP at about 2-fold higher level than density-arrested cells. Second, induction was greatly enhanced by cholera toxin and 3-isobutyl-1-methylxanthine, which increased intracellular cAMP 3- to 10-fold. The calcium ionophore A23187 mimicked EGF in that it elevated c-fos and c-myc mRNA when administered with cholera toxin and isobutylmethylxanthine. Neither cholera toxin and isobutyl-methylxanthine nor A23187 appreciably induced these mRNAs when used alone. Our results suggest that c-fos and c-myc expression can be regulated by an EGF-directed pathway that utilizes calcium and cAMP as cooperating cytoplasmic messengers. Images PMID:2430281

  6. Heparin-binding EGF-like growth factor (HB-EGF) overexpression in transgenic mice downregulates insulin-like growth factor binding protein (IGFBP)-3 and -4 mRNA.

    PubMed

    Provenzano, Aaron P; Besner, Gail E; James, Paul F; Harding, Paul A

    2005-03-01

    An in vivo approach was taken to assess the biological significance of heparin-binding EGF-like growth factor (HB-EGF) using transgenic mice. Transgenic mice were generated using the pIRES-EGFP vector expressing a bicistronic mRNA containing both human HB-EGF (hHB-EGF) and enhanced green fluorescent protein (EGFP) coding sequences under the regulation of the cytomegalovirus immediate-early (CMV-IE) promoter. As a marker for transgene expression, EGFP fluorescence in 5 microm tissue sections was evaluated. To confirm HB-EGF expression in EGFP-containing tissues, HB-EGF mRNA was analyzed by RT-PCR and Northern blot analysis. Protein levels of HB-EGF and insulin-like growth factor binding protein-3 (IGFBP-3), a molecule that stabilizes IGFs, which in turn helps to promote growth, were analyzed by Western blot. Also, the weights of transgenic mice were compared with the weights of wild type non-transgenic littermates over a 10-week period. EGFP fluorescence, RT-PCR and Northern analysis of a variety of tissues from hHB-EGF transgenic mice indicate recombinant EGFP/hHB-EGF mRNA expression in kidney, liver, lung and stomach. Western blot analysis confirmed that HB-EGF protein levels were greater in these tissues from hHB-EGF transgenic mice compared to wild type non-transgenic littermates. IGFBP-3 protein was absent in serum of transgenic mice prior to the onset of puberty, but indistinguishable from wild type non-transgenic mice after puberty. Furthermore, IGFBP-3 and IGFBP-4 mRNA were downregulated in the kidney, but not liver or lung of the transgenic mice. In accordance with reduced IGFBP-3 and -4 levels, hHB-EGF transgenic mice exhibited a 20% decrease in weight prior to 6 weeks of age compared to wild type non-transgenic littermates. Our laboratory has generated a biologically functional transgenic mouse model exhibiting increased expression of hHB-EGF in kidney, liver, lung and stomach. Overexpression of hHB-EGF affected the growth rate of these transgenic mice

  7. Effects of Fibroblast Growth Factor 9 (FGF9) on Steroidogenesis and Gene Expression and Control of FGF9 mRNA in Bovine Granulosa Cells

    PubMed Central

    Schreiber, Nicole B.

    2012-01-01

    Gene expression of fibroblast growth factor-9 (FGF9) is decreased in granulosa cells (GC) of cystic follicles compared with normal dominant follicles in cattle. The objectives of this study were to investigate the effects of FGF9 on GC steroidogenesis, gene expression, and cell proliferation and to determine the hormonal control of GC FGF9 production. GC were collected from small (1–5 mm) and large (8–22 mm) bovine follicles and treated in vitro with various hormones in serum-free medium for 24 or 48 h. In small- and large-follicle GC, FGF9 inhibited (P < 0.05) IGF-I-, dibutyryl cAMP-, and forskolin-induced progesterone and estradiol production. In contrast, FGF9 increased (P < 0.05) GC numbers induced by IGF-I and 10% fetal calf serum. FGF9 inhibited (P < 0.05) FSHR and CYP11A1 mRNA abundance in small- and large-follicle GC but had no effect (P > 0.10) on CYP19A1 or StAR mRNA. In the presence of a 3β-hydroxysteroid dehydrogenase inhibitor, trilostane, FGF9 also decreased (P < 0.05) pregnenolone production. IGF-I inhibited (P < 0.05) whereas estradiol and FSH had no effect (P > 0.10) on FGF9 mRNA abundance. TNFα and wingless-type mouse mammary tumor virus integration site family member-3A decreased (P < 0.05) whereas T4 and sonic hedgehog increased (P < 0.05) FGF9 mRNA abundance in control and IGF-I-treated GC. Thus, GC FGF9 gene expression is hormonally regulated, and FGF9 may act as an autocrine regulator of ovarian function by slowing follicular differentiation via inhibiting IGF-I action, gonadotropin receptors, the cAMP signaling cascade, and steroid synthesis while stimulating GC proliferation in cattle. PMID:22798350

  8. Transforming Growth Factor β1 (TGF-β1) Activates Hepcidin mRNA Expression in Hepatocytes.

    PubMed

    Chen, Simeng; Feng, Teng; Vujić Spasić, Maja; Altamura, Sandro; Breitkopf-Heinlein, Katja; Altenöder, Jutta; Weiss, Thomas S; Dooley, Steven; Muckenthaler, Martina U

    2016-06-17

    The hepatic hormone hepcidin is the master regulator of systemic iron homeostasis. Its expression level is adjusted to alterations in iron levels, inflammatory cues, and iron requirements for erythropoiesis. Bone morphogenetic protein 6 (BMP6) contributes to the iron-dependent control of hepcidin. In addition, TGF-β1 may stimulate hepcidin mRNA expression in murine hepatocytes and human leukocytes. However, receptors and downstream signaling proteins involved in TGF-β1-induced hepcidin expression are still unclear. Here we show that TGF-β1 treatment of mouse and human hepatocytes, as well as ectopic expression of TGF-β1 in mice, increases hepcidin mRNA levels. The hepcidin response to TGF-β1 depends on functional TGF-β1 type I receptor (ALK5) and TGF-β1 type II receptor (TβRII) and is mediated by a noncanonical mechanism that involves Smad1/5/8 phosphorylation. Interestingly, increasing availability of canonical Smad2/3 decreases TGF-β1-induced hepcidin regulation, whereas the BMP6-hepcidin signal was enhanced, indicating a signaling component stoichiometry-dependent cross-talk between the two pathways. Although ALK2/3-dependent hepcidin activation by BMP6 can be modulated by each of the three hemochromatosis-associated proteins: HJV (hemojuvelin), HFE (hemochromatosis protein), and TfR2 (transferrin receptor 2), these proteins do not control the ALK5-mediated hepcidin response to TGF-β1. TGF-β1 mRNA levels are increased in mouse models of iron overload, indicating that TGF-β1 may contribute to hepcidin synthesis under these conditions. In conclusion, these data demonstrate that a complex regulatory network involving TGF-β1 and BMP6 may control the sensing of systemic and/or hepatic iron levels.

  9. Insulin-like growth factor II in human adrenal and pheochromocytomas and Wilms tumors: expression at the mRNA and protein level

    SciTech Connect

    Haselbacher, G.K.; Irminger, J.C.; Zapf, J.; Ziegler, W.H.; Humbel, R.E.

    1987-02-01

    Two forms of insulin-like growth factor (IGF) II with molecular masses of 10 and 7.5 kDa, respectively, were found in tumor tissue from human adrenal pheochromocytomas. The tumors contained 5.3-7.1 ..mu..g of immunoreactive IGF-II per g of tissue, which is about 20 times more than in adrenal medulla. The total bioactive IGF measured by radioimmunoassay in the pheochromocytomas exceeded that in normal liver or kidney, which contained only the 7.5-kDa IGF-II species, by a factor of approx.100. By contrast, the amount of IGF-I was just measurable and did not vary significantly between tumor and normal tissue. The high amounts of IGF-II in the pheochromocytomas were not reflected, however, by a corresponding increase of mRNA. The opposite situations was found in Wilms tumors, where IGF-II content was in the same range as in nontumor tissues despite increased expression of IGF-II mRNA.

  10. mRNA expression of basic fibroblast growth factor from a single intratracheal instillation of papain-induced emphysema in rats.

    PubMed

    Fu, J; Xu, Y; Zhang, Z

    2001-01-01

    The relations between mRNA expression of basic fibroblast growth factor (bFGF) and the changes in collagen I and collagen III in pulmonary tissues from a single intratracheal instillation of papain-induced emphysema in rats were investigated. Wistar rats (n = 42) were randomly divided into normal group and emphysema model 1, 3, 5, 7, 15, 30-day groups (n = 6 in each group). The rat model of emphysema was induced by a single intratracheal instillation of papain. The results of immunohistochemistry SABC and in situ hybridization with bFGF probe were quantitatively analyzed to examine the changes of collagen I and collagen III and bFGF mRNA expression in lung tissues and the percent of positive expression of bFGFmRNA in alveolar macrophages. The results were as follows: (1) In the emphysema model groups the optical densities of collagen I and collagen III began to increase after 3 days, reached the highest at the 7th day, and began to reduce at the 15th day; (2) No expression of bFGFmRNA in pulmonary tissues was detectable in the normal group. The positive expression of bFGFmRNA was detectable in lung tissues one day after the intratracheal instillation of papain. The average optical densities reached the peak (41.895 +/- 7.017) at the 7th day, significantly higher than in the normal group (0.581 +/- 0.139, P < 0.01). The positive expression of bFGFmRNA in lung tissues began to reduce at the 15th day; (3) Positive expression of bFGFmRNA in alveolar macrophages of instillation papain rats was detectable 3 days after the intratracheal instillation of papain, and reached the highest at the 7th day with the percent of positive expression of bFGF mRNA in alveolar macrophages being 70.13 +/- 11.21, higher than in the normal group (5.12 +/- 0.18, P < 0.01); (4) The expression of bFGF mRNA in the lung tissues and macrophages was positively related with the changes in collagen I and collagen III (P < 0.01 or P < 0.05) respectively. It was suggested that the up-regulation of b

  11. Nerve growth factor affects Ca2+ currents via the p75 receptor to enhance prolactin mRNA levels in GH3 rat pituitary cells

    PubMed Central

    López-Domínguez, Adriana M; Espinosa, Juan Luis; Navarrete, Araceli; Avila, Guillermo; Cota, Gabriel

    2006-01-01

    In clonal pituitary GH3 cells, spontaneous action potentials drive the opening of Cav1 (L-type) channels, leading to Ca2+ transients that are coupled to prolactin gene transcription. Nerve growth factor (NGF) has been shown to stimulate prolactin synthesis by GH3 cells, but the underlying mechanisms are unknown. Here we studied whether NGF influences prolactin gene expression and Ca2+ currents. By using RT-PCR, NGF (50 ng ml−1) was found to augment prolactin mRNA levels by ∼80% when applied to GH3 cells for 3 days. A parallel change in the prolactin content was detected by Western blotting. Both NGF-induced responses were mimicked by an agonist (Bay K 8644) and prevented by a blocker (nimodipine) of L-type channels. In whole-cell patch-clamp experiments, NGF enhanced the L-type Ca2+ current by ∼2-fold within 60 min. This effect reversed quickly upon growth factor withdrawal, but was maintained for days in the continued presence of NGF. In addition, chronic treatment (≥ 24 h) with NGF amplified the T-type current, which flows through Cav3 channels and is thought to support pacemaking activity. Thus, NGF probably increases the amount of Ca2+ that enters per action potential and may also induce a late increase in spike frequency. MC192, a specific antibody for the p75 neurotrophin receptor, but not tyrosine kinase inhibitors (K252a and lavendustin A), blocked the effects of NGF on Ca2+ currents. Overall, the results indicate that NGF activates the p75 receptor to cause a prolonged increase in Ca2+ influx through L-type channels, which in turn up-regulates the prolactin mRNA. PMID:16690703

  12. Nerve Growth Factor Increases mRNA Levels for the Prion Protein and the β -amyloid Protein Precursor in Developing Hamster Brain

    NASA Astrophysics Data System (ADS)

    Mobley, William C.; Neve, Rachael L.; Prusiner, Stanley B.; McKinley, Michael P.

    1988-12-01

    Deposition of amyloid filaments serves as a pathologic hallmark for some neurodegenerative disorders. The prion protein (PrP) is found in amyloid of animals with scrapie and humans with Creutzfeldt-Jakob disease; the β protein is present in amyloid deposits in Alzheimer disease and Down syndrome patients. These two proteins are derived from precursors that in the brain are expressed primarily in neurons and are membrane bound. We found that gene expression for PrP and the β -protein precursor (β -PP) is regulated in developing hamster brain. Specific brain regions showed distinct patterns of ontogenesis for PrP and β -PP mRNAs. The increases in PrP and β -PP mRNAs in developing basal forebrain coincided with an increase in choline acetyltransferase activity, raising the possibility that these markers might be coordinately controlled in cholinergic neurons and regulated by nerve growth factor (NGF). Injections of NGF into the brains of neonatal hamsters increased both PrP and β -PP mRNA levels. Increased PrP and β -PP mRNA levels induced by NGF were confined to regions that contain NGF-responsive cholinergic neurons and were accompanied by elevations in choline acetyltransferase. It remains to be established whether or not exogenous NGF acts to increase PrP and β -PP gene expression selectively in forebrain cholinergic neurons in the developing hamster and endogenous NGF regulates expression of these genes.

  13. Glucocorticoid-induced changes in glucocorticoid receptor mRNA and protein expression in the human placenta as a potential factor for altering fetal growth and development.

    PubMed

    Bivol, Svetlana; Owen, Suzzanne J; Rose'Meyer, Roselyn B

    2016-02-05

    Glucocorticoids (GCs) control essential metabolic processes in virtually every cell in the body and play a vital role in the development of fetal tissues and organ systems. The biological actions of GCs are mediated via glucocorticoid receptors (GRs), the cytoplasmic transcription factors that regulate the transcription of genes involved in placental and fetal growth and development. Several experimental studies have demonstrated that fetal exposure to high maternal GC levels early in gestation is associated with adverse fetal outcomes, including low birthweight, intrauterine growth restriction and anatomical and structural abnormalities that may increase the risk of cardiovascular, metabolic and neuroendocrine disorders in adulthood. The response of the fetus to GCs is dependent on gender, with female fetuses becoming hypersensitive to changes in GC levels whereas male fetuses develop GC resistance in the environment of high maternal GCs. In this paper we review GR function and the physiological and pathological effects of GCs on fetal development. We propose that GC-induced changes in the placental structure and function, including alterations in the expression of GR mRNA and protein levels, may play role in inhibiting in utero fetal growth.

  14. Expression of insulin-like growth factor I receptors at mRNA and protein levels during metamorphosis of Japanese flounder (Paralichthys olivaceus).

    PubMed

    Zhang, Junling; Shi, Zhiyi; Cheng, Qi; Chen, Xiaowu

    2011-08-01

    Insulin-like growth factor I (IGF-I) is an important regulator of fish growth and development, and its biological actions are initiated by binding to IGF-I receptor (IGF-IR). Our previous study has revealed that IGF-I could play an important role during metamorphosis of Japanese flounder, Paralichthys olivaceus. The analysis of IGF-IR expression thus helps further elucidate the IGF-I regulation of metamorphic processes. In this study, the spatial-temporal expression of two distinct IGF-IR mRNAs was investigated by real-time RT-PCR. The spatial distribution of two IGF-IR mRNAs in adult tissues is largely overlapped, but they exhibit distinct temporal expression patterns during larval development. A remarkable decrease in IGF-IR-2 mRNA was detected during metamorphosis. In contrast, a significant increase in IGF-IR-1 mRNA was determined from pre-metamorphosis to metamorphic completion. These indicate that they may play different function roles during the flounder metamorphosis. The levels and localization of IGF-IR proteins during larval development were further studied by Western blotting and immunohistochemistry. Immunoreactive IGF-IRs were detected throughout larval development, and the IGF-IR proteins displayed a relatively abundant expression during metamorphosis. Moreover, the IGF-IR proteins appeared in key tissues, such as thickened skin beneath the migrating eye, developing intestine, gills and kidney during metamorphosis. These results further suggest that the IGF-I system may be involved in metamorphic development of Japanese flounder. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Higher expression of mRNA and protein of insulin-like growth factor binding protein-3 in old rat penile tissues: implications for erectile dysfunction.

    PubMed

    Pu, Xiao-Yong; Zheng, Xiang-Guang; Zhang, Yan; Xiao, Heng-Jun; Xu, Zhan-Ping; Liu, Jiu-Ming; Wang, Huai-Peng; Wen, An-Ming; Zhou, Xiang-Xue; Wu, Yi-Long

    2011-08-01

    Previous studies have confirmed the gene transfer of insulin-like growth factor-1 (IGF-1) and the IGF-1 protein can improve the erectile function in aging rats. IGF binding protein (BP)-3 can regulates the availability of IGF-I. The higher expression of IGFBP-3 may play an important role in erectile dysfunction (ED). The study aimed to investigate the mRNA and protein expression of IGFBP-3 in young and old rat penile tissues and assess the alteration of the penile structure and the NO-guanosine 3',5'-cyclic-monophosphate (cGMP) signaling pathways-related marker in ED associated with aging. The main outcome measures for this study were the expression of IGFBP-3, morphological changes, NO-cGMP signaling pathways-related marker, erectile responses were determined. Traditional reverse transcriptase polymerase chain reaction (RT-PCR) and real-time PCR were performed to examine the mRNA expression of the IGFBP-3. The Western blot was used to confirm the protein expression. Immunohistochemistry was also performed to identify the cellular localization of the encoded protein. The percentage of smooth muscle in corpus cavernosum tissue, the activity of nitric oxide synthase (NOS), and concentration of cGMP in penile tissue were also analyzed. The expression levels of IGFBP-3 of mRNA and protein were greatly increased in aging rats compared with young control rats, which is confirmed by traditional RT-PCR, real-time PCR, and Western blot (P < 0.01, respectively). Increased IGFBP-3 protein was localized to the epithelium of the urethra, penile endothelium, and smooth muscle in the corpus cavernosum. Significant depletion of the smooth muscle density relative to the connective tissue was also observed in the penis of the aged rats, and the lower activity of NOS and lower concentration of cGMP was also demonstrated accompanied with a significant reduction in the intracavernous pressure. Our data suggest that the increased mRNA and protein expression of IGFBP-3 in old rats may

  16. Differential regulation of igf1 and igf1r mRNA levels in the two hepatic lobes following intrauterine growth restriction and its treatment with intra-amniotic insulin-like growth factor-1 in ovine fetuses.

    PubMed

    Darp, Revati A; de Boo, Hendrina A; Phua, Hui Hui; Oliver, Mark H; Derraik, José G B; Harding, Jane E; Bloomfield, Frank H

    2010-01-01

    Intrauterine growth restriction (IUGR) has life-long health implications, yet there is no effective prenatal treatment. Daily intra-amniotic administration of insulin-like growth factor (IGF)-1 to IUGR fetal sheep improves fetal gut maturation but suppresses hepatic igf1 gene expression. Fetal hepatic blood supply is regulated, in part, by shunting of oxygen- and nutrient-rich umbilical venous blood through the ductus venosus, with the left hepatic lobe predominantly supplied by umbilical venous blood and the right hepatic lobe predominantly supplied by the portal circulation. We hypothesised that: (1) once-weekly intra-amniotic IGF-1 treatment of IUGR would be effective in promoting gut maturation; and (2) IUGR and its treatment with intra-amniotic IGF-1 would differentially affect igf1 and igf1r mRNA expression in the two hepatic lobes. IUGR fetuses received 360 µg IGF-1 or saline intra-amniotically once weekly from 110 until 131 days gestation. Treatment of IUGR fetuses with IGF-1 reversed impaired gut growth. In unembolised, untreated control fetuses, igf1 mRNA levels were 19% lower in the right hepatic lobe than in the left; in IUGR fetuses, igf1 and igf1r mRNA levels were sixfold higher in the right lobe. IGF-1 treatment reduced igf1 and igf1r mRNA levels in both lobes compared with IUGR fetuses. Thus, weekly intra-amniotic IGF-1 treatment, a clinically feasible approach, reverses the impaired gut development seen in IUGR. Furthermore, igf1 and igf1r mRNA levels are differentially expressed in the two hepatic lobes and relative expression in the two lobes is altered by both IUGR and intra-amniotic IGF-1 treatment.

  17. Prognostic value of insulin-like growth factor II mRNA binding protein 3 in patients treated with radical prostatectomy.

    PubMed

    Chromecki, Thomas F; Cha, Eugene K; Pummer, Karl; Scherr, Douglas S; Tewari, Ashutosh K; Sun, Maxine; Fajkovic, Harun; Roehrborn, Claus G; Ashfaq, Raheela; Karakiewicz, Pierre I; Shariat, Shahrokh F

    2012-07-01

    Study Type - Prognosis (case series) Level of Evidence 4 What's known on the subject? and What does the study add? Insulin-like growth factor II mRNA binding protein 3 (IMP3) is associated with poor outcomes in a variety of malignancies. The role of IMP3 in protate cancer remains poorly understood. IMP3 expression was associated with features of aggressive biology and aggressive prostate cancer recurrence after surgery. Although IMP3 is differentially expressed in patients with features of biologically aggressive prostate cancer, it does not have independent prognostic value in patients treated with RP. To evaluate the association of insulin-like growth factor II mRNA binding protein 3 (IMP3) with pathological features and outcomes in patients treated with radical prostatectomy (RP). Immunohistochemical staining for IMP3 was performed on archival tissue microarray specimens from 232 consecutive patients treated with RP for clinically localized disease. None of the patients received neoadjuvant or adjuvant radiation or hormone therapy. IMP3 expression was histologically categorized as normal or abnormal. Disease recurrence was classified as aggressive if metastases were present, post-recurrence prostate-specific antigen (PSA) doubling time was less than 10 months, or if the patients failed to respond to salvage local radiation therapy. The median follow-up was 69.8 months (interquartile range [IQR]: 40.1-99.5). IMP3 expression was abnormal in 42 (18.1%) of 232 patients. IMP3 expression was associated with extracapsular extension (P= 0.020), seminal vesicle invasion (P= 0.024), lymphovascular invasion (P= 0.036) and a high pathological Gleason score (P= 0.009). The 5-year PSA recurrence-free survival for IMP3-negative patients was 83% (standard error [SE]= 3) vs 67% (SE = 8) in IMP3-positive patients (log-rank test, P= 0.015). In a multivariable analysis that adjusted for the effects of surgical margins, extracapsular extension and seminal vesicle invasion, PSA

  18. A Single-Tube Quantitative Assay for mRNA Levels of Hormonal and Growth Factor Receptors in Breast Cancer Specimens

    PubMed Central

    Iverson, Ayuko A.; Gillett, Cheryl; Cane, Paul; Santini, Christopher D.; Vess, Thomas M.; Kam-Morgan, Lauren; Wang, Alice; Eisenberg, Marcia; Rowland, Charles M.; Hessling, Janice J.; Broder, Samuel E.; Sninsky, John J.; Tutt, Andrew; Anderson, Steven; Chang, Sheng-Yung P.

    2009-01-01

    Knowledge of estrogen receptor (ER) and progesterone receptor (PR) status has been critical in the evolution of modern targeted therapy of breast cancer and remains essential for making informed therapeutic decisions. Recently, growth factor receptor HER2/neu (ERBB2) status has made it possible to provide another form of targeted therapy linked to the overexpression of this protein. Presently, pathologists determine the receptor status in formalin-fixed, paraffin-embedded sections using subjective, semiquantitative immunohistochemistry (IHC) assays and quantitative fluorescence in situ hybridization for HER2. We developed a single-tube multiplex TaqMan (mERPR+HER2) assay to quantitate mRNA levels of ER, PR, HER2, and two housekeeping genes for breast cancer formalin-fixed, paraffin-embedded sections. Using data from the discovery sample sets, we evaluated IHC-status-dependent cutoff-point and IHC-status-independent clustering methods for the classification of receptor status and then validated these results with independent sample sets. Compared with IHC-status, the accuracies of the mERPR+HER2 assay with the cutoff-point classification method were 0.98 (95% CI: 0.97−1.00), 0.92 (95% CI: 0.88−0.95), and 0.97 (95% CI: 0.95−0.99) for ER, PR, and HER2, respectively, for the validation sets. Furthermore, the areas under the receiver operating-characteristic curves were 0.997 (95% CI: 0.994−1.000), 0.967 (95% CI: 0.949−0.985), and 0.968 (95% CI: 0.915−1.000) for ER, PR, and HER2, respectively. This multiplex assay provides a sensitive and reliable method to quantitate hormonal and growth factor receptors. PMID:19225135

  19. In utero and lactational exposure to low-dose genistein-vinclozolin mixture affects the development and growth factor mRNA expression of the submandibular salivary gland in immature female rats.

    PubMed

    Kouidhi, Wided; Desmetz, Catherine; Nahdi, Afef; Bergès, Raymond; Cravedi, Jean-Pierre; Auger, Jacques; El May, Michèle; Canivenc-Lavier, Marie Chantal

    2012-06-01

    It has been suggested that hormonally controlled submandibular salivary gland (SSG) development and secretions may be affected by endocrine disruptor compounds. We investigated the effects of oral gestation-lactation exposure to 1 mg/kg body weight daily dose of the estrogenic soy-isoflavone genistein and/or the anti-androgenic food contaminant vinclozolin in female rats. The SSGs of female offspring were collected at postnatal day 35 to study gland morphogenesis and mRNA expression of sex-hormone receptors and endocrine growth factors as sex-dependent biomarkers. Because of high expression in neonatal SSG, mRNA expression of transforming growth factor α was also studied. Exposure to genistein, vinclozolin, or a genistein+vinclozolin mixture resulted in significantly lower numbers of striated ducts linked to an increase in their area and lower acinar proliferation (Ki-67-positive nuclei). Exposure to the mixture had the highest significant effects, which were particularly associated with repression of epidermal growth factor, nerve growth factor, and transforming growth factor α expression. In conclusion, early exposure to low doses of genistein and vinclozolin can affect glandular structure and endocrine gene mRNA expression in prepubertal SSG in female rats, and the effects are potentialized by the genistein+vinclozolin mixture. Our study provides the first evidence that SSG are targeted by both estrogenic and anti-androgenic disrupting compounds and are more sensitive to mixtures.

  20. Effect of recombinant canine interferon-γ on granulocyte-macrophage colony-stimulating factor, transforming growth factor-β and CC chemokine ligand 17 mRNA transcription in a canine keratinocyte cell line (CPEK).

    PubMed

    Shibata, Sanae; Maeda, Sadatoshi; Kondo, Naho; Inoue, Akiko; Maeda, Shingo; Chimura, Naoki; Fukata, Tsuneo

    2011-02-01

    Recombinant canine interferon-γ (rCaIFN-γ) produced by a baculovirus expression system has therapeutic efficacy against atopic dermatitis in dogs. Although the mechanism of action of rCaIFN-γ is not completely understood, rCaIFN-γ is thought to downregulate the activity of interleukin-4- and interleukin-5-producing T helper 2 cells. However, rCaIFN-γ may also act directly on canine keratinocytes by inhibiting the release of inflammatory mediators. In this study, we investigated the effects of rCaIFN-γ on cytokine and chemokine mRNA transcription in a canine keratinocyte cell line, CPEK. It was found that granulocyte-macrophage colony-stimulating factor (GM-CSF) mRNA transcription was significantly inhibited after treatment with rCaIFN-γ (P<0.001), whereas transforming growth factor-β and CC chemokine ligand 17 mRNA levels were unchanged. This study suggests that rCaIFN-γ may suppress GM-CSF production from canine keratinocytes, although further studies are required to confirm this. © 2010 The Authors. Journal compilation © 2010 ESVD and ACVD.

  1. Dexamethasone inhibits induction of liver tumor necrosis factor-alpha mRNA and liver growth induced by lead nitrate and ethylene dibromide.

    PubMed Central

    Ledda-Columbano, G. M.; Columbano, A.; Cannas, A.; Simbula, G.; Okita, K.; Kayano, K.; Kubo, Y.; Katyal, S. L.; Shinozuka, H.

    1994-01-01

    We have recently demonstrated that a single injection of the mitogen lead nitrate to rats induced a rapid increase of tumor necrosis factor-alpha (TNF-alpha) mRNA in the liver and suggested that this cytokine may be involved in triggering hepatocyte proliferation in this model of direct hyperplasia. In this study, we examined whether a similar induction of liver TNF-alpha mRNA could be observed preceding the onset of hepatocyte proliferation induced by ethylene dibromide, another hepatocyte mitogen. In addition, we used dexamethasone, a well known inhibitor of TNF-alpha production, to determine whether its administration could suppress hepatocyte proliferation induced by lead nitrate and ethylene dibromide. A single intragastric administration of ethylene dibromide (100 mg/kg) to male Wistar rats enhanced liver TNF-alpha mRNA after 4 and 7 hours, which then returned to control levels by 24 hours. TNF-alpha mRNA was detectable only in a nonparenchymal cell fraction of the liver. Pretreatment of rats with a single dose of dexamethasone (2 mg/kg) 60 minutes before lead nitrate (100 mumol/kg) or ethylene dibromide completely abolished the increased levels of liver TNF-alpha mRNA induced by these agents. Inhibition by dexamethasone of TNF-alpha mRNA was associated with an inhibition of liver cell proliferation induced by these mitogens, as measured by [3H]thymidine incorporation into hepatic DNA, mitotic index, and DNA content. These results further support the hypothesis that TNF-alpha may be involved in triggering hepatocyte proliferation induced by primary mitogens. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7943184

  2. Insulin-like growth factor-1 (IGF-1) enhances recovery from HgCl2-induced acute renal failure: the effects on renal IGF-1, IGF-1 receptor, and IGF-binding protein-1 mRNA.

    PubMed

    Friedlaender, M; Popovtzer, M M; Weiss, O; Nefesh, I; Kopolovic, J; Raz, I

    1995-04-01

    Several growth factors have been found to play an important role in the recovery from acute renal failure (ARF). The effect of the continuous subcutaneous infusion of human recombinant insulin-like growth factor (IGF)-1 (125 micrograms daily by osmotic minipumps) in a rat model of mercuric chloride (HgCl2)-induced ARF was examined. HgCl2 (4 mg/kg) induced ARF with a mortality that was unaffected by IGF-1. However, IGF-1 significantly enhanced functional and histologic recovery in the survivors, as measured by serum creatinine and creatinine clearance and by histologic scoring. Solution hybridization RNAase protection assays showed that renal IGF-1 mRNA, IGF-1 receptor (IGF-1R) mRNA, and IGF-binding protein-1 (IGFBP-1) mRNA were unaffected by exogenous IGF-1, but this treatment significantly increased renal IGF-1 in ARF rats compared with normal rats and ARF rats not receiving IGF-1. After ARF renal mRNA for IGF-1 was decreased, IGF-1R was unchanged and IGFBP-1 was increased. Similar changes occurred in IGF-1-infused ARF rats. Thus, (1) IGF-1 enhances recovery from nephrotoxic ARF both functionally and histologically; (2) in nephrotoxic ARF, there is (a) a reduction in IGF-1 mRNA expression that is not prevented by IGF-1 infusion, and (b) an increase in renal IGFBP-1 mRNA. This may allow a significant increase in renal IGF-1 levels in IGF-1-infused ARF rats, despite the decrease in renal IGF-1 mRNA. A local increase in renal IGFBP-1 and IGF-1 may explain the accelerated recovery from ATN in this model. It was concluded that HgCl2-induced ARF is amenable to improvement by IGF-1 infusion and that the increase in renal IGFBP-1 mRNA may be an important modulator in the recovery of the kidney.

  3. Insulin-like growth factor mRNA binding protein 3 (IMP3) is differentially expressed in benign and malignant follicular patterned thyroid tumors.

    PubMed

    Slosar, Magdalena; Vohra, Poonam; Prasad, Manju; Fischer, Andrew; Quinlan, Robert; Khan, Ashraf

    2009-01-01

    Insulin-like growth factor mRNA binding protein 3 (IMP3) is an mRNA-binding protein that regulates transcription of insulin-like growth factor II affecting cell proliferation during embryogenesis. It is highly expressed in carcinomas of the pancreas, stomach, colon, rectum, kidneys, uterine cervix, lung, and ovary. The purpose of our study was to evaluate IMP3 expression in thyroid follicular lesions, to determine whether it has a role in differentiating among these lesions, and to understand their biological relationships. We immunostained 219 thyroid lesions selected from our surgical pathology archives including 14 hyperplastic colloid nodules (CN), 19 Hashimoto's thyroiditis (HT), two Graves disease (GD), ten Hürthle cell adenoma (HCA), 20 follicular adenoma (FA), 37 conventional papillary thyroid carcinoma (PTC), 60 follicular variant of papillary carcinoma (FVPC), 19 Hürthle cell carcinoma (HCC), 32 follicular carcinoma (FC), and six poorly differentiated/anaplastic carcinoma. Immunohistochemistry was performed on formalin-fixed sections using monoclonal antibody to IMP3. Clinicopathological data were also reviewed. In all cases, residual thyroid tissue, CN, HT, GD, HCA, and FA were completely negative for IMP3 staining. Of the 60 FVPC, 23 tumors (38%) were positive for IMP3, with 13 of these (22%) showing very strong staining (3+). Of the 32 FC, 22 tumors (69%) were positive, with seven (22%) showing very strong staining (3+). Furthermore, 33 out of 37 cases (89%) of PTC were negative for IMP3. In all four PTC cases that did stain positive, staining was weak-moderate (1-2+). Similarly, 15 out of 19 cases (79%) of HCC were negative. No significant correlation was found between pathologic tumor characteristics and IMP3 expression in differentiated follicular pattern thyroid carcinoma. With 100% specificity and 69% sensitivity for FC as compared to FA and 100% specificity for FVPC, again compared to FA, IMP3 has the potential to be diagnostically useful in

  4. Nerve growth factor treatment of sensory neuron primary cultures causes elevated levels of the mRNA encoding the ATP synthase beta-subunit as detected by a novel PCR-based differential cloning method.

    PubMed

    Kendall, G; Ensor, E; Crankson, H D; Latchman, D S

    1996-03-01

    The mRNA encoding the rat ATP synthase beta-subunit was rapidly induced by nerve growth factor, within 60 min, in cultured adult rat dorsal root ganglion neurons. ATP synthase beta-subunit cDNA clones were isolated from a lambda library. The library was constructed using rat dorsal root ganglion mRNA that was differentially screened with cDNA-derived probes from untreated and nerve-growth-factor-treated primary cultures of adult rat dorsal root ganglion sensory neurons. Radiolabelled probes were made from submicrogram quantities of RNA, by a novel PCR-based technique, which allows small amounts of primary tissue to be used for library screening. The use of this technique in isolating novel differentially expressed mRNAs is discussed.

  5. Up-regulation of alveolar macrophage platelet-derived growth factor-B (PDGF-B) mRNA by interferon-gamma from Mycobacterium tuberculosis antigen (PPD)-stimulated lymphocytes.

    PubMed Central

    Wangoo, A; Taylor, I K; Haynes, A R; Shaw, R J

    1993-01-01

    Macrophage production of PDGF-B is believed to be important in the pathogenesis of diseases where chronic lung inflammation develops into fibrosis. Since tuberculosis is characterized by chronic inflammation and tissue fibrosis, we asked if lymphokines from lymphocytes stimulated by the Mycobacterium tuberculosis antigen PPD, contained factors capable of increasing human alveolar macrophage PDGF-B mRNA. Supernatants from both phytohaemagglutinin (PHA)- and purified protein derivative (PPD)-stimulated lymphocytes, when added to macrophages, induced an increase in the mRNA of PDGF-B, but not transforming growth factor-beta (TGF-beta). When lymphocytes from contacts of patients with tuberculosis, patients with tuberculosis, and normal subjects were compared following PPD stimulation, the lymphocytes from the contacts had the greatest proliferation response, the greatest production of interferon-gamma (IFN-gamma), and their lymphokines induced the greatest increase in PDGF-B mRNA in macrophages. Recombinant human IFN-gamma reproduced this ability of lymphokines to increase macrophage PDGF-B mRNA. Finally, the increase in macrophage PDGF-B mRNA following incubation with supernatants from PPD-stimulated lymphocytes was shown to be due to IFN-gamma, when the increase in macrophage PDGF-B mRNA was prevented by addition of anti-human IFN-gamma antibody to the lymphocyte supernatant. This study indicated that antigen-stimulated lymphocytes released IFN-gamma, which in turn resulted in an increase in PDGF-B mRNA in alveolar macrophages. Such a mechanism provides a link between the DTH response and the first stages of a fibrotic reaction, and may offer an explanation for the progression of chronic inflammation to fibrosis, as occurs in the lungs of patients with untreated pulmonary tuberculosis. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8403516

  6. Identification of a novel AU-Rich element in the 3' untranslated region of epidermal growth factor receptor mRNA that is the target for regulated RNA-binding proteins.

    PubMed

    Balmer, L A; Beveridge, D J; Jazayeri, J A; Thomson, A M; Walker, C E; Leedman, P J

    2001-03-01

    The epidermal growth factor receptor (EGF-R) plays an important role in the growth and progression of estrogen receptor-negative human breast cancers. EGF binds with high affinity to the EGF-R and activates a variety of second messenger pathways that affect cellular proliferation. However, the underlying mechanisms involved in the regulation of EGF-R expression in breast cancer cells are yet to be described. Here we show that the EGF-induced upregulation of EGF-R mRNA in two human breast cancer cell lines that overexpress EGF-R (MDA-MB-468 and BT-20) is accompanied by stabilization (>2-fold) of EGF-R mRNA. Transient transfections using a luciferase reporter identified a novel EGF-regulated approximately 260-nucleotide (nt) cis-acting element in the 3' untranslated region (3'-UTR) of EGF-R mRNA. This cis element contains two distinct AU-rich sequences (~75 nt), EGF-R1A with two AUUUA pentamers and EGF-R2A with two AUUUUUA extended pentamers. Each independently regulated the mRNA stability of the heterologous reporter. Analysis of mutants of the EGF-R2A AU-rich sequence demonstrated a role for the 3' extended pentamer in regulating basal turnover. RNA gel shift analysis identified cytoplasmic proteins (~55 to 80 kDa) from breast cancer cells that bound specifically to the EGF-R1A and EGF-R2A cis-acting elements and whose binding activity was rapidly downregulated by EGF and phorbol esters. RNA gel shift analysis of EGF-R2A mutants identified a role for the 3' extended AU pentamer, but not the 5' extended pentamer, in binding proteins. These EGF-R mRNA-binding proteins were present in multiple human breast and prostate cancer cell lines. In summary, these data demonstrate a central role for mRNA stabilization in the control of EGF-R gene expression in breast cancer cells. EGF-R mRNA contains a novel complex AU-rich 260-nt cis-acting destabilizing element in the 3'-UTR that is bound by specific and EGF-regulated trans-acting factors. Furthermore, the 3' extended AU

  7. Temporal mRNA expression of transforming growth factor-beta superfamily members and inhibitors in the developing rainbow trout ovary

    USDA-ARS?s Scientific Manuscript database

    Members of the transforming growth factor-beta (TGF-beta) superfamily have critical roles in ovarian development in mammals, yet many of these peptides have not been characterized or even identified in fish. Although much is known about the endocrine control of ovarian development in fishes, little...

  8. Increased abundance of aromatase and follicle stimulating hormone receptor mRNA and decreased insulin-like growth factor-2 receptor mRNA in small ovarian follicles of cattle selected for twin births.

    PubMed

    Echternkamp, S E; Aad, P Y; Eborn, D R; Spicer, L J

    2012-07-01

    Cattle genetically selected for twin ovulations and births (Twinner) exhibit increased ovarian follicular development, increased ovulation rate, and greater blood and follicular fluid IGF-1 concentrations compared with contemporary cattle not selected for twins (Control). Experimental objectives were to 1) assess relationships among aromatase (CYP19A1), IGF-1 (IGF1), IGF-2 receptor (IGF2R), and FSH receptor (FSHR) mRNA expression in small (≤5 mm) antral follicles and 2) determine their association with increased numbers of developing follicles in ovaries of Twinner females. Ovaries were collected from mature, cyclic (d 3 to 6) Twinner (n = 11), and Control (n = 12) cows at slaughter and pieces of cortical tissue were fixed and embedded in paraffin. Expression of mRNA was evaluated by in situ hybridization using (35)S-UTP-labeled antisense and sense probes for CYP19A1, FSHR, IGF1, and IGF2R mRNA. Silver grain density was quantified within the granulosa and theca cells of individual follicles (2 to 7 follicles/cow) by Bioquant image analysis. Follicles of Twinners tended to be smaller in diameter than Controls (1.9 ± 0.1 vs. 2.3 ± 0.1 mm; P = 0.08), but thickness of granulosa layer did not differ (P > 0.1) by genotype. Relative abundance of CYP19A1 (P < 0.01) and FSHR (P < 0.05) mRNA was greater in granulosa cells of Twinners vs. Controls, respectively, whereas IGF2R mRNA expression was less in both granulosa (P < 0.01) and theca (P < 0.05) cells in follicles of Twinners vs. Controls, respectively. Abundance of CYP19A1 mRNA in granulosa cells was correlated negatively with IGF2R mRNA expression in both granulosa (r = -0.33; P < 0.01) and theca (r = -0.21; P = 0.05) cells. Expression of IGF1 mRNA was primarily in granulosa cells, including cumulus cells, and its expression did not differ between Twinners vs. Controls (P > 0.10). Detected increases in CYP19A1 and FSHR, but not IGF1, mRNA expression along with decreases in IGF2R mRNA expression in individual

  9. [Effects of qiwei granule on the protein and mRNA expressions of renal tissue transforming growth factor-beta1 in KK-Ay mice with spontaneous type 2 diabetes mellitus].

    PubMed

    Li, Min-zhou; Gao, Yan-bin; Ma, Ming-fei

    2012-12-01

    To study the effects of Qiwei Granule (QWG) on the protein and mRNA expressions of renal tissue transforming growth factor beta1 (TGF-beta1) in KK-Ay mice with spontaneous type 2 diabetes mellitus (T2DM). Spontaneous T2DM KK-Ay mice model was adopted. Forty-five male mice were randomly divided into three groups, i. e., the model group, the Chinese medicine group, and the Western medicine group, 15 in each group. Fifteen male C57BL/6J mice were set up as the normal control group. The mice in the Chinese medicine group and the Western medicine group were administered intragastrically with QWG (at the daily dose of 20 g/kg) and valsartan (at the daily dose of 10 mg/kg), and the treatment lasted for 12 successive weeks. The pathological changes of the kidney were observed using HE staining, PAS, and Masson staining. The protein and mRNA expressions of TGF-beta1, were detected using immunohistochemical method and Real-time fluorescent quantitative PCR. The renal pathological changes of mice in the model group showed hypertrophic glomeruli, widened mesenteric matrix, increased mesangial cells, vacuolar renal tubular epithelial cells, tubular ectasia, and foci atrophy. Necrosis was occasionally seen. More protein cast, mesenchymal infiltration of inflammatory cells, and interstitial fibrosis could be seen. The protein and mRNA expressions of TGF-beta1 increased more in the model group than in the normal control group. After treatment by QWG and valsartan, the renal pathological changes were obviously alleviated, and the protein and mRNA expressions of TGF-beta1 were obviously lowered (P<0.05). By inhibiting the protein and mRNA expressions of TGF-beta1, QWG could play a role in preventing and curing diabetic nephropathy.

  10. Effect of dietary supplementation of chitosan and galacto-mannan-oligosaccharide on serum parameters and the insulin-like growth factor-I mRNA expression in early-weaned piglets.

    PubMed

    Tang, Zhi-Ru; Yin, Yu-Long; Nyachoti, Charles M; Huang, Rui-Lin; Li, Tie-Jun; Yang, Chengbo; Yang, Xiao-Jian; Gong, Joshua; Peng, Jiang; Qi, De-Sheng; Xing, Jian-Jun; Sun, Zhi-Hong; Fan, Ming Z

    2005-05-01

    The study was to determine effects of dietary supplementation of chitosan (COS) and galacto-mannan-oligosaccharides (GMOS) on some serum biochemical indices, serum growth hormone (GH) and insulin-like growth factor-I (IGF-I) levels, and hepatic and long gissimus muscle IGF-I mRNA expression in early-weaned piglets. Twenty six Duroc x Landrace x Yorkshire piglets at the age of 15 days were used. The piglets had access to creep feed during the suckling. Six piglets were sacrificed for sampling at the beginning of the study. The other 20 piglets were individually housed in metabolic cages and randomly allotted to four corn and soybean meal-based diets including the control group, the antibiotic group with 110 mg lincomycin/kg diet, the COS group containing 0.025% COS, and the GMOS group with 0.20% GMOS, respectively, in a 2-week feeding experiment. Blood urea nitrogen (BUN) level was reduced whereas serum total protein concentration was increased (P<0.05) in responses to the COS and GMOS supplementation. Dietary supplementation of COS and GMOS also increased (P<0.05) the serum GH and IGF-I levels along with enhanced hepatic and the muscle IGF-I mRNA abundance. Dietary supplementation of oligosaccharides such as COS and GMOS may improve growth and feed conversion efficiency by increasing plasma GH and IGF-I levels, in the early-weaned piglets.

  11. Cytokines in relapsing experimental autoimmune encephalomyelitis in DA rats: persistent mRNA expression of proinflammatory cytokines and absent expression of interleukin-10 and transforming growth factor-beta.

    PubMed

    Issazadeh, S; Lorentzen, J C; Mustafa, M I; Höjeberg, B; Müssener, A; Olsson, T

    1996-09-01

    Experimental autoimmune encephalomyelitis (EAE) in rats is typically a brief and monophasic disease with sparse demyelination. However, inbred DA rats develop a demyelinating, prolonged and relapsing encephalomyelitis after immunization with rat spinal cord in incomplete Freund's adjuvant. This model enables studies of mechanisms related to chronicity and demyelination, two hallmarks of multiple sclerosis (MS). Here we have investigated, in situ, the dynamics of cytokine mRNA expression in the central nervous system (CNS) and peripheral lymphoid organs (lymph node cells and splenocytes) of diseased DA rats. We demonstrate that peripheral lymphoid cells stimulated in vitro with encephalitogenic peptides 69-87 and 87-101 of myelin basic protein responded with high mRNA expression for proinflammatory cytokines; interferon-gamma, interleukin-12 (IL-12), tumour necrosis factors alpha and beta, IL-1 beta and cytolysin. A high expression of mRNA for these proinflammatory cytokines was also observed in the CNS where it was accompanied by classical signs of inflammation such as expression of major histocompatibility complex class I and II, CD4, CD8 and IL-2 receptor. The expression of mRNA for proinflammatory cytokines was remarkably long-lasting in DA rats as compared to LEW rats which display a brief and monophasic EAE. Furthermore, mRNAs for putative immunodownmodulatory cytokines, i.e. transforming growth factor-beta (TGF-beta), IL-10 and IL-4 were almost absent in DA rats, in both the CNS and in vitro stimulated peripheral lymphoid cells, while their levels were elevated in the CNS of LEW rats during the recovery phase. We conclude that the MS-like prolonged and relapsing EAE in DA rats is associated with a prolonged production of proinflammatory cytokines and/or low or absent production of immunodownmodulatory cytokines.

  12. Vascular endothelial growth factor A (VEGF-A) mRNA expression levels decrease after menopause in normal breast tissue but not in breast cancer lesions

    PubMed Central

    Greb, R R; Maier, I; Wallwiener, D; Kiesel, L

    1999-01-01

    We hypothesized that the regulation of microvascular functions and angiogenesis in breast tissue, a well known target of ovarian steroid action, is dependent on the hormonal exposure of the breast. Relative expression levels of VEGF-A (vascular endothelial growth factor A), a putative key regulator of angiogenesis in breast cancer, were analysed in the tumour and the adjacent non-neoplastic breast tissue of 19 breast cancer patients by quantitative reverse transcriptase polymerase chain reaction. In non-neoplastic breast specimens the expression levels of all detected VEGF-A-isoforms (189, 165, 121) were significantly higher in premenopausal compared to post-menopausal women (P = 0.02) and were inversely correlated with the patient's age (P = 0.006). In contrast, in cancerous tissues menopausal status had no influence on VEGF-A-expression levels. Benign and malignant tissues exhibited a similar expression pattern of VEGF-A-isoforms relative to each other. Thus, the regulation of the vasculature in normal breast tissue, as opposed to breast cancer tissue, appears to be hormonally dependent. Endogenous and therapeutically used hormonal steroids might, therefore, cause clinically relevant changes of the angiogenic phenotype of the human breast. © 1999 Cancer Research Campaign PMID:10496346

  13. Feeding a DHA-enriched diet increases skeletal muscle protein synthesis in growing pigs: association with increased skeletal muscle insulin action and local mRNA expression of insulin-like growth factor 1.

    PubMed

    Wei, Hong-Kui; Zhou, Yuanfei; Jiang, Shuzhong; Tao, Ya-Xiong; Sun, Haiqing; Peng, Jian; Jiang, Siwen

    2013-08-01

    Dietary n-3 PUFA have been demonstrated to promote muscle growth in growing animals. In the present study, fractional protein synthesis rates (FSR) in the skeletal muscle of growing pigs fed a DHA-enriched (DE) diet (DE treatment) or a soyabean oil (SO) diet (SO treatment) were evaluated in the fed and feed-deprived states. Feeding-induced increases in muscle FSR, as well as the activation of the mammalian target of rapamycin and protein kinase B, were higher in the DE treatment as indicated by the positive interaction between diet and feeding. In the fed state, the activation of eIF4E-binding protein 1 in the skeletal muscle of pigs on the DE diet was higher than that in pigs on the SO diet (P<0·05). Feeding the DE diet increased muscle insulin-like growth factor 1 (IGF-1) expression (P<0·05) and insulin action (as demonstrated by increased insulin receptor (IR) phosphorylation, P<0·05), resulting in increased IR substrate 1 activation in the fed state. However, no difference in plasma IGF-1 concentration or hepatic IGF-1 expression between the two treatments was associated. The increased IGF-1 expression in the DE treatment was associated with increased mRNA expression of the signal transducer and activator of transcription 5A and decreased mRNA expression of protein tyrosine phosphatase, non-receptor type 3 in skeletal muscle. Moreover, mRNA expression of protein tyrosine phosphatase, non-receptor type 1 (PTPN1), the activation of PTPN1 and the activation of NF-κB in muscle were significantly lower in the DE treatment (P<0·05). The results of the present study suggest that feeding a DE diet increased feeding-induced muscle protein synthesis in growing pigs, and muscle IGF-1 expression and insulin action were involved in this action.

  14. Nerve Growth Factor, Brain-Derived Neurotrophic Factor and Osteocalcin Gene Relationship in Energy Regulation, Bone Homeostasis and Reproductive Organs Analyzed by mRNA Quantitative Evaluation and Linear Correlation Analysis.

    PubMed

    Camerino, Claudia; Conte, Elena; Cannone, Maria; Caloiero, Roberta; Fonzino, Adriano; Tricarico, Domenico

    2016-01-01

    Nerve Growth Factor (NGF)/Brain-derived Neurotrophic Factor (BDNF) and osteocalcin share common effects regulating energy, bone mass, reproduction and neuronal functions. To investigate on the gene-relationship between NGF, BDNF, and Osteocalcin we compared by RT-PCR the transcript levels of Ngf, Bdnf and Osteocalcin as well as of their receptors p75NTR/NTRK1, NTRK2, and Gprc6a in brain, bone, white/brown adipose tissue (WAT/BAT) and reproductive organs of 3 months old female and male mice. Brain and bone were used as positive controls for NGF/BDNF and Osteocalcin respectively. The role of oxitocin(Oxt) and its receptor(Oxtr) was also investigated. Ngf expression shows an opposite trend compared to Bdnf. Ngf /p75NTR expression is 50% higher in BAT than brain, in both genders, but lower in bone. In contrast, Bdnf expression in bone is higher than in brain, but low in BAT/WAT. We found Osteocalcin gene expressed in brain in both genders, but Gprc6a expression is low in brain and BAT/WAT. As expected, Gprc6a gene is expressed in bone. Oxt gene was markedly expressed in brain, Oxtr in the ovaries and in fat and bone in both genders. Ngf is highly expressed in reproductive tissues and p75NTR mRNA levels are respectively 300, 100, and 50% higher in testis/ovaries/uterus than in brain. In contrast, BDNF genes are not expressed in reproductive tissues. As expected, Gprc6a is expressed in testis but not in the ovaries/uterus. A significant correlation was found between the expression levels of the gene ligands and their receptors in brain, BAT and testis suggesting a common pathway of different genes in these tissues in either male and female. Changes in the expression levels of osteocalcin, Ngf, or Bdnf genes may mutually affect the expression levels of the others. Moreover, it may be possible that different ligands may operate through different receptor subtypes. Oxt and Oxtr failed to show significant correlation. The up-regulation of Ngf /p75NTR in BAT is consistent

  15. Nerve Growth Factor, Brain-Derived Neurotrophic Factor and Osteocalcin Gene Relationship in Energy Regulation, Bone Homeostasis and Reproductive Organs Analyzed by mRNA Quantitative Evaluation and Linear Correlation Analysis

    PubMed Central

    Camerino, Claudia; Conte, Elena; Cannone, Maria; Caloiero, Roberta; Fonzino, Adriano; Tricarico, Domenico

    2016-01-01

    Nerve Growth Factor (NGF)/Brain-derived Neurotrophic Factor (BDNF) and osteocalcin share common effects regulating energy, bone mass, reproduction and neuronal functions. To investigate on the gene-relationship between NGF, BDNF, and Osteocalcin we compared by RT-PCR the transcript levels of Ngf, Bdnf and Osteocalcin as well as of their receptors p75NTR/NTRK1, NTRK2, and Gprc6a in brain, bone, white/brown adipose tissue (WAT/BAT) and reproductive organs of 3 months old female and male mice. Brain and bone were used as positive controls for NGF/BDNF and Osteocalcin respectively. The role of oxitocin(Oxt) and its receptor(Oxtr) was also investigated. Ngf expression shows an opposite trend compared to Bdnf. Ngf /p75NTR expression is 50% higher in BAT than brain, in both genders, but lower in bone. In contrast, Bdnf expression in bone is higher than in brain, but low in BAT/WAT. We found Osteocalcin gene expressed in brain in both genders, but Gprc6a expression is low in brain and BAT/WAT. As expected, Gprc6a gene is expressed in bone. Oxt gene was markedly expressed in brain, Oxtr in the ovaries and in fat and bone in both genders. Ngf is highly expressed in reproductive tissues and p75NTR mRNA levels are respectively 300, 100, and 50% higher in testis/ovaries/uterus than in brain. In contrast, BDNF genes are not expressed in reproductive tissues. As expected, Gprc6a is expressed in testis but not in the ovaries/uterus. A significant correlation was found between the expression levels of the gene ligands and their receptors in brain, BAT and testis suggesting a common pathway of different genes in these tissues in either male and female. Changes in the expression levels of osteocalcin, Ngf, or Bdnf genes may mutually affect the expression levels of the others. Moreover, it may be possible that different ligands may operate through different receptor subtypes. Oxt and Oxtr failed to show significant correlation. The up-regulation of Ngf /p75NTR in BAT is consistent

  16. Oral glucosamine increases expression of transforming growth factor β1 (TGFβ1) and connective tissue growth factor (CTGF) mRNA in rat cartilage and kidney: implications for human efficacy and toxicity.

    PubMed

    Ali, Akhtar A; Lewis, Sherry M; Badgley, Heidi L; Allaben, William T; Leakey, Julian E A

    2011-06-01

    Glucosamine is used for alleviating pain in osteoarthritis. Clinical trials have reported that glucosamine has equivocal efficacy. Glucosamine is also used in cell cultures to stimulate hexosamine flux and protein O-glycosylation, but at many-fold greater concentrations than those in human plasma following oral dosing. Lean Zucker rats were dosed orally for 6 weeks with glucosamine hydrochloride at doses (0-600 mg/kg/day) that produced peak serum concentrations of <1-35 μM, spanning the human exposure range. Relative expression of both TGFβ1 and CTGF mRNA were significantly increased up to 2.3-fold in liver, kidney and articular cartilage when evaluated 4h after final dose. Apparent threshold serum glucosamine (C(max)) concentration required to increase TGFβ1 expression in cartilage was 10-20 μM. These increases were associated with significant increases in UDP-N-acetylglucosamine concentrations suggesting increased hexosamine flux. Both TGFβ1 and CTGF are mediators of chondrocyte proliferation and cartilage repair. Study demonstrates that oral glucosamine doses that produce clinically relevant serum glucosamine concentrations can induce tissue TGFβ1 and CTGF expression in vivo and provides a mechanistic rationale for reported beneficial effects of glucosamine therapy. Induction of renal TGFβ1 and CTGF mRNA suggests that potential sclerotic side-effects may occur following consumption of potent glucosamine preparations. Published by Elsevier Inc.

  17. Immunosuppression during active tuberculosis is characterized by decreased interferon- gamma production and CD25 expression with elevated forkhead box P3, transforming growth factor- beta , and interleukin-4 mRNA levels.

    PubMed

    Roberts, Teri; Beyers, Nulda; Aguirre, Ana; Walzl, Gerhard

    2007-03-15

    The balance between effector and regulatory responses after Mycobacterium tuberculosis infection may dictate outcome and progression to active disease. We investigated effector and regulatory T cell responses in bacille Calmette-Guerin (BCG)-stimulated peripheral blood mononuclear cells and whole blood cultures from persons with active tuberculosis (TB), persons with TB at the end of 6 months of treatment, and healthy control subjects with latent TB infection. All 3 groups displayed BCG-induced increases in effector and regulatory T cell phenotypes as defined by CD4(+)CD25(lo) and CD4(+)CD25(hi) T cells, respectively. In case patients with active disease, BCG stimulation induced the lowest increase of CD25, CD4(+)CD25(hi), CTLA-4, and interferon- gamma . However, these case patients expressed the highest mRNA levels of forkhead box P3, transforming growth factor (TGF)- beta , and interleukin (IL)-4 and a lower T-bet : GATA-3 ratio. There were no significant differences in IL-4 delta 2, IL-10, or TGF- beta receptor-II mRNA expression between groups. Together, these results suggest that immunosuppression seen after mycobacterial stimulation in case patients with active TB is associated with naturally occurring regulatory T cells.

  18. InsP6-sensitive variants of the Gle1 mRNA export factor rescue growth and fertility defects of the ipk1 low-phytic-acid mutation in Arabidopsis.

    PubMed

    Lee, Ho-Seok; Lee, Du-Hwa; Cho, Hui Kyung; Kim, Song Hee; Auh, Joong Hyuck; Pai, Hyun-Sook

    2015-02-01

    Myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP(6)), also known as phytic acid, accumulates in large quantities in plant seeds, serving as a phosphorus reservoir, but is an animal antinutrient and an important source of water pollution. Here, we report that Gle1 (GLFG lethal 1) in conjunction with InsP(6) functions as an activator of the ATPase/RNA helicase LOS4 (low expression of osmotically responsive genes 4), which is involved in mRNA export in plants, supporting the Gle1-InsP(6)-Dbp5 (LOS4 homolog) paradigm proposed in yeast. Interestingly, plant Gle1 proteins have modifications in several key residues of the InsP(6) binding pocket, which reduce the basicity of the surface charge. Arabidopsis thaliana Gle1 variants containing mutations that increase the basic charge of the InsP(6) binding surface show increased sensitivity to InsP(6) concentrations for the stimulation of LOS4 ATPase activity in vitro. Expression of the Gle1 variants with enhanced InsP(6) sensitivity rescues the mRNA export defect of the ipk1 (inositol 1,3,4,5,6-pentakisphosphate 2-kinase) InsP(6)-deficient mutant and, furthermore, significantly improves vegetative growth, seed yield, and seed performance of the mutant. These results suggest that Gle1 is an important factor responsible for mediating InsP(6) functions in plant growth and reproduction and that Gle1 variants with increased InsP(6) sensitivity may be useful for engineering high-yielding low-phytate crops. © 2015 American Society of Plant Biologists. All rights reserved.

  19. InsP6-Sensitive Variants of the Gle1 mRNA Export Factor Rescue Growth and Fertility Defects of the ipk1 Low-Phytic-Acid Mutation in Arabidopsis

    PubMed Central

    Lee, Ho-Seok; Lee, Du-Hwa; Cho, Hui Kyung; Kim, Song Hee; Auh, Joong Hyuck; Pai, Hyun-Sook

    2015-01-01

    Myo-inositol-1,2,3,4,5,6-hexakisphosphate (InsP6), also known as phytic acid, accumulates in large quantities in plant seeds, serving as a phosphorus reservoir, but is an animal antinutrient and an important source of water pollution. Here, we report that Gle1 (GLFG lethal 1) in conjunction with InsP6 functions as an activator of the ATPase/RNA helicase LOS4 (low expression of osmotically responsive genes 4), which is involved in mRNA export in plants, supporting the Gle1-InsP6-Dbp5 (LOS4 homolog) paradigm proposed in yeast. Interestingly, plant Gle1 proteins have modifications in several key residues of the InsP6 binding pocket, which reduce the basicity of the surface charge. Arabidopsis thaliana Gle1 variants containing mutations that increase the basic charge of the InsP6 binding surface show increased sensitivity to InsP6 concentrations for the stimulation of LOS4 ATPase activity in vitro. Expression of the Gle1 variants with enhanced InsP6 sensitivity rescues the mRNA export defect of the ipk1 (inositol 1,3,4,5,6-pentakisphosphate 2-kinase) InsP6-deficient mutant and, furthermore, significantly improves vegetative growth, seed yield, and seed performance of the mutant. These results suggest that Gle1 is an important factor responsible for mediating InsP6 functions in plant growth and reproduction and that Gle1 variants with increased InsP6 sensitivity may be useful for engineering high-yielding low-phytate crops. PMID:25670768

  20. Ontogeny of pituitary growth hormone and growth hormone mRNA in the chicken.

    PubMed

    McCann-Levorse, L M; Radecki, S V; Donoghue, D J; Malamed, S; Foster, D N; Scanes, C G

    1993-01-01

    The changes in pituitary growth hormone (GH) mRNA levels have been determined by Northern blot analysis and laser densitometry during embryonic development and posthatch growth of white Leghorn cockerels. Pituitary GH mRNA levels were observed to progressively increase between 18 days of embryonic development to a maximum at 4 weeks of age (posthatch). Subsequently, pituitary GH mRNA levels declined between 4 and 8 weeks of age, and between 12 weeks of age and adulthood. Pituitary GH contents showed increases during embryonic development and posthatch growth that paralleled the rise in GH mRNA. The decline in pituitary GH mRNA levels between 4 weeks of age and adulthood occurs when GH secretion has been observed previously to decline.

  1. Effects of platelet-derived growth factor and interleukin-10 on Fas/Fas-ligand and Bcl-2/Bax mRNA expression in rat hepatic stellate cells in vitro

    PubMed Central

    Wang, Xiao-Zhong; Zhang, Sheng-Jun; Chen, Yun-Xin; Chen, Zhi-Xin; Huang, Yue-Hong; Zhang, Li-Juan

    2004-01-01

    AIM: To investigate the effects of platelet-derived growth factor (PDGF) and interleukin-10 (IL-10) on Fas/Fas-ligand and Bcl-2/Bax mRNA expressions in rat hepatic stellate cells. METHODS: Rat hepatic stellate cells (HSCs) were isolated and purified from rat liver by in situ digestion of collagenase and pronase and single-step density Nycodenz gradient. After activated by culture in vitro, HSCs were divided into 4 groups and treated with nothing (group N), PDGF (group P), IL-10 (group I) and PDGF in combination with IL-10 (group C), respectively. Semi-quantitative reverse-transcriptase polymerase chain reaction (RT-PCR) analysis was employed to compare the mRNA expression levels of Fas/FasL and Bcl-2/Bax in HSCs of each group. RESULTS: The expression levels of Fas between the 4 groups had no significant differences (P > 0.05). FasL mRNA level in normal culture-activated HSCs (group N) was very low. It increased obviously after HSCs were treated with IL-10 (group I) (0.091 ± 0.007 vs 0.385 ± 0.051, P < 0.01), but remained the low level after treated with PDGF alone (group P) or PDGF in combination with IL-10 (group C). Contrast to the control group, after treated with PDGF and IL-10, either alone or in combination, Bcl-2 mRNA expression was down-regulated and Bax mRNA expression was up-regulated, both following the turn from group P, group I to group C. Expression of Bcl-2 mRNA in group C was significantly lower than that in group P (0.126 ± 0.008 vs 0.210 ± 0.024, P < 0.01). But no significant difference was found between group C and group I, as well as between group I and group P (P > 0.05). Similarly, the expression of Bax in group C was higher than that in group P (0.513 ± 0.016 vs 0.400 ± 0.022, P < 0.01). No significant difference was found between group I and group P (P > 0.05). But compared with group C, Bax expressions in group I tended to decrease (0.449 ± 0.028 vs 0.513 ± 0.016, P < 0.05). CONCLUSION: PDGF may promote proliferation of HSCs but is

  2. Injury induces in vivo expression of platelet-derived growth factor (PDGF) and PDGF receptor mRNAs in skin epithelial cells and PDGF mRNA in connective tissue fibroblasts

    SciTech Connect

    Antoniades, H.N. Center for Blood Research, Boston, MA Inst. of Molecular Biology, Boston, MA ); Galanopoulos, T.; Neville-Golden, J.; Kiritsy, C.P. Inst. of Molecular Biology, Boston, MA ); Lynch, S.E. Inst. of Molecular Biology, Boston, MA Harvard School of Dental Medicine, Boston, MA )

    1991-01-15

    Platelet-derived growth factor (PDGF) stimulates many of the processes important in tissue repair, including proliferation of fibroblasts and synthesis of extracellular matrices. In this study, the authors have demonstrated with in situ hydridization and immunocytochemistry the reversible expression of 3-sis/PDGF-2 and PDGF receptor (PDGF-R) b mRNAs and their respective protein products in epithelial cells and fibroblasts following cutaneous injury in pigs. Epithelial cells in control, unwounded skin did not express c-sis and PDGF-R mRNAs, and fibroblasts expressed only PDGF-R mRNA. The expression levels in the injured site were correlated with the stage of tissue repair, being highest during the initial stages of the repair process and declining at the time of complete re-epithelialization and tissue remodeling. These studies provide a mulecular basis for understanding the mechanisms contributing to normal tissue repair. They suggest the possibility that a defect in these mechanisms may be associated with defective wound healing. It is also conceivable that chronic injury may induce irreversible gene expression leading to pathologic, unregulated cell growth.

  3. Insulin-like growth factor I (IGF-I) in Chinese alligator, Alligator sinensis: Molecular characterization, tissue distribution and mRNA expression changes during the active and hibernating periods.

    PubMed

    Zhu, Xue; Zhang, Shengzhou; Zhao, Shuai; Zhang, Rui; Zhou, Yongkang; Wu, Xiaobing

    2017-02-01

    The Chinese alligator Alligator sinensis is an endangered species endemic to China, up to date, little is known about the regulation of its growth and development. Insulin-like growth factor I (IGF-I) plays a vital role in regulating vertebrate growth and development. In this study, the full-length cDNA of IGF-I in Chinese alligator (caIGF-I) was obtained for the first time, it contains 890-bp nucleotides encoding a 153-amino acid precursor, the mature caIGF-I consists of 70 amino acids by cleaving the signal peptide and C-terminal extension (E domain). The caIGF-I contains all the features of IGF-I peptide with B, C, A, and D domains and the six conservative cysteine residues involved in the stable tertiary structure. Multiple alignment analysis showed that the amino acid sequence of caIGF-I shares high identity with American alligator Alligator mississippiensis (100%) and birds (95-97%). Phylogenetic tree analysis of the IGF-I amino acid sequences indicated that alligators cluster into the bird branch. Real-time quantitative PCR technique showed that caIGF-I is widely expressed in all the examined tissues with the highest expression level in liver, higher in pancreas and oviduct while lower in heart, spleen, lung, kidney, stomach, intestines, ovary and muscles. During hibernation, the caIGF-I expression level decreased significantly in liver, pancreas, oviduct and kidney, while did not significantly change in heart, spleen, lung, stomach, small intestine, ovary and muscles. The mRNA expression changes during the two periods implicate that caIGF-I might play an important role in the regulation of feeding and growth in the Chinese alligator.

  4. Transforming growth factor-β3 regulates cell junction restructuring via MAPK-mediated mRNA destabilization and Smad-dependent protein degradation of junctional adhesion molecule B (JAM-B).

    PubMed

    Zhang, Xu; Lui, Wing-Yee

    2015-06-01

    Junctional adhesion molecule-B (JAM-B) is found between Sertoli cells at the blood-testis barrier (BTB) as well as between Sertoli and germ cells at the apical ectoplasmic specializations (ES) in the testis. The expression of JAM-B is tightly regulated to modulate the passage of spermatocytes across the BTB as well as the release of mature spermatozoa from the seminiferous epithelium. Transforming growth factor beta (TGF-β) family is implicated in the regulation of testicular cell junction dynamics during spermatogenesis. This study aims to investigate the effects of TGF-β3 on the expression of JAM-B as well as the underlying mechanisms on how TGF-β3 regulates JAM-B expression to facilitate the disassembly of the BTB and apical ES. Our results revealed that TGF-β3 suppresses JAM-B at post-transcriptional and post-translational levels. Inhibitor, siRNA knockdown and co-immunoprecipitation have shown that TGF-β3 induces JAM-B protein degradation via ubiquitin-proteasome pathway. Immunofluorescence staining further confirmed that blockage of ubiquitin-proteasome pathway could abrogate TGF-β3-induced loss of JAM-B at the cell-cell interface. siRNA knockdown and immunofluorescence staining also demonstrated that activation of Smad signaling is required for TGF-β3-induced JAM-B protein degradation. In addition, TGF-β3 reduces JAM-B mRNA levels, at least in part, via post-transcriptional regulation. mRNA stability assay has confirmed that TGF-β3 promotes the degradation of JAM-B transcript and TGF-β3-mediated mRNA destabilization requires the activation of ERK1/2 and p54 JNK signal cascades. Taken together, TGF-β3 significantly downregulates JAM-B expression via post-transcriptional and post-translational modulation and results in the disruption of BTB and apical ES.

  5. Steroid-induced polycystic ovaries in rats: effect of electro-acupuncture on concentrations of endothelin-1 and nerve growth factor (NGF), and expression of NGF mRNA in the ovaries, the adrenal glands, and the central nervous system.

    PubMed

    Stener-Victorin, Elisabet; Lundeberg, Thomas; Cajander, Stefan; Aloe, Luigi; Manni, Luigi; Waldenström, Urban; Janson, Per Olof

    2003-04-08

    Previous studies on the effect of repeated electro-acupuncture (EA) treatments in rats with steriod-induced polycystic ovaries (PCO), EA has been shown to modulate nerve growth factor (NGF) concentration in the ovaries as well as corticotropin releasing factor (CRF) in the median eminence (ME). In the present study we tested the hypothesis that repeated EA treatments modulates sympathetic nerve activity in rats with PCO. This was done by analysing endothelin-1 (ET-1), a potent vasoconstrictor involved in ovarian functions, as well as NGF and NGF mRNA expression involved in the pathophysiological process underlying steroid-induced PCO. The main result in the present study was that concentrations of ET-1 in the ovaries were significantly lower in the PCO group receiving EA compared with the healthy control group (p < 0.05). In the hypothalamus, however, ET-1 concentrations were found to be significantly higher in the PCO group receiving EA than in the healthy control group (p < 0.05). Concentrations of ovarian NGF protein were significantly higher in the PCO control group compared with the healthy control group (p < 0.001), and these concentrations decreased significantly after repeated EA treatments compared with those in the PCO control group (p < 0.05) and were found to be the same as those in the healthy control group. In conclusion, these results indicate that EA modulates the neuroendocrinological state of the ovaries, most likely by modulating the sympathetic nerve activity in the ovaries, which may be a factor in the maintenance of steroid-induced PCO.

  6. Nuclear Decay Factors Crack Up mRNA.

    PubMed

    Tudek, Agnieszka; Schmid, Manfred; Jensen, Torben Heick

    2017-03-02

    In this issue of Molecular Cell, Bresson et al. (2017) show that the nuclear RNA decay factors Nab3 and Mtr4 reshape the coding transcriptome during glucose starvation in budding yeast, placing nuclear mRNA metabolism as an important contributor of gene expression regulation.

  7. Phex cDNA cloning from rat bone and studies on phex mRNA expression: tissue-specificity, age-dependency, and regulation by insulin-like growth factor (IGF) I in vivo.

    PubMed

    Zoidis, E; Zapf, J; Schmid, C

    2000-10-25

    Phosphate regulating gene with homology to endopeptidases on the X chromosome (Phex) inactivating mutations cause X-linked hypophosphatemia (XLH). The disorder is characterized by decreased renal phosphate (Pi) reabsorption in both humans and mice, in the latter shown to be due to a reduction in mRNA and protein of type II sodium-dependent phosphate cotransporter (NadPi-II). To gain insight into the physiological role of Phex, we cloned the rat cDNA and examined tissue-specific and age-dependent mRNA expression. The rat full-length cDNA (2247 nucleotides) shares 96 and 90% identity with the mouse and human cDNA, respectively. We found 6.6 kb Phex transcripts in calvarial bone and lungs, and a weaker signal in liver of newborn rats. In adult animals, Phex mRNA signals were weaker in bone and lungs and absent in liver. Phex mRNA expression in bones and NadPi-I and -II cotransporter mRNA expression in kidney were also determined in hypophysectomized rats. These rats, which lack GH and IGF I, stop growing and exhibit decreased serum Pi levels. Treatment during 6 days with IGF I stimulated growth and increased serum Pi. Phex and NadPi-II cotransporter mRNA levels were higher in IGF I than in vehicle-treated animals, while mRNA expression of NadPi-I, 1alpha-hydroxylase and 24-hydroxylase and serum levels of calcitriol remained unaffected. Age-dependency of Phex expression suggests a role for Phex in Pi retention during growth. Moreover, our findings indicate that an increase in Phex expression in bones under the influence of IGF I may contribute to increased serum Pi by enhancing renal phosphate reabsorption. Because IGF I treatment increased NadPi-II mRNA expression and serum Pi, IGF I appears to act at least partially at pretranslational levels to increase NadPi-II mediated renal Pi retention in growing rats.

  8. Factors affecting bone growth.

    PubMed

    Gkiatas, Ioannis; Lykissas, Marios; Kostas-Agnantis, Ioannis; Korompilias, Anastasios; Batistatou, Anna; Beris, Alexandros

    2015-02-01

    Bone growth and development are products of the complex interactions of genetic and environmental factors. Longitudinal bone growth depends on the growth plate. The growth plate has 5 different zones-each with a different functional role-and is the final target organ for longitudinal growth. Bone length is affected by several systemic, local, and mechanical factors. All these regulation systems control the final length of bones in a complicated way. Despite its significance to bone stability, bone growth in width has not been studied as extensively as longitudinal bone growth. Bone growth in width is also controlled by genetic factors, but mechanical loading regulates periosteal apposition. In this article, we review the most recent data regarding bone growth from the embryonic age and analyze the factors that control bone growth. An understanding of this complex system is important in identifying metabolic and developmental bone diseases and fracture risk.

  9. Effects of domestication and growth hormone transgenesis on mRNA profiles in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Devlin, R H; Sakhrani, D; White, S; Overturf, K

    2013-11-01

    Growth rate can be genetically modified in many vertebrates by domestication and selection and more recently by transgenesis overexpressing growth factor genes [e.g., growth hormone (GH)]. Although the phenotypic end consequence is similar, it is currently not clear whether the same modifications to physiological pathways are occurring in both genetic processes or to what extent they may interact when combined. To investigate these questions, microarray analysis has been used to assess levels of mRNA in liver of wild-type and growth-modified strains of rainbow trout (Oncorhynchus mykiss). This species has been used as a model because nondomesticated wild strains are available as comparators to assess genetic and physiological changes that have arisen both from domestication and from GH transgenesis. The analysis examined pure wild-type and pure domesticated strains as well as 2 different GH transgenes (with markedly different growth effects) both in pure wild and in wild × domesticated hybrid backgrounds. Liver mRNA showed highly concordant changes (Pearson correlations; r>0.828; P<0.001) in levels in domesticated and GH transgenic fish, relative to wild-type, for both up- and downregulated genes. Furthermore, among domesticated, transgenic, and their hybrid genotypes, a strong correlation (P<0.001) was found between growth rate and the number of genes affected (r=0.761 for downregulated mRNA and r=0.942 for upregulated mRNA) or between growth rate and mRNA levels relative to wild-type (r=0.931 for downregulated mRNA and r=0.928 for upregulated mRNA). One GH transgenic strain was found to affect growth and mRNA levels similar to domestication whereas effects of the other GH transgenic strain were much stronger. For both GH transgenes, a hybrid domesticated×wild background influenced growth rate and mRNA levels to only a small extent relative to the transgenes in a pure wild-type genetic background. Functional analysis found that genes involved in immune function

  10. FGF growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  11. Growth factors for nanobacteria

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Kajander, E. Olavi

    1999-12-01

    Nanobacteria are novel microorganisms recently isolated from fetal bovine serum and blood of cows and humans. These coccoid, gram negative bacteria in alpha-2 subgroup of Proteobacteria grow slowly under mammalian cell culture conditions but not in common media for microbes. Now we have found two different kinds of culture supplement preparations that improve their growth and make them culturable in the classical sense. These are supernatant fractions of conditioned media obtained from 1 - 3 months old nanobacteria cultures and from about a 2 weeks old Bacillus species culture. Both improved multiplication and particle yields and the latter increased their resistance to gentamicin. Nanobacteria cultured with any of the methods shared similar immunological property, structure and protein pattern. The growth supporting factors were heat-stabile and nondialyzable, and dialysis improved the growth promoting action. Nanobacteria formed stony colonies in a bacteriological medium supplemented with the growth factors. This is an implication that nanobacterial growth is influenced by pre-existing bacterial flora.

  12. Peptide growth factors, part A

    SciTech Connect

    Barnes, D.; Sirbasku, D.A.

    1987-01-01

    This book contains information on the following topics: Epidermal Growth Factor;Transforming Growth Factors;Bone and Cartilage Growth Factors;Somatomedin/Insulin-Like Growth Factors;Techniques for the Study of Growth Factor Activity;Assays, Phosphorylation, and Surface Membrane Effects.

  13. New microbial growth factor.

    PubMed Central

    Bok, S H; Casida, L E

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a new microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight, and it has high specific activity. When added to the diets for a meadow vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain. PMID:327929

  14. New microbial growth factor

    NASA Technical Reports Server (NTRS)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  15. New microbial growth factor

    NASA Technical Reports Server (NTRS)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  16. In vitro treatment with 17,20b-dihydroxy-4-pregnen-3-one regulates mRNA levels of transforming growth factor beta superfamily members in rainbow trout (Oncorhynchus mykiss) ovarian tissue

    USDA-ARS?s Scientific Manuscript database

    Transforming growth factor beta (TGFB) superfamily members are important paracrine/autocrine regulators of ovarian development and steroidogenesis in mammals, but their reproductive role in fishes is not well understood. Our objectives were 3-fold: to determine if key TGFB superfamily transcripts a...

  17. Regulation of the utilization of mRNA for eucaryotic elongation factor Tu in Friend erythroleukemia cells.

    PubMed Central

    Rao, T R; Slobin, L I

    1987-01-01

    When Friend erythroleukemia cells were allowed to grow to stationary phase (2 X 10(6) to 3 X 10(6) cells per ml), approximately 60% of the mRNA for eucaryotic elongation factor Tu (eEF-Tu) sedimented at less than or equal to 80S, and most of the remaining factor mRNA was associated with small polysomes. Under the same growth conditions, greater than 90% of the mRNA for eucaryotic initiation factor 4A remained associated with polysomes. The association of eEF-Tu mRNA with polysomes changed dramatically when stationary-phase cells were treated with fresh medium. After 1 h in fresh medium, approximately 90% of eEF-Tu mRNA in Friend cells was found in heavy polysomes. Associated with the shift of eEF-Tu mRNA into heavy polysomes, we found at least a 2.6-fold increase in the synthesis of eEF-Tu in vivo as well as a remarkable 40% decrease in the total amount of eEF-Tu mRNA per cell. Our data raise the possibility that eEF-Tu mRNA that has accumulated in ribonucleoprotein particles in stationary-phase cells is degraded rather than reutilized for eEF-Tu synthesis. Images PMID:2434834

  18. Transforming growth factor beta regulates thyroid growth. Role in the pathogenesis of nontoxic goiter.

    PubMed Central

    Grubeck-Loebenstein, B; Buchan, G; Sadeghi, R; Kissonerghis, M; Londei, M; Turner, M; Pirich, K; Roka, R; Niederle, B; Kassal, H

    1989-01-01

    The production and growth regulatory activity of transforming growth factor beta were studied in human thyroid tissue. As estimated by its mRNA expression in fresh tissue samples, transforming growth factor beta was produced in normal and in diseased thyroid glands. Transforming growth factor beta mRNA was mainly produced by thyroid follicular cells and in lesser quantities by thyroid infiltrating mononuclear cells. The concentrations of transforming growth factor beta mRNA were lower in iodine-deficient nontoxic goiter than in Graves' disease and normal thyroid tissue. Transforming growth factor beta protein secretion by cultured thyroid follicular cells was also low in nontoxic goiter, but could be increased by addition of sodium iodide (10 microM) to the culture medium. Recombinant transforming growth factor beta did not affect basal tritiated thymidine incorporation in cultured thyroid follicular cells, but inhibited, at a concentration of 10 ng/ml, the growth stimulatory influence of insulin-like growth factor I, epidermal growth factor, transforming growth factor alpha, TSH, and partly that of normal human serum on cultured thyroid follicular cells. This inhibition was greater in Graves' disease than in nontoxic goiter. These results suggest that transforming growth factor beta may act as an autocrine growth inhibitor on thyroid follicular cells. Decreased transforming growth factor beta production and decreased responsiveness to transforming growth factor beta may be cofactors in the pathogenesis of iodine-deficient nontoxic goiter. Images PMID:2921318

  19. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation.

    PubMed

    Williams, Kathryn R; McAninch, Damian S; Stefanovic, Snezana; Xing, Lei; Allen, Megan; Li, Wenqi; Feng, Yue; Mihailescu, Mihaela Rita; Bassell, Gary J

    2016-02-01

    Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5' untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1-mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development.

  20. hnRNP-Q1 represses nascent axon growth in cortical neurons by inhibiting Gap-43 mRNA translation

    PubMed Central

    Williams, Kathryn R.; McAninch, Damian S.; Stefanovic, Snezana; Xing, Lei; Allen, Megan; Li, Wenqi; Feng, Yue; Mihailescu, Mihaela Rita; Bassell, Gary J.

    2016-01-01

    Posttranscriptional regulation of gene expression by mRNA-binding proteins is critical for neuronal development and function. hnRNP-Q1 is an mRNA-binding protein that regulates mRNA processing events, including translational repression. hnRNP-Q1 is highly expressed in brain tissue, suggesting a function in regulating genes critical for neuronal development. In this study, we have identified Growth-associated protein 43 (Gap-43) mRNA as a novel target of hnRNP-Q1 and have demonstrated that hnRNP-Q1 represses Gap-43 mRNA translation and consequently GAP-43 function. GAP-43 is a neuronal protein that regulates actin dynamics in growth cones and facilitates axonal growth. Previous studies have identified factors that regulate Gap-43 mRNA stability and localization, but it remains unclear whether Gap-43 mRNA translation is also regulated. Our results reveal that hnRNP-Q1 knockdown increased nascent axon length, total neurite length, and neurite number in mouse embryonic cortical neurons and enhanced Neuro2a cell process extension; these phenotypes were rescued by GAP-43 knockdown. Additionally, we have identified a G-quadruplex structure in the 5′ untranslated region of Gap-43 mRNA that directly interacts with hnRNP-Q1 as a means to inhibit Gap-43 mRNA translation. Therefore hnRNP-Q1–mediated repression of Gap-43 mRNA translation provides an additional mechanism for regulating GAP-43 expression and function and may be critical for neuronal development. PMID:26658614

  1. Time Course of Behavioral Alteration and mRNA Levels of Neurotrophic Factor Following Stress Exposure in Mouse.

    PubMed

    Hashikawa, Naoya; Ogawa, Takumi; Sakamoto, Yusuke; Ogawa, Mami; Matsuo, Yumi; Zamami, Yoshito; Hashikawa-Hobara, Narumi

    2015-08-01

    Stress is known to affect neurotrophic factor expression, which induces depression-like behavior. However, whether there are time-dependent changes in neurotrophic factor mRNA expression following stress remains unclear. In the present study, we tested whether chronic stress exposure induces long-term changes in depression-related behavior, serum corticosterone, and hippocampal proliferation as well as neurotrophic factor family mRNA levels, such as brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), and ciliary neurotrophic factor (CNTF), in the mouse hippocampus. The mRNA level of neurotrophic factors (BDNF, NGF, NT-3, and CNTF) was measured using the real-time PCR. The serum corticosterone level was evaluated by enzyme-linked immunosorbent assay, and, for each subject, the hippocampal proliferation was examined by 5-bromo-2-deoxyuridine immunostaining. Mice exhibited depression-like behavior in the forced-swim test (FST) and decreased BDNF mRNA and hippocampal proliferation in the middle of the stress exposure. After 15 days of stress exposure, we observed increased immobility in the FST, serum corticosterone levels, and BDNF mRNA levels and degenerated hippocampal proliferation, maintained for at least 2 weeks. Anhedonia-like behavior in the sucrose preference test and NGF mRNA levels were decreased following 15 days of stress. NGF mRNA levels were significantly higher 1 week after stress exposure. The current data demonstrate that chronic stress exposure induces prolonged BDNF and NGF mRNA changes and increases corticosterone levels and depression-like behavior in the FST, but does not alter other neurotrophic factors or performance in the sucrose preference test.

  2. Zip1, Zip2, and Zip8 mRNA expressions were associated with growth hormone level during the growth hormone provocation test in children with short stature.

    PubMed

    Sun, Ping; Wang, Shifu; Jiang, Yali; Tao, Yanting; Tian, Yuanyuan; Zhu, Kai; Wan, Haiyan; Zhang, Lehai; Zhang, Lianying

    2013-10-01

    Short stature of children is affected by multiple factors. One of them is growth hormone (GH) deficiency. Growth hormone therapy can increase the final height of children with growth hormone deficiency. Zinc is found to induce dimerization and to enhance the bioactivity of human GH. Two gene families have been identified involved in zinc homeostasis. Previous studies in our laboratory have shown that Zip1, Zip2, Zip6, and ZnT1 mRNA were associated with zinc level in established human breast cancer in nude mice model; Zip8 was significantly lower in zinc-deficient Wistar rats in kidney. In this study, five zinc transporters: Zip1, Zip2, Zip6, Zip8, and ZnT1 were chosen. We aimed to investigate the mRNA expression of zinc transporters and to explore the relationship between zinc transporters and growth hormone in short stature children. Growth hormone provocation test is used to confirm the diagnosis of growth hormone deficiency. Six short children for the test were enrolled. At the same time, 15 sex- and age-matched normal children were enrolled as control. The expression levels of zinc transporters in peripheral blood mononuclear cells were determined by quantitative real-time PCR. Zip1 and Zip2 mRNA expression positively correlated with growth hormone level (r = 0.5133, P = 0.0371; r = 0.6719, P = 0.0032); Zip8 mRNA expression negatively correlated with growth hormone level (r = -0.5264, P = 0.0285) during the test in short stature children. The average expression level of Zip2 was significantly higher and Zip6, Zip8 mRNA levels were significantly lower in short stature children than in health controls at 0 min (P < 0.05, P < 0.05).

  3. [Fibroblast growth factor-2].

    PubMed

    Faitová, J

    2004-01-01

    Fibroblast growth factor-2 is a member of a large family of proteins that bind heparin and heparan sulfate and modulate the function of a wide range of cell types. FGF-2 occurs in several isoforms resulting from alternative initiations of traslation: an 18 kDa cytoplasmic isoform and four larger molecular weight nuclear isoforms (22, 22.5, 24 and 34 kDa). It acts mainly through a paracrine/autocrine mechanism involving high affinity transmembrane receptors and heparan sulfate proteoglycan low affinity receptors. It is expressed mostly in tissues of mesoderm and neuroectoderm origin, and plays an important role in mesoderm induction, stimulates the growth and development of the new blood vessels (angiogenesis), normal wound healing and tissue development. FGF-2 positively regulates hematopoiesis by acting on various cellular targets: stromal cells, early and committed hematopoietic progenitors and possibly some mature blood cells. FGF-2 is a potent hematopoietic growth factor that is likely to play an important role in physiological and pathological hematopoiesis.

  4. Expression of interferon-gamma (IFN-δ), IL-10, IL-12 and transforming growth factor-beta (TGF-β) mRNA in synovial fluid cells from patients in the early and late phases of rheumatoid arthritis (RA)

    PubMed Central

    BUCHT, A.; LARSSON, P.; WEISBROT, L.; THORNE, C.; PISA, P.; SMEDEGÅRD, G.; KEYSTONE, E C; GRÖNBERG, A.

    1996-01-01

    The expression of immunoregulatory cytokines was investigated in freshly isolated synovial fluid mononuclear cells (SFMC) and peripheral blood mononuclear cells (PBMC) from patients with RA, using a quantitative reverse transcriptase-polymerase chain reaction (RT-PCR) assay. IFN-γ, TGF-β, IL-10 and IL-12 (p40) transcripts were detected in SFMC of patients with early disease (<1 year duration) as well as in patients with long standing arthritis (>1 year). The expression of IFN-γ, IL-10 and IL-12 mRNA was increased in SFMC compared with RA PBMC. In addition, the expression was higher in RA SFMC than in PBMC from healthy control individuals. Immunoassay analysis of the secreted IL-12 heterodimer demonstrated increased levels in RA SF compared with levels found in serum from RA patients and control individuals. High levels of TGF-β mRNA were found in SFMC, but a significantly decreased TGF-β/β2-microglobulin (β2-M) ratio was found compared with PBMC from both patients and control individuals. IL-4 mRNA could not be detected, either in SFMC or in PBMC. Cytokine expression in RA PBMC did not differ from control PBMC, with the exception of a decreased TGF-β/β2-M ratio in RA patients with early disease. Our findings of IFN-7 mRNA and IL-12, but undetectable levels of IL-4 mRNA, suggest that the synovitis is characterized by a type 1 immune response. The presence of TGF-β and IL-10 mRNA indicates that immunosuppressive cytokines may also operate in the inflamed joint, although their level of expression may not be sufficient for down-modulation of immune activation. PMID:8608632

  5. Acute physiological stress down-regulates mRNA expressions of growth-related genes in coho salmon.

    PubMed

    Nakano, Toshiki; Afonso, Luis O B; Beckman, Brian R; Iwama, George K; Devlin, Robert H

    2013-01-01

    Growth and development in fish are regulated to a major extent by growth-related factors, such as liver-derived insulin-like growth factor (IGF) -1 in response to pituitary-secreted growth hormone (GH) binding to the GH receptor (GHR). Here, we report on the changes in the expressions of gh, ghr, and igf1 genes and the circulating levels of GH and IGF-1 proteins in juvenile coho salmon (Oncorhynchus kisutch) in response to handling as an acute physiological stressor. Plasma GH levels were not significantly different between stressed fish and prestressed control. Plasma IGF-1 concentrations in stressed fish 1.5 h post-stress were the same as in control fish, but levels in stressed fish decreased significantly 16 h post-stress. Real-time quantitative PCR (qPCR) analysis showed that ghr mRNA levels in pituitary, liver, and muscle decreased gradually in response to the stressor. After exposure to stress, hepatic igf1 expression transiently increased, whereas levels decreased 16 h post-stress. On the other hand, the pituitary gh mRNA level did not change in response to the stressor. These observations indicate that expression of gh, ghr, and igf1 responded differently to stress. Our results show that acute physiological stress can mainly down-regulate the expressions of growth-related genes in coho salmon in vivo. This study also suggests that a relationship between the neuroendocrine stress response and growth-related factors exists in fish.

  6. Acute Physiological Stress Down-Regulates mRNA Expressions of Growth-Related Genes in Coho Salmon

    PubMed Central

    Nakano, Toshiki; Afonso, Luis O. B.; Beckman, Brian R.; Iwama, George K.; Devlin, Robert H.

    2013-01-01

    Growth and development in fish are regulated to a major extent by growth-related factors, such as liver-derived insulin-like growth factor (IGF) -1 in response to pituitary-secreted growth hormone (GH) binding to the GH receptor (GHR). Here, we report on the changes in the expressions of gh, ghr, and igf1 genes and the circulating levels of GH and IGF-1 proteins in juvenile coho salmon (Oncorhynchus kisutch) in response to handling as an acute physiological stressor. Plasma GH levels were not significantly different between stressed fish and prestressed control. Plasma IGF-1 concentrations in stressed fish 1.5 h post-stress were the same as in control fish, but levels in stressed fish decreased significantly 16 h post-stress. Real-time quantitative PCR (qPCR) analysis showed that ghr mRNA levels in pituitary, liver, and muscle decreased gradually in response to the stressor. After exposure to stress, hepatic igf1 expression transiently increased, whereas levels decreased 16 h post-stress. On the other hand, the pituitary gh mRNA level did not change in response to the stressor. These observations indicate that expression of gh, ghr, and igf1 responded differently to stress. Our results show that acute physiological stress can mainly down-regulate the expressions of growth-related genes in coho salmon in vivo. This study also suggests that a relationship between the neuroendocrine stress response and growth-related factors exists in fish. PMID:23990952

  7. MRN1 Implicates Chromatin Remodeling Complexes and Architectural Factors in mRNA Maturation

    PubMed Central

    Düring, Louis; Thorsen, Michael; Petersen, Darima Sophia Njama; Køster, Brian; Jensen, Torben Heick; Holmberg, Steen

    2012-01-01

    A functional relationship between chromatin structure and mRNA processing events has been suggested, however, so far only a few involved factors have been characterized. Here we show that rsc nhp6ΔΔ mutants, deficient for the function of the chromatin remodeling factor RSC and the chromatin architectural proteins Nhp6A/Nhp6B, accumulate intron-containing pre-mRNA at the restrictive temperature. In addition, we demonstrate that rsc8-ts16 nhp6ΔΔ cells contain low levels of U6 snRNA and U4/U6 di-snRNA that is further exacerbated after two hours growth at the restrictive temperature. This change in U6 snRNA and U4/U6 di-snRNA levels in rsc8-ts16 nhp6ΔΔ cells is indicative of splicing deficient conditions. We identify MRN1 (multi-copy suppressor of rsc nhp6ΔΔ) as a growth suppressor of rsc nhp6ΔΔ synthetic sickness. Mrn1 is an RNA binding protein that localizes both to the nucleus and cytoplasm. Genetic interactions are observed between 2 µm-MRN1 and the splicing deficient mutants snt309Δ, prp3, prp4, and prp22, and additional genetic analyses link MRN1, SNT309, NHP6A/B, SWI/SNF, and RSC supporting the notion of a role of chromatin structure in mRNA processing. PMID:23028530

  8. Changes in Polysome Association of mRNA Throughout Growth and Development in Arabidopsis thaliana.

    PubMed

    Yamasaki, Shotaro; Matsuura, Hideyuki; Demura, Taku; Kato, Ko

    2015-11-01

    Translational control is a key regulatory step in the expression of genes as proteins. In plant cells, the translational efficiency of mRNAs differs for different mRNA species, and the efficiency dynamically changes in various conditions. To gain a global view of translational control throughout growth and development, we performed genome-wide analysis of polysome association of mRNA during growth and leaf development in Arabidopsis thaliana by subjecting the mRNAs in polysomes to DNA microarray. This analysis revealed that the degree of polysome association of mRNA was different depending on the mRNA species, and the polysome association changed greatly throughout growth and development for each. In the growth stage, transcripts showed varying changes in polysome association from strongly depressed to unchanged, with the majority of transcripts showing dissociation from ribosomes. On the other hand, during leaf development, the polysome association of transcripts showed a normal distribution from repressed to activated mRNAs when comparing expanding and expanded leaves. In addition, functional category analysis of the microarray data suggested that translational control has a physiological significance in the plant growth and development process, especially in the categories of signaling and protein synthesis. In addition to this, we compared changes in polysome association of mRNAs between various conditions and characterized translational controls in each. This result suggested that mRNA translation might be controlled by complicated mechanisms for response to each condition. Our results highlight the importance of dynamic changes in mRNA translation in plant development and growth.

  9. Triiodothyronine stimulates specifically growth hormone mRNA in rat pituitary tumor cells.

    PubMed

    Seo, H; Vassart, G; Brocas, H; Refetoff, S

    1977-05-01

    In a cell-free protein-synthesizing system from a rabbit reticulocyte lysate, total RNA extracted from cultured rat pituitary tumor (GH3) cells directed, in a dose-related manner, the synthesis of proteins that were precipitated by antisera specific to rat growth hormone (somatotropin) and rat prolactin. A marked decrease in growth hormone secretion and growth hormone mRNA activity was observed when cells were grown in a medium deficient in thyroid hormone. Addition of triiodothyronine in physiologic amounts both prevented and completely reversed this effect within 48 hr. Thyroid hormone had no effect on prolactin secretion or prolactin mRNA activity. These data suggest that thyroid hormone may stimulate synthesis of growth hormone through induction of transcriptional activity. The possibility of an additional effect at the posttranscriptional level has not been excluded. Although thyroid hormone is believed to have a general effect on a variety of metabolic processes, some effects, at the molecular level, may be quite selective, as indicated by the observed changes in growth hormone but not prolactin mRNA activity. The GH3 cell model is useful in the study of triiodothyronine action because of independence from secondary hormonal effects caused by hypothyroidism and because simultaneous measurement of prolactin mRNA activity serves as a unique internal control.

  10. Cloning and characterization of cDNAs for hormones and/or receptors of growth hormone, insulin-like growth factor-I, thyroid hormone, and corticosteroid and the gender-, tissue-, and developmental-specific expression of their mRNA transcripts in fathead minnow (Pimephales promelas).

    PubMed

    Filby, Amy L; Tyler, Charles R

    2007-01-01

    Growth hormone (GH), insulin-like growth factor-I (IGF-I), thyroid hormones, and corticosteroids play central roles in a wide range of body functions but, in fish, information on their interactions is limited. These axes of the endocrine system are also potential targets for disruption of signaling pathways by hormone-mimicking chemicals, but have received little study. Molecular approaches offer an effective way to help unravel these endocrine interactions but require the appropriate gene-specific assays to do so. In this study, the cDNAs for a suite of hormones and/or receptors involved in signaling for the effects of GH and IGF-I [GH, GH receptor (GHR), IGF-I, IGF-I receptor (IGF-IR)], thyroid hormones [thyroid hormone receptor alpha (TRalpha) and beta (TRbeta)], and corticosteroids [glucocorticoid receptor (GR)] were cloned from the fathead minnow (Pimephales promelas; fhm), and the tissue-, developmental-, and gender-related expression of their mRNA transcripts established. By polymerase chain reaction (PCR) strategy, we obtained full-length 1123-bp GH, 817-bp IGF-I, 1584-bp TRbeta, and 2571-bp GR cDNAs, coding for 210 amino acid (aa) GH, 161 aa IGF-I, 378 aa TRbeta, and 745 aa GR putative proteins, and partial-length 158-bp GHR, 811-bp IGF-IR, and 446-bp TRalpha cDNAs. Real-time PCR analyses revealed broad tissue expression for the target mRNAs; all targets were expressed in brain, pituitary, gill, liver, gonad, intestine, and muscle, with the exception of GH that was expressed only in the pituitary and gonad. Expression patterns in both juvenile and adult fhm were complex, with both temporal-, tissue-, and sex-specific characteristics. For example, hepatic expressions of GHR, IGF-I, and IGF-IR were far higher in males than in females, possibly reflecting the sex-related dimorphism in growth that occurs in this species, and TRalpha and TRbeta showed divergent expression patterns during development (where TRbeta predominated) and in adult tissues implying some

  11. Hypoxia Induced Energy Stress Regulates mRNA Translation and Cell Growth

    PubMed Central

    Liu, Liping; Cash, Timothy P.; Jones, Russell G.; Keith, Brian; Thompson, Craig B.; Simon, M. Celeste

    2011-01-01

    Oxygen deprivation, or hypoxia, has profound effects on cell metabolism and growth. Cells can adapt to low O2 in part through activation of hypoxia-inducible factor (HIF). We report here that hypoxia inhibits mRNA translation by suppressing multiple key regulators including eIF2α, eEF2, and the mTOR effectors 4EBP1, p70S6K, and rpS6, independent of HIF. Hypoxia results in energy starvation and activation of the AMPK/TSC2/Rheb/mTOR pathway. Hypoxic AMPK activation also leads to eEF2 inhibition. Moreover, hypoxic effects on cellular bioenergetics and mTOR inhibition increase over time. Mutation of the TSC2 tumor suppressor gene confers a growth advantage to cells by repressing hypoxic mTOR inhibition and hypoxia-induced G1 arrest. Together, eIF2α, eEF2 and mTOR inhibition represent important HIF-independent mechanisms of energy conservation which promote survival under low O2 conditions. PMID:16483933

  12. Profiles of mRNA expression of related genes in the duck hypothalamus-pituitary growth axis during embryonic and early post-hatch development.

    PubMed

    Hu, Yan; Liu, Hongxiang; Song, Chi; Xu, Wenjuan; Ji, Gaige; Zhu, Chunhong; Shu, Jingting; Li, Huifang

    2015-03-15

    In this study, the ontogeny of body and liver weight and the pattern of related gene mRNA expression in the hypothalamus-pituitary growth axis (HPGA) of two different duck breeds (Anas platyrhynchos domestica) were compared during embryonic and post-hatch development. Duck hypothalamic growth hormone release hormone (GHRH), somatostatin (SS), pituitary growth hormone (GH), liver growth hormone receptor (GHR) and insulin-like growth factor-I (IGF-1) mRNA were first detected on the 13th embryonic day. During early duck development, SS maintained a lower expression status, whereas the other four genes exhibited highly significant variations in an age-specific manner. Highly significant breed specificity was observed with respect to hepatic IGF-1 mRNA expression, which showed a significant breed-age interaction effect. Compared with previous studies on chickens, significant species differences were observed regarding the mRNA expression of bird embryonic HPGA-related genes. During early development, highly significant breed and age specificity were observed with respect to developmental changes in body and liver weight, and varying degrees of significant linear correlation were found between these performances and the mRNA expression of HPGA-related genes in the duck HPGA. These results suggest that different genetic backgrounds may lead to differences in duck growth and HPGA-related gene mRNA expression, and the differential mRNA expression of related genes in the duck HPGA may be particularly important in the early growth of ducks. Furthermore, hepatic IGF-1 mRNA expression presented highly significant breed specificity, and evidence suggests the involvement of hepatic IGF-1 in mediating genetic effects on embryo and offspring growth in ducks.

  13. Growth hormone, growth factors, and acromegaly

    SciTech Connect

    Ludecke, D.K.; Tolis, G.T.

    1987-01-01

    This book contains five sections, each consisting of several papers. The section headings are: Biochemistry and Physiology of GH and Growth Factors, Pathology of Acromegaly, Clinical Endocrinology of Acromegaly, Nonsurgical Therapy of Acromegaly, and Surgical Therapy of Acromegaly.

  14. Membrane-association of mRNA decapping factors is independent of stress in budding yeast

    PubMed Central

    Huch, Susanne; Gommlich, Jessie; Muppavarapu, Mridula; Beckham, Carla; Nissan, Tracy

    2016-01-01

    Recent evidence has suggested that the degradation of mRNA occurs on translating ribosomes or alternatively within RNA granules called P bodies, which are aggregates whose core constituents are mRNA decay proteins and RNA. In this study, we examined the mRNA decapping proteins, Dcp1, Dcp2, and Dhh1, using subcellular fractionation. We found that decapping factors co-sediment in the polysome fraction of a sucrose gradient and do not alter their behaviour with stress, inhibition of translation or inhibition of the P body formation. Importantly, their localisation to the polysome fraction is independent of the RNA, suggesting that these factors may be constitutively localised to the polysome. Conversely, polysomal and post-polysomal sedimentation of the decapping proteins was abolished with the addition of a detergent, which shifts the factors to the non-translating RNP fraction and is consistent with membrane association. Using a membrane flotation assay, we observed the mRNA decapping factors in the lower density fractions at the buoyant density of membrane-associated proteins. These observations provide further evidence that mRNA decapping factors interact with subcellular membranes, and we suggest a model in which the mRNA decapping factors interact with membranes to facilitate regulation of mRNA degradation. PMID:27146487

  15. Temperature affects insulin-like growth factor I and growth of juvenile southern flounder, Paralichthys lethostigma.

    PubMed

    Luckenbach, J Adam; Murashige, Ryan; Daniels, Harry V; Godwin, John; Borski, Russell J

    2007-01-01

    Temperature profoundly influences growth of heterothermic vertebrates. However, few studies have investigated the effects of temperature on growth and insulin-like growth factor I (IGF-I) in fishes. The aim of this study was to examine effects of temperature on growth and establish whether IGF-I may mediate growth at different temperatures in southern flounder, Paralichthys lethostigma. In two experiments, juvenile flounder were reared at 23 and 28 degrees C and growth was monitored for either 117 or 197 days. Growth was similar across treatments in both experiments until fish reached approximately 100 mm total length. Body size then diverged with fish at 23 degrees C ultimately growing 65-83% larger than those at 28 degrees C. Muscle IGF-I mRNA, plasma IGF-I, and hepatosomatic index (HSI) were significantly higher in flounder at 23 degrees C, whereas hepatic IGF-I mRNA abundance did not differ with treatment. Muscle IGF-I mRNA was correlated with HSI, while plasma IGF-I was correlated with body size, hepatic IGF-I mRNA, and HSI. These results demonstrate a strong effect of temperature on flounder growth and show that temperature-induced variation in growth is associated with differences in systemic IGF-I and local (i.e., muscle) IGF-I mRNA levels. The results also support the use of plasma IGF-I and HSI as indicators of flounder growth status.

  16. Placenta Growth Factor in Diabetic Wound Healing

    PubMed Central

    Cianfarani, Francesca; Zambruno, Giovanna; Brogelli, Laura; Sera, Francesco; Lacal, Pedro Miguel; Pesce, Maurizio; Capogrossi, Maurizio C.; Failla, Cristina Maria; Napolitano, Monica; Odorisio, Teresa

    2006-01-01

    Reduced microcirculation and diminished expression of growth factors contribute to wound healing impairment in diabetes. Placenta growth factor (PlGF), an angiogenic mediator promoting pathophysiological neovascularization, is expressed during cutaneous wound healing and improves wound closure by enhancing angiogenesis. By using streptozotocin-induced diabetic mice, we here demonstrate that PlGF induction is strongly reduced in diabetic wounds. Diabetic transgenic mice overexpressing PlGF in the skin displayed accelerated wound closure compared with diabetic wild-type littermates. Moreover, diabetic wound treatment with an adenovirus vector expressing the human PlGF gene (AdCMV.PlGF) significantly accelerated the healing process compared with wounds treated with a control vector. The analysis of treated wounds showed that PlGF gene transfer improved granulation tissue formation, maturation, and vascularization, as well as monocytes/macrophages local recruitment. Platelet-derived growth factor, fibroblast growth factor-2, and vascular endothelial growth factor mRNA levels were increased in AdCMV.PlGF-treated wounds, possibly enhancing PlGF-mediated effects. Finally, PlGF treatment stimulated cultured dermal fibroblast migration, pointing to a direct role of PlGF in accelerating granulation tissue maturation. In conclusion, our data indicate that reduced PlGF expression contributes to impaired wound healing in diabetes and that PlGF gene transfer to diabetic wounds exerts therapeutic activity by promoting different aspects of the repair process. PMID:17003476

  17. Distinguishing direct from indirect roles for bicoid mRNA localization factors

    PubMed Central

    Weil, Timothy T.; Xanthakis, Despina; Parton, Richard; Dobbie, Ian; Rabouille, Catherine; Gavis, Elizabeth R.; Davis, Ilan

    2010-01-01

    Localization of bicoid mRNA to the anterior of the Drosophila oocyte is essential for patterning the anteroposterior body axis in the early embryo. bicoid mRNA localizes in a complex multistep process involving transacting factors, molecular motors and cytoskeletal components that remodel extensively during the lifetime of the mRNA. Genetic requirements for several localization factors, including Swallow and Staufen, are well established, but the precise roles of these factors and their relationship to bicoid mRNA transport particles remains unresolved. Here we use live cell imaging, super-resolution microscopy in fixed cells and immunoelectron microscopy on ultrathin frozen sections to study the distribution of Swallow, Staufen, actin and dynein relative to bicoid mRNA during late oogenesis. We show that Swallow and bicoid mRNA are transported independently and are not colocalized at their final destination. Furthermore, Swallow is not required for bicoid transport. Instead, Swallow localizes to the oocyte plasma membrane, in close proximity to actin filaments, and we present evidence that Swallow functions during the late phase of bicoid localization by regulating the actin cytoskeleton. In contrast, Staufen, dynein and bicoid mRNA form nonmembranous, electron dense particles at the oocyte anterior. Our results exclude a role for Swallow in linking bicoid mRNA to the dynein motor. Instead we propose a model for bicoid mRNA localization in which Swallow is transported independently by dynein and contributes indirectly to bicoid mRNA localization by organizing the cytoskeleton, whereas Staufen plays a direct role in dynein-dependent bicoid mRNA transport. PMID:20023172

  18. Tau mRNA is present in axonal RNA granules and is associated with elongation factor 1A.

    PubMed

    Malmqvist, Tony; Anthony, Karen; Gallo, Jean-Marc

    2014-10-10

    The microtubule-associated protein tau is predominantly localized in the axonal compartment over the entire length of the axon in neurons. The mechanisms responsible for the localization of tau in axons at long distance from the cell body are not properly understood. Using fluorescence in situ hybridization, we show that tau mRNA is present in the central and distal parts of the axons of cultured rat cortical neurons. Axonal tau mRNA is associated with granules which are distributed throughout the entire length of the axon, including the growth cone. We also show that tau mRNA-containing axonal particles are associated with elongation factor 1A, a component of the protein translation machinery. The presence of tau mRNA in axons might be at least part of the process by which tau is localized to distal axons.

  19. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    SciTech Connect

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  20. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    PubMed

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-02-07

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low Schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

  1. Heparin-binding epidermal growth factor-like growth factor regulates fibroblast growth factor-2 expression in aortic smooth muscle cells.

    PubMed

    Peifley, K A; Alberts, G F; Hsu, D K; Feng, S L; Winkles, J A

    1996-08-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a vascular smooth muscle cell (SMC) mitogen and chemotactic factor that is expressed by endothelial cells, SMCs, monocytes/macrophages, and T lymphocytes. Both the membrane-anchored HB-EGF precursor and the secreted mature HB-EGF protein are biologically active; thus, HB-EGF may stimulate SMC growth via autocrine, paracrine, and juxtacrine mechanisms. In the present study, we report that HB-EGF treatment of serum-starved at aortic SMCs can induce fibroblast growth factor (FGF)-2 (basic FGF) gene expression but not FGF-1 (acidic FGF) gene expression. Increased FGF-2 mRNA expression is first detectable at 1 hour after HB-EGF addition, and maximal FGF-2 mRNA levels, corresponding to an approximately 46-fold level of induction, are present at 4 hours. The effect of HB-EGF on FGF-2 mRNA levels appears to be mediated primarily by a transcriptional mechanism and requires de novo synthesized proteins. HB-EGF induction of FGF-2 mRNA levels can be inhibited by treating cells with the anti-inflammatory glucocorticoid dexamethasone or the glycosaminoglycan heparin. Finally, Western blot analyses indicate that HB-EGF-treated SMCs also produce an increased amount of FGF-2 protein. These results indicate that HB-EGF expressed at sites of vascular injury or inflammation in vivo may upregulate FGF-2 production by SMCs.

  2. Nerve growth factor from seminal plasma origin (spβ-NGF) increases CL vascularization and level of mRNA expression of steroidogenic enzymes during the early stage of Corpus Luteum development in llamas.

    PubMed

    Silva, M; Ulloa-Leal, C; Valderrama, X P; Bogle, O A; Adams, G P; Ratto, M H

    2017-11-01

    The objectives of the study were to determine the effect of seminal plasma β-NGF on Corpus Luteum morphology and function and level of mRNA expression of steroidogenic enzymes. Llamas were assigned (n = 12/per group) to receive an intramuscular dose of: (a) 1 ml phosphate buffered saline (PBS), (b) 5 μg gonadorelin acetate (GnRH), or (c) 1.0 mg of purified llama spβ-NGF. Ovaries were examined by transrectal B-mode ultrasonography from treatment to ovulation (Day 0 = treatment). B mode/Power Doppler ultrasonography and blood samples collection were performed at Days 4, 8 and 10 (n = 3 llamas per treatment group/per time point) to determine CL diameter, vascularization and plasma progesterone concentration respectively. Plasma progesterone concentration was analyzed in all llamas at Day 0. Then females were submitted to ovariectomy at Days 4, 8 and 10 (n = 3 llamas/treatment/time), CL was removed to determine vascular area, proportion of luteal cells and CYP11A1/P450scc and STAR expression by RT-PCR. Ovulation was similar between llamas treated with GnRH or spβ-NGF and CL diameter did not differ between GnRH or spβ-NGF groups by Day 4, 8 or 10. Vascularization area of the CL was higher (P < 0.01) in llamas from the spβ-NGF than GnRH-treated group by Day 4 and 8. Plasma progesterone concentration was higher (P < 0.05) in llamas from the spβ-NGF compared to females of GnRH group by Day 4 and 8. The proportion of small and large luteal cells did not differ between GnRH or spβ-NGF groups by Day 8. CYP11A1/P450scc was upregulated 3 folds at day 4 and 10 by spβ-NGF compared to GnRH. STAR transcription was 3 folds higher at day 4 in females treated with spβ-NGF. In conclusion, the luteotrophic effect of spβ-NGF could be related to an increase of vascularization and up regulation of CYP11A1/P450scc and STAR transcripts enhancing progesterone secretion. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Insulin-Like Growth Factor-Independent Effects of Growth Hormone on Growth Plate Chondrogenesis and Longitudinal Bone Growth.

    PubMed

    Wu, Shufang; Yang, Wei; De Luca, Francesco

    2015-07-01

    GH stimulates growth plate chondrogenesis and longitudinal bone growth directly at the growth plate. However, it is not clear yet whether these effects are entirely mediated by the local expression and action of IGF-1 and IGF-2. To determine whether GH has any IGF-independent growth-promoting effects, we generated (TamCart)Igf1r(flox/flox) mice. The systemic injection of tamoxifen in these mice postnatally resulted in the excision of the IGF-1 receptor (Igf1r) gene exclusively in the growth plate. (TamCart)Igf1r(flox/flox) tamoxifen-treated mice [knockout (KO) mice] and their Igf1r(flox/flox) control littermates (C mice) were injected for 4 weeks with GH. At the end of the 4-week period, the tibial growth and growth plate height of GH-treated KO mice were greater than those of untreated C or untreated KO mice. The systemic injection of GH increased the phosphorylation of Janus kinase 2 and signal transducer and activator of transcription 5B in the tibial growth plate of the C and KO mice. In addition, GH increased the mRNA expression of bone morphogenetic protein-2 and the mRNA expression and protein phosphorylation of nuclear factor-κB p65 in both C and KO mice. In cultured chondrocytes transfected with Igf1r small interfering RNA, the addition of GH in the culture medium significantly induced thymidine incorporation and collagen X mRNA expression. In conclusion, our findings demonstrate that GH can promote growth plate chondrogenesis and longitudinal bone growth directly at the growth plate, even when the local effects of IGF-1 and IGF-2 are prevented. Further studies are warranted to elucidate the intracellular molecular mechanisms mediating the IGF-independent, growth-promoting GH effects.

  4. Neural Progenitor Cells Promote Axonal Growth and Alter Axonal mRNA Localization in Adult Neurons

    PubMed Central

    Merianda, Tanuja T.; Jin, Ying

    2017-01-01

    Abstract The inhibitory environment of the spinal cord and the intrinsic properties of neurons prevent regeneration of axons following CNS injury. However, both ascending and descending axons of the injured spinal cord have been shown to regenerate into grafts of embryonic neural progenitor cells (NPCs). Previous studies have shown that grafts composed of glial-restricted progenitors (GRPs) and neural-restricted progenitors (NRPs) can provide a permissive microenvironment for axon growth. We have used cocultures of adult rat dorsal root ganglion (DRG) neurons together with NPCs, which have shown significant enhancement of axon growth by embryonic rat GRP and GRPs/NRPs, both in coculture conditions and when DRGs are exposed to conditioned medium from the NPC cultures. This growth-promoting effect of NPC-conditioned medium was also seen in injury-conditioned neurons. DRGs cocultured with GRPs/NRPs showed altered expression of regeneration-associated genes at transcriptional and post-transcriptional levels. We found that levels of GAP-43 mRNA increased in DRG cell bodies and axons. However, hepcidin antimicrobial peptide (HAMP) mRNA decreased in the cell bodies of DRGs cocultured with GRPs/NRPs, which is distinct from the increase in cell body HAMP mRNA levels seen in DRGs after injury conditioning. Endogenous GAP-43 and β-actin mRNAs as well as reporter RNAs carrying axonally localizing 3'UTRs of these transcripts showed significantly increased levels in distal axons in the DRGs cocultured with GRPs/NRPs. These results indicate that axon growth promoted by NPCs is associated not only with enhanced transcription of growth-associated genes but also can increase localization of some mRNAs into growing axons. PMID:28197547

  5. Neural Progenitor Cells Promote Axonal Growth and Alter Axonal mRNA Localization in Adult Neurons.

    PubMed

    Merianda, Tanuja T; Jin, Ying; Kalinski, Ashley L; Sahoo, Pabitra K; Fischer, Itzhak; Twiss, Jeffery L

    2017-01-01

    The inhibitory environment of the spinal cord and the intrinsic properties of neurons prevent regeneration of axons following CNS injury. However, both ascending and descending axons of the injured spinal cord have been shown to regenerate into grafts of embryonic neural progenitor cells (NPCs). Previous studies have shown that grafts composed of glial-restricted progenitors (GRPs) and neural-restricted progenitors (NRPs) can provide a permissive microenvironment for axon growth. We have used cocultures of adult rat dorsal root ganglion (DRG) neurons together with NPCs, which have shown significant enhancement of axon growth by embryonic rat GRP and GRPs/NRPs, both in coculture conditions and when DRGs are exposed to conditioned medium from the NPC cultures. This growth-promoting effect of NPC-conditioned medium was also seen in injury-conditioned neurons. DRGs cocultured with GRPs/NRPs showed altered expression of regeneration-associated genes at transcriptional and post-transcriptional levels. We found that levels of GAP-43 mRNA increased in DRG cell bodies and axons. However, hepcidin antimicrobial peptide (HAMP) mRNA decreased in the cell bodies of DRGs cocultured with GRPs/NRPs, which is distinct from the increase in cell body HAMP mRNA levels seen in DRGs after injury conditioning. Endogenous GAP-43 and β-actin mRNAs as well as reporter RNAs carrying axonally localizing 3'UTRs of these transcripts showed significantly increased levels in distal axons in the DRGs cocultured with GRPs/NRPs. These results indicate that axon growth promoted by NPCs is associated not only with enhanced transcription of growth-associated genes but also can increase localization of some mRNAs into growing axons.

  6. Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency.

    PubMed

    Argente, Jesús; Flores, Raquel; Gutiérrez-Arumí, Armand; Verma, Bhupendra; Martos-Moreno, Gabriel Á; Cuscó, Ivon; Oghabian, Ali; Chowen, Julie A; Frilander, Mikko J; Pérez-Jurado, Luis A

    2014-03-01

    The molecular basis of a significant number of cases of isolated growth hormone deficiency remains unknown. We describe three sisters affected with severe isolated growth hormone deficiency and pituitary hypoplasia caused by biallelic mutations in the RNPC3 gene, which codes for a minor spliceosome protein required for U11/U12 small nuclear ribonucleoprotein (snRNP) formation and splicing of U12-type introns. We found anomalies in U11/U12 di-snRNP formation and in splicing of multiple U12-type introns in patient cells. Defective transcripts include preprohormone convertases SPCS2 and SPCS3 and actin-related ARPC5L genes, which are candidates for the somatotroph-restricted dysfunction. The reported novel mechanism for familial growth hormone deficiency demonstrates that general mRNA processing defects of the minor spliceosome can lead to very narrow tissue-specific consequences.

  7. Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency

    PubMed Central

    Argente, Jesús; Flores, Raquel; Gutiérrez-Arumí, Armand; Verma, Bhupendra; Martos-Moreno, Gabriel Á; Cuscó, Ivon; Oghabian, Ali; Chowen, Julie A; Frilander, Mikko J; Pérez-Jurado, Luis A

    2014-01-01

    The molecular basis of a significant number of cases of isolated growth hormone deficiency remains unknown. We describe three sisters affected with severe isolated growth hormone deficiency and pituitary hypoplasia caused by biallelic mutations in the RNPC3 gene, which codes for a minor spliceosome protein required for U11/U12 small nuclear ribonucleoprotein (snRNP) formation and splicing of U12-type introns. We found anomalies in U11/U12 di-snRNP formation and in splicing of multiple U12-type introns in patient cells. Defective transcripts include preprohormone convertases SPCS2 and SPCS3 and actin-related ARPC5L genes, which are candidates for the somatotroph-restricted dysfunction. The reported novel mechanism for familial growth hormone deficiency demonstrates that general mRNA processing defects of the minor spliceosome can lead to very narrow tissue-specific consequences. Subject Categories Genetics, Gene Therapy ' Genetic Disease; Metabolism PMID:24480542

  8. Growth hormone mRNA in mammary gland tumors of dogs and cats.

    PubMed Central

    Mol, J A; van Garderen, E; Selman, P J; Wolfswinkel, J; Rijinberk, A; Rutteman, G R

    1995-01-01

    We have shown recently that in the dog progestin administration results in mammary production of immunoreactive growth hormone (GH). At present we demonstrate the expression of the gene encoding GH in the mammary gland of dogs and cats using reverse-transcriptase PCR. GH mRNA was found in the great majority of normal mammary tissues as well as benign and malignant mammary tumors of the dog and was associated with the presence of immunoreactive GH in cryostat sections. The mammary PCR product proved to be identical to that of the pituitary. The highest expression levels were found after prolonged treatment with progestins. In carcinomas GH mRNA was also found in progesterone receptor-negative tissue samples, indicating that after malignant transformation GH gene expression may become progestin independent. GH mRNA was also present in mammary tissues of cats with progestin-induced fibroadenomatous changes. It is concluded that GH gene expression occurs in normal, hyperplastic, and neoplastic mammary tissue of the dog. The expression in normal tissue is stimulated by progestins and might mediate the progestin-stimulated development of canine mammary tumors. The demonstration of progestin-stimulated GH expression in mammary tissue of cats indicates that the phenomenon is more generalized among mammals. Images PMID:7738169

  9. Interstitial fibrosis and growth factors.

    PubMed Central

    Lasky, J A; Brody, A R

    2000-01-01

    Interstitial pulmonary fibrosis (IPF) is scarring of the lung caused by a variety of inhaled agents including mineral particles, organic dusts, and oxidant gases. The disease afflicts millions of individuals worldwide, and there are no effective therapeutic approaches. A major reason for this lack of useful treatments is that few of the molecular mechanisms of disease have been defined sufficiently to design appropriate targets for therapy. Our laboratory has focused on the molecular mechanisms through which three selected peptide growth factors could play a role in the development of IPF. Hundreds of growth factors and cytokines could be involved in the complex disease process. We are studying platelet-derived growth factor because it is the most potent mesenchymal cell mitogen yet described, transforming growth factor beta because it is a powerful inducer of extracellular matrix (scar tissue) components by mesenchymal cells, and tumor necrosis factor alpha because it is a pleiotropic cytokine that we and others have shown is essential for the development of IPF in animal models. This review describes some of the evidence from studies in humans, in animal models, and in vitro, that supports the growth factor hypothesis. The use of modern molecular and transgenic technologies could elucidate those targets that will allow effective therapeutic approaches. Images Figure 1 Figure 2 PMID:10931794

  10. Growth factors in synaptic function

    PubMed Central

    Poon, Vivian Y.; Choi, Sojoong; Park, Mikyoung

    2013-01-01

    Synapses are increasingly recognized as key structures that malfunction in disorders like schizophrenia, mental retardation, and neurodegenerative diseases. The importance and complexity of the synapse has fuelled research into the molecular mechanisms underlying synaptogenesis, synaptic transmission, and plasticity. In this regard, neurotrophic factors such as netrin, Wnt, transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and others have gained prominence for their ability to regulate synaptic function. Several of these factors were first implicated in neuroprotection, neuronal growth, and axon guidance. However, their roles in synaptic development and function have become increasingly clear, and the downstream signaling pathways employed by these factors have begun to be elucidated. In this review, we will address the role of these factors and their downstream effectors in synaptic function in vivo and in cultured neurons. PMID:24065916

  11. Effects of cysteamine on mRNA levels of growth hormone and its receptors and growth in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Li, Yun; Liu, Xiaochun; Zhang, Yong; Ma, Xilan; Lin, Haoran

    2013-06-01

    Effects of cysteamine (CS) on growth hormone (GH) mRNA, two types of growth hormone receptor (GHR) mRNAs and growth rate in orange-spotted grouper (Epinephelus coioides) were investigated. CS could cause a modification in the structure of somatostatin, which is the most important neuroendocrine inhibitor of basal and stimulated growth hormone synthesis and release, and renders it nonimmunoreactive probably through interaction with the disulfide bonds. In the present study, cysteamine hydrochloride (CSH) enhanced the level of pituitary GH mRNA in a dose-dependent manner through attenuating or deleting the inhibiting action of somatostatin on GH mRNA expression. CSH at relatively low doses (from 1 to 3 mg/g diet) enhanced the levels of two types of GHR mRNAs in dose-dependent manner, whereas the stimulation induced by CSH declined from the peak at higher dose of CSH (4 mg/g diet). It might be attributed to the variation in GH-induced up-regulation of GHRs at different doses of GH. Feeding of CSH could induce remarkable enhancement of growth rate in orange-spotted grouper. In addition, the stimulatory effect of CSH could be potentiated by the additive effect of luteinizing hormone-releasing hormone analog (LHRH-A). Compared with individual treatments, combined feeding of CSH and LHRH-A caused more efficient elevation of growth rate after 8 weeks of feeding. CSH and LHRH-A individually and in combination remarkably increased the levels of GH and GHR mRNAs compared with the control. The combined administration of CSH and LHRH-A in diet was most effective to enhance the level of GH and GHR1 mRNA. The morphological characteristics of the experimental fish were evaluated. Compared with control, the ratios of muscle RNA/DNA, condition factors (CF) and feed conversion efficiency (FCE) were significantly enhanced in the treated groups, while the highest values were observed in the combined treatment. All the results suggested that CSH (1-3 mg/g diet) is an effective

  12. Co-induction of hepatic IGF-I and progranulin mRNA by growth hormone in tilapia, Oreochromis mossambiccus.

    PubMed

    Chen, Mark Hung-Chih; Li, Yen-Hsing; Chang, Yvonne; Hu, Shao-Yang; Gong, Hong-Yi; Lin, Gen-Hwa; Chen, Thomas T; Wu, Jen-Leih

    2007-01-15

    Like IGF-I, progranulin (pgrn) is a growth factor involved in tumorigenesis and wound healing. We report here the identification and characterization of pgrn cDNA in tilapia and the regulation of its expression by growth hormone (GH). The tilapia pgrn cDNA was cloned by RT-PCR amplification, using gene specific oligonucleotides as amplification primers. The cDNA contains an open reading frame encoding a peptide of 206 amino acid residues (aa) that contains a presumptive signal peptide (23 aa) and two repeat units of granulin (grn, 51 and 52 aa, respectively) franked by a GAP of 49 aa and the carboxyl terminus with 31 aa. The two predicted grn peptides are arranged in tandem repeats interrupted by a GAP peptide. RT-PCR analysis revealed that high levels of prgn mRNA were present in several tissues such as spleen, gastric cecum, intestine, fat tissue, gill, kidney, eye and pancreas, and lower levels in liver, muscle, heart, brain, skin and stomach. Administration of a single dose (500 ng/g body weight) of recombinant seabream growth hormone (rbGH) by intraperitoneal (ip) injection into one-month-old tilapia resulted in an obvious increase of IGF-I and pgrn mRNA (2.7-fold and 2.5-fold, respectively) in the liver at three hours post-GH treatment. The peptide levels of pgrn in the liver of GH-treated fish also were substantially induced over controls at 12h post-GH treatment as detected by western immuno-blot analysis. The co-induction of IGF-I and pgrn following GH treatment may suggest the involvement of pgrn in GH regulated growth in tilapia.

  13. Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation.

    PubMed Central

    Hallahan, D E; Spriggs, D R; Beckett, M A; Kufe, D W; Weichselbaum, R R

    1989-01-01

    We report that tumor necrosis factor alpha (TNF-alpha) mRNA is increased after treatment with x-rays in certain human sarcoma cells. An increase in TNF-alpha mRNA is accompanied by the increased production of TNF-alpha protein. TNF-alpha enhances radiation lethality in both TNF-alpha-producing and -nonproducing tumor cells. These data suggest that, in addition to the direct cytotoxic effects of x-rays, production of TNF-alpha may add to radiation lethality through autocrine and paracrine mechanisms. Combinations of TNF-alpha and therapeutic radiation may be useful in clinical cancer therapy. Images PMID:2602359

  14. Seasonal relationship between gonadotropin, growth hormone, and estrogen receptor mRNA expression in the pituitary gland of largemouth bass.

    PubMed

    Martyniuk, Christopher J; Kroll, Kevin J; Porak, Wesley F; Steward, Cheree; Grier, Harry J; Denslow, Nancy D

    2009-09-15

    The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) beta subunit and follicle stimulating hormone (FSH) beta subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May to August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2-3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHbeta mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin beta subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction.

  15. Seasonal Relationship between Gonadotropin, Growth Hormone, and Estrogen Receptor mRNA Expression in the Pituitary Gland of Largemouth Bass

    PubMed Central

    Martyniuk, Christopher J; Kroll, Kevin J.; Porak, Wesley F.; Steward, Cheree; Grier, Harry J.; Denslow, Nancy D.

    2011-01-01

    The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) β subunit and follicle-stimulating hormone (FSH) β subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May through August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2–3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHβ mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin β subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction. PMID:19416730

  16. The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing

    PubMed Central

    Muppavarapu, Mridula; Huch, Susanne; Nissan, Tracy

    2016-01-01

    ABSTRACT Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates. Intriguingly, we identified a novel genetic relationship between Pat1 and the rRNA decay machinery, specifically the exosome and the TRAMP complex. While the pre-rRNA processing intermediates that accumulate in the pat1 deletion mutant are, at least to some extent, recognized as aberrant by the rRNA degradation machinery, it is unlikely that these accumulations are the cause of their synthetic sick relationship. Here, we show that the dysregulation of the levels of mRNAs related to ribosome biogenesis could be the cause of the accumulation of the pre-rRNA processing intermediates. Although our results support a role for Pat1 in transcription, they nevertheless suggest that the primary cause of the dysregulated mRNA levels is most likely due to Pat1's role in mRNA decapping and mRNA degradation. PMID:26918764

  17. The cytoplasmic mRNA degradation factor Pat1 is required for rRNA processing.

    PubMed

    Muppavarapu, Mridula; Huch, Susanne; Nissan, Tracy

    2016-01-01

    Pat1 is a key cytoplasmic mRNA degradation factor, the loss of which severely increases mRNA half-lives. Several recent studies have shown that Pat1 can enter the nucleus and can shuttle between the nucleus and the cytoplasm. As a result, many nuclear roles have been proposed for Pat1. In this study, we analyzed four previously suggested nuclear roles of Pat1 and show that Pat1 is not required for efficient pre-mRNA splicing or pre-mRNA decay in yeast. However, lack of Pat1 results in accumulation of pre-rRNA processing intermediates. Intriguingly, we identified a novel genetic relationship between Pat1 and the rRNA decay machinery, specifically the exosome and the TRAMP complex. While the pre-rRNA processing intermediates that accumulate in the pat1 deletion mutant are, at least to some extent, recognized as aberrant by the rRNA degradation machinery, it is unlikely that these accumulations are the cause of their synthetic sick relationship. Here, we show that the dysregulation of the levels of mRNAs related to ribosome biogenesis could be the cause of the accumulation of the pre-rRNA processing intermediates. Although our results support a role for Pat1 in transcription, they nevertheless suggest that the primary cause of the dysregulated mRNA levels is most likely due to Pat1's role in mRNA decapping and mRNA degradation.

  18. Local anesthetics inhibit tissue factor expression in activated monocytes via inhibition of tissue factor mRNA synthesis.

    PubMed

    Kim, Ji-Eun; Kim, Ki Jun; Ahn, Wonsik; Han, Kyou-Sup; Kim, Hyun Kyung

    2011-01-01

    Local anesthetics have been reported to have anticoagulant properties, but the mechanisms responsible for this action are poorly understood. Here, we evaluated the in vitro effects of 3 local anesthetics--lidocaine, ropivacaine, and bupivacaine--on the tissue factor expression by monocytes. Monocytes from peripheral blood were stimulated with lipopolysaccharide (LPS) in the presence or absence of local anesthetics. All 3 local anesthetics inhibited the expression of tissue factor antigen and tissue factor activity in LPS-stimulated monocytes in a dose- and time-dependent manner and reduced tissue factor messenger RNA (mRNA) expression in endothelial cells and a monocytic cell line. None of the 3 drugs induced apoptosis or affected the viability of monocytes. Our findings that local anesthetics inhibited the tissue factor induction in activated monocytes by inhibiting tissue factor mRNA level may demonstrate the feasibility of using local anesthetics in hypercoagulable and inflammatory conditions.

  19. GH, IGF-I and GH receptors mRNA expression in response to growth impairment following a food deprivation period in individually housed cichlid fish Cichlasoma dimerus.

    PubMed

    Delgadin, Tomás Horacio; Pérez Sirkin, Daniela Irina; Di Yorio, María Paula; Arranz, Silvia Eda; Vissio, Paula Gabriela

    2015-02-01

    Cichlasoma dimerus is a social cichlid fish capable of growing at high rates under laboratory conditions, but knowledge on somatic growth regulation is still unclear. Growth hormone (GH)/insulin-like growth factor I (IGF-I) axis is the key regulator of somatic growth in vertebrates. Two types of growth hormone receptors have been described in teleost fish, named GH receptor type 1 (GHR1) and type 2 (GHR2). In addition, isoforms of these receptors lacking part of the intracellular region have been described. The aim of this study was to evaluate the somatic growth, liver histology and changes in the GH/IGF-I axis after 4 weeks of food deprivation in C. dimerus. Four-week fasted fish showed reductions in specific growth rates in body weight (p < 0.001) and standard length (p < 0.001). Additionally, the hepatosomatic index (p < 0.001) and hepatocyte area (p < 0.001) decreased in fasted fish, while no changes in glucose levels were detected in plasma. The starvation protocol failed to induce changes in GH mRNA levels in the pituitary and IGF-I mRNA levels in liver. In contrast, IGF-I mRNA levels in muscle decreased in fasted fish (p = 0.002). On the other hand, GHR2 (detected with primer sets designed over the extracellular and intracellular region) was upregulated by starvation both in liver and muscle (p < 0.05), while GHR1 remained unchanged. These results show that a fasting period reduced somatic growth both in length and body weight concomitantly with alterations on liver and muscle GHR2 and muscle IGF-I mRNA expression.

  20. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons

    PubMed Central

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A.; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E.

    2016-01-01

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay. The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth. PMID:26717982

  1. The cellular growth rate controls overall mRNA turnover, and modulates either transcription or degradation rates of particular gene regulons.

    PubMed

    García-Martínez, José; Delgado-Ramos, Lidia; Ayala, Guillermo; Pelechano, Vicent; Medina, Daniel A; Carrasco, Fany; González, Ramón; Andrés-León, Eduardo; Steinmetz, Lars; Warringer, Jonas; Chávez, Sebastián; Pérez-Ortín, José E

    2016-05-05

    We analyzed 80 different genomic experiments, and found a positive correlation between both RNA polymerase II transcription and mRNA degradation with growth rates in yeast. Thus, in spite of the marked variation in mRNA turnover, the total mRNA concentration remained approximately constant. Some genes, however, regulated their mRNA concentration by uncoupling mRNA stability from the transcription rate. Ribosome-related genes modulated their transcription rates to increase mRNA levels under fast growth. In contrast, mitochondria-related and stress-induced genes lowered mRNA levels by reducing mRNA stability or the transcription rate, respectively. We also detected these regulations within the heterogeneity of a wild-type cell population growing in optimal conditions. The transcriptomic analysis of sorted microcolonies confirmed that the growth rate dictates alternative expression programs by modulating transcription and mRNA decay.The regulation of overall mRNA turnover keeps a constant ratio between mRNA decay and the dilution of [mRNA] caused by cellular growth. This regulation minimizes the indiscriminate transmission of mRNAs from mother to daughter cells, and favors the response capacity of the latter to physiological signals and environmental changes. We also conclude that, by uncoupling mRNA synthesis from decay, cells control the mRNA abundance of those gene regulons that characterize fast and slow growth.

  2. Expression of vascular endothelial growth factor and basic fibroblast growth factor in extramammary Paget disease.

    PubMed

    Xu, Xiaoyun; Shao, Ning; Qiao, Di; Wang, Zengjun; Song, Ningjing; Song, Ninghong

    2015-01-01

    Extramammary Paget's disease (EMPD) is a special type of cancers. The etiology of the disease is still unclear. We aimed to study the expression differences of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in EMPD tissues and corresponding adjacent normal tissues. The mRNA expression was detected by RT-PCR and the protein expression was explored by immunohistochemistry. Higher immunostaining signal scores of bFGF and VEGF in EMPD tissues had been found (z=-3.827, P<0.001, z=-3.729, P<0.001, respectively). In addition, the mRNA expression of bFGF and VEGF was higher in EMPD tissues, which had been validated by RT-PCR (t=5.771, P<0.001, t=3.304, P=0.004, respectively). The VEGF and bFGF might be the key signaling proteins in angiogenesis of EMPD. How to block the VEGF and bFGF in EMPD and to destroy the blood supply of the tumor cells becomes the focus of our future research.

  3. Nonsense-mediated mRNA decay among coagulation factor genes.

    PubMed

    Shahbazi, Shirin

    2016-04-01

    Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation factor deficiencies such as hemophilia. A relevant literature search of PubMed was performed using the keywords coagulation factors, Nonsense-mediated mRNA decay and premature translation termination codons. Search limitations included English language and human-based studies. Mutations that cause premature translation termination codons probably account for one-third of genetically inherited diseases. Transcripts bearing aberrant termination codons are selectively identified and eliminated by an evolutionarily conserved posttranscriptional pathway known as nonsense-mediated mRNA decay (NMD). There are many pieces of evidence of decay among coagulation factor genes. However, the hemophilia gene (F8) does not seem to be subjected to NMD. Since the F8 gene is located on the X-chromosome, a connection between X-linked traits and mRNA decay could be assumed. Considering that not all genes go through decay, this review focuses on the basics of the mechanism in coagulation genes. It is interesting to determine whether this translation-coupled surveillance system represents a general rule for the genes encoding components of the same physiological cascade.

  4. Nonsense-mediated mRNA decay among coagulation factor genes

    PubMed Central

    Shahbazi, Shirin

    2016-01-01

    Objective(s): Haemostasis prevents blood loss following vascular injury. It depends on the unique concert of events involving platelets and specific blood proteins, known as coagulation factors. The clotting system requires precise regulation and coordinated reactions to maintain the integrity of the vasculature. Clotting insufficiency mostly occurs due to genetically inherited coagulation factor deficiencies such as hemophilia. Materials and Methods: A relevant literature search of PubMed was performed using the keywords coagulation factors, Nonsense-mediated mRNA decay and premature translation termination codons. Search limitations included English language and human-based studies. Results: Mutations that cause premature translation termination codons probably account for one-third of genetically inherited diseases. Transcripts bearing aberrant termination codons are selectively identified and eliminated by an evolutionarily conserved posttranscriptional pathway known as nonsense-mediated mRNA decay (NMD). There are many pieces of evidence of decay among coagulation factor genes. However, the hemophilia gene (F8) does not seem to be subjected to NMD. Since the F8 gene is located on the X-chromosome, a connection between X-linked traits and mRNA decay could be assumed. Conclusion: Considering that not all genes go through decay, this review focuses on the basics of the mechanism in coagulation genes. It is interesting to determine whether this translation-coupled surveillance system represents a general rule for the genes encoding components of the same physiological cascade. PMID:27279976

  5. Investigation of biological factors influencing the placental mRNA profile in maternal plasma.

    PubMed

    Tsui, Nancy B Y; Wong, Cesar S C; Chow, Katherine C K; Lo, Elena S F; Cheng, Yvonne K Y

    2014-03-01

    Circulating placental-derived RNA is useful for noninvasive prenatal investigation. However, in addition to placental gene expression, there are limited investigations on other biological parameters that may affect the circulating placental RNA profile. In this study, we explored two of these potential parameters. We first demonstrated the existence of such biological parameters by comparing the relative levels of a panel of placental-derived transcripts between the placentas and maternal plasma by digital PCRs. We then compared the post-delivery clearance of the transcripts by serial plasma samples collected from pregnant women after delivery. We also studied the placental in vivo localization of the transcripts by in situ hybridization. There was an imperfect correlation of the transcript levels between the placentas and maternal plasma, with placenta-specific 4 (PLAC4) mRNA showing the largest discrepancy. Although PLAC4 mRNA showed a similar clearance half-life with other transcripts, we observed a preferential localization of PLAC4 mRNA around the villous surface. We speculated that this phenomenon might play a role in favoring the release of PLAC4 mRNA molecules into maternal plasma. We revealed that in addition to expression levels in the placenta, other biological factors might interplay to determine the maternal plasma profile of placental-derived RNAs. © 2013 John Wiley & Sons, Ltd.

  6. Vasopressin, oxytocin, dynorphin, enkephalin and corticotrophin-releasing factor mRNA stimulation in the rat.

    PubMed Central

    Lightman, S L; Young, W S

    1987-01-01

    1. Cryostat sections were cut through the hypothalamus of rats which had been given a 2% (w/v) NaCl solution to drink for up to 12 days. 2. In situ hybridization histochemistry was performed on these sections using synthetic oligonucleotide probes against part of the precursor sequence for vasopressin, oxytocin, dynorphin, enkephalin and corticotrophin-releasing factor (CRF). 3. Drinking 2% NaCl solution resulted in a progressive increase of vasopressin, oxytocin and dynorphin mRNAs hybridized in the magnocellular neurones of the supraoptic (s.o.) and paraventricular (p.v.) nuclei. No enkephalin mRNA was detected in the magnocellular areas of the control animals although small quantities of probe did hybridize after 12 days of salt loading and after the stress of I.P. hypertonic saline. 4. Ten-day-lactating female rats were also studied. They had a very marked increase in oxytocin mRNA with smaller increases of vasopressin and dynorphin mRNAs. No detectable enkephalin mRNA was hybridized in the magnocellular s.o. or p.v. nuclei and CRF mRNA was unchanged in both the s.o. nucleus and the p.v. nucleus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 6 PMID:2895179

  7. Quantitative Analysis of BDNF/TrkB Protein and mRNA in Cortical and Striatal Neurons Using α-Tubulin as a Normalization Factor

    PubMed Central

    Ma, Bin; Savas, Jeffrey N.; Chao, Moses V.; Tanese, Naoko

    2013-01-01

    The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase TrkB serve important regulatory roles for multiple aspects of the biology of neurons including cell death, survival, growth, differentiation, and plasticity. Regulation of the local availability of BDNF/TrkB at distinct subcellular domains such as soma, dendrites, axons, growth cones, nerve terminals, and spines appears to contribute to their specific functions. In view of the variance in size and shape of neurons and their compartments, previous quantitative studies of the BDNF/TrkB protein and mRNA lacked a robust normalization procedure. To overcome this problem, we have established methods that use immunofluorescence detection of α-tubulin as a normalization factor for the quantitative analysis of protein and mRNA in primary rat cortical and striatal neurons in culture. The efficacy of this approach is demonstrated by studying the dynamic distribution of proteins and mRNA at different growth stages or conditions. Treatment of cultured neurons with KCl resulted in increased levels of TrkB protein, reduced levels of BDNF mRNA (composite of multiple transcripts) and a slight reduction in BDNF protein levels in the dendrites from the cortex. The KCl treatment also lowered the percentage of BDNF and TrkB proteins in the soma indicative of protein transport. Finally, analysis of the rat cortical and striatal neurons demonstrated comparable or even higher levels of BDNF/TrkB protein and BDNF mRNA in the neurons from the striatum. Thus, in contrast to previous observations made in vivo, striatal neurons are capable of synthesizing BDNF mRNA when cultured in growth media in vitro. The analytical approach presented here provides a detailed understanding of BDNF/TrkB levels in response to a variety of neuronal activities. Our methods could be used broadly, including applications in cell and tissue cytometry, to yield accurate quantitative data of gene expression in cellular and

  8. The expression of myogenic regulatory factors and muscle growth factors in the masticatory muscles of dystrophin-deficient (mdx) mice.

    PubMed

    Spassov, Alexander; Gredes, Tomasz; Gedrange, Tomasz; Lucke, Silke; Pavlovic, Dragan; Kunert-Keil, Christiane

    2011-06-01

    The activities of myogenic regulatory factors (MRF) and muscle growth factors increase in muscle that is undergoing regeneration, and may correspond to some specific changes. Little is known about the role of MRFs in masticatory muscles in mdx mice (the model of Duchenne muscular dystrophy) and particularly about their mRNA expression during the process of muscle regeneration. Using Taqman RT-PCR, we examined the mRNA expression of the MRFs myogenin and MyoD1 (myogenic differentiation 1), and of the muscle growth factors myostatin, IGF1 (insulin-like growth factor) and MGF (mechano-growth factor) in the masseter, temporal and tongue masticatory muscles of mdx mice (n = 6 to 10 per group). The myogenin mRNA expression in the mdx masseter and temporal muscle was found to have increased (P < 0.05), whereas the myostatin mRNA expressions in the mdx masseter (P < 0.005) and tongue (P < 0.05) were found to have diminished compared to those for the controls. The IGF and MGF mRNA amounts in the mdx mice remained unchanged. Inside the mdx animal group, gender-related differences in the mRNA expressions were also found. A higher mRNA expression of myogenin and MyoD1 in the mdx massterer and temporal muscles was found in females in comparison to males, and the level of myostatin was higher in the masseter and tongue muscle (P < 0.001 for all comparisons). Similar gender-related differences were also found within the control groups. This study reveals the intermuscular differences in the mRNA expression pattern of myogenin and myostatin in mdx mice. The existence of these differences implies that dystrophinopathy affects the skeletal muscles differentially. The finding of gender-related differences in the mRNA expression of the examined factors may indicate the importance of hormonal influences on muscle regeneration.

  9. Physiological factors influencing capillary growth.

    PubMed

    Egginton, S

    2011-07-01

    (1) Angiogenesis (growth of new capillaries from an existing capillary bed) may result from a mismatch in microvascular supply and metabolic demand (metabolic error signal). Krogh examined the distribution and number of capillaries to explore the correlation between O(2) delivery and O(2) consumption. Subsequently, the heterogeneity in angiogenic response within a muscle has been shown to reflect either differences in fibre type composition or mechanical load. However, local control leads to targetted angiogenesis in the vicinity of glycolytic fibre types following muscle stimulation, or oxidative fibres following endurance training, while heterogeneity of capillary spacing is maintained during ontogenetic growth. (2) Despite limited microscopy resolution and lack of specific markers, Krogh's interest in the structure of the capillary wall paved the way for understanding the mechanisms of capillary growth. Angiogenesis may be influenced by the response of perivascular or stromal cells (fibroblasts, macrophages and pericytes) to altered activity, likely acting as a source for chemical signals modulating capillary growth such as vascular endothelial growth factor. In addition, haemodynamic factors such as shear stress and muscle stretch play a significant role in adaptive remodelling of the microcirculation. (3) Most indices of capillarity are highly dependent on fibre size, resulting in possible bias because of scaling. To examine the consequences of capillary distribution, it is therefore helpful to quantify the area of tissue supplied by individual capillaries. This allows the spatial limitations inherent in most models of tissue oxygenation to be overcome generating an alternative approach to Krogh's tissue cylinder, the capillary domain, to improve descriptions of intracellular oxygen diffusion. © 2010 The Author. Acta Physiologica © 2010 Scandinavian Physiological Society.

  10. From polyadenylation to splicing: Dual role for mRNA 3' end formation factors.

    PubMed

    Misra, Ashish; Green, Michael R

    2016-01-01

    Recent genome-wide protein-RNA interaction studies have significantly reshaped our understanding of the role of mRNA 3' end formation factors in RNA biology. Originally thought to function solely in mediating cleavage and polyadenylation of mRNAs during their maturation, 3' end formation factors have now been shown to play a role in alternative splicing, even at internal introns--an unanticipated role for factors thought only to act at the 3' end of the mRNA. Here, we discuss the recent advances in our understanding of the role of 3' end formation factors in promoting global changes in alternative splicing at internal exon-intron junctions and how they act as cofactors for well known splicing regulators. Additionally, we review the mechanism by which these factors affect the recruitment of early intron recognition components to the 5' and 3' splice site. Our understanding of the roles of 3' end formation factors is still evolving, and the final picture might be more complex than originally envisioned.

  11. Atrial natriuretic factor mRNA and binding sites in the adrenal gland.

    PubMed Central

    Nunez, D J; Davenport, A P; Brown, M J

    1990-01-01

    The factor inhibiting aldosterone secretion produced by the adrenal medulla may be atrial natriuretic factor (ANF), since the latter abolishes aldosterone release in response to a number of secretagogues, including angiotensin II and K+. In this study we have shown that cells in the adrenal medulla contain ANF mRNA and therefore have the potential to synthesize this peptide. The presence of binding sites for ANF predominantly in the adrenal zona glomerulosa suggests that, if ANF is synthesized in the medulla and transferred to the cortex, it may affect mineralocorticoid status. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:2146954

  12. mRNA overexpression of BAALC: A novel prognostic factor for pediatric acute lymphoblastic leukemia

    PubMed Central

    AZIZI, ZAHRA; RAHGOZAR, SOHEILA; MOAFI, ALIREZA; DABAGHI, MOHAMMAD; NADIMI, MOTAHAREH

    2015-01-01

    BAALC is a novel molecular marker in leukemia that is highly expressed in patients with acute leukemia. Increased expression levels of BAALC are known as poor prognostic factors in adult acute myeloid and lymphoid leukemia. The purpose of the present study was to evaluate the prognostic significance of the BAALC gene expression levels in pediatric acute lymphoblastic leukemia (ALL) and its association with MDR1. Using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), the mRNA expression levels of BAALC and MRD1 were measured in bone marrow samples of 28 new diagnosed childhood ALL patients and 13 children without cancer. Minimal residual disease (MRD) was measured one year after the initiation of the chemotherapy using the RT-qPCR method. The high level expression of BAALC had a significant association with the pre-B-ALL subtype, leukocytosis and positive MRD after one year of treatment in leukemic patients. In addition, a positive correlation between BAALC and MDR1 mRNA expression was shown in this group. In conclusion, to the best of our knowledge, the increase of BAALC expression as a poor prognostic factor for childhood ALL is shown for the first time. Additionally, the correlation between BAALC and MDR1 in mRNA expression levels can aid for an improved understanding of the mechanism through which BAALC may function in ALL and multidrug resistance. PMID:26137238

  13. mRNA overexpression of BAALC: A novel prognostic factor for pediatric acute lymphoblastic leukemia.

    PubMed

    Azizi, Zahra; Rahgozar, Soheila; Moafi, Alireza; Dabaghi, Mohammad; Nadimi, Motahareh

    2015-05-01

    BAALC is a novel molecular marker in leukemia that is highly expressed in patients with acute leukemia. Increased expression levels of BAALC are known as poor prognostic factors in adult acute myeloid and lymphoid leukemia. The purpose of the present study was to evaluate the prognostic significance of the BAALC gene expression levels in pediatric acute lymphoblastic leukemia (ALL) and its association with MDR1. Using reverse transcription-quantitative polymerase chain reaction (RT-qPCR), the mRNA expression levels of BAALC and MRD1 were measured in bone marrow samples of 28 new diagnosed childhood ALL patients and 13 children without cancer. Minimal residual disease (MRD) was measured one year after the initiation of the chemotherapy using the RT-qPCR method. The high level expression of BAALC had a significant association with the pre-B-ALL subtype, leukocytosis and positive MRD after one year of treatment in leukemic patients. In addition, a positive correlation between BAALC and MDR1 mRNA expression was shown in this group. In conclusion, to the best of our knowledge, the increase of BAALC expression as a poor prognostic factor for childhood ALL is shown for the first time. Additionally, the correlation between BAALC and MDR1 in mRNA expression levels can aid for an improved understanding of the mechanism through which BAALC may function in ALL and multidrug resistance.

  14. [Neuronal growth factors--neurotrophins].

    PubMed

    Meyer, M; Rasmussen, J Z

    1999-04-05

    Neurotrophic factors are polypeptides primarily known to regulate the survival and differentiation of nerve cells during the development of the peripheral and central nervous systems. The neurotrophic factors act via specific receptors after retrograde axonal transport from the nerve fibre target areas back to the cell bodies, and locally through autocrine and paracrine mechanisms linked to nerve cell activity. In the mature nervous system, neurotrophic factors maintain morphological and neurochemical characteristics of nerve cells and promote activity-dependent dynamic/plastic changes in the synaptic contacts between nerve cells by strengthening functionally active synaptic connections. Induction and increased production of neurotrophic factors in relation to neural injuries are thought to serve protective and reparative purposes. Specific neurotrophic factors have thus been shown to protect nerve cells in a number of experimental models for neurodegenerative diseases, such as Parkinson disease, Alzheimer disease, and amyotrophic lateral sclerosis, just as specific neurotrophic factors have been shown to stimulate regenerative growth of both peripheral and central nerve fibres. Today, problems with continuous and localized delivery of specific neurotrophins or combinations thereof into the nervous system appear to be the most important obstacle for more widespread clinical application.

  15. Temporal changes in the expression of brain-derived neurotrophic factor mRNA in the ventromedial nucleus of the hypothalamus of the developing rat brain.

    PubMed

    Sugiyama, Nobuhiro; Kanba, Shigenobu; Arita, Jun

    2003-07-04

    Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family, which is important for the growth, differentiation, and survival of neurons during development. We have performed a detailed mapping of BDNF mRNA in the neonatal rat brain using a quantitative in situ hybridization technique. At postnatal day (PND) 4, hypothalamic structures showed only modest expression of BDNF mRNA, with the exception of the ventromedial nucleus (VMN), where expression was higher than that detected in the hippocampus. Abundant BDNF mRNA was also found in the bed nucleus of the anterior commissure, retrosplenial granular cortex, and the posteroventral part of the medial amygdaloid nucleus. Messenger RNAs encoding other neurotrophins, including nerve growth factor (NGF) and neurotrophin-3 (NT-3) and the BDNF receptor trkB, were not selectively localized in neonatal VMN. During subsequent developmental stages, BDNF mRNA expression in the VMN changed dynamically, peaking at PND 4 and falling to minimal levels in the adult brain. In contrast, the low levels of BDNF mRNA observed in the CA3 region of the hippocampus increased to adult levels following PND 10. As the VMN undergoes sexual differentiation, we compared BDNF, NGF, NT-3, and trkB mRNA expression in the VMN in males and females at embryonic day 20 and PND 4, but found no differences between them. These results suggest that localized and high level expression of BDNF mRNA in the neonatal VMN plays an important role in its neural organization and functional development.

  16. Environmental estrogens inhibit growth of rainbow trout (Oncorhynchus mykiss) by modulating the growth hormone-insulin-like growth factor system.

    PubMed

    Hanson, Andrea M; Kittilson, Jeffrey D; Martin, Lincoln E; Sheridan, Mark A

    2014-01-15

    Although environmental estrogens (EE) have been found to disrupt a wide variety of developmental and reproductive processes in vertebrates, there is a paucity of information concerning their effects on organismal growth, particularly postembryonic growth. In this study, we exposed juvenile rainbow trout (Oncorhynchus mykiss) to 17β-estradiol (E2) β-sitosterol (βS), or 4-n-nonylphenol (NP) to assess the effects of EE on overall organismal growth and on the growth hormone-insulin-like-growth factor (GH-IGF) system. EE treatment significantly reduced food conversion, body condition, and body growth. EE-inhibited growth resulted from alterations in peripheral elements of the GH-IGF system, which includes multiple GH receptors (GHRs), IGFs, and IGF receptors (IGFRs). In general, E2, βS, and NP reduced the expression of GHRs, IGFs, and IGFRs; however, the effects varied in an EE-, tissue-, element type-specific manner. For example, in liver, E2 was more efficacious than either βS, and NP in reducing GHR expression, and the effect of E2 was greater on GHR 1 than GHR2 mRNA. By contrast, in gill, all EEs affected GHR expression in a similar manner and there was no difference in the effect on GHR1 and GHR 2 mRNA. With regard to IGF expression, all EEs reduced hepatic IGF1 and IGF2 mRNA levels, whereas as in gill, only E2 and NP significantly reduced IGF1 and IGF2 expression. Lastly, E2 and NP reduced the expression of IGFR1A and IGFR1B mRNA expression similarly in gill and red and white muscle, whereas βS had no effect on expression of IGFR mRNAs. These findings indicate that EEs disrupt post-embryonic growth by reducing GH sensitivity, IGF production, and IGF sensitivity. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Expression of Vascular Endothelial Growth Factor and Epidermal Growth Factor Receptor in Pancreatic Ductal Adenocarcinomas, Neuroendocrine Tumours and Chronic Pancreatitis

    PubMed Central

    Angelescu, Radu; Burada, Florin; Angelescu, Cristina; Gheonea, Dan Ionut; Iordache, Sevastița; Mixich, Francisc; Ioana, Mihai; Săftoiu, Adrian

    2013-01-01

    Objective: Angiogenesis is a crucial event for pancreatic carcinogenesis, and it also plays an important role in chronic pancreatitis. The aim of our study was to evaluate the mRNA expression of vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) in chronic inflammatory or malignant pancreatic pathology in order to elucidate the differences in expression patterns and potential clinical implications. Methods: Thirty-five patients who had undergone endoscopic ultrasonography followed by endoscipic ultrasound-guided fine needle aspiration (EUS-FNA) of focal pancreatic masses were included in the study. VEGF and EGFR mRNA expression levels in the samples collected by EUS-FNA were analyzed using quantitative real-time polymerase chain reaction (PCR). Results: VEGF expression was detected in all chronic pancreatitis and adenocarcinoma samples and in only 62.5% of pancreatic neuroendocrine tumors. EGFR expression was detected in only 40% of the chronic pancreatitis cases, 76.9% of adenocarcinomas and in 50% of pancreatic neuroendocrine tumors. Both VEGF and EGFR mRNA levels were significantly higher in pancreatic ductal adenocarcinoma than those in normal tissue. VEGF expression inversely correlated with pancreatic ductal adenocarcinoma size, while EGFR expression was related to local invasiveness of adenocarcinoma. Conclusion: Both VEGF and EGFR mRNA expression in EUS-FNA samples may be used as a diagnostic marker associated with invasiveness in patients with pancreatic adenocarcinoma. PMID:24949370

  18. Nerve growth factor and epidermal growth factor stimulate clusterin gene expression in PC12 cells.

    PubMed Central

    Gutacker, C; Klock, G; Diel, P; Koch-Brandt, C

    1999-01-01

    Clusterin (apolipoprotein J) is an extracellular glycoprotein that might exert functions in development, cell death and lipid transport. Clusterin gene expression is elevated at sites of tissue remodelling, such as differentiation and apoptosis; however, the signals responsible for this regulation have not been identified. We use here the clusterin gene as a model system to examine expression in PC12 cells under the control of differentiation and proliferation signals produced by nerve growth factor (NGF) and by epidermal growth factor (EGF) respectively. NGF induced clusterin mRNA, which preceded neurite outgrowth typical of neuronal differentiation. EGF also activated the clusterin mRNA, demonstrating that both proliferation and differentiation signals regulate the gene. To localize NGF- and EGF-responsive elements we isolated the clusterin promoter and tested it in PC12 cell transfections. A 2.5 kb promoter fragment and two 1.5 and 0.3 kb deletion mutants were inducible by NGF and EGF. The contribution to this response of a conserved activator protein 1 (AP-1) motif located in the 0.3 kb fragment was analysed by mutagenesis. The mutant promoter was not inducible by NGF or EGF, which identifies the AP-1 motif as an element responding to both factors. Binding studies with PC12 nuclear extracts showed that AP-1 binds to this sequence in the clusterin promoter. These findings suggest that NGF and EGF, which give differential gene regulation in PC12 cells, resulting in neuronal differentiation and proliferation respectively, use the common Ras/extracellular signal-regulated kinase/AP-1 signalling pathway to activate clusterin expression. PMID:10215617

  19. mRNA Transcript abundance during plant growth and the influence of Li(+) exposure.

    PubMed

    Duff, M C; Kuhne, W W; Halverson, N V; Chang, C-S; Kitamura, E; Hawthorn, L; Martinez, N E; Stafford, C; Milliken, C E; Caldwell, E F; Stieve-Caldwell, E

    2014-12-01

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li(+) concentration, exposure time, species and growth conditions. Most plant studies with Li(+) focus on short-term acute exposures. This study examines short- and long-term effects of Li(+) exposure in Arabidopsis with Li(+) uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li(+)-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li(+) resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li(+) exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li(+) exposure increases expression signal transduction genes. The identification of new Li(+)-sensitive genes and a gene-based "response plan" for acute and chronic Li(+) exposure are delineated.

  20. mRNA Transcript Abundance during Plant Growth and the Influence of Li+ Exposure

    DOE PAGES

    Duff, M. C.; Kuhne, W. W.; Halverson, N. V.; ...

    2014-10-23

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li+ concentration, exposure time, species and growth conditions. Most plant studies with Li+ focus on short-term acute exposures. This study examines short- and long-term effects of Li+ exposure in Arabidopsis with Li+ uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li+-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li+ resembled prior studies due to its influence on:more » inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li+ exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li+ exposure increases expression signal transduction genes. The identification of new Li+-sensitive genes and a gene-based “response plan” for acute and chronic Li+ exposure are delineated.« less

  1. Growth and growth factors in diabetes mellitus.

    PubMed Central

    Salardi, S; Tonioli, S; Tassoni, P; Tellarini, M; Mazzanti, L; Cacciari, E

    1987-01-01

    Growth of 79 children with diabetes was analysed at diagnosis and again after one to 10.7 years of treatment with insulin. Both sexes were tall at onset, whereas at the last observation boys alone showed significant growth retardation. Height standard deviation score (SDS), however, showed no significant fall either in 32 subjects reassessed after five years of disease or in 18 subjects examined at full stature. Skeletal maturity was not significantly impaired after treatment. Pubertal growth spurt was reduced, especially in girls and in subjects with onset of disease at or around puberty. We found no significant correlation between height and height velocity SDS and glycosylated haemoglobin values or secretion of growth hormone during the arginine test. Somatomedin C values were correlated with height velocity SDS in prepubertal boys. The results of this study suggest that there are interferences in the growth of children with diabetes but that they do not seem to have a significant influence on adult height. PMID:3813637

  2. Temporal expression of brain-derived neurotrophic factor (BDNF) mRNA in the rat hippocampus after treatment with selective and mixed monoaminergic antidepressants.

    PubMed

    Larsen, Marianne H; Hay-Schmidt, Anders; Rønn, Lars C B; Mikkelsen, Jens D

    2008-01-14

    Strong evidence suggests that antidepressants work by induction of neuroplastic changes mediated through regulation of brain-derived neurotrophic factor (BDNF). This study was undertaken to investigate the time-course of the effect of three antidepressants; fluoxetine, imipramine and venlafaxine, which differentially affect monoamine reuptake, on BDNF mRNA expression in the hippocampus. The consequences of increased BDNF in the hippocampus are still indefinite. Here, we also determined the effects on the expression of two other genes (synaptophysin and growth-associated protein-43 (GAP-43)) known to be involved in synapse formation and axonal growth and likely regulated by BDNF. The effects were determined in rats after sub-chronic (7 days) and chronic (14 and 21 days) treatment using semi-quantitative in situ hybridisation. BDNF mRNA levels in the dentate gyrus (DG) were increased after treatment with venlafaxine (7, 14 and 21 days) and imipramine (14 and 21 days), but not after treatment with fluoxetine, indicating that stimulation of BDNF mRNA expression is dependent on the pharmacological profile and on the time-course of drug treatment. A transient increase in synaptophysin mRNA was observed after treatment with venlafaxine and fluoxetine whereas imipramine had no effect. In the CA3 region a reduction of GAP-43 mRNA was observed after treatment with imipramine (21 days) and fluoxetine (7 and 14 days). These results suggest that venlafaxine and imipramine, but not fluoxetine, induce neuroplastic effects in the hippocampus through stimulation of BDNF mRNA expression, and that the effect on BDNF is not directly translated into regulation of synaptophysin and GAP-43 mRNA.

  3. Food restriction in young Japanese quails: effects on growth, metabolism, plasma thyroid hormones and mRNA species in the thyroid hormone signalling pathway.

    PubMed

    Rønning, Bernt; Mortensen, Anne S; Moe, Børge; Chastel, Olivier; Arukwe, Augustine; Bech, Claus

    2009-10-01

    Young birds, in their post-natal growth period, may reduce their growth and metabolism when facing a food shortage. To examine how such responses can be mediated by endocrine-related factors, we exposed Japanese quail chicks to food restriction for either 2 days (age 6-8 days) or 5 days (age 6-11 days). We then measured growth and resting metabolic rate (RMR), and circulating 3,3',5-triiodo-l-thyronine (T3) and 3,5,3',5'-tetraiodothyronine (T4) levels as well as expression patterns of genes involved in growth (insulin-like growth factor-I: IGF-I) and thyroid hormone signalling (thyroid-stimulating hormone-beta: TSHbeta, type II iodothyronine deiodinase: D2, thyroid hormone receptors isoforms: TRalpha and TRbeta). The food-restricted chicks receiving a weight-maintenance diet showed reductions in structural growth and RMR. Plasma levels of both T3 and T4 were reduced in the food-restricted birds, and within the 5 days food-restricted group there was a positive correlation between RMR and T3. IGF-I mRNA showed significantly higher abundance in the liver of ad libitum fed birds at day 8 compared with food-restricted birds. In the brain, TSHbeta mRNA level tended to be lower in food-restricted quails on day 8 compared with controls. Furthermore, TRalpha expression was lower in the brain of food-restricted birds at day 8 compared with birds fed ad libitum. Interestingly, brain D2 mRNA was negatively correlated with plasma T3 levels, tending to increase with the length of food restriction. Overall, our results show that food restriction produced significant effects on circulating thyroid hormones and differentially affected mRNA species in the thyroid hormone signalling pathway. Thus, we conclude that the effects of food restriction observed on growth and metabolism were partly mediated by changes in the endocrine-related factors investigated.

  4. Role of hypoxia and vascular endothelial growth factors in lymphangiogenesis

    PubMed Central

    Morfoisse, Florent; Renaud, Edith; Hantelys, Fransky; Prats, Anne-Catherine; Garmy-Susini, Barbara

    2014-01-01

    Hypoxia is known to be a major factor in the induction of angiogenesis during tumor development but its role in lymphangiogenesis remains unclear. Blood and lymphatic vasculatures are stimulated by the vascular endothelial family of growth factors – the VEGFs. In this review, we investigate the role of hypoxia in the molecular regulation of synthesis of the lymphangiogenic growth factors VEGF-A, VEGF-C, and VEGF-D. Gene expression can be regulated by hypoxia at either transcriptional or translational levels. In contrast to strong induction of DNA transcription by hypoxia-inducible factors (HIFs), the majority of cellular stresses such as hypoxia lead to inhibition of cap-dependent translation of mRNA and downregulation of protein synthesis. Here, we describe how initiation of translation of VEGF mRNA is induced by hypoxia through an internal ribosome entry site (IRES)-dependent mechanism. Considering the implications of the lymphatic vasculature for metastatic dissemination, it is crucial to understand the molecular regulation of lymphangiogenic growth factors by hypoxia to obtain new insights into cancer therapy. PMID:27308316

  5. Expression of vascular endothelial growth factor-b in human astrocytoma.

    PubMed Central

    Gollmer, J. C.; Ladoux, A.; Gioanni, J.; Paquis, P.; Dubreuil, A.; Chatel, M.; Frelin, C.

    2000-01-01

    Growth of human malignant gliomas is stringently dependent on an angiogenic process that probably involves vascular endothelial growth factor (VEGF). Expressions of mRNA coding for the different forms of VEGF were analyzed in surgical specimens from human astrocytomas. Low levels of placental growth factor (PGF) and VEGFC mRNA were observed in polymerase chain reaction, but not in Northern blot experiments. VEGF mRNA was found in some but not all grade and grade IV astrocytomas. VEGFB mRNA was observed in all tissue samples analyzed irrespective of the tumor grade. A new splice variant of VEGFB (VEGFB155) that lacks exons 5 and 6 is described. Expressions of VEGF mRNA in cultured glioblastomas cells were upregulated by hypoxia, but the sensitivity of the cells to hypoxia was reduced as compared with normal rat astrocytes. VEGF expression was depressed by dexamethasone. Expressions of VEGFB mRNA were affected neither by hypoxia nor by dexamethasone. The results indicate a coexpression of VEGF mRNA and VEGFB mRNA in human astrocytomas. Expression of VEGFB is markedly different from that of VEGF. Possible roles of VEGFB as a cofactor for hypoxia-induced angiogenesis in human astrocytomas are discussed. PMID:11303624

  6. Transforming growth factor beta1 and aldosterone

    PubMed Central

    Matsuki, Kota; Hathaway, Catherine K.; Chang, Albert S.; Smithies, Oliver; Kakoki, Masao

    2016-01-01

    Purpose of review It is well established that blocking renin-angiotensin II-aldosterone system (RAAS) is effective for the treatment of cardiovascular and renal complications in hypertension and diabetes mellitus. Although the induction of transforming growth factor beta1 (TGFbeta1) by components of RAAS mediates the hypertrophic and fibrogenic changes in cardiovascular-renal complications, it is still controversial as to whether TGFbeta1 can be a target to prevent such complications. Here we review recent findings on the role of TGFbeta1 in fluid homeostasis, focusing on the relationship with aldosterone. Recent findings TGFbeta1 suppresses adrenal production of aldosterone and renal tubular sodium reabsorption. We have generated mice with TGFbeta1 mRNA expression graded in five steps from 10% to 300% normal, and found that blood pressure and plasma volume are negatively regulated by TGFbeta1. Notably, the 10 % hypomorph exhibits primary aldosteronism and sodium and water retention due to markedly impaired urinary excretion of water and electrolytes. Summary These results identify TGFbeta signaling as an important counterregulatory system against aldosterone. Understanding the molecular mechanisms for the suppressive effects of TGFbeta1 on adrenocortical and renal function may further our understanding of primary aldosteronism as well as assist in the development of novel therapeutic strategies for hypertension. PMID:25587902

  7. Vascular growth factors and receptors in capillary hemangioblastomas and hemangiopericytomas.

    PubMed Central

    Hatva, E.; Böhling, T.; Jääskeläinen, J.; Persico, M. G.; Haltia, M.; Alitalo, K.

    1996-01-01

    Capillary hemangioblastomas and hemangiopericytomas are highly vascular central nervous system tumors of controversial origin. Of interest in their pathogenesis are mechanisms regulating endothelial cell growth. The endothelial cell mitogen vascular endothelial growth factor (VEGF) stimulates angiogenesis, and together with its two receptor tyrosine kinases VEGFR-1(FLT1) and VEGFR-2(KDR), is up-regulated during the malignant progression of gliomas. We have analyzed the expression of VEGF and its receptors, the related placental growth factor (PlGF) and the endothelial receptors FLT4 and Tie by in situ hybridization in capillary hemangioblastomas and hemangiopericytomas. VEGF mRNA was up-regulated in all of the hemangiopericytomas studied and highly expressed in the stromal cells of hemangioblastomas. In addition, some hemangioblastoma tumor cells expressed high levels of PlGF. Significantly elevated levels of Tie mRNA, Tie protein, VEGFR-1, and VEGFR-2 but not FLT4 mRNAs were observed in the endothelia of both tumor types. In hemangioblastomas, however, the receptors were also highly expressed by a subpopulation of stromal cells. Consistent results were obtained for a human hemangioblastoma cell line in culture. Up-regulation of the endothelial growth factors and receptors may result in autocrine or paracrine stimulation of endothelial cells and their precursors involved in the genesis of these two vascular tumors. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8774132

  8. Endothelin receptor B protects granulocyte macrophage colony-stimulating factor mRNA from degradation.

    PubMed

    Jungck, David; Knobloch, Jürgen; Körber, Sandra; Lin, Yingfeng; Konradi, Jürgen; Yanik, Sarah; Stoelben, Erich; Koch, Andrea

    2015-06-01

    Evidence is lacking on the differential effects of the two therapeutic concepts of endothelin receptor antagonists (ERAs): the blockade of only the endothelin receptor A (ETAR; selective antagonism) versus both ETAR and endothelin receptor B (ETBR; dual blockade). Ambrisentan, a selective ERA, and bosentan, a dual blocker, are both available for therapy. We hypothesized that there are differences in the potential of ERAs to ameliorate inflammatory processes in human airway smooth muscle cells (HASMCs) and aimed to unravel underlying mechanisms. We used HASMC culture, enzyme-linked immunosorbent assay, and quantitative reverse-transcription polymerase chain reaction. Tumor necrosis factor α (TNFα) induced transcription and expression of chemokine (C-X-C motif) ligand 2 (CXCL2), chemokine (C-X-C motif) ligand 3 (CXCL3), granulocyte macrophage colony-stimulating factor (GM-CSF), and matrix metalloproteinase 12 (MMP12) in HASMCs. In concentration-response experiments, bosentan led to a significantly greater reduction of GM-CSF and MMP12 protein release than ambrisentan, whereas there was no significant difference in their effect on GM-CSF and MMP12 mRNA. Both ERAs reduced CXCL3 protein and mRNA equally but had no effect on CXCL2. Blocking mitogen-activated protein kinases revealed that both ETAR and ETBR signal through p38 mitogen-activated protein kinase, but ETBR also signals through extracellular signal-regulated kinase (ERK) 1/2 to induce GM-CSF expression. In the presence of the transcription inhibitor actinomycin D, bosentan, but not ambrisentan, reduced GM-CSF but not MMP12 or CXCL3 mRNA. In conclusion, blockade of each endothelin receptor subtype reduces GM-CSF transcription, but blocking ETBR additionally protects GM-CSF mRNA from degradation via ERK-1/2. Accordingly, blocking both ETAR and ETBR leads to a stronger reduction of TNFα-induced GM-CSF protein expression. This mechanism might be specific to GM-CSF. Our data stress the anti-inflammatory potential

  9. Dexamethasone increases growth hormone (GH)-releasing hormone (GRH) receptor mRNA levels in cultured rat anterior pituitary cells.

    PubMed

    Tamaki, M; Sato, M; Matsubara, S; Wada, Y; Takahara, J

    1996-06-01

    To examine the effects of glucocorticoid (GC) on growth hormone (GH)-releasing hormone (GRH) receptor gene expression, a highly-sensitive and quantitative reverse-transcribed polymerase chain reaction (RT-PCR) method was used in this study. Rat anterior pituitary cells were isolated and cultured for 4 days. The cultured cells were treated with dexamethasone for 2, 6, and 24 h. GRH receptor mRNA levels were determined by competitive RT-PCR using a recombinant RNA as the competitor. Dexamethasone significantly increased GRH receptor mRNA levels at 5 nM after 6- and 24 h-incubations, and the maximal effect was found at 25 nM. The GC receptor-specific antagonist, RU 38486 completely eliminated the dexamethasone-induced enhancement of GRH receptor mRNA levels. Dexamethasone did not alter the mRNA levels of beta-actin and prolactin at 5 nM for 24 h, whereas GH mRNA levels were significantly increased by the same treatment. The GH response to GRH was significantly enhanced by the 24-h incubation with 5 nM dexamethasone. These findings suggest that GC stimulates GRH receptor gene expression through the ligand-activated GC receptors in the rat somatotrophs. The direct effects of GC on the GRH receptor gene could explain the enhancement of GRH-induced GH secretion.

  10. Inhibition of pyrimidine synthesis reverses viral virulence factor-mediated block of mRNA nuclear export

    PubMed Central

    Zhang, Liang; Das, Priyabrata; Schmolke, Mirco; Manicassamy, Balaji; Wang, Yaming; Deng, Xiaoyi; Cai, Ling; Tu, Benjamin P.; Forst, Christian V.; Roth, Michael G.; Levy, David E.; García-Sastre, Adolfo; de Brabander, Jef; Phillips, Margaret A.

    2012-01-01

    The NS1 protein of influenza virus is a major virulence factor essential for virus replication, as it redirects the host cell to promote viral protein expression. NS1 inhibits cellular messenger ribonucleic acid (mRNA) processing and export, down-regulating host gene expression and enhancing viral gene expression. We report in this paper the identification of a nontoxic quinoline carboxylic acid that reverts the inhibition of mRNA nuclear export by NS1, in the absence or presence of the virus. This quinoline carboxylic acid directly inhibited dihydroorotate dehydrogenase (DHODH), a host enzyme required for de novo pyrimidine biosynthesis, and partially reduced pyrimidine levels. This effect induced NXF1 expression, which promoted mRNA nuclear export in the presence of NS1. The release of NS1-mediated mRNA export block by DHODH inhibition also occurred in the presence of vesicular stomatitis virus M (matrix) protein, another viral inhibitor of mRNA export. This reversal of mRNA export block allowed expression of antiviral factors. Thus, pyrimidines play a necessary role in the inhibition of mRNA nuclear export by virulence factors. PMID:22312003

  11. Transforming growth factor alpha controls the transition from hypertrophic cartilage to bone during endochondral bone growth.

    PubMed

    Usmani, Shirine E; Pest, Michael A; Kim, Gunwoo; Ohora, Sara N; Qin, Ling; Beier, Frank

    2012-07-01

    We have recently identified transforming growth factor alpha (TGFα) as a novel growth factor involved in the joint disease osteoarthritis. The role of TGFα in normal cartilage and bone physiology however, has not been well defined. The objective of this study was to determine the role of TGFα in bone development through investigation of the Tgfa knockout mouse. The gross skeletons as well as the cartilage growth plates of Tgfa knockout mice and their control littermates were examined during several developmental stages ranging from newborn to ten weeks old. Knockout mice experienced skeletal growth retardation and expansion of the hypertrophic zone of the growth plate. These phenotypes were transient and spontaneously resolved by ten weeks of age. Tgfa knockout growth plates also had fewer osteoclasts along the cartilage/bone interface. Furthermore, knockout mice expressed less RUNX2, RANKL, and MMP13 mRNA in their cartilage growth plates than controls did. Tgfa knockout mice experience a delay in bone development, specifically the conversion of hypertrophic cartilage to true bone. The persistence of the hypertrophic zone of the growth plate appears to be mediated by a decrease in MMP13 and RANKL expression in hypertrophic chondrocytes and a resulting reduction in osteoclast recruitment. Overall, TGFα appears to be an important growth factor regulating the conversion of cartilage to bone during the process of endochondral ossification. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Nerve growth factor-mediated vascular endothelial growth factor expression of astrocyte in retinal vascular development.

    PubMed

    Kim, You Sun; Jo, Dong Hyun; Lee, Hanjae; Kim, Jin Hyoung; Kim, Kyu-Won; Kim, Jeong Hun

    2013-02-22

    The angiogenic aspect of neurotrophins and their receptors rather than the neuroscientific aspect has been focused. However, their role in retinal vascular development is underdiscovered. The purpose of this study is to understand the role of neurotrophin receptors in retinal vascular development and the mechanisms of their action. To identify the expression of tropomyosin receptor kinase receptor (Trk) in developing retina, tissues of 4, 8, 12, 16 and 26 day-old mice were prepared for experiments. Immunohistochemistry and immunofluorescence double staining against glial fibrillary acidic protein and type IV collagen were performed. TrkA was expressed mainly along the vessel structure in inner part of retina, especially in retinal astrocyte. In cultured primary astrocyte, recombinant nerve growth factor (NGF) was used to activate TrkA. NGF induced the phosphorylation of TrkA, and it also enhanced the level of activated Akt and vascular endothelial growth factor (VEGF) mRNA. Inhibition of phosphoinositide 3-kinase (PI3K) reversed the NGF-induced activation of these two molecules. This study demonstrated that TrkA activation on NGF leads to VEGF elevation by PI3K-Akt pathway and therefore suggested that TrkA could be a stimulator of retinal vascular development. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Short-term changes of mRNA expression of various inflammatory factors and milk proteins in mammary tissue during LPS-induced mastitis.

    PubMed

    Schmitz, S; Pfaffl, M W; Meyer, H H D; Bruckmaier, R M

    2004-03-01

    During mammary gland infection, non-specific responses are the predominant ones. The goal of this study was to investigate the mRNA expression of various soluble immune components and of the major milk proteins during the acute phase of mammary inflammation. Five healthy lactating cows were intramammary infused in one quarter with 100 microg Escherichia coli-endotoxin (lipopolysaccharide, LPS) and the contralateral quarter with saline (9 g/l) serving as control. Mammary biopsy samples of both quarters were taken immediately before and at 3, 6, 9 and 12 h after infusion and mRNA expression of various factors was quantified via real-time RT-PCR. Blood samples for determination of leukocyte number were taken simultaneously with the biopsy samples and rectal temperature was measured at 1-h intervals. Rectal temperature increased until 5h (P < 0.05) after LPS administration and remained elevated until 9 h after LPS inoculation. Blood leukocyte number decreased (P < 0.05) from 0 to 3 h from 7.7 +/- 1.1 x 10(9)l(-1) to 5.7 +/- 1.0 x 10(9)l(-1) and thereafter recovered to pre-treatment levels until 12 h after LPS challenge. In LPS-treated quarters, tumor necrosis factor-alpha and cyclooxygenase-2-mRNA expression increased (P < 0.05) to highest values at 3h after LPS challenge. Lactoferrin, lysozyme, inducible nitric oxide synthase increased (P < 0.05) and peaked at 6 h after challenge, and platelet-activating factor acetylhydrolase-mRNA expression tended to increase (P = 0.07). mRNA expression of insulin-like growth factor-I and of alphaS1-casein (CN), alphaS2-CN, beta-CN and beta-lactoglobulin did not change significantly, whereas mRNA expression of 5-lipoxygenase and alpha-lactalbumin decreased (P < 0.05) in both quarters and that of kappa-CN only in the LPS quarter. mRNA expression of some investigated factors (tumor necrosis factor-alpha, lysozyme, 5-lipoxygenase, alpha-lactalbumin) changed in control quarters, however in all respective factors less than in the LPS

  14. Upregulation of epidermal growth factor receptor 4 in oral leukoplakia

    PubMed Central

    Kobayashi, Hiroshi; Kumagai, Kenichi; Gotoh, Akito; Eguchi, Takanori; Yamada, Hiroyuki; Hamada, Yoshiki; Suzuki, Satsuki; Suzuki, Ryuji

    2013-01-01

    In the present study, we investigate the expression profile of the epidermal growth factor receptor family, which comprises EGFR/ErbB1, HER2/ErbB2, HER3/ErbB3 and HER4/ErbB4 in oral leukoplakia (LP). The expression of four epidermal growth factor receptor (EGFR) family genes and their ligands were measured in LP tissues from 14 patients and compared with levels in 10 patients with oral lichen planus (OLP) and normal oral mucosa (NOM) from 14 healthy donors by real-time polymerase chain reaction (PCR) and immunohistochemistry. Synchronous mRNA coexpression of ErbB1, ErbB2, ErbB3 and ErbB4 was detected in LP lesions. Out of the receptors, only ErbB4 mRNA and protein was more highly expressed in LP compared with NOM tissues. These were strongly expressed by epithelial keratinocytes in LP lesions, as shown by immunohistochemistry. Regarding the ligands, the mRNA of Neuregulin2 and 4 were more highly expressed in OLP compared with NOM tissues. Therefore, enhanced ErbB4 on the keratinocytes and synchronous modulation of EGFR family genes may contribute to the pathogenesis and carcinogenesis of LP. PMID:23492901

  15. Transforming growth factor alpha, Shope fibroma growth factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits.

    PubMed

    Opgenorth, A; Nation, N; Graham, K; McFadden, G

    1993-02-01

    The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.

  16. Effects of alcohol on brain-derived neurotrophic factor mRNA expression in discrete regions of the rat hippocampus and hypothalamus.

    PubMed

    Tapia-Arancibia, L; Rage, F; Givalois, L; Dingeon, P; Arancibia, S; Beaugé, F

    2001-01-15

    Chronic alcohol consumption has adverse effects on the central nervous system, affecting some hippocampal and hypothalamic functions. In this study we tempted to demonstrate that some of these modifications could involve impairment of neurotrophic factors. Three experimental groups of male Sprague Dawley rats were studied: one control group, one chronically treated with alcohol vapor according to a well-established model that induces behavioral dependence, and a third group treated similarly but killed 12 hr after alcohol withdrawal. In all groups, changes in brain-derived neurotrophic factor mRNA expression occurring in the hippocampus and supraoptic nucleus were first analyzed by reverse transcription-polymerase chain reaction and then by in situ hybridization. In parallel, we used ribonuclease protection assay to measure mRNA levels encoding trkB in the two central nervous system regions. We showed that chronic alcohol intoxication decreases brain-derived neurotrophic factor mRNA expression in discrete regions of the rat hippocampus (CA1 region and dentate gyrus) and in the supraoptic nucleus of the hypothalamus. We also showed a global up-regulation of trkB mRNA expression encoding the high-affinity brain-derived neurotrophic factor receptor (TrkB), after applying the same treatment. Following 12 hr of alcohol withdrawal, a significant increase in BDNF mRNA expression was observed in the dentate gyrus and CA3 region of hippocampus and in the hypothalamic supraoptic nucleus. These findings suggest that chronic alcohol intake may modify hippocampal and hypothalamic neuronal functions through modifications in growth factors and its receptors.

  17. Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor expression by acute myeloid leukemia cells.

    PubMed

    Vinante, F; Rigo, A; Papini, E; Cassatella, M A; Pizzolo, G

    1999-03-01

    Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an EGF family member expressed by numerous cell types that binds to EGF receptor 1 (HER-1) or 4 (HER-4) inducing mitogenic and/or chemotactic activities. Membrane-bound HB-EGF retains growth activity and adhesion capabilities and the unique property of being the receptor for diphtheria toxin (DT). The interest in studying HB-EGF in acute leukemia stems from these mitogenic, chemotactic, and receptor functions. We analyzed the expression of HB-EGF in L428, Raji, Jurkat, Karpas 299, L540, 2C8, HL-60, U937, THP-1, ML-3, and K562 cell lines and in primary blasts from 12 acute myeloid leukemia (AML) cases, by reverse-transcriptase polymerase chain reaction (RT-PCR) and Northern blot and by the evaluation of sensitivity to DT. The release of functional HB-EGF was assessed by evaluation of its proliferative effects on the HB-EGF-sensitive Balb/c 3T3 cell line. HB-EGF was expressed by all myeloid and T, but not B (L428, Raji), lymphoid cell lines tested, as well as by the majority (8 of 12) of ex vivo AML blasts. Cell lines (except for the K562 cell line) and AML blasts expressing HB-EGF mRNA underwent apoptotic death following exposure to DT, thus demonstrating the presence of the HB-EGF molecule on their membrane. Leukemic cells also released a fully functional HB-EGF molecule that was mitogenic for the Balb/c 3T3 cell line. Factors relevant to the biology of leukemic growth, such as tumor necrosis factor-alpha (TNF-alpha), 1alpha,25-(OH)2D3, and especially all-trans retinoic acid (ATRA), upregulated HB-EGF mRNA in HL-60 or ML-3 cells. Granulocyte-macrophage colony-stimulating factor (GM-CSF) induced HB-EGF mRNA and acquisition of sensitivity to DT in one previously HB-EGF-negative leukemia case. Moreover, the U937 and Karpas 299 cell lines expressed HER-4 mRNA. This work shows that HB-EGF is a growth factor produced by primary leukemic cells and regulated by ATRA, 1alpha, 25-(OH)2D3, and GM-CSF.

  18. Growth Factors in Proliferative Diabetic Retinopathy

    PubMed Central

    Khan, Zia Ali

    2003-01-01

    Many growth factors are implicated in the pathogenesis of proliferative diabetic retinopathy. Alteration of growth factors and their receptors in diabetes has been shown in both experimental and clinical studies. Sustained hyperglycemia resulting from long-standing diabetes leads to several biochemical abnormalities that consequently result in retinal hypoxia. Retinal oxygenation state regulates various growth factors that promote angiogenesis in order to meet the oxygen demands of the tissue. However, unregulated expression of these growth factors and induction of complex cascades leading to augmentation of other proangiogenic factors, which may not be regulated by tissue oxygenation, leads to uncontrolled retinal neovascularization and blindness in diabetic patients. PMID:14668050

  19. Effects of fasting on growth hormone, growth hormone receptor, and insulin-like growth factor-I axis in seawater-acclimated tilapia, Oreochromis mossambicus.

    PubMed

    Fox, B K; Riley, L G; Hirano, T; Grau, E G

    2006-09-15

    Effects of fasting on the growth hormone (GH)--growth hormone receptor (GHR)-insulin-like growth factor-I (IGF-I) axis were characterized in seawater-acclimated tilapia (Oreochromis mossambicus). Fasting for 4 weeks resulted in significant reductions in body weight and specific growth rate. Plasma GH and pituitary GH mRNA levels were significantly elevated in fasted fish, whereas significant reductions were observed in plasma IGF-I and hepatic IGF-I mRNA levels. There was a significant negative correlation between plasma levels of GH and IGF-I in the fasted fish. No effect of fasting was observed on hepatic GHR mRNA levels. Plasma glucose levels were reduced significantly in fasted fish. The fact that fasting elicited increases in GH and decreases in IGF-I production without affecting GHR expression indicates a possible development of GH resistance.

  20. Recombinant growth hormone enhances muscle myosin heavy-chain mRNA accumulation and amino acid accrual in humans.

    PubMed

    Fong, Y; Rosenbaum, M; Tracey, K J; Raman, G; Hesse, D G; Matthews, D E; Leibel, R L; Gertner, J M; Fischman, D A; Lowry, S F

    1989-05-01

    A potentially lethal complication of trauma, malignancy, and infection is a progressive erosion of muscle protein mass that is not readily reversed by nutritional support. Growth hormone is capable of improving total body nitrogen balance, but its role in myofibrillar protein synthesis in humans is unknown. The acute, in situ muscle protein response to an infusion of methionyl human growth hormone was investigated in the limbs of nutritionally depleted subjects during a period of intravenous refeeding. A 6-hr methionyl growth hormone infusion achieved steady-state serum levels comparable to normal physiologic peaks and was associated with a significant increase in limb amino acid uptake, without a change in body amino acid oxidation. Myosin heavy-chain mRNA levels, measured by quantitative dot blot hybridization, were also significantly elevated after growth hormone administration. The data indicate that methionyl growth hormone can induce intracellular amino acid accrual and increased levels of myofibrillar protein mRNA during hospitalized nutritional support and suggest growth hormone to be a potential therapy of lean body wasting.

  1. An Early Function during Transcription for the Yeast mRNA Export Factor Dbp5p/Rat8p Suggested by Its Genetic and Physical Interactions with Transcription Factor IIH Components

    PubMed Central

    Estruch, Francisco; Cole, Charles N.

    2003-01-01

    The yeast DEAD-box protein Dbp5p/Rat8p is an essential factor for mRNA export and shuttles between the nucleus and the cytoplasm. It is concentrated at the cytoplasmic fibrils of the nuclear pore complex where it interacts with several nucleoporins. On the basis of this localization, it has been suggested that it might participate in a terminal step of RNA export, the release from the mRNA of proteins that accompany the mRNA during translocation through nuclear pores. In this report, we present evidence linking Dbp5p to transcription. Two different screens identified genetic interactions between DBP5 and genes involved in early transcription events, initiation and promoter clearance. Mutations of transcription proteins expected to impair transcription act as suppressors of dbp5 mutants, whereas those that may act to increase transcription are synthetically lethal with dbp5 mutations. We also show that growth and mRNA export in dbp5 mutant strains are dependent on the carboxy-terminal domain of the RNA pol II largest subunit. Finally, we show that Dbp5p associates physically with components of transcription factor IIH. Because these interactions affect not only growth but also mRNA export, they are likely to reflect a functional relationship between Dbp5p and the transcription machinery. Together, our results suggest a nuclear role for Dbp5 during the early steps of transcription. PMID:12686617

  2. Growth factors and acute renal failure.

    PubMed

    Hirschberg, R; Ding, H

    1998-03-01

    During acute renal injury, there are alterations in the expression of several growth factors and their receptors in the kidney. The increased expression of several growth factors and/or their receptors at sites of nephron injury suggests important contributions to repair. Exogenous administration of some growth factors, such as IGF-I, EGF and HGF, accelerates recovery of renal function in experimental acute renal failure (ARF). In ARF growth factors act through several mechanisms, which may include altered cell cycle regulation and mitogenesis, differentiation of recovered cells, regulation of apoptosis, improved renal hemodynamics, and others. There is evidence for interactions of growth factors with other growth factors as well as with other genes resulting in complex orchestration of biologic events contributing to recovery from ARF.

  3. Epidermal growth factor deficiency associated with diabetes mellitus.

    PubMed Central

    Kasayama, S; Ohba, Y; Oka, T

    1989-01-01

    The production of epidermal growth factor (EGF) in the submandibular gland and its circulating level were studied in diabetic mice. In genetically diabetic (C57BL/KsJ db/db) mice, EGF concentrations in the submandibular gland and plasma were reduced to 13% and 30% of the control levels, respectively. In streptozotocin-treated diabetic mice, they were reduced to 18% and 20% of controls, respectively, 5 weeks after the drug injection. Furthermore, levels of submandibular prepro-EGF mRNA in these diabetic mice were decreased almost in parallel with the glandular EGF concentrations, while there was no change in the levels of submandibular beta-actin mRNA and kidney prepro-EGF mRNA. In addition, histological examination of the submandibular glands indicated that the size of the granular convoluted tubules, which produce EGF, was substantially reduced in the diabetic mice. Insulin administration to streptozotocin-treated mice almost completely reversed the decrease in EGF content in the submandibular gland, substantially elevated the level of the glandular prepro-EGF mRNA and plasma EGF concentration, and increased the size of the granular convoluted tubules in the gland. These results indicate that EGF deficiency occurs in diabetes mellitus and that insulin may be important in maintaining the normal level of EGF in the submandibular gland and plasma. Images PMID:2477846

  4. Positive mRNA Translational Control in Germ Cells by Initiation Factor Selectivity

    PubMed Central

    Friday, Andrew J.; Keiper, Brett D.

    2015-01-01

    Ultimately, the production of new proteins in undetermined cells pushes them to new fates. Other proteins hold a stem cell in a mode of self-renewal. In germ cells, these decision-making proteins are produced largely from translational control of preexisting mRNAs. To date, all of the regulation has been attributed to RNA binding proteins (RBPs) that repress mRNAs in many models of germ cell development (Drosophila, mouse, C. elegans, and Xenopus). In this review, we focus on the selective, positive function of translation initiation factors eIF4E and eIF4G, which recruit mRNAs to ribosomes upon derepression. Evidence now shows that the two events are not separate but rather are coordinated through composite complexes of repressors and germ cell isoforms of eIF4 factors. Strikingly, the initiation factor isoforms are themselves mRNA selective. The mRNP complexes of translation factors and RBPs are built on specific populations of mRNAs to prime them for subsequent translation initiation. Simple rearrangement of the partners causes a dormant mRNP to become synthetically active in germ cells when and where they are required to support gametogenesis. PMID:26357652

  5. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  6. Effects of dietary postbiotic and inulin on growth performance, IGF1 and GHR mRNA expression, faecal microbiota and volatile fatty acids in broilers.

    PubMed

    Kareem, Karwan Yaseen; Loh, Teck Chwen; Foo, Hooi Ling; Akit, Henny; Samsudin, Anjas Asmara

    2016-08-05

    Postbiotics (metabolic products by lactic acid bacteria) and prebiotics have been established as substitute to antibiotics in order to enhance immunity and growth performance in broiler chickens. Nonetheless, insufficient information is available on the effects of postbiotics and prebiotics combination on growth performance, faecal microbiota, pH and volatile fatty acids (VFA), as well as liver insulin like growth factor 1 (IGF1) and growth hormone receptor (GHR) mRNA expressions in broiler chickens. The aim of this experiment was to evaluate the effects of different types of postbiotics with different levels of prebiotic (inulin) on broiler for those parameters. The results showed that birds fed T3: (0.3 % RI11 + 0.8 % Inulin), T4: (0.3 % RI11 + 1.0 % Inulin), and T6: (0.3 % RG14+ 1.0 % Inulin) had higher (p < 0.05) final body weight (BW) and total weight gain (WG) than other treatments. Birds fed T3 had lower feed conversion ratio (FCR) which was significantly different from those fed with negative control diet but was similar to other treatments. Postbiotic and inulin increased (p < 0.05) faecal lactic acid bacteria (LAB) and reduced (p < 0.05) Enterobacteriaceae count. Birds fed T4 and T6 had higher faecal acetic acid and propionic acid respectively, and both had higher total VFA and lactic acid bacteria but lower pH and Enterobacteriaceae (ENT) counts compared to other treatments. The liver of birds fed T4 and T6 had higher IGF1 expression compared to other treatments while T6 had higher GHR mRNA expression compared to other treatments. Results indicate that the addition of postbiotics and inulin combinations had beneficial effects on total BW, feed efficiency, mucosa architecture and IGF1 and GHR mRNA expression in broiler chickens.

  7. Growth factors, nutrient signaling, and cardiovascular aging

    PubMed Central

    Fontana, Luigi; Vinciguerra, Manlio; Longo, Valter D.

    2012-01-01

    Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the great majority of the organisms studied. In particular, the enzymes activated by growth hormone (GH), insulin and insulin-like growth factor 1 (IGF-I) in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction (DR), which reduces the level of IGF-I and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases and deficiencies in GH signaling and IGF-I are strongly associated with protection from cancer and diabetes in both mice and humans, but their role in cardiac function and cardiovascular diseases is controversial. Here we review the link between growth factors, cardiac function and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans. PMID:22499903

  8. Autocrine growth factors and solid tumor malignancy.

    PubMed Central

    Walsh, J. H.; Karnes, W. E.; Cuttitta, F.; Walker, A.

    1991-01-01

    The ability of malignant cells to escape the constraint that normally regulate cell growth and differentiation has been a primary focus of attention for investigators of cancer cell biology. An outcome of this attention has been the discovery that the protein products of oncogenes play a role in the activation of growth signal pathways. A second outcome, possibly related to abnormal oncogene expression, has been the discovery that malignant cells frequently show an ability to regulate their own growth by the release of autocrine growth modulatory substances. Most important, the growth of certain malignant cell types has been shown to depend on autocrine growth circuits. A malignant tumor whose continued growth depends on the release of an autocrine growth factor may be vulnerable to treatment with specific receptor antagonists or immunoneutralizing antibodies designed to break the autocrine circuit. Information is rapidly emerging concerning autocrine growth factors in selected human solid tissue malignancy. Images PMID:1926844

  9. Effect of zinc sulphate and zinc methionine on growth, plasma growth hormone concentration, growth hormone receptor and insulin-like growth factor-I gene expression in mice.

    PubMed

    Yu, Ze-Peng; Le, Guo-Wei; Shi, Yong-Hui

    2005-04-01

    1. The current experiment was conducted to investigate the effect of zinc sulphate (ZnSO4) and zinc methionine (Zn-Met) on growth and their effect on plasma growth hormone (GH) concentration, growth hormone receptor (GHR) and insulin-like growth factor I (IGF-I) mRNA expression in mice. 2. Ninety male KunMing (KM) mice were randomly divided into three treatments. The control group was fed on a basal diet containing 11.67 mg/kg of zinc. The ZnSO4 group and Zn-Met group were fed on the diets supplemented with ZnSO4 or Zn-Met at 30 mg/kg (containing zinc of 40.05 and 40.75 mg/kg, respectively). The mice were offered the test diets for 10 days. Weight gains and food intake were measured at the end of the experiment, zinc contents in liver and serum were determined using atomic absorption spectrophotometry; GH was determined by radioimmunoassay, the levels of GHR and IGF-I mRNA were determined with reverse transcript polymerase chain reaction. 3. Both ZnSO4 and Zn-Met enhanced weight gain and food intake in the mice, Zn-Met improved the growth and food intake more effectively than ZnSO4 did (P < 0.05). The both forms of zinc had no effect on GH and the level of GHR mRNA expression (P > 0.05) and they up-regulated the expression of IGF-I mRNA (P < 0.05). As compared to ZnSO4, Zn-Met enhanced the level of IGF-I mRNA significantly (P < 0.05). 4. Both ZnSO4 and Zn-Met had no effect on plasma GH and the expression of GHR mRNA, but they enhanced the expression of IGF-I mRNA. Zinc methionine enhanced the weight gain and up-regulated IGF-I mRNA expression more effectively than ZnSO4.

  10. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  11. Roles for Growth Factors in Cancer Progression

    PubMed Central

    Witsch, Esther; Sela, Michael; Yarden, Yosef

    2011-01-01

    Under physiological conditions, cells receive fate-determining signals from their tissue surroundings, primarily in the form of polypeptide growth factors. Integration of these extracellular signals underlies tissue homeostasis. Although departure from homeostasis and tumor initiation are instigated by oncogenic mutations rather than by growth factors, the latter are the major regulators of all subsequent steps of tumor progression, namely clonal expansion, invasion across tissue barriers, angiogenesis, and colonization of distant niches. Here, we discuss the relevant growth factor families, their roles in tumor biology, as well as the respective downstream signaling pathways. Importantly, cancer-associated activating mutations that impinge on these pathways often relieve, in part, the reliance of tumors on growth factors. On the other hand, growth factors are frequently involved in evolvement of resistance to therapeutic regimens, which extends the roles for polypeptide factors to very late phases of tumor progression and offers opportunities for cancer therapy. PMID:20430953

  12. Circadian clock regulation of mRNA translation through eukaryotic elongation factor eEF-2

    PubMed Central

    Caster, Stephen Z.; Castillo, Kathrina; Sachs, Matthew S.; Bell-Pedersen, Deborah

    2016-01-01

    The circadian clock has a profound effect on gene regulation, controlling rhythmic transcript accumulation for up to half of expressed genes in eukaryotes. Evidence also exists for clock control of mRNA translation, but the extent and mechanisms for this regulation are not known. In Neurospora crassa, the circadian clock generates daily rhythms in the activation of conserved mitogen-activated protein kinase (MAPK) pathways when cells are grown in constant conditions, including rhythmic activation of the well-characterized p38 osmosensing (OS) MAPK pathway. Rhythmic phosphorylation of the MAPK OS-2 (P-OS-2) leads to temporal control of downstream targets of OS-2. We show that osmotic stress in N. crassa induced the phosphorylation of a eukaryotic elongation factor-2 (eEF-2) kinase, radiation sensitivity complementing kinase-2 (RCK-2), and that RCK-2 is necessary for high-level phosphorylation of eEF-2, a key regulator of translation elongation. The levels of phosphorylated RCK-2 and phosphorylated eEF-2 cycle in abundance in wild-type cells but not in cells deleted for OS-2 or the core clock component FREQUENCY (FRQ). Translation extracts from cells grown in constant conditions show decreased translational activity in the late subjective morning, coincident with the peak in eEF-2 phosphorylation, and rhythmic translation of glutathione S-transferase (GST-3) from constitutive mRNA levels in vivo is dependent on circadian regulation of eEF-2 activity. In contrast, rhythms in phosphorylated eEF-2 levels are not necessary for rhythms in accumulation of the clock protein FRQ, indicating that clock control of eEF-2 activity promotes rhythmic translation of specific mRNAs. PMID:27506798

  13. Expression of the genes for insulin-like growth factors and their receptors in bone during skeletal growth

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Roberts, C. T.; Leroith, D.; Morey-Holton, E.

    1994-01-01

    Insulin-like growth factors (IGF) are important regulators of skeletal growth. To determine whether the capacity to produce and respond to these growth factors changes during skeletal development, we measured the protein and mRNA levels for IGF-I, IGF-II, and their receptors (IGF-IR and IGF-IIR, respectively) in the tibia and femur of rats before and up to 28 mo after birth. The mRNA levels remained high during fetal development but fell after birth, reaching a nadir by 3-6 wk. This fall was most pronounced for IGF-II and IGF-IIR mRNA and least pronounced for IGF-I mRNA. However, after 6 wk, both IGF-I and IGF-IR mRNA levels recovered toward the levels observed at birth. In the prenatal bones, the signals for the mRNAs of IGF-II and IGF-IIR were stronger than the signals for the mRNAs of IGF-I and IGF-IR, although the content of IGF-I was three- to fivefold greater than that of IGF-II. IGF-II levels fell postnatally, whereas the IGF-I content rose after birth such that the ratio IGF-I/IGF-II continued to increase with age. We conclude that, during development, rat bone changes its capacity to produce and respond to IGFs with a progressive trend toward the dominance of IGF-I.

  14. Expression of the genes for insulin-like growth factors and their receptors in bone during skeletal growth

    NASA Technical Reports Server (NTRS)

    Bikle, D. D.; Harris, J.; Halloran, B. P.; Roberts, C. T.; Leroith, D.; Morey-Holton, E.

    1994-01-01

    Insulin-like growth factors (IGF) are important regulators of skeletal growth. To determine whether the capacity to produce and respond to these growth factors changes during skeletal development, we measured the protein and mRNA levels for IGF-I, IGF-II, and their receptors (IGF-IR and IGF-IIR, respectively) in the tibia and femur of rats before and up to 28 mo after birth. The mRNA levels remained high during fetal development but fell after birth, reaching a nadir by 3-6 wk. This fall was most pronounced for IGF-II and IGF-IIR mRNA and least pronounced for IGF-I mRNA. However, after 6 wk, both IGF-I and IGF-IR mRNA levels recovered toward the levels observed at birth. In the prenatal bones, the signals for the mRNAs of IGF-II and IGF-IIR were stronger than the signals for the mRNAs of IGF-I and IGF-IR, although the content of IGF-I was three- to fivefold greater than that of IGF-II. IGF-II levels fell postnatally, whereas the IGF-I content rose after birth such that the ratio IGF-I/IGF-II continued to increase with age. We conclude that, during development, rat bone changes its capacity to produce and respond to IGFs with a progressive trend toward the dominance of IGF-I.

  15. A role for platelet-derived growth factor-BB in rat postpneumonectomy compensatory lung growth.

    PubMed

    Yuan, Shizeng; Hannam, Vicky; Belcastro, Rosetta; Cartel, Nicholas; Cabacungan, Judy; Wang, Jinxia; Diambomba, Yenge; Johnstone, Leslie; Post, Martin; Tanswell, A Keith

    2002-07-01

    Unilateral pneumonectomy leads to compensatory growth in the residual lung, the mediators of which are largely unknown. We hypothesized, based on its other known roles in lung cell growth, that platelet-derived growth factor (PDGF)-BB would be an essential mediator of postpneumonectomy compensatory lung growth. Left-sided pneumonectomies were performed on 21-d-old rats, for comparison with sham-operated or unoperated control animals. Body weights were not different between groups. Right lung weights and DNA content were significantly increased (p < 0.05), compared with controls, by 10 d after pneumonectomy. The rate of DNA synthesis was maximal on d 5 postpneumonectomy. Total right lung PDGF-B mRNA and PDGF-BB protein increased after pneumonectomy, but were apparently tightly regulated, relative to total right lung beta-actin mRNA and protein content, respectively. However, PDGF-BB expression after pneumonectomy was apparently not purely constitutive, in that daily i.p. injections of a truncated soluble PDGF beta-receptor both reduced activation of the native PDGF beta-receptor, and attenuated increased lung DNA synthesis on d 3 after pneumonectomy. These findings are consistent with a critical role for PDGF-BB in postpneumonectomy lung growth.

  16. Oestrogens, via transforming growth factor alpha, modulate basic fibroblast growth factor synthesis in hypothalamic astrocytes: in vitro observations.

    PubMed

    Galbiati, M; Martini, L; Melcangi, R C

    2002-10-01

    The data presented here show that, in cultures of type 1 astrocytes obtained from the hypothalamus of neonatal female rat, 17beta-oestradiol is able to increase both the mRNA and the protein levels of basic fibroblast growth factor (bFGF). In particular, after 24 h of exposure to 17beta-oestradiol (10(-9) and 10(-10) m), an increase of messenger levels of bFGF appears in hypothalamic type 1 astrocytes. Similarly, an induction of bFGF protein is also evident at this time of exposure. The effect on the mRNA and protein levels of bFGF is blocked by the presence in the medium of an antibody raised against the transforming growth factor alpha (TGFalpha) receptor. This observation indicates that, TGFalpha, whose synthesis is modulated by oestrogens in hypothalamic astrocytes and which is able to increase, both the mRNA and the protein levels of bFGF in our experimental model, may act as the mediator of the oestrogenic induction of bFGF. Hypothalamic astrocytes, together with hypothalamic neurones synthesizing and secreting luteinizing hormone-releasing hormone (LHRH), form the LHRH network in conjunction with other neuronal systems. Gonadal steroids in general, and oestrogens in particular, play an important role in the control of the activity of this network. In addition, bFGF and TGFalpha, two growth factors released from astrocytes, are able to influence the activity of LHRH neurones. The present observations suggest that oestrogens may also act on LHRH neurones in an indirect fashion (i.e. by modulating the expression of bFGF and TGFalpha in glial cells).

  17. Imipramine induces brain-derived neurotrophic factor mRNA expression in cultured astrocytes.

    PubMed

    Takano, Katsura; Yamasaki, Hiroshi; Kawabe, Kenji; Moriyama, Mitsuaki; Nakamura, Yoichi

    2012-01-01

    Depression is one of the most prevalent and livelihood-threatening forms of mental illnesses and the neural circuitry underlying depression remains incompletely understood. Recent studies suggest that the neuronal plasticity involved with brain-derived neurotrophic factor (BDNF) plays an important role in the recovery from depression. Some antidepressants are reported to induce BDNF expression in vivo; however, the mechanisms have been considered solely in neurons and not fully elucidated. In the present study, we evaluated the effects of imipramine, a classic tricyclic antidepressant drug, on BDNF expression in cultured rat brain astrocytes. Imipramine dose-dependently increased BDNF mRNA expression in astrocytes. The imipramine-induced BDNF increase was suppressed with inhibitors for protein kinase A (PKA) or MEK/ERK. Moreover, imipramine exposure activated transcription factor cAMP response element binding protein (CREB) in a dose-dependent manner. These results suggested that imipramine induced BDNF expression through CREB activation via PKA and/or ERK pathways. Imipramine treatment in depression might exert antidepressant action through BDNF production from astrocytes, and glial BDNF expression might be a target of developing novel antidepressants.

  18. Transforming growth factor-beta induces endothelin-1 expression through activation of the Smad signaling pathway.

    PubMed

    Rodríguez-Pascual, Fernando; Reimunde, Francisco Manuel; Redondo-Horcajo, Mariano; Lamas, Santiago

    2004-11-01

    Expression of the endothelin-1 gene is subject to complex regulation by different factors, among which transforming growth factor-beta is one of the most important. We have analyzed the mechanism by which transforming growth factor-beta increases endothelin-1 expression in vascular endothelial cells. Transcriptional activation of the endothelin-1 promoter accounted for the transforming growth factor-beta-induced increase in endothelin-1 mRNA levels. Two DNA elements within the promoter are responsible for this effect: a Smad binding element and a proximal activator protein-1 site. Mutation of both elements abolished transforming growth factor-beta responsiveness. Overexpression of the Smad3 isoform strongly potentiates transforming growth factor-beta- induced endothelin-1 promoter activity in a phosphorylation-dependent manner. These results demonstrate that transforming growth factor-beta induces endothelin-1 expression by a functional cooperation between Smads and activator protein-1 through activation of the Smad signaling pathway.

  19. Growth factor gene therapy for Alzheimer disease.

    PubMed

    Tuszynski, Mark H; U, Hoi Sang; Alksne, John; Bakay, Roy A; Pay, Mary Margaret; Merrill, David; Thal, Leon J

    2002-11-15

    The capacity to prevent neuronal degeneration and death during the course of progressive neurological disorders such as Alzheimer disease (AD) would represent a significant advance in therapy. Nervous system growth factors are families of naturally produced proteins that, in animal models, exhibit extensive potency in preventing neuronal death due to a variety of causes, reversing age-related atrophy of neurons, and ameliorating functional deficits. The main challenge in translating growth factor therapy to the clinic has been delivery of growth factors to the brain in sufficient concentrations to influence neuronal function. One means of achieving growth factor delivery to the central nervous system in a highly targeted, effective manner may be gene therapy. In this article the authors summarize the development and implementation of nerve growth factor gene delivery as a potential means of reducing cell loss in AD.

  20. Differential regulation of acidic and basic fibroblast growth factor gene expression in fibroblast growth factor-treated rat aortic smooth muscle cells.

    PubMed

    Alberts, G F; Hsu, D K; Peifley, K A; Winkles, J A

    1994-08-01

    The acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF) proteins are potent vascular smooth muscle cell (SMC) mitogens that are expressed by endothelial cells and SMCs in vivo. Overexpression of these proteins in transfected cell lines can result in autocrine transformation; therefore, the precise control of fibroblast growth factor gene expression in the vessel wall may be an important mechanism regulating vascular cell growth. In the present study, we demonstrate that bFGF can induce bFGF mRNA expression, but not aFGF mRNA expression, in serum-starved rat aortic SMCs. bFGF autoinduction is maximal at 4 hours, requires de novo RNA and protein synthesis, and is mediated predominantly by a protein kinase C-dependent signaling pathway. Furthermore, aFGF treatment of rat SMCs also increases bFGF mRNA and protein expression; however, aFGF mRNA levels are only slightly modulated. These results suggest that the local release of aFGF or bFGF within the vessel wall could promote a prolonged period of elevated bFGF synthesis. This, in turn, could be of importance in the SMC hyperplasia that occurs in response to vascular injury and during atherosclerotic plaque formation.

  1. The potential role of nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 in avian cochlear and vestibular ganglia development.

    PubMed

    Bernd, P; Zhang, D; Yao, L; Rozenberg, I

    1994-12-01

    The role of the nerve growth factor family of neurotrophins in the development of cochlear and vestibular ganglia is unclear. In order to predict the potential importance of nerve growth factor, brain-derived neurotrophic factor or neurotrophin-3, we examined the expression of neurotrophin mRNA and full-length neurotrophin receptor mRNA by in-situ hybridization and reverse transcription-polymerase chain reaction, as well as whether high affinity 125I-nerve growth factor binding was present, in cochlear and vestibular ganglia of the quail at several stages of development (stages 26, 31 and 36). Nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 mRNA was detected at all ages examined, suggesting that these neurotrophins may serve an autocrine or paracrine function, especially prior to target contact. In addition, we found full-length trkA and trkC mRNA was expressed, the products of which are the functional neuronal receptors for nerve growth factor and neurotrophin-3, respectively. Although full-length trkA mRNA was found, physiologically important high affinity 125I-nerve growth factor binding was not detected. Since nerve growth factor's effects on survival and neurite outgrowth are mediated through high affinity binding, nerve growth factor may serve an as yet unidentified role in this system. Full-length trkB mRNA, the product of which is the functional neuronal receptor for brain-derived neurotrophic factor, was not detected using reverse transcription-polymerase chain reaction, however, truncated (non-catalytic) trkB was present, at least in cochlear ganglia at stage 31. It is not known what function may be subserved by these truncated receptors.

  2. Rearing Mozambique tilapia in tidally-changing salinities: Effects on growth and the growth hormone/insulin-like growth factor I axis.

    PubMed

    Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2016-08-01

    The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Growth factors from genes to clinical application

    SciTech Connect

    Sara, V.R. ); Hall, K.; Low, H. )

    1990-01-01

    The last decade has witnessed an explosion in the identification of growth factors and their receptors. This has been greatly facilitated by recombinant DNA technology, which has provided the tools not only to identify these proteins at the gene level but also to produce recombinant proteins for evaluating their biological activities. With the help of such techniques, we are moving toward an understanding of the biosynthesis of growth factors and their receptors, structure-function relationships, as well as mechanisms for intracellular signal transmission. The possibility of modifying these factors has opened new fields of clinical application. In this paper, four major areas of growth factor research are presented: the characterization of growth factor genes and their protein products, growth factor receptors and signal transduction by the receptors to mediate biological action, the biological actions of the various growth factors, and the role of growth factors in health and disease and their possible clinical application. Some of the topics covered include: structure of the IGFs and their variants; isoforms of PDGF receptor types; tyrosine kinase activation; structure of G-proteins in biological membranes; possible therapeutic application of NGF in the treatment of Parkinson's and Alzheimer's diseases; PDGF's possible role in the development of several fibroproliferative diseases and its therapeutic application in wound healing; and the possible use of angiogenic inhibitors in tumor treatment.

  4. Regulation of growth hormone (GH) receptor (GHR1 and GHR2) mRNA level by GH and metabolic hormones in primary cultured tilapia hepatocytes.

    PubMed

    Pierce, A L; Breves, J P; Moriyama, S; Uchida, K; Grau, E G

    2012-10-01

    Growth hormone (GH) regulates essential physiological functions in teleost fishes, including growth, metabolism, and osmoregulation. Recent studies have identified two clades of putative receptors for GH (GHR1 clade and GHR2 clade) in fishes, both of which are highly expressed in the liver. Moreover, the liver is an important target for the anabolic effects of GH via endocrine IGFs, and liver sensitivity to GH is modulated by metabolic hormones. We investigated the effects of GH, insulin, glucagon, cortisol and triiodothyronine on GHR1 and GHR2 mRNA levels in primary cultured tilapia hepatocytes. Physiological concentrations of GH strongly stimulated GHR2 mRNA level (0.5-50×10(-9) M), but did not affect GHR1 mRNA level. Insulin suppressed stimulation of GHR2 mRNA level by GH (10(-8)-10(-6) M). Insulin increased basal GHR1 mRNA level (10(-8)-10(-6) M). Cortisol increased basal GHR2 mRNA level (10(-7)-10(-6) M), but did not consistently affect GH-stimulated GHR2 mRNA level. Cortisol increased basal GHR1 mRNA level (10(-9)-10(-6) M). Glucagon suppressed GH-stimulated GHR2 mRNA level and increased basal GHR1 mRNA level at a supraphysiological concentration (10(-6) M). A single injection of GH (5 μg/g) increased liver GHR2 mRNA level, and insulin injection (5 μg/g) decreased both basal and GH-stimulated GHR2 mRNA levels after 6 h. In contrast, insulin and GH injection had little effect on liver GHR1 mRNA level. This study shows that GHR1 and GHR2 gene expression are differentially regulated by physiological levels of GH and insulin in tilapia primary hepatocytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. mRNA stability in mammalian cells.

    PubMed Central

    Ross, J

    1995-01-01

    This review concerns how cytoplasmic mRNA half-lives are regulated and how mRNA decay rates influence gene expression. mRNA stability influences gene expression in virtually all organisms, from bacteria to mammals, and the abundance of a particular mRNA can fluctuate manyfold following a change in the mRNA half-life, without any change in transcription. The processes that regulate mRNA half-lives can, in turn, affect how cells grow, differentiate, and respond to their environment. Three major questions are addressed. Which sequences in mRNAs determine their half-lives? Which enzymes degrade mRNAs? Which (trans-acting) factors regulate mRNA stability, and how do they function? The following specific topics are discussed: techniques for measuring eukaryotic mRNA stability and for calculating decay constants, mRNA decay pathways, mRNases, proteins that bind to sequences shared among many mRNAs [like poly(A)- and AU-rich-binding proteins] and proteins that bind to specific mRNAs (like the c-myc coding-region determinant-binding protein), how environmental factors like hormones and growth factors affect mRNA stability, and how translation and mRNA stability are linked. Some perspectives and predictions for future research directions are summarized at the end. PMID:7565413

  6. Mammalian pre-mRNA 3′ End Processing Factor CF Im68 Functions in mRNA Export

    PubMed Central

    Ruepp, Marc-David; Aringhieri, Chiara; Vivarelli, Silvia; Cardinale, Stefano; Paro, Simona; Schümperli, Daniel

    2009-01-01

    Export of mRNA from the nucleus is linked to proper processing and packaging into ribonucleoprotein complexes. Although several observations indicate a coupling between mRNA 3′ end formation and export, it is not known how these two processes are mechanistically connected. Here, we show that a subunit of the mammalian pre-mRNA 3′ end processing complex, CF Im68, stimulates mRNA export. CF Im68 shuttles between the nucleus and the cytoplasm in a transcription-dependent manner and interacts with the mRNA export receptor NXF1/TAP. Consistent with the idea that CF Im68 may act as a novel adaptor for NXF1/TAP, we show that CF Im68 promotes the export of a reporter mRNA as well as of endogenous mRNAs, whereas silencing by RNAi results in the accumulation of mRNAs in the nucleus. Moreover, CF Im68 associates with 80S ribosomes but not polysomes, suggesting that it is part of the mRNP that is remodeled in the cytoplasm during the initial stages of translation. These results reveal a novel function for the pre-mRNA 3′ end processing factor CF Im68 in mRNA export. PMID:19864460

  7. Enhanced insulin-like growth factor I gene expression in regenerating rat pancreas

    SciTech Connect

    Smith, F.E.; Rosen, K.M.; Villa-Komaroff, L.; Weir, G.C.; Bonner-Weir, S. )

    1991-07-15

    Insulin-like growth factor I (IGF-I) mRNA expression was studied after 90% partial pancreatectomy in the rat to determine whether IGF-I was associated with pancreatic regeneration. The level of IGF-I mRNA was maximally increased (4-fold above control value) 3 days after pancreatectomy, but thereafter gradually decreased, returning to control levels by 14 days after surgery. By in situ hybridization, IGF-I mRNA in both pancreatectomized and sham-operated rats was localized to capillary endothelial cells, indicating that this is the site of IGF-I expression in the normal rat pancreas. However, enhanced IGF-I mRNA expression was localized to focal areas of regeneration unique to pancreatectomized rats. In these areas, epithelial cells of proliferating ductules and individual connective tissue cells expressed IGF-I, suggesting that IGF-I may play an important role in the growth or differentiation of pancreatic tissue.

  8. [Transforming growth factor of beta-type].

    PubMed

    Stoĭka, R S

    1988-01-01

    Recent data about the structure and properties of the beta-type transforming growth factor as well as evidence about its influence on different target cells are presented. The regulatory action of the factor is shown to depend mainly on the type of tested cells, conditions of their culturing and the presence of other bioregulators of cell proliferation in the medium. The prospects of the beta-type transforming growth factor use in practice are considered.

  9. Growth factors for the treatment of ischemic brain injury (growth factor treatment).

    PubMed

    Larpthaveesarp, Amara; Ferriero, Donna M; Gonzalez, Fernando F

    2015-04-30

    In recent years, growth factor therapy has emerged as a potential treatment for ischemic brain injury. The efficacy of therapies that either directly introduce or stimulate local production of growth factors and their receptors in damaged brain tissue has been tested in a multitude of models for different Central Nervous System (CNS) diseases. These growth factors include erythropoietin (EPO), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor (IGF-1), among others. Despite the promise shown in animal models, the particular growth factors that should be used to maximize both brain protection and repair, and the therapeutic critical period, are not well defined. We will review current pre-clinical and clinical evidence for growth factor therapies in treating different causes of brain injury, as well as issues to be addressed prior to application in humans.

  10. Destabilization of survival factor MEF2D mRNA by neurotoxin in models of Parkinson's disease.

    PubMed

    Wang, Bao; Cai, Zhibiao; Lu, Fangfang; Li, Chen; Zhu, Xiaofei; Su, Linna; Gao, Guodong; Yang, Qian

    2014-09-01

    Progressive loss of dopaminergic (DA) neurons in the substantial nigra pars compacta (SNc) is an important pathological feature in Parkinson's disease (PD). Loss of transcription factor myocyte enhancer factor 2D (MEF2D), a key neuronal survival factor, has been shown to underlie the loss of DA neurons in SNc and the pathogenic process of PD. It is known that PD-associated neurotoxins reduce the level of MEF2D protein to trigger neuronal death. Although neurotoxins clearly destabilize MEF2D by post-translational mechanisms, it is not known whether regulation of MEF2D mRNA contributes to neurotoxin-induced decrease in MEF2D protein. In this work, we showed that MPP(+), the toxic metabolite of MPTP, caused a significant decrease in the half-life and total level of MEF2D mRNA in a DA neuronal cell line, SN4741 cells. Quantitative PCR analysis of the SNc DA neurons captured by immune-laser capture microdissection showed that exposure to MPTP led to a marked reduction in the level of MEF2D mRNA in SNc DA neurons compared to controls. Down-regulation of MEF2D mRNA alone reduced the viability of SN4741 cells and sensitized the cells to MPP(+)-induced toxicity. These results suggest that destabilization and reduction in MEF2D mRNA is in part responsible for neurotoxin-induced decrease in MEF2D protein and neuronal viability. Myocyte enhancer factor 2D (MEF2D) plays an important role in neuronal survival. How MEF2D mRNA is deregulated under toxic stress is unclear. We found that PD-associated neurotoxins destabilize MEF2D mRNA and reduce its level in vitro and in vivo. Reduction in MEF2D mRNA is sufficient to sensitize model cells to neurotoxin-induced toxicity, suggesting that destabilization of MEF2D mRNA is part of the mechanism by which neurotoxins trigger deregulation of neuronal survival.

  11. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  12. Diverse Functions of mRNA Metabolism Factors in Stress Defense and Aging of Caenorhabditis elegans

    PubMed Central

    Borbolis, Fivos; Roumelioti, Fani; Kapetanou, Marianna; Syntichaki, Popi

    2014-01-01

    Processing bodies (PBs) and stress granules (SGs) are related, cytoplasmic RNA-protein complexes that contribute to post-transcriptional gene regulation in all eukaryotic cells. Both structures contain translationally repressed mRNAs and several proteins involved in silencing, stabilization or degradation of mRNAs, especially under environmental stress. Here, we monitored the dynamic formation of PBs and SGs, in somatic cells of adult worms, using fluorescently tagged protein markers of each complex. Both complexes were accumulated in response to various stress conditions, but distinct modes of SG formation were induced, depending on the insult. We also observed an age-dependent accumulation of PBs but not of SGs. We further showed that direct alterations in PB-related genes can influence aging and normal stress responses, beyond their developmental role. In addition, disruption of SG-related genes had diverse effects on development, fertility, lifespan and stress resistance of worms. Our work therefore underlines the important roles of mRNA metabolism factors in several vital cellular processes and provides insight into their diverse functions in a multicellular organism. PMID:25061667

  13. Synthetic chemically modified mrna-based delivery of cytoprotective factor promotes early cardiomyocyte survival post-acute myocardial infarction.

    PubMed

    Huang, Chien-Ling; Leblond, Anne-Laure; Turner, Elizebeth C; Kumar, Arun Hs; Martin, Kenneth; Whelan, Derek; O'Sullivan, Donnchadh M; Caplice, Noel M

    2015-03-02

    To extend the temporal window for cytoprotection in cardiomyocytes undergoing apoptosis after hypoxia and myocardial infarction (MI), a synthetic chemically modified mRNA (modRNA) was used to drive delivery of insulin-like growth factor-1 (IGF1) within the area at risk in an in vivo murine model of MI. Delivery of IGF1 modRNA, with a polyethylenimine-based nanoparticle, augmented secreted and cell-associated IGF1, promoting cardiomyocyte survival and abrogating cell apoptosis under hypoxia-induced apoptosis conditions. Translation of modRNA-IGF1 was sufficient to induce downstream increases in the levels of Akt and Erk phosphorylation. Downregulation of IGF1 specific miRNA-1 and -133 but not miR-145 expression was also confirmed. As a proof of concept, intramyocardial delivery of modRNA-IGF1 but not control modRNA-GFP significantly decreased the level of TUNEL positive cells, augmented Akt phosphorylation, and decreased caspase-9 activity within the infarct border zone 24 h post-MI. These findings demonstrate the potential for an extended cytoprotective effect of transient IGF1 driven by synthetic modRNA delivery.

  14. Expression of transforming growth factor-beta 1 in normal and dyschondroplastic articular growth cartilage of the young horse.

    PubMed

    Henson, F M; Schofield, P N; Jeffcott, L B

    1997-11-01

    This study describes the distribution pattern of transforming growth factor-beta 1 (TGF-beta 1) mRNA and protein in normal pre- and post natal growth cartilage and alterations present in lesions of dyschondroplasia (osteochondrosis). TGF-beta 1 expression and immunoreactivity have been investigated by in situ hybridisation and immunolocalisation in the articular/epiphyseal growth cartilage of the lateral trochlear ridge of the distal femur. Cartilage was obtained from 19 normal Thoroughbred horses (5 prenatal and 14 post natal horses) and 15 post natal horses with dyschondroplasia (DCP). TGF-beta 1 mRNA expression and immunoreactivity were detected in the proliferative and upper hypertrophic zones in both pre- and post natal normal articular/epiphyseal cartilage. However, mRNA itself was only detected in the mid- and lower hypertrophic zones. Immunoreactivity was identified intracellularly with some nuclear staining observed. In focal lesions of DCP mRNA expression and immunoreactivity were reduced compared to normal cartilage, but strong mRNA expression was observed in the chondrocyte clusters immediately surrounding a lesion of DCP. The results described in this study demonstrate alterations in TGF-beta 1 dyschondroplastic lesions and indicate that it could be involved in the pathogenesis of this condition in the horse.

  15. [Progress of study on inhibitory effects of traditional Chinese herbs on growth factor induced proliferation of vascular smooth muscle cells].

    PubMed

    Yang, Guang; Zhang, Min-zhou; Jiang, Wei

    2005-10-01

    This paper sums up some studies in the last decade regarding the inhibitory effects of traditional Chinese herbs on growth factor induced proliferation of vascular smooth muscle cell (VSMC) via directly measuring the mRNA expression of its growth factors and the related receptors by electron microscope, immunohistochemistry, blot and hybridization in situ.

  16. Angiogenic growth factors in preinvasive breast disease.

    PubMed

    Heffelfinger, S C; Miller, M A; Yassin, R; Gear, R

    1999-10-01

    Recently, we showed that preinvasive breast pathologies, such as usual hyperplasia, atypical hyperplasia, and carcinoma in situ, have an increased vascularity when compared with normal breast tissue (S. C. Heffelfinger et al., Clinical Cancer Res., 2: 1873-1878, 1996). To understand the mechanism of this increased vascularity, we examined by immunohistochemistry each of these pathological lesions for the expression of angiogenic growth factors. These studies showed that normal breast tissue contains numerous angiogenic agents, particularly vascular endothelial cell growth factor and basic fibroblast growth factor. At the transition from normal epithelium to proliferative breast disease, insulin-like growth factor (IGF) II expression was increased, primarily in the stroma and infiltrating leukocytes. However, among proliferative tissues, IGF I decreased with increasing vascularity. Finally, both epithelial vascular endothelial growth factor and epithelial and leukocytic platelet-derived endothelial cell growth factor increased at the transition to carcinoma in situ, whereas stromal and leukocytic basic fibroblast growth factor were elevated only in invasive carcinoma. Therefore, during histological progression there is also a complex progression of angiogenic growth factors. For CIS, two forms of vascularity are found: stromal microvascular density (MVD), and vascularity associated with the epithelial basement membrane (vascular score). There was 35% discordance between these two measurement systems. Among carcinoma in situ cases, decreases in stromal IGF II were associated with increasing vascular scores but not MVD, and increases in platelet-derived endothelial cell growth factor were associated with increasing MVD but not the vascular score. The presence of discordance and differential association with specific angiogenic agents suggests that these two forms of vascularity may be differentially regulated.

  17. Platelet Activating Factor: A Growth Factor for Breast Cancer

    DTIC Science & Technology

    2006-09-01

    Factor for Breast Cancer PRINCIPAL INVESTIGATOR: Larry W. Daniel, Ph.D. CONTRACTING ORGANIZATION: Wake Forest University...A Growth Factor for Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-04-1-0682 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Larry W...Relevance: If PAF is found to be a growth and angiogenic factor for breast cancer cells, these studies can be followed up by in vivo studies in nude

  18. Thrombopoietin is a growth factor for rat hepatic progenitors.

    PubMed

    Schmelzer, Eva; Deiwick, Andrea; Bruns, Helge; Fiegel, Henning C; Bader, Augustinus

    2008-03-01

    The liver is the primary site of hematopoiesis during fetal development; it has been shown that thrombopoietin (TPO) produced by the liver during fetal development is a major regulator of megakaryocytopoiesis. As maximum liver growth and hematopoiesis occur simultaneously, we hypothesized that TPO may act as a growth factor for hepatic progenitors. Therefore, the influence of TPO on the proliferation of fetal hepatic progenitors in vitro compared with that of adult hepatocytes was analyzed. The expression of the TPO receptor, c-mpl, was investigated in fetal and adult liver. Cell proliferation was measured by bromodeoxyuridine incorporation and total cell counts. TPO and c-mpl gene expression was investigated by reverse transcription polymerase chain reaction. The cell surface expression of c-mpl was analyzed in fetal and adult human liver by immunohistochemistry. Hepatic progenitors of fetal and adult liver but not hepatocytes expressed the TPO receptor, c-mpl, on the cell surface. Fetal hepatic progenitors expressed mRNA for TPO and its receptor. TPO stimulated cell proliferation and increased cell numbers of cultured rat fetal hepatic progenitors but not adult hepatocytes. We conclude that TPO acts in addition to its known role in megakaryocytopoiesis as a growth factor for hepatic progenitors but not hepatocytes in vitro; thus, TPO represents a growth factor for hepatic progenitors during fetal liver development.

  19. Mutual effects of growth hormone and growth factors on avian skeletal muscle satellite cells.

    PubMed

    Hodik, V; Mett, A; Halevy, O

    1997-10-01

    Chicken growth hormone (cGH) has been shown to affect chicken skeletal muscle satellite cell proliferation and differentiation in vitro. This study describes the interactions of cGH with basic fibroblast growth factor (bFGF) and insulin-like growth factor I (IGF-I). Both cGH and bFGF induced cGH receptor (cGH-R) gene expression as well as that of the avian FGF receptor, FREK, when added at low concentrations to satellite cells. bFGF caused a rapid induction of cGH-R mRNA. Combinations of low levels of bFGF and cGH caused a further increase in receptor mRNA expression levels, relative to that caused by each peptide alone, and their effect on DNA synthesis was synergistic. However, combinations of cGH and bFGF at high concentrations decreased cGH-R and FREK mRNA levels and DNA synthesis in a dose-dependent manner. These results imply that the mutual effects of bFGF and cGH on satellite cell proliferation are receptor-mediated and that each peptide regulates both receptors gene expression. IGF-I induced DNA synthesis in satellite cells but did not affect cGH-R gene expression at any of the concentrations tested. Coincubation of 3.5 ng/ml cGH and various concentrations of IGF-I did not significantly change DNA synthesis relative to the effect of cGH alone. However, combinations with high levels of cGH abolished it. Similar time-course (up to 6 hr) induction of DNA synthesis in serum-starved cells was observed in the presence of cGH or IGF-I, suggesting that cGH affects satellite cell proliferation in an IGF-I-independent manner.

  20. The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation.

    PubMed

    Deprost, Dorothée; Yao, Lei; Sormani, Rodnay; Moreau, Manon; Leterreux, Guillaume; Nicolaï, Maryse; Bedu, Magali; Robaglia, Christophe; Meyer, Christian

    2007-09-01

    Plants, unlike animals, have plastic organ growth that is largely dependent on environmental information. However, so far, little is known about how this information is perceived and transduced into coherent growth and developmental decisions. Here, we report that the growth of Arabidopsis is positively correlated with the level of expression of the TARGET OF RAPAMYCIN (TOR) kinase. Diminished or augmented expression of the AtTOR gene results in a dose-dependent decrease or increase, respectively, in organ and cell size, seed production and resistance to osmotic stress. Strong downregulation of AtTOR expression by inducible RNA interference also leads to a post-germinative halt in growth and development, which phenocopies the action of the plant hormone abscisic acid, to an early senescence and to a reduction in the amount of translated messenger RNA. Thus, we propose that the AtTOR kinase is one of the contributors to the link between environmental cues and growth processes in plants.

  1. Regulation of intestinal epithelial cell growth by transforming growth factor type. beta

    SciTech Connect

    Barnard, J.A.; Beauchamp, R.D.; Coffey, R.J.; Moses, H.L. )

    1989-03-01

    A nontransformed rat jejunal crypt cell line (IEC-6) expresses transforming growth factor type {beta}1 (TGF-{beta}1) mRNA, secretes latent {sup 125}I-labeled TGF-{beta}1 to specific, high-affinity cell surface receptors. IEC-6 cell growth is markedly inhibited by TGF-{beta}1 and TGF-{beta}2 with half-maximal inhibition occurring between 0.1 and 1.0 ng of TGF-{beta}1 per ml. TGF-{beta}1-mediated growth inhibition is not associated with the appearance of biochemical markers of enterocyte differentiation such as alkaline phosphatase expression and sucrase activity. TGF-{beta}1 increases steady-state levels of its own mRNA expression within 8 hr of treatment of rapidly growing IEC-6 cells. In freshly isolated rat jejunal enterocytes that are sequentially eluted from the crypt villus axis, TGF-{beta}1 mRNA expression is most abundant in terminally differentiated villus tip cells and least abundant in the less differentiated, mitotically active crypt cells. The authors conclude that TGF-{beta}1 is an autoregulated growth inhibitor in IEC-6 cells that potentially functions in an autocrine manner. In the rat jejunal epithelium, TGF-{beta}1 expression is most prominently localized to the villus tip--i.e., the region of the crypt villus unit that is characterized by the terminally differentiated phenotype. These data suggest that TGF-{beta}1 may function in coordination of the rapid cell turnover typical for the intestinal epithelium.

  2. The role of fibroblast growth factors in tumor growth.

    PubMed

    Korc, M; Friesel, R E

    2009-08-01

    Biological processes that drive cell growth are exciting targets for cancer therapy. The fibroblast growth factor (FGF) signaling network plays a ubiquitous role in normal cell growth, survival, differentiation, and angiogenesis, but has also been implicated in tumor development. Elucidation of the roles and relationships within the diverse FGF family and of their links to tumor growth and progression will be critical in designing new drug therapies to target FGF receptor (FGFR) pathways. Recent studies have shown that FGF can act synergistically with vascular endothelial growth factor (VEGF) to amplify tumor angiogenesis, highlighting that targeting of both the FGF and VEGF pathways may be more efficient in suppressing tumor growth and angiogenesis than targeting either factor alone. In addition, through inducing tumor cell survival, FGF has the potential to overcome chemotherapy resistance highlighting that chemotherapy may be more effective when used in combination with FGF inhibitor therapy. Furthermore, FGFRs have variable activity in promoting angiogenesis, with the FGFR-1 subgroup being associated with tumor progression and the FGFR-2 subgroup being associated with either early tumor development or decreased tumor progression. This review highlights the growing knowledge of FGFs in tumor cell growth and survival, including an overview of FGF intracellular signaling pathways, the role of FGFs in angiogenesis, patterns of FGF and FGFR expression in various tumor types, and the role of FGFs in tumor progression.

  3. Insulin-Like Growth Factor System and Sporadic Malignant Melanoma

    PubMed Central

    Capoluongo, Ettore

    2011-01-01

    Insulin and insulin-like growth factors (IGFs) are important regulators of energy metabolism and growth. Several findings have outlined an important role played by this family of molecules in both tumor maintenance and development. Despite the established contribution of the IGF system in carcinogenesis, little and contrasting data have been reported concerning the intertwined relationships between melanoma and this family of molecules. The present minireview aims to summarize the main topics and evidence concerning this malignant skin cancer, with a focus on the following: i) melanoma and cell proliferation effects induced by the IGF system, ii) in vitro and in vivo experimental data, and iii) targeting studies. Because of consistent findings regarding the role of the IGF-1 receptor in the modulation of IGF-1 activity, possible therapeutic strategies combining the use of antisense oligonucleotides against IGF-1 receptor mRNA could be applied in the future. PMID:21224039

  4. Hepatocyte Growth Factor Regulates Angiotensin Converting Enzyme Expression*

    PubMed Central

    Day, Regina M.; Thiel, Gerald; Lum, Julie; Chévere, Rubén D.; Yang, Yongzhen; Stevens, Joanne; Sibert, Laura; Fanburg, Barry L.

    2008-01-01

    Hepatocyte growth factor (HGF) is a mitogen, morphogen, and motogen that functions in tissue healing and acts as an anti-fibrotic factor. The mechanism for this is not well understood. Recent studies implicate somatic angiotensin-converting enzyme (ACE) in fibrosis. We examined the effects of HGF on ACE expression in bovine pulmonary artery endothelial cells (BPAEC). Short term treatment of BPAEC with HGF transiently increased both ACE mRNA (3 h) and activity (24 h), as determined by ACE protease assays and reverse transcription-PCR. Incubation of BPAEC with HGF for longer periods suppressed ACE mRNA (6 h) and activity (72 h). In contrast, phorbol ester (PMA) treatment produced sustained increase in ACE mRNA and activity. We examined the short term molecular effects of HGF on ACE using PMA for comparison. HGF and PMA increased transcription from a luciferase reporter with the core ACE promoter, which contains a composite binding site for SP1/3 and Egr-1. Immunocytochemistry and electrophoretic mobility shift assay showed that both HGF and PMA increased Egr-1 binding. HGF also increased SP3 binding, as measured by EMSA. However, HGF and PMA increased the cellular activity of only Egr-1, not SP3, as measured by luciferase reporter assays. Deletion of the Egr-1 site in the reporter construct completely abrogated HGF-induced transcription but only ~50% of PMA-induced activity. Expression of dominant negative Egr-1 and SP3 blocked up-regulation of the ACE promoter by HGF but only reduced up-regulation by PMA. These results show that HGF transiently increases gene transcription of ACE via activation of Egr-1, whereas PMA regulation involves Egr-1 and additional factor(s). PMID:14679188

  5. An unnatural PIP simulates growth factor signaling.

    PubMed

    Swan, Laura

    2009-11-25

    In this issue of Chemistry & Biology, Laketa et al. describe the synthesis of a membrane permeant phosphoinositide lipid that acts to stimulate PI(3,4,5)P(3)-dependent signaling without the need of growth factor stimulation.

  6. New Clue Found to Growth Factor Action.

    ERIC Educational Resources Information Center

    Hoffman, Michelle

    1991-01-01

    Discussed is the discovery which may help to explain epidermal growth factor effects on the cell skeleton. The role of a protein called profilin in the regulation of the microfilament system is described. (CW)

  7. New Clue Found to Growth Factor Action.

    ERIC Educational Resources Information Center

    Hoffman, Michelle

    1991-01-01

    Discussed is the discovery which may help to explain epidermal growth factor effects on the cell skeleton. The role of a protein called profilin in the regulation of the microfilament system is described. (CW)

  8. [Study on the expressions of basic fibroblast growth factor and nervous growth factor genes in rat cerebral concussion].

    PubMed

    Peng, Rui-yun; Gao, Ya-bing; Xiao, Xing-yi; Wang, De-wen; Chen, Hao-yu; Wu, Xiao-hong; Liu, Jie; Hu, Wen-hua; Cai, Bao-ren

    2003-04-01

    To study the expressions of basic fibroblast growth factor (bFGF) and nervous growth factor(NGF) genes in rat cerebral concussion. Eighty Wistar male rats were used for animal model of cerebral concussion, which were sacrificed on 1, 3, 7, 14 and 30 days after injury and the brain tissue was taken out. The expressions of bFGF and NGF genes were studied in the course of cerebral concussion by means of immunohistochemistry and in situ hybridization. Rats in 100 g group were seen the clinical manifestation for typical cerebral concussion. The protein and mRNA of bFGF were increased on day 1, obtained at peak on day 3-7, decreased on day 14 and also increased on day 30 compared with controls. The positive area was seen in the plasma of neurons in cerebral cortex, hippocampus, thalamus and cerebellum. NGF protein and mRNA showed strong positive and increased in the plasma of neurons in cerebral cortex, hippocampus, thalamus and cerebellum on day 1, and they were continuously positive but gradually decreased within 30 days after injury. The expression of bFGF gene participates in the course of cerebral concussion, might play an important role in the nervous cells degeneration and necrosis; NGF gene expression participates in the whole course of cerebral concussion, especially in the early phase.

  9. Gonadotropin-induced changes in oviducal mRNA expression levels of sex steroid hormone receptors and activin-related signaling factors in the alligator.

    PubMed

    Moore, Brandon C; Forouhar, Sara; Kohno, Satomi; Botteri, Nicole L; Hamlin, Heather J; Guillette, Louis J

    2012-01-15

    Oviducts respond to hormonal cues from ovaries with tissue proliferation and differentiation in preparation of transporting and fostering gametes. These responses produce oviducal microenvironments conducive to reproductive success. Here, we investigated changes in circulating plasma sex steroid hormones concentrations and ovarian and oviducal mRNA expression to an in vivo gonadotropin (FSH) challenge in sexually immature, five-month-old alligators. Further, we investigated differences in these observed responses between alligators hatched from eggs collected at a heavily-polluted (Lake Apopka, FL) and minimally-polluted (Lake Woodruff, FL) site. In oviducts, we measured mRNA expression of estrogen, progesterone, and androgen receptors and also beta A and B subunits which homo- or heterodimerize to produce the transforming growth factor activin. In comparison, minimal inhibin alpha subunit mRNA expression suggests that these oviducts produce a primarily activin-dominated signaling milieu. Ovaries responded to a five-day FSH challenge with increased expression of steroidogenic enzyme mRNA which was concomitant with increased circulating sex steroid hormone concentrations. Oviducts in the FSH-challenged Lake Woodruff alligators increased mRNA expression of progesterone and androgen receptors, proliferating cell nuclear antigen, and the activin signaling antagonist follistatin. In contrast, Lake Apopka alligators displayed a diminished increase in ovarian CYP19A1 aromatase expression and no increase in oviducal AR expression, as compared to those observed in Lake Woodruff alligators. These results demonstrate that five-month-old female alligators display an endocrine-responsive ovarian-oviducal axis and environmental pollution exposure may alter these physiological responses.

  10. Gonadotropin-induced changes in oviducal mRNA expression levels of sex steroid hormone receptors and activin-related signaling factors in the alligator

    PubMed Central

    Moore, Brandon C.; Forouhar, Sara; Kohno, Satomi; Botteri, Nicole L.; Hamlin, Heather J.; Guillette, Louis J.

    2011-01-01

    Oviducts respond to hormonal cues from ovaries with tissue proliferation and differentiation in preparation of transporting and fostering gametes. These responses produce oviducal microenvironments conducive to reproductive success. Here we investigated changes in circulating plasma sex steroid hormones concentrations and ovarian and oviducal mRNA expression to an in vivo gonadotropin (FSH) challenge in sexually immature, five-month-old alligators. Further, we investigated differences in these observed responses between alligators hatched from eggs collected at a heavily-polluted (Lake Apopka, FL) and minimally-polluted (Lake Woodruff, FL) site. In oviducts, we measured mRNA expression of estrogen, progesterone, and androgen receptors and also beta A and B subunits which homo- or heterodimerize to produce the transforming growth factor activin. In comparison, minimal inhibin alpha subunit mRNA expression suggests that these oviducts produce a primarily activin-dominated signaling milieu. Ovaries responded to a five-day FSH challenge with increased expression of steroidogenic enzyme mRNA which was concomitant with increased circulating sex steroid hormone concentrations. Oviducts in the FSH-challenged Lake Woodruff alligators increased mRNA expression of progesterone and androgen receptors, proliferating cell nuclear antigen, and the activin signaling antagonist follistatin. In contrast, Lake Apopka alligators displayed a diminished increase in ovarian CYP19A1 aromatase expression and no increase in oviducal AR expression, as compared to those observed in Lake Woodruff alligators. These results demonstrate that five-month-old female alligators display an endocrine-responsive ovarian-oviducal axis and environmental pollution exposure may alter these physiological responses. PMID:22154572

  11. The function of vascular endothelial growth factor.

    PubMed

    Nieves, Bonnie J; D'Amore, Patricia A; Bryan, Brad A

    2009-01-01

    Vascular endothelial growth factor (VEGF) is considered the master regulator of angiogenesis during growth and development, as well as in disease states such as cancer, diabetes, and macular degeneration. This review details our current understanding of VEGF signaling and discusses the benefits and unexpected side effects of promising anti-angiogenic therapeutics that are currently being used to inhibit neovacularization in tumors.

  12. The translation initiation factor DAP5 promotes IRES-driven translation of p53 mRNA.

    PubMed

    Weingarten-Gabbay, S; Khan, D; Liberman, N; Yoffe, Y; Bialik, S; Das, S; Oren, M; Kimchi, A

    2014-01-30

    Translational regulation of the p53 mRNA can determine the ratio between p53 and its N-terminal truncated isoforms and therefore has a significant role in determining p53-regulated signaling pathways. Although its importance in cell fate decisions has been demonstrated repeatedly, little is known about the regulatory mechanisms that determine this ratio. Two internal ribosome entry sites (IRESs) residing within the 5'UTR and the coding sequence of p53 mRNA drive the translation of full-length p53 and Δ40p53 isoform, respectively. Here, we report that DAP5, a translation initiation factor shown to positively regulate the translation of various IRES containing mRNAs, promotes IRES-driven translation of p53 mRNA. Upon DAP5 depletion, p53 and Δ40p53 protein levels were decreased, with a greater effect on the N-terminal truncated isoform. Functional analysis using bicistronic vectors driving the expression of a reporter gene from each of these two IRESs indicated that DAP5 preferentially promotes translation from the second IRES residing in the coding sequence. Furthermore, p53 mRNA expressed from a plasmid carrying this second IRES was selectively shifted to lighter polysomes upon DAP5 knockdown. Consequently, Δ40p53 protein levels and the subsequent transcriptional activation of the 14-3-3σ gene, a known target of Δ40p53, were strongly reduced. In addition, we show here that DAP5 interacts with p53 IRES elements in in vitro and in vivo binding studies, proving for the first time that DAP5 directly binds a target mRNA. Thus, through its ability to regulate IRES-dependent translation of the p53 mRNA, DAP5 may control the ratio between different p53 isoforms encoded by a single mRNA.

  13. Bud-Localization of CLB2 mRNA Can Constitute a Growth Rate Dependent Daughter Sizer

    PubMed Central

    Spiesser, Thomas W.; Kühn, Clemens; Krantz, Marcus; Klipp, Edda

    2015-01-01

    Maintenance of cellular size is a fundamental systems level process that requires balancing of cell growth with proliferation. This is achieved via the cell division cycle, which is driven by the sequential accumulation and destruction of cyclins. The regulatory network around these cyclins, particularly in G1, has been interpreted as a size control network in budding yeast, and cell size as being decisive for the START transition. However, it is not clear why disruptions in the G1 network may lead to altered size rather than loss of size control, or why the S-G2-M duration also depends on nutrients. With a mathematical population model comprised of individually growing cells, we show that cyclin translation would suffice to explain the observed growth rate dependence of cell volume at START. Moreover, we assess the impact of the observed bud-localisation of the G2 cyclin CLB2 mRNA, and find that localised cyclin translation could provide an efficient mechanism for measuring the biosynthetic capacity in specific compartments: The mother in G1, and the growing bud in G2. Hence, iteration of the same principle can ensure that the mother cell is strong enough to grow a bud, and that the bud is strong enough for independent life. Cell sizes emerge in the model, which predicts that a single CDK-cyclin pair per growth phase suffices for size control in budding yeast, despite the necessity of the cell cycle network around the cyclins to integrate other cues. Size control seems to be exerted twice, where the G2/M control affects bud size through bud-localized translation of CLB2 mRNA, explaining the dependence of the S-G2-M duration on nutrients. Taken together, our findings suggest that cell size is an emergent rather than a regulatory property of the network linking growth and proliferation. PMID:25910075

  14. Electroacupuncture-regulated neurotrophic factor mRNA expression in the substantia nigra of Parkinson's disease rats.

    PubMed

    Wang, Shuju; Fang, Jianqiao; Ma, Jun; Wang, Yanchun; Liang, Shaorong; Zhou, Dan; Sun, Guojie

    2013-02-25

    Acupuncture for the treatment of Parkinson's disease has a precise clinical outcome. This study investigated the effect of electroacupuncture at Fengfu (GV16) and Taichong (LR3) acupoints in rat models of Parkinson's disease induced by subcutaneous injection of rotenone into rat neck and back. Reverse transcription-PCR demonstrated that brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression was significantly increased in the substantia nigra of rat models of Parkinson's disease, and that abnormal behavior of rats was significantly improved following electroacupuncture treatment. These results indicated that electroacupuncture treatment upregulated brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression in the substantia nigra of rat models of Parkinson's disease. Thus, electroacupuncture may be useful in the treatment of Parkinson's disease.

  15. Placental growth factor and vascular endothelial growth factor receptor-2 in human lung development.

    PubMed

    Janér, Joakim; Andersson, Sture; Haglund, Caj; Karikoski, Riitta; Lassus, Patrik

    2008-08-01

    We examined the pulmonary expression of 2 proangiogenic factors, namely, placental growth factor and vascular endothelial growth factor receptor-2, during lung development and acute and chronic lung injury in newborn infants. Six groups were included in an immunohistochemical study of placental growth factor and vascular endothelial growth factor receptor-2, that is, 9 fetuses, 4 preterm and 8 term infants without lung injury who died soon after birth, 5 preterm infants with respiratory distress syndrome of <2 days and 7 with respiratory distress syndrome of >10 days, and 6 with bronchopulmonary dysplasia. Placental growth factor concentrations in tracheal aspirate fluid were measured in 70 samples from 20 preterm infants during the first postnatal week. In immunohistochemical analyses, placental growth factor staining was seen in bronchial epithelium and macrophages in all groups. Distal airway epithelium positivity was observed mostly in fetuses and in preterm infants who died soon after birth. Vascular endothelial growth factor receptor-2 staining was seen in vascular endothelium in all groups and also in lymphatic endothelium in fetuses. Vascular endothelial growth factor receptor-2 staining in arterial endothelium was associated with higher and staining in venous endothelium with lower gestational age. In capillaries, less vascular endothelial growth factor receptor-2 staining was seen in bronchopulmonary dysplasia. The mean placental growth factor protein concentration in tracheal aspirate fluid during the first postnatal week was 0.64 +/- 0.42 pg/mL per IgA-secretory component unit. Concentrations during the first postnatal week were stable. Lower placental growth factor concentrations correlated with chorioamnionitis and lactosyl ceramide positivity. The vascular endothelial growth factor receptor-2 staining pattern seems to reflect ongoing differentiation and activity of different endothelia. Lower vascular endothelial growth factor receptor-2 expression

  16. Cancer cells. 3: Growth factors and transformation

    SciTech Connect

    Feramisco, J.; Ozanne, B.; Stiles, C.

    1985-01-01

    This book contains over 50 papers. Some of the titles are: Structure of Human Epidermal Growth Factor and Expression of Normal and Variant mRNAs in Epdermoid Carcinoma Cells; Tyrosine Kinase Activity Associated with the v-erb-B Gene Product; Cloning and Characterization of Human Epidermal Growth Factor-Receptor Gene Sequences in A431 Carcinoma Cells; Anti-oncogenes and the Suppression of Tumor Formation; and Normal Human sis/PDGF-2 Gene Expression Induces Cellular Transformation.

  17. Growth factors and growth factor receptors in the hippocampus. Role in plasticity and response to injury.

    PubMed

    Nieto-Sampedro, M; Bovolenta, P

    1990-01-01

    Various growth factors are present in the hippocampal formation and appear responsible for the prominent plasticity of this brain area. Although hormone-like growth-promoting polypeptides are the best known, recent studies emphasize the importance in the growth response of molecules such as laminin proteoglycans, neurotransmitters and growth inhibitors. The progress and problems in the study of these substances are reviewed.

  18. Gastrointestinal Spatiotemporal mRNA Expression of Ghrelin vs Growth Hormone Receptor and New Growth Yield Machine Learning Model Based on Perturbation Theory.

    PubMed

    Ran, Tao; Liu, Yong; Li, Hengzhi; Tang, Shaoxun; He, Zhixiong; Munteanu, Cristian R; González-Díaz, Humberto; Tan, Zhiliang; Zhou, Chuanshe

    2016-07-27

    The management of ruminant growth yield has economic importance. The current work presents a study of the spatiotemporal dynamic expression of Ghrelin and GHR at mRNA levels throughout the gastrointestinal tract (GIT) of kid goats under housing and grazing systems. The experiments show that the feeding system and age affected the expression of either Ghrelin or GHR with different mechanisms. Furthermore, the experimental data are used to build new Machine Learning models based on the Perturbation Theory, which can predict the effects of perturbations of Ghrelin and GHR mRNA expression on the growth yield. The models consider eight longitudinal GIT segments (rumen, abomasum, duodenum, jejunum, ileum, cecum, colon and rectum), seven time points (0, 7, 14, 28, 42, 56 and 70 d) and two feeding systems (Supplemental and Grazing feeding) as perturbations from the expected values of the growth yield. The best regression model was obtained using Random Forest, with the coefficient of determination R(2) of 0.781 for the test subset. The current results indicate that the non-linear regression model can accurately predict the growth yield and the key nodes during gastrointestinal development, which is helpful to optimize the feeding management strategies in ruminant production system.

  19. Engineered proteins with Pumilio/fem-3 mRNA binding factor scaffold to manipulate RNA metabolism.

    PubMed

    Wang, Yang; Wang, Zefeng; Tanaka Hall, Traci M

    2013-08-01

    Pumilio/fem-3 mRNA binding factor proteins are characterized by a sequence-specific RNA-binding domain. This unique single-stranded RNA recognition module, whose sequence specificity can be reprogrammed, has been fused with functional modules to engineer protein factors with various functions. We summarize the advances made with respect to developing RNA regulatory tools, as well as opportunities for the future.

  20. Fibroblast growth factor-1-inducible gene FR-17 encodes a nonmuscle alpha-actinin isoform.

    PubMed

    Hsu, D K; Guo, Y; Alberts, G F; Peifley, K A; Winkles, J A

    1996-05-01

    Polypeptide growth factor binding to cell surface receptors activates a cytoplasmic signaling cascade that ultimately promotes the expression of specific nuclear genes. As an approach to investigate the molecular mechanism of fibroblast growth factor (FGF)-1 mitogenic signaling, we have begun to identify and characterize FGF-1-inducible genes in murine NIH 3T3 cells. Here we report that one of these genes, termed FGF-regulated (FR)-17, is predicted to encode a nonmuscle isoform of alpha-actinin, an actin cross-linking protein found along microfilaments and in focal adhesion plaques. FGF-1 induction of alpha-actinin mRNA expression is first detectable at 2 h after mitogen addition and is dependent on the novo RNA and protein synthesis. Maximal alpha-actinin mRNA expression, corresponding to an approximately nineteenfold level of induction, is present after 12 h of FGF-1 stimulation. Western blot analysis indicated that FGF-1-stimulated cells also produce an increased amount of alpha-actinin protein. The FGF-1-related mitogen FGF-2, calf serum, several of the polypeptide growth factors present in serum, and the tumor promoter phorbol myristate acetate can also induce alpha-actinin mRNA expression. Finally, nonmuscle alpha-actinin mRNA is expressed in vivo in a tissue-specific manner, with relatively high levels detected in adult mouse intestine and kidney. These results indicate that nonmuscle alpha-actinin is a serum-, polypeptide growth factor-, and tumor promoter-inducible gene in mouse fibroblasts.

  1. Alterations of growth plate and abnormal insulin-like growth factor I metabolism in growth-retarded hypokalemic rats: effect of growth hormone treatment.

    PubMed

    Gil-Peña, Helena; Garcia-Lopez, Enrique; Alvarez-Garcia, Oscar; Loredo, Vanessa; Carbajo-Perez, Eduardo; Ordoñez, Flor A; Rodriguez-Suarez, Julian; Santos, Fernando

    2009-09-01

    Hypokalemic tubular disorders may lead to growth retardation which is resistant to growth hormone (GH) treatment. The mechanism of these alterations is unknown. Weaning female rats were grouped (n = 10) in control, potassium-depleted (KD), KD treated with intraperitoneal GH at 3.3 mg x kg(-1) x day(-1) during the last week (KDGH), and control pair-fed with KD (CPF). After 2 wk, KD rats were growth retarded compared with CPF rats, the osseous front advance (+/-SD) being 67.07 +/- 10.44 and 81.56 +/- 12.70 microm/day, respectively. GH treatment did not accelerate growth rate. The tibial growth plate of KD rats had marked morphological alterations: lower heights of growth cartilage (228.26 +/- 23.58 microm), hypertrophic zone (123.68 +/- 13.49 microm), and terminal chondrocytes (20.8 +/- 2.39 microm) than normokalemic CPF (264.21 +/- 21.77, 153.18 +/- 15.80, and 24.21 +/- 5.86 microm). GH administration normalized these changes except for the distal chondrocyte height. Quantitative PCR of insulin-like growth factor I (IGF-I), IGF-I receptor, and GH receptor genes in KD growth plates showed downregulation of IGF-I and upregulation of IGF-I receptor mRNAs, without changes in their distribution as analyzed by immunohistochemistry and in situ hybridization. GH did not further modify IGF-I mRNA expression. KD rats had normal hepatic IGF-I mRNA levels and low serum IGF-I values. GH increased liver IGF-I mRNA, but circulating IGF-I levels remained reduced. This study discloses the structural and molecular alterations induced by potassium depletion on the growth plate and shows that the lack of response to GH administration is associated with persistence of the disturbed process of chondrocyte hypertrophy and depressed mRNA expression of local IGF-I in the growth plate.

  2. Astragalosides promote angiogenesis via vascular endothelial growth factor and basic fibroblast growth factor in a rat model of myocardial infarction

    PubMed Central

    YU, JUN-MIN; ZHANG, XIAO-BO; JIANG, WEN; WANG, HUI-DONG; ZHANG, YI-NA

    2015-01-01

    The aim of the present study was to evaluate the effect of astragalosides (ASTs) on angiogenesis, as well as the expression of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) following myocardial infarction (MI). MI was induced in rats by ligation of the left coronary artery. Twenty-four hours after surgery, the rats were divided into low-dose, high-dose, control and sham surgery groups (n=8 per group). The low- and high-dose groups were treated with ASTs (2.5 and 10 mg/kg/day, respectively, via intraperitoneal injection), while, the control and sham surgery group rats received saline. Serum levels, and mRNA and protein expression levels of VEGF and bFGF, as well as the microvessel density (MVD) were determined four weeks post-treatment. Twenty-four hours post-surgery, VEGF and bFGF serum levels were observed to be comparable between the groups; while at four weeks, the VEGF and bFGF levels were higher in the AST-treated rats (P<0.01). Similarly, VEGF and bFGF mRNA and protein expression levels were higher following AST treatment (P<0.05). No difference in VEGF mRNA expression between the low- and high-dose groups was noted, however, an increase in the bFGF expression levels was detected in the high-dose group. Newly generated blood vessels were observed following MI, with a significant increase in MVD observed in the AST-treated groups (P<0.05). AST promotes angiogenesis of the heart and increases VEGF and bFGF expression levels. Thus, it is hypothesized that increased VEGF and bFGF levels may contribute to the AST-induced increase in angiogenesis in rat models of MI. PMID:26352430

  3. Insulin-like growth factor 1 and hair growth.

    PubMed

    Su, H Y; Hickford, J G; Bickerstaffe, R; Palmer, B R

    1999-11-01

    Insulin-like growth factor 1 (IGF-1) has been identified as an important growth factor in many biological systems.[1] It shares considerable structural homology with insulin and exerts insulin-like effects on food intake and glucose metabolism. Recently it has been suggested to play a role in regulating cellular proliferation and migration during the development of hair follicles. [2,3] To exert its biological effects, the IGF-1 is required to activate cells by binding to specific cell-surface receptors. The type I IGF receptor (IGF-1R) is the only IGF receptor to have IGF-mediated signaling functions.[1] In circulation, this growth factor mediates endocrine action of growth hormone (GH) on somatic growth and is bound to specific binding proteins (BPs). The latter control IGF transport, efflux from vascular compartments and association with cell surface receptors.[4] In tissues, IGF-1 is produced by mesenchymal type cells and acts in a paracrine and autocrine fashion by binding to the IGF-1R. This binding activates the receptor tyrosine kinase (RTK) that triggers the downstream responses and finally stimulates cell division.[5] IGF-1 may therefore be able to stimulate the proliferation of hair follicle cells through cellular signaling pathways of its receptors. Local infusion of IGF-1 into sheep has been reported to be capable of stimulating protein synthesis in the skin.[6] It may also increase the production of wool keratin. Recently, transgenic mice overexpressing IGF-1 in the skin have been shown to have earlier hair follicle development than controls.[7] In addition, this growth factor plays an important role in many cell types as a survival factor to prevent cell death.[8] This anti-apoptotic function of IGF-1 may be important to the development of follicle cells as follicles undergo a growth cycle where the regressive, catagen phase is apoptosis driven. In this review, the effects of IGF-1 on follicle cell proliferation and differentiation are discussed. In

  4. Co-induction of hepatic IGF-I and progranulin mRNA by growth hormone in tilapia, Oreochromis mossambiccus

    USDA-ARS?s Scientific Manuscript database

    Like IGF-I, progranulin (pgrn) is a growth factor involved in tumorigenesis and wound healing. We report here the identification and characterization of pgrn cDNA in tilapia and the regulation of its expression by growth hormone(GH). The tilapia pgrn cDNA was cloned by RT-PCR ampliWcation, using g...

  5. Effect of transforming growth factor-β1 on human intrahepatic cholangiocarcinoma cell growth

    PubMed Central

    Shimizu, Tetsuya; Yokomuro, Shigeki; Mizuguchi, Yoshiaki; Kawahigashi, Yutaka; Arima, Yasuo; Taniai, Nobuhiko; Mamada, Yasuhiro; Yoshida, Hiroshi; Akimaru, Koho; Tajiri, Takashi

    2006-01-01

    AIM: To elucidate the biological effects of transforming growth factor-β1 (TGF-β1) on intrahepatic cholan-giocarcinoma (ICC). METHODS: We investigated the effects of TGF-β1 on human ICC cell lines (HuCCT1, MEC, and HuH-28) by monitoring the influence of TGF-β1 on tumor growth and interleukin-6 (IL-6) expression in ICC cells. RESULTS: All three human ICC cell lines produced TGF-β1 and demonstrated accelerated growth in the presence of TGF-β1 with no apoptotic effect. Studies on HuCCT1 revealed a TGF-β1-induced stimulation of the expression of TGF-β1, as well as a decrease in TGF-β1 mRNA expression induced by neutralizing anti-TGF-β1 antibody. These results indicate that TGF-β1 stimulates the production and function of TGF-β1 in an autocrine fashion. Further, IL-6 secretion was observed in all three cell lines and exhibited an inhibitory response to neutralizing anti-TGF-β1 antibody. Experiments using HuCCT1 revealed a TGF-β1-induced acceleration of IL-6 protein expression and mRNA levels. These findings demonstrate a functional interaction between TGF-β1 and IL-6. All three cell lines proliferated in the presence of IL-6. In contrast, TGF-β1 induced no growth effect in HuCCT1 in the presence of small interfering RNA against a specific cell surface receptor of IL-6 and signal transducer and activator of transcription-3. CONCLUSION: ICC cells produce TGF-β1 and confer a TGF-β1-induced growth effect in an autocrine fashion. TGF-β1 activates IL-6 production, and the functional interaction between TGF-β1 and IL-6 contributes to ICC cell growth by TGF-β1. PMID:17072955

  6. Blocking Fibroblast Growth Factor Receptor Signaling Inhibits Tumor Growth, Lymphangiogenesis, and Metastasis

    PubMed Central

    Larrieu-Lahargue, Frédéric; Welm, Alana L.; Bouchecareilh, Marion; Alitalo, Kari; Li, Dean Y.; Bikfalvi, Andreas; Auguste, Patrick

    2012-01-01

    Fibroblast Growth Factor receptor (FGFR) activity plays crucial roles in tumor growth and patient survival. However, FGF (Fibroblast Growth Factor) signaling as a target for cancer therapy has been under-investigated compared to other receptor tyrosine kinases. Here, we studied the effect of FGFR signaling inhibition on tumor growth, metastasis and lymphangiogenesis by expressing a dominant negative FGFR (FGFR-2DN) in an orthotopic mouse mammary 66c14 carcinoma model. We show that FGFR-2DN-expressing 66c14 cells proliferate in vitro slower than controls. 66c14 tumor outgrowth and lung metastatic foci are reduced in mice implanted with FGFR-2DN-expressing cells, which also exhibited better overall survival. We found 66c14 cells in the lumen of tumor lymphatic vessels and in lymph nodes. FGFR-2DN-expressing tumors exhibited a decrease in VEGFR-3 (Vascular Endothelial Growth Factor Receptor-3) or podoplanin-positive lymphatic vessels, an increase in isolated intratumoral lymphatic endothelial cells and a reduction in VEGF-C (Vascular Endothelial Growth Factor-C) mRNA expression. FGFs may act in an autocrine manner as the inhibition of FGFR signaling in tumor cells suppresses VEGF-C expression in a COX-2 (cyclooxygenase-2) or HIF1-α (hypoxia-inducible factor-1 α) independent manner. FGFs may also act in a paracrine manner on tumor lymphatics by inducing expression of pro-lymphangiogenic molecules such as VEGFR-3, integrin α9, prox1 and netrin-1. Finally, in vitro lymphangiogenesis is impeded in the presence of FGFR-2DN 66c14 cells. These data confirm that both FGF and VEGF signaling are necessary for the maintenance of vascular morphogenesis and provide evidence that targeting FGFR signaling may be an interesting approach to inhibit tumor lymphangiogenesis and metastatic spread. PMID:22761819

  7. Evidences for involvement of growth hormone and insulin-like growth factor in ovarian development of starry flounder (Platichthys stellatus).

    PubMed

    Xu, Yongjiang; Wang, Bin; Liu, Xuezhou; Shi, Bao; Zang, Kun

    2017-04-01

    Although gonadotrophins are major regulators of ovarian function in teleosts and other vertebrates, accumulating evidence indicates that the growth hormone (GH)-insulin-like growth factor (IGF) axis also plays an important role in fish reproduction. As a first step to understand the physiological role of the GH-IGF system in the ovarian development of starry flounder (Platichthys stellatus), the expression profiles of GH and IGF messenger RNAs (mRNAs) and plasma GH, IGF-I, estradiol-17β (E2), and testosterone (T) levels during the ovarian development were investigated. The developmental stages of ovaries were divided into five stages (II, III, IV, V, and VI) by histological analysis. The hepatosomatic index (HSI) and gonadosomatic index (GSI) values increased and peaked at stage IV and stage V, respectively, and then declined at stage VI. Pituitary GH mRNA levels decreased sharply at stage III and raised to top level at stage VI. The hepatic IGF-I mRNA levels ascended to maximum value at stage V and then declined significantly at stage VI. However, the hepatic IGF-II mRNA levels remained stable and increased significantly at stage VI. In contrast, the ovarian IGF-I mRNA levels increased gradually and peaked at stage VI. The ovarian IGF-II mRNA levels were initially stable and increased significantly at stage V until the top level at stage VI. Consistent with the pituitary GH mRNA levels, plasma GH levels reduced sharply at stage III and remained depressed until stage V and then raised remarkably at stage VI. Plasma IGF-I level peaked at stage V and then declined to initial level. Plasma E2 level peaked at stage IV and then dramatically descended to the basal level. Plasma T level peaked at stage V and then declined significantly back to the basal level. Based on statistical analysis, significant positive correlations between hepatic IGF-I mRNA and GSI, ovarian IGF-II mRNA and hepatic IGF-II mRNA, ovarian IGF-I mRNA and ovarian IGF-II mRNA, and plasma IGF-I and

  8. Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation

    PubMed Central

    Wang, Xin; Xi, Wen; Toomey, Shaun; Chiang, Yueh-Chin; Hasek, Jiri; Laue, Thomas M.; Denis, Clyde L.

    2016-01-01

    Protein synthesis is a highly efficient process and is under exacting control. Yet, the actual abundance of translation factors present in translating complexes and how these abundances change during the transit of a ribosome across an mRNA remains unknown. Using analytical ultracentrifugation with fluorescent detection we have determined the stoichiometry of the closed-loop translation factors for translating ribosomes. A variety of pools of translating polysomes and monosomes were identified, each containing different abundances of the closed-loop factors eIF4E, eIF4G, and PAB1 and that of the translational repressor, SBP1. We establish that closed-loop factors eIF4E/eIF4G dissociated both as ribosomes transited polyadenylated mRNA from initiation to elongation and as translation changed from the polysomal to monosomal state prior to cessation of translation. eIF4G was found to particularly dissociate from polyadenylated mRNA as polysomes moved to the monosomal state, suggesting an active role for translational repressors in this process. Consistent with this suggestion, translating complexes generally did not simultaneously contain eIF4E/eIF4G and SBP1, implying mutual exclusivity in such complexes. For substantially deadenylated mRNA, however, a second type of closed-loop structure was identified that contained just eIF4E and eIF4G. More than one eIF4G molecule per polysome appeared to be present in these complexes, supporting the importance of eIF4G interactions with the mRNA independent of PAB1. These latter closed-loop structures, which were particularly stable in polysomes, may be playing specific roles in both normal and disease states for specific mRNA that are deadenylated and/or lacking PAB1. These analyses establish a dynamic snapshot of molecular abundance changes during ribosomal transit across an mRNA in what are likely to be critical targets of regulation. PMID:26953568

  9. Stoichiometry and Change of the mRNA Closed-Loop Factors as Translating Ribosomes Transit from Initiation to Elongation.

    PubMed

    Wang, Xin; Xi, Wen; Toomey, Shaun; Chiang, Yueh-Chin; Hasek, Jiri; Laue, Thomas M; Denis, Clyde L

    2016-01-01

    Protein synthesis is a highly efficient process and is under exacting control. Yet, the actual abundance of translation factors present in translating complexes and how these abundances change during the transit of a ribosome across an mRNA remains unknown. Using analytical ultracentrifugation with fluorescent detection we have determined the stoichiometry of the closed-loop translation factors for translating ribosomes. A variety of pools of translating polysomes and monosomes were identified, each containing different abundances of the closed-loop factors eIF4E, eIF4G, and PAB1 and that of the translational repressor, SBP1. We establish that closed-loop factors eIF4E/eIF4G dissociated both as ribosomes transited polyadenylated mRNA from initiation to elongation and as translation changed from the polysomal to monosomal state prior to cessation of translation. eIF4G was found to particularly dissociate from polyadenylated mRNA as polysomes moved to the monosomal state, suggesting an active role for translational repressors in this process. Consistent with this suggestion, translating complexes generally did not simultaneously contain eIF4E/eIF4G and SBP1, implying mutual exclusivity in such complexes. For substantially deadenylated mRNA, however, a second type of closed-loop structure was identified that contained just eIF4E and eIF4G. More than one eIF4G molecule per polysome appeared to be present in these complexes, supporting the importance of eIF4G interactions with the mRNA independent of PAB1. These latter closed-loop structures, which were particularly stable in polysomes, may be playing specific roles in both normal and disease states for specific mRNA that are deadenylated and/or lacking PAB1. These analyses establish a dynamic snapshot of molecular abundance changes during ribosomal transit across an mRNA in what are likely to be critical targets of regulation.

  10. Oxygen-sensitive regulation and neuroprotective effects of growth hormone-dependent growth factors during early postnatal development.

    PubMed

    Jung, Susan; Boie, Gudrun; Doerr, Helmuth-Guenther; Trollmann, Regina

    2017-04-01

    Perinatal hypoxia severely disrupts metabolic and somatotrophic development, as well as cerebral maturational programs. Hypoxia-inducible transcription factors (HIFs) represent the most important endogenous adaptive mechanisms to hypoxia, activating a broad spectrum of growth factors that contribute to cell survival and energy homeostasis. To analyze effects of systemic hypoxia and growth hormone (GH) therapy (rhGH) on HIF-dependent growth factors during early postnatal development, we compared protein (using ELISA) and mRNA (using quantitative RT PCR) levels of growth factors in plasma and brain between normoxic and hypoxic mice (8% O2, 6 h; postnatal day 7, P7) at P14. Exposure to hypoxia led to reduced body weight (P < 0.001) and length (P < 0.04) compared with controls and was associated with significantly reduced plasma levels of mouse GH (P < 0.01) and IGF-1 (P < 0.01). RhGH abrogated these hypoxia-induced changes of the GH/IGF-1 axis associated with normalization of weight and length gain until P14 compared with controls. In addition, rhGH treatment increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA levels, resulting in significantly reduced apoptotic cell death in the hypoxic, developing mouse brain. These data indicate that rhGH may functionally restore hypoxia-induced systemic dysregulation of the GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-dependent growth factors in the hypoxic developing brain.

  11. Epidermal growth factor and hepatocyte growth factor receptors collaborate to induce multiple biological responses in bovine mammary epithelial cells.

    PubMed

    Accornero, P; Martignani, E; Miretti, S; Starvaggi Cucuzza, L; Baratta, M

    2009-08-01

    The aim of this work was to explore whether epidermal growth factor (EGF) and hepatocyte growth factor (HGF) could increase the biological responses of a mammary epithelial cell line of bovine origin when added simultaneously. We also investigated a possible molecular mechanism underlying this cooperation. The development of mammary gland requires several circulating and locally produced hormones. Hepatocyte growth factor and its tyrosine kinase receptor, mesenchymal-epithelial transition factor (MET), are expressed and temporally regulated during mammary development and differentiation. Epidermal growth factor receptor and its ligands have also been implicated in the growth and morphogenesis of the mammary epithelium. Both EGF and HGF seem to exert a morphogenic program in this tissue; therefore, we hypothesized that these cytokines could act cooperatively in bovine mammary epithelial cells. We have already shown that the bovine BME-UV cell line, a nontumorigenic mammary epithelial line, expresses both MET and EGF receptor. Simultaneous treatment with HGF and EGF elicited an increase in proliferation, dispersion, degradation of extracellular matrix, and motility. Following EGF treatment, BME-UV mammary cells exhibited an increase in MET expression at both the mRNA and protein levels. Long-term treatment of BME-UV cells with HGF and EGF together increased the level of activation of the extracellular signal-regulated kinase 1/2 and protein kinase B signaling pathways when compared with HGF or EGF alone. These data outline a possible cooperative role of the EGF and HGF pathways and indicate that cross-talk between their respective receptors may modulate mammary gland development in the cow.

  12. Enhanced vascularization of cultured skin substitutes genetically modified to overexpress vascular endothelial growth factor.

    PubMed

    Supp, D M; Supp, A P; Bell, S M; Boyce, S T

    2000-01-01

    Cultured skin substitutes have been used as adjunctive therapies in the treatment of burns and chronic wounds, but they are limited by lack of a vascular plexus. This deficiency leads to greater time for vascularization compared with native skin autografts and contributes to graft failure. Genetic modification of cultured skin substitutes to enhance vascularization could hypothetically lead to improved wound healing. To address this hypothesis, human keratinocytes were genetically modified by transduction with a replication incompetent retrovirus to overexpress vascular endothelial growth factor, a specific and potent mitogen for endothelial cells. Cultured skin substitutes consisting of collagen-glycosaminoglycan substrates inoculated with human fibroblasts and either vascular endothelial growth factor-modified or control keratinocytes were prepared, and were cultured in vitro for 21 d. Northern blot analysis demonstrated enhanced expression of vascular endothelial growth factor mRNA in genetically modified keratinocytes and in cultured skin substitutes prepared with modified cells. Furthermore, the vascular endothelial growth factor-modified cultured skin substitutes secreted greatly elevated levels of vascular endothelial growth factor protein throughout the entire culture period. The bioactivity of vascular endothelial growth factor protein secreted by the genetically modified cultured skin substitutes was demonstrated using a microvascular endothelial cell growth assay. Vascular endothelial growth factor-modified and control cultured skin substitutes were grafted to full-thickness wounds on athymic mice, and elevated vascular endothelial growth factor mRNA expression was detected in the modified grafts for at least 2 wk after surgery. Vascular endothelial growth factor-modified grafts exhibited increased numbers of dermal blood vessels and decreased time to vascularization compared with controls. These results indicate that genetic modification of

  13. LARP4B is an AU-rich sequence associated factor that promotes mRNA accumulation and translation

    PubMed Central

    Küspert, Maritta; Murakawa, Yasuhiro; Schäffler, Katrin; Vanselow, Jens T.; Wolf, Elmar; Juranek, Stefan; Schlosser, Andreas; Landthaler, Markus; Fischer, Utz

    2015-01-01

    mRNAs are key molecules in gene expression and subject to diverse regulatory events. Regulation is accomplished by distinct sets of trans-acting factors that interact with mRNAs and form defined mRNA–protein complexes (mRNPs). The resulting “mRNP code” determines the fate of any given mRNA and thus controlling gene expression at the post-transcriptional level. The La-related protein 4B (LARP4B) belongs to an evolutionarily conserved family of RNA-binding proteins characterized by the presence of a La-module implicated in direct RNA binding. Biochemical experiments have shown previously direct interactions of LARP4B with factors of the translation machinery. This finding along with the observation of an association with actively translating ribosomes suggested that LARP4B is a factor contributing to the mRNP code. To gain insight into the function of LARP4B in vivo we tested its mRNA association at the transcriptome level and its impact on the proteome. PAR-CLIP analyses allowed us to identify the in vivo RNA targets of LARP4B. We show that LARP4B binds to a distinct set of cellular mRNAs by contacting their 3′ UTRs. Biocomputational analysis combined with in vitro binding assays identified the LARP4B-binding motif on mRNA targets. The reduction of cellular LARP4B levels leads to a marked destabilization of its mRNA targets and consequently their reduced translation. Our data identify LARP4B as a component of the mRNP code that influences the expression of its mRNA targets by affecting their stability. PMID:26001795

  14. LARP4B is an AU-rich sequence associated factor that promotes mRNA accumulation and translation.

    PubMed

    Küspert, Maritta; Murakawa, Yasuhiro; Schäffler, Katrin; Vanselow, Jens T; Wolf, Elmar; Juranek, Stefan; Schlosser, Andreas; Landthaler, Markus; Fischer, Utz

    2015-07-01

    mRNAs are key molecules in gene expression and subject to diverse regulatory events. Regulation is accomplished by distinct sets of trans-acting factors that interact with mRNAs and form defined mRNA-protein complexes (mRNPs). The resulting "mRNP code" determines the fate of any given mRNA and thus controlling gene expression at the post-transcriptional level. The La-related protein 4B (LARP4B) belongs to an evolutionarily conserved family of RNA-binding proteins characterized by the presence of a La-module implicated in direct RNA binding. Biochemical experiments have shown previously direct interactions of LARP4B with factors of the translation machinery. This finding along with the observation of an association with actively translating ribosomes suggested that LARP4B is a factor contributing to the mRNP code. To gain insight into the function of LARP4B in vivo we tested its mRNA association at the transcriptome level and its impact on the proteome. PAR-CLIP analyses allowed us to identify the in vivo RNA targets of LARP4B. We show that LARP4B binds to a distinct set of cellular mRNAs by contacting their 3' UTRs. Biocomputational analysis combined with in vitro binding assays identified the LARP4B-binding motif on mRNA targets. The reduction of cellular LARP4B levels leads to a marked destabilization of its mRNA targets and consequently their reduced translation. Our data identify LARP4B as a component of the mRNP code that influences the expression of its mRNA targets by affecting their stability.

  15. Estrogen regulates the development of brain-derived neurotrophic factor mRNA and protein in the rat hippocampus.

    PubMed

    Solum, Derek T; Handa, Robert J

    2002-04-01

    During development, estrogen has a variety of effects on morphological and electrophysiological properties of hippocampal neurons. Brain-derived neurotrophic factor (BDNF) also plays an important role in the survival and differentiation of neurons during development. We examined the effects of gonadectomy with and without estrogen replacement on the mRNA and protein of BDNF and its receptor, trkB, during early postnatal development of the rat hippocampus. We used immunocytochemistry to demonstrate that estrogen receptor alpha (ERalpha) and BDNF were localized to the same cells within the developing hippocampus. BDNF and ERalpha were colocalized in pyramidal cells of the CA3 subregion and to a lesser extent in CA1. To determine whether BDNF mRNA was regulated by estrogen during development, we gonadectomized male rat pups at postnatal day 0 (P0) and examined mRNA and protein levels from P0 to P25 using real-time reverse transcription-PCR and Western blot analysis. After gonadectomy, BDNF mRNA levels are significantly reduced on P7, but after treatment of gonadectomized animals with estradiol benzoate on P0, levels at all ages were similar to those in intact animals. BDNF mRNA changes after gonadectomy are accompanied by an increase in the levels of BDNF protein, which were reduced by estrogen treatment at P0. We also examined the effect of postnatal estrogen treatment on trkB. There were no significant changes in trkB mRNA or protein in gonadectomized or estrogen-replaced animals. These results suggest that a direct interaction may exist between ERalpha and BDNF to alter hippocampal physiology during development in the rat.

  16. Estrogen and exercise interact to regulate brain-derived neurotrophic factor mRNA and protein expression in the hippocampus.

    PubMed

    Berchtold, N C; Kesslak, J P; Pike, C J; Adlard, P A; Cotman, C W

    2001-12-01

    We investigated the possibility that estrogen and exercise interact in the hippocampus and regulate brain-derived neurotrophic factor (BDNF), a molecule increasingly recognized for its role in plasticity and neuron function. An important aspect of this study is to examine the effect of different time intervals between estrogen loss and estrogen replacement intervention. We demonstrate that in the intact female rat, physical activity increases hippocampal BDNF mRNA and protein levels. However, the exercise effect on BDNF up-regulation is reduced in the absence of estrogen, in a time-dependent manner. In addition, voluntary activity itself is stimulated by the presence of estrogen. In exercising animals, estrogen deprivation reduced voluntary activity levels, while estrogen replacement restored activity to normal levels. In sedentary animals, estrogen deprivation (ovariectomy) decreased baseline BDNF mRNA and protein, which were restored by estrogen replacement. Despite reduced activity levels in the ovariectomized condition, exercise increased BDNF mRNA levels in the hippocampus after short-term (3 weeks) estrogen deprivation. However, long-term estrogen-deprivation blunted the exercise effect. After 7 weeks of estrogen deprivation, exercise alone no longer affected either BDNF mRNA or protein levels. However, exercise in combination with long-term estrogen replacement increased BDNF protein above the effects of estrogen replacement alone. Interestingly, protein levels across all conditions correlated most closely with mRNA levels in the dentate gyrus, suggesting that expression of mRNA in this hippocampal region may be the major contributor to the hippocampal BDNF protein pool. The interaction of estrogen, physical activity and hippocampal BDNF is likely to be an important issue for maintenance of brain health, plasticity and general well-being, particularly in women.

  17. Brain-derived neurotrophic factor protein and mRNA levels in patients with bipolar mania - A preliminary study.

    PubMed

    Lin, Chin-Chuen; Lee, Chien-Te; Lo, Ya-Ting; Huang, Tiao-Lai

    2016-08-01

    Brain-derived neurotrophic factor (BDNF) protein or mRNA levels may be involved in the pathophysiology of bipolar disorder. However, the results were inconsistent. We aimed to simultaneously investigate the relationship of BDNF protein and mRNA levels in peripheral blood of patients with bipolar mania. Patients with bipolar mania (n = 30) and healthy controls (n = 30) were recruited during our one-year study. Psychiatric diagnoses were made according to Diagnostic and Statistical Manual of Mental Disorders, 4th Edition criteria. The scores of the Young Mania Rating Scale (YMRS) of patients with bipolar mania were greater than 26. All participants had peripheral blood drawn to analyze the serum BDNF protein and mRNA levels. Using t-test, patients with bipolar mania had a lower BDNF protein and mRNA levels than did the healthy controls (p < 0.001 and 0.049, respectively), however, the statistical significances were lost after analysis of co-variance adjusted for age and body mass index. Twenty seven out of 30 patients with bipolar mania remained in the study after the 4 weeks of mood stabilizer treatment. Patients' BDNF protein and mRNA levels did not change significantly after 4-week treatment. Our study found that serum BDNF protein and mRNA levels in patients with bipolar mania were lower than healthy controls, but a larger sample size will be needed to confirm this finding. Copyright © 2016 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  18. Phosphorylation states of translational initiation factors affect mRNA cap binding in wheat.

    PubMed

    Khan, Mateen A; Goss, Dixie J

    2004-07-20

    Phosphorylation of eukaryotic translational initiation factors (eIFs) has been shown to be an important means of regulating protein synthesis. Plant initiation factors undergo phosphorylation/dephosphorylation under a variety of stress and growth conditions. We have shown that recombinant wheat cap-binding protein, eIF(iso)4E, produced from E. coli can be phosphorylated in vitro. Phosphorylation of eIF(iso)4E has effects on m(7)G cap-binding affinity similar to those of phosphorylation of mammalian eIF4E even though eIF(iso)4E lacks an amino acid that can be phosphorylated at the residue corresponding to Ser-209, the phosphorylation site in mammalian eIF4E. The cap-binding affinity was reduced 1.2-2.6-fold when eIF(iso)4E was phosphorylated. The in vitro phosphorylation site for wheat eIF(iso)4E was identified as Ser-207. Addition of eIF(iso)4G and eIF4B that had also been phosphorylated in vitro further reduced cap-binding affinity. Temperature-dependent studies showed that DeltaH(degrees) was favorable for cap binding regardless of the phosphorylation state of the initiation factors. The entropy, however, was unfavorable (negative) except when eIF(iso)4E was phosphorylated and interacting with eIF(iso)4G. Phosphorylation may modulate not only cap-binding activity, but other functions of eukaryotic initiation factors as well.

  19. Engineering growth factors for regenerative medicine applications.

    SciTech Connect

    Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.; Cochran, Jennifer R.

    2016-01-15

    Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell trafficking behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.

  20. Stem cell growth factor receptor in canine vs. feline osteosarcomas

    PubMed Central

    Wolfesberger, Birgitt; Fuchs-Baumgartinger, Andrea; Hlavaty, Juraj; Meyer, Florian R.; Hofer, Martin; Steinborn, Ralf; Gebhard, Christiane; Walter, Ingrid

    2016-01-01

    Osteosarcoma is considered the most common bone cancer in cats and dogs, with cats having a much better prognosis than dogs, since the great majority of dogs with osteosarcoma develop distant metastases. In search of a factor possibly contributing to this disparity, the stem cell growth factor receptor KIT was targeted, and the messenger (m)RNA and protein expression levels of KIT were compared in canine vs. feline osteosarcomas, as well as in normal bone. The mRNA expression of KIT was quantified by reverse transcription-quantitative polymerase chain reaction, and was observed to be significantly higher in canine (n=14) than in feline (n=5) osteosarcoma samples (P<0.001). KIT protein expression was evaluated by immunohistochemistry, which revealed that 21% of canine osteosarcoma samples did not exhibit KIT staining in their neoplastic cells, while in 14% of samples, a score of 1 (<10% positive tumour cells) was observed, and in 50% and 14% of samples, a score of 2 (10–50% positivity) and 3 (>50% positivity), respectively, was observed. By contrast, the cancer cells of all the feline bone tumour samples analysed were entirely negative for KIT. Notably, canine and feline osteocytes of healthy bone tissue lacked any KIT expression. These results could be the first evidence that KIT may be involved in the higher aggressiveness of canine osteosarcoma compared with feline osteosarcoma. PMID:27698817

  1. Epidermal growth factor receptor (EGFR) involvement in successful growth hormone (GH) signaling in GH transduction defect.

    PubMed

    Kostopoulou, Eirini; Rojas-Gil, Andrea Paola; Karvela, Alexia; Spiliotis, Bessie E

    2017-02-01

    Growth hormone (GH) transduction defect (GHTD) is a growth disorder with impaired signal transducer and activator of transcription 3 (STAT3) phosphorylation mediated by overexpression of cytokine-inducible SH2-containing protein (CIS), which causes increased growth hormone receptor (GHR) degradation. This study investigated the role of epidermal growth factor (EGF) in the restoration of normal GH signaling in GHTD. Protein expression, cellular localization and physical contact of proteins of the GH and EGF signaling pathways were studied by Western immunoblotting, immunofluorescence and co-immunoprecipitation, respectively. These were performed in fibroblasts of one GHTD patient (P) and one control child (C) at the basal state and after induction with human GH (hGH) 200 μg/L (GH200), either with or without silencing of CIS mRNA, and after induction with hGH 1000 μg/L (GH1000) or 50 ng/mL EGF. The membrane availability of the EGF receptor (EGFR) and the activated EGFR (pEGFR) was increased in P only after simultaneous GH200 and silencing of CIS mRNA or with GH1000, whereas this occurred in C after GH200 alone. After EGF induction, the membrane localization of GHR, STAT3 and that of EGFR were increased in P more than in C. In conclusion, in GHTD, the EGFR seems to participate in successful GH signaling, but induction of GHTD fibroblasts with a higher dose of hGH is needed. The EGF/EGFR pathway, in contrast to the GH/GHR pathway, seems to function normally in P and is more primed compared to C. The involvement of the EGFR in successful GH signaling may explain the catch-up growth seen in the Ps when exogenous hGH is administered.

  2. Differential expression of insulin-like growth factor genes in rat central nervous system.

    PubMed

    Rotwein, P; Burgess, S K; Milbrandt, J D; Krause, J E

    1988-01-01

    A sensitive solution-hybridization assay was used to investigate the expression of genes encoding insulin-like growth factors I and II (IGF-I and -II) in the rat central nervous system (CNS). mRNAs for both IGFs are synthesized throughout the CNS of adult rats but exhibit distinct regional differences for each growth factor. IGF-I mRNA is 8-10 times more abundant in the cervical-thoracic spinal cord and in the olfactory bulb than in whole brain and is enriched 3-fold in the midbrain and cerebellum. IGF-II mRNA is minimally enriched in the medulla-pons and cerebellum but is 3-5 times less abundant in the midbrain and corpus striatum than in total brain. During CNS development the content of IGF-I and IGF-II mRNAs is highest at embryonic day 14 and declines by a factor of 3-4 at birth, to values found in adult brain. Embryonic neurons and glia synthesize IGF-I mRNA during short-term cell culture; only glia produce IGF-II mRNA. These observations show that IGF-I and IGF-II are differentially expressed in the developing and adult CNS and suggest that each growth factor may play a unique role in the mammalian nervous system.

  3. Comparison between tocotrienol and omeprazole on gastric growth factors in stress-exposed rats

    PubMed Central

    Nur Azlina, Mohd Fahami; Qodriyah, Hj Mohd Saad; Chua, Kien Hui; Kamisah, Yusof

    2017-01-01

    AIM To investigate and compare the effects of tocotrienol and omeprazole on gastric growth factors in rats exposed to water-immersion restraint stress (WIRS). METHODS Twenty-eight male Wistar rats were randomly assigned to four groups of seven rats. The two control groups were administered vitamin-free palm oil (vehicle) and the two treatment groups were given omeprazole (20 mg/kg) or tocotrienol (60 mg/kg) by oral gavage. After 28 d of treatment, rats from one control group and both treated groups were subjected to WIRS one time for 3.5 h. Gastric lesions were measured and gastric tissues were obtained to measure vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and transforming growth factor-alpha (TGF-α) mRNA expression. RESULTS Rats exposed to WIRS for 3.5 h demonstrated the presence of considerable ulcers in the form of gastric erosion. The lesion index in the stressed control (S) group was increased (P < 0.001) compared to the tocotrienol treated and omeprazole treated groups. Stress led to a decrease in gastric VEGF (P < 0.001), bFGF (P < 0.001) and TGF-α (P < 0.001) mRNA levels and caused an increase in EGF mRNA (P < 0.001) that was statistically significant compared to the non-stressed control group. Although both treatment agents exerted similar ulcer reducing ability, only treatment with tocotrienol led to increased expression of VEGF (P = 0.008), bFGF (P = 0.001) and TGF-α (P = 0.002) mRNA. CONCLUSION Tocotrienol provides gastroprotective effects in WIRS-induced ulcers. Compared to omeprazole, tocotrienol exerts a similar protective effect, albeit through multiple mechanisms of protection, particularly through up-regulation of growth factors that assist in repair of gastric tissue injuries. PMID:28932080

  4. FACTORS WHICH CONTROL MAXIMAL GROWTH OF BACTERIA

    PubMed Central

    Sinclair, N. A.; Stokes, J. L.

    1962-01-01

    Sinclair, N. A. (Washington State University, Pullman) and J. L. Stokes. Factors which control maximal growth of bacteria. J. Bacteriol. 83:1147–1154. 1962.—In a chemically defined medium containing 1% glucose and 0.1% (NH4)2SO4, both of these compounds are virtually exhausted by the growth of Pseudomonas fluorescens. If these carbon, energy, and nitrogen sources are added back to the culture filtrate, maximal growth to the level of the original culture is obtained. This process can be repeated several times with the same results. Eventually, however, the supply of minerals in the culture limits growth. When the nutrient levels are raised to 3% glucose and 0.3% (NH4)2SO4, lack of oxygen and low pH limit growth before the supply of nutrients is exhausted. There is no evidence that specific autoinhibitory substances are produced either in chemically defined or complex nitrogenous media or that physical crowding of the cells limits growth. The results with Escherichia coli are similar to those with P. fluorescens. However, after a few growth cycles aerobically and after only one growth cycle anaerobically, inhibitory substances, probably organic acids, accumulate and limit growth. PMID:13913264

  5. PROSPECT - GROWTH FACTOR CONTROL OF BONE MASS

    PubMed Central

    Canalis, Ernesto

    2010-01-01

    Bone formation is determined by the number and function of osteoblasts. Cell number is governed by factors that regulate the replication and differentiation of pre-osteoblasts and factors that regulate osteoblastic cell death. Cell function is controlled by signals acting on the mature osteoblast. Platelet derived and fibroblast growth factors are bone cell mitogens. Bone morphogenetic proteins (BMP) and Wnt induce the differentiation of mesenchymal cells toward osteoblasts, and insulin-like growth factor (IGF)-I stimulates the function of mature osteoblasts and prevents their death. The activity of BMP, Wnt and IGF-I is modulated by extracellular antagonists or binding proteins. Changes in growth factor synthesis and activity may play a role in the pathogenesis of selected forms of osteoporosis, and alterations in the expression or binding of the extracellular antagonists can be associated with changes in bone mass. Current approaches to bone anabolic therapies for osteoporosis include the administration of a growth factor, such as IGF-I, or the neutralization of an antagonist. Ideally, the targeting of an anabolic agent should be specific to bone to preclude non-skeletal unwanted side effects. Clinical trials are needed to determine the long-term effectiveness and safety of novel anabolic agents for the management of osteoporosis. PMID:19718659

  6. Profiles of mRNA expression for prolactin, growth hormone, and somatolactin in Japanese eels, Anguilla japonica: The effect of salinity, silvering and seasonal change.

    PubMed

    Sudo, Ryusuke; Suetake, Hiroaki; Suzuki, Yuzuru; Aoyama, Jun; Tsukamoto, Katsumi

    2013-01-01

    For understanding the functions of the growth hormone (GH)/prolactin (PRL)/somatolactin (SL) family of hormones, we examined pituitary mRNA expression of these hormones in anguillid eels in relation to salinity difference, silvering, and seasonal change. Female Japanese eels (Anguilla japonica) were collected in the brackish Hamana Lake and its freshwater rivers from July to December. To clarify the effect of salinity, the habitat use history of the eels were determined using otolith microchemistry. Expression levels of mRNA of each hormone were determined using real time PCR. Although GH and PRL have been known to be osmoregulatory hormones, there were no consistent differences in expression levels of these hormones between different salinity habitats. In contrast, SL mRNA expression was higher in eels from freshwater rivers than from the brackish lake. GH mRNA expression clearly decreased during silvering, whereas PRL and SL mRNA expression did not change. We also showed that PRL mRNA and SL mRNA decreased in the brackish lake and PRL mRNA increased in freshwater rivers from autumn to early winter. These findings provide basic knowledge for a further understanding of the role of these hormones.

  7. Thiazolidinediones enhance vascular endothelial growth factor expression and induce cell growth inhibition in non-small-cell lung cancer cells

    PubMed Central

    2010-01-01

    Background It is known that thiazolidinediones are involved in regulating the expression of various genes, including the vascular endothelial growth factor (VEGF) gene via peroxisome proliferator-activated receptor γ (PPARγ); VEGF is a prognostic biomarker for non-small-cell lung cancer (NSCLC). Methods In this study, we investigated the effects of troglitazone and ciglitazone on the mRNA expression of VEGF and its receptors in human NSCLC cell lines, RERF-LC-AI, SK-MES-1, PC-14, and A549. These mRNA expressions were evaluated by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) analysis. We also studied the effect of Je-11, a VEGF inhibitor, on the growth of these cells. Results In NSCLC cells, thiazolidinediones increased the mRNA expression of VEGF and neuropilin-1, but not that of other receptors such as fms-like tyrosine kinase and kinase insert domain receptor-1. Furthermore, the PPARγ antagonist GW9662 completely reversed this thiazolidinedione-induced increase in VEGF expression. Furthermore, the addition of VEGF inhibitors into the culture medium resulted in the reversal of thiazolidinedione-induced growth inhibition. Conclusions Our results indicated that thiazolidinediones enhance VEGF and neuropilin-1 expression and induce the inhibition of cell growth. We propose the existence of a pathway for arresting cell growth that involves the interaction of thiazolidinedione-induced VEGF and neuropilin-1 in NSCLC. PMID:20214829

  8. Expression of brain-derived neurotrophic factor mRNA in rat hippocampus after treatment with antipsychotic drugs.

    PubMed

    Bai, Ou; Chlan-Fourney, Jennifer; Bowen, Rudy; Keegan, David; Li, Xin-Min

    2003-01-01

    Typical and atypical antipsychotic drugs, though both effective, act on different neurotransmitter receptors and are dissimilar in some clinical effects and side effects. The typical antipsychotic drug haloperidol has been shown to cause a decrease in the expression of brain-derived neurotrophic factor (BDNF), which plays an important role in neuronal cell survival, differentiation, and neuronal connectivity. However, it is still unknown whether atypical antipsychotic drugs similarly regulate BDNF expression. We examined the effects of chronic (28 days) administration of typical and atypical antipsychotic drugs on BDNF mRNA expression in the rat hippocampus using in situ hybridization. Quantitative analysis revealed that the typical antipsychotic drug haloperidol (1 mg/kg) down-regulated BDNF mRNA expression in both CA1 (P < 0.05) and dentate gyrus (P < 0.01) regions compared with vehicle control. In contrast, the atypical antipsychotic agents clozapine (10 mg/kg) and olanzapine (2.7 mg/kg) up-regulated BDNF mRNA expression in CA1, CA3, and dentate gyrus regions of the rat hippocampus compared with their respective controls (P < 0.01). These findings demonstrate that the typical and atypical antipsychotic drugs differentially regulate BDNF mRNA expression in rat hippocampus.

  9. Rat Prolactinoma cell growth regulation by Epidermal Growth Factor receptor ligands

    PubMed Central

    Vlotides, George; Siegel, Emily; Donangelo, Ines; Gutman, Shiri; Ren, Song-Guang; Melmed, Shlomo

    2008-01-01

    Epidermal growth factor (EGF) regulates pituitary development, hormone synthesis and cell proliferation. Although ErbB receptor family members are expressed in pituitary tumors, effects of EGF signaling on pituitary tumors are not known. Immunoprecipitation and Western blot confirmed EGFR and p185c-neu protein expression in GH3 lacto-somatotroph but not in ACTH-secreting AtT20 pituitary tumor cells. EGF (5 nM) selectively enhanced baseline (~ 4-fold) and serum-induced (> 6-fold) PRL mRNA levels, while gefitinib, an EGFR antagonist, suppressed serum-induced cell proliferation and Pttg1 expression, blocked PRL gene expression, and reversed EGF-mediated somatotroph-lactotroph phenotype switching. Downstream EGFR signaling by ERK, but not PI3K or PKC, mediated the gefitinib-response. Tumors in athymic mice implanted sc with GH3 cells resulted in weight gain accompanied by increased serum PRL, GH and IGF-I levels. Gefitinib decreased tumor volumes and peripheral hormone levels by ~ 30% and restored normal mouse body weight patterns. Mice treated with gefitinib exhibited decreased tumor tissue ERK1/2 phosphorylation and downregulated tumor PRL and Pttg1 mRNA abundance. These results show that EGFR inhibition controls tumor growth and PRL secretion in experimental lacto-somatotroph tumors. EGFR inhibitors could therefore be useful for control of PRL secretion and tumor load in prolactinomas resistant to dopaminergic treatment, or for those prolactinomas undergoing rare malignant transformation. PMID:18676863

  10. Hepatocyte growth factor in renal failure: promise and reality.

    PubMed

    Vargas, G A; Hoeflich, A; Jehle, P M

    2000-04-01

    Can science discover some secrets of Greek mythology? In the case of Prometheus, we can now suppose that his amazing hepatic regeneration was caused by a peptide growth factor called hepatocyte growth factor (HGF). Increasing evidence indicates that HGF acts as a multifunctional cytokine on different cell types. This review addresses the molecular mechanisms that are responsible for the pleiotropic effects of HGF. HGF binds with high affinity to its specific tyrosine kinase receptor c-met, thereby stimulating not only cell proliferation and differentiation, but also cell migration and tumorigenesis. The three fundamental principles of medicine-prevention, diagnosis, and therapy-may be benefited by the rational use of HGF. In renal tubular cells, HGF induces mitogenic and morphogenetic responses. In animal models of toxic or ischemic acute renal failure, HGF acts in a renotropic and nephroprotective manner. HGF expression is rapidly up-regulated in the remnant kidney of nephrectomized rats, inducing compensatory growth. In a mouse model of chronic renal disease, HGF inhibits the progression of tubulointerstitial fibrosis and kidney dysfunction. Increased HGF mRNA transcripts were detected in mesenchymal and tubular epithelial cells of rejecting kidney. In transplanted patients, elevated HGF levels may indicate renal rejection. When HGF is considered as a therapeutic agent in human medicine, for example, to stimulate kidney regeneration after acute injury, strategies need to be developed to stimulate cell regeneration and differentiation without an induction of tumorigenesis.

  11. Site-specific factor involved in the editing of the psbL mRNA in tobacco plastids.

    PubMed Central

    Chaudhuri, S; Carrer, H; Maliga, P

    1995-01-01

    In tobacco plastids, functional psbL mRNA is created by editing an ACG codon to an AUG translation initiation codon. To determine if editing may occur in a chimeric mRNA, the N-terminal part of psbL containing the editing site was translationally fused with the aadA and kan bacterial genes. The chimeric constructs were introduced into the tobacco plastid genome by targeted gene insertion. Editing of the chimeric mRNAs indicated that the 98 nt fragment spanning the psbL editing site contains all cis information required for editing. Expression of the chimeric gene transcripts led to a significant decrease in the editing efficiency of the endogenous psbL mRNA. However, the efficiency of editing in the transplastomic lines was unchanged for four sites in the rpoB and ndhB mRNAs. Reduced efficiency of psbL editing, but not of the other four sites, in the transplastomic lines indicates depletion of psbL-specific editing factor(s). This finding implicates the involvement of site-specific factors in editing of plastid mRNAs in higher plants. Images PMID:7796820

  12. Persian sturgeon insulin-like growth factor I: molecular cloning and expression during various nutritional conditions.

    PubMed

    Yarmohammadi, Mahtab; Pourkazemi, Mohammad; Kazemi, Rezvanollah; Hallajian, Ali; Soltanloo, Hassan; Hassanzadeh Saber, Mohammad; Abbasalizadeh, Alireza

    2014-05-01

    The effects of different periods of starvation (1, 2, 3, and 4 weeks) and subsequent re-feeding (over a 4 week) on the compensatory growth performance and insulin-like growth factor I (IGF-I) mRNA expression in liver and white muscle were investigated in juvenile Persian sturgeon (Acipenser persicus). First, a fragment of 617 nucleotides coding for IGF-I was cloned from liver, which included an open reading frame of 486 nucleotides, encoding a 162 amino acid preproIGF-I. This is composed of a 45 aa for signal peptide, a 117 aa for the mature peptide comprising the B, C, A, and D domains, and a 47 aa for E domain. The mature Persian sturgeon IGF-I exhibits high sequence identities with other sturgeon species and teleost, ranging between 68 and 95 %. The pattern of IGF-I mRNA expression in the liver and white muscle was measured in response to different periods of starvation and subsequent re-feeding. Nutritional status influenced IGF-I mRNA expression pattern in both liver and muscle. IGF-I mRNA expression in the liver increased during starvation, before decreasing after re-feeding. Furthermore, white muscle IGF-I mRNA expression showed better responses to nutritional status and decreased following starvation and increased by re-feeding. However, changes in the expression of IGF-I mRNA were not significantly different between any of the treatments in both tissues. These data suggest that muscle and liver IGF-I mRNA expression do not have a regulatory role for somatic growth induced by compensatory growth in Persain sturgeon.

  13. Hormone and metabolic factors associated with leptin mRNA expression in pre- and postmenopausal women.

    PubMed

    Fajardo, Martha E; Malacara, Juan M; Martínez-Rodríguez, Herminia G; Barrera-Saldaña, Hugo A

    2004-06-01

    Recent information has extended leptin's action, beyond the control of appetite, to various sites of metabolic regulation. To better understand leptin's role we studied its production in subcutaneous and visceral fat compartments before and after menopause. During elective abdominal surgery, biopsies of subcutaneous and omental tissues were taken from 20 women at pre- (BMI 28.4 +/- 4.5 kg/m2) and 10 at postmenopause (BMI 30.6 +/- 7.7 kg/m2). In both groups serum leptin levels were similar, and highly correlated with BMI. In subcutaneous adipose tissue, leptin mRNA expression was significantly higher in pre- than in postmenopausal women (50.4 +/- 20.5 amol/microg total RNA versus 34.5 +/- 24.9 amol/microg total RNA, respectively). Leptin mRNA expression in subcutaneous tissue was independently correlated with fasting glucose (R = 0.89, P < 0.006) at premenopause, and with serum estradiol (R = 0.77, P < 0.04) at postmenopause. Leptin mRNA expression in visceral fat was correlated with DHEAS (R = 0.86, P < 0.001), at premenopause. These results indicate that in both compartments, leptin production is sensitive to different but overlapping stimuli, conveying information about energy availability to central and peripheral sites under different conditions of estrogen exposure.

  14. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1

    PubMed Central

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem–loop structure containing the branch site near its apical loop and the 3′ splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing. PMID:26546116

  15. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1.

    PubMed

    AbuQattam, Ali; Gallego, José; Rodríguez-Navarro, Susana

    2016-01-01

    Sus1 is a conserved protein involved in chromatin remodeling and mRNA biogenesis. Unlike most yeast genes, the SUS1 pre-mRNA of Saccharomyces cerevisiae contains two introns and is alternatively spliced, retaining one or both introns in response to changes in environmental conditions. SUS1 splicing may allow the cell to control Sus1 expression, but the mechanisms that regulate this process remain unknown. Using in silico analyses together with NMR spectroscopy, gel electrophoresis, and UV thermal denaturation experiments, we show that the downstream intron (I2) of SUS1 forms a weakly stable, 37-nucleotide stem-loop structure containing the branch site near its apical loop and the 3' splice site after the stem terminus. A cellular assay revealed that two of four mutants containing altered I2 structures had significantly impaired SUS1 expression. Semiquantitative RT-PCR experiments indicated that all mutants accumulated unspliced SUS1 pre-mRNA and/or induced distorted levels of fully spliced mRNA relative to wild type. Concomitantly, Sus1 cellular functions in histone H2B deubiquitination and mRNA export were affected in I2 hairpin mutants that inhibited splicing. This work demonstrates that I2 structure is relevant for SUS1 expression, and that this effect is likely exerted through modulation of splicing.

  16. [Effect of tetramethylpyrazine and rat CTGF miRNA plasmids on connective tissue growth factor, transforming growth factor-beta in high glucose stimulated hepatic stellate cells].

    PubMed

    Yang, Hong; Li, Jun; Xing, Nini; Xiang, Ying; Shen, Yan; Li, Xiaosheng

    2014-04-01

    The aim of this research is to evaluate the effect of tetramethylpyrazine (TMP) and connective tissue growth factor (CTGF) miRNA plasmids on the expressive levels of CTGF, transforming growth factor-beta (TGFbeta) and type I collagen of rat hepatic stellate cells (HSC) which are stimulated by high glucose. The rat HSCs which were successfully transfected rat CTGF miRNA plasmids and the rat HSCs which were successfully transfected negative plasmids were cultured in vitro. After stimulus of the TMP and the high glucose, the protein levels and gene expressive levels of CTGF, TGF-beta and type I collagen were tested. The results indicated that high glucose increased the expression of CTGF mRNA, CTGF protein, TGF-beta mRNA,TGF-beta protein and type I collagen (P < 0.05). The expressive levels of CTGF mRNA, CTGF protein, TGF-beta mRNA, TGF-beta and type I collagen in TMP group were lower than those in high glucose group and showed statistically significant differences (P < 0.05). Compared with high glucose group, the expressive levels of CTGF mRNA, CTGF protein, TGF-beta mRNA, TGF-beta and type I collagen in rat CTGF miRNA plasmid interference group were significantly lower (P < 0.05). However, no statistically significant difference was found in CTGF mRNA and CTGF protein levels between TMP group and CTGF miRNA group (P > 0.05), while type I collagen levels showed statistically significant differences (P < 0.05). It is concluded that high glucose could promote the expressions of CTGF, TGF-beta and type I collagen, and TMP and rat CTGF miRNA plasmids could reduce the expressions of CTGF, TGF-beta, type I collagen.

  17. Synergistic and multidimensional regulation of plasminogen activator inhibitor type 1 expression by transforming growth factor type β and epidermal growth factor

    SciTech Connect

    Song, Xiaoling; Thalacker, F.W.; Nilsen-Hamilton, Marit

    2012-04-06

    The major physiological inhibitor of plasminogen activator, type I plasminogen activator inhibitor (PAI-1), controls blood clotting and tissue remodeling events that involve cell migration. Transforming growth factor type β (TGFβ) and epidermal growth factor (EGF) interact synergistically to increase PAI-1 mRNA and protein levels in human HepG2 and mink Mv1Lu cells. Other growth factors that activate tyrosine kinase receptors can substitute for EGF. EGF and TGFβ regulate PAI-1 by synergistically activating transcription, which is further amplified by a decrease in the rate of mRNA degradation, the latter being regulated only by EGF. The combined effect of transcriptional activation and mRNA stabilization results in a rapid 2-order of magnitude increase in the level of PAI-1. TGFβ also increases the sensitivity of the cells to EGF, thereby recruiting the cooperation of EGF at lower than normally effective concentrations. The contribution of EGF to the regulation of PAI-1 involves the MAPK pathway, and the synergistic interface with the TGFβ pathway is downstream of MEK1/2 and involves phosphorylation of neither ERK1/2 nor Smad2/3. Synergism requires the presence of both Smad and AP-1 recognition sites in the promoter. This work demonstrates the existence of a multidimensional cellular mechanism by which EGF and TGFβ are able to promote large and rapid changes in PAI-1 expression.

  18. Unwinding protein specific for mRNA translation fractionated together with rabbit reticulocyte initiation factor 3 complex

    PubMed Central

    Ilan, Joseph; Ilan, Judith

    1977-01-01

    Experiments with a rabbit reticulocyte cell-free system dependent on the addition of initiation factor 3 (eIF-3) and mRNA were carried out. In this system, using ribosomal subunits, AUG(U)n can direct polyphenylalanine synthesis in the absence of eIF-3 at 3 mM MgCl2. Globin mRNA was not translated under similar conditions; its translation requires the addition of eIF-3. Moreover, the maximal rate of globin synthesis was achieved when the molar ratio of eIF-3 to ribosomes was approximately 1. This was taken to indicate that some ribosomal proteins were fractionated with eIF-3 and functioned in reconstitution of salt-washed ribosomes. In our system, almost all ribosomes were active, as evident from the fact that all were found in polysomes when analyzed at the time of linear incorporation, and the molar ratio of ribosomes to mRNA was maintained at 4:1. When AUG(U)n was hybridized with poly(A), it could not direct polyphenylalanine synthesis with or without eIF-3 and was a potent inhibitor of the translation of globin mRNA in the presence of eIF-3. When poly(A) containing 10% U was hybridized with AUG(U)n and added to the cell-free system, addition of eIF-3 promoted polyphenylalanine synthesis to about 80% of control. Moreover, eIF-3 was seen to shift significantly the melting temperature of globin and synthetic double-stranded RNA. These observations suggest that extraction of ribosomes with 0.5 M KCl may release a ribosomal protein that fractionates with eIF-3. This protein may function in unwinding or melting the secondary structure of mRNA and thus facilitate translation. PMID:267926

  19. Nonsense-mediated decay factors are involved in the regulation of selenoprotein mRNA levels during selenium deficiency

    PubMed Central

    Seyedali, Ali; Berry, Marla J.

    2014-01-01

    Selenoproteins contain the unique amino acid selenocysteine (Sec), which is encoded by the triplet UGA. Since UGA also serves as a stop codon, it has been postulated that selenoprotein mRNAs are targeted for degradation by the nonsense-mediated mRNA decay pathway (NMD). Several reports have observed a hierarchy of selenoprotein mRNA expression when selenium (Se) is limiting, whereby the abundance of certain transcripts decline while others do not. We sought to investigate the role of NMD in this hierarchical response that selenoprotein mRNAs exhibit to environmental Se status. Selenoprotein mRNAs were categorized as being predicted sensitive or resistant to NMD based on the requirements held by the current model. About half of the selenoprotein transcriptome was predicted to be sensitive to NMD and showed significant changes in mRNA abundance in response to cellular Se status. The other half that was predicted to be resistant to NMD did not respond to Se status. RNA immunoprecipitation with essential NMD factor UPF1 revealed that the mRNAs that were the most sensitive to Se status were also the most enriched on UPF1 during Se deficiency. Furthermore, depletion of SMG1, the kinase responsible for UPF1 phosphorylation and NMD activation, abrogated the decline in transcript abundance of Se-responsive transcripts. Lastly, mRNA decay rates of Se-responsive transcripts were altered upon the addition of Se to resemble the slower decay rates of nonresponsive transcripts. Taken together, these results present novel evidence in support of a crucial role for the NMD pathway in regulating selenoprotein mRNA levels when Se is limiting. PMID:24947499

  20. Expression of growth factor ligand and receptor genes in the preimplantation bovine embryo.

    PubMed

    Watson, A J; Hogan, A; Hahnel, A; Wiemer, K E; Schultz, G A

    1992-02-01

    The sensitive technique of mRNA phenotyping with the reverse transcription-polymerase chain reaction was employed to determine the patterns of gene expression for several growth factor ligand and receptor genes during bovine preimplantation development. Several thousand bovine embryos encompassing a developmental series from one-cell zygotes to hatched blastocysts were produced by the application of in vitro maturation, fertilization, and oviductal epithelial cell embryo coculture methods. Transcripts for transforming growth factor (TGF-alpha) and platelet-derived growth factor (PDGF-A) are detectable in all preimplantation bovine stages as observed in the mouse. Transcripts for TGF-beta 2 and insulin-like growth factor (IGF-II) and the receptors for PDGF-alpha, insulin, IGF-I, and IGF-II are also detectable throughout bovine preimplantation development, suggesting that these mRNAs are products of both the maternal and the embryonic genomes in the cow, whereas in the mouse they are present only following the activation of the embryonic genome at the two-cell stage. In contrast to the mouse embryo, IGF-I mRNA was detected within preimplantation bovine embryos. Basic fibroblast growth factor (bFGF) is a maternal message in the bovine embryo, since it is only detectable up until the eight-cell embryo stage. Bovine trophoblast protein (bTP) mRNA was detectable within day 8 bovine blastocysts. As was observed in the mouse, the transcripts for insulin, epidermal growth factor (EGF), or nerve growth factor (NGF) were not detectable in any bovine embryo stage. Analyses of this type should aid the development of a completely defined culture medium for the more efficient production of preimplantation bovine embryos.

  1. Dauricine inhibits insulin-like growth factor-I-induced hypoxia inducible factor 1α protein accumulation and vascular endothelial growth factor expression in human breast cancer cells

    PubMed Central

    Tang, Xu-dong; Zhou, Xin; Zhou, Ke-yuan

    2009-01-01

    Aim: To investigate the effects of dauricine (Dau) on insulin-like growth factor-I (IGF-I)-induced hypoxia inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression in human breast cancer cells (MCF-7). Methods: Serum-starved MCF-7 cells were pretreated for 1 h with different concentrations of Dau, followed by incubation with IGF-I for 6 h. HIF-1α and VEGF protein expression levels were analyzed by Western blotting and ELISA, respectively. HIF-1α and VEGF mRNA levels were determined by real-time PCR. In vitro angiogenesis was observed via the human umbilical vein endothelial cell (HUVEC) tube formation assay. An in vitro invasion assay on HUVECs was performed. Results: Dau significantly inhibited IGF-I-induced HIF-1α protein expression but had no effect on HIF-1α mRNA expression. However, Dau remarkably suppressed VEGF expression at both protein and mRNA levels in response to IGF-I. Mechanistically, Dau suppressed IGF-I-induced HIF-1α and VEGF protein expression mainly by blocking the activation of PI-3K/AKT/mTOR signaling pathway. In addition, Dau reduced IGF-I-induced HIF-1α protein accumulation by inhibiting its synthesis as well as by promoting its degradation. Functionally, Dau inhibited angiogenesis in vitro. Moreover, Dau had a direct effect on IGF-I-induced invasion of HUVECs. Conclusion: Dau inhibits human breast cancer angiogenesis by suppressing HIF-1α protein accumulation and VEGF expression, which may provide a novel potential mechanism for the anticancer activities of Dau in human breast cancer. PMID:19349962

  2. Epidermal Growth Factor and Intestinal Barrier Function

    PubMed Central

    Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  3. Role of hematopoietic growth factors in angiogenesis.

    PubMed

    Ribatti, D; Vacca, A; De Falco, G; Ria, R; Roncali, L; Dammacco, F

    2001-01-01

    In early ontogeny, hematopoiesis is closely associated with angiogenesis. This article reviews recent studies of the effect of hematopoietic growth factors on several endothelial cell functions together with recent findings about angiogenesis and antiangiogenic therapies in hematopoietic malignancies such as leukemia, lymphoma and myeloma. Copyright 2001 S. Karger AG, Basel

  4. Identification and molecular characterization of cellular factors required for glucocorticoid receptor-mediated mRNA decay

    PubMed Central

    Park, Ok Hyun; Park, Joori; Yu, Mira; An, Hyoung-Tae; Ko, Jesang; Kim, Yoon Ki

    2016-01-01

    Glucocorticoid (GC) receptor (GR) has been shown recently to bind a subset of mRNAs and elicit rapid mRNA degradation. However, the molecular details of GR-mediated mRNA decay (GMD) remain unclear. Here, we demonstrate that GMD triggers rapid degradation of target mRNAs in a translation-independent and exon junction complex-independent manner, confirming that GMD is mechanistically distinct from nonsense-mediated mRNA decay (NMD). Efficient GMD requires PNRC2 (proline-rich nuclear receptor coregulatory protein 2) binding, helicase ability, and ATM-mediated phosphorylation of UPF1 (upstream frameshift 1). We also identify two GMD-specific factors: an RNA-binding protein, YBX1 (Y-box-binding protein 1), and an endoribonuclease, HRSP12 (heat-responsive protein 12). In particular, using HRSP12 variants, which are known to disrupt trimerization of HRSP12, we show that HRSP12 plays an essential role in the formation of a functionally active GMD complex. Moreover, we determine the hierarchical recruitment of GMD factors to target mRNAs. Finally, our genome-wide analysis shows that GMD targets a variety of transcripts, implicating roles in a wide range of cellular processes, including immune responses. PMID:27798850

  5. Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis

    PubMed Central

    Tatomer, Deirdre C.; Terzo, Esteban; Curry, Kaitlin P.; Salzler, Harmony; Sabath, Ivan; Zapotoczny, Grzegorz; McKay, Daniel J.; Dominski, Zbigniew

    2016-01-01

    The histone locus body (HLB) assembles at replication-dependent histone genes and concentrates factors required for histone messenger RNA (mRNA) biosynthesis. FLASH (Flice-associated huge protein) and U7 small nuclear RNP (snRNP) are HLB components that participate in 3′ processing of the nonpolyadenylated histone mRNAs by recruiting the endonuclease CPSF-73 to histone pre-mRNA. Using transgenes to complement a FLASH mutant, we show that distinct domains of FLASH involved in U7 snRNP binding, histone pre-mRNA cleavage, and HLB localization are all required for proper FLASH function in vivo. By genetically manipulating HLB composition using mutations in FLASH, mutations in the HLB assembly factor Mxc, or depletion of the variant histone H2aV, we find that failure to concentrate FLASH and/or U7 snRNP in the HLB impairs histone pre-mRNA processing. This failure results in accumulation of small amounts of polyadenylated histone mRNA and nascent read-through transcripts at the histone locus. Thus, the HLB concentrates FLASH and U7 snRNP, promoting efficient histone mRNA biosynthesis and coupling 3′ end processing with transcription termination. PMID:27241916

  6. Selenium Deficiency Affects the mRNA Expression of Inflammatory Factors and Selenoprotein Genes in the Kidneys of Broiler Chicks.

    PubMed

    Zhang, Jiu-Li; Xu, Bo; Huang, Xiao-Dan; Gao, Yu-Hong; Chen, Yu; Shan, An-Shan

    2016-05-01

    The aim of this study was to investigate the influence of Se deficiency on the transcription of inflammatory factors and selenoprotein genes in the kidneys of broiler chicks. One hundred fifty 1-day-old broiler chicks were randomly assigned to two groups fed with either a low-Se diet (L group, 0.033 mg/kg Se) or an adequate Se diet (C group, 0.2 mg/kg Se). The levels of uric acid (UA) and creatinine (Cr) in the serum and the mRNA levels of 6 inflammatory factors and 25 selenoprotein genes in the kidneys were measured as the clinical signs of Se deficiency occurred at 20 days old. The results indicated that the contents of UA and Cr in the serum increased in L group (p < 0.05), and the mRNA levels of the inflammatory factors (NF-κB, iNOS, COX-2, and TNF-α) increased in L group (p < 0.05). Meanwhile, the mRNA levels of PTGEs and HO-1 were not changed. In addition, 25 selenoprotein transcripts displayed ubiquitous expression in the kidneys of the chicks. The mRNA levels of 14 selenoprotein genes (Dio1, Dio2, GPx3, Sepp1, SelH, SelI, SelK, Sepn1, SelO, SelW, Sep15, SelT, SelU, and SelS) decreased, and 9 selenoprotein genes (GPx1, GPx2, GPx4, SelPb, Txnrd1, Txnrd2, Txnrd3, SPS2, and SelM) increased in L group (p < 0.05), but the Dio3 and Sepx1 mRNA levels did not change. The results indicated that Se deficiency resulted in kidney dysfunction, activation of the NF-κB pathway, and a change in selenoprotein gene expression. The changes of inflammatory factor and selenoprotein gene expression levels were directly related to the abnormal renal functions induced by Se deficiency.

  7. The response of the hepatic insulin-like growth factor system to growth hormone and dexamethasone in calves.

    PubMed

    Hammon, H M; Zbinden, Y; Sauerwein, H; Breier, B H; Blum, J W; Donkin, S S

    2003-12-01

    Glucocorticoids inhibit postnatal growth and yet can stimulate the somatotropic axis around birth. The aim of the present study was to investigate the effects of dexamethasone on the somatotropic axis and on the responses of the insulin-like growth factor (IGF) system to growth hormone treatment in calves. Calves (n=24) were randomly divided into four groups. Group DX was injected with dexamethasone (30 micro g/kg body weight per day), group GH was injected with 500 mg slow-release bovine growth hormone at 14-day intervals, group GHDX was injected with dexamethasone and bovine growth hormone, and group CNTRL (serving as control) was injected with saline from day 3 to day 42 of life. Blood samples were taken on day 3 and blood and liver samples were obtained on days 7, 14, 28 and 42. Body weight increased in the CNTRL and GH groups up to the end of the study and in the DX and GHDX groups up to the fourth week. Dexamethasone treatment decreased (P<0.05) plasma IGF binding protein (IGFBP)-1 on days 7 and 14, but increased (P<0.05) plasma IGFBP-1, decreased (P<0.05) plasma IGF-I and IGFBP-3, and decreased hepatic mRNA for growth hormone receptor (GHR) and IGF-I on day 42. Growth hormone treatment increased (P<0.05) plasma growth hormone concentrations on days 7 and 14, tended to increase (P<0.1) plasma IGF-I concentrations on day 42, and increased (P<0.05) hepatic mRNA levels of GHR on day 14 and IGF-I mRNA levels on days 7 and 14. The combined dexamethasone and growth hormone treatment increased plasma growth hormone concentrations on day 7 and resulted in the highest plasma concentrations of IGF-I and IGFBP-3 (day 7 to day 28) as well as the greatest abundance of hepatic GHR (day 14) and IGF-I (days 7 and 14) mRNA. Plasma IGFBP-1 concentrations in the GHDX group behaved in a similar manner as in the DX group. In conclusion, the response of the somatotropic axis to growth hormone treatment could be greatly enhanced by dexamethasone treatment during the neonatal and

  8. Hypoxia-inducible factor 1 alpha is regulated by RBM38, a RNA-binding protein and a p53 family target, via mRNA translation

    PubMed Central

    Zhang, Min; Yin, Tiffany; Jung, Yong-Sam; Zhang, Jin; Chen, Xinbin

    2015-01-01

    Hypoxia-inducible factor 1 (HIF1), a heterodimeric transcription factor, consists of HIF1α and HIF1β and is necessary for cell growth and survival under a hypoxic condition. Thus, the level and activity of HIF1α needs to be tightly controlled. Indeed, HIF1α protein stability is controlled by prolyl hydroxylase and von Hippel-Lindau-mediated proteosomal degradation. However, it remains unclear whether HIF1α expression is controlled by other pathways. Here, we showed that RNA-binding protein RBM38, a target of the p53 family, regulates HIF1α expression via mRNA translation. Specifically, we showed that under a hypoxic condition, ectopic expression of RBM38 decreased, whereas knockdown of RBM38 increased, the level of HIF1α protein. We also showed that the rate of de novo HIF1α protein synthesis was increased by knockdown of RBM38. Additionally, we showed that RBM38 directly bound to HIF1α 5′ and 3′UTRs. Consistently, we showed that the rate of mRNA translation for a heterologous reporter that carries HIF1α 5′and/or 3′UTRs was increased upon knockdown of RBM38. Furthermore, we showed that knockdown of RBM38 increased, whereas ectopic expression of RBM38 decreased, the binding of eIF4E to HIF1α mRNA. Together, our data suggest that RBM38 is a novel translational regulator of HIF1α under a hypoxic condition. PMID:25622105

  9. Nerve Growth Factor and Diabetic Neuropathy

    PubMed Central

    Vinik, Aaron

    2003-01-01

    Neuropathy is one of the most debilitating complications of both type 1 and type 2 diabetes, with estimates of prevalence between 50–90% depending on the means of detection. Diabetic neuropathies are heterogeneous and there is variable involvement of large myelinated fibers and small, thinly myelinated fibers. Many of the neuronal abnormalities in diabetes can be duplicated by experimental depletion of specific neurotrophic factors, their receptors or their binding proteins. In experimental models of diabetes there is a reduction in the availability of these growth factors, which may be a consequence of metabolic abnormalities, or may be independent of glycemic control. These neurotrophic factors are required for the maintenance of the neurons, the ability to resist apoptosis and regenerative capacity. The best studied of the neurotrophic factors is nerve growth factor (NGF) and the related members of the neurotrophin family of peptides. There is increasing evidence that there is a deficiency of NGF in diabetes, as well as the dependent neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) that may also contribute to the clinical symptoms resulting from small fiber dysfunction. Similarly, NT3 appears to be important for large fiber and IGFs for autonomic neuropathy. Whether the observed growth factor deficiencies are due to decreased synthesis, or functional, e.g. an inability to bind to their receptor, and/or abnormalities in nerve transport and processing, remains to be established. Although early studies in humans on the role of neurotrophic factors as a therapy for diabetic neuropathy have been unsuccessful, newer agents and the possibilities uncovered by further studies should fuel clinical trials for several generations. It seems reasonable to anticipate that neurotrophic factor therapy, specifically targeted at different nerve fiber populations, might enter the therapeutic armamentarium. PMID:14668049

  10. Transforming growth factor alpha and epidermal growth factor levels in bladder cancer and their relationship to epidermal growth factor receptor.

    PubMed Central

    Mellon, J. K.; Cook, S.; Chambers, P.; Neal, D. E.

    1996-01-01

    We have examined levels of epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha) in neoplastic and non-neoplastic bladder tissue using a standard radioimmunoassay technique. Tumour samples had much higher TGF-alpha levels compared with EGF and TGF-alpha levels in malignant tissue were significantly higher than in benign bladder samples. There was, in addition, a difference in mean EGF levels from 'normal' bladder samples from non-tumour bearing areas of bladder in patients with bladder cancer compared with 'normal' bladder tissue obtained at the time of organ retrieval surgery. Levels of EGF and TGF-alpha did not correlate with levels of EGF receptor (EGFR) as determined by a radioligand binding method but levels of TGF-alpha > 10 ng gm-1 of tumour tissue did correlate with EGFR positivity defined using immunohistochemistry. These data suggest that TGF-alpha is the likely ligand for EGFR in bladder tumours. PMID:8605103

  11. Transforming growth factor-beta reverses a posttranscriptional defect in elastin synthesis in a cutis laxa skin fibroblast strain.

    PubMed Central

    Zhang, M C; Giro, M; Quaglino, D; Davidson, J M

    1995-01-01

    Skin fibroblasts from two cases of autosomal recessive cutis laxa (CL), having insignificant elastin production and mRNA levels, were challenged with transforming growth factor beta-1 (TGF-beta 1). Elastin production was brought from undetectable values to amounts typical of normal human skin fibroblasts in a dose-dependent fashion. Basic fibroblast growth factor (100 ng/ml) alone or in combination with TGF-beta 1 reduced elastin production and mRNA expression in CL skin fibroblasts more extensively than in normal cells. In situ hybridization showed that these effects were at the transcript level. One of the CL strains was examined in detail. Transcription rates for elastin were similar in normal and CL and unchanged by TGF-beta 1 or TGF-beta 2 (10 ng/ml), while in CL elastin mRNA half-life was increased > 10-fold by TGF-beta 2 and reduced 6-fold after TGF-beta 2 withdrawal, as compared with a control strain. Cycloheximide partially reversed elastin mRNA instability. These data are consistent with a defect in elastin mRNA stability that requires synthesis of labile factors or intact translational machinery, resulting in an extremely low steady state level of mRNA present in this strain of CL. Furthermore, TGF-beta can relieve elastin mRNA instability in at least one CL strain and elastin production defects in both CL strains. Images PMID:7884000

  12. Developmental regulation of insulin-like growth factor-I and growth hormone receptor gene expression.

    PubMed

    Shoba, L; An, M R; Frank, S J; Lowe, W L

    1999-06-25

    During development, the insulin-like growth factor I (IGF-I) gene is expressed in a tissue specific manner; however, the molecular mechanisms governing its developmental regulation remain poorly defined. To examine the hypothesis that expression of the growth hormone (GH) receptor accounts, in part, for the tissue specific expression of the IGF-I gene during development, the developmental regulation of IGF-I and GH receptor gene expression in rat tissues was examined. The level of IGF-I and GH receptor mRNA was quantified in RNA prepared from rats between day 17 of gestation (E17) and 17 months of age (17M) using an RNase protection assay. Developmental regulation of IGF-I gene expression was tissue specific with four different patterns of expression seen. In liver, IGF-I mRNA levels increased markedly between E17 and postnatal day 45 (P45) and declined thereafter. In contrast, in brain, skeletal muscle and testis, IGF-I mRNA levels decreased between P5 and 4M but were relatively unchanged thereafter. In heart and kidney, a small increase in IGF-I mRNA levels was observed between the early postnatal period and 4 months, whereas in lung, minimal changes were observed during development. The changes in GH receptor mRNA levels were, in general, coordinate with the changes in IGF-I mRNA levels, except in skeletal muscle. Interestingly, quantification of GH receptor levels by Western blot analysis in skeletal muscle demonstrated changes coordinate with IGF-I mRNA levels. The levels of the proteins which mediate GH receptor signaling (STAT1, -3, and -5, and JAK2) were quantified by Western blot analysis. These proteins also are expressed in a tissue specific manner during development. In some cases, the pattern of expression was coordinate with IGF-I gene expression, whereas in others it was discordant. To further define molecular mechanisms for the developmental regulation of IGF-I gene expression, protein binding to IGFI-FP1, a protein binding site that is in the major

  13. Growth Factors and Tension-Induced Skeletal Muscle Growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  14. Hepatocyte growth factor-modulated rat Leydig cell functions.

    PubMed

    Del Bravo, Jessica; Catizone, Angela; Ricci, Giulia; Galdieri, Michela

    2007-01-01

    Hepatocyte growth factor (HGF) regulates many cellular functions acting through c-Met, its specific tyrosine kinase receptor. We previously reported that in prepuberal rats HGF is secreted by the peritubular myoid cells during the entire postnatal testicular development and by the Sertoli cells only at puberty. We have also demonstrated that germ cells at different stages of development express c-Met and that HGF modulates germ cell proliferation and apoptosis. In the present article, we extend our study to the interstitial compartment of the testis and demonstrate that the c-Met protein is present on Leydig cells. The receptor is functionally active as demonstrated by the detected effects of HGF. We report in this article that HGF significantly increases the amount of testosterone secreted by the Leydig cells and decreases the number of Leydig cells undergoing apoptosis. The antiapoptotic effect of HGF is mediated by caspase-3 activity because the amount of the active fragment of the enzyme is decreased in Leydig cells cultured in the presence of HGF. However, treatment with the growth factor does not modify the expression levels of caspase-3 mRNA. These data indicate that HGF regulates the functional activities of Leydig cells. Interestingly, the steroidogenetic activity of the cells is increased by HGF in cultured explants of testicular tissues as well as the antiapoptotic effect of HGF. Therefore, our data indicate that HGF has a crucial role in the regulation of male fertility.

  15. Endothelin-1 induces connective tissue growth factor expression in cardiomyocytes.

    PubMed

    Recchia, Anna Grazia; Filice, Elisabetta; Pellegrino, Daniela; Dobrina, Aldo; Cerra, Maria Carmela; Maggiolini, Marcello

    2009-03-01

    Endothelin (ET)-1 is a vasoconstrictor involved in cardiovascular diseases. Connective tissue growth factor/CCN2 (CTGF) is a fibrotic mediator overexpressed in human atherosclerotic lesions, myocardial infarction, and hypertension. In different cell types CTGF regulates cell proliferation/apoptosis, migration, and extracellular matrix (ECM) accumulation and plays important roles in angiogenesis, chondrogenesis, osteogenesis, tissue repair, cancer and fibrosis. In the present study, we investigated the ET-1 signaling which triggers CTGF expression in cultured adult mouse atrial-muscle HL-1 cells used as a model system. ET-1 activated the CTGF promoter and induced CTGF expression at both mRNA and protein levels. Real-time PCR analysis revealed CTGF induction also in isolated rat heart preparations perfused with ET-1. Several intracellular signals elicited by ET-1 via ET receptors and even Epidermal Growth Factor Receptor (EGFR) contributed to the up-regulation of CTGF, including ERK activation and induction of the AP-1 components c-fos and c-jun, as also evaluated by ChIP analysis. Moreover, in cells treated with ET-1 the expression of ECM component decorin was abolished by CTGF silencing, indicating that CTGF is involved in ET-1 induced ECM accumulation not only in a direct manner but also through downstream effectors. Collectively, our data indicate that CTGF could be a mediator of the profibrotic effects of ET-1 in cardiomyocytes. CTGF inhibitors should be considered in setting a comprehensive pharmacological approach towards ET-1 induced cardiovascular diseases.

  16. Growth factor expression in degenerated intervertebral disc tissue. An immunohistochemical analysis of transforming growth factor beta, fibroblast growth factor and platelet-derived growth factor.

    PubMed

    Tolonen, Jukka; Grönblad, Mats; Vanharanta, Heikki; Virri, Johanna; Guyer, Richard D; Rytömaa, Tapio; Karaharju, Erkki O

    2006-05-01

    Degenerated intervertebral disc has lost its normal architecture, and there are changes both in the nuclear and annular parts of the disc. Changes in cell shape, especially in the annulus fibrosus, have been reported. During degeneration the cells become more rounded, chondrocyte-like, whereas in the normal condition annular cells are more spindle shaped. These chondrocyte-like cells, often forming clusters, affect extracellular matrix turnover. In previous studies transforming growth factor beta (TGFbeta) -1 and -2, basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) have been highlighted in herniated intervertebral disc tissue. In the present study the same growth factors are analysed immunohistochemically in degenerated intervertebral disc tissue. Disc material was obtained from 16 discs operated for painful degenerative disc disease. Discs were classified according to the Dallas Discogram Description. Different disc regions were analysed in parallel. As normal control disc tissue material from eight organ donors was used. Polyclonal antibodies against different growth factors and TGFbeta receptor type II were used, and the immunoreaction was detected by the avidin biotin complex method. All studied degenerated discs showed immunoreactivity for TGFbeta receptor type II and bFGF. Fifteen of 16 discs were immunopositive for TGFbeta-1 and -2, respectively, and none showed immunoreaction for PDGF. Immunopositivity was located in blood vessels and in disc cells. In the nucleus pulposus the immunoreaction was located almost exclusively in chondrocyte-like disc cells, whereas in the annular region this reaction was either in chondrocyte-like disc cells, often forming clusters, or in fibroblast-like disc cells. Chondrocyte-like disc cells were especially prevalent in the posterior disrupted area. In the anterior area of the annulus fibrosus the distribution was more even between these two cell types. bFGF was expressed in the anterior annulus

  17. Luteotropic and luteolytic factors regulate mRNA and protein expression of progesterone receptor isoforms A and B in the bovine endometrium.

    PubMed

    Rekawiecki, Robert; Kowalik, Magdalena Karolina; Kotwica, Jan

    2014-12-17

    The aim of the present study was to examine the effects of luteotropic and luteolytic factors on the mRNA and protein levels of progesterone receptor isoforms A (PGRA) and B (PGRB) in the bovine endometrium. Endometrial slices from Days 6-10 and 17-20 of the oestrous cycle were treated with LH (100ngmL-1), oestradiol (E2; 1×10-8M), prostaglandin (PG) E2 (1×10-6M) and PGF2? (1×10-6M) and the nitric oxide donor NONOate (1×10-4M); these treatments lasted for 6h for mRNA expression analysis and 24h for protein expression analysis. On Days 6-10 of the oestrous cycle PGRAB (PGRAB; the entire PGRA mRNA sequence is common to the PGRB mRNA sequence) mRNA expression in endometrial slices was enhanced by E2 treatment (PPGRB mRNA expression was increased by LH (PPPPGRAB mRNA expression increased after E2 (P2 (PPGRB mRNA expression was increased by PGE2 (P2? (PPPPPP2? (P2 (P2? (P<0.001). These data suggest that luteotropic and luteolytic factors affect PGRA and PGRB mRNA and protein levels, and this may regulate the effects of progesterone on endometrial cells.

  18. [Polyadenylated RNA and mRNA export factors in extrachromosomal nuclear domains of vitellogenic oocytes of the insect Tenebrio molitor].

    PubMed

    Bogoliubov, D S; Kiselev, A M; Shabel'nikov, S V; Parfenov, V N

    2012-01-01

    The nucleus ofvitellogenic oocytes of the yellow mealworm, Tenebrio molitor, contains a karyosphere that consists of the condensed chromatin embedded in an extrachromosomal fibrogranular material. Numerous nuclear bodies located freely in the nucleoplasm are also observed. Amongst these bodies, counterparts of nuclear speckles (= interchromatin granule clusters, IGCs) can be identified by the presence of the marker protein SC35. Microinjections of fluorescently tagged methyloligoribonucleotide probes 2'-O-Me(U)22, complementary to poly(A) tails of RNAs, revealed poly(A)+ RNA in the vast majority of IGCs. We found that all T. molitor oocyte IGCs contain heterogeneous ribonucleoprotein (hnRNP) core protein Al that localizes to IGCs in an RNA-dependent manner. The extrachromosomal material of the karyosphere and a part of nucleoplasmic IGCs also contain the adapter protein Aly that is known to provide a link between pre-mRNA splicing and mRNA export. The essential mRNA export factor/receptor NXF1 was observed to colocalize with Aly. In nucleoplasmic IGCs, NXF1 was found to localize in an RNA-dependent manner whereas it is RNA-independently located in the extrachromosomal material of the karyosphere. We believe our data suggest on a role of the nucleoplasmic IGCs in mRNA biogenesis and retention in a road to nuclear export.

  19. Nonsense-mediated mRNA decay factor Upf2 exists in both the nucleoplasm and the cytoplasm.

    PubMed

    Tatsuno, Takanori; Nakamura, Yuka; Ma, Shaofu; Tomosugi, Naohisa; Ishigaki, Yasuhito

    2016-07-01

    Upf2 protein predominantly localizes to the cytoplasmic fraction, and binds to the exon junction complex (EJC) on spliced mRNA. The present study aimed to determine the cellular site where the interaction between Upf2 and EJC occurs. First, the cell lysate was fractionated into the cytoplasm and nucleoplasm, and western blotting to detect levels of Upf2 protein was performed. Upf2 was clearly detected in the cytoplasm and in the nucleoplasm. Secondly, immunostaining was performed, and the majority of Upf2 was detected in the cytoplasmic perinuclear region; a small quantity of Upf2 was detected in the intranuclear region. RNase treatment of the cells reduced the Upf2 immunostained signal. The immunopurified fractions containing nuclear and cytoplasmic Upf2 also contained one of the EJC core factors, RBM8A. These results implied the existence of Upf2 in the nucleoplasm and the cytoplasm, and it appeared to be involved in the construction of the mRNA complex. In order to verify the construction of Upf2‑binding EJC in the nucleoplasm, an in situ proximity ligation assay was performed with anti‑Upf2 and anti‑RBM8A antibodies. These results demonstrated that their interaction occurred not only in the cytoplasmic region, but also in the intranuclear region. Taken together, these results suggested that Upf2 combines with EJC in both the cytoplasmic and the intranuclear fractions, and that it is involved in mRNA metabolism in human cells.

  20. Acetylcholine receptor-inducing factor from chicken brain increases the level of mRNA encoding the receptor. alpha. subunit

    SciTech Connect

    Harris, D.A.; Falls, D.L.; Dill-Devor, R.M.; Fischbach, G.D. )

    1988-03-01

    A 42-kDa glycoprotein isolated from chicken brain, referred to as acetylcholine receptor-inducing activity (ARIA), that stimulates the rate of incorporation of acetylcholine receptors into the surface of chicken myotubes may play a role in the nerve-induced accumulation of receptors at developing neuromuscular synapses. Using nuclease-protection assays, the authors have found that ARIA causes a 2- to 16-fold increase in the level of mRNA encoding the {alpha} subunit of the receptor, with little or no change in the levels of {gamma}- and {delta}-subunit messengers. ARIA also increases the amount of a putative nuclear precursor of {alpha}-subunit mRNA, consistent with an activation of gene transcription. These results suggest that the concentration of {alpha} subunit may limit the rate of biosynthesis of the acetylcholine receptors in chicken myotubes. They also indicate that neuronal factors can regulate the expression of receptor subunit genes in a selective manner. Tetrodotoxin, 8-bromo-cAMP, and forskolin also increase the amount of {alpha}-subunit mRNA, with little change in the amount of {gamma}- and {delta}-subunit mRNAs. Unlike ARIA, however, these agents have little effect on the concentration of the {alpha}-subunit nuclear precursor.

  1. Nerve growth factor promotes human hemopoietic colony growth and differentiation.

    PubMed Central

    Matsuda, H; Coughlin, M D; Bienenstock, J; Denburg, J A

    1988-01-01

    Nerve growth factor (NGF) is a neurotropic polypeptide necessary for the survival and growth of some central neurons, as well as sensory afferent and sympathetic neurons. Much is now known of the structural and functional characteristics of NGF, whose gene has recently been cloned. Since it is synthesized in largest amounts by the male mouse submandibular gland, its role exclusively in nerve growth is questionable. NGF also causes histamine release from rat peritoneal mast cells in vitro, and we have shown elsewhere that it causes significant, dose-dependent, generalized mast cell proliferation in the rat in vivo when administered neonatally. Our experiments now indicate that NGF causes a significant stimulation of granulocyte colonies grown from human peripheral blood in standard hemopoietic methylcellulose assays. Further, NGF appears to act in a relatively selective fashion to induce the differentiation of eosinophils and basophils/mast cells. Depletion experiments show that the NGF effect may be T-cell dependent and that NGF augments the colony-stimulating effect of supernatants from the leukemic T-cell (Mo) line. The hemopoietic activity of NGF is blocked by polyclonal and monoclonal antibodies to NGF. We conclude that NGF may indirectly act as a local growth factor in tissues other than those of the nervous system by causing T cells to synthesize or secrete molecules with colony-stimulating activity. In view of the synthesis of NGF in tissue injury, the involvement of basophils/mast cells and eosinophils in allergic and other inflammatory processes, and the association of mast cells with fibrosis and tissue repair, we postulate that NGF plays an important biological role in a variety of repair processes. PMID:3413109

  2. Molecular cloning of a human gene that is a member of the nerve growth factor family

    SciTech Connect

    Jones, K.R.; Reichardt, L.F. )

    1990-10-01

    Cell death within the developing vertebrate nervous system is regulated in part by interactions between neurons and their innervation targets that are mediated by neurotrophic factors. These factors also appear to have a role in the maintenance of the adult nervous system. Two neurotrophic factors, nerve growth factor and brain-derived neurotrophic factor, share substantial amino acid sequence identity. The authors have used a screen that combines polymerase chain reaction amplification of genomic DNA and low-stringency hybridization with degenerate oligonucleotides to isolate human BDNF and a human gene, neurotrophin-3, that is closely related to both nerve growth factor and brain-derived neurotrophic factor. mRNA products of the brain-derived neurotrophic factor and neurotrophin-3 genes were detected in the adult human brain, suggesting that these proteins are involved in the maintenance of the adult nervous system. Neurotrophin-3 is also expected to function in embryonic neural development.

  3. Epidermal growth factor receptor signaling in tissue

    SciTech Connect

    Shvartsman, Stanislav; Wiley, H. S.; Lauffenburger, Douglas A.

    2004-08-01

    Abstract: A peptide purified from the salivary gland of a mouse was shown few years ago to accelerate incisor eruption and eyelid opening in newborn mice, and was named epidermal growth factor (EGF). The members of this family of peptide growth factors had been identified in numerous physiological and pathological contexts. EGF binds to a cell surface EGF receptor, which induces a biochemical modification (phosphorylation) of the receptor's cytoplasmic tail. There is a growing consensus in the research community that, in addition to cellular and molecular studies, the dynamics of the EGFR network and its operation must be examined in tissues. A key challenge is to integrate the existing molecular and cellular information into a system-level description of the EGFR network at the tissue and organism level. In this paper, the two examples of EGFR signaling in tissues are described, and the recent efforts to model EGFR autocrine loops, which is a predominant mode of EGFR activation in vivo, are summarized.

  4. Effects of transforming growth factor beta-1 on growth-regulatory genes in tumour-derived human oral keratinocytes.

    PubMed Central

    Paterson, I. C.; Patel, V.; Sandy, J. R.; Prime, S. S.; Yeudall, W. A.

    1995-01-01

    This study examined the effect of transforming growth factor beta-1 (TGF-beta 1) on c-myc, RB1, junB and p53 expression together with pRb phosphorylation, in carcinoma-derived and normal human oral keratinocytes with a range of inhibitory responses to this ligand. Amplification of c-myc was observed in eight of eight tumour-derived cell lines and resulted in corresponding mRNA expression. The down-regulation of c-myc expression by TGF-beta 1 predominantly reflected growth inhibition by TGF-beta 1, but in two of eight tumour-derived cell lines which were partially responsive to TGF-beta 1 c-myc expression was unaltered by this ligand. While RB1 mRNA levels were unaltered by TGF-beta 1, the ligand caused the accumulation of the underphosphorylated form of the Rb protein in all cells irrespective of TGF-beta 1-induced growth arrest. junB expression was up-regulated by TGF-beta 1 in cells with a range of growth inhibitory responses. All cells contained mutant p53. TGF-beta 1 did not affect p53 mRNA expression in both tumour-derived and normal keratinocytes and there was no alteration in p53 protein levels in keratinocytes expressing stable p53 protein following TGF-beta 1 treatment. The data indicate that TGF-beta-induced growth control can exist independently of the presence of mutant p53 and the control of Rb phosphorylation and c-myc down-regulation. It may be that TGF-beta growth inhibition occurs via multiple mechanisms and that the loss of one pathway during tumour progression does not necessarily result in the abrogation of TGF-beta-induced growth control. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:7547241

  5. Expression and modulation of nerve growth factor in murine keratinocytes (PAM 212)

    SciTech Connect

    Tron, V.A.; Coughlin, M.D.; Jang, D.E.; Stanisz, J.; Sauder, D.N. )

    1990-04-01

    Nerve growth factor (NGF) is a polypeptide that is required for normal development and maintenance of the sympathetic and sensory nervous systems. Skin has been shown to contain relatively high amounts of NGF, which is in keeping with the finding that the quantity of NGF in a tissue is proportional to the extent of sympathetic innervation of that organ. Since the keratinocyte, a major cellular constituent of the skin, is known to produce other growth factors and cytokines, our experiments were designed to determine whether keratinocytes are a source of NGF. Keratinocyte-conditioned media from the keratinocyte cell line PAM 212 contained NGF-like activity, approximately 2-3 ng/ml, as detected by the neurite outgrowth assay. Freshly isolated BALB/c keratinocytes contained approximately 0.1 ng/ml. Using a cDNA probe directed against NGF, we demonstrated the presence of a 1.3-kb NGF mRNA in both PAM 212 and BALB/c keratinocytes. Since ultraviolet radiation (UV) is a potentially important modulating factor for cytokines in skin, we examined the effect of UV on NGF mRNA expression. Although UV initially inhibited the expression of keratinocyte NGF mRNA (4 h), by 24 h an induction of NGF mRNA was seen. The NGF signal could also be induced by phorbol esters. Thus, keratinocytes synthesize and express NGF, and its expression is modulated by UVB and phorbol esters.

  6. Ribosome profiling-guided depletion of an mRNA increases cell growth rate and protein secretion

    PubMed Central

    Kallehauge, Thomas Beuchert; Li, Shangzhong; Pedersen, Lasse Ebdrup; Ha, Tae Kwang; Ley, Daniel; Andersen, Mikael Rørdam; Kildegaard, Helene Faustrup; Lee, Gyun Min; Lewis, Nathan E.

    2017-01-01

    Recombinant protein production coopts the host cell machinery to provide high protein yields of industrial enzymes or biotherapeutics. However, since protein translation is energetically expensive and tightly controlled, it is unclear if highly expressed recombinant genes are translated as efficiently as host genes. Furthermore, it is unclear how the high expression impacts global translation. Here, we present the first genome-wide view of protein translation in an IgG-producing CHO cell line, measured with ribosome profiling. Through this we found that our recombinant mRNAs were translated as efficiently as the host cell transcriptome, and sequestered up to 15% of the total ribosome occupancy. During cell culture, changes in recombinant mRNA translation were consistent with changes in transcription, demonstrating that transcript levels influence specific productivity. Using this information, we identified the unnecessary resistance marker NeoR to be a highly transcribed and translated gene. Through siRNA knock-down of NeoR, we improved the production- and growth capacity of the host cell. Thus, ribosomal profiling provides valuable insights into translation in CHO cells and can guide efforts to enhance protein production. PMID:28091612

  7. Ribosome profiling-guided depletion of an mRNA increases cell growth rate and protein secretion

    NASA Astrophysics Data System (ADS)

    Kallehauge, Thomas Beuchert; Li, Shangzhong; Pedersen, Lasse Ebdrup; Ha, Tae Kwang; Ley, Daniel; Andersen, Mikael Rørdam; Kildegaard, Helene Faustrup; Lee, Gyun Min; Lewis, Nathan E.

    2017-01-01

    Recombinant protein production coopts the host cell machinery to provide high protein yields of industrial enzymes or biotherapeutics. However, since protein translation is energetically expensive and tightly controlled, it is unclear if highly expressed recombinant genes are translated as efficiently as host genes. Furthermore, it is unclear how the high expression impacts global translation. Here, we present the first genome-wide view of protein translation in an IgG-producing CHO cell line, measured with ribosome profiling. Through this we found that our recombinant mRNAs were translated as efficiently as the host cell transcriptome, and sequestered up to 15% of the total ribosome occupancy. During cell culture, changes in recombinant mRNA translation were consistent with changes in transcription, demonstrating that transcript levels influence specific productivity. Using this information, we identified the unnecessary resistance marker NeoR to be a highly transcribed and translated gene. Through siRNA knock-down of NeoR, we improved the production- and growth capacity of the host cell. Thus, ribosomal profiling provides valuable insights into translation in CHO cells and can guide efforts to enhance protein production.

  8. Growth factor and protease expression during different phases of healing after rabbit deep flexor tendon repair.

    PubMed

    Berglund, M E; Hart, D A; Reno, C; Wiig, M

    2011-06-01

    The purpose of the study was to contribute to the mapping of molecular events during flexor tendon healing, in particular the growth factors insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF) and nerve growth factor (NGF), matrix metalloproteinases (MMP-3 and MMP-13) and their inhibitors (tissue inhibitors of metalloproteinases, TIMP-1 and TIMP-3, and the protease cathepsin K. In a rabbit model of flexor tendon injury, the mRNA expression for the growth factors, MMPs and TIMPs were measured in tendon and tendon sheath tissue at several time points (3, 6, 21, and 42 days) representing different phases of the healing process. We found that MMP-13 remained increased during the study period, whereas MMP-3 returned to normal levels within the first week after injury. TIMP-3 was down-regulated in the tendon sheaths. Cathepsin K was up-regulated in tendons and sheaths after injury. NGF was present in both tendons and sheaths, but unaltered. IGF-1 exhibited a late increase in the tendons, while VEGF was down-regulated at the later time points. In conclusion, we have demonstrated the presence of NGF in flexor tendons. MMP-13 expression appears to play a more protracted role in flexor tendon healing than MMP-3. The relatively low levels of endogenous IGF-1 and VEGF mRNA following injury support their potential beneficial role as exogenous modulators to optimize tendon healing and strength without increasing adhesion formation.

  9. Expression analysis of angiogenic growth factors and biological axis CXCL12/CXCR4 axis in idiopathic pulmonary fibrosis.

    PubMed

    Antoniou, Katerina M; Soufla, Giannoula; Lymbouridou, Rena; Economidou, Foteini; Lasithiotaki, Ismini; Manousakis, Manolis; Drositis, Ioannis; Spandidos, Demetrios A; Siafakas, Nikolaos M

    2010-01-01

    Idiopathic pulmonary fibrosis (IPF) is associated with aberrant repair, persistence of collagen deposition, and the development of vascular remodeling. However, the role of angiogenesis in the pathogenesis of IPF is still undetermined. The aim of this study was to evaluate the combined mRNA expression of vascular endothelial growth factor A (VEGFA), fibroblast growth factor 2 (FGF2), insulin-like growth factor 1 (IGF1) epidermal growth factor (EGF), and its receptor (EGFR) in lung tissue obtained from IPF patients. We have also investigated the expression of chemokine CXCL12/stromal cell-derived factor-1 (SDF-1) and its receptor, CXCR4, to identify alterations that maybe implicated in the pathogenesis of IPF. The subjects studied consisted of two distinct groups: patients with IPF (n = 25) and subjects (control) undergoing thoracic surgery for reasons other than interstitial lung disease (n = 10). Expression analysis of the aforementioned growth factors and biological axis CXCL12/CXR4 analysis were performed using real-time RT-PCR. IGF-1, EGF, and FGF2 mRNA levels are significantly decreased in the patients compared to the controls (p = 0.028, p = 0.023 and p = 0.009, respectively). SDF1-TR1 and SDF1-TR2 transcript levels were significantly lower in patients compared to controls (p = 0.017 and p = 0.001). Significant coexpression of VEGF mRNA with IGF mRNA was observed in the group of the patients (p = 0.017). An additional coexpression of VEGF mRNA with SDF1-TR1 mRNA was demonstrated(p = 0.030). Our results show a downregulation in angiogenetic mechanisms in IPF. However, our results should be further verified by measuring other angiogenetic pathways in more samples.

  10. Expression of SANT/HTH Myb mRNA, a plant morphogenesis-regulating transcription factor, changes due to viroid infection.

    PubMed

    Matoušek, Jaroslav; Piernikarczyk, Rajen J J; Týcová, Anna; Duraisamy, Ganesh S; Kocábek, Tomáš; Steger, Gerhard

    2015-07-01

    Potato spindle tuber viroid (PSTVd) belongs to plant-pathogenic, circular, non-coding RNAs. Its propagation is accompanied by (mis)regulation of host genes and induction of pathogenesis symptoms including changes of leaf morphogenesis depending on the strength of viroid variant. We found strong genotype-dependent suppression of tomato morphogenesis-regulating transcription factor SANT/HTH-Myb (SlMyb) due to viroid pathogenesis. Its relative mRNA level was found to be significantly decreased in PSTVd-sensitive tomato (cvs Rutgers and Heinz 1706) due to degradation processes, but increased in PSTVd-tolerant (cv. Harzfeuer). In heterologous system of Nicotiana benthamiana, we observed a SlMyb-associated necrotic effect in agroinfiltrated leaf sectors during ectopic overexpression. Leaf sector necroses were accompanied by activation of nucleolytic enzymes but were suppressed by a strongly pathogenic PSTVd variant. Contrary to that, PSTVd's effect was inhibited by the silencing suppressor p19. It was found that in both, Solanum lycopersicum leaves and N. benthamiana leaf sectors, SlMyb mRNA degradation was significantly stronger in viroid-infected tissues. Necroses induction as well as gene silencing experiments using the SANT/HTH-Myb homologues revealed involvement of this Myb in physiological changes like distortions in flower morphogenesis and growth suppression. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. The Arabidopsis homologs of CCR4-associated factor 1 show mRNA deadenylation activity and play a role in plant defence responses.

    PubMed

    Liang, Wenxing; Li, Changbao; Liu, Fang; Jiang, Hongling; Li, Shuyu; Sun, Jiaqiang; Wu, Xiaoyan; Li, Chuanyou

    2009-03-01

    Messenger RNA (mRNA) turnover in eukaryotic cells begins with shortening of the poly (A) tail at the 3' end, a process called deadenylation. In yeast, the deadenylation reaction is predominantly mediated by CCR4 and CCR4-associated factor 1 (CAF1), two components of the well-characterised protein complex named CCR4-NOT. We report here that AtCAF1a and AtCAF1b, putative Arabidopsis homologs of the yeast CAF1 gene, partially complement the growth defect of the yeast caf1 mutant in the presence of caffeine or at high temperatures. The expression of AtCAF1a and AtCAF1b is induced by multiple stress-related hormones and stimuli. Both AtCAF1a and AtCAF1b show deadenylation activity in vitro and point mutations in the predicted active sites disrupt this activity. T-DNA insertion mutants disrupting the expression of AtCAF1a and/or AtCAF1b are defective in deadenylation of stress-related mRNAs, indicating that the two AtCAF1 proteins are involved in regulated mRNA deadenylation in vivo. Interestingly, the single and double mutants of AtCAF1a and AtCAF1b show reduced expression of pathogenesis-related (PR) genes PR1 and PR2 and are more susceptible to Pseudomonas syringae pv tomato DC3000 (Pst DC3000) infection, whereas transgenic plants over-expressing AtCAF1a show elevated expression of PR1 and PR2 and increased resistance to the same pathogen. Our results suggest roles of the AtCAF1 proteins in regulated mRNA deadenylation and defence responses to pathogen infections.

  12. Metabolic hormones regulate basal and growth hormone-dependent igf2 mRNA level in primary cultured coho salmon hepatocytes: effects of insulin, glucagon, dexamethasone, and triiodothyronine.

    PubMed

    Pierce, A L; Dickey, J T; Felli, L; Swanson, P; Dickhoff, W W

    2010-03-01

    Igf1 and Igf2 stimulate growth and development of vertebrates. Circulating Igfs are produced by the liver. In mammals, Igf1 mediates the postnatal growth-promoting effects of growth hormone (Gh), whereas Igf2 stimulates fetal and placental growth. Hepatic Igf2 production is not regulated by Gh in mammals. Little is known about the regulation of hepatic Igf2 production in nonmammalian vertebrates. We examined the regulation of igf2 mRNA level by metabolic hormones in primary cultured coho salmon hepatocytes. Gh, insulin, the glucocorticoid agonist dexamethasone (Dex), and glucagon increased igf2 mRNA levels, whereas triiodothyronine (T(3)) decreased igf2 mRNA levels. Gh stimulated igf2 mRNA at physiological concentrations (0.25x10(-9) M and above). Insulin strongly enhanced Gh stimulation of igf2 at low physiological concentrations (10(-11) M and above), and increased basal igf2 (10(-8) M and above). Dex stimulated basal igf2 at concentrations comparable to those of stressed circulating cortisol (10(-8) M and above). Glucagon stimulated basal and Gh-stimulated igf2 at supraphysiological concentrations (10(-7) M and above), whereas T(3) suppressed basal and Gh-stimulated igf2 at the single concentration tested (10(-7) M). These results show that igf2 mRNA level is highly regulated in salmon hepatocytes, suggesting that liver-derived Igf2 plays a significant role in salmon growth physiology. The synergistic regulation of igf2 by insulin and Gh in salmon hepatocytes is similar to the regulation of hepatic Igf1 production in mammals.

  13. [The role of connective tissue growth factor, transforming growth factor and Smad signaling pathway during corneal wound healing].

    PubMed

    Yang, Yong-mei; Wu, Xin-yi; Du, Li-qun

    2006-10-01

    To study the expression and location of connective tissue growth factor (CTGF) and transforming growth factor-beta(1) (TGF-beta(1)) protein and mRNA in rabbit cornea during the wound healing process. To assess the interaction between CTGF and TGF-beta(1), as well as the Smad signaling pathway involved. Twenty-six Albino white rabbits were used as experimental animals and randomly divided into 4 groups: (1) CONTROL GROUP: two rabbits. (2) Simple corneal injury group: a 3 mm diameter and 0.05 mm depth corneal tissue was excised by a trephine at the anterior central cornea as a corneal wound model in 12 rabbits. Two rabbits were randomly sacrificed at 2 h, 6 h, 1 d, 3 d, 7 d and 21 d after the trauma. (3) TGF-beta(1) antibodies treated group: 6 rabbits were injected with TGF-beta(1) antibodies (15.5 microg) subconjunctivally after corneal trephine. Two rabbits were randomly sacrificed at 3 d, 7 d and 21 d after the injection. (4) Smad4 antibodies treated group: 6 rabbits were injected with Smad4 antibodies (20 microg) subconjunctivally after corneal trephine. Two rabbits were randomly sacrificed at 3 d, 7 d and 21 d after the injection. Protein of CTGF, TGF-beta(1), and FN was assessed with immunohistochemistry. CTGF and type one collagen mRNA were measured in by in situ hybridization. (1) CTGF protein or mRNA did not exist in normal rabbit corneas, but TGF-beta(1) protein was expressed in normal rabbit cornea epithelium. (2) Cornea fibroblasts activated 6 h after the operation. Expression of CTGF, TGF-beta(1), FN protein and mRNA of CTGF and type one collagen were upregulated after cornea injury, and reached the highest level in 3 days. The expression was reduced to the basal level 21 days later. (3) Injection of TGF-beta(1) antibodies reduced the expression of CTGF, TGF-beta(1) and FN in the cornea stroma and down-regulated the expression of CTGF in corneal epithelial cells. (4) Injection of Smad4 antibodies inhibited the expression of TGF in the stroma but did not

  14. Anterior–Posterior Axis Specification in Drosophila Oocytes: Identification of Novel bicoid and oskar mRNA Localization Factors

    PubMed Central

    Chang, Chin-Wen; Nashchekin, Dmitry; Wheatley, Lucy; Irion, Uwe; Dahlgaard, Katja; Montague, Tessa G.; Hall, Jacqueline; St. Johnston, Daniel

    2011-01-01

    The Drosophila melanogaster anterior–posterior axis is established during oogenesis by the localization of bicoid and oskar mRNAs to the anterior and posterior poles of the oocyte. Although genetic screens have identified some trans-acting factors required for the localization of these transcripts, other factors may have been missed because they also function at other stages of oogenesis. To circumvent this problem, we performed a screen for revertants and dominant suppressors of the bicaudal phenotype caused by expressing Miranda–GFP in the female germline. Miranda mislocalizes oskar mRNA/Staufen complexes to the oocyte anterior by coupling them to the bicoid localization pathway, resulting in the formation of an anterior abdomen in place of the head. In one class of revertants, Miranda still binds Staufen/oskar mRNA complexes, but does not localize to the anterior, identifying an anterior targeting domain at the N terminus of Miranda. This has an almost identical sequence to the N terminus of vertebrate RHAMM, which is also a large coiled-coil protein, suggesting that it may be a divergent Miranda ortholog. In addition, we recovered 30 dominant suppressors, including multiple alleles of the spectroplakin, short stop, a lethal complementation group that prevents oskar mRNA anchoring, and a female sterile complementation group that disrupts the anterior localization of bicoid mRNA in late oogenesis. One of the single allele suppressors proved to be a mutation in the actin nucleator, Cappuccino, revealing a previously unrecognized function of Cappuccino in pole plasm anchoring and the induction of actin filaments by Long Oskar protein. PMID:21625003

  15. Leukemia inhibitory factor, oncostatin M, IL-6, and stem cell factor mRNA expression in human thymus increases with age and is associated with thymic atrophy.

    PubMed

    Sempowski, G D; Hale, L P; Sundy, J S; Massey, J M; Koup, R A; Douek, D C; Patel, D D; Haynes, B F

    2000-02-15

    The roles that thymus cytokines might play in regulating thymic atrophy are not known. Reversing thymic atrophy is important for immune reconstitution in adults. We have studied cytokine mRNA steady-state levels in 45 normal human (aged 3 days to 78 years) and 34 myasthenia gravis thymuses (aged 4 to 75 years) during aging, and correlated cytokine mRNA levels with thymic signal joint (sj) TCR delta excision circle (TREC) levels, a molecular marker for active thymopoiesis. LIF, oncostatin M (OSM), IL-6, M-CSF, and stem cell factor (SCF) mRNA were elevated in normal and myasthenia gravis-aged thymuses, and correlated with decreased levels of thymopoiesis, as determined by either decreased keratin-positive thymic epithelial space or decreased thymic sjTRECs. IL-7 is a key cytokine required during the early stages of thymocyte development. Interestingly, IL-7 mRNA expression did not fall with aging in either normal or myasthenia gravis thymuses. In vivo administration of LIF, OSM, IL-6, or SCF, but not M-CSF, i.p. to mice over 3 days induced thymic atrophy with loss of CD4+, CD8+ cortical thymocytes. Taken together, these data suggest a role for thymic cytokines in the process of thymic atrophy.

  16. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors

    PubMed Central

    Bortvedt, Sarah F.; Lund, P. Kay

    2013-01-01

    Purpose of review To summarize recent evidence that IGF1 mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent findings Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogues in short bowel syndrome and Crohn’s disease. This review highlights evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn’s disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that SOCS protein induction by GH or GLP2 in normal or inflamed intestine, may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. Summary IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed. PMID:22241077

  17. The bicoid mRNA localization factor Exuperantia is an RNA-binding pseudonuclease.

    PubMed

    Lazzaretti, Daniela; Veith, Katharina; Kramer, Katharina; Basquin, Claire; Urlaub, Henning; Irion, Uwe; Bono, Fulvia

    2016-08-01

    Anterior patterning in Drosophila is mediated by the localization of bicoid (bcd) mRNA at the anterior pole of the oocyte. Exuperantia (Exu) is a putative exonuclease (EXO) associated with bcd and required for its localization. We present the crystal structure of Exu, which reveals a dimeric assembly with each monomer consisting of a 3'-5' EXO-like domain and a sterile alpha motif (SAM)-like domain. The catalytic site is degenerate and inactive. Instead, the EXO-like domain mediates dimerization and RNA binding. We show that Exu binds RNA directly in vitro, that the SAM-like domain is required for RNA binding activity and that Exu binds a structured element present in the bcd 3' untranslated region with high affinity. Through structure-guided mutagenesis, we show that Exu dimerization is essential for bcd localization. Our data demonstrate that Exu is a noncanonical RNA-binding protein with EXO-SAM-like domain architecture that interacts with its target RNA as a homodimer.

  18. Aly/ REF, a factor for mRNA transport, activates RH gene promoter function.

    PubMed

    Suganuma, Hiroshi; Kumada, Maki; Omi, Toshinori; Gotoh, Takaya; Lkhagvasuren, Munkhtulga; Okuda, Hiroshi; Kamesaki, Toyomi; Kajii, Eiji; Iwamoto, Sadahiko

    2005-06-01

    The rhesus (Rh) blood group antigens are of considerable importance in transfusion medicine as well as in newborn or autoimmune hemolytic diseases due to their high antigenicity. We identified a major DNaseI hypersensitive site at the 5' flanking regions of both RHD and RHCE exon 1. A 34 bp fragment located at -191 to -158 from a translation start position, and containing the TCCCCTCCC sequence, was involved in enhancing promoter activity, which was assessed by luciferase reporter gene assay. A biotin-labelled 34 bp probe isolated an mRNA transporter protein, Aly/REF. The specific binding of Aly/REF to RH promoter in erythroid was confirmed by chromatin immunoprecipitation assay. The silencing of Aly/REF by siRNA reduced not only the RH promoter activity of the reporter gene but also transcription from the native genome. These facts provide second proof of Aly/REF as a transcription coactivator, initially identified as a coactivator for the TCRalpha enhancer function. Aly/REF might be a novel transcription cofactor for erythroid-specific genes.

  19. Abnormal bone growth and selective translational regulation in basic fibroblast growth factor (FGF-2) transgenic mice.

    PubMed Central

    Coffin, J D; Florkiewicz, R Z; Neumann, J; Mort-Hopkins, T; Dorn, G W; Lightfoot, P; German, R; Howles, P N; Kier, A; O'Toole, B A

    1995-01-01

    Basic fibroblast growth factor (FGF-2) is a pleiotropic growth factor detected in many different cells and tissues. Normally synthesized at low levels, FGF-2 is elevated in various pathologies, most notably in cancer and injury repair. To investigate the effects of elevated FGF-2, the human full-length cDNA was expressed in transgenic mice under control of a phosphoglycerate kinase promoter. Overexpression of FGF-2 caused a variety of skeletal malformations including shortening and flattening of long bones and moderate macrocephaly. Comparison by Western blot of FGF-2 transgenic mice to nontransgenic littermates showed expression of human FGF-2 protein in all major organs and tissues examined including brain, heart, lung, liver, kidney, spleen, and skeletal muscle; however, different molar ratios of FGF-2 protein isoforms were observed between different organs and tissues. Some tissues preferentially synthesize larger isoforms of FGF-2 while other tissues produce predominantly smaller 18-kDa FGF-2. Translation of the high molecular weight isoforms initiates from unconventional CUG codons and translation of the 18-kDa isoform initiates from an AUG codon in the FGF-2 mRNA. Thus the Western blot data from the FGF-2 transgenic mice suggest that tissue-specific expression of FGF-2 isoforms is regulated translationally. Images PMID:8590811

  20. The Epstein-Barr virus (EBV) protein EB is an mRNA export factor essential for virus production.

    PubMed

    Sergeant, Alain; Gruffat, Henri; Manet, Evelyne

    2008-05-01

    The EBV early protein EB2 (aka Mta, SM and BMLF1) shares properties with mRNA export factors. It shuttles between the cytoplasm and the nucleus, and interacts with RNA both in vitro and in vivo but with no apparent sequence specificity. EB2 induces the cytoplasmic accumulation of mRNAs generated from intronless and intron-containing genes, likely through interactions with cellular export factors of the TAP/p15 pathway. Using a cell line carrying a viral genome with the EB2 gene deleted, it has been shown that EB2 is essential for the production of infectious virions by facilitating the nuclear export of a subset of early and late viral mRNAs, a function regulated by CK2 phosphorylation of EB2. There are docking sites for both CK2 subunits and for the heterotetrameric enzyme in the EB2 N- and C-terminal domains. Accordingly, EB2 and CK2 co-purify as a complex in which CK2 phosphorylates EB2. CK2 phosphorylation of EB2 at one of the Ser-55, Ser-56 and ser-57 is critical for its mRNA export function and as a consequence, for infectious virus production.

  1. Proteolytic Processing Regulates Placental Growth Factor Activities*

    PubMed Central

    Hoffmann, Daniel C.; Willenborg, Sebastian; Koch, Manuel; Zwolanek, Daniela; Müller, Stefan; Becker, Ann-Kathrin A.; Metzger, Stephanie; Ehrbar, Martin; Kurschat, Peter; Hellmich, Martin; Hubbell, Jeffrey A.; Eming, Sabine A.

    2013-01-01

    Placental growth factor (PlGF) is a critical mediator of blood vessel formation, yet mechanisms of its action and regulation are incompletely understood. Here we demonstrate that proteolytic processing regulates the biological activity of PlGF. Specifically, we show that plasmin processing of PlGF-2 yields a protease-resistant core fragment comprising the vascular endothelial growth factor receptor-1 binding site but lacking the carboxyl-terminal domain encoding the heparin-binding domain and an 8-amino acid peptide encoded by exon 7. We have identified plasmin cleavage sites, generated a truncated PlGF118 isoform mimicking plasmin-processed PlGF, and explored its biological function in comparison with that of PlGF-1 and -2. The angiogenic responses induced by the diverse PlGF forms were distinct. Whereas PlGF-2 increased endothelial cell chemotaxis, vascular sprouting, and granulation tissue formation upon skin injury, these activities were abrogated following plasmin digestion. Investigation of PlGF/Neuropilin-1 binding and function suggests a critical role for heparin-binding domain/Neuropilin-1 interaction and its regulation by plasmin processing. Collectively, here we provide new mechanistic insights into the regulation of PlGF-2/Neuropilin-1-mediated tissue vascularization and growth. PMID:23645683

  2. The role of transforming growth factor-beta, insulin-like growth factor I, and basic fibroblast growth factor in distraction osteogenesis of the mandible.

    PubMed

    Farhadieh, R D; Dickinson, R; Yu, Y; Gianoutsos, M P; Walsh, W R

    1999-01-01

    Distraction osteogenesis is a viable method for regenerating large amounts of bone. In contrast to fracture healing, the mode of bone formation in distraction osteogenesis is primarily intramembranous ossification. The basic biology of the process is still not well understood. The growth factor cascade is likely to play an important role in distraction. This study examines the growth factor cascade in a lengthened ovine mandible model. Twenty-four animals were divided into four groups with varying rates of distraction (1, 2, 3, and 4 mm/day). A unilateral distractor at the angle of the mandible was used. The mandibles were lengthened to 24 mm and fixed for a period of 5 weeks, after which the animals were killed. The sections were probed for transforming growth factor-beta, basic fibroblast growth factor, and insulin-like growth factor I. The growth factors studied were present in all four groups. Transforming growth factor-beta, basic fibroblast growth factor, and insulin-like growth factor I were present in both the bony matrix of the sections and the cytoplasm of the cells, osteoblasts, and a small number of mesenchymal cells. The sections obtained from groups distracted at faster rates showed stronger presence of the growth factors examined by more intense staining. In fracture healing, the localization of transforming growth factor-beta in stage I of healing corresponded with the precise region of intramembranous ossification in stage II. Diffuse presence of transforming growth factor-beta throughout the lengthened region corresponded with the process of intramembranous ossification observed in distraction. In fracture healing, insulin-like growth factor I and basic fibroblast growth factor have been shown to promote proliferation and differentiation of osteoblasts from precursor cells. The intense presence of insulin-like growth factor I and basic fibroblast growth factor in the distracted region may account for osteoblast proliferation and formation from

  3. Retinoic acid modulates rat Ito cell proliferation, collagen, and transforming growth factor beta production.

    PubMed Central

    Davis, B H; Kramer, R T; Davidson, N O

    1990-01-01

    Recent studies suggest that vitamin A plays an inhibitory role with respect to "activation" of the hepatic Ito cell, a likely effector of hepatic fibrogenesis. Ito cell "activation" during fibrogenesis is characterized by a decrease in intracellular vitamin A and an increase in cellular proliferation and collagen production. To explore the hypothesis that retinoids have the capacity to diminish Ito cell activation, cultured Ito cells were exposed to retinoic acid and its effects assessed on three key features: cell proliferation, collagen protein production and mRNA abundance, and transforming growth factor beta protein production. Retinoic acid was 100-1,000X more potent than retinol with respect to inhibition of Ito cell proliferation. Interstitial collagen and transforming growth factor beta production were also reduced by 10(-6) M retinoic acid. The relative abundance of type I collagen mRNA however, was not significantly altered. By contrast, retinoic acid administration to rats caused a marked reduction in the abundance of type I collagen mRNA in both total hepatic and purified Ito cell RNA. The relative abundance of rat hepatic fibronectin or apolipoprotein E mRNA was not significantly altered. These studies demonstrate that retinoic acid can differentially modulate several key features of hepatic fibrogenesis in vitro and in vivo. Images PMID:2254460

  4. Fetal growth restriction and the programming of heart growth and cardiac insulin-like growth factor 2 expression in the lamb

    PubMed Central

    Wang, Kimberley C W; Zhang, Lei; McMillen, I Caroline; Botting, Kimberley J; Duffield, Jaime A; Zhang, Song; Suter, Catherine M; Brooks, Doug A; Morrison, Janna L

    2011-01-01

    Abstract Reduced growth in fetal life together with accelerated growth in childhood, results in a ∼50% greater risk of coronary heart disease in adult life. It is unclear why changes in patterns of body and heart growth in early life can lead to an increased risk of cardiovascular disease in adulthood. We aimed to investigate the role of the insulin-like growth factors in heart growth in the growth-restricted fetus and lamb. Hearts were collected from control and placentally restricted (PR) fetuses at 137–144 days gestation and from average (ABW) and low (LBW) birth weight lambs at 21 days of age. We quantified cardiac mRNA expression of IGF-1, IGF-2 and their receptors, IGF-1R and IGF-2R, using real-time RT-PCR and protein expression of IGF-1R and IGF-2R using Western blotting. Combined bisulphite restriction analysis was used to assess DNA methylation in the differentially methylated region (DMR) of the IGF-2/H19 locus and of the IGF-2R gene. In PR fetal sheep, IGF-2, IGF-1R and IGF-2R mRNA expression was increased in the heart compared to controls. LBW lambs had a greater left ventricle weight relative to body weight as well as increased IGF-2 and IGF-2R mRNA expression in the heart, when compared to ABW lambs. No changes in the percentage of methylation of the DMRs of IGF-2/H19 or IGF-2R were found between PR and LBW when compared to their respective controls. In conclusion, a programmed increased in cardiac gene expression of IGF-2 and IGF-2R may represent an adaptive response to reduced substrate supply (e.g. glucose and/or oxygen) in order to maintain heart growth and may be the underlying cause for increased ventricular hypertrophy and the associated susceptibility of cardiomyocytes to ischaemic damage later in life. PMID:21807611

  5. Fetal growth restriction and the programming of heart growth and cardiac insulin-like growth factor 2 expression in the lamb.

    PubMed

    Wang, Kimberley C W; Zhang, Lei; McMillen, I Caroline; Botting, Kimberley J; Duffield, Jaime A; Zhang, Song; Suter, Catherine M; Brooks, Doug A; Morrison, Janna L

    2011-10-01

    Reduced growth in fetal life together with accelerated growth in childhood, results in a ~50% greater risk of coronary heart disease in adult life. It is unclear why changes in patterns of body and heart growth in early life can lead to an increased risk of cardiovascular disease in adulthood. We aimed to investigate the role of the insulin-like growth factors in heart growth in the growth-restricted fetus and lamb. Hearts were collected from control and placentally restricted (PR) fetuses at 137-144 days gestation and from average (ABW) and low (LBW) birth weight lambs at 21 days of age. We quantified cardiac mRNA expression of IGF-1, IGF-2 and their receptors, IGF-1R and IGF-2R, using real-time RT-PCR and protein expression of IGF-1R and IGF-2R using Western blotting. Combined bisulphite restriction analysis was used to assess DNA methylation in the differentially methylated region (DMR) of the IGF-2/H19 locus and of the IGF-2R gene. In PR fetal sheep, IGF-2, IGF-1R and IGF-2R mRNA expression was increased in the heart compared to controls. LBW lambs had a greater left ventricle weight relative to body weight as well as increased IGF-2 and IGF-2R mRNA expression in the heart, when compared to ABW lambs. No changes in the percentage of methylation of the DMRs of IGF-2/H19 or IGF-2R were found between PR and LBW when compared to their respective controls. In conclusion, a programmed increased in cardiac gene expression of IGF-2 and IGF-2R may represent an adaptive response to reduced substrate supply (e.g. glucose and/or oxygen) in order to maintain heart growth and may be the underlying cause for increased ventricular hypertrophy and the associated susceptibility of cardiomyocytes to ischaemic damage later in life.

  6. Expression of transforming growth factor alpha, epidermal growth factor receptor and epidermal growth factor in precursor lesions to gastric carcinoma.

    PubMed Central

    Filipe, M. I.; Osborn, M.; Linehan, J.; Sanidas, E.; Brito, M. J.; Jankowski, J.

    1995-01-01

    Epidermal growth factor (EGF), its related peptide transforming growth factor (TGF-alpha) and their common receptor (EGFR) have been implicated in the control of cell proliferation and differentiation in the gastrointestinal epithelium and may play an important role in gastric carcinogenesis. We compared the immunohistochemical expression and topographic distribution of these peptides using Western blot analysis in gastric carcinoma precursor lesions and in non-cancer tissue. We observed: (i) increased and extended expression of TGF-alpha in normal mucosa and hyperplasia in carcinoma fields compared with non-cancer controls; (ii) increased expression of EGFR in intestinal metaplasia (IM) from carcinoma fields compared with controls; (iii) EGF expression was not detected in normal mucosa and only weakly in IM; (iv) coexpression of TGF-alpha/EGFR and EGF/EGFR was higher in intestinal metaplasia in carcinoma fields than in non-cancer controls. We conclude that altered expression of TGF-alpha/EGFR is associated with morphological changes during gastric carcinogenesis. In this regard increased expression of TGF-alpha is a very early event which is subsequently followed by up-regulation of EGFR and this has important biological and clinical implications. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:7819044

  7. Gonadal mRNA expression levels of TGFbeta superfamily signaling factors correspond with post-hatching morphological development in American alligators.

    PubMed

    Moore, B C; Hamlin, H J; Botteri, N L; Guillette, L J

    2010-01-01

    Paracrine factor signaling regulates many aspects of vertebrate gonadal development. We investigated key ovarian and testicular morphological markers of the American alligator (Alligator mississippiensis) during the first 5 months post-hatching and correlated gonadal development with mRNA expression levels of a suite of regulatory factors. In both sexes, we observed significant morphology changes, including ovarian follicle assembly and meiotic progression of testicular germ cells. Concomitant with these changes were sexually dimorphic and ontogenetically variable mRNA expressions. In ovaries, FOXL2, aromatase, and follistatin mRNA expression was greater than in testes at all ages. At one week after hatching, we observed ovarian medullary remodeling in association with elevated activin/inhibin beta A subunit, follistatin, and aromatase mRNA expressions. Three and 5 months following hatching and concomitant with follicle assembly, ovaries showed increased mRNA expression levels of GDF9 and the mitotic factor PCNA. In testes, the activin/inhibin alpha and beta B subunit transcript levels were greater than in ovaries at all ages. Elevated testicular expression of GDF9 mRNA levels at 5 months after hatching aligned with increased spermatogenic activity. We propose that the mRNA expression levels and concomitant morphological changes observed here affect the establishment of alligator reproductive health and later fertility. (c) 2010 S. Karger AG, Basel.

  8. Gonadal mRNA Expression Levels of TGFβ Superfamily Signaling Factors Correspond with Post-Hatching Morphological Development in American Alligators

    PubMed Central

    Moore, B.C.; Hamlin, H.J.; Botteri, N.L.; Guillette, L.J.

    2010-01-01

    Paracrine factor signaling regulates many aspects of vertebrate gonadal development. We investigated key ovarian and testicular morphological markers of the American alligator (Alligator mississippiensis) during the first 5 months post-hatching and correlated gonadal development with mRNA expression levels of a suite of regulatory factors. In both sexes, we observed significant morphology changes, including ovarian follicle assembly and meiotic progression of testicular germ cells. Concomitant with these changes were sexually dimorphic and ontogenetically variable mRNA expressions. In ovaries, FOXL2, aromatase, and follistatin mRNA expression was greater than in testes at all ages. At one week after hatching, we observed ovarian medullary remodeling in association with elevated activin/inhibin βA subunit, follistatin, and aromatase mRNA expressions. Three and 5 months following hatching and concomitant with follicle assembly, ovaries showed increased mRNA expression levels of GDF9 and the mitotic factor PCNA. In testes, the activin/inhibin α and βB subunit transcript levels were greater than in ovaries at all ages. Elevated testicular expression of GDF9 mRNA levels at 5 months after hatching aligned with increased spermatogenic activity. We propose that the mRNA expression levels and concomitant morphological changes observed here affect the establishment of alligator reproductive health and later fertility. PMID:20110644

  9. mRNA Transcript Abundance during Plant Growth and the Influence of Li+ Exposure

    SciTech Connect

    Duff, M. C.; Kuhne, W. W.; Halverson, N. V.; Chang, C. -S.; Kitamura, E.; Hawthorn, L.; Martinez, N. E.; Stafford, C.; Milliken, C. E.; Caldwell, E. F.; Stieve-Caldwell, E.

    2014-10-23

    Lithium (Li) toxicity in plants is, at a minimum, a function of Li+ concentration, exposure time, species and growth conditions. Most plant studies with Li+ focus on short-term acute exposures. This study examines short- and long-term effects of Li+ exposure in Arabidopsis with Li+ uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li+-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li+ resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li+ exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li+ exposure increases expression signal transduction genes. The identification of new Li+-sensitive genes and a gene-based “response plan” for acute and chronic Li+ exposure are delineated.

  10. Transforming growth factor beta in Alzheimer's disease.

    PubMed Central

    Chao, C C; Hu, S; Frey, W H; Ala, T A; Tourtellotte, W W; Peterson, P K

    1994-01-01

    Alzheimer's disease (AD) has been hypothesized to be an inflammatory condition. We hypothesized that anti-inflammatory cytokines, such as transforming growth factor beta (TGF-beta), counteract the inflammatory process. In the present study, we found that TGF-beta levels were elevated in both cerebrospinal fluid and serum samples obtained from AD patients < 6 h after death. Serum TGF-beta levels were also markedly elevated before death. These results suggest that elevated TGF-beta levels in AD may represent a protective host response to immunologically mediated neuronal injury. PMID:7496909

  11. Effects of environmental stress on mRNA expression levels of seven genes related to oxidative stress and growth in Atlantic salmon Salmo salar L. of farmed, hybrid and wild origin

    PubMed Central

    2012-01-01

    Background Ten generations of domestication selection has caused farmed Atlantic salmon Salmo salar L. to deviate from wild salmon in a range of traits. Each year hundreds of thousands of farmed salmon escape into the wild. Thus, interbreeding between farmed escapees and wild conspecifics represents a significant threat to the genetic integrity of wild salmon populations. In a previous study we demonstrated how domestication has inadvertently selected for reduced responsiveness to stress in farmed salmon. To complement that study, we have evaluated the expression of seven stress-related genes in head kidney of salmon of farmed, hybrid and wild origin exposed to environmentally induced stress. Results In general, the crowding stressor used to induce environmental stress did not have a strong impact on mRNA expression levels of the seven genes, except for insulin-like growth factor-1 (IGF-1) that was downregulated in the stress treatment relative to the control treatment. mRNA expression levels of glutathione reductase (GR), Cu/Zn superoxide dismutase (Cu/Zn SOD), Mn superoxide dismutase (Mn SOD), glutathione peroxidase (GP) and IGF-1 were affected by genetic origin, thus expressed significantly different between the salmon of farmed, hybrid or wild origin. A positive relationship was detected between body size of wild salmon and mRNA expression level of the IGF-1 gene, in both environments. No such relationship was observed for the hybrid or farmed salmon. Conclusion Farmed salmon in this study displayed significantly elevated mRNA levels of the IGF-1 gene relative to the wild salmon, in both treatments, while hybrids displayed a non additive pattern of inheritance. As IGF-1 mRNA levels are positively correlated to growth rate, the observed positive relationship between body size and IGF-1 mRNA levels detected in the wild but neither in the farmed nor the hybrid salmon, could indicate that growth selection has increased IGF-1 levels in farmed salmon to the extent

  12. Fibroblast growth factor-9 in marsupial testicular development.

    PubMed

    Chung, J W; Pask, A J; Yu, H; Renfree, M B

    2011-01-01

    FGF9 is a member of the fibroblast growth factor (FGF) family and is critical for early testicular development and germ cell survival in the mouse. Fgf9 reinforces the testis determinant Sox9 and antagonizes Wnt4, an ovarian factor. To determine whether FGF9 has a conserved role in the mammalian gonad, we examined its expression in the gonads of a marsupial, the tammar wallaby Macropus eugenii, and compared it to WNT4 expression. Marsupial FGF9 is highly conserved with orthologues from eutherian mammals, including humans. FGF9 protein was detected in both the testis and ovary before sexual differentiation, but it subsequently became sexually dimorphic during the period of testicular differentiation. The protein was specifically enriched in the seminiferous cords of the developing testis in the Sertoli and germ cells. FGF9 mRNA expression was upregulated in the tammar testis at the time of seminiferous cord formation and downregulated in the developing ovary in an opposite profile to that of marsupial WNT4. These observations suggest that FGF9 promotes male fate in the early gonad of marsupials through an antagonistic relationship with WNT4 as it does in eutherian mammals.

  13. Macrophage colony-stimulating factor mRNA and protein in atherosclerotic lesions of rabbits and humans.

    PubMed Central

    Rosenfeld, M. E.; Ylä-Herttuala, S.; Lipton, B. A.; Ord, V. A.; Witztum, J. L.; Steinberg, D.

    1992-01-01

    In this study, the authors demonstrate the expression of mRNA and the presence of protein for macrophage colony-stimulating factor (MCSF) in atherosclerotic lesions from humans and rabbits. In situ hybridization of serial sections of human fatty streaks demonstrated expression of MCSF mRNA by cells dispersed throughout the lesions. Immunocytochemical staining with a panel of MCSF-specific antibodies showed extensive cell-associated staining of all of the cell types in the lesions. Immunocytochemical studies of atherosclerotic lesions from Watanabe heritable hyperlipidemic (WHHL) and cholesterol-fed rabbits demonstrated a similar cell-associated pattern of staining. There was no MCSF-specific staining of aortas from normal rabbits or of cultured aortic smooth muscle cells from either humans or rabbits. Macrophage-derived foam cells (MFC) were isolated from the aortas of ballooned, cholesterol-fed rabbits. A Northern blot demonstrated that RNA isolated from the MFC hybridized with a human cDNA probe for MCSF. RNA from alveolar macrophages isolated simultaneously from the same rabbits did not hybridize with the MCSF probe. Conditioned media from an 18- to 24-hour incubation of the MFC contained colony-stimulating activity as demonstrated in a mouse bone marrow culture assay. Most of this colony-stimulating activity was neutralized by preincubating the conditioned media with an MCSF-specific antibody. Images Figure 2 Figure 1 Figure 1 Figure 3 PMID:1739123

  14. Hydrogen sulfide upregulated mRNA expressions of sodium bicarbonate cotransporter1, trefoil factor1 and trefoil factor2 in gastric mucosa in rats

    PubMed Central

    Cheraghi, Parisa; Mard, Seyyed Ali; Nagi, Tahereh

    2016-01-01

    Hydrogen sulfide (H2S) has been shown to protect the gastric mucosa through several protective mechanisms but till now its effect on mRNA expression of sodium bicarbonate cotransporter 1 (NBC1), trefoil factor1 (TFF1) and trefoil factor2 (TFF2) was not investigated. This study was aimed to evaluate the effect of H2S on mRNA expression of NBC1, TFF1 and TFF2 in rat gastric mucosa in response to gastric distention. Thirty two rats were randomly assigned into four equal groups. They were control (C), distention (D), propargylglycine (PAG)-, and NaHS-treated groups. To evaluate the effect of exogenous and endogenous H2S on gene expression of NBC1, TFF1 and TFF2, two groups of rats were received H2S donor, intra-peritoneal NaHS (80 µg Kg-1), and PAG (50 mg kg-1), accompanied to stimulate the gastric acid secretion, respectively. Under general anesthesia and laparotomy, a catheter was inserted into the stomach through duodenum for instillation of isotonic saline for gastric distention. Ninety min after beginning the experiment, animals were sacrificed and the gastric mucosa was collected to determine total acid content of gastric effluents and to quantify the mRNA expression of studied genes by quantitative real-time polymerase chain reaction (qRT-PCR). Results showed that A) gastric distention increased the level of mRNA expressions of NBC1, TFF1 and TFF2; B) these levels in NaHS-treated rats were significantly higher than those in Distention group; and C) PAG decreased the expression levels of NBC1 and TFF1. The Findings showed H2S upregulated gene expression of NBC1, TFF1 and TFF2 in gastric mucosa. PMID:28144424

  15. Why should cancer biologists care about tRNAs? tRNA synthesis, mRNA translation and the control of growth.

    PubMed

    Grewal, Savraj S

    2015-07-01

    Transfer RNAs (tRNAs) are essential for mRNA translation. They are transcribed in the nucleus by RNA polymerase III and undergo many modifications before contributing to cytoplasmic protein synthesis. In this review I highlight our understanding of how tRNA biology may be linked to the regulation of mRNA translation, growth and tumorigenesis. First, I review how oncogenes and tumour suppressor signalling pathways, such as the PI3 kinase/TORC1, Ras/ERK, Myc, p53 and Rb pathways, regulate Pol III and tRNA synthesis. In several cases, this regulation contributes to cell, tissue and body growth, and has implications for our understanding of tumorigenesis. Second, I highlight some recent work, particularly in model organisms such as yeast and Drosophila, that shows how alterations in tRNA synthesis may be not only necessary, but also sufficient to drive changes in mRNA translation and growth. These effects may arise due to both absolute increases in total tRNA levels, but also changes in the relative levels of tRNAs in the overall pool. Finally, I review some recent studies that have revealed how tRNA modifications (amino acid acylation, base modifications, subcellular shuttling, and cleavage) can be regulated by growth and stress cues to selectively influence mRNA translation. Together these studies emphasize the importance of the regulation of tRNA synthesis and modification as critical control points in protein synthesis and growth. This article is part of a Special Issue entitled: Translation and Cancer.

  16. Cloning of the growth hormone receptor and its muscle-specific mRNA expression in black Muscovy duck (Cairina moschata).

    PubMed

    Ji, W; Sun, G; Duan, X; Dong, B; Bian, Y

    2016-04-01

    The cDNA sequence of the growth hormone receptor (GHR) from the black Muscovy duck was obtained and compared to the mRNA expression of growth hormone (GH) in the breast and leg muscles during 2-13 weeks of age using quantitative RT-PCR. The cDNA sequence of the Muscovy duck GHR gene is 1903 bp in length, with an 1830 bp coding region that encodes 609 amino acids. It exhibits > 92.9% homology with the poultry GHR cDNA and amino acid sequences. Overall, GHR mRNA expression was the highest at 2 weeks and the lowest at 13 weeks of age, exhibiting different profiles in different muscles. In the breast muscles, the GHR mRNA level declined sharply at 2-4 weeks, maintained at a plateau at 4-10 weeks and decreased slightly at 10-13 weeks. In the leg muscles, a gradual and slow decrease was observed during the whole period of 2-13 weeks. Robust extra-pituitary GH mRNA expression was detected in the muscles and the expression profile was highly correlated with that of GHR mRNA, in contrast to the inverse correlation between the pituitary GH and tissue GHR levels shown previously. These data suggest that the locally synthesised GH in the muscles, rather than the pituitary GH, is more closely associated with GHR and may be more critical for the regulation of muscle growth and contribute to the tissue-specific effects of GH.

  17. Differential expression of epidermal growth factor-related proteins in human colorectal tumors.

    PubMed Central

    Ciardiello, F; Kim, N; Saeki, T; Dono, R; Persico, M G; Plowman, G D; Garrigues, J; Radke, S; Todaro, G J; Salomon, D S

    1991-01-01

    Amphiregulin (AR) and cripto are proteins that are structurally related to epidermal growth factor (EGF) and transforming growth factor alpha (TGF-alpha). AR is also functionally related to this family of growth regulatory molecules and is able to bind and activate the 170-kDa EGF receptor (EGFR). Human EGFR-3 (HER3)/ERBB3 is a recently identified protein related to the EGFR that is widely expressed in breast carcinomas and is a candidate receptor for EGF-like growth factors. Differential expression of these putative ligands and receptors in transformed cells suggests that they may function in an autocrine manner to regulate tumor cell growth. Specific mRNA transcripts for TGF-alpha [4.8 kilobases (kb)], AR (1.4 kb), cripto (2.2 kb), and HER3 (6.2 kb) were expressed in a majority of human colon cancer cell lines. HER3 mRNA was detected in 55% of primary or metastatic human colorectal carcinomas but in only 22% of normal colon mucosa and 32% of normal liver samples. In contrast, cripto and AR mRNA were expressed in 60-70% of primary or metastatic human colorectal cancers but in only 2-7% of normal human colonic mucosa. Immunostaining also detected AR protein in primary and metastatic colorectal tumors but not in normal colon or uninvolved liver. These findings suggest that cripto and AR may be useful markers to discriminate between normal and malignant colonic epithelium and may provide a selective growth advantage for colorectal carcinomas. Images PMID:1715580

  18. Autologous Growth Factor Injections in Chronic Tendinopathy

    PubMed Central

    Sandrey, Michelle A.

    2014-01-01

    Reference: de Vos RJ, van Veldhoven PLJ, Moen MH, Weir A, Tol JL. Autologous growth factor injections in chronic tendinopathy: a systematic review. Br Med Bull. 2010;95:63–77. Clinical Question: The authors of this systematic review evaluated the literature to critically consider the effects of growth factors delivered through autologous whole-blood and platelet-rich–plasma (PRP) injections in managing wrist-flexor and -extensor tendinopathies, plantar fasciopathy, and patellar tendinopathy. The primary question was, according to the published literature, is there sufficient evidence to support the use of growth factors delivered through autologous whole-blood and PRP injections for chronic tendinopathy? Data Sources: The authors performed a comprehensive, systematic literature search in October 2009 using PubMed, MEDLINE, EMBASE, CINAHL, and the Cochrane library without time limits. The following key words were used in different combinations: tendinopathy, tendinosis, tendinitis, tendons, tennis elbow, plantar fasciitis, platelet rich plasma, platelet transfusion, and autologous blood or injection. The search was limited to human studies in English. All bibliographies from the initial literature search were also viewed to identify additional relevant studies. Study Selection: Studies were eligible based on the following criteria: (1) Articles were suitable (inclusion criteria) if the participants had been clinically diagnosed as having chronic tendinopathy; (2) the design had to be a prospective clinical study, randomized controlled trial, nonrandomized clinical trial, or prospective case series; (3) a well-described intervention in the form of a growth factor injection with either PRP or autologous whole blood was used; and (4) the outcome was reported in terms of pain or function (or both). Data Extraction: All titles and abstracts were assessed by 2 researchers, and all relevant articles were obtained. Two researchers independently read the full text of

  19. Autologous growth factor injections in chronic tendinopathy.

    PubMed

    Sandrey, Michelle A

    2014-01-01

    de Vos RJ, van Veldhoven PLJ, Moen MH, Weir A, Tol JL. Autologous growth factor injections in chronic tendinopathy: a systematic review. Br Med Bull. 2010;95:63-77. The authors of this systematic review evaluated the literature to critically consider the effects of growth factors delivered through autologous whole-blood and platelet-rich-plasma (PRP) injections in managing wrist-flexor and -extensor tendinopathies, plantar fasciopathy, and patellar tendinopathy. The primary question was, according to the published literature, is there sufficient evidence to support the use of growth factors delivered through autologous whole-blood and PRP injections for chronic tendinopathy? The authors performed a comprehensive, systematic literature search in October 2009 using PubMed, MEDLINE, EMBASE, CINAHL, and the Cochrane library without time limits. The following key words were used in different combinations: tendinopathy, tendinosis, tendinitis, tendons, tennis elbow, plantar fasciitis, platelet rich plasma, platelet transfusion, and autologous blood or injection. The search was limited to human studies in English. All bibliographies from the initial literature search were also viewed to identify additional relevant studies. Studies were eligible based on the following criteria: (1) Articles were suitable (inclusion criteria) if the participants had been clinically diagnosed as having chronic tendinopathy; (2) the design had to be a prospective clinical study, randomized controlled trial, nonrandomized clinical trial, or prospective case series; (3) a well-described intervention in the form of a growth factor injection with either PRP or autologous whole blood was used; and (4) the outcome was reported in terms of pain or function (or both). All titles and abstracts were assessed by 2 researchers, and all relevant articles were obtained. Two researchers independently read the full text of each article to determine if it met the inclusion criteria. If opinions differed on

  20. Endothelial cell death and decreased expression of vascular endothelial growth factor and vascular endothelial growth factor receptor 2 in emphysema.

    PubMed

    Kasahara, Y; Tuder, R M; Cool, C D; Lynch, D A; Flores, S C; Voelkel, N F

    2001-03-01

    Emphysema due to cigarette smoking is characterized by a loss of alveolar structures. We hypothesize that the disappearance of alveoli involves apoptosis of septal endothelial cells and a decreased expression of lung vascular endothelial growth factor (VEGF) and its receptor 2 (VEGF R2). By terminal transferase dUTP nick end labeling (TUNEL) in combination with immunohistochemistry, we found that the number of TUNEL+ septal epithelial and endothelial cells/lung tissue nucleic acid (microg) was increased in the alveolar septa of emphysema lungs (14.2 +/- 2.0/microg, n = 6) when compared with normal lungs (6.8 +/- 1.3/microg, n = 7) (p < 0.01) and with primary pulmonary hypertensive lungs (2.3 +/- 0.8/microg, n = 5) (p < 0.001). The cell death events were not significantly different between healthy nonsmoker (7.4 +/- 1.9/microg) and smoker (5.7 +/- 0.7/microg) control subjects. The TUNEL results were confirmed by single-stranded DNA and active caspase-3 immunohistochemistry, and by DNA ligation assay. Emphysema lungs (n = 12) had increased levels of oligonucleosomal-length DNA fragmentation when compared with normal lungs (n = 11). VEGF, VEGF R2 protein, and mRNA expression were significantly reduced in emphysema. We propose that epithelial and endothelial alveolar septal death due to a decrease of endothelial cell maintenance factors may be part of the pathogenesis of emphysema.

  1. Insulin-like growth factor I modulates hypothalamic somatostatin through a growth hormone releasing factor increased somatostatin release and messenger ribonucleic acid levels.

    PubMed

    Aguila, M C; Boggaram, V; McCann, S M

    1993-10-22

    Insulin-like growth factor I (IGF-I) has been shown to participate in feedback inhibition of growth hormone (GH) secretion at the level of both the pituitary and hypothalamus. Therefore, we tested the possible involvement of IGF-I on somatostatin (SRIF) and GH-releasing factor (GRF) release in median eminence (ME) fragments and periventricular nucleus (PeN) of male rats. The levels of SRIF messenger ribonucleic acid (mRNA) were also determined in PeN incubated in vitro with IGF-I. The ME's were incubated in Krebs-Ringer bicarbonate glucose buffer in the presence of various concentrations of IGF-I (10(-7) to 10(-11) M) for 30 min. SRIF and GRF released into the medium were quantitated by RIA. The release of SRIF and GRF from the ME's was stimulated significantly (P < 0.025 and P < 0.05, respectively) by 10(-9) M IGF-I. To determine whether the effect of IGF-I on SRIF release is mediated by GRF release in the ME, a specific GRF antibody (ab) (1:500) was used concomitantly with IGF-I (10(-9) M). The release of SRIF induced by IGF-I was blocked by the GRF ab (P < 0.001), but not by normal rabbit serum used at the same dilution. To determine the effect of IGF-I on the regulation of SRIF mRNA levels, SRIF mRNA was determined in PeN explants incubated in the presence of IGF-I (10(-8) to 10(-10) M) for 2 to 6 h. Levels of SRIF mRNA were determined by a S1 nuclease protection assay using a 32P-labelled rat SRIF riboprobe.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Lactoferrin – A Novel Bone Growth Factor

    PubMed Central

    Naot, Dorit; Grey, Andrew; Reid, Ian R; Cornish, Jillian

    2005-01-01

    Lactoferrin is an iron-binding glycoprotein that belongs to the transferrin family. It is present in breast milk, in epithelial secretions, and in the secondary granules of neutrophils. In healthy subjects lactoferrin circulates at concentrations of 2–7 x 10−6 g/ml. Lactoferrin is a pleiotropic factor with potent antimicrobial and immunomodulatory activities. Recently, we have shown that lactoferrin can also promote bone growth. At physiological concentrations, lactoferrin potently stimulates the proliferation and differentiation of primary osteoblasts and also acts as a survival factor inhibiting apoptosis induced by serum withdrawal. Lactoferrin also affects osteoclast formation and, in murine bone marrow culture, lactoferrin potently inhibits osteoclastogenesis. In vivo, local injection of lactoferrin above the hemicalvaria of adult mice results in substantial increases in the dynamic histomorphometric indices of bone formation and bone area. The mitogenic effect of lactoferrin in osteoblast-like cells is mediated mainly through LRP1, a member of the family of low-density lipoprotein receptor-related proteins that are primarily known as endocytic receptors. Using confocal laser scanning microscopy, we demonstrated that fluorescently labeled lactoferrin is endocytosed and can be visualized in the cytoplasm of primary osteoblastic cells. Lactoferrin also induces activation of p42/44 MAPK signaling in primary osteoblasts, but the two pathways seem to operate independently as activation of MAPK signaling, but not endocytosis, is necessary for the mitogenic effect of lactoferrin. We conclude that lactoferrin may have a physiological role in bone growth and healing, and a potential therapeutic role as an anabolic factor in osteoporosis. PMID:16012127

  3. Translation of intronless RNAs is strongly stimulated by the Epstein-Barr virus mRNA export factor EB2.

    PubMed

    Ricci, Emiliano P; Mure, Fabrice; Gruffat, Henri; Decimo, Didier; Medina-Palazon, Cahora; Ohlmann, Théophile; Manet, Evelyne

    2009-08-01

    The Epstein-Barr virus protein (EB2) allows the nuclear export of a particular subset of early and late viral RNAs derived from intronless genes. EB2 is conserved among most herpesvirus members and its presence is essential for the production of infectious particles. Here we show that, besides its role as a nuclear export factor, EB2 strongly stimulates translation of unspliced mRNAs without affecting overall cellular translation. Interestingly, this effect can be reversed by the addition of an intron within the gene. The spliced mRNA is then efficiently exported and translated even in the absence of EB2. Moreover, we show that EB2 associates with translating ribosomes and increases the proportion of its target RNA in the polyribosomal fraction. Finally, testing of EB2 homolog proteins derived from EBV-related herpesviruses, shows that, even if they play similar roles within the replication cycle of their respective virus, their mechanisms of action are different.

  4. A functional involvement of ABCE1, eukaryotic ribosome recycling factor, in nonstop mRNA decay in Drosophila melanogaster cells.

    PubMed

    Kashima, Isao; Takahashi, Masaki; Hashimoto, Yoshifumi; Sakota, Eri; Nakamura, Yoshikazu; Inada, Toshifumu

    2014-11-01

    When ribosomes encounter mRNAs lacking stop codons, two quality-control machineries, NSD for nonstop mRNA decay and ribosome quality control (RQC) for co-translational degradation of the nonstop protein by the proteasome, are triggered to eliminate aberrant molecules. In yeast, it is known that Dom34 (a homolog of eRF1) and Ltn1 (an E3 ubiquitin ligase) play crucial roles in NSD and RQC, respectively, by triggering ribosome rescue at the 3' end of nonstop mRNAs and proteasome-dependent polypeptide degradation. Here we confirmed the essential role of Ltn1 in RQC for nonstop products in Drosophila cells, and further uncovered a functional role of ABCE1, a eukaryotic ribosome recycling factor, in NSD in Drosophila cells.

  5. Nerve Growth Factor Inhibits Sympathetic Neurons' Response to an Injury Cytokine

    NASA Astrophysics Data System (ADS)

    Shadiack, Annette M.; Vaccariello, Stacey A.; Sun, Yi; Zigmond, Richard E.

    1998-06-01

    Axonal damage to adult peripheral neurons causes changes in neuronal gene expression. For example, axotomized sympathetic, sensory, and motor neurons begin to express galanin mRNA and protein, and recent evidence suggests that galanin plays a role in peripheral nerve regeneration. Previous studies in sympathetic and sensory neurons have established that galanin expression is triggered by two consequences of nerve transection: the induction of leukemia inhibitory factor (LIF) and the reduction in the availability of the target-derived factor, nerve growth factor. It is shown in the present study that no stimulation of galanin expression occurs following direct application of LIF to intact neurons in the superior cervical sympathetic ganglion. Injection of animals with an antiserum to nerve growth factor concomitant with the application of LIF, on the other hand, does stimulate galanin expression. The data suggest that the response of neurons to an injury factor, LIF, is affected by whether the neurons still receive trophic signals from their targets.

  6. mRNA decapping factors and the exonuclease Xrn2 function in widespread premature termination of RNA polymerase II transcription.

    PubMed

    Brannan, Kris; Kim, Hyunmin; Erickson, Benjamin; Glover-Cutter, Kira; Kim, Soojin; Fong, Nova; Kiemele, Lauren; Hansen, Kirk; Davis, Richard; Lykke-Andersen, Jens; Bentley, David L

    2012-05-11

    We report a function of human mRNA decapping factors in control of transcription by RNA polymerase II. Decapping proteins Edc3, Dcp1a, and Dcp2 and the termination factor TTF2 coimmunoprecipitate with Xrn2, the nuclear 5'-3' exonuclease "torpedo" that facilitates transcription termination at the 3' ends of genes. Dcp1a, Xrn2, and TTF2 localize near transcription start sites (TSSs) by ChIP-seq. At genes with 5' peaks of paused pol II, knockdown of decapping or termination factors Xrn2 and TTF2 shifted polymerase away from the TSS toward upstream and downstream distal positions. This redistribution of pol II is similar in magnitude to that caused by depletion of the elongation factor Spt5. We propose that coupled decapping of nascent transcripts and premature termination by the "torpedo" mechanism is a widespread mechanism that limits bidirectional pol II elongation. Regulated cotranscriptional decapping near promoter-proximal pause sites followed by premature termination could control productive pol II elongation.

  7. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    SciTech Connect

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung; Rebecchi, Mario

    2012-10-01

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1} knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a

  8. Expression of the beta-nerve growth factor gene correlates with the density of sympathetic innervation in effector organs.

    PubMed Central

    Shelton, D L; Reichardt, L F

    1984-01-01

    Although beta-nerve growth factor (NGF), a protein necessary for survival and development of sympathetic neurons, is believed to be a trophic factor that is produced by sympathetic effector organs, its synthesis by these tissues has never been conclusively demonstrated. Using an assay capable of detecting 10 fg of mRNA, we measured the level of NGF mRNA in tissues innervated by sympathetic neurons. NGF mRNA was detected unambiguously in each tissue at a level that appeared to be more than enough to account for the low levels of NGF protein previously detected. Tissues that were densely innervated had comparatively high levels of NGF mRNA, while those with sparser innervation had lower levels. There was a strong positive correlation between the NGF mRNA level and norepinephrine content, a measure of the density of sympathetic innervation. NGF gene expression in one of these tissues, the iris, was shown to be induced by denervation. NGF mRNA was also found in other areas, including elements of the adult peripheral nervous system--the sciatic nerve and the sympathetic and sensory ganglia. In the central nervous system, levels of NGF mRNA were found that are too high to be attributed entirely to the vasculature, suggesting a role for NGF in adult central nervous system function. Images PMID:6595669

  9. p19INK4d mRNA and protein expression as new prognostic factors in ovarian cancer patients

    PubMed Central

    Felisiak-Golabek, Anna; Dansonka-Mieszkowska, Agnieszka; Rzepecka, Iwona K; Szafron, Lukasz; Kwiatkowska, Ewa; Konopka, Bozena; Podgorska, Agnieszka; Rembiszewska, Alina; Kupryjanczyk, Jolanta

    2013-01-01

    p19INK4d (CDKN2D) is a negative regulator of the cell cycle. Little is known of its role in cancer development and prognosis. We aimed to evaluate the clinical significance of p19INK4d expression in ovarian carcinomas with respect to the TP53 accumulation status, as well as the frequency of CDKN2D mutations. p19INK4d and TP53 expression was evaluated immunohistochemically in 445 ovarian carcinomas: 246 patients were treated with platinum–cyclophosphamide (PC/PAC), while 199 were treated with taxane–platinum agents (TP). CDKN2D gene expression (mRNA) was examined in 106 carcinomas, while CDKN2D mutations in 68 tumors. Uni- and multivariate statistical analyses (logistic regression and the Cox proportional hazards model) were performed for patient groups divided according to the chemotherapeutic regimen administered, and in subgroups with and without TP53 accumulation. High p19INK4d expression increased the risk of death, but only in patients with the TP53-negative carcinomas (HR 1.61, P = 0.049 for PC/PAC-treated patients, HR 2.00, P = 0.015 for TP-treated patients). This result was confirmed by the mRNA analysis (HR 4.24, P = 0.001 for TP-treated group). High p19INK4d protein expression associated with adverse clinicopathological factors. We found no alterations in the CDKN2D gene; the c.90C>G (p.R30R; rs1968445) polymorphism was detected in 10% of tumors. Our results suggest that p19INK4d expression is a poor prognostic factor in ovarian cancer patients. Analyses of tumor groups according to the TP53 accumulation status facilitate the identification of cancer biomarkers. PMID:24022213

  10. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors

    SciTech Connect

    Yakubov, Eduard; Rechavi, Gidi; Rozenblatt, Shmuel; Givol, David

    2010-03-26

    Reprogramming of differentiated cells into induced pluripotent cells (iPS) was accomplished in 2006 by expressing four, or less, embryonic stem cell (ESC)-specific transcription factors. Due to the possible danger of DNA damage and the potential tumorigenicity associated with such DNA damage, attempts were made to minimize DNA integration by the vectors involved in this process without complete success. Here we present a method of using RNA transfection as a tool for reprogramming human fibroblasts to iPS. We used RNA synthesized in vitro from cDNA of the same reprogramming four transcription factors. After transfection of the RNA, we show intracellular expression and nuclear localization of the respective proteins in at least 70% of the cells. We used five consecutive transfections to support continuous protein expression resulting in the formation of iPS colonies that express alkaline phosphatase and several ESC markers and that can be expanded. This method completely avoids DNA integration and may be developed to replace the use of DNA vectors in the formation of iPS.

  11. [Growth Hormone-Insulin Growth Factor I (GH-IGF-I) axis and growth].

    PubMed

    Castell, A-L; Sadoul, J-L; Bouvattier, C

    2013-10-01

    Normal human linear growth results from an evolutionary process expressing the sum effect of multiple genes. The growth hormone (GH) - insulin like growth factor (IGF)-I axis is one of the main actors in the growth process. Defects in this axis can be responsible for short or tall stature. Short stature is defined as smaller than - 2 standard deviations (SD). It is a very common reason for consultation in pediatrics; indeed, 2.5 % of children are concerned. Multiple causes make diagnosis difficult. In this article, we detail the most common constitutional causes of small size, including those related to a defect in the GH-IGF-I axis. Then, we report, the first results of the clinical and genetic study conducted on 213 patients with gigantism. Tall stature is defined by a height superior to 2 SD. Finally, recent work linking epigenetics and growth - via signaling pathways of GH-IGF-I axis - will be presented.

  12. Insulin-like growth factor and epidermal growth factor signaling in breast cancer cell growth: focus on endocrine resistant disease.

    PubMed

    Voudouri, Kallirroi; Berdiaki, Aikaterini; Tzardi, Maria; Tzanakakis, George N; Nikitovic, Dragana

    2015-01-01

    Breast cancer is the most common type of cancer for women worldwide with a lifetime risk amounting to a staggering total of 10%. It is well established that the endogenous synthesis of insulin-like growth factor (IGF) and epidermal growth factor (EGF) polypeptide growth factors are closely correlated to malignant transformation and all the steps of the breast cancer metastatic cascade. Numerous studies have demonstrated that both estrogens and growth factors stimulate the proliferation of steroid-dependent tumor cells, and that the interaction between these signaling pathways occurs at several levels. Importantly, the majority of breast cancer cases are estrogen receptor- (ER-) positive which have a more favorable prognosis and pattern of recurrence with endocrine therapy being the backbone of treatment. Unfortunately, the majority of patients progress to endocrine therapy resistant disease (acquired resistance) whereas a proportion of patients may fail to respond to initial therapy (de novo resistance). The IGF-I and EGF downstream signaling pathways are closely involved in the process of progression to therapy resistant disease. Modifications in the bioavailability of these growth factors contribute critically to disease progression. In the present review therefore, we will discuss in depth how IGF and EGF signaling participate in breast cancer pathogenesis and progression to endocrine resistant disease.

  13. Fluid shear stress differentially modulates expression of genes encoding basic fibroblast growth factor and platelet-derived growth factor B chain in vascular endothelium.

    PubMed Central

    Malek, A M; Gibbons, G H; Dzau, V J; Izumo, S

    1993-01-01

    Fluid shear stress has been shown to be an important regulator of vascular structure and function through its effect on the endothelial cell. We have explored the effect of shear stress on the expression of the heparin-binding growth factors platelet-derived growth factor B chain (PDGF-B) and basic fibroblast growth factor (bFGF) in bovine aortic endothelial cells using a purpose-built cone-plate viscometer. Using morphometric analysis, we have mimicked the endothelial cell shape changes encountered in vivo in response to shear stress and correlated these with changes in gene expression. Steady laminar shear stress of 15 and 36 dyn/cm2 both resulted in endothelial cell shape change, but the higher shear stress induced greater and more uniform alignment in the direction of flow and nuclear protrusion after 24 h. Steady laminar shear stress of both 15 and 36 dyn/cm2 induced a significant 3.9- and 4.2-fold decrease, respectively, in PDGF-B mRNA at 9 h. In contrast, steady laminar shear of 15 dyn/cm2 induced a mild and transient 1.5-fold increase in bFGF mRNA while shear of 36 dyn/cm2 induced a significant 4.8-fold increase at 6 h of shear which remained at 2.9-fold at 9 h. Pulsatile and turbulent shear stress showed the same effect as steady laminar shear stress (all at 15 dyn/cm2 time-average magnitude) on PDGF-B and bFGF mRNA content. Cyclic stretch (20% strain, 20/min) of cells grown on silicone substrate did not significantly affect either PDGF-B or bFGF mRNA levels. These results suggest that expression of each peptide growth factor gene is differentially regulated by fluid shear stress in the vascular endothelial cell. These results may have implications on vascular structure and function in response to hemodynamic forces and present a model for the study of transduction of mechanical stimuli into altered gene expression. Images PMID:8408655

  14. Sciatic nerve regeneration using a nerve growth factor-containing fibrin glue membrane.

    PubMed

    Ma, Shengzhong; Peng, Changliang; Wu, Shiqing; Wu, Dongjin; Gao, Chunzheng

    2013-12-25

    Our previous findings confirmed that the nerve growth factor-containing fibrin glue membrane provides a good microenvironment for peripheral nerve regeneration; however, the precise mechanism remains unclear. p75 neurotrophin receptor (p75(NTR)) plays an important role in the regulation of peripheral nerve regeneration. We hypothesized that a nerve growth factor-containing fibrin glue membrane can promote neural regeneration by up-regulating p75(NTR) expression. In this study, we used a silicon nerve conduit to bridge a 15 mm-long sciatic nerve defect and injected a mixture of nerve growth factor and fibrin glue at the anastomotic site of the nerve conduit and the sciatic nerve. Through RT-PCR and western blot analysis, nerve growth factor-containing fibrin glue membrane significantly increased p75(NTR) mRNA and protein expression in the Schwann cells at the anastomotic site, in particular at 8 weeks after injection of the nerve growth factor/fibrin glue mixture. These results indicate that nerve growth factor-containing fibrin glue membrane can promote peripheral nerve regeneration by up-regulating p75(NTR) expression in Schwann cells.

  15. Growth factor control of epidermal growth factor receptor kinase activity via an intramolecular mechanism.

    PubMed

    Koland, J G; Cerione, R A

    1988-02-15

    The mechanism by which the protein kinase activity of the epidermal growth factor (EGF) receptor is activated by binding of growth factor was investigated. Detergent-solubilized receptor in monomeric form was isolated by sucrose density gradient centrifugation and both its kinase and autophosphorylation activities monitored. In a low ionic strength medium and with MnCl2 as an activator, the activity of the monomeric receptor was EGF-independent. However, with 0.25 M ammonium sulfate present, the MnCl2-stimulated kinase activity was strikingly EGF-dependent. In contrast, the kinase activity expressed in the presence of MgCl2 showed growth factor control in the absence of added salt. Under the conditions of these experiments there was apparently little tendency for growth factor to induce aggregation of the receptor, indicating that the allosteric activation of the receptor kinase by EGF occurred via an intramolecular mechanism. Whereas detergent-solubilized receptor was the subject of these studies, the kinase activity of cell surface receptors might also be controlled by an intramolecular mechanism. These results indicate that an individual receptor molecule has the potential to function as a transmembrane signal transducer.

  16. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia.

    PubMed

    Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro

    2016-03-01

    A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action.

  17. A rat gene with sequence homology to the Drosophila gene hairy is rapidly induced by growth factors known to influence neuronal differentiation.

    PubMed Central

    Feder, J N; Jan, L Y; Jan, Y N

    1993-01-01

    Several genes encoding transcription factors with a helix-loop-helix (HLH) motif are involved in the early process of neural development in Drosophila spp. We report the isolation from the rat a homolog of one of these genes, called hairy. The rat-hairy-like (RHL) gene is expressed early during embryogenesis. In contrast to the restricted expression of hairy mRNA in Drosophila spp., however, the mRNA encoded by RHL is detectable in all tissues examined. Stimulation of PC12 pheochromocytoma cells by nerve growth factor, basis fibroblast growth factor, or epidermal growth factor or of Rat-1 fibroblasts by epidermal growth factor causes a rapid and transient induction of the RHL gene. Thus, RHL acts as an immediate-early gene that can potentially transduce growth factor signals during the development of the mammalian embryo. Images PMID:8417318

  18. mRNA of cytokines in bone marrow and bone biomarkers in response to propranolol in a nutritional growth retardation model.

    PubMed

    Tasat, Deborah R; Lezón, Christian E; Astort, Francisco; Pintos, Patricia M; Macri, Elisa V; Friedman, Silvia M; Boyer, Patricia M

    2014-10-01

    The aim of this study was to assess mRNA of IL-6, TNFα and IL-10 cytokines in bone marrow, possible mediators involved in altered bone remodeling with detrimental consequences on bone quality in NGR (Nutritional growth retardation) rats. Weanling male Wistar rats were assigned either to control (C) or experimental group (NGR) (n=20 each). C and NGR groups were assigned to 2 groups according to receiving saline solution (SS) or propranolol hydrochloride (P): C, C+P (CP), NGR or NGR+P (NGRP). For 4 weeks, NGR and NGRP rats received 80% of the amount of food consumed by C and CP, respectively, the previous day, corrected by body weight. P (7 mg/kg/day) was injected ip 5 days/week, for 4 weeks in CP and NGRP rats. Body weight and length were recorded. After 4 weeks, blood was drawn. Femurs were dissected for RNA isolation from bone marrow and mRNA of cytokines assays. Food restriction induced a significant negative effect on body growth in NGR and NGRP rats (p<0.001). P had no effects on zoometric parameters (p>0.05). CTX-I increased in NGR rats vs. C (p<0.001), but diminished in NGRP (p<0.01). Serum osteocalcin, PTH, calcium and phosphate levels remained unchanged between groups (p>0.05). In NGR, bone marrow IL-6 mRNA and IL-10 mRNA levels were low as compared to other groups (p<0.05). In contrast, bone marrow TNF-α mRNA levels were significantly high (p<0.05). This study provides evidences that NGR outcomes in a bone marrow proinflammatory microenvironment leading to unbalanced bone remodeling by enhancement of bone resorption reverted by propranolol. Copyright © 2014. Published by Elsevier Urban & Partner Sp. z o.o.

  19. Nerve growth factor: neurotrophin or cytokine?

    PubMed

    Bonini, S; Rasi, G; Bracci-Laudiero, M L; Procoli, A; Aloe, L

    2003-06-01

    Nerve growth factor (NGF) is a neutrophin exerting an important role in the development and functions of the central and peripheral nervous system. However, it has recently been documented that several immune cells - such as mast cells, lymphocytes and eosinophils - produce, store and release NGF. Moreover, NGF high and low affinity receptors are widely expressed in the immune system, thus indicating the potential of responding to this neurotrophin through an autocrine mechanism. In fact, NGF influences development differentiation, chemotaxis and mediator release of inflammatory cells as well as fibroblast activation through a complex network influenced by other pro-inflammatory cytokines. Finally, NGF is increased in biological fluids of several allergic, immune and inflammatory diseases. Data reviewed suggest, therefore, that NGF might also be viewed as a (Th2?) cytokine with a modulatory role in allergic inflammation and tissue remodeling. Copyright 2003 S. Karger AG, Basel

  20. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  1. Neuropeptides as lung cancer growth factors.

    PubMed

    Moody, Terry W; Moreno, Paola; Jensen, Robert T

    2015-10-01

    This manuscript is written in honor of the Festschrift for Abba Kastin. I met Abba at a Society for Neuroscience meeting and learned that he was Editor-in-Chief of the Journal Peptides. I submitted manuscripts to the journal on "Neuropeptides as Growth Factors in Cancer" and subsequently was named to the Editorial Advisory Board. Over the past 30 years I have published dozens of manuscripts in Peptides and reviewed hundreds of submitted manuscripts. It was always rewarding to interact with Abba, a consummate professional. When I attended meetings in New Orleans I would sometimes go out to dinner with him at the restaurant "Commanders Palace". When I chaired the Summer Neuropeptide Conference we were honored to have him receive the Fleur Strand Award one year in Israel. I think that his biggest editorial contribution has been the "Handbook of Biologically Active Peptides." I served as a Section Editor on "Cancer/Anticancer Peptides" and again found that it was a pleasure working with him. This review focuses on the mechanisms by which bombesin-like peptides, neurotensin and vasoactive intestinal peptide regulate the growth of lung cancer. Published by Elsevier Inc.

  2. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    SciTech Connect

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua; Warner-Blankenship, Matthew; Lyons, Karen M.

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen gene expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.

  3. Epidermal growth factor inhibits transforming growth factor-β-induced fibrogenic differentiation marker expression through ERK activation.

    PubMed

    Liu, Xiaoying; Hubchak, Susan C; Browne, James A; Schnaper, H William

    2014-10-01

    Transforming growth factor-β (TGF-β) signaling plays an important and complex role in renal fibrogenesis. The seemingly simple TGF-β/Smad cascade is intensively regulated at several levels, including crosstalk with other signaling pathways. Epidermal growth factor (EGF) is a potent mitogen for epithelial cells and is elevated in diseased kidneys. In this study, we examined its effect on TGF-β-induced fibrotic changes in human proximal tubular epithelial cells. Simultaneous treatment with EGF specifically inhibited basal and TGF-β-induced type-I collagen and α-smooth muscle actin (αSMA) expression at both mRNA and protein levels. These effects were prevented by inhibition of either the EGF receptor kinase or its downstream MEK kinase but not by blockade of either the JNK or PI3K pathway. Overexpression of a constitutively active MEK1 construct mimicked the inhibitory effect of EGF. Further, EGF suppressed Smad transcriptional activities, as shown by reduced activation of ARE-luc and SBE-luc. Both reductions were prevented by MEK inhibition. However, EGF did not block Smad2 or Smad3 phosphorylation by TGF-β, or Smad2/3 nuclear import. Finally EGF induced the phosphorylation and expression of TGIF, a known TGF-β/Smad repressor. Both the phosphorylation and the induction were blocked by a MEK inhibitor. Overexpression of TGIF abolished TGF-β-induced αSMA promoter activity. Together these results suggest that EGF inhibits two TGF-β-stimulated markers of EMT through EGF receptor tyrosine kinase and downstream ERK activation, but not through PI3K or JNK. The inhibition results from effector mechanisms downstream of Smads, and most likely involves the transcriptional repressor, TGIF. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Down-regulation of hypoxia-inducible factor-2 in PC12 cells by nerve growth factor stimulation.

    PubMed

    Naranjo-Suárez, Salvador; Castellanos, María Carmen; Alvarez-Tejado, Miguel; Vara, Alicia; Landázuri, Manuel O; del Peso, Luis

    2003-08-22

    Cellular responses to low oxygen tension are mediated, at least in part, by the activation of the hypoxia-inducible factors (HIFs). In the presence of oxygen, specific HIF residues become hydroxylated by the action of a recently described group of dioxygenases. These post-translational modifications target HIF for proteosomal degradation and prevent its transcriptional activity. Despite these detailed studies, little is known about the regulation of HIF by stimuli other than hypoxia. Here we report that, in rat pheochromocytoma PC12 cells, nerve growth factor (NGF) stimulation results in a decrease of both basal and hypoxia-induced levels of HIF-2 alpha protein. NGF treatment did not increase HIF-hydroxylase gene expression or activity, and the reduction of the HIF-2 alpha protein level upon stimulation was observed even in the presence of HIF-hydroxylase inhibitors such as deferoxamine or dimethyloxoglutarate. Thus, in contrast to the response to hypoxia, the effect of NGF on HIF-2 alpha protein levels is not mediated by the HIF hydroxilases. Quantitative real time (RT)-PCR showed that NGF stimulation results in a decrease of the HIF-2 alpha mRNA level similar to that found at the protein level. Interestingly, NGF effect was specific for HIF-2 alpha mRNA because it did not affect HIF-1 alpha mRNA levels. NGF treatment reduced HIF-2 alpha mRNA levels even in the presence of actinomycin D, suggesting an effect on mRNA stability. Finally, the effect of NGF on HIF2 alpha correlates with reduction of both basal and hypoxia-induced vascular endothelial growth factor mRNA levels. Reporter assays suggest that the reduced expression of hypoxia-inducible genes upon NGF treatment is related, at least in part, to the reduction of HIF-2 alpha protein. Hence, in PC12 cells the level of HIF-2 alpha protein and its effect on gene expression can be down-regulated by stimuli other than oxygen.

  5. A fibronectin scaffold approach to bispecific inhibitors of epidermal growth factor receptor and insulin-like growth factor-I receptor

    PubMed Central

    Emanuel, Stuart L; Engle, Linda J; Chao, Ginger; Zhu, Rong-Rong; Cao, Carolyn; Lin, Zheng; Yamniuk, Aaron; Hosbach, Jennifer; Brown, Jennifer; Fitzpatrick, Elizabeth; Gokemeijer, Jochem; Morin, Paul; Morse, Brent; Carvajal, Irvith M; Fabrizio, David; Wright, Martin C; Das Gupta, Ruchira; Gosselin, Michael; Cataldo, Daniel; Ryseck, Rolf P; Doyle, Michael L; Wong, Tai W; Camphausen, Raymond T; Cload, Sharon T; Marsh, H Nicholas; Gottardis, Marco M

    2011-01-01

    Engineered domains of human fibronectin (Adnectins™) were used to generate a bispecific Adnectin targeting epidermal growth factor receptor (EGFR) and insulin-like growth factor-I receptor (IGF-IR), two transmembrane receptors that mediate proliferative and survival cell signaling in cancer. Single-domain Adnectins that specifically bind EGFR or IGF-IR were generated using mRNA display with a library containing as many as 1013 Adnectin variants. mRNA display was also used to optimize lead Adnectin affinities, resulting in clones that inhibited EGFR phosphorylation at 7 to 38 nM compared to 2.6 µM for the parental clone. Individual optimized Adnectins specific for blocking either EGFR or IGF-IR signaling were engineered into a single protein (EI-Tandem Adnectin). The EI-Tandems inhibited phosphorylation of EGFR and IGF-IR, induced receptor degradation and inhibited down-stream cell signaling and proliferation of human cancer cell lines (A431, H292, BxPC3 and RH41) with IC50 values ranging from 0.1 to 113 nM. Although Adnectins bound to EGFR at a site distinct from those of anti-EGFR antibodies cetuximab, panitumumab and nimotuzumab, like the antibodies, the anti-EGFR Adnectins blocked the binding of EGF to EGFR. PEGylated EI-Tandem inhibited the growth of both EGFR and IGF-IR driven human tumor xenografts, induced degradation of EGFR and reduced EGFR phosphorylation in tumors. These results demonstrate efficient engineering of bispecific Adnectins with high potency and desired specificity. The bispecificity may improve biological activity compared to monospecific biologics as tumor growth is driven by multiple growth factors. Our results illustrate a technological advancement for constructing multi-specific biologics in cancer therapy. PMID:21099371

  6. A growth factor-responsive gene of murine BALB/c 3T3 cells encodes a protein homologous to human tissue factor

    SciTech Connect

    Hartzell, S.; Ryder, K.; Lanahan, A.; Nathans, D.; Lau, L.F.

    1989-06-01

    Polypeptide growth factors rapidly induce the transcription of a set of genes that appear to mediate cell growth. The authors report that one of the genes induced in BALB/c mouse 3T3 cells encodes a transmembrane protein (mTF) homologous to human tissue factor, which is involved in the proteolytic activation of blood clotting. mTF mRNA is present in many murine tissues and cell lines. The authors' results raise the possibility that mTF may also play a role in cell growth.

  7. An endothelial growth factor involved in rat renal development.

    PubMed Central

    Oliver, J A; Al-Awqati, Q

    1998-01-01

    In the kidney, there is a close and intricate association between epithelial and endothelial cells, suggesting that a complex reciprocal interaction may exist between these two cell types during renal ontogeny. Thus, we examined whether metanephrogenic mesenchymal cells secrete endothelial mitogens. With an endothelial mitogenic assay and sequential chromatography of the proteins in the media conditioned by a cell line of rat metanephrogenic mesenchymal cells (7.1.1 cells), we isolated a protein whose amino acid analysis identified it as hepatoma-derived growth factor (HDGF). Media conditioned with Cos-7 cell transfected with HDGF cDNA stimulated endothelial DNA synthesis. With immunoaffinity purified antipeptide antibodies, we found that HDGF was widely distributed in the renal anlage at early stages of development but soon concentrated at sites of active morphogenesis and, except for some renal tubules, disappeared from the adult kidney. From a 7.1.1 cells cDNA library, a clone of most of the translatable region of HDGF was obtained and used to synthesize digoxigenin-labeled riboprobes. In situ hybridization showed that during kidney development mRNA for HDGF was most abundant at sites of nephron morphogenesis and in ureteric bud cells while in the adult kidney transcripts disappeared except for a small population of distal tubules. Thus, HDGF is an endothelial mitogen that is present in embryonic kidney, and its expression is synchronous with nephrogenesis. PMID:9739055

  8. Mast Cells Synthesize, Store, and Release Nerve Growth Factor

    NASA Astrophysics Data System (ADS)

    Leon, A.; Buriani, A.; dal Toso, R.; Fabris, M.; Romanello, S.; Aloe, L.; Levi-Montalcini, R.

    1994-04-01

    Mast cells and nerve growth factor (NGF) have both been reported to be involved in neuroimmune interactions and tissue inflammation. In many peripheral tissues, mast cells interact with the innervating fibers. Changes in the behaviors of both of these elements occur after tissue injury/inflammation. As such conditions are typically associated with rapid mast cell activation and NGF accumulation in inflammatory exudates, we hypothesized that mast cells may be capable of producing NGF. Here we report that (i) NGF mRNA is expressed in adult rat peritoneal mast cells; (ii) anti-NGF antibodies clearly stain vesicular compartments of purified mast cells and mast cells in histological sections of adult rodent mesenchymal tissues; and (iii) medium conditioned by peritoneal mast cells contains biologically active NGF. Mast cells thus represent a newly recognized source of NGF. The known actions of NGF on peripheral nerve fibers and immune cells suggest that mast cell-derived NGF may control adaptive/reactive responses of the nervous and immune systems toward noxious tissue perturbations. Conversely, alterations in normal mast cell behaviors may provoke maladaptive neuroimmune tissue responses whose consequences could have profound implications in inflammatory disease states, including those of an autoimmune nature.

  9. Postnatal regulation of fibroblast growth factor ligand and receptor gene expression in rat thoracic aorta.

    PubMed

    Winkles, J A; Alberts, G F; Peifley, K A; Nomoto, K; Liau, G; Majesky, M W

    1996-12-01

    Fibroblast growth factor (FGF)-1 and FGF-2 are potent angiogenic factors and vascular smooth muscle cell (SMC) mitogens in vivo. They function via binding to a family of structurally related cell surface receptors that possess intrinsic tyrosine kinase activity. Several studies have indicated that increased FGF and/or FGF receptor (FGFR) expression may correlate with adult SMC proliferation in vivo. In this study, we used Northern blot hybridization and reverse transcription-polymerase chain reaction assays to compare the FGF and FGFR mRNA levels in newborn rat aorta, where SMCs have a high replication index, to those in adult rat aorta, where SMCs are relatively quiescent. We found that FGF-2 and FGFR-2 mRNA expression was elevated 8.2- and 5.6-fold, respectively, in adult aorta. Increased FGF-2 protein expression in the adult aorta was confirmed by Western blot analysis. We also examined FGF and FGFR mRNA expression levels in SMC cultures derived from newborn or adult rat aorta. FGF-1 transcripts were more abundant in newborn SMCs whereas FGF-2 and FGFR-1 mRNA expression was higher in adult SMCs. Furthermore, FGF-1 and FGF-2 mRNA expression levels were altered by cell culture density and by serum treatment. We conclude that elevated FGF ligand and receptor expression does not always correlate with a high SMC proliferative index, that FGF-1 or FGF-2 may not be the primary mitogens responsible for newborn SMC growth in vivo, and that FGF-1 and FGF-2 may serve nonmitogenic functions within the mature, adult vessel wall.

  10. Bilirubin modulated cytokines, growth factors and angiogenesis to improve cutaneous wound healing process in diabetic rats.

    PubMed

    Ram, Mahendra; Singh, Vishakha; Kumawat, Sanjay; Kant, Vinay; Tandan, Surendra Kumar; Kumar, Dinesh

    2016-01-01

    Bilirubin has shown cutaneous wound healing potential in some preliminary studies. Here we hypothesize that bilirubin facilitates wound healing in diabetic rats by modulating important healing factors/candidates and antioxidant parameters in a time-dependent manner. Diabetes was induced in male Wistar rats by streptozotocin. In all diabetic rats wounds were created under pentobarbitone anesthesia. All the rats were divided into two groups, of which one (control) was treated with ointment base and other with bilirubin ointment (0.3%). Wound closer measurement and tissue collection were done on days 3, 7, 14 and 19 post-wounding. The relative expressions of hypoxia inducible factor-1 alpha (HIF-1α), vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 alpha (SDF-1α), transforming growth factor- beta1 (TGF-β1()), tumor necrosis factor-α (TNF-α) and interlukin-10 (IL-10) mRNA and proteins and the mRNA of interlukin-1 beta (IL-1β) and matrix metalloprteinase-9 (MMP-9) were determined in the wound tissues. CD-31 staining and collagen content were evaluated by immunohistochemistry and picrosirius red staining, respectively. Histopathological changes were assessed by H&E staining. The per cent wound closer was significantly higher from day 7 onwards in bilirubin-treated rats. HIF-1α, VEGF, SDF-1α, TGF-β1, IL-10 mRNA and protein levels were significantly higher on days 3, 7 and 14 in bilirubin-treated rats. The mRNA expression and protein level of TNF-α and the mRNA of IL-1β and MMP-9 were progressively and markedly reduced in bilirubin-treated rats. The collagen deposition and formation of blood vessels were greater in bilirubin-treated rats. Bilirubin markedly facilitated cutaneous wound healing in diabetic rats by modulating growth factors, cytokines, neovasculogenesis and collagen contents to the wound site. Topical application of bilirubin ointment might be of great use in cutaneous wound healing in diabetic patients.

  11. Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors.

    PubMed Central

    Hatva, E.; Kaipainen, A.; Mentula, P.; Jääskeläinen, J.; Paetau, A.; Haltia, M.; Alitalo, K.

    1995-01-01

    Key growth factor-receptor interactions involved in angiogenesis are possible targets for therapy of CNS tumors. Vascular endothelial growth factor (VEGF) is a highly specific endothelial cell mitogen that has been shown to stimulate angiogenesis, a requirement for solid tumor growth. The expression of VEGF, the closely related placental growth factor (PIGF), the newly cloned endothelial high affinity VEGF receptors KDR and FLT1, and the endothelial orphan receptors FLT4 and Tie were analyzed by in situ hybridization in normal human brain tissue and in the following CNS tumors: gliomas, grades II, III, IV; meningiomas, grades I and II; and melanoma metastases to the cerebrum. VEGF mRNA was up-regulated in the majority of low grade tumors studied and was highly expressed in cells of malignant gliomas. Significantly elevated levels of Tie, KDR, and FLT1 mRNAs, but not FLT4 mRNA, were observed in malignant tumor endothelia, as well as in endothelia of tissues directly adjacent to the tumor margin. In comparison, there was little or no receptor expression in normal brain vasculature. Our results are consistent with the hypothesis that these endothelial receptors are induced during tumor progression and may play a role in tumor angiogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7856749

  12. Growth factors and cytokines in acute renal failure.

    PubMed

    Harris, R C

    1997-04-01

    The mammalian kidney is susceptible to injury by ischemia/reperfusion and toxins, and regeneration after injury is characterized by hyperplasia and recovery of the damaged epithelial cells that line the tubules. Locally produced growth factors may serve as mediators of nephrogenesis and differentiation during renal development and of renal regeneration after acute injury. In cultured cells, administration of one or a mixture of growth factors to quiescent cells will initiate progression through the cell cycle and cell division. In the adult kidney, cell division normally is very low, but will increase up to 10-fold after acute injury. In addition to proliferation after lethal injury, there also is cellular repair in cells that have undergone sublethal injury. Recent studies indicate that growth factors inhibit programmed cell death in response to acute injury. Growth factors also may initiate or promote protein and lipid biosynthesis and provide an intracellular milieu that promotes cellular repair. In addition to cellular repair, growth factors also may be involved in the re-establishment of cell-extracellular matrix and cell-cell integrity. Finally, growth factors may limit injury by decreasing the factors that induce damage. Increased local renal expression of growth factors in response to acute injury include heparin binding epidermal growth factor (HB-EGF), hepatocyte growth factor (HGF), insulin-like growth factor-I (IGF-I), transforming growth factor-beta, parathyroid hormone-related peptide, and acidic fibroblast growth factor. In a number of experimental models of acute renal injury, administration of exogenous growth factors has been shown to accelerate both structural and functional recovery. Specifically, EGF, IGF-1, and HGF all have been shown to be effective in this regard. These studies are reviewed and potential therapeutic uses of growth factors and cytokines will be discussed.

  13. [Regulation of uterine cellular proliferation with estrogens and growth factors].

    PubMed

    Alvarez-Rodríguez, C; Baiza-Guzmán, L A

    1996-09-01

    In this paper the role of estrogen and growth factors in the uterine cellular proliferation is analyzed. The evidences indicate that the estradiol-stimulate cell division is associated with the induction of expression of a variety of growth factors from the all major uterine cell types (epithelia, stroma and myometrium). These growth factors amplify the estrogen proliferation signal in autocrine and/or paracrin fashion. The best-studied growth factors in the uterine response to estradiol are epidermal growth factor (EGF) and insulin-like growth factor (IGF-1). Uterine cell proliferation is a complex process that involves interactions of several growth factors, ovarian steroids hormones action and cell to cell signaling.

  14. Growth hormone mRNA expression in the pituitary of Bos indicus and Bos taurus x Bos indicus crossbred young bulls treated with recombinant bovine somatotropin.

    PubMed

    Di Mauro, S M Z; Furlan, L R; Ferro, M I T; Macari, M; Ferro, J A

    2002-12-31

    The effects of breed and of recombinant bovine somatotropin (rbST) treatment on growth hormone gene expression were studied in young bulls. The experiment was completely randomized in a [2 x 2]-factorial arrangement, using two levels of rbST (0 or 250 mg/animal/14 days), and two breed groups (Nelore and Simmental x Nelore crossbred). A cDNA encoding Bos indicus growth hormone was cloned and sequenced for use as a probe in Northern and dot blot analyses. Compared to the Bos taurus structural gene, the Bos indicus cDNA was found to begin 21 bases downstream from the transcription initiation site and had only two discrepancies (C to T at position 144-His and T to C at position 354-Phe), without changes in the polypeptide sequence. However, two amino acid substitutions were found for Bubalus spp., which belong to the same tribe. The rbST treatment did not change any of the characteristics evaluated (body and pituitary gland weights, growth hormone mRNA expression level). Crossbred animals had significantly higher body weight and heavier pituitaries than Nelore cattle. Pituitary weight was proportional to body weight in both breed groups. Growth hormone mRNA expression in the pituitary was similar (P>0.075) for both breed and hormonal treatment groups, but was 31.9% higher in the pure Nelore group, suggesting that growth hormone gene transcription regulation differs among these breeds.

  15. Hepatocyte growth factor, vascular endothelial growth factor, glial cell-derived neurotrophic factor and nerve growth factor are differentially affected by early chronic ethanol or red wine intake.

    PubMed

    Fiore, Marco; Mancinelli, Rosanna; Aloe, Luigi; Laviola, Giovanni; Sornelli, Federica; Vitali, Mario; Ceccanti, Mauro

    2009-08-10

    Ethanol intake during pregnancy and lactation induces severe changes in brain and liver throughout mechanisms involving growth factors. These are signaling molecules regulating survival, differentiation, maintenance and connectivity of brain and liver cells. Ethanol is an element of red wine which contains also compounds with antioxidant properties. Aim of the study was to investigate differences in hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), glial cell-derived neurotrophic factor (GDNF) and nerve growth factor (NGF) in brain areas and liver by ELISA of 1-month-old male mice exposed perinatally to ethanol at 11 vol.% or to red wine at same ethanol concentration. Ethanol was administered before and during pregnancy up to pups' weaning. Ethanol per se elevated HGF in liver and cortex, potentiated liver VEGF, reduced GDNF in the liver and decreased NGF content in hippocampus and cortex in the offspring. We did not find changes in HGF or NGF due to red wine exposure. However, we revealed elevation in VEGF levels in liver and reduced GDNF in the cortex of animals exposed to red wine but the VEGF liver increase was more marked in animals exposed to ethanol only compared to the red wine group. In conclusion the present findings in the mouse show differences in ethanol-induced toxicity when ethanol is administered alone or in red wine that may be related to compounds with antioxidant properties present in the red wine.

  16. The involvement of mRNA processing factors TIA-1, TIAR, and PABP-1 during mammalian hibernation.

    PubMed

    Tessier, Shannon N; Audas, Timothy E; Wu, Cheng-Wei; Lee, Stephen; Storey, Kenneth B

    2014-11-01

    Mammalian hibernators survive low body temperatures, ischemia-reperfusion, and restricted nutritional resources via global reductions in energy-expensive cellular processes and selective increases in stress pathways. Consequently, studies that analyze hibernation uncover mechanisms which balance metabolism and support survival by enhancing stress tolerance. We hypothesized processing factors that influence messenger ribonucleic acid (mRNA) maturation and translation may play significant roles in hibernation. We characterized the amino acid sequences of three RNA processing proteins (T cell intracellular antigen 1 (TIA-1), TIA1-related (TIAR), and poly(A)-binding proteins (PABP-1)) from thirteen-lined ground squirrels (Ictidomys tridecemlineatus), which all displayed a high degree of sequence identity with other mammals. Alternate Tia-1 and TiaR gene variants were found in the liver with higher expression of isoform b versus a in both cases. The localization of RNA-binding proteins to subnuclear structures was assessed by immunohistochemistry and confirmed by subcellular fractionation; TIA-1 was identified as a major component of subnuclear structures with up to a sevenfold increase in relative protein levels in the nucleus during hibernation. By contrast, there was no significant difference in the relative protein levels of TIARa/TIARb in the nucleus, and a decrease was observed for TIAR isoforms in cytoplasmic fractions of torpid animals. Finally, we used solubility tests to analyze the formation of reversible aggregates that are associated with TIA-1/R function during stress; a shift towards the soluble fraction (TIA-1a, TIA-1b) was observed during hibernation suggesting enhanced protein aggregation was not present during torpor. The present study identifies novel posttranscriptional regulatory mechanisms that may play a role in reducing translational rates and/or mRNA processing under unfavorable environmental conditions.

  17. Epstein-Barr Virus mRNA Export Factor EB2 Is Essential for Production of Infectious Virus

    PubMed Central

    Gruffat, Henri; Batisse, Julien; Pich, Dagmar; Neuhierl, Bernhard; Manet, Evelyne; Hammerschmidt, Wolfgang; Sergeant, Alain

    2002-01-01

    The splicing machinery which positions a protein export complex near the exon-exon junction mediates nuclear export of mRNAs generated from intron-containing genes. Many Epstein-Barr virus (EBV) early and late genes are intronless, and an alternative pathway, independent of splicing, must export the corresponding mRNAs. Since the EBV EB2 protein induces the cytoplasmic accumulation of intronless mRNA, it is tempting to speculate that EB2 is a viral adapter involved in the export of intronless viral mRNA. If this is true, then the EB2 protein is essential for the production of EBV infectious virions. To test this hypothesis, we generated an EBV mutant in which the BMLF1 gene, encoding the EB2 protein, has been deleted (EBVBMLF1-KO). Our studies show that EB2 is necessary for the production of infectious EBV and that its function cannot be transcomplemented by a cellular factor. In the EBVBMLF1-KO 293 cells, oriLyt-dependent DNA replication was greatly enhanced by EB2. Accordingly, EB2 induced the cytoplasmic accumulation of a subset of EBV early mRNAs coding for essential proteins implicated in EBV DNA replication during the productive cycle. Two herpesvirus homologs of the EB2 protein, the herpes simplex virus type 1 protein ICP27 and, the human cytomegalovirus protein UL69, only partly rescued the phenotype of the EBVBMLF1-KO mutant, indicating that some EB2 functions in virus production cannot be transcomplemented by ICP27 and UL69. PMID:12208942

  18. Initiation codon selection is accomplished by a scanning mechanism without crucial initiation factors in Sindbis virus subgenomic mRNA.

    PubMed

    Garcia-Moreno, Manuel; Sanz, Miguel Angel; Carrasco, Luis

    2015-01-01

    Translation initiation of alphavirus subgenomic mRNA (sgmRNA) can occur in the absence of several initiation factors (eIFs) in infected cells; however, the precise translation mechanism is still poorly understood. In this study, we have examined the mechanism of initiation and AUG selection in Sindbis virus (SINV) sgmRNA. Our present findings suggest that sgmRNA is translated via a scanning mechanism, since the presence of a hairpin structure before the initiation codon hampers protein synthesis directed by this mRNA. In addition, translation is partially recovered when an in-frame AUG codon is placed upstream of this hairpin. This scanning process takes place without the participation of eIF4A and active eIF2. These results, combined with our findings through modifying the SINV sgmRNA leader sequence, do not support the possibility of a direct initiation from the start codon without previous scanning, or a shunting mechanism. Moreover, studies carried out with sgmRNAs containing two alternative AUG codons within a good context for translation reveal differences in AUG selection which are dependent on the cellular context and the phosphorylation state of eIF2α. Thus, initiation at the additional AUG is strictly dependent on active eIF2, whereas the genuine AUG codon can start translation following eIF2α inactivation. Collectively, our results suggest that SINV sgmRNA is translated by a scanning mechanism without the potential participation of crucial eIFs. A model is presented that explains the mechanism of initiation of mRNAs bearing two alternative initiation codons.

  19. Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons.

    PubMed

    Fallini, Claudia; Donlin-Asp, Paul G; Rouanet, Jeremy P; Bassell, Gary J; Rossoll, Wilfried

    2016-03-30

    Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily affecting spinal motor neurons. It is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays an essential role in the biogenesis of spliceosomal small nuclear ribonucleoproteins in all tissues. The etiology of the specific defects in the motor circuitry in SMA is still unclear, but SMN has also been implicated in mediating the axonal localization of mRNA-protein complexes, which may contribute to the axonal degeneration observed in SMA. Here, we report that SMN deficiency severely disrupts local protein synthesis within neuronal growth cones. We also identify the cytoskeleton-associated growth-associated protein 43 (GAP43) mRNA as a new target of SMN and show that motor neurons from SMA mouse models have reduced levels ofGAP43mRNA and protein in axons and growth cones. Importantly, overexpression of two mRNA-binding proteins, HuD and IMP1, restoresGAP43mRNA and protein levels in growth cones and rescues axon outgrowth defects in SMA neurons. These findings demonstrate that SMN plays an important role in the localization and local translation of mRNAs with important axonal functions and suggest that disruption of this function may contribute to the axonal defects observed in SMA. The motor neuron disease spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays a key role in assembling RNA/protein complexes that are essential for mRNA splicing. It remains unclear whether defects in this well characterized housekeeping function cause the specific degeneration of spinal motor neurons observed in SMA. Here, we describe an additional role of SMN in regulating the axonal localization and local translation of the mRNA encoding growth-associated protein 43 (GAP43). This study supports a model whereby SMN deficiency impedes transport and local translation of mRNAs important for neurite outgrowth and stabilization

  20. Deficiency of the Survival of Motor Neuron Protein Impairs mRNA Localization and Local Translation in the Growth Cone of Motor Neurons

    PubMed Central

    Fallini, Claudia; Donlin-Asp, Paul G.; Rouanet, Jeremy P.

    2016-01-01

    Spinal muscular atrophy (SMA) is a neurodegenerative disease primarily affecting spinal motor neurons. It is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays an essential role in the biogenesis of spliceosomal small nuclear ribonucleoproteins in all tissues. The etiology of the specific defects in the motor circuitry in SMA is still unclear, but SMN has also been implicated in mediating the axonal localization of mRNA-protein complexes, which may contribute to the axonal degeneration observed in SMA. Here, we report that SMN deficiency severely disrupts local protein synthesis within neuronal growth cones. We also identify the cytoskeleton-associated growth-associated protein 43 (GAP43) mRNA as a new target of SMN and show that motor neurons from SMA mouse models have reduced levels of GAP43 mRNA and protein in axons and growth cones. Importantly, overexpression of two mRNA-binding proteins, HuD and IMP1, restores GAP43 mRNA and protein levels in growth cones and rescues axon outgrowth defects in SMA neurons. These findings demonstrate that SMN plays an important role in the localization and local translation of mRNAs with important axonal functions and suggest that disruption of this function may contribute to the axonal defects observed in SMA. SIGNIFICANCE STATEMENT The motor neuron disease spinal muscular atrophy (SMA) is caused by reduced levels of the survival of motor neuron (SMN) protein, which plays a key role in assembling RNA/protein complexes that are essential for mRNA splicing. It remains unclear whether defects in this well characterized housekeeping function cause the specific degeneration of spinal motor neurons observed in SMA. Here, we describe an additional role of SMN in regulating the axonal localization and local translation of the mRNA encoding growth-associated protein 43 (GAP43). This study supports a model whereby SMN deficiency impedes transport and local translation of mRNAs important for neurite

  1. Design of Growth Factor Sequestering Biomaterials

    PubMed Central

    Belair, David G.; Le, Ngoc Nhi; Murphy, William L.

    2014-01-01

    Growth factors (GFs) are major regulatory proteins that can govern cell fate, migration, and organization. Numerous aspects of the cell milieu can modulate cell responses to GFs, and GF regulation is often achieved by the native extracellular matrix (ECM). For example, the ECM can sequester GFs and thereby control GF bioavailability. In addition, GFs can exert distinct effects depending on whether they are sequestered in solution, at two-dimensional interfaces, or within three-dimensional matrices. Understanding how the context of GF sequestering impacts cell function in the native ECM can instruct the design of soluble or insoluble GF sequestering moieties, which can then be used in a variety of bioengineering applications. This Feature Article provides an overview of the natural mechanisms of GF sequestering in the cell milieu, and reviews the recent bioengineering approaches that have sequestered GFs to modulate cell function. Results to date demonstrate that the cell response to GF sequestering depends on the affinity of the sequestering interaction, the spatial proximity of sequestering in relation to cells, the source of the GF (supplemented or endogenous), and the phase of the sequestering moiety (soluble or insoluble). We highlight the importance of context for the future design of biomaterials that can leverage endogenous molecules in the cell milieu and mitigate the need for supplemented factors. PMID:25182455

  2. Tumor necrosis factor-mediated release of platelet-derived growth factor from cultured endothelial cells

    PubMed Central

    1987-01-01

    Platelet-derived growth factor (PDGF) is a 30,000-Mr glycoprotein that is chemotactic and mitogenic for vascular smooth muscle cells (SMC). It is also a potent vasoconstrictor. In the present study, we found that the macrophage-derived polypeptide, tumor necrosis factor (TNF), releases a factor from human umbilical vein endothelial cells (EC) that is mitogenic for SMC. Postculture medium from TNF-stimulated EC induced a 90% increase in mitogenesis is compared with controls. This effect was half-maximal at a TNF dose of 114 pM, reflected a 2.5-fold increase in PDGF-specific mRNA synthesis, and peaked at 15 h of TNF stimulation. Mitogenic activity was completely abrogated by preincubation of postculture medium with antibody to platelet PDGF. Stimulation of EC with IL-1 (60-240 pM) led to the release of similar mitogenic activity. Thus, in addition to its effects on the hemostatic and adhesive properties of EC, TNF also promotes release of PDGF, which may serve to modulate proliferation of vascular SMC during wound healing, inflammation, and atherogenesis. PMID:3598461

  3. Fibroblast growth factor-2 promotes keratan sulfate proteoglycan expression by keratocytes in vitro

    NASA Technical Reports Server (NTRS)

    Long, C. J.; Roth, M. R.; Tasheva, E. S.; Funderburgh, M.; Smit, R.; Conrad, G. W.; Funderburgh, J. L.

    2000-01-01

    Keratocytes of the corneal stroma produce a specialized extracellular matrix responsible for corneal transparency. Corneal keratan sulfate proteoglycans (KSPG) are unique products of keratocytes that are down-regulated in corneal wounds and in vitro. This study used cultures of primary bovine keratocytes to define factors affecting KSPG expression in vitro. KSPG metabolically labeled with [(35)S]sulfate decreased during the initial 2-4 days of culture in quiescent cultures with low serum concentrations (0.1%). Addition of fetal bovine serum, fibroblast growth factor-2 (FGF-2), transforming growth factor beta, or platelet derived growth factor all stimulated cell division, but only FGF-2 stimulated KSPG secretion. Combined with serum, FGF-2 also prevented serum-induced KSPG down-regulation. KSPG secretion was lost during serial subculture with or without FGF-2. Expression of KSPG core proteins (lumican, mimecan, and keratocan) was stimulated by FGF-2, and steady state mRNA pools for these proteins, particularly keratocan, were significantly increased by FGF-2 treatment. KSPG expression therefore is supported by exogenous FGF-2 and eliminated by subculture of the cells in presence of serum. FGF-2 stimulates KSPG core protein expression primarily through an increase in mRNA pools.

  4. Fibroblast growth factor-2 promotes keratan sulfate proteoglycan expression by keratocytes in vitro

    NASA Technical Reports Server (NTRS)

    Long, C. J.; Roth, M. R.; Tasheva, E. S.; Funderburgh, M.; Smit, R.; Conrad, G. W.; Funderburgh, J. L.

    2000-01-01

    Keratocytes of the corneal stroma produce a specialized extracellular matrix responsible for corneal transparency. Corneal keratan sulfate proteoglycans (KSPG) are unique products of keratocytes that are down-regulated in corneal wounds and in vitro. This study used cultures of primary bovine keratocytes to define factors affecting KSPG expression in vitro. KSPG metabolically labeled with [(35)S]sulfate decreased during the initial 2-4 days of culture in quiescent cultures with low serum concentrations (0.1%). Addition of fetal bovine serum, fibroblast growth factor-2 (FGF-2), transforming growth factor beta, or platelet derived growth factor all stimulated cell division, but only FGF-2 stimulated KSPG secretion. Combined with serum, FGF-2 also prevented serum-induced KSPG down-regulation. KSPG secretion was lost during serial subculture with or without FGF-2. Expression of KSPG core proteins (lumican, mimecan, and keratocan) was stimulated by FGF-2, and steady state mRNA pools for these proteins, particularly keratocan, were significantly increased by FGF-2 treatment. KSPG expression therefore is supported by exogenous FGF-2 and eliminated by subculture of the cells in presence of serum. FGF-2 stimulates KSPG core protein expression primarily through an increase in mRNA pools.

  5. Effects of Acupuncture on mRNA Levels of Apoptotic Factors in Perihematomal Brain Tissue During the Acute Phase of Cerebral Hemorrhage

    PubMed Central

    Li, Zuowei; Zheng, Xiaonan; Li, Ping; Itoua, Eudes Saturnin Régis; Moukassa, Donatien; Andely, Françoise Ndinga

    2017-01-01

    Background To explore the time-dependent effects of acupuncture on mRNA levels of the apoptotic factors BCL-2 and BAX in a rat cerebral hemorrhage model, slow injection of autologous blood to the caudate nucleus was used to generate the cerebral hemorrhage model. Material/Methods A sham surgery control group, groups with acupuncture applied 3, 9, 24, and 48 hours after model induction, and time-matched model-only control groups were used. In situ hybridization was used to detect BCL-2 and BAX mRNA expression, and semi-quantitative RT-PCR was used to measure the expression. Results The number of BCL-2 and BAX mRNA-positive cells significantly increased during the acute phase of cerebral hemorrhage. BCL-2 mRNA was significantly upregulated in acupuncture groups compared to other groups, whereas BAX mRNA levels in the acupuncture groups were lower in the other groups, except for the sham surgery group. Additionally, earlier acupuncture intervention was associated with a lower ratio of expression between the two genes. Changes in BCL-2 and BAX mRNA expression were consistent with changes in the number of cells positive for BCL-2 and BAX mRNA; however, the change in the expression ratio was consistent with the change in the number of cells positive for BCL-2 mRNA, but opposite to the change in the number of cells positive for BAX mRNA. Conclusions Acupuncture ameliorated changes in expression of apoptotic factors in the brain induced by acute cerebral hemorrhage and may thus protect the brain, with greater efficacy when the delay before acupuncture was minimized. PMID:28357997

  6. Effects of Acupuncture on mRNA Levels of Apoptotic Factors in Perihematomal Brain Tissue During the Acute Phase of Cerebral Hemorrhage.

    PubMed

    Li, Zuowei; Zheng, Xiaonan; Li, Ping; Itoua, Eudes Saturnin Régis; Moukassa, Donatien; Ndinga Andely, Françoise

    2017-03-30

    BACKGROUND To explore the time-dependent effects of acupuncture on mRNA levels of the apoptotic factors BCL-2 and BAX in a rat cerebral hemorrhage model, slow injection of autologous blood to the caudate nucleus was used to generate the cerebral hemorrhage model. MATERIAL AND METHODS A sham surgery control group, groups with acupuncture applied 3, 9, 24, and 48 hours after model induction, and time-matched model-only control groups were used. In situ hybridization was used to detect BCL-2 and BAX mRNA expression, and semi-quantitative RT-PCR was used to measure the expression. RESULTS The number of BCL-2 and BAX mRNA-positive cells significantly increased during the acute phase of cerebral hemorrhage. BCL-2 mRNA was significantly upregulated in acupuncture groups compared to other groups, whereas BAX mRNA levels in the acupuncture groups were lower in the other groups, except for the sham surgery group. Additionally, earlier acupuncture intervention was associated with a lower ratio of expression between the two genes. Changes in BCL-2 and BAX mRNA expression were consistent with changes in the number of cells positive for BCL-2 and BAX mRNA; however, the change in the expression ratio was consistent with the change in the number of cells positive for BCL-2 mRNA, but opposite to the change in the number of cells positive for BAX mRNA. CONCLUSIONS Acupuncture ameliorated changes in expression of apoptotic factors in the brain induced by acute cerebral hemorrhage and may thus protect the brain, with greater efficacy when the delay before acupuncture was minimized.

  7. Ontogenetic effects of diet during early development on growth performance, myosin mRNA expression and metabolic enzyme activity in Atlantic cod juveniles reared at different salinities.

    PubMed

    Koedijk, Roland M; Le François, Nathalie R; Blier, Pierre U; Foss, Atle; Folkvord, Arild; Ditlecadet, Delphine; Lamarre, Simon G; Stefansson, Sigurd O; Imsland, Albert K

    2010-05-01

    This study investigates the effect of diet during early development on growth and metabolic capacity in the juvenile stage of Atlantic cod. Growth in three groups of Atlantic cod juveniles (10-70 g) was measured at two salinities (15 per thousand or 32 per thousand) in combination with two temperatures (10 degrees C or 14 degrees C). Groups of cod from a single egg batch differed by having been fed with rotifers (R) or natural zooplankton (Z) during the first 36 days post hatch. A third group was fed zooplankton from 1 to 22 dph, after which diet changed to rotifers from 22 to 36 dph (ZRZ). All fish were weaned at 36 dph. Juveniles from the Z and ZRZ groups performed equally well under all experimental conditions, but fish that had received rotifers as a larval diet showed overall significantly lower growth rates. Growth was significantly enhanced by reduced salinity. Metabolic enzyme activity and relative myosin mRNA expression levels were not affected by larval diet. Muscle AAT and MDH were affected by salinity while these enzymes in liver tissue were affected by the interaction between salinity and temperature. Metabolic enzymes were stronger correlated with fish size than growth rates. Our results indicate that larval diet has a pronounced effect on juvenile growth rates under varying environmental conditions as optimal larval diet (zooplankton) increased juvenile growth rates significantly. Metabolic enzyme activity and relative myosin mRNA expression were not affected by larval history, which suggests that the persisting juvenile growth difference is not a result of differing metabolic capacity.

  8. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis.

    PubMed Central

    Yoshida, S; Ono, M; Shono, T; Izumi, H; Ishibashi, T; Suzuki, H; Kuwano, M

    1997-01-01

    Tumor necrosis factor alpha (TNF-alpha) is a macrophage/monocyte-derived polypeptide which modulates the expression of various genes in vascular endothelial cells and induces angiogenesis. However, the underlying mechanism by which TNF-alpha mediates angiogenesis is not completely understood. In this study, we assessed whether TNF-alpha-induced angiogenesis is mediated through TNF-alpha itself or indirectly through other TNF-alpha-induced angiogenesis-promoting factors. Cellular mRNA levels of interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and their receptors were increased after the treatment of human microvascular endothelial cells with TNF-alpha (100 U/ml). TNF-alpha-dependent tubular morphogenesis in vascular endothelial cells was inhibited by the administration of anti-IL-8, anti-VEGF, and anti-bFGF antibodies, and coadministration of all three antibodies almost completely abrogated tubular formation. Moreover, treatment with Sp1, NF-kappaB, and c-Jun antisense oligonucleotides inhibited TNF-alpha-dependent tubular morphogenesis by microvascular endothelial cells. Administration of a NF-kappaB antisense oligonucleotide almost completely inhibited TNF-alpha-dependent IL-8 production and partially abrogated TNF-alpha-dependent VEGF production, and an Sp1 antisense sequence partially inhibited TNF-alpha-dependent production of VEGF. A c-Jun antisense oligonucleotide significantly inhibited TNF-alpha-dependent bFGF production but did not affect the production of IL-8 and VEGF. Administration of an anti-IL-8 or anti-VEGF antibody also blocked TNF-alpha-induced neovascularization in the rabbit cornea in vivo. Thus, angiogenesis by TNF-alpha appears to be modulated through various angiogenic factors, both in vitro and in vivo, and this pathway is controlled through paracrine and/or autocrine mechanisms. PMID:9199336

  9. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman W.

    1987-01-01

    New muscle tissue culture techniques were developed to grow embryonic skeletal myofibers which are able to differentiate into more adultlike myofibers. Studies on mechanical simulation of cultured muscle cell growth will now be more directly applicable to mechanically-induced growth in adult muscle, and lead to better models for understanding muscle tissue atrophy caused by disuse in the microgravity of space.

  10. Growth factors and their relationship to neoplastic and paraneoplastic disease.

    PubMed

    Badawi, R A; Birns, J; Watson, T; Kalra, L

    2005-04-01

    Growth factors are extracellular signaling molecules that act in an autocrine and paracrine fashion to regulate growth, proliferation, differentiation, and survival of cells. Dysregulation of the growth factor networks is intimately related to the molecular pathogenesis of neoplastic and paraneoplastic disease. Increasing knowledge of the molecular mechanisms underlying growth factors and their actions on cell cycling, cell division, and cell death is shedding light on new therapeutic avenues for molecular targeting of tumors. Epidermal growth factor and vascular endothelial growth factor both offer examples of how growth factor biology and its relationship to cancer can be harnessed to create effective clinical therapeutic tools such as monoclonal antibodies. This approach heralds a future in which rational molecular oncological therapy may increasingly become the norm.

  11. Kinetics of epidermal growth factor in saliva.

    PubMed

    Ino, M; Ushiro, K; Ino, C; Yamashita, T; Kumazawa, T

    1993-01-01

    Human epidermal growth factor (hEGF) stimulates the growth and differentiation of various tissues. We measured EGF levels in saliva (n = 128), urine (n = 94), and serum (n = 99) with radioimmunoassay in order to study the kinetics of hEGF in saliva of normal subjects and patients with oral disease. Salivary EGF levels showed an apparent diurnal rhythm related to the taking of meals. Urinary and serum EGF levels showed no obvious diurnal rhythm. There was no significant correlation between salivary and urinary EGF levels, nor between salivary and serum EGF levels. Salivary EGF levels were significantly lower in the younger group (0-9 years old, 3.06 +/- 0.32 ng/ml, p < 0.05) than in the elder group (10-79 years old, 4.78 +/- 3.5 ng/ml), but did not correlate with age in the elder group. There was no significant difference between males and females between EGF levels in saliva, urine or serum. The relative proportion of EGF levels in submandibular gland saliva, parotid saliva, and whole saliva was 1:6:4. The positive rate of immunohistochemical EGF showed no significant differences between submandibular gland, parotid gland, sublingual gland or minor salivary gland. Salivary EGF levels were markedly low in patients with oral inflammations (stomatitis aphthosa, or peritonsillar abscess) or head and neck tumors (squamous cell carcinoma of the tongue, oral cavity, hypopharynx or larynx). These findings may be significant pathophysiologically. Low salivary EGF levels may reduce the capacity of oral mucosal defense mechanisms to fight against injury by physiochemical agents.

  12. Endorsement of Growth Factors in Experiential Training Groups

    ERIC Educational Resources Information Center

    Kiweewa, John; Gilbride, Dennis; Luke, Melissa; Seward, Derek

    2013-01-01

    The purpose of this study was to identify student growth factors during a semester long Master's level group counseling class. Results indicated that 12 growth factors accounted for 86% of the total number of critical incidents that participants reported as influencing their personal growth and awareness during the group experience. Two other…

  13. Endorsement of Growth Factors in Experiential Training Groups

    ERIC Educational Resources Information Center

    Kiweewa, John; Gilbride, Dennis; Luke, Melissa; Seward, Derek

    2013-01-01

    The purpose of this study was to identify student growth factors during a semester long Master's level group counseling class. Results indicated that 12 growth factors accounted for 86% of the total number of critical incidents that participants reported as influencing their personal growth and awareness during the group experience. Two other…

  14. The angiogenic peptide vascular endothelial growth factor-basic fibroblast growth factor signaling is up-regulated in a rat pressure ulcer model.

    PubMed

    Yang, Jing-Jin; Wang, Xue-Ling; Shi, Bo-Wen; Huang, Fang

    2013-08-01

    The purpose of this study is to investigate the mRNA and protein expression levels of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in pressure ulcers, and to elucidate the molecular mechanism by which VEGF and bFGF are involved in pressure ulcer formation. A rat model of ischemia-reperfusion pressure ulcer was established by magnetic disk circulating compression method. Real-time fluorescence quantitative PCR and Western blot assays were conducted to detect the mRNA and protein expression of VEGF and bFGF in the tissues of rat I-, II-, and III-degree pressure ulcers, the surrounding tissues, and normal skin. Our study confirmed that the mRNA and protein expression levels of VEGF and bFGF in the tissues of rat I-degree pressure ulcer were significantly higher than that in the II- and III-degree pressure ulcer tissues (P < 0.05). The expression of VEGF and bFGF in the tissues surrounding I- and II-degree pressure ulcers were higher than the rats with normal skin. The expression of VEGF and bFGF in the tissues of rat III-degree pressure ulcer was lower than that in the surrounding tissues and normal skin (P < 0.05). There was a significant positive correlation between change in the VEGF and bFGF. The results showed that with an increase in the degree of pressure ulcers, the expression of VEGF and bFGF in pressure ulcers tissue are decreased. This leads to a reduction in angiogenesis and may be a crucial factor in the formation of pressure ulcers. Copyright © 2013 Wiley Periodicals, Inc.

  15. Role of fibroblast-derived growth factors in regulating hyperpigmentation of solar lentigo.

    PubMed

    Kovacs, D; Cardinali, G; Aspite, N; Cota, C; Luzi, F; Bellei, B; Briganti, S; Amantea, A; Torrisi, M R; Picardo, M

    2010-11-01

    Cutaneous pigmentation is regulated by a complex melanogenic network in which both keratinocytes and fibroblasts synthesize growth factors and cytokines. Solar lentigo (SL) is characterized by hyperpigmented lesions occurring on photodamaged skin areas. Despite the association of SL to ultraviolet (UV) exposure, the mechanisms underlying the development of these spots are not completely defined. To analyse the involvement of the fibroblast-derived growth factors, hepatocyte growth factor (HGF), keratinocyte growth factor (KGF) and stem cell factor (SCF) in SL hyperpigmentation; to evaluate whether the photoageing process occurring in fibroblasts could be responsible for the altered expression of these cytokines; and to investigate a new possible role of KGF in regulating pigmentation through the specific induction of melanogenic cytokines by keratinocytes. We performed immunohistochemical analysis of HGF, KGF and SCF on SL biopsies. We analysed the mRNA expression of these cytokines using an in vitro model of photoageing induced on fibroblasts. Finally, we evaluated the effects of KGF on the expression of melanogenic cytokines at the mRNA and protein levels on keratinocytes. We found positive staining for HGF, KGF and SCF in the upper dermis of SL lesions and a significant induction of the three cytokines in photoaged fibroblasts. We also demonstrated the contribution of KGF to pigmentation, showing its ability specifically to modulate the expression of SCF in keratinocytes. Fibroblasts may be persistently activated by UV exposure to release melanogenic growth factors; this inducible cytokine network acts both directly and indirectly through keratinocytes and may contribute to the hyperpigmentation of SL. © 2010 The Authors. BJD © 2010 British Association of Dermatologists.

  16. Gene expression of growth factors and growth factor receptors for potential targeted therapy of canine hepatocellular carcinoma.

    PubMed

    Iida, Gentoku; Asano, Kazushi; Seki, Mamiko; Sakai, Manabu; Kutara, Kenji; Ishigaki, Kumiko; Kagawa, Yumiko; Yoshida, Orie; Teshima, Kenji; Edamura, Kazuya; Watari, Toshihiro

    2014-03-01

    The purpose of this study was to evaluate the gene expression of growth factors and growth factor receptors of primary hepatic masses, including hepatocellular carcinoma (HCC) and nodular hyperplasia (NH), in dogs. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to measure the expression of 18 genes in 18 HCCs, 10 NHs, 11 surrounding non-cancerous liver tissues and 4 healthy control liver tissues. Platelet-derived growth factor-B (PDGF-B), transforming growth factor-α, epidermal growth factor receptor, epidermal growth factor and hepatocyte growth factor were found to be differentially expressed in HCC compared with NH and the surrounding non-cancerous and healthy control liver tissues. PDGF-B is suggested to have the potential to become a valuable ancillary target for the treatment of canine HCC.

  17. Connective tissue growth factor is overexpressed in muscles of human muscular dystrophy.

    PubMed

    Sun, Guilian; Haginoya, Kazuhiro; Wu, Yanling; Chiba, Yoko; Nakanishi, Tohru; Onuma, Akira; Sato, Yuko; Takigawa, Masaharu; Iinuma, Kazuie; Tsuchiya, Shigeru

    2008-04-15

    The detailed process of how dystrophic muscles are replaced by fibrotic tissues is unknown. In the present study, the immunolocalization and mRNA expression of connective tissue growth factor (CTGF) in muscles from normal and dystrophic human muscles were examined with the goal of elucidating the pathophysiological function of CTGF in muscular dystrophy. Biopsies of frozen muscle from patients with Duchenne muscular dystrophy (DMD), Becker muscular dystrophy, congenital muscular dystrophy, spinal muscular atrophy, congenital myopathy were analyzed using anti-CTGF polyclonal antibody. Reverse transcription-polymerase chain reaction (RT-PCR) was also performed to evaluate the expression of CTGF mRNA in dystrophic muscles. In normal muscle, neuromuscular junctions and vessels were CTGF-immunopositive, which suggests a physiological role for CTGF in these sites. In dystrophic muscle, CTGF immunoreactivity was localized to muscle fiber basal lamina, regenerating fibers, and the interstitium. Triple immunolabeling revealed that activated fibroblasts were immunopositive for CTGF and transforming growth factor-beta1 (TGF-beta1). RT-PCR analysis revealed increased levels of CTGF mRNA in the muscles of DMD patients. Co-localization of TGF-beta1 and CTGF in activated fibroblasts suggests that CTGF expression is regulated by TGF-beta1 through a paracrine/autocrine mechanism. In conclusion, TGF-beta1-CTGF pathway may play a role in the fibrosis that is commonly observed in muscular dystrophy.

  18. Insulin-like growth factor I enhances collagen synthesis in engineered human tendon tissue.

    PubMed

    Herchenhan, Andreas; Bayer, Monika L; Eliasson, Pernilla; Magnusson, S Peter; Kjaer, Michael

    2015-02-01

    Isolated human tendon cells form 3D tendon constructs that demonstrate collagen fibrillogenesis and feature structural similarities to tendon when cultured under tensile load. The exact role of circulating growth factors for collagen formation in tendon is sparsely examined. We investigated the influence of insulin-like growth factor I (IGF-I) on tendon construct formation in 3D cell culture. Tendon constructs were grown in 0.5 or 10% FBS with or without IGF-I (250 mg/ml) supplementation. Collagen content (fluorometric), mRNA levels (PCR) and fibril diameter (transmission electron microscopy) were determined at 7, 10, 14, 21 and 28 days. IGF-I revealed a stimulating effect on fibril diameter (up to day 21), mRNA for collagen (to day 28), tenomodulin (to day 28) and scleraxis (at days 10 and 14), and on overall collagen content. 10% FBS diminished the development of fibril diameter (day 14), collagen content (at days 21 and 28) and mRNA expression for collagen, tenomodulin and scleraxis. IGF-I supplementation promotes early onset of tensile load induced collagen formation and tendon structural arrangement, whereas the FBS concentration routinely used in cultures diminishes collagen expression, collagen content and fibril formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Novel angiogenic inhibitor DN-9693 that inhibits post-transcriptional induction of connective tissue growth factor (CTGF/CCN2) by vascular endothelial growth factor in human endothelial cells.

    PubMed

    Kondo, Seiji; Tanaka, Noriko; Kubota, Satoshi; Mukudai, Yoshiki; Yosimichi, Gen; Sugahara, Toshio; Takigawa, Masaharu

    2006-01-01

    Connective tissue growth factor (CTGF/CCN2) is a potent angiogenic factor. In this report, we describe for the first time that vascular endothelial growth factor (VEGF)-mediated induction of the ctgf/ccn2 gene was a post-transcriptional event that was inhibited by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells. Steady-state mRNA levels of ctgf/ccn2 were remarkably increased by VEGF in a concentration-dependent manner, whereas the activity of the ctgf/ccn2 promoter was not responsive to VEGF as confirmed by a reporter gene assay and quantitative real-time PCR analysis. By employing a RNA degradation assay, we eventually found that the observed increase in the ctgf/ccn2 mRNA level was due to an increased stability of the mRNA induced by VEGF. DN-9693 at a dose of 0.1 to 2 ng/mL did not affect basal levels of ctgf/ccn2 mRNA; however, enhancement of ctgf/ccn2 mRNA expression by VEGF was specifically inhibited by DN-9693. Of importance, the inhibitory effects could be also ascribed to post-transcriptional regulation, because the VEGF-mediated increase in stability of ctgf/ccn2 mRNA was suppressed by DN-9693. Furthermore, we investigated the effects of DN-9693 on VEGF-induced activation of three subgroups of mitogen-activated protein kinase pathways and found that DN-9693 blocked the activation of these pathways by VEGF. These results suggest that VEGF increases ctgf/ccn2 mRNA stability through mitogen-activated protein kinase-mediated intracellular signaling cascade(s), which can be inhibited posttranscriptionally by a novel angiogenic inhibitor, DN-9693, in human umbilical vein endothelial cells.

  20. The influence of bovine growth hormone and growth hormone releasing factor on acetyl-CoA carboxylase and fatty acid synthase in primiparous Holstein cows.

    PubMed

    Beswick, N S; Kennelly, J J

    1998-08-01

    Primiparous Holstein cows received recombinant bovine growth hormone (bGH), bovine growth hormone-releasing factor (bGRF), or no treatment from 118 to 181 +/- 1 d. Milk yield was significantly increased with no change in milk fat percentage or composition. The mRNA and protein abundance of the key lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) were measured in the mammary gland and adipose tissue. We hypothesized that bGH and bGRF treatment would increase the mRNA and protein abundance of ACC and FAS in the mammary gland, with an associated decrease in adipose tissue. Analysis of ACC mRNA and protein abundance in the mammary gland revealed that there was no significant influence of either bGH or bGRF treatment. Analysis of FAS mRNA in mammary gland revealed that both bGH and bGRF significantly increased the abundance. However, quantitation of FAS protein in the mammary gland revealed that neither treatment resulted in increased abundance. In adipose tissue, the mRNA and protein abundance of both ACC and FAS were significantly reduced. The increased substrate required for increased milk fatty acid yield may be provided through redirection of nutrients to the mammary gland away from adipose tissue and through overall increased metabolism of the mammary gland.

  1. Heme-bound iron activates placenta growth factor in erythroid cells via erythroid Krüppel-like factor.

    PubMed

    Wang, Xunde; Mendelsohn, Laurel; Rogers, Heather; Leitman, Susan; Raghavachari, Nalini; Yang, Yanqin; Yau, Yu Ying; Tallack, Michael; Perkins, Andrew; Taylor, James G; Noguchi, Constance Tom; Kato, Gregory J

    2014-08-07

    In adults with sickle cell disease (SCD), markers of iron burden are associated with excessive production of the angiogenic protein placenta growth factor (PlGF) and high estimated pulmonary artery pressure. Enforced PlGF expression in mice stimulates production of the potent vasoconstrictor endothelin-1, producing pulmonary hypertension. We now demonstrate heme-bound iron (hemin) induces PlGF mRNA >200-fold in a dose- and time-dependent fashion. In murine and human erythroid cells, expression of erythroid Krüppel-like factor (EKLF) precedes PlGF, and its enforced expression in human erythroid progenitor cells induces PlGF mRNA. Hemin-induced expression of PlGF is abolished in EKLF-deficient murine erythroid cells but rescued by conditional expression of EKLF. Chromatin immunoprecipitation reveals that EKLF binds to the PlGF promoter region. SCD patients show higher level expression of both EKLF and PlGF mRNA in circulating blood cells, and markers of iron overload are associated with high PlGF and early mortality. Finally, PlGF association with iron burden generalizes to other human diseases of iron overload. Our results demonstrate a specific mechanistic pathway induced by excess iron that is linked in humans with SCD and in mice to markers of vasculopathy and pulmonary hypertension. These trials were registered at www.clinicaltrials.gov as #NCT00007150, #NCT00023296, #NCT00081523, and #NCT00352430.

  2. [Stem cells and growth factors in wound healing].

    PubMed

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  3. Transforming growth factor alpha and epidermal growth factor levels in normal human gastrointestinal mucosa.

    PubMed Central

    Cartlidge, S. A.; Elder, J. B.

    1989-01-01

    Acid soluble proteins from 23 samples of normal human gastrointestinal mucosa derived from four normal adult organ donors were extracted and subjected to specific radiommunoassays for transforming growth factor alpha (TGF alpha) and urogastrone epidermal growth factor (URO-EGF). All tissues were found to contain immunoreactive TGF alpha and levels ranged from 57 to 4,776 pg-1 wet weight of tissue. Although levels varied between tissue donors, the distribution of TGF alpha throughout the gastrointestinal tract appeared similar in all cases. URO-EGF levels were much lower (0-216 pg g-1 wet weight). TGF alpha levels in extracts of gastrointestinal mucosa from a 7-year-old female donor were higher and the observed distribution was markedly different from adult levels. URO-EGF was not detected in mucosal or submucosal tissue extracts from this patient. Further studies in juveniles are indicated. PMID:2803941

  4. Histopathology and vascular endothelial growth factor in untreated and diode laser-treated retinopathy of prematurity.

    PubMed

    Young, T L; Anthony, D C; Pierce, E; Foley, E; Smith, L E

    1997-06-01

    We had the unique opportunity to compare the eyes of a premature infant with stage 3 retinopathy of prematurity (ROP) in both eyes after the condition was treated by diode laser photocoagulation in one eye only. After the infant's death, we investigated the extent of structural damage incurred with the diode laser and examined the effect of treatment on vascular endothelial growth factor (VEGF) expression. The eyes were fixed and embedded in paraffin. Adjacent 6 microns sections were either stained for histopathologic analysis or used for in situ hybridization. VEGF messenger RNA (mRNA) was detected by using radiolabeled antisense riboprobes. In the treated eye, histopathologic results demonstrated the clinically evident dose-response effect, with sparing of inner retinal elements with mild laser burns and full-thickness retinal cell disruption with severe burns. Scleral and ciliary nerve effects were absent. VEGF mRNA was localized primarily in the ganglion cell layer but was also found in the inner nuclear layer. In the untreated eye, an increase in VEGF mRNA was detected at the peripheral edge of the vascularized retina anterior to the ridge. In the laser-treated eye, VEGF mRNA expression was dramatically upregulated in the ganglion cell layer in areas adjacent to laser burns. VEGF mRNA was found to be elevated in the peripheral, avascular retina of the untreated eye, consistent with the hypothesis that retinal hypoxia stimulates VEGF expression. In the treated eye with recurrent ROP, VEGF mRNA was not detected in the photocoagulated areas of retina but was increased between laser scars. This finding confirms the results of prior animal studies and validates the use of these models.

  5. Hepatocyte growth factor/scatter factor modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes.

    PubMed

    Takebayashi, T; Iwamoto, M; Jikko, A; Matsumura, T; Enomoto-Iwamoto, M; Myoukai, F; Koyama, E; Yamaai, T; Matsumoto, K; Nakamura, T

    1995-06-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities.

  6. Hepatocyte growth factor/scatter factor modulates cell motility, proliferation, and proteoglycan synthesis of chondrocytes

    PubMed Central

    1995-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is a multifunctional growth factor that promotes proliferation, motility, and morphogenesis in epithelial cells. Recently the HGF receptor, c-met protooncogene product, has been shown to be expressed in developing limb buds (Sonnenberg, E., D. Meyer, M. Weidner, and C. Birchmeiyer, 1993. J. Cell Biol. 123: 223-235), suggesting that some populations of mesenchymal cells in limb buds respond to HGF/SF. To test the possibility that HGF/SF is involved in regulation of cartilage development, we isolated chondrocytes from knee joints and costal cartilages of 23-d embryonic and 4-wk-old rabbits, and analyzed the effects of HGF/SF on migration and proliferation of these cells. We found that HGF/SF stimulated migration of cultured articular chondrocytes but did not scatter limb mesenchymal fibroblasts or synovial fibroblasts in culture. HGF/SF also stimulated proliferation of chondrocytes; a maximum three-fold stimulation in DNA synthesis was observed at the concentration of 3 ng/ml of HGF/SF. Moreover, HGF/SF had the ability to enhance proteoglycan synthesis in chondrocytes. The responsiveness of chondrocytes to HGF/SF was also supported by the observation that they expressed the HGF/SF receptor. Addition of the neutralizing antibody to rat HGF/SF affected neither DNA synthesis nor proteoglycan synthesis in rat chondrocytes, suggesting a paracine mechanism of action of HGF/SF on these cells. In situ hybridization analysis showed that HGF/SF mRNA was restrictively expressed in the areas of future joint regions in developing limb buds and in the intercostal spaces of developing costal cartilages. These findings suggest that HGF/SF plays important roles in cartilage development through its multiple activities. PMID:7775584

  7. Secretion of basic fibroblast growth factor (FGF-2) by WEHI-3B myelomonocytic leukemia cells.

    PubMed

    Pessina, Augusto; Gagliardi, Giuseppina; Croera, Cristina; Foti, Paola; Dassi, Cristina; Brambilla, Paolo; Neri, Maria Grazia

    2002-09-01

    In order to investigate the role of Fibroblast Growth Factors in hematopoietic cells, we studied the expression of FGF-1, FGF-2, FGF-3, FGF-4, FGF-5 and FGF-6 mRNAs both in murine myelomonocytic leukemia WEHI-3B and in a murine stromal cell line SR-4987. Secretion of FGF-2 in the cell culture supernatant was also studied. Expression of mRNA encoding for the above-mentioned FGFs was analyzed by RT-PCR. The production of FGF-2 in the conditioned media of WEHI-3B and SR-4987 cell cultures was evaluated by techniques of affinity chromatography, chromatofocusing and immunoblotting. The biological activity of FGF-2 was checked on SR-4987 cells by a agar clonogenic assay. In both cell lines mRNA was found encoding for FGF-1, FGF-2 and FGF-6 and WEHI-3B cells express also mRNA for FGF-3 (int-2) and FGF-4 (K-FGF/hst). Furthermore, supernatant from WEHI-3B cells was found to stimulate dramatically the agar clonogenicity of SR-4987 cells which have a very poor basal capacity for growth in agar. The clonogenic activity of WEHI-3B conditioned medium is due to FGF-2 secreted into cell culture supernatant whereas SR-4987 cells, although express FGF-2 mRNA, do not seem able to secrete this factor. The expression in myeloid leukemia cells of oncogene-related factors such as FGF-3, FGF-4 and FGF-6 together with the secretion of FGF-2 able to support a positive regulation of bone marrow stromal cells function suggest that FGFs may have an important role in sustaining the leukemogenic process and related disorders.

  8. Direct binding of hepatocyte growth factor and vascular endothelial growth factor to CD44v6.

    PubMed

    Volz, Yvonne; Koschut, David; Matzke-Ogi, Alexandra; Dietz, Marina S; Karathanasis, Christos; Richert, Ludovic; Wagner, Moritz G; Mély, Yves; Heilemann, Mike; Niemann, Hartmut H; Orian-Rousseau, Véronique

    2015-06-29

    CD44v6, a member of the CD44 family of transmembrane glycoproteins is a co-receptor for two receptor tyrosine kinases (RTKs), Met and VEGFR-2 (vascular endothelial growth factor receptor 2). CD44v6 is not only required for the activation of these RTKs but also for signalling. In order to understand the role of CD44v6 in Met and VEGFR-2 activation and signalling we tested whether CD44v6 binds to their ligands, HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor), respectively. FACS analysis and cellular ELISA showed binding of HGF and VEGF only to cells expressing CD44v6. Direct binding of CD44v6 to HGF and VEGF was demonstrated in pull-down assays and the binding affinities were determined using MicroScale Thermophoresis, fluorescence correlation spectroscopy and fluorescence anisotropy. The binding affinity of CD44v6 to HGF is in the micromolar range in contrast with the high-affinity binding measured in the case of VEGF and CD44v6, which is in the nanomolar range. These data reveal a heparan sulfate-independent direct binding of CD44v6 to the ligands of Met and VEGFR-2 and suggest different roles of CD44v6 for these RTKs.

  9. Schwann cells but not olfactory ensheathing cells inhibit CNS myelination via the secretion of connective tissue growth factor.

    PubMed

    Lamond, Rebecca; Barnett, Susan C

    2013-11-20

    Cell transplantation is a promising strategy to promote CNS repair and has been studied for several decades with a focus on glial cells. Promising candidates include Schwann cells (SCs) and olfactory ensheathing cells (OECs). Both cell types are thought to be neural crest derived and share many properties in common, although OECs appear to be a better candidate for transplantation by evoking less astrogliosis. Using CNS mixed myelinating rat cultures plated on to a monolayer of astrocytes, we demonstrated that SCs, but not OECs, secrete a heat labile factor(s) that inhibits oligodendrocyte myelination. Comparative qRT-PCR and ELISA showed that SCs expressed higher levels of mRNA and protein for connective tissue growth factor (CTGF) than OECs. Anti-CTGF reversed the SCM-mediated effects on myelination. Both SCM and CTGF inhibited the differentiation of purified rat oligodendrocyte precursor cells (OPCs). Furthermore, pretreatment of astrocyte monolayers with SCM inhibited CNS myelination and led to transcriptional changes in the astrocyte, corresponding to upregulation of bone morphogenic protein 4 mRNA and CTGF mRNA (inhibitors of OPC differentiation) and the downregulation of insulin-like growth factor 2 mRNA (promoter of OPC differentiation). CTGF pretreatment of astrocytes increased their expression of CTGF, suggesting that this inhibitory factor can be positively regulated in astrocytes. These data provide evidence for the advantages of using OECs, and not mature SCs, for transplant-mediated repair and provide more evidence that they are a distinct and unique glial cell type.

  10. Interactions between stromal cell--derived keratinocyte growth factor and epithelial transforming growth factor in immune-mediated crypt cell hyperplasia.

    PubMed Central

    Bajaj-Elliott, M; Poulsom, R; Pender, S L; Wathen, N C; MacDonald, T T

    1998-01-01

    Immune reactions in the gut are associated with increased epithelial cell proliferation. Here we have studied the role of keratinocyte growth factor (KGF; FGF7) and transforming growth factor-alpha (TGF-alpha) in the epithelial cell hyperplasia seen in explants of fetal human small intestine after activation of lamina propria T cells with the superantigen Staphylococcus aureus enterotoxin B (SEB). After the addition of SEB to the explants there is a 10-fold increase in KGF mRNA by 72 h of culture. KGF transcripts were abundant in the lamina propria using in situ hybridization and the culture supernatants contained elevated amounts of KGF protein. SEB had no direct effect on KGF mRNA and protein production by cultured lamina propria mesenchymal cells, but both were upregulated by TNF-alpha. Accompanying the increase in KGF there was also an increase in TGF-alpha precursor proteins in the culture supernatants and the phosphorylated form of the EGFR receptor was also detected in the tissue. Increased TGF-alpha precursor proteins were also detected in the supernatants of control explants stimulated with KGF alone. The direct addition of KGF and TGF-alpha enhanced epithelial cell proliferation and antibodies against KGF and TGF-alpha partially inhibited SEB-induced crypt hyperplasia. These results suggest molecular cross-talk between the KGF/KGFR and the TGF-alpha/EGFR in immune-mediated crypt cell hyperplasia. PMID:9788959

  11. [Growth factors in human tooth development].

    PubMed

    Bellone, C; Barni, T; Pagni, L; Balboni, G C; Vannelli, G B

    1990-03-01

    Our research concerns the immunohistochemical localization of EGF and IGF-I receptors in the tooth germ, using monoclonal antibodies. The results show that in the early phases of human tooth development EGF and IGF-I receptors are present. At bud stage both receptors are localized at dental laminae level, in some epithelial cells of the tooth bud and in some mesenchymal cells. At cap stage the receptors are present in the outer and inner enamel epithelium, and in some cells of stellate reticulum. As far as concerns the mesenchymal cells, some cells of dental papilla in contact with enamel organ, are intensely positive. The immunopositivity is present also in some mesenchymal cells at follicular level. At late cap stage and at early bell stage receptors are not present at inner enamel epithelium level but they can be detectable in the mesenchyma of dental papilla and in some cells of the follicle. On the basis of these results it may be hypothesized that EGF and IGF-I can act as growth factors in the modulation of cellular proliferation and differentiation during the human tooth morphogenesis. Moreover, it is possible that these substances can play a role in the mesenchymal-epithelial interaction in the developing human tooth.

  12. Vascular Endothelial Growth Factor in Eye Disease

    PubMed Central

    Penn, J.S.; Madan, A.; Caldwell, R.B.; Bartoli, M.; Caldwell, R.W.; Hartnett, M.E.

    2012-01-01

    Collectively, angiogenic ocular conditions represent the leading cause of irreversible vision loss in developed countries. In the U.S., for example, retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration are the principal causes of blindness in the infant, working age and elderly populations, respectively. Evidence suggests that vascular endothelial growth factor (VEGF), a 40 kDa dimeric glycoprotein, promotes angiogenesis in each of these conditions, making it a highly significant therapeutic target. However, VEGF is pleiotropic, affecting a broad spectrum of endothelial, neuronal and glial behaviors, and confounding the validity of anti-VEGF strategies, particularly under chronic disease conditions. In fact, among other functions VEGF can influence cell proliferation, cell migration, proteolysis, cell survival and vessel permeability in a wide variety of biological contexts. This article will describe the roles played by VEGF in the pathogenesis of retinopathy of prematurity, diabetic retinopathy and age-related macular degeneration. The potential disadvantages of inhibiting VEGF will be discussed, as will the rationales for targeting other VEGF-related modulators of angiogenesis. PMID:18653375

  13. Nerve growth factor actions on the brain

    SciTech Connect

    Martinez, H.J.

    1989-01-01

    We examined the effect of the trophic protein, nerve growth factor (NGF), on cultures of fetal rat neostriatum and basal forebrain-medial septal area (BF-MS) to define its role in brain development. Treatment of cultures with NGF resulted in an increase in the specific activity of the cholinergic enzyme choline acetyltransferase (CAT) in both brain areas. CAT was immunocytochemically localized to neurons. In the BF-MS, NGF treatment elicited a marked increase in staining intensity and an apparent increase in the number of CAT-positive neurons. Moreover, treatment of BF-MS cultures with NGF increased the activity of acetylcholinesterase, suggesting that the cholinergic neuron as a whole was affected. To begin defining mechanisms of action of NGF in the BF-MS, we detected NGF receptors by two independent methods. Receptors were localized to two different cellular populations: neuron-like cells, and non-neuron-like cells. Dissociation studies with ({sup 125}I)NGF suggested that high affinity receptors were localized to the neuron-like population. Only low-affinity receptors were localized to the non-neuron-like cells. Moreover, employing combined immunocytochemistry and ({sup 125}I)NGF autoradiography, we detected a subpopulation of CAT-containing neutrons that exhibited high-affinity binding. Unexpectedly, a gamma-aminobutyric acid (GABA)-containing cell group also expressed high affinity binding. However, only subsets of cholinergic or GABA neurons expressed high-affinity biding, suggesting that these transmitter populations are composed of differentially response subpopulations.

  14. Nerve growth factor enhances sleep in rabbits.

    PubMed

    Takahashi, S; Krueger, J M

    1999-04-02

    Nerve growth factor (NGF) elicits rapid-eye-movement sleep (REMS) in cats. Removal of NGF receptor-positive cholinergic basal forebrain neurons inhibits REMS in rats. The aim of the present study was to determine the effects of NGF on sleep and brain temperature (Tbr) in rabbits. Male rabbits were implanted with electroencephalograph (EEG) electrodes, a brain thermistor and an intraventricular (i.c.v.) guide cannula. Rabbits received human beta-NGF i.c.v. (0.01, 0.1, 1.0 or 10 microg] and on a separate day, 25 microl pyrogen-free saline i.c.v. as control. EEG and Tbr were recorded for 23 h after injections. The highest two doses of NGF increased both non-REMS and REMS across the 23-h recording period. REMS was enhanced dose-dependently. Tbr was not affected by any dose of NGF. These results suggest that NGF is involved in both REMS and non-REMS regulation.

  15. [Epidermal growth factor, innovation and safety].

    PubMed

    Esquirol Caussa, Jordi; Herrero Vila, Elisabeth

    2015-10-05

    Bioidentical recombinant human epidermal growth factor (rhEGF) is available in concentrations and purity suitable for therapeutic use in long time stable formulations. Beneficial effects in several skin pathologies and lesions have been reported (traumatic and surgical wound healing, laser induced wounds, abnormal scars, keloids, radiation or chemotherapy induced dermatitis, post inflammatory hyperpigmentation or for skin aging damage repairing) and also may be considered for the treatment of several oropharingeal and high gastroesophageal tract mucosa diseases (mouth sores, pharyngeal fistulas, ulcers), and several corneal or conjunctive mucosa lesions. rhEGF has not shown any important side or collateral effects in humans or in laboratory experimentation animals, showing optimal tolerability and safety with continuous use for months. Compounding gives advantages of versatility, individualization, personalization, molecular stability, safety and effectiveness in ideal conditions, showing good tissue penetration, both on intact skin and skin lesions that expose the lower planes to the surface. rhEGF compounds can be considered for prevention or as a treatment of diverse skin and mucosa diseases and conditions through compounding preparations.

  16. Embryonic Stem Cell Growth Factors Regulate eIF2α Phosphorylation

    PubMed Central

    Friend, Kyle; Brooks, Hunter A.; Propson, Nicholas E.; Thomson, James A.; Kimble, Judith

    2015-01-01

    Growth factors and transcription factors are well known to regulate pluripotent stem cells, but less is known about translational control in stem cells. Here, we use embryonic stem cells (ESCs) to investigate a connection between ESC growth factors and eIF2α-mediated translational control (eIF2α phosphorylation promotes protein expression from mRNAs with upstream open-reading frames, or uORFs). We find abundant phosphorylated P-eIF2α (P-eIF2α) in both pluripotent mouse and human ESCs, but little P-eIF2α in ESCs triggered to differentiate. We show that the growth factors LIF (leukemia inhibitory factor) and BMP4 (bone morphogenic protein 4) both maintain P-eIF2α in mESCs, but use distinct mechanisms: LIF inhibits an eIF2α phosphatase whereas BMP4 activates an eIF2α kinase. The mRNAs encoding the pluripotency factors Nanog and c-Myc possess uORFs while Oct4 mRNA does not. We find that salubrinal, a chemical that increases eIF2α phosphorylation, promotes Nanog and c-Myc expression, but not Oct4 expression. These experiments connect ESC growth factors to eIF2α phosphorylation and suggest a chemical substitute for LIF to enhance Nanog and c-Myc expression. PMID:26406898

  17. Eukaryotic translation initiation factor 3 plays distinct roles at the mRNA entry and exit channels of the ribosomal preinitiation complex

    PubMed Central

    Aitken, Colin Echeverría; Beznosková, Petra; Vlčkova, Vladislava; Chiu, Wen-Ling; Zhou, Fujun; Valášek, Leoš Shivaya; Hinnebusch, Alan G; Lorsch, Jon R

    2016-01-01

    Eukaryotic translation initiation factor 3 (eIF3) is a central player in recruitment of the pre-initiation complex (PIC) to mRNA. We probed the effects on mRNA recruitment of a library of S. cerevisiae eIF3 functional variants spanning its 5 essential subunits using an in vitro-reconstituted system. Mutations throughout eIF3 disrupt its interaction with the PIC and diminish its ability to accelerate recruitment to a native yeast mRNA. Alterations to the eIF3a CTD and eIF3b/i/g significantly slow mRNA recruitment, and mutations within eIF3b/i/g destabilize eIF2•GTP•Met-tRNAi binding to the PIC. Using model mRNAs lacking contacts with the 40S entry or exit channels, we uncovered a critical role for eIF3 requiring the eIF3a NTD, in stabilizing mRNA interactions at the exit channel, and an ancillary role at the entry channel requiring residues of the eIF3a CTD. These functions are redundant: defects at each channel can be rescued by filling the other channel with mRNA. DOI: http://dx.doi.org/10.7554/eLife.20934.001 PMID:27782884

  18. Effects of glial cell line-derived neurotrophic factor, fibroblast growth factor 2 and epidermal growth factor on proliferation and the expression of some genes in buffalo (Bubalus bubalis) spermatogonial cells.

    PubMed

    Kadam, Prashant H; Kala, Sushila; Agrawal, Himanshu; Singh, Karn P; Singh, Manoj K; Chauhan, Manmohan S; Palta, Prabhat; Singla, Suresh K; Manik, Radhay S

    2013-01-01

    The present study evaluated the effects of glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor (FGF) 2 and epidermal growth factor (EGF) on proliferation and the expression of some genes in spermatogonial cells. Spermatogonial cells were isolated from prepubertal buffalo testes and enriched by double enzyme treatment, filtration through 80- and 60-μm nylon mesh filters, differential plating on lectin-coated dishes and Percoll density gradient centrifugation. Cells were then cultured on a buffalo Sertoli cell feeder layer and formed colonies within 15-18 days. The colonies were found to predominantly contain undifferentiated Type A spermatogonia because they bound Dolichos biflorus agglutinin and did not express c-kit. The colonies expressed alkaline phosphatase, NANOG, octamer-binding transcription factor (OCT)-4 and tumour rejection antigen (TRA)-1-60. Cells were subcultured for 15 days, with or without growth factor supplementation. After 15 days, colony area and the relative mRNA abundance of PLZF were higher (P<0.05) following supplementation with 40 ng mL⁻¹ GDNF + 10 ng mL⁻¹ EGF + 10 ng mL⁻¹ FGF2 than with the same concentrations of GDNF alone or GDNF plus either EGF or FGF2. Expression of TAF4B was higher (P<0.05) in the presence of FGF2, whereas the expression of THY1 was not affected by growth factor supplementation. In the Sertoli cell feeder layer, EGF and FGF2 decreased (P<0.05), whereas GDNF increased (P<0.05), the relative mRNA abundance of ETV5 compared with control. In conclusion, an in vitro culture system that incorporates various growth factors was developed for the short-term culture of buffalo spermatogonia.

  19. Increased expression of transforming growth factor α precursors in acute experimental colitis in rats

    PubMed Central

    Hoffmann, P; Zeeh, J; Lakshmanan, J; Wu, V; Procaccino, F; Reinshagen, M; McRoberts, J; Eysselein, V

    1997-01-01

    Background and aim—Epidermal growth factor (EGF) and transforming growth factor α (TGF-α), members of the EGF family of growth factors, protect rat gastric and colonic mucosa against injury. Having shown previously that exogenously applied EGF protects rat colonic mucosa against injury, the aim of the present study was to evaluate the endogenously expressed ligand mediating the protective effect of EGF/TGF-α in vivo. 
Methods—In an experimental model of trinitrobenzene sulphonic acid (TNBS)/ ethanol induced colitis in rats EGF and TGF-α expression was evaluated using a ribonuclease protection assay, northern blot analysis, western blot analysis, and immunohistochemistry. 
Results—TGF-α mRNA increased 3-4 times at 4-8 hours after induction of colitis and returned to control levels within 24 hours. TGF-α immunoreactive protein with a molecular size of about 28kDa representing TGF-α precursors increased markedly after induction of colitis with a peak at 8-12 hours. No fully processed 5.6 kDa TGF-α protein was detected in normal or inflamed colon tissue. Only a weak signal for EGF mRNA expression was detected in the rat colon and no EGF protein was observed by immunohistochemistry or western blot analysis. 
Conclusions—TGF-α precursors are the main ligands for the EGF receptor in acute colitis. It is hypothesised that TGF-α precursors convey the biological activity of endogenous TGF-α peptides during mucosal defence and repair. 

 Keywords: transforming growth factor alpha (TGF-α); epidermal growth factor (EGF); precursor molecules; colitis; rat PMID:9301498

  20. Effects of recombinant bovine somatotropin on growth and abundance of mRNA for IGF-I and IGF-II in channel catfish (Ictalurus punctatus).

    PubMed

    Peterson, B C; Waldbieser, G C; Bilodeau, L

    2005-04-01

    Research was conducted to examine growth rates, circulating concentrations of IGF-I, and mRNA abundance levels of IGF-I and IGF-II in channel catfish (Ictalurus punctatus) given recombinant bovine ST (rbST; Posilac, Monsanto Co., St. Louis MO). In the first study, juvenile catfish (5.5 +/- 0.5 g) were randomly assigned to one of three treatments: 1) sham-injected control (one needle puncture per week); 2) rbST (30 microg x g BW(-1) x wk(-1); Posilac); and 3) nonhandled control (control). At the end of the 6-wk study, the fish were weighed, measured for length, and G:F was determined. Compared with sham and control treatments, rbST-treated fish had 48% greater final BW, 14% greater total length, and 52% greater G:F (P < 0.001). In the second study, juvenile catfish (41.1 +/- 1.5 g) were assigned randomly to one of two treatments: 1) sham or 2) rbST. Eight fish per treatment were sampled on d 0, 1, 2, 7, 14, and 21 for blood, muscle, and liver. Relative expression of IGF-I and IGF-II mRNA was determined by real-time PCR and plasma concentrations of IGF-I were measured using a validated fluoroimmunoassay. Circulating concentrations of IGF-I were increased (37.9 +/- 5.5 vs. 22.0 +/- 6.6 ng/mL; P < 0.05) in rbST-injected fish compared with sham-injected controls by d 14. Liver IGF-I and IGF-II mRNA was increased 4.3-and 14.4-fold, respectively, by d 1 in rbST-injected fish compared with controls (P < 0.05); however, abundance of liver IGF-I and IGF-II mRNA did not differ from controls on d 0, 2, 7, 14, and 21. Abundance of muscle IGF-I and IGF-II mRNA did not differ in rbST-injected fish compared with controls throughout the study. Results of the first study demonstrated that rbST improves growth performance of channel catfish. Results of the second study showed that the growth-promoting effects of rbST were not mediated by the expression of IGF-I or IGF-II mRNA in the muscle. Instead, the results suggest that rbST promotes growth by stimulating plasma IGF-I release

  1. Transcription factors Mix1 and VegT, relocalization of vegt mRNA, and conserved endoderm and dorsal specification in frogs

    PubMed Central

    Sudou, Norihiro; Garcés-Vásconez, Andrés; López-Latorre, María A.; Taira, Masanori

    2016-01-01

    Protein expression of the transcription factor genes mix1 and vegt characterized the presumptive endoderm in embryos of the frogs Engystomops randi, Epipedobates machalilla, Gastrotheca riobambae, and Eleutherodactylus coqui, as in Xenopus laevis embryos. Protein VegT was detected in the animal hemisphere of the early blastula in all frogs, and only the animal pole was VegT-negative. This finding stimulated a vegt mRNA analysis in X. laevis eggs and embryos. vegt mRNA was detected in the animal region of X. laevis eggs and early embryos, in agreement with the VegT localization observed in the analyzed frogs. Moreover, a dorso-animal relocalization of vegt mRNA occurred in the egg at fertilization. Thus, the comparative analysis indicated that vegt may participate in dorsal development besides its known roles in endoderm development, and germ-layer specification. Zygotic vegt (zvegt) mRNA was detected as a minor isoform besides the major maternal (mvegt) isoform of the X. laevis egg. In addition, α-amanitin–insensitive vegt transcripts were detected around vegetal nuclei of the blastula. Thus, accumulation of vegt mRNA around vegetal nuclei was caused by relocalization rather than new mRNA synthesis. The localization of vegt mRNA around vegetal nuclei may contribute to the identity of vegetal blastomeres. These and previously reportedly localization features of vegt mRNA and protein derive from the master role of vegt in the development of frogs. The comparative analysis indicated that the strategies for endoderm, and dorsal specification, involving vegt and mix1, have been evolutionary conserved in frogs. PMID:27140624

  2. Transcription factors Mix1 and VegT, relocalization of vegt mRNA, and conserved endoderm and dorsal specification in frogs.

    PubMed

    Sudou, Norihiro; Garcés-Vásconez, Andrés; López-Latorre, María A; Taira, Masanori; Del Pino, Eugenia M

    2016-05-17

    Protein expression of the transcription factor genes mix1 and vegt characterized the presumptive endoderm in embryos of the frogs Engystomops randi, Epipedobates machalilla, Gastrotheca riobambae, and Eleutherodactylus coqui, as in Xenopus laevis embryos. Protein VegT was detected in the animal hemisphere of the early blastula in all frogs, and only the animal pole was VegT-negative. This finding stimulated a vegt mRNA analysis in X. laevis eggs and embryos. vegt mRNA was detected in the animal region of X. laevis eggs and early embryos, in agreement with the VegT localiz