Sample records for growth factor protected

  1. Fibroblast Growth Factor 21 Protects Photoreceptor Function in Type 1 Diabetic Mice.

    PubMed

    Fu, Zhongjie; Wang, Zhongxiao; Liu, Chi-Hsiu; Gong, Yan; Cakir, Bertan; Liegl, Raffael; Sun, Ye; Meng, Steven S; Burnim, Samuel B; Arellano, Ivana; Moran, Elizabeth; Duran, Rubi; Poblete, Alexander; Cho, Steve S; Talukdar, Saswata; Akula, James D; Hellström, Ann; Smith, Lois E H

    2018-05-01

    Retinal neuronal abnormalities occur before vascular changes in diabetic retinopathy. Accumulating experimental evidence suggests that neurons control vascular pathology in diabetic and other neovascular retinal diseases. Therefore, normalizing neuronal activity in diabetes may prevent vascular pathology. We investigated whether fibroblast growth factor 21 (FGF21) prevented retinal neuronal dysfunction in insulin-deficient diabetic mice. We found that in diabetic neural retina, photoreceptor rather than inner retinal function was most affected and administration of the long-acting FGF21 analog PF-05231023 restored the retinal neuronal functional deficits detected by electroretinography. PF-05231023 administration protected against diabetes-induced disorganization of photoreceptor segments seen in retinal cross section with immunohistochemistry and attenuated the reduction in the thickness of photoreceptor segments measured by optical coherence tomography. PF-05231023, independent of its downstream metabolic modulator adiponectin, reduced inflammatory marker interleukin-1β (IL-1β) mRNA levels. PF-05231023 activated the AKT-nuclear factor erythroid 2-related factor 2 pathway and reduced IL-1β expression in stressed photoreceptors. PF-05231023 administration did not change retinal expression of vascular endothelial growth factor A, suggesting a novel therapeutic approach for the prevention of early diabetic retinopathy by protecting photoreceptor function in diabetes. © 2018 by the American Diabetes Association.

  2. Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury

    PubMed Central

    Genis, Laura; Dávila, David; Fernandez, Silvia; Pozo-Rodrigálvarez, Andrea; Martínez-Murillo, Ricardo; Torres-Aleman, Ignacio

    2014-01-01

    Oxidative stress is a proposed mechanism in brain aging, making the study of its regulatory processes an important aspect of current neurobiological research. In this regard, the role of the aging regulator insulin-like growth factor I (IGF-I) in brain responses to oxidative stress remains elusive as both beneficial and detrimental actions have been ascribed to this growth factor. Because astrocytes protect neurons against oxidative injury, we explored whether IGF-I participates in astrocyte neuroprotection and found that blockade of the IGF-I receptor in astrocytes abrogated their rescuing effect on neurons. We found that IGF-I directly protects astrocytes against oxidative stress (H 2O 2). Indeed, in astrocytes but not in neurons, IGF-I decreases the pro-oxidant protein thioredoxin-interacting protein 1 and normalizes the levels of reactive oxygen species. Furthermore, IGF-I cooperates with trophic signals produced by astrocytes in response to H 2O 2 such as stem cell factor (SCF) to protect neurons against oxidative insult. After stroke, a condition associated with brain aging where oxidative injury affects peri-infarcted regions, a simultaneous increase in SCF and IGF-I expression was found in the cortex, suggesting that a similar cooperative response takes place in vivo. Cell-specific modulation by IGF-I of brain responses to oxidative stress may contribute in clarifying the role of IGF-I in brain aging. PMID:24715976

  3. Growth factors, nutrient signaling, and cardiovascular aging.

    PubMed

    Fontana, Luigi; Vinciguerra, Manlio; Longo, Valter D

    2012-04-13

    Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the majority of the organisms studied. In particular, the enzymes activated by growth hormone, insulin, and insulin-like growth factor-1 in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction, which reduces the level of insulin-like growth factor-1 and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases, and deficiencies in growth hormone signaling and insulin-like growth factor-1 are strongly associated with protection from cancer and diabetes in both mice and humans; however, their role in cardiac function and cardiovascular diseases is controversial. Here, we review the link between growth factors, cardiac function, and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans.

  4. Method for protecting bone marrow against chemotherapeutic drugs and radiation therapy using transforming growth factor beta 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keller, J.R.; Ruscetti, F.W.; Wiltrout, R.

    1989-06-29

    Presented is a method for protecting hematopoietic stem cells from the myelotoxicity of chemotherapeutic drugs or radiation therapy, which comprises administering to a subject a therapeutically effective amount of transforming growth factor beta 1 for protecting bone marrow from the myelotoxicity of chemotherapeutic drugs or radiation therapy.

  5. Estrogen Protects Lenses against Cataract Induced by Transforming Growth Factor-β (TGFβ)

    PubMed Central

    Hales, Angela M.; Chamberlain, Coral G.; Murphy, Christopher R.; McAvoy, John W.

    1997-01-01

    Cataract, already a major cause of visual impairment and blindness, is likely to become an increasing problem as the world population ages. In a previous study, we showed that transforming growth factor-β (TGFβ) induces rat lenses in culture to develop opacities and other changes that have many features of human subcapsular cataracts. Here we show that estrogen protects against cataract. Lenses from female rats are more resistant to TGFβ-induced cataract than those from males. Furthermore, lenses from ovariectomized females show increased sensitivity to the damaging effects of TGFβ and estrogen replacement in vivo, or exposure to estrogen in vitro, restores resistance. Sex-dependent and estrogen-related differences in susceptibility to cataract formation, consistent with a protective role for estrogen, have been noted in some epidemiological studies. The present study in the rat indicates that estrogen provides protection against cataract by countering the damaging effects of TGFβ. It also adds to an increasing body of evidence that hormone replacement therapy protects postmenopausal women against various diseases. PMID:9016876

  6. A basic fibroblast growth factor analog for protection and mitigation against acute radiation syndromes.

    PubMed

    Casey-Sawicki, Kate; Zhang, Mei; Kim, Sunghee; Zhang, Amy; Zhang, Steven B; Zhang, Zhenhuan; Singh, Ravi; Yang, Shanmin; Swarts, Steven; Vidyasagar, Sadasivan; Zhang, Lurong; Zhang, Aiguo; Okunieff, Paul

    2014-06-01

    The effects of fibroblast growth factors and their potential as broad-spectrum agents to treat and mitigate radiation injury have been studied extensively over the past two decades. This report shows that a peptide mimetic of basic fibroblast growth factor (FGF-P) protects and mitigates against acute radiation syndromes. FGF-P attenuates both sepsis and bleeding in a radiation-induced bone marrow syndrome model and reduces the severity of gastrointestinal and cutaneous syndromes; it should also mitigate combined injuries. FGF-2 and FGF-P induce little or no deleterious inflammation or vascular leakage, which distinguishes them from most other growth factors, angiogenic factors, and cytokines. Although recombinant FGFs have proven safe in several ongoing clinical trials, they are expensive to synthesize, can only be produced in limited quantity, and have limited shelf life. FGF-P mimics the advantageous features of FGF-2 without these disadvantages. This paper shows that FGF-P not only has the potential to be a potent yet safe broad-spectrum medical countermeasure that mitigates acute radiotoxicity but also holds promise for thermal burns, ischemic wound healing, tissue engineering, and stem-cell regeneration.

  7. Growth factors, nutrient signaling, and cardiovascular aging

    PubMed Central

    Fontana, Luigi; Vinciguerra, Manlio; Longo, Valter D.

    2012-01-01

    Growth factors regulated by specific macronutrients have been shown to promote aging and accelerate mortality in the great majority of the organisms studied. In particular, the enzymes activated by growth hormone (GH), insulin and insulin-like growth factor 1 (IGF-I) in mammals and their orthologs in simple model organisms represent perhaps the best-understood proteins involved in the aging process. Dietary restriction (DR), which reduces the level of IGF-I and of other growth factors, has been associated with protection from diabetes, cancer, and cardiovascular diseases and deficiencies in GH signaling and IGF-I are strongly associated with protection from cancer and diabetes in both mice and humans, but their role in cardiac function and cardiovascular diseases is controversial. Here we review the link between growth factors, cardiac function and heart disease with focus on the cardioprotective and sensitizing effect of growth factors in both model organisms and humans. PMID:22499903

  8. Hepatocyte Growth Factor Is Required for Mesenchymal Stromal Cell Protection Against Bleomycin-Induced Pulmonary Fibrosis

    PubMed Central

    Cahill, Emer F.; Kennelly, Helen; Carty, Fiona; Mahon, Bernard P.

    2016-01-01

    The incidence of idiopathic pulmonary fibrosis is on the rise and existing treatments have failed to halt or reverse disease progression. Mesenchymal stromal cells (MSCs) have potent cytoprotective effects, can promote tissue repair, and have demonstrated efficacy in a range of fibrotic lung diseases; however, the exact mechanisms of action remain to be elucidated. Chemical antagonists and short hairpin RNA knockdown were used to identify the mechanisms of action used by MSCs in promoting wound healing, proliferation, and inhibiting apoptosis. Using the bleomycin induced fibrosis model, the protective effects of early or late MSC administration were examined. The role for hepatocyte growth factor (HGF) in MSC protection against bleomycin lung injury was examined using HGF knockdown MSC. Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling assay was performed on ex vivo lung sections to examine the effects of MSC on apoptosis. MSC conditioned media (CM) enhanced wound closure and inhibited apoptosis of pulmonary cells in vitro. HGF was required for MSC CM enhancement of epithelial cell proliferation and inhibition of apoptosis. In contrast, MSC required COX-2 for CM to inhibit fibroblast proliferation. In a murine model, early administration of MSC protected against bleomycin induced lung fibrosis and correlated with reduced levels of the proinflammatory cytokine interleukin-1β, reduced levels of apoptosis, and significantly increased levels of HGF. These protective effects were in part mediated by MSC derived HGF as HGF knockdown MSC were unable to protect against fibrosis in vivo. These findings delineate the mechanisms of MSC protection in a preclinical model of fibrotic lung disease. Significance The mechanisms used by mesenchymal stromal cells (MSCs) in mediating protective effects in chronic models of lung disease are not understood and remain to be elucidated. These findings from in vitro studies highlight an important role for the MSC

  9. Therapeutic value of nerve growth factor in promoting neural stem cell survival and differentiation and protecting against neuronal hearing loss.

    PubMed

    Han, Zhao; Wang, Cong-Pin; Cong, Ning; Gu, Yu-Yan; Ma, Rui; Chi, Fang-Lu

    2017-04-01

    Nerve growth factor (NGF) is a neurotrophic factor that modulates survival and differentiation of neural stem cells (NSCs). We investigated the function of NGF in promoting growth and neuronal differentiation of NSCs isolated from mouse cochlear tissue, as well as its protective properties against gentamicin (GMC) ototoxicity. NSCs were isolated from the cochlea of mice and cultured in vitro. Effect of NGF on survival, neurosphere formation, and differentiation of the NSCs, as well as neurite outgrowth and neural excitability in the subsequent in vitro neuronal network, was examined. Mechanotransduction capacity of intact cochlea and auditory brainstem response (ABR) threshold in mice were also measured following GMC treatment to evaluate protection using NGF against GMC-induced neuronal hearing loss. NGF improved survival, neurosphere formation, and neuronal differentiation of mouse cochlear NSCs in vitro, as well as promoted neurite outgrowth and neural excitability in the NSC-differentiated neuronal culture. In addition, NGF protected mechanotransduction capacity and restored ABR threshold in gentamicin ototoxicity mouse model. Our study supports a potential therapeutic value of NGF in promoting proliferation and differentiation of NSCs into functional neurons in vitro, supporting its protective role in the treatment of neuronal hearing loss.

  10. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors.

    PubMed

    Bortvedt, Sarah F; Lund, P Kay

    2012-03-01

    To summarize the recent evidence that insulin-like growth factor 1 (IGF1) mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogs in short bowel syndrome and Crohn's disease. This review highlights the evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn's disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that suppressor of cytokine signaling protein induction by GH or GLP2 in normal or inflamed intestine may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis, is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed.

  11. Mechano-growth factor protects against mechanical overload induced damage and promotes migration of growth plate chondrocytes through RhoA/YAP pathway.

    PubMed

    Jing, Xingzhi; Ye, Yaping; Bao, Yuan; Zhang, Jinming; Huang, Junming; Wang, Rui; Guo, Jiachao; Guo, Fengjing

    2018-05-15

    Epiphyseal growth plate is highly dynamic tissue which is controlled by a variety of endocrine, paracrine hormones, and by complex local signaling loops and mechanical loading. Mechano growth factor (MGF), the splice variant of the IGF-I gene, has been discovered to play important roles in tissue growth and repair. However, the effect of MGF on the growth plate remains unclear. In the present study, we found that MGF mRNA expression of growth plate chondrocytes was upregulated in response to mechanical stimuli. Treatment of MGF had no effect on growth plate chondrocytes proliferation and differentiation. But it could inhibit growth plate chondrocytes apoptosis and inflammation under mechanical overload. Moreover, both wound healing and transwell assay indicated that MGF could significantly enhance growth plate chondrocytes migration which was accompanied with YAP activation and nucleus translocation. Knockdown of YAP with YAP siRNA suppressed migration induced by MGF, indicating the essential role of YAP in MGF promoting growth plate chondrocytes migration. Furthermore, MGF promoted YAP activation through RhoA GTPase mediated cytoskeleton reorganization, RhoA inhibition using C3 toxin abrogated MGF induced YAP activation. Importantly, we found that MGF promoted focal adhesion(FA) formation and knockdown of YAP with YAP siRNA partially suppressed the activation of FA kinase, implying that YAP is associated with FA formation. In conclusion, MGF is an autocrine growth factor which is regulated by mechanical stimuli. MGF could not only protect growth plate chondrocytes against damage by mechanical overload, but also promote migration through activation of RhoA/YAP signaling axis. Most importantly, our findings indicate that MGF promote cell migration through YAP mediated FA formation to determine the FA-cytoskeleton remodeling. Copyright © 2018. Published by Elsevier Inc.

  12. Protecting water resources with smart growth.

    DOT National Transportation Integrated Search

    2004-05-01

    Protecting Water Resources with : Smart Growth is intended for audiences already familiar with smart : growth, who now seek specific ideas : on how techniques for smarter growth : can be used to protect their water : resources. This document is one...

  13. Fibroblast growth factor 20 is protective towards dopaminergic neurons in vivo in a paracrine manner.

    PubMed

    Boshoff, Eugene L; Fletcher, Edward J R; Duty, Susan

    2018-04-23

    Neuroprotective strategies are an unmet medical need for Parkinson's disease. Fibroblast growth factor 20 (FGF20) enhances survival of cultured dopaminergic neurons but little is known about its in vivo potential. We set out to examine whether manipulation of the FGF20 system affected nigrostriatal tract integrity in rats, to identify which fibroblast growth factor receptors (FGFRs) might reside on dopaminergic neurons and to discover the source of endogenous FGF20 in the substantia nigra (SN). Male Sprague Dawley rats were subject to a partial 6-OHDA lesion alongside treatment with exogenous FGF20 or an FGFR antagonist. Behavioural readouts and tyrosine-hydroxylase (TH) immunohistochemistry were used to evaluate nigrostriatal tract integrity. Fluorescent immunohistochemistry was used to examine FGFR subtype expression on TH-positive dopamine neurons and FGF20 cellular localisation within the SN. FGF20 (2.5 μg/day) significantly protected TH-positive cells in the SN and terminals in the striatum, while reducing the development of motor asymmetry at 5, 8 and 11 days post lesion. Conversely, the FGFR antagonist PD173074 (2 mg/kg) significantly worsened both the 6-OHDA lesion and resultant motor asymmetry. Within the SN, TH-positive cells expressed FGFR1, 3 and 4 while FGF20 co-localised with GFAP-positive astrocytes. In conclusion, FGF20 protects dopaminergic neurons in vivo, an action likely mediated through activation of FGFRs1, 3 or 4 found on these neurons. Given FGF20 is localised to astrocytes in the adult SN, endogenous FGF20 provides its protection of dopamine neurons through a paracrine action. Boosting the endogenous FGF20 production might offer potential as a future therapeutic strategy in Parkinson's disease. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Economic growth and mortality: do social protection policies matter?

    PubMed

    Bilal, Usama; Cooper, Richard; Abreu, Francis; Nau, Claudia; Franco, Manuel; Glass, Thomas A

    2017-08-01

    In the 20th century, periods of macroeconomic growth have been associated with increases in population mortality. Factors that cause or mitigate this association are not well understood. Evidence suggests that social policy may buffer the deleterious impact of economic growth. We sought to explore associations between changing unemployment (as a proxy for economic change) and trends in mortality over 30 years in the context of varying social protection expenditures. We model change in all-cause mortality in 21 OECD (Organization for Economic Cooperation and Development) countries from 1980 to 2010. Data from the Comparative Welfare States Data Set and the WHO Mortality Database were used. A decrease in the unemployment rate was used as a proxy for economic growth and age-adjusted mortality rates as the outcome. Social protection expenditure was measured as percentage of gross domestic product expended. A 1% decrease in unemployment (i.e. the proxy for economic growth) was associated with a 0.24% increase in the overall mortality rate (95% confidence interval: 0.07;0.42) in countries with no changes in social protection. Reductions in social protection expenditure strengthened this association between unemployment and mortality. The magnitude of the association was diminished over time. Our results are consistent with the hypothesis that social protection policies that accompany economic growth can mitigate its potential deleterious effects on health. Further research should identify specific policies that are most effective. © The Author 2017; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association

  15. Astrocyte Transforming Growth Factor Beta 1 Protects Synapses against Aβ Oligomers in Alzheimer's Disease Model.

    PubMed

    Diniz, Luan Pereira; Tortelli, Vanessa; Matias, Isadora; Morgado, Juliana; Bérgamo Araujo, Ana Paula; Melo, Helen M; Seixas da Silva, Gisele S; Alves-Leon, Soniza V; de Souza, Jorge M; Ferreira, Sergio T; De Felice, Fernanda G; Gomes, Flávia Carvalho Alcantara

    2017-07-12

    Alzheimer's disease (AD) is characterized by progressive cognitive decline, increasingly attributed to neuronal dysfunction induced by amyloid-β oligomers (AβOs). Although the impact of AβOs on neurons has been extensively studied, only recently have the possible effects of AβOs on astrocytes begun to be investigated. Given the key roles of astrocytes in synapse formation, plasticity, and function, we sought to investigate the impact of AβOs on astrocytes, and to determine whether this impact is related to the deleterious actions of AβOs on synapses. We found that AβOs interact with astrocytes, cause astrocyte activation and trigger abnormal generation of reactive oxygen species, which is accompanied by impairment of astrocyte neuroprotective potential in vitro We further show that both murine and human astrocyte conditioned media (CM) increase synapse density, reduce AβOs binding, and prevent AβO-induced synapse loss in cultured hippocampal neurons. Both a neutralizing anti-transforming growth factor-β1 (TGF-β1) antibody and siRNA-mediated knockdown of TGF-β1, previously identified as an important synaptogenic factor secreted by astrocytes, abrogated the protective action of astrocyte CM against AβO-induced synapse loss. Notably, TGF-β1 prevented hippocampal dendritic spine loss and memory impairment in mice that received an intracerebroventricular infusion of AβOs. Results suggest that astrocyte-derived TGF-β1 is part of an endogenous mechanism that protects synapses against AβOs. By demonstrating that AβOs decrease astrocyte ability to protect synapses, our results unravel a new mechanism underlying the synaptotoxic action of AβOs in AD. SIGNIFICANCE STATEMENT Alzheimer's disease is characterized by progressive cognitive decline, mainly attributed to synaptotoxicity of the amyloid-β oligomers (AβOs). Here, we investigated the impact of AβOs in astrocytes, a less known subject. We show that astrocytes prevent synapse loss induced by A

  16. Transforming growth factor alpha, Shope fibroma growth factor, and vaccinia growth factor can replace myxoma growth factor in the induction of myxomatosis in rabbits.

    PubMed

    Opgenorth, A; Nation, N; Graham, K; McFadden, G

    1993-02-01

    The epidermal growth factor (EGF) homologues encoded by vaccinia virus, myxoma virus, and malignant rabbit fibroma virus have been shown to contribute to the pathogenicity of virus infection upon inoculation of susceptible hosts. However, since the primary structures of these growth factors and the disease profiles induced by different poxvirus genera vary substantially, the degree to which the various EGF homologues perform similar roles in viral pathogenesis remains unclear. In order to determine whether different EGF-like growth factors can perform qualitatively similar functions in the induction of myxomatosis in rabbits, we created recombinant myxoma virus variants in which the native growth factor, myxoma growth factor (MGF), was disrupted and replaced with either vaccinia virus growth factor, Shope fibroma growth factor, or rat transforming growth factor alpha. Unlike the control virus containing an inactivated MGF gene, which caused marked attenuation of the disease syndrome and substantially less proliferation of the epithelial cell layers in the conjunctiva and respiratory tract, the recombinant myxoma virus strains expressing heterologous growth factors produced infections which were both clinically and histopathologically indistinguishable from wild-type myxomatosis. We conclude that these poxviral and cellular EGF-like growth factors, which are diverse with respect to primary structure and origin, have similar biological functions in the context of myxoma virus pathogenesis and are mitogenic for the same target cells.

  17. Regulatory T cells protect mice against coxsackievirus-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway.

    PubMed

    Shi, Yu; Fukuoka, Masahiro; Li, Guohua; Liu, Youan; Chen, Manyin; Konviser, Michael; Chen, Xin; Opavsky, Mary Anne; Liu, Peter P

    2010-06-22

    Coxsackievirus B3 infection is an excellent model of human myocarditis and dilated cardiomyopathy. Cardiac injury is caused either by a direct cytopathic effect of the virus or through immune-mediated mechanisms. Regulatory T cells (Tregs) play an important role in the negative modulation of host immune responses and set the threshold of autoimmune activation. This study was designed to test the protective effects of Tregs and to determine the underlying mechanisms. Carboxyfluorescein diacetate succinimidyl ester-labeled Tregs or naïve CD4(+) T cells were injected intravenously once every 2 weeks 3 times into mice. The mice were then challenged with intraperitoneal coxsackievirus B3 immediately after the last cell transfer. Transfer of Tregs showed higher survival rates than transfer of CD4(+) T cells (P=0.0136) but not compared with the PBS injection group (P=0.0589). Interestingly, Tregs also significantly decreased virus titers and inflammatory scores in the heart. Transforming growth factor-beta and phosphorylated AKT were upregulated in Tregs-transferred mice and coxsackie-adenovirus receptor expression was decreased in the heart compared with control groups. Transforming growth factor-beta decreased coxsackie-adenovirus receptor expression and inhibited coxsackievirus B3 infection in HL-1 cells and neonatal cardiac myocytes. Splenocytes collected from Treg-, CD4(+) T-cell-, and PBS-treated mice proliferated equally when stimulated with heat-inactivated virus, whereas in the Treg group, the proliferation rate was reduced significantly when stimulated with noninfected heart tissue homogenate. Adoptive transfer of Tregs protected mice from coxsackievirus B3-induced myocarditis through the transforming growth factor beta-coxsackie-adenovirus receptor pathway and thus suppresses the immune response to cardiac tissue, maintaining the antiviral immune response.

  18. Factors that deregulate the protective immune response in tuberculosis.

    PubMed

    Hernandez-Pando, Rogelio; Orozco, Hector; Aguilar, Diana

    2009-01-01

    Tuberculosis (TB) is a chronic infectious disease which essentially affects the lungs and produces profound abnormalities on the immune system. Although most people infected by the tubercle bacillus (90%) do not develop the disease during their lifetime, when there are alterations in the immune system, such as co-infection with HIV, malnutrition, or diabetes, the risk of developing active disease increases considerably. Interestingly, during the course of active disease, even in the absence of immunosuppressive conditions, there is a profound and prolonged suppression of Mycobacterium tuberculosis-specific protective immune responses. Several immune factors can contribute to downregulate the protective immunity, permitting disease progression. In general, many of these factors are potent anti-inflammatory molecules that are probably overproduced with the intention to protect against tissue damage, but the consequence of this response is a decline in protective immunity facilitating bacilli growth and disease progression. Here the most significant participants in protective immunity are reviewed, in particular the factors that deregulate protective immunity in TB. Their manipulation as novel forms of immunotherapy are also briefly commented.

  19. Mitochondrial protection by low doses of insulin-like growth factor-Iin experimental cirrhosis

    PubMed Central

    Pérez, Raquel; García-Fernández, María; Díaz-Sánchez, Matías; Puche, Juan E; Delgado, Gloria; Conchillo, Marian; Muntané, Jordi; Castilla-Cortázar, Inma

    2008-01-01

    AIM: To characterize the mitochondrial dysfunction in experimental cirrhosis and to study whether insulin-like growth factor-I(IGF-I) therapy (4 wk) is able to induce beneficial effects on damaged mitochondria leading to cellular protection. METHODS: Wistar rats were divided into three groups: Control group, untreated cirrhotic rats and cirrhotic rats treated with IGF-Itreatment (2 μg/100 g bw/d). Mitochondrial function was analyzed by flow cytometry in isolated hepatic mitochondria, caspase 3 activation was assessed by Western blot and apoptosis by TUNEL in the three experimental groups. RESULTS: Untreated cirrhotic rats showed a mitochondrial dysfunction characterized by a significant reduction of mitochondrial membrane potential (in status 4 and 3); an increase of intramitochondrial reactive oxigen species (ROS) generation and a significant reduction of ATPase activity. IGF-Itherapy normalized mitochondrial function by increasing the membrane potential and ATPase activity and reducing the intramitochondrial free radical production. Activity of the electron transport complexes Iand III was increased in both cirrhotic groups. In addition, untreated cirrhotic rats showed an increase of caspase 3 activation and apoptosis. IGF-Itherapy reduced the expression of the active peptide of caspase 3 and resulted in reduced apoptosis. CONCLUSION: These results show that IGF-Iexerts a mitochondrial protection in experimental cirrhosis leading to reduced apoptosis and increased ATP production. PMID:18461658

  20. Protection by GDNF and other trophic factors against the dopamine-depleting effects of neurotoxic doses of methamphetamine.

    PubMed

    Cass, Wayne A; Peters, Laura E; Harned, Michael E; Seroogy, Kim B

    2006-08-01

    Repeated methamphetamine (METH) administration to animals can result in long-lasting decreases in striatal dopamine (DA) content. It has previously been shown that glial cell line-derived neurotrophic factor (GDNF) can reduce the DA-depleting effects of neurotoxic doses of METH. However, there are several other trophic factors that are protective against dopaminergic toxins. Thus, the present experiments further investigated the protective effect of GDNF as well as the protective effects of several other trophic factors. Male Fischer-344 rats were given an intracerebral injection of trophic factor (2-10 microg) 1 day before METH (5 mg/kg, s.c., 4 injections at 2-h intervals). Seven days later DA levels in the striatum were measured using high-performance liquid chromatography (HPLC). Initial experiments indicated that only intrastriatal GDNF, and not intranigral GDNF, was protective. Thereafter, all other trophic factors were administered into the striatum. Members of the GDNF family (GDNF, neurturin, and artemin) all provided significant protection against the DA-depleting effects of METH, with GDNF providing the greatest protection. Brain-derived neurotrophic factor, neurotrophin-3, acidic fibroblast growth factor, basic fibroblast growth factor, ciliary neurotrophic factor, transforming growth factor-alpha (TGF-alpha), heregulin beta1 (HRG-beta1), and amphiregulin (AR) provided no significant protection at the doses examined. These results suggest that the GDNF family of trophic factors can provide significant protection against the DA-depleting effects of neurotoxic doses of METH.

  1. Korea: balancing economic growth and social protection for older adults.

    PubMed

    Yoon, Hyun-Sook

    2013-06-01

    Population aging in Korea is projected to be the most rapid among Organisation for Economic Co-operation and Development (OECD) countries between 2000 and 2050. However, social spending in Korea remains low, reflecting Korea's relatively young population, limited health and long-term care insurance coverage, and immaturity of its pension system. As these factors evolve in coming years, social spending in Korea is likely to rise toward the OECD average. Sustaining economic growth requires policies to mitigate the impact of rapid population aging by providing social protection for the elderly population. Korea confronts difficult challenges in balancing economic growth and social protection for the elderly population, whereas also ensuring efficiency in social spending.

  2. Mitochondrial protection by low doses of insulin-like growth factor- I in experimental cirrhosis.

    PubMed

    Pérez, Raquel; García-Fernández, María; Díaz-Sánchez, Matías; Puche, Juan E; Delgado, Gloria; Conchillo, Marian; Muntané, Jordi; Castilla-Cortázar, Inma

    2008-05-07

    To characterize the mitochondrial dysfunction in experimental cirrhosis and to study whether insulin-like growth factor-I (IGF- I) therapy (4 wk) is able to induce beneficial effects on damaged mitochondria leading to cellular protection. Wistar rats were divided into three groups: Control group, untreated cirrhotic rats and cirrhotic rats treated with IGF- I treatment (2 microg/100 g bw/d). Mitochondrial function was analyzed by flow cytometry in isolated hepatic mitochondria, caspase 3 activation was assessed by Western blot and apoptosis by TUNEL in the three experimental groups. Untreated cirrhotic rats showed a mitochondrial dysfunction characterized by a significant reduction of mitochondrial membrane potential (in status 4 and 3); an increase of intramitochondrial reactive oxigen species (ROS) generation and a significant reduction of ATPase activity. IGF- I therapy normalized mitochondrial function by increasing the membrane potential and ATPase activity and reducing the intramitochondrial free radical production. Activity of the electron transport complexes I and III was increased in both cirrhotic groups. In addition, untreated cirrhotic rats showed an increase of caspase 3 activation and apoptosis. IGF- I therapy reduced the expression of the active peptide of caspase 3 and resulted in reduced apoptosis. These results show that IGF- I exerts a mitochondrial protection in experimental cirrhosis leading to reduced apoptosis and increased ATP production.

  3. The Protective Effects of Exclusive Enteral Nutrition Formulas on Growth Factor Expression and the Proximal Tibial Epiphyseal Growth Plate in a TNBS-Induced IBD Rat Model.

    PubMed

    Shi, Jieru; Huang, Zhiheng; Wang, Yuhuan; Huang, Ying

    2015-07-01

    This study aimed to evaluate the effectiveness of different types of nutritional formulas in a rat model of TNBS-induced IBD. IBD was induced with TNBS in 4-week-old rats that were then fed different exclusive enteral nutrition diets for 7 days. The length of the tibia and the number of chondrocytes in the proximal tibias were analyzed at 7 days after supplementation. Immunohistochemical analysis, ELISA and real-time PCR were performed to evaluate the levels of growth hormone receptor (GHR) and insulin-like growth factor-I receptor (IGF-IR), the growth factors IGF-I and insulin-like growth factor-binding protein-3 (IGFBP3) , bone morphogenetic protein (BMP)-2 and BMP-6 respectively. The results demonstrated that the tibia length of the peptide formula group was longer than that of the IBD-Modulen(®) formula and normal diet groups (P < 0.05). Furthermore, the number of chondrocytes of the proximal tibial was more pronounced in the peptide formula group compared to the other groups (P < 0.05). The peptide formula was also more effective in increasing the expression of GHR compared to the other groups (P < 0.05), while the expression of IGF-IR was not significantly different (P > 0.05). In addition, the IGF-I and IGFBP3 levels were more pronounced in the peptide formula supplement group (P < 0.05), and the expression of BMP-2 and BMP-6 mRNA in the proximal tibia growth plate from the peptide formula group was higher than that in the ordinary formula and normal diet groups (P < 0.05). EEN, and particularly a peptide formula, exerted protective effects on the proximal tibial epiphyseal growth plate in a TNBS-induced IBD model.

  4. Media composition: growth factors.

    PubMed

    Hegde, Aparna; Behr, Barry

    2012-01-01

    Despite the fact that the fundamental principle underlying the most common method of culture media constitution is that of mimicking the natural environment of the preimplantation embryo, one major difference that remains between current embryo culture media and in vivo conditions is the absence of growth factors in vitro. Numerous growth factors are known to be present in the in vivo environment of human and nonhuman preimplantation embryos, often with peak concentrations corresponding to when fertilization and preimplantation embryo growth would occur. Although these growth factors are found in very small concentrations, they have a profound effect on tissue growth and differentiation through attachment to factor-specific receptors on cell surfaces. Receptors for many different growth factors have also been detected in human preimplantation embryos. Preimplantation embryos themselves express many growth factors. The growth factors and receptors are metabolically costly to produce, and thus their presence in the environment of the preimplantation embryo and in the embryo respectively strongly implies that embryos are designed to encounter and respond to the corresponding factors. Studies of embryo coculture also indirectly suggest that growth factors can improve in vitro development. Several animal and human studies attest to a probable beneficial effect of addition of growth factors to culture media. However, there is still ambiguity regarding the exact role of growth factors in embryonic development, the optimal dose of growth factors to be added to culture media, the combinatorial effect and endocrine of growth factors in embryonic development.

  5. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    PubMed

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-05-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. © FASEB.

  6. Growth and Development among Infants and Preschoolers in Rural India: Economic Inequities and Caregiver Protective/Promotive Factors

    ERIC Educational Resources Information Center

    Black, Maureen M.; Fernandez-Rao, Sylvia; Hurley, Kristen M.; Tilton, Nicholas; Balakrishna, Nagalla; Harding, Kimberly B.; Reinhart, Greg; Radhakrishna, Kankipati Vijaya; Nair, Krishnapillai Madhavan

    2016-01-01

    Economic inequities are common in low and middle-income countries (LMIC), and are associated with poor growth and development among young children. The objectives are to examine whether maternal education and home environment quality: 1) protect children by attenuating the association between economic inequities and children's growth and…

  7. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel

    NASA Astrophysics Data System (ADS)

    Bruggeman, Kiara F.; Rodriguez, Alexandra L.; Parish, Clare L.; Williams, Richard J.; Nisbet, David R.

    2016-09-01

    Protein growth factors have demonstrated great potential for tissue repair, but their inherent instability and large size prevents meaningful presentation to biologically protected nervous tissue. Here, we create a nanofibrous network from a self-assembling peptide (SAP) hydrogel to carry and stabilize the growth factors. We significantly reduced growth factor degradation to increase their lifespan by over 40 times. To control the temporal release profile we covalently attached polysaccharide chitosan molecules to the growth factor to increase its interactions with the hydrogel nanofibers and achieved a 4 h delay, demonstrating the potential of this method to provide temporally controlled growth factor delivery. We also describe release rate based analysis to examine the growth factor delivery in more detail than standard cumulative release profiles allow and show that the chitosan attachment method provided a more consistent release profile with a 60% reduction in fluctuations. To prove the potential of this system as a complex growth factor delivery platform we demonstrate for the first time temporally distinct release of multiple growth factors from a single tissue specific SAP hydrogel: a significant goal in regenerative medicine.

  8. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation

    PubMed Central

    Gaviglio, Angela L.; Knelson, Erik H.; Blobe, Gerard C.

    2017-01-01

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor–like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.—Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation. PMID:28174207

  9. Co-delivery of a growth factor and a tissue-protective molecule using elastin biopolymers accelerates wound healing in diabetic mice.

    PubMed

    Devalliere, Julie; Dooley, Kevin; Hu, Yong; Kelangi, Sarah S; Uygun, Basak E; Yarmush, Martin L

    2017-10-01

    Growth factor therapy is a promising approach for chronic diabetic wounds, but strategies to efficiently and cost-effectively deliver active molecules to the highly proteolytic wound environment remain as major obstacles. Here, we re-engineered keratinocyte growth factor (KGF) and the cellular protective peptide ARA290 into a protein polymer suspension with the purpose of increasing their proteolytic resistance, thus their activity in vivo. KGF and ARA290 were fused with elastin-like peptide (ELP), a protein polymer derived from tropoelastin, that confers the ability to separate into a colloidal suspension of liquid-like coacervates. ELP fusion did not diminish peptides activities as demonstrated by ability of KGF-ELP to accelerate keratinocyte proliferation and migration, and ARA290-ELP to protect cells from apoptosis. We examined the healing effect of ARA290-ELP and KGF-ELP alone or in combination, in a full-thickness diabetic wound model. In this model, ARA290-ELP was found to accelerate healing, notably by increasing angiogenesis in the wound bed. We further showed that co-delivery of ARA290 and KGF, with the 1:4 KGF-ELP to ARA290-ELP ratio, was the most effective wound treatment with the fastest healing rate, the thicker granulation tissue and regenerated epidermis after 28 days. Overall, this study shows that ARA290-ELP and KGF-ELP constitute promising new therapeutics for treatment of chronic wounds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The protective effect of platelet released growth factors and bone augmentation (Bio-Oss®) on ethanol impaired osteoblasts.

    PubMed

    Sönmez, Tolga Taha; Bayer, Andreas; Cremer, Tillman; Hock, Jennifer Vanessa Phi; Lethaus, Bernd; Kweider, Nisreen; Wruck, Christoph Jan; Drescher, Wolf; Jahr, Holger; Lippross, Sebastian; Pufe, Thomas; Tohidnezhad, Mersedeh

    2017-11-01

    Chronic alcohol consumption is a known limiting factor for bone healing. One promising strategy to improve bone augmentation techniques with Bio-Oss ® in oral and maxillofacial surgery might be the supportive application of platelet-concentrated biomaterials as platelet-released growth factor (PRGF). To address this matter, we performed an in vitro study investigating the protective effects of PRGF and Bio-Oss ® in ethanol (EtOH) treated osteoblasts. The SAOS-2 osteosarcoma cell line, with and without EtOH pretreatment was used. The cell viability, proliferation and alkali phosphatase activity (ALP) after application of 0%, 5% and 10% PRGF and Bio-Oss ® were assessed. The application of PRGF and Bio-Oss ® in EtOH impaired osteoblasts showed a significant beneficial influence increasing the viability of the osteoblasts in cell culture. The synergistic effect of Bio-Oss ® and 5% PRGF on the proliferation of osteoblasts was also demonstrated. Bio-Oss ® only in combination with PRGF increases the alkaline phosphatase (ALP) activity in EtOH pretreated cells. These results indicate that the simultaneous application of PRGF and Bio-Oss ® inhibits EtOH induced bone healing impairment. Furthermore, in the cells, PRGF induced a protective mechanism which might promote bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Insulin-like growth factor-1 attenuates apoptosis and protects neurochemical phenotypes of dorsal root ganglion neurons with paclitaxel-induced neurotoxicity in vitro.

    PubMed

    Chen, Cheng; Bai, Xue; Bi, Yanwen; Liu, Guixiang; Li, Hao; Liu, Zhen; Liu, Huaxiang

    2017-02-01

    Paclitaxel (PT)-induced neurotoxicity is a significant problem associated with successful treatment of cancers. Insulin-like growth factor-1 (IGF-1) is a neurotrophic factor and plays an important role in promoting axonal growth from dorsal root ganglion (DRG) neurons. Whether IGF-1 has protective effects on neurite growth, cell viability, neuronal apoptosis and neuronal phenotypes in DRG neurons with PT-induced neurotoxicity is still unclear. In this study, primary cultured rat DRG neurons were used to assess the effects of IGF-1 on DRG neurons with PT-induced neurotoxicity. The results showed that PT exposure caused neurite retraction in a dose-dependent manner. PT exposure caused a decrease of cell viability and an increase in the ratio of apoptotic cells which could be reversed by IGF-1. The percentage of calcitonin gene-related peptide immunoreactive (CGRP-IR) neurons and neurofilament (NF)-200-IR neurons, mRNA, and protein levels of CGRP and NF-200 decreased significantly after treatment with PT. IGF-1 administration had protective effects on CGRP-IR neurons, but not on NF-200-IR neurons. Either extracellular signal-regulated protein kinase (ERK1/2) inhibitor PD98059 or phosphatidylinositol 3-kinase (PI3 K) inhibitor LY294002 blocked the effect of IGF-1. The results imply that IGF-1 may attenuate apoptosis to improve neuronal cell viability and promote neurite growth of DRG neurons with PT-induced neurotoxicity. Moreover, these results support an important neuroprotective role of exogenous IGF-1 on distinct subpopulations of DRG neurons which is responsible for skin sensation. The effects of IGF-1 might be through ERK1/2 or PI3 K/Akt signaling pathways. These findings provide experimental evidence for IGF-1 administration to alleviate neurotoxicity of distinct subpopulations of DRG neurons induced by PT.

  12. High‐altitude ancestry protects against hypoxia‐associated reductions in fetal growth

    PubMed Central

    Julian, Colleen Glyde; Vargas, Enrique; Armaza, J Fernando; Wilson, Megan J; Niermeyer, Susan; Moore, Lorna G

    2007-01-01

    Objective The chronic hypoxia of high‐altitude (⩾2500 m) residence has been shown to decrease birth weight in all populations studied to date. However, multigenerational high‐altitude populations appear protected relative to newcomer groups. This study aimed to determine whether such protection exists independently of other factors known to influence fetal growth and whether admixed populations (ie, people having both high‐ and low‐altitude ancestry) show an intermediate level of protection. Design 3551 medical records from consecutive deliveries to Andean, European or Mestizo (ie, admixed) women at low, intermediate or high altitudes in Bolivia were evaluated for maternal characteristics influencing fetal growth as measured by birth weight and the frequency of small for gestational age births (SGA or ⩽10th percentile birth weight for gestational age and sex). Two‐way analysis of variance and χ2 tests were used to compare maternal and infant characteristics. The effects of ancestry or altitude on SGA and birth weight were assessed using logistic or linear regression models, respectively. Results Altitude decreased birth weight and increased SGA in all ancestry groups. Andean infants weighed more and were less often SGA than Mestizo or European infants at high altitude (13%, 16% and 33% respectively, p<0.01). After accounting for the influences of maternal hypertensive complications of pregnancy, parity, body weight, and number of prenatal visits, European relative to Andean ancestry increased the frequency of SGA at high altitude nearly fivefold. Conclusions Andean relative to European ancestry protects against altitude‐associated reductions in fetal growth. The intermediate protection seen in the admixed (Mestizo) group is consistent with the influence of genetic or other Andean‐specific protective characteristics. PMID:17329275

  13. Insulin-like growth factor and fibroblast growth factor expression profiles in growth-restricted fetal sheep pancreas.

    PubMed

    Chen, Xiaochuan; Rozance, Paul J; Hay, William W; Limesand, Sean W

    2012-05-01

    Placental insufficiency results in intrauterine growth restriction (IUGR), impaired fetal insulin secretion and less fetal pancreatic β-cell mass, partly due to lower β-cell proliferation rates. Insulin-like growth factors (IGFs) and fibroblast growth factors (FGFs) regulate fetal β-cell proliferation and pancreas development, along with transcription factors, such as pancreatic and duodenal homeobox 1 (PDX-1). We determined expression levels for these growth factors, their receptors and IGF binding proteins in ovine fetal pancreas and isolated islets. In the IUGR pancreas, relative mRNA expression levels of IGF-I, PDX-1, FGF7 and FGFR2IIIb were 64% (P < 0.01), 76% (P < 0.05), 76% (P < 0.05) and 52% (P < 0.01) lower, respectively, compared with control fetuses. Conversely, insulin-like growth factor binding protein 2 (IGFBP-2) mRNA and protein concentrations were 2.25- and 1.2-fold greater (P < 0.05) in the IUGR pancreas compared with controls. In isolated islets from IUGR fetuses, IGF-II and IGFBP-2 mRNA concentrations were 1.5- and 3.7-fold greater (P < 0.05), and insulin mRNA was 56% less (P < 0.05) than control islets. The growth factor expression profiles for IGF and FGF signaling pathways indicate that declines in β-cell mass are due to decreased growth factor signals for both pancreatic progenitor epithelial cell and mature β-cell replication.

  14. Platelet-Derived Growth Factor-BB Protects Mesenchymal Stem Cells (MSCs) Derived From Immune Thrombocytopenia Patients Against Apoptosis and Senescence and Maintains MSC-Mediated Immunosuppression

    PubMed Central

    Zhang, Jia-min; Feng, Fei-er; Wang, Qian-ming; Zhu, Xiao-lu; Fu, Hai-xia; Xu, Lan-ping; Liu, Kai-yan

    2016-01-01

    Immune thrombocytopenia (ITP) is characterized by platelet destruction and megakaryocyte dysfunction. Mesenchymal stem cells (MSCs) from ITP patients (MSC-ITP) do not exhibit conventional proliferative abilities and thus exhibit defects in immunoregulation, suggesting that MSC impairment might be a mechanism involved in ITP. Platelet-derived growth factor (PDGF) improves growth and survival in various cell types. Moreover, PDGF promotes MSC proliferation. The aim of the present study was to analyze the effects of PDGF-BB on MSC-ITP. We showed that MSC-ITP expanded more slowly and appeared flattened and larger. MSC-ITP exhibited increased apoptosis and senescence compared with controls. Both the intrinsic and extrinsic pathways account for the enhanced apoptosis. P53 and p21 expression were upregulated in MSC-ITP, but inhibition of p53 with pifithrin-α markedly inhibited apoptosis and senescence. Furthermore, MSCs from ITP patients showed a lower capacity for inhibiting the proliferation of activated T cells inducing regulatory T cells (Tregs) and suppressing the synthesis of anti-glycoprotein (GP)IIb-IIIa antibodies. PDGF-BB treatment significantly decreased the expression of p53 and p21 and increased survivin expression in MSC-ITP. In addition, the apoptotic rate and number of senescent cells in ITP MSCs were reduced. Their impaired ability for inhibiting activated T cells, inducing Tregs, and suppressing the synthesis of anti-GPIIb-IIIa antibodies was restored after PDGF-BB treatment. In conclusion, we have demonstrated that PDGF-BB protects MSCs derived from ITP patients against apoptosis, senescence, and immunomodulatory defects. This protective effect of PDGF-BB is likely mediated via the p53/p21 pathway, thus potentially providing a new therapeutic approach for ITP. Significance Immune thrombocytopenia (ITP) is characterized by platelet destruction and megakaryocyte dysfunction. Platelet-derived growth factor (PDGF) improves growth and survival in various

  15. Epidermal fatty acid-binding protein protects nerve growth factor-differentiated PC12 cells from lipotoxic injury

    PubMed Central

    Liu, Jo-Wen; Montero, Manuel; Bu, Liming; De Leon, Marino

    2015-01-01

    Epidermal fatty acid-binding protein (E-FABP/FABP5/DA11) binds and transport long-chain fatty acids in the cytoplasm and may play a protecting role during neuronal injury. We examined whether E-FABP protects nerve growth factor-differentiated PC12 cells (NGFDPC12 cells) from lipotoxic injury observed after palmitic acid (C16:0; PAM) overload. NGFDPC12 cells cultures treated with PAM/bovine serum albumin at 0.3 mM/0.15 mM show PAM-induced lipotoxicity (PAM-LTx) and apoptosis. The apoptosis was preceded by a cellular accumulation of reactive oxygen species (ROS) and higher levels of E-FABP. Antioxidants MCI-186 and N-acetyl cysteine prevented E-FABP's induction in expression by PAM-LTx, while tert-butyl hydroperoxide increased ROS and E-FABP expression. Non-metabolized methyl ester of PAM, methyl palmitic acid (mPAM), failed to increase cellular ROS, E-FABP gene expression, or trigger apoptosis. Treatment of NGFDPC12 cultures with siE-FABP showed reduced E-FABP levels correlating with higher accumulation of ROS and cell death after exposure to PAM. In contrast, increasing E-FABP cellular levels by pre-loading the cells with recombinant E-FABP diminished the PAM-induced ROS and cell death. Finally, agonists for PPARβ (GW0742) or PPARγ (GW1929) increased E-FABP expression and enhanced the resistance of NGFDPC12 cells to PAM-LTx. We conclude that E-FABP protects NGFDPC12 cells from lipotoxic injury through mechanisms that involve reduction of ROS. Epidermal fatty acid-binding protein (E-FABP) may protect nerve cells from the damaging exposure to high levels of free fatty acids (FA). We show that E-FABP can neutralize the effects of reactive oxygen species (ROS) generated by the high levels of FA in the cell and protect PC12 cells from lipotoxic injuries common in Type 2 diabetes neuropathy. Potentially, E-FABP gene up-regulation may be mediated through the NFkB pathway and future studies are needed to further evaluate this proposition. PMID:25147052

  16. Expression of insulin-like growth factor-1 and insulin-like growth factor-1 receptors in EL4 lymphoma cells overexpressing growth hormone.

    PubMed

    Weigent, Douglas A; Arnold, Robyn E

    2005-03-01

    Almost all of the previous studies with growth hormone (GH) have been done with exogenously supplied GH and, therefore, involve actions of the hormone through its receptor. However, the actions of endogenous or lymphocyte GH are still unclear. In a previous study, we showed that overexpression of GH (GHo) in a lymphoid cell line resulted in protection of the cells to apoptosis mediated by nitric oxide (NO). In the present study, we show that the protection from apoptosis could be transferred to control cells with culture fluids obtained from GHo cells and blocked by antibodies to the insulin-like growth factor-1 (IGF-1) or antibodies to the IGF-1-receptor (IGF-1R). Northern and Western blot analysis detected significantly higher levels of IGF-1 in cells overexpressing GH. An increase in the expression of the IGF-1R in GHo cells was also detected by Western blot analysis, (125)I-IGF-1 binding and analysis of IGF-1R promoter luciferase constructs. Transfection of GHo cells with a dominant negative IGF-1R mutant construct blocked the generation of NO and activation of Akt seen in GHo cells compared to vector alone control EL4 cells. The results suggest that one of the consequences of the overexpression of GH, in cells lacking the GH receptor, is an increase in the expression of IGF-1 and the IGF-1R which mediate the protection of EL4 lymphoma cells from apoptosis.

  17. Recombinant Human Acidic Fibroblast Growth Factor (aFGF) Expressed in Nicotiana benthamiana Potentially Inhibits Skin Photoaging.

    PubMed

    Ha, Jang-Ho; Kim, Ha-Neul; Moon, Ki-Beom; Jeon, Jae-Heung; Jung, Dai-Hyun; Kim, Su-Jung; Mason, Hugh S; Shin, Seo-Yeon; Kim, Hyun-Soon; Park, Kyung-Mok

    2017-07-01

    Responding to the need for recombinant acidic fibroblast growth factor in the pharmaceutical and cosmetic industries, we established a scalable expression system for recombinant human aFGF using transient and a DNA replicon vector expression in Nicotiana benthamiana . Recombinant human-acidic fibroblast growth factor was recovered following Agrobacterium infiltration of N. benthamiana . The optimal time point at which to harvest recombinant human acidic fibroblast growth factor expressing leaves was found to be 4 days post-infiltration, before necrosis was evident. Commassie-stained SDS-PAGE gels of His-tag column eluates, concentrated using a 10 000 molecular weight cut-off column, showed an intense band at the expected molecular weight for recombinant human acidic fibroblast growth factor. An immunoblot confirmed that this band was recombinant human acidic fibroblast growth factor. Up to 10 µg recombinant human-acidic fibroblast growth factor/g of fresh leaves were achieved by a simple affinity purification protocol using protein extract from the leaves of agroinfiltrated N. benthamiana . The purified recombinant human acidic fibroblast growth factor improved the survival rate of UVB-irradiated HaCaT and CCD-986sk cells approximately 89 and 81 %, respectively. N. benthamiana -derived recombinant human acidic fibroblast growth factor showed similar effects on skin cell proliferation and UVB protection compared to those of Escherichia coli -derived recombinant human acidic fibroblast growth factor. Additionally, N. benthamiana- derived recombinant human acidic fibroblast growth factor increased type 1 procollagen synthesis up to 30 % as well as reduced UVB-induced intracellular reactive oxygen species generation in fibroblast (CCD-986sk) cells.UVB is a well-known factor that causes various types of skin damage and premature aging. Therefore, the present study demonstrated that N. benthamiana -derived recombinant human acidic fibroblast growth factor

  18. Vascular endothelial growth factor and platelet-derived growth factor are potential angiogenic and metastatic factors in human breast cancer.

    PubMed

    Anan, K; Morisaki, T; Katano, M; Ikubo, A; Kitsuki, H; Uchiyama, A; Kuroki, S; Tanaka, M; Torisu, M

    1996-03-01

    Angiogenesis is a prerequisite for tumor growth and metastasis. Tumor angiogenesis may be mediated by several angiogenic factors such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), transforming growth factor-alpha, and basic fibroblast growth factor. Differential mRNA expressions of VEGF, PDGF (A chain), transforming growth factor-alpha and basic fibroblast growth factor in 32 primary invasive breast tumors were examined by reverse transcriptase-polymerase chain reaction. We analyzed relationships between mRNA expressions of these angiogenic factors and the degree of angiogenesis, tumor size, and metastasis. Quantification of angiogenesis was achieved by the immunohistochemical staining of endothelial cells with antibody to CD31. VEGF and PDGF-A mRNAs were expressed more frequently in breast tumors than in nontumor breast tissues, whereas no difference was found in expression frequency of either transforming growth factor-alpha or basic fibroblast growth factor mRNA. Vascular counts in tumors correlated with each expression frequency of VEGF and PDGF-A mRNA. PDGF-A mRNA was expressed more frequently in tumors with lymph node metastasis than in those without metastasis. Expression of VEGF and PDGF mRNAs detected by reverse transcriptase-polymerase chain reaction in breast tumors correlates with tumor-related characteristics of angiogenesis and metastatic potential. Analysis of these mRNAs by reverse transcriptase-polymerase chain reaction may be useful for assessing the biologic behavior of a breast tumor before surgical treatment.

  19. Comparison between tocotrienol and omeprazole on gastric growth factors in stress-exposed rats.

    PubMed

    Nur Azlina, Mohd Fahami; Qodriyah, Hj Mohd Saad; Chua, Kien Hui; Kamisah, Yusof

    2017-08-28

    To investigate and compare the effects of tocotrienol and omeprazole on gastric growth factors in rats exposed to water-immersion restraint stress (WIRS). Twenty-eight male Wistar rats were randomly assigned to four groups of seven rats. The two control groups were administered vitamin-free palm oil (vehicle) and the two treatment groups were given omeprazole (20 mg/kg) or tocotrienol (60 mg/kg) by oral gavage. After 28 d of treatment, rats from one control group and both treated groups were subjected to WIRS one time for 3.5 h. Gastric lesions were measured and gastric tissues were obtained to measure vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), and transforming growth factor-alpha (TGF-α) mRNA expression. Rats exposed to WIRS for 3.5 h demonstrated the presence of considerable ulcers in the form of gastric erosion. The lesion index in the stressed control (S) group was increased ( P < 0.001) compared to the tocotrienol treated and omeprazole treated groups. Stress led to a decrease in gastric VEGF ( P < 0.001), bFGF ( P < 0.001) and TGF-α ( P < 0.001) mRNA levels and caused an increase in EGF mRNA ( P < 0.001) that was statistically significant compared to the non-stressed control group. Although both treatment agents exerted similar ulcer reducing ability, only treatment with tocotrienol led to increased expression of VEGF ( P = 0.008), bFGF ( P = 0.001) and TGF-α ( P = 0.002) mRNA. Tocotrienol provides gastroprotective effects in WIRS-induced ulcers. Compared to omeprazole, tocotrienol exerts a similar protective effect, albeit through multiple mechanisms of protection, particularly through up-regulation of growth factors that assist in repair of gastric tissue injuries.

  20. Adenovirus E1A and E1B-19K Proteins Protect Human Hepatoma Cells from Transforming Growth Factor β1-induced Apoptosis

    PubMed Central

    Tarakanova, Vera L.; Wold, William S. M.

    2009-01-01

    Primary and some transformed hepatocytes undergo apoptosis in response to transforming growth factor β1 (TGFβ). We report that infection with species C human adenovirus conferred resistance to TGFβ-induced apoptosis in human hepatocellular carcinoma cells (Huh-7). Protection against TGFβ-mediated cell death in adenovirus-infected cells correlated with the maintenance of normal nuclear morphology, lack of pro-caspases 8 and 3 processing, maintenance of the mitochondrial membrane potential, and lack of cellular DNA degradation. The TGFβ pro-apoptotic signaling pathway was blocked upstream of mitochondria in adenovirus-infected cells. Both the N-terminal sequences of the E1A proteins and the E1B-19K protein were necessary to protect infected cells against TGFβ-induced apoptosis. PMID:19854227

  1. Epidermal growth factor- and hepatocyte growth factor-receptor activity in serum-free cultures of human hepatocytes.

    PubMed

    Runge, D M; Runge, D; Dorko, K; Pisarov, L A; Leckel, K; Kostrubsky, V E; Thomas, D; Strom, S C; Michalopoulos, G K

    1999-02-01

    Serum-free primary cultures of hepatocytes are a useful tool to study factors triggering hepatocyte proliferation and regeneration. We have developed a chemically defined serum-free system that allows human hepatocyte proliferation in the presence of epidermal growth factor and hepatocyte growth factor. DNA synthesis and accumulation were determined by [3H]thymidine incorporation and fluorometry, respectively. Western blot analyses and co-immunoprecipitations were used to investigate the association of proteins involved in epidermal growth factor and hepatocyte growth factor activation and signaling: epidermal growth factor receptor, hepatocyte growth factor receptor (MET), urokinase-type plasminogen activator and its receptor, and a member of the signal transducer and activator of transcription family, STAT-3. Primary human hepatocytes proliferated under serum-free conditions in a chemically defined medium for up to 12 days. Epidermal growth factor-receptor and MET were present and functional, decreasing over time. MET, urokinase-type plasminogen activator and urokinase-type plasminogen activator receptor co-precipitated to varying degrees during the culture period. STAT-3 co-precipitated with epidermal growth factor-receptor and MET to varying degrees. Proliferation of human hepatocytes can improve by modification of a chemically defined medium originally used for rat hepatocyte cultures. In these long-term cultures of human hepatocytes, hepatocyte growth factor and epidermal growth factor can stimulate growth and differentiation by interacting with their receptors and initiating downstream signaling. This involves complex formation of the receptors with other plasma membrane components for MET (urokinase-type plasminogen activator in context of its receptor) and activation of STAT-3 for both receptors.

  2. Fibroblast growth factor 2 protects against renal ischaemia/reperfusion injury by attenuating mitochondrial damage and proinflammatory signalling.

    PubMed

    Tan, Xiao-Hua; Zheng, Xiao-Meng; Yu, Li-Xia; He, Jian; Zhu, Hong-Mei; Ge, Xiu-Ping; Ren, Xiao-Li; Ye, Fa-Qing; Bellusci, Saverio; Xiao, Jian; Li, Xiao-Kun; Zhang, Jin-San

    2017-11-01

    Ischaemia-reperfusion injury (I/RI) is a common cause of acute kidney injury (AKI). The molecular basis underlying I/RI-induced renal pathogenesis and measures to prevent or reverse this pathologic process remains to be resolved. Basic fibroblast growth factor (FGF2) is reported to have protective roles of myocardial infarction as well as in several other I/R related disorders. Herein we present evidence that FGF2 exhibits robust protective effect against renal histological and functional damages in a rat I/RI model. FGF2 treatment greatly alleviated I/R-induced acute renal dysfunction and largely blunted I/R-induced elevation in serum creatinine and blood urea nitrogen, and also the number of TUNEL-positive tubular cells in the kidney. Mechanistically, FGF2 substantially ameliorated renal I/RI by mitigating several mitochondria damaging parameters including pro-apoptotic alteration of Bcl2/Bax expression, caspase-3 activation, loss of mitochondrial membrane potential and K ATP channel integrity. Of note, the protective effect of FGF2 was significantly compromised by the K ATP channel blocker 5-HD. Interestingly, I/RI alone resulted in mild activation of FGFR, whereas FGF2 treatment led to more robust receptor activation. More significantly, post-I/RI administration of FGF2 also exhibited robust protection against I/RI by reducing cell apoptosis, inhibiting the release of damage-associated molecular pattern molecule HMBG1 and activation of its downstream inflammatory cytokines such as IL-1α, IL-6 and TNF α. Taken together, our data suggest that FGF2 offers effective protection against I/RI and improves animal survival by attenuating mitochondrial damage and HMGB1-mediated inflammatory response. Therefore, FGF2 has the potential to be used for the prevention and treatment of I/RI-induced AKI. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  4. Factors Controlling Vegetation Fires in Protected and Non-Protected Areas of Myanmar

    PubMed Central

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O.

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar. PMID:25909632

  5. Factors controlling vegetation fires in protected and non-protected areas of myanmar.

    PubMed

    Biswas, Sumalika; Vadrevu, Krishna Prasad; Lwin, Zin Mar; Lasko, Kristofer; Justice, Christopher O

    2015-01-01

    Fire is an important disturbance agent in Myanmar impacting several ecosystems. In this study, we quantify the factors impacting vegetation fires in protected and non-protected areas of Myanmar. Satellite datasets in conjunction with biophysical and anthropogenic factors were used in a spatial framework to map the causative factors of fires. Specifically, we used the frequency ratio method to assess the contribution of each causative factor to overall fire susceptibility at a 1km scale. Results suggested the mean fire density in non-protected areas was two times higher than the protected areas. Fire-land cover partition analysis suggested dominant fire occurrences in the savannas (protected areas) and woody savannas (non-protected areas). The five major fire causative factors in protected areas in descending order include population density, land cover, tree cover percent, travel time from nearest city and temperature. In contrast, the causative factors in non-protected areas were population density, tree cover percent, travel time from nearest city, temperature and elevation. The fire susceptibility analysis showed distinct spatial patterns with central Myanmar as a hot spot of vegetation fires. Results from propensity score matching suggested that forests within protected areas have 11% less fires than non-protected areas. Overall, our results identify important causative factors of fire useful to address broad scale fire risk concerns at a landscape scale in Myanmar.

  6. Evaluation of Amyloid Protective Factors and Alzheimer Disease Neurodegeneration Protective Factors in Elderly Individuals.

    PubMed

    Vemuri, Prashanthi; Knopman, David S; Lesnick, Timothy G; Przybelski, Scott A; Mielke, Michelle M; Graff-Radford, Jonathan; Murray, Melissa E; Roberts, Rosebud O; Vassilaki, Maria; Lowe, Val J; Machulda, Mary M; Jones, David T; Petersen, Ronald C; Jack, Clifford R

    2017-06-01

    While amyloid and neurodegeneration are viewed together as Alzheimer disease pathophysiology (ADP), the factors that influence amyloid and AD-pattern neurodegeneration may be considerably different. Protection from these ADP factors may be important for aging without significant ADP. To identify the combined and independent protective factors for amyloid and AD-pattern neurodegeneration in a population-based sample and to test the hypothesis that "exceptional agers" with advanced ages do not have significant ADP because they have protective factors for amyloid and neurodegeneration. This cohort study conducted a prospective analysis of 942 elderly individuals (70-≥90 years) with magnetic resonance imaging and Pittsburgh compound B-positron emission tomography scans enrolled in the Mayo Clinic Study of Aging, a longitudinal population-based study of cognitive aging in Olmsted County, Minnesota. We operationalized "exceptional aging" without ADP by considering individuals 85 years or older to be without significant evidence of ADP. We evaluated predictors including demographics, APOE, intellectual enrichment, midlife risk factors (physical inactivity, obesity, smoking, diabetes, hypertension, and dyslipidemia), and the total number of late-life cardiac and metabolic conditions. We used multivariate linear regression models to identify the combined and independent protective factors for amyloid and AD-pattern neurodegeneration. Using a subsample of the cohort 85 years of age or older, we computed Cohen d-based effect size estimations to compare the quantitative strength of each predictor variable in their contribution with exceptional aging without ADP. The study participants included 423 (45%) women and the average age of participants was 79.7 (5.9) years. Apart from demographics and the APOE genotype, only midlife dyslipidemia was associated with amyloid deposition. Obesity, smoking, diabetes, hypertension, and cardiac and metabolic conditions, but not

  7. Lysyl Oxidase-Like 1 Protein Deficiency Protects Mice from Adenoviral Transforming Growth Factor-β1-induced Pulmonary Fibrosis.

    PubMed

    Bellaye, Pierre-Simon; Shimbori, Chiko; Upagupta, Chandak; Sato, Seidai; Shi, Wei; Gauldie, Jack; Ask, Kjetil; Kolb, Martin

    2018-04-01

    Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by excessive deposition of extracellular matrix (ECM) in the lung parenchyma. The abnormal ECM deposition slowly overtakes normal lung tissue, disturbing gas exchange and leading to respiratory failure and death. ECM cross-linking and subsequent stiffening is thought to be a major contributor of disease progression and also promotes the activation of transforming growth factor (TGF)-β1, one of the main profibrotic growth factors. Lysyl oxidase-like (LOXL) 1 belongs to the cross-linking enzyme family and has been shown to be up-regulated in active fibrotic regions of bleomycin-treated mice and patients with IPF. We demonstrate in this study that LOXL1-deficient mice are protected from experimental lung fibrosis induced by overexpression of TGF-β1 using adenoviral (Ad) gene transfer (AdTGF-β1). The lack of LOXL1 prevented accumulation of insoluble cross-linked collagen in the lungs, and therefore limited lung stiffness after AdTGF-β1. In addition, we applied mechanical stretch to lung slices from LOXL1 +/+ and LOXL1 -/- mice treated with AdTGF-β1. Lung stiffness (Young's modulus) of LOXL1 -/- lung slices was significantly lower compared with LOXL1 +/+ lung slices. Moreover, the release of activated TGF-β1 after mechanical stretch was significantly lower in LOXL1 -/- mice compared with LOXL1 +/+ mice after AdTGF-β1. These data support the concept that cross-linking enzyme inhibition represents an interesting therapeutic target for drug development in IPF.

  8. Protective factors can mitigate behavior problems after prenatal cocaine and other drug exposures.

    PubMed

    Bada, Henrietta S; Bann, Carla M; Whitaker, Toni M; Bauer, Charles R; Shankaran, Seetha; Lagasse, Linda; Lester, Barry M; Hammond, Jane; Higgins, Rosemary

    2012-12-01

    We determined the role of risk and protective factors on the trajectories of behavior problems associated with high prenatal cocaine exposure (PCE)/polydrug exposure. The Maternal Lifestyle Study enrolled 1388 children with or without PCE, assessed through age 15 years. Because most women using cocaine during pregnancy also used other substances, we analyzed for the effects of 4 categories of prenatal drug exposure: high PCE/other drugs (OD), some PCE/OD, OD/no PCE, and no PCE/no OD. Risks and protective factors at individual, family, and community levels that may be associated with behavior outcomes were entered stepwise into latent growth curve models, then replaced by cumulative risk and protective indexes, and finally by a combination of levels of risk and protective indexes. Main outcome measures were the trajectories of externalizing, internalizing, total behavior, and attention problems scores from the Child Behavior Checklist (parent). A total of 1022 (73.6%) children had known outcomes. High PCE/OD significantly predicted externalizing, total, and attention problems when considering the balance between risk and protective indexes. Some PCE/OD predicted externalizing and attention problems. OD/no PCE also predicted behavior outcomes except for internalizing behavior. High level of protective factors was associated with declining trajectories of problem behavior scores over time, independent of drug exposure and risk index scores. High PCE/OD is a significant risk for behavior problems in adolescence; protective factors may attenuate its detrimental effects. Clinical practice and public health policies should consider enhancing protective factors while minimizing risks to improve outcomes of drug-exposed children.

  9. Investigation of Model Sunscreen Formulations Comparing the Sun Protection Factor, the Universal Sun Protection Factor and the Radical Formation Ratio.

    PubMed

    Syring, Felicia; Weigmann, Hans-Jürgen; Schanzer, Sabine; Meinke, Martina C; Knorr, Fanny; Lademann, Jürgen

    2016-01-01

    In view of globally rising skin cancer rates and harmful effects exerted by sunlight throughout the ultraviolet, visible and infrared ranges, an objective, safe and comprehensive method for determining sunscreen efficacy is required in order to warrant safe sun exposure. In this study, the influence of characteristic active ingredients (chemical filters, physical filters and antioxidants) on different sunscreen indicators, including the universal sun protection factor and the radical formation ratio, was determined and compared to their influence on sun protection factor values. Spectroscopic universal sun protection factor measurements were conducted ex vivo by analyzing tape strips taken from human skin, and radical formation ratio determination was performed via electron paramagnetic resonance spectroscopy using porcine ear skin ex vivo. The sun protection factor determination was conducted according to ISO standards (ISO 24444:2010). It was shown that chemical filters provide a protective effect which was measurable by all methods examined (spectroscopy, electron paramagnetic resonance spectroscopy and erythema formation). Physical filters, when used as single active ingredients, increased protective values in universal sun protection factor and sun protection factor measurements but exhibited no significant effect on universal sun protection factor measurements when used in combination with chemical filters or antioxidants. Antioxidants were shown to increase sun protection factor values. Radical formation ratio values were shown to be influenced merely by chemical filters, leading to the conclusion that the universal sun protection factor is the most suitable efficacy indicator for the ultraviolet range. © 2015 S. Karger AG, Basel.

  10. Neonatal hyperthyroidism impairs epinephrine-provoked secretion of nerve growth factor and epidermal growth factor in mouse saliva.

    PubMed

    Lakshmanan, J; Landel, C P

    1986-07-01

    We examined long-term effects of neonatal hyperthyroidism on salivary secretions of nerve growth factor and epidermal growth factor in male and female mice at the age of 31 days. Hyperthyroidism was induced by thyroxine (T4) injections (0.4 microgram/g body weight/day) during days 0-6. Littermate control mice were treated with vehicle. T4 treatment did not alter the amounts of protein secreted into saliva but hormone administration induced alteration in the types of protein secreted. T4 treatment decreased the contents of both nerve growth factor and epidermal growth factor secreted into the saliva. A Sephadex G-200 column chromatographic profile revealed the presence of two distinct nerve growth factor immunoreactive peaks, while epidermal growth factor immunoreactivity predominantly eluted as a single low molecular weight form. T4 treatment did not alter the molecular nature of their secretion, but the treatment decreased their contents. These results indicate an impairment in salivary secretion of nerve growth factor and epidermal growth factor long after T4 treatment has been discontinued.

  11. Using hierarchical linear growth models to evaluate protective mechanisms that mediate science achievement

    NASA Astrophysics Data System (ADS)

    von Secker, Clare Elaine

    The study of students at risk is a major topic of science education policy and discussion. Much research has focused on describing conditions and problems associated with the statistical risk of low science achievement among individuals who are members of groups characterized by problems such as poverty and social disadvantage. But outcomes attributed to these factors do not explain the nature and extent of mechanisms that account for differences in performance among individuals at risk. There is ample theoretical and empirical evidence that demographic differences should be conceptualized as social contexts, or collections of variables, that alter the psychological significance and social demands of life events, and affect subsequent relationships between risk and resilience. The hierarchical linear growth models used in this dissertation provide greater specification of the role of social context and the protective effects of attitude, expectations, parenting practices, peer influences, and learning opportunities on science achievement. While the individual influences of these protective factors on science achievement were small, their cumulative effect was substantial. Meta-analysis conducted on the effects associated with psychological and environmental processes that mediate risk mechanisms in sixteen social contexts revealed twenty-two significant differences between groups of students. Positive attitudes, high expectations, and more intense science course-taking had positive effects on achievement of all students, although these factors were not equally protective in all social contexts. In general, effects associated with authoritative parenting and peer influences were negative, regardless of social context. An evaluation comparing the performance and stability of hierarchical linear growth models with traditional repeated measures models is included as well.

  12. Fibroblast growth factor receptors in breast cancer.

    PubMed

    Wang, Shuwei; Ding, Zhongyang

    2017-05-01

    Fibroblast growth factor receptors are growth factor receptor tyrosine kinases, exerting their roles in embryogenesis, tissue homeostasis, and development of breast cancer. Recent genetic studies have identified some subtypes of fibroblast growth factor receptors as strong genetic loci associated with breast cancer. In this article, we review the recent epidemiological findings and experiment results of fibroblast growth factor receptors in breast cancer. First, we summarized the structure and physiological function of fibroblast growth factor receptors in humans. Then, we discussed the common genetic variations in fibroblast growth factor receptors that affect breast cancer risk. In addition, we also introduced the potential roles of each fibroblast growth factor receptors isoform in breast cancer. Finally, we explored the potential therapeutics targeting fibroblast growth factor receptors for breast cancer. Based on the biological mechanisms of fibroblast growth factor receptors leading to the pathogenesis in breast cancer, targeting fibroblast growth factor receptors may provide new opportunities for breast cancer therapeutic strategies.

  13. Localized delivery of growth factors for periodontal tissue regeneration: role, strategies, and perspectives.

    PubMed

    Chen, Fa-Ming; Shelton, Richard M; Jin, Yan; Chapple, Iain L C

    2009-05-01

    Difficulties associated with achieving predictable periodontal regeneration, means that novel techniques need to be developed in order to regenerate the extensive soft and hard tissue destruction that results from periodontitis. Localized delivery of growth factors to the periodontium is an emerging and versatile therapeutic approach, with the potential to become a powerful tool in future regenerative periodontal therapy. Optimized delivery regimes and well-defined release kinetics appear to be logical prerequisites for safe and efficacious clinical application of growth factors and to avoid unwanted side effects and toxicity. While adequate concentrations of growth factor(s) need to be appropriately localized, delivery vehicles are also expected to possess properties such as protein protection, precision in controlled release, biocompatibility and biodegradability, self-regulated therapeutic activity, potential for multiple delivery, and good cell/tissue penetration. Here, current knowledge, recent advances, and future possibilities of growth factor delivery strategies are outlined for periodontal regeneration. First, the role of those growth factors that have been implicated in the periodontal healing/regeneration process, general requirements for their delivery, and the different material types available are described. A detailed discussion follows of current strategies for the selection of devices for localized growth factor delivery, with particular emphasis placed upon their advantages and disadvantages and future prospects for ongoing studies in reconstructing the tooth supporting apparatus.

  14. Liposomal gene transfer of keratinocyte growth factor improves wound healing by altering growth factor and collagen expression.

    PubMed

    Pereira, Clifford T; Herndon, David N; Rocker, Roland; Jeschke, Marc G

    2007-05-15

    Growth factors affect the complex cascade of wound healing; however, interaction between different growth factors during dermal and epidermal regeneration are still not entirely defined. In the present study, we thought to determine the interaction between keratinocyte growth factor (KGF) administered as liposomal cDNA with other dermal and epidermal growth factors and collagen synthesis in an acute wound. Rats received an acute wound and were divided into two groups to receive weekly subcutaneous injections of liposomes plus the Lac-Z gene (0.22 microg, vehicle), or liposomes plus the KGF cDNA (2.2 microg) and Lac-Z gene (0.22 microg). Histological and immunohistochemical techniques were used to determine growth factor, collagen expression, and dermal and epidermal structure. KGF cDNA increased insulin-like growth factor-I (IGF-I), insulin-like growth factor binding protein-3 (IGFBP-3), and fibroblast growth factor (FGF), decreased transforming growth factor-beta (TGF-beta), while it had no effect on platelet-derived growth factor (PDGF) levels in the wound. KGF cDNA significantly increased collagen Type IV at both the wound edge as well as the wound bed, while it had no effect on collagen Type I and III. KGF cDNA increased re-epithelialization, improved dermal regeneration, and increased neovascularization. Exogenous administered KGF cDNA causes increases in IGF-I, IGF-BP3, FGF, and collagen IV and decreases TGF-beta concentration. KGF gene transfer accelerates wound healing without causing an increase in collagen I or III.

  15. Prohormone convertase and autocrine growth factor mRNAs are coexpressed in small cell lung carcinoma.

    PubMed

    Rounseville, M P; Davis, T P

    2000-08-01

    A hallmark of small cell lung carcinoma (SCLC) is the expression of autocrine growth factors such as neurotensin and gastrin-releasing peptide, which bind to cellular receptors and stimulate cell division. The biological activity of autocrine growth factors requires the concurrent expression of prohormone convertases that cleave the growth factors to their active form, suggesting the expression of these genes is linked in SCLCs. RNase protection assays were used to detect the expression of autocrine growth factor and prohormone convertase mRNAs in a panel of lung cancer cell lines. These mRNAs are coexpressed in SCLC and lung carcinoid cell lines, but not in normal lung epithelium or in non-small cell lung cancers. These findings, together with earlier results from our laboratory, suggest the expression of prohormone convertases has an important role in the development and maintenance of the SCLC phenotype and that autocrine growth factor and prohormone convertase genes respond to a common transcriptional activator in SCLC.

  16. PCPA protects against monocrotaline-induced pulmonary arterial remodeling in rats: potential roles of connective tissue growth factor.

    PubMed

    Bai, Yang; Li, Zhong-Xia; Zhao, Yue-Tong; Liu, Mo; Wang, Yun; Lian, Guo-Chao; Zhao, Qi; Wang, Huai-Liang

    2017-12-19

    The purpose of this study was to investigate the mechanism of monocrotaline (MCT)-induced pulmonary artery hypertension (PAH) and determine whether 4-chloro-DL-phenylalanine (PCPA) could inhibit pulmonary arterial remodeling associated with connective tissue growth factor (CTGF) expression and downstream signal pathway. MCT was administered to forty Sprague Dawley rats to establish the PAH model. PCPA was administered at doses of 50 and 100 mg/kg once daily for 3 weeks via intraperitoneal injection. On day 22, the pulmonary arterial pressure (PAP), right ventricle hypertrophy index (RVI) and pulmonary artery morphology were assessed and the serotonin receptor-1B (SR-1B), CTGF, p-ERK/ERK were measured by western blot or immunohistochemistry. The concentration of serotonin in plasma was checked by ELISA. Apoptosis and apoptosis-related indexes were detected by TUNEL and western blot. In the MCT-induced PAH models, the PAP, RVI, pulmonary vascular remodeling, SR-1B index, CTGF index, anti-apoptotic factors bcl-xl and bcl-2, serotonin concentration in plasma were all increased and the pro-apoptotic factor caspase-3 was reduced. PCPA significantly ameliorated pulmonary arterial remodeling induced by MCT, and this action was associated with accelerated apoptosis and down-regulation of CTGF, SR-1B and p-ERK/ERK. The present study suggests that PCPA protects against the pathogenesis of PAH by suppressing remodeling and inducing apoptosis, which are likely associated with CTGF and downstream ERK signaling pathway in rats.

  17. LRP1 protects the vasculature by regulating levels of connective tissue growth factor and HtrA1.

    PubMed

    Muratoglu, Selen C; Belgrave, Shani; Hampton, Brian; Migliorini, Mary; Coksaygan, Turhan; Chen, Ling; Mikhailenko, Irina; Strickland, Dudley K

    2013-09-01

    Low-density lipoprotein receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that is abundant in vascular smooth muscle cells. Mice in which the lrp1 gene is deleted in smooth muscle cells (smLRP1(-/-)) on a low-density lipoprotein receptor-deficient background display excessive platelet derived growth factor-signaling, smooth muscle cell proliferation, aneurysm formation, and increased susceptibility to atherosclerosis. The objectives of the current study were to examine the potential of LRP1 to modulate vascular physiology under nonatherogenic conditions. We found smLRP1(-/-) mice to have extensive in vivo aortic dilatation accompanied by disorganized and degraded elastic lamina along with medial thickening of the arterial vessels resulting from excess matrix deposition. Surprisingly, this was not attributable to excessive platelet derived growth factor-signaling. Rather, quantitative differential proteomic analysis revealed that smLRP1(-/-) vessels contain a 4-fold increase in protein levels of high-temperature requirement factor A1 (HtrA1), which is a secreted serine protease that is known to degrade matrix components and to impair elastogenesis, resulting in fragmentation of elastic fibers. Importantly, our study discovered that HtrA1 is a novel LRP1 ligand. Proteomics analysis also identified excessive accumulation of connective tissue growth factor, an LRP1 ligand and a key mediator of fibrosis. Our findings suggest a critical role for LRP1 in maintaining the integrity of vessels by regulating protease activity as well as matrix deposition by modulating HtrA1 and connective tissue growth factor protein levels. This study highlights 2 new molecules, connective tissue growth factor and HtrA1, which contribute to detrimental changes in the vasculature and, therefore, represent new target molecules for potential therapeutic intervention to maintain vessel wall homeostasis.

  18. New microbial growth factor

    NASA Technical Reports Server (NTRS)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  19. Immobilization and Application of Electrospun Nanofiber Scaffold-based Growth Factor in Bone Tissue Engineering.

    PubMed

    Chen, Guobao; Lv, Yonggang

    2015-01-01

    Electrospun nanofibers have been extensively used in growth factor delivery and regenerative medicine due to many advantages including large surface area to volume ratio, high porosity, excellent loading capacity, ease of access and cost effectiveness. Their relatively large surface area is helpful for cell adhesion and growth factor loading, while storage and release of growth factor are essential to guide cellular behaviors and tissue formation and organization. In bone tissue engineering, growth factors are expected to transmit signals that stimulate cellular proliferation, migration, differentiation, metabolism, apoptosis and extracellular matrix (ECM) deposition. Bolus administration is not always an effective method for the delivery of growth factors because of their rapid diffusion from the target site and quick deactivation. Therefore, the integration of controlled release strategy within electrospun nanofibers can provide protection for growth factors against in vivo degradation, and can manipulate desired signal at an effective level with extended duration in local microenvironment to support tissue regeneration and repair which normally takes a much longer time. In this review, we provide an overview of growth factor delivery using biomimetic electrospun nanofiber scaffolds in bone tissue engineering. It begins with a brief introduction of different kinds of polymers that were used in electrospinning and their applications in bone tissue engineering. The review further focuses on the nanofiber-based growth factor delivery and summarizes the strategies of growth factors loading on the nanofiber scaffolds for bone tissue engineering applications. The perspectives on future challenges in this area are also pointed out.

  20. Factors That Influence Language Growth.

    ERIC Educational Resources Information Center

    McCarthy, Dorothea, Ed.; And Others

    This booklet contains four articles that discuss factors influencing language growth. The first, "The Child's Equipment for Language Growth" by Charlotte Wells, examines what the child needs for language learning, how the child uses his equipment for language growth, and what school factors facilitate the child's use of his equipment for language…

  1. Haplotypes of heparin-binding epidermal-growth-factor-like growth factor gene are associated with pre-eclampsia.

    PubMed

    Harendra, Galhenagey Gayani; Jayasekara, Rohan W; Dissanayake, Vajira H W

    2012-01-01

    Heparin-binding epidermal-growth-factor-like growth factor (HBEGF) plays an important role in placentation, including impaired placentation, the primary defect seen in pre-eclampsia. We carried out a case-control disease-association study to examine the association of single nucleotide polymorphisms (SNP) in the HBEGF gene and haplotypes defined by them with pre-eclampsia in a Sinhalese population in Sri Lanka. A total of 175 women with pre-eclampsia and 171 matched normotensive controls were genotyped for six SNP selected in silico as having putative functional effects using mass array Sequenom iplex methodology and a newly designed polymerase chain reaction-restriction fragment length polymorphism assay. The individual SNP were not associated with pre-eclampsia. The haplotypes defined by them, however, showed both predisposing (rs13385T,rs2074613G,rs2237076G,rs2074611C,rs4150196A,rs1862176A; odds ratio,1.65; 95% confidence interval1.04-2.60; P=0.032) and protective (rs13385C,rs2074613G,rs2237076A,rs2074611C,rs4150196A,rs1862176A; odds ratio,0.20; 95% confidence interval, 0.04-0.89; P=0.034) effects. These results confirm that polymorphisms in the HGEGF gene are associated with pre-eclampsia. The haplotypes are likely to exert their effects through the numerous transcription regulation factors binding to the polymorphic sites, namely GATA-1, GATA-3, MZF-1 and AML-1a. © 2011 The Authors. Journal of Obstetrics and Gynaecology Research © 2011 Japan Society of Obstetrics and Gynecology.

  2. FGF growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY; Takahashi, Kazuyuki [Germantown, MD

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  3. Growth factors in porcine full and partial thickness burn repair. Differing targets and effects of keratinocyte growth factor, platelet-derived growth factor-BB, epidermal growth factor, and neu differentiation factor.

    PubMed Central

    Danilenko, D. M.; Ring, B. D.; Tarpley, J. E.; Morris, B.; Van, G. Y.; Morawiecki, A.; Callahan, W.; Goldenberg, M.; Hershenson, S.; Pierce, G. F.

    1995-01-01

    The topical application of recombinant growth factors such as epidermal growth factor, platelet-derived growth factor-BB homodimer (rPDGF-BB), keratinocyte growth factor (rKGF), and neu differentiation factor has resulted in significant acceleration of healing in several animal models of wound repair. In this study, we established highly reproducible and quantifiable full and deep partial thickness porcine burn models in which burns were escharectomized 4 or 5 days postburn and covered with an occlusive dressing to replicate the standard treatment in human burn patients. We then applied these growth factors to assess their efficacy on several parameters of wound repair: extracellular matrix and granulation tissue production, percent reepithelialization, and new epithelial area. In full thickness burns, only rPDGF-BB and the combination of rPDGF-BB and rKGF induced significant changes in burn repair. rPDGF-BB induced marked extracellular matrix and granulation tissue production (P = 0.013) such that the burn defect was filled within several days of escharectomy, but had no effect on new epithelial area or reepithelialization. The combination of rPDGF-BB and rKGF in full thickness burns resulted in a highly significant increase in extracellular matrix and granulation tissue area (P = 0.0009) and a significant increase in new epithelial area (P = 0.007), but had no effect on reepithelialization. In deep partial thickness burns, rKGF induced the most consistent changes. Daily application of rKGF induced a highly significant increase in new epithelial area (P < 0.0001) but induced only a modest increase in reepithelialization (83.7% rKGF-treated versus 70.2% control; P = 0.016) 12 days postburn. rKGF also doubled the number of fully reepithelialized burns (P = 0.02) at 13 days postburn, at least partially because of marked stimulation of both epidermal and follicular proliferation as assessed by proliferating cell nuclear antigen expression. In situ hybridization for

  4. Regulation of Transforming Growth Factor β1, Platelet-Derived Growth Factor, and Basic Fibroblast Growth Factor by Silicone Gel Sheeting in Early-Stage Scarring.

    PubMed

    Choi, Jaehoon; Lee, Eun Hee; Park, Sang Woo; Chang, Hak

    2015-01-01

    Hypertrophic scars and keloids are associated with abnormal levels of growth factors. Silicone gel sheets are effective in treating and preventing hypertrophic scars and keloids. There has been no report on the change in growth factors in the scar tissue following the use of silicone gel sheeting for scar prevention. A prospective controlled trial was performed to evaluate whether growth factors are altered by the application of a silicone gel sheet on a fresh surgical scar. Four of seven enrolled patients completed the study. Transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF), and basic fibroblast growth factor (bFGF) were investigated immunohistochemically in biopsies taken from five scars at 4 months following surgery. In both the epidermis and the dermis, the expression of TGF-β1 (P=0.042 and P=0.042) and PDGF (P=0.043 and P=0.042) was significantly lower in the case of silicone gel sheet-treated scars than in the case of untreated scars. The expression of bFGF in the dermis was significantly higher in the case of silicone gel sheet-treated scars than in the case of untreated scars (P=0.042), but in the epidermis, the expression of bFGF showed no significant difference between the groups (P=0.655). The levels of TGF-β1, PDGF, and bFGF are altered by the silicone gel sheet treatment, which might be one of the mechanisms of action in scar prevention.

  5. Growth/differentiation factor-11: an evolutionary conserved growth factor in vertebrates.

    PubMed

    Funkenstein, Bruria; Olekh, Elena

    2010-11-01

    Growth and differentiation factor-11 (GDF-11) is a member of the transforming growth factor-β superfamily and is thought to be derived together with myostatin (known also as GDF-8) from an ancestral gene. In the present study, we report the isolation and characterization of GDF-11 homolog from a marine teleost, the gilthead sea bream Sparus aurata, and show that this growth factor is highly conserved throughout vertebrates. Using bioinformatics, we identified GDF-11 in Tetraodon, Takifugu, medaka, and stickleback and found that they are highly conserved at the amino acid sequence as well as gene organization. Moreover, we found conservation of syntenic relationships among vertebrates in the GDF-11 locus. Transcripts for GDF-11 can be found in eggs and early embryos, albeit at low levels, while in post-hatching larvae expression levels are high and decreases as development progresses, suggesting that GDF-11 might have a role during early development of fish as found in tetrapods and zebrafish. Finally, GDF-11 is expressed in various tissues in the adult fish including muscle, brain, and eye.

  6. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    PubMed

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Insulin-Like Growth Factor and Epidermal Growth Factor Signaling in Breast Cancer Cell Growth: Focus on Endocrine Resistant Disease

    PubMed Central

    Berdiaki, Aikaterini; Tzardi, Maria

    2015-01-01

    Breast cancer is the most common type of cancer for women worldwide with a lifetime risk amounting to a staggering total of 10%. It is well established that the endogenous synthesis of insulin-like growth factor (IGF) and epidermal growth factor (EGF) polypeptide growth factors are closely correlated to malignant transformation and all the steps of the breast cancer metastatic cascade. Numerous studies have demonstrated that both estrogens and growth factors stimulate the proliferation of steroid-dependent tumor cells, and that the interaction between these signaling pathways occurs at several levels. Importantly, the majority of breast cancer cases are estrogen receptor- (ER-) positive which have a more favorable prognosis and pattern of recurrence with endocrine therapy being the backbone of treatment. Unfortunately, the majority of patients progress to endocrine therapy resistant disease (acquired resistance) whereas a proportion of patients may fail to respond to initial therapy (de novo resistance). The IGF-I and EGF downstream signaling pathways are closely involved in the process of progression to therapy resistant disease. Modifications in the bioavailability of these growth factors contribute critically to disease progression. In the present review therefore, we will discuss in depth how IGF and EGF signaling participate in breast cancer pathogenesis and progression to endocrine resistant disease. PMID:26258011

  8. Insulin-like growth factor I (IGF-1) Ec/Mechano Growth factor--a splice variant of IGF-1 within the growth plate.

    PubMed

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation.

  9. Growth factors for nanobacteria

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Kajander, E. Olavi

    1999-12-01

    Nanobacteria are novel microorganisms recently isolated from fetal bovine serum and blood of cows and humans. These coccoid, gram negative bacteria in alpha-2 subgroup of Proteobacteria grow slowly under mammalian cell culture conditions but not in common media for microbes. Now we have found two different kinds of culture supplement preparations that improve their growth and make them culturable in the classical sense. These are supernatant fractions of conditioned media obtained from 1 - 3 months old nanobacteria cultures and from about a 2 weeks old Bacillus species culture. Both improved multiplication and particle yields and the latter increased their resistance to gentamicin. Nanobacteria cultured with any of the methods shared similar immunological property, structure and protein pattern. The growth supporting factors were heat-stabile and nondialyzable, and dialysis improved the growth promoting action. Nanobacteria formed stony colonies in a bacteriological medium supplemented with the growth factors. This is an implication that nanobacterial growth is influenced by pre-existing bacterial flora.

  10. Research on growth factors in periodontology.

    PubMed

    Smith, Patricio C; Martínez, Constanza; Cáceres, Mónica; Martínez, Jorge

    2015-02-01

    Growth factors play critical roles in periodontal repair through the regulation of cell behavior. Many of the cell responses regulated by these proteins include cell adhesion, migration, proliferation and differentiation. Periodontal regeneration involves an organized response of different cells, tissues and growth factors implicated in the coordination of these events. However, periodontal tissue reconstruction is an extremely difficult task. Multiple studies have been performed to understand the specific role of growth factors in periodontal wound healing. In the present review we analyze the evidence that supports the roles of growth factors in periodontal wound healing and regeneration. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  12. Basic fibroblast growth factor protects against influenza A virus-induced acute lung injury by recruiting neutrophils.

    PubMed

    Wang, Keyu; Lai, Chengcai; Li, Tieling; Wang, Cheng; Wang, Wei; Ni, Bing; Bai, Changqing; Zhang, Shaogeng; Han, Lina; Gu, Hongjing; Zhao, Zhongpeng; Duan, Yueqiang; Yang, Xiaolan; Xing, Li; Zhao, Lingna; Zhou, Shanshan; Xia, Min; Jiang, Chengyu; Wang, Xiliang; Yang, Penghui

    2017-11-07

    Influenza virus (IAV) infection is a major cause of severe respiratory illness that affects almost every country in the world. IAV infections result in respiratory illness and even acute lung injury and death, but the underlying mechanisms responsible for IAV pathogenesis have not yet been fully elucidated. In this study, the basic fibroblast growth factor 2 (FGF2) level was markedly increased in H1N1 virus-infected humans and mice. FGF2, which is predominately derived from epithelial cells, recruits and activates neutrophils via the FGFR2-PI3K-AKT-NFκB signaling pathway. FGF2 depletion or knockout exacerbated influenza-associated disease by impairing neutrophil recruitment and activation. More importantly, administration of the recombinant FGF2 protein significantly alleviated the severity of IAV-induced lung injury and promoted the survival of IAV-infected mice. Based on the results from experiments in which neutrophils were depleted and adoptively transferred, FGF2 protected mice against IAV infection by recruiting neutrophils. Thus, FGF2 plays a critical role in preventing IAV-induced lung injury, and FGF2 is a promising potential therapeutic target during IAV infection. © The Author (2017). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  13. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    PubMed

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  14. Prompt Radiation Protection Factors

    DTIC Science & Technology

    2018-02-01

    dimensional Monte-Carlo radiation transport code MCNP (Monte Carlo N-Particle) and the evaluation of the protection factors (ratio of dose in the open to...radiation was performed using the three dimensional Monte- Carlo radiation transport code MCNP (Monte Carlo N-Particle) and the evaluation of the protection...by detonation of a nuclear device have placed renewed emphasis on evaluation of the consequences in case of such an event. The Defense Threat

  15. The Influence of Platelet-Derived Growth Factor and Fibroblast Growth Factor 2 on Oligodendrocyte Development and Remyelination

    DTIC Science & Technology

    2004-01-01

    OLIGODENDROCYTE DEVELOPMENT AND REMYELINATION 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e...Z39-18 ABSTRACT Title: THE INFLUENCE OF PLATELET-DERIVED GROWTH FACTOR AND FIBROBLAST GROWTH FACTOR 2 ON OLIGODENDROCYTE DEVELOPMENT AND...GROWTH FACTOR 2 ON OLIGODENDROCYTE DEVELOPMENT AND REMYELINATION by Joshua C. Murtie Thesis/dissertation submitted to the

  16. Insulin-Like Growth Factor I (IGF-1) Ec/Mechano Growth Factor – A Splice Variant of IGF-1 within the Growth Plate

    PubMed Central

    Schlegel, Werner; Raimann, Adalbert; Halbauer, Daniel; Scharmer, Daniela; Sagmeister, Susanne; Wessner, Barbara; Helmreich, Magdalena; Haeusler, Gabriele; Egerbacher, Monika

    2013-01-01

    Human insulin-like growth factor 1 Ec (IGF-1Ec), also called mechano growth factor (MGF), is a splice variant of insulin-like growth factor 1 (IGF-1), which has been shown in vitro as well as in vivo to induce growth and hypertrophy in mechanically stimulated or damaged muscle. Growth, hypertrophy and responses to mechanical stimulation are important reactions of cartilaginous tissues, especially those in growth plates. Therefore, we wanted to ascertain if MGF is expressed in growth plate cartilage and if it influences proliferation of chondrocytes, as it does in musculoskeletal tissues. MGF expression was analyzed in growth plate and control tissue samples from piglets aged 3 to 6 weeks. Furthermore, growth plate chondrocyte cell culture was used to evaluate the effects of the MGF peptide on proliferation. We showed that MGF is expressed in considerable amounts in the tissues evaluated. We found the MGF peptide to be primarily located in the cytoplasm, and in some instances, it was also found in the nucleus of the cells. Addition of MGF peptides was not associated with growth plate chondrocyte proliferation. PMID:24146828

  17. Growth factor transgenes interactively regulate articular chondrocytes.

    PubMed

    Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2013-04-01

    Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair. Copyright © 2012 Wiley Periodicals, Inc.

  18. Prevention of early postnatal hyperalimentation protects against activation of transforming growth factor-β/bone morphogenetic protein and interleukin-6 signaling in rat lungs after intrauterine growth restriction.

    PubMed

    Alcázar, Miguel Angel Alejandre; Dinger, Katharina; Rother, Eva; Östreicher, Iris; Vohlen, Christina; Plank, Christian; Dötsch, Jörg

    2014-12-01

    Intrauterine growth restriction (IUGR) is intimately linked with postnatal catch-up growth, leading to impaired lung structure and function. However, the impact of catch-up growth induced by early postnatal hyperalimentation (HA) on the lung has not been addressed to date. The aim of this study was to investigate whether prevention of HA subsequent to IUGR protects the lung from 1) deregulation of the transforming growth factor-β(TGF-β)/bone morphogenetic protein (BMP) pathway, 2) activation of interleukin (IL)-6 signaling, and 3) profibrotic processes. IUGR was induced in Wistar rats by isocaloric protein restriction during gestation by feeding a control (Co) or a low-protein diet with 17% or 8% casein, respectively. On postnatal day 1 (P1), litters from both groups were randomly reduced to 6 pups per dam to induce HA or adjusted to 10 pups and fed with standard diet: Co, Co with HA (Co-HA), IUGR, and IUGR with HA (IUGR-HA). Birth weights in rats after IUGR were lower than in Co rats (P < 0.05). HA during lactation led to accelerated body weight gain from P1 to P23 (Co vs. Co-HA, IUGR vs. IUGR-HA; P < 0.05). At P70, prevention of HA after IUGR protected against the following: 1) activation of both TGF-β [phosphorylated SMAD (pSMAD) 2; plasminogen activator inhibitor 1 (Pai1)] and BMP signaling [pSMAD1; inhibitor of differentiation (Id1)] compared with Co (P < 0.05) and Co or IUGR (P < 0.05) rats, respectively; 2) greater mRNA expression of interleukin (Il) 6 and Il13 (P < 0.05) as well as activation of signal transducer and activator of transcription 3 (STAT3) signaling (P < 0.05) after IUGR-HA; and 3) greater gene expression of collagen Iα1 and osteopontin (P < 0.05) and increased deposition of bronchial subepithelial connective tissue in IUGR-HA compared with Co and IUGR rats. Moreover, HA had a significant additive effect (P < 0.05) on the increased enhanced pause (indicator of airway resistance) in the IUGR group (P < 0.05) at P70. This study demonstrates

  19. Can we protect the gut in critical illness? The role of growth factors and other novel approaches.

    PubMed

    Dominguez, Jessica A; Coopersmith, Craig M

    2010-07-01

    The intestine plays a central role in the pathophysiology of critical illness and is frequently called the "motor" of the systemic inflammatory response. Perturbations to the intestinal barrier can lead to distant organ damage and multiple organ failure. Therefore, identifying ways to preserve intestinal integrity may be of paramount importance. Growth factors and other peptides have emerged as potential tools for modulation of intestinal inflammation and repair due to their roles in cellular proliferation, differentiation, migration, and survival. This review examines the involvement of growth factors and other peptides in intestinal epithelial repair during critical illness and their potential use as therapeutic targets. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.

    Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloidmore » fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.« less

  1. [Ischemic brain injury and hepatocyte growth factor].

    PubMed

    Takeo, Satoshi; Takagi, Norio; Takagi, Keiko

    2007-11-01

    Cerebral ischemia causes an irreversible and neurodegenerative disorder that may lead to progressive dementia and global cognitive deterioration. Since the overall process of ischemic brain injuries is extremely complex, treatment with endogenous multifunctional factors would be better choices for preventing complicated ischemic brain injuries. Hepatocyte growth factor, HGF, is a multifunctional cytokine originally identified and purified as a potent mitogen for hepatocyte. The activation of the c-Met/HGF receptor evokes diverse cellular responses, including mitogenic, morphogenic, angiogenic and anti-apoptotic activities in various types of cell. Previous studies showed that HGF and c-Met were expressed in various brain regions under normal conditions and that HGF enhanced the survival of hippocampal and cortical neurons during the aging of cells in culture. The protective effects of HGF on in vivo ischemic brain injuries and their mechanisms have not fully understood. To elucidate therapeutic potencies of HGF for ischemic brain injuries, we examined effects of HGF on ischemia-induced learning and memory dysfunction, neuronal cell death and endothelial cell damage by using the 4-vessel occlusion model and the microsphere embolism model in rats. Our findings suggested that treatment with HGF was capable of protecting hippocampal neurons against ischemia-induced cell death through the prevention of apoptosis-inducing factor translocation to the nucleus. Furthermore, we demonstrated that HGF had the ability to prevent tissue degeneration and improved learning and memory function after cerebral embolism, possibly through prevention of cerebral vessel injuries. As HGF has a potent cerebroprotective effect, it could be a prospective agent for the therapy against complicated ischemic brain diseases.

  2. Housing growth in and near United States protected areas limits their conservation value

    USGS Publications Warehouse

    Radeloff, V.C.; Stewart, S.I.; Hawbaker, T.J.; Gimmi, U.; Pidgeon, A.M.; Flather, C.H.; Hammer, R.B.; Helmers, D.P.

    2010-01-01

    Protected areas are crucial for biodiversity conservation because they provide safe havens for species threatened by land-use change and resulting habitat loss. However, protected areas are only effective when they stop habitat loss within their boundaries, and are connected via corridors to other wild areas. The effectiveness of protected areas is threatened by development; however, the extent of this threat is unknown. We compiled spatially-detailed housing growth data from 1940 to 2030, and quantified growth for each wilderness area, national park, and national forest in the conterminous United States. Our findings show that housing development in the United States may severely limit the ability of protected areas to function as a modern "Noah's Ark." Between 1940 and 2000, 28 million housing units were built within 50 km of protected areas, and 940,000 were built within national forests. Housing growth rates during the 1990s within 1 km of protected areas (20% per decade) outpaced the national average (13%). If long-term trends continue, another 17 million housing units will be built within 50 km of protected areas by 2030 (1 million within 1 km), greatly diminishing their conservation value. US protected areas are increasingly isolated, housing development in their surroundings is decreasing their effective size, and national forests are even threatened by habitat loss within their administrative boundaries. Protected areas in the United States are thus threatened similarly to those in developing countries. However, housing growth poses the main threat to protected areas in the United States whereas deforestation is the main threat in developing countries.

  3. Housing growth in and near United States protected areas limits their conservation value.

    PubMed

    Radeloff, Volker C; Stewart, Susan I; Hawbaker, Todd J; Gimmi, Urs; Pidgeon, Anna M; Flather, Curtis H; Hammer, Roger B; Helmers, David P

    2010-01-12

    Protected areas are crucial for biodiversity conservation because they provide safe havens for species threatened by land-use change and resulting habitat loss. However, protected areas are only effective when they stop habitat loss within their boundaries, and are connected via corridors to other wild areas. The effectiveness of protected areas is threatened by development; however, the extent of this threat is unknown. We compiled spatially-detailed housing growth data from 1940 to 2030, and quantified growth for each wilderness area, national park, and national forest in the conterminous United States. Our findings show that housing development in the United States may severely limit the ability of protected areas to function as a modern "Noah's Ark." Between 1940 and 2000, 28 million housing units were built within 50 km of protected areas, and 940,000 were built within national forests. Housing growth rates during the 1990s within 1 km of protected areas (20% per decade) outpaced the national average (13%). If long-term trends continue, another 17 million housing units will be built within 50 km of protected areas by 2030 (1 million within 1 km), greatly diminishing their conservation value. US protected areas are increasingly isolated, housing development in their surroundings is decreasing their effective size, and national forests are even threatened by habitat loss within their administrative boundaries. Protected areas in the United States are thus threatened similarly to those in developing countries. However, housing growth poses the main threat to protected areas in the United States whereas deforestation is the main threat in developing countries.

  4. Protective Factors Against Depression and Suicidal Behaviour in Adolescence

    PubMed Central

    Breton, Jean-Jacques; Labelle, Réal; Berthiaume, Claude; Royer, Chantal; St-Georges, Marie; Ricard, Dominique; Abadie, Pascale; Gérardin, Priscille; Cohen, David; Guilé, Jean-Marc

    2015-01-01

    Objectives: To examine whether protective factors in the Protection for Adolescent Depression Study (PADS) moderate the impact of stressful events on depression and suicidal behaviour in the community and a clinical setting; and to study the influence of sex. Method: Participants were 283 adolescents from the community and 119 from a mood disorder clinic in Montreal. The participants were evaluated on 6 instruments measuring individual risk and protective factors. Descriptive analyses and univariate and multiple logistic regression models were carried out. Results: Risk factors predicted higher levels of depression and presence of suicidal behaviour, and protective factors predicted lower levels of depression and absence of suicidal behaviour, as expected under the vulnerability-resilience stress model. Several sex differences were observed in terms of the predictive power of risk factors (for example, hopelessness among girls and keep to themselves among boys) and protective factors (for example, focusing on the positive among girls and self-discovery among boys). Conclusions: Findings from the PADS suggest that protective factors moderate the impact of stress on depression and suicidal behaviour. Developing protection appears important in the presence of chronic conditions, such as depressive disorders, to reduce the likelihood of further episodes. The influence of sex makes it all the more relevant to target different factors for boys and girls to increase protection and decrease risk in prevention and intervention programs. PMID:25886672

  5. Role of epidermal growth factor and transforming growth factor α in the developing stomach

    PubMed Central

    Kelly, E; Newell, S; Brownlee, K; Farmery, S; Cullinane, C; Reid, W; Jackson, P; Gray, S; Primrose, J; Lagopoulos, M

    1997-01-01

    AIMS—To determine whether epidermal growth factor (EGF) or the related transforming growth factor α (TGFα) may have a role in the developing human stomach; to substantiate the presence of EGF in human liquor in the non-stressed infant and whether EGF in amniotic fluid is maternally or fetally derived.
METHODS—The temporal expression and localisation of EGF, TGFα, and their receptors during fetal and neonatal life were examined in 20 fetal and five infant stomachs. Simultaneously, samples of amniotic fluid and fetal urine from 10 newborn infants were collected and assayed for EGF by radioimmunoassay.
RESULTS—EGF immunoreactivity was not noted in any of the specimens examined. In contrast, TGFα immunoreactivity was shown in mucous cells from 18 weeks of gestation onwards. EGF receptor immunoreactivity was seen on superficial mucous cells in gastric mucosa from 18 weeks of gestation onwards. The median concentration of EGF was 30 and 8.5 pg/ml in amniotic fluid and fetal urine, respectively, suggesting that EGF is not produced by the fetus.
CONCLUSIONS—This study adds weight to the hypothesis that swallowed EGF, probably produced by the amniotic membranes, and locally produced TGFα, may have a role in the growth and maturation of the human stomach.

 Keywords: epidermal growth factor; transforming growth factor α; EGF receptors; stomach PMID:9175944

  6. Protective effects of melittin on transforming growth factor-{beta}1 injury to hepatocytes via anti-apoptotic mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun

    Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-{beta}1-induced apoptosis in hepatocytes. TGF-{beta}1-treated hepatocytesmore » were exposed to low doses (0.5 and 1 {mu}g/mL) and high dose (2 {mu}g/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-{beta}1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-{beta}1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-{beta}1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-{beta}1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-{beta}1-mediated injury. - Highlights: > We investigated the anti-apoptotic effect of melittin on TGF-{beta}1-induced hepatocyte. > TGF-{beta}1 induces hepatocyte apoptosis. > TGF-{beta}1-treated hepatocytes were exposed to low doses and high dose of melittin. > Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.« less

  7. Housing growth in and near United States protected areas limits their conservation value

    PubMed Central

    Radeloff, Volker C.; Stewart, Susan I.; Hawbaker, Todd J.; Gimmi, Urs; Pidgeon, Anna M.; Flather, Curtis H.; Hammer, Roger B.; Helmers, David P.

    2009-01-01

    Protected areas are crucial for biodiversity conservation because they provide safe havens for species threatened by land-use change and resulting habitat loss. However, protected areas are only effective when they stop habitat loss within their boundaries, and are connected via corridors to other wild areas. The effectiveness of protected areas is threatened by development; however, the extent of this threat is unknown. We compiled spatially-detailed housing growth data from 1940 to 2030, and quantified growth for each wilderness area, national park, and national forest in the conterminous United States. Our findings show that housing development in the United States may severely limit the ability of protected areas to function as a modern “Noah’s Ark.” Between 1940 and 2000, 28 million housing units were built within 50 km of protected areas, and 940,000 were built within national forests. Housing growth rates during the 1990s within 1 km of protected areas (20% per decade) outpaced the national average (13%). If long-term trends continue, another 17 million housing units will be built within 50 km of protected areas by 2030 (1 million within 1 km), greatly diminishing their conservation value. US protected areas are increasingly isolated, housing development in their surroundings is decreasing their effective size, and national forests are even threatened by habitat loss within their administrative boundaries. Protected areas in the United States are thus threatened similarly to those in developing countries. However, housing growth poses the main threat to protected areas in the United States whereas deforestation is the main threat in developing countries. PMID:20080780

  8. PreImplantation factor (PIF*) promotes embryotrophic and neuroprotective decidual genes: effect negated by epidermal growth factor.

    PubMed

    Duzyj, Christina M; Paidas, Michael J; Jebailey, Lellean; Huang, Jing Shun; Barnea, Eytan R

    2014-01-01

    Intimate embryo-maternal interaction is paramount for pregnancy success post-implantation. The embryo follows a specific developmental timeline starting with neural system, dependent on endogenous and decidual factors. Beyond altered genetics/epigenetics, post-natal diseases may initiate at prenatal/neonatal, post-natal period, or through a continuum. Preimplantation factor (PIF) secreted by viable embryos promotes implantation and trophoblast invasion. Synthetic PIF reverses neuroinflammation in non-pregnant models. PIF targets embryo proteins that protect against oxidative stress and protein misfolding. We report of PIF's embryotrophic role and potential to prevent developmental disorders by regulating uterine milieu at implantation and first trimester. PIF's effect on human implantation (human endometrial stromal cells (HESC)) and first-trimester decidua cultures (FTDC) was examined, by global gene expression (Affymetrix), disease-biomarkers ranking (GeneGo), neuro-specific genes (Ingenuity) and proteins (mass-spectrometry). PIF co-cultured epidermal growth factor (EGF) in both HESC and FTDC (Affymetrix) was evaluated. In HESC, PIF promotes neural differentiation and transmission genes (TLX2, EPHA10) while inhibiting retinoic acid receptor gene, which arrests growth. PIF promotes axon guidance and downregulates EGF-dependent neuroregulin signaling. In FTDC, PIF promotes bone morphogenetic protein pathway (SMAD1, 53-fold) and axonal guidance genes (EPH5) while inhibiting PPP2R2C, negative cell-growth regulator, involved in Alzheimer's and amyotrophic lateral sclerosis. In HESC, PIF affects angiotensin via beta-arrestin, transforming growth factor-beta (TGF-β), notch, BMP, and wingless-int (WNT) signaling pathways that promote neurogenesis involved in childhood neurodevelopmental diseases-autism and also affected epithelial-mesenchymal transition involved in neuromuscular disorders. In FTDC, PIF upregulates neural development and hormone signaling, while

  9. PreImplantation factor (PIF*) promotes embryotrophic and neuroprotective decidual genes: effect negated by epidermal growth factor

    PubMed Central

    2014-01-01

    Background Intimate embryo-maternal interaction is paramount for pregnancy success post-implantation. The embryo follows a specific developmental timeline starting with neural system, dependent on endogenous and decidual factors. Beyond altered genetics/epigenetics, post-natal diseases may initiate at prenatal/neonatal, post-natal period, or through a continuum. Preimplantation factor (PIF) secreted by viable embryos promotes implantation and trophoblast invasion. Synthetic PIF reverses neuroinflammation in non-pregnant models. PIF targets embryo proteins that protect against oxidative stress and protein misfolding. We report of PIF’s embryotrophic role and potential to prevent developmental disorders by regulating uterine milieu at implantation and first trimester. Methods PIF’s effect on human implantation (human endometrial stromal cells (HESC)) and first-trimester decidua cultures (FTDC) was examined, by global gene expression (Affymetrix), disease-biomarkers ranking (GeneGo), neuro-specific genes (Ingenuity) and proteins (mass-spectrometry). PIF co-cultured epidermal growth factor (EGF) in both HESC and FTDC (Affymetrix) was evaluated. Results In HESC, PIF promotes neural differentiation and transmission genes (TLX2, EPHA10) while inhibiting retinoic acid receptor gene, which arrests growth. PIF promotes axon guidance and downregulates EGF-dependent neuroregulin signaling. In FTDC, PIF promotes bone morphogenetic protein pathway (SMAD1, 53-fold) and axonal guidance genes (EPH5) while inhibiting PPP2R2C, negative cell-growth regulator, involved in Alzheimer’s and amyotrophic lateral sclerosis. In HESC, PIF affects angiotensin via beta-arrestin, transforming growth factor-beta (TGF-β), notch, BMP, and wingless-int (WNT) signaling pathways that promote neurogenesis involved in childhood neurodevelopmental diseases—autism and also affected epithelial-mesenchymal transition involved in neuromuscular disorders. In FTDC, PIF upregulates neural development

  10. Low molecular weight fibroblast growth factor-2 signals via protein kinase C and myofibrillar proteins to protect against postischemic cardiac dysfunction.

    PubMed

    Manning, Janet R; Perkins, Sarah O; Sinclair, Elizabeth A; Gao, Xiaoqian; Zhang, Yu; Newman, Gilbert; Pyle, W Glen; Schultz, Jo El J

    2013-05-15

    Among its many biological roles, fibroblast growth factor-2 (FGF2) acutely protects the heart from dysfunction associated with ischemia/reperfusion (I/R) injury. Our laboratory has demonstrated that this is due to the activity of the low molecular weight (LMW) isoform of FGF2 and that FGF2-mediated cardioprotection relies on the activity of protein kinase C (PKC); however, which PKC isoforms are responsible for LMW FGF2-mediated cardioprotection, and their downstream targets, remain to be elucidated. To identify the PKC pathway(s) that contributes to postischemic cardiac recovery by LMW FGF2, mouse hearts expressing only LMW FGF2 (HMWKO) were bred to mouse hearts not expressing PKCα (PKCαKO) or subjected to a selective PKCε inhibitor (εV(1-2)) before and during I/R. Hearts only expressing LMW FGF2 showed significantly improved postischemic recovery of cardiac function following I/R (P < 0.05), which was significantly abrogated in the absence of PKCα (P < 0.05) or presence of PKCε inhibition (P < 0.05). Hearts only expressing LMW FGF2 demonstrated differences in actomyosin ATPase activity as well as increases in the phosphorylation of troponin I and T during I/R compared with wild-type hearts; several of these effects were dependent on PKCα activity. This evidence indicates that both PKCα and PKCε play a role in LMW FGF2-mediated protection from cardiac dysfunction and that PKCα signaling to the contractile apparatus is a key step in the mechanism of LMW FGF2-mediated protection against myocardial dysfunction.

  11. Epidermal growth factor-like growth factors prevent apoptosis of alcohol-exposed human placental cytotrophoblast cells.

    PubMed

    Wolff, Garen S; Chiang, Po Jen; Smith, Susan M; Romero, Roberto; Armant, D Randall

    2007-07-01

    Maternal alcohol abuse during pregnancy can produce an array of birth defects comprising fetal alcohol syndrome. A hallmark of fetal alcohol syndrome is intrauterine growth retardation, which is associated with elevated apoptosis of placental cytotrophoblast cells. Using a human first trimester cytotrophoblast cell line, we examined the relationship between exposure to ethanol and cytotrophoblast survival, as well as the ameliorating effects of epidermal growth factor (EGF)-like growth factors produced by human cytotrophoblast cells. After exposure to 0-100 mM ethanol, cell death was quantified by the TUNEL method, and expression of the nuclear proliferation marker, Ki67, was measured by immunohistochemistry. The mode of cell death was determined by assessing annexin V binding, caspase 3 activation, pyknotic nuclear morphology, reduction of TUNEL by caspase inhibition, and cellular release of lactate dehydrogenase. Ethanol significantly reduced proliferation and increased cell death approximately 2.5-fold through the apoptotic pathway within 1-2 h of exposure to 50 mM alcohol. Exposure to 25-50 mM ethanol significantly increased transforming growth factor alpha (TGFA) and heparin-binding EGF-like growth factor (HBEGF), but not EGF or amphiregulin (AREG). When cytotrophoblasts were exposed concurrently to 100 mM ethanol and 1 nM HBEGF or TGFA, the increase in apoptosis was prevented, while EGF ameliorated at 10 nM and AREG was weakly effective. HBEGF survival-promoting activity required ligation of either of its cognate receptors, HER1 or HER4. These findings reveal the potential for ethanol to rapidly induce cytotrophoblast apoptosis. However, survival factor induction could provide cytotrophoblasts with an endogenous cytoprotective mechanism.

  12. Growth factor and pro-inflammatory cytokine contents in platelet-rich plasma (PRP), plasma rich in growth factors (PRGF), advanced platelet-rich fibrin (A-PRF), and concentrated growth factors (CGF).

    PubMed

    Masuki, Hideo; Okudera, Toshimitsu; Watanebe, Taisuke; Suzuki, Masashi; Nishiyama, Kazuhiko; Okudera, Hajime; Nakata, Koh; Uematsu, Kohya; Su, Chen-Yao; Kawase, Tomoyuki

    2016-12-01

    The development of platelet-rich fibrin (PRF) drastically simplified the preparation procedure of platelet-concentrated biomaterials, such as platelet-rich plasma (PRP), and facilitated their clinical application. PRF's clinical effectiveness has often been demonstrated in pre-clinical and clinical studies; however, it is still controversial whether growth factors are significantly concentrated in PRF preparations to facilitate wound healing and tissue regeneration. To address this matter, we performed a comparative study of growth factor contents in PRP and its derivatives, such as advanced PRF (A-PRF) and concentrated growth factors (CGF). PRP and its derivatives were prepared from the same peripheral blood samples collected from healthy donors. A-PRF and CGF preparations were homogenized and centrifuged to produce extracts. Platelet and white blood cell counts in A-PRF and CGF preparations were determined by subtracting those counts in red blood cell fractions, supernatant acellular serum fractions, and A-PRF/CGF exudate fractions from those counts of whole blood samples. Concentrations of growth factors (TGF-β1, PDGF-BB, VEGF) and pro-inflammatory cytokines (IL-1β, IL-6) were determined using ELISA kits. Compared to PRP preparations, both A-PRF and CGF extracts contained compatible or higher levels of platelets and platelet-derived growth factors. In a cell proliferation assay, both A-PRF and CGF extracts significantly stimulated the proliferation of human periosteal cells without significant reduction at higher doses. These data clearly demonstrate that both A-PRF and CGF preparations contain significant amounts of growth factors capable of stimulating periosteal cell proliferation, suggesting that A-PRF and CGF preparations function not only as a scaffolding material but also as a reservoir to deliver certain growth factors at the site of application.

  13. Inhibitory effects of hepatocyte growth factor and interleukin-6 on transforming growth factor-beta1 mediated vocal fold fibroblast-myofibroblast differentiation.

    PubMed

    Vyas, Bimal; Ishikawa, Keiko; Duflo, Suzy; Chen, Xia; Thibeault, Susan L

    2010-05-01

    The role of myofibroblasts in vocal fold scarring has not been extensively studied, partly because of the lack of a robust in vitro model. The objective of this investigation was to develop and characterize a myofibroblast in vitro model that could be utilized to investigate the molecular mechanism of myofibroblast differentiation and function in injured vocal fold tissue. Differentiation of human primary vocal fold fibroblasts (hVFFs) to myofibroblasts was stimulated with 5, 10, or 20 ng/mL of recombinant transforming growth factor-beta1 (TGF-beta1). Cultures were analyzed by immunofluorescence and Western blotting, with an alpha-smooth muscle actin (alpha-SMA) antibody used as a myofibroblast marker. Normal rabbit vocal folds were treated with 10 ng/mL of TGF-beta1 for 7 days for in vivo corroboration. The effects of interleukin-6 (IL-6) and hepatocyte growth factor (HGF) on myofibroblast differentiation were studied with Western blots. The hVFFs demonstrated positive alpha-SMA labeling in cells stimulated by 10 and 20 ng/mL TGF-beta1, indicating that hVFFs were capable of differentiation to myofibroblasts. Transforming growth factor-beta1 induced the largest increase in alpha-SMA at 10 ng/mL on day 5 of treatment. Both HGF and IL-6 suppressed the expression of TGF-beta1-induced alpha-SMA. Our work characterizes a useful in vitro model of TGF-beta1-mediated vocal fold fibroblast-myofibroblast differentiation. The extent of differentiation appears to be attenuated by HGF, suggesting a potential mechanism to support prior work indicating that HGF plays a protective role in reducing scar formation in vocal fold injuries. Paradoxically, IL-6, which has been shown to play a profibrotic role in dermal studies, also attenuated the TGF-beta1 response.

  14. Mesenchymal stem cells protect podocytes from apoptosis induced by high glucose via secretion of epithelial growth factor

    PubMed Central

    2013-01-01

    Introduction The apoptosis and subsequent injury of podocytes plays a pathogenic role in diabetic nephropathy (DN). Mesenchymal stem cells (MSCs) are promising therapeutic cells for preventing apoptosis and reducing cellular injury. Our previous study found that MSCs could protect kidneys from diabetes-induced injury without obvious engraftment. So we evaluated the effects of human adipose-derived MSCs (hAd-MSCs) on podocytic apoptosis and injury induced by high glucose (HG) and the underlying mechanisms. Methods We used flow cytometry, Western blot and confocal fluorescence microscopy to study podocytic apoptosis and injury induced by HG at 24 hours, 48 hours, and 72 hours in the presence or absence of MSC-conditioned medium (CM). An antibody-based cytokine array was used to identify the mediating factor, which was verified by adding the neutralizing antibody (NtAb) to block its function or adding the recombinant cytokine to the medium to induce its function. Results hAd-MSC-CM reduced podocytic apoptosis in a dose-dependent manner, decreased the expression of podocytic cleaved caspase-3, and prevented the reduced expression and maintained the normal arrangement of podocytic synaptopodin and nephrin. However, human embryonic lung cell (Wi38)-CM failed to ameliorate podocytic apoptosis or injury. Twelve cytokines with concentration ratios (MSC-CM/Wi38-CM) >10-fold were identified. Epithelial growth factor (EGF) was singled out for its known ability to prevent apoptosis. Recombinant human EGF (rhEGF) prevented podocytic apoptosis and injury similarly to hAd-MSC-CM but, upon blockade of EGF, the beneficial effect of hAd-MSC-CM decreased dramatically. Conclusions hAd-MSCs prevent podocytic apoptosis and injury induced by HG, mainly through secreting soluble EG. PMID:24004644

  15. Mesenchymal stem cells protect podocytes from apoptosis induced by high glucose via secretion of epithelial growth factor.

    PubMed

    Li, Diangeng; Wang, Nan; Zhang, Li; Hanyu, Zhu; Xueyuan, Bai; Fu, Bo; Shaoyuan, Cui; Zhang, Weiguang; Xuefeng, Sun; Li, Rongshan; Chen, Xiangmei

    2013-01-01

    The apoptosis and subsequent injury of podocytes plays a pathogenic role in diabetic nephropathy (DN). Mesenchymal stem cells (MSCs) are promising therapeutic cells for preventing apoptosis and reducing cellular injury. Our previous study found that MSCs could protect kidneys from diabetes-induced injury without obvious engraftment. So we evaluated the effects of human adipose-derived MSCs (hAd-MSCs) on podocytic apoptosis and injury induced by high glucose (HG) and the underlying mechanisms. We used flow cytometry, Western blot and confocal fluorescence microscopy to study podocytic apoptosis and injury induced by HG at 24 hours, 48 hours, and 72 hours in the presence or absence of MSC-conditioned medium (CM). An antibody-based cytokine array was used to identify the mediating factor, which was verified by adding the neutralizing antibody (NtAb) to block its function or adding the recombinant cytokine to the medium to induce its function. hAd-MSC-CM reduced podocytic apoptosis in a dose-dependent manner, decreased the expression of podocytic cleaved caspase-3, and prevented the reduced expression and maintained the normal arrangement of podocytic synaptopodin and nephrin. However, human embryonic lung cell (Wi38)-CM failed to ameliorate podocytic apoptosis or injury. Twelve cytokines with concentration ratios (MSC-CM/Wi38-CM) >10-fold were identified. Epithelial growth factor (EGF) was singled out for its known ability to prevent apoptosis. Recombinant human EGF (rhEGF) prevented podocytic apoptosis and injury similarly to hAd-MSC-CM but, upon blockade of EGF, the beneficial effect of hAd-MSC-CM decreased dramatically. hAd-MSCs prevent podocytic apoptosis and injury induced by HG, mainly through secreting soluble EG.

  16. Assessing Protective Factors for Violence Risk in U.K. General Mental Health Services Using the Structured Assessment of Protective Factors.

    PubMed

    Haines, Alina; Brown, Andrew; Javaid, Syed Fahad; Khan, Fayyaz; Noblett, Steve; Omodunbi, Oladipupo; Sadiq, Khurram; Zaman, Wahid; Whittington, Richard

    2017-12-01

    Violence risk assessment and management are key tasks in mental health services and should be guided by validated instruments covering both risk and protective factors. This article is part of an international effort to validate the Structured Assessment of Protective Factors (SAPROF) for violence. The SAPROF, Historical, Clinical, Risk Management-20 (HCR-20) and the Psychopathy Checklist-Screening Version (PCL-SV) were administered in a sample of 261 patients in U.K. forensic, general inpatient, and community mental health settings. There was significant variation between these groups on SAPROF scores with fewer protective factors in the forensic group. The prospective validity of the SAPROF for nonviolence in the general inpatient and community samples was moderate (area under the curve [AUC] = .60). Adoption of the SAPROF or similar instruments as a supplement to risk-focused assessments has the potential to improve awareness of protective factors and enhance therapeutic engagement in a range of mental health services.

  17. Growth factors, muscle function, and doping.

    PubMed

    Goldspink, Geoffrey; Wessner, Barbara; Tschan, Harald; Bachl, Norbert

    2010-03-01

    This article discusses the inevitable use of growth factors for enhancing muscle strength and athletic performance. Much effort has been expended on developing a treatment of muscle wasting associated with a range of diseases and aging. Frailty in the aging population is a major socioeconomic and medical problem. Emerging molecular techniques have made it possible to gain a better understanding of the growth factor genes and how they are activated by physical activity. The ways that misuse of growth factors may be detected and verified in athletes and future challenges for detecting manipulation of signaling pathways are discussed. Copyright 2010. Published by Elsevier Inc.

  18. Growth factors and chronic wound healing: past, present, and future.

    PubMed

    Goldman, Robert

    2004-01-01

    Growth substances (cytokines and growth factors) are soluble signaling proteins affecting the process of normal wound healing. Cytokines govern the inflammatory phase that clears cellular and extracellular matrix debris. Wound repair is controlled by growth factors (platelet-derived growth factor [PDGF], keratinocyte growth factor, and transforming growth factor beta). Endogenous growth factors communicate across the dermal-epidermal interface. PDGF is important for most phases of wound healing. Becaplermin (PDGF-BB), the only growth factor approved by the Food and Drug Administration, requires daily application for neuropathic wound healing. Gene therapy is under development for more efficient growth factor delivery; a single application will induce constitutive growth factor expression for weeks. Based on dramatic preclinical animal studies, a phase 1 clinical trial planned on a PDGF genetic construct appears promising.

  19. Predictive factors for intrauterine growth restriction

    PubMed Central

    Albu, AR; Anca, AF; Horhoianu, VV; Horhoianu, IA

    2014-01-01

    Abstract Reduced fetal growth is seen in about 10% of the pregnancies but only a minority has a pathological background and is known as intrauterine growth restriction or fetal growth restriction (IUGR / FGR). Increased fetal and neonatal mortality and morbidity as well as adult pathologic conditions are often associated to IUGR. Risk factors for IUGR are easy to assess but have poor predictive value. For the diagnostic purpose, biochemical serum markers, ultrasound and Doppler study of uterine and spiral arteries, placental volume and vascularization, first trimester growth pattern are object of assessment today. Modern evaluations propose combined algorithms using these strategies, all with the goal of a better prediction of risk pregnancies. Abbreviations: SGA = small for gestational age; IUGR = intrauterine growth restriction; FGR = fetal growth restriction; IUFD = intrauterine fetal demise; HIV = human immunodeficiency virus; PAPP-A = pregnancy associated plasmatic protein A; β-hCG = beta human chorionic gonadotropin; MoM = multiple of median; ADAM-12 = A-disintegrin and metalloprotease 12; PP-13 = placental protein 13; VEGF = vascular endothelial growth factor; PlGF = placental growth factor; sFlt-1 = soluble fms-like tyrosine kinase-1; UAD = uterine arteries Doppler ultrasound; RI = resistence index; PI = pulsatility index; VOCAL = Virtual Organ Computer–Aided Analysis software; VI = vascularization index; FI = flow index; VFI = vascularization flow index; PQ = placental quotient PMID:25408721

  20. Growth factors and growth factor receptors in the hippocampus. Role in plasticity and response to injury.

    PubMed

    Nieto-Sampedro, M; Bovolenta, P

    1990-01-01

    Various growth factors are present in the hippocampal formation and appear responsible for the prominent plasticity of this brain area. Although hormone-like growth-promoting polypeptides are the best known, recent studies emphasize the importance in the growth response of molecules such as laminin proteoglycans, neurotransmitters and growth inhibitors. The progress and problems in the study of these substances are reviewed.

  1. Engineering growth factors for regenerative medicine applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.

    Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell traffickingmore » behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.« less

  2. Effects of heparin-binding epidermal growth factor-like growth factor on cell repopulation and signal transduction in periodontal ligament cells after scratch wounding in vitro.

    PubMed

    Lee, J S; Kim, J M; Hong, E K; Kim, S-O; Yoo, Y-J; Cha, J-H

    2009-02-01

    A growing amount of attention has been placed on periodontal regeneration and wound healing for periodontal therapy. This study was conducted in an effort to determine the effects of heparin-binding epidermal growth factor-like growth factor on cell repopulation and signal transduction in periodontal ligament cells after scratch wounding in vitro. Human periodontal ligament cells were acquired from explant tissue of human healthy periodontal ligament. After the wounding of periodontal ligament cells, the change in expression of heparin-binding epidermal growth factor-like growth factor and epidermal growth factor receptors 1-4 mRNA was assessed. The effects of heparin-binding epidermal growth factor-like growth factor on periodontal ligament cell proliferation and repopulation were assessed in vitro via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and by photographing the injuries, respectively. Extracellular signal-regulated kinase (Erk)1/2, p38 and Akt phosphorylation was characterized via western blotting. Scratch wounding resulted in a significant up-regulation of heparin-binding epidermal growth factor-like growth factor mRNA expression, whereas wounding had no effect on the expression levels of epidermal growth factor receptors 1-4. Interestingly, no expression of epidermal growth factor receptors 2 and 4 was detectable prior to or after wounding. Heparin-binding epidermal growth factor-like growth factor treatment promoted the proliferation and repopulation of periodontal ligament cells. The scratch wounding also stimulated the phosphorylation of Erk1/2 and p38, but not of Akt, in periodontal ligament cells, and heparin-binding epidermal growth factor-like growth factor treatment applied after wounding amplified and extended the activations of Erk1/2 and p38, but not of Akt. Furthermore, Erk1/2 inhibition blocked the process of cell repopulation induced by heparin-binding epidermal growth factor-like growth factor, whereas the

  3. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  4. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo

    NASA Astrophysics Data System (ADS)

    Kim, K. Jin; Li, Bing; Winer, Jane; Armanini, Mark; Gillett, Nancy; Phillips, Heidi S.; Ferrara, Napoleone

    1993-04-01

    THE development of new blood vessels (angiogenesis) is required for many physiological processes including embryogenesis, wound healing and corpus luteum formation1,2. Blood vessel neoformation is also important in the pathogenesis of many disorders1-5, particularly rapid growth and metastasis of solid tumours3-5. There are several potential mediators of tumour angiogenesis, including basic and acidic fibroblast growth factors, tumour necrosis factor-α and transforming factors-α and -β 1,2. But it is unclear whether any of these agents actually mediates angiogenesis and tumour growth in vivo. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen and an angiogenesis inducer released by a variety of tumour cells and expressed in human tumours in situ. To test whether VEGF may be a tumour angiogenesis factor in vivo, we injected human rhabdomyosar-coma, glioblastoma multiforme or leiomyosarcoma cell lines into nude mice. We report here that treatment with a monoclonal antibody specific for VEGF inhibited the growth of the tumours, but had no effect on the growth rate of the tumour cells In vitro. The density of vessels was decreased in the antibody-treated tumours. These findings demonstrate that inhibition of the action of an angiogenic factor spontaneously produced by tumour cells may suppress tumour growth in vivo.

  5. Fibroblast growth factor receptor inhibitors.

    PubMed

    Kumar, Suneel B V S; Narasu, Lakshmi; Gundla, Rambabu; Dayam, Raveendra; J A R P, Sarma

    2013-01-01

    Fibroblast growth factor receptors (FGFRs) play an important role in embryonic development, angiogenesis, wound healing, cell proliferation and differentiation. The fibroblast growth factor receptor (FGFR) isoforms have been under intense scrutiny for effective anticancer drug candidates. The fibroblast growth factor (FGF) and its receptor (FGFR) provide another pathway that seems critical to monitoring angiogenesis. Recent findings suggest that FGFR mediates signaling, regulates the PKM2 activity, and plays a crucial role in cancer metabolism. The current review also covers the recent findings on the role of FGFR1 in cancer metabolism. This paper reviews the progress, mechanism, and binding modes of recently known kinase inhibitors such as PD173074, SU series and other inhibitors still under clinical development. Some of the structural classes that will be highlighted in this review include Pyrido[2,3-d]pyrimidines, Indolin- 2-one, Pyrrolo[2,1-f][1,2,4]triazine, Pyrido[2,3-d]pyrimidin-7(8H)-one, and 1,6- Naphthyridin-2(1H)-ones.

  6. Expression of a transmembrane phosphotyrosine phosphatase inhibits cellular response to platelet-derived growth factor and insulin-like growth factor-1.

    PubMed

    Mooney, R A; Freund, G G; Way, B A; Bordwell, K L

    1992-11-25

    Tyrosine phosphorylation is a mechanism of signal transduction shared by many growth factor receptors and oncogene products. Phosphotyrosine phosphatases (PTPases) potentially modulate or counter-regulate these signaling pathways. To test this hypothesis, the transmembrane PTPase CD45 (leukocyte common antigen) was expressed in the murine cell line C127. Hormone-dependent autophosphorylation of the platelet-derived growth factor (PDGF) and insulin-like growth factor-1 (IGF-1) receptors was markedly reduced in cells expressing the transmembrane PTPase. Tyrosine phosphorylation of other PDGF-dependent phosphoproteins (160, 140, and 55 kDa) and IGF-1-dependent phosphoproteins (145 kDa) was similarly decreased. Interestingly, the pattern of growth factor-independent tyrosine phosphorylations was comparable in cells expressing the PTPase and control cells. This suggests a selectivity or accessibility of the PTPase limited to a subset of cellular phosphotyrosyl proteins. The maximum mitogenic response to PDGF and IGF-1 in cells expressing the PTPase was decreased by 67 and 71%, respectively. These results demonstrate that a transmembrane PTPase can both affect the tyrosine phosphorylation state of growth factor receptors and modulate proximal and distal cellular responses to the growth factors.

  7. Cross-talk between GPER and growth factor signaling.

    PubMed

    Lappano, Rosamaria; De Marco, Paola; De Francesco, Ernestina Marianna; Chimento, Adele; Pezzi, Vincenzo; Maggiolini, Marcello

    2013-09-01

    G protein-coupled receptors (GPCRs) and growth factor receptors mediate multiple physio-pathological responses to a diverse array of extracellular stimuli. In this regard, it has been largely demonstrated that GPCRs and growth factor receptors generate a multifaceted signaling network, which triggers relevant biological effects in normal and cancer cells. For instance, some GPCRs transactivate the epidermal growth factor receptor (EGFR), which stimulates diverse transduction pathways leading to gene expression changes, cell migration, survival and proliferation. Moreover, it has been reported that a functional interaction between growth factor receptors and steroid hormones like estrogens is involved in the growth of many types of tumors as well as in the resistance to endocrine therapy. This review highlights recent findings on the cross-talk between a member of the GPCR family, the G protein-coupled estrogen receptor 1 (GPER, formerly known as GPR30) and two main growth factor receptors like EGFR and insulin-like growth factor-I receptor (IGF-IR). The biological implications of the functional interaction between these important mediators of cell responses particularly in cancer are discussed. This article is part of a Special Issue entitled 'CSR 2013'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Time dependent impact of perinatal hypoxia on growth hormone, insulin-like growth factor 1 and insulin-like growth factor binding protein-3.

    PubMed

    Kartal, Ömer; Aydınöz, Seçil; Kartal, Ayşe Tuğba; Kelestemur, Taha; Caglayan, Ahmet Burak; Beker, Mustafa Caglar; Karademir, Ferhan; Süleymanoğlu, Selami; Kul, Mustafa; Yulug, Burak; Kilic, Ertugrul

    2016-08-01

    Hypoxic-ischemia (HI) is a widely used animal model to mimic the preterm or perinatal sublethal hypoxia, including hypoxic-ischemic encephalopathy. It causes diffuse neurodegeneration in the brain and results in mental retardation, hyperactivity, cerebral palsy, epilepsy and neuroendocrine disturbances. Herein, we examined acute and subacute correlations between neuronal degeneration and serum growth factor changes, including growth hormone (GH), insulin-like growth factor 1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) after hypoxic-ischemia (HI) in neonatal rats. In the acute phase of hypoxia, brain volume was increased significantly as compared with control animals, which was associated with reduced GH and IGF-1 secretions. Reduced neuronal survival and increased DNA fragmentation were also noticed in these animals. However, in the subacute phase of hypoxia, neuronal survival and brain volume were significantly decreased, accompanied by increased apoptotic cell death in the hippocampus and cortex. Serum GH, IGF-1, and IGFBP-3 levels were significantly reduced in the subacute phase of HI. Significant retardation in the brain and body development were noted in the subacute phase of hypoxia. Here, we provide evidence that serum levels of growth-hormone and factors were decreased in the acute and subacute phase of hypoxia, which was associated with increased DNA fragmentation and decreased neuronal survival.

  9. Protective effects of skin permeable epidermal and fibroblast growth factor against ultraviolet-induced skin damage and human skin wrinkles.

    PubMed

    An, Jae Jin; Eum, Won Sik; Kwon, Hyuck Se; Koh, Jae Sook; Lee, Soo Yun; Baek, Ji Hwoon; Cho, Yong-Jun; Kim, Dae Won; Han, Kyu Huyng; Park, Jinseu; Jang, Sang Ho; Choi, Soo Young

    2013-12-01

    Epidermal and fibroblast growth factor (EGF and FGF1) proteins play an important role in the regeneration and proliferation of skin cells. EGF and FGF1 have considerable potential as possible therapeutic or cosmetic agents for the treatment of skin damage including wrinkles. Using protein transduction domains (PTD), we investigated whether PTD-EGF and FGF1 transduced into skin cells and tissue. Transduced proteins showed protective effects in a UV-induced skin damage model as well as against skin wrinkles. Transduced PTD-EGF and FGF1 proteins were detected by immunofluorescence and immunohistochemistry. The effects of PTD-EGF and FGF1 were examined by WST assay, Western blotting, immunohistochemistry, and skin wrinkle parameters. The PTD-EGF and FGF1 increased cell proliferation and collagen type 1 alpha 1 protein accumulation in skin tissue. Also, PTD-EGF and FGF1 inhibited UV-induced skin damage. Furthermore, topical application of PTD-EGF and FGF1 contained ampoules which were considered to improve the wrinkle parameters of human skin. These results show that PTD-EGF and FGF1 can be a potential therapeutic or cosmetic agent for skin damaged and injury including wrinkles and aging. © 2013 Wiley Periodicals, Inc.

  10. Targeted delivery of growth factors in ischemic stroke animal models.

    PubMed

    Rhim, Taiyoun; Lee, Minhyung

    2016-01-01

    Ischemic stroke is caused by reduced blood supply and leads to loss of brain function. The reduced oxygen and nutrient supply stimulates various physiological responses, including induction of growth factors. Growth factors prevent neuronal cell death, promote neovascularization, and induce cell growth. However, the concentration of growth factors is not sufficient to recover brain function after the ischemic damage, suggesting that delivery of growth factors into the ischemic brain may be a useful treatment for ischemic stroke. In this review, various approaches for the delivery of growth factors to ischemic brain tissue are discussed, including local and targeting delivery systems. To develop growth factor therapy for ischemic stroke, important considerations should be taken into account. First, growth factors may have possible side effects. Thus, concentration of growth factors should be restricted to the ischemic tissues by local administration or targeted delivery. Second, the duration of growth factor therapy should be optimized. Growth factor proteins may be degraded too fast to have a high enough therapeutic effect. Therefore, delivery systems for controlled release or gene delivery may be useful. Third, the delivery systems to the brain should be optimized according to the delivery route.

  11. Plasma Rich in Growth Factors Enhances Wound Healing and Protects from Photo-oxidative Stress in Dermal Fibroblasts and 3D Skin Models.

    PubMed

    Anitua, Eduardo; Pino, Ander; Jaen, Pedro; Orive, Gorka

    2016-01-01

    Optimal skin repair has been a desired goal for many researchers. Recently, plasma rich in growth factors (PRGF) has gained importance in dermatology proving it is beneficial effects in wound healing and cutaneous regeneration. The anti-fibrotic, pro-contractile and photo-protective effect of PRGF on dermal fibroblasts and 3D skin models has been evaluated. The effect against TGFβ1 induced myofibroblast differentiation was tested. Cell contractile activity over collagen gel matrices was analyzed and the effect against UV derived photo-oxidative stress was assessed. The effectiveness of PRGF obtained from young aged and middle aged donors was compared. Furthermore, 3D organotypic skin explants were used as human skin models with the aim of analyzing ex vivo cutaneous preventive and regenerative photo-protection after UV exposure. TGFβ1 induced myofibroblast levels decreased significantly after treatment with PRGF while the contractile activity increased compared to the control group. After UV irradiation, cell survival was promoted while apoptotic and ROS levels were noticeably reduced. Photo-exposed 3D explants showed higher levels of metabolic activity and lower levels of necrosis, cell damage, irritation and ROS formation when treated with PRGF. The histological integrity and connective tissue fibers showed lower signals of photodamage among PRGF injected skin models. No significant differences for the assessed biological outcomes were observed when PRGF obtained from young aged and middle aged donors were compared. These findings suggest that this autologous approach might be useful for antifibrotic wound healing and provide an effective protection against sun derived photo-oxidative stress regardless the age of the patient.

  12. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion

    PubMed Central

    Gorin, Caroline; Rochefort, Gael Y.; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Germain, Stéphane

    2016-01-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. Significance The results from the present study show that fibroblast growth factor-2 (FGF-2) priming is more

  13. Role of growth hormone, insulin-like growth factor-I, and insulin-like growth factor binding proteins in the catabolic response to injury and infection.

    PubMed

    Lang, Charles H; Frost, Robert A

    2002-05-01

    The erosion of lean body mass resulting from protracted critical illness remains a significant risk factor for increased morbidity and mortality in this patient population. Previous studies have documented the well known impairment in nitrogen balance results from both an increase in muscle protein degradation as well as a decreased rate of both myofibrillar and sacroplasmic protein synthesis. This protein imbalance may be caused by an increased presence or activity of various catabolic agents, such as tumor necrosis factor-alpha, interleukin-1 beta, interleukin-6 or glucocorticoids, or may be mediated via a decreased concentration or responsiveness to various anabolic hormones, such as growth hormone or insulin-like growth factor-I. This review focuses on recent developments pertaining to the importance of alterations in the growth hormone-insulin-like growth factor-I axis as a mechanism for the observed defects in muscle protein balance.

  14. Measurement of protection factor of respiratory protective devices toward nanoparticles.

    PubMed

    Brochot, C; Michielsen, N; Chazelet, S; Thomas, D

    2012-07-01

    The use of nanoparticles in industry has increased spectacularly over the past few years. Additionally, nanoscale particles seem to be the cause of new professional exposure situations. Due to their size, these particles may build up within the respiratory tract and may even reach the nervous system via the nasal passages; for this reason, it is generally recommended to wear respiratory protective devices (RPDs) in situations where collective protection is impossible to implement or inadequate. Here, we present the test bench ETNA designed to study the efficiency of RPDs in the presence of nanoparticles. The results of the efficiency measurement of two RPDs for two positions (sealed and unsealed) on a Sheffield head, for two inhalation configurations (constant flow and cyclic flow), and for two different particle size distributions of NaCl aerosol (one centered on 13 nm and the other on 59 nm) are presented below. The measurements indicate that when the leaks are negligible at the interface mask/head, the efficiency of RPD is greater for nanoparticles. For major leaks, the device's protection factor changes independently of the size of the particles. Furthermore, no trends with respect to the effect of the respiration type (constant-flow and cyclic-flow tests) have been shown on the device's protection factor.

  15. Constructing a blood vessel on the porous scaffold modified with vascular endothelial growth factor and basic fibroblast growth factor

    NASA Astrophysics Data System (ADS)

    Sevostyanova, V. V.; Matveeva, V. G.; Antonova, L. V.; Velikanova, E. A.; Shabaev, A. R.; Senokosova, E. A.; Krivkina, E. O.; Vasyukov, G. Yu.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2016-11-01

    Incorporation of the growth factors into biodegradable polymers is a promising approach for the fabrication of tissue-engineered vascular grafts. Here we blended poly(ɛ-caprolactone) (PCL) with poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) following incorporation of either vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) and then fabricated electrospun 2 mm diameter vascular grafts. Grafts without the growth factors were used as a control group. Structure of the grafts was assessed utilizing scanning electron microscopy. We further implanted our grafts into rat abdominal aorta for 1 and 3 months with the aim to test endothelialization, cell infiltration, and patency in vivo. Histological and immunofluorescence examination demonstrated enhanced endothelialization and cell infiltration of the grafts with either VEGF or bFGF compared to those without the growth factors. Grafts with VEGF showed higher patency compared to those with bFGF; however, bFGF promoted migration of smooth muscle cells and fibroblasts into the graft. Therefore, we conclude that incorporation of VEGF and bFGF into the inner and medial/outer layer, respectively, can be a promising option for the fabrication of tissue-engineered vascular grafts.

  16. Macrophage Colony-Stimulating Factor Improves Cardiac Function after Ischemic Injury by Inducing Vascular Endothelial Growth Factor Production and Survival of Cardiomyocytes

    PubMed Central

    Okazaki, Tatsuma; Ebihara, Satoru; Asada, Masanori; Yamanda, Shinsuke; Saijo, Yoshifumi; Shiraishi, Yasuyuki; Ebihara, Takae; Niu, Kaijun; Mei, He; Arai, Hiroyuki; Yambe, Tomoyuki

    2007-01-01

    Macrophage colony-stimulating factor (M-CSF), known as a hematopoietic growth factor, induces vascular endothelial growth factor (VEGF) production from skeletal muscles. However, the effects of M-CSF on cardiomyocytes have not been reported. Here, we show M-CSF increases VEGF production from cardiomyocytes, protects cardiomyocytes and myotubes from cell death, and improves cardiac function after ischemic injury. In mice, M-CSF increased VEGF production in hearts and in freshly isolated cardiomyocytes, which showed M-CSF receptor expression. In rat cell line H9c2 cardiomyocytes and myotubes, M-CSF induced VEGF production via the Akt signaling pathway, and M-CSF pretreatment protected these cells from H2O2-induced cell death. M-CSF activated Akt and extracellular signal-regulated kinase signaling pathways and up-regulated downstream anti-apoptotic Bcl-xL expression in these cells. Using goats as a large animal model of myocardial infarction, we found that M-CSF treatment after the onset of myocardial infarction by permanent coronary artery ligation promoted angiogenesis in ischemic hearts but did not reduce the infarct area. M-CSF pretreatment of the goat myocardial infarction model by coronary artery occlusion-reperfusion improved cardiac function, as assessed by hemodynamic parameters and echocardiography. These results suggest M-CSF might be a novel therapeutic agent for ischemic heart disease. PMID:17717142

  17. Collagen implants equipped with 'fish scale'-like nanoreservoirs of growth factors for bone regeneration.

    PubMed

    Eap, Sandy; Ferrand, Alice; Schiavi, Jessica; Keller, Laetitia; Kokten, Tunay; Fioretti, Florence; Mainard, Didier; Ladam, Guy; Benkirane-Jessel, Nadia

    2014-01-01

    Implants triggering rapid, robust and durable tissue regeneration are needed to shorten recovery times and decrease risks of postoperative complications for patients. Here, we describe active living collagen implants with highly promising bone regenerative properties. Bioactivity of the implants is obtained through the protective and stabilizing layer-by-layer immobilization of a protein growth factor in association with a polysaccharide (chitosan), within the form of nanocontainers decorating the collagen nanofibers. All components of the implants are US FDA approved. From both in vitro and in vivo evaluations, the sophisticated strategy described here should enhance, at a reduced cost, the safety and efficacy of the therapeutic implants in terms of large bone defects repair compared with current simplistic approaches based on the soaking of the implants with protein growth factor.

  18. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  19. Platelet-released growth factors can accelerate tenocyte proliferation and activate the anti-oxidant response element.

    PubMed

    Tohidnezhad, M; Varoga, D; Wruck, C J; Brandenburg, L O; Seekamp, A; Shakibaei, M; Sönmez, T T; Pufe, Thomas; Lippross, S

    2011-05-01

    Little is know about the pathophysiology of acute and degenerative tendon injuries. Although most lesions are uncomplicated, treatment is long and unsatisfactory in a considerable number of cases. Besides the common growth factors that were shown to be relevant for tendon integrity more recently protection against oxidative stress was shown to promote tendon healing. To improve tendon regeneration, many have advocated the use of platelet-rich plasma (PRP), a thrombocyte concentrate that can serve as an autologous source of growth factors. In this study, we investigated the effect of platelet-released growth factors (PRGF) on tenocytes. Tenocytes were isolated from the Achilles tendon of postnatal rats. Tenocyte cell cultures were stimulated with PRGF. We used a CyQuant assay and WST assay to analyse tendon cell growth and viability in different concentrations of PRGF. Migration and proliferation of cells grown in PRGF were assessed by a scratch test. A dual-luciferase assay was used to demonstrate the activation of the anti-oxidant response element (ARE) in tenocytes. A positive effect of PRGF could be shown on tendon cell growth and migratory capacity. PRGF activated the Nrf2-ARE pathway in a dose-dependent manner. Here, we provide evidence of a biological effect of PRGF on tenocytes by the promotion of tenocyte growth and activation of the Nrf2-ARE pathway. This is a novel aspect of the action of platelet concentrates on tendon growth.

  20. Delivery of growth factors for tissue regeneration and wound healing.

    PubMed

    Koria, Piyush

    2012-06-01

    Growth factors are soluble secreted proteins capable of affecting a variety of cellular processes important for tissue regeneration. Consequently, the self-healing capacity of patients can be augmented by artificially enhancing one or more processes important for healing through the application of growth factors. However, their application in clinics remains limited due to lack of robust delivery systems and biomaterial carriers. Interestingly, all clinically approved therapies involving growth factors utilize some sort of a biomaterial carrier for growth factor delivery. This suggests that biomaterial delivery systems are extremely important for successful usage of growth factors in regenerative medicine. This review outlines the role of growth factors in tissue regeneration, and their application in both pre-clinical animal models of regeneration and clinical trials is discussed. Additionally, current status of biomaterial substrates and sophisticated delivery systems such as nanoparticles for delivery of exogenous growth factors and peptides in humans are reviewed. Finally, issues and possible future research directions for growth factor therapy in regenerative medicine are discussed.

  1. Protective Factors, Risk Indicators, and Contraceptive Consistency Among College Women.

    PubMed

    Morrison, Leslie F; Sieving, Renee E; Pettingell, Sandra L; Hellerstedt, Wendy L; McMorris, Barbara J; Bearinger, Linda H

    2016-01-01

    To explore risk and protective factors associated with consistent contraceptive use among emerging adult female college students and whether effects of risk indicators were moderated by protective factors. Secondary analysis of National Longitudinal Study of Adolescent to Adult Health Wave III data. Data collected through in-home interviews in 2001 and 2002. National sample of 18- to 25-year-old women (N = 842) attending 4-year colleges. We examined relationships between protective factors, risk indicators, and consistent contraceptive use. Consistent contraceptive use was defined as use all of the time during intercourse in the past 12 months. Protective factors included external supports of parental closeness and relationship with caring nonparental adult and internal assets of self-esteem, confidence, independence, and life satisfaction. Risk indicators included heavy episodic drinking, marijuana use, and depression symptoms. Multivariable logistic regression models were used to evaluate relationships between protective factors and consistent contraceptive use and between risk indicators and contraceptive use. Self-esteem, confidence, independence, and life satisfaction were significantly associated with more consistent contraceptive use. In a final model including all internal assets, life satisfaction was significantly related to consistent contraceptive use. Marijuana use and depression symptoms were significantly associated with less consistent use. With one exception, protective factors did not moderate relationships between risk indicators and consistent use. Based on our findings, we suggest that risk and protective factors may have largely independent influences on consistent contraceptive use among college women. A focus on risk and protective factors may improve contraceptive use rates and thereby reduce unintended pregnancy among college students. Copyright © 2016 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses. Published

  2. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2009-10-01

    AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2008 – 14 September 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth Inhibitor...9 Fibroblast Growth Factor -2: an Epithelial Ductal Cell Growth Inhibitor that Drops Out in Breast Cancer

  3. Endogenous versus Exogenous Growth Factor Regulation of Articular Chondrocytes

    PubMed Central

    Shi, Shuiliang; Chan, Albert G.; Mercer, Scott; Eckert, George J.; Trippel, Stephen B.

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-ß1 stimulated these reparative functions, while endogenous TGF-ß1 had little effect. Endogenous TGF-ß1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-ß1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. PMID:24105960

  4. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions

    PubMed Central

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-01-01

    Summary Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. PMID:26626177

  5. Endorsement of Growth Factors in Experiential Training Groups

    ERIC Educational Resources Information Center

    Kiweewa, John; Gilbride, Dennis; Luke, Melissa; Seward, Derek

    2013-01-01

    The purpose of this study was to identify student growth factors during a semester long Master's level group counseling class. Results indicated that 12 growth factors accounted for 86% of the total number of critical incidents that participants reported as influencing their personal growth and awareness during the group experience. Two other…

  6. Placenta Growth Factor in Diabetic Wound Healing

    PubMed Central

    Cianfarani, Francesca; Zambruno, Giovanna; Brogelli, Laura; Sera, Francesco; Lacal, Pedro Miguel; Pesce, Maurizio; Capogrossi, Maurizio C.; Failla, Cristina Maria; Napolitano, Monica; Odorisio, Teresa

    2006-01-01

    Reduced microcirculation and diminished expression of growth factors contribute to wound healing impairment in diabetes. Placenta growth factor (PlGF), an angiogenic mediator promoting pathophysiological neovascularization, is expressed during cutaneous wound healing and improves wound closure by enhancing angiogenesis. By using streptozotocin-induced diabetic mice, we here demonstrate that PlGF induction is strongly reduced in diabetic wounds. Diabetic transgenic mice overexpressing PlGF in the skin displayed accelerated wound closure compared with diabetic wild-type littermates. Moreover, diabetic wound treatment with an adenovirus vector expressing the human PlGF gene (AdCMV.PlGF) significantly accelerated the healing process compared with wounds treated with a control vector. The analysis of treated wounds showed that PlGF gene transfer improved granulation tissue formation, maturation, and vascularization, as well as monocytes/macrophages local recruitment. Platelet-derived growth factor, fibroblast growth factor-2, and vascular endothelial growth factor mRNA levels were increased in AdCMV.PlGF-treated wounds, possibly enhancing PlGF-mediated effects. Finally, PlGF treatment stimulated cultured dermal fibroblast migration, pointing to a direct role of PlGF in accelerating granulation tissue maturation. In conclusion, our data indicate that reduced PlGF expression contributes to impaired wound healing in diabetes and that PlGF gene transfer to diabetic wounds exerts therapeutic activity by promoting different aspects of the repair process. PMID:17003476

  7. The Mars Plant Growth Experiment and Implications for Planetary Protection

    NASA Astrophysics Data System (ADS)

    Smith, Heather

    Plants are the ultimate and necessary solution for O2 production at a human base on Mars. Currently it is unknown if seeds can germinate on the Martian surface. The Mars Plant growth experiment (MPX) is a proposal for the first step in the development of a plant- based O2 production system by demonstrating plant germination and growth on the Martian surface. There is currently no planetary protection policy in place that covers plants on the Martian surface. We describe a planetary protection plan in compliance with NASA and COSPAR policy for a closed plant growth chamber on a Mars rover. We divide the plant growth chamber into two categories for planetary protection, the Outside: the outside of the chamber exposed to the Martian environment, and the Inside: the inside of the chamber which is sealed off from Mars atmosphere and contains the plant seeds and ancillary components for seed growth. We will treat outside surfaces of the chamber as other outside surfaces on the rover, wiped with a mixture of isopropyl alcohol and water as per Category IVb planetary protection requirements. All internal components of the MPX except the seeds and camera (including the water system, the plant growth stage and interior surface walls) will be sterilized by autoclave and subjected to sterilizing dry heat at a temperature of 125°C at an absolute humidity corresponding to a relative humidity of less than 25 percent referenced to the standard conditions of 0°C and 760 torr pressure. The seeds and internal compartments of the MPX in contact with the growth media will be assembled and tested to be free of viable microbes. MPX, once assembled, cannot survive Dry Heat Microbial Reduction. The camera with the radiation and CO2 sensors will be sealed in their own container and vented through HEPA filters. The seeds will be vernalized (microbe free) as per current Space Station methods described by Paul et al. 2001. Documentation of the lack of viable microbes on representative seeds

  8. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2011-10-01

    fibroblast   growth   factor   receptors  and  their  prognostic...AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2008 – 14 September 2011 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth

  9. Therapeutic angiogenesis: angiogenic growth factors for ischemic heart disease.

    PubMed

    Henning, Robert J

    2016-09-01

    Stem cells encode vascular endothelial growth factors (VEGFs), fibroblastic growth factors (FGFs), stem cell factor, stromal cell-derived factor, platelet growth factor and angiopoietin that can contribute to myocardial vascularization. VEGFs and FGFs are the most investigated growth factors. VEGFs regulate angiogenesis and vasculogenesis. FGFs stimulate vessel cell proliferation and differentiation and are regulators of endothelial cell migration, proliferation and survival. Clinical trials of VEGF or FGF for myocardial angiogenesis have produced disparate results. The efficacy of therapeutic angiogenesis can be improved by: (1) identifying the most optimal patients; (2) increased knowledge of angiogenic factor pharmacokinetics and proper dose; (3) prolonging contact of angiogenic factors with the myocardium; (4) increasing the efficiency of VEGF or FGF gene transduction; and (5) utilizing PET or MRI to measure myocardial perfusion and perfusion reserve.

  10. Posttraumatic growth in patients who survived cardiac surgery: the predictive and mediating roles of faith-based factors.

    PubMed

    Ai, Amy L; Hall, Daniel; Pargament, Kenneth; Tice, Terrence N

    2013-04-01

    Despite the growing knowledge of posttraumatic growth, only a few studies have examined personal growth in the context of cardiac health. Similarly, longitudinal research is lacking on the implications of religion/spirituality for patients with advanced cardiac diseases. This paper aims to explore the effect of preoperative religious coping on long-term postoperative personal growth and potential mediation in this effect. Analyses capitalized on a preoperative survey and medical indices from the Society of Thoracic Surgeons' National Database of patients undergoing cardiac surgery. Participants in the current follow-up study completed a mailed survey 30 months after surgery. Hierarchical regression analysis was performed to evaluate the extent to which preoperative use of religious coping predicted growth at follow-up, after controlling for key demographics, medical indices, mental health, and protective factors. Predictors of posttraumatic growth at follow-up were positive religious coping and a living status without a partner. Medical indices, optimistic expectations, social support, and other religious factors were unrelated to posttraumatic growth. Including religious factors diminished effects of gender, age, and race. Including perceived spiritual support completely eliminated the role of positive religious coping, indicating mediation. Preoperative positive religious coping may have a long-term effect on postoperative personal growth, explainable by higher spiritual connections as a part of significance-making. These results suggest that spirituality may play a favorable role in cardiac patients' posttraumatic growth after surviving a life-altering operation. The elimination of demographic effects may help explain previously mixed findings concerning the association between these factors and personal growth.

  11. Social Isolation, Psychological Health, and Protective Factors in Adolescence

    ERIC Educational Resources Information Center

    Hall-Lande, Jennifer A.; Eisenberg, Marla E.; Christenson, Sandra L.; Neumark-Sztainer, Dianne

    2007-01-01

    This study investigates the relationships among social isolation, psychological health, and protective factors in adolescents. Feelings of social isolation may influence psychological health in adolescents, but protective factors such as family connectedness, school connectedness, and academic achievement may also play a key role. The sample…

  12. Clinical Application of Growth Factors and Cytokines in Wound Healing

    PubMed Central

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2016-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies and future research possibilities. In this review we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include: granulocyte-macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy. PMID:24942811

  13. Smoking among American adolescents: a risk and protective factor analysis.

    PubMed

    Scal, Peter; Ireland, Marjorie; Borowsky, Iris Wagman

    2003-04-01

    Cigarette smoking remains a substantial threat to the current and future health of America's youth. The purpose of this study was to identify the risk and protective factors for cigarette smoking among US adolescents. Data from the National Longitudinal Study of Adolescent Health was used, comparing the responses of all non-smokers at Time 1 for their ability to predict the likelihood of smoking at Time 2, one year later. Data was stratified into four gender by grade group cohorts. Cross-cutting risk factors for smoking among all four cohorts were: using alcohol, marijuana, and other illicit drugs; violence involvement; having had sex; having friends who smoke and learning problems. Having a higher grade point average and family connectedness were protective across all cohorts. Other gender and grade group specific risk and protective factors were identified. The estimated probability of initiating smoking decreased by 19.2% to 54.1% both in situations of high and low risk as the number of protective factors present increased. Of the factors that predict or protect against smoking some are influential across all gender and grade group cohorts studied, while others are specific to gender and developmental stage. Prevention efforts that target both the reduction of risk factors and enhancement of protective factors at the individual, family, peer group and community are likely to reduce the likelihood of smoking initiation.

  14. Advances in pubertal growth and factors influencing it: Can we increase pubertal growth?

    PubMed Central

    Soliman, Ashraf; De Sanctis, Vincenzo; Elalaily, Rania; Bedair, Said

    2014-01-01

    Puberty is a period of development characterized by partially concurrent changes which includes growth acceleration, alteration in body composition and appearance of secondary sex characteristics. Puberty is characterized by an acceleration and then deceleration in skeletal growth. The initiation, duration and amount of growth vary considerably during the growth spurt. Pubertal growth and biological maturation are dynamic processes regulated by a variety of genetic and environmental factors. Changes in skeletal maturation and bone mineral accretion concomitant with the stage of pubertal development constitute essential components in the evaluation of growth during this pubertal period. Genetic, endocrine and nutritional factors and ethnicity contribute variably to the amount of growth gained during this important period of rapid changes. Many studies investigated the possibility of increasing pubertal growth to gain taller final adult height in adolescents with idiopathic short stature (ISS). The pattern of pubertal growth, its relation to sex maturity rating and factors affecting them has been addressed in this review. The results of different trials to increase final adult height of adolescents using different hormones have been summarized. These data enables Endocrinologists to give in-depth explanations to patients and families about the efficacy and clinical significance as well as the safety of using these therapies in the treatment of adolescents with ISS. PMID:25538878

  15. Intracellular processing of epidermal growth factor. I. Acidification of 125I-epidermal growth factor in intracellular organelles.

    PubMed

    Matrisian, L M; Planck, S R; Magun, B E

    1984-03-10

    We previously reported that 125I-labeled epidermal growth factor is processed intracellularly to acidic macromolecules in Rat-1 fibroblasts. The present study defines the precursor-product relationship and localization of the processing steps to subcellular organelles by the use of a single isoelectric species of 125I-epidermal growth factor and Percoll gradient fractionation. The native pI 4.55 125I-epidermal growth factor was rapidly processed to a pI 4.2 species on or near the cell surface and in organelles corresponding to clathrin-coated vesicles, Golgi, and endoplasmic reticulum. This species was then processed to a pI 4.35 species in similar organelles. The pI 4.2 and 4.35 species were converted to a pI 4.0 species in dense, lysosome-like organelles. This species was ultimately degraded and exocytosed from the cell as low molecular weight products.

  16. Insulin-like growth factor-I and growth differentiation factor-5 promote the formation of tissue-engineered human nasal septal cartilage.

    PubMed

    Alexander, Thomas H; Sage, August B; Chen, Albert C; Schumacher, Barbara L; Shelton, Elliot; Masuda, Koichi; Sah, Robert L; Watson, Deborah

    2010-10-01

    Tissue engineering of human nasal septal chondrocytes offers the potential to create large quantities of autologous material for use in reconstructive surgery of the head and neck. Culture with recombinant human growth factors may improve the biochemical and biomechanical properties of engineered tissue. The objectives of this study were to (1) perform a high-throughput screen to assess multiple combinations of growth factors and (2) perform more detailed testing of candidates identified in part I. In part I, human nasal septal chondrocytes from three donors were expanded in monolayer with pooled human serum (HS). Cells were then embedded in alginate beads for 2 weeks of culture in medium supplemented with 2% or 10% HS and 1 of 90 different growth factor combinations. Combinations of insulin-like growth factor-I (IGF-1), bone morphogenetic protein (BMP)-2, BMP-7, BMP-13, growth differentiation factor-5 (GDF-5), transforming growth factor β (TGFβ)-2, insulin, and dexamethasone were evaluated. Glycosaminoglycan (GAG) accumulation was measured. A combination of IGF-1 and GDF-5 was selected for further testing based on the results of part I. Chondrocytes from four donors underwent expansion followed by three-dimensional alginate culture for 2 weeks in medium supplemented with 2% or 10% HS with or without IGF-1 and GDF-5. Chondrocytes and their associated matrix were then recovered and cultured for 4 weeks in 12 mm transwells in medium supplemented with 2% or 10% HS with or without IGF-1 and GDF-5 (the same medium used for alginate culture). Biochemical and biomechanical properties of the neocartilage were measured. In part I, GAG accumulation was highest for growth factor combinations including both IGF-1 and GDF-5. In part II, the addition of IGF-1 and GDF-5 to 2% HS resulted in a 12-fold increase in construct thickness compared with 2% HS alone (p < 0.0001). GAG and type II collagen accumulation was significantly higher with IGF-1 and GDF-5. Confined compression

  17. Striatal increase of neurotrophic factors as a mechanism of nicotine protection in experimental parkinsonism.

    PubMed

    Maggio, R; Riva, M; Vaglini, F; Fornai, F; Racagni, G; Corsini, G U

    1997-01-01

    The repeated finding of an apparent protective effect of cigarette smoking on the risk of Parkinson's disease is one of the few consistent results in the epidemiology of this disorder. Among the innumerous substances that originate from tobacco smoke, nicotine is by far the most widely studied, and the most likely candidate for a protective effect against neuronal degeneration in Parkinson's disease. Nicotine is a natural alkaloid that has considerable stimulatory effects on the central nervous system (CNS). Its effects on the CNS are mediated by the activation of neuronal heteromeric acetylcholine-gated ion channel receptors (nAChR, also termed nicotinic acetylcholine receptors). In the present study, we describe the neuroprotective effects of (-)nicotine in two animal models of parkinsonism: the diethyldithiocarbamate (DDC)-induced enhancement of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity in mice, and the methamphetamine-induced neurotoxicity in rats and mice. In parallel experiments, we found that (-)nicotine induces the basic fibroblast growth factor (FGF-2) and the brain-derived neurotrophic factor (BDNF) in rat striatum. As FGF-2 and BDNF have been reported to be neuroprotective for dopaminergic cells, our data indicate that the increase in neurotrophic factors is a possible mechanism by which (-)nicotine protects from experimental parkinsonisms. Moreover, they suggest that nAChR agonists could be of potential benefit in the progression of Parkinson's disease.

  18. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage

    PubMed Central

    Johns, D.E.; Athanasiou, K.A.

    2010-01-01

    Tissue engineered fibrocartilage could become a feasible option for replacing tissues like the knee meniscus or temporomandibular joint disc. This study employed five growth factors insulin-like growth factor-I, transforming growth factor-β1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs were worse than the no growth factor control, suggesting a detrimental effect, but the IGF treatment tended to improve the constructs. Additionally, the 6wk time point was consistently better than 3wks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  19. The future of recombinant growth factors in wound healing.

    PubMed

    Robson, M C; Mustoe, T A; Hunt, T K

    1998-08-01

    For more than a decade, clinical trials have been conducted of the application of topical exogenous recombinant growth factors in attempts to accelerate the healing of chronic wounds. Although the results of some of these trials have been encouraging, overall the results have been somewhat discouraging. Much of the difficulty lies in the paucity of carefully controlled clinical trials of wound healing. Since wound healing is a complex process that can be influenced, both positively and negatively, by many factors, designing these trials has proved difficult. To date, only a single recombinant growth factor-recombinant human platelet-derived growth factor-BB (rhPDGF-BB)- has been approved by the US Food and Drug Administration; and that only for use in diabetic foot ulcers. It is unlikely, however, that a single growth factor will be able to resolve all issues of repair or strengthen all vulnerabilities of chronic wounds. Our expectation, therefore, is that growth factors, cytokines, and other biologic agents will be used more specifically in the future, for example, by targeting growth factor therapy at those specific components or processes that a given wound uses to heal.

  20. Risk behaviours among early adolescents: risk and protective factors.

    PubMed

    Wang, Ruey-Hsia; Hsu, Hsiu-Yueh; Lin, Shu-Yuan; Cheng, Chung-Ping; Lee, Shu-Li

    2010-02-01

    This paper is a report of a study conducted to examine the influence of risk/protective factors on risk behaviours of early adolescents and whether protective factors moderate their impact. An understanding of how risk and protective factors operate to influence risk behaviours of early adolescents will better prepare nurses to perform interventions appropriately to reduce risk behaviours of early adolescents. A cross-sectional study was carried out, based on a sample of public junior high schools (from 7th to 9th grades) in one city and one county in Taiwan. An anonymous questionnaire designed to measure five risk factors, six protective factors and risk behaviours was administered from October 2006 to March 2007. Data from 878 students were used for the present analysis. Pearson's correlations, anova with random effect models, and generalized linear models were used to analyse the statistically significant explanatory variables for risk behaviours. Gender, perceived father's risk behaviour, perceived mother's risk behaviour, health self-efficacy, interaction of health self-efficacy and perceived peers' risk behaviour, and interaction of emotional regulation and perceived peers' risk behaviour were statistically significant explanatory variables of risk behaviours. Health self-efficacy and emotional regulation moderated the negative effects of peers' perceived risk behaviour on risk behaviours. All protective factors were negative statistically correlated with risk behaviours, and all risk factors positively statistically correlated with risk behaviours. Male adolescents should be considered an at-risk group for risk behaviour intervention. Nurses could provide early adolescents with training regarding health self-efficacy improvement, self-esteem enhancement, emotional regulation skills to reduce their risk behaviours.

  1. Fibroblast Growth Factors and Vascular Endothelial Growth Factor Promote Cardiac Reprogramming under Defined Conditions.

    PubMed

    Yamakawa, Hiroyuki; Muraoka, Naoto; Miyamoto, Kazutaka; Sadahiro, Taketaro; Isomi, Mari; Haginiwa, Sho; Kojima, Hidenori; Umei, Tomohiko; Akiyama, Mizuha; Kuishi, Yuki; Kurokawa, Junko; Furukawa, Tetsushi; Fukuda, Keiichi; Ieda, Masaki

    2015-12-08

    Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors, including Gata4, Mef2c, and Tbx5; however, this process is inefficient under serum-based culture conditions, in which conversion of partially reprogrammed cells into fully reprogrammed functional iCMs has been a major hurdle. Here, we report that a combination of fibroblast growth factor (FGF) 2, FGF10, and vascular endothelial growth factor (VEGF), termed FFV, promoted cardiac reprogramming under defined serum-free conditions, increasing spontaneously beating iCMs by 100-fold compared with those under conventional serum-based conditions. Mechanistically, FFV activated multiple cardiac transcriptional regulators and converted partially reprogrammed cells into functional iCMs through the p38 mitogen-activated protein kinase and phosphoinositol 3-kinase/AKT pathways. Moreover, FFV enabled cardiac reprogramming with only Mef2c and Tbx5 through the induction of cardiac reprogramming factors, including Gata4. Thus, defined culture conditions promoted the quality of cardiac reprogramming, and this finding provides new insight into the mechanism of cardiac reprogramming. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Localisation of stem cell factor, stanniocalcin-1, connective tissue growth factor and heparin-binding epidermal growth factor in the bovine uterus at the time of blastocyst formation.

    PubMed

    Muñoz, M; Martin, D; Carrocera, S; Alonso-Guervos, M; Mora, M I; Corrales, F J; Peynot, N; Giraud-Delville, C; Duranthon, V; Sandra, O; Gómez, E

    2017-10-01

    Early embryonic losses before implantation account for the highest rates of reproductive failure in mammals, in particular when in vitro-produced embryos are transferred. In the present study, we used molecular biology techniques (real-time quantitative polymerase chain reaction), classical immunohistochemical staining coupled with confocal microscopy and proteomic analysis (multiple reaction monitoring and western blot analysis) to investigate the role of four growth factors in embryo-uterine interactions during blastocyst development. Supported by a validated embryo transfer model, the study investigated: (1) the expression of stem cell factor (SCF), stanniocalcin-1 (STC1), connective tissue growth factor (CTGF) and heparin-binding epidermal growth factor-like growth factor (HB-EGF) in bovine uterine fluid; (2) the presence of SCF, STC1, CTGF and HB-EGF mRNA and protein in the bovine endometrium and embryos; and (3) the existence of reciprocal regulation between endometrial and embryonic expression of SCF, STC1, CTGF and HB-EGF. The results suggest that these growth factors most likely play an important role during preimplantation embryo development in cattle. The information obtained from the present study can contribute to improving the performance of in vitro culture technology in cattle and other species.

  3. Temporal expression of growth factors triggered by epiregulin regulates inflammation development.

    PubMed

    Harada, Masaya; Kamimura, Daisuke; Arima, Yasunobu; Kohsaka, Hitoshi; Nakatsuji, Yuji; Nishida, Makoto; Atsumi, Toru; Meng, Jie; Bando, Hidenori; Singh, Rajeev; Sabharwal, Lavannya; Jiang, Jing-Jing; Kumai, Noriko; Miyasaka, Nobuyuki; Sakoda, Saburo; Yamauchi-Takihara, Keiko; Ogura, Hideki; Hirano, Toshio; Murakami, Masaaki

    2015-02-01

    In this study, we investigated the relationship between several growth factors and inflammation development. Serum concentrations of epiregulin, amphiregulin, betacellulin, TGF-α, fibroblast growth factor 2, placental growth factor (PLGF), and tenascin C were increased in rheumatoid arthritis patients. Furthermore, local blockades of these growth factors suppressed the development of cytokine-induced arthritis in mice by inhibiting chemokine and IL-6 expressions. We found that epiregulin expression was early and followed by the induction of other growth factors at different sites of the joints. The same growth factors then regulated the expression of epiregulin at later time points of the arthritis. These growth factors were increased in patients suffering from multiple sclerosis (MS) and also played a role in the development of an MS model, experimental autoimmune encephalomyelitis. The results suggest that the temporal expression of growth factors is involved in the inflammation development seen in several diseases, including rheumatoid arthritis and MS. Therefore, various growth factor pathways might be good therapeutic targets for various inflammatory diseases. Copyright © 2015 by The American Association of Immunologists, Inc.

  4. Risk and protective factors for suicidal ideation among Taiwanese adolescents.

    PubMed

    Wang, Ruey-Hsia; Lai, Hsiao-Jung; Hsu, Hsiu-Yueh; Hsu, Min-Tao

    2011-01-01

    : Suicide is the ninth leading cause of death in adolescents aged 15-19 years in Taiwan. Suicidal ideation is an important predictor of committing suicide among adolescents. : The aim of this study was to examine the important risk factors, the protective factors, and the role of protective factors on the relationship of risk factors to suicidal ideation among Taiwanese adolescents aged 15-19 years. : By adopting a cross-sectional study, senior high school students (n = 577) aged 15-19 years in southern Taiwan were recruited for this study. An anonymous self-reported questionnaire was used to collect demographic characteristics, risk factors, protective factors, and suicidal ideation of the sample. Hierarchical logistic regression was used to identify the important risk and protective factors and the interaction between risk and protective factors on suicidal ideation. : Nearly 18% (n = 101) of the participants reported having suicidal ideation during the past 12 months. Gender (female; odds ratio [OR] = 4.23), life stress (OR = 1.03), depression (OR = 3.44), peer suicidal ideation (OR = 4.15), and bullying victimization (OR = 1.81) were important risk factors of suicidal ideation among the targeted sample. In addition, self-esteem (OR = 0.92) and emotional adaptation (OR = 0.88) were important protective factors of suicidal ideation. Self-esteem and emotional adaptation were not used to moderate the negative effects of life stress, depression, perceived peer suicidal ideation, and bullying victimization on suicidal ideation. The final model explained 40.6% of the total variance in suicidal ideation and correctly predicted 86.1% of participants with suicidal ideation. : Suicidal ideation prevention programs should be targeted to female adolescents. School-based efforts that provide adolescents with self-esteem enhancement, emotional regulation skills training, positive peer norms for life, coping skills for managing stress and depression, and antibullying programs

  5. A role of placental growth factor in hair growth.

    PubMed

    Yoon, Sun-Young; Yoon, Ji-Seon; Jo, Seong Jin; Shin, Chang Yup; Shin, Jong-Yeon; Kim, Jong-Il; Kwon, Ohsang; Kim, Kyu Han

    2014-05-01

    The dermal papilla (DP) comprises specialized mesenchymal cells at the bottom of the hair follicle and plays a pivotal role in hair formation, anagen induction and the hair cycle. In this study, DPs were isolated from human hair follicles and serially subcultured. From each subculture at passages 1, 3, and 5 (n=4), we compared gene expression profiles using mRNA sequencing. Among the growth factors that were down-regulated in later passages of human DP cells (hDPCs), placental growth factor (PlGF) was selected. To elucidate the effect of PlGF on hair growth. We evaluated the effect of PlGF on hDPCs and on ex vivo hair organ culture. We investigated the effect of PlGF on an in vivo model of depilation-induced hair regeneration. We confirmed that the mRNA and protein expression levels of PlGF significantly decreased following subculture of the cells. It was shown that PlGF enhanced hair shaft elongation in ex vivo hair organ culture. Furthermore, PlGF significantly accelerated hair follicle growth and markedly prolonged anagen hair growth in an in vivo model of depilation-induced hair regeneration. PlGF prevented cell death by increasing the levels of phosphorylated extracellular signal-regulated kinase (ERK) and cyclin D1 and promoted survival by up-regulation of phosphorylated Akt and Bcl2, as determined by Western blotting. Our results suggest that PlGF plays a role in the promotion of hair growth and therefore may serve as an additional therapeutic target for the treatment of alopecia. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Bioactive molecules in milk and their role in health and disease: the role of transforming growth factor-beta.

    PubMed

    Donnet-Hughes, A; Duc, N; Serrant, P; Vidal, K; Schiffrin, E J

    2000-02-01

    Human breast milk is rich in nutrients, hormones, growth factors and immunoactive molecules, which influence the growth, development and immune status of the newborn infant. Although several of these factors are also present in bovine milk, the greater susceptibility of the formula-fed infant to infection and disease and the development of allergy is often attributed to the reduced level of protective factors in milk formulas. Nevertheless, modifying manufacturing processes may preserve the biological activity of some bioactive molecules in end products. Transforming growth factor (TGF)-beta is one such molecule. TGF-beta is a polypeptide, which has been described in both human and bovine milk. It is implicated in many processes, including epithelial cell growth and differentiation, development, carcinogenesis and immune regulation. The present article discusses the biological activity of TGF-beta2 that has been preserved and activated in a cow's milk-based product. More specifically, it addresses possible mechanisms of action in the intestinal lumen and speculates on how milk products containing naturally occurring TGF-beta2 could be exploited in functional foods for the infant or as therapies for specific intestinal diseases.

  7. Growth Factors and Tension-Induced Skeletal Muscle Growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  8. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  9. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  10. Growth factors in urologic tissues: detection, characterization, and clinical applications.

    PubMed

    Mydlo, J H; Macchia, R J

    1992-12-01

    During the last two decades, enormous strides have been made in understanding cellular and molecular biology. The direction of treatment of many neoplasms and other diseases are starting at the microscopic level. Growth factors are polypeptides that play a part in the development and maintenance of living tissues. We, as well as others, have investigated the role that growth factors play particularly in urologic tissues, both benign and malignant. We review several well-known growth factors and their function in prostate, kidney, and bladder tissues, as well as their functions in other regulating processes of the human body, and also the use of growth factors as tumor markers, and antibodies to growth factors as possible treatment of disease.

  11. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth.

    PubMed

    Kumaraswamy, R V; Kumari, Sarita; Choudhary, Ram Chandra; Pal, Ajay; Raliya, Ramesh; Biswas, Pratim; Saharan, Vinod

    2018-07-01

    Excessive use of agrochemicals for enhancing crop production and its protection posed environmental and health concern. Integration of advanced technology is required to realize the concept of precision agriculture by minimizing the input of pesticides and fertilizers per unit while improving the crop productivity. Notably, chitosan based biodegradable nanomaterials (NMs) including nanoparticles, nanogels and nanocomposites have eventually proceeded as a key choice in agriculture due to their inimitable properties like antimicrobial and plant growth promoting activities. The foreseeable role of chitosan based NMs in plants might be in achieving sustainable plant growth through boosting the intrinsic potential of plants. In-spite of the fact that chitosan based NMs abode immense biological activities in plants, these materials have not yet been widely adopted in agriculture due to poor understanding of their bioactivity and modes of action towards pathogenic microbes and in plant protection and growth. To expedite the anticipated claims of chitosan based NMs, it is imperative to line up all the possible bioactivities which denote for sustainable agriculture. Herein, we have highlighted, in-depth, various chitosan based NMs which have been used in plant growth and protection mainly against fungi, bacteria and viruses and have also explained their modes of action. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Relationships of protective factors to stress and symptoms of illness.

    PubMed

    Dolbier, Christyn L; Smith, Shanna E; Steinhardt, Mary A

    2007-01-01

    To examine relationships of work and individual protective factors to health outcomes. Participants from 2 corporate samples completed measures of supervisor support, hardiness, coping, global stress, and symptoms of illness. Regression analyses indicated that higher scores on hardiness and approach coping and being male predicted lower scores on stress and symptoms of illness. Additionally, supervisor support predicted fewer symptoms of illness but did not have a spillover effect onto stress. Interventions that enhance individual protective factors primarily and work protective factors secondarily may be most effective in reducing stress and illness among employees.

  13. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells

    PubMed Central

    Choi, Nahyun; Shin, Soyoung; Song, Sun U.; Sung, Jong-Hyuk

    2018-01-01

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal–regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration. PMID:29495622

  14. Minoxidil Promotes Hair Growth through Stimulation of Growth Factor Release from Adipose-Derived Stem Cells.

    PubMed

    Choi, Nahyun; Shin, Soyoung; Song, Sun U; Sung, Jong-Hyuk

    2018-02-28

    Minoxidil directly promotes hair growth via the stimulation of dermal papilla (DP) and epithelial cells. Alternatively, there is little evidence for indirect promotion of hair growth via stimulation of adipose-derived stem cells (ASCs). We investigated whether minoxidil stimulates ASCs and if increased growth factor secretion by ASCs facilitates minoxidil-induced hair growth. Telogen-to-anagen induction was examined in mice. Cultured DP cells and vibrissae hair follicle organ cultures were used to further examine the underlying mechanisms. Subcutaneous injection of minoxidil-treated ASCs accelerated telogen-to-anagen transition in mice, and increased hair weight at day 14 post-injection. Minoxidil did not alter ASC proliferation, but increased migration and tube formation. Minoxidil also increased the secretion of growth factors from ASCs, including chemokine (C-X-C motif) ligand 1 (CXCL1), platelet-derived endothelial cell growth factor (PD-ECGF), and platelet-derived growth factor-C (PDGF-C). Minoxidil increased extracellular signal-regulated kinases 1/2 (ERK1/2) phosphorylation, and concomitant upregulation of PD-ECGF and PDGF-C mRNA levels were attenuated by an ERK inhibitor. Subcutaneous injection of CXCL1, PD-ECGF, or PDGF-C enhanced anagen induction in mice, and both CXCL1 and PDGF-C increased hair length in ex vivo organ culture. Treatment with CXCL1, PD-ECGF, or PDGF-C also increased the proliferation index in DP cells. Finally, topical application of CXCL1, PD-ECGF, or PDGF-C with 2% minoxidil enhanced anagen induction when compared to minoxidil alone. Minoxidil stimulates ASC motility and increases paracrine growth factor signaling. Minoxidil-stimulated secretion of growth factors by ASCs may enhance hair growth by promoting DP proliferation. Therefore, minoxidil can be used as an ASC preconditioning agent for hair regeneration.

  15. Genetic factors in fetal growth restriction and miscarriage.

    PubMed

    Yamada, Hideto; Sata, Fumihiro; Saijo, Yasuaki; Kishi, Reiko; Minakami, Hisanori

    2005-06-01

    Recently, several investigations concerning disadvantageous genetic factors in human reproduction have progressed. Inherited thrombophilia, such as factor V Leiden, prothrombin, and methylenetetrahydrofolate reductase mutations; gene polymorphisms of detoxification enzyme (CYP1A1); growth factors (insulin-like growth factor-I); and hormones such as angiotensinogen and CYP17 are involved in the pathogenesis of fetal growth restriction. The inherited thrombophilia, gene polymorphisms of coagulation and anticoagulation factor such as thrombomodulin, endothelial protein C receptor, plasminogen activator inhibitor 1, and factor XIII; human lymphocyte antigen (HLA-G); detoxification enzymes (glutathione- S-transferase M1); cytokines such as interleukin (IL) -1 and IL-6; hormones (CYP17); vasodilators (nitric oxide synthase 3); and vitamins (transcobalamin) are involved in the pathogenesis of sporadic and recurrent miscarriage. It is likely that a gene polymorphism or mutation susceptible to reproductive failure has a beneficial effect on the process of human reproduction with or without the environmental interaction. The factor V Leiden mutation has genetic advantages that are believed to be an improved implantation rate in in vitro fertilization and a reduction of maternal intrapartum blood loss. It has also been demonstrated that the CYP17 A2 allele has bidirectional effects on human reproduction, including increases in susceptibility to recurrent miscarriage and fetal growth enhancement.

  16. Examination of Substance Use, Risk Factors, and Protective Factors on Student Academic Test Score Performance.

    PubMed

    Arthur, Michael W; Brown, Eric C; Briney, John S; Hawkins, J David; Abbott, Robert D; Catalano, Richard F; Becker, Linda; Langer, Michael; Mueller, Martin T

    2015-08-01

    School administrators and teachers face difficult decisions about how best to use school resources to meet academic achievement goals. Many are hesitant to adopt prevention curricula that are not focused directly on academic achievement. Yet, some have hypothesized that prevention curricula can remove barriers to learning and, thus, promote achievement. We examined relationships among school levels of student substance use and risk and protective factors that predict adolescent problem behaviors and achievement test performance. Hierarchical generalized linear models were used to predict associations involving school-averaged levels of substance use and risk and protective factors and students' likelihood of meeting achievement test standards on the Washington Assessment of Student Learning, statistically controlling for demographic and economic factors known to be associated with achievement. Levels of substance use and risk/protective factors predicted the academic test score performance of students. Many of these effects remained significant even after controlling for model covariates. Implementing prevention programs that target empirically identified risk and protective factors has the potential to have a favorable effect on students' academic achievement. © 2015, American School Health Association.

  17. Controlled growth factor release from synthetic extracellular matrices

    NASA Astrophysics Data System (ADS)

    Lee, Kuen Yong; Peters, Martin C.; Anderson, Kenneth W.; Mooney, David J.

    2000-12-01

    Polymeric matrices can be used to grow new tissues and organs, and the delivery of growth factors from these matrices is one method to regenerate tissues. A problem with engineering tissues that exist in a mechanically dynamic environment, such as bone, muscle and blood vessels, is that most drug delivery systems have been designed to operate under static conditions. We thought that polymeric matrices, which release growth factors in response to mechanical signals, might provide a new approach to guide tissue formation in mechanically stressed environments. Critical design features for this type of system include the ability to undergo repeated deformation, and a reversible binding of the protein growth factors to polymeric matrices to allow for responses to repeated stimuli. Here we report a model delivery system that can respond to mechanical signalling and upregulate the release of a growth factor to promote blood vessel formation. This approach may find a number of applications, including regeneration and engineering of new tissues and more general drug-delivery applications.

  18. Reduced expression of the epidermal growth factor signaling system in preeclampsia.

    PubMed

    Armant, D R; Fritz, R; Kilburn, B A; Kim, Y M; Nien, J K; Maihle, N J; Romero, R; Leach, R E

    2015-03-01

    The epidermal growth factor (EGF) signaling system regulates trophoblast differentiation, and its disruption could contribute to perinatal disease. We hypothesized that this pathway is altered in preeclampsia, a disorder associated with trophoblast apoptosis and failure to invade and remodel the uterine spiral arteries. Six EGF family peptides and a truncated EGF receptor splice variant (p110/EGFR) were examined using immunohistochemistry in the trophoblast of placentas (N = 76) from women with preeclampsia, and compared to placentas from women of similar gestational age (GA) with preterm labor (PTL) or small for gestational age (SGA) fetuses, as well as normal term placentas. EGF, transforming growth factor-α (TGFA), and heparin-binding EGF-like growth factor (HBEGF) were evaluated using ELISA in maternal plasma from another 20 pregnancies with or without preeclampsia. Cell death was evaluated in the HTR-8/SVneo human cytotrophoblast cell line using TUNEL to evaluate the protective effects of EGF peptides. Trophoblast HBEGF, TGFA, and EGF were significantly reduced in preeclampsia compared to PTL and SGA, while p110/EGFR accumulated significantly on the surface of the chorionic villi (p < 0.05). Plasma EGF levels were significantly decreased in preeclamptic patients, compared to non-preeclamptic patients (p < 0.05). HBEGF, EGF, TGFA, epiregulin, and betacellulin each blocked cytotrophoblast cell death in vitro (p < 0.05). Three members of the EGF family are dysregulated in placentas with preeclampsia, whereas p110/EGFR, a potential EGF receptor antagonist, is overexpressed. These findings are consistent with the concept that disruption of the EGF signaling system contributes to aberrant trophoblast development associated with preeclampsia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Reduced Expression of the Epidermal Growth Factor Signaling System in Preeclampsia

    PubMed Central

    Armant, D. Randall; FRITZ, Rani; KILBURN, Brian A.; KIM, Yeon Mee; NIEN, Jyh Kae; MAIHLE, Nita J.; ROMERO, Roberto; LEACH, Richard E.

    2014-01-01

    Introduction The epidermal growth factor (EGF) signaling system regulates trophoblast differentiation, and its disruption could contribute to perinatal disease. We hypothesized that this pathway is altered in preeclampsia, a disorder associated with trophoblast apoptosis and failure to invade and remodel the uterine spiral arteries. Methods Six EGF family peptides and a truncated EGF receptor splice variant (p110/EGFR) were examined using immunocytochemistry in the trophoblast of placentas (N=76) from women with preeclampsia, and compared to placentas from women of similar gestational age (GA) with preterm labor (PTL) or small for gestational age (SGA) fetuses, as well as normal term placentas. EGF, transforming growth factor-α (TGFA), and heparin-binding EGF-like growth factor (HBEGF) were evaluated using ELISA in maternal plasma from another 20 pregnancies with or without preeclampsia. Cell death was evaluated in the HTR-8/SVneo human cytotrophoblast cell line using TUNEL to evaluate the protective effects of EGF peptides. Results Trophoblast HBEGF, TGFA, and EGF were significantly reduced in preeclampsia compared to PTL and SGA, while p110/EGFR accumulated significantly on the surface of the chorionic villi (p<0.05). Plasma EGF levels were significantly decreased in preeclamptic patients, compared to non-preeclamptic patients (p<0.05). HBEGF, EGF, TGFA, epiregulin, and betacellulin each blocked cytotrophoblast cell death in vitro (p< 0.05). Discussion Three members of the EGF family are dysregulated in placentas with preeclampsia, whereas p110/EGFR, a potential EGF receptor antagonist, is overexpressed. These findings are consistent with the concept that disruption of the EGF signaling system contributes to aberrant trophoblast development associated with preeclampsia. PMID:25589361

  20. The role of tumor cell-derived connective tissue growth factor (CTGF/CCN2) in pancreatic tumor growth.

    PubMed

    Bennewith, Kevin L; Huang, Xin; Ham, Christine M; Graves, Edward E; Erler, Janine T; Kambham, Neeraja; Feazell, Jonathan; Yang, George P; Koong, Albert; Giaccia, Amato J

    2009-02-01

    Pancreatic cancer is highly aggressive and refractory to existing therapies. Connective tissue growth factor (CTGF/CCN2) is a fibrosis-related gene that is thought to play a role in pancreatic tumor progression. However, CCN2 can be expressed in a variety of cell types, and the contribution of CCN2 derived from either tumor cells or stromal cells as it affects the growth of pancreatic tumors is unknown. Using genetic inhibition of CCN2, we have discovered that CCN2 derived from tumor cells is a critical regulator of pancreatic tumor growth. Pancreatic tumor cells derived from CCN2 shRNA-expressing clones showed dramatically reduced growth in soft agar and when implanted s.c. We also observed a role for CCN2 in the growth of pancreatic tumors implanted orthotopically, with tumor volume measurements obtained by positron emission tomography imaging. Mechanistically, CCN2 protects cells from hypoxia-mediated apoptosis, providing an in vivo selection for tumor cells that express high levels of CCN2. We found that CCN2 expression and secretion was increased in hypoxic pancreatic tumor cells in vitro, and we observed colocalization of CCN2 and hypoxia in pancreatic tumor xenografts and clinical pancreatic adenocarcinomas. Furthermore, we found increased CCN2 staining in clinical pancreatic tumor tissue relative to stromal cells surrounding the tumor, supporting our assertion that tumor cell-derived CCN2 is important for pancreatic tumor growth. Taken together, these data improve our understanding of the mechanisms responsible for pancreatic tumor growth and progression, and also indicate that CCN2 produced by tumor cells represents a viable therapeutic target for the treatment of pancreatic cancer.

  1. Transforming growth factor-alpha short-circuits downregulation of the epidermal growth factor receptor.

    PubMed

    Ouyang, X; Gulliford, T; Huang, G; Epstein, R J

    1999-04-01

    Transforming growth factor-alpha (TGFalpha) is an epidermal growth factor receptor (EGFR) ligand which is distinguished from EGF by its acid-labile structure and potent transforming function. We recently reported that TGFalpha induces less efficient EGFR heterodimerization and downregulation than does EGF (Gulliford et al., 1997, Oncogene, 15:2219-2223). Here we use isoform-specific EGFR and ErbB2 antibodies to show that the duration of EGFR signalling induced by a single TGFalpha exposure is less than that induced by equimolar EGF. The protein trafficking inhibitor brefeldin A (BFA) reduces the duration of EGF signalling to an extent similar to that seen with TGFalpha alone; the effects of TGFalpha and BFA on EGFR degradation are opposite, however, with TGFalpha sparing EGFR from downregulation but BFA accelerating EGF-dependent receptor loss. This suggests that BFA blocks EGFR recycling and thus shortens EGF-dependent receptor signalling, whereas TGFalpha shortens receptor signalling and thus blocks EGFR downregulation. Consistent with this, repeated application of TGFalpha is accompanied by prolonged EGFR expression and signalling, whereas similar application of EGF causes receptor downregulation and signal termination. These findings indicate that constitutive secretion of pH-labile TGFalpha may perpetuate EGFR signalling by permitting early oligomer dissociation and dephosphorylation within acidic endosomes, thereby extinguishing a phosphotyrosine-based downregulation signal and creating an irreversible autocrine growth loop.

  2. Evaluating Tree Protection Devices: Effects on Growth and Survival–First-Year Results

    Treesearch

    L. R. Costello; R. H. Schmidt; Gregory A. Giusti

    1991-01-01

    The protection of seedlings from animal browsing is critical for the survival and growth of many tree species. This is particularly true in wildland areas and arid areas (McAuliffe, 1986), and oftentimes in urban areas. A variety of techniques and devices have been used to protect seedlings, from using straw stubble to milk cartons to plastic or metal screens. Recently...

  3. Effects of High Intensity Training and High Volume Training on Endothelial Microparticles and Angiogenic Growth Factors

    PubMed Central

    Achtzehn, Silvia; Schmitz, Theresa; Bloch, Wilhelm; Mester, Joachim; Werner, Nikos

    2014-01-01

    Aims Endothelial microparticles (EMP) are complex vesicular structures shed from activated or apoptotic endothelial cells. As endurance exercise affects the endothelium, the objective of the study was to examine levels of EMP and angiogenic growth factors following different endurance exercise protocols. Methods 12 subjects performed 3 different endurance exercise protocols: 1. High volume training (HVT; 130 min at 55% peak power output (PPO); 2. 4×4 min at 95% PPO; 3. 4×30 sec all-out. EMPs were quantified using flow cytometry after staining platelet-poor-plasma. Events positive for Annexin-V and CD31, and negative for CD42b, were classified as EMPs. Vascular endothelial growth factor (VEGF), migratory inhibiting factor (MIF) and hepatocyte growth factor (HGF) were determined by ELISA technique. For all these measurements venous blood samples were taken pre, 0′, 30′, 60′ and 180′ after each intervention. Furthermore, in vitro experiments were performed to explore the effect of collected sera on target endothelial functions and MP uptake capacities. Results VEGF and HGF significantly increased after HIT interventions. All three interventions caused a significant decrease in EMP levels post exercise compared to pre values. The sera taken after exercise increased the uptake of EMP in target endothelial cells compared to sera taken under resting conditions, which was shown to be phosphatidylserin-dependent. Increased EMP uptake was associated with an improved protection of target cells against apoptosis. Sera taken prior and after exercise promoted target endothelial cell migration, which was abrogated after inhibition of VEGF. Conclusion Physical exercise leads to decreased EMP levels and promotes a phosphatidylserin-dependent uptake of EMP into target endothelial cells, which is associated with a protection of target cells against apoptosis. PMID:24770423

  4. The Multisubstrate Adapter Gab1 Regulates Hepatocyte Growth Factor (Scatter Factor)–c-Met Signaling for Cell Survival and DNA Repair

    PubMed Central

    Fan, Saijun; Ma, Yong Xian; Gao, Min; Yuan, Ren-Qi; Meng, Qinghui; Goldberg, Itzhak D.; Rosen, Eliot M.

    2001-01-01

    Hepatocyte growth factor (scatter factor) (HGF/SF) is a pleiotrophic mediator of epithelial cell motility, morphogenesis, angiogenesis, and tumorigenesis. HGF/SF protects cells against DNA damage by a pathway from its receptor c-Met to phosphatidylinositol 3-kinase (PI3K) to c-Akt, resulting in enhanced DNA repair and decreased apoptosis. We now show that protection against the DNA-damaging agent adriamycin (ADR; topoisomerase IIα inhibitor) requires the Grb2-binding site of c-Met, and overexpression of the Grb2-associated binder Gab1 (a multisubstrate adapter required for epithelial morphogenesis) inhibits the ability of HGF/SF to protect MDCK epithelial cells against ADR. In contrast to Gab1 and its homolog Gab2, overexpression of c-Cb1, another multisubstrate adapter that associates with c-Met, did not affect protection. Gab1 blocked the ability of HGF/SF to cause the sustained activation of c-Akt and c-Akt signaling (FKHR phosphorylation). The Gab1 inhibition of sustained c-Akt activation and of cell protection did not require the Gab1 pleckstrin homology or SHP2 phosphatase-binding domain but did require the PI3K-binding domain. HGF/SF protection of parental MDCK cells was blocked by wortmannin, expression of PTEN, and dominant negative mutants of p85 (regulatory subunit of PI3K), Akt, and Pak1; the protection of cells overexpressing Gab1 was restored by wild-type or activated mutants of p85, Akt, and Pak1. These findings suggest that the adapter Gab1 may redirect c-Met signaling through PI3K away from a c-Akt/Pak1 cell survival pathway. PMID:11438654

  5. Sofalcone, a gastric mucosa protective agent, increases vascular endothelial growth factor via the Nrf2-heme-oxygenase-1 dependent pathway in gastric epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibuya, Akiko; Onda, Kenji, E-mail: knjond@toyaku.ac.jp; Kawahara, Hirofumi

    2010-07-30

    Research highlights: {yields} Sofalcone increases HO-1 in gastric epithelial cells. {yields} The induction of HO-1 by sofalcone treatment follows the activation of Nrf2. {yields} The production of VEGF by sofalcone treatment is mediated by HO-1 induction. -- Abstract: Sofalcone, 2'-carboxymethoxy-4,4-bis(3-methyl-2-butenyloxy)chalcone, is an anti-ulcer agent that is classified as a gastric mucosa protective agent. Recent studies indicate heat shock proteins such as HSP32, also known as heme-oxygenase-1(HO-1), play important roles in protecting gastrointestinal tissues from several stresses. We have previously reported that sofalcone increases the expression of HO-1 in adipocytes and pre-adipocytes, although the effect of sofalcone on HO-1 induction inmore » gastrointestinal tissues is not clear. In the current study, we investigated the effects of sofalcone on the expression of HO-1 and its functional role in rat gastric epithelial (RGM-1) cells. We found that sofalcone increased HO-1 expression in RGM-1 cells in both time- and concentration-dependent manners. The HO-1 induction was associated with the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) in RGM-1 cells. We also observed that sofalcone increased vascular endothelial growth factor (VEGF) production in the culture medium. Treatment of RGM-1 cells with an HO-1 inhibitor (tin-protoporphyrin), or HO-1 siRNA inhibited sofalcone-induced VEGF production, suggesting that the effect of sofalcone on VEGF expression is mediated by the HO-1 pathway. These results suggest that the gastroprotective effects of sofalcone are partly exerted via Nrf2-HO-1 activation followed by VEGF production.« less

  6. Extracellular matrix and growth factors in branching morphogenesis

    NASA Technical Reports Server (NTRS)

    Hardman, P.; Spooner, B. S.

    1993-01-01

    The unifying hypothesis of the NSCORT in gravitational biology postulates that the ECM and growth factors are key interrelated components of a macromolecular regulatory system. The ECM is known to be important in growth and branching morphogenesis of embryonic organs. Growth factors have been detected in the developing embryo, and often the pattern of localization is associated with areas undergoing epithelial-mesenchymal interactions. Causal relationships between these components may be of fundamental importance in control of branching morphogenesis.

  7. Growth and Growth hormone - Insulin Like Growth Factor -I (GH-IGF-I) Axis in Chronic Anemias.

    PubMed

    Soliman, Ashraf T; De Sanctis, Vincenzo; Yassin, Mohamed; Adel, Ashraf

    2017-04-28

    Anaemia is a global public health problem affecting both developing and developed countries with major consequences for human health as well as social and economic development. It occurs at all stages of the life cycle, but is more prevalent in pregnant women and young children. Iron deficiency anaemia (IDA) was considered to be among the most important contributing factors to the global burden of disease. Prolonged and/or chronic anemia has a negative effect on linear growth especially during the rapid phases (infancy and puberty). Additionally infants with chronic IDA have delayed cognitive, motor, and affective development that may be long-lasting. In view of the significant impact of chronic anemias on growth, pediatricians endocrinologists and hematologists should advocate primary prevention and screening for growth disturbance in these forms of anemias. The extent of the negative effect of different forms of chronic anemias on linear growth and its possible reversibilty is addressed in this review. The possible mechanisms that may impair growth in the different forms of anemias are addressed with special attention to their effect on the growth hormone (GH) - insulin like growth factor -I (IGF-I).

  8. Fibroblast Growth Factors Stimulate Hair Growth through β-Catenin and Shh Expression in C57BL/6 Mice

    PubMed Central

    Lin, Wei-hong; Xiang, Li-Jun; Shi, Hong-Xue; Zhang, Jian; Jiang, Li-ping; Cai, Ping-tao; Lin, Zhen-Lang; Lin, Bei-Bei; Huang, Yan; Zhang, Hai-Lin; Fu, Xiao-Bing; Guo, Ding-Jiong; Li, Xiao-Kun; Wang, Xiao-Jie; Xiao, Jian

    2015-01-01

    Growth factors are involved in the regulation of hair morphogenesis and cycle hair growth. The present study sought to investigate the hair growth promoting activities of three approved growth factor drugs, fibroblast growth factor 10 (FGF-10), acidic fibroblast growth factor (FGF-1), and basic fibroblast growth factor (FGF-2), and the mechanism of action. We observed that FGFs promoted hair growth by inducing the anagen phase in telogenic C57BL/6 mice. Specifically, the histomorphometric analysis data indicates that topical application of FGFs induced an earlier anagen phase and prolonged the mature anagen phase, in contrast to the control group. Moreover, the immunohistochemical analysis reveals earlier induction of β-catenin and Sonic hedgehog (Shh) in hair follicles of the FGFs-treated group. These results suggest that FGFs promote hair growth by inducing the anagen phase in resting hair follicles and might be a potential hair growth-promoting agent. PMID:25685806

  9. Neonatal manipulation of oxytocin prevents lipopolysaccharide-induced decrease in gene expression of growth factors in two developmental stages of the female rat.

    PubMed

    Bakos, Jan; Lestanova, Zuzana; Strbak, Vladimir; Havranek, Tomas; Bacova, Zuzana

    2014-10-01

    Oxytocin production and secretion is important for early development of the brain. Long-term consequences of manipulation of oxytocin system might include changes in markers of brain plasticity - cytoskeletal proteins and neurotrophins. The aim of the present study was (1) to determine whether neonatal oxytocin administration affects gene expression of nestin, microtubule-associated protein-2 (MAP-2), brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the brain of two developmental stages of rat and (2) to evaluate whether neonatal oxytocin administration protects against lipopolysaccharide (LPS) induced inflammation. Neonatal oxytocin did not prevent a decrease of body weight in the LPS treated animals. Oxytocin significantly increased gene expression of BDNF in the right hippocampus in 21-day and 2-month old rats of both sexes. Gene expression of NGF and MAP-2 significantly increased in males treated with oxytocin. Both, growth factors and intermediate filament-nestin mRNA levels, were reduced in females exposed to LPS. Oxytocin treatment prevented a decrease in the gene expression of only growth factors. In conclusion, neonatal manipulation of oxytocin has developmental and sex-dependent effect on markers of brain plasticity. These results also indicate, that oxytocin may be protective against inflammation particularly in females. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effect of growth factors on hyaluronan production by canine vocal fold fibroblasts.

    PubMed

    Hirano, Shigeru; Bless, Diane M; Heisey, Dennis; Ford, Charles N

    2003-07-01

    Hyaluronan (HYA) is considered to be a crucial factor in scarless wound healing and in maintaining tissue viscosity of the vocal fold lamina propria. In this study focusing on the effects of growth factors, we examined how HYA is produced and controlled in canine cultured vocal fold fibroblasts. Fibroblasts were taken from the lamina propria of the vocal folds of 8 dogs and cultured with and without growth factors. The production of HYA in the supernatant culture was quantitatively examined by enzyme-linked immunosorbent assay. Hepatocyte growth factor, epidermal growth factor, basic fibroblast growth factor, and transforming growth factor beta1 all stimulated HYA synthesis from vocal fold fibroblasts. These effects differed with the concentration of growth factors and the incubation period. We also examined how frequently the growth factors had to be administered in order to maintain appropriate levels of HYA. A single administration was sufficient to maintain appropriate HYA levels for at least 7 days. The present studies have demonstrated positive effects of growth factors in stimulating HYA production. Further in vivo study is needed to clarify the usefulness of these growth factors in the management of vocal fold scarring.

  11. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis.

    PubMed

    Matkar, Pratiek N; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K

    2017-10-02

    Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review.

  12. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis

    PubMed Central

    Matkar, Pratiek N.; Ariyagunarajah, Ramya; Leong-Poi, Howard; Singh, Krishna K.

    2017-01-01

    Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review. PMID:28974056

  13. Alterations of Growth Factors in Autism and Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Galvez-Contreras, Alma Y.; Campos-Ordonez, Tania; Gonzalez-Castaneda, Rocio E.; Gonzalez-Perez, Oscar

    2017-01-01

    Growth factors (GFs) are cytokines that regulate the neural development. Recent evidence indicates that alterations in the expression level of GFs during embryogenesis are linked to the pathophysiology and clinical manifestations of attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). In this concise review, we summarize the current evidence that supports the role of brain-derived neurotrophic factor, insulin-like growth factor 2, hepatocyte growth factor (HGF), glial-derived neurotrophic factor, nerve growth factor, neurotrophins 3 and 4, and epidermal growth factor in the pathogenesis of ADHD and ASD. We also highlight the potential use of these GFs as clinical markers for diagnosis and prognosis of these neurodevelopmental disorders. PMID:28751869

  14. Epidermal growth factor in alkali-burned corneal epithelial wound healing.

    PubMed

    Singh, G; Foster, C S

    1987-06-15

    We conducted a double-masked study to evaluate the effect of epidermal growth factor on epithelial wound healing and recurrent erosions in alkali-burned rabbit corneas. Epithelial wounds 10 mm in diameter healed completely under the influence of topical epidermal growth factor, whereas the control corneas did not resurface in the center. On reversal of treatment, the previously nonhealing epithelial defects healed when treated with topical epidermal growth factor eyedrops. Conversely, the epidermal growth factor-treated and resurfaced corneas developed epithelial defects when treatment was discontinued. Histopathologic examination disclosed hyperplastic epithelium growing over the damaged stroma laden with polymorphonuclear leukocytes when treated with epidermal growth factor eyedrops, but it did not adhere to the underlying tissue. Hydropic changes were seen intracellularly as well as between the epithelial cells and the stroma.

  15. Human corpus luteum: presence of epidermal growth factor receptors and binding characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyagari, R.R.; Khan-Dawood, F.S.

    Epidermal growth factor receptors are present in many reproductive tissues but have not been demonstrated in the human corpus luteum. To determine the presence of epidermal growth factor receptors and its binding characteristics, we carried out studies on the plasma cell membrane fraction of seven human corpora lutea (days 16 to 25) of the menstrual cycle. Specific epidermal growth factor receptors were present in human corpus luteum. Insulin, nerve growth factor, and human chorionic gonadotropin did not competitively displace epidermal growth factor binding. The optimal conditions for corpus luteum-epidermal growth factor receptor binding were found to be incubation for 2more » hours at 4 degrees C with 500 micrograms plasma membrane protein and 140 femtomol /sup 125/I-epidermal growth factor per incubate. The number (mean +/- SEM) of epidermal growth factor binding sites was 12.34 +/- 2.99 X 10(-19) mol/micrograms protein; the dissociation constant was 2.26 +/- 0.56 X 10(-9) mol/L; the association constant was 0.59 +/- 0.12 X 10(9) L/mol. In two regressing corpora lutea obtained on days 2 and 3 of the menstrual cycle, there was no detectable specific epidermal growth factor receptor binding activity. Similarly no epidermal growth factor receptor binding activity could be detected in ovarian stromal tissue. Our findings demonstrate that specific receptors for epidermal growth factor are present in the human corpus luteum. The physiologic significance of epidermal growth factor receptors in human corpus luteum is unknown, but epidermal growth factor may be involved in intragonadal regulation of luteal function.« less

  16. Predictive factors for intrauterine growth restriction.

    PubMed

    Albu, A R; Anca, A F; Horhoianu, V V; Horhoianu, I A

    2014-06-15

    Reduced fetal growth is seen in about 10% of the pregnancies but only a minority has a pathological background and is known as intrauterine growth restriction or fetal growth restriction (IUGR / FGR). Increased fetal and neonatal mortality and morbidity as well as adult pathologic conditions are often associated to IUGR. Risk factors for IUGR are easy to assess but have poor predictive value. For the diagnostic purpose, biochemical serum markers, ultrasound and Doppler study of uterine and spiral arteries, placental volume and vascularization, first trimester growth pattern are object of assessment today. Modern evaluations propose combined algorithms using these strategies, all with the goal of a better prediction of risk pregnancies.

  17. Ocular Angiogenesis: Vascular Endothelial Growth Factor and Other Factors.

    PubMed

    Rubio, Roman G; Adamis, Anthony P

    2016-01-01

    Systematic study of the mechanisms underlying pathological ocular neovascularization has yielded a wealth of knowledge about pro- and anti-angiogenic factors that modulate diseases such as neovascular age-related macular degeneration. The evidence implicating vascular endothelial growth factor (VEGF) in particular has led to the development of a number of approved anti-VEGF therapies. Additional proangiogenic targets that have emerged as potential mediators of ocular neovascularization include hypoxia-inducible factor-1, angiopoietin-2, platelet-derived growth factor-B and components of the alternative complement pathway. As for VEGF, knowledge of these factors has led to a product pipeline of many more novel agents that are in various stages of clinical development in the setting of ocular neovascularization. These agents are represented by a range of drug classes and, in addition to novel small- and large-molecule VEGF inhibitors, include gene therapies, small interfering RNA agents and tyrosine kinase inhibitors. In addition, combination therapy is beginning to emerge as a strategy to improve the efficacy of individual therapies. Thus, a variety of agents, whether administered alone or as adjunctive therapy with agents targeting VEGF, offer the promise of expanding the range of treatments for ocular neovascular diseases. © 2016 S. Karger AG, Basel.

  18. Examination of Substance Use, Risk Factors, and Protective Factors on Student Academic Test Score Performance

    PubMed Central

    Arthur, Michael W.; Brown, Eric C.; Briney, John S.; Hawkins, J. David; Abbott, Robert D.; Catalano, Richard F.; Becker, Linda; Langer, Michael; Mueller, Martin T.

    2016-01-01

    BACKGROUND School administrators and teachers face difficult decisions about how best to use school resources in order to meet academic achievement goals. Many are hesitant to adopt prevention curricula that are not focused directly on academic achievement. Yet, some have hypothesized that prevention curricula can remove barriers to learning and, thus, promote achievement. This study examined relationships between school levels of student substance use and risk and protective factors that predict adolescent problem behaviors and achievement test performance in Washington State. METHODS Hierarchical Generalized Linear Models were used to examine predictive associations between school-averaged levels of substance use and risk and protective factors and Washington State students’ likelihood of meeting achievement test standards on the Washington Assessment of Student Learning, statistically controlling for demographic and economic factors known to be associated with achievement. RESULTS Results indicate that levels of substance use and risk/protective factors predicted the academic test score performance of students. Many of these effects remained significant even after controlling for model covariates. CONCLUSIONS The findings suggest that implementing prevention programs that target empirically identified risk and protective factors have the potential to positively affect students’ academic achievement. PMID:26149305

  19. The Development and Validation of the Protective Factors Survey: A Self-Report Measure of Protective Factors against Child Maltreatment

    ERIC Educational Resources Information Center

    Counts, Jacqueline M.; Buffington, Elenor S.; Chang-Rios, Karin; Rasmussen, Heather N.; Preacher, Kristopher J.

    2010-01-01

    Objective: The objective of this study was to evaluate the internal structure of a self-report measure of multiple family-level protective factors against abuse and neglect and explore the relationship of this instrument to other measures of child maltreatment. Methods: For the exploratory factor analysis, 11 agencies from 4 states administered…

  20. Bone-Derived Growth Factors

    PubMed Central

    Capanna, R.; Campanacci, D.A.; De Biase, P.; Cuomo, P.; Lorenzoni, A.

    2010-01-01

    Bone regeneration is based on the synergy between osteconduction, osteoinduction and osteogenesis. In recent years, we have witnessed the birth and development of numerous osteoconductive substrates, created with the intention of replacing bone grafts, both autologous and homologous. Recently, attention has shifted to osteogenesis, in other words, to the study of mesenchymal cells and their differentiation into osteoblastic cell lines that can be cultured in vitro (as already seen with chondroblasts). Osteoinduction, too, has been shown to be equally important, ever since Urist’s 1967 study which drew attention to the demineralised bone matrix and its properties. The following twenty years led to the definition of bone morphogenetic protein (BMP) and finally to the marketing of the first ostegenic protein (OP-1) obtained by means of the gene recombination technique. The BMPs produced using this technique that, so far, have been shown to be most active are BMP-2 (Infuse) and BMP-7 (Osigraft). The BMPs are not the only molecules with osteoinductive capacity. Other molecules capable of influencing bone regeneration are: platelet-derived growth factors (PDGFs), the transforming growth factor-beta (TGF-β) family, insulin-like growth factor (IGF-I) and the acidic and basic fibroblast growth factors (FGFs). All these growth factors act in synergy with the BMPs, modulating their action and exerting an inductive and proliferative action on the cell lines responsible for regenerating the bone matrix. The literature has been literally invaded by studies, both experimental and preclinical, on these proteins (Termaat, 2005), and they have provided ample demonstration that the BMPs are effective in improving healing of fractures, pseudoarthrosis and spinal fusions. Important advantages of BMPs are the complete absence of risk of transmissible disease, given that they are produced using recombination technology; their purity, and thus absence of an immune response (although

  1. A Histologically Distinctive Interstitial Pneumonia Induced by Overexpression of the Interleukin 6, Transforming Growth Factor β1, or Platelet-Derived Growth Factor B Gene

    NASA Astrophysics Data System (ADS)

    Yoshida, Mitsuhiro; Sakuma, Junko; Hayashi, Seiji; Abe, Kin'ya; Saito, Izumu; Harada, Shizuko; Sakatani, Mitsunoir; Yamamoto, Satoru; Matsumoto, Norinao; Kaneda, Yasufumi; Kishmoto, Tadamitsu

    1995-10-01

    Interstitial pneumonia is characterized by alveolitis with resulting fibrosis of the interstitium. To determine the relevance of humoral factors in the pathogenesis of interstitial pneumonia, we introduced expression vectors into Wistar rats via the trachea to locally overexpress humoral factors in the lungs. Human interleukin (IL) 6 and IL-6 receptor genes induced lymphocytic alveolitis without marked fibroblast proliferation. In contrast, overexpression of human transforming growth factor β1 or human platelet-derived growth factor B gene induced only mild or apparent cellular infiltration in the alveoli, respectively. However, both factors induced significant proliferation of fibroblasts and deposition of collagen fibrils. These histopathologic changes induced by the transforming growth factor β1 and platelet-derived growth factor B gene are partly akin to those changes seen in lung tissues from patients with pulmonary fibrosis and markedly contrast with the changes induced by overexpression of the IL-6 and IL-6 receptor genes that mimics lymphocytic interstitial pneumonia.

  2. Fibroblast growth factors in cardiovascular disease: The emerging role of FGF21

    PubMed Central

    Domouzoglou, Eleni M.; Naka, Katerina K.; Vlahos, Antonios P.; Papafaklis, Michail I.; Michalis, Lampros K.; Tsatsoulis, Agathoklis

    2015-01-01

    Early detection of risk factors for enhanced primary prevention and novel therapies for treating the chronic consequences of cardiovascular disease are of the utmost importance for reducing morbidity. Recently, fibroblast growth factors (FGFs) have been intensively studied as potential new molecules in the prevention and treatment of cardiovascular disease mainly attributable to metabolic effects and angiogenic actions. Members of the endocrine FGF family have been shown to increase metabolic rate, decrease adiposity, and restore glucose homeostasis, suggesting a multiple metabolic role. Serum levels of FGFs have been associated with established cardiovascular risk factors as well as with the severity and extent of coronary artery disease and could be useful for prediction of cardiovascular death. Furthermore, preclinical investigations and clinical trials have tested FGF administration for therapeutic angiogenesis in ischemic vascular disease, demonstrating a potential role in improving angina and limb function. FGF21 has lately emerged as a potent metabolic regulator with multiple effects that ultimately improve the lipoprotein profile. Early studies show that FGF21 is associated with the presence of atherosclerosis and may play a protective role against plaque formation by improving endothelial function. The present review highlights recent investigations suggesting that FGFs, in particular FGF21, may be useful as markers of cardiovascular risk and may also serve as protective/therapeutic agents in cardiovascular disease. PMID:26232236

  3. Fibroblast growth factors in cardiovascular disease: The emerging role of FGF21.

    PubMed

    Domouzoglou, Eleni M; Naka, Katerina K; Vlahos, Antonios P; Papafaklis, Michail I; Michalis, Lampros K; Tsatsoulis, Agathoklis; Maratos-Flier, Eleftheria

    2015-09-15

    Early detection of risk factors for enhanced primary prevention and novel therapies for treating the chronic consequences of cardiovascular disease are of the utmost importance for reducing morbidity. Recently, fibroblast growth factors (FGFs) have been intensively studied as potential new molecules in the prevention and treatment of cardiovascular disease mainly attributable to metabolic effects and angiogenic actions. Members of the endocrine FGF family have been shown to increase metabolic rate, decrease adiposity, and restore glucose homeostasis, suggesting a multiple metabolic role. Serum levels of FGFs have been associated with established cardiovascular risk factors as well as with the severity and extent of coronary artery disease and could be useful for prediction of cardiovascular death. Furthermore, preclinical investigations and clinical trials have tested FGF administration for therapeutic angiogenesis in ischemic vascular disease, demonstrating a potential role in improving angina and limb function. FGF21 has lately emerged as a potent metabolic regulator with multiple effects that ultimately improve the lipoprotein profile. Early studies show that FGF21 is associated with the presence of atherosclerosis and may play a protective role against plaque formation by improving endothelial function. The present review highlights recent investigations suggesting that FGFs, in particular FGF21, may be useful as markers of cardiovascular risk and may also serve as protective/therapeutic agents in cardiovascular disease. Copyright © 2015 the American Physiological Society.

  4. Potential role of fibroblast growth factor in enhancement of fracture healing.

    PubMed

    Radomsky, M L; Thompson, A Y; Spiro, R C; Poser, J W

    1998-10-01

    Fibroblast growth factors are present in significant amounts in bone and several studies have suggested that they may be involved in normal fracture healing. It is well established that fibroblast growth factors have mitogenic and angiogenic activity on mesoderm and neuroectoderm derived cells. Of particular interest as a member of the fibroblast growth factor family, basic fibroblast growth factor stimulates mitogenesis, chemotaxis, differentiation, and angiogenesis. It also plays an important role in the development of vascular, nervous, and skeletal systems, promotes the maintenance and survival of certain tissues, and stimulates wound healing and tissue repair. Animal studies have shown that the direct injection of fibroblast growth factor into fresh fractures stimulates callus formation, which provides mechanical stability to the fracture, accelerates healing, and restores competence. The matrix used to present the fibroblast growth factor at the fracture site plays a critical role in the effectiveness of the treatment. The evaluation of injectable basic fibroblast growth factor in a sodium hyaluronate gel for its effectiveness in stimulating fracture healing is described. When applied directly into a freshly created fracture in the rabbit fibula, a single injection of the basic fibroblast growth factor and hyaluronan results in the stimulation of callus formation, increased bone formation, and earlier restoration of mechanical strength at the fracture site. The hyaluronan gel serves as a reservoir that sequesters the basic fibroblast growth factor at the injection site for the length of time necessary to create an environment conducive to fracture healing. It is concluded that basic fibroblast growth factor and sodium hyaluronate act synergistically to accelerate fracture healing and that the combination is suitable for clinical evaluation as a therapy in fracture treatment.

  5. Neural Stem Cell Differentiation Using Microfluidic Device-Generated Growth Factor Gradient.

    PubMed

    Kim, Ji Hyeon; Sim, Jiyeon; Kim, Hyun-Jung

    2018-04-11

    Neural stem cells (NSCs) have the ability to self-renew and differentiate into multiple nervous system cell types. During embryonic development, the concentrations of soluble biological molecules have a critical role in controlling cell proliferation, migration, differentiation and apoptosis. In an effort to find optimal culture conditions for the generation of desired cell types in vitro , we used a microfluidic chip-generated growth factor gradient system. In the current study, NSCs in the microfluidic device remained healthy during the entire period of cell culture, and proliferated and differentiated in response to the concentration gradient of growth factors (epithermal growth factor and basic fibroblast growth factor). We also showed that overexpression of ASCL1 in NSCs increased neuronal differentiation depending on the concentration gradient of growth factors generated in the microfluidic gradient chip. The microfluidic system allowed us to study concentration-dependent effects of growth factors within a single device, while a traditional system requires multiple independent cultures using fixed growth factor concentrations. Our study suggests that the microfluidic gradient-generating chip is a powerful tool for determining the optimal culture conditions.

  6. Growth factors and myometrium: biological effects in uterine fibroid and possible clinical implications

    PubMed Central

    Ciarmela, Pasquapina; Islam, Md. Soriful; Reis, Fernando M.; Gray, Peter C.; Bloise, Enrrico; Petraglia, Felice; Vale, Wylie; Castellucci, Mario

    2011-01-01

    BACKGROUND Growth factors are proteins secreted by a number of cell types that are capable of modulating cellular growth, proliferation and cellular differentiation. It is well accepted that uterine cellular events such as proliferation and differentiation are regulated by sex steroids and their actions in target tissues are mediated by local production of growth factors acting through paracrine and/or autocrine mechanisms. Myometrial mass is ultimately modified in pregnancy as well as in tumour conditions such as leiomyoma and leiomyosarcoma. Leiomyomas, also known as fibroids, are benign tumours of the uterus, considered to be one of the most frequent causes of infertility in reproductive years in women. METHODS For this review, we searched the database MEDLINE and Google Scholar for articles with content related to growth factors acting on myometrium; the findings are hereby reviewed and discussed. RESULTS Different growth factors such as epidermal growth factor (EGF), transforming growth factor-α (TGF-α), heparin-binding EGF (HB-EGF), acidic fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF), platelet-derived growth factor (PDGF) and TGF-β perform actions in myometrium and in leiomyomas. In addition to these growth factors, activin and myostatin have been recently identified in myometrium and leiomyoma. CONCLUSIONS Growth factors play an important role in the mechanisms involved in myometrial patho-physiology. PMID:21788281

  7. Factors associated with child protection recurrence in Australia.

    PubMed

    Jenkins, Brian Q; Tilbury, Clare; Hayes, Hennessey; Mazerolle, Paul

    2018-05-07

    The aim of the current research was to advance understanding of child protection in Australia by examining the factors associated with recurrence of child protection notifications to the formal child protection system. Extant research has been primarily undertaken in the USA and it is important to understand whether similar factors associated with recurrence actually hold in the Australian context. Administrative data were obtained for a sample of 9608 children first subject to a screened-in report in 2011-12. Children were followed for 12 months. Cox Proportional Hazard models were used to measure associations between 26 independent variables and four types of recurrence: subsequent reports, subsequent investigations, subsequent substantiations, and subsequent intervention. Factors associated with recurrence in Australia were broadly similar to those identified in other jurisdictions, including reports and substantiation for neglect, younger age, prior child protection involvement in the household, and parental characteristics including drug use, mental health problems, and history of maltreatment as a child. As in previous studies, post-investigative service provision was positively associated with recurrence. In prior US research, race did not predict recurrence. However, in the present study, Indigenous Australian children were significantly more likely to be subject to all types of recurrence measured. Future research on recurrence should aim to disentangle the complex relationships between child protection recurrence, child maltreatment, and service delivery. Recurrence is not a good proxy indicator of child safety. The findings have implications for the equity of recurrence-based risk assessment tools as they are applied to indigenous populations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Relationship Factors and Couples' Engagement in Sun Protection

    ERIC Educational Resources Information Center

    Manne, S. L.; Coups, E. J.; Kashy, D. A.

    2016-01-01

    Individuals may be more motivated to adopt health practices if they consider the benefits of these behaviors for their close relationships. The goal of this study was to examine couple concordance with sun protection and use the interdependence and communal coping theory to evaluate the role of relationship factors in sun protection. One hundred…

  9. Maternal obesity and overnutrition alter fetal growth rate and cotyledonary vascularity and angiogenic factor expression in the ewe.

    PubMed

    Ma, Yan; Zhu, Mei J; Zhang, Liren; Hein, Sarah M; Nathanielsz, Peter W; Ford, Stephen P

    2010-07-01

    In pregnant sheep, maternal:fetal exchange occurs across placentomes composed of placental cotyledonary and uterine caruncular tissues. Recently, we reported that fetal weights of obese (OB) ewes [fed a diet of 150% of National Research Council (NRC) recommendations] were approximately 30% greater than those of control (C) ewes (fed a diet 100% of NRC recommendations) at midgestation (MG), but fetal weights were similar in late gestation (LG). Transplacental nutrient exchange is dependent on placental blood flow, which itself is dependent on placental vascularity. The current study investigated whether the observed initial faster and subsequent slower fetal growth rate of OB compared with C was associated with changes in cotyledonary vascularity and expression of angiogenic factors (vascular endothelial growth factor, fibroblast growth factor-2, placental growth factor, angiopoietin-1 and -2). Cotyledonary arteriole diameters were markedly greater (P < 0.05) in OB than C ewes at MG, but while arteriole diameter of C ewes increased (P < 0.05) from MG to LG, they remained unchanged in OB ewes. Cotyledonary arterial angiogenic factors mRNA and protein expression were lower (P < 0.05) in OB than C ewes at MG and remained low from MG to LG. In contrast, mRNA levels of angiogenic factors in C ewes declined from high levels at MG to reach those of OB ewes by LG. The increase in cotyledonary arteriole diameter in early to MG may function to accelerate fetal growth rate in OB ewes, while the decreased cotyledonary arterial angiogenic factors from MG-LG may function to protect the fetus from excessive placental vascular development, increased maternal nutrient delivery, and excessive weight gain.

  10. Maternal obesity and overnutrition alter fetal growth rate and cotyledonary vascularity and angiogenic factor expression in the ewe

    PubMed Central

    Ma, Yan; Zhu, Mei J.; Zhang, Liren; Hein, Sarah M.; Nathanielsz, Peter W.

    2010-01-01

    In pregnant sheep, maternal:fetal exchange occurs across placentomes composed of placental cotyledonary and uterine caruncular tissues. Recently, we reported that fetal weights of obese (OB) ewes [fed a diet of 150% of National Research Council (NRC) recommendations] were ∼30% greater than those of control (C) ewes (fed a diet 100% of NRC recommendations) at midgestation (MG), but fetal weights were similar in late gestation (LG). Transplacental nutrient exchange is dependent on placental blood flow, which itself is dependent on placental vascularity. The current study investigated whether the observed initial faster and subsequent slower fetal growth rate of OB compared with C was associated with changes in cotyledonary vascularity and expression of angiogenic factors (vascular endothelial growth factor, fibroblast growth factor-2, placental growth factor, angiopoietin-1 and -2). Cotyledonary arteriole diameters were markedly greater (P < 0.05) in OB than C ewes at MG, but while arteriole diameter of C ewes increased (P < 0.05) from MG to LG, they remained unchanged in OB ewes. Cotyledonary arterial angiogenic factors mRNA and protein expression were lower (P < 0.05) in OB than C ewes at MG and remained low from MG to LG. In contrast, mRNA levels of angiogenic factors in C ewes declined from high levels at MG to reach those of OB ewes by LG. The increase in cotyledonary arteriole diameter in early to MG may function to accelerate fetal growth rate in OB ewes, while the decreased cotyledonary arterial angiogenic factors from MG-LG may function to protect the fetus from excessive placental vascular development, increased maternal nutrient delivery, and excessive weight gain. PMID:20427725

  11. Effects of basic fibroblast growth factor and insulin-like growth factor on cultured cartilage cells from skate Raja porasa

    NASA Astrophysics Data System (ADS)

    Fan, Tingjun; Jin, Lingyun; Wang, Xiaofeng

    2003-12-01

    Effects of basic fibroblast growth factor (bFGF) and insulin-like growth factor II (IGF-II) on cartilage cells from proboscis of skate, Raja porasa Günther, were investigated in this study. The cartilage cells were cultured in 20% FBS-supplemented MEM medium at 24°C. Twelve hours after culture initiation, the cartilage cells were treated with bFGF and IGF-II at different concentration combinations. It was found that 20 ng/ml of bFGF or 80 ng/ml of IGF-II was enough to have obvious stimulating effect on the growth and division of skate cartilage cells. Test of bFGF and IGF-II together, revealed that 20 ng/ml of bFGF and 80 ng/ml of IGF-II together had the best stimulating effect on the growth and division of skate cartilage cells. The cartilage cells cultured could form a monolayer at day 7.

  12. Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects

    PubMed Central

    Liu, Huawei; Wen, Weisheng; Hu, Min; Bi, Wenting; Chen, Lijie; Liu, Sanxia; Chen, Peng; Tan, Xinying

    2013-01-01

    Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as well as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa-line groups than in the nerve growth factor-microspheres and autologous nerve groups. physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation illustrated that the di-ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits. PMID:25206635

  13. Fibroblast Growth Factor 2: An Epithelial Ductal Cell Growth Inhibitor That Drops Out in Breast Cancer

    DTIC Science & Technology

    2010-10-01

    AD_________________ Award Number: W81XWH-08-1-0708 TITLE: Fibroblast Growth Factor 2: an...September 2009 – 14 September 2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Fibroblast Growth Factor 2: an Epithelial Ductal Cell Growth ...8 Appendices…………………………………………………………………………… 8 Supporting Data……………………………………………………………………... 8 Fibroblast Growth Factor -2: an

  14. Risk and protective factors for recidivism among juveniles who have offended sexually.

    PubMed

    Spice, Andrew; Viljoen, Jodi L; Latzman, Natasha E; Scalora, Mario J; Ullman, Daniel

    2013-08-01

    Literature on risk factors for recidivism among juveniles who have sexually offended (JSOs) is limited. In addition, there have been no studies published concerning protective factors among this population. The purpose of this study was to examine the relationship of risk and protective factors to sexual and nonsexual recidivism among a sample of 193 male JSOs (mean age = 15.26). Youths were followed for an average of 7.24 years following discharge from a residential sex offender treatment program. The risk factor opportunities to reoffend, as coded based on the Estimate of Risk of Adolescent Sexual Offense Recidivism, was associated with sexual recidivism. Several risk factors (e.g., prior offending; peer delinquency) were associated with nonsexual recidivism. No protective factors examined were associated with sexual recidivism, although strong attachments and bonds as measured by the Structured Assessment of Violence Risk in Youth was negatively related to nonsexual recidivism. These findings indicate that risk factors for nonsexual recidivism may be consistent across both general adolescent offender populations and JSOs, but that there may be distinct protective factors that apply to sexual recidivism among JSOs. Results also indicate important needs for further research on risk factors, protective factors, and risk management strategies for JSOs.

  15. Platelet-derived growth factor inhibits platelet activation in heparinized whole blood.

    PubMed

    Selheim, F; Holmsen, H; Vassbotn, F S

    1999-08-15

    We previously have demonstrated that human platelets have functionally active platelet-derived growth factor alpha-receptors. Studies with gel-filtered platelets showed that an autocrine inhibition pathway is transduced through this tyrosine kinase receptor during platelet activation. The physiological significance of this inhibitory effect of platelet-derived growth factor on gel-filtered platelets activation is, however, not known. In the present study, we investigated whether platelet-derived growth factor inhibits platelet activation under more physiological conditions in heparinized whole blood, which represents a more physiological condition than gel-filtered platelets. Using flow cytometric assays, we demonstrate here that platelet-derived growth factor inhibits thrombin-, thrombin receptor agonist peptide SFLLRN-, and collagen-induced platelet aggregation and shedding of platelet-derived microparticles from the platelet plasma membrane during platelet aggregation in stirred heparinized whole blood. The inhibitory effect of platelet-derived growth factor was dose dependent. However, under nonaggregating conditions (no stirring), we could not demonstrate any significant effect of platelet-derived growth factor on thrombin- and thrombin receptor agonist peptide-induced platelet surface expression of P-selectin. Our results demonstrate that platelet-derived growth factor appears to be a true antithrombotic agent only under aggregating conditions in heparinized whole blood.

  16. Gelatin Methacrylate Microspheres for Growth Factor Controlled Release

    PubMed Central

    Nguyen, Anh H.; McKinney, Jay; Miller, Tobias; Bongiorno, Tom; McDevitt, Todd C.

    2014-01-01

    Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as the use of glutaraldehyde (GA), methacrylate modification of gelatin offers an alternative method to better control the extent of hydrogel cross-linking. Here we examined the physical properties and growth factor delivery of gelatin methacrylate (GMA) microparticles formulated with a wide range of different cross-linking densities (15–90%). Less methacrylated MPs had decreased elastic moduli and larger mesh sizes compared to GA MPs, with increasing methacrylation correlating to greater moduli and smaller mesh sizes. As expected, an inverse correlation between microparticle cross-linking density and degradation was observed, with the lowest cross-linked GMA MPs degrading at the fastest rate, comparable to GA MPs. Interestingly, GMA MPs at lower cross-linking densities could be loaded with up to a 10-fold higher relative amount of growth factor over conventional GA cross-linked MPs, despite an order of magnitude greater gelatin content of GA MPs. Moreover, a reduced GMA cross-linking density resulted in more complete release of bone morphogenic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) and accelerated release rate with collagenase treatment. These studies demonstrate that GMA MPs provide a more flexible platform for growth factor delivery by enhancing the relative binding capacity and permitting proteolytic degradation tunability, thereby offering a more potent controlled release system for growth factor delivery. PMID:25463489

  17. Quinones are growth factors for the human gut microbiota.

    PubMed

    Fenn, Kathrin; Strandwitz, Philip; Stewart, Eric J; Dimise, Eric; Rubin, Sarah; Gurubacharya, Shreya; Clardy, Jon; Lewis, Kim

    2017-12-20

    The human gut microbiome has been linked to numerous components of health and disease. However, approximately 25% of the bacterial species in the gut remain uncultured, which limits our ability to properly understand, and exploit, the human microbiome. Previously, we found that growing environmental bacteria in situ in a diffusion chamber enables growth of uncultured species, suggesting the existence of growth factors in the natural environment not found in traditional cultivation media. One source of growth factors proved to be neighboring bacteria, and by using co-culture, we isolated previously uncultured organisms from the marine environment and identified siderophores as a major class of bacterial growth factors. Here, we employ similar co-culture techniques to grow bacteria from the human gut microbiome and identify novel growth factors. By testing dependence of slow-growing colonies on faster-growing neighboring bacteria in a co-culture assay, eight taxonomically diverse pairs of bacteria were identified, in which an "induced" isolate formed a gradient of growth around a cultivatable "helper." This set included two novel species Faecalibacterium sp. KLE1255-belonging to the anti-inflammatory Faecalibacterium genus-and Sutterella sp. KLE1607. While multiple helper strains were identified, Escherichia coli was also capable of promoting growth of all induced isolates. Screening a knockout library of E. coli showed that a menaquinone biosynthesis pathway was required for growth induction of Faecalibacterium sp. KLE1255 and other induced isolates. Purified menaquinones induced growth of 7/8 of the isolated strains, quinone specificity profiles for individual bacteria were identified, and genome analysis suggests an incomplete menaquinone biosynthetic capability yet the presence of anaerobic terminal reductases in the induced strains, indicating an ability to respire anaerobically. Our data show that menaquinones are a major class of growth factors for bacteria

  18. Social Differentiation of Sun-Protection Behaviors: The Mediating Role of Cognitive Factors.

    PubMed

    Bocquier, Aurélie; Fressard, Lisa; Legleye, Stéphane; Verger, Pierre; Peretti-Watel, Patrick

    2016-03-01

    Adherence to sun-protection guidelines in developed countries is low, especially among people of low SES. Mechanisms underlying this social differentiation are poorly understood. This study aimed to examine the social differentiation of sun-protection behaviors and of two cognitive factors (knowledge about both sun health and behavioral risk factors for cancer) and to determine if these cognitive factors mediate the association between SES and sun-protection behaviors. Data came from the 2010 Baromètre Cancer survey (analyzed in 2014), a random cross-sectional telephone survey conducted among the French general population (n=3,359 individuals aged 15-75 years). First, bivariate associations between a composite individual SES indicator (based on education level, occupation, and income) and both sun-protection behaviors and cognitive factors were tested with chi-square tests and ANOVA. Then, confirmatory factor analysis and structural equation modeling were used to test the mediating role of cognitive factors with a multiple mediation model including four latent variables. In bivariate analyses, the individual SES indicator was positively associated with sun-protection behaviors and both cognitive factors. Multiple mediation analyses showed that both cognitive factors partially mediated the effect of individual SES on sun-protection behaviors. The overall proportion of mediated effects was 48%. The direct effect of SES remained significant. These results suggest that interventions aimed at modifying the knowledge and perceptions of people of low SES might help to reduce social differentiation of sun-protection behaviors. Further qualitative research is needed to better understand these cognitive factors and develop suitable prevention messages. Copyright © 2016 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Multiple factor indices of protection or risk towards disease.

    PubMed

    Belfiore, F; Iannello, S

    2001-02-01

    In order to combine several factors entailing protection or risk towards disease and to calculate a Protection Multiple Factor Index (PMFI) or, conversely, a Risk Multiple Factor Index (RMFI), we propose the following formulae: (1) PMFI = 2/[(mF)2 + 1] and (2) RMFI = 2/[(imF)2 + 1], where mF is the mean value of the factors considered and imF is the inverse (or reciprocal) of mF. In calculating mF, the value of each 'risk factor' observed in the patient under study (Vp) is expressed by taking the mean normal value (Vmn) as the unit, i.e. by calculating the ratio Vp/Vmn, whereas each 'protection factor' is expressed as the reciprocal of this ratio, i.e. as Vmn/Vp. The 'weight' of the various factors can be changed through multiplication by a number > 1 or < 1. Values of both PMFI and RMFI are always close to 1 in normal subjects, with extreme variations among patients between 0 and 2. The sum of the values of PMFI and RMFI is always equal to 2, so that one index can be deduced from the other. When factors are only two (F1 and F2), the formulae may be simplified as follows: PMFI = 2/[F1 x F2) + 1] and RMFI = 2/[(iF1 x iF2) + 1], where iF = 1/F, with only minimal changes in results.

  20. Growth factor-functionalized silk membranes support wound healing in vitro.

    PubMed

    Bienert, M; Hoss, M; Bartneck, M; Weinandy, S; Böbel, M; Jockenhövel, S; Knüchel, R; Pottbacker, K; Wöltje, M; Jahnen-Dechent, W; Neuss, S

    2017-08-16

    Chronic wounds represent a serious problem in daily medical routine requiring improved wound care. Silk of the domesticated silkworm (Bombyx mori) has been used to form a variety of biomaterials for medical applications. We genetically engineered B. mori to produce silk functionalized with growth factors to promote wound healing in vitro. In this study FGF-, EGF-, KGF-, PDGF- or VEGF-functionalized silk membranes were compared to native B. mori silk membranes without growth factors for their ability to support wound healing in vitro. All silk membranes were cytocompatible and supported macrophage secretion of neutrophil recruiting factor CXCL1 and monocyte chemoattractant protein 1 (MCP-1). VEGF-functionalized silk significantly outperformed other growth factor-functionalized silk membranes, but not native silk in angiogenesis assays. In addition, EGF- and VEGF-functionalized silk membranes slightly enhanced macrophage adhesion compared to silk without growth factors. In wound healing assays in vitro (reduction of wound lesion), dermal equivalents showed a higher wound healing capacity when covered with EGF-, FGF- or VEGF-functionalized silk membranes compared to native, KGF- or PDGF-functionalized silk membranes. Keratinocyte migration and growth is overstimulated by KGF- and VEGF-functionalized silk membranes. In conclusion, growth factor-functionalized silk membranes prepared from genetically engineered silk worm glands are promising wound dressings for future wound healing therapies.

  1. Relationship factors and couples' engagement in sun protection.

    PubMed

    Manne, S L; Coups, E J; Kashy, D A

    2016-08-01

    Individuals may be more motivated to adopt health practices if they consider the benefits of these behaviors for their close relationships. The goal of this study was to examine couple concordance with sun protection and use the interdependence and communal coping theory to evaluate the role of relationship factors in sun protection. One hundred and eighty-four married couples aged 50 years and older completed measures of objective skin cancer risk, perceived risk, sun protection benefits, relationship-centered motivations for sun protection, discussions about sun protection, and sun protection. A mediational model was evaluated. Results indicated a high level of couple concordance. Partners who adopted a relationship-centered motivation for sun protection were more likely to discuss sun protection with one another, and partners who discussed sun protection together were more likely to engage in sun protection. One partner's attitude about personal risk and sun protection benefits was associated with the other partner's sun protection. Wives had higher relationship-centered motivation and discussed sun protection more with their husbands. Behavioral interventions may benefit from encouraging couples to discuss sun protection and encouraging married individuals to consider the benefits of sun protection for their relationship and for their spouse's health. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Therapeutic modulation of growth factors and cytokines in regenerative medicine.

    PubMed

    Ioannidou, Effie

    2006-01-01

    Regeneration that takes place in the human body is limited throughout life. Therefore, when organs are irreparably damaged, they are usually replaced with an artificial device or donor organ. The term "regenerative medicine" covers the restoration or replacement of cells, tissues, and organs. Stem cells play a major role in regenerative medicine by providing the way to repopulate organs damaged by disease. Stem cells have the ability to self renew and to regenerate cells of diverse lineages within the tissue in which they reside. Stem cells could originate from embryos or adult tissues. Growth factors are proteins that may act locally or systemically to affect the growth of cells in several ways. Various cell activities, including division, are influenced by growth factors. Cytokines are a family of low-molecular-weight proteins that are produced by numerous cell types and are responsible for regulating the immune response, inflammation, tissue remodeling and cellular differentiation. Target cells of growth factors and cytokines are mesenchymal, epithelial and endothelial cells. These molecules frequently have overlapping activities and can act in an autocrine or paracrine fashion. A complex network of growth factors and cytokines guides cellular differentiation and regeneration in all organs and tissues. The aim of this paper is to review the role of growth factors and cytokines in different organs or systems and explore their therapeutic application in regenerative medicine. The role of stem cells combined with growth factors and cytokines in the regeneration of vascular and hematopoietic, neural, skeletal, pancreatic, periodontal, and mucosal tissue is reviewed. There is evidence that supports the use of growth factors and cytokines in the treatment of neurological diseases, diabetes, cardiovascular disease, periodontal disease, cancer and its complication, oral mucositis. After solving the ethical issues and establishing clear and reasonable regulations

  3. Nitric oxide donor restores lung growth factor and receptor expression in hyperoxia-exposed rat pups.

    PubMed

    Lopez, Emmanuel; Boucherat, Olivier; Franco-Montoya, Marie-Laure; Bourbon, Jacques R; Delacourt, Christophe; Jarreau, Pierre-Henri

    2006-06-01

    Exposure of newborn rats to hyperoxia impairs alveolarization. Nitric oxide (NO) may prevent this evolution. Angiogenesis and factors involved in this process, but also other growth factors (GFs) involved in alveolar development, are likely potential therapeutic targets for NO. We studied the effects of the NO donor, [Z]-1-[N-(2-aminoethyl)-N-(2-ammonioethyl)aminio]diazen-1-ium-1, 2-diolate, also termed DETANONOate (D-NO), on hyperoxia-induced changes in key regulatory factors of alveolar development in neonatal rats, and its possible preventive effect on the physiologic consequences of hyperoxia. Newborn rat pups were randomized at birth to hyperoxia (> 95% O2) or room air exposure for 6 or 10 d, while receiving D-NO or its diluent. On Day 6, several GFs and their receptors were studied at pre- and/or post-translational levels. Elastin transcript determination on Day 6, and elastin deposition in tissue and morphometric analysis of the lungs on Day 10, were also performed. Hyperoxia decreased the expression of vascular endothelial growth factor (VEGF) receptor (VEGFR) 2, fibroblast growth factor (FGF)-18, and FGF receptors (FGFRs) FGFR3 and FGFR4, increased mortality, and impaired alveolarization and capillary growth. D-NO treatment of hyperoxia-exposed pups restored the expression level of FGF18 and FGFR4, induced an increase of both VEGF mRNA and protein, enhanced elastin expression, and partially restored elastin deposition in alveolar walls. Although, under the present conditions, D-NO failed to prevent the physiologic consequences of hyperoxia in terms of survival and lung alveolarization, our findings demonstrate molecular effects of NO on GFs involved in alveolar development that may have contributed to the protective effects previously reported for NO.

  4. [Effect of cryotherapy over the expression of vascular endothelial growth factor and pigment epithelium-derived factor].

    PubMed

    Toscano-Garibay, Julia Dolores; Quiroz-Mercado, Hugo; Espitia-Pinzón, Clara; Gil-Carrasco, Félix; Flores-Estrada, José Javier

    2014-01-01

    Cryotherapy is a no invasive technique that uses intense cold to freeze and destroy cancer tissues. There are no descriptions of its effects over the expression of vascular endothelial growth factor and pigment epithelium-derived factor. Experimental study in cryogenic spot were applied in the right sclera of twelve pigs for ten minutes. Other 3 pigs were used as normal controls. Animals were sacrificed at 7, 14 and 21 and the tissues of choriodes and retina were dissected in areas of approximately 1 cm2 surrounding cryogenic spots. Expression levels of vascular endothelial growth factor and pigment epithelium-derived factor were determined analyzed using polymerase chain reaction coupled to reverse-transcription. Vascular endothelial growth factor was significantly downregulated (24%, p< 0.05) seven days post-treatment meanwhile pigment epithelium-derived factor levels increased 44.8% (p< 0.05) as compared to normal controls (untreated). Both vascular endothelial growth factor and pigment epithelium-derived factor levels remain the same until day 14 but returned to basal expression at day 21. This work expose the relation of cryotherapy with the expression of two factors related to angiogenesis. RESULTS showed significant changes on the expression of vascular endothelial growth factor and pigment epithelium-derived factor illustrating that both proteins are regulated in response to cryogenic treatment in relatively short periods (21 days).

  5. EGFR ligands drive multipotential stromal cells to produce multiple growth factors and cytokines via early growth response-1.

    PubMed

    Kerpedjieva, Svetoslava S; Kim, Duk Soo; Barbeau, Dominique J; Tamama, Kenichi

    2012-09-01

    Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)-EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase-extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands.

  6. Cerebrolysin modulates pronerve growth factor/nerve growth factor ratio and ameliorates the cholinergic deficit in a transgenic model of Alzheimer's disease.

    PubMed

    Ubhi, Kiren; Rockenstein, Edward; Vazquez-Roque, Ruben; Mante, Michael; Inglis, Chandra; Patrick, Christina; Adame, Anthony; Fahnestock, Margaret; Doppler, Edith; Novak, Philip; Moessler, Herbert; Masliah, Eliezer

    2013-02-01

    Alzheimer's disease (AD) is characterized by degeneration of neocortex, limbic system, and basal forebrain, accompanied by accumulation of amyloid-β and tangle formation. Cerebrolysin (CBL), a peptide mixture with neurotrophic-like effects, is reported to improve cognition and activities of daily living in patients with AD. Likewise, CBL reduces synaptic and behavioral deficits in transgenic (tg) mice overexpressing the human amyloid precursor protein (hAPP). The neuroprotective effects of CBL may involve multiple mechanisms, including signaling regulation, control of APP metabolism, and expression of neurotrophic factors. We investigate the effects of CBL in the hAPP tg model of AD on levels of neurotrophic factors, including pro-nerve growth factor (NGF), NGF, brain-derived neurotrophic factor (BDNF), neurotropin (NT)-3, NT4, and ciliary neurotrophic factor (CNTF). Immunoblot analysis demonstrated that levels of pro-NGF were increased in saline-treated hAPP tg mice. In contrast, CBL-treated hAPP tg mice showed levels of pro-NGF comparable to control and increased levels of mature NGF. Consistently with these results, immunohistochemical analysis demonstrated increased NGF immunoreactivity in the hippocampus of CBL-treated hAPP tg mice. Protein levels of other neurotrophic factors, including BDNF, NT3, NT4, and CNTF, were unchanged. mRNA levels of NGF and other neurotrophins were also unchanged. Analysis of neurotrophin receptors showed preservation of the levels of TrKA and p75(NTR) immunoreactivity per cell in the nucleus basalis. Cholinergic cells in the nucleus basalis were reduced in the saline-treated hAPP tg mice, and treatment with CBL reduced these cholinergic deficits. These results suggest that the neurotrophic effects of CBL might involve modulation of the pro-NGF/NGF balance and a concomitant protection of cholinergic neurons. Copyright © 2012 Wiley Periodicals, Inc.

  7. Keratinocyte growth factor is a growth factor for mammary epithelium in vivo. The mammary epithelium of lactating rats is resistant to the proliferative action of keratinocyte growth factor.

    PubMed Central

    Ulich, T. R.; Yi, E. S.; Cardiff, R.; Yin, S.; Bikhazi, N.; Biltz, R.; Morris, C. F.; Pierce, G. F.

    1994-01-01

    Keratinocyte growth factor (KGF) is a member of the fibroblast growth factor (FGF) family. KGF is secreted by stromal cells and affects epithelial but not mesenchymal cell proliferation. KGF injected intravenously was found to cause dramatic proliferation of mammary epithelium in the mammary glands of rats. KGF causes ductal neogenesis and intraductal epithelial hyperplasia but not lobular differentiation in nulliparous female rats. KGF causes ductal and lobular epithelial hyperplasia in male rats. KGF causes proliferation of ductal and acinar cells in the mammary glands of pregnant rats. On the other hand, the ductal epithelium of lactating postpartum rats is resistant to the proliferative action of KGF. The mammary glands of lactating rats did not express less KGF receptor mRNA than the glands of pregnant rats, suggesting that the resistance of the ductal epithelium to KGF during lactation is not related to KGF receptor mRNA down-regulation. The mammary glands of both pregnant and postpartum lactating rats express KGF mRNA with more KGF present in the glands of lactating rats. In conclusion, the KGF and KGF receptor genes are expressed in rat mammary glands and recombinant KGF is a potent growth factor for mammary epithelium. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:8178937

  8. The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia.

    PubMed

    Moises, Hans W; Zoega, Tomas; Gottesman, Irving I

    2002-07-03

    A systems approach to understanding the etiology of schizophrenia requires a theory which is able to integrate genetic as well as neurodevelopmental factors. Based on a co-localization of loci approach and a large amount of circumstantial evidence, we here propose that a functional deficiency of glial growth factors and of growth factors produced by glial cells are among the distal causes in the genotype-to-phenotype chain leading to the development of schizophrenia. These factors include neuregulin, insulin-like growth factor I, insulin, epidermal growth factor, neurotrophic growth factors, erbB receptors, phosphatidylinositol-3 kinase, growth arrest specific genes, neuritin, tumor necrosis factor alpha, glutamate, NMDA and cholinergic receptors. A genetically and epigenetically determined low baseline of glial growth factor signaling and synaptic strength is expected to increase the vulnerability for additional reductions (e.g., by viruses such as HHV-6 and JC virus infecting glial cells). This should lead to a weakening of the positive feedback loop between the presynaptic neuron and its targets, and below a certain threshold to synaptic destabilization and schizophrenia. Supported by informed conjectures and empirical facts, the hypothesis makes an attractive case for a large number of further investigations. The hypothesis suggests glial cells as the locus of the genes-environment interactions in schizophrenia, with glial asthenia as an important factor for the genetic liability to the disorder, and an increase of prolactin and/or insulin as possible working mechanisms of traditional and atypical neuroleptic treatments.

  9. Cloning of a cancer cell-producing hepatocyte growth factor, vascular endothelial growth factor, and interleukin-8 from gastric cancer cells.

    PubMed

    Iwai, Mineko; Matsuda, Masahiko; Iwai, Yoshiaki

    2003-01-01

    A cell colony (IM95m) that produces hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and interleukin-8 (IL-8) was cloned from gastric cancer cells (IM95 cell line). In culture medium, the highest levels of HGF, VEGF, and IL-8 were about 1.1, 0.9, and 0.17 ng/ml culture medium at 3 d from 10(5) cells. IM95m may be useful in elucidating the role of tumor cells in angiogenesis.

  10. Protective Factors in American Indian Communities and Adolescent Violence

    PubMed Central

    Pu, Jia; Chewning, Betty; St. Clair, Iyekiyapiwin Darlene; Kokotailo, Patricia K; Lacourt, Jeanne; Wilson, Dale

    2014-01-01

    Purpose With their distinct cultural heritage and rural boundaries, American Indian reservation communities offer a unique opportunity to explore protective factors that help buffer adolescents from potential risk behaviors such as violence. Prior published research on Indian communities has not explored three potential protective factors for violence - parental monitoring of adolescents and friends, adolescents’ self-efficacy to avoid fighting, and adolescents’ interest in learning more about their traditional culture. This paper explores the relationship between these factors and reduced risk of reported violence. Methods In 1998, 630 American Indian students in grades 6–12 were surveyed in five Midwestern, rural Indian reservation schools. Path analysis was used to identify the direct and indirect association of the three potential protective factors with reduced violence behavior. Results There were significant gender differences both in perceived parental monitoring and in adolescents’ self-efficacy. For female adolescents, parental monitoring had the strongest inverse relationship with female adolescents’ involvement in violence. Female adolescents’ self-efficacy and their interest in learning more about their culture were also inversely associated with violence and therefore potentially important protectors. Male adolescents who reported more interest in learning the tribe’s culture had better self-efficacy to avoid violence. However, self-efficacy did not successfully predict their reported involvement in peer violence. Conclusions These findings support exploring gender differences, parental monitoring, self-efficacy training as well as cultural elements in future violence intervention studies. Further investigation is needed to identify protective factors for risk behaviors among male adolescents and test the generalizability to non-reservation based adolescents. PMID:22926269

  11. The triply troubled teenager--chronic conditions associated with fewer protective factors and clustered risk behaviours.

    PubMed

    Nylander, Charlotte; Seidel, Carina; Tindberg, Ylva

    2014-02-01

    This study aimed to measure protective factors and risk behaviour among adolescents with chronic conditions (CCs) and to evaluate the impact of protective factors on risk-taking. A population-based study of 7262 students aged 15 and 17 years old was performed in Sörmland, Sweden 2008 (response rate 82%). The questionnaire explored background factors, CCs, risk behaviours and protective factors. CCs were reported by 8%, while 58% had no health problems. Girls with CCs encompassed less individual protective factors, while boys with CCs tended to over-report all individual risk behaviours compared with healthy peers. Both boys and girls with CCs were more likely to report few protective factors and co-occurrence of risk behaviours. The adjOR for clustered health risk behaviours was 1.6 (1.0-2.5) in youths with CCs and ≥4 protective factors and 6.3 (3.6-10.9) in youths with CCs and 0-3 protective factors, as compared to healthy peers with ≥4 protective factors. Adolescents with CCs reported fewer protective factors and more risk behaviours than their healthy peers. The vulnerability of adolescents with CCs and few protective factors is important to acknowledge. Professionals should provide stronger protection for these adolescents, to prevent risky behaviour. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  12. Impaired growth in Rabson-Mendenhall syndrome: lack of effect of growth hormone and insulin-like growth factor-I.

    PubMed

    Longo, N; Singh, R; Griffin, L D; Langley, S D; Parks, J S; Elsas, L J

    1994-09-01

    Mutations in the insulin receptor gene cause the severe insulin-resistant syndromes leprechaunism and Rabson-Mendenhall syndrome. There is no accepted therapy for these inherited conditions. Here we report the results of recombinant human GH (rhGH) and recombinant human insulin-like growth factor-I (rhIGF-I) treatment of a male patient, Atl-2, with Rabson-Mendenhall syndrome. The patient was small for gestational age, had premature dentition, absence of sc fat, acanthosis nigricans, fasting hypoglycemia and postprandial hyperglycemia, and extremely high concentrations of circulating insulin (up to 8500 microU/mL). Fibroblasts and lymphoblasts established from this patient had reduced insulin binding, which was 20-30% of the control value. Binding of epidermal growth factor, IGF-I, and GH to the patient's fibroblasts was normal. The growth of fibroblasts cultured from patient Atl-2 in vitro was intermediate between that of fibroblasts from patients with leprechaunism and control values. The patient's growth curve in vivo was far below the fifth percentile despite adequate nutrition. To stimulate growth, therapy with rhGH was initiated, the rationale being to stimulate hepatic IGF-I production and IGF-I receptor signaling, and bypass the inherited block in insulin receptor signaling. Therapy with rhGH (up to 0.5 mg/kg.week) did not improve growth and failed to increase the levels of circulating IGF-I and IGF-binding protein-3 over a 14-month period. As rhGH could not stimulate growth, rhIGF-I (up to 100 micrograms/kg.day) was given by daily sc injection. No increase in growth velocity was observed over a 14-month period. These results indicate that both GH and IGF-I fail to correct growth in a patient with severe inherited insulin resistance. The lack of efficacy of IGF-I treatment may be related to multiple factors, such as the poor metabolic state of the patient, the deficiency of serum carrier protein for IGF-I, an increased clearance of the growth factor, IGF

  13. Synthetic design of growth factor sequestering extracellular matrix mimetic hydrogel for promoting in vivo bone formation.

    PubMed

    Yan, Hong Ji; Casalini, Tommaso; Hulsart-Billström, Gry; Wang, Shujiang; Oommen, Oommen P; Salvalaglio, Matteo; Larsson, Sune; Hilborn, Jöns; Varghese, Oommen P

    2018-04-01

    Synthetic scaffolds that possess an intrinsic capability to protect and sequester sensitive growth factors is a primary requisite for developing successful tissue engineering strategies. Growth factors such as recombinant human bone morphogenetic protein-2 (rhBMP-2) is highly susceptible to premature degradation and to provide a meaningful clinical outcome require high doses that can cause serious side effects. We discovered a unique strategy to stabilize and sequester rhBMP-2 by enhancing its molecular interactions with hyaluronic acid (HA), an extracellular matrix (ECM) component. We found that by tuning the initial protonation state of carboxylic acid residues of HA in a covalently crosslinked hydrogel modulate BMP-2 release at physiological pH by minimizing the electrostatic repulsion and maximizing the Van der Waals interactions. At neutral pH, BMP-2 release is primarily governed by Fickian diffusion, whereas at acidic pH both diffusion and electrostatic interactions between HA and BMP-2 become important as confirmed by molecular dynamics simulations. Our results were also validated in an in vivo rat ectopic model with rhBMP-2 loaded hydrogels, which demonstrated superior bone formation with acidic hydrogel as compared to the neutral counterpart. We believe this study provides new insight on growth factor stabilization and highlights the therapeutic potential of engineered matrices for rhBMP-2 delivery and may help to curtail the adverse side effects associated with the high dose of the growth factor. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    PubMed

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  15. Redox-regulated growth factor survival signaling.

    PubMed

    Woolley, John F; Corcoran, Aoife; Groeger, Gillian; Landry, William D; Cotter, Thomas G

    2013-11-20

    Once the thought of as unwanted byproducts of cellular respiration in eukaryotes, reactive oxygen species (ROS) have been shown to facilitate essential physiological roles. It is now understood that ROS are critical mediators of intracellular signaling. Control of signal transduction downstream of growth factor receptors by ROS is a complex process whose details are only recently coming to light. Indeed, recent evidence points to control of signal propagation by ROS at multiple levels in the typical cascade. Growth factor stimulation activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Noxs) at the membrane, producing superoxide in the extracellular matrix, which is catalyzed to the membrane-permeable hydrogen peroxide (H2O2) that mediates intracellular signaling events. The potential for H2O2, however, to disrupt cellular functions by damaging proteins and nucleic acids demands that its levels are kept in check by receptor-associated peroxiredoxins. This interplay of Nox and peroxiredoxin activity moderates levels of H2O2 sufficiently to modify signaling partners locally. Among the best studied of these partners are redox-controlled phosphatases that are inactivated by H2O2. Phosphatases regulate signal propagation downstream of receptors, and thus their inactivation allows a further level of control. Transmission of information further downstream to targets such as transcription factors, themselves regulated by ROS, completes this pathway. Thus, signal propagation or attenuation can be dictated by ROS at multiple points. Given the complex nature of these processes, we envisage the emerging trends in the field of redox signaling in the context of growth factor stimulation.

  16. Identification of Fibroblast Growth Factor-18 as a Molecule to Protect Adult Articular Cartilage by Gene Expression Profiling*

    PubMed Central

    Mori, Yoshifumi; Saito, Taku; Chang, Song Ho; Kobayashi, Hiroshi; Ladel, Christoph H.; Guehring, Hans; Chung, Ung-il; Kawaguchi, Hiroshi

    2014-01-01

    To identify genes that maintain the homeostasis of adult articular cartilage and regenerate its lesions, we initially compared four types of chondrocytes: articular (AA) versus growth plate (AG) cartilage chondrocytes in adult rats, and superficial layer (IS) versus deep layer (ID) chondrocytes of epiphyseal cartilage in infant rats. Microarray analyses revealed that 40 and 186 genes had ≥10-fold higher expression ratios of AA/AG and IS/ID, respectively, and 16 genes showed ≥10-fold of both AA/AG and IS/ID ratios. The results were validated by real-time RT-PCR analysis. Among them, Hoxd1, Fgf18, and Esm1 were expressed more strongly in AA than in IS. Fgf18 was the extracellular and secreted factor that decreased glycosaminoglycan release and depletion from the cartilage, and enhanced proliferation of articular chondrocytes. Fgf18 was strongly expressed in the articular cartilage chondrocytes of adult rats. In a surgical rat osteoarthritis model, a once-weekly injection of recombinant human FGF18 (rhFGF18) given 3 weeks after surgery prevented cartilage degeneration in a dose-dependent manner at 6 and 9 weeks after surgery, with significant effect at 10 μg/week of rhFGF18. As the underlying mechanism, rhFGF18 strongly up-regulated Timp1 expression in the cell and organ cultures, and inhibition of aggrecan release by rhFGF18 was restored by addition of an antibody to Timp1. In conclusion, we have identified Fgf18 as a molecule that protects articular cartilage by gene expression profiling, and the anticatabolic effects may at least partially be mediated by the Timp1 expression. PMID:24577103

  17. Endosomal receptor kinetics determine the stability of intracellular growth factor signalling complexes

    PubMed Central

    Tzafriri, A. Rami; Edelman, Elazer R.

    2006-01-01

    There is an emerging paradigm that growth factor signalling continues in the endosome and that cell response to a growth factor is defined by the integration of cell surface and endosomal events. As activated receptors in the endosome are exposed to a different set of binding partners, they probably elicit differential signals compared with when they are at the cell surface. As such, complete appreciation of growth factor signalling requires understanding of growth factor–receptor binding and trafficking kinetics both at the cell surface and in endosomes. Growth factor binding to surface receptors is well characterized, and endosomal binding is assumed to follow surface kinetics if one accounts for changes in pH. Yet, specific binding kinetics within the endosome has not been examined in detail. To parse the factors governing the binding state of endosomal receptors we analysed a whole-cell mathematical model of epidermal growth factor receptor trafficking and binding. We discovered that the stability of growth factor–receptor complexes within endosomes is governed by three primary independent factors: the endosomal dissociation constant, total endosomal volume and the number of endosomal receptors. These factors were combined into a single dimensionless parameter that determines the endosomal binding state of the growth factor–receptor complex and can distinguish different growth factors from each other and different cell states. Our findings indicate that growth factor binding within endosomal compartments cannot be appreciated solely on the basis of the pH-dependence of the dissociation constant and that the concentration of receptors in the endosomal compartment must also be considered. PMID:17117924

  18. EGFR Ligands Drive Multipotential Stromal Cells to Produce Multiple Growth Factors and Cytokines via Early Growth Response-1

    PubMed Central

    Kerpedjieva, Svetoslava S.; Kim, Duk Soo; Barbeau, Dominique J.

    2012-01-01

    Cell therapy with adult bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) presents a promising approach to promote wound healing and tissue regeneration. The strong paracrine capability of various growth factors and cytokines is a key mechanism of MSC-mediated wound healing and tissue regeneration, and the goal of this study is to understand the underlying mechanism that supports the strong paracrine machineries in MSCs. Microarray database analyses revealed that early growth response-1 (EGR1) is highly expressed in MSCs. Our previous studies showed that epidermal growth factor (EGF) treatment induces growth factor production in MSCs in vitro. Since EGF strongly upregulates EGR1, we hypothesized that EGF receptor (EGFR)–EGR1 signaling plays a pivotal role in MSC paracrine activity. EGF treatment upregulated the gene expression of growth factors and cytokines, including EGFR ligands in a protein kinase C (PKC)- and/or mitogen-activated protein kinase–extracellular-signal-regulated kinase-dependent manner, and it was reversed by shRNA against EGR1. PKC activator phorbol 12-myristate 13-acetate enhanced EGFR tyrosyl phosphorylation and upregulated the gene expression of growth factors and cytokines in a heparin-binding EGF-like growth factor (HBEGF) inhibitor CRM197 sensitive manner, indicating an involvement of autocrined HBEGF in the downstream of PKC signaling. Moreover, stimulation with growth factors and cytokines induced the expression of EGFR ligands, presumably via EGR1 upregulation. These data indicate EGR1 as a convergence point of multiple signaling pathways, which in turn augments the production of multiple growth factors and cytokines by enhancing the autocrine signaling with EGFR ligands. PMID:22316125

  19. Isolation of a cDNA for a Growth Factor of Vascular Endothelial Cells from Human Lung Cancer Cells: Its Identity with Insulin‐like Growth Factor II

    PubMed Central

    Hagiwara, Koichi; Kobayashi, Tatsuo; Tobita, Masato; Kikyo, Nobuaki; Yazaki, Yoshio

    1995-01-01

    We have found growth‐promoting activity for vascular endothelial cells in the conditioned medium of a human lung cancer cell line, T3M‐11. Purification and characterization of the growth‐promoting activity have been carried out using ammonium sulfate precipitation and gel‐exclusion chromatography. The activity migrated as a single peak just after ribonuclease. It did not bind to a heparin affinity column. These results suggest that the activity is not a heparin‐binding growth factor (including fibroblast growth factors) or a vascular endothelial growth factor. To identify the molecule exhibiting the growth‐promoting activity, a cDNA encoding the growth factor was isolated through functional expression cloning in COS‐1 cells from a cDNA library prepared from T3M‐11 cells. The nucleotide sequence encoded by the cDNA proved to be identical with that of insulin‐like growth factor II. PMID:7730145

  20. Expression of Fibroblast Growth Factor 21 and β-Klotho Regulates Hepatic Fibrosis through the Nuclear Factor-κB and c-Jun N-Terminal Kinase Pathways.

    PubMed

    Lee, Kyong Joo; Jang, Yoon Ok; Cha, Seung-Kuy; Kim, Moon Young; Park, Kyu-Sang; Eom, Young Woo; Baik, Soon Koo

    2018-04-27

    Fibroblast growth factor (FGF) 21 is associated with hepatic inflammation and fibrosis. However, little is known regarding the effects of inflammation and fibrosis on the β-Klotho and FGF21 pathway in the liver. Enrolled patients had biopsy-confirmed viral or alcoholic hepatitis. FGF19, FGF21 and β-Klotho levels were evaluated using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blotting. Furthermore, we explored the underlying mechanisms for this process by evaluating nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) pathway involvement in Huh-7 cells. We observed that the FGF19 and FGF21 serum and mRNA levels in the biopsied liver tissue gradually increased and were correlated with fibrosis stage. Inflammatory markers (interleukin 1β [IL-1β], IL-6, and tumor necrosis factor-α) were positively correlated, while β-Klotho expression was negatively correlated with the degree of fibrosis. In Huh-7 cells, IL-1β increased FGF21 levels and decreased β-Klotho levels. NF-κB and JNK inhibitors abolished the effect of IL-1β on both FGF21 and β-Klotho expression. FGF21 protected IL-1β-induced growth retardation in Huh-7 cells. These results indicate that the inflammatory response during fibrogenesis increases FGF21 levels and suppresses β-Klotho via the NF-κB and JNK pathway. In addition, FGF21 likely protects hepatocytes from hepatic inflammation and fibrosis.

  1. Insulin-like growth factor-I receptor activity is essential for Kaposi's sarcoma growth and survival.

    PubMed

    Catrina, S-B; Lewitt, M; Massambu, C; Dricu, A; Grünler, J; Axelson, M; Biberfeld, P; Brismar, K

    2005-04-25

    Kaposi's sarcoma (KS) is a highly vascular tumour and is the most common neoplasm associated with human immunodeficiency virus (HIV-1) infection. Growth factors, in particular vascular endothelial growth factor (VEGF), have been shown to play an important role in its development. The role of insulin-like growth factors (IGFs) in the pathophysiology of different tumours led us to evaluate the role of IGF system in KS. The IGF-I receptors (IGF-IR) were identified by immunohistochemistry in biopsies taken from patients with different AIDS/HIV-related KS stages and on KSIMM cells (an established KS-derived cell line). Insulin-like growth factor-I is a growth factor for KSIMM cells with a maximum increase of 3H-thymidine incorporation of 130 +/- 27.6% (P < 0.05) similar to that induced by VEGF and with which it is additive (281 +/- 13%) (P < 0.05). Moreover, specific blockade of the receptor (either by alpha IR3 antibody or by picropodophyllin, a recently described selective IGF-IR tyrosine phosphorylation inhibitor) induced KSIMM apoptosis, suggesting that IGF-IR agonists (IGF-I and -II) mediate antiapoptotic signals for these cells. We were able to identify an autocrine loop essential for KSIMM cell survival in which IGF-II is the IGF-IR agonist secreted by the cells. In conclusion, IGF-I pathway inhibition is a promising therapeutical approach for KS tumours.

  2. The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia

    PubMed Central

    Moises, Hans W; Zoega, Tomas; Gottesman, Irving I

    2002-01-01

    Background A systems approach to understanding the etiology of schizophrenia requires a theory which is able to integrate genetic as well as neurodevelopmental factors. Presentation of the hypothesis Based on a co-localization of loci approach and a large amount of circumstantial evidence, we here propose that a functional deficiency of glial growth factors and of growth factors produced by glial cells are among the distal causes in the genotype-to-phenotype chain leading to the development of schizophrenia. These factors include neuregulin, insulin-like growth factor I, insulin, epidermal growth factor, neurotrophic growth factors, erbB receptors, phosphatidylinositol-3 kinase, growth arrest specific genes, neuritin, tumor necrosis factor alpha, glutamate, NMDA and cholinergic receptors. A genetically and epigenetically determined low baseline of glial growth factor signaling and synaptic strength is expected to increase the vulnerability for additional reductions (e.g., by viruses such as HHV-6 and JC virus infecting glial cells). This should lead to a weakening of the positive feedback loop between the presynaptic neuron and its targets, and below a certain threshold to synaptic destabilization and schizophrenia. Testing the hypothesis Supported by informed conjectures and empirical facts, the hypothesis makes an attractive case for a large number of further investigations. Implications of the hypothesis The hypothesis suggests glial cells as the locus of the genes-environment interactions in schizophrenia, with glial asthenia as an important factor for the genetic liability to the disorder, and an increase of prolactin and/or insulin as possible working mechanisms of traditional and atypical neuroleptic treatments. PMID:12095426

  3. The Effects of Hematopoietic Growth Factors on Neurite Outgrowth

    PubMed Central

    Su, Ye; Cui, Lili; Piao, Chunshu; Li, Bin; Zhao, Li-Ru

    2013-01-01

    Stem cell factor (SCF) and granulocyte colony-stimulating factor (G-CSF) are initially discovered as the essential hematopoietic growth factors regulating bone marrow stem cell proliferation and differentiation, and SCF in combination with G-CSF (SCF+G-CSF) has synergistic effects on bone marrow stem cell mobilization. In this study we have determined the effect of SCF and G-CSF on neurite outgrowth in rat cortical neurons. Using molecular and cellular biology and live cell imaging approaches, we have revealed that receptors for SCF and G-CSF are expressed on the growth core of cortical neurons, and that SCF+G-CSF synergistically enhances neurite extension through PI3K/AKT and NFκB signaling pathways. Moreover, SCF+G-CSF induces much greater NFκB activation, NFκB transcriptional binding and brain-derived neurotrophic factor (BDNF) production than SCF or G-CSF alone. In addition, we have also observed that BDNF, the target gene of NFκB, is required for SCF+G-CSF-induced neurite outgrowth. These data suggest that SCF+G-CSF has synergistic effects to promote neurite growth. This study provides new insights into the contribution of hematopoietic growth factors in neuronal plasticity. PMID:24116056

  4. Exercise protects the cardiovascular system: effects beyond traditional risk factors

    PubMed Central

    Joyner, Michael J; Green, Daniel J

    2009-01-01

    In humans, exercise training and moderate to high levels of physical activity are protective against cardiovascular disease. In fact they are ∼40% more protective than predicted based on the changes in traditional risk factors (blood lipids, hypertension, diabetes etc.) that they cause. In this review, we highlight the positive effects of exercise on endothelial function and the autonomic nervous system. We also ask if these effects alone, or in combination, might explain the protective effects of exercise against cardiovascular disease that appear to be independent of traditional risk factor modification. Our goal is to use selected data from our own work and that of others to stimulate debate on the nature and cause of the ‘risk factor gap’ associated with exercise and physical activity. PMID:19736305

  5. Normal growth and development in the absence of hepatic insulin-like growth factor I

    PubMed Central

    Yakar, Shoshana; Liu, Jun-Li; Stannard, Bethel; Butler, Andrew; Accili, Domenici; Sauer, Brian; LeRoith, Derek

    1999-01-01

    The somatomedin hypothesis proposed that insulin-like growth factor I (IGF-I) was a hepatically derived circulating mediator of growth hormone and is a crucial factor for postnatal growth and development. To reassess this hypothesis, we have used the Cre/loxP recombination system to delete the igf1 gene exclusively in the liver. igf1 gene deletion in the liver abrogated expression of igf1 mRNA and caused a dramatic reduction in circulating IGF-I levels. However, growth as determined by body weight, body length, and femoral length did not differ from wild-type littermates. Although our model proves that hepatic IGF-I is indeed the major contributor to circulating IGF-I levels in mice it challenges the concept that circulating IGF-I is crucial for normal postnatal growth. Rather, our model provides direct evidence for the importance of the autocrine/paracrine role of IGF-I. PMID:10377413

  6. Effects of the communities that care prevention system on youth reports of protective factors.

    PubMed

    Kim, B K Elizabeth; Gloppen, Kari M; Rhew, Isaac C; Oesterle, Sabrina; Hawkins, J David

    2015-07-01

    Many interventions seeking to reduce problem behaviors and promote healthy youth development target both risk and protective factors, yet few studies have examined the effect of preventive interventions on overall levels of protection community wide. In a community-randomized controlled trial, this study tested the effect of Communities That Care (CTC) on protective factors in 24 communities across seven states. Data on protective factors were collected from a panel of 4407 youths in CTC and control communities followed from grade 5 through grade 8. Hierarchical linear modeling compared mean levels of 15 protective factors derived from the social development model in CTC and control communities in grade 8, adjusted for individual and community characteristics and baseline levels of protective factors in grade 5. Global test statistics were calculated to examine effects on protection overall and by domain. Analyses across all protective factors found significantly higher levels of overall protection in CTC compared to control communities. Analyses by domain found significantly higher levels of protection in CTC than control communities in the community, school, and peer/individual domains, but not in the family domain. Significantly higher levels of opportunities for prosocial involvement in the community, recognition for prosocial involvement in school, interaction with prosocial peers, and social skills among CTC compared to control youth contributed to the overall and domain-specific results. This is consistent with CTC's theory of change, which posits that strengthening protective factors is a mechanism through which CTC prevents behavior problems.

  7. Insulin-like growth factor 1 (IGF-1): a growth hormone

    PubMed Central

    Laron, Z

    2001-01-01

    Aim—To contribute to the debate about whether growth hormone (GH) and insulin-like growth factor 1 (IGF-1) act independently on the growth process. Methods—To describe growth in human and animal models of isolated IGF-1 deficiency (IGHD), such as in Laron syndrome (LS; primary IGF-1 deficiency and GH resistance) and IGF-1 gene or GH receptor gene knockout (KO) mice. Results—Since the description of LS in 1966, 51 patients were followed, many since infancy. Newborns with LS are shorter (42–47 cm) than healthy babies (49–52 cm), suggesting that IGF-1 has some influence on intrauterine growth. Newborn mice with IGF-1 gene KO are 30% smaller. The postnatal growth rate of patients with LS is very slow, the distance from the lowest normal centile increasing progressively. If untreated, the final height is 100–136 cm for female and 109–138 cm for male patients. They have acromicia, organomicria including the brain, heart, gonads, genitalia, and retardation of skeletal maturation. The availability of biosynthetic IGF-1 since 1988 has enabled it to be administered to children with LS. It accelerated linear growth rates to 8–9 cm in the first year of treatment, compared with 10–12 cm/year during GH treatment of IGHD. The growth rate in following years was 5–6.5 cm/year. Conclusion—IGF-1 is an important growth hormone, mediating the protein anabolic and linear growth promoting effect of pituitary GH. It has a GH independent growth stimulating effect, which with respect to cartilage cells is possibly optimised by the synergistic action with GH. PMID:11577173

  8. Increased Melanoma Growth and Metastasis Spreading in Mice Overexpressing Placenta Growth Factor

    PubMed Central

    Marcellini, Marcella; De Luca, Naomi; Riccioni, Teresa; Ciucci, Alessandro; Orecchia, Angela; Lacal, Pedro Miguel; Ruffini, Federica; Pesce, Maurizio; Cianfarani, Francesca; Zambruno, Giovanna; Orlandi, Augusto; Failla, Cristina Maria

    2006-01-01

    Placenta growth factor (PlGF), a member of the vascular endothelial growth factor family, plays an important role in adult pathological angiogenesis. To further investigate PlGF functions in tumor growth and metastasis formation, we used transgenic mice overexpressing PlGF in the skin under the control of the keratin 14 promoter. These animals showed a hypervascularized phenotype of the skin and increased levels of circulating PlGF with respect to their wild-type littermates. Transgenic mice and controls were inoculated intradermally with B16-BL6 melanoma cells. The tumor growth rate was fivefold increased in transgenic animals compared to wild-type mice, in the presence of a similar percentage of tumor necrotic tissue. Tumor vessel area was increased in transgenic mice as compared to controls. Augmented mobilization of endothelial and hematopoietic stem cells from the bone marrow was observed in transgenic animals, possibly contributing to tumor vascularization. The number and size of pulmonary metastases were significantly higher in transgenic mice compared to wild-type littermates. Finally, PlGF promoted tumor cell invasion of the extracellular matrix and increased the activity of selected matrix metalloproteinases. These findings indicate that PlGF, in addition to enhancing tumor angiogenesis and favoring tumor growth, may directly influence melanoma dissemination. PMID:16877362

  9. Regulation of cell growth by redox-mediated extracellular proteolysis of platelet-derived growth factor receptor beta.

    PubMed

    Okuyama, H; Shimahara, Y; Kawada, N; Seki, S; Kristensen, D B; Yoshizato, K; Uyama, N; Yamaoka, Y

    2001-07-27

    Redox-regulated processes are important elements in various cellular functions. Reducing agents, such as N-acetyl-l-cysteine (NAC), are known to regulate signal transduction and cell growth through their radical scavenging action. However, recent studies have shown that reactive oxygen species are not always involved in ligand-stimulated intracellular signaling. Here, we report a novel mechanism by which NAC blocks platelet-derived growth factor (PDGF)-induced signaling pathways in hepatic stellate cells, a fibrogenic player in the liver. Unlike in vascular smooth muscle cells, we found that reducing agents, including NAC, triggered extracellular proteolysis of PDGF receptor-beta, leading to desensitization of hepatic stellate cells toward PDGF-BB. This effect was mediated by secreted mature cathepsin B. In addition, type II transforming growth factor-beta receptor was also down-regulated. Furthermore, these events seemed to cause a dramatic improvement of rat liver fibrosis. These results indicated that redox processes impact the cell's response to growth factors by regulating the turnover of growth factor receptors and that "redox therapy" is promising for fibrosis-related disease.

  10. Autocrine expression of the epidermal growth factor receptor ligand heparin-binding EGF-like growth factor in cervical cancer.

    PubMed

    Schrevel, Marlies; Osse, E Michelle; Prins, Frans A; Trimbos, J Baptist M Z; Fleuren, Gert Jan; Gorter, Arko; Jordanova, Ekaterina S

    2017-06-01

    In cervical cancer, the epidermal growth factor receptor (EGFR) is overexpressed in 70-90% of the cases and has been associated with poor prognosis. EGFR-based therapy is currently being explored in cervical cancer. We investigated which EGFR ligand is primarily expressed in cervical cancer and which cell type functions as the major source of this ligand. We hypothesized that macrophages are the main source of EGFR ligands and that a paracrine loop between tumor cells and macrophages is responsible for ligand expression. mRNA expression analysis was performed on 32 cervical cancer cases to determine the expression of the EGFR ligands amphiregulin, β-cellulin, epidermal growth factor (EGF), epiregulin, heparin-binding EGF-like growth factor (HB‑EGF) and transforming growth factor α (TGFα). Subsequently, protein expression was determined immunohistochemically on 36 additional cases. To assess whether macrophages are the major source of EGFR ligands, immunohistochemical double staining was performed on four representative tissue slides. Expression of the chemokines granulocyte-macrophage colony-stimulating factor (GM-CSF) and C-C motif ligand 2 (CCL2) was determined by mRNA in situ hybridization. Of the known EGFR ligands, HB‑EGF had the highest mRNA expression and HB‑EGF and EGFR protein expression were highly correlated. Tumor specimens with high EGFR expression showed higher numbers of macrophages, and higher expression of GM-CSF and CCL2, but only a small subset (9%) of macrophages was found to be HB‑EGF-positive. Strikingly, 78% of cervical cancer specimens were found to express HB‑EGF. Standardized assessment of staining intensity, using spectral imaging analysis, showed that HB‑EGF expression was higher in the tumor compartment than in the stromal compartment. These results suggest that HB‑EGF is an important EGFR ligand in cervical cancer and that cervical cancer cells are the predominant source of HB‑EGF. Therefore, we propose an autocrine

  11. A moat around castle walls. The role of axillary and facial hair in lymph node protection from mutagenic factors.

    PubMed

    Komarova, Svetlana V

    2006-01-01

    Axillary hair is a highly conserved phenotypical feature in humans, and as such deserves at least consideration of its functional significance. Protection from environmental factors is one of the main functions attributed to hair in furred vertebrates, but is believed to be inapplicable to humans. I considered the hypothesis that the phenotypic preservation of axillary hair is due to its unrecognized role in the organism protection. Two immediate questions arise--what exactly is being protected and what it is protected from. A large group of axillary lymph nodes represents a major difference between underarms and the adjacent areas of the trunk. The consideration of potential factors from which hair can offer protection identifies sunlight as the most likely candidate. Intense sweat production underarms may represent an independent defense mechanism, specifically protecting lymph nodes from overheating. Moreover, the pattern of facial hair growth in males strikingly overlaps with the distribution of superficial lymph nodes, suggesting potential role for facial hair in protection of lymph nodes, and possibly thymus and thyroid. The idea of lymph node protection from environmental mutagenic factors, such as UV radiation and heat, appears particularly important in light of wide association of lymph nodes with cancers. The position of contemporary fashion towards body hair is aggressively negative, including the social pressure for removal of axillary and bikini line hair for women, facial hair for men in many professional occupations, and even body hair for men. If this hypothesis is proven to be true, the implications will be significant for immunology (by providing new insights in lymph node physiology), health sciences (depilation is painful and therefore easily modifiable habit if proven to increase disease risk), as well as art, social fashion and economy.

  12. Mitochondrial respiratory control is lost during growth factor deprivation.

    PubMed

    Gottlieb, Eyal; Armour, Sean M; Thompson, Craig B

    2002-10-01

    The ability of cells to maintain a bioenergetically favorable ATP/ADP ratio confers a tight balance between cellular events that consume ATP and the rate of ATP production. However, after growth factor withdrawal, the cellular ATP/ADP ratio declines. To investigate these changes, mitochondria from growth factor-deprived cells isolated before the onset of apoptosis were characterized in vitro. Mitochondria from growth factor-deprived cells have lost their ability to undergo matrix condensation in response to ADP, which is accompanied by a failure to perform ADP-coupled respiration. At the time of analysis, mitochondria from growth factor-deprived cells were not depleted of cytochrome c and cytochrome c-dependent respiration was unaffected, demonstrating that the inhibition of the respiratory rate is not due to loss of cytochrome c. Agents that disrupt the mitochondrial outer membrane, such as digitonin, or maintain outer membrane exchange of adenine nucleotide, such as Bcl-x(L), restored ADP-dependent control of mitochondrial respiration. Together, these data suggest that the regulation of mitochondrial outer membrane permeability contributes to respiratory control.

  13. Mitochondrial respiratory control is lost during growth factor deprivation

    PubMed Central

    Gottlieb, Eyal; Armour, Sean M.; Thompson, Craig B.

    2002-01-01

    The ability of cells to maintain a bioenergetically favorable ATP/ADP ratio confers a tight balance between cellular events that consume ATP and the rate of ATP production. However, after growth factor withdrawal, the cellular ATP/ADP ratio declines. To investigate these changes, mitochondria from growth factor-deprived cells isolated before the onset of apoptosis were characterized in vitro. Mitochondria from growth factor-deprived cells have lost their ability to undergo matrix condensation in response to ADP, which is accompanied by a failure to perform ADP-coupled respiration. At the time of analysis, mitochondria from growth factor-deprived cells were not depleted of cytochrome c and cytochrome c-dependent respiration was unaffected, demonstrating that the inhibition of the respiratory rate is not due to loss of cytochrome c. Agents that disrupt the mitochondrial outer membrane, such as digitonin, or maintain outer membrane exchange of adenine nucleotide, such as Bcl-xL, restored ADP-dependent control of mitochondrial respiration. Together, these data suggest that the regulation of mitochondrial outer membrane permeability contributes to respiratory control. PMID:12228733

  14. Intestinal hormones and growth factors: Effects on the small intestine

    PubMed Central

    Drozdowski, Laurie; Thomson, Alan BR

    2009-01-01

    There are various hormones and growth factors which may modify the intestinal absorption of nutrients, and which might thereby be useful in a therapeutic setting, such as in persons with short bowel syndrome. In partI, we focus first on insulin-like growth factors, epidermal and transferring growth factors, thyroid hormones and glucocorticosteroids. Part II will detail the effects of glucagon-like peptide (GLP)-2 on intestinal absorption and adaptation, and the potential for an additive effect of GLP2 plus steroids. PMID:19152442

  15. E2F1 transcription factor and its impact on growth factor and cytokine signaling.

    PubMed

    Ertosun, Mustafa Gokhan; Hapil, Fatma Zehra; Osman Nidai, Ozes

    2016-10-01

    E2F1 is a transcription factor involved in cell cycle regulation and apoptosis. The transactivation capacity of E2F1 is regulated by pRb. In its hypophosphorylated form, pRb binds and inactivates DNA binding and transactivating functions of E2F1. The growth factor stimulation of cells leads to activation of CDKs (cyclin dependent kinases), which in turn phosphorylate Rb and hyperphosphorylated Rb is released from E2F1 or E2F1/DP complex, and free E2F1 can induce transcription of several genes involved in cell cycle entry, induction or inhibition of apoptosis. Thus, growth factors and cytokines generally utilize E2F1 to direct cells to either fate. Furthermore, E2F1 regulates expressions of various cytokines and growth factor receptors, establishing positive or negative feedback mechanisms. This review focuses on the relationship between E2F1 transcription factor and cytokines (IL-1, IL-2, IL-3, IL-6, TGF-beta, G-CSF, LIF), growth factors (EGF, KGF, VEGF, IGF, FGF, PDGF, HGF, NGF), and interferons (IFN-α, IFN-β and IFN-γ). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Natural Killer Cells Control Tumor Growth by Sensing a Growth Factor.

    PubMed

    Barrow, Alexander D; Edeling, Melissa A; Trifonov, Vladimir; Luo, Jingqin; Goyal, Piyush; Bohl, Benjamin; Bando, Jennifer K; Kim, Albert H; Walker, John; Andahazy, Mary; Bugatti, Mattia; Melocchi, Laura; Vermi, William; Fremont, Daved H; Cox, Sarah; Cella, Marina; Schmedt, Christian; Colonna, Marco

    2018-01-25

    Many tumors produce platelet-derived growth factor (PDGF)-DD, which promotes cellular proliferation, epithelial-mesenchymal transition, stromal reaction, and angiogenesis through autocrine and paracrine PDGFRβ signaling. By screening a secretome library, we found that the human immunoreceptor NKp44, encoded by NCR2 and expressed on natural killer (NK) cells and innate lymphoid cells, recognizes PDGF-DD. PDGF-DD engagement of NKp44 triggered NK cell secretion of interferon gamma (IFN)-γ and tumor necrosis factor alpha (TNF-α) that induced tumor cell growth arrest. A distinctive transcriptional signature of PDGF-DD-induced cytokines and the downregulation of tumor cell-cycle genes correlated with NCR2 expression and greater survival in glioblastoma. NKp44 expression in mouse NK cells controlled the dissemination of tumors expressing PDGF-DD more effectively than control mice, an effect enhanced by blockade of the inhibitory receptor CD96 or CpG-oligonucleotide treatment. Thus, while cancer cell production of PDGF-DD supports tumor growth and stromal reaction, it concomitantly activates innate immune responses to tumor expansion. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Skeletal Effects of Growth Hormone and Insulin-like Growth Factor-I Therapy

    PubMed Central

    Lindsey, Richard C.; Mohan, Subburaman

    2015-01-01

    The growth hormone/insulin-like growth factor (GH/IGF) axis is critically important for the regulation of bone formation, and deficiencies in this system have been shown to contribute to the development of osteoporosis and other diseases of low bone mass. The GH/IGF axis is regulated by a complex set of hormonal and local factors which can act to regulate this system at the level of the ligands, receptors, IGF binding proteins (IGFBPs), or IGFBP proteases. A combination of in vitro studies, transgenic animal models, and clinical human investigations has provided ample evidence of the importance of the endocrine and local actions of both GH and IGF-I, the two major components of the GH/IGF axis, in skeletal growth and maintenance. GH- and IGF-based therapies provide a useful avenue of approach for the prevention and treatment of diseases such as osteoporosis. PMID:26408965

  18. Stimulation of body weight increase and epiphyseal cartilage growth by insulin like growth factor

    NASA Technical Reports Server (NTRS)

    Ellis, S.

    1981-01-01

    The ability of insulin-like growth factor (IGF) to induce growth in hypophysectomized immature rats was tested by continuous infusion of the partially purified factor at daily doses of 6, 21, and 46 mU for an 8-day period. A dose-dependent growth of the proximal epiphyseal cartilage of the tibia and an associated stimulation of the primary spongiosa were produced by these amounts of IGF. The two highest doses of IGF also resulted in dose-dependent increases of body weight. Gel permeation of the sera at neutrality showed that the large-molecular-weight IGF binding protein was not induced by the infusion of IGF, whereas it ws generated in the sera of hypophysectomized rats that were infused with daily doses of 86 mU of human growth hormone.

  19. Transforming growth factor β-mediated suppression of antitumor T cells requires FoxP1 transcription factor expression.

    PubMed

    Stephen, Tom L; Rutkowski, Melanie R; Allegrezza, Michael J; Perales-Puchalt, Alfredo; Tesone, Amelia J; Svoronos, Nikolaos; Nguyen, Jenny M; Sarmin, Fahmida; Borowsky, Mark E; Tchou, Julia; Conejo-Garcia, Jose R

    2014-09-18

    Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the upregulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8⁺ T cells from proliferating and upregulating Granzyme-B and interferon-γ in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors and promoted protection against tumor rechallenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in preactivated CD8⁺ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Insulin-like growth factors in embryonic and fetal growth and skeletal development (Review).

    PubMed

    Agrogiannis, Georgios D; Sifakis, Stavros; Patsouris, Efstratios S; Konstantinidou, Anastasia E

    2014-08-01

    The insulin-like growth factors (IGF)-I and -II have a predominant role in fetal growth and development. IGFs are involved in the proliferation, differentiation and apoptosis of fetal cells in vitro and the IGF serum concentration has been shown to be closely correlated with fetal growth and length. IGF transcripts and peptides have been detected in almost every fetal tissue from as early in development as pre‑implantation to the final maturation stage. Furthermore, IGFs have been demonstrated to be involved in limb morphogenesis. However, although ablation of Igf genes in mice resulted in growth retardation and delay in skeletal maturation, no impact on outgrowth and patterning of embryonic limbs was observed. Additionally, various molecular defects in the Igf1 and Igf1r genes in humans have been associated with severe intrauterine growth retardation and impaired skeletal maturation, but not with truncated limbs or severe skeletal dysplasia. The conflicting data between in vitro and in vivo observations with regard to bone morphogenesis suggests that IGFs may not be the sole trophic factors involved in fetal skeletal growth and that redundant mechanisms may exist in chondro- and osteogenesis. Further investigation is required in order to elucidate the functions of IGFs in skeletal development.

  1. Growth factor delivery: How surface interactions modulate release in vitro and in vivo

    PubMed Central

    King, William J.; Krebsbach, Paul H.

    2013-01-01

    Biomaterial scaffolds have been extensively used to deliver growth factors to induce new bone formation. The pharmacokinetics of growth factor delivery has been a critical regulator of their clinical success. This review will focus on the surface interactions that control the non-covalent incorporation of growth factors into scaffolds and the mechanisms that control growth factor release from clinically relevant biomaterials. We will focus on the delivery of recombinant human bone morphogenetic protein-2 from materials currently used in the clinical practice, but also suggest how general mechanisms that control growth factor incorporation and release delineated with this growth factor could extend to other systems. A better understanding of the changing mechanisms that control growth factor release during the different stages of preclinical development could instruct the development of future scaffolds for currently untreatable injuries and diseases. PMID:22433783

  2. Cytokines and growth factors which regulate bone cell function

    NASA Astrophysics Data System (ADS)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  3. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    PubMed

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  4. Heparin binding epidermal growth factor in renal ischaemia/reperfusion injury.

    PubMed

    Mulder, Gemma M; Nijboer, Willemijn N; Seelen, Marc A; Sandovici, Maria; Bos, Eelke M; Melenhorst, Wynand B W H; Trzpis, Monika; Kloosterhuis, Niels J; Visser, Lydia; Henning, Rob H; Leuvenink, Henri G D; Ploeg, Rutger J; Sunnarborg, Susan W; van Goor, Harry

    2010-06-01

    The epidermal growth factor (EGF) receptor and its ligands are crucially involved in the renal response to ischaemia. We studied the heparin binding-epidermal growth factor (HB-EGF), a major ligand for the EGF receptor, in experimental and human ischaemia/reperfusion injury (IRI). HB-EGF mRNA and protein expression was studied in rat kidneys and cultured human tubular (HK-2) cells that were subjected to IRI and in human donor kidneys during transplantation. The effect of EGF receptor inhibition was investigated in vivo and in vitro. Furthermore, urinary HB-EGF protein excretion was studied after renal transplantation. Finally, HB-EGF KO and WT mice were subjected to IRI to study the role of HB-EGF in renal injury. HB-EGF mRNA was significantly up-regulated in the early phase of IRI in rats, cells, and human donor biopsies. Treatment with PKI-166 reduces macrophage accumulation and interstitial alpha-SMA in the early phase of IRI in rats. In vitro, PKI-166 causes a marked reduction in HB-EGF-induced cellular proliferation. Urinary HB-EGF is increased after transplantation compared with control urines from healthy subjects. HB-EGF KO mice subjected to IRI revealed significantly less morphological damage after IRI, compared with WT mice. We conclude that IRI results in early induction of HB-EGF mRNA and protein in vivo and in vitro. Absence of HB-EGF and inhibition of the EGF receptor in the early phase of IRI has protective effects, suggesting a modulating role for HB-EGF.

  5. Growth Hormone and Insulin-Like Growth Factor-1.

    PubMed

    Nicholls, Adam R; Holt, Richard I G

    2016-01-01

    Human growth hormone (GH) was first isolated from the human pituitary gland in 1945 and found to promote the growth of children with hypopituitarism. Since the formation of the World Anti-Doping Association, human GH has appeared on the list of forbidden substances. There is a significant amount of anecdotal evidence that human GH is misused by athletes to enhance performance, and there have been a number of high-profile cases of GH use in professional sport. GH secretagogues (GH-Ss), which increase GH secretion, and insulin-like growth factor (IGF-1), which mediates many of the effects of GH, are also misused, although there is less evidence for this. The effectiveness of GH, IGF-1, and GH-Ss as performance-enhancing drugs remains unclear. Evidence from studies of GH use in people with hypopituitarism show several desirable outcomes, including increased lean body mass, increased strength, and increased exercise capacity. These anabolic and metabolic properties, coupled with the difficulty in detecting them, make them attractive as agents of misuse. Studies in healthy young adults have also demonstrated a performance benefit with GH and IGF-1. © 2016 S. Karger AG, Basel.

  6. Placental Growth Factor Administration Abolishes Placental Ischemia-Induced Hypertension.

    PubMed

    Spradley, Frank T; Tan, Adelene Y; Joo, Woo S; Daniels, Garrett; Kussie, Paul; Karumanchi, S Ananth; Granger, Joey P

    2016-04-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia because placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and vascular endothelial growth factor are both natural ligands for sFlt-1, vascular endothelial growth factor also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to 4 groups: normal pregnant or RUPP±infusion of recombinant human PlGF (180 μg/kg per day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than normal pregnant rats. Infusion of recombinant human PlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that recombinant human PlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. © 2016 American Heart Association, Inc.

  7. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion.

    PubMed

    Gorin, Caroline; Rochefort, Gael Y; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Muller, Laurent; Chaussain, Catherine; Germain, Stéphane

    2016-03-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF. ©AlphaMed Press.

  8. Activation of BAD by therapeutic inhibition of epidermal growth factor receptor and transactivation by insulin-like growth factor receptor.

    PubMed

    Gilmore, Andrew P; Valentijn, Anthony J; Wang, Pengbo; Ranger, Ann M; Bundred, Nigel; O'Hare, Michael J; Wakeling, Alan; Korsmeyer, Stanley J; Streuli, Charles H

    2002-08-02

    Novel cancer chemotherapeutics are required to induce apoptosis by activating pro-apoptotic proteins. Both epidermal growth factor (EGF) and insulin-like growth factor (IGF) provide potent survival stimuli in many epithelia, and activation of their receptors is commonly observed in solid human tumors. Here we demonstrate that blockade of the EGF receptor by a new drug in phase III clinical trails for cancer, ZD1839, potently induces apoptosis in mammary epithelial cell lines and primary cultures, as well as in a primary pleural effusion from a breast cancer patient. We identified the mechanism of apoptosis induction by ZD1839. We showed that it prevents cell survival by activating the pro-apoptotic protein BAD. Moreover, we demonstrate that IGF transactivates the EGF receptor and that ZD1839 blocks IGF-mediated phosphorylation of MAPK and BAD. Many cancer therapies kill tumor cells by inducing apoptosis as a consequence of targeting DNA; however, the threshold at which apoptosis can be triggered through DNA damage is often different from that in normal cells. Our results indicate that by targeting a growth factor-mediated survival signaling pathway, BAD phosphorylation can be manipulated therapeutically to induce apoptosis.

  9. Extracellular growth factors and mitogens cooperate to drive mitochondrial biogenesis

    PubMed Central

    Echave, Pedro; Machado-da-Silva, Gisela; Arkell, Rebecca S.; Duchen, Michael R.; Jacobson, Jake; Mitter, Richard; Lloyd, Alison C.

    2009-01-01

    Summary Cells generate new organelles when stimulated by extracellular factors to grow and divide; however, little is known about how growth and mitogenic signalling pathways regulate organelle biogenesis. Using mitochondria as a model organelle, we have investigated this problem in primary Schwann cells, for which distinct factors act solely as mitogens (neuregulin) or as promoters of cell growth (insulin-like growth factor 1; IGF1). We find that neuregulin and IGF1 act synergistically to increase mitochondrial biogenesis and mitochondrial DNA replication, resulting in increased mitochondrial density in these cells. Moreover, constitutive oncogenic Ras signalling results in a further increase in mitochondrial density. This synergistic effect is seen at the global transcriptional level, requires both the ERK and phosphoinositide 3-kinase (PI3K) signalling pathways and is mediated by the transcription factor ERRα. Interestingly, the effect is independent of Akt-TOR signalling, a major regulator of cell growth in these cells. This separation of the pathways that drive mitochondrial biogenesis and cell growth provides a mechanism for the modulation of mitochondrial density according to the metabolic requirements of the cell. PMID:19920079

  10. Nerve Growth Factor Expression Is Not Associated with Perineural Invasion in Extrahepatic Cholangiocarcinoma.

    PubMed

    Urabe, Kazuhide; Murakami, Yoshiaki; Kondo, Naru; Uemura, Kenichiro; Hashimoto, Yasushi; Nakagawa, Naoya; Sasaki, Hayato; Hiyama, Eiso; Takahashi, Shinya; Sueda, Taijiro

    2016-03-01

    Although the presence of perineural invasion has been recognized as a poor prognostic factor in extrahepatic cholangiocarcinoma, the molecular mechanisms of perineural invasion in extrahepatic cholangiocarcinoma remain unclear. Nerve growth factor has been reported to be a candidate predictive biomarker of perineural invasion in some cancers. To investigate the impact of intratumoral nerve growth factor expression in resected extrahepatic cholangiocarcinoma on survival. Intratumoral nerve growth factor expression was investigated immunohistochemically in 112 patients with resected extrahepatic cholangiocarcinoma. Associations between nerve growth factor expression and clinicopathological factors were statistically evaluated, and risk factors for poor survival were analyzed using univariate and multivariate analyses. High and low nerve growth factor expression was observed in 62 (55%) and 50 (45%) patients, respectively. For all 112 patients, no significant correlation was found between nerve growth factor expression and presence of perineural invasion (P = 0.942). Moreover, nerve growth factor expression was not associated with recurrence-free survival (P = 0.861) and overall survival (P = 0.973). In multivariate analysis, lymph node metastasis (P = 0.004) was identified as an independent risk factor for early recurrence and the presence of perineural invasion (P = 0.002) and lymph node metastasis (P < 0.001) was identified as independent risk factors for poor survival. Intratumoral nerve growth factor expression is not associated with perineural invasion or recurrence-free and overall survival in patients with resected extrahepatic cholangiocarcinoma.

  11. Differential neuronal vulnerability identifies IGF-2 as a protective factor in ALS

    PubMed Central

    Allodi, Ilary; Comley, Laura; Nichterwitz, Susanne; Nizzardo, Monica; Simone, Chiara; Benitez, Julio Aguila; Cao, Ming; Corti, Stefania; Hedlund, Eva

    2016-01-01

    The fatal disease amyotrophic lateral sclerosis (ALS) is characterized by the loss of somatic motor neurons leading to muscle wasting and paralysis. However, motor neurons in the oculomotor nucleus, controlling eye movement, are for unknown reasons spared. We found that insulin-like growth factor 2 (IGF-2) was maintained in oculomotor neurons in ALS and thus could play a role in oculomotor resistance in this disease. We also showed that IGF-1 receptor (IGF-1R), which mediates survival pathways upon IGF binding, was highly expressed in oculomotor neurons and on extraocular muscle endplate. The addition of IGF-2 induced Akt phosphorylation, glycogen synthase kinase-3β phosphorylation and β-catenin levels while protecting ALS patient motor neurons. IGF-2 also rescued motor neurons derived from spinal muscular atrophy (SMA) patients from degeneration. Finally, AAV9::IGF-2 delivery to muscles of SOD1G93A ALS mice extended life-span by 10%, while preserving motor neurons and inducing motor axon regeneration. Thus, our studies demonstrate that oculomotor-specific expression can be utilized to identify candidates that protect vulnerable motor neurons from degeneration. PMID:27180807

  12. Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Herman, Dave J.; James, Mark A.

    2003-01-01

    Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).

  13. Fibroblast growth factor-2-induced host stroma reaction during initial tumor growth promotes progression of mouse melanoma via vascular endothelial growth factor A-dependent neovascularization.

    PubMed

    Tsunoda, Satoshi; Nakamura, Toshiyuki; Sakurai, Hiroaki; Saiki, Ikuo

    2007-04-01

    Fibroblast growth factor (FGF)-2 has been considered to play a critical role in neovascularization in several tumors; however, its precise role in tumor progression is not fully understood. In the present study, we have characterized the role of FGF-2 in B16-BL6 mouse melanoma cells, focusing on effects during the initial phase of tumor growth. FGF-2 was injected at the tumor inoculation site of dorsal skin during the initial phase. FGF-2 induced marked tumor growth and lymph node metastasis. This was well correlated with an increase in neovascularization in the host stroma. FGF-2 also recruited inflammatory and mesenchymal cells in host stroma. Marked tumor growth, pulmonary metastasis and intensive neovascularization in tumor parenchyma were also observed after a single injection of FGF-2 into the footpad inoculation site. In contrast, repeated injections of FGF-2 at a site remote from the footpad tumor were ineffective in promoting tumor growth and metastasis. These promoting activities of FGF-2 were blocked by local injections of a glucocorticoid hormone, suggesting that host inflammatory responses induced by FGF-2 are associated with FGF-2-induced tumor progression. In addition, although FGF-2 did not promote cellular proliferation and vascular endothelial growth factor A (VEGFA) mRNA expression in B16-BL6 cells in vitro, FGF-2 induced VEGFA expression in host stroma rather than tumor tissue, and local injections of a neutralizing antibody against VEGFA inhibited these activities of FGF-2 in vivo. These results indicate that abundant FGF-2 during the initial phase of tumor growth induces VEGFA-dependent intensive neovascularization in host stroma, and supports marked tumor growth and metastasis.

  14. Sequential growth factor application in bone marrow stromal cell ligament engineering.

    PubMed

    Moreau, Jodie E; Chen, Jingsong; Horan, Rebecca L; Kaplan, David L; Altman, Gregory H

    2005-01-01

    In vitro bone marrow stromal cell (BMSC) growth may be enhanced through culture medium supplementation, mimicking the biochemical environment in which cells optimally proliferate and differentiate. We hypothesize that the sequential administration of growth factors to first proliferate and then differentiate BMSCs cultured on silk fiber matrices will support the enhanced development of ligament tissue in vitro. Confluent second passage (P2) BMSCs obtained from purified bone marrow aspirates were seeded on RGD-modified silk matrices. Seeded matrices were divided into three groups for 5 days of static culture, with medium supplement of basic fibroblast growth factor (B) (1 ng/mL), epidermal growth factor (E; 1 ng/mL), or growth factor-free control (C). After day 5, medium supplementation was changed to transforming growth factor-beta1 (T; 5 ng/mL) or C for an additional 9 days of culture. Real-time RT-PCR, SEM, MTT, histology, and ELISA for collagen type I of all sample groups were performed. Results indicated that BT supported the greatest cell ingrowth after 14 days of culture in addition to the greatest cumulative collagen type I expression measured by ELISA. Sequential growth factor application promoted significant increases in collagen type I transcript expression from day 5 of culture to day 14, for five of six groups tested. All T-supplemented samples surpassed their respective control samples in both cell ingrowth and collagen deposition. All samples supported spindle-shaped, fibroblast cell morphology, aligning with the direction of silk fibers. These findings indicate significant in vitro ligament development after only 14 days of culture when using a sequential growth factor approach.

  15. The role of nerve growth factor in the prophylaxis and treatment of diabetic foot ulcers

    PubMed Central

    Tiaka, Elisavet K; Papanas, Nikolaos; Manolakis, Anastassios C; Maltezos, Efstratios

    2011-01-01

    Diabetic foot ulcers are still particularly difficult to heal. Therefore, preventing and therapeutic adjuncts are increasingly being explored. Nerve growth factor (NGF) is a promising agent exhibiting beneficial actions on both diabetic peripheral neuropathy, one of the main causes of foot ulcers, and on ulcer healing. Indeed, preclinical research in animal models of diabetes has revealed the trophic effect of NGF on small C-fibres, while phase 2 human trials have provided evidence for a favourable effect on sensory neuropathy. However, the results of a phase 3 trial were moderate and, therefore, not enough to encourage widespread use of NGF in the treatment of diabetic neuropathy. Available literature on the role of NGF on diabetic wound healing is sparse but encouraging. Exogenous supplementation of NGF or the use of alternative techniques to increase its endogenous expression could emerge as a protective and therapeutic modality for diabetic foot ulcers in addition to standard treatment and other growth factors. The present review provides an outlook on the role of NGF in the prophylaxis and treatment of diabetic foot ulcers. PMID:22928161

  16. 10 CFR 20.1705 - Application for use of higher assigned protection factors.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... RADIATION Respiratory Protection and Controls To Restrict Internal Exposure in Restricted Areas § 20.1705...) Demonstrates that the respiratory protection equipment provides these higher protection factors under the...

  17. 10 CFR 20.1705 - Application for use of higher assigned protection factors.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... RADIATION Respiratory Protection and Controls To Restrict Internal Exposure in Restricted Areas § 20.1705...) Demonstrates that the respiratory protection equipment provides these higher protection factors under the...

  18. 10 CFR 20.1705 - Application for use of higher assigned protection factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RADIATION Respiratory Protection and Controls To Restrict Internal Exposure in Restricted Areas § 20.1705...) Demonstrates that the respiratory protection equipment provides these higher protection factors under the...

  19. 10 CFR 20.1705 - Application for use of higher assigned protection factors.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... RADIATION Respiratory Protection and Controls To Restrict Internal Exposure in Restricted Areas § 20.1705...) Demonstrates that the respiratory protection equipment provides these higher protection factors under the...

  20. 10 CFR 20.1705 - Application for use of higher assigned protection factors.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... RADIATION Respiratory Protection and Controls To Restrict Internal Exposure in Restricted Areas § 20.1705...) Demonstrates that the respiratory protection equipment provides these higher protection factors under the...

  1. Factors Associated with Inconsistent Sun Protection in First-Degree Relatives of Melanoma Survivors

    PubMed Central

    Shuk, Elyse; Burkhalter, Jack; Baguer, Carlos; Holland, Susan; Pinkhasik, Alisa; Brady, Mary Sue; Coit, Daniel; Ariyan, Charlotte; Hay, Jennifer

    2014-01-01

    First-degree relatives (FDRs) of melanoma survivors are at heightened risk for developing melanoma, but sporadically use sun protection. To develop appropriate interventions, in this article we identify factors related to sun protection inconsistency in melanoma FDRs using ethnographic decision tree modeling. We conducted in-home interviews with 25 melanoma FDRs balanced across gender and sunbathing attitudes and identified factors related to daily decision making about use of sunscreen, shade seeking, hats, and clothing. Results indicated primary facilitators for sun protection involved water settings and sunny weather. Physical activities such as exercise served to promote as well as inhibit sun protection. If participants anticipated shade cover, they tended to forgo other sun protection. The use of hats and clothing was often dictated by non-sun protection goals. Understanding factors related to inconsistent sun protection with detail and nuance is an important prerequisite to interventions aimed to improve sun protection maintenance in this population. PMID:22645220

  2. Transcription factor EGR-1 suppresses the growth and transformation of human HT-1080 fibrosarcoma cells by induction of transforming growth factor beta 1.

    PubMed Central

    Liu, C; Adamson, E; Mercola, D

    1996-01-01

    The early growth response 1 (EGR-1) gene product is a transcription factor with role in differentiation and growth. We have previously shown that expression of exogenous EGR-1 in various human tumor cells unexpectedly and markedly reduces growth and tumorigenicity and, conversely, that suppression of endogenous Egr-1 expression by antisense RNA eliminates protein expression, enhances growth, and promotes phenotypic transformation. However, the mechanism of these effects remained unknown. The promoter of human transforming growth factor beta 1 (TGF-beta 1) contains two GC-rich EGR-1 binding sites. We show that expression of EGR-1 in human HT-1080 fibrosarcoma cells uses increased secretion of biologically active TGF-beta 1 in direct proportion (rPearson = 0.96) to the amount of EGR-1 expressed and addition of recombinant human TGF-beta 1 is strongly growth-suppressive for these cells. Addition of monoclonal anti-TGF-beta 1 antibodies to EGR-1-expressing HT-1080 cells completely reverses the growth inhibitory effects of EGR-1. Reporter constructs bearing the EGR-1 binding segment of the TGF-beta 1 promoter was activated 4- to 6-fold relative to a control reporter in either HT-1080 cells that stably expressed or parental cells cotransfected with an EGR-1 expression vector. Expression of delta EGR-1, a mutant that cannot interact with the corepressors, nerve growth factor-activated factor binding proteins NAB1 and NAB2, due to deletion of the repressor domain, exhibited enhanced transactivation of 2- to 3.5-fold over that of wild-type EGR-1 showing that the reporter construct reflected the appropriate in vivo regulatory context. The EGR-1-stimulated transactivation was inhibited by expression of the Wilms tumor suppressor, a known specific DNA-binding competitor. These results indicate that EGR-1 suppresses growth of human HT-1080 fibrosarcoma cells by induction of TGF-beta 1. Images Fig. 1 Fig. 5 PMID:8876223

  3. Augmented uterine artery blood flow and oxygen delivery protect Andeans from altitude-associated reductions in fetal growth

    PubMed Central

    Julian, Colleen Glyde; Wilson, Megan J.; Lopez, Miriam; Yamashiro, Henry; Tellez, Wilma; Rodriguez, Armando; Bigham, Abigail W.; Shriver, Mark D.; Rodriguez, Carmelo; Vargas, Enrique; Moore, Lorna G.

    2009-01-01

    The effect of high altitude on reducing birth weight is markedly less in populations of high- (e.g., Andeans) relative to low-altitude origin (e.g., Europeans). Uterine artery (UA) blood flow is greater during pregnancy in Andeans than Europeans at high altitude; however, it is not clear whether such blood flow differences play a causal role in ancestry-associated variations in fetal growth. We tested the hypothesis that greater UA blood flow contributes to the protection of fetal growth afforded by Andean ancestry by comparing UA blood flow and fetal growth throughout pregnancy in 137 Andean or European residents of low (400 m; European n = 28, Andean n = 23) or high (3,100–4,100 m; European n = 51, Andean n = 35) altitude in Bolivia. Blood flow and fetal biometry were assessed by Doppler ultrasound, and maternal ancestry was confirmed, using a panel of 100 ancestry-informative genetic markers (AIMs). At low altitude, there were no ancestry-related differences in the pregnancy-associated rise in UA blood flow, fetal biometry, or birth weight. At high altitude, Andean infants weighed 253 g more than European infants after controlling for gestational age and other known influences. UA blood flow and O2 delivery were twofold greater at 20 wk in Andean than European women at high altitude, and were paralleled by greater fetal size. Moreover, variation in the proportion of Indigenous American ancestry among individual women was positively associated with UA diameter, blood flow, O2 delivery, and fetal head circumference. We concluded that greater UA blood flow protects against hypoxia-associated reductions in fetal growth, consistent with the hypothesis that genetic factors enabled Andeans to achieve a greater pregnancy-associated rise in UA blood flow and O2 delivery than European women at high altitude. PMID:19244584

  4. Quantification of growth factor signaling and pathway cross talk by live-cell imaging

    PubMed Central

    Gross, Sean M.

    2017-01-01

    Peptide growth factors stimulate cellular responses through activation of their transmembrane receptors. Multiple intracellular signaling cascades are engaged following growth factor–receptor binding, leading to short- and long-term biological effects. Each receptor-activated signaling pathway does not act in isolation but rather interacts at different levels with other pathways to shape signaling networks that are distinctive for each growth factor. To gain insights into the specifics of growth factor-regulated interactions among different signaling cascades, we developed a HeLa cell line stably expressing fluorescent live-cell imaging reporters that are readouts for two major growth factor-stimulated pathways, Ras–Raf–Mek–ERK and phosphatidylinositol (PI) 3-kinase–Akt. Incubation of cells with epidermal growth factor (EGF) resulted in rapid, robust, and sustained ERK signaling but shorter-term activation of Akt. In contrast, hepatocyte growth factor induced sustained Akt signaling but weak and short-lived ERK activity, and insulin-like growth factor-I stimulated strong long-term Akt responses but negligible ERK signaling. To address potential interactions between signaling pathways, we employed specific small-molecule inhibitors. In cells incubated with EGF or platelet-derived growth factor-AA, Raf activation and the subsequent stimulation of ERK reduced Akt signaling, whereas Mek inhibition, which blocked ERK activation, enhanced Akt and turned transient effects into sustained responses. Our results reveal that individual growth factors initiate signaling cascades that vary markedly in strength and duration and demonstrate in living cells the dramatic effects of cross talk from Raf and Mek to PI 3-kinase and Akt. Our data further indicate how specific growth factors can encode distinct cellular behaviors by promoting complex interactions among signaling pathways. PMID:28100485

  5. Effects of Growth Factors on Dental Stem/ProgenitorCells

    PubMed Central

    Kim, Sahng G.; Solomon, Charles; Zheng, Ying; Suzuki, Takahiro; Mo, Chen; Song, Songhee; Jiang, Nan; Cho, Shoko; Zhou, Jian; Mao, Jeremy J.

    2014-01-01

    Synopsis The primary goal of regenerative endodontics is to restore the vitality and functions of the dentin-pulp complex, as opposed to filing of the root canal with bioinert materials. Structural restoration is also important but is likely secondary to vitality and functions. Myriads growth factors regulate multiple cellular functions including migration, proliferation, differentiation and apoptosis of several cell types that are intimately involved in dentin-pulp regeneration: odontoblasts, interstitial fibroblasts, vascular-endothelial cells and sprouting nerve fibers. Recent work showing that growth factor delivery, without cell transplantation, can yield pulp-dentin like tissues in vivo provides one of the tangible pathways for regenerative endodontics. This review synthesizes our knowledge on a multitude of growth factors that are known or anticipated to be efficacious in dental pulp-dentin regeneration. PMID:22835538

  6. Neuronal expression of fibroblast growth factor receptors in zebrafish.

    PubMed

    Rohs, Patricia; Ebert, Alicia M; Zuba, Ania; McFarlane, Sarah

    2013-12-01

    Fibroblast growth factor (FGF) signaling is important for a host of developmental processes such as proliferation, differentiation, tissue patterning, and morphogenesis. In vertebrates, FGFs signal through a family of four fibroblast growth factor receptors (FGFR 1-4), one of which is duplicated in zebrafish (FGFR1). Here we report the mRNA expression of the five known zebrafish fibroblast growth factor receptors at five developmental time points (24, 36, 48, 60, and 72h postfertilization), focusing on expression within the central nervous system. We show that the receptors have distinct and dynamic expression in the developing zebrafish brain, eye, inner ear, lateral line, and pharynx. In many cases, the expression patterns are similar to those of homologous FGFRs in mouse, chicken, amphibians, and other teleosts. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Quantification of growth factor signaling and pathway cross talk by live-cell imaging.

    PubMed

    Gross, Sean M; Rotwein, Peter

    2017-03-01

    Peptide growth factors stimulate cellular responses through activation of their transmembrane receptors. Multiple intracellular signaling cascades are engaged following growth factor-receptor binding, leading to short- and long-term biological effects. Each receptor-activated signaling pathway does not act in isolation but rather interacts at different levels with other pathways to shape signaling networks that are distinctive for each growth factor. To gain insights into the specifics of growth factor-regulated interactions among different signaling cascades, we developed a HeLa cell line stably expressing fluorescent live-cell imaging reporters that are readouts for two major growth factor-stimulated pathways, Ras-Raf-Mek-ERK and phosphatidylinositol (PI) 3-kinase-Akt. Incubation of cells with epidermal growth factor (EGF) resulted in rapid, robust, and sustained ERK signaling but shorter-term activation of Akt. In contrast, hepatocyte growth factor induced sustained Akt signaling but weak and short-lived ERK activity, and insulin-like growth factor-I stimulated strong long-term Akt responses but negligible ERK signaling. To address potential interactions between signaling pathways, we employed specific small-molecule inhibitors. In cells incubated with EGF or platelet-derived growth factor-AA, Raf activation and the subsequent stimulation of ERK reduced Akt signaling, whereas Mek inhibition, which blocked ERK activation, enhanced Akt and turned transient effects into sustained responses. Our results reveal that individual growth factors initiate signaling cascades that vary markedly in strength and duration and demonstrate in living cells the dramatic effects of cross talk from Raf and Mek to PI 3-kinase and Akt. Our data further indicate how specific growth factors can encode distinct cellular behaviors by promoting complex interactions among signaling pathways. Copyright © 2017 the American Physiological Society.

  8. Enhanced Growth and Hepatic Differentiation of Fetal Liver Epithelial Cells through Combinational and Temporal Adjustment of Soluble Factors

    PubMed Central

    Qian, Lichuan; Krause, Diane S.; Saltzman, W. Mark

    2012-01-01

    Fetal liver epithelial cells (FLEC) are valuable for liver cell therapy and tissue engineering, but methods for culture and characterization of these cells are not well developed. This work explores the influence of multiple soluble factors on FLEC, with the long-term goal of developing an optimal culture system to generate functional liver tissue. Our comparative analysis suggests hepatocyte growth factor (HGF) is required throughout the culture period. In the presence of HGF, addition of oncostatin M (OSM) at culture initiation results in concurrent growth and maturation, while constant presence of protective agents like ascorbic acid enhances cell survival. Study observations led to the development of a culture medium that provided optimal growth and hepatic differentiation conditions. FLEC expansion was observed to be ~2 fold of that under standard conditions, albumin secretion rate was 2 – 3 times greater than maximal values obtained with other media, and the highest level of glycogen accumulation among all conditions was observed with the developed medium. Our findings serve to advance culture methods for liver progenitors in cell therapy and tissue engineering applications. PMID:21922669

  9. Increased Serum Levels of Epidermal Growth Factor in Children with Autism

    ERIC Educational Resources Information Center

    Iseri, Elvan; Guney, Esra; Ceylan, Mehmet F.; Yucel, Aysegul; Aral, Arzu; Bodur, Sahin; Sener, Sahnur

    2011-01-01

    The etiology of autism is unclear, however autism is considered as a multifactorial disorder that is influenced by neurological, environmental, immunological and genetic factors. Growth factors, including epidermal growth factor (EGF), play an important role in the celluler proliferation and the differentiation of the central and peripheral…

  10. TNFR2-deficient memory CD8 T cells provide superior protection against tumor cell growth.

    PubMed

    Kim, Edward Y; Teh, Soo-Jeet; Yang, Jocelyn; Chow, Michael T; Teh, Hung-Sia

    2009-11-15

    TNF receptor-2 (TNFR2) plays a critical role in promoting the activation and survival of naive T cells during the primary response. Interestingly, anti-CD3 plus IL-2 activated TNFR2(-/-) CD8 T cells are highly resistant to activation-induced cell death (AICD), which correlates with high expression levels of prosurvival molecules such as Bcl-2, survivin, and CD127 (IL-7Ralpha). We determined whether the resistance of activated TNFR2(-/-) CD8 T cells to AICD contributes to more effective protection against tumor cell growth. We found that during a primary tumor challenge, despite initial inferiority in controlling tumor cell growth, TNFR2(-/-) mice were able to more effectively control tumor burden over time compared with wild-type (WT) mice. Furthermore, vaccination of TNFR2(-/-) mice with recombinant Listeria monocytogenes that express OVA confers better protection against the growth of OVA-expressing E.G7 tumor cells relative to similarly vaccinated WT mice. The enhanced protection against tumor cell growth was not due to more effective activation of OVA-specific memory CD8 T cells in vaccinated TNFR2(-/-) mice. In vitro studies indicate that optimally activated OVA-specific TNFR2(-/-) CD8 T cells proliferated to the same extent and possess similar cytotoxicity against E.G7 tumor cells as WT CD8 T cells. However, relative to WT cells, activated OVA-specific TNFR2(-/-) CD8 T cells were highly resistant to AICD. Thus, the enhanced protection against E.G7 in TNFR2(-/-) mice is likely due to the recruitment and activation of OVA-specific memory TNFR2(-/-) CD8 T cells and their prolonged survival at the tumor site.

  11. Growth factors in the anterior segment: role in tissue maintenance, wound healing and ocular pathology.

    PubMed

    Klenkler, Bettina; Sheardown, Heather

    2004-11-01

    A number of growth factors and their associated receptors, including epidermal growth factor, transforming growth factor-beta, keratinocyte growth factor, hepatocyte growth factor, fibroblast growth factor and platelet-derived growth factor have been detected in the anterior segment of the eye. On binding to cellular receptors, these factors activate signalling cascades, which regulate functions including mitosis, differentiation, motility and apoptosis. Production of growth factors by corneal cells and their presence in the tear fluid and aqueous humour is essential for maintenance and renewal of normal tissue in the anterior eye and the prevention of undesirable immune or angiogenic reactions. Growth factors also play a vital role in corneal wound healing, mediating the proliferation of epithelial and stromal tissue and affecting the remodelling of the extracellular matrix (ECM). These functions depend on a complex interplay between growth factors of different types, the ECM, and regulatory mechanisms of the affected cells. Imbalances may lead to deficient wound healing and various ocular pathologies, including edema, neovascularization and glaucoma. Growth factors may be targeted in therapeutic ophthalmic applications, through exogenous application or selective inhibition, and may be used to elicit specific cellular responses to ophthalmic materials. A thorough understanding of the mechanism and function of growth factors and their actions in the complex environment of the anterior eye is required for these purposes. Growth factors, their function and mechanisms of action as well as the interplay between different growth factors based on recent in vitro and in vivo studies are presented.

  12. Colocalization of insulin-like growth factor-binding protein with insulin-like growth factor I.

    PubMed

    Kobayashi, S; Clemmons, D R; Venkatachalam, M A

    1991-07-01

    We report the localization of insulin-like growth factor I (IGF-I) and a 25-kDa form of insulin-like growth factor-binding protein (IGF-BP-1) in adult rat kidney. The antigens were localized using a rabbit anti-human IGF-I antibody, and a rabbit anti-human IGF-BP-1 antibody raised against human 25-kDa IGF-BP-1 purified from amniotic fluid. Immunohistochemistry by the avidin-biotin peroxidase conjugate technique showed that both peptides are located in the same nephron segments, in the same cell types. The most intense staining was in papillary collecting ducts. There was moderate staining also in cortical collecting ducts and medullary thick ascending limbs of Henle's loop. In collecting ducts the antigens were shown to be present in principal cells but not in intercalated cells. In distal convoluted tubules, cortical thick ascending limbs, and in structures presumptively identified as thin limbs of Henle's loops there was only modest staining. The macula densa, however, lacked immunoreactivity. Colocalization of IGF-I and IGF-BP-1 in the same cells supports the notion, derived from studies on cultured cells, that the actions of IGF-I may be modified by IGF-BPs that are present in the same location.

  13. Platelet-Derived Growth Factor BB Influences Muscle Regeneration in Duchenne Muscle Dystrophy.

    PubMed

    Piñol-Jurado, Patricia; Gallardo, Eduard; de Luna, Noemi; Suárez-Calvet, Xavier; Sánchez-Riera, Carles; Fernández-Simón, Esther; Gomis, Clara; Illa, Isabel; Díaz-Manera, Jordi

    2017-08-01

    Duchenne muscular dystrophy (DMD) is characterized by a progressive loss of muscle fibers, and their substitution by fibrotic and adipose tissue. Many factors contribute to this process, but the molecular pathways related to regeneration and degeneration of muscle are not completely known. Platelet-derived growth factor (PDGF)-BB belongs to a family of growth factors that regulate proliferation, migration, and differentiation of mesenchymal cells. The role of PDGF-BB in muscle regeneration in humans has not been studied. We analyzed the expression of PDGF-BB in muscle biopsy samples from controls and patients with DMD. We performed in vitro experiments to understand the effects of PDGF-BB on myoblasts involved in the pathophysiology of muscular dystrophies and confirmed our results in vivo by treating the mdx murine model of DMD with repeated i.m. injections of PDGF-BB. We observed that regenerating and necrotic muscle fibers in muscle biopsy samples from DMD patients expressed PDGF-BB. In vitro, PDGF-BB attracted myoblasts and activated their proliferation. Analysis of muscles from the animals treated with PDGF-BB showed an increased population of satellite cells and an increase in the number of regenerative fibers, with a reduction in inflammatory infiltrates, compared with those in vehicle-treated mice. Based on our results, PDGF-BB may play a protective role in muscular dystrophies by enhancing muscle regeneration through activation of satellite cell proliferation and migration. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Human trophoblast survival at low oxygen concentrations requires metalloproteinase-mediated shedding of heparin-binding EGF-like growth factor

    PubMed Central

    Armant, D. Randall; Kilburn, Brian A.; Petkova, Anelia; Edwin, Samuel S.; Duniec-Dmuchowski, Zophia M.; Edwards, Holly J.; Romero, Roberto; Leach, Richard E.

    2006-01-01

    Heparin-binding EGF-like growth factor (HBEGF), which is expressed in the placenta during normal pregnancy, is downregulated in pre-eclampsia, a human pregnancy disorder associated with poor trophoblast differentiation and survival. This growth factor protects against apoptosis during stress, suggesting a role in trophoblast survival in the relatively low O2 (∼2%) environment of the first trimester conceptus. Using a well-characterized human first trimester cytotrophoblast cell line, we found that a 4-hour exposure to 2% O2 upregulates HBEGF synthesis and secretion independently of an increase in its mRNA. Five other expressed members of the EGF family are largely unaffected. At 2% O2, signaling via HER1 or HER4, known HBEGF receptors, is required for both HBEGF upregulation and protection against apoptosis. This positive-feedback loop is dependent on metalloproteinase-mediated cleavage and shedding of the HBEGF ectodomain. The restoration of trophoblast survival by the addition of soluble HBEGF in cultures exposed to low O2 and metalloproteinase inhibitor suggests that the effects of HBEGF are mediated by autocrine/paracrine, rather than juxtacrine, signaling. Our results provide evidence that a post-transcriptional mechanism induced in trophoblasts by low O2 rapidly amplifies HBEGF signaling to inhibit apoptosis. These findings have a high clinical significance, as the downregulation of HBEGF in pre-eclampsia is likely to be a contributing factor leading to the demise of trophoblasts. PMID:16407398

  15. Human trophoblast survival at low oxygen concentrations requires metalloproteinase-mediated shedding of heparin-binding EGF-like growth factor.

    PubMed

    Armant, D Randall; Kilburn, Brian A; Petkova, Anelia; Edwin, Samuel S; Duniec-Dmuchowski, Zophia M; Edwards, Holly J; Romero, Roberto; Leach, Richard E

    2006-02-01

    Heparin-binding EGF-like growth factor (HBEGF), which is expressed in the placenta during normal pregnancy, is down regulated in pre-eclampsia, a human pregnancy disorder associated with poor trophoblast differentiation and survival. This growth factor protects against apoptosis during stress, suggesting a role in trophoblast survival in the relatively low O(2) ( approximately 2%) environment of the first trimester conceptus. Using a well-characterized human first trimester cytotrophoblast cell line, we found that a 4-hour exposure to 2% O(2) upregulates HBEGF synthesis and secretion independently of an increase in its mRNA. Five other expressed members of the EGF family are largely unaffected. At 2% O(2), signaling via HER1 or HER4, known HBEGF receptors, is required for both HBEGF upregulation and protection against apoptosis. This positive-feedback loop is dependent on metalloproteinase-mediated cleavage and shedding of the HBEGF ectodomain. The restoration of trophoblast survival by the addition of soluble HBEGF in cultures exposed to low O(2) and metalloproteinase inhibitor suggests that the effects of HBEGF are mediated by autocrine/paracrine, rather than juxtacrine, signaling. Our results provide evidence that a post-transcriptional mechanism induced in trophoblasts by low O(2) rapidly amplifies HBEGF signaling to inhibit apoptosis. These findings have a high clinical significance, as the downregulation of HBEGF in pre-eclampsia is likely to be a contributing factor leading to the demise of trophoblasts.

  16. Vascular endothelial growth factor c/vascular endothelial growth factor receptor 3 signaling regulates chemokine gradients and lymphocyte migration from tissues to lymphatics.

    PubMed

    Iwami, Daiki; Brinkman, C Colin; Bromberg, Jonathan S

    2015-04-01

    Circulation of leukocytes via blood, tissue and lymph is integral to adaptive immunity. Afferent lymphatics form CCL21 gradients to guide dendritic cells and T cells to lymphatics and then to draining lymph nodes (dLN). Vascular endothelial growth factor C and vascular endothelial growth factor receptor 3 (VEGFR-3) are the major lymphatic growth factor and receptor. We hypothesized these molecules also regulate chemokine gradients and lymphatic migration. CD4 T cells were injected into the foot pad or ear pinnae, and migration to afferent lymphatics and dLN quantified by flow cytometry or whole mount immunohistochemistry. Vascular endothelial growth factor receptor 3 or its signaling or downstream actions were modified with blocking monoclonal antibodies (mAbs) or other reagents. Anti-VEGFR-3 prevented migration of CD4 T cells into lymphatic lumen and significantly decreased the number that migrated to dLN. Anti-VEGFR-3 abolished CCL21 gradients around lymphatics, although CCL21 production was not inhibited. Heparan sulfate (HS), critical to establish CCL21 gradients, was down-regulated around lymphatics by anti-VEGFR-3 and this was dependent on heparanase-mediated degradation. Moreover, a Phosphoinositide 3-kinase (PI3K)α inhibitor disrupted HS and CCL21 gradients, whereas a PI3K activator prevented the effects of anti-VEGFR-3. During contact hypersensitivity, VEGFR-3, CCL21, and HS expression were all attenuated, and anti-heparanase or PI3K activator reversed these effects. Vascular endothelial growth factor C/VEGFR-3 signaling through PI3Kα regulates the activity of heparanase, which modifies HS and CCL21 gradients around lymphatics. The functional and physical linkages of these molecules regulate lymphatic migration from tissues to dLN. These represent new therapeutic targets to influence immunity and inflammation.

  17. Expression of epidermal growth factor receptor and vascular endothelial growth factor in malignant canine epithelial nasal tumours.

    PubMed

    Shiomitsu, K; Johnson, C L; Malarkey, D E; Pruitt, A F; Thrall, D E

    2009-06-01

    Epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) signalling pathways play a role in carcinogenesis. Inhibition of EGF receptor (EGFR) and of VEGF is effective in increasing the radiation responsiveness of neoplastic cells both in vitro and in human trials. In this study, immunohistochemical evaluation was employed to determine and characterize the potential protein expression levels and patterns of EGFR and VEGF in a variety of canine malignant epithelial nasal tumours. Of 24 malignant canine nasal tumours, 13 (54.2%) were positive for EGFR staining and 22 (91.7%) were positive for VEGF staining. The intensity and percentage of immunohistochemically positive neoplastic cells for EGFR varied. These findings indicate that EGFR and VEGF proteins were present in some malignant epithelial nasal tumours in the dogs, and therefore, it may be beneficial to treat canine patients with tumours that overexpress EGFR and VEGF with specific inhibitors in conjunction with radiation.

  18. Emotional intelligence is a protective factor for suicidal behavior.

    PubMed

    Cha, Christine; Nock, Matthew

    2009-04-01

    Little is known about what factors protect against the occurrence of suicidal ideation and attempts. We tested whether emotional intelligence (EI)-the ability to perceive, integrate into thoughts, understand, and manage one's emotions-decreases the likelihood of suicidal ideation and attempts among those at risk. Adolescents (N = 54) aged 12 to 19 years were recruited from local psychiatric clinics and the community to participate in this cross-sectional laboratory-based study. Analyses examined whether the relations between childhood sexual abuse and suicidal ideation and attempts were moderated by adolescents' EI. These constructs were assessed using self-report, structured interviews, and performance-based tests, respectively. Analyses revealed that EI is a protective factor for both suicidal ideation and attempts. Specifically, childhood sexual abuse was strongly predictive of these outcomes among those with low EI, weakly predictive among those with medium EI, and completely unrelated among those with high EI. Follow-up analyses revealed that the protective effect of EI was driven primarily by differences in strategic EI (i.e., ability to understand and manage emotions) but not experiential EI (i.e., ability to perceive emotions and integrate emotions into thoughts). This study provides preliminary evidence that EI is a protective factor for suicidal ideation and attempts. Important next steps include testing the moderating influence of EI on a wider range of stressful life events and self-injurious behaviors, as well as conducting experimental studies to determine whether enhancing EI decreases the subsequent occurrence of these behavior problems.

  19. Fibroblast growth factor receptor signaling crosstalk in skeletogenesis.

    PubMed

    Miraoui, Hichem; Marie, Pierre J

    2010-11-02

    Fibroblast growth factors (FGFs) play important roles in the control of embryonic and postnatal skeletal development by activating signaling through FGF receptors (FGFRs). Germline gain-of-function mutations in FGFR constitutively activate FGFR signaling, causing chondrocyte and osteoblast dysfunctions that result in skeletal dysplasias. Crosstalk between the FGFR pathway and other signaling cascades controls skeletal precursor cell differentiation. Genetic analyses revealed that the interplay of WNT and FGFR1 determines the fate and differentiation of mesenchymal stem cells during mouse craniofacial skeletogenesis. Additionally, interactions between FGFR signaling and other receptor tyrosine kinase networks, such as those mediated by the epidermal growth factor receptor and platelet-derived growth factor receptor α, were associated with excessive osteoblast differentiation and bone formation in the human skeletal dysplasia called craniosynostosis, which is a disorder of skull development. We review the roles of FGFR signaling and its crosstalk with other pathways in controlling skeletal cell fate and discuss how this crosstalk could be pharmacologically targeted to correct the abnormal cell phenotype in skeletal dysplasias caused by aberrant FGFR signaling.

  20. The use of autologous blood-derived growth factors in bone regeneration

    PubMed Central

    Civinini, Roberto; Macera, Armando; Nistri, Lorenzo; Redl, Birgit; Innocenti, Massimo

    2011-01-01

    Platelet-rich plasma (PRP) is defined as a portion of the plasma fraction of autologous blood having platelet concentrations above baseline. When activated the platelets release growth factors that play an essential role in bone healing such as Platelet-derived Growth Factor, Transforming Growth Factor-β, Vascular Endothelial Growth Factor and others. Multiple basic science and in vivo animal studies agree that PRP has a role in the stimulation of the healing cascade in ligament, tendon, muscle cartilage and in bone regeneration in the last years PRP had a widespread diffusion in the treatment of soft tissue and bone healing. The purpose of this review is to describe the biological properties of platelets and its factors, the methods used for producing PRP, to provide a background on the underlying basic science and an overview of evidence based medicine on clinical application of PRP in bone healing. PMID:22461800

  1. Oxygen-sensitive regulation and neuroprotective effects of growth hormone-dependent growth factors during early postnatal development.

    PubMed

    Jung, Susan; Boie, Gudrun; Doerr, Helmuth-Guenther; Trollmann, Regina

    2017-04-01

    Perinatal hypoxia severely disrupts metabolic and somatotrophic development, as well as cerebral maturational programs. Hypoxia-inducible transcription factors (HIFs) represent the most important endogenous adaptive mechanisms to hypoxia, activating a broad spectrum of growth factors that contribute to cell survival and energy homeostasis. To analyze effects of systemic hypoxia and growth hormone (GH) therapy (rhGH) on HIF-dependent growth factors during early postnatal development, we compared protein (using ELISA) and mRNA (using quantitative RT PCR) levels of growth factors in plasma and brain between normoxic and hypoxic mice (8% O 2 , 6 h; postnatal day 7 , P7) at P14. Exposure to hypoxia led to reduced body weight ( P < 0.001) and length ( P < 0.04) compared with controls and was associated with significantly reduced plasma levels of mouse GH ( P < 0.01) and IGF-1 ( P < 0.01). RhGH abrogated these hypoxia-induced changes of the GH/IGF-1 axis associated with normalization of weight and length gain until P14 compared with controls. In addition, rhGH treatment increased cerebral IGF-1, IGF-2, IGFBP-2, and erythropoietin mRNA levels, resulting in significantly reduced apoptotic cell death in the hypoxic, developing mouse brain. These data indicate that rhGH may functionally restore hypoxia-induced systemic dysregulation of the GH/IGF-1 axis and induce upregulation of neuroprotective, HIF-dependent growth factors in the hypoxic developing brain. Copyright © 2017 the American Physiological Society.

  2. Risk and Protective Factors for Depressive Symptoms in Urban African American Adolescents

    ERIC Educational Resources Information Center

    Tandon, Darius S.; Solomon, Barry S.

    2009-01-01

    There is limited understanding of risk and protective factors associated with depression among African American adolescents living in impoverished, urban settings. A cross-sectional study was conducted to identify a range of risk and protective factors associated with depressive symptoms among low-income urban African American adolescents. The…

  3. Heparin-binding EGF-like growth factor is present in human amniotic fluid and breast milk.

    PubMed

    Michalsky, M P; Lara-Marquez, M; Chun, L; Besner, G E

    2002-01-01

    Heparin-binding EGF-like growth factor (HB-EGF) is a member of the epidermal growth factor (EGF) family that has been implicated in the healing of various organ injuries. Endogenous HB-EGF production is upregulated in response to injury to the kidney, liver, brain, skin, and intestine. Exogenous administration of HB-EGF protects against intestinal epithelial cell apoptosis and necrosis and intestinal ischemia/reperfusion (I/R) injury. This study examines the presence of endogenous HB-EGF in human amniotic fluid and breast milk, fluids that are in intimate contact with the developing and neonatal gastrointestinal tract. Breast milk samples were collected from lactating women and amniotic fluid was gathered from full-term uteri (cesarian sections) or preterm uteri (amniocentesis). Crude and partially purified breast milk and amniotic fluid samples were analyzed for HB-EGF levels using an HB-EGF-specific enzyme-linked immunosorbent assay (ELISA). Analysis results showed detectable HB-EGF levels in human amniotic fluid and breast milk, ranging from 0.2 to 230 pg/mL. Breast milk and amniotic fluid subjected to heparin affinity or HB-EGF-affinity column chromatography showed bioactivity eluting at positions consistent with those known for native HB-EGF. This study represents the first report of detectable HB-EGF in human amniotic fluid and breast milk. The presence of HB-EGF in these fluids may serve a role in the development of the gastrointestinal tract in utero, and in protection against gut mucosal injury after birth. Copyright 2002 by W.B. Saunders Company.

  4. Assessment of Growth Factors Secreted by Human Breastmilk Mesenchymal Stem Cells.

    PubMed

    Kaingade, Pankaj Mahipatrao; Somasundaram, Indumathi; Nikam, Amar Babaso; Sarang, Shabari Amit; Patel, Jagdish Shantilal

    2016-01-01

    Human breastmilk is a dynamic, multifaceted biological fluid containing nutrients, bioactive substances, and growth factors. It is effective in supporting growth and development of an infant. As breastmilk has been found to possess mesenchymal stem cells, the importance of the components of breastmilk and their physiological roles is increasing day by day. The present study was intended to identify the secretions of growth factors, mainly vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF), from human breastmilk mesenchymal stem cells under basal conditions of in vitro cell culture using synthetic media and human cord serum. The growth factors were analyzed with the enzyme-linked immunosorbent assay technique. The cultured mesenchymal stem cells of breastmilk without serum revealed significant differences in secretions of the VEGF and HGF growth factors (8.55 ± 2.26402 pg/mL and 230.8 ± 45.9861 pg/mL, respectively) compared with mesenchymal stem cells of breastmilk with serum (21.31 ± 4.69 pg/mL and 2,404.42 ± 481.593 pg/mL, respectively). Results obtained from our study demonstrate that both VEGF and HGF are secreted in vitro by human breastmilk mesenchymal stem cells. The roles of VEGF and HGF in surfactant secretion, pulmonary maturation, and neonatal maturity have been well established. Thus, we emphasize that breastmilk-derived MSCs could be a potent therapeutic source in treating neonatal diseases. Besides, due to its immense potency, the study also emphasizes the importance of breastfeeding, which is promoted by organizations like the World Heatlh Organization and UNICEF.

  5. The Effects of Autocorrelation on the Curve-of-Factors Growth Model

    ERIC Educational Resources Information Center

    Murphy, Daniel L.; Beretvas, S. Natasha; Pituch, Keenan A.

    2011-01-01

    This simulation study examined the performance of the curve-of-factors model (COFM) when autocorrelation and growth processes were present in the first-level factor structure. In addition to the standard curve-of factors growth model, 2 new models were examined: one COFM that included a first-order autoregressive autocorrelation parameter, and a…

  6. Transforming growth factor beta-3 and environmental factors and cleft lip with/without cleft palate.

    PubMed

    Guo, Zeqiang; Huang, Chengle; Ding, Kaihong; Lin, Jianyan; Gong, Binzhong

    2010-07-01

    To identify the interactions among two loci (C641A and G15572-) of transforming growth factor beta 3 (TGFbeta3), and exposures in pregnancy with cleft lip with/without cleft palate (CL/P), a hospital-based case-control study was conducted. Associations among offspring polymorphisms of TGFbeta3 C641A and G15572-, paternal smoking, paternal high-risk drinking, maternal passive smoking, and maternal multivitamin supplement with CL/P were analyzed by logistic regression analysis, and the results showed that maternal passive smoking exposures and maternal multivitamin use were associated with the risk of CL/P but offspring polymorphisms of TGFbeta3 C641A and G15572-, paternal smoking, and paternal high-risk drinking were not. Interactions among these variables were analyzed using the multifactor dimensionality reduction method, and the results showed that the two-factor model, including maternal passive smoking and TGFbeta3 C641A, among all models evaluated had the best ability to predict CL/P risk with a maximum cross-validation consistency (9/10) and a maximum average testing accuracy (0.5892; p = 0.0010). These findings suggested that maternal passive smoking exposure is a risk factor for CL/P, whereas maternal multivitamin supplement is a protective factor. The polymorphism of TGFbeta3 C641A participates in interaction effect for CL/P with environmental exposures, although the polymorphism was not associated with CL/P in single-locus analysis, and synergistic effect of TGFbeta3 C641A and maternal passive smoking could provide a new tool for identifying high-risk individuals of CL/P and also an additional evidence that CL/P is determined by both genetic and environmental factors.

  7. Release of Growth Factors into Root Canal by Irrigations in Regenerative Endodontics.

    PubMed

    Zeng, Qian; Nguyen, Sean; Zhang, Hongming; Chebrolu, Hari Priya; Alzebdeh, Dalia; Badi, Mustafa A; Kim, Jong Ryul; Ling, Junqi; Yang, Maobin

    2016-12-01

    The aim of this study was to investigate the release of growth factors into root canal space after the irrigation procedure of regenerative endodontic procedure. Sixty standardized root segments were prepared from extracted single-root teeth. Nail varnish was applied to all surfaces except the root canal surface. Root segments were irrigated with 1.5% NaOCl + 17% EDTA, 2.5% NaOCl + 17% EDTA, 17% EDTA, or deionized water. The profile of growth factors that were released after irrigation was studied by growth factor array. Enzyme-linked immunosorbent assay was used to validate the release of transforming growth factor (TGF)-β1 and basic fibroblast growth factor (bFGF) at 4 hours, 1 day, and 3 days after irrigation. The final concentrations were calculated on the basis of the root canal volume measured by cone-beam computed tomography. Dental pulp stem cell migration on growth factors released from root segments was measured by using Transwell assay. Total of 11 of 41 growth factors were detected by growth factors array. Enzyme-linked immunosorbent assay showed that TGF-β1 was released in all irrigation groups. Compared with the group with 17% EDTA (6.92 ± 4.49 ng/mL), the groups with 1.5% NaOCl + 17% EDTA and 2.5% NaOCl + 17% EDTA had significantly higher release of TGF-β1 (69.04 ± 30.41 ng/mL and 59.26 ± 3.37 ng/mL, respectively), with a peak release at day 1. The release of bFGF was detected at a low level in all groups (0 ng/mL to 0.43 ± 0.22 ng/mL). Migration assay showed the growth factors released from root segments induced dental pulp stem cell migration. The root segment model in present study simulated clinical scenario and indicated that the current irrigation protocol released a significant amount of TGF-β1 but not bFGF. The growth factors released into root canal space induced dental pulp stem cell migration. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Effect of Alzheimer's disease risk and protective factors on cognitive trajectories in subjective memory complainers.

    PubMed

    Teipel, Stefan J; Cavedo, Enrica; Lista, Simone; Habert, Marie-Odile; Potier, Marie-Claude; Grothe, Michel J; Epelbaum, Stephane; Sambati, Luisa; Gagliardi, Geoffroy; Toschi, Nicola; Greicius, Michael; Dubois, Bruno; Hampel, Harald

    2018-05-21

    Cognitive change in people at risk of Alzheimer's disease (AD) such as subjective memory complainers is highly variable across individuals. We used latent class growth modeling to identify distinct classes of nonlinear trajectories of cognitive change over 2 years follow-up from 265 subjective memory complainers individuals (age 70 years and older) of the INSIGHT-preAD cohort. We determined the effect of cortical amyloid load, hippocampus and basal forebrain volumes, and education on the cognitive trajectory classes. Latent class growth modeling identified distinct nonlinear cognitive trajectories. Education was associated with higher performing trajectories, whereas global amyloid load and basal forebrain atrophy were associated with lower performing trajectories. Distinct classes of cognitive trajectories were associated with risk and protective factors of AD. These associations support the notion that the identified cognitive trajectories reflect different risk for AD that may be useful for selecting high-risk individuals for intervention trials. Copyright © 2018. Published by Elsevier Inc.

  9. Up-Regulation of Bcl-xl by Hepatocyte Growth Factor in Human Mesothelioma Cells Involves ETS Transcription Factors

    PubMed Central

    Cao, Xiaobo; Littlejohn, James; Rodarte, Charles; Zhang, Lidong; Martino, Benjamin; Rascoe, Philip; Hamid, Kamran; Jupiter, Daniel; Smythe, W. Roy

    2009-01-01

    Bcl-xl and the hepatocyte growth factor (HGF) receptor c-Met are both highly expressed in mesotheliomas, where they protect cells from apoptosis and can confer resistance to conventional therapeutic agents. In our current study, we investigate a model for the transcriptional control of Bcl-xl that involves ETS transcription factors and the HGF/Met axis. In addition, the effects of activated c-Met on the phosphorylation of the ETS family transcriptional factors were examined. The transient expression of ETS-2 and PU.1 cDNAs in mesothelioma cell lines resulted in an increase in the promoter activity of Bcl-xl and consequently in its mRNA and protein expression levels, whereas the transcriptional repressor Tel suppressed Bcl-xl transcription. The activation of the HGF/Met axis led to rapid phosphorylation of ETS family transcription factors in mesothelioma cells through the mitogen-activated protein kinase pathway and via nuclear accumulation of ETS-2 and PU.1. A chromatin immunoprecipitation assay further demonstrated that the activation of c-Met enhanced the binding of ETS transcriptional factors to the Bcl-x promoter. Finally, we determined the Bcl-xl and phosphorylated c-Met expression levels in mesothelioma patient samples; these data suggest a strong correlation between Bcl-xl and phosphorylated c-Met levels. Taken together, these findings support a role for c-Met as an inhibitor of apoptosis and an activator of Bcl-xl. PMID:19834061

  10. Risk and protective factors for the development of depressive symptoms in children and adolescents: results of the longitudinal BELLA study.

    PubMed

    Klasen, Fionna; Otto, Christiane; Kriston, Levente; Patalay, Praveetha; Schlack, Robert; Ravens-Sieberer, Ulrike

    2015-06-01

    Mental health problems in children and adolescents are frequent, with a high risk of persistence into adulthood. Therefore, the investigation of determinants of onset and course of mental health problems is of high importance. The present paper investigates the impact of protective and risk factors on the development of depressive symptoms in children and adolescents. The BELLA study is the mental health module of the German National Health Interview and Examination Survey for children and adolescents (KIGGS). Based on the first three measurement points of the BELLA study (covering a period of 2 years), the present analysis focused on children and adolescents aged 11-17 years at baseline (n = 1,643; 50.6 % female). A longitudinal growth modelling approach was used. Mental health problems in parents (parent-reports) predicted depressive symptoms in children and adolescents (self-reports) as well as the development of these symptoms over time. Further, child-reported protective factors of self-efficacy, positive family climate and social support were associated with less depressive symptoms at baseline. Additionally, positive changes in protective factors were associated with the development of less depressive symptoms over time. Finally, family climate and social support moderated the detrimental influence of parental psychopathology on child's depressive symptoms. The addressed determinants for the development of depressive symptoms in children and adolescents are highly relevant for prevention and intervention strategies. Future research should investigate specific risk and protective factors focusing in detail on further mental health disorders and their development in children and adolescents.

  11. Neurotrophic factors switch between two signaling pathways that trigger axonal growth.

    PubMed

    Paveliev, Mikhail; Lume, Maria; Velthut, Agne; Phillips, Matthew; Arumäe, Urmas; Saarma, Mart

    2007-08-01

    Integration of multiple inputs from the extracellular environment, such as extracellular matrix molecules and growth factors, is a crucial process for cell function and information processing in multicellular organisms. Here we demonstrate that co-stimulation of dorsal root ganglion neurons with neurotrophic factors (NTFs) - glial-cell-line-derived neurotrophic factor, neurturin or nerve growth factor - and laminin leads to axonal growth that requires activation of Src family kinases (SFKs). A different, SFK-independent signaling pathway evokes axonal growth on laminin in the absence of the NTFs. By contrast, axonal branching is regulated by SFKs both in the presence and in the absence of NGF. We propose and experimentally verify a Boolean model of the signaling network triggered by NTFs and laminin. Our results demonstrate that NTFs provide an environmental cue that triggers a switch between separate pathways in the cell signaling network.

  12. Interleukin-Driven Insulin-Like Growth Factor Promotes Prostatic Inflammatory Hyperplasia

    PubMed Central

    Hahn, Alana M.; Myers, Jason D.; McFarland, Eliza K.; Lee, Sanghee

    2014-01-01

    Prostatic inflammation is of considerable importance to urologic research because of its association with benign prostatic hyperplasia and prostate cancer. However, the mechanisms by which inflammation leads to proliferation and growth remain obscure. Here, we show that insulin-like growth factors (IGFs), previously known as critical developmental growth factors during prostate organogenesis, are induced by inflammation as part of the proliferative recovery to inflammation. Using genetic models and in vivo IGF receptor blockade, we demonstrate that the hyperplastic response to inflammation depends on interleukin-1–driven IGF signaling. We show that human prostatic hyperplasia is associated with IGF pathway activation specifically localized to foci of inflammation. This demonstrates that mechanisms of inflammation-induced epithelial proliferation and hyperplasia involve the induction of developmental growth factors, further establishing a link between inflammatory and developmental signals and providing a mechanistic basis for the management of proliferative diseases by IGF pathway modulation. PMID:25292180

  13. Interplay between pro-inflammatory cytokines and growth factors in depressive illnesses

    PubMed Central

    Audet, Marie-Claude; Anisman, Hymie

    2013-01-01

    The development of depressive disorders had long been attributed to monoamine variations, and pharmacological treatment strategies likewise focused on methods of altering monoamine availability. However, the limited success achieved by treatments that altered these processes spurred the search for alternative mechanisms and treatments. Here we provide a brief overview concerning a possible role for pro-inflammatory cytokines and growth factors in major depression, as well as the possibility of targeting these factors in treating this disorder. The data suggest that focusing on one or another cytokine or growth factor might be counterproductive, especially as these factors may act sequentially or in parallel in affecting depressive disorders. It is also suggested that cytokines and growth factors might be useful biomarkers for individualized treatments of depressive illnesses. PMID:23675319

  14. Low-level laser therapy promotes dendrite growth via upregulating brain-derived neurotrophic factor expression

    NASA Astrophysics Data System (ADS)

    Meng, Chengbo; He, Zhiyong; Xing, Da

    2014-09-01

    Downregulation of brain-derived neurotrophic factor (BDNF) in the hippocampus occurs early in the progression of Alzheimer's disease (AD). Since BDNF plays a critical role in neuronal survival and dendrite growth, BDNF upregulation may contribute to rescue dendrite atrophy and cell loss in AD. Low-level laser therapy (LLLT) has been demonstrated to regulate neuronal function both in vitro and in vivo. In the present study, we found that LLLT rescued neurons loss and dendritic atrophy via the increase of both BDNF mRNA and protein expression. In addition, dendrite growth was improved after LLLT, characterized by upregulation of PSD95 expression, and the increase in length, branching, and spine density of dendrites in hippocampal neurons. Together, these studies suggest that upregulation of BDNF with LLLT can ameliorate Aβ-induced neurons loss and dendritic atrophy, thus identifying a novel pathway by which LLLT protects against Aβ-induced neurotoxicity. Our research may provide a feasible therapeutic approach to control the progression of Alzheimer's disease.

  15. Endogenous interleukin-22 protects against inflammatory bowel disease but not autoimmune cholangitis in dominant negative form of transforming growth factor beta receptor type II mice.

    PubMed

    Yang, G-X; Sun, Y; Tsuneyama, K; Zhang, W; Leung, P S C; He, X-S; Ansari, A A; Bowlus, C; Ridgway, W M; Gershwin, M E

    2016-08-01

    During chronic inflammation, interleukin (IL)-22 expression is up-regulated in both CD4 and CD8 T cells, exerting a protective role in infections. However, in autoimmunity, IL-22 appears to have either a protective or a pathogenic role in a variety of murine models of autoimmunity and, by extrapolation, in humans. It is not clear whether IL-22 itself mediates inflammation or is a by-product of inflammation. We have taken advantage of the dominant negative form of transforming growth factor beta receptor type II (dnTGF-βRII) mice that develop both inflammatory bowel disease and autoimmune cholangitis and studied the role and the biological function of IL-22 by generating IL-22(-/-) dnTGF-βRII mice. Our data suggest that the influence of IL-22 on autoimmunity is determined in part by the local microenvironment. In particular, IL-22 deficiency exacerbates tissue injury in inflammatory bowel disease, but has no influence on either the hepatocytes or cholangiocytes in the same model. These data take on particular significance in the previously defined effects of IL-17A, IL-12p40 and IL-23p19 deficiency and emphasize that, in colitis, there is a dominant role of IL-23/T helper type 17 (Th17) signalling. Furthermore, the levels of IL-22 are IL-23-dependent. The use of cytokine therapy in patients with autoimmune disease has significant potential, but must take into account the overlapping and often promiscuous effects that can theoretically exacerbate inflammation. © 2016 British Society for Immunology.

  16. Sun Protection by Beach Umbrella vs Sunscreen With a High Sun Protection Factor: A Randomized Clinical Trial.

    PubMed

    Ou-Yang, Hao; Jiang, Lily I; Meyer, Karen; Wang, Steve Q; Farberg, Aaron S; Rigel, Darrell S

    2017-03-01

    Sun-protective behavior affects skin cancer prevention. Shade works by physically shielding skin from direct harmful UV rays; however, skin may still remain exposed to reflected and indirect UV rays. There is no current standard metric to evaluate shade for its effectiveness in sun protection, and there is insufficient clinical evidence that a beach umbrella alone can provide adequate sun protection. To directly measure sunburn protection offered by a standard beach umbrella compared with that provided by sunscreen with a high sun protection factor under actual use conditions. A single-center, evaluator-blinded, randomized clinical study was conducted from August 13 to 15, 2014, in Lake Lewisville, Texas (elevation, 159 m above sea level), among 81 participants with Fitzpatrick skin types I (n = 1), II (n = 42), and III (n = 38). Participants were randomly assigned to 2 groups: 1 using only a beach umbrella, and the other using only sunscreen with a sun protection factor of 100. All participants remained at a sunny beach for 3½ hours at midday. Clinical sunburn evaluation of each individual for all exposed body sites was conducted 22 to 24 hours after sun exposure. The shade provided by a beach umbrella or protection provided by sunscreen with a sun protection factor of 100. Sunburn on all exposed body sites 22 to 24 hours after sun exposure. Among the 81 participants (25 male and 56 female; mean [SD] age, 41 [16] years) for all body sites evaluated (face, back of neck, upper chest, arms, and legs), the umbrella group showed a statistically significant increase in clinical sunburn scores compared with baseline and had higher postexposure global scores than the sunscreen group (0.75 vs 0.05; P < .001). There was a total of 142 sunburn incidences in the umbrella group vs 17 in the sunscreen group. Thirty-two of the 41 participants (78%) in the umbrella group showed erythema in 1 or more sites vs 10 of the 40 participants (25%) in the sunscreen group

  17. Targeting the fibroblast growth factor receptors for the treatment of cancer.

    PubMed

    Lemieux, Steven M; Hadden, M Kyle

    2013-06-01

    Receptor tyrosine kinases (RTKs) are transmembrane proteins that play a critical role in stimulating signal transduction cascades to influence cell proliferation, growth, and differentiation and they have also been shown to promote angiogenesis when they are up-regulated or mutated. For this reason, their dysfunction has been implicated in the development of human cancer. Over the past decade, much attention has been devoted to developing inhibitors and antibodies against several classes of RTKs, including vascular endothelial growth factor receptors (VEGFRs), epidermal growth factor receptors (EGFRs), and platelet-derived growth factor receptors (PDGFRs). More recently, interest in the fibroblast growth factor receptor (FGFR) class of RTKs as a drug target for the treatment of cancer has emerged. Signaling through FGFRs is critical for normal cellular function and their dysregulation has been linked to various malignancies such as breast and prostate cancer. This review will focus on the current state of both small molecules and antibodies as FGFR inhibitors to provide insight into their development and future potential as anti-cancer agents.

  18. Sierra Leone's former child soldiers: a longitudinal study of risk, protective factors, and mental health.

    PubMed

    Betancourt, Theresa S; Brennan, Robert T; Rubin-Smith, Julia; Fitzmaurice, Garrett M; Gilman, Stephen E

    2010-06-01

    To investigate the longitudinal course of internalizing and externalizing problems and adaptive/prosocial behaviors among Sierra Leonean former child soldiers and whether postconflict factors contribute to adverse or resilient mental health outcomes. Male and female former child soldiers (N = 260, aged 10 to 17 years at baseline) were recruited from the roster of an non-governmental organization (NGO)-run Interim Care Center in Kono District and interviewed in 2002, 2004, and 2008. The retention rate was 69%. Linear growth models were used to investigate trends related to war and postconflict experiences. The long-term mental health of former child soldiers was associated with war experiences and postconflict risk factors, which were partly mitigated by postconflict protective factors. Increases in externalizing behavior were associated with killing/injuring others during the war and postconflict stigma, whereas increased community acceptance was associated with decreases in externalizing problems (b = -1.09). High baseline levels of internalizing problems were associated with being raped, whereas increases were associated with younger involvement in armed groups and social and economic hardships. Improvements in internalizing problems were associated with higher levels of community acceptance and increases in community acceptance (b = -0.86). Decreases in adaptive/prosocial behaviors were associated with killing/injuring others during the war and postconflict stigma, but partially mitigated by social support, being in school and increased community acceptance (b = 1.93). Psychosocial interventions for former child soldiers may be more effective if they account for postconflict factors in addition to war exposures. Youth with accumulated risk factors, lack of protective factors, and persistent distress should be identified. Sustainable services to promote community acceptance, reduce stigma, and expand social supports and educational access are recommended. 2010

  19. The biology and economics of coral growth.

    PubMed

    Osinga, Ronald; Schutter, Miriam; Griffioen, Ben; Wijffels, René H; Verreth, Johan A J; Shafir, Shai; Henard, Stéphane; Taruffi, Maura; Gili, Claudia; Lavorano, Silvia

    2011-08-01

    To protect natural coral reefs, it is of utmost importance to understand how the growth of the main reef-building organisms-the zooxanthellate scleractinian corals-is controlled. Understanding coral growth is also relevant for coral aquaculture, which is a rapidly developing business. This review paper provides a comprehensive overview of factors that can influence the growth of zooxanthellate scleractinian corals, with particular emphasis on interactions between these factors. Furthermore, the kinetic principles underlying coral growth are discussed. The reviewed information is put into an economic perspective by making an estimation of the costs of coral aquaculture.

  20. Concentration of platelets and growth factors in platelet-rich plasma from Goettingen minipigs.

    PubMed

    Jungbluth, Pascal; Grassmann, Jan-Peter; Thelen, Simon; Wild, Michael; Sager, Martin; Windolf, Joachim; Hakimi, Mohssen

    2014-01-01

    In minipigs little is known about the concentration of growth factors in plasma, despite their major role in several patho-physiological processes such as healing of fractures. This prompted us to study the concentration of platelets and selected growth factors in plasma and platelet-rich plasma (PRP) preparation of sixteen Goettingen minipigs. Platelet concentrations increased significantly in PRP in comparison to native blood plasma. Generally, significant increase in the concentration of all growth factors tested was observed in the PRP in comparison to the corresponding plasma or serum. Five of the plasma samples examined contained detectable levels of bone morphogenic protein 2 (BMP-2) whereas eleven of the plasma or serum samples contained minimal amounts of vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF-bb) respectively. On the other hand variable concentrations of bone morphogenic protein 7 (BMP-7) and transforming growth factor β1 (TGF-β1) were measured in all plasma samples. In contrast, all PRP samples contained significantly increased amounts of growth factors. The level of BMP-2, BMP-7, TGF-β1, VEGF and PDGF-bb increased by 17.6, 1.5, 7.1, 7.2 and 103.3 fold, in comparison to the corresponding non-enriched preparations. Moreover significant positive correlations were found between platelet count and the concentrations of BMP-2 (r=0.62, p<0.001), TGF-β1 (r=0.85, p<0.001), VEGF (r=0.46, p<0.01) and PDGF-bb (r=0.9, p<0.001). Our results demonstrate that selected growth factors are present in the platelet-rich plasma of minipigs which might thus serve as a source of autologous growth factors.

  1. Ghrelin ameliorates nerve growth factor Dysmetabolism and inflammation in STZ-induced diabetic rats.

    PubMed

    Zhao, Yuxing; Shen, Zhaoxing; Zhang, Dongling; Luo, Huiqiong; Chen, Jinliang; Sun, Yue; Xiao, Qian

    2017-06-01

    Diabetic encephalopathy is characterized by cognitive impairment and neuroinflammation, deficient neurotrophic support, and neuronal and synaptic loss. Ghrelin, a 28 amino acid peptide, is associated with neuromodulation and cognitive improvement, which has been considered as a potential protective agent for several neurodegenerative diseases. Here we sought to investigate the role of ghrelin in preventing diabetic-related neuropathology. We found that ghrelin attenuated astrocytic activation and reduced levels of interleukin-6 and tumor necrosis factor-α in streptozotocin-induced diabetic rats. In addition, ghrelin inhibited p38 mitogen-associated protein kinase activation. The upregulation of nerve growth factor (NGF) precursor and matrix metalloproteinase (MMP)-9 and downregulation of mature NGF and MMP-7 in the diabetic brain were reversed by ghrelin. Treatment with ghrelin elevated synaptophysin expression and synaptic density in diabetic rats. Taken together, our results demonstrate that ghrelin ameliorates diabetes-related neurodegeneration by preventing NGF dysmetabolism and synaptic degeneration through regulating MMP levels as well as inhibiting neuroinflammation.

  2. Association between adolescent tobacco, alcohol and illicit drug use and individual and environmental resilience protective factors.

    PubMed

    Hodder, Rebecca Kate; Freund, Megan; Bowman, Jenny; Wolfenden, Luke; Gillham, Karen; Dray, Julia; Wiggers, John

    2016-11-25

    Research suggests that individual and environmental resilience protective factors may be associated with adolescent substance use; however, the associations between a broad range of such factors and use of various types of substances have not been examined. The study aimed to determine the association between a comprehensive range of adolescent individual and environmental resilience protective factors and measures of tobacco, alcohol and illicit substance use. Cross-sectional study. 32 Australian secondary schools. Grade 7-10 students (aged 11-17 years). Data regarding 14 student individual and environmental resilience protective factors and seven substance use measures (tobacco, alcohol, marijuana, other illicit drug use) were obtained via an online self-report survey. Adjusted multivariate logistic regression analyses examined the association between all student resilience protective factors and seven substance use measures. Inverse univariate associations were found for 94 of 98 relationships examined (n=10 092). Multivariate analyses found: consistent inverse associations between 2 of 14 protective factors and all substance use measures ('goals and aspirations', 'prosocial peers'); inverse associations between 4 protective factors with multiple substance use measures ('home support' (5 of 7), 'school support' (3 of 7), 'self-awareness' (2 of 7), 'community meaningful participation' (2 of 7)); positive associations between 2 resilience protective factors with multiple measures of substance use ('community support' (3 of 7), 'peer caring relationships' (5 of 7)) and 6 protective factors not to be associated with any substance use measure. Despite individual relationships between the majority of resilience protective factors and substance use types, the protective benefit of such factors for adolescent substance use was limited to only a small number of such factors when considered collectively. Such results suggest that interventions seeking to reduce

  3. Association between adolescent tobacco, alcohol and illicit drug use and individual and environmental resilience protective factors

    PubMed Central

    Hodder, Rebecca Kate; Freund, Megan; Bowman, Jenny; Gillham, Karen; Dray, Julia; Wiggers, John

    2016-01-01

    Objectives Research suggests that individual and environmental resilience protective factors may be associated with adolescent substance use; however, the associations between a broad range of such factors and use of various types of substances have not been examined. The study aimed to determine the association between a comprehensive range of adolescent individual and environmental resilience protective factors and measures of tobacco, alcohol and illicit substance use. Design Cross-sectional study. Setting 32 Australian secondary schools. Participants Grade 7–10 students (aged 11–17 years). Measures Data regarding 14 student individual and environmental resilience protective factors and seven substance use measures (tobacco, alcohol, marijuana, other illicit drug use) were obtained via an online self-report survey. Adjusted multivariate logistic regression analyses examined the association between all student resilience protective factors and seven substance use measures. Results Inverse univariate associations were found for 94 of 98 relationships examined (n=10 092). Multivariate analyses found: consistent inverse associations between 2 of 14 protective factors and all substance use measures (‘goals and aspirations’, ‘prosocial peers’); inverse associations between 4 protective factors with multiple substance use measures (‘home support’ (5 of 7), ‘school support’ (3 of 7), ‘self-awareness’ (2 of 7), ‘community meaningful participation’ (2 of 7)); positive associations between 2 resilience protective factors with multiple measures of substance use (‘community support’ (3 of 7), ‘peer caring relationships’ (5 of 7)) and 6 protective factors not to be associated with any substance use measure. Conclusions Despite individual relationships between the majority of resilience protective factors and substance use types, the protective benefit of such factors for adolescent substance use was limited to only a small number of

  4. Osthole protects against inflammation in a rat model of chronic kidney failure via suppression of nuclear factor-κB, transforming growth factor-β1 and activation of phosphoinositide 3-kinase/protein kinase B/nuclear factor (erythroid-derived 2)-like 2 signaling.

    PubMed

    Huang, Tao; Dong, Zhen

    2017-10-01

    Multiple pharmacological applications of osthole have been previously recognized, including antioxidant, anti-inflammatory, anti‑platelet and estrogenic effects, and resistance to pain. The present study investigated the protective effects of osthole against inflammation in a rat model of chronic kidney failure (CRF) and the underlying mechanisms. Osthole treatment with significantly reversed CRF‑induced changes in serum creatinine, calcium, phosphorus and blood urea nitrogen levels in CRF rats. Male Sprague‑Dawley rats (age, 8 weeks) received 200 mg/kg 2% adenine suspension to induce CRF in the model group. In the osthole‑treated group, rats received 200 mg/kg 2% adenine suspension + osthole (40 mg/kg, intravenously). The results revealed that treatment with osthole significantly inhibited CRF‑induced tumor necrosis factor‑α, interleukin (IL)‑8 and IL‑6 expression, and suppressed nuclear factor‑κB (NF‑κB) protein expression in CRF rats. Osthole treatment significantly attenuated the protein expression of transforming growth factor‑β1 (TGF‑β1), reduced monocyte chemoattractant protein‑1 activity and increased the phosphoinositide 3‑kinase (PI3K)/protein kinase B (Akt) ratio in CRF rats. These results suggested that osthole protects against inflammation in a rat model of CRF via suppression of NF‑κB and TGF‑β1, and activation of PI3K/Akt/nuclear factor (erythroid‑derived 2)‑like 2 signaling. Therefore, osthole may represent a potential therapeutic agent for the treatment of CRF.

  5. [Therapeutic use of hematopoietic growth factors. II. GM-CSF and G-CSF].

    PubMed

    Royer, B; Arock, M

    1998-01-01

    The second part of this review on haematopoietic growth factors is focused on the therapeutic use of GM-CSF and G-CSF. Such therapeutic applications have raised very great hopes for clinical haematology. However, it should not be forgotten that these haematopoietic growth factors, which are very costly, are powerful two-edged weapons capable of triggering a cascade of reactions, and have a field of activity that often goes beyond the single highly specific property which it is hoped they possess. The risks and costs of their use are currently being evaluated. Waited developments concerning these molecules focus on three axes: a best use of factors already commercialized, especially concerning adaptation of posologies and new indications, the development of hybrid molecules from already known haematopoietic growth factors, possessing the advantages of respective factors, but not their disadvantages, the discovery of new haematopoietic growth factors with potential therapeutic application.

  6. Ultrastructure and growth factor content of equine platelet-rich fibrin gels.

    PubMed

    Textor, Jamie A; Murphy, Kaitlin C; Leach, J Kent; Tablin, Fern

    2014-04-01

    To compare fiber diameter, pore area, compressive stiffness, gelation properties, and selected growth factor content of platelet-rich fibrin gels (PRFGs) and conventional fibrin gels (FGs). PRFGs and conventional FGs prepared from the blood of 10 healthy horses. Autologous fibrinogen was used to form conventional FGs. The PRFGs were formed from autologous platelet-rich plasma of various platelet concentrations (100 × 10³ platelets/μL, 250 × 10³ platelets/μL, 500 × 10³ platelets/μL, and 1,000 × 10³ platelets/μL). All gels contained an identical fibrinogen concentration (20 mg/mL). Fiber diameter and pore area were evaluated with scanning electron microscopy. Maximum gelation rate was assessed with spectrophotometry, and gel stiffness was determined by measuring the compressive modulus. Gel weights were measured serially over 14 days as an index of contraction (volume loss). Platelet-derived growth factor-BB and transforming growth factor-β1 concentrations were quantified with ELISAs. Fiber diameters were significantly larger and mean pore areas were significantly smaller in PRFGs than in conventional FGs. Gel weight decreased significantly over time, differed significantly between PRFGs and conventional FGs, and was significantly correlated with platelet concentration. Platelet-derived growth factor-BB and transforming growth factor-β1 concentrations were highest in gels and releasates derived from 1,000 × 10³ platelets/μL. The inclusion of platelets in FGs altered the architecture and increased the growth factor content of the resulting scaffold. Platelets may represent a useful means of modifying these gels for applications in veterinary and human regenerative medicine.

  7. Minimally invasive esthetic ridge preservation with growth-factor enhanced bone matrix.

    PubMed

    Nevins, Marc L; Said, Sherif

    2017-12-28

    Extraction socket preservation procedures are critical to successful esthetic implant therapy. Conventional surgical approaches are technique sensitive and often result in alteration of the soft tissue architecture, which then requires additional corrective surgical procedures. This case series report presents the ability of flapless surgical techniques combined with a growth factor-enhanced bone matrix to provide esthetic ridge preservation at the time of extraction for compromised sockets. When considering esthetic dental implant therapy, preservation, or further enhancement of the available tissue support at the time of tooth extraction may provide an improved esthetic outcome with reduced postoperative sequelae and decreased treatment duration. Advances in minimally invasive surgical techniques combined with recombinant growth factor technology offer an alternative for bone reconstruction while maintaining the gingival architecture for enhanced esthetic outcome. The combination of freeze-dried bone allograft (FDBA) and rhPDGF-BB (platelet-derived growth factor-BB) provides a growth-factor enhanced matrix to induce bone and soft tissue healing. The use of a growth-factor enhanced matrix is an option for minimally invasive ridge preservation procedures for sites with advanced bone loss. Further studies including randomized clinical trials are needed to better understand the extent and limits of these procedures. The use of minimally invasive techniques with growth factors for esthetic ridge preservation reduces patient morbidity associated with more invasive approaches and increases the predictability for enhanced patient outcomes. By reducing the need for autogenous bone grafts the use of this technology is favorable for patient acceptance and ease of treatment process for esthetic dental implant therapy. © 2017 Wiley Periodicals, Inc.

  8. Blockade of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling for therapy of metastatic human pancreatic cancer.

    PubMed

    Baker, Cheryl H; Solorzano, Carmen C; Fidler, Isaiah J

    2002-04-01

    We determined whether concurrent blockage of vascular endothelial growth factor (VEGF) receptor and epidermal growth factor (EGF) receptor signaling by two novel tyrosine kinase inhibitors, PTK 787 and PKI 166, respectively, can inhibit angiogenesis and, hence, the growth and metastasis of human pancreatic carcinoma in nude mice. Highly metastatic human pancreatic carcinoma L3.6pl cells were injected into the pancreas of nude mice. Seven days later, groups of mice began receiving oral doses of PTK 787 and PKI 166 three times weekly. Some groups of mice also received i.p. injections of gemcitabine twice a week. The mice were necropsied when the control mice became moribund. Treatment with PTK 787 and PKI 166, with gemcitabine alone, or with the combination of PTK 787, PKI 166, and gemcitabine produced 69, 50, and 97% reduction in the volume of pancreatic tumors, respectively. Administration of protein tyrosine kinase inhibitors and gemcitabine also significantly decreased the incidence of lymph node and liver metastasis. The therapeutic efficacy directly correlated with a decrease in circulating proangiogenic molecules (VEGF, interleukin-8), a decrease in microvessel density, a decrease in proliferating cell nuclear antigen staining, and an increase in apoptosis of tumor cells and endothelial cells. Therapies produced by combining gemcitabine with either PKI 166 or PTK 787 were similar to those produced by combining gemcitabine with both PKI 166 and PTK 787. These results suggest that blockade of either epidermal growth factor receptor or VEGF receptor signaling combined with chemotherapy provides an effective approach to the therapy of pancreatic cancer.

  9. A virally inactivated functional growth factor preparation from human platelet concentrates.

    PubMed

    Su, C-Y; Kuo, Y P; Lin, Y C; Huang, C-T; Tseng, Y H; Burnouf, T

    2009-08-01

    Human platelet growth factors (HPGF) are essential for tissue regeneration and may replace fetal bovine serum (FBS) in cell therapy. No method for the manufacture of standardized virally inactivated HPGF has been developed yet. Platelet concentrates (PC) were subjected to solvent/detergent (S/D) treatment (1% TnBP/1% Triton X-45), oil extraction, hydrophobic interaction chromatography and sterile filtration. Platelet-derived growth factor (PDGF)-AB, -BB and -AA, transforming growth factor-beta1 (TGF-beta1), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1) and vascular endothelium growth factor (VEGF) were measured by ELISA. Composition in proteins and lipids was determined, protein profiles were obtained by SDS-PAGE, and TnBP and Triton X-45 were assessed by gas chromatography and high-performance liquid chromatography, respectively. Cell growth promoting activity of HPGF was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay using human embryonic kidney (HEK293A) fibroblast and Statens Seruminstitute rabbit corneal (SIRC) epithelial cell lines. The GF preparation contained a mean of 16.66, 2.04, 1.53, 72.19, 0.33, 48.59 and 0.44 ng/ml of PDGF-AB, -BB, -AA, TGF-beta1, EGF, IGF-1 and VEGF, respectively. The protein profile was typical of platelet releasates and had less than 2 p.p.m. of residual S/D agents. MTS assay of HEK293A and SIRC cultures showed that the GF preparation at 10% and 0.1% (v/v), respectively, could successfully replace 10% FBS for cell proliferation. Cell-stimulating activity of HPGF on HEK293A was over twice that of PC releasates. STANDARDIZED and functional virally inactivated HPGF can be prepared from human PC for possible applications in cell therapy and regenerative medicine.

  10. Sintered tantalum carbide coatings on graphite substrates: Highly reliable protective coatings for bulk and epitaxial growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Daisuke; Suzumura, Akitoshi; Shigetoh, Keisuke

    2015-02-23

    Highly reliable low-cost protective coatings have been sought after for use in crucibles and susceptors for bulk and epitaxial film growth processes involving wide bandgap materials. Here, we propose a production technique for ultra-thick (50–200 μmt) tantalum carbide (TaC) protective coatings on graphite substrates, which consists of TaC slurry application and subsequent sintering processes, i.e., a wet ceramic process. Structural analysis of the sintered TaC layers indicated that they have a dense granular structure containing coarse grain with sizes of 10–50 μm. Furthermore, no cracks or pinholes penetrated through the layers, i.e., the TaC layers are highly reliable protective coatings. The analysismore » also indicated that no plastic deformation occurred during the production process, and the non-textured crystalline orientation of the TaC layers is the origin of their high reliability and durability. The TaC-coated graphite crucibles were tested in an aluminum nitride (AlN) sublimation growth process, which involves extremely corrosive conditions, and demonstrated their practical reliability and durability in the AlN growth process as a TaC-coated graphite. The application of the TaC-coated graphite materials to crucibles and susceptors for use in bulk AlN single crystal growth, bulk silicon carbide (SiC) single crystal growth, chemical vapor deposition of epitaxial SiC films, and metal-organic vapor phase epitaxy of group-III nitrides will lead to further improvements in crystal quality and reduced processing costs.« less

  11. Sustained release of nerve growth factor from biodegradable polymer microspheres.

    PubMed

    Camarata, P J; Suryanarayanan, R; Turner, D A; Parker, R G; Ebner, T J

    1992-03-01

    Although grafted adrenal medullary tissue to the striatum has been used both experimentally and clinically in parkinsonism, there is a definite need to augment long-term survival. Infusion of nerve growth factor (NGF) or implantation of NGF-rich tissue into the area of the graft prolongs survival and induces differentiation into neural-like cells. To provide for prolonged, site-specific delivery of this growth factor to the grafted tissue in a convenient manner, we fabricated biodegradable polymer microspheres of poly(L-lactide)co-glycolide (70:30) containing NGF. Biologically active NGF was released from the microspheres, as assayed by neurite outgrowth in a dorsal root ganglion tissue culture system. Anti-NGF could block this outgrowth. An enzyme-linked immunosorbent assay detected NGF still being released in vitro for longer than 5 weeks. In vivo immunohistochemical studies showed release over a 4.5-week period. This technique should prove useful for incorporating NGF and other growth factors into polymers and delivering proteins and other macromolecules intracerebrally over a prolonged time period. These growth factor-containing polymer microspheres can be used in work aimed at prolonging graft survival, treating experimental Alzheimer's disease, and augmenting peripheral nerve regeneration.

  12. Concentrated Growth Factor Enhanced Fat Graft Survival: A Comparative Study.

    PubMed

    Hu, Yun; Jiang, Yichen; Wang, Muyao; Tian, Weidong; Wang, Hang

    2018-06-08

    Concentrated growth factors (CGFs) belong to a new generation biomaterials that concentrate large number of growth factors and CD34 stem cells in small volume of plasma. The purpose of this study was to evaluate the impact of the new technique, CGF, on fat graft survival, which compared with platelet-rich plasma (PRP) and platelet-rich fibrin (PRF). Nude mice received fat graft were divided into PRP group, PRF group, CGF group, and saline. The grafts were volumetrically and histologically evaluated at 4, 8, and 12 weeks after fat grafting. In vitro growth factor levels in PRP, PRF, and CGF were compared using enzyme-linked immunoassay method. Cell count and real-time polymerase chain reaction were used to evaluate the impact of CGF in medium on human adipose-derived stem cell (hADSC) proliferation and vascular differentiation, respectively. Fat graft weight was significantly higher in the CGF group than those in the other groups, and histologic evaluation revealed greater vascularity, fewer cysts, and less fibrosis. Adding CGF to the medium maximally promoted hADSC proliferation and expressing vascular endothelial growth factor and PECAM-1. In this preliminary study, CGF treatment improved the survival and quality of fat grafts.

  13. Protective ventilation reduces Pseudomonas aeruginosa growth in lung tissue in a porcine pneumonia model.

    PubMed

    Sperber, Jesper; Nyberg, Axel; Lipcsey, Miklos; Melhus, Åsa; Larsson, Anders; Sjölin, Jan; Castegren, Markus

    2017-08-31

    Mechanical ventilation with positive end expiratory pressure and low tidal volume, i.e. protective ventilation, is recommended in patients with acute respiratory distress syndrome. However, the effect of protective ventilation on bacterial growth during early pneumonia in non-injured lungs is not extensively studied. The main objectives were to compare two different ventilator settings on Pseudomonas aeruginosa growth in lung tissue and the development of lung injury. A porcine model of severe pneumonia was used. The protective group (n = 10) had an end expiratory pressure of 10 cm H 2 O and a tidal volume of 6 ml x kg -1 . The control group (n = 10) had an end expiratory pressure of 5 cm H 2 O and a tidal volume of 10 ml x kg -1 . 10 11 colony forming units of Pseudomonas aeruginosa were inoculated intra-tracheally at baseline, after which the experiment continued for 6 h. Two animals from each group received only saline, and served as sham animals. Lung tissue samples from each animal were used for bacterial cultures and wet-to-dry weight ratio measurements. The protective group displayed lower numbers of Pseudomonas aeruginosa (p < 0.05) in the lung tissue, and a lower wet-to-dry ratio (p < 0.01) than the control group. The control group deteriorated in arterial oxygen tension/inspired oxygen fraction, whereas the protective group was unchanged (p < 0.01). In early phase pneumonia, protective ventilation with lower tidal volume and higher end expiratory pressure has the potential to reduce the pulmonary bacterial burden and the development of lung injury.

  14. Platelet Activating Factor: A Growth Factor for Breast Cancer

    DTIC Science & Technology

    2006-09-01

    synthase (ADS) increases ether lipid content, growth and PAF synthesis in MCF-7 cells. 4. Eicosapentaenoic acid (EPA) inhibits the synthesis of PAF...Schmitt, J. D., Bullock, B. C. Wykle, R. L. Reacylation of platelet activating factor with eicosapentaenoic acid in fish-oil-enriched monkey...breast cancer. Recent studies have shown that the ratio of two families of essential fatty acids is important in regulating many cellular processes

  15. Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis

    DTIC Science & Technology

    2009-10-01

    AD_________________ Award Number: W81XWH-06-1-0763 TITLE: Role of Fibroblast Growth Factor ...2009 4. TITLE AND SUBTITLE Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development 5a. CONTRACT NUMBER and Tumorigenesis...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS Fibroblast Growth Factor Binding Protein-1

  16. ROLES OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF-A) IN MEDIATION OF DIOXIN (TCDD)-INDUCED DELAYS IN DEVELOPMENT OF THE MOUSE MAMMARY GLAND

    EPA Science Inventory

    Roles of Epidermal Growth Factor (EGF) and Transforming Growth Factor-alpha (TGF-a) in Mediation of Dioxin (TCDD)-Induced Delays in Development of the Mouse Mammary Gland.
    Suzanne E. Fenton, Barbara Abbott, Lamont Bryant, and Angela Buckalew. U.S. EPA, NHEERL, Reproductive Tox...

  17. Novel Growth Factor as Prognostic Marker for Estrogen-Independence in Breast Cancer

    DTIC Science & Technology

    2002-08-01

    factor (PCDGF, also known as progranulin ) is a novel autocrine growth factor shown to be overexpressed and to be mitogenic in human breast cancer cell...kDa glycoprotein originally purified from the highly tumorigenic mouse teratoma-derived cell line PC (1, 2). PCDGF (also known as progranulin ) is the...requirement for the insulin-like growth factor 1 receptor for growth in vitro. J Biol Chem, 273: 20078-20083, 1998. 6. He, Z. and Bateman, A. Progranulin gene

  18. Plant-Produced Human Recombinant Erythropoietic Growth Factors Support Erythroid Differentiation In Vitro

    PubMed Central

    Musiychuk, Konstantin; Sivalenka, Rajarajeswari; Jaje, Jennifer; Bi, Hong; Flores, Rosemary; Shaw, Brenden; Jones, R. Mark; Golovina, Tatiana; Schnipper, Jacob; Khandker, Luipa; Sun, Ruiqiang; Li, Chang; Kang, Lin; Voskinarian-Berse, Vanessa; Zhang, Xiaokui; Streatfield, Stephen; Hambor, John; Abbot, Stewart

    2013-01-01

    Clinically available red blood cells (RBCs) for transfusions are at high demand, but in vitro generation of RBCs from hematopoietic stem cells requires significant quantities of growth factors. Here, we describe the production of four human growth factors: erythropoietin (EPO), stem cell factor (SCF), interleukin 3 (IL-3), and insulin-like growth factor-1 (IGF-1), either as non-fused proteins or as fusions with a carrier molecule (lichenase), in plants, using a Tobacco mosaic virus vector-based transient expression system. All growth factors were purified and their identity was confirmed by western blotting and peptide mapping. The potency of these plant-produced cytokines was assessed using TF1 cell (responsive to EPO, IL-3 and SCF) or MCF-7 cell (responsive to IGF-1) proliferation assays. The biological activity estimated here for the cytokines produced in plants was slightly lower or within the range cited in commercial sources and published literature. By comparing EC50 values of plant-produced cytokines with standards, we have demonstrated that all four plant-produced growth factors stimulated the expansion of umbilical cord blood-derived CD34+ cells and their differentiation toward erythropoietic precursors with the same potency as commercially available growth factors. To the best of our knowledge, this is the first report on the generation of all key bioactive cytokines required for the erythroid development in a cost-effective manner using a plant-based expression system. PMID:23517237

  19. Gene therapy with growth factors for periodontal tissue engineering–A review

    PubMed Central

    Gupta, Shipra; Mahendra, Aneet

    2012-01-01

    The treatment of oral and periodontal diseases and associated anomalies accounts for a significant proportion of the healthcare burden, with the manifestations of these conditions being functionally and psychologically debilitating. A challenge faced by periodontal therapy is the predictable regeneration of periodontal tissues lost as a consequence of disease. Growth factors are critical to the development, maturation, maintenance and repair of oral tissues as they establish an extra-cellular environment that is conducive to cell and tissue growth. Tissue engineering principles aim to exploit these properties in the development of biomimetic materials that can provide an appropriate microenvironment for tissue development. The aim of this paper is to review emerging periodontal therapies in the areas of materials science, growth factor biology and cell/gene therapy. Various such materials have been formulated into devices that can be used as vehicles for delivery of cells, growth factors and DNA. Different mechanisms of drug delivery are addressed in the context of novel approaches to reconstruct and engineer oral and tooth supporting structure. Key words: Periodontal disease, gene therapy, regeneration, tissue repair, growth factors, tissue engineering. PMID:22143705

  20. Adjustment of Children Born to Teenage Mothers: The Contribution of Risk and Protective Factors.

    ERIC Educational Resources Information Center

    Dubow, Eric F.; Luster, Tom

    1990-01-01

    Examined contribution of risk and protective factors in adjustment of 721 children, age 8-15, born to teenage mothers. Results showed that exposure to increasing number of risk factors (poverty, urban residence, mother's self-esteem) was associated with greater vulnerability to adjustment problems, while protective factors (intelligence,…

  1. A novel mechanism of vascular endothelial growth factor, leptin and transforming growth factor-beta2 sequestration in a subpopulation of human ovarian follicle cells.

    PubMed

    Antczak, M; Van Blerkom, J; Clark, A

    1997-10-01

    This study describes the occurrence of a highly specialized subpopulation of granulosa and cumulus oophorus cells that accumulate and sequester specific growth factors by a novel mechanism. These cells are characterized by multiple balloon-like processes tethered to the cell by means of a slender stalk of plasma membrane. Time-lapse analyses demonstrate that these tethered structures (TS) form in minutes and frequently detach from the cell with the bulbous portion remaining motile on the cell surface. Serial section reconstruction of transmission electron microscopic images shows a specific and stable intracellular organization in which an apparent secretory compartment composed of densely packed vacuoles, vesicles, and cisternae is separated by a thick filamentous network from a nuclear compartment containing mitochondria, polyribosomes, lipid inclusions, and rough-surfaced endoplasmic reticulum. Immunofluorescent analysis performed during the formation of these structures showed a progressive accumulation of vascular endothelial growth factor, leptin, and transforming growth factor-beta2 in the bulbous region. TS were identified in newly aspirated masses of granulosa and cumulus oophorus, and their production persists for months in culture. Observations of TS-forming cells made over several days of culture indicates that their production is episodic and factor release from these cells may be pulsatile. The findings suggest that a novel method of growth factor storage and release by an apparent apocrine-like mechanism occurs in the human ovarian follicle. The results are discussed with respect to possible roles in pre- and post-ovulatory follicular development.

  2. FGF19 functions as autocrine growth factor for hepatoblastoma

    PubMed Central

    Elzi, David J.; Song, Meihua; Blackman, Barron; Weintraub, Susan T.; López-Terrada, Dolores; Chen, Yidong; Tomlinson, Gail E.; Shiio, Yuzuru

    2016-01-01

    Hepatoblastoma is the most common liver cancer in children, accounting for over 65% of all childhood liver malignancies. Hepatoblastoma is distinct from adult liver cancer in that it is not associated with hepatitis virus infection, cirrhosis, or other underlying liver pathology. The paucity of appropriate cell and animal models has been hampering the mechanistic understanding of hepatoblastoma pathogenesis. Consequently, there is no molecularly targeted therapy for hepatoblastoma. To gain insight into cytokine signaling in hepatoblastoma, we employed mass spectrometry to analyze the proteins secreted from Hep293TT hepatoblastoma cell line we established and identified the specific secretion of fibroblast growth factor 19 (FGF19), a growth factor for liver cells. We determined that silencing FGF19 by shRNAs or neutralizing secreted FGF19 by anti-FGF19 antibody inhibits the proliferation of hepatoblastoma cells. Furthermore, blocking FGF19 signaling by an FGF receptor kinase inhibitor suppressed hepatoblastoma growth. RNA expression analysis in hepatoblastoma tumors revealed that the high expression of FGF19 signaling pathway components as well as the low expression of FGF19 signaling repression targets correlates with the aggressiveness of the tumors. These results suggest the role of FGF19 as autocrine growth factor for hepatoblastoma. PMID:27382436

  3. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy.

    PubMed

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody-drug conjugates. The FGF1V-valine-citrulline-MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V-vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality.

  4. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy

    PubMed Central

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235

  5. Targeting placental growth factor/neuropilin 1 pathway inhibits growth and spread of medulloblastoma

    PubMed Central

    Snuderl, Matija; Batista, Ana; Kirkpatrick, Nathaniel D.; de Almodovar, Carmen Ruiz; Riedemann, Lars; Walsh, Elisa C.; Anolik, Rachel; Huang, Yuhui; Martin, John D.; Kamoun, Walid; Knevels, Ellen; Schmidt, Thomas; Farrar, Christian T.; Vakoc, Benjamin J.; Mohan, Nishant; Chung, Euiheon; Roberge, Sylvie; Peterson, Teresa; Bais, Carlos; Zhelyazkova, Boryana H.; Yip, Stephen; Hasselblatt, Martin; Rossig, Claudia; Niemeyer, Elisabeth; Ferrara, Napoleone; Klagsbrun, Michael; Duda, Dan G.; Fukumura, Dai; Xu, Lei; Carmeliet, Peter; Jain, Rakesh K.

    2013-01-01

    SUMMARY Medulloblastoma is the most common pediatric malignant brain tumor. Although current therapies improve survival, these regimens are highly toxic and associated with significant morbidity. Here, we report that placental growth factor (PlGF) is expressed in the majority of medulloblastomas independent of their subtype. Moreover, high expression of PlGF receptor neuropilin 1 (Nrp1) correlates with poor overall survival in patients. We demonstrate that PlGF and Nrp1 are required for the growth and spread of medulloblastoma: PlGF/Nrp1 blockade results in direct antitumor effects in vivo, resulting in medulloblastoma regression, decreased metastases, and increased mouse survival. We reveal that PlGF is produced in the cerebellar stroma via tumor-derived Sonic hedgehog (Shh) and show that PlGF acts through Nrp1—and not vascular endothelial growth factor receptor 1 (VEGFR1)—to promote tumor cell survival. This critical tumor-stroma interaction—mediated by Shh, PlGF, and Nrp1 across medulloblastoma subtypes—supports the development of therapies targeting PlGF/Nrp1 pathway. PMID:23452854

  6. Origin of platelet-derived growth factor in megakaryocytes in guinea pigs.

    PubMed Central

    Chernoff, A; Levine, R F; Goodman, D S

    1980-01-01

    Growth factor activity, as determined by the stimulation of [3H]thymidine incorporation into the DNA of quiescent 3T3 cells in culture, was found in lysates of guinea pig platelets and megakaryocytes. Quantitative dilution studies demonstrated that, of the cells present in the guinea pig bone marrow, only the megakaryocyte possessed quantitatively significant growth factor activity. The amount of activity present in one megakaryocyte was equivalent to that present in 1,000-5,000 platelets, a value approximately comparable to the number of platelets shed from a single megakaryocyte. It is suggested that guinea pig platelet-derived growth factor has its origin in the megakaryocyte. PMID:7358851

  7. Risk versus direct protective factors and youth violence: Seattle social development project.

    PubMed

    Herrenkohl, Todd I; Lee, Jungeun; Hawkins, J David

    2012-08-01

    Numerous studies have examined predictors of youth violence associated with the individual child, the family, school, and the surrounding neighborhood or community. However, few studies have examined predictors using a systematic approach to differentiate and compare risk and direct protective factors. This study examines risk and protective factors associated with youth violence in an ongoing longitudinal panel study of 808 students from 18 Seattle public elementary schools followed since 1985 when they were in 5th grade. Predictors span the individual, family, school, peer, and neighborhood domains. Data were collected annually, beginning in 1985, to age 16 years, and then again at age 18 years. This paper provides findings of analyses in which continuous predictor variables, measured at ages 10-12 years, were trichotomized to reflect a risk end of the variable, a direct protective end, and a middle category of scores. Youth violence was measured at ages 13-14 years and 15-18 years. Bivariate analyses of risk and direct protective factors identified the following predictors of violence at ages 13-14 years and 15-18 years. Risk for violence was increased by earlier antisocial behavior (e.g., prior violence, truancy, nonviolent delinquency), attention problems, family conflict, low school commitment, and living in a neighborhood where young people were in trouble. Direct protective factors at ages 10-12 years include a low level of attention problems, low risk-taking, refusal skills, school attachment, and low access and exposure to marijuana at ages 10-12 years. Multivariate regressions showed neighborhood risk factors to be among the most salient and consistent predictors of violence after accounting for all other variables in the tested models. Relatively few direct protective factors were identified in these statistical tests, suggesting the need for further review and possible refinement of the measures and methods that were applied. Implications provide

  8. Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis

    DTIC Science & Technology

    2008-10-01

    AD_________________ AWARD NUMBER: W81XWH-06-1-0763 TITLE: Role of Fibroblast Growth Factor ...Role of Fibroblast Growth Factor Binding Protein-1 in Mammary Development and Tumorigenesis 5b. GRANT NUMBER W81XWH-06-1-0763 5c. PROGRAM...Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Fibroblast growth factors (FGFs) are vital modulators of development as well as

  9. On the dimensionality of the stress-related growth scale: one, three, or seven factors?

    PubMed

    Roesch, Scott C; Rowley, Anthony A; Vaughn, Allison A

    2004-06-01

    We examined the factorial validity and dimensionality of the Stress-Related Growth Scale (SRGS; Park, Cohen, & Murch, 1996) using a large multiethnic sample (n = 1,070). Exploratory and confirmatory factor analyses suggested that a multidimensional representation of the SRGS fit better than a unidimensional representation. Specifically, we cross-validated both a 3-factor model and a 7-factor model using confirmatory factor analysis and were shown to be invariant across gender and ethnic groups. The 3-factor model was represented by global dimensions of growth that included rational/mature thinking, affective/emotional growth, and religious/spiritual growth. We replicated the 7-factor model of Armeli, Gunthert, and Cohen (2001) and it represented more specific components of growth such as Self-Understanding and Treatment of Others. However, some factors of the 7-factor model had questionable internal consistency and were strongly intercorrelated, suggesting redundancy. The findings support the notion that the factor structure of both the original 1-factor and revised 7-factor models are unstable and that the 3-factor model developed in this research has more reliable psychometric properties and structure.

  10. Workplace violence in healthcare settings: risk factors and protective strategies.

    PubMed

    Gillespie, Gordon Lee; Gates, Donna M; Miller, Margaret; Howard, Patricia Kunz

    2010-01-01

    This article describes the risk factors and protective strategies associated with workplace violence perpetrated by patients and visitors against healthcare workers. Perpetrator risk factors for patients and visitors in healthcare settings include mental health disorders, drug or alcohol use, inability to deal with situational crises, possession of weapons, and being a victim of violence. Worker risk factors are gender, age, years of experience, hours worked, marital status, and previous workplace violence training. Setting and environmental risk factors for experiencing workplace violence include time of day and presence of security cameras. Protective strategies for combating the negative consequences of workplace violence include carrying a telephone, practicing self-defense, instructing perpetrators to stop being violent, self- and social support, and limiting interactions with potential or known perpetrators of violence. Workplace violence is a serious and growing problem that affects all healthcare professionals. Strategies are needed to prevent workplace violence and manage the negative consequences experienced by healthcare workers following violent events.

  11. Erythropoietin protects myocardin-expressing cardiac stem cells against cytotoxicity of tumor necrosis factor-{alpha}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madonna, Rosalinda; Institute of Cardiology, and Center of Excellence on Aging, 'G. d'Annunzio' University, Chieti; Shelat, Harnath

    2009-10-15

    Cardiac stem cells are vulnerable to inflammation caused by infarction or ischemic injury. The growth factor, erythropoietin (Epo), ameliorates the inflammatory response of the myocardium to ischemic injury. This study was designed to assess the role of Epo in regulation of expression and activation of the cell death-associated intracellular signaling components in cardiac myoblasts stimulated with the proinflammatory cytokine tumor necrosis factor (TNF)-{alpha}. Cardiac myoblasts isolated from canine embryonic hearts characterized by expression of myocardin A, a promyogenic transcription factor for cardiovascular muscle development were pretreated with Epo and then exposed to TNF-{alpha}. Compared to untreated cells, the Epo-treated cardiacmore » myoblasts exhibited better morphology and viability. Immunoblotting revealed lower levels of active caspase-3 and reductions in iNOS expression and NO production in Epo-treated cells. Furthermore, Epo pretreatment reduced nuclear translocation of NF-{kappa}B and inhibited phosphorylation of inhibitor of kappa B (I{kappa}B) in TNF-{alpha}-stimulated cardiac myoblasts. Thus, Epo protects cardiac myocyte progenitors or myoblasts against the cytotoxic effects of TNF-{alpha} by inhibiting NF-{kappa}B-mediated iNOS expression and NO production and by preventing caspase-3 activation.« less

  12. Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation.

    PubMed

    Yu, Yinhang; Bai, Fuliang; Wang, Wenfei; Liu, Yaonan; Yuan, Qingyan; Qu, Susu; Zhang, Tong; Tian, Guiyou; Li, Siming; Li, Deshan; Ren, Guiping

    2015-06-01

    Fibroblast growth factor 21 (FGF21) is a hormone secreted predominantly in the liver, pancreas and adipose tissue. Recently, it has been reported that FGF21-Transgenic mice can extend their lifespan compared with wild type counterparts. Thus, we hypothesize that FGF21 may play some roles in aging of organisms. In this study d-galactose (d-gal)-induced aging mice were used to study the mechanism that FGF21 protects mice from aging. The three-month-old Kunming mice were subcutaneously injected with d-gal (180mg·kg(-1)·d(-1)) for 8weeks and administered simultaneously with FGF21 (1, 2 or 5mg·kg(-1)·d(-1)). Our results showed that administration of FGF21 significantly improved behavioral performance of d-gal-treated mice in water maze task and step-down test, reduced brain cell damage in the hippocampus, and attenuated the d-gal-induced production of MDA, ROS and advanced glycation end products (AGEs). At the same time, FGF21 also markedly renewed the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and total anti-oxidation capability (T-AOC), and decreased the enhanced total cholinesterase (TChE) activity in the brain of d-gal-treated mice. The expression of aldose reductase (AR), sorbitol dehydrogenase (SDH) and member-anchored receptor for AGEs (RAGE) declined significantly after FGF21 treatment. Furthermore, FGF21 suppressed inflamm-aging by inhibiting IκBα degradation and NF-κB p65 nuclear translocation. The expression levels of pro-inflammatory cytokines, such as TNF-α and IL-6, decreased significantly. In conclusion, these results suggest that FGF21 protects the aging mice brain from d-gal-induced injury by attenuating oxidative stress damage and decreasing AGE formation. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Role of platelet-released growth factors in detoxification of reactive oxygen species in osteoblasts.

    PubMed

    Tohidnezhad, Mersedeh; Wruck, Christoph-Jan; Slowik, Alexander; Kweider, Nisreen; Beckmann, Rainer; Bayer, Andreas; Houben, Astrid; Brandenburg, Lars-Ove; Varoga, Deike; Sönmez, Tolga-Taha; Stoffel, Marcus; Jahr, Holger; Lippross, Sebastian; Pufe, Thomas

    2014-08-01

    Oxidative stress can impair fracture healing. To protect against oxidative damage, a system of detoxifying and antioxidative enzymes works to reduce the cellular stress. The transcription of these enzymes is regulated by antioxidant response element (ARE). The nuclear factor (erythroid-derived 2)-like2 (Nrf2) plays a major role in transcriptional activation of ARE-driven genes. Recently it has been shown that vascular endothelial growth factor (VEGF) prevents oxidative damage via activation of the Nrf2 pathway in vitro. Platelet-released growth factor (PRGF) is a mixture of autologous proteins and growth factors, prepared from a determined volume of platelet-rich plasma (PRP). It has already used to enhance fracture healing in vitro. The aim of the present study was to elucidate if platelets can lead to upregulation of VEGF and if platelets can regulate the activity of Nrf2-ARE system in primary human osteoblast (hOB) and in osteoblast-like cell line (SAOS-2). Platelets and PRGF were obtained from healthy human donors. HOB and SAOS-2 osteosarcoma cell line were used. The ARE activity was analysed using a dual luciferase reporter assay system. We used Western blot to detect the nuclear accumulation of Nrf2 and the amount of cytosolic antioxidant Thioredoxin Reductase-1 (TXNRD-1), Heme Oxygenase-1 (HO-1) and NAD(P)H quinine oxidoreductase-1 (NQO1). Gene expression analysis was performed by real-time RT PCR. ELISA was used for the quantification of growth factors. The activity of ARE was increased in the presence of PRGF up to 50%. Western blotting demonstrated enhanced nuclear accumulation of Nrf2. This was followed by an increase in the protein expression of the aforementioned downstream targets of Nrf2. Real-time RT PCR data showed an upregulation in the gene expression of the VEGF after PRGF treatment. This was confirmed by ELISA, where the treatment with PRGF induced the protein level of VEGF in both cells. These results provide a new insight into PRGF's mode of

  14. Growth factor delivery for oral and periodontal tissue engineering

    PubMed Central

    Kaigler, Darnell; Cirelli, Joni A; Giannobile, William V

    2008-01-01

    The treatment of oral and periodontal diseases and associated anomalies accounts for a significant proportion of the healthcare burden, with the manifestations of these conditions being functionally and psychologically debilitating. Growth factors are critical to the development, maturation, maintenance and repair of craniofacial tissues, as they establish an extracellular environment that is conducive to cell and tissue growth. Tissue-engineering principles aim to exploit these properties in the development of biomimetic materials that can provide an appropriate microenvironment for tissue development. These materials have been constructed into devices that can be used as vehicles for delivery of cells, growth factors and DNA. In this review, different mechanisms of drug delivery are addressed in the context of novel approaches to reconstruct and engineer oral- and tooth-supporting structures, namely the periodontium and alveolar bone. PMID:16948560

  15. Risk and Protective Factors Influencing Life Skills among Youths in Long-Term Foster Care.

    ERIC Educational Resources Information Center

    Nollan, K. A.; Pecora, P. J.; Nurius, P. N.; Whittaker, J. K.

    2002-01-01

    Examined through mail surveys of youth, parents, and social workers the predictive value of selected risk and protective factors in explaining self-sufficiency skills of 219 ethnically diverse 12- to 15-year-olds in foster care. Found that protective factors related to greater self-sufficiency skills, and risk factors were negatively associated.…

  16. Casein kinase 2 and the cell response to growth factors.

    PubMed

    Filhol-Cochet, O; Loue-Mackenbach, P; Cochet, C; Chambaz, E M

    1994-01-01

    Different approaches have been followed with the aim of delineating a possible role of casein kinase 2 (CK2) in the mitogenic signalling in response to cell growth factors. (a) Immunocytochemical detection of CK2 showed that while the kinase is evenly distributed throughout cycle arrested cells, it becomes preferentially associated with the nuclear compartment in activity growing cells; (b) CK2 biosynthesis is activated as an early response of quiescent cells to growth factors. The newly synthesized CK2 steadily accumulates as the cells progress through the G1 phase. This growth factor-induced CK2 biosynthesis involves in parallel the two alpha and beta subunits of the kinase, with no detectable preferential subcellular localization of the newly synthesized enzyme; and (c) In addition to substrate phosphorylation, CK2 may form molecular complexes with cell components of functional significance. Such is the case with the protein p53, a major negative regulator of the cell cycle. CK2 forms a high affinity association (Kd 70 nM) with p53, through its beta subunit. The complex dissociates in the presence of adenosine triphosphate (ATP). These observations suggest that CK2 and p53 may play a coordinated regulatory role in the cell response to growth factors.

  17. Serum placental growth factor, vascular endothelial growth factor, soluble vascular endothelial growth factor receptor-1 and -2 levels in periodontal disease, and adverse pregnancy outcomes.

    PubMed

    Sert, Tuba; Kırzıoğlu, F Yeşim; Fentoğlu, Ozlem; Aylak, Firdevs; Mungan, Tamer

    2011-12-01

    The aim of this study is the evaluation of levels of serum interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF)-α, vascular endothelial growth factor (VEGF), placental growth factor (PIGF), and soluble VEGF receptor (sVEGFR)-1 and -2 in the association between periodontal disease and adverse pregnancy outcomes. One hundred and nine mothers, who recently gave birth, and 51 women who were not recently pregnant, aged 18 to 35 years, were included in this study. The mothers were classified as term birth, preterm birth (PTB), and preterm low birth weight (PLBW) in respect to their gestational age and baby's birth weight. The birth mothers were grouped as having gingivitis or periodontitis. The non-pregnant group also included periodontally healthy patients. Venous blood samples were collected to evaluate serum IL-1β, IL-6, IL-10, TNF-α, VEGF, PIGF, and sVEGFR-1 and -2 levels. Mother's weight, education, and income level were significantly associated with pregnancy outcomes. Serum levels of IL-1β, TNF-α, IL-6, VEGF, and sVEGFR-1 and -2 showed an increase in significance when related to pregnancy. Whereas in the PLBW group IL-1β, VEGF, and sVEGFR-2 levels were increased, in the PTB group sVEGFR-1 levels were increased. Additionally, the patients in the PLBW group with periodontitis had higher serum levels of IL-1β, VEGF, sVEGFR-2, and IL-1β/IL-10. The serum levels of IL-1β, VEGF, and sVEGFR-1 and -2 may have a potential effect on the mechanism of the association between periodontal disease and adverse pregnancy outcomes.

  18. UV-B Inhibits Leaf Growth through Changes in Growth Regulating Factors and Gibberellin Levels1[OPEN

    PubMed Central

    Fina, Julieta; AbdElgawad, Hamada; Prinsen, Els

    2017-01-01

    Ultraviolet-B (UV-B) radiation affects leaf growth in a wide range of species. In this work, we demonstrate that UV-B levels present in solar radiation inhibit maize (Zea mays) leaf growth without causing any other visible stress symptoms, including the accumulation of DNA damage. We conducted kinematic analyses of cell division and expansion to understand the impact of UV-B radiation on these cellular processes. Our results demonstrate that the decrease in leaf growth in UV-B-irradiated leaves is a consequence of a reduction in cell production and a shortened growth zone (GZ). To determine the molecular pathways involved in UV-B inhibition of leaf growth, we performed RNA sequencing on isolated GZ tissues of control and UV-B-exposed plants. Our results show a link between the observed leaf growth inhibition and the expression of specific cell cycle and developmental genes, including growth-regulating factors (GRFs) and transcripts for proteins participating in different hormone pathways. Interestingly, the decrease in the GZ size correlates with a decrease in the concentration of GA19, the immediate precursor of the active gibberellin, GA1, by UV-B in this zone, which is regulated, at least in part, by the expression of GRF1 and possibly other transcription factors of the GRF family. PMID:28400494

  19. [Risk factors and protective factors relating to suicide in the Netherlands and Flanders].

    PubMed

    Reynders, A; Kerkhof, A J F M; Molenberghs, G; van Audenhove, C

    2016-01-01

    The suicide rate is 82% higher in the Flanders region of Belgium than in the Netherlands. To investigate to what extent Flanders and the Netherlands differ with regard to the risk factors and protective factors relating to suicide and attempted suicide. By means of a structured postal questionnaire, we collected data on the following topics from 2999 Flemish and Dutch people between 18 and 64 years: mental well-being and earlier attempts to commit suicide, the help they had received and their intention to seek help for psychological problems, awareness of the mental health care available, satisfaction with the help received, and attitudes to suicide. The incidence of psychological problems and suicidality did not differ significantly between Flanders and the Netherlands. Compared to Flemish people, Dutch people with psychological problems had received more psychological help and more often expressed the intention to seek help in the future. Furthermore, the Dutch were better informed about mental health care, and patient satisfaction was higher in the Netherlands. Compared to the Flemish people, the Dutch had more positive and understanding attitude to suicide. In general, risk factors for suicide were similar in the Netherlands and Flanders. However, the Dutch were characterised by more protective factors. We attempt to explain these differences and suggest ways of improving suicidal prevention policy.

  20. [Fibroblast growth factors and their effects in pancreas organogenesis].

    PubMed

    Gnatenko, D A; Kopantzev, E P; Sverdlov, E D

    2017-05-01

    Fibroblast growth factors (FGF) - growth factors that regulate many important biological processes, including proliferation and differentiation of embryonic cells during organogenesis. In this review, we will summarize current information about the involvement of FGFs in the pancreas organogenesis. Pancreas organogenesis is a complex process, which involves constant signaling from mesenchymal tissue. This orchestrates the activation of various regulator genes at specific stages, determining the specification of progenitor cells. Alterations in FGF/FGFR signaling pathway during this process lead to incorrect activation of the master genes, which leads to different pathologies during pancreas development. Understanding the full picture about role of FGF factors in pancreas development will make it possible to more accurately understand their role in other pathologies of this organ, including carcinogenesis.

  1. Quantification of various growth factors in different demineralized bone matrix preparations.

    PubMed

    Wildemann, B; Kadow-Romacker, A; Haas, N P; Schmidmaier, G

    2007-05-01

    Besides autografts, allografts, and synthetic materials, demineralized bone matrix (DBM) is used for bone defect filling and treatment of non-unions. Different DBM formulations are introduced in clinic since years. However, little is known about the presents and quantities of growth factors in DBM. Aim of the present study was the quantification of eight growth factors important for bone healing in three different "off the shelf" DBM formulations, which are already in human use: DBX putty, Grafton DBM putty, and AlloMatrix putty. All three DBM formulations are produced from human donor tissue but they differ in the substitutes added. From each of the three products 10 different lots were analyzed. Protein was extracted from the samples with Guanidine HCL/EDTA method and human ELISA kits were used for growth factor quantification. Differences between the three different products were seen in total protein contend and the absolute growth factor values but also a large variability between the different lots was found. The order of the growth factors, however, is almost comparable between the materials. In the three investigated materials FGF basic and BMP-4 were not detectable in any analyzed sample. BMP-2 revealed the highest concentration extractable from the samples with approximately 3.6 microg/g tissue without a significant difference between the three DBM formulations. In DBX putty significantly more TGF-beta1 and FGFa were measurable compared to the two other DBMs. IGF-I revealed the significantly highest value in the AlloMatrix and PDGF in Grafton. No differences were accessed for VEGF. Due to the differences in the growth factor concentration between the individual samples, independently from the product formulation, further analyzes are required to optimize the clinical outcome of the used demineralized bone matrix. Copyright 2006 Wiley Periodicals, Inc.

  2. Rearing Mozambique tilapia in tidally-changing salinities: Effects on growth and the growth hormone/insulin-like growth factor I axis.

    PubMed

    Moorman, Benjamin P; Yamaguchi, Yoko; Lerner, Darren T; Grau, E Gordon; Seale, Andre P

    2016-08-01

    The growth hormone (GH)/insulin-like growth factor (IGF) axis plays a central role in the regulation of growth in teleosts and has been shown to be affected by acclimation salinity. This study was aimed at characterizing the effects of rearing tilapia, Oreochromis mossambicus, in a tidally-changing salinity on the GH/IGF axis and growth. Tilapia were raised in fresh water (FW), seawater (SW), or in a tidally-changing environment, in which salinity is switched between FW (TF) and SW (TS) every 6h, for 4months. Growth was measured over all time points recorded and fish reared in a tidally-changing environment grew significantly faster than other groups. The levels of circulating growth hormone (GH), insulin-like growth factor I (IGF-I), pituitary GH mRNA, gene expression of IGF-I, IGF-II, and growth hormone receptor 2 (GHR) in the muscle and liver were also determined. Plasma IGF-I was higher in FW and TS than in SW and TF tilapia. Pituitary GH mRNA was higher in TF and TS than in FW and SW tilapia. Gene expression of IGF-I in the liver and of GHR in both the muscle and liver changed between TF and TS fish. Fish growth was positively correlated with GH mRNA expression in the pituitary, and GHR mRNA expression in muscle and liver tissues. Our study indicates that rearing fish under tidally-changing salinities elicits a distinct pattern of endocrine regulation from that observed in fish reared in steady-state conditions, and may provide a new approach to increase tilapia growth rate and study the regulation of growth in euryhaline fish. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Adaptation and validation of the Inventory of Family Protective Factors for the Portuguese culture

    PubMed Central

    Augusto, Cláudia Cristina Vieira Carvalho de Oliveira Ferreira; Araújo, Beatriz Rodrigues; Rodrigues, Vítor Manuel Costa Pereira; de Figueiredo, Maria do Céu Aguiar Barbieri

    2014-01-01

    OBJECTIVES: to adapt and validate the Inventory of Family Protective Factors (IFPF) for the Portuguese culture. This instrument assesses protective factors that contribute to family resilience. Studies addressing resilience are embedded within the salutogenic paradigm, i.e. it addresses protective factors of individuals or groups without underestimating risk factors or vulnerability. METHOD: in order to assess the IFPF's linguistic and conceptual equivalence, the instrument was translated, retro-translated and the think-aloud protocol was used. We then verified the instrument's sensitiveness, reliability and validity of results to assess its psychometric characteristics. A factor analysis was performed of the principal components with varimax rotation of the scale's items and Cronbach's alpha coefficient was calculated for each dimension. A total of 85 families with disabled children, selected through simple random sampling, self-administered the instrument. RESULTS: the IFPF presents psychometric characteristics that are appropriate for the Portuguese population (Cronbach's alpha = .90). CONCLUSION: the IFPF was adapted and validated for the Portuguese culture and is an instrument to be used in studies intended to assess protective factors of family resilience. PMID:25591096

  4. Adaptation and validation of the Inventory of Family Protective Factors for the Portuguese culture.

    PubMed

    Augusto, Cláudia Cristina Vieira Carvalho de Oliveira Ferreira; Araújo, Beatriz Rodrigues; Rodrigues, Vítor Manuel Costa Pereira; de Figueiredo, Maria do Céu Aguiar Barbieri

    2014-01-01

    to adapt and validate the Inventory of Family Protective Factors (IFPF) for the Portuguese culture. This instrument assesses protective factors that contribute to family resilience. Studies addressing resilience are embedded within the salutogenic paradigm, i.e. it addresses protective factors of individuals or groups without underestimating risk factors or vulnerability. in order to assess the IFPF's linguistic and conceptual equivalence, the instrument was translated, retro-translated and the think-aloud protocol was used. We then verified the instrument's sensitiveness, reliability and validity of results to assess its psychometric characteristics. A factor analysis was performed of the principal components with varimax rotation of the scale's items and Cronbach's alpha coefficient was calculated for each dimension. A total of 85 families with disabled children, selected through simple random sampling, self-administered the instrument. the IFPF presents psychometric characteristics that are appropriate for the Portuguese population (Cronbach's alpha = .90). the IFPF was adapted and validated for the Portuguese culture and is an instrument to be used in studies intended to assess protective factors of family resilience.

  5. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Montesano, Roberto; Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hithertomore » unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.« less

  6. Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briquez, Priscilla S.; Hubbell, Jeffrey A.; Martino, Mikaël M.

    2015-08-01

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localizationmore » of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  7. Phosphorylation of hepatocyte growth factor receptor and epidermal growth factor receptor of human hepatocytes can be maintained in a (3D) collagen sandwich culture system.

    PubMed

    Engl, Tobias; Boost, Kim A; Leckel, Kerstin; Beecken, Wolf-Dietrich; Jonas, Dietger; Oppermann, Elsie; Auth, Marcus K H; Schaudt, André; Bechstein, Wolf-Otto; Blaheta, Roman A

    2004-08-01

    In vitro culture models that employ human liver cells could be potent tools for predictive studies on drug toxicity and metabolism in the pharmaceutical industry. However, an adequate receptor responsiveness is necessary to allow intracellular signalling and metabolic activity. We tested the ability of three-dimensionally arranged human hepatocytes to respond to the growth factors hepatocyte growth factor (HGF) or epidermal growth factor (EGF). Isolated adult human hepatocytes were cultivated within a three-dimensional collagen gel (sandwich) or on a two-dimensional collagen matrix. Cells were treated with HGF or EGF and expression and phosphorylative activity of HGF receptors (HGFr, c-met) or EGF receptors (EGFr) were measured by flow cytometry and Western blot. Increasing HGFr and EGFr levels were detected in hepatocytes growing two-dimensionally. However, both receptors were not activated in presence of growth factors. In contrast, when hepatocytes were plated within a three-dimensional matrix, HGFr and EGFr levels remained constantly low. However, both receptors became strongly phosphorylated by soluble HGF or EGF. We conclude that cultivation of human hepatocytes in a three-dimensionally arranged in vitro system allows the maintenance of specific functional activities. The necessity of cell dimensionality for HGFr and EGFr function should be considered when an adequate in vitro system has to be introduced for drug testing.

  8. Rapid population growth and environmental degradation: ultimate versus proximate factors.

    PubMed

    Shaw, R P

    1989-01-01

    This philosophical review of 2 arguments about responsibility for and solutions to environmental degradation concludes that both sides are correct: the ultimate and the proximal causes. Ultimate causes of pollution are defined as the technology responsible for a given type of pollution, such as burning fossil fuel; proximate causes are defined as situation-specific factors confounding the problem, such as population density or rate of growth. Commoner and others argue that developed countries with low or negative population growth rates are responsible for 80% of world pollution, primarily in polluting technologies such as automobiles, power generation, plastics, pesticides, toxic wastes, garbage, warfaring, and nuclear weapons wastes. Distortionary policies also contribute; examples are agricultural trade protection, land mismanagement, urban bias in expenditures, and institutional rigidity., Poor nations are responsible for very little pollution because poverty allows little waste or expenditures for polluting, synthetic technologies. The proximal causes of pollution include numbers and rate of growth of populations responsible for the pollution. Since change in the ultimate cause of pollution remains out of reach, altering the numbers of polluters can make a difference. Predictions are made for proportions of the world's total waste production, assuming current 1.6 tons/capita for developed countries and 0.17 tons/capita for developing countries. If developing countries grow at current rates and become more wealthy, they will be emitting half the world's waste by 2025. ON the other hand, unsustainable population growth goes along with inadequate investment in human capital: education, health, employment, infrastructure. The solution is to improve farming technologies in the 117 non-self-sufficient countries, fund development in the most unsustainable enclaves of growing countries, break institutionalized socio-political rigidity in these enclaves, and focus on

  9. Connective Tissue Growth Factor Is Involved in Structural Retinal Vascular Changes in Long-Term Experimental Diabetes

    PubMed Central

    Van Geest, Rob J.; Leeuwis, Jan Willem; Dendooven, Amélie; Pfister, Frederick; Bosch, Klazien; Hoeben, Kees A.; Vogels, Ilse M.C.; Van der Giezen, Dionne M.; Dietrich, Nadine; Hammes, Hans-Peter; Goldschmeding, Roel; Klaassen, Ingeborg; Van Noorden, Cornelis J.F.

    2014-01-01

    Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family member CCN2 or connective tissue growth factor (CTGF), a potent inducer of the expression of BL components, is upregulated early in diabetes. Diabetic mice lacking one functional CTGF allele (CTGF+/−) do not show this BL thickening. As early events in DR may be interrelated, we hypothesized that CTGF plays a role in the pathological changes of retinal capillaries other than BL thickening. We studied the effects of long-term (6-8 months) streptozotocin-induced diabetes on retinal capillary BL thickness, numbers of pericytes and the development of acellular capillaries in wild type and CTGF+/− mice. Our results show that an absence of BL thickening of retinal capillaries in long-term diabetic CTGF+/− mice is associated with reduced pericyte dropout and reduced formation of acellular capillaries. We conclude that CTGF is involved in structural retinal vascular changes in diabetic rodents. Inhibition of CTGF in the eye may therefore be protective against the development of DR. PMID:24217924

  10. R7 Photoreceptor Axon Growth Is Temporally Controlled by the Transcription Factor Ttk69, Which Inhibits Growth in Part by Promoting Transforming Growth Factor-β/Activin Signaling

    PubMed Central

    Kniss, Jonathan S.; Holbrook, Scott

    2013-01-01

    Work on axon growth has classically focused on understanding how extrinsic cues control growth cone dynamics independent of the cell body. However, more recently, neuron-intrinsic transcription factors have been shown to influence both normal and regenerative axon growth, suggesting that understanding their mechanism of action is of clinical importance. We are studying axon targeting in the Drosophila visual system and here show that the BTB/POZ zinc-finger transcription factor Tramtrack69 (Ttk69) plays an instructive role in inhibiting the growth of R7 photoreceptor axon terminals. Although ttk69 mutant R7 axons project to the correct medullar target layer, M6, their terminals fail to remain retinotopically restricted and instead grow laterally within M6. This overgrowth is not caused by an inability to be repelled by neighboring R7 axons or by an inability to recognize and initiate synapse formation with postsynaptic targets. The overgrowth is progressive and occurs even if contact between ttk69 mutant R7 axons and their normal target layer is disrupted. Ttk69 is first expressed in wild-type R7s after their axons have reached the medulla; ttk69 mutant R7 axon terminal overgrowth begins shortly after this time point. We find that expressing Ttk69 prematurely in R7s collapses their growth cones and disrupts axon extension, indicating that Ttk69 plays an instructive role in this process. A TGF-β/Activin pathway was shown previously to inhibit R7 axon terminal growth. We find that Ttk69 is required for normal activation of this pathway but that Ttk69 likely also inhibits R7 axon growth by a TGF-β/Activin-independent mechanism. PMID:23345225

  11. Genetic polymorphisms and protein structures in growth hormone, growth hormone receptor, ghrelin, insulin-like growth factor 1 and leptin in Mehraban sheep.

    PubMed

    Bahrami, A; Behzadi, Sh; Miraei-Ashtiani, S R; Roh, S-G; Katoh, K

    2013-09-15

    The somatotropic axis, the control system for growth hormone (GH) secretion and its endogenous factors involved in the regulation of metabolism and energy partitioning, has promising potentials for producing economically valuable traits in farm animals. Here we investigated single nucleotide polymorphisms (SNPs) of the genes of factors involved in the somatotropic axis for growth hormone (GH1), growth hormone receptor (GHR), ghrelin (GHRL), insulin-like growth factor 1 (IGF-I) and leptin (LEP), using polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP) and DNA sequencing methods in 452 individual Mehraban sheep. A nonradioactive method to allow SSCP detection was used for genomic DNA and PCR amplification of six fragments: exons 4 and 5 of GH1; exon 10 of GH receptor (GHR); exon 1 of ghrelin (GHRL); exon 1 of insulin-like growth factor-I (IGF-I), and exon 3 of leptin (LEP). Polymorphisms were detected in five of the six PCR products. Two electrophoretic patterns were detected for GH1 exon 4. Five conformational patterns were detected for GH1 exon 5 and LEP exon 3, and three for IGF-I exon 1. Only GHR and GHRL were monomorphic. Changes in protein structures due to variable SNPs were also analyzed. The results suggest that Mehraban sheep, a major breed that is important for the animal industry in Middle East countries, has high genetic variability, opening interesting prospects for future selection programs and preservation strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. The growth hormone–insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders

    PubMed Central

    Blum, Werner F; Alherbish, Abdullah; Alsagheir, Afaf; El Awwa, Ahmed; Kaplan, Walid; Koledova, Ekaterina; Savage, Martin O

    2018-01-01

    The growth hormone (GH)–insulin-like growth factor (IGF)-I axis is a key endocrine mechanism regulating linear growth in children. While paediatricians have a good knowledge of GH secretion and assessment, understanding and use of measurements of the components of the IGF system are less current in clinical practice. The physiological function of this axis is to increase the anabolic cellular processes of protein synthesis and mitosis, and reduction of apoptosis, with each being regulated in the appropriate target tissue. Measurement of serum IGF-I and IGF-binding protein (IGFBP)-3 concentrations can complement assessment of GH status in the investigation of short stature and contribute to prediction of growth response during GH therapy. IGF-I monitoring during GH therapy also informs the clinician about adherence and provides a safety reference to avoid over-dosing during long-term management. PMID:29724795

  13. The growth hormone-insulin-like growth factor-I axis in the diagnosis and treatment of growth disorders.

    PubMed

    Blum, Werner; Alherbish, Abdullah; Alsagheir, Afaf; El Awwa, Ahmed; Kaplan, Walid; Koledova, Ekaterina; Savage, Martin O

    2018-05-03

    The growth hormone (GH)-insulin-like growth factor (IGF)-I axis is a key endocrine mechanism regulating linear growth in children. While paediatricians have a good knowledge of GH secretion and assessment, understanding and use of measurements of the components of the IGF system are less current in clinical practice. The physiological function of this axis is to increase the anabolic cellular processes of protein synthesis and mitosis, and reduction of apoptosis, with each being regulated in the appropriate target tissue. Measurement of serum IGF-I and IGFBP-3 concentrations can complement assessment of GH status in the investigation of short stature and contribute to prediction of growth response during GH therapy. IGF-I monitoring during GH therapy also informs the clinician about adherence and provides a safety reference to avoid over-dosing during long-term management.

  14. Tissular growth factors profile after teduglutide administration on an animal model of intestinal anastomosis.

    PubMed

    Costa, Beatriz Pinto; Gonçalves, Ana Cristina; Abrantes, Ana Margarida; Alves, Raquel; Matafome, Paulo; Seiça, Raquel; Sarmento-Ribeiro, Ana Bela; Botelho, Maria Filomena; Castro-Sousa, Francisco

    2018-01-16

    Teduglutide is an enterotrophic analogue of glucagon-like peptide-2, with an indirect and poorly understood mechanism of action, approved for the rehabilitation of short-bowel syndrome. This study aims to analyze the response of tissue growth factors to surgical injury and teduglutide administration on an animal model of intestinal anastomosis. Wistar rats (n = 59) were distributed into four groups: "ileal resection" or "laparotomy", each one subdivided into "postoperative teduglutide administration" or "no treatment"; and sacrificed at the third or the seventh day, with ileal sample harvesting. Gene expression of insulin-like growth factor 1 (Igf1), vascular endothelial growth factor a (Vegfa), transforming growth factor β1 (Tgfβ1), connective tissue growth factor (Ctgf), fibroblast growth factor 2 (Fgf2), fibroblast growth factor 7 (Fgf7), epidermal growth factor (Egf), heparin-binding epidermal-like growth factor (Hbegf), platelet-derived growth factor b (Pdgfb) and glucagon-like peptide 2 receptor (Glp2r)was studied by real-time polymerase chain reaction. Upregulation of Fgf7, Fgf2, Egf, Vegfaand Glp2rat the third day and of Pdgfat the seventh day was verified in the perianastomotic segment. Teduglutide administration was associated with higher fold-change of relative gene expression of Vegfa(3.6 ± 1.3 vs.1.9 ± 2.0, p = 0.0001), Hbegf(2.2 ± 2.3 vs. 1.1 ± 0.9, p = 0.001), Igf1(1.6 ± 7.6 vs. 0.9 ± 0.7, p = 0.002) and Ctgf(1.1 ± 2.1 vs. 0.6 ± 2.0, p = 0.013); and lower fold-change of Tgfβ1, Fgf7and Glp2r. Those results underscore the recognized role of Igf1and Hbegfas molecular mediators of the effects of teduglutide and suggest that other humoral factors, like Vegfand Ctgf, may also be relevant in the perioperative context. Induction of Vegfa, Igf1and Ctgfgene expressions might indicate a favorable influence of teduglutide on the intestinal anastomotic healing.

  15. Effects of different growth factors and carriers on bone regeneration: a systematic review.

    PubMed

    Khojasteh, Arash; Behnia, Hossein; Naghdi, Navid; Esmaeelinejad, Mohammad; Alikhassy, Zahra; Stevens, Mark

    2013-12-01

    The application and subsequent investigations in the use of varied osteogenic growth factors in bone regeneration procedures have grown dramatically over the past several years. Owing to this rapid gain in popularity and documentation, a review was undertaken to evaluate the in vivo effects of growth factors on bone regeneration. Using related key words, electronic databases (Medline, Embase, and Cochrane) were searched for articles published from 1999 to April 2010 to find growth factor application in bone regeneration in human or animal models. A total of 63 articles were matched with the inclusion criteria of this study. Bone morphogenetic protein 2 (BMP-2) was the most studied growth factor. Carriers for the delivery, experimental sites, and methods of evaluation were different, and therefore articles did not come to a general agreement. Within the limitations of this review, BMP-2 may be an appropriate growth factor for osteogenesis. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Mesenchymal Stem Cells Suppress Chronic Rejection in Heterotopic Small Intestine Transplant Rat Models Via Inhibition of CD68, Transforming Growth Factor- β1, and Platelet-Derived Growth Factor Expression.

    PubMed

    Li, Fuxin; Cao, Jisen; Zhao, Zhicheng; Li, Chuan; Qi, Feng; Liu, Tong

    2017-04-01

    Mesenchymal stem cells are easy to obtain and expand, with characteristics of low immunogenicity and strong tissue repair capacity. In this study, our aim was to investigate the role of mesenchymal stem cells in chronic immune rejection of heterotopic small intestine transplant in rats. After successfully constructing a rat chronic immune rejection model of heterotopic small intestine transplant, we infused mesenchymal stem cells into the animal recipients. We observed mesenchymal stem cell location in the recipients, recipient survival, pathology changes, and the expression of CD68, transforming growth factor β1, and platelet-derived growth factor C in the donor intestine. Mesenchymal stem cells inhibited the lymphocyte proliferation caused by concanavalin A in vitro. After stem cells were infused into recipients, they were mainly located in the donor intestine, as well as in the spleen and thymus. Recovery after transplant and pathology changes of the donor intestine in rats with stem cell infusion were better than in the control group; however, we observed no differences in survival time, accompanied by downregulated expression of CD68, transforming growth factor β1, and platelet-derived growth factor C. Mesenchymal stem cells, to a certain extent, could inhibit the process of chronic rejection. The mechanisms may include the inhibited function of these cells on lymphocyte proliferation, reduced infiltration of macrophages, and reduced expression of transforming growth factor β1 and platelet-derived growth factor C.

  17. Insulin-like growth factors and insulin: at the crossroad between tumor development and longevity.

    PubMed

    Novosyadlyy, Ruslan; Leroith, Derek

    2012-06-01

    Numerous lines of evidence indicate that insulin-like growth factor signaling plays an important role in the regulation of life span and tumor development. In the present paper, the role of individual components of insulin-like growth factor signaling in aging and tumor development has been extensively analyzed. The molecular mechanisms underlying aging and tumor development are frequently overlapping. Although the link between reduced insulin-like growth factor signaling and suppressed tumor growth and development is well established, it remains unclear whether extended life span results from direct suppression of insulin-like growth factor signaling or this effect is caused by indirect mechanisms such as improved insulin sensitivity.

  18. Controllable mineral coatings on PCL scaffolds as carriers for growth factor release

    PubMed Central

    Suárez-González, Darilis; Barnhart, Kara; Migneco, Francesco; Flanagan, Colleen; Hollister, Scott J.; Murphy, William L.

    2011-01-01

    In this study, we have developed mineral coatings on polycaprolactone scaffolds to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO3) concentration in mSBF of 4.2 mM, 25mM, and 100mM. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite, the major inorganic constituent of human bone tissue in coatings formed in all HCO3 concentrations. Mineral coatings with increased HCO3 substitution showed more rapid dissolution kinetics in an environment deficient in calcium and phosphate but showed re-precipitation in an environment with the aforementioned ions. The mineral coating provided an effective mechanism for growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral mineral-coated PCL scaffolds. We also demonstrated sustained release of all growth factors with release kinetics that were strongly dependent in the solubility of the mineral coating. PMID:22014948

  19. L-ascorbic acid 2-phosphate and fibroblast growth factor-2 treatment maintains differentiation potential in bone marrow-derived mesenchymal stem cells through expression of hepatocyte growth factor.

    PubMed

    Bae, Sung Hae; Ryu, Hoon; Rhee, Ki-Jong; Oh, Ji-Eun; Baik, Soon Koo; Shim, Kwang Yong; Kong, Jee Hyun; Hyun, Shin Young; Pack, Hyun Sung; Im, Changjo; Shin, Ha Cheol; Kim, Yong Man; Kim, Hyun Soo; Eom, Young Woo; Lee, Jong In

    2015-04-01

    l-ascorbic acid 2-phosphate (Asc-2P) acts as an antioxidant and a stimulator of hepatocyte growth factor (HGF) production. Previously, we reported that depletion of growth factors such as fibroblast growth factor (FGF)-2, epidermal growth factor (EGF), FGF-4 and HGF during serial passage could induce autophagy, senescence and down-regulation of stemness (proliferation via FGF-2/-4 and differentiation via HGF). In this study, we investigated the proliferation and differentiation potential of BMSCs by FGF-2 and Asc-2P. Co-treatment with FGF-2 and Asc-2P induced optimal proliferation of BMSCs and increased the accumulation rate of BMSC numbers during a 2-month culture period. Moreover, differentiation potential was maintained by co-treatment with FGF-2 and Asc-2P via HGF expression. Adipogenic differentiation potential by FGF-2 and Asc-2P was dramatically suppressed by c-Met inhibitors (SU11274). These data suggest that co-treatment with FGF-2 and Asc-2P would be beneficial in obtaining BMSCs that possess "stemness" during long-term culture.

  20. Insulin-like growth factor-I and insulin-like growth factor binding protein-3 cotreatment versus insulin-like growth factor-I alone in two brothers with growth hormone insensitivity syndrome: effects on insulin sensitivity, body composition and linear growth.

    PubMed

    Ekström, Klas; Carlsson-Skwirut, Christine; Ritzén, E Martin; Bang, Peter

    2011-01-01

    Growth hormone insensitivity syndrome (GHIS) is caused by a defective growth hormone receptor (GHR) and is associated with insulin-like growth factor-I (IGF-I) deficiency, severely short stature and, from adolescence, fasting hyperglycemia and obesity. We studied the effects of treatment with IGF-I in either a 1:1 molar complex with IGFBP-3 (IGF-I/BP-3-Tx) or with IGF-I alone (IGF-I-Tx) on metabolism and linear growth. Two brothers, compound heterozygous for a GHR gene defect, were studied. After 8 months without treatment, we examined the short- and long-term effects of IGF-I/BP-3-Tx and, subsequently, IGF-I-Tx on 12-hour overnight levels of IGF-I, GH, insulin, IGFBP-1, insulin sensitivity by hyperinsulinemic euglycemic clamp, body composition by dual-energy X-ray absorptiometry and linear growth. Mean overnight levels of insulin decreased and IGFBP-1, a measure of hepatic insulin sensitivity, increased on both regimens, but was more pronounced on IGF-I-Tx. Insulin sensitivity by clamp showed no consistent changes. Lean body mass increased and abdominal fat mass decreased in both subjects on IGF-I-Tx. However, the changes were inconsistent during IGF-I/BP-3-Tx. Height velocity was low without treatment, increased slightly on IGF-I/BP-3-Tx and doubled on IGF-I-Tx. Both modalities of IGF-I improved determinants of hepatic insulin sensitivity, body composition and linear growth rate; however, IGF-I alone seemed to be more efficient. Copyright © 2011 S. Karger AG, Basel.

  1. Insulin-like growth factor-1 protects preimplantation embryos from anti-developmental actions of menadione.

    PubMed

    Moss, James I; Pontes, Eduardo; Hansen, Peter James

    2009-11-01

    Menadione is a naphthoquinone used as a vitamin K source in animal feed that can generate reactive oxygen species (ROS) and cause apoptosis. Here, we examined whether menadione reduces development of preimplantation bovine embryos in a ROS-dependent process and tested the hypothesis that actions of menadione would be reduced by insulin-like growth factor-1 (IGF-1). Menadione caused a concentration-dependent decrease in the proportion of embryos that became blastocysts. All concentrations tested (1, 2.5, and 5.0 microM) inhibited development. Treatment with 100 ng/ml IGF-1 reduced the magnitude of the anti-developmental effects of the two lowest menadione concentrations. Menadione also caused a concentration-dependent increase in the percent of cells positive for the TUNEL reaction. The response was lower for IGF-1-treated embryos. The effects of menadione were mediated by ROS because (1) the anti-developmental effect of menadione was blocked by the antioxidants dithiothreitol and Trolox and (2) menadione caused an increase in ROS generation. Treatment with IGF-1 did not reduce ROS formation in menadione-treated embryos. In conclusion, concentrations of menadione as low as 1.0 muM can compromise development of bovine preimplantation embryos to the blastocyst stage of development in a ROS-dependent mechanism. Anti-developmental actions of menadione can be blocked by IGF-1 through effects downstream of ROS generation.

  2. Protective factors for adolescent violence against authority.

    PubMed

    Ibabe, Izaskun; Jaureguizar, Joana; Bentler, Peter M

    2013-01-01

    Both the family and school environments influence adolescents' violence, but there is little research focusing simultaneously on the two contexts. This study analyzed the role of positive family and classroom environments as protective factors for adolescents' violence against authority (parent abuse and teacher abuse) and the relations between antisocial behavior and child-to-parent violence or student-to-teacher violence. The sample comprised 687 Spanish students aged 12-16 years, who responded to the Family Environment Scale (FES) and the Classroom Environment Scale (CES). Structural Equation Modeling was used to test our model of violent behavior towards authority based on Catalano and Hawkins' Social Developmental Model (1996). Perceived family cohesion and organization showed an inverse association with parent abuse, suggesting that a positive family environment was a protective factor for the development of violence against parents. Family and classroom environments had direct effects on adolescents' violence against authority, and antisocial behavior showed a mediating effect in this relationship. The model accounted for 81% of the variance in violence against authority. As family environment was a better predictor of violence against authority than school environment, intervention efforts to reduce rates of adolescent violence should focus on helping parents to increase family cohesion and to manage conflictive relationships with their children.

  3. Neurodevelopmental effects of insulin-like growth factor signaling

    PubMed Central

    O’Kusky, John; Ye, Ping

    2012-01-01

    Insulin-like growth factor (IGF) signaling greatly impacts the development and growth of the central nervous system (CNS). IGF-I and IGF-II, two ligands of the IGF system, exert a wide variety of actions both during development and in adulthood, promoting the survival and proliferation of neural cells. The IGFs also influence the growth and maturation of neural cells, augmenting dendritic growth and spine formation, axon outgrowth, synaptogenesis, and myelination. Specific IGF actions, however, likely depend on cell type, developmental stage, and local microenvironmental milieu within the brain. Emerging research also indicates that alterations in IGF signaling likely contribute to the pathogenesis of some neurological disorders. This review summarizes experimental studies and shed light on the critical roles of IGF signaling, as well as its mechanisms, during CNS development. PMID:22710100

  4. The importance of neuronal growth factors in the ovary.

    PubMed

    Streiter, S; Fisch, B; Sabbah, B; Ao, A; Abir, R

    2016-01-01

    The neurotrophin family consists of nerve growth factor (NGF), neurotrophin 3 (NT3) and neurotrophin 4/5 (NT4/5), in addition to brain-derived neurotrophic factor (BDNF) and the neuronal growth factors, glial cell line-derived neurotrophic factor (GDNF) and vasointestinal peptide (VIP). Although there are a few literature reviews, mainly of animal studies, on the importance of neurotrophins in the ovary, we aimed to provide a complete review of neurotrophins as well as neuronal growth factors and their important roles in normal and pathological processes in the ovary. Follicular assembly is probably stimulated by complementary effects of NGF, NT4/5 and BDNF and their receptors. The neurotrophins, GDNF and VIP and their receptors have all been identified in preantral and antral follicles of mammalian species, including humans. Transgenic mice with mutations in the genes encoding for Ngf, Nt4/5 and Bdnf and their tropomyosin-related kinase β receptor showed a reduction in preantral follicles and an abnormal ovarian morphology, whereas NGF, NT3, GDNF and VIP increased the in vitro activation of primordial follicles in rats and goats. Additionally, NGF, NT3 and GDNF promoted follicular cell proliferation; NGF, BDNF and VIP were shown to be involved in ovulation; VIP inhibited follicular apoptosis; NT4/5, BDNF and GDNF promoted oocyte maturation and NGF, NT3 and VIP stimulated steroidogenesis. NGF may also exert a stimulatory effect in ovarian cancer and polycystic ovarian syndrome (PCOS). Low levels of NGF and BDNF in follicular fluid may be associated with diminished ovarian reserve and high levels with endometriosis. More knowledge of the roles of neuronal growth factors in the ovary has important implications for the development of new therapeutic drugs (such as anti-NGF agents) for ovarian cancer and PCOS as well as various infertility problems, warranting further research. © The Author 2015. Published by Oxford University Press on behalf of the European Society

  5. Insulin-like growth factor (IGF)-I obliterates the pregnancy-associated protection against mammary carcinogenesis in rats: evidence that IGF-I enhances cancer progression through estrogen receptor-α activation via the mitogen-activated protein kinase pathway

    PubMed Central

    Thordarson, Gudmundur; Slusher, Nicole; Leong, Harriet; Ochoa, Dafne; Rajkumar, Lakshmanaswamy; Guzman, Raphael; Nandi, Satyabrata; Talamantes, Frank

    2004-01-01

    Introduction Pregnancy protects against breast cancer development in humans and rats. Parous rats have persistently reduced circulating levels of growth hormone, which may affect the activity of the growth hormone/insulin-like growth factor (IGF)-I axis. We investigated the effects of IGF-I on parity-associated protection against mammary cancer. Methods Three groups of rats were evaluated in the present study: IGF-I-treated parous rats; parous rats that did not receive IGF-I treatment; and age-matched virgin animals, which also did not receive IGF-I treatment. Approximately 60 days after N-methyl-N-nitrosourea injection, IGF-I treatment was discontinued and all of the animal groups were implanted with a silastic capsule containing 17β-estradiol and progesterone. The 17β-estradiol plus progesterone treatment continued for 135 days, after which the animals were killed. Results IGF-I treatment of parous rats increased mammary tumor incidence to 83%, as compared with 16% in parous rats treated with 17β-estradiol plus progesterone only. Tumor incidence and average number of tumors per animal did not differ between IGF-I-treated parous rats and age-matched virgin rats. At the time of N-methyl-N-nitrosourea exposure, DNA content was lowest but the α-lactalbumin concentration highest in the mammary glands of untreated parous rats in comparison with age-matched virgin and IGF-I-treated parous rats. The protein levels of estrogen receptor-α in the mammary gland was significantly higher in the age-matched virgin animals than in untreated parous and IGF-I-treated parous rats. Phosphorylation (activation) of the extracellular signal-regulated kinase-1/2 (ERK1/2) and expression of the progesterone receptor were both increased in IGF-I-treated parous rats, as compared with those in untreated parous and age-matched virgin rats. Expressions of cyclin D1 and transforming growth factor-β3 in the mammary gland were lower in the age-matched virgin rats than in the untreated

  6. Emotional Intelligence Is a Protective Factor for Suicidal Behavior

    ERIC Educational Resources Information Center

    Cha, Christine B.; Nock, Matthew K.

    2009-01-01

    Emotional intelligence is found to be a protective factor for suicidal behavior after examining the relations between childhood sexual abuse and suicidal ideation and attempts to emotional intelligence. Childhood sexual abuse is found to be a strong predictive of the results.

  7. [Sun protection factor 50+ : Pro and contra].

    PubMed

    Herzinger, T

    2017-05-01

    The use of sunscreens with sun protection factors beyond 50 is controversial. In order to avoid misleading the consumer, several countries have already decided not to declare SPF beyond 50 on sunscreen products. Arguments against high SPF include the following: the risk of imbalanced protection, which could increase the risk of damage caused by longer-wave ultraviolet radiation; imparting a false sense of safety, which could lead to the extension of sun exposure times; health risks from higher concentrations of filter substances; and the only marginally higher blockade provided by high SPF sunscreens. On the other hand, it has been realized that the functional SPF of sunscreens remains far behind the declared SPF in the practical application and, therefore, the use of higher SPF in sensitive individuals and during strong UV exposure could make sense.

  8. Does L-arginine induce intestinal adaptation by epithelial growth factor?

    PubMed

    Camli, Alparslan; Barlas, Meral; Yagmurlu, Aydin

    2005-01-01

    To evaluate whether L-Arginine has an effect on endogenous epidermal growth factor secretion and intestinal adaptation in massive small bowel resection an experimental study was performed. Fourteen albino Wistar rats weighing 250-300 g were used for the study. After performing 50% small bowel resection and anastomosis the rats were randomly divided into two groups. The first group received 500 mg/kg/day of L-Arginine intraperitoneally for 14 days just after the surgical procedure. The control group received isotonic saline instead. Body weight measurement was preformed daily. At the end of the second postoperative week all rats underwent relaparotomy. Small bowel was resected for histopathological examination. Levels of epidermal growth factor were measured by enzyme-linked immunosorbent assay in serum, saliva, and urine at the end of second postoperative week in both groups. The weight gain was higher in the L-Arginine treated group (P < 0.05). Serum, saliva and urinary epidermal growth factor levels were significantly higher at the end of the second week compared to the control group (P < 0.05). The villus height was higher on histopathological examination in L-Arginine treated group compared to the control group (P < 0.05). L-Arginine resulted in a better intestinal adaptation after massive bowel resection. The high levels of epidermal growth factor in body fluids of L-Arginine treated rats could be the explanation for this effect.

  9. Extrinsic Factors Influencing Fetal Deformations and Intrauterine Growth Restriction

    PubMed Central

    Moh, Wendy; Graham, John M.; Wadhawan, Isha; Sanchez-Lara, Pedro A.

    2012-01-01

    The causes of intrauterine growth restriction (IUGR) are multifactorial with both intrinsic and extrinsic influences. While many studies focus on the intrinsic pathological causes, the possible long-term consequences resulting from extrinsic intrauterine physiological constraints merit additional consideration and further investigation. Infants with IUGR can exhibit early symmetric or late asymmetric growth abnormality patterns depending on the fetal stage of development, of which the latter is most common occurring in 70–80% of growth-restricted infants. Deformation is the consequence of extrinsic biomechanical factors interfering with normal growth, functioning, or positioning of the fetus in utero, typically arising during late gestation. Biomechanical forces play a critical role in the normal morphogenesis of most tissues. The magnitude and direction of force impact the form of the developing fetus, with a specific tissue response depending on its pliability and stage of development. Major uterine constraining factors include primigravida, small maternal size, uterine malformation, uterine fibromata, early pelvic engagement of the fetal head, aberrant fetal position, oligohydramnios, and multifetal gestation. Corrective mechanical forces similar to those that gave rise to the deformation to reshape the deformed structures are often used and should take advantage of the rapid postnatal growth to correct form. PMID:22888434

  10. Expression of transforming growth factor alpha and epidermal growth factor receptor messenger RNA in neoplastic and nonneoplastic human kidney tissue.

    PubMed

    Mydlo, J H; Michaeli, J; Cordon-Cardo, C; Goldenberg, A S; Heston, W D; Fair, W R

    1989-06-15

    Using Northern blot analysis, we have demonstrated that mRNA for transforming growth factor alpha (TGF-alpha) was expressed in five malignant kidney tissue specimens but was not detected in their autologous nonneoplastic homologues. In addition, the expression of epidermal growth factor (EGF) receptor mRNA in these malignant tissues was 2- to 3-fold greater than in nontransformed tissues. In two cases examined using immunohistochemistry, we were able to correlate the increased expression of the mRNA with an increase in protein expression. Since TGF-alpha is known to bind to the EGF receptor, the finding of an increased expression of both TGF-alpha and EGF receptor mRNA in kidney tumor tissue suggests that interaction between TGF-alpha and the EGF receptor may play a role in promoting transformation and/or proliferation of kidney neoplasms, perhaps by an autocrine mechanism.

  11. Expression of Epidermal Growth Factor Receptor and Transforming Growth Factor Alpha in Cancer Bladder: Schistosomal and Non-Schistosomal

    PubMed Central

    Badawy, Afkar A.; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Helal, Noha S.; Kamel, Amira

    2017-01-01

    Introduction Overexpression of epidermal growth factor receptor (EGFR) has been described in several solid tumors including bladder cancer. Transforming growth factor alpha (TGFα) is frequently deregulated in neoplastic cells and plays a role in the development of bladder cancer. TGFα-EGFR ligand-receptor combination constitutes an important event in multistep tumorigenesis. Methods This study was done on 30 bladder biopsies from patients with urothelial carcinoma, 15 with squamous cell carcinoma, 10 with cystitis and 5 normal control bladder specimens. All were immuohistochemically stained with EGFR and TGFα antibodies. Results EGFR and TGFα were over-expressed in higher grades and late stages of bladder cancer. Moreover, they show higher expression in squamous cell carcinoma compared to urothelial carcinoma and in schistosomal associated lesions than in non-schistosomal associated lesions. Conclusion EGFR and TGFα could be used as prognostic predictors in early stage and grade of bladder cancer cases, especially those with schistosomal association. In addition they can help in selecting patients who can get benefit from anti-EGFR molecular targeted therapy. PMID:28413380

  12. Assessing the Factors of Regional Growth Decline of Sugar Maple

    NASA Astrophysics Data System (ADS)

    Bishop, D. A.; Beier, C. M.; Pederson, N.; Lawrence, G. B.; Stella, J. C.; Sullivan, T. J.

    2014-12-01

    Sugar maple (Acer saccharum Marsh) is among the most ecologically, economically and culturally important trees in North America, but has experienced a decline disease across much of its range. We investigated the climatic and edaphic factors associated with A. saccharum growth in the Adirondack Mountains (USA) using a well-replicated tree-ring network incorporating a range of soil fertility (base cation availability). We found that nearly 3 in 4 A. saccharum trees exhibited declining growth rates during the last several decades, regardless of tree age or size. Although diameter growth was consistently higher on base-rich soils, the negative trends in growth were largely consistent across the soil chemistry gradient. Sensitivity of sugar maple growth to climatic variability was overall weaker than expected, but were also non-stationary during the 20th century. We observed increasingly positive responses to late-winter precipitation, increasingly negative responses to growing season temperatures, and strong positive responses to moisture availability during the 1960s drought that became much weaker during the recent pluvial. Further study is needed of these factors and their interactions as potential mechanisms for sugar maple growth decline.

  13. Some growth factors stimulate cultured adult rabbit ventricular myocyte hypertrophy in the absence of mechanical loading

    NASA Technical Reports Server (NTRS)

    Decker, R. S.; Cook, M. G.; Behnke-Barclay, M.; Decker, M. L.

    1995-01-01

    Cultured adult rabbit cardiac myocytes treated with recombinant growth factors display enhanced rates of protein accumulation (ie, growth) in response to insulin and insulin-like growth factors (IGFs), but epidermal growth factor, acidic or basic fibroblast growth factor, and platelet-derived growth factor failed to increase contractile protein synthesis or growth of the heart cells. Insulin and IGF-1 increased growth rates by stimulating anabolic while simultaneously inhibiting catabolic pathways, whereas IGF-2 elevated growth modestly by apparently inhibiting lysosomal proteolysis. Neutralizing antibodies directed against either IGF-1 or IGF-2 or IGF binding protein 3 blocked protein accumulation. A monoclonal antibody directed against the IGF-1 receptor also inhibited changes in protein turnover provoked by recombinant human IGF-1 but not IGF-2. Of the other growth factors tested, only transforming growth factor-beta 1 increased the fractional rate of myosin heavy chain (MHC) synthesis, with beta-MHC synthesis being elevated and alpha-MHC synthesis being suppressed. However, the other growth factors were able to modestly stimulate the rate of DNA synthesis in this preparation. Bromodeoxyuridine labeling revealed that these growth factors increased DNA synthesis in myocytes and nonmyocytes alike, but the heart cells displayed neither karyokinesis or cytokinesis. In contrast, cocultures of cardiac myocytes and nonmyocytes and nonmyocyte-conditioned culture medium failed to enhance the rate of cardiac MHC synthesis or its accumulation, implying that quiescent heart cells do not respond to "conditioning" by cardiac nonmyocytes. These findings demonstrated that insulin and the IGFs promote passively loaded cultured adult rabbit heart cells to hypertrophy but suggest that other growth factors tested may be limited in this regard.

  14. Hematopoietic growth factors and human acute leukemia.

    PubMed

    Löwenberg, B; Touw, I

    1988-10-22

    The study of myelopoietic maturation arrest in acute myeloblastic leukemia (AML) has been eased by availability of the human recombinant hemopoietic growth factors, macrophage colony stimulating factor (M-CSF), granulocyte-(G-CSF), granulocyte-macrophage-(GM-CSF) and multilineage stimulating factor (IL-3). Nonphysiological expansion of the leukemic population is not due to escape from control by these factors. Proliferation in vitro of AML cells is dependent on the presence of one or several factors in most cases. The pattern of factor-dependency does not correlate with morphological criteria in individual cases, and may thus offer a new tool for classification of AML. Overproduction of undifferentiated cells is not due to abnormal expression of receptors for the stimulating factors acting at an immature level. Rather, autocrine secretion of early acting lymphokines maintains proliferation of the leukemic clone. When looking at causes of leukemic dysregulation, yet undefined inhibitors of differentiation probably are of equal importance as dysequilibrated stimulation by lymphokines.

  15. Marijuana protective behavioral strategies as a moderator of the effects of risk/protective factors on marijuana-related outcomes.

    PubMed

    Bravo, Adrian J; Anthenien, Amber M; Prince, Mark A; Pearson, Matthew R

    2017-06-01

    Given that both marijuana use and cannabis use disorder peak among college students, it is imperative to determine the factors that may reduce risk of problematic marijuana use and/or the development of cannabis use disorder. From a harm reduction perspective, the present study examined whether the use of marijuana protective behavioral strategies (PBS) buffers or amplifies the effects of several distinct risk and protective factors that have been shown to relate to marijuana-related outcomes (i.e., use frequency and consequences). Specifically, we examined marijuana-PBS use as a moderator of the effects of impulsivity-like traits, marijuana use motives, gender, and marijuana use frequency on marijuana-related outcomes in a large sample of college students (n=2093 past month marijuana users across 11 universities). In all models PBS use was robustly related with use frequency and consequences (i.e., strongly negatively associated with marijuana outcomes). Among interactions, we found: 1) unique significant interactions between specific impulsivity-like traits (i.e., premeditation, perseverance, and sensation seeking) and marijuana-PBS use in predicting marijuana consequences, 2) unique significant interactions between each marijuana use motive and marijuana-PBS use in predicting marijuana use frequency and 3) marijuana-PBS use buffered the risk associated with male gender in predicting both marijuana outcomes. Our results suggest that marijuana-PBS use can buffer risk factors and enhance protective factors among marijuana using college students. Future research is needed to understand context-specific factors and individual-level factors that may make marijuana-PBS use more effective. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Risk and Protective Factors in the Lives of Transgender/Gender Nonconforming Adolescents.

    PubMed

    Eisenberg, Marla E; Gower, Amy L; McMorris, Barbara J; Rider, G Nicole; Shea, Glynis; Coleman, Eli

    2017-10-01

    Research suggests that transgender and gender nonconforming (TGNC) youth may be at greatly increased risk of high-risk health behaviors compared with cisgender youth, but existing studies are limited by convenience samples and small numbers. This study uses a large school-based sample of adolescents to describe the prevalence of TGNC identity, associations with health risk behaviors and protective factors, and differences across birth-assigned sex. This study analyzes existing surveillance data provided by 9th and 11th grade students in Minnesota in 2016 (N = 81,885). Students who were transgender, genderqueer, genderfluid, or unsure about their gender identity (TGNC) were compared with those who were not, using χ 2 and t-tests. Outcome measures included four domains of high-risk behaviors and experiences and four protective factors. The prevalence of TGNC identity was 2.7% (n = 2,168) and varied significantly across gender, race/ethnicity, and economic indicators. Involvement in all types of risk behaviors and experiences was significantly higher, and reports of four protective factors were significantly lower among TGNC than cisgender youth. For example, almost two-thirds (61.3%) of TGNC youth reported suicidal ideation, which is over three times higher than cisgender youth (20.0%, χ 2  = 1959.9, p < .001). Among TGNC youth, emotional distress and bullying experience were significantly more common among birth-assigned females than males. This research presents the first large-scale, population-based evidence of substantial health disparities for TGNC adolescents in the United States, highlighting numerous multilevel points of intervention through established protective factors. Health care providers are advised to act as allies by creating a safe space for young people, bolstering protective factors, and supporting their healthy development. Copyright © 2017 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  17. The effect of pasteurization on transforming growth factor alpha and transforming growth factor beta 2 concentrations in human milk.

    PubMed

    McPherson, R J; Wagner, C L

    2001-01-01

    Transforming growth factor alpha (TGF-alpha) and beta 2 (TGF-beta2) are present in human milk and are involved in growth differentiation and repair of neonatal intestinal epithelia. Heat treatment at 56 degrees C has been shown effective for providing safe banked donor milk, with good retention of other biologically active factors. The purpose of our study was to determine the effect of heat sterilization on TGF-alpha and TGF-beta2 concentrations in human milk. Twenty milk samples were collected from 20 lactating mothers in polypropylene containers and frozen at -20 degrees C for transport or storage. Before heat treatment by holder pasteurization, the frozen milk was thawed and divided into 1-mL aliquots. All samples were heated in an accurately regulated water bath until a holding temperature was achieved, then held for 30 minutes using constant agitation. Holding temperature ranged from 56.5 degrees C to 56.9 degrees C. The milk was then stored at 4 degrees C overnight for analysis the following day. The concentration of TGF-alpha was measured by radioimmunoassay. Mean concentration +/- SD of TGF-alpha in raw milk samples was 119+/-50 pg/mL, range 57 to 234. The mean concentration +/- SD of TGF-alpha in heat treated samples was 113+/-50 pg/mL, range 51 to 227. TGF-alpha concentration was minimally affected by pasteurization, with an overall loss of 6.1%. Of 19 samples, 4 had increased and 15 had decreased concentrations after pasteurization (mean percent SEM: 94%+/-7% of raw milk, range 72%+/-107%). The concentration of acid-activated TGF-beta2 was measured by enzyme-linked immunosorbent assay. Mean concentration +/- SD of TGF-beta2 in raw milk samples was 5624+/-5038 pg/mL, range 195 to 15480. The mean concentration +/- SD of TGF-beta2 in heat-treated samples was 5073+/-4646 pg/mL, range 181 to 15140. TGF-beta2 survived with relatively little loss (0.6%): of 18 samples, 11 had increased and 7 had decreased concentrations after pasteurization (mean percent

  18. Hepatocyte growth factor induces resistance to anti-epidermal growth factor receptor antibody in lung cancer.

    PubMed

    Yamada, Tadaaki; Takeuchi, Shinji; Kita, Kenji; Bando, Hideaki; Nakamura, Takahiro; Matsumoto, Kunio; Yano, Seiji

    2012-02-01

    Epidermal growth factor receptor (EGFR) is an attractive drug target in lung cancer, with several anti-EGFR antibodies and small-molecule inhibitors showing efficacy in lung cancer patients. Patients, however, may develop resistance to EGFR inhibitors. We demonstrated previously that hepatocyte growth factor (HGF) induced resistance to EGFR tyrosine kinase inhibitors in lung cancers harboring EGFR mutations. We therefore determined whether HGF could induce resistance to the anti-EGFR antibody (EGFR Ab) cetuximab in lung cancer cells, regardless of EGFR gene status. Cetuximab sensitivity and signal transduction in lung cancer cells were examined in the presence or absence of HGF, HGF-producing fibroblasts, and cells tranfected with the HGF gene in vitro and in vivo. HGF induced resistance to cetuximab in H292 (EGFR wild) and Ma-1(EGFR mutant) cells. Western blotting showed that HGF-induced resistance was mediated by the Met/Gab1/Akt signaling pathway. Resistance of H292 and Ma-1 cells to cetuximab was also induced by coculture with lung fibroblasts producing high levels of HGF and by cells stably transfected with the HGF gene. This resistance was abrogated by treatment with anti-HGF neutralizing antibody. HGF-mediated resistance is a novel mechanism of resistance to EGFR Ab in lung cancers, with fibroblast-derived HGF inducing cetuximab resistance in H292 tumors in vivo. The involvement of HGF-Met-mediated signaling should be assessed in acquired resistance to EGFR Ab in lung cancer, regardless of EGFR gene status.

  19. Growth factor deprivation induces cytosolic translocation of SIRT1

    NASA Astrophysics Data System (ADS)

    Meng, Chengbo; Xing, Da; Wu, Shengnan; Huang, Lei

    2010-02-01

    Sirtuin type 1 (SIRT1), a NAD+-dependent histone deacetylases, plays a critical role in cellular senescence, aging and longevity. In general, SIRT1 is localized in nucleus and is believed as a nuclear protein. Though overexpression of SIRT1 delays senescence, SIRT1-protein levels decline naturally in thymus and heart during aging. In the present studies, we investigated the subcellular localization of SIRT1 in response to growth factor deprivation in African green monkey SV40-transformed kidney fibroblast cells (COS-7). Using SIRT1-EGFP fluorescence reporter, we found that SIRT1 localized to nucleus in physiological conditions. We devised a model enabling cell senescence via growth factor deprivation, and we found that SIRT1 partially translocated to cytosol under the treatment, suggesting a reduced level of SIRT1's activity. We found PI3K/Akt pathway was involved in the inhibition of SIRT1's cytosolic translocation, because inhibition of these kinases significantly decreased the amount of SIRT1 maintained in nucleus. Taken together, we demonstrated that growth factor deprivation induces cytosolic translocation of SIRT1, which suggesting a possible connection between cytoplasm-localized SIRT1 and the aging process.

  20. Felt Obligation to Help Others as a Protective Factor Against Losses in Psychological Well-being Following Functional Decline in Middle and Later Life

    PubMed Central

    2009-01-01

    This study examined felt obligation to help others in two domains (close others and society) as protective factors against losses in psychological well-being following functional decline. Lagged-dependent regression models were estimated using data from 849 respondents aged 35–74 years and without any functional limitations at baseline in the 1995–2005 National Survey of Midlife in the United States. Greater felt obligation to help close others protected against declining self-acceptance in the face of more severe functional decline, and greater felt obligation to help society protected against declining personal growth and self-acceptance. Greater felt obligation to help close others and society protected against increasing depressive symptoms at younger ages in adulthood. Findings suggest the importance for additional research on how aspects of altruism can promote psychological adaptation to declining functional health in middle and later life. PMID:19825942

  1. Growth hormone and insulin-like growth factors in fish: Where we are and where to go

    USGS Publications Warehouse

    Reinecke, M.; Bjornsson, Bjorn Thrandur; Dickhoff, Walton W.; McCormick, S.D.; Navarro, I.; Power, D.M.; Gutierrez, J.

    2005-01-01

    This communication summarizes viewpoints, discussion, perspectives, and questions, put forward at a workshop on "Growth hormone and insulin-like growth factors in fish" held on September 7th, 2004, at the 5th International Symposium on Fish Endocrinology in Castello??n, Spain. ?? 2005 Elsevier Inc. All rights reserved.

  2. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  3. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival.

    PubMed

    Tiong, Kai Hung; Tan, Boon Shing; Choo, Heng Lungh; Chung, Felicia Fei-Lei; Hii, Ling-Wei; Tan, Si Hoey; Khor, Nelson Tze Woei; Wong, Shew Fung; See, Sze-Jia; Tan, Yuen-Fen; Rosli, Rozita; Cheong, Soon-Keng; Leong, Chee-Onn

    2016-09-06

    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.

  4. Comparison of risk and protective factors associated with smartphone addiction and Internet addiction.

    PubMed

    Choi, Sam-Wook; Kim, Dai-Jin; Choi, Jung-Seok; Ahn, Heejune; Choi, Eun-Jeung; Song, Won-Young; Kim, Seohee; Youn, Hyunchul

    2015-12-01

    Smartphone addiction is a recent concern that has resulted from the dramatic increase in worldwide smartphone use. This study assessed the risk and protective factors associated with smartphone addiction in college students and compared these factors to those linked to Internet addiction. College students (N = 448) in South Korea completed the Smartphone Addiction Scale, the Young's Internet Addiction Test, the Alcohol Use Disorders Identification Test, the Beck Depression Inventory I, the State-Trait Anxiety Inventory (Trait Version), the Character Strengths Test, and the Connor-Davidson Resilience Scale. The data were analyzed using multiple linear regression analyses. The risk factors for smartphone addiction were female gender, Internet use, alcohol use, and anxiety, while the protective factors were depression and temperance. In contrast, the risk factors for Internet addiction were male gender, smartphone use, anxiety, and wisdom/knowledge, while the protective factor was courage. Discussion These differences may result from unique features of smartphones, such as high availability and primary use as a tool for interpersonal relationships. Our findings will aid clinicians in distinguishing between predictive factors for smartphone and Internet addiction and can consequently be utilized in the prevention and treatment of smartphone addiction.

  5. Improving In Vitro Generated Cartilage-Carrier-Constructs by Optimizing Growth Factor Combination

    PubMed Central

    Wiegandt, Katharina; Goepfert, Christiane; Pörtner, Ralf

    2007-01-01

    The presented study is focused on the generation of osteochondral implants for cartilage repair, which consist of bone substitutes covered with in vitro engineered cartilage. Re-differentiation of expanded porcine cells was performed in alginate gel followed by cartilage formation in high-density cell cultures. In this work, different combinations of growth factors for the stimulation of re-differentiation and cartilage formation have been tested to improve the quality of osteochondral implants. It has been demonstrated that supplementation of the medium with growth factors has significant effects on the properties of the matrix. The addition of the growth factors IGF-I (100 ng/mL) and TGF-β1 (10 ng/mL) during the alginate culture and the absence of any growth factors during the high-density cell culture led to significantly higher GAG to DNA ratios and Young’s Moduli of the constructs compared to other combinations. The histological sections showed homogenous tissue and intensive staining for collagen type II. PMID:19662133

  6. Transforming growth factor (TGF. beta. ) decreases the proliferation of human bone marrow fibroblasts by inhibiting the platelet-derived growth factor (PDGF) binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryckaert, M.C.; Tobelem, G.; Lindroth, M.

    1988-12-01

    Human bone marrow fibroblasts were cultivated and characterized by immunofluorescent staining and electron microscopy. Their interactions with PDGF and TGF{beta} were studied. While a positive intracellular antifibronectin staining was observed, the cultured cells were not labeled with specific antibodies toward factor VIII von Willebrand factor (F VIII/vWF), desmin, and macrophage antigen. The binding of pure human PDGF to the cultured bone marrow fibroblasts was investigated. Addition of an excess of unlabeled PDGF decreased the binding to 75 and 80%, which means that the nonspecific binding represented 20-25% of total binding, whereas epidermal growth factor (EGF) had no effect. Two classesmore » of sites were detected by Scatchard analysis. The stimulation of DNA synthesis of PDGF was quantified by ({sup 3}H)thymidine incorporation. The results suggested that PDGF and TGF{beta} could modulate the growth of bone marrow fibroblasts.« less

  7. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice1

    PubMed Central

    Sasaki, Takamitsu; Kitadai, Yasuhiko; Nakamura, Toru; Kim, Jang-Seong; Tsan, Rachel Z; Kuwai, Toshio; Langley, Robert R; Fan, Dominic; Kim, Sun-Jin; Fidler, Isaiah J

    2007-01-01

    The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α) and vascular endothelial growth factor (VEGF) but were negative for EGFR, human epidermal growth factor receptor 2 (HER2), and VEGFR. Double immunofluorescence staining revealed that tumor-associated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR), and phosphorylated VEGFR (pVEGFR). Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase) or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01); this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001). AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, and increased the level of apoptosis in both tumor-associated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer. PMID:18084614

  8. [Metabolic and hemodynamic effects of the growth hormone system - insulin-like growth factor].

    PubMed

    Manhylova, T A; Gafarova, N H

    2015-01-01

    Significant congenital deficiency of growth factor (GF) results in pituitary nanism (dwarfism) and its substantial excess is accompanied by the development of gigantism or acromegaly. Its impact on the growth of the whole body or its individual parts is impossible without affecting metabolic processes and hemodynamic parameters. A number of investigations have proven that GF has a direct lipolytic effect: adequate replacement therapy for pituitary nanism gives rise to a reduction in fat depots. Since the concentration of GF is lower in obesity, Whether it may be used to treat this abnormality is considered.

  9. Long noncoding RNA NORAD regulates transforming growth factor -β signaling and epithelial-to-mesenchymal transition-like phenotype.

    PubMed

    Kawasaki, Natsumi; Miwa, Toshiki; Hokari, Satoshi; Sakurai, Tsubasa; Ohmori, Kazuho; Miyauchi, Kensuke; Miyazono, Kohei; Koinuma, Daizo

    2018-05-02

    Long noncoding RNAs are involved in a variety of cellular functions. In particular, an increasing number of studies have revealed the functions of long noncoding RNAs in various cancers; however, their precise roles and mechanisms of action remain to be elucidated. NORAD, a cytoplasmic long noncoding RNA, is upregulated by irradiation and functions as a potential oncogenic factor by binding and inhibiting Pumilio proteins (PUM1/PUM2). Here, we show that NORAD upregulates transforming growth factor-β (TGF-β) signaling and regulates TGF-β-induced epithelial-to-mesenchymal transition (EMT)-like phenotype, which is a critical step in the progression of lung adenocarcinoma, A549 cells. However, PUM1 does not appear to be involved in this process. We thus focused on importin β1 as a binding partner of NORAD and found that knock down of NORAD partially inhibits the physical interaction of importin β1 with Smad3, inhibiting the nuclear accumulation of Smad complexes in response to TGF-β. Our findings may provide a new mechanism underlying the function of NORAD in cancer cells. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  10. Autocrine and/or paracrine insulin-like growth factor-I activity in skeletal muscle

    NASA Technical Reports Server (NTRS)

    Adams, Gregory R.

    2002-01-01

    Similar to bone, skeletal muscle responds and adapts to changes in loading state via mechanisms that appear to be intrinsic to the muscle. One of the mechanisms modulating skeletal muscle adaptation it thought to involve the autocrine and/or paracrine production of insulinlike growth factor-I. This brief review outlines components of the insulinlike growth factor-I system as it relates to skeletal muscle and provides the rationale for the theory that insulinlike growth factor-I is involved with muscle adaptation.

  11. Protective Factors for Violence among Released Prisoners--Effects over Time and Interactions with Static Risk

    ERIC Educational Resources Information Center

    Ullrich, Simone; Coid, Jeremy

    2011-01-01

    Objective: There is a substantial body of research on risk factors for violent behavior in adulthood but little empirical study of protective factors and desistance. Method: This study aimed to investigate the protective effects of factors hypothesized to reduce violent reoffending among a sample of 800 male prisoners following release into the…

  12. Protective factors associated with fewer multiple problem behaviors among homeless/runaway youth.

    PubMed

    Lightfoot, Marguerita; Stein, Judith A; Tevendale, Heather; Preston, Kathleen

    2011-01-01

    Although homeless youth exhibit numerous problem behaviors, protective factors that can be targeted and modified by prevention programs to decrease the likelihood of involvement in risky behaviors are less apparent. The current study tested a model of protective factors for multiple problem behavior in a sample of 474 homeless youth (42% girls; 83% minority) ages 12 to 24 years. Higher levels of problem solving and planning skills were strongly related to lower levels of multiple problem behaviors in homeless youth, suggesting both the positive impact of preexisting personal assets of these youth and important programmatic targets for further building their resilience and decreasing problem behaviors. Indirect relationships between the background factors of self-esteem and social support and multiple problem behaviors were significantly mediated through protective skills. The model suggests that helping youth enhance their skills in goal setting, decision making, and self-reliant coping could lessen a variety of problem behaviors commonly found among homeless youth.

  13. Protective Factors Associated with Fewer Multiple Problem Behaviors Among Homeless/Runaway Youth

    PubMed Central

    Lightfoot, Marguerita; Stein, Judith A.; Tevendale, Heather; Preston, Kathleen

    2015-01-01

    Although homeless youth exhibit numerous problem behaviors, protective factors that can be targeted and modified by prevention programs to decrease the likelihood of involvement in risky behaviors are less apparent. The current study tested a model of protective factors for multiple problem behavior in a sample of 474 homeless youth (42% girls; 83% minority) ages 12 to 24 years. Higher levels of problem solving and planning skills were strongly related to lower levels of multiple problem behaviors in homeless youth, suggesting both the positive impact of preexisting personal assets of these youth and important programmatic targets for further building their resilience and decreasing problem behaviors. Indirect relationships between the background factors of self-esteem and social support and multiple problem behaviors were significantly mediated through protective skills. The model suggests that helping youth enhance their skills in goal setting, decision making, and self-reliant coping could lessen a variety of problem behaviors commonly found among homeless youth. PMID:22023279

  14. Modeling invasive breast cancer: growth factors propel progression of HER2-positive premalignant lesions

    PubMed Central

    Pradeep, C-R; Zeisel, A; Köstler, WJ; Lauriola, M; Jacob-Hirsch, J; Haibe-Kains, B; Amariglio, N; Ben-Chetrit, N; Emde, A; Solomonov, I; Neufeld, G; Piccart, M; Sagi, I; Sotiriou, C; Rechavi, G; Domany, E; Desmedt, C; Yarden, Y

    2013-01-01

    The HER2/neu oncogene encodes a receptor-like tyrosine kinase whose overexpression in breast cancer predicts poor prognosis and resistance to conventional therapies. However, the mechanisms underlying aggressiveness of HER2 (human epidermal growth factor receptor 2)-overexpressing tumors remain incompletely understood. Because it assists epidermal growth factor (EGF) and neuregulin receptors, we overexpressed HER2 in MCF10A mammary cells and applied growth factors. HER2-overexpressing cells grown in extracellular matrix formed filled spheroids, which protruded outgrowths upon growth factor stimulation. Our transcriptome analyses imply a two-hit model for invasive growth: HER2-induced proliferation and evasion from anoikis generate filled structures, which are morphologically and transcriptionally analogous to preinvasive patients’ lesions. In the second hit, EGF escalates signaling and transcriptional responses leading to invasive growth. Consistent with clinical relevance, a gene expression signature based on the HER2/EGF-activated transcriptional program can predict poorer prognosis of a subgroup of HER2-overexpressing patients. In conclusion, the integration of a three-dimensional cellular model and clinical data attributes progression of HER2-overexpressing lesions to EGF-like growth factors acting in the context of the tumor's microenvironment. PMID:22139081

  15. Ablation of the pro-apoptotic protein Bax protects mice from glucocorticoid-induced bone growth impairment.

    PubMed

    Zaman, Farasat; Chrysis, Dionisios; Huntjens, Kirsten; Fadeel, Bengt; Sävendahl, Lars

    2012-01-01

    Dexamethasone (Dexa) is a widely used glucocorticoid to treat inflammatory diseases; however, a multitude of undesired effects have been reported to arise from this treatment including osteoporosis, obesity, and in children decreased longitudinal bone growth. We and others have previously shown that glucocorticoids induce apoptosis in growth plate chondrocytes. Here, we hypothesized that Bax, a pro-apoptotic member of the Bcl-2 family, plays a key role in Dexa-induced chondrocyte apoptosis and bone growth impairment. Indeed, experiments in the human HCS-2/8 chondrocytic cell line demonstrated that silencing of Bax expression using small-interfering (si) RNA efficiently blocked Dexa-induced apoptosis. Furthermore, ablation of Bax in female mice protected against Dexa-induced bone growth impairment. Finally, Bax activation by Dexa was confirmed in human growth plate cartilage specimens cultured ex vivo. Our findings could therefore open the door for new therapeutic approaches to prevent glucocorticoid-induced bone growth impairment through specific targeting of Bax.

  16. [Pathogenetic and Prognostic Role of Growth Factors in the Development of Chronic Heart Failure].

    PubMed

    Teplyakov, A T; Berezikova, E N; Shilov, S N; Efremova, A V; Pustovetova, M G; Popova, A A; Grakova, E V; Torim, Y Y; Safronov, I D; Andriyanova, A V

    2017-10-01

    To study the role of growth factors ((vascular endothelial growth factor (VEGF), platelet derived growth factor AB (PDGF-AB) and basic fibroblast growth factor (FGF-basic)) in the development and progression of chronic heart failure (CHF) in patients with ishcemic heart disease (IHD). We included in this study 94 patients with CHF. The control group comprised 32 persons. Blood serum levels of growth factors were determined at baseline and after 12 months of observation by enzyme-linked immunosorbent assay. VEGF, PDGF-AB and FGF-basic play an important role in the pathogenesis and progression of heart failure in patients with IHD, determining the increased risk of adverse cardiovascular events in this pathology. Serum activity of growth factors characterizes the severity and course of CHF: with disease progression levels of VEGF and FGF-basic decrease and PDGF-AB concentration increases. Initial low level of VEGF expression regardless of the sex of the patient's sex, significantly low level of FGF-basic and significantly high PDGF-AB in men characterizes unfavorable course of CHF. A correlation has been established between blood serum levels of VEGF, PDGF-AB and FGF-basic and severity and course of CHF.

  17. Inhibition of platelet-derived growth factor signaling prevents muscle fiber growth during skeletal muscle hypertrophy.

    PubMed

    Sugg, Kristoffer B; Korn, Michael A; Sarver, Dylan C; Markworth, James F; Mendias, Christopher L

    2017-03-01

    The platelet-derived growth factor receptors alpha and beta (PDGFRα and PDGFRβ) mark fibroadipogenic progenitor cells/fibroblasts and pericytes in skeletal muscle, respectively. While the role that these cells play in muscle growth and development has been evaluated, it was not known whether the PDGF receptors activate signaling pathways that control transcriptional and functional changes during skeletal muscle hypertrophy. To evaluate this, we inhibited PDGFR signaling in mice subjected to a synergist ablation muscle growth procedure, and performed analyses 3 and 10 days after induction of hypertrophy. The results from this study indicate that PDGF signaling is required for fiber hypertrophy, extracellular matrix production, and angiogenesis that occur during muscle growth. © 2017 Federation of European Biochemical Societies.

  18. [Destructive and protective factors in the development of tooth-wear].

    PubMed

    Jász, Máté; Varga, Gábor; Tóth, Zsuzsanna

    2006-12-01

    The experience of the past decade proves that tooth wear occurs in an increasing number of cases in general dental practice. Tooth wear may have physical (abrasion and attrition) and/or chemical (erosion) origin. The primary physical causes are inadequate dental hygienic activities, bad oral habits or occupational harm. As for dental erosion, it is accelerated by the highly erosive foods and drinks produced and sold in the past decades, and the number of cases is also boosted by the fact that bulimia, anorexia nervosa and gastro-oesophageal reflux disease prevalence have become more common. The most important defensive factor against tooth wear is saliva, which protects teeth from the effect of acids. Tertiary dentin formation plays an important role in the protection of the pulp. Ideally, destructive and protective factors are in balance. Both an increase in the destructive forces, and the insufficiency of defense factors result in the disturbance of the equilibrium. This results in tooth-wear, which means an irreversible loss of dental hard tissue. The rehabilitation of the lost tooth material is often very difficult, irrespectively of whether it is needed because of functional or esthetic causes. For that reason, the dentist should carry out primary and secondary dental care and prevention more often, i.e. dental recall is indispensable every 4-6 months.

  19. Controllable mineral coatings on scaffolds as carriers for growth factor release for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Saurez-Gonzalez, Darilis

    The work presented in this document, focused on the development and characterization of mineral coatings on scaffold materials to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO3) concentration in mSBF of 4.2 mM, 25mM, and 100mM. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite. FTIR data confirmed the substitution of HCO3 in the mineral. As the extent of HCO3 substitution increased, the coating exhibited more rapid dissolution kinetics in an environment deficient in calcium and phosphate. The mineral coatings provided an effective mechanism for bioactive growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral-coated PCL scaffolds. Recombinant human vascular endothelial growth factor (rhVEGF) also bound to mineral coated scaffolds with lower efficiency (20%) and released with faster release kinetics compared to peptides growth factor. Released rhVEGF induced human umbilical vein endothelial cell (HUVEC) proliferation in vitro and enhanced blood vessel formation in vivo in an intramuscular sheep model. In addition to the use the mineral coatings for single growth factor release, we expanded the concept and bound both an angiogenic (rhVEGF) and osteogenic (mBMP2) growth factor by a simple double dipping process. Sustained release of both growth factors was demonstrated for over 60 days. Released rhVEGF enhanced blood vessel formation in vivo in sheep and its biological activity was

  20. Extracellular Matrix and Growth Factors Improve the Efficacy of Intramuscular Islet Transplantation.

    PubMed

    Tsuchiya, Haruyuki; Sakata, Naoaki; Yoshimatsu, Gumpei; Fukase, Masahiko; Aoki, Takeshi; Ishida, Masaharu; Katayose, Yu; Egawa, Shinichi; Unno, Michiaki

    2015-01-01

    The efficacy of intramuscular islet transplantation is poor despite being technically simple, safe, and associated with reduced rates of severe complications. We evaluated the efficacy of combined treatment with extracellular matrix (ECM) and growth factors in intramuscular islet transplantation. Male BALB/C mice were used for the in vitro and transplantation studies. The following three groups were evaluated: islets without treatment (islets-only group), islets embedded in ECM with growth factors (Matrigel group), and islets embedded in ECM without growth factors [growth factor-reduced (GFR) Matrigel group]. The viability and insulin-releasing function of islets cultured for 96 h were significantly improved in Matrigel and GFR Matrigel groups compared with the islets-only group. Blood glucose and serum insulin levels immediately following transplantation were significantly improved in the Matrigel and GFR Matrigel groups and remained significantly improved in the Matrigel group at postoperative day (POD) 28. On histological examination, significantly decreased numbers of TdT-mediated deoxyuridine triphosphate-biotin nick end labeling-positive islet cells and significantly increased numbers of Ki67-positive cells were observed in the Matrigel and GFR Matrigel groups at POD 3. Peri-islet revascularization was most prominent in the Matrigel group at POD 14. The efficacy of intramuscular islet transplantation was improved by combination treatment with ECM and growth factors through the inhibition of apoptosis, increased proliferation of islet cells, and promotion of revascularization.

  1. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis.

    PubMed

    Mahabeleshwar, Ganapati H; Feng, Weiyi; Reddy, Kumar; Plow, Edward F; Byzova, Tatiana V

    2007-09-14

    The functional responses of endothelial cells are dependent on signaling from peptide growth factors and the cellular adhesion receptors, integrins. These include cell adhesion, migration, and proliferation, which, in turn, are essential for more complex processes such as formation of the endothelial tube network during angiogenesis. This study identifies the molecular requirements for the cross-activation between beta3 integrin and tyrosine kinase receptor 2 for vascular endothelial growth factor (VEGF) receptor (VEGFR-2) on endothelium. The relationship between VEGFR-2 and beta3 integrin appears to be synergistic, because VEGFR-2 activation induces beta3 integrin tyrosine phosphorylation, which, in turn, is crucial for VEGF-induced tyrosine phosphorylation of VEGFR-2. We demonstrate here that adhesion- and growth factor-induced beta3 integrin tyrosine phosphorylation are directly mediated by c-Src. VEGF-stimulated recruitment and activation of c-Src and subsequent beta3 integrin tyrosine phosphorylation are critical for interaction between VEGFR-2 and beta3 integrin. Moreover, c-Src mediates growth factor-induced beta3 integrin activation, ligand binding, beta3 integrin-dependent cell adhesion, directional migration of endothelial cells, and initiation of angiogenic programming in endothelial cells. Thus, the present study determines the molecular mechanisms and consequences of the synergism between 2 cell surface receptor systems, growth factor receptor and integrins, and opens new avenues for the development of pro- and antiangiogenic strategies.

  2. Enacted Stigma, Mental Health, and Protective Factors Among Transgender Youth in Canada

    PubMed Central

    Veale, Jaimie F.; Peter, Tracey; Travers, Robb; Saewyc, Elizabeth M.

    2017-01-01

    Abstract Purpose: We aimed to assess the Minority Stress Model which proposes that the stress of experiencing stigma leads to adverse mental health outcomes, but social supports (e.g., school and family connectedness) will reduce this negative effect. Methods: We measured stigma-related experiences, social supports, and mental health (self-injury, suicide, depression, and anxiety) among a sample of 923 Canadian transgender 14- to 25-year-old adolescents and young adults using a bilingual online survey. Logistic regression models were conducted to analyze the relationship between these risk and protective factors and dichotomous mental health outcomes among two separate age groups, 14- to 18-year-old and 19- to 25-year-old participants. Results: Experiences of discrimination, harassment, and violence (enacted stigma) were positively related to mental health problems and social support was negatively associated with mental health problems in all models among both age groups. Among 14–18 year olds, we examined school connectedness, family connectedness, and perception of friends caring separately, and family connectedness was always the strongest protective predictor in multivariate models. In all the mental health outcomes we examined, transgender youth reporting low levels of enacted stigma experiences and high levels of protective factors tended to report favorable mental health outcomes. Conversely, the majority of participants reporting high levels of enacted stigma and low levels of protective factors reported adverse mental health outcomes. Conclusion: While these findings are limited by nonprobability sampling procedures and potential additional unmeasured risk and protective factors, the results provide positive evidence for the Minority Stress Model in this population and affirm the need for policies and programs to support schools and families to support transgender youth. PMID:29279875

  3. Tissue Engineering Using Transfected Growth-Factor Genes

    NASA Technical Reports Server (NTRS)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  4. Predicting Reading Disability: Early Cognitive Risk and Protective Factors

    ERIC Educational Resources Information Center

    Eklund, Kenneth Mikael; Torppa, Minna; Lyytinen, Heikki

    2013-01-01

    This longitudinal study examined early cognitive risk and protective factors for Grade 2 reading disability (RD). We first examined the reading outcome of 198 children in four developmental cognitive subgroups that were identified in our previous analysis: dysfluent trajectory, declining trajectory, unexpected trajectory and typical trajectory. We…

  5. [Growth Factors and Interleukins in Amniotic Membrane Tissue Homogenate].

    PubMed

    Stachon, T; Bischoff, M; Seitz, B; Huber, M; Zawada, M; Langenbucher, A; Szentmáry, N

    2015-07-01

    Application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy resistant corneal epithelial defects. The purpose of this study was to determine the concentrations of epidermal growth factor (EGF), fibroblast growth factor basic (bFGF), hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), interleukin-6 (IL-6) and interleukin-8 (IL-8) in amniotic membrane homogenates. Amniotic membranes of 8 placentas were prepared and thereafter stored at - 80 °C using the standard methods of the LIONS Cornea Bank Saar-Lor-Lux, Trier/Westpfalz. Following defreezing, amniotic membranes were cut in two pieces and homogenized in liquid nitrogen. One part of the homogenate was prepared in cell-lysis buffer, the other part was prepared in PBS. The tissue homogenates were stored at - 20 °C until enzyme-linked immunosorbent assay (ELISA) analysis for EGF, bFGF, HGF, KGF, IL-6 and IL-8 concentrations. Concentrations of KGF, IL-6 and IL-8 were below the detection limit using both preparation techniques. The EGF concentration in tissue homogenates treated with cell-lysis buffer (2412 pg/g tissue) was not significantly different compared to that of tissue homogenates treated with PBS (1586 pg/g tissue, p = 0.72). bFGF release was also not significantly different using cell-lysis buffer (3606 pg/g tissue) or PBS treated tissue homogenates (4649 pg/g tissue, p = 0.35). HGF release was significantly lower using cell-lysis buffer (23,555 pg/g tissue), compared to PBS treated tissue (47,766 pg/g tissue, p = 0.007). Containing EGF, bFGF and HGF, and lacking IL-6 and IL-8, the application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy-resistant corneal epithelial defects. Georg Thieme Verlag KG Stuttgart · New York.

  6. Workplace Respiratory Protection Factors during Asbestos Removal Operations.

    PubMed

    Chazelet, Sandrine; Wild, Pascal; Silvente, Eric; Eypert-Blaison, Céline

    2018-05-28

    Numerous changes have been made to the French labour regulations in recent years relating to the prevention of risks of exposure to asbestos fibres for operators removing asbestos-containing materials. These changes refer to the method used to count fibres, the collective and personal protective devices to be used on these worksites, and the occupational exposure limit value, which was reduced to 10 f.L-1 on 2 July 2015. In this context, this study assessed the level of respiratory protection afforded by supplied-air respirators and powered air-purifying respirators by monitoring exposure for several operators on nine worksites. The levels of dustiness measured in personal samples taken outside masks showed significant evidence of potential exposure during removal of asbestos-containing plaster or sprayed asbestos, and when using abrasive blasting to treat asbestos-containing materials. For these tasks outside concentration regularly exceeds 25000 f.L-1. Measurements inside masks were generally low, under 10 f.L-1, except in some situations involving the removal of asbestos-containing plaster. This partial penetration of fibres inside masks could be due to the high loading linked to this material. The distributions of Workplace Protection Factors obtained for the two types of respiratory protective devices studied were broad, and the fifth percentile values equal to 236 and 104, respectively, for supplied-air respirators and powered air-purifying respirators. This work highlights once again the need to prioritize collective protection when seeking to prevent asbestos-related risks.

  7. [Protective factors for preventing the use of drugs in the families of a Colombia locality].

    PubMed

    Arias, Núbia Medina; Ferriani, Maria das Graças Carvalho

    2010-01-01

    The aim of this study was to analyze the protective factors that prevent drug use in the families of children who attend Community Homes of Family Well-being in a small Colombian locality. This was a quantitative, descriptive, transversal study, with 256 families constituting the sample. Data were collected through a self-applied questionnaire throughout March and April 2007. Protective factors found included demonstrations of affection toward the children, playing with them and talking to them about things they like, open communication, decision making as a couple, flexibility of the nursing process, and establishment of rules. However, some risk factors were also found, such as consumption of legal drugs such as cigarettes and alcohol, and in a low percentage, consumption of illicit drugs. A high percentage of families consider that drug use must be prevented in the first years of life, by the parents. The protective factors found require reinforcement as they are not very strong, and the risk factors must be controlled to turn them into protective factors.

  8. Protective and risk factors for toxocariasis in children from two different social classes of Brazil.

    PubMed

    Santarém, Vamilton Alvares; Leli, Flávia Noris Chagas; Rubinsky-Elefant, Guita; Giuffrida, Rogério

    2011-01-01

    The aim of this study was to analyze the prevalence of Toxocara spp. antibodies in children from two different socioeconomic classes in the Presidente Prudente municipality, São Paulo State, Brazil, and the protective and risk factors associated with toxocariasis. One hundred and twenty-six middle-class (MC) and 126 disadvantaged children (DC) were included in this study. Anti-Toxocara ELISA test was performed in order to evaluate seroprevalence. A survey was applied to the children's guardians/parents in order to analyze the protective and risk factors. The overall prevalence was 11.1%, and of 9.5% (12/126) and 12.7% (16/126) for MC and DC subgroups, respectively. Toxocara seropositivity was inversely proportional to the family income. A high household income was considered a protective factor for toxocariasis in the total population and in both MC and DC subgroups. Being a girl was considered a protective factor for the total population and for both subgroups. Whilst being an owner of cat was a risk factor for children belonging to the total and for both MC and DC subgroups, having dog was considered as a risk factor for only the MC. Epidemiologic protective/factor risks can be distinct depending on the strata of the same population. Thus, it is relevant to evaluate these factors independently for different socioeconomic classes in order to design future investigations and programs for preventing the infection of human beings by Toxocara spp. and other geohelminths.

  9. Protective Factors for Children of Alcoholics: Parenting, Family Environment, Child Personality, and Contextual Supports.

    ERIC Educational Resources Information Center

    Jordan, Lisa C.; Chassin, Laurie

    The purposes of this study were to identify factors that would ameliorate the risk for substance abuse problems among children of alcoholics (COA), and to explore mechanisms of protection, particularly the Stress-Buffering model. Protective factors for children of alcoholics were examined in a controlled study (N=386). Three possible models are…

  10. Understanding the role of growth factors in embryonic development: insights from the lens

    PubMed Central

    Lovicu, F. J.; McAvoy, J. W.; de Iongh, R. U.

    2011-01-01

    Growth factors play key roles in influencing cell fate and behaviour during development. The epithelial cells and fibre cells that arise from the lens vesicle during lens morphogenesis are bathed by aqueous and vitreous, respectively. Vitreous has been shown to generate a high level of fibroblast growth factor (FGF) signalling that is required for secondary lens fibre differentiation. However, studies also show that FGF signalling is not sufficient and roles have been identified for transforming growth factor-β and Wnt/Frizzled families in regulating aspects of fibre differentiation. In the case of the epithelium, key roles for Wnt/β-catenin and Notch signalling have been demonstrated in embryonic development, but it is not known if other factors are required for its formation and maintenance. This review provides an overview of current knowledge about growth factor regulation of differentiation and maintenance of lens cells. It also highlights areas that warrant future study. PMID:21402581

  11. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration.

    PubMed

    Dyondi, Deepti; Webster, Thomas J; Banerjee, Rinti

    2013-01-01

    Gellan xanthan gels have been shown to be excellent carriers for growth factors and as matrices for several tissue engineering applications. Gellan xanthan gels along with chitosan nanoparticles of 297 ± 61 nm diameter, basic fibroblast growth factor (bFGF), and bone morphogenetic protein 7 (BMP7) were employed in a dual growth factor delivery system to promote the differentiation of human fetal osteoblasts. An injectable system with ionic and temperature gelation was optimized and characterized. The nanoparticle loaded gels showed significantly improved cell proliferation and differentiation due to the sustained release of growth factors. A differentiation marker study was conducted, analyzed, and compared to understand the effect of single vs dual growth factors and free vs encapsulated growth factors. Dual growth factor loaded gels showed a higher alkaline phosphatase and calcium deposition compared to single growth factor loaded gels. The results suggest that encapsulation and stabilization of growth factors within nanoparticles and gels are promising for bone regeneration. Gellan xanthan gels also showed antibacterial effects against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, the common pathogens in implant failure.

  12. Discerning environmental factors affecting current tree growth in Central Europe.

    PubMed

    Cienciala, Emil; Russ, Radek; Šantrůčková, Hana; Altman, Jan; Kopáček, Jiří; Hůnová, Iva; Štěpánek, Petr; Oulehle, Filip; Tumajer, Jan; Ståhl, Göran

    2016-12-15

    We examined the effect of individual environmental factors on the current spruce tree growth assessed from a repeated country-level statistical landscape (incl. forest) survey in the Czech Republic. An extensive set of variables related to tree size, competition, site characteristics including soil texture, chemistry, N deposition and climate was tested within a random-effect model to explain growth in the conditions of dominantly managed forest ecosystems. The current spruce basal area increment was assessed from two consecutive landscape surveys conducted in 2008/2009 and six years later in 2014/2015. Tree size, age and competition within forest stands were found to be the dominant explanatory variables, whereas the expression of site characteristics, environmental and climatic drives was weaker. The significant site variables affecting growth included soil C/N ratio and soil exchangeable acidity (pH KCl; positive response) reflecting soil chemistry, long-term N-deposition (averaged since 1975) in combination with soil texture (clay content) and Standardized Precipitation Index (SPI), a drought index expressing moisture conditions. Sensitivity of growth to N-deposition was positive, although weak. SPI was positively related to and significant in explaining tree growth when expressed for the growth season. Except SPI, no significant relation of growth was determined to altitude-related variables (temperature, growth season length). We identified the current spruce growth optimum at elevations about 800ma.s.l. or higher in the conditions of the country. This suggests that at lower elevations, limitation by a more pronounced water deficit dominates, whereas direct temperature limitation may concern the less frequent higher elevations. The mixed linear model of spruce tree growth explained 55 and 65% of the variability with fixed and random effects included, respectively, and provided new insights on the current spruce tree growth and factors affecting it within the

  13. Fibroblast growth factor 21 attenuates hepatic fibrogenesis through TGF-β/smad2/3 and NF-κB signaling pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Pengfei; Zhang, Yingjie; Liu, Yunye

    2016-01-01

    Fibroblast growth factor 21 (FGF-21) is a secreted protein, which has anti-diabetic and lipocaic effects, but its ability to protect against hepatic fibrosis has not been studied. In this study, we investigated the ability of FGF-21 to attenuate dimethylnitrosamine (DMN)-induced hepatic fibrogenesis in mice and the mechanism of its action. Hepatic fibrosis was induced by injection of DMN, FGF-21 was administered to the mice once daily in association with DMN injection till the end of the experiment. Histopathological examination, tissue 4-hydroxyproline content and expressions of smooth muscle α-actin (α-SMA) and collagen I were measured to assess hepatic fibrosis. Ethanol/PDGF-BB-activated hepaticmore » stellate cells (HSCs) were used to understand the mechanisms of FGF-21 inhibited hepatic fibrogenesis. Results showed that FGF-21 treatment attenuated hepatic fibrogenesis and was associated with a significant decrease in intrahepatic fibrogenesis, 4-hydroxyproline accumulation, α-SMA expression and collagen I deposition. FGF-21 treatment inhibited the activation of HSCs via down-regulating the expression of TGF-β, NF-κB nuclear translocation, phosphorylation levels of smad2/3 and IκBα. Besides, FGF-21 treatment caused activated HSC apoptosis with increasing expression of Caspase-3, and decreased the ratio of Bcl-2 to Bax. In conclusion, FGF-21 attenuates hepatic fibrogenesis and inhibits the activation of HSC warranting the use of FGF-21 as a potential therapeutic agent in the treatment of hepatic fibrosis. - Highlights: • Fibroblast growth factor 21 attenuates hepatic fibrogenesis. • Fibroblast growth factor 21 attenuates hepatic fibrogenesis via TGF-β/smad2/3 signaling pathways. • Fibroblast growth factor 21 attenuates hepatic fibrogenesis via NF-κB signaling pathways.« less

  14. Superimposition of postnatal calorie restriction protects the aging male intrauterine growth- restricted offspring from metabolic maladaptations.

    PubMed

    Dai, Yun; Thamotharan, Shanthie; Garg, Meena; Shin, Bo-Chul; Devaskar, Sherin U

    2012-09-01

    Intrauterine growth restriction (IUGR) results in dysregulated glucose homeostasis and adiposity in the adult. We hypothesized that with aging, these perturbations will wane, and superimposition of postnatal growth restriction (PNGR) on IUGR [intrauterine and postnatal growth restriction (IPGR)] will reverse the residual IUGR phenotype. We therefore undertook hyperinsulinemic-euglycemic clamp, energy balance, and physical activity studies during fed, fasted, and refed states, in light and dark cycles, on postweaned chow diet-fed more than 17-month aging male IUGR, PNGR, and IPGR vs. control (CON) rat offspring. Hyperinsulinemic-euglycemic clamp revealed similar whole-body insulin sensitivity and physical activity in the nonobese IUGR vs. CON, despite reduced heat production and energy expenditure. Compared with CON and IUGR, IPGR mimicking PNGR was lean and growth restricted with increased physical activity, O(2) consumption (VO(2)), energy intake, and expenditure. Although insulin sensitivity was no different in IPGR and PNGR, skeletal muscle insulin-induced glucose uptake was enhanced. This presentation proved protective against the chronologically earlier (5.5 months) development of obesity and dysregulated energy homeostasis after 19 wk on a postweaned high-fat diet. This protective role of PNGR on the metabolic IUGR phenotype needs future fine tuning aimed at minimizing unintended consequences.

  15. Purification and Refolding of Overexpressed Human Basic Fibroblast Growth Factor in Escherichia coli

    PubMed Central

    Alibolandi, Mona; Mirzahoseini, Hasan

    2011-01-01

    This work describes the integration of expanded bed adsorption (EBA) and adsorptive protein refolding operations used to recover purified and biologically active human basic fibroblast growth factor from inclusion bodies expressed in E. coli. Insoluble overexpressed human basic fibroblast growth factor has been purified on CM Hyper Z matrix by expanded bed adsorption after isolation and solubilization in 8 M urea. The adsorption was made in expanded bed without clarification steps such as centrifugation. Column refolding was done by elimination of urea and elution with NaCl. The human basic fibroblast growth factor was obtained as a highly purified soluble monomer form with similar behavior in circular dichroism and fluorescence spectroscopy as native protein. A total of 92.52% of the available human basic fibroblast growth factor was recovered as biologically active and purified protein using the mentioned purification and refolding process. This resulted in the first procedure describing high-throughput purification and refolding of human basic fibroblast growth factor in one step and is likely to have the greatest benefit for proteins that tend to aggregate when refolded by dilution. PMID:21837279

  16. Comparison of risk and protective factors associated with smartphone addiction and Internet addiction

    PubMed Central

    Choi, Sam-Wook; Kim, Dai-Jin; Choi, Jung-Seok; Ahn, Heejune; Choi, Eun-Jeung; Song, Won-Young; Kim, Seohee; Youn, Hyunchul

    2015-01-01

    Background and Aims Smartphone addiction is a recent concern that has resulted from the dramatic increase in worldwide smartphone use. This study assessed the risk and protective factors associated with smartphone addiction in college students and compared these factors to those linked to Internet addiction. Methods College students (N = 448) in South Korea completed the Smartphone Addiction Scale, the Young’s Internet Addiction Test, the Alcohol Use Disorders Identification Test, the Beck Depression Inventory I, the State–Trait Anxiety Inventory (Trait Version), the Character Strengths Test, and the Connor–Davidson Resilience Scale. The data were analyzed using multiple linear regression analyses. Results The risk factors for smartphone addiction were female gender, Internet use, alcohol use, and anxiety, while the protective factors were depression and temperance. In contrast, the risk factors for Internet addiction were male gender, smartphone use, anxiety, and wisdom/knowledge, while the protective factor was courage. Discussion These differences may result from unique features of smartphones, such as high availability and primary use as a tool for interpersonal relationships. Conclusions Our findings will aid clinicians in distinguishing between predictive factors for smartphone and Internet addiction and can consequently be utilized in the prevention and treatment of smartphone addiction. PMID:26690626

  17. Multiple jeopardy: risk and protective factors among addicted mothers' offspring.

    PubMed

    Luthar, S S; Cushing, G; Merikangas, K R; Rounsaville, B J

    1998-01-01

    Objectives of this study were to ascertain risk and protective factors in the adjustment of 78 school-age and teenage offspring of opioid- and cocaine-abusing mothers. Using a multimethod, multiinformant approach, child outcomes were operationalized via lifetime psychiatric diagnoses and everyday social competence (each based on both mother and child reports), and dimensional assessments of symptoms (mother report). Risk/protective factors examined included the child sociodemographic attributes of gender, age, and ethnicity, aspects of maternal psychopathology, and both mother's and children's cognitive functioning. Results revealed that greater child maladjustment was linked with increasing age, Caucasian (as opposed to African American) ethnicity, severity of maternal psychiatric disturbance, higher maternal cognitive abilities (among African Americans) and lower child cognitive abilities (among Caucasians). Limitations of the study are discussed, as are implications of findings for future research.

  18. Placental growth factor expression is reversed by antivascular endothelial growth factor therapy under hypoxic conditions.

    PubMed

    Zhou, Ai-Yi; Bai, Yu-Jing; Zhao, Min; Yu, Wen-Zhen; Huang, Lv-Zhen; Li, Xiao-Xin

    2014-08-01

    Clinical trials have revealed that the antivascular endothelial growth factor (VEGF) therapies are effective in retinopathy of prematurity (ROP). But the low level of VEGF was necessary as a survival signal in healthy conditions, and endogenous placental growth factor (PIGF) is redundant for development. The purpose of this study was to elucidate the PIGF expression under hypoxia as well as the influence of anti-VEGF therapy on PIGF. CoCl2-induced hypoxic human umbilical vein endothelial cells (HUVECs) were used for an in vitro study, and oxygen-induced retinopathy (OIR) mice models were used for an in vivo study. The expression patterns of PIGF under hypoxic conditions and the influence of anti-VEGF therapy on PIGF were evaluated by quantitative reverse transcription-polymerase chain reaction (RTPCR). The retinal avascular areas and neovascularization (NV) areas of anti-VEGF, anti-PIGF and combination treatments were calculated. Retina PIGF concentration was evaluated by ELISA after treatment. The vasoactive effects of exogenous PIGF on HUVECs were investigated by proliferation and migration studies. PIGF mRNA expression was reduced by hypoxia in OIR mice, in HUVECs under hypoxia and anti-VEGF treatment. However, PIGF expression was reversed by anti-VEGF therapy in the OIR model and in HUVECs under hypoxia. Exogenous PIGF significantly inhibited HUVECs proliferation and migration under normal conditions, but it stimulated cell proliferation and migration under hypoxia. Anti-PIGF treatment was effective for neovascular tufts in OIR mice (P<0.05). The finding that PIGF expression is iatrogenically up-regulated by anti-VEGF therapy provides a consideration to combine it with anti-PIGF therapy.

  19. A Prodomain Fragment from the Proteolytic Activation of Growth Differentiation Factor 11 Remains Associated with the Mature Growth Factor and Keeps It Soluble.

    PubMed

    Pepinsky, Blake; Gong, Bang-Jian; Gao, Yan; Lehmann, Andreas; Ferrant, Janine; Amatucci, Joseph; Sun, Yaping; Bush, Martin; Walz, Thomas; Pederson, Nels; Cameron, Thomas; Wen, Dingyi

    2017-08-22

    Growth differentiation factor 11 (GDF11), a member of the transforming growth factor β (TGF-β) family, plays diverse roles in mammalian development. It is synthesized as a large, inactive precursor protein containing a prodomain, pro-GDF11, and exists as a homodimer. Activation requires two proteolytic processing steps that release the prodomains and transform latent pro-GDF11 into active mature GDF11. In studying proteolytic activation in vitro, we discovered that a 6-kDa prodomain peptide containing residues 60-114, PDP 60-114 , remained associated with the mature growth factor. Whereas the full-length prodomain of GDF11 is a functional antagonist, PDP 60-114 had no impact on activity. The specific activity of the GDF11/PDP 60-114 complex (EC 50 = 1 nM) in a SMAD2/3 reporter assay was identical to that of mature GDF11 alone. PDP 60-114 improved the solubility of mature GDF11 at neutral pH. As the growth factor normally aggregates/precipitates at neutral pH, PDP 60-114 can be used as a solubility-enhancing formulation. Expression of two engineered constructs with PDP 60-114 genetically fused to the mature domain of GDF11 through a 2x or 3x G4S linker produced soluble monomeric products that could be dimerized through redox reactions. The construct with a 3x G4S linker retained 10% activity (EC 50 = 10 nM), whereas the construct connected with a 2x G4S linker could only be activated (EC 50 = 2 nM) by protease treatment. Complex formation with PDP 60-114 represents a new strategy for stabilizing GDF11 in an active state that may translate to other members of the TGF-β family that form latent pro/mature domain complexes.

  20. Endothelial Heparan Sulfate 6-O-Sulfation Levels Regulate Angiogenic Responses of Endothelial Cells to Fibroblast Growth Factor 2 and Vascular Endothelial Growth Factor*

    PubMed Central

    Ferreras, Cristina; Rushton, Graham; Cole, Claire L.; Babur, Muhammad; Telfer, Brian A.; van Kuppevelt, Toin H.; Gardiner, John M.; Williams, Kaye J.; Jayson, Gordon C.; Avizienyte, Egle

    2012-01-01

    Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor 165 (VEGF165) are potent pro-angiogenic growth factors that play a pivotal role in tumor angiogenesis. The activity of these growth factors is regulated by heparan sulfate (HS), which is essential for the formation of FGF2/FGF receptor (FGFR) and VEGF165/VEGF receptor signaling complexes. However, the structural characteristics of HS that determine activation or inhibition of such complexes are only partially defined. Here we show that ovarian tumor endothelium displays high levels of HS sequences that harbor glucosamine 6-O-sulfates when compared with normal ovarian vasculature where these sequences are also detected in perivascular area. Reduced HS 6-O-sulfotransferase 1 (HS6ST-1) or 6-O-sulfotransferase 2 (HS6ST-2) expression in endothelial cells impacts upon the prevalence of HS 6-O-sulfate moieties in HS sequences, which consist of repeating short, highly sulfated S domains interspersed by transitional N-acetylated/N-sulfated domains. 1–40% reduction in 6-O-sulfates significantly compromises FGF2- and VEGF165-induced endothelial cell sprouting and tube formation in vitro and FGF2-dependent angiogenesis in vivo. Moreover, HS on wild-type neighboring endothelial or smooth muscle cells fails to restore endothelial cell sprouting and tube formation. The affinity of FGF2 for HS with reduced 6-O-sulfation is preserved, although FGFR1 activation is inhibited correlating with reduced receptor internalization. These data show that 6-O-sulfate moieties in endothelial HS are of major importance in regulating FGF2- and VEGF165-dependent endothelial cell functions in vitro and in vivo and highlight HS6ST-1 and HS6ST-2 as potential targets of novel antiangiogenic agents. PMID:22927437

  1. Heparin-binding growth factor isolated from human prostatic extracts.

    PubMed

    Mydlo, J H; Bulbul, M A; Richon, V M; Heston, W D; Fair, W R

    1988-01-01

    Prostatic tissue extracts from patients with benign prostatic hyperplasia (BPH) and prostatic carcinoma were fractionated using heparin-Sepharose chromatography. The mitogenic activity of eluted fractions on quiescent subconfluent Swiss Albino 3T3 fibroblasts was tested employing a tritiated-thymidine-incorporation assay. Two peaks of activity were consistently noted--one in the void volume and a second fraction which eluted with 1.3-1.6 M NaCl and contained the majority of the mitogenic activity. Both non-heparin- and heparin-binding fractions increased tritiated incorporation into a mouse osteoblast cell line (MC3T3), while only the heparin-binding fractions stimulated a human umbilical vein endothelial cell line (HUV). No increased uptake of thymidine was seen using a human prostatic carcinoma cell line (PC-3). Sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS/PAGE) of lyophilized active fractions showed a persistent band at 17,500 daltons. The purified protein demonstrated angiogenic properties using the chick embryo chorioallantoic membrane (CAM) assay. Western blot analysis using antibodies specific to basic fibroblast growth factor (bFGF) or acidic FGF (aFGF) demonstrated that the former, but not the latter, bound to prostatic growth factor (PrGF), and inhibited its mitogenic activity as well. It appears that PrGF shares homology with basic fibroblast growth factors.

  2. A review of the influence of growth factors and cytokines in in vitro human keratinocyte migration.

    PubMed

    Peplow, Philip V; Chatterjee, Marissa P

    2013-04-01

    Keratinocyte migration from the wound edge is a crucial step in the reepithelization of cutaneous wounds. Growth factors and cytokines, released from cells that invade the wound matrix, play an important role, and several in vitro assays have been performed to elucidate this. The purposes of this study were to review in vitro human studies on keratinocyte migration to identify those growth factors or cytokines that stimulate keratinocyte migration and whether these assays might serve as a screening procedure prior to testing combinations of growth factors or cytokines to promote wound closure in vivo. Research papers investigating effect of growth factors and cytokines on human keratinocyte migration in vitro were retrieved from library sources, PubMed databases, reference lists of papers, and searches of relevant journals. Fourteen different growth factors and cytokines enhanced migration in scratch wound assay and HGF together with TGF-β, and IGF-1 with EGF, were more stimulatory than either growth factor alone. HGF with TGF-β1 had a greater chemokinetic effect than either growth factor alone in transmigration assay. TGF-β1, FGF-7, FGF-2 and AGF were chemotactic to keratinocytes. EGF, TGF-α, IL-1α, IGF and MGSA enhanced cell migration on ECM proteins. Many growth factors and cytokines enhanced migration of keratinocytes in vitro, and certain combinations of growth factors were more stimulatory than either alone. These and other combinations that stimulate keratinocyte migration in vitro should be tested for effect on wound closure and repair in vivo. The scratch wound assay provides a useful, inexpensive and easy-to-perform screening method for testing individual or combinations of growth factors or cytokines, or growth factors combined with other modalities such as laser irradiation, prior to performing wound healing studies with laboratory animals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Fibroblast growth factor 8 is expressed at higher levels in lactating human breast and in breast cancer.

    PubMed

    Zammit, C; Coope, R; Gomm, J J; Shousha, S; Johnston, C L; Coombes, R C

    2002-04-08

    Fibroblast growth factor 8 can transform NIH3T3 cells and its expression has been found to be associated with breast and prostate cancer. Following our finding that fibroblast growth factor 8 mRNA expression is increased in breast cancer, we have undertaken an immunohistochemistry study of fibroblast growth factor 8 expression in a series of human breast tissues and other normal tissues. Our findings confirm increased expression of fibroblast growth factor 8 in malignant breast tissue but also show significant fibroblast growth factor 8 expression in non-malignant breast epithelial cells. No significant difference in fibroblast growth factor 8 expression was found between different grades of ductal carcinoma, lobular carcinoma and ductal carcinoma in-situ or cancer of different oestrogen receptor, progesterone receptor or nodal status. The highest levels of fibroblast growth factor 8 expression were found in lactating breast tissues and fibroblast growth factor 8 was also detected in human milk. A survey of other normal tissues showed that fibroblast growth factor 8 is expressed in the proliferative cells of the dermis and epithelial cells in colon, ovary fallopian tube and uterus. Fibroblast growth factor 8 appears to be expressed in several organs in man and appears to have an importance in lactation.

  4. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE PAGES

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela; ...

    2015-04-01

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  5. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    In this study, blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular,more » the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  6. Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martino, Mikael M.; Brkic, Sime; Bovo, Emmanuela

    Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localizationmore » of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.« less

  7. Fibroblast Growth Factor 23 and Kidney Disease Progression in Autosomal Dominant Polycystic Kidney Disease.

    PubMed

    Chonchol, Michel; Gitomer, Berenice; Isakova, Tamara; Cai, Xuan; Salusky, Isidro; Pereira, Renata; Abebe, Kaleab; Torres, Vicente; Steinman, Theodor I; Grantham, Jared J; Chapman, Arlene B; Schrier, Robert W; Wolf, Myles

    2017-09-07

    Increases in fibroblast growth factor 23 precede kidney function decline in autosomal dominant polycystic kidney disease; however, the role of fibroblast growth factor 23 in autosomal dominant polycystic kidney disease has not been well characterized. We measured intact fibroblast growth factor 23 levels in baseline serum samples from 1002 participants in the HALT-PKD Study A ( n =540; mean eGFR =91±17 ml/min per 1.73 m 2 ) and B ( n =462; mean eGFR =48±12 ml/min per 1.73 m 2 ). We used linear mixed and Cox proportional hazards models to test associations between fibroblast growth factor 23 and eGFR decline, percentage change in height-adjusted total kidney volume, and composite of time to 50% reduction in eGFR, onset of ESRD, or death. Median (interquartile range) intact fibroblast growth factor 23 was 44 (33-56) pg/ml in HALT-PKD Study A and 69 (50-93) pg/ml in Study B. In adjusted models, annualized eGFR decline was significantly faster in the upper fibroblast growth factor 23 quartile (Study A: quartile 4, -3.62; 95% confidence interval, -4.12 to -3.12 versus quartile 1, -2.51; 95% confidence interval, -2.71 to -2.30 ml/min per 1.73 m 2 ; P for trend <0.001; Study B: quartile 4, -3.74; 95% confidence interval, -4.14 to -3.34 versus quartile 1, -2.78; 95% confidence interval, -2.92 to -2.63 ml/min per 1.73 m 2 ; P for trend <0.001). In Study A, higher fibroblast growth factor 23 quartiles were associated with greater longitudinal percentage increase in height-adjusted total kidney volume in adjusted models (quartile 4, 6.76; 95% confidence interval, 5.57 to 7.96 versus quartile 1, 6.04; 95% confidence interval, 5.55 to 6.54; P for trend =0.03). In Study B, compared with the lowest quartile, the highest fibroblast growth factor 23 quartile was associated with elevated risk for the composite outcome (hazard ratio, 3.11; 95% confidence interval, 1.84 to 5.25). Addition of fibroblast growth factor 23 to a model of annualized decline in eGFR≥3.0 ml/min per 1.73 m

  8. Suppression of transforming growth factor-beta-induced apoptosis through a phosphatidylinositol 3-kinase/Akt-dependent pathway.

    PubMed

    Chen, R H; Su, Y H; Chuang, R L; Chang, T Y

    1998-10-15

    Insulin and insulin receptor substrate 1 (IRS-1) are capable of protecting liver cells from apoptosis induced by transforming growth factor-beta1 (TGF-beta). The Ras/mitogen-activated protein kinase (MAP kinase) and the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathways are both activated upon insulin stimulation and can protect against apoptosis under certain circumstances. We investigated which of these pathways is responsible for the protective effect of insulin on TGF-beta-induced apoptosis. An activated Ras, although elicited a strong mitogenic effect, could not protect Hep3B cells from TGF-beta-induced apoptosis. Furthermore, PD98059, a selective inhibitor of MEK, did not suppress the antiapoptotic effect of insulin. In contrast, the PI 3-kinase inhibitor, LY294002, efficiently blocked the effect of insulin. Protection against TGF-beta-induced apoptosis conferred by PI 3-kinase was further verified by stable transfection of an activated PI 3-kinase. Downstream targets of PI 3-kinase involved in this protection was further investigated. An activated Akt mimicked the antiapoptotic effect of insulin, whereas a dominant-negative Akt inhibited such effect. However, rapamycin, the p70S6 kinase inhibitor, had no effect on the protectivity of insulin against TGF-beta-induced apoptosis, suggesting that the antiapoptotic target of PI 3-kinase/Akt pathway is independent or lies upstream of the p70S6 kinase. The mechanism by which PI 3-kinase/Akt pathway interferes with the apoptotic signaling of TGF-beta was explored. Activation of PI 3-kinase did not lead to a suppression of Smad hetero-oligomerization or nuclear translocation but blocked TGF-beta-induced caspase-3-like activity. In summary, the PI 3-kinase/Akt pathway, but not the Ras/MAP kinase pathway, protects against TGF-beta-induced apoptosis by inhibiting a step downstream of Smad but upstream of caspase-3.

  9. A highly versatile adaptor protein for the tethering of growth factors to gelatin-based biomaterials.

    PubMed

    Addi, Cyril; Murschel, Frédéric; Liberelle, Benoît; Riahi, Nesrine; De Crescenzo, Gregory

    2017-03-01

    In the field of tissue engineering, the tethering of growth factors to tissue scaffolds in an oriented manner can enhance their activity and increase their half-life. We chose to investigate the capture of the basic Fibroblast Growth Factor (bFGF) and the Epidermal Growth Factor (EGF) on a gelatin layer, as a model for the functionalization of collagen-based biomaterials. Our strategy relies on the use of two high affinity interactions, that is, the one between two distinct coil peptides as well as the one occurring between a collagen-binding domain (CBD) and gelatin. We expressed a chimeric protein to be used as an adaptor that comprises one of the coil peptides and a CBD derived from the human fibronectin. We proved that it has the ability to bind simultaneously to a gelatin substrate and to form a heterodimeric coiled-coil domain with recombinant growth factors being tagged with the complementary coil peptide. The tethering of the growth factors was characterized by ELISA and surface plasmon resonance-based biosensing. The bioactivity of the immobilized bFGF and EGF was evaluated by a human umbilical vein endothelial cell proliferation assay and a vascular smooth muscle cell survival assay. We found that the tethering of EGF preserved its mitogenic and anti-apoptotic activity. In the case of bFGF, when captured via our adaptor protein, changes in its natural mode of interaction with gelatin were observed. In an effort to functionalize collagen/gelatin-based biomaterials with growth factors, we have designed an adaptor protein corresponding to a collagen-binding domain fused to a coil peptide. In our strategy, this adaptor protein captures growth factors being tagged with the partner coil peptide in a specific, stable and oriented manner. We have found that the tethering of the Epidermal Growth Factor preserved its mitogenic and anti-apoptotic activity. In the case of the basic Fibroblast Growth Factor, the captured growth factor remained bioactive although its

  10. Problem-Solving Test: The Role of Ubiquitination in Epidermal Growth Factor Receptor Trafficking

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2012-01-01

    Terms to be familiar with before you start to solve the test: growth factor signaling, epidermal growth factor, tyrosine protein kinase, tyrosine phosphorylation, ubiquitin, monoubiquitination, polyubiquitination, site-directed mutagenesis, transfection, expression vector, cDNA, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, Western…

  11. Region-specific role of growth differentiation factor-5 in the establishment of sympathetic innervation.

    PubMed

    O'Keeffe, Gerard W; Gutierrez, Humberto; Howard, Laura; Laurie, Christopher W; Osorio, Catarina; Gavaldà, Núria; Wyatt, Sean L; Davies, Alun M

    2016-02-15

    Nerve growth factor (NGF) is the prototypical target-derived neurotrophic factor required for sympathetic neuron survival and for the growth and ramification of sympathetic axons within most but not all sympathetic targets. This implies the operation of additional target-derived factors for regulating terminal sympathetic axon growth and branching. Here report that growth differentiation factor 5 (GDF5), a widely expressed member of the transforming growth factor beta (TGFβ) superfamily required for limb development, promoted axon growth from mouse superior cervical ganglion (SCG) neurons independently of NGF and enhanced axon growth in combination with NGF. GDF5 had no effect on neuronal survival and influenced axon growth during a narrow window of postnatal development when sympathetic axons are ramifying extensively in their targets in vivo. SCG neurons expressed all receptors capable of participating in GDF5 signaling at this stage of development. Using compartment cultures, we demonstrated that GDF5 exerted its growth promoting effect by acting directly on axons and by initiating retrograde canonical Smad signalling to the nucleus. GDF5 is synthesized in sympathetic targets, and examination of several anatomically circumscribed tissues in Gdf5 null mice revealed regional deficits in sympathetic innervation. There was a marked, highly significant reduction in the sympathetic innervation density of the iris, a smaller though significant reduction in the trachea, but no reduction in the submandibular salivary gland. There was no reduction in the number of neurons in the SCG. These findings show that GDF5 is a novel target-derived factor that promotes sympathetic axon growth and branching and makes a distinctive regional contribution to the establishment of sympathetic innervation, but unlike NGF, plays no role in regulating sympathetic neuron survival.

  12. HSP27 is required for invasion and metastasis triggered by hepatocyte growth factor.

    PubMed

    Pavan, Simona; Musiani, Daniele; Torchiaro, Erica; Migliardi, Giorgia; Gai, Marta; Di Cunto, Ferdinando; Erriquez, Jessica; Olivero, Martina; Di Renzo, Maria Flavia

    2014-03-15

    The hepatocyte growth factor (HGF) also known as scatter factor activates cancer cell invasion and metastasis. We show that in ovarian cancer cells HGF induced the phosphorylation of the small heat shock protein of 27 kDa (HSP27) by activating the p38MAPK. HSP27 is increased in many cancers at advanced stage including ovarian cancer and associated with cancer resistance to therapy and poor patients' survival. The phosphorylation of HSP27 regulates both its chaperone activity and its control of cytoskeletal stability. We show that HSP27 was necessary for the remodeling of actin filaments induced by HGF and that motility in vitro depended on the p38MAPK-MK2 axis. In vivo, HSP27 silencing impaired the ability of the highly metastatic, HGF-secreting ovarian cancer cells to give rise to spontaneous metastases. This was due to defective motility across the vessel wall and reduced growth. Indeed, HSP27 silencing impaired the ability of circulating ovarian cancer cells to home to the lungs and to form experimental hematogenous metastases and the capability of cancer cells to grow as subcutaneous xenografts. Moreover, HSP27 suppression resulted in the sensitization of xenografts to low doses of the chemotherapeutic paclitaxel, likely because HSP27 protected microtubules from bundling caused by the drug. Altogether, these data show that the HSP27 is required for the proinvasive and prometastatic activity of HGF and suggest that HSP27 might be not only a marker of progression of ovarian cancer, but also a suitable target for therapy. © 2013 UICC.

  13. Recent research on the growth plate: Advances in fibroblast growth factor signaling in growth plate development and disorders.

    PubMed

    Xie, Yangli; Zhou, Siru; Chen, Hangang; Du, Xiaolan; Chen, Lin

    2014-08-01

    Skeletons are formed through two distinct developmental actions, intramembranous ossification and endochondral ossification. During embryonic development, most bone is formed by endochondral ossification. The growth plate is the developmental center for endochondral ossification. Multiple signaling pathways participate in the regulation of endochondral ossification. Fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling has been found to play a vital role in the development and maintenance of growth plates. Missense mutations in FGFs and FGFRs can cause multiple genetic skeletal diseases with disordered endochondral ossification. Clarifying the molecular mechanisms of FGFs/FGFRs signaling in skeletal development and genetic skeletal diseases will have implications for the development of therapies for FGF-signaling-related skeletal dysplasias and growth plate injuries. In this review, we summarize the recent advances in elucidating the role of FGFs/FGFRs signaling in growth plate development, genetic skeletal disorders, and the promising therapies for those genetic skeletal diseases resulting from FGFs/FGFRs dysfunction. Finally, we also examine the potential important research in this field in the future. © 2014 Society for Endocrinology.

  14. Protective effect of basic fibroblast growth factor on laser induced retinopathy

    PubMed Central

    Kartal, Unal; Koptagel, Emel; Bulut, H. Eray; Erdogan, Haydar

    2013-01-01

    AIM To investigate the side effects of the commonly used laser treatment along with testing the neuroprotective effect of bFGF on a potential retinal impairment. METHODS To do this, 30 chinchilla pigmented adult male rabbits were divided into the control and experimental groups. The control and experimental groups underwent both laser application and bFGF treatment. The retinal tissue impairment and its renewal rate were tested under the light and electron microscopical levels. RESULTS The focal laser application on rabbit eyes caused morphological alterations both in the application region and in the neighbouring areas. In the damaged areas, the outer nuclear layer of the neural retina was almost disappeared, retina pigment epithelium was interrupted, the retina pigment epithelium migrated intraretinally, and the damaged region along with neighbouring areas seemed to be not separated. bFGF application just after the laser photocoagulation, revealed better results in application areas. CONCLUSION It could be suggested that the bFGF application following laser photocoagulation might have protective, repairing and wound healing effects on the retina. PMID:24392319

  15. Ultraviolet damage to the eye revisited: eye-sun protection factor (E-SPF®), a new ultraviolet protection label for eyewear

    PubMed Central

    Behar-Cohen, Francine; Baillet, Gilles; de Ayguavives, Tito; Garcia, Paula Ortega; Krutmann, Jean; Peña-García, Pablo; Reme, Charlotte; Wolffsohn, James S

    2014-01-01

    Ultraviolet (UV) radiation potentially damages the skin, the immune system, and structures of the eye. A useful UV sun protection for the skin has been established. Since a remarkable body of evidence shows an association between UV radiation and damage to structures of the eye, eye protection is important, but a reliable and practical tool to assess and compare the UV-protective properties of lenses has been lacking. Among the general lay public, misconceptions on eye-sun protection have been identified. For example, sun protection is mainly ascribed to sunglasses, but less so to clear lenses. Skin malignancies in the periorbital region are frequent, but usual topical skin protection does not include the lids. Recent research utilized exact dosimetry and demonstrated relevant differences in UV burden to the eye and skin at a given ambient irradiation. Chronic UV effects on the cornea and lens are cumulative, so effective UV protection of the eyes is important for all age groups and should be used systematically. Protection of children’s eyes is especially important, because UV transmittance is higher at a very young age, allowing higher levels of UV radiation to reach the crystalline lens and even the retina. Sunglasses as well as clear lenses (plano and prescription) effectively reduce transmittance of UV radiation. However, an important share of the UV burden to the eye is explained by back reflection of radiation from lenses to the eye. UV radiation incident from an angle of 135°–150° behind a lens wearer is reflected from the back side of lenses. The usual antireflective coatings considerably increase reflection of UV radiation. To provide reliable labeling of the protective potential of lenses, an eye-sun protection factor (E-SPF®) has been developed. It integrates UV transmission as well as UV reflectance of lenses. The E-SPF® compares well with established skin-sun protection factors and provides clear messages to eye health care providers and to

  16. Ultraviolet damage to the eye revisited: eye-sun protection factor (E-SPF®), a new ultraviolet protection label for eyewear.

    PubMed

    Behar-Cohen, Francine; Baillet, Gilles; de Ayguavives, Tito; Garcia, Paula Ortega; Krutmann, Jean; Peña-García, Pablo; Reme, Charlotte; Wolffsohn, James S

    2014-01-01

    Ultraviolet (UV) radiation potentially damages the skin, the immune system, and structures of the eye. A useful UV sun protection for the skin has been established. Since a remarkable body of evidence shows an association between UV radiation and damage to structures of the eye, eye protection is important, but a reliable and practical tool to assess and compare the UV-protective properties of lenses has been lacking. Among the general lay public, misconceptions on eye-sun protection have been identified. For example, sun protection is mainly ascribed to sunglasses, but less so to clear lenses. Skin malignancies in the periorbital region are frequent, but usual topical skin protection does not include the lids. Recent research utilized exact dosimetry and demonstrated relevant differences in UV burden to the eye and skin at a given ambient irradiation. Chronic UV effects on the cornea and lens are cumulative, so effective UV protection of the eyes is important for all age groups and should be used systematically. Protection of children's eyes is especially important, because UV transmittance is higher at a very young age, allowing higher levels of UV radiation to reach the crystalline lens and even the retina. Sunglasses as well as clear lenses (plano and prescription) effectively reduce transmittance of UV radiation. However, an important share of the UV burden to the eye is explained by back reflection of radiation from lenses to the eye. UV radiation incident from an angle of 135°-150° behind a lens wearer is reflected from the back side of lenses. The usual antireflective coatings considerably increase reflection of UV radiation. To provide reliable labeling of the protective potential of lenses, an eye-sun protection factor (E-SPF®) has been developed. It integrates UV transmission as well as UV reflectance of lenses. The E-SPF® compares well with established skin-sun protection factors and provides clear messages to eye health care providers and to lay

  17. Risk and Protective Factors for Psychological Adjustment and Grades among Adolescents.

    ERIC Educational Resources Information Center

    Voydanoff, Patricia; Donnelly, Brenda W.

    1999-01-01

    Examines the ways in which two risk factors: negative peer behavior and time spent without an adult, and two protective factors: adolescent resources and parental behavior influence psychological adjustment and grades among adolescents ages 10 to 17 (N=745). Results indicate that negative peer behavior is inversely related to adolescent well…

  18. Characterization of the growth of murine fibroblasts that express human insulin receptors. II. Interaction of insulin with other growth factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randazzo, P.A.; Jarett, L.

    1990-09-01

    The effects of insulin-like growth factor-1 (IGF-1), epidermal growth factor (EGF), platelet-derived growth factor (PDGF), and insulin on DNA synthesis were studied in murine fibroblasts transfected with an expression vector containing human insulin receptor cDNA (NIH 3T3/HIR) and the parental NIH 3T3 cells. In NIH 3T3/HIR cells, individual growth factors in serum-free medium stimulated DNA synthesis with the following relative efficacies: insulin greater than or equal to 10% fetal calf serum greater than PDGF greater than IGF-1 much greater than EGF. In comparison, the relative efficacies of these factors in stimulating DNA synthesis by NIH 3T3 cells were 10% fetalmore » calf serum greater than PDGF greater than EGF much greater than IGF-1 = insulin. In NIH 3T3/HIR cells, EGF was synergistic with 1-10 ng/ml insulin but not with 100 ng/ml insulin or more. Synergy of PDGF or IGF-1 with insulin was not detected. In the parental NIH 3T3 cells, insulin and IGF-1 were found to be synergistic with EGF (1 ng/ml), PDGF (100 ng/ml), and PDGF plus EGF. In NIH 3T3/HIR cells, the lack of interaction of insulin with other growth factors was also observed when the percentage of cells synthesizing DNA was examined. Despite insulin's inducing only 60% of NIH 3T3/HIR cells to incorporate thymidine, addition of PDGF, EGF, or PDGF plus EGF had no further effect. In contrast, combinations of growth factors resulted in 95% of the parental NIH 3T3 cells synthesizing DNA. The independence of insulin-stimulated DNA synthesis from other mitogens in the NIH 3T3/HIR cells is atypical for progression factor-stimulated DNA synthesis and is thought to be partly the result of insulin receptor expression in an inappropriate context or quantity.« less

  19. Growth Factors and COX2 Expression in Canine Perivascular Wall Tumors.

    PubMed

    Avallone, G; Stefanello, D; Boracchi, P; Ferrari, R; Gelain, M E; Turin, L; Tresoldi, E; Roccabianca, P

    2015-11-01

    Canine perivascular wall tumors (PWTs) are a group of subcutaneous soft tissue sarcomas developing from vascular mural cells. Mural cells are involved in angiogenesis through a complex crosstalk with endothelial cells mediated by several growth factors and their receptors. The evaluation of their expression may have relevance since they may represent a therapeutic target in the control of canine PWTs. The expression of vascular endothelial growth factor (VEGF) and receptors VEGFR-I/II, basic fibroblast growth factor (bFGF) and receptor Flg, platelet-derived growth factor B (PDGFB) and receptor PDGFRβ, transforming growth factor β1 (TGFβ1) and receptors TGFβR-I/II, and cyclooxygenase 2 (COX2) was evaluated on frozen sections of 40 PWTs by immunohistochemistry and semiquantitatively scored to identify their potential role in PWT development. Statistical analysis was performed to analyze possible correlations between Ki67 labeling index and the expression of each molecule. Proteins of the VEGF-, PDGFB-, and bFGF-mediated pathways were highly expressed in 27 (67.5%), 30 (75%), and 19 (47.5%) of 40 PWTs, respectively. Proteins of the TGFβ1- and COX2-mediated pathways were highly expressed in 4 (10%) and 14 (35%) of 40 cases. Statistical analysis identified an association between VEGF and VEGFR-I/II (P = .015 and .003, respectively), bFGF and Flg (P = .038), bFGF and PDGFRβ (P = .003), and between TGFβ1 and COX2 (P = .006). These findings were consistent with the mechanisms that have been reported to play a role in angiogenesis and in tumor development. No association with Ki67 labeling index was found. VEGF-, PDGFB-, and bFGF-mediated pathways seem to have a key role in PWT development and growth. Blockade of tyrosine kinase receptors after surgery could represent a promising therapy with the aim to reduce the PWT relapse rate and prolong the time to relapse. © The Author(s) 2015.

  20. The effect of growth factors on both collagen synthesis and tensile strength of engineered human ligaments.

    PubMed

    Hagerty, Paul; Lee, Ann; Calve, Sarah; Lee, Cassandra A; Vidal, Martin; Baar, Keith

    2012-09-01

    Growth factors play a central role in the development and remodelling of musculoskeletal tissues. To determine which growth factors optimized in vitro ligament formation and mechanics, a Box-Behnken designed array of varying concentrations of growth factors and ascorbic acid were applied to engineered ligaments and the collagen content and mechanics of the grafts were determined. Increasing the amount of transforming growth factor (TGF) β1 and insulin-like growth factor (IGF)-1 led to an additive effect on ligament collagen and maximal tensile load (MTL). In contrast, epidermal growth factor (EGF) had a negative effect on both collagen content and MTL. The predicted optimal growth media (50 μg/ml TGFβ, IGF-1, and GDF-7 and 200 μM ascorbic acid) was then validated in two separate trials: showing a 5.7-fold greater MTL and 5.2-fold more collagen than a minimal media. Notably, the effect of the maximized growth media was scalable such that larger constructs developed the same material properties, but larger MTL. These results show that optimizing the interactions between growth factors and engineered ligament volume results in an engineered ligament of clinically relevant function. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors.

    PubMed

    Wu, Chengtie; Chang, Jiang

    2014-11-10

    Regeneration of large-size bone defects represents a significant challenge clinically, which requires the use of scaffolds with multifunction, such as anti-bacterial activity, and stimulation of osteogenesis and angiogenesis. It is known that functional ions or drug/growth factors play an important role to stimulate tissue regeneration. Mesoporous bioactive glasses (MBG) possess excellent bioactivity and drug-delivery ability as well as effective ionic release in the body fluids microenvironment due to its specific mesoporous structure and large surface area. For these reasons, functional ions (e.g. lithium (Li), strontium (Sr), Copper (Cu) and Boron (B)) and drug/growth factors (e.g. dexamethasone, vascular endothelial growth factor (VEGF) and bone morphogenetic protein (BMP)) have been incorporated into MBG, which shows high loading efficiency and effective release. The release of therapeutic ions and drug/growth factors from MBG offers it multifunctional properties, such as improved osteogenesis, angiogenesis, anti-bacterial/cancer activity. However, there is no a systematic review about delivery of therapeutic ions and drugs/growth factors from MBG for the functional effect on the tissue regeneration despite that significant progress has been achieved in the past five years. Therefore, in this review, we mainly focused on the new advances for the functional effect of delivering therapeutic ions and drugs/growth factors on the ostegeogenesis, angiogenesis and antibacterial activity. It is expected that the review will offer new concept to develop multifunctional biomaterials for bone regeneration by the synergistic effect of therapeutic ions and drug/growth factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Overexpression of Heparin-Binding Epidermal Growth Factor-Like Growth Factor Mediates Liver Fibrosis in Transgenic Mice.

    PubMed

    Guo, Yongze; Ding, Qian; Chen, Lei; Ji, Chenguang; Hao, Huiyao; Wang, Jia; Qi, Wei; Xie, Xiaoli; Ma, Junji; Li, Aidi; Jiang, Xiaoyu; Li, Xiaotian; Jiang, Huiqing

    2017-08-01

    The role of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in liver fibrosis is not clear and is sometimes even contradictory. To clarify this role, a HB-EGF transgenic (Tg) mouse model was, for the first time, used to evaluate the functions of HB-EGF in liver fibrosis. For the in vivo study, carbon tetrachloride injection and bile duct ligation treatment were used to induce liver fibrosis in HB-EGF Tg mice and wild-type (WT) mice, respectively. Primary hepatic satellite cells (HSCs) were isolated from HB-EGF Tg and WT mice for the in vitro study. Compared with the WT mice, HB-EGF Tg mice were shown to develop more severe liver fibrosis when treated with carbon tetrachloride or bile duct ligation, with increased matrix metalloproteinases 13 activity and enhanced expression of fibrogenic genes including α-smooth muscle actin and collagen I. HB-EGF gene transfer led to an increase in proliferation and a decrease in apoptosis in primary HSCs. The ERK signaling pathway was more highly activated in primary HSCs from HB-EGF Tg mice than in those from WT mice. Our investigation confirmed the profibrotic effect of HB-EGF on the liver using a Tg mouse model. This result may contribute to the elucidation of HB-EGF as a therapeutic target in liver fibrosis. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  3. Assessment of awareness of connectedness as a culturally-based protective factor for Alaska native youth.

    PubMed

    Mohatt, Nathaniel V; Fok, Carlotta Ching Ting; Burket, Rebekah; Henry, David; Allen, James

    2011-10-01

    Research with Native Americans has identified connectedness as a culturally based protective factor against substance abuse and suicide. Connectedness refers to the interrelated welfare of the individual, one's family, one's community, and the natural environment. We developed an 18-item quantitative assessment of awareness of connectedness and tested it with 284 Alaska Native youth. Evaluation with confirmatory factor analysis and item response theory identified a 12-item subset that functions satisfactorily in a second-order four-factor model. The proposed Awareness of Connectedness Scale (ACS) displays good convergent and discriminant validity, and correlates positively with hypothesized protective factors such as reasons for living and communal mastery. The measure has utility in the study of culture-specific protective factors and as an outcomes measure for behavioral health programs with Native American youth.

  4. Assessment of Awareness of Connectedness as a Culturally-based Protective Factor for Alaska Native Youth

    PubMed Central

    Mohatt, Nathaniel V.; Fok, Carlotta Ching Ting; Burket, Rebekah; Henry, David; Allen, James

    2011-01-01

    Research with Native Americans has identified connectedness as a culturally-based protective factor against substance abuse and suicide. Connectedness refers to the interrelated welfare of the individual, one’s family, one’s community, and the natural environment. We developed an 18-item quantitative assessment of awareness of connectedness and tested it with 284 Alaska Native youth. Evaluation with confirmatory factor analysis and item response theory identified a 12-item subset that functions satisfactorily in a second-order, four-factor model. The proposed Awareness of Connectedness Scale displays good convergent and discriminant validity and correlates positively with hypothesized protective factors such as reasons for living and communal mastery. The measure has utility in the study of culture-specific protective factors and as an outcomes measure for behavioral health programs with Native American youth. PMID:21988583

  5. The effect of plasma rich in growth factors combined with follicular unit extraction surgery for the treatment of hair loss: A pilot study.

    PubMed

    Navarro, Roge M; Pino, Ander; Martinez-Andres, Asunción; Molina, Consuelo; Martinez, Ana María; Martinez, Nahikari; Orive, Gorka; Anitua, Eduardo

    2017-10-26

    Hair transplant surgery using follicular unit extraction technique (FUE) is a common surgical procedure for the treatment of severe hair loss. Blood-derived autologous growth factors have also proved to promote hair regeneration in patients with different types of alopecia. The aim of this study was to evaluate the safety and clinical efficacy of plasma rich in growth factors (PRGF) technology as an adjuvant therapy for FUE surgery in hair loss affected patients. The biologic potential of PRGF was firstly in vitro evaluated over follicular germinal matrix and dermal papilla cells. Afterward, fifteen patients were subjected to routine FUE procedure while 15 patients underwent FUE+PRGF therapy. PRGF group included intradermal injections of growth factors and follicular transfer unit (FTU) preservation in an autologous fibrin clot. Postsurgical patient satisfaction and clinical improvement were evaluated, and PRGF or saline-preserved hair grafts were histomorphometrically analyzed. Follicular cell proliferation and migration was induced after autologous growth factors treatment. PRGF-preserved FTUs presented higher bioactivity signals and improved integrity of perifollicular structures and extracellular matrix proteins such as collagen and elastic fibers. PRGF not only reduced the postsurgical crust healing and hair fixation period, but also decreased the inflammatory pain and itching sensation. This preliminary data demonstrate that PRGF is able to minimize the postsurgical follicle loss and potentiate the performance of grafted hairs. The fibrin clot not only acts as a protective barrier against environmental factors, but also provides a biologically active scaffold that induces resident cell proliferation and maintains an optimal integrity of the grafted hair. © 2017 Wiley Periodicals, Inc.

  6. Soil-Site Factors Affecting Southern Upland Oak Managment and Growth

    Treesearch

    John K. Francis

    1980-01-01

    Soil supplies trees with physical support, moisture, oxygen, and nutrients. Amount of moisture most limits tree growth; and soil and topographic factors such as texture and aspect, which influence available soil moisture. are most useful in predicting growth. Equations that include soil and topographic variables can be used to predict site index. Foresters can also...

  7. Fibroblast Growth Factor 23 in Long-Duration Spaceflight

    NASA Technical Reports Server (NTRS)

    Bokhari, R.; Zwart, S. R.; Fields, E.; Heer, M.; Sibonga, J.; Smith, S. M.

    2015-01-01

    Many nutritional factors influence bone, from the basics of calcium and vitamin D, to factors which influence bone through acid/base balance, including protein, sodium, and more. Fibroblast growth factor 23 (FGF23) is a recently identified factor, secreted from osteocytes, which is involved in classic (albeit complex) feedback loops controlling phosphorus homeostasis through both vitamin D and parathyroid hormone (PTH) (1, 2). As osteocytes are gravity sensing cells, it is important to determine if there are changes in FGF23 during spaceflight. In extreme cases, such as chronic kidney disease, FGF23 levels are highly elevated. FGF23 imbalances, secondary to dietary influences, may contribute to skeletal demineralization and kidney stone risk during spaceflight.

  8. [Effects of Valeriana officinalis var. latifolia on expression of transforming growth factor beta 1 in hypercholesterolemic rats].

    PubMed

    Si, Xiao-yun; Jia, Ru-han; Huang, Cong-xin; Ding, Guo-hua; Liu, Hong-yan

    2003-09-01

    To evaluate the effect of Valeriana officinalis var latifolia(VOL) on expression of transforming growth factor beta 1 (TGF-beta 1) in hypercholesterolemic rats and study its possible mechanisms. Dietary-induced hypercholesterolemia was induced in male Wistar rats by given 4% cholesterol and 1% cholic acid diet for 16 weeks. Changes of serum lipid, urinary albumin, renal function and Mesangial matrix index were assessed. Moreover, immunohistochemical stain for TGF-beta 1 and type IV collagen were performed. VOL could reduce the serum levels of total cholesterol, low density lipoprotein, urinary albumin and serum creatinine. Light microscopy and immunohistochemical stain revealed that in the same time of lowing serum lipid, Mesangial matrix index was significantly reduced, accompanied by decreased expression of TGF-beta 1 and type IV collagen. VOL has the protective effect on lipid-induced nephropathy, and the inhibition of TGF-beta 1 expression might be the mechanism of VOL on renal protection.

  9. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer.

    PubMed

    Liu, Junjun; Chen, Xiaosong; Ward, Toby; Mao, Yan; Bockhorn, Jessica; Liu, Xiaofei; Wang, Gen; Pegram, Mark; Shen, Kunwei

    2016-02-01

    Acquired resistance to lapatinib, a human epidermal growth factor receptor 2 kinase inhibitor, remains a clinical problem for women with human epidermal growth factor receptor 2-positive advanced breast cancer, as metastasis is commonly observed in these patients. Niclosamide, an anti-helminthic agent, has recently been shown to exhibit cytotoxicity to tumor cells with stem-like characteristics. This study was designed to identify the mechanisms underlying lapatinib resistance and to determine whether niclosamide inhibits lapatinib resistance by reversing epithelial-mesenchymal transition. Here, two human epidermal growth factor receptor 2-positive breast cancer cell lines, SKBR3 and BT474, were exposed to increasing concentrations of lapatinib to establish lapatinib-resistant cultures. Lapatinib-resistant SKBR3 and BT474 cells exhibited up-regulation of the phenotypic epithelial-mesenchymal transition markers Snail, vimentin and α-smooth muscle actin, accompanied by activation of nuclear factor-кB and Src and a concomitant increase in stem cell marker expression (CD44(high)/CD24(low)), compared to naive lapatinib-sensitive SKBR3 and BT474 cells, respectively. Interestingly, niclosamide reversed epithelial-mesenchymal transition, induced apoptosis and inhibited cell growth by perturbing aberrant signaling pathway activation in lapatinib-resistant human epidermal growth factor receptor 2-positive cells. The ability of niclosamide to alleviate stem-like phenotype development and invasion was confirmed. Collectively, our results demonstrate that lapatinib resistance correlates with epithelial-mesenchymal transition and that niclosamide inhibits lapatinib-resistant cell viability and epithelial-mesenchymal transition. These findings suggest a role of niclosamide or derivatives optimized for more favorable bioavailability not only in reversing lapatinib resistance but also in reducing metastatic potential during the treatment of human epidermal growth factor receptor

  10. Enhancing hair growth in male androgenetic alopecia by a combination of fractional CO2 laser therapy and hair growth factors.

    PubMed

    Huang, Yue; Zhuo, Fenglin; Li, Linfeng

    2017-11-01

    Laser therapy and growth factors have been used as alternative treatments for male androgenetic alopecia (MAA). The aim of this study is to determine the efficacy and safety of hair growth factors alone or combined with ablative carbon dioxide (CO 2 ) fractional laser therapy in MAA. Twenty-eight men were enrolled in this randomized half-split study based on a left-head to right-head pattern. Fractional CO 2 laser treatment was unilaterally performed; hair growth factors were bilaterally applied. Six sessions with 2-week intervals were performed. Global photographs and dermoscopy assessments were performed at the baseline and 4 months after first treatment. Global photographs underwent blinded review by three independent dermatologists. Scanning electron microscopy was used to compare changes in hair-follicle phase and hair-shaft diameter. Twenty-seven participants completed the 4-month treatment schedule. One patient was lost. Mean hair density increased from 114 ± 27 to 143 ± 25/cm 2 (P < 0.001) in the combined group and from 113 ± 24 to 134 ± 19/cm 2 in the growth factor group (P < 0.001). The mean change from baseline between two groups was also compared (P = 0.003). Global photographs showed improvement in 93% (25/27) patients in the combined group and 67% (18/27) patients in the growth factor group. Under scanning electron microscopy, hair follicles appeared to transition from telogen to anagen, and hair-shaft diameter increased in five randomly selected patients. Ablative fractional CO 2 laser combined with hair growth factors may serve as an alternative treatment for MAA in individuals unwilling/unable to undergo medical or surgical treatment.

  11. Risk and Protective Factors in Gifted Children with Dyslexia

    ERIC Educational Resources Information Center

    van Viersen, Sietske; de Bree, Elise H.; Kroesbergen, Evelyn H.; Slot, Esther M.; de Jong, Peter F.

    2015-01-01

    This study investigated risk and protective factors associated with dyslexia and literacy development, both at the group and individual level, to gain more insight in underlying cognitive profiles and possibilities for compensation in high-IQ children. A sample of 73 Dutch primary school children included a dyslexic group, a gifted-dyslexic group,…

  12. Teenage Pregnancy among Latinas: Examining Risk and Protective Factors

    ERIC Educational Resources Information Center

    Dogan-Ates, Aysun; Carrion-Basham, Carla Y.

    2007-01-01

    This study investigated the role of three groups of risk and protective factors (e.g., individual, family, and extrafamilial) that are associated with teen pregnancy. Two groups of Latina adolescents (aged 15 to 19), nonpregnant/ nonparenting (NP; N = 48) and pregnant/parenting (P; N = 46), completed a demographic survey, an adolescent profile…

  13. Protective Factors for School Readiness among Children in Poverty

    ERIC Educational Resources Information Center

    Holliday, Matthew R.; Cimetta, Adriana; Cutshaw, Christina A.; Yaden, David; Marx, Ronald W.

    2014-01-01

    The economic status of families and their children's learning outcomes are closely related. For example, children living in poverty tend to score worse on measures of reading and math performance than their more affluent peers, and this achievement gap is present by kindergarten. In this study, we identified protective factors associated with…

  14. Peripheral blood "endothelial progenitor cells" are derived from monocyte/macrophages and secrete angiogenic growth factors.

    PubMed

    Rehman, Jalees; Li, Jingling; Orschell, Christie M; March, Keith L

    2003-03-04

    Endothelial progenitor cells (EPCs) have been isolated from peripheral blood and can enhance angiogenesis after infusion into host animals. It is not known whether the proangiogenic effects are a result of such events as endothelial differentiation and subsequent proliferation of EPCs or secondary to secretion of angiogenic growth factors. Human EPCs were isolated as previously described, and their phenotypes were confirmed by uptake of acetylated LDL and binding of ulex-lectin. EPC proliferation and surface marker expression were analyzed by flow cytometry, and conditioned medium was assayed for growth factors. The majority of EPCs expressed monocyte/macrophage markers such as CD14 (95.7+/-0.3%), Mac-1 (57.6+/-13.5%), and CD11c (90.8+/-4.9%). A much lower percentage of cells expressed the specific endothelial marker VE-cadherin (5.2+/-0.7%) or stem/progenitor-cell markers AC133 (0.16+/-0.05%) and c-kit (1.3+/-0.7%). Compared with circulating monocytes, cultured EPCs showed upregulation of monocyte activation and macrophage differentiation markers. EPCs did not demonstrate any significant proliferation but did secrete the angiogenic growth factors vascular endothelial growth factor, hepatocyte growth factor, granulocyte colony-stimulating factor, and granulocyte-macrophage colony-stimulating factor. Our findings suggest that acetylated LDL(+)ulex-lectin(+) cells, commonly referred to as EPCs, do not proliferate but release potent proangiogenic growth factors. The majority of acetylated LDL(+)ulex-lectin(+) cells are derived from monocyte/macrophages. The findings of low proliferation and endothelial differentiation suggest that their angiogenic effects are most likely mediated by growth factor secretion. These findings may allow for development of novel angiogenic therapies relying on secreted growth factors or on recruitment of endogenous monocytes/macrophages to sites of ischemia.

  15. Weight Status and Weight Perception in Relation to Mental Distress and Psychosocial Protective Factors Among Adolescents.

    PubMed

    Christoph, Mary J; Jarrett, Elizabeth S; Gower, Amy L; Borowsky, Iris W

    To measure how weight status and weight perception relate to mental distress and psychosocial protective factors in adolescents. Adolescents in 8th, 9th, and 11th grade participating in the 2013 Minnesota Student Survey (N = 122,180) were classified on the basis of weight perception (overweight or not overweight) and weight status (not overweight, overweight, obese). Bivariate tests were used to assess the relationship of weight status and weight perception with internal mental distress, and generalized linear models were used to measure the association between weight status and weight perception with psychosocial protective factors including parent, school, and friend connectedness, social competency, and positive identity. Logistic regressions measured the relationship between psychosocial protective factors and internal mental distress. Prevalence of internal mental distress ranged from 14.5% for overweight boys who perceived themselves as not overweight to 55.0% for girls who were not overweight but self-perceived as overweight. Across all weight-status categories, adolescents who perceived themselves as overweight, compared to those who did not, had higher internal mental distress and lower mean levels of psychosocial protective factors. All psychosocial protective factors were related to lower odds of internal mental distress, with significant small differences by weight status and weight perception. Weight status and weight perception affected both mental distress and psychosocial protective factors. Those who perceived themselves as overweight, regardless of weight status, had the highest prevalence of mental distress and the lowest levels of psychosocial protective factors. Health care providers should consider screening for weight perception to provide a tailored approach to adolescent care. Copyright © 2017 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.

  16. Resilience and protective factors among people with a history of child maltreatment: a systematic review.

    PubMed

    Meng, Xiangfei; Fleury, Marie-Josee; Xiang, Yu-Tao; Li, Muzi; D'Arcy, Carl

    2018-05-01

    To provide an overview of resilience and protective factors associated with a better life following child maltreatment exposure, to compare protective factors across specific subtypes of maltreatment, and to explore existing issues in the current state of the literature. Electronic databases and grey literature up to October 2017 were systematically searched for English language with observational study designs for the research on resilience and childhood maltreatment. Systematic review and qualitative approaches were used to synthesize the results. Study quality and heterogeneity were also examined. Initial screening of titles and abstracts resulted in 247 papers being reviewed. A total of 85 articles met eligibility criteria of this review. Most of these studies had low or middle study quality. There were two subgroups of studies reviewed: (1) 11 studies examined whether resilience protected against the negative consequence of childhood maltreatment, and, (2) 75 studies explored what protective factor was associated with a kind of adaptive functioning. Although the conceptualization of resilience significantly varied from study to study, protective factors associated with resilience at individual, familial, and societal levels reduced the likelihood of negative consequences of childhood maltreatment. Negative consequences following childhood maltreatment can be prevented or moderated if protective factors are provided in time. Future research needs to address the conceptualization issue of resilience. Public and population mental health preventions should focus on early childhood and apply preventive strategies as early as possible. Cost-effective studies should be considered in the evaluation of resilience prevention program.

  17. Sexual possibility situations and sexual behaviors among young adolescents: the moderating role of protective factors.

    PubMed

    DiLorio, Colleen; Dudley, William N; Soet, Johanna E; McCarty, Frances

    2004-12-01

    To examine sexual possibility situations (SPS) and protective practices associated with involvement in intimate sexual behaviors and the initiation of sexual intercourse among young adolescents and to determine if protective factors moderate the relationship between SPS and sexual behaviors. Data for these analyses were obtained from the baseline assessment for adolescents conducted as part of an HIV prevention study called "Keepin' it R.E.A.L.!" The study was conducted with a community-based organization (CBO) in an urban area serving a predominantly African-American population. In addition to items assessing SPS, intimate sexual behaviors, and initiation of sexual intercourse, adolescents provided information on the following protective factors: educational goals, self-concept, future time perspective, orientation to health, self-efficacy, outcome expectations, parenting, communication, values, and prosocial activities. Background personal information, including age and gender, was also collected. The analyses were conducted on data from 491 predominantly African-American adolescents, 61% of whom were boys. Variables were combined to form SPS and protective indices that were used in the first set of regression analyses. In a second set of analyses, the indices were unbundled and individual variables were entered into regression analyses. Both SPS and protective indices explained significant portions of variance in intimate sexual behaviors, and the SPS index explained a significant portion of variance in the initiation of sexual intercourse. The regression analysis using the unbundled SPS and protective factors revealed the following statistically significant predictors for intimate sexual behaviors: age, gender, time alone with groups of peers, time alone with a member of the opposite sex, behavior self-concept, popularity self-concept, self-efficacy for abstinence, outcome expectations for abstinence, parental control, personal values, and parental values. A

  18. Differential growth factor control of bone formation through osteoprogenitor differentiation.

    PubMed

    Chaudhary, L R; Hofmeister, A M; Hruska, K A

    2004-03-01

    The osteogenic factors bone morphogenetic protein (BMP-7), platelet-derived growth factor (PDGF)-BB, and fibroblast growth factor (FGF-2) regulate the recruitment of osteoprogenitor cells and their proliferation and differentiation into mature osteoblasts. However, their mechanisms of action on osteoprogenitor cell growth, differentiation, and bone mineralization remain unclear. Here, we tested the hypothesis that these osteogenic agents were capable of regulating osteoblast differentiation and bone formation in vitro. Normal human bone marrow stromal (HBMS) cells were treated with BMP-7 (40 ng ml(-1)), PDGF-BB (20 ng ml(-1)), FGF-2 (20 ng ml(-1)), or FGF-2 plus BMP-7 for 28 days in a serum-containing medium with 10 mM beta-glycerophosphate and 50 microg ml(-1) ascorbic acid. BMP-7 stimulated a morphological change to cuboidal-shaped cells, increased alkaline phosphatase (ALKP) activity, bone sialoprotein (BSP) gene expression, and alizarin red S positive nodule formation. Hydroxyapatite (HA) crystal deposition in the nodules was demonstrated by Fourier transform infrared (FTIR) spectroscopy only in BMP-7- and dexamethasone (DEX)-treated cells. DEX-treated cells appeared elongated and fibroblast-like compared to BMP-7-treated cells. FGF-2 did not stimulate ALKP, and cell morphology was dystrophic. PDGF-BB had little or no effect on ALKP activity and biomineralization. Alizarin Red S staining of cells and calcium assay indicated that BMP-7, DEX, and FGF-2 enhanced calcium mineral deposition, but FTIR spectroscopic analysis demonstrated no formation of HA similar to human bone in control, PDGF-BB-, and FGF-2-treated samples. Thus, FGF-2 stimulated amorphous octacalcium phosphate mineral deposition that failed to mature into HA. Interestingly, FGF-2 abrogated BMP-7-induced ALKP activity and HA formation. Results demonstrate that BMP-7 was competent as a sole factor in the differentiation of human bone marrow stromal cells to bone-forming osteoblasts confirmed by FTIR

  19. The statistical mechanics of complex signaling networks: nerve growth factor signaling

    NASA Astrophysics Data System (ADS)

    Brown, K. S.; Hill, C. C.; Calero, G. A.; Myers, C. R.; Lee, K. H.; Sethna, J. P.; Cerione, R. A.

    2004-10-01

    The inherent complexity of cellular signaling networks and their importance to a wide range of cellular functions necessitates the development of modeling methods that can be applied toward making predictions and highlighting the appropriate experiments to test our understanding of how these systems are designed and function. We use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. A key difficulty with signaling models is that, while significant effort is being made to experimentally measure the rate constants for individual steps in these networks, many of the parameters required to describe their behavior remain unknown or at best represent estimates. To establish the usefulness of our approach, we have applied our methods toward modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. Through a network of intermediate signaling proteins, each of these growth factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical profiles. Using our modeling approach, we are able to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems that we call 'sloppiness.'

  20. Novel targeted approaches to treating biliary tract cancer: the dual epidermal growth factor receptor and ErbB-2 tyrosine kinase inhibitor NVP-AEE788 is more efficient than the epidermal growth factor receptor inhibitors gefitinib and erlotinib.

    PubMed

    Wiedmann, Marcus; Feisthammel, Jürgen; Blüthner, Thilo; Tannapfel, Andrea; Kamenz, Thomas; Kluge, Annett; Mössner, Joachim; Caca, Karel

    2006-08-01

    Aberrant activation of the epidermal growth factor receptor is frequently observed in neoplasia, notably in tumors of epithelial origin. Attempts to treat such tumors with epidermal growth factor receptor antagonists resulted in remarkable success in recent studies. Little is known, however, about the efficacy of this therapy in biliary tract cancer. Protein expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 was assessed in seven human biliary tract cancer cell lines by immunoblotting. In addition, histological sections from 19 patients with extrahepatic cholangiocarcinoma were analyzed for epidermal growth factor receptor, ErbB-2 and vascular endothelial growth factor receptor-2 expression by immunohistochemistry. Moreover, we sequenced the cDNA products representing the entire epidermal growth factor receptor coding region of the seven cell lines, and searched for genomic epidermal growth factor receptor amplifications and polysomy by fluorescence in-situ hybridization. Cell growth inhibition by gefitinib erlotinib and NVP-AEE788 was studied in vitro by automated cell counting. In addition, the anti-tumoral effect of erlotinib and NVP-AEE788 was studied in a chimeric mouse model. The anti-tumoral drug mechanism in this model was assessed by MIB-1 antibody staining, terminal deoxynucleotidyl transfer-mediated dUTP nick end-labelling assay, von Willebrand factor staining, and immunoblotting for p-p42/44 (p-Erk1/2, p-MAPK) and p-AKT. Immunoblotting revealed expression of epidermal growth factor receptor, ErbB-2, and vascular endothelial growth factor receptor-2 in all biliary tract cancer cell lines. EGFR was detectable in six of 19 (32%) extrahepatic human cholangiocarcinoma tissue samples, ErbB-2 in 16 of 19 (84%), and vascular endothelial growth factor receptor-2 in nine of 19 (47%). Neither epidermal growth factor receptor mutations nor amplifications or polysomy were found in the seven biliary tract cancer

  1. A high ratio of insulin-like growth factor II/insulin-like growth factor binding protein 2 messenger RNA as a marker for anaplasia in meningiomas.

    PubMed

    Nordqvist, A C; Peyrard, M; Pettersson, H; Mathiesen, T; Collins, V P; Dumanski, J P; Schalling, M

    1997-07-01

    Insulin-like growth factors (IGFs) I and II have been implicated as autocrine or paracrine growth promoters. These growth factors bind to specific receptors, and the response is modulated by interaction with IGF-binding proteins (IGFBPs). We observed a strong correlation between anaplastic/atypical histopathology and a high IGF-II/IGFBP-2 mRNA ratio in a set of 68 sporadic meningiomas. A strong correlation was also found between clinical outcome and IGF-II/IGFBP-2 ratio, whereas previously used histochemical markers were less correlated to outcome. We suggest that a high IGF-II/IGFBP-2 mRNA ratio may be a sign of biologically aggressive behavior in meningiomas that can influence treatment strategies. We propose that low IGFBP-2 levels in combination with increased levels of IGF-II would result in more free IGF-II and consequently greater stimulation of proliferation.

  2. Can insulin-like growth factor 1 (IGF-1), IGF-1 receptor connective tissue growth factor and Ki-67 labelling index have a prognostic role in pulmonary carcinoids?

    PubMed

    Kanakis, Georgios A; Grimelius, Lars; Papaioannou, Dimitrios; Kaltsas, Gregory; Tsolakis, Apostolos V

    2018-04-27

    Altered expression of Insulin-like Growth Factor-1 (IGF-1), its receptor (IGF-1R), Connective Tissue Growth Factor (CTGF) and Hypoxia Inducible Factor-1 (HIF-1), has been implicated in tumorigenesis. So far, these factors have not been studied systematically in Pulmonary Carcinoids (PCs). To examine IGF-1, IGF-1R, CTGF and HIF-1 expression in PCs, and assess their prognostic value over established factors. Retrospective study of 121 PCs (104 Typical and 17 Atypical). The expression of growth factors was studied immunohistochemically and tumors were considered positive if immunoreactivity appeared in >50% of cells. All studied parameters were expressed in the majority of tumors (IGF-1, IGF-1R, CTGF and HIF-1, in 78.5%, 67%, 72% and 78%, respectively). Their expression tended to be more frequent in TCs and in tumors with Ki-67≤2% (significant only for HIF-1; 82 vs. 53%; p=0.023 and 83 vs. 63%; p=0.025 respectively). CTGF was the only factor correlated with more extensive disease (larger size; presence of lymph node and distant metastases). According to logistic regression analysis, only advanced age, Ki-67≥3.4% and lymph node involvement could predict the development of distant metastases. IGF-1, IGF-1R, CTGF and HIF-1 are avidly expressed in PCs; however, their presence did not appear to be of statistically significant value over established prognostic factors.

  3. Drought Induces Distinct Growth Response, Protection, and Recovery Mechanisms in the Maize Leaf Growth Zone1[OPEN

    PubMed Central

    Avramova, Viktoriya; AbdElgawad, Hamada; Zhang, Zhengfeng; Fotschki, Bartosz; Casadevall, Romina; Vergauwen, Lucia; Knapen, Dries; Taleisnik, Edith; Guisez, Yves; Asard, Han; Beemster, Gerrit T.S.

    2015-01-01

    Drought is the most important crop yield-limiting factor, and detailed knowledge of its impact on plant growth regulation is crucial. The maize (Zea mays) leaf growth zone offers unique possibilities for studying the spatiotemporal regulation of developmental processes by transcriptional analyses and methods that require more material, such as metabolite and enzyme activity measurements. By means of a kinematic analysis, we show that drought inhibits maize leaf growth by inhibiting cell division in the meristem and cell expansion in the elongation zone. Through a microarray study, we observed the down-regulation of 32 of the 54 cell cycle genes, providing a basis for the inhibited cell division. We also found evidence for an up-regulation of the photosynthetic machinery and the antioxidant and redox systems. This was confirmed by increased chlorophyll content in mature cells and increased activity of antioxidant enzymes and metabolite levels across the growth zone, respectively. We demonstrate the functional significance of the identified transcriptional reprogramming by showing that increasing the antioxidant capacity in the proliferation zone, by overexpression of the Arabidopsis (Arabidopsis thaliana) iron-superoxide dismutase gene, increases leaf growth rate by stimulating cell division. We also show that the increased photosynthetic capacity leads to enhanced photosynthesis upon rewatering, facilitating the often-observed growth compensation. PMID:26297138

  4. ISCHEMIC CENTRAL RETINAL VEIN OCCLUSION IN THE ANTI-VASCULAR ENDOTHELIAL GROWTH FACTOR ERA.

    PubMed

    Tam, Emily K; Golchet, Pamela; Yung, Madeline; DeCroos, Francis C; Spirn, Marc; Lehmann-Clarke, Lydia; Ambresin, Aude; Tsui, Irena

    2018-02-01

    Anti-vascular endothelial growth factor therapy has improved the prognosis for patients with central retinal vein occlusion (CRVO). However, most studies published to date exclude ischemic CRVO. The purpose of this study was to describe the outcome in eyes with ischemic CRVO treated with anti-vascular endothelial growth factor therapy. Thirty-seven patients with ischemic CRVO from 3 centers were followed for at least 6 months. Data on patient demographic, vision status, and anti-vascular endothelial growth factor treatments were collected. Average number of injections during the study period was 5. Younger age was associated with improved vision (P = 0.006). Patients with improved visual outcomes tended to have macular edema as the primary indication for treatment, whereas patients with worse outcomes tended to have neovascularization as the primary indication for treatment. This study highlights significant variability in the use of anti-vascular endothelial growth factor therapy for ischemic CRVO and underscores that eyes with neovascularization tend to have worse visual outcomes.

  5. Mouse Balb/c3T3 cell mutant with low epidermal growth factor receptor activity: induction of stable anchorage-independent growth by transforming growth factor. beta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuratomi, Y.; Ono, M.; Yasutake, C.

    1987-01-01

    A mutant clone (MO-5) was originally isolated as a clone resistant to Na/sup +//K/sup +/ ionophoric antibiotic monensin from mouse Balb/c3T3 cells. MO-5 was found to show low receptor-endocytosis activity for epidermal growth factor (EGF):binding activity for EGF in MO-5 was less than one tenth of that in Balb/c3T3. Anchorage-independent growth of MO-5 was compared to that of Balb/c3T3 when assayed by colony formation capacity in soft agar. Coadministration of EGF and TGF-..beta.. efficiently enhanced anchorage-independent growth of normal rat kidney (NRK) cells, but neither factor alone was competent to promote the anchorage-independent growth. The frequency of colonies appearing inmore » soft agar of MO-5 or Balb/c3T3 was significantly enhanced by TGF-..beta.. while EGF did not further enhance that of MO-5 or Balb/c3T3. Colonies of Balb/c3T3 formed in soft agar in the presence of TGF-..beta.. showed low colony formation capacity in soft agar in the absence of TGF-..beta... Colonies of MO-5 formed by TGF-..beta.. in soft agar, however, showed high colony formation capacity in soft agar in the absence of TGF-..beta... Pretreatment of MO-5 with TGF-..beta.. induced secretion of TGF-..beta..-like activity from the cells, while the treatment of Balb/c3T3 did not induce the secretion of a significant amount of TGF-..beta..-like activity. The loss of EGF-receptor activity in the stable expression and maintenance of the transformed phenotype in MO-5 is discussed.« less

  6. Ligand-Independent Epidermal Growth Factor Receptor Overexpression Correlates with Poor Prognosis in Colorectal Cancer.

    PubMed

    Yun, Sumi; Kwak, Yoonjin; Nam, Soo Kyung; Seo, An Na; Oh, Heung-Kwon; Kim, Duck-Woo; Kang, Sung-Bum; Lee, Hye Seung

    2018-01-17

    Molecular treatments targeting epidermal growth factor receptors (EGFRs) are important strategies for advanced colorectal cancer (CRC). However, clinicopathologic implications of EGFRs and EGFR ligand signaling have not been fully evaluated. We evaluated the expression of EGFR ligands and correlation with their receptors, clinicopathologic factors, and patients' survival with CRC. The expression of EGFR ligands, including heparin binding epidermal growth factor like growth factor (HBEGF), transforming growth factor (TGF), betacellulin, and epidermal growth factor (EGF), were evaluated in 331 consecutive CRC samples using mRNA in situ hybridization (ISH). We also evaluated the expression status of EGFR, human epidermal growth factor receptor 2 (HER2), HER3, and HER4 using immunohistochemistry and/or silver ISH. Unlike low incidences of TGF (38.1%), betacellulin (7.9%), and EGF (2.1%), HBEGF expression was noted in 62.2% of CRC samples. However, the expression of each EGFR ligand did not reveal significant correlations with survival. The combined analyses of EGFR ligands and EGFR expression indicated that the ligands‒/EGFR+ group showed a significant association with the worst disease-free survival (DFS, p=0.018) and overall survival (OS, p=0.005). It was also an independent, unfavorable prognostic factor for DFS (p=0.026) and OS (p=0.007). Additionally, HER4 nuclear expression, regardless of ligand expression, was an independent, favorable prognostic factor for DFS (p=0.034) and OS (p=0.049), by multivariate analysis. Ligand-independent EGFR overexpression was suggested to have a significant prognostic impact; thus, the expression status of EGFR ligands, in addition to EGFR, might be necessary for predicting patients' outcome in CRC.

  7. Emerging growth factor receptor antagonists for the treatment of renal cell carcinoma.

    PubMed

    Zahoor, Haris; Rini, Brian I

    2016-12-01

    The landscape of systemic treatment for metastatic renal cell carcinoma (RCC) has dramatically changed with the introduction of targeted agents including vascular endothelial growth factor (VEGF) inhibitors. Recently, multiple new agents including growth factor receptor antagonists and a checkpoint inhibitor were approved for the treatment of refractory metastatic RCC based on encouraging benefit shown in clinical trials. Areas covered: The background and biological rationale of existing treatment options including a brief discussion of clinical trials which led to their approval, is presented. This is followed by reviewing the limitations of these therapeutic options, medical need to develop new treatments and major goals of ongoing research. We then discuss two recently approved growth factor receptor antagonists i.e. cabozantinib and lenvatinib, and a recently approved checkpoint inhibitor, nivolumab, and issues pertaining to drug development, and future directions in treatment of metastatic RCC. Expert opinion: Recently approved growth factor receptor antagonists have shown encouraging survival benefit but associated drug toxicity is a major issue. Nivolumab, a programmed death 1 (PD-1) checkpoint inhibitor, has similarly shown survival benefit and is well tolerated. With multiple options now available in this patient population, the right sequence of these agents remains to be determined.

  8. The effect of platelet rich fibrin on growth factor levels in urethral repair.

    PubMed

    Soyer, Tutku; Ayva, Şebnem; Boybeyi, Özlem; Aslan, Mustafa Kemal; Çakmak, Murat

    2013-12-01

    Platelet rich fibrin (PRF) is an autologous source of growth factors and promotes wound healing. An experimental study was performed to evaluate the effect of PRF on growth factor levels in urethral repair. Eighteen Wistar albino rats were included in the study. Rats were allocated in three groups (n:6): control (CG), sham (SG), and PRF (PRFG). In SG, a 5 mm vertical incision was performed in the penile urethra and repaired with 10/0 Vicryl® under a microscope. In PRFG, during the urethral repair as described in SG, 1 cc of blood was sampled from each rat and centrifuged for 10 minutes at 2400 rpm. PRF obtained from the centrifugation was placed on the repair site during closure. Penile urethras were sampled 24 hours after PRF application in PRFG and after urethral repair in SG. Transforming growth factor beta receptor (TGF-β-R-CD105), vascular endothelial growth factor (VEGF) and its receptor (VEGF-R), as well as endothelial growth factor receptor (EGFR), were evaluated in subepithelia of the penile skin and urethra. Groups were compared for growth factor levels and growth factor receptor expression with the Kruskal Wallis test. TGF-β-R levels were significantly decreased in SG when compared to CG (p<0.05). In PRFG, TGF-β-R was increased in both subepithelia of penile skin and urethra with respect to SG (p<0.05). When VEGF levels and its receptor expression were compared between SG and PRFG, VEGF levels were found to be increased in penile skin subepithelium, whereas VEGF-R expressions were decreased in urethral subepithelia in PRFG (p<0.05). There was no difference between groups for EGFR levels (p>0.05). Use of PRF after urethral repair increases TGF-β-R and VEGF expressions in urethral tissue. PRF can be considered as an alternative measure to improve the success of urethral repair. © 2013.

  9. Multiple Mechanisms are Responsible for Transactivation of the Epidermal Growth Factor Receptor in Mammary Epithelial Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodland, Karin D.; Bollinger, Nikki; Ippolito, Danielle L.

    2008-11-14

    REVIEW ENTIRE DOCUMENT AT: https://pnlweb.pnl.gov/projects/bsd/ERICA%20Manuscripts%20for%20Review/KD%20Rodland%20D7E80/HMEC_transactivation_ms01_15+Figs.pdf ABSTRACT: Using a single nontransformed strain of human mammary epithelial cells, we found that the ability of multiple growth factors and cytokines to induce ERK phosphorylation was dependent on EGFR activity. These included lysophosphatidic acid (LPA), uridine triphosphate, growth hormone, vascular endothelial growth factor, insulin-like growth factor-1 (IGF-1), and tumor necrosis factoralpha. In contrast, hepatocyte growth factor could stimulate ERK phosphorylation independent of EGFR activity...

  10. A Systemic Approach to Implementing a Protective Factors Framework

    ERIC Educational Resources Information Center

    Parsons, Beverly; Jessup, Patricia; Moore, Marah

    2014-01-01

    The leadership team of the national Quality Improvement Center on early Childhood ventured into the frontiers of deep change in social systems by funding four research projects. The purpose of the research projects was to learn about implementing a protective factors approach with the goal of reducing the likelihood of child abuse and neglect. In…

  11. Anatomy of a bottleneck: diagnosing factors limiting population growth in the Puerto Rican parrot

    USGS Publications Warehouse

    Beissenger, S.R.; Wunderle, J.M.; Meyers, J.M.; Saether, B.-E.; Engen, S.

    2008-01-01

    The relative importance of genetic, demographic, environmental, and catastrophic processes that maintain population bottlenecks has received little consideration. We evaluate the role of these factors in maintaining the Puerto Rican Parrot (Amazona vittata) in a prolonged bottleneck from 1973 through 2000 despite intensive conservation efforts. We first conduct a risk analysis, then examine evidence for the importance of specific processes maintaining the bottleneck using the multiple competing hypotheses approach, and finally integrate these results through a sensitivity analysis of a demographic model using life-stage simulation analysis (LSA) to determine the relative importance of genetic, demographic, environmental, and catastrophic processes on population growth. Annual population growth has been slow and variable (1.0 6 5.2 parrots per year, or an average k?1.05 6 0.19) from 16 parrots (1973) to a high of 40-42 birds (1997-1998). A risk analysis based on population prediction intervals (PPI) indicates great risk and large uncertainty, with a range of 22?83 birds in the 90% PPI only five years into the future. Four primary factors (reduced hatching success due to inbreeding, failure of adults to nest, nest failure due to nongenetic causes, and reduced survival of adults and juveniles) were responsible for maintaining the bottleneck. Egghatchability rates were low (70.6% per egg and 76.8% per pair), and hatchability increased after mate changes, suggesting inbreeding effects. Only an average of 34% of the population nested annually, which was well below the percentage of adults that should have reached an age of first breeding (41-56%). This chronic failure to nest appears to have been caused primarily by environmental and/or behavioral factors, and not by nest-site scarcity or a skewed sex ratio. Nest failure rates from nongenetic causes (i.e., predation, parasitism, and wet cavities) were low (29%) due to active management (protecting nests and fostering

  12. Pressure and protective factors influencing nursing students' self-esteem: A content analysis study.

    PubMed

    Valizadeh, Leila; Zamanzadeh, Vahid; Gargari, Rahim Badri; Ghahramanian, Akram; Tabrizi, Faranak Jabbarzadeh; Keogh, Brian

    2016-01-01

    A review of the literature shows that the range of self-esteem in nursing students ranges from normal to low. It is hypothesized that different contextual factors could affect levels of self-esteem. The main aim of this study was to explore these factors from the viewpoint of Iranian nursing students using a qualitative approach. A qualitative content analysis study. Faculty of Nursing and Midwifery, 2014. Fourteen student nurses and two qualified nurses. This study has been applied to various depths of interpretation. Semi-structured interviews were used to collect the data. Fourteen student nurses and two qualified nurses were interviewed. Two main themes of the "pressure factors" with subthemes: low self-efficacy, sense of triviality, ineffective instructor-student interaction, low self-confidence and "protective factors" with subthemes: knowledge acquisition, mirror of valuability, professional autonomy, religious beliefs, and choosing the nursing field with interest was extracted in this study. Results showed that these themes have interaction with each other like a seesaw, as pressure factors decrease, the effect of protective factors on the self-esteem are increased. Nurse educators not only should try to improve the students' skills and knowledge, but should also try to enhance the protective factors and decrease pressure factors by enhancing the nursing students' feeling of being important, using participatory teaching methods, considering students' feedback, and attempting to improve facilities at the clinics are also recommended. Copyright © 2015. Published by Elsevier Ltd.

  13. Disordered Eating Behaviors Among Transgender Youth: Probability Profiles from Risk and Protective Factors

    PubMed Central

    Watson, Ryan J.; Veale, Jaimie F.; Saewyc, Elizabeth M.

    2017-01-01

    Purpose Research has documented high rates of disordered eating for lesbian, gay, and bisexual youth, but prevalence and patterns of disordered eating among transgender youth remain unexplored. This is despite unique challenges faced by this group, including gender-related body image and the use of hormones. We explore the relationship between disordered eating and risk and protective factors for transgender youth. Methods An online survey of 923 transgender youth (aged 14–25) across Canada was conducted, primarily using measures from existing youth health surveys. Analyses were stratified by gender identity and included logistic regressions with probability profiles to illustrate combinations of risk and protective factors for eating disordered behaviors. Results Enacted stigma (the higher rates of harassment and discrimination sexual minority youth experience) was linked to higher odds of reported past year binge eating and fasting or vomiting to lose weight, while protective factors, including family connectedness, school connectedness, caring friends, and social support, were linked to lower odds of past year disordered eating. Youth with the highest levels of enacted stigma and no protective factors had high probabilities of past year eating disordered behaviors. Conclusions Our study found high prevalence of disorders. Risk for these behaviors was linked to stigma and violence exposure, but offset by social supports. Health professionals should assess transgender youth for disordered eating behaviors and supportive resources. PMID:27862124

  14. [Child maltreatment prevention: the pediatrician's function. Part 1: Overview, evidence, risk factors, protective factors and triggers].

    PubMed

    Mouesca, Juan P

    2015-12-01

    Child maltreatment is a common and serious problem. It harms children in the short and long term, affecting their future health and their offspring. Primary, secondary, tertiary and quaternary preventing interventions target on child abuse are described. Evidence-based recommendations on child abuse prevention and examples of researches with proven efficacy are detailed. Risk factors, protective factors and triggers of child abuse and their relationships are described.

  15. PLACENTAL GROWTH FACTOR ADMINISTRATION ABOLISHES PLACENTAL ISCHEMIA-INDUCED HYPERTENSION

    PubMed Central

    Spradley, Frank T.; Tan, Adelene Y.; Joo, Woo S.; Daniels, Garrett; Kussie, Paul; Karumanchi, S. Ananth; Granger, Joey P.

    2016-01-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia as placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and VEGF are both natural ligands for sFlt-1, VEGF also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to four groups: normal pregnant (NP) or RUPP ± infusion of rhPlGF (180 μg/kg/day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than NP rats. Infusion of rhPlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that rhPlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. PMID:26831193

  16. Growth factor-induced morphological, physiological and molecular characteristics in cerebral endothelial cells.

    PubMed

    Krizbai, I A; Bauer, H; Amberger, A; Hennig, B; Szabó, H; Fuchs, R; Bauer, H C

    2000-09-01

    The capacity of vascular endothelial cells to modulate their phenotype in response to changes in environmental conditions is one of the most important characteristics of this cell type. Since different growth factors may play an important signalling role in this adaptive process we have investigated the effect of endothelial cell growth factor (ECGF) on morphological, physiological and molecular characteristics of cerebral endothelial cells (CECs). CECs grown in the presence of ECGF and its cofactor heparin exhibit an epithelial-like morphology (type I CECs). Upon removal of growth factors, CECs develop an elongated spindle-like shape (type II CECs) which is accompanied by the reorganization of actin filaments and the induction of alpha-actin expression. Since one of the most important functions of CECs is the creation of a selective diffusion barrier between the blood and the central nervous system (CNS), we have studied the expression of junction-related proteins in both cell types. We have found that removal of growth factors from endothelial cultures leads to the downregulation of cadherin and occludin protein levels. The loss of junctional proteins was accompanied by a significant increase in the migratory activity and an altered protease activity profile of the cells. TGF-beta1 suppressed endothelial migration in all experiments. Our data provide evidence to suggest that particular endothelial functions are largely controlled by the presence of growth factors. The differences in adhesiveness and migration may play a role in important physiological and pathological processes of endothelial cells such as vasculogenesis or tumor progression.

  17. Cycles of Ubiquitination and Deubiquitination Critically Regulate Growth Factor-Mediated Activation of Akt Signaling

    PubMed Central

    Yang, Wei-Lei; Jin, Guoxiang; Li, Chien-Feng; Jeong, Yun Seong; Moten, Asad; Xu, Dazhi; Feng, Zizhen; Chen, Wei; Cai, Zhen; Darnay, Bryant; Gu, Wei; Lin, Hui-Kuan

    2013-01-01

    K63-linked ubiquitination of Akt is a posttranslational modification that plays a critical role in growth factor-mediated membrane recruitment and activation of Akt. Although E3 ligases involved in growth factor-induced Akt ubiquitination have been defined, the deubiquitinating enzyme (DUB) that triggers deubiquitination of Akt and the function of Akt deubiquitination remain largely unclear. Here, we showed that CYLD was a DUB for Akt and suppressed growth factor-mediated Akt ubiquitination and activation. CYLD directly removed ubiquitin moieties on Akt under serum-starved conditions. CYLD dissociated from Akt upon growth factor stimulation, thereby allowing E3 ligases to induce ubiquitination and activation of Akt. CYLD deficiency also promoted cancer cell proliferation, survival, glucose uptake and growth of prostate tumors. Our findings reveal the crucial role of cycles of ubiquitination and deubiquitination of Akt in its membrane recruitment and activation, and further identifies CYLD as a molecular switch for these processes. PMID:23300340

  18. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates.

    PubMed

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2015-12-01

    This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Biological properties of human skeletal myoblasts genetically modified to simultaneously overexpress the pro-angiogenic factors vascular endothelial growth factor-A and fibroblast growth factor-4.

    PubMed

    Zimna, A; Janeczek, A; Rozwadowska, N; Fraczek, M; Kucharzewska, P; Rucinski, M; Mietkiewski, T; Kurpisz, M

    2014-04-01

    Myocardial infarction results in cardiomyocyte loss and may eventually lead to cardiac failure. Skeletal myoblast transplantation into the scar area may compensate for this observed cell loss by strengthening the weakened myocardium and inducing myogenesis. Moreover, skeletal myoblasts may serve as potential transgene carriers for the myocardium (i.e., delivering pro-angiogenic factors, which may potentially improve blood perfusion in infarcted heart). We examined the influence of the simultaneous overexpression of two potent pro-angiogenic factors, fibroblast growth factor-4 (FGF-4) and vascular endothelial growth factor (VEGF), on human primary myoblast proliferation, cell cycle, resistance to hypoxic stress conditions and myogenic gene expression, as well as the induction of pro-angiogenic activities. We used a bicistronic plasmid vector encoding two factors introduced via an efficient myoblast electroporation method. The levels of overexpressed proteins were assessed, and their functionality at capillary formation was evaluated. This combined approach led to a high level of non-viral transient overexpression of both pro-angiogenic proteins, which proved to be potent regulators of blood vessel development assayed in capillary formation tests. We demonstrated in in vitro conditions that the transfection of human skeletal myoblasts with both FGF-4 and VEGF did not affect their basic biological properties such as the cell cycle, proliferation or expression of myogenic lineage-specific genes, and the modified cells adapted to oxidative stress conditions. Overall, the results obtained suggest that the applied combined approach with the use of two pro-angiogenic genes overexpressed in skeletal muscle stem cells may be an interesting alternative for the effective therapy of myocardial infarction in animal models and/or prospective clinical trials.

  20. Selenoprotein W controls epidermal growth factor receptor surface expression, activation and degradation via receptor ubiquitination

    USDA-ARS?s Scientific Manuscript database

    Epidermal growth factor (EGF) receptor (EGFR) is the founding member of the ErbB family of growth factor receptors that modulate a complex network of intracellular signaling pathways controlling growth, proliferation and differentiation. Selenoprotein W (SEPW1) is a diet-regulated, highly conserved...

  1. Suicidal thinking and behavior among youth involved in verbal and social bullying: risk and protective factors.

    PubMed

    Borowsky, Iris Wagman; Taliaferro, Lindsay A; McMorris, Barbara J

    2013-07-01

    To identify risk and protective factors associated with thinking about or attempting suicide among youth involved in verbal and social bullying. We analyzed data on 130,908 students in the sixth, ninth, and twelfth grades responding to the 2010 Minnesota Student Survey. Among students involved in frequent bullying (once a week or more during the past 30 days), we compared those who did and did not report suicidal ideation or a suicide attempt during the past year. Separate analyses were conducted for perpetrators only, victims only, and bully-victims. Overall, 6.1% of students reported frequent perpetration only, 9.6% frequent victimization only, and 3.1% both. Suicidal thinking or a suicide attempt was reported by 22% of perpetrators only, 29% of victims only, and 38% of bully-victims. In logistic regression models controlling for demographic and other risk and protective factors, a history of self-injury and emotional distress were risk factors that cross-cut the three bullying involvement groups. Physical abuse, sexual abuse, a mental health problem, and running away from home were additional risk factors for perpetrators only and victims only. Parent connectedness was a cross-cutting protective factor, whereas stronger perceived caring by friends and by nonparental adults were additional protective factors for some groups. A range of risk and protective factors were associated with suicidal ideation and a suicide attempt among youth involved in verbal and social bullying. Findings may assist in identifying youth at increased risk for suicidal thinking and behavior and in promoting key protective factors. Copyright © 2013 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  2. Risk and protective factors associated with adolescent girls' substance use: Data from a nationwide Facebook sample.

    PubMed

    Schwinn, Traci M; Schinke, Steven P; Hopkins, Jessica; Thom, Bridgette

    2016-01-01

    Despite overall reductions in teenage substance use, adolescent girls' rates of substance use remain unacceptably high. This article examines whether girls' substance use is associated with general risk and protective factors (goal setting, problem solving, refusal skills, peer use, and self-efficacy) and gender-specific risk and protective factors (communication style, coping skills, self-esteem, body image, perceived stress, anxiety, and depression). Cross-sectional data were collected in 2013 via online surveys from a nationwide sample of adolescent girls (N = 788), aged 13 and 14 years, who were recruited through Facebook. In multivariate analyses, controlling for correlates of adolescent substance use, 11 of the 13 general and gender-specific risk and protective factors were consistently associated with past-month alcohol, cigarette, and other drug use in the expected direction; past-month marijuana use was associated with 8 of the 13 factors. Refusal skills, peer use, coping, and depressive mood were most consistently and strongly associated with substance use. Substance abuse prevention programs targeting adolescent girls should focus on such general risk and protective factors as problem solving, refusal skills, peer influences, and self-efficacy, as well as such gender-specific risk and protective factors as communication style, coping, self-esteem, body image, perceived stress, and mood management.

  3. Phytoplankton growth and PSII efficiency sensitivity to a glyphosate-based herbicide (Factor 540®).

    PubMed

    Smedbol, Élise; Lucotte, Marc; Labrecque, Michel; Lepage, Laurent; Juneau, Philippe

    2017-11-01

    The use of glyphosate-based herbicides in agriculture has increased steadily since the mid 90's and there is now evidence of glyphosate leaching and contamination of aquatic ecosystems. The aim of this study was to evaluate the effects of a glyphosate-based herbicide (Factor 540 ® ) on growth and photosynthetic capacity of algae and cyanobacteria. Six algal and three cyanobacterial species/strains, of three different taxonomic groups, were exposed to five glyphosate concentrations (10, 50, 100, 500 and 1000μgl -1 ) during 48h. All species have significant growth inhibition at concentrations varying between 50 and 500μgl -1 . The photosynthetic response, after glyphosate exposure, varied among species, but a general pattern has emerged. There was an increase in the amount of photons absorbed (ABS/RC), in dissipated (DI O /RC) and trapped (TR O /RC) energy in the photosystem II reaction centers, along with a decreased of the maximum photosystem II quantum yield (F V /F M ) and electron transport per reaction center (ET O /RC). The EC 50 and LOEC values for growth and photosynthesis were calculated and established that growth was the most affected parameter by glyphosate-based herbicide, while parameter TR O /RC was the least affected. All species showed reduced growth at glyphosate concentrations lower than the Canadian standard for the protection of aquatic life, set at 800μgl -1 or the American aquatic life benchmark for acute toxicity in non vascular plants of 12 100μgl -1 questioning the validity of these thresholds in assessing the risks related to the presence of glyphosate and glyphosate-based herbicides in aquatic systems. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  4. Expression of basic fibroblast growth factor mRNA in benign prostatic hyperplasia and prostatic carcinoma.

    PubMed

    Mydlo, J H; Michaeli, J; Heston, W D; Fair, W R

    1988-01-01

    In our previous work we demonstrated that prostate-derived growth factor (PrGF) is homologous to basic fibroblast growth factor (bFGF), not acidic fibroblast growth factor (aFGF). Using Northern blot analysis we now show that the messenger RNA for bFGF but not aFGF is expressed in benign prostatic hyperplastic (BPH) tissue as well as in carcinoma of the prostate (CAP). This not only corroborates our previous results, but suggests that PrGF is produced locally and not merely stored in the prostate. The demonstration of local production of bFGF by prostate tissue may indicate that this growth factor plays a role, either alone or in conjunction with other factors, in the etiology of benign hyperplasia or prostatic cancer.

  5. Circulating growth factors data associated with insulin secretagogue use in women with incident breast cancer.

    PubMed

    Wintrob, Zachary A P; Hammel, Jeffrey P; Nimako, George K; Gaile, Dan P; Forrest, Alan; Ceacareanu, Alice C

    2017-04-01

    Oral drugs stimulating insulin production may impact growth factor levels. The data presented shows the relationship between pre-existing insulin secretagogues use, growth factor profiles at the time of breast cancer diagnosis and subsequent cancer outcomes in women diagnosed with breast cancer and type 2 diabetes mellitus. A Pearson correlation analysis evaluating the relationship between growth factors stratified by diabetes pharmacotherapy and controls is also provided.

  6. Steroid hormone and epidermal growth factor receptors in meningiomas.

    PubMed

    Horsfall, D J; Goldsmith, K G; Ricciardelli, C; Skinner, J M; Tilley, W D; Marshall, V R

    1989-11-01

    A prospective study of steroid hormone and epidermal growth factor receptor expression in 57 meningiomas is presented. Scatchard analysis of radioligand binding identified 20% of meningiomas as expressing classical oestrogen receptors (ER) at levels below that normally accepted for positivity, the remainder being negative. ER could not be visualized in any meningioma using immunocytochemistry. Alternatively, 74% of meningiomas demonstrated the presence of progesterone receptors (PR) by Scatchard analysis, the specificity of which could not be attributed to glucocorticoid or androgen receptors. Confirmation of classical PR presence was determined by immunocytochemical staining. The presence of epidermal growth factor receptor (EGFR) was demonstrated in 100% of meningiomas using immunocytochemical staining. These data are reviewed in the context of previously reported results and are discussed in relation to the potential for medical therapy as an adjunct to surgery.

  7. Idiopathic pulmonary fibrosis (IPF) signaling pathways and protective roles of melatonin.

    PubMed

    Hosseinzadeh, Azam; Javad-Moosavi, Seyed Ali; Reiter, Russel J; Hemati, Karim; Ghaznavi, Habib; Mehrzadi, Saeed

    2018-05-15

    Idiopathic pulmonary fibrosis (IPF) is characterized by the progressive loss of lung function due to tissue scarring. A variety of pro-inflammatory and pro-fibrogenic factors including interleukin‑17A, transforming growth factor β, Wnt/β‑catenin, vascular endothelial growth factor, platelet-derived growth factor, fibroblast growth factors, endotelin‑1, renin angiotensin system and impaired caveolin‑1 function are involved in the IPF pathogenesis. Current therapies for IPF have some limitations and this highlights the need for effective therapeutic agents to treat this fatal disease. Melatonin and its metabolites are broad-spectrum antioxidants that not only remove reactive oxygen and nitrogen species by radical scavenging but also up-regulate the expression and activity of endogenous antioxidants. Via these actions, melatonin and its metabolites modulate a variety of molecular pathways in different pathophysiological conditions. Herein, we review the signaling pathways involved in the pathophysiology of IPF and the potentially protective effects of melatonin on these pathways. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Epidermal growth factor receptor expression is related to post-mitotic events in cerebellar development: regulation by thyroid hormone.

    PubMed

    Carrasco, Emilce; Blum, Mariann; Weickert, Cynthia Shannon; Casper, Diana

    2003-01-10

    It has been established that thyroid hormone and neurotrophic factors both orchestrate developmental events in the brain. However, it is not clear how these two influences are related. In this study, we investigated the effects of thyroid hormone on cerebellar development and the coincident expression of transforming growth factor-alpha (TGF-alpha), a ligand in the epidermal growth factor (EGF) family, and the epidermal growth factor receptor (EGFR). Profiles of thyroid hormone expression were measured in postnatal animals and were found to peak at postnatal day 15 (P15). These levels dropped below detectable levels when mice were made hypothyroid with propylthiouracil (PTU). TGF-alpha and EGFR expression, as determined by RNAse protection assay, was maximal at P6 in normal animals, but remained low in hypothyroid animals, suggesting that thyroid hormone was responsible for their induction. In situ hybridization and immunohistochemical analysis of EGFR expression revealed that this receptor was present on granule cells within the inner zone of the external granule cell layer (EGL), suggesting that EGFR-ligands were not inducing granule cell proliferation. The persistence of EGFR expression on migrating granule cells and subsequent down-regulation of expression in the internal granule cell layer (IGL) implicates a role for EGFR-ligands in differentiation and/or migration. In hypothyroid animals, we observed a delayed progression of granule cell migration, consistent with the persistence of EGFR labeling in the EGL, and in the 'pile-up' of labeled cells at the interface between the molecular layer and the Purkinje cell layer. Taken together, these results implicate thyroid hormone in the coordinated expression of TGF-alpha and EGFR, which are positioned to play a role in post-mitotic developmental events in the cerebellum.

  9. Beyond Correlates: A Review of Risk and Protective Factors for Adolescent Dating Violence Perpetration

    PubMed Central

    Vagi, Kevin J.; Rothman, Emily; Latzman, Natasha E.; Tharp, Andra Teten; Hall, Diane M.; Breiding, Matthew J.

    2013-01-01

    Dating violence is a serious public health problem. In recent years, the U.S. Centers for Disease Control and Prevention (CDC) and other entities have made funding available to community based agencies for dating violence prevention. Practitioners who are tasked with developing dating violence prevention strategies should pay particular attention to risk and protective factors for dating violence perpetration that have been established in longitudinal studies. This has been challenging to date because the scientific literature on the etiology of dating violence is somewhat limited, and because there have been no comprehensive reviews of the literature that clearly distinguish correlates of dating violence perpetration from risk or protective factors that have been established through longitudinal research. This is problematic because prevention programs may then target factors that are merely correlated with dating violence perpetration, and have no causal influence, which could potentially limit the effectiveness of the programs. In this article, we review the literature on risk and protective factors for adolescent dating violence perpetration and highlight those factors for which temporal precedence has been established by one or more studies. This review is intended as a guide for researchers and practitioners as they formulate prevention programs. We reviewed articles published between 2000–2010 that reported on adolescent dating violence perpetration using samples from the United States or Canada. In total, 53 risk factors and six protective factors were identified from 20 studies. Next steps for etiological research in adolescent dating violence are discussed, as well as future directions for prevention program developers. PMID:23385616

  10. Conditioned media from a renal cell carcinoma cell line demonstrates the presence of basic fibroblast growth factor.

    PubMed

    Mydlo, J H; Zajac, J; Macchia, R J

    1993-09-01

    In a previous report, we demonstrated the isolation and purification of a heparin binding growth factor from human renal carcinoma, and suggested that this growth factor may play a role in the neovascularity and growth of the tumor. In this report, we demonstrate that the growth of the renal cell carcinoma cell line RC29 is stimulated by the addition of exogenous fibroblast growth factor (FGF), epidermal growth factor (EGF) and transforming growth factor alpha (TGF alpha). Also, media conditioned by this cell line was able to stimulate growth of the A431 vulvar tumor cell line, known for its high concentration of EGF receptors, 3T3 fibroblasts, human umbilical vein (HUV) cells and RC29 cells. Using heparin-sepharose chromatography and then SDS polyacrylamide gel electrophoresis (PAGE), we were able to demonstrate several proteins in the conditioned media of the RC29 cell line. Using Western blot analysis, we detected that at least one of the proteins expressed in this conditioned media was FGF and that it belongs to the basic, not acidic, family of fibroblast growth factors. These findings suggest that renal tumors may express growth factors that may play a direct role in maintaining their unrestricted proliferation.

  11. Community violence, protective factors, and adolescent mental health: a profile analysis.

    PubMed

    Copeland-Linder, Nikeea; Lambert, Sharon F; Ialongo, Nicholas S

    2010-01-01

    This study examined interrelationships among community violence exposure, protective factors, and mental health in a sample of urban, predominantly African American adolescents (N = 504). Latent Profile Analysis was conducted to identify profiles of adolescents based on a combination of community violence exposure, self-worth, parental monitoring, and parental involvement and to examine whether these profiles differentially predict adolescents' depressive symptoms and aggressive behavior. Three classes were identified-a vulnerable class, a moderate risk/medium protection class, and a moderate risk/high protection class. The classes differentially predicted depressive symptoms but not aggressive behavior for boys and girls. The class with the highest community violence exposure also had the lowest self-worth.

  12. Growth status of children in well-baby outpatient clinics and related factors.

    PubMed

    Çelik, Sercan Bulut; Şahin, Figen; Beyazova, Ufuk; Can, Hüseyin

    2014-06-01

    The aim of this study was to determine the state of growth during follow-up of healthy children and the factors affecting growth. The patient cards of the infants who were born in 2002 and followed up in the well-baby outpatient clinic in Gazi University, Medical Faculty regularly for at least 18 months were examined retrospectively. Their sociodemographic properties including age, education level, occupation of the parents, if the mother was working, caretakers and gender, gestational week, birth weight, birth height and mode of nutrition (breastmilk, formula, cow's milk, period of feeding, etc.) and growth of the babies (month, percentile) were recorded. Number of siblings and ages of the siblings were also recorded and the children with and without growth problems were compared in terms of these properties. It was found that 290 (39.3%) of 739 children who were followed up continued to grow up in the percentile in which they started (normal growth), 188 (25.4%) lost 2 or more percentiles in any month (growth retardation) and 261 (35.3%) lost less than 2 percentiles (decelerated growth). Deceleration/retardation in growth was observed most commonly in the 9(th) month. Deceleration in growth was found in the 6(th) month in 23.6% of the group with deceleration in growth, in the 9(th) month in 50.2%, in the 12(th) month in 15.8% and in the 18(th) month in 3.9%. Growth retardation was found in the 6(th) month in 35.8% of the group with growth retardation, in the 9(th) month in 38.0% and in the 18(th) month in 4.3%. It was found that receiving formula and presence of infection were the main risk factors in terms of deceleration of growth and unemployed mother, the lenght of the total time of breastfeeding and presence of infection were the main risk factors in terms of growth retardation. This study shows the importance of follow-up of growth of children in outpatient clinics for healthy children. It was found that detailed examination and recording of non

  13. Structural Stability of Human Fibroblast Growth Factor-1 Is Essential for Protective Effects Against Radiation-Induced Intestinal Damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, Fumiaki, E-mail: f_naka@nirs.go.jp; Umeda, Sachiko; Yasuda, Takeshi

    2013-02-01

    Purpose: Human fibroblast growth factor-1 (FGF1) has radioprotective effects on the intestine, although its structural instability limits its potential for practical use. Several stable FGF1 mutants were created increasing stability in the order, wild-type FGF1, single mutants (Q40P, S47I, and H93G), Q40P/S47I, and Q40P/S47I/H93G. This study evaluated the contribution of the structural stability of FGF1 to its radioprotective effect. Methods and Materials: Each FGF1 mutant was administered intraperitoneally to BALB/c mice in the absence of heparin 24 h before or after total body irradiation (TBI) with {gamma}-rays at 8-12 Gy. Several radioprotective effects were examined in the jejunum. Results: Q40P/S47I/H93Gmore » could activate all subtypes of FGF receptors in vitro much more strongly than the wild-type without endogenous or exogenous heparin. Preirradiation treatment with Q40P/S47I/H93G significantly increased crypt survival more than wild-type FGF1 after TBI at 10 or 12 Gy, and postirradiation treatment with Q40P/S47I/H93G was effective in promoting crypt survival after TBI at 10, 11, or 12 Gy. In addition, crypt cell proliferation, crypt depth, and epithelial differentiation were significantly promoted by postirradiation treatment with Q40P/S47I/H93G. The level of stability of FGF1 mutants correlated with their mitogenic activities in vitro in the absence of heparin; however, preirradiation treatment with the mutants increased the crypt number to almost the same level as Q40P/S47I/H93G. When given 24 h after TBI at 10 Gy, all FGF1 mutants increased crypt survival more than wild-type FGF1, and Q40P/S47I/H93G had the strongest mitogenic effects in intestinal epithelial cells after radiation damage. Moreover, Q40P/S47I/H93G prolonged mouse survival after TBI because of the repair of intestinal damage. Conclusion: These findings suggest that the structural stability of FGF1 can contribute to the enhancement of protective effects against radiation

  14. 3D axon growth by exogenous electrical stimulus and soluble factors.

    PubMed

    Tang-Schomer, Min D

    2018-01-01

    Axon growth and alignment are fundamental processes during nervous system development and neural regeneration after injury. The present study investigates the effects of exogenous stimulus of electrical signals and soluble factors on axon 3D growth, using a silk protein material-based 3D brain tissue model. Electrical stimulus was delivered via embedded gold wires positioned at the interface of the scaffold region and the center matrix gel-filled region, spanning the axon growth area. This setup delivered applied electrical field directly to growing axons, and the effects were compared to micro-needle assisted local delivery of soluble factors of extracellular (ECM) components and neurotrophins. Dissociated rat cortical neurons were exposed to an alternating field of 80 mV/mm at 0.5 Hz to 2 kHz or soluble factors for up to 4 days, and evaluated by of β III-tubulin immunostaining, confocal imaging and 3D neurite tracing. 0.5-20 Hz were found to promote axon growth, with 2 Hz producing the biggest effect of ∼30% axon length increase compared to control cultures. Delivery of ECM components of laminin and fibronectin resulted significantly greater axon initial length increases compared to neurotrophic factors, such as BDNF, GDNF, NGF and NT3 (all at 1 μM). Though axon lengths under 2 Hz stimulation and LN or FN exposure were statistically similar, significant AC-induced axon alignment was found under all frequencies tested. The effects included perpendicular orientation of axons trespassing an electrode, large populations of aligned axon tracts in parallel to the field direction with a few perpendicularly aligned along the middle point of the EF. These findings are consistent with the hypothesis that an electrode in AC field could act as an alternating cathode that attracts the growing tip of the axon. These results demonstrate the use of alternating electric field stimulation to direct axon 3D length growth and orientation. Our study provides basis

  15. A combined model of human erythropoiesis and granulopoiesis under growth factor and chemotherapy treatment

    PubMed Central

    2014-01-01

    Background Haematotoxicity of conventional chemotherapies often results in delays of treatment or reduction of chemotherapy dose. To ameliorate these side-effects, patients are routinely treated with blood transfusions or haematopoietic growth factors such as erythropoietin (EPO) or granulocyte colony-stimulating factor (G-CSF). For the latter ones, pharmaceutical derivatives are available, which differ in absorption kinetics, pharmacokinetic and -dynamic properties. Due to the complex interaction of cytotoxic effects of chemotherapy and the stimulating effects of different growth factor derivatives, optimal treatment is a non-trivial task. In the past, we developed mathematical models of thrombopoiesis, granulopoiesis and erythropoiesis under chemotherapy and growth-factor applications which can be used to perform clinically relevant predictions regarding the feasibility of chemotherapy schedules and cytopenia prophylaxis with haematopoietic growth factors. However, interactions of lineages and growth-factors were ignored so far. Results To close this gap, we constructed a hybrid model of human granulopoiesis and erythropoiesis under conventional chemotherapy, G-CSF and EPO applications. This was achieved by combining our single lineage models of human erythropoiesis and granulopoiesis with a common stem cell model. G-CSF effects on erythropoiesis were also implemented. Pharmacodynamic models are based on ordinary differential equations describing proliferation and maturation of haematopoietic cells. The system is regulated by feedback loops partly mediated by endogenous and exogenous EPO and G-CSF. Chemotherapy is modelled by depletion of cells. Unknown model parameters were determined by fitting the model predictions to time series data of blood counts and cytokine profiles. Data were extracted from literature or received from cooperating clinical study groups. Our model explains dynamics of mature blood cells and cytokines after growth-factor applications in

  16. Community-Level Effects of Individual and Peer Risk and Protective Factors on Adolescent Substance Use

    ERIC Educational Resources Information Center

    Monahan, Kathryn; Egan, Elizabeth A.; Van Horn, M. Lee; Arthur, Michael; Hawkins, David

    2011-01-01

    The association between community-aggregated levels of individual and peer risk and protective factors and prevalence of adolescent substance use was examined in repeated cross-sectional data among youth in 41 communities ranging in population from 1,578 to 106,221. The association between community levels of these risk and protective factors in…

  17. Cardiac Regeneration using Growth Factors: Advances and Challenges.

    PubMed

    Rebouças, Juliana de Souza; Santos-Magalhães, Nereide Stela; Formiga, Fabio Rocha

    2016-09-01

    Myocardial infarction is the most significant manifestation of ischemic heart disease and is associated with high morbidity and mortality. Novel strategies targeting at regenerating the injured myocardium have been investigated, including gene therapy, cell therapy, and the use of growth factors. Growth factor therapy has aroused interest in cardiovascular medicine because of the regeneration mechanisms induced by these biomolecules, including angiogenesis, extracellular matrix remodeling, cardiomyocyte proliferation, stem-cell recruitment, and others. Together, these mechanisms promote myocardial repair and improvement of the cardiac function. This review aims to address the strategic role of growth factor therapy in cardiac regeneration, considering its innovative and multifactorial character in myocardial repair after ischemic injury. Different issues will be discussed, with emphasis on the regeneration mechanisms as a potential therapeutic resource mediated by growth factors, and the challenges to make these proteins therapeutically viable in the field of cardiology and regenerative medicine. Resumo O infarto do miocárdio representa a manifestação mais significativa da cardiopatia isquêmica e está associado a elevada morbimortalidade. Novas estratégias vêm sendo investigadas com o intuito de regenerar o miocárdio lesionado, incluindo a terapia gênica, a terapia celular e a utilização de fatores de crescimento. A terapia com fatores de crescimento despertou interesse em medicina cardiovascular, devido aos mecanismos de regeneração induzidos por essas biomoléculas, incluindo angiogênese, remodelamento da matriz extracelular, proliferação de cardiomiócitos e recrutamento de células-tronco, dentre outros. Em conjunto, tais mecanismos promovem a reparação do miocárdio e a melhora da função cardíaca. Esta revisão pretende abordar o papel estratégico da terapia, com fatores de crescimento, para a regeneração cardíaca, considerando seu car

  18. Growth in Adolescent Self-Regulation and Impact on Sexual Risk-Taking: A Curve-of-Factors Analysis.

    PubMed

    Crandall, AliceAnn; Magnusson, Brianna M; Novilla, M Lelinneth B

    2018-04-01

    Adolescent self-regulation is increasingly seen as an important predictor of sexual risk-taking behaviors, but little is understood about how changes in self-regulation affect later sexual risk-taking. Family financial stress may affect the development of self-regulation and later engagement in sexual risk-taking. We examined whether family financial stress influences self-regulation in early adolescence (age 13) and growth in self-regulation throughout adolescence (from age 13-17 years). We then assessed the effects of family financial stress, baseline self-regulation, and the development of self-regulation on adolescent sexual risk-taking behaviors at age 18 years. Using a curve-of-factors model, we examined these relationships in a 6-year longitudinal study of 470 adolescents (52% female) and their parents from a large northwestern city in the United States. Results indicated that family financial stress was negatively associated with baseline self-regulation but not with growth in self-regulation throughout adolescence. Both baseline self-regulation and growth in self-regulation were predictive of decreased likelihood of engaging in sexual risk-taking. Family financial stress was not predictive of later sexual risk-taking. Intervening to support the development of self-regulation in adolescence may be especially protective against later sexual risk-taking.

  19. Subglottic injury, gastric juice, corticosteroids, and peptide growth factors in a porcine model.

    PubMed

    Yellon, R F; Szeremeta, W; Grandis, J R; Diguisseppe, P; Dickman, P S

    1998-06-01

    To study the effects of mucosal injury, gastric juice, and corticosteroids and to determine the presence of peptide growth factors in the subglottic mucosa in a porcine model. Prospective cohort animal study. In this model of subglottic injury, five groups (n = 5 each) of piglets were used. Injury was induced by electrocautery (acute), electrocautery plus repeated saline application (chronic), electrocautery plus repeated gastric juice application (chronic plus gastric juice), or repeated gastric juice application (gastric). Control piglets had normal saline applied repeatedly. Histopathologic findings for the gastric juice group included basal cell hyperplasia (80%), squamous metaplasia (80%), and mucosal ulceration (40%). Control piglets showed squamous metaplasia (80%) but no basilar hyperplasia or ulceration. Immunohistochemistry detected peptide growth factors and epidermal growth factor receptor (EGFR) in all groups. Decreased staining was most frequent in the acute injury group. Quantitative reverse transcriptase polymerase chain reaction (RT-PCR) documented lower expression of EGFR in the gastric juice group (P = .01). These findings suggest that peptide growth factors and EGFR are part of normal subglottic mucosal turnover. Noxious stimuli decrease production of these factors. Gastric juice had adverse effects documented by histopathology and molecular techniques.

  20. Milk-derived or recombinant transforming growth factor-beta has effects on immunological outcomes: a review of evidence from animal experimental studies.

    PubMed

    Oddy, W H; McMahon, R J

    2011-06-01

    Identified factors from milk have been shown to improve health outcomes. One specific factor, transforming growth factor-Beta (TGF)-β, has been identified previously as having the potential to impact on immunological outcomes in the newborn offspring. The primary objective of this review was to examine the published studies that have considered TGF-β in association with immunological outcomes of experimental models. We hypothesized that oral administration of TGF-β (through human milk, cow's milk, infant formula) or recombinant TGF-β delivered via gavage, may down-regulate immune activation in newborn offspring. Animal experimental studies were identified through MEDLINE, CAB Abstracts, Biological Abstracts and Scopus. Selection criteria included well-described animal populations, sample and study design, source of TGF-β, age and immunological outcomes measured and effect size. The findings were summarized temporally in tabular format, giving an overall measure of effect based on the literature available since 1994. Animal experimental studies (n=13) were included in the review to determine an association between maternal TGF-β and immunological outcomes. Overall 92% of these studies (12/13) showed a positive association with TGF-β1 or TGF-β2, demonstrating protection against immunologically related outcomes in early life in an animal model. TGF-β is important in developing and maintaining appropriate immune responses in the offspring. TGF-β delivered orally to neonatal animals provides protection against adverse immunological outcomes, corroborating and supporting findings from human studies. Animal studies provide important clues to the pathogenesis and therapeutics of immune activation and allergy in early childhood. TGF-βs are important growth factors involved in maintaining homeostasis in the intestine, regulating inflammation and allergy development and promoting oral tolerance in infants. Thus, taken as a whole, these and our other findings