Science.gov

Sample records for growth factor release

  1. Release characteristics of encapsulated formulations incorporating plant growth factors.

    PubMed

    Wybraniec, Slawomir; Schwartz, Liliana; Wiesman, Zeev; Markus, Arie; Wolf, David

    2002-05-01

    The release characteristics of encapsulated formulations containing a combination of plant growth factors (PGF)--plant hormones (IBA, paclobutrazol), nutrients (fertilizers, microelements), and fungicide (prochloraz)--were studied. The formulations were prepared by encapsulating the active ingredients in a polyethylene matrix and, in some cases, subsequently coating the product with polyurethane. Dissolution experiments were carried out with both coated and non-coated formulations to determine the sustained release patterns of the active ingredients. The PGF controlled-release systems obtained have been shown to promote development of root systems, vegetative growth, and reproductive development in cuttings, potted plants, or garden plants of various plant species. These beneficial effects are attributable to the lasting and balanced PGF availability provided by these systems. PMID:12009194

  2. Release characteristics of encapsulated formulations incorporating plant growth factors.

    PubMed

    Wybraniec, Slawomir; Schwartz, Liliana; Wiesman, Zeev; Markus, Arie; Wolf, David

    2002-05-01

    The release characteristics of encapsulated formulations containing a combination of plant growth factors (PGF)--plant hormones (IBA, paclobutrazol), nutrients (fertilizers, microelements), and fungicide (prochloraz)--were studied. The formulations were prepared by encapsulating the active ingredients in a polyethylene matrix and, in some cases, subsequently coating the product with polyurethane. Dissolution experiments were carried out with both coated and non-coated formulations to determine the sustained release patterns of the active ingredients. The PGF controlled-release systems obtained have been shown to promote development of root systems, vegetative growth, and reproductive development in cuttings, potted plants, or garden plants of various plant species. These beneficial effects are attributable to the lasting and balanced PGF availability provided by these systems.

  3. Controlled growth factor release from synthetic extracellular matrices

    NASA Astrophysics Data System (ADS)

    Lee, Kuen Yong; Peters, Martin C.; Anderson, Kenneth W.; Mooney, David J.

    2000-12-01

    Polymeric matrices can be used to grow new tissues and organs, and the delivery of growth factors from these matrices is one method to regenerate tissues. A problem with engineering tissues that exist in a mechanically dynamic environment, such as bone, muscle and blood vessels, is that most drug delivery systems have been designed to operate under static conditions. We thought that polymeric matrices, which release growth factors in response to mechanical signals, might provide a new approach to guide tissue formation in mechanically stressed environments. Critical design features for this type of system include the ability to undergo repeated deformation, and a reversible binding of the protein growth factors to polymeric matrices to allow for responses to repeated stimuli. Here we report a model delivery system that can respond to mechanical signalling and upregulate the release of a growth factor to promote blood vessel formation. This approach may find a number of applications, including regeneration and engineering of new tissues and more general drug-delivery applications.

  4. GH responses to growth hormone releasing factor in depression.

    PubMed

    Thomas, R; Beer, R; Harris, B; John, R; Scanlon, M

    1989-01-01

    The growth hormone (GH), thyrotrophin (TSH) and prolactin response to growth hormone releasing factor (GRF) was investigated in 18 patients suffering from major depression with melancholia and in 18 age- and sex-matched normal controls. There was no significant difference in the GH response to GRF stimulation between the patients and controls and in neither subject group was there a demonstrable TSH or prolactin response to GRF. These findings indicate that the pathophysiology underlying the blunted GH response to pharmacological challenge, demonstrated in other studies, must lie at a suprapituitary level.

  5. Growth-hormone-releasing factor immunoreactivity in human endocrine tumors.

    PubMed Central

    Bostwick, D. G.; Quan, R.; Hoffman, A. R.; Webber, R. J.; Chang, J. K.; Bensch, K. G.

    1984-01-01

    Seventy-three human tumors and adjacent nonneoplastic tissues were analyzed immunohistochemically for the presence of growth-hormone-releasing factor (GRF). Four of 9 pancreatic endocrine tumors, 2 of 3 appendiceal carcinoids, and 1 of 5 cecal carcinoids were immunoreactive for GRF. One of the GRF-containing pancreatic tumors was associated with acromegaly. Histologically, the growth patterns of these tumors were variable, and the distribution of immunoreactive cells was patchy and irregular. There were no normal cells that contained GRF. These results indicate that GRF production by human tumors is more common than previously thought, although clinical acromegaly may not be apparent in patients who harbor such neoplasms. Images Figure 1 PMID:6093542

  6. Electrospinning Growth Factor Releasing Microspheres into Fibrous Scaffolds

    PubMed Central

    Whitehead, Tonya J.; Sundararaghavan, Harini G.

    2014-01-01

    This procedure describes a method to fabricate a multifaceted substrate to direct nerve cell growth. This system incorporates mechanical, topographical, adhesive and chemical signals. Mechanical properties are controlled by the type of material used to fabricate the electrospun fibers. In this protocol we use 30% methacrylated Hyaluronic Acid (HA), which has a tensile modulus of ~500 Pa, to produce a soft fibrous scaffold. Electrospinning on to a rotating mandrel produces aligned fibers to create a topographical cue. Adhesion is achieved by coating the scaffold with fibronectin. The primary challenge addressed herein is providing a chemical signal throughout the depth of the scaffold for extended periods. This procedure describes fabricating poly(lactic-co-glycolic acid) (PLGA) microspheres that contain Nerve Growth Factor (NGF) and directly impregnating the scaffold with these microspheres during the electrospinning process. Due to the harsh production environment, including high sheer forces and electrical charges, protein viability is measured after production. The system provides protein release for over 60 days and has been shown to promote primary nerve cell growth. PMID:25178038

  7. Time-dependent release of growth factors from implant surfaces treated with plasma rich in growth factors.

    PubMed

    Sánchez-Ilárduya, María Belén; Trouche, Elodie; Tejero, Ricardo; Orive, Gorka; Reviakine, Ilya; Anitua, Eduardo

    2013-05-01

    Plasma rich in growth factors (PRGFs) technology is an autologous platelet-rich plasma approach that provides a pool of growth factors and cytokines that have been shown to increase tissue regeneration and accelerate dental implant osseointegration. In this framework, the spatiotemporal release of growth factors and the establishment of a provisional fibrin matrix are likely to be key aspects governing the stimulation of the early phases of tissue regeneration around implants. We investigated the kinetics of growth factor release at implant surfaces functionalized either with PRGFs or platelet-poor plasma and correlated the results obtained with the morphology of the resulting interfaces. Our main finding is that activation and clot formation favors longer residence times of the growth factors at the interfaces studied, probably due to their retention in the adsorbed fibrin matrix. The concentration of the platelet-derived growth factors above the interfaces becomes negligible after 2-4 days and is significantly higher in the case of activated interfaces than in the case of nonactivated ones, whereas that of the plasmatic hepatocyte growth factor is independent of platelet concentration and activation, and remains significant for up to 9 days. Platelet-rich plasma preparations should be activated to permit growth factor release and thereby facilitate implant surface osseointegration.

  8. Effect of growth hormone-releasing factor on growth hormone release in children with radiation-induced growth hormone deficiency

    SciTech Connect

    Lustig, R.H.; Schriock, E.A.; Kaplan, S.L.; Grumbach, M.M.

    1985-08-01

    Five male children who received cranial irradiation for extrahypothalamic intracranial neoplasms or leukemia and subsequently developed severe growth hormone (GH) deficiency were challenged with synthetic growth hormone-releasing factor (GRF-44), in an attempt to distinguish hypothalamic from pituitary dysfunction as a cause of their GH deficiency, and to assess the readily releasable GH reserve in the pituitary. In response to a pulse of GRF-44 (5 micrograms/kg intravenously), mean peak GH levels rose to values higher than those evoked by the pharmacologic agents L-dopa or arginine (6.4 +/- 1.3 ng/mL v 1.5 +/- 0.4 ng/mL, P less than .05). The peak GH value occurred at a mean of 26.0 minutes after administration of GRF-44. These responses were similar to those obtained in children with severe GH deficiency due to other etiologies (peak GH 6.3 +/- 1.7 ng/mL, mean 28.0 minutes). In addition, there was a trend toward an inverse relationship between peak GH response to GRF-44 and the postirradiation interval. Prolactin and somatomedin-C levels did not change significantly after the administration of a single dose of GRF-44. The results of this study support the hypothesis that cranial irradiation in children can lead to hypothalamic GRF deficiency secondary to radiation injury of hypothalamic GRF-secreting neurons. This study also lends support to the potential therapeutic usefulness of GRF-44 or an analog for GH deficiency secondary to cranial irradiation.

  9. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Min; Shea, Jill; Gale, Bruce K.; Sant, Himanshu; Larrabee, Patti; Agarwal, Jay

    2016-04-01

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6-95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps.

  10. Research Advances in Tissue Engineering Materials for Sustained Release of Growth Factors

    PubMed Central

    Zhao, Hai-yang; Wu, Jiang; Zhu, Jing-jing; Xiao, Ze-cong; He, Chao-chao; Shi, Hong-xue; Li, Xiao-kun; Yang, Shu-lin; Xiao, Jian

    2015-01-01

    Growth factors are a class of cytokines that stimulate cell growth and are widely used in clinical practice, such as wound healing, revascularization, bone repair, and nervous system disease. However, free growth factors have a short half-life and are instable in vivo. Therefore, the search of excellent carriers to enhance sustained release of growth factors in vivo has become an area of intense research interest. The development of controlled-release systems that protect the recombinant growth factors from enzymatic degradation and provide sustained delivery at the injury site during healing should enhance the growth factor's application in tissue regeneration. Thus, this study reviews current research on commonly used carriers for sustained release of growth factors and their sustained release effects for preservation of their bioactivity and their accomplishment in tissue engineering approaches. PMID:26347885

  11. Research Advances in Tissue Engineering Materials for Sustained Release of Growth Factors.

    PubMed

    Zhao, Hai-yang; Wu, Jiang; Zhu, Jing-jing; Xiao, Ze-cong; He, Chao-chao; Shi, Hong-xue; Li, Xiao-kun; Yang, Shu-lin; Xiao, Jian

    2015-01-01

    Growth factors are a class of cytokines that stimulate cell growth and are widely used in clinical practice, such as wound healing, revascularization, bone repair, and nervous system disease. However, free growth factors have a short half-life and are instable in vivo. Therefore, the search of excellent carriers to enhance sustained release of growth factors in vivo has become an area of intense research interest. The development of controlled-release systems that protect the recombinant growth factors from enzymatic degradation and provide sustained delivery at the injury site during healing should enhance the growth factor's application in tissue regeneration. Thus, this study reviews current research on commonly used carriers for sustained release of growth factors and their sustained release effects for preservation of their bioactivity and their accomplishment in tissue engineering approaches.

  12. Release kinetics of platelet-derived and plasma-derived growth factors from autologous plasma rich in growth factors.

    PubMed

    Anitua, Eduardo; Zalduendo, Mari Mar; Alkhraisat, Mohammad Hamdan; Orive, Gorka

    2013-10-01

    Many studies have evaluated the biological effects of platelet rich plasma reporting the final outcomes on cell and tissues. However, few studies have dealt with the kinetics of growth factor delivery by plasma rich in growth factors. Venous blood was obtained from three healthy volunteers and processed with PRGF-Endoret technology to prepare autologous plasma rich in growth factors. The gel-like fibrin scaffolds were then incubated in triplicate, in a cell culture medium to monitor the release of PDGF-AB, VEGF, HGF and IGF-I during 8 days of incubation. A leukocyte-platelet rich plasma was prepared employing the same technology and the concentrations of growth factors and interleukin-1β were determined after 24h of incubation. After each period, the medium was collected, fibrin clot was destroyed and the supernatants were stored at -80°C until analysis. The growth factor delivery is diffusion controlled with a rapid initial release by 30% of the bioactive content after 1h of incubation and a steady state release when almost 70% of the growth factor content has been delivered. Autologous fibrin matrix retained almost 30% of the amount of the growth factors after 8 days of incubation. The addition of leukocytes to the formula of platelet rich plasma did not increase the concentration of the growth factors, while it drastically increased the presence of pro-inflammatory IL-1β. Further studies employing an in vitro inflammatory model would be interesting to study the difference in growth factors and pro-inflammatory cytokines between leukocyte-free and leukocyte-rich platelet rich plasma.

  13. Growth-Factor Nanocapsules That Enable Tunable Controlled Release for Bone Regeneration.

    PubMed

    Tian, Haijun; Du, Juanjuan; Wen, Jing; Liu, Yang; Montgomery, Scott R; Scott, Trevor P; Aghdasi, Bayan; Xiong, Chengjie; Suzuki, Akinobu; Hayashi, Tetsuo; Ruangchainikom, Monchai; Phan, Kevin; Weintraub, Gil; Raed, Alobaidaan; Murray, Samuel S; Daubs, Michael D; Yang, Xianjin; Yuan, Xu-Bo; Wang, Jeffrey C; Lu, Yunfeng

    2016-08-23

    Growth factors are of great potential in regenerative medicine. However, their clinical applications are largely limited by the short in vivo half-lives and the narrow therapeutic window. Thus, a robust controlled release system remains an unmet medical need for growth-factor-based therapies. In this research, a nanoscale controlled release system (degradable protein nanocapsule) is established via in situ polymerization on growth factor. The release rate can be finely tuned by engineering the surface polymer composition. Improved therapeutic outcomes can be achieved with growth factor nanocapsules, as illustrated in spinal cord fusion mediated by bone morphogenetic protein-2 nanocapsules. PMID:27227573

  14. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel.

    PubMed

    Bruggeman, Kiara F; Rodriguez, Alexandra L; Parish, Clare L; Williams, Richard J; Nisbet, David R

    2016-09-23

    Protein growth factors have demonstrated great potential for tissue repair, but their inherent instability and large size prevents meaningful presentation to biologically protected nervous tissue. Here, we create a nanofibrous network from a self-assembling peptide (SAP) hydrogel to carry and stabilize the growth factors. We significantly reduced growth factor degradation to increase their lifespan by over 40 times. To control the temporal release profile we covalently attached polysaccharide chitosan molecules to the growth factor to increase its interactions with the hydrogel nanofibers and achieved a 4 h delay, demonstrating the potential of this method to provide temporally controlled growth factor delivery. We also describe release rate based analysis to examine the growth factor delivery in more detail than standard cumulative release profiles allow and show that the chitosan attachment method provided a more consistent release profile with a 60% reduction in fluctuations. To prove the potential of this system as a complex growth factor delivery platform we demonstrate for the first time temporally distinct release of multiple growth factors from a single tissue specific SAP hydrogel: a significant goal in regenerative medicine. PMID:27517970

  15. Temporally controlled release of multiple growth factors from a self-assembling peptide hydrogel

    NASA Astrophysics Data System (ADS)

    Bruggeman, Kiara F.; Rodriguez, Alexandra L.; Parish, Clare L.; Williams, Richard J.; Nisbet, David R.

    2016-09-01

    Protein growth factors have demonstrated great potential for tissue repair, but their inherent instability and large size prevents meaningful presentation to biologically protected nervous tissue. Here, we create a nanofibrous network from a self-assembling peptide (SAP) hydrogel to carry and stabilize the growth factors. We significantly reduced growth factor degradation to increase their lifespan by over 40 times. To control the temporal release profile we covalently attached polysaccharide chitosan molecules to the growth factor to increase its interactions with the hydrogel nanofibers and achieved a 4 h delay, demonstrating the potential of this method to provide temporally controlled growth factor delivery. We also describe release rate based analysis to examine the growth factor delivery in more detail than standard cumulative release profiles allow and show that the chitosan attachment method provided a more consistent release profile with a 60% reduction in fluctuations. To prove the potential of this system as a complex growth factor delivery platform we demonstrate for the first time temporally distinct release of multiple growth factors from a single tissue specific SAP hydrogel: a significant goal in regenerative medicine.

  16. Controllable mineral coatings on scaffolds as carriers for growth factor release for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Saurez-Gonzalez, Darilis

    The work presented in this document, focused on the development and characterization of mineral coatings on scaffold materials to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO3) concentration in mSBF of 4.2 mM, 25mM, and 100mM. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite. FTIR data confirmed the substitution of HCO3 in the mineral. As the extent of HCO3 substitution increased, the coating exhibited more rapid dissolution kinetics in an environment deficient in calcium and phosphate. The mineral coatings provided an effective mechanism for bioactive growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral-coated PCL scaffolds. Recombinant human vascular endothelial growth factor (rhVEGF) also bound to mineral coated scaffolds with lower efficiency (20%) and released with faster release kinetics compared to peptides growth factor. Released rhVEGF induced human umbilical vein endothelial cell (HUVEC) proliferation in vitro and enhanced blood vessel formation in vivo in an intramuscular sheep model. In addition to the use the mineral coatings for single growth factor release, we expanded the concept and bound both an angiogenic (rhVEGF) and osteogenic (mBMP2) growth factor by a simple double dipping process. Sustained release of both growth factors was demonstrated for over 60 days. Released rhVEGF enhanced blood vessel formation in vivo in sheep and its biological activity was

  17. Controllable mineral coatings on PCL scaffolds as carriers for growth factor release

    PubMed Central

    Suárez-González, Darilis; Barnhart, Kara; Migneco, Francesco; Flanagan, Colleen; Hollister, Scott J.; Murphy, William L.

    2011-01-01

    In this study, we have developed mineral coatings on polycaprolactone scaffolds to serve as templates for growth factor binding and release. Mineral coatings were formed using a biomimetic approach that consisted in the incubation of scaffolds in modified simulated body fluids (mSBF). To modulate the properties of the mineral coating, which we hypothesized would dictate growth factor release, we used carbonate (HCO3) concentration in mSBF of 4.2 mM, 25mM, and 100mM. Analysis of the mineral coatings formed using scanning electron microscopy indicated growth of a continuous layer of mineral with different morphologies. X-ray diffraction analysis showed peaks associated with hydroxyapatite, the major inorganic constituent of human bone tissue in coatings formed in all HCO3 concentrations. Mineral coatings with increased HCO3 substitution showed more rapid dissolution kinetics in an environment deficient in calcium and phosphate but showed re-precipitation in an environment with the aforementioned ions. The mineral coating provided an effective mechanism for growth factor binding and release. Peptide versions of vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP2) were bound with efficiencies up to 90% to mineral mineral-coated PCL scaffolds. We also demonstrated sustained release of all growth factors with release kinetics that were strongly dependent in the solubility of the mineral coating. PMID:22014948

  18. Scaffolds for Controlled Release of Cartilage Growth Factors.

    PubMed

    Morille, Marie; Venier-Julienne, Marie-Claire; Montero-Menei, Claudia N

    2015-01-01

    In recent years, cell-based therapies using adult stem cells have attracted considerable interest in regenerative medicine. A tissue-engineered construct for cartilage repair should provide a support for the cell and allow sustained in situ delivery of bioactive factors capable of inducing cell differentiation into chondrocytes. Pharmacologically active microcarriers (PAMs), made of biodegradable and biocompatible poly (D,L-lactide-co-glycolide acid) (PLGA), are a unique system which combines these properties in an adaptable and simple microdevice. This device relies on nanoprecipitation of proteins encapsulated in polymeric microspheres with a solid in oil in water emulsion-solvent evaporation process, and their subsequent coating with extracellular matrix protein molecules. Here, we describe their preparation process, and some of their characterization methods for an application in cartilage tissue engineering. PMID:26445838

  19. Characterization of release of basic fibroblast growth factor from bovine retinal endothelial cells in monolayer cultures.

    PubMed Central

    Brooks, R A; Burrin, J M; Kohner, E M

    1991-01-01

    Release of basic fibroblast growth factor (bFGF) was investigated in bovine retinal endothelial cells (BREC) maintained in monolayer culture. Confluent cells released bFGF into serum-free culture medium or medium containing 5% serum at rates of up to 105.2 and 61.3 pM/day respectively. bFGF release coincided with a decrease in monolayer cell number and increases in lactate dehydrogenase (LDH) concentration and cells and cell-debris particles in the medium, which suggested that cell damage and lysis were responsible for growth-factor release. Maximum bFGF release at 24 h (230 +/- 10 pM) occurred when the cells were treated with lipopolysaccharide (10 micrograms/ml), which also produced the greatest changes in parameters of cell damage. Sub-confluent cells showed little overt damage at 24 h, but released bFGF (78 +/- 20 pM) along with LDH, indicating that some cell lysis had occurred. Insulin-like growth factor 1 (IGF-1) was also released into serum-free culture medium at a rate of 0.34 nM/day, but not into medium containing serum or when the cells were treated with lipopolysaccharide. This implies that the mechanism of IGF-1 release is different from that of bFGF and is not related to cell damage. Culture medium conditioned by BREC stimulated the proliferation of these cells, as measured by an increase in their incorporation of [methyl-3H]thymidine from 7550 +/- 479 to 10467 +/- 924 d.p.m. These results demonstrate that bFGF is released from damaged BREC and that medium conditioned by these cells can stimulate retinal-endothelial-cell proliferation. This strengthens the case for an involvement of this growth factor in retinal neovascularization. Images Fig. 1. PMID:2039465

  20. Biological activity of recombinant human growth factors released from biocompatible bone implants.

    PubMed

    Ziegler, Joerg; Anger, Dominique; Krummenauer, Frank; Breitig, Dieter; Fickert, Stefan; Guenther, Klaus-Peter

    2008-07-01

    The present investigation was performed to study the bioactivity of osteoinductive and osteoproliferative growth factors after release from biocompatible bone implants. Three types of porous carriers were used in this study: hydroxyapatite, alpha tricalcium phosphate, and a neutralized glass ceramic. Implants were loaded with recombinant human bone morphogenetic protein 2 (rh-BMP-2) and recombinant human basic fibroblast growth factor (rh-bFGF) in a concentration of 2 microg/150 microL PBS each. The released growth factors were then applicated into SAOS-2-cell cultures. After 3, 5, and 7 days cell differentiation was measured by the activity of alkaline phosphatase (ALP), cell proliferation by using a MTT assay as well as a cell counter. Rh-BMP-2 released during the first hour from the scaffolds led to a significant increase of the activity of ALP in the incubated SAOS-2-cell culture after 3, 5, and 7 days. However, the incubation with rh-BMP-2 released after 24 h was not found to increase the expression of ALP. The incubation of cell cultures with rh-bFGF released during the first hour led to a significant increase of cell number and of extinction in the MTT assay, whereas this increase was not observed after incubation with rh-bFGF released after 24 h. The in vitro measured biological activity of released growth factors from the surface of synthetic implants is time-depending. If prolonged osteoinductive and osteoproliferative potency of growth factors is desired, a modified application technique should be chosen to stabilize those proteins.

  1. Effect of Cellulose Acetate Beads on the Release of Transforming Growth Factor-β.

    PubMed

    Nishise, Shoichi; Abe, Yasuhiko; Nomura, Eiki; Sato, Takeshi; Sasaki, Yu; Iwano, Daisuke; Yagi, Makoto; Sakuta, Kazuhiro; Shibuya, Rika; Mizumoto, Naoko; Kanno, Nana; Ueno, Yoshiyuki

    2015-08-01

    Transforming growth factor-β (TGF-β) is released by activated platelets and induces the differentiation of T-helper 17 from naïve T cells. Contact between blood and cellulose acetate (CA) beads induces cytokine release, although their inflammatory effects on TGF-β release are unclear. We aimed to clarify the effect of CA beads on the release of TGF-β in vitro. We incubated peripheral blood with and without CA beads and measured platelets and TGF-β. Compared with blood samples incubated without beads, the platelet count and amount of TGF-β significantly decreased in blood samples incubated with CA beads. In conclusion, CA beads inhibited the release of TGF-β from adsorbed platelets. The biological effects of this reduction of TGF-β release during platelet adsorption to CA beads need further clarification.

  2. RAS is required for epidermal growth factor-stimulated arachidonic acid release in rat-1 fibroblasts.

    PubMed

    Warner, L C; Hack, N; Egan, S E; Goldberg, H J; Weinberg, R A; Skorecki, K L

    1993-12-01

    Previous studies have provided suggestive evidence for an interaction between ras activation and signalling pathways involved in agonist-stimulated arachidonic acid release in a variety of cell systems. In order to clarify this interaction, we have measured epidermal growth factor (EGF)-stimulated arachidonic acid release in rat-1 fibroblasts transfected with the N-17 dominant negative mutation of ras. Cells transfected with the N-17 ras mutant, display a markedly attenuated arachidonic acid-release response to EGF, compared to sham-transfected and non-transfected cells. In contrast, the response to phorbol myristate acetate (PMA) was not attenuated in the N-17-mutant expressing cells. No differences were detected between sham-transfected and N-17 mutant expressing cells in levels of immunodetectable EGF receptor, cytosolic phospholipase A2 or mitogen-activated protein (MAP) kinase. Attenuation of EGF-stimulated arachidonic acid release in the N-17 mutant expressing cells, was accompanied by a marked diminution in EGF-stimulated tyrosine phosphorylation of MAP kinase. We conclude that the signalling pathway involved in epidermal growth factor-stimulated arachidonic acid release is similar to the signalling pathway for mitogenic responses to epidermal growth factor and requires ras activation, likely followed by a downstream cascade of kinases eventuating in MAP kinase activation.

  3. Controlled release of nerve growth factor from heparin-conjugated fibrin gel within the nerve growth factor-delivering implant

    PubMed Central

    Lee, Jin-Yong; Kim, Soung-Min; Kim, Myung-Jin

    2014-01-01

    Objectives Although nerve growth factor (NGF) could promote the functional regeneration of an injured peripheral nerve, it is very difficult for NGF to sustain the therapeutic dose in the defect due to its short half-life. In this study, we loaded the NGF-bound heparin-conjugated fibrin (HCF) gel in the NGF-delivering implants and analyzed the time-dependent release of NGF and its bioactivity to evaluate the clinical effectiveness. Materials and Methods NGF solution was made of 1.0 mg of NGF and 1.0 mL of phosphate buffered saline (PBS). Experimental group A consisted of three implants, in which 0.25 µL of NGF solution, 0.75 µL of HCF, 1.0 µL of fibrinogen and 2.0 µL of thrombin was injected via apex hole with micropipette and gelated, were put into the centrifuge tube. Three implants of experimental group B were prepared with the mixture of 0.5 µL of NGF solution, 0.5 µL HCF, 1.0 µL of fibrinogen and 2.0 µL of thrombin. These six centrifuge tubes were filled with 1.0 mL of PBS and stirred in the water-filled beaker at 50 rpm. At 1, 3, 5, 7, 10, and 14 days, 1.0 mL of solution in each tubes was collected and preserved at -20℃ with adding same amount of fresh PBS. Enzyme-linked immunosorbent assay (ELISA) was done to determine in vitro release profile of NGF and its bioactivity was evaluated with neural differentiation of pheochromocytoma (PC12) cells. Results The average concentration of released NGF in the group A and B increased for the first 5 days and then gradually decreased. Almost all of NGF was released during 10 days. Released NGF from two groups could promote neural differentiation and neurite outgrowth of PC12 cells and these bioactivity was maintained over 14 days. Conclusion Controlled release system using NGF-HCF gel via NGF-delivering implant could be an another vehicle of delivering NGF to promote the nerve regeneration of dental implant related nerve damage. PMID:24627836

  4. Growth hormone-releasing factor (GRF) induced growth hormone advances puberty in female buffaloes.

    PubMed

    Haldar, A; Prakash, B S

    2006-05-01

    Exogenous bovine growth hormone-releasing factor (bGRF) at the dose rate of 10 microg/100 kg body weight was administered intravenously (i.v.) to six Murrah buffalo heifers as treatment group, while another six buffalo heifers served as control group which received the vehicle (0.9% NaCl solution) at an interval of 15 days for a period of 9 months to study the effect of bGRF on puberty onset associated with temporal hormonal changes in peri-pubertal buffalo heifers. Blood samples were collected at 3-day interval from all the animals during the experimental period and plasma harvested was assayed for growth hormonal (GH), luteinizing hormone (LH) and progesterone. The day that plasma progesterone was greater than 1.0 ng/ml for three consecutive sampling days was defined as the day of puberty. Exogenous bGRF administration increased (P = 0.02) plasma GH concentration in treatment group over control group during the treatment of bGRF as well as during the peri-pubertal period. Plasma progesterone concentrations increased transiently earlier (P = 0.05) by 58.5 days in bGRF-treated buffaloes than that in the control group. However, plasma LH concentrations were unaffected by the treatment of bGRF (P = 0.48). Both plasma GH and LH in the buffalo heifers increased (P < 0.01) over time preceding puberty and the higher hormonal concentrations were maintained during the onset of puberty, and thereafter, the concentrations of both the hormones declined (P < 0.05) after puberty. GH and LH were positively correlated both before puberty (r = +0.59 and +0.63; P < 0.05 for control and treatment group, respectively) and after puberty (r = +0.42 and +0.46; P < 0.05 for control and treatment group, respectively) indicating the interaction and/or close relationship of GH and LH in the mechanism of puberty in buffalo species. PMID:16011881

  5. Study of the biological effectiveness of a nanosilver-epidermal growth factor sustained-release carrier.

    PubMed

    Zhou, Jian-DA; Wang, Shao-Hua; Liu, Rui; Zhou, Chun-Jiao; Cao, Ke; Liu, Jin-Yan; Chen, Yao; Chen, Feng-Hua

    2013-04-01

    The aim of the present study was to elucidate the biological effectiveness and character of a nanosilver-epidermal growth factor (EGF) sustained-release carrier. This was synthesized using the self-assembly method and then characterized by transmission electron microscopy and UV spectrophotometry. The biological activity of the sustained release carrier was determined through cytological, bacteriological and wound-healing experiments. The results showed that the nanosilver-EGF sustained-release carrier was well dispersed with uniform particle size and that it had good antibacterial properties similar to those of nanosilver. The nanosilver-EGF sustained-release carrier is superior to EGFs in effectively promoting cell division and proliferation. The results of the wound-healing experiments provide evidence of its curative effects.

  6. Vascular endothelial growth factor and dexamethasone release from nonfouling sensor coatings affect the foreign body response

    PubMed Central

    Norton, L.W.; Koschwanez, H.E.; Wisniewski, N.A.; Klitzman, B.; Reichert, W.M.

    2014-01-01

    Vascular endothelial growth factor (VEGF) and dexamethasone (DX) release from hydrogel coatings were examined as a means to modify tissue inflammation and induce angiogenesis. Antibiofouling hydrogels for implantable glucose sensor coatings were prepared from 2-hydro-xyethyl methacrylate, N-vinyl pyrrolidinone, and polyethylene glycol. Microdialysis sampling was used to test the effect of the hydrogel coating on glucose recovery. VEGF-releasing hydrogel-coated fibers increased vascularity and inflammation in the surrounding tissue after 2 weeks of implantation compared to hydrogel-coated fibers. DX-releasing hydrogel-coated fibers reduced inflammation compared to hydrogel-coated fibers and had reduced capsule vascularity compared to VEGF-releasing hydrogel-coated fibers. Hydrogels that released both VEGF and DX simultaneously also showed reduced inflammation at 2 weeks implantation; however, no enhanced vessel formation was observed indicating that the DX diminished the VEGF effect. At 6 weeks, there were no detectable differences between drug-releasing hydrogel-coated fibers and control fibers. From this study, hydrogel drug release affected initial events of the foreign body response with DX inhibiting VEGF, but once the drug depot was exhausted these effects disappeared. PMID:17236219

  7. Controlled Release of Growth Factors on Allograft Bone in vitro

    PubMed Central

    Ryu, WonHyoung; Ren, Peigen; Fasching, Rainer; Goodman, Stuart B.

    2008-01-01

    Allografts are important alternatives to autografts for treating defects after major bone loss. Bone growth factors have both local autocrine and paracrine effects and regulate the growth, proliferation, and differentiation of osteoprogenitor cells. To study the effects of prolonged, continuous, local delivery of growth factors on bone growth, we developed a new microelectromechanical system (MEMS) drug delivery device. Bone marrow cells from mice were seeded on mouse allograft discs and cultured in osteogenic media with osteogenic protein 1 (OP-1) and/or basic fibroblast growth factor (FGF-2) delivered from MEMS devices for 6 weeks. We monitored bone formation by changes of bone volume using micro-CT scanning and release of osteocalcin using ELISA. The data suggest the MEMS devices delivered constant concentrations of OP-1 and FGF-2 to the media. Bone marrow cells grew on the allografts and increased bone volume. Addition of OP-1 increased bone formation whereas FGF-2 decreased bone formation. Local delivery of growth factors over a prolonged period modulated the differentiation of osteoprogenitor cells on allograft bone. PMID:18509711

  8. A novel collagen/platelet-rich plasma (COL/PRP) scaffold: preparation and growth factor release analysis.

    PubMed

    Zhang, Xiujie; Wang, Jingwei; Ren, Mingguang; Li, Lifeng; Wang, Qingwen; Hou, Xiaohua

    2016-06-01

    Platelet-rich plasma (PRP) has been widely used in clinical practice for more than 20 years because it causes the release of many growth factors. However, the burst release pattern and short release period of PRP have become obstacles to its application. An optimal controllable release system is an urgent need for researchers. This study investigated whether collagen/PRP (COL/PRP) scaffolds can serve as a vehicle for the controllable release of growth factors. We fabricated a novel scaffold that integrates PRP activated by thrombin or collagen into type I collagen. The mechanical properties, cytotoxicity, and transforming growth factor β1 (TGF-β1), platelet derived growth factor (PDGF), fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) content were evaluated. Our results demonstrate that the COL/PRP scaffolds were not cytotoxic to L-929 fibroblasts. The PDGF and FGF content in the thrombin group was at a higher level and lasted for a long period of time. Collagen and thrombin played the same role in the release of TGF-β1 and VEGF. These data suggest that the novel COL/PRP scaffolds provide a carrier for the controllable release of growth factors and may be used in tissue- regenerative therapies.

  9. Activity-dependent release of transforming growth factor-beta in a neuronal network in vitro.

    PubMed

    Lacmann, A; Hess, D; Gohla, G; Roussa, E; Krieglstein, K

    2007-12-12

    For neurotrophins and also for members of the transforming growth factor beta (TGF-beta) family an activity-dependent regulation of synthesis and release has been proposed. Together with the observation that the secretion of neurotransmitters is initiated by neurotrophic factors, it is reasonable to assume that they might act as retrograde modulators enhancing the efficacy and stabilization of synapses. In the present study, we have tested this hypothesis and studied the release and regulation of TGF-beta in vitro using mouse primary hippocampal neurons at embryonic day E16.5 as model. We show that neuronal activity regulates TGF-beta release and TGF-beta expression in vitro. Treatment of the cultures with KCl, 3-veratroylveracevine (veratridine), glutamate or carbamylcholine chloride (carbachol) increased the levels of secreted TGF-beta, as assessed by the MLEC/plasminogen activator inhibitor (PAI)-luciferase-assay, whereas TGF-beta release stimulated by KCl or veratridine was reduced in the presence of tetrodotoxin or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). In addition, application of glutamate significantly upregulated expression of TGF-beta2 and TGF-beta3 in the culture. Notably, KCl stimulation caused Smad (composite term from SMA (C. elegans) and MAD=mothers against dpp (Drosophila)) translocation into the nucleus and upregulated TGF-beta inducible early gene (Tieg1) expression, demonstrating that activity-dependent released TGF-beta may exert autocrine actions and thereby activate the TGF-beta-dependent signaling pathway. Together, these results suggest an activity-dependent release and gene transcription of TGF-beta from mouse hippocampal neurons in vitro as well as subsequent autocrine functions of the released TGF-beta within the hippocampal network.

  10. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis

    PubMed Central

    Li, Zhe; Qu, Tiejun; Ding, Chen; Ma, Chi; Sun, Hongchen; Li, Shirong; Liu, Xiaohua

    2014-01-01

    Injectable biomaterials are attractive for soft tissue regeneration because they are handled in a minimally invasive manner and can easily adapt to complex defects. However, inadequate vascularization of the injectable constructs has long been a barrier, leading to necrosis or volume reduction after implantation. In this work, we developed a three-step process to synthesize injectable gelatin-derived hydrogels that are capable of controlling growth factor delivery to induce angiogenesis. In our approach, tyramine was first introduced into gelatin chains to provide enzymatical crosslinking points for gel formation after injection. Next, heparin, a polysaccharide with binding domains to many growth factors, was covalently linked to the tyramine-modified gelatin. Finally, vascular endothelial growth factor (VEGF) was incorporated into the gelatin derivative by binding with the heparin in the gelatin derivative, and an injectable gel with controlled VEGF release was formed by an enzymatic catalytic reaction with hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). The gelation time, mechanical properties and degradation of the gel was readily tailored by the gelatin concentration and the ratio of H2O2/HRP. Binding VEGF to heparin stabilizes this growth factor, protects it from denaturation and proteolytic degradation, and subsequently prolongs the sustained release. An in vitro release study and bioactivity assay indicated that the VEGF was released in a sustained manner with high bioactivity for over 3 weeks. Furthermore, a chicken chorioallantoic membrane (CAM) assay and animal experiments were performed to evaluate in vivo bioactivity of the VEGF released from the hydrogels. After 5 days of incubation on CAM, the number of blood vessels surrounding the heparin-modified hydrogels was 2.4-fold increase than that of the control group. Deeper and denser cell infiltration and angiogenesis in the heparin-modified gelatin/VEGF gels were observed than in the controls

  11. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis.

    PubMed

    Li, Zhe; Qu, Tiejun; Ding, Chen; Ma, Chi; Sun, Hongchen; Li, Shirong; Liu, Xiaohua

    2015-02-01

    Injectable biomaterials are attractive for soft tissue regeneration because they are handled in a minimally invasive manner and can easily adapt to complex defects. However, inadequate vascularization of the injectable constructs has long been a barrier, leading to necrosis or volume reduction after implantation. In this work, we developed a three-step process to synthesize injectable gelatin-derived hydrogels that are capable of controlling growth factor delivery to induce angiogenesis. In our approach, tyramine was first introduced into gelatin chains to provide enzymatic crosslinking points for gel formation after injection. Next, heparin, a polysaccharide with binding domains to many growth factors, was covalently linked to the tyramine-modified gelatin. Finally, vascular endothelial growth factor (VEGF) was incorporated into the gelatin derivative by binding with the heparin in the gelatin derivative, and an injectable gel with controlled VEGF release was formed by an enzymatic catalytic reaction with hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). The gelation time, mechanical properties and degradation of the gel was readily tailored by the gelatin concentration and the ratio of H2O2/HRP. Binding VEGF to heparin stabilizes this growth factor, protects it from denaturation and proteolytic degradation and subsequently prolongs the sustained release. An in vitro release study and bioactivity assay indicated that the VEGF was released in a sustained manner with high bioactivity for over 3 weeks. Furthermore, a chicken chorioallantoic membrane (CAM) assay and animal experiments were performed to evaluate in vivo bioactivity of the VEGF released from the hydrogels. After 5 days of incubation on CAM, the number of blood vessels surrounding the heparin-modified hydrogels was increased by 2.4-fold compared with that of the control group. Deeper and denser cell infiltration and angiogenesis in the heparin-modified gelatin/VEGF gels were observed compared to

  12. Injectable gelatin derivative hydrogels with sustained vascular endothelial growth factor release for induced angiogenesis.

    PubMed

    Li, Zhe; Qu, Tiejun; Ding, Chen; Ma, Chi; Sun, Hongchen; Li, Shirong; Liu, Xiaohua

    2015-02-01

    Injectable biomaterials are attractive for soft tissue regeneration because they are handled in a minimally invasive manner and can easily adapt to complex defects. However, inadequate vascularization of the injectable constructs has long been a barrier, leading to necrosis or volume reduction after implantation. In this work, we developed a three-step process to synthesize injectable gelatin-derived hydrogels that are capable of controlling growth factor delivery to induce angiogenesis. In our approach, tyramine was first introduced into gelatin chains to provide enzymatic crosslinking points for gel formation after injection. Next, heparin, a polysaccharide with binding domains to many growth factors, was covalently linked to the tyramine-modified gelatin. Finally, vascular endothelial growth factor (VEGF) was incorporated into the gelatin derivative by binding with the heparin in the gelatin derivative, and an injectable gel with controlled VEGF release was formed by an enzymatic catalytic reaction with hydrogen peroxide (H2O2) and horseradish peroxidase (HRP). The gelation time, mechanical properties and degradation of the gel was readily tailored by the gelatin concentration and the ratio of H2O2/HRP. Binding VEGF to heparin stabilizes this growth factor, protects it from denaturation and proteolytic degradation and subsequently prolongs the sustained release. An in vitro release study and bioactivity assay indicated that the VEGF was released in a sustained manner with high bioactivity for over 3 weeks. Furthermore, a chicken chorioallantoic membrane (CAM) assay and animal experiments were performed to evaluate in vivo bioactivity of the VEGF released from the hydrogels. After 5 days of incubation on CAM, the number of blood vessels surrounding the heparin-modified hydrogels was increased by 2.4-fold compared with that of the control group. Deeper and denser cell infiltration and angiogenesis in the heparin-modified gelatin/VEGF gels were observed compared to

  13. Synthesis of multilayered alginate microcapsules for the sustained release of fibroblast growth factor-1

    PubMed Central

    Khanna, Omaditya; Moya, Monica L; Opara, Emmanuel C; Brey, Eric M

    2010-01-01

    Alginate microcapsules coated with a permselective poly-L-ornithine (PLO) membrane have been investigated for the encapsulation and transplantation of islets as a treatment for type 1 diabetes. The therapeutic potential of this approach could be improved through local stimulation of microvascular networks in order to meet mass transport demands of the encapsulated cells. Fibroblast growth factor-1 (FGF-1) is a potent angiogenic factor with optimal effect occurring when it is delivered in a sustained manner. In this paper, a technique is described for the generation of multilayered alginate microcapsules with an outer alginate layer that can be used for the delivery of FGF-1. The influence of alginate concentration and composition (high mannuronic acid (M) or guluronic acid (G) content) on outer layer size and stability, protein encapsulation efficiency, and release kinetics was investigated. The technique results in a stable outer layer of alginate with a mean thickness between 113–164 µm, increasing with alginate concentration and G-content. The outer layer was able to encapsulate and release FGF-1 for up to thirty days, with 1.25% of high G alginate displaying the most sustained release. The released FGF-1 retained its biologic activity in the presence of heparin, and the addition of the outer layer did not alter the permselectivity of the PLO coat. This technique could be used to generate encapsulation systems that deliver proteins to stimulate local neovascularization around encapsulated islets. PMID:20725969

  14. Fluid flow releases fibroblast growth factor-2 from human aortic smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Rhoads, D. N.; Eskin, S. G.; McIntire, L. V.

    2000-01-01

    This study tested the hypothesis that fluid shear stress regulates the release of fibroblast growth factor (FGF)-2 from human aortic smooth muscle cells. FGF-2 is a potent mitogen that is involved in the response to vascular injury and is expressed in a wide variety of cell types. FGF-2 is found in the cytoplasm of cells and outside cells, where it associates with extracellular proteoglycans. To test the hypothesis that shear stress regulates FGF-2 release, cells were exposed to flow, and FGF-2 amounts were measured from the conditioned medium, pericellular fraction (extracted by heparin treatment), and cell lysate. Results from the present study show that after 15 minutes of shear stress at 25 dyne/cm(2) in a parallel-plate flow system, a small but significant fraction (17%) of the total FGF-2 was released from human aortic smooth muscle cells. FGF-2 levels in the circulating medium increased 10-fold over medium from static controls (P<0.01). A 50% increase in FGF-2 content versus control (P<0.01) was found in the pericellular fraction (extracted by heparin treatment). Furthermore, a significant decrease in FGF-2 was detected in the cell lysate, indicating that FGF-2 was released from inside the cell. Cell permeability studies with fluorescent dextran were performed to examine whether transient membrane disruption caused FGF-2 release. Flow cytometry detected a 50% increase in mean fluorescence of cells exposed to 25 dyne/cm(2) versus control cells. This indicates that the observed FGF-2 release from human aortic smooth muscle cells is likely due to transient membrane disruption on initiation of flow.

  15. Calcium-Alginate Hydrogel-Encapsulated Fibroblasts Provide Sustained Release of Vascular Endothelial Growth Factor

    PubMed Central

    Hunt, Nicola C.; Shelton, Richard M.; Henderson, Deborah J.

    2013-01-01

    Vascularization of engineered or damaged tissues is essential to maintain cell viability and proper tissue function. Revascularization of the left ventricle (LV) of the heart after myocardial infarction is particularly important, since hypoxia can give rise to chronic heart failure due to inappropriate remodeling of the LV after death of cardiomyocytes (CMs). Fibroblasts can express vascular endothelial growth factor (VEGF), which plays a major role in angiogenesis and also acts as a chemoattractant and survival factor for CMs and cardiac progenitors. In this in vitro model study, mouse NIH 3T3 fibroblasts encapsulated in 2% w/v Ca-alginate were shown to remain viable for 150 days. Semiquantitative reverse transcription–polymerase chain reaction and immunohistochemistry demonstrated that over 21 days of encapsulation, fibroblasts continued to express VEGF, while enzyme-linked immunosorbent assay showed that there was sustained release of VEGF from the Ca-alginate during this period. The scaffold degraded gradually over the 21 days, without reduction in volume. Cells released from the Ca-alginate at 7 and 21 days as a result of scaffold degradation were shown to retain viability, to adhere to fibronectin in a normal manner, and continue to express VEGF, demonstrating their potential to further contribute to maintenance of cardiac function after scaffold degradation. This model in vitro study therefore demonstrates that fibroblasts encapsulated in Ca-alginate provide sustained release of VEGF. PMID:23082964

  16. Effect of basic fibroblast growth factor released from chitosan-fucoidan nanoparticles on neurite extension.

    PubMed

    Huang, Yi-Cheng; Yang, Ya-Ting

    2016-05-01

    Exogenous growth factors are an integral part of an effective nerve tissue-engineering strategy. Basic fibroblast growth factor (bFGF) has a marked positive effect on angiogenesis and neuronal cell survival. However, bFGF is limited by its short half-life and easy degradation by enzymes. Therefore, in this study novel biodegradable chitosan-fucoidan nanoparticles (CS-F NPs) were designed to carry bFGFs and maintain their activities. The experimental results indicated that chitosan and fucoidan form stable nanoparticles approximately 200 nm in size via electrostatic interactions. Additionally, the effectiveness of nanoparticles is related to their chitosan:fucoidan weight ratio. The CS-F NPs control the release of bFGFs and protect bFGF from deactivation by heat and enzymes. In vitro cell studies demonstrate that CS-F NPs have no cytotoxicity to PC12 cells, as the concentration of NPs is 125 ng/ml. Moreover, the CS-F NPs significantly decrease the amount of bFGF needed for neurite extension. The cumulative release of bFGF from CS-F NPs at 24 h is 0.168 ng/ml, markedly lower than that in solution (4.2 ng/ml). Importantly, CS-F NPs are potential carriers for delivering bFGFs for nerve tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Purification of a high-molecular-weight somatoliberin (growth-hormone-releasing factor) from pig hypothalami.

    PubMed Central

    Sykes, J E; Lowry, P J

    1983-01-01

    Preliminary observations [Sykes & Lowry (1980) J. Endocrinol. 85, 42P-43P] had suggested that the major hypothalamic somatoliberin (growth-hormone-releasing factor) was a larger peptide than the other characterized hypothalamic factors, with an elution position on Sephadex G-50 between those of neurophysin and corticotropin. The present paper reports the isolation and preliminary characterization of pig hypothalamic somatoliberin. Acid extracts of pig stalk median eminence were purified by gel filtration and preparative and analytical high-pressure liquid chromatography to yield a preparation that was specific in the release of somatotropin (growth hormone) in vitro, giving a steep dose--response curve at doses in the range 0.20-3.0 ng. Amino acid analysis revealed a non-cysteine-containing peptide with a high number of glutamate (or glutamine) and aspartate (or asparagine) residues. The peptide had about 56-57 amino acid residues and an apparent molecular weight of 6400, in keeping with its elution position on a column of Sephadex G-50. PMID:6409074

  18. Rapid release of growth factors regenerates force output in volumetric muscle loss injuries.

    PubMed

    Grasman, Jonathan M; Do, Duc M; Page, Raymond L; Pins, George D

    2015-12-01

    A significant challenge in the design and development of biomaterial scaffolds is to incorporate mechanical and biochemical cues to direct organized tissue growth. In this study, we investigated the effect of hepatocyte growth factor (HGF) loaded, crosslinked fibrin (EDCn-HGF) microthread scaffolds on skeletal muscle regeneration in a mouse model of volumetric muscle loss (VML). The rapid, sustained release of HGF significantly enhanced the force production of muscle tissue 60 days after injury, recovering more than 200% of the force output relative to measurements recorded immediately after injury. HGF delivery increased the number of differentiating myoblasts 14 days after injury, and supported an enhanced angiogenic response. The architectural morphology of microthread scaffolds supported the ingrowth of nascent myofibers into the wound site, in contrast to fibrin gel implants which did not support functional regeneration. Together, these data suggest that EDCn-HGF microthreads recapitulate several of the regenerative cues lost in VML injuries, promote remodeling of functional muscle tissue, and enhance the functional regeneration of skeletal muscle. Further, by strategically incorporating specific biochemical factors and precisely tuning the structural and mechanical properties of fibrin microthreads, we have developed a powerful platform technology that may enhance regeneration in other axially aligned tissues.

  19. Controlled-release of epidermal growth factor from cationized gelatin hydrogel enhances corneal epithelial wound healing.

    PubMed

    Hori, Kuniko; Sotozono, Chie; Hamuro, Junji; Yamasaki, Kenta; Kimura, Yu; Ozeki, Makoto; Tabata, Yasuhiko; Kinoshita, Shigeru

    2007-04-01

    We designed a new ophthalmic drug-delivery system for epidermal growth factor (EGF) from the biodegradable hydrogel of cationized gelatin. We placed a cationized gelatin hydrogel (CGH) with incorporated (125)I-labelled EGF in the conjunctival sac of mice and measured the residual radioactivity at different times to evaluate the in vivo profile of EGF release. Approximately 60-67% and 10-12% of EGF applied initially remained 1 and 7 days after application, respectively; whereas EGF delivered in topically applied solution or via EGF impregnation of soft contact lenses disappeared within the first day. We also placed CGH films with 5.0 mug of incorporated EGF on round corneal defects in rabbits to evaluate the healing process using image analysis software and to assess epithelial proliferation immunohistochemically by counting the number of Ki67-positive cells. The application of a CGH film with incorporated EGF resulted in a reduction in the epithelial defect in rabbit corneas accompanied by significantly enhanced epithelial proliferation compared with the reduction seen after the topical application of EGF solution or the placement of an EGF-free CGH film. The controlled release of EGF from a CGH placed over a corneal epithelial defect accelerated ocular surface wound healing. PMID:17289206

  20. Neuroprotection elicited by nerve growth factor and brain-derived neurotrophic factor released from astrocytes in response to methylmercury.

    PubMed

    Takemoto, Takuya; Ishihara, Yasuhiro; Ishida, Atsuhiko; Yamazaki, Takeshi

    2015-07-01

    The protective roles of astrocytes in neurotoxicity induced by environmental chemicals, such as methylmercury (MeHg), are largely unknown. We found that conditioned medium of MeHg-treated astrocytes (MCM) attenuated neuronal cell death induced by MeHg, suggesting that astrocytes-released factors can protect neuronal cells. The increased expression of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) was observed in MeHg-treated astrocytes. NGF and BDNF were detected in culture media as homodimers, which are able to bind specific tyrosine kinase receptors, tropomyosin related kinase (Trk) A and TrkB, respectively. The TrkA antagonist and TrkB antagonist abolished the protective effects of MCM in neuronal cell death induced by MeHg. Taken together, astrocytes synthesize and release NGF and BDNF in response to MeHg to protect neurons from MeHg toxicity. This study is considered to show a novel defense mechanism against MeHg-induced neurotoxicity.

  1. Detecting transforming growth factorrelease from liver cells using an aptasensor integrated with microfluidics.

    PubMed

    Matharu, Zimple; Patel, Dipali; Gao, Yandong; Haque, Amranul; Zhou, Qing; Revzin, Alexander

    2014-09-01

    We developed a cell-culture/biosensor platform consisting of aptamer-modified Au electrodes integrated with reconfigurable microfluidics for monitoring of transforming growth factor-beta 1 (TGF-β1), an important inflammatory and pro-fibrotic cytokine. Aptamers were thiolated, labeled with redox reporters, and self-assembled on gold surfaces. The biosensor was determined to be specific for TGF-β1 with an experimental detection limit of 1 ng/mL and linear range extending to 250 ng/mL. Upon determining figures of merit, aptasensor was miniaturized and integrated with human hepatic stellate cells inside microfluidic devices. Reconfigurable microfluidics were developed to ensure that seeding of "sticky" stromal cells did not foul the electrode and compromise sensor performance. This microsystem with integrated aptasensors was used to monitor TGF-β1 release from activated stellate cells over the course of 20 h. The electrochemical response went down upon infusing anti-TGF-β1 antibodies into the microfluidic devices containing activated stellate cells. To further validate aptasensor responses, stellate cells were stained for markers of activation (e.g., alpha smooth muscle actin) and were also tested for presence of TGF-β1 using enzyme linked immunosorbent assay (ELISA). Given the importance of TGF-β1 as a fibrogenic signal, a microsystem with integrated biosensors for local and continuous detection of TGF-β1 may prove to be an important tool to study fibrosis of the liver and other organs.

  2. Effects of a synthetic bioactive peptide on neurite growth and nerve growth factor release in chondroitin sulfate hydrogels.

    PubMed

    Conovaloff, Aaron W; Beier, Brooke L; Irazoqui, Pedro P; Panitch, Alyssa

    2011-01-01

    Previous work has revealed robust dorsal root ganglia neurite growth in hydrogels of chondroitin sulfate. In the current work, it was determined whether addition of a synthetic bioactive peptide could augment neurite growth in these matrices via enhanced binding and sequestering of growth factors. Fluorescence recovery after photobleaching studies revealed that addition of peptide slowed nerve growth factor diffusivity in chondroitin sulfate gels, but not in control gels of hyaluronic acid. Furthermore, cultures of chick dorsal root ganglia in gels of hyaluronic acid or chondroitin sulfate revealed enhanced growth in chondroitin sulfate gels only upon addition of peptide. Taken together, these results suggest a synergistic nerve growth factor-binding activity between this peptide and chondroitin sulfate. PMID:23507745

  3. Release of basic fibroblast growth factor-heparan sulfate complexes from endothelial cells by plasminogen activator-mediated proteolytic activity

    PubMed Central

    1990-01-01

    Cultured bovine capillary endothelial (BCE) cells synthesize heparan sulfate proteoglycans (HSPG), which are both secreted into the culture medium and deposited in the cell layer. The nonsoluble HSPGs can be isolated as two predominant species: a larger 800-kD HSPG, which is recovered from preparations of extracellular matrix, and a 250-kD HSPG, which is solubilized by nonionic detergent extraction of the cells. Both HSPG species bind bFGF. 125I-bFGF bound to BCE cell cultures is readily released by either heparinase or plasmin. When released by plasmin, the growth factor is recovered from the incubation medium as a complex with the partly degraded high molecular mass HSPG. Endogenous bFGF activity is released by a proteolytic treatment of cultured BCE cells. The bFGF-binding HSPGs are also released when cultures are incubated with the inactive proenzyme plasminogen. Under such experimental conditions, the release of the extracellular proteoglycans can be enhanced by treating the cells either with bFGF, which increases the plasminogen activating activity expressed by the cells, or decreased by treating the cells with transforming growth factor beta, which decreases the plasminogen activating activity of the cells. Specific immune antibodies raised against bovine urokinase also block the release of HSPG from BCE cell cultures. We propose that this plasminogen activator-mediated proteolysis provides a mechanism for the release of biologically active bFGF-HSPG complexes from the extracellular matrix and that bFGF release can be regulated by the balance between factors affecting the pericellular proteolytic activity. PMID:2137829

  4. Magnetic field-responsive release of transforming growth factor beta 1 from heparin-modified alginate ferrogels.

    PubMed

    Kim, Hwi; Park, Honghyun; Lee, Jae Won; Lee, Kuen Yong

    2016-10-20

    Stimuli-responsive polymeric systems have been widely used for various drug delivery and tissue engineering applications. Magnetic stimulation can be also exploited to regulate the release of pharmaceutical drugs, growth factors, and cells from hydrogels in a controlled manner, on-demand. In the present study, alginate ferrogels containing iron oxide nanoparticles were fabricated via ionic cross-linking, and their various characteristics were investigated. The deformation of the ferrogels was dependent on the polymer concentration, calcium concentration, iron oxide concentration, and strength of magnetic field. To modulate the release of transforming growth factor beta 1 (TGF-β1) under magnetic stimulation, alginate was chemically modified with heparin, as TGF-β1 has a heparin-binding domain. Alginate was first modified with ethylenediamine, and heparin was then conjugated to the ethylenediamine-modified alginate via carbodiimide chemistry. Conjugation of heparin to alginate was confirmed by infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. Sustained release of TGF-β1 from alginate-g-heparin ferrogels was achieved, and application of a magnetic field to the ferrogels regulated TGF-β1 release, resultantly enhancing chondrogenic differentiation of ATDC5 cells, which were used as a model chondrogenic cell line. Alginate-based ferrogels that release drugs in a controlled manner may therefore be useful in many biomedical applications. PMID:27474590

  5. Sustained release of vascular endothelial growth factor from calcium-induced alginate hydrogels reinforced by heparin and chitosan.

    PubMed

    Lee, K W; Yoon, J J; Lee, J H; Kim, S Y; Jung, H J; Kim, S J; Joh, J W; Lee, H H; Lee, D S; Lee, S K

    2004-10-01

    A possible alternative for immunosuppression is a microencapsulation technique using hydrogels, which have been utilized for cell immobilization and drug delivery systems. Angiogenesis is crucial for delivery of the metabolic products to the host tissues as well as to supply oxygen and nutrients to cells. The local delivery of angiogenic growth factors, such as VEGF and basic FGF, has been recently studied to enhance angiogenesis on peripheral tissue of graft. In this study, we evaluated sustained VEGF release with a model using hydrogels coated with chitosan and heparin in vitro. We fabricated calcium alginate gels and chitosan-coated calcium alginate gels. Heparinized chitosan-coated calcium-induced alginate hydrogel beads were prepared by soaking chitosan-coated calcium alginate gels in heparin solution. We compared the stability and VEGF release manner between three kinds of hydrogels. To compare the stability, 5 mL of each hydrogel was incubated with 20 mL PBS under the rotational culture. Compression forces were measured using a rheometer. The amount of VEGF released from the gels was measured by ELISA. The heparin-coated chitosan alginate hydrogels showed the highest surface stability among the three hydrogels. VEGF from the heparinized gel was released in sustained manner up to 10 days in vitro. Chitosan-coated alginate gels released 90% of loaded VEGF within 5 days. These results suggest that local delivery of VEGF using a heparinized hydrogel may provide a long-term supply of angiogenic growth factor that might induce new vessel formation in vivo.

  6. Release of angiogenic growth factors from cells encapsulated in alginate beads with bioactive glass.

    PubMed

    Keshaw, Hussila; Forbes, Alastair; Day, Richard M

    2005-07-01

    Attempts to stimulate therapeutic angiogenesis using gene therapy or delivery of recombinant growth factors, such as vascular endothelial growth factor (VEGF), have failed to demonstrate unequivocal efficacy in human trials. Bioactive glass stimulates fibroblasts to secrete significantly increased amounts of angiogenic growth factors and therefore has a number of potential applications in therapeutic angiogenesis. The aim of this study was to assess whether it is possible to encapsulate specific quantities of bioactive glass and fibroblasts into alginate beads, which will secrete growth factors capable of stimulating angiogenesis. Human fibroblasts (CCD-18Co) were encapsulated in alginate beads with specific quantities of 45S5 bioactive glass and incubated in culture medium (0-17 days). The conditioned medium was collected and assayed for VEGF or used to assess its ability to stimulate angiogenesis by measuring the proliferation of human dermal microvascular endothelial cells. At 17 days the beads were lysed and the amount of VEGF retained by the beads measured. Fibroblasts encapsulated in alginate beads containing 0.01% and 0.1% (w/v) 45S5 bioactive glass particles secreted increased quantities of VEGF compared with cells encapsulated with 0% or 1% (w/v) 45S5 bioactive glass particles. Lysed alginate beads containing 0.01% and 0.1% (w/v) 45S5 bioactive glass contained significantly more VEGF (p<0.01) compared with beads containing no glass particles. Endothelial cell proliferation was significantly increased (p<0.01) by conditioned medium collected from alginate beads containing 0.1% (w/v) 45S5 bioactive glass particles. The results of this study demonstrate that bioactive glass and fibroblasts can be successfully incorporated into alginate beads for use in delivering angiogenic growth factors. With further optimization, this technique offers a novel delivery device for stimulating therapeutic angiogenesis. PMID:15664644

  7. Entrapment of basic fibroblast growth factor (bFGF) in a succinylated chitosan nanoparticle delivery system and release profile.

    PubMed

    Butko, Alison; Bonat Celli, Giovana; Paulson, Allan; Ghanem, Amyl

    2016-07-01

    Basic fibroblast growth factor (bFGF) helps to regulate the proliferation and migration of fibroblasts, the proliferation of endothelial cells, and aids the development of angiogenesis. Its in vivo half-life is on the order of minutes due to extensive degradation and inactivation, which could be potentially reduced by controlled release vehicles. In this study, bFGF was entrapped into chitosan (CS) and N-succinyl-chitosan (SC) nanoparticles, with and without heparin, at two levels of initial loading, followed by further characterization of the particles. Release studies were conducted using radiolabeled bFGF-loaded nanoparticles. Both types of nanoparticles loaded similar amounts of bFGF (60.2 and 68.6% for CS and SC, respectively). The release profile varied greatly among the samples, and a burst release was observed in most cases, with the release amount approaching its final value in the first 6 h. The final amount released varied from 1.5 to 18% of the amount of bFGF-entrapped. The concomitant encapsulation of heparin and the use of SC as a nanoparticle matrix contributed to the largest amount of bFGF release (18%) over the time investigated.

  8. Growth factors

    SciTech Connect

    Golde, D.W.; Herschman, H.R.; Lusis, A.J.; Groopman, J.E.

    1980-05-01

    Humoral regulation of somatic and hematopoietic cell growth has been intensely investigated during the past decade. Growth hormone is unique because it regulates the size of the person within the constraints of the genetic program. The somatomedins and insulin growth factors are low molecular weight polypeptides believed to mediate some functions of growth hormone. Epithelial growth factor and nerve growth factor are well-characterized polypeptides that influence the growth and differentiation of epithelial and neural tissues and interact with specific cell surface receptors. The hematopoietins are a family of polypeptide hormones that specifically regulate the proliferation and differentiation of stem cells giving rise to erythrocytes, granulocytes, monocytes, megakaryocytes, and B and T lymphocytes. Platelet-derived growth factor modulates the proliferation of fibroblasts in vitro and may have a role in the development of atherosclerosis and myelofibrosis. New knowledge on the biochemistry and physiology of growth factors will probably have a substantial impact on our understanding of human diseases involving abnormal cell growth.

  9. Expression of growth hormone (GH)-releasing factor gene in GH-producing pituitary adenoma.

    PubMed

    Wakabayashi, I; Inokuchi, K; Hasegawa, O; Sugihara, H; Minami, S

    1992-02-01

    Pituitary cells synthesize various neuropeptides that influence pituitary hormone secretion. GH-releasing factor (GRF) may also be produced by normal or pituitary tumor cells. We examined GRF gene expression in pituitary tumors. Standard techniques for the analysis of GRF gene expression did not appear to be suitable. Highly sensitive reverse transcription coupled to polymerase chain reaction was used. Specimens of pituitary adenoma were obtained by transsphenoidal adenomectomy from six patients with acromegaly and three patients with no clinical evidence of pituitary hormone overproduction; non-functioning adenoma. Pituitary glands were collected at autopsy from three patients who died from nonendocrine disorders. A specific GRF gene transcript was detected in five out of six GH-producing pituitary adenomas, whereas this was not found in three separate specimens of nonfunctioning pituitary adenoma or anterior and posterior pituitary tissue. The data suggest that GRF is synthesized as an intrinsic product in human GH-producing pituitary adenoma.

  10. A tubular gelatin scaffold capable of the time-dependent controlled release of epidermal growth factor and mitomycin C.

    PubMed

    Zhu, Jixiang; Yang, Fanwen; He, Fupo; Tian, Xiumei; Tang, Shuo; Chen, Xiaoming

    2015-11-01

    A tubular gelatin scaffold for the time-dependent controlled release of epidermal growth factor (EGF) and mitomycin C (MMC) was fabricated. EGF was incorporated using silk fibroin carriers, and MMC was planted using polylactide (PLA) microspheres. The relationship between scaffold properties and crosslinking degrees was evaluated. As the crosslinking degree was increased from 23.7% to 65.3%, the mechanical properties of the scaffold obviously improved, and the compressive modulus increased to approximately 65kPa. The mass degradation of the scaffold was also controlled from 9 days to approximately 1 month. In vitro release tests indicated that the scaffold mainly released EGF in the early period and MMC in the later period. Urethral epithelial cells (UECs) and urethral scar derived fibroblast cells (UFCs) were coseeded in the scaffold at a ratio of 1:1. After 9 days of coculture, immunostaining results displayed that the proportion of UECs continuously increased to approximately 71%. These changes in cell proportion were confirmed by the results of Western blot analysis. Therefore, the scaffold promoted the growth but inhibited the regeneration of UFCs. This scaffold for time-dependent controlled release of multiple biofactors may be potentially useful in urethral reconstruction and other tissue engineering studies.

  11. Sequential antibiotic and growth factor releasing chitosan-PAAm semi-IPN hydrogel as a novel wound dressing.

    PubMed

    Pulat, Mehlika; Kahraman, Anıl Sera; Tan, Nur; Gümüşderelioğlu, Menemşe

    2013-01-01

    The aim of this study is to prepare a novel wound dressing material which provides burst release of an antibiotic in combination with sustained release of growth factor delivery. This might be beneficial for the prevention of infections and to stimulate wound healing. As a wound dressing material, the semi-interpenetrating network (semi-IPN) hydrogel based on polyacrylamide (PAAm) and chitosan (CS) was synthesized via free radical polymerization. Ethylene glycol dimethacrylate was used for cross-linking of PAAm to form semi-IPN hydrogel. The hydrogel shows high water content (∼1800%, in dry basis) and stable swelling characteristics in the pH range of the wound media (∼4.0-7.4). The antibiotic, piperacillin-tazobactam, which belongs to the penicillin group was loaded into the hydrogel. The therapeutic serum dose of piperacillin-tazobactam for topic introduction was reached at 1st hour of the release. Additionally, in order to increase the mitogenic activity of hydrogel, epidermal growth factor (EGF) was embedded into the CS-PAAm in different amounts. Cell culture studies were performed with L929 mouse fibroblasts and the simulated cell growth was investigated by 3-(4,5-dimethylthiazol-2-yl)-diphenyltetrazolium bromide assay. The successful sustained release behavior of CS-PAAm hydrogel for EGF maintained the presence of EGF in the culture up to 5 days and the highest mitochondrial activities were recorded for the 0.4 μg EGF-loaded/mg of hydrogel group. In conclusion, CS-PAAm semi-IPN hydrogel loaded with piperacillin-tazobactam and EGF could be proposed for an effective system in wound-healing management.

  12. Epidermal growth factor and gonadotropin-releasing hormone stimulate proliferation of enriched population of gonadotropes.

    PubMed

    Childs, G V; Unabia, G

    2001-02-01

    Recent studies of epidermal growth factor (EGF) receptors on gonadotropes show that they appear early in the estrous cycle on immature gonadotropes, most of which could be identified by LH messenger RNA only. As diestrous gonadotropes translate the messenger RNAs, the percentages of LH and FSH cells with EGF receptors increase to reach a peak during proestrus. To learn more about the function of EGF in gonadotrope regulation, parallel studies of its mitogenic potential were conducted. To test this in a cell growth assay, we initially developed a protocol for enrichment of gonadotropes by counterflow centrifugation (elutriation). Analysis of immunolabeled cells in the enriched fraction showed that the population contained 90-95% cells with LH and/or FSH antigens. Less than 4% have TSH or PRL antigens, and less than 7% have ACTH antigens. About 15% of the enriched population expressed GH antigens in male rats and nearly 30% of the population express GH in females. This agrees with the known hormone storage overlap between these cells, especially in proestrous female rats. The MTT cell growth/cell death assay was then used to test the mitogenic potential of EGF, GnRH, and activin. This assay showed a linear relationship between plated cell numbers and optical density of the media after the MTT reaction was run. The enriched gonadotropes were plated in 96-microwell trays and grown for 3-4 days in the presence of defined media alone (no serum), or defined media containing 0.5-10 ng/ml EGF, 0.5-1 nM GnRH, 60 ng/ml activin or two of these factors. In all of the 12 experiments, each of the factors stimulated a 3- to 10-fold increase in optical density values, depending on the dose of the stimulating factor. The effects of any two factors were not additive. Because the MTT assays do not discriminate between mitogenic effects and enhanced cell survival, a second group of tests was run with mixed cultures of pituitary cells from diestrous female rats. These cells were

  13. Basic fibroblast growth factor binds to subendothelial extracellular matrix and is released by heparitinase and heparin-like molecules

    SciTech Connect

    Bashkin, P.; Doctrow, S.; Klagsbrun, M.; Svahn, C.M.; Folkman, J.; Vlodavsky, I. )

    1989-02-21

    Basic fibroblast growth factor (bFGF) exhibits specific binding to the extracellular matrix (ECM) produced by cultured endothelial cells. Binding was saturable as a function both of time and of concentration of {sup 125}I-bFGF. Scatchard analysis of FGF binding revealed the presence of about 1.5 x 10{sup 12} binding sites/mm{sup 2} ECM with an apparent k{sub D} of 610 nM. FGF binds to heparan sulfate (HS) in ECM as evidenced by (i) inhibition of binding in the presence of heparin or HS at 0.1-1 {mu}g/mL, but not by chondroitin sulfate, keratan sulfate, or hyaluronic acid at 10 {mu}g/mL, (ii) lack of binding to ECM pretreated with heparitinase, but not with chondroitinase ABC, and (iii) rapid release of up to 90% of ECM-bound FGF by exposure to heparin, HS, or heparitinase, but not to chondroitin sulfate, keratan sulfate, hyaluronic acid, or chondroitinase ABC. Oligosaccharides derived from depolymerized heparin, and as small as the tetrasaccharide, released the ECM-bound FGF, but there was little or no release of FGF by modified nonanticoagulant heparins such as totally desulfated heparin, N-desulfated heparin, and N-acetylated heparin. FGF released from ECM was biologically active, as indicated by its stimulation of cell proliferation and DNA synthesis in vascular endothelial cells and 3T3 fibroblasts. Similar results were obtained in studies on release of endogenous FGF-like mitogenic activity from Descement's membranes of bovine corneas. It is suggested that ECM storage and release of bFGF provide a novel mechanism for regulation of capillary blood vessel growth. Whereas ECM-bound FGF may be prevented from acting on endothelial cells, its displacement by heparin-like molecules and/or HS-degrading enzymes may elicit a neovascular response.

  14. Effects of growth hormone-releasing factor on growth hormone response, growth and feed conversion efficiency in buffalo heifers (Bubalus bubalis).

    PubMed

    Haldar, A; Prakash, B S

    2007-09-01

    The aim of this study was to determine the benefits of growth hormone-releasing factor (GRF) on growth and feed conversion efficiency (FCE) in buffaloes. Twelve Murrah buffalo heifers (Bubalus bubalis) of mean age 24.8 months and mean body weight 302.4kg were divided into two groups (treatment and control) with six animals in each group. The buffaloes were given intravenous injections of bovine GRF (bGRF) at a dose rate of 10microg/100kg body weight or an equal volume of saline at 15-day intervals for a period of 9 months. Plasma growth hormone (GH) responses to bGRF challenge were measured in blood samples collected at 90-day intervals on days 1, 90, 180 and 270 and samples were taken at -60, -30, 0, +10, +20, +30, +60, +120 and +180min relative to bGRF injection. Blood samples were also collected weekly by jugular venepuncture for the quantification of plasma GH. The average growth rate (AGR) and FCE of all animals were recorded at 15-day intervals. Plasma GH concentrations increased (P=0.001) steadily following bGRF challenge, peaking 10-20min after challenge and declining to baseline by 180min. In the treatment group, there were no significant differences (P>0.05) in either the peak heights of the GH response or the area under the curve (AUC) of the GH response after bGRF challenge on any of the four occasions of intensive bleeding. There were overall increases in plasma GH concentrations (P<0.01), AGR (P<0.01) and FCE (P=0.05) in the treatment group compared with the control animals. The study showed that GH responsiveness to administration of bGRF at 15-day intervals over 9 months of treatment remained unchanged in buffalo heifers. Exogenous bGRF treatment for a long period can therefore enhance GH release leading to higher growth rates and better feed conversion efficiency in buffalo heifers. PMID:17113797

  15. Biodegradable photo-crosslinked alginate nanofibre scaffolds with tuneable physical properties, cell adhesivity and growth factor release.

    PubMed

    Jeong, Sung In; Jeon, Oju; Krebs, Melissa D; Hill, Michael C; Alsberg, Eben

    2012-01-01

    Nanofibrous scaffolds are of interest in tissue engineering due to their high surface area to volume ratio, interconnected pores, and architectural similarity to the native extracellular matrix. Our laboratory recently developed a biodegradable, photo-crosslinkable alginate biopolymer. Here, we show the capacity of the material to be electrospun into a nanofibrous matrix, and the ability to enhance cell adhesion and proliferation on these matrices by covalent modification with cell adhesion peptides. Additionally, the potential of covalently incorporating heparin into the hydrogels during the photopolymerisation process to sustain the release of a heparin binding growth factor via affinity interactions was demonstrated. Electrospun photo-crosslinkable alginate nanofibrous scaffolds endowed with cell adhesion ligands and controlled delivery of growth factors may allow for improved regulation of cell behaviour for regenerative medicine. PMID:23070945

  16. BIODEGRADABLE PHOTO-CROSSLINKED ALGINATE NANOFIBRE SCAFFOLDS WITH TUNEABLE PHYSICAL PROPERTIES, CELL ADHESIVITY AND GROWTH FACTOR RELEASE

    PubMed Central

    Jeong, Sung In; Jeon, Oju; Krebs, Melissa D.; Hill, Michael C.; Alsberg, Eben

    2012-01-01

    Nanofibrous scaffolds are of interest in tissue engineering due to their high surface area to volume ratio, interconnected pores, and architectural similarity to the native extracellular matrix. Our laboratory recently developed a biodegradable, photo-crosslinkable alginate biopolymer. Here, we show the capacity of the material to be electrospun into a nanofibrous matrix, and the ability to enhance cell adhesion and proliferation on these matrices by covalent modification with cell adhesion peptides. Additionally, the potential of covalently incorporating heparin into the hydrogels during the photopolymerisation process to sustain the release of a heparin binding growth factor via affinity interactions was demonstrated. Electrospun photo-crosslinkable alginate nanofibrous scaffolds endowed with cell adhesion ligands and controlled delivery of growth factors may allow for improved regulation of cell behaviour for regenerative medicine. PMID:23070945

  17. Encapsulation of basic fibroblast growth factor by polyelectrolyte multilayer microcapsules and its controlled release for enhancing cell proliferation.

    PubMed

    She, Zhen; Wang, Chunxia; Li, Jun; Sukhorukov, Gleb B; Antipina, Maria N

    2012-07-01

    Basic fibroblast growth factor (FGF2) is an important protein for cellular activity and highly vulnerable to environmental conditions. FGF2 protected by heparin and bovine serum albumin was loaded into the microcapsules by a coprecipitation-based layer-by-layer encapsulation method. Low cytotoxic and biodegradable polyelectrolytes dextran sulfate and poly-L-arginine were used for capsule shell assembly. The shell thickness-dependent encapsulation efficiency was measured by enzyme-linked immunosorbent assay. A maximum encapsulation efficiency of 42% could be achieved by microcapsules with a shell thickness of 14 layers. The effects of microcapsule concentration and shell thickness on cytotoxicity, FGF2 release kinetics, and L929 cell proliferation were evaluated in vitro. The advantage of using microcapsules as the carrier for FGF2 controlled release for enhancing L929 cell proliferation was analyzed. PMID:22657385

  18. Sanguinarine Inhibits Vascular Endothelial Growth Factor Release by Generation of Reactive Oxygen Species in MCF-7 Human Mammary Adenocarcinoma Cells

    PubMed Central

    Dong, Xian-zhe; Zhang, Miao; Wang, Kun; Liu, Ping; Guo, Dai-hong; Zheng, Xiao-li; Ge, Xiao-yue

    2013-01-01

    The inhibitory action and the possible mechanism of anticancer compound Sanguinarine (SAN) on vascular endothelial growth factor (VEGF) in human mammary adenocarcinoma cells MCF-7 were evaluated in this study. We exposed MCF-7 to SAN for 24 h, then cell viability was assessed by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay. Human VEGF was measured using a paired antibody quantitative ELISA kit, relative expression of VEGF mRNA was calculated using the real-time PCR studies, and the effect of SAN on the reactive oxygen species (ROS) level was detected by the flow cytometer. Treatment with SAN remarkably inhibited growth of MCF-7 cells and induced cell apoptosis. We found that VEGF release was stimulated by subtoxic concentrations of SAN and inhibited by high dose of SAN, SAN-evoked VEGF release was mimicked by low concentration of H2O2, and SAN-regulated VEGF inhibition was accompanied by increasing of ROS; these changes were abolished by antioxidant. High concentration of SAN inhibited VEGF mRNA expression in MCF-7 cultures, suggesting an effect at transcriptional level, and was also abolished by antioxidant. The present findings indicated that the regulation of VEGF expression and release from MCF-7 cells were possibly through reactive oxygen species evoked by SAN. PMID:23762849

  19. Biodegradable micro-osmotic pump for long-term and controlled release of basic fibroblast growth factor.

    PubMed

    Ryu, WonHyoung; Huang, Zhinong; Prinz, Fritz B; Goodman, Stuart B; Fasching, Rainer

    2007-12-01

    Microelectromechanical system (MEMS) technology not only provides the possibility of integration of multiple functions but also enables more precise control of dosing of therapeutic agents when the therapeutic window is very limited. Local delivery of basic fibroblast growth factor (bFGF) over a specific dose and time course is critical for mesenchymal tissue regeneration. However, bFGF is degraded quickly in vivo and difficulty of controlling the dose level impedes its effective use in angiogenesis and tissue regeneration. We constructed biodegradable micro-osmotic pumps based on MEMS technology for long-term controlled release of bFGF. The devices were constructed by micro-molding and thermal assembly of 85/15 poly(L-lactide-co-glycolide) sheets. The release of bFGF was regulated at 40 ng/day for four weeks; bioactivity was assessed by monitoring the growth of 3T3 fibroblasts. The proposed devices can be further miniaturized and used for the delivery of multiple therapeutic agents at the individual releasing schedules.

  20. Live Staphylococcus aureus Induces Expression and Release of Vascular Endothelial Growth Factor in Terminally Differentiated Mouse Mast Cells.

    PubMed

    Johnzon, Carl-Fredrik; Rönnberg, Elin; Guss, Bengt; Pejler, Gunnar

    2016-01-01

    Mast cells have been shown to express vascular endothelial growth factor (VEGF), thereby implicating mast cells in pro-angiogenic processes. However, the mechanism of VEGF induction in mast cells and the possible expression of VEGF in fully mature mast cells have not been extensively studied. Here, we report that terminally differentiated peritoneal cell-derived mast cells can be induced to express VEGF in response to challenge with Staphylococcus aureus, thus identifying a mast cell-bacteria axis as a novel mechanism leading to VEGF release. Whereas live bacteria produced a robust upregulation of VEGF in mast cells, heat-inactivated bacteria failed to do so, and bacteria-conditioned media did not induce VEGF expression. The induction of VEGF was not critically dependent on direct cell-cell contact between bacteria and mast cells. Hence, these findings suggest that VEGF can be induced by soluble factors released during the co-culture conditions. Neither of a panel of bacterial cell-wall products known to activate toll-like receptor (TLR) signaling promoted VEGF expression in mast cells. In agreement with the latter, VEGF induction occurred independently of Myd88, an adaptor molecule that mediates the downstream events following TLR engagement. The VEGF induction was insensitive to nuclear factor of activated T-cells inhibition but was partly dependent on the nuclear factor kappa light-chain enhancer of activated B cells signaling pathway. Together, these findings identify bacterial challenge as a novel mechanism by which VEGF is induced in mast cells. PMID:27446077

  1. Effect of Control-released Basic Fibroblast Growth Factor Incorporated in β-Tricalcium Phosphate for Murine Cranial Model

    PubMed Central

    Shimizu, Azusa; Tajima, Satoshi; Tobita, Morikuni; Tanaka, Rica; Tabata, Yasuhiko

    2014-01-01

    Background: β-Tricalcium phosphate (β-TCP) is used clinically as a bone substitute, but complete osteoinduction is slow. Basic fibroblast growth factor (bFGF) is important in bone regeneration, but the biological effects are very limited because of the short half-life of the free form. Incorporation in gelatin allows slow release of growth factors during degradation. The present study evaluated whether control-released bFGF incorporated in β-TCP can promote bone regeneration in a murine cranial defect model. Methods: Bilateral cranial defects of 4 mm in diameter were made in 10-week-old male Sprague-Dawley rats treated as follows: group 1, 20 μl saline as control; group 2, β-TCP disk in 20 μl saline; group 3, β-TCP disk in 50 μg bFGF solution; and group 4, β-TCP disk in 50 μg bFGF-containing gelatin hydrogel (n = 6 each). Histological and imaging analyses were performed at 1, 2, and 4 weeks after surgery. Results: The computed tomography value was lower in groups 3 and 4, whereas the rate of osteogenesis was higher histologically in group 4 than in the other groups. The appearance of tartrate-resistant acid phosphate–positive cells and osteocalcin-positive cells and disappearance of osteopontin-positive cells occurred earlier in group 4 than in the other groups. Conclusions: These findings suggest that control-released bFGF incorporated in β-TCP can accelerate bone regeneration in the murine cranial defect model and may be promising for the clinical treatment of cranial defects. PMID:25289319

  2. Platelet-released growth factors induce the antimicrobial peptide human beta-defensin-2 in primary keratinocytes.

    PubMed

    Bayer, Andreas; Lammel, Justus; Rademacher, Franziska; Groß, Justus; Siggelkow, Markus; Lippross, Sebastian; Klüter, Tim; Varoga, Deike; Tohidnezhad, Mersedeh; Pufe, Thomas; Cremer, Jochen; Gläser, Regine; Harder, Jürgen

    2016-06-01

    Platelet-released growth factors (PRGF) and its related clinically used formulations [e.g. Vivostat platelet-rich fibrin (PRF(®) )] are thrombocyte concentrate lysates that support healing of chronic, hard-to-heal and infected wounds. Human beta-defensin-2 (hBD-2) is an antimicrobial peptide expressed in human keratinocytes exhibiting potent antimicrobial activity against wound-related bacteria. In this study, we analysed the influence of PRGF on hBD-2 expression in human primary keratinocytes and the influence of Vivostat PRF(®) on hBD-2 expression in experimentally generated skin wounds in vivo. Treatment of primary keratinocytes with PRGF caused a significant increase in hBD-2 gene and protein expressions in a concentration- and time-dependent manner. The use of blocking antibodies revealed that the PRGF-mediated hBD-2 induction was partially mediated by the epidermal growth factor receptor and the interleukin-6 receptor (IL-6R). Luciferase gene reporter assays indicated that the hBD-2 induction through PRGF required activation of the transcription factor activator protein 1 (AP-1), but not of NF-kappaB. In concordance with these cell culture data, Vivostat PRF(®) induced hBD-2 expression when applied to experimentally generated skin wounds. Together, our results indicate that the induction of hBD-2 by thrombocyte concentrate lysates can contribute to the observed beneficial effects in the treatment of chronic and infected wounds. PMID:26843467

  3. Endothelial stress induces the release of vitamin D-binding protein, a novel growth factor

    SciTech Connect

    Raymond, Marc-Andre; Desormeaux, Anik; Labelle, Andree; Soulez, Mathilde; Soulez, Gilles; Langelier, Yves; Pshezhetsky, Alexey V.; Hebert, Marie-Josee . E-mail: marie-josee.hebert.chum@ssss.gouv.qc.ca

    2005-12-23

    Endothelial cells (EC) under stress release paracrine mediators that facilitate accumulation of vascular smooth muscle cells (VSCM) at sites of vascular injury. We found that medium conditioned by serum-starved EC increase proliferation and migration of VSCM in vitro. Fractionation of the conditioned medium followed by mass spectral analysis identified one bioactive component as vitamin D-binding protein (DBP). DBP induced both proliferation and migration of VSMC in vitro in association with increased phosphorylation of ERK 1/2. PD 98059, a biochemical inhibitor of ERK 1/2, abrogated these proliferative and migratory responses in VSMC. DBP is an important carrier for the vitamin-D sterols, 25-hydroxyvitamin-D, and 1{alpha},25-dihydroxyvitamin-D. Both sterols inhibited the activity of DBP on VSMC, suggesting that vitamin D binding sites are important for initiating the activities of DBP on VSMC. Release of DBP at sites of endothelial injury represents a novel pathway favoring accumulation of VSMC at sites of vascular injury.

  4. Slow release of growth factors and thrombospondin-1 in Choukroun's platelet-rich fibrin (PRF): a gold standard to achieve for all surgical platelet concentrates technologies.

    PubMed

    Dohan Ehrenfest, David M; de Peppo, Giuseppe M; Doglioli, Pierre; Sammartino, Gilberto

    2009-02-01

    Platelet concentrates for surgical topical applications are nowadays often used, but quantification of the long-term growth factor release from these preparations in most cases is impossible. Indeed, in most protocols, platelets are massively activated and there is no significant fibrin matrix to support growth factor release and cell migration. Choukroun's platelet-rich fibrin (PRF), a second generation platelet concentrate, is a leucocyte- and platelet-rich fibrin biomaterial. Here, we show that this dense fibrin membrane releases high quantities of three main growth factors (Transforming Growth Factor b-1 (TGFbeta-1), platelet derived growth factor AB, PDGF-AB; vascular endothelial growth factor, VEGF) and an important coagulation matricellular glycoprotein (thrombospondin-1, TSP-1) during 7 days. Moreover, the comparison between the final released amounts and the initial content of the membrane (after forcible extraction) allows us to consider that the leucocytes trapped in the fibrin matrix continue to produce high quantities of TGFbeta-1 and VEGF during the whole experimental time.

  5. Insulin-like growth factors (IGFs) stimulate the release of alpha 1-antichymotrypsin and soluble IGF-II/mannose 6-phosphate receptor from MCF7 breast cancer cells.

    PubMed

    Confort, C; Rochefort, H; Vignon, F

    1995-09-01

    The growth of hormone-responsive MCF7 human breast cancer cells is controlled by steroid hormones and growth factors. By metabolic labeling of cells grown in steroid- and growth factor-stripped serum conditions, we show that insulin-like growth factors (IGF-I and IGF-II) increase by approximately 5-fold the release of several proteins including cathepsin D, alpha 1-antichymotrypsin, and soluble forms of the multifunctional IGF-II/mannose 6-phosphate (M6P) receptor. Two soluble forms of IGF-II/M6P receptors were detected, one major (approximately 260 kilodaltons) and one minor (approximately 85 kilodaltons) that probably represents a proteolytic fragment of the larger soluble molecule. IGFs increased receptor release in a dose-dependent fashion with 50-60% of newly synthesized receptor released at 5-10 nM IGFs. The release of IGF-II/M6P receptors correlated with the levels of secreted cathepsin D in different human breast cancer cells or in rats stable transfectants that are constitutively expressing variable levels of human cathepsin D. IGFs had a stronger effect on IGF-II/M6P receptor release, whereas estradiol treatment preferentially enhanced the release of protease and antiprotease. We thus demonstrate that in human breast cancer cells, IGFs not only act as strong mitogens but also regulate release of alpha 1-antichymotrypsin, IGF-II/M6P-soluble receptor, and cathepsin D; three proteins that potentially regulate cell proliferation and/or invasion.

  6. Induction of nerve growth factor expression and release by mechanical and inflammatory stimuli in chondrocytes: possible involvement in osteoarthritis pain

    PubMed Central

    2014-01-01

    Introduction Nerve growth factor (NGF) level is increased in osteoarthritis (OA) joints and is involved in pain associated with OA. Stimuli responsible for NGF stimulation in chondrocytes are unknown. We investigated whether mechanical stress and proinflammatory cytokines may influence NGF synthesis by chondrocytes. Methods Primary cultures of human OA chondrocytes, newborn mouse articular chondrocytes or cartilage explants were stimulated by increasing amounts of IL-1β, prostaglandin E2 (PGE2), visfatin/nicotinamide phosphoribosyltransferase (NAMPT) or by cyclic mechanical compression (0.5 Hz, 1 MPa). Before stimulation, chondrocytes were pretreated with indomethacin, Apo866, a specific inhibitor of NAMPT enzymatic activity, or transfected by siRNA targeting visfatin/NAMPT. mRNA NGF levels were assessed by real-time quantitative PCR and NGF released into media was determined by ELISA. Results Unstimulated human and mouse articular chondrocytes expressed low levels of NGF (19.2 ± 8.7 pg/mL, 13.5 ± 1.0 pg/mL and 4.4 ± 0.8 pg/mL/mg tissue for human and mouse articular chondrocytes and costal explants, respectively). Mechanical stress induced NGF release in conditioned media. When stimulated by IL-1β or visfatin/NAMPT, a proinflammatory adipokine produced by chondocytes in response to IL-1β, a dose-dependent increase in NGF mRNA expression and NGF release in both human and mouse chondrocyte conditioned media was observed. Visfatin/NAMPT is also an intracellular enzyme acting as the rate-limiting enzyme of the generation of NAD. The expression of NGF induced by visfatin/NAMPT was inhibited by Apo866, whereas IL-1β-mediated NGF expression was not modified by siRNA targeting visfatin/NAMPT. Interestingly, PGE2, which is produced by chondrocytes in response to IL-1β and visfatin/NAMPT, did not stimulate NGF production. Consistently, indomethacin, a cyclooxygenase inhibitor, did not counteract IL-1β-induced NGF production. Conclusions These

  7. The Regulation and Function of Fibroblast Growth Factor 8 and Its Function during Gonadotropin-Releasing Hormone Neuron Development

    PubMed Central

    Chung, Wilson C. J.; Linscott, Megan L.; Rodriguez, Karla M.; Stewart, Courtney E.

    2016-01-01

    Over the last few years, numerous studies solidified the hypothesis that fibroblast growth factor (FGF) signaling regulates neuroendocrine progenitor cell proliferation, fate specification, and cell survival and, therefore, is critical for the regulation and maintenance of homeostasis of the body. One important example that underscores the involvement of FGF signaling during neuroendocrine cell development is gonadotropin-releasing hormone (GnRH) neuron ontogenesis. Indeed, transgenic mice with reduced olfactory placode (OP) Fgf8 expression do not have GnRH neurons. This observation indicates the requirement of FGF8 signaling for the emergence of the GnRH neuronal system in the embryonic OP, the putative birth place of GnRH neurons. Mammalian reproductive success depends on the presence of GnRH neurons to stimulate gonadotropin secretion from the anterior pituitary, which activates gonadal steroidogenesis and gametogenesis. Together, these observations are critical for understanding the function of GnRH neurons and their control of the hypothalamus–pituitary–gonadal (HPG) axis to maintain fertility. Taken together, these studies illustrate that GnRH neuron emergence and hence HPG function is vulnerable to genomic and molecular signals that abnormally modify Fgf8 expression in the developing mouse OP. In this short review, we focus on research that is aimed at unraveling how androgen, all-trans retinoic acid, and how epigenetic factors modify control mouse OP Fgf8 transcription in the context of GnRH neuronal development and mammalian reproductive success. PMID:27656162

  8. The Regulation and Function of Fibroblast Growth Factor 8 and Its Function during Gonadotropin-Releasing Hormone Neuron Development

    PubMed Central

    Chung, Wilson C. J.; Linscott, Megan L.; Rodriguez, Karla M.; Stewart, Courtney E.

    2016-01-01

    Over the last few years, numerous studies solidified the hypothesis that fibroblast growth factor (FGF) signaling regulates neuroendocrine progenitor cell proliferation, fate specification, and cell survival and, therefore, is critical for the regulation and maintenance of homeostasis of the body. One important example that underscores the involvement of FGF signaling during neuroendocrine cell development is gonadotropin-releasing hormone (GnRH) neuron ontogenesis. Indeed, transgenic mice with reduced olfactory placode (OP) Fgf8 expression do not have GnRH neurons. This observation indicates the requirement of FGF8 signaling for the emergence of the GnRH neuronal system in the embryonic OP, the putative birth place of GnRH neurons. Mammalian reproductive success depends on the presence of GnRH neurons to stimulate gonadotropin secretion from the anterior pituitary, which activates gonadal steroidogenesis and gametogenesis. Together, these observations are critical for understanding the function of GnRH neurons and their control of the hypothalamus–pituitary–gonadal (HPG) axis to maintain fertility. Taken together, these studies illustrate that GnRH neuron emergence and hence HPG function is vulnerable to genomic and molecular signals that abnormally modify Fgf8 expression in the developing mouse OP. In this short review, we focus on research that is aimed at unraveling how androgen, all-trans retinoic acid, and how epigenetic factors modify control mouse OP Fgf8 transcription in the context of GnRH neuronal development and mammalian reproductive success.

  9. The Regulation and Function of Fibroblast Growth Factor 8 and Its Function during Gonadotropin-Releasing Hormone Neuron Development.

    PubMed

    Chung, Wilson C J; Linscott, Megan L; Rodriguez, Karla M; Stewart, Courtney E

    2016-01-01

    Over the last few years, numerous studies solidified the hypothesis that fibroblast growth factor (FGF) signaling regulates neuroendocrine progenitor cell proliferation, fate specification, and cell survival and, therefore, is critical for the regulation and maintenance of homeostasis of the body. One important example that underscores the involvement of FGF signaling during neuroendocrine cell development is gonadotropin-releasing hormone (GnRH) neuron ontogenesis. Indeed, transgenic mice with reduced olfactory placode (OP) Fgf8 expression do not have GnRH neurons. This observation indicates the requirement of FGF8 signaling for the emergence of the GnRH neuronal system in the embryonic OP, the putative birth place of GnRH neurons. Mammalian reproductive success depends on the presence of GnRH neurons to stimulate gonadotropin secretion from the anterior pituitary, which activates gonadal steroidogenesis and gametogenesis. Together, these observations are critical for understanding the function of GnRH neurons and their control of the hypothalamus-pituitary-gonadal (HPG) axis to maintain fertility. Taken together, these studies illustrate that GnRH neuron emergence and hence HPG function is vulnerable to genomic and molecular signals that abnormally modify Fgf8 expression in the developing mouse OP. In this short review, we focus on research that is aimed at unraveling how androgen, all-trans retinoic acid, and how epigenetic factors modify control mouse OP Fgf8 transcription in the context of GnRH neuronal development and mammalian reproductive success. PMID:27656162

  10. Effect of exogenous growth-hormone-releasing factor on blood metabolites and minerals in late maturing buffalo heifers (Bubalus bubalis).

    PubMed

    Haldar, A; Prakash, B S

    2007-08-01

    Previous studies have suggested that growth-hormone-releasing factor (GRF) enhanced growth and advanced puberty onset along with hormonal changes in buffalo heifers (Bubalus bubalis). However, it is not known to what extent exogenous GRF could influence blood metabolites and minerals to bring about puberty in buffalo heifers. Therefore, we planned to investigate the effect of exogenous bovine GRF (bGRF) on blood metabolites and minerals in buffalo heifers during a 3-month pre-treatment period, 9-month treatment period and 1-month post-treatment period. Six buffalo heifers were treated intravenously with bGRF (10 mug per 100 kg body weight) at 15-day interval for 9 months. Another six buffalo heifers of weight- and age-matched received requisite amount of vehicle (0.9% NaCl solution) during the same period. Exogenous bGRF enhanced (p < 0.01) plasma non-esterified fatty acids (NEFA) concentrations in treatment group when compared with control group during the treatment and post-treatment period, while plasma alpha-amino nitrogen (AAN) concentrations showed a decreasing trend (p < 0.05) in the treatment group when compared with the control group during the treatment and post-treatment periods. The plasma inorganic phosphorus (Pi) was found to be higher (p < 0.05) in the treatment group animals in comparison with the levels recorded in the control group animals during the treatment as well as post-treatment periods. However, there was no change (p > 0.05) in plasma glucose and calcium concentrations between the two groups. Plasma NEFA was found to be positively correlated with plasma growth hormone (GH); however, it was only significant for the treatment group (r = + 0.76; p < 0.05). Plasma AAN in the treatment group exhibited negative correlation with plasma GH (r = 0.72; p < 0.05), while plasma AAN and GH were recorded to be positively correlated in the control group (r = 0.47; p < 0.05). The present findings suggest that exogenous bGRF induces GH release that

  11. Neither bovine somatotropin nor growth hormone-releasing factor alters expression of thyroid hormone receptors in liver and mammary tissues.

    PubMed

    Capuco, A V; Binelli, M; Tucker, H A

    2011-10-01

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine to specific nuclear receptors. Organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, have been hypothesized to target the action of thyroid hormones on the mammary gland and play a role in mediating or augmenting a galactopoietic response to bovine somatotropin (bST). Additionally, tissue responsiveness to thyroid hormones may be altered by changes in the number or affinity of nuclear receptors for thyroid hormones. In the present study, effects of bST and bovine growth hormone-releasing factor (bGRF) on thyroid hormone receptors in liver and mammary gland were studied. Lactating Holstein cows received continuous infusions of bST or bGRF for 63 d or served as uninfused controls. Nuclei were isolated from harvested mammary and liver tissues and incubated with [(125)I]-triiodothyronine. Treatments did not alter the capacity or affinity of specific binding sites for triiodothyronine in liver or mammary nuclei. Evaluation of transcript abundance for thyroid hormone receptors showed that isoforms of thyroid hormone receptor or retinoid receptor (which may influence thyroid receptor action) expressed in the mammary gland were not altered by bST or bGRF treatment. Data do not support the hypothesis that administration of bST or bGRF alters sensitivity of mammary tissue by changing expression of thyroid hormone receptors.

  12. Feedlot performance, carcass characteristics, hormones, and metabolites in steers actively immunized against growth hormone-releasing factor.

    PubMed

    Harvey, R W; Armstrong, J D; Heimer, E P; Campbell, R M

    1993-11-01

    Large-framed Simmental and Charolais steers were actively immunized against growth hormone-releasing factor (GRF) to evaluate the effect on growth, carcass characteristics (especially intramuscular fat deposition), and concentrations of somatotropin (ST) and IGF-I. Primary immunizations of 1.5 mg of GRF-(1-29)-Gly-Gly-Cys-NH2 conjugated to 1.5 mg of human serum albumin (GRFi, n = 12) or 1.5 mg of human serum albumin (HSAi, n = 12) were given at approximately 10 mo of age. Booster immunizations of .5 mg of the appropriate antigen were given at d 49 and 125. Weights of steers administered GRFi were less (P < .05) than those given HSAi at 126 d (34.6 kg) or at 262 d (48.2 kg) after treatment. Carcass weights were 28.2 kg less (P < .01) for GRFi than for HSAi steers. Dry matter intake was not affected by immunization treatment, whereas feed efficiency was reduced in GRFi steers. Marbling scores were higher (P < .05) for HSAi than for GRFi steers but similar percentages (83.3) of both treatments graded Low Choice or higher. Rib sections of GRFi steers contained more fat (31.2 vs 25.0%) and less lean (63.3 vs 68.4%) than those of HSAi steers (P < .05). A breed x treatment interaction was observed for percentage of fat within the trimmed longissimus muscle (P < .05); percentage of fat was similar for Charolais and Simmental steers when immunized against HSAi but was higher for Simmental than for Charolais when immunized against GRFi.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Compound Deficiencies in Multiple Fibroblast Growth Factor Signalling Components Differentially Impact the Murine Gonadotrophin-Releasing Hormone System

    PubMed Central

    Chung, W. C. J.; Matthews, T. A.; Tata, B. K.; Tsai, P.-S.

    2011-01-01

    Gonadotrophin-releasing hormone (GnRH) neurones control the onset and maintenance of fertility. Aberrant development of the GnRH system underlies infertility in Kallmann syndrome [KS; idiopathic hypogonadotropic hypogonadism (IHH) and anosmia]. Some KS patients harbour mutations in the fibroblast growth factor receptor 1 (Fgfr1) and Fgf8 genes. The biological significance of these two genes in GnRH neuronal development was corroborated by the observation that GnRH neurones were severely reduced in newborn transgenic mice deficient in either gene. In the present study, we hypothesised that the compound deficiency of Fgf8 and its cognate receptors, Fgfr1 and Fgfr3, may lead to more deleterious effects on the GnRH system, thereby resulting in a more severe reproductive phenotype in patients harbouring these mutations. This hypothesis was tested by counting the number of GnRH neurones in adult transgenic mice with digenic heterozygous mutations in Fgfr1/Fgf8, Fgfr3/Fgf8 or Fgfr1/Fgfr3. Monogenic heterozygous mutations in Fgfr1, Fgf8 or Fgfr3 caused a 30–50% decrease in the total number of GnRH neurones. Interestingly, mice with digenic mutations in Fgfr1/Fgf8 showed a greater decrease in GnRH neurones compared to mice with a heterozygous defect in the Fgfr1 or Fgf8 alone. This compounding effect was not detected in mice with digenic heterozygous mutations in Fgfr3/Fgf8 or Fgfr1/Fgfr3. These results support the hypothesis that IHH/KS patients with digenic mutations in Fgfr1/Fgf8 may have a further reduction in the GnRH neuronal population compared to patients harbouring monogenic haploid mutations in Fgfr1 or Fgf8. Because only Fgfr1/Fgf8 compound deficiency leads to greater GnRH system defect, this also suggests that these fibroblast growth factor signalling components interact in a highly specific fashion to support GnRH neuronal development. PMID:20553372

  14. Insulin-like growth factors (IGFs) stimulate the release of alpha 1-antichymotrypsin and soluble IGF-II/mannose 6-phosphate receptor from MCF7 breast cancer cells.

    PubMed

    Confort, C; Rochefort, H; Vignon, F

    1995-09-01

    The growth of hormone-responsive MCF7 human breast cancer cells is controlled by steroid hormones and growth factors. By metabolic labeling of cells grown in steroid- and growth factor-stripped serum conditions, we show that insulin-like growth factors (IGF-I and IGF-II) increase by approximately 5-fold the release of several proteins including cathepsin D, alpha 1-antichymotrypsin, and soluble forms of the multifunctional IGF-II/mannose 6-phosphate (M6P) receptor. Two soluble forms of IGF-II/M6P receptors were detected, one major (approximately 260 kilodaltons) and one minor (approximately 85 kilodaltons) that probably represents a proteolytic fragment of the larger soluble molecule. IGFs increased receptor release in a dose-dependent fashion with 50-60% of newly synthesized receptor released at 5-10 nM IGFs. The release of IGF-II/M6P receptors correlated with the levels of secreted cathepsin D in different human breast cancer cells or in rats stable transfectants that are constitutively expressing variable levels of human cathepsin D. IGFs had a stronger effect on IGF-II/M6P receptor release, whereas estradiol treatment preferentially enhanced the release of protease and antiprotease. We thus demonstrate that in human breast cancer cells, IGFs not only act as strong mitogens but also regulate release of alpha 1-antichymotrypsin, IGF-II/M6P-soluble receptor, and cathepsin D; three proteins that potentially regulate cell proliferation and/or invasion. PMID:7649082

  15. Safety and efficacy of sustained release of basic fibroblast growth factor using gelatin hydrogel in patients with critical limb ischemia.

    PubMed

    Kumagai, Motoyuki; Marui, Akira; Tabata, Yasuhiko; Takeda, Takahide; Yamamoto, Masaya; Yonezawa, Atsushi; Tanaka, Shiro; Yanagi, Shigeki; Ito-Ihara, Toshiko; Ikeda, Takafumi; Murayama, Toshinori; Teramukai, Satoshi; Katsura, Toshiya; Matsubara, Kazuo; Kawakami, Koji; Yokode, Masayuki; Shimizu, Akira; Sakata, Ryuzo

    2016-05-01

    As a form of therapeutic angiogenesis, we sought to investigate the safety and efficacy of a sustained-release system of basic fibroblast growth factor (bFGF) using biodegradable gelatin hydrogel in patients with critical limb ischemia (CLI). We conducted a phase I-IIa study that analyzed 10 CLI patients following a 200-μg intramuscular injection of bFGF-incorporated gelatin hydrogel microspheres into the ischemic limb. Primary endpoints were safety and transcutaneous oxygen pressure (TcO2) at 4 and 24 weeks after treatment. During the follow-up, there was no death or serious procedure-related adverse event. After 24 weeks, TcO2 (28.4 ± 8.4 vs. 46.2 ± 13.0 mmHg for pretreatment vs after 24 weeks, p < 0.01) showed significant improvement. Regarding secondary endpoints, the distance walked in 6 min (255 ± 105 vs. 318 ± 127 m, p = 0.02), the Rutherford classification (4.4 ± 0.5 vs. 3.1 ± 1.4, p = 0.02), the rest pain scale (1.7 ± 1.0 vs. 1.2 ± 1.3, p = 0.03), and the cyanotic scale (2.0 ± 1.1 vs. 0.9 ± 0.9, p < 0.01) also showed improvement. The blood levels of bFGF were within the normal range in all patients. A subanalysis of patients with arteriosclerosis obliterans (n = 7) or thromboangiitis obliterans (Buerger's disease) (n = 3) revealed that TcO2 had significantly improved in both subgroups. TcO2 did not differ between patients with or without chronic kidney disease. The sustained release of bFGF from biodegradable gelatin hydrogel may offer a safe and effective form of angiogenesis for patients with CLI.

  16. Growth hormone-releasing peptide-biotin conjugate stimulates myocytes differentiation through insulin-like growth factor-1 and collagen type I

    PubMed Central

    Lim, Chae Jin; Jeon, Jung Eun; Jeong, Se Kyoo; Yoon, Seok Jeong; Kwon, Seon Deok; Lim, Jina; Park, Keedon; Kim, Dae Yong; Ahn, Jeong Keun; Kim, Bong-Woo

    2015-01-01

    Based on the potential beneficial effects of growth hormone releasing peptide (GHRP)-6 on muscle functions, a newly synthesized GHRP-6-biotin conjugate was tested on cultured myoblast cells. Increased expression of myogenic marker proteins was observed in GHRP-6-biotin conjugate-treated cells. Additionally, increased expression levels of insulin-like growth factor-1 and collagen type I were observed. Furthermore, GHRP-6-biotin conjugate-treated cells showed increased metabolic activity, as indicated by increased concentrations of energy metabolites, such as ATP and lactate, and increased enzymatic activity of lactate dehydrogenase and creatine kinase. Finally, binding protein analysis suggested few candidate proteins, including desmin, actin, and zinc finger protein 691 as potential targets for GHRP6-biotin conjugate action. These results suggest that the newly synthesized GHRP-6-biotin conjugate has myogenic stimulating activity through, at least in part, by stimulating collagen type I synthesis and several key proteins. Practical applications of the GHRP-6-biotin conjugate could include improving muscle condition. [BMB Reports 2015; 48(9): 501-506] PMID:25644636

  17. Effects of rat growth hormone (rGH)-releasing factor and somatostatin on the release and synthesis of rGH in dispersed pituitary cells

    SciTech Connect

    Fukata, J.; Diamond, D.J.; Martin, J.B.

    1985-08-01

    The effects of rat hypothalamic GH-releasing factor (GRF) and somatostatin (SRIF) on the release and biosynthesis of rat GH were studied by RIA and quantitative immunoprecipitation using monolayer cultures of rat anterior pituitary cells. In kinetic studies, GRF stimulation of GH release appeared at the first sampling time (20-min incubation) and the effect began to diminish after 2-h incubation with GRF. On the other hand, total (cell plus medium) content of GH significantly increased only after 24-h incubation. To examine the GH-synthesizing effect of GRF more directly, newly synthesized GH labeled by (TVS)methionine during incubation with GRF was quantified by immunoprecipitation. The amount of immunoprecipitable GH increased significantly and specifically also only after 24-h incubation. When GH pools were labeled with (TVS)methionine under different schedules, the basal release of newly synthesized GH, which was labeled for 1 h immediately before chase incubation was lower during the first 15 min than stored GH which had been labeled earlier. Basal newly synthesized GH secretion exceeded stored GH secretion after 30 min. In this system, SRIF suppressed both the basal and stimulated release of GH but did not modify GH biosynthesis under either condition. Newly synthesized GH showed significant degradation during 24-h incubation; neither GRF nor SRIF affected the rate of GH degradation during the same incubation period.

  18. Effects of long-term growth hormone-releasing factor administration on plasma growth hormone, luteinizing hormone and progesterone profiles in growing female buffaloes (Bubalus bubalis).

    PubMed

    Mondal, M; Prakash, B S

    2004-10-01

    To investigate the effects of long-term growth hormone-releasing factor (GRF) administration on plasma growth hormone (GH), LH and progesterone and body weight gain in growing buffalo calves, 12 female Murrah buffaloes within the age group of 6-8 months of age were divided into two groups (treatment and control groups) of six each in such a way so that average body weights between the groups did not differ (p > 0.05). Control buffaloes were not given any hormonal treatment and treatment group buffaloes were treated with synthetic bovine GRF [bGRF (1-44)-NH(2)] at the rate of 10 microg/100 kg body weight intravenously at an interval of 15 days from week 6 (5-week pre-treatment period) till 18 injections were completed (week 6-42 treatment period) and thereafter, effect of exogenous GRF were observed for 10-week post-treatment period. Jugular blood samples were drawn twice a week at 3-4-day intervals for plasma GH, LH and progesterone quantification. Body weight of all animals was recorded twice a week. During pre-treatment period, mean plasma GH, LH and progesterone did not differ (p > 0.05) between the groups. But during treatment as well as post-treatment period, mean plasma GH levels were found to be significantly (p < 0.01) higher in treatment than control group of buffaloes. Administration of GRF for longer term sustained a higher level of plasma GH even after cessation of treatment. GRF-treated buffaloes attained higher (p < 0.01) body weight than the controls. Repeated GRF administration for long-term significantly (p < 0.01) increased plasma LH and progesterone. In conclusion, repeated long-term exogenous GRF administration induces and even enhances GH release without any sign of refractoriness. GRF may, therefore, be used to induce daily GH release without loss of responsiveness over an extended period of time in young growing female buffaloes and it may assist these animals to grow faster. PMID:15367266

  19. In vitro study of the role of thrombin in platelet rich plasma (PRP) preparation: utility for gel formation and impact in growth factors release

    PubMed Central

    Huber, Stephany Cares; Cunha Júnior, José Luiz Rosenberis; Montalvão, Silmara; da Silva, Letícia Queiroz; Paffaro, Aline Urban; da Silva, Francesca Aparecida Ramos; Rodrigues, Bruno Lima; Lana, José Fabio Santos Duarte; Annichino-Bizzacchi, Joyce Maria

    2016-01-01

    Introduction: The use of PRP has been studied for different fields, with promising results in regenerative medicine. Until now, there is no study in the literature evaluating thrombin levels in serum, used as autologous thrombin preparation. Therefore, in the present study we evaluated the role played by different thrombin concentrations in PRP and the impact in the release of growth factors. Also, different activators for PRP gel formation were evaluated. Methods: Thrombin levels were measured in different autologous preparations: serum, L-PRP (PRP rich in leukocytes) and T-PRP (thrombin produced through PRP added calcium gluconate). L-PRP was prepared according to the literature, with platelets and leukocytes being quantified. The effect of autologous thrombin associated or not with calcium in PRP gel was determined by measuring the time of gel formation. The relationship between thrombin concentration and release of growth factors was determined by growth factors (PDGF-AA, VEGF and EGF) multiplex analysis. Results: A similar concentration of thrombin was observed in serum, L-PRP and T-PRP (8.13 nM, 8.63 nM and 7.56 nM, respectively) with a high variation between individuals (CV%: 35.07, 43 and 58.42, respectively). T-PRP and serum with calcium chloride showed similar results in time to promote gel formation. The increase of thrombin concentrations (2.66, 8 and 24 nM) did not promote an increase in growth factor release. Conclusions: The technique of using serum as a thrombin source proved to be the most efficient and reproducible for promoting PRP gel formation, with some advantages when compared to other activation methods, as this technique is easier and quicker with no need of consuming part of PRP. Noteworthy, PRP activation using different thrombin concentrations did not promote a higher release of growth factors, appearing not to be necessary when PRP is used as a suspension. PMID:27397996

  20. Fibroblast Growth Factor 8 Signaling through Fibroblast Growth Factor Receptor 1 Is Required for the Emergence of Gonadotropin-Releasing Hormone Neurons

    PubMed Central

    Chung, Wilson C. J.; Moyle, Sarah S.; Tsai, Pei-San

    2008-01-01

    GnRH neurons are essential for the onset and maintenance of reproduction. Mutations in both fibroblast growth factor receptor (Fgfr1) and Fgf8 have been shown to cause Kallmann syndrome, a disease characterized by hypogonadotropic hypogonadism and anosmia, indicating that FGF signaling is indispensable for the formation of a functional GnRH system. Presently it is unclear which stage of GnRH neuronal development is most impacted by FGF signaling deficiency. GnRH neurons express both FGFR1 and -3; thus, it is also unclear whether FGFR1 or FGFR3 contributes directly to GnRH system development. In this study, we examined the developing GnRH system in mice deficient in FGF8, FGFR1, or FGFR3 to elucidate the individual contribution of these FGF signaling components. Our results show that the early emergence of GnRH neurons from the embryonic olfactory placode requires FGF8 signaling, which is mediated through FGFR1, not FGFR3. These data provide compelling evidence that the developing GnRH system is exquisitely sensitive to reduced levels of FGF signaling. Furthermore, Kallmann syndrome stemming from FGF signaling deficiency may be due primarily to defects in early GnRH neuronal development prior to their migration into the forebrain. PMID:18566132

  1. Ordering of neuronal apoptosis signaling: a superoxide burst precedes mitochondrial cytochrome c release in a growth factor deprivation model

    PubMed Central

    Lieven, Christopher J.; Thurber, Katherine A.; Levin, Emily J.

    2012-01-01

    Axonal injury to retinal ganglion cells, a defined central neuron, induces a burst of intracellular superoxide anion that precedes externalization of membrane phosphatidylserine and subsequent apoptotic cell death. Dismutation of superoxide prevents the signal and delays loss of these cells, consistent with superoxide being necessary for transduction of the axotomy signal. However, phosphatidylserine externalization is a relatively late step in apoptosis, and it is possible that the superoxide burst is not an early axotomy signal but rather a result of cytochrome c release from the mitochondrial inner membrane with consequent accumulation of reduced intermediates. Other possibilities are that both superoxide generation and cytochrome c release are induced in parallel by axotomy, or that cytochrome c release potentiates the effect of the superoxide burst. To distinguish these various possibilities, serum-deprived neuronal retinal cells were assayed in vitro for superoxide elevation and release of cytochrome c from mitochondria, and the distribution of these two markers across a large number of cells used to model the temporal ordering of events. Based on this model of factor-dependent cell death, superoxide precedes, and possibly potentiates, cytochrome c release, and thus the former is likely an early signal for certain types of neuronal apoptosis in the central nervous system. PMID:22411528

  2. Ordering of neuronal apoptosis signaling: a superoxide burst precedes mitochondrial cytochrome c release in a growth factor deprivation model.

    PubMed

    Lieven, Christopher J; Thurber, Katherine A; Levin, Emily J; Levin, Leonard A

    2012-06-01

    Axonal injury to retinal ganglion cells, a defined central neuron, induces a burst of intracellular superoxide anion that precedes externalization of membrane phosphatidylserine and subsequent apoptotic cell death. Dismutation of superoxide prevents the signal and delays loss of these cells, consistent with superoxide being necessary for transduction of the axotomy signal. However, phosphatidylserine externalization is a relatively late step in apoptosis, and it is possible that the superoxide burst is not an early axotomy signal but rather a result of cytochrome c release from the mitochondrial inner membrane with consequent accumulation of reduced intermediates. Other possibilities are that both superoxide generation and cytochrome c release are induced in parallel by axotomy, or that cytochrome c release potentiates the effect of the superoxide burst. To distinguish these various possibilities, serum-deprived neuronal retinal cells were assayed in vitro for superoxide elevation and release of cytochrome c from mitochondria, and the distribution of these two markers across a large number of cells used to model the temporal ordering of events. Based on this model of factor-dependent cell death, superoxide precedes, and possibly potentiates, cytochrome c release, and thus the former is likely an early signal for certain types of neuronal apoptosis in the central nervous system. PMID:22411528

  3. Effects of recombinant human insulin-like growth factor I administration on spontaneous and growth hormone (GH)-releasing hormone-stimulated GH secretion in anorexia nervosa.

    PubMed

    Gianotti, L; Pincelli, A I; Scacchi, M; Rolla, M; Bellitti, D; Arvat, E; Lanfranco, F; Torsello, A; Ghigo, E; Cavagnini, F; Müller, E E

    2000-08-01

    Exaggerated GH and reduced insulin-like growth factor I (IGF-I) levels are common features in anorexia nervosa (AN). A reduction of the negative IGF-I feedback could account, in part, for GH hypersecretion. To ascertain this, we studied the effects of recombinant human (rh)IGF-I on spontaneous and GH-releasing hormone (GHRH)-stimulated GH secretion in nine women with AN [body mass index, 14.1 +/- 0.6 kg/m2] and in weight matched controls (normal weight). Mean basal GH concentrations (mGHc) and GHRH (2.0 microg/kg, iv) stimulation were significantly higher in AN. rhIGF-I administration (20 microg/kg, sc) significantly reduced mGHc in AN (P < 0.01), but not normal weight, and inhibited peak GH response to GHRH in both groups; mGHc and peak GH, however, persisted at a significantly higher level in AN. Insulin, glucose, and IGFBP-1 basal levels were similar in both groups. rhIGF-I inhibited insulin in AN, whereas glucose remained unaffected in both groups. IGFBP-1 increased in both groups (P < 0.05), with significantly higher levels in AN. IGFBP-3 was under basal conditions at a lower level in AN (P < 0.05) and remained unaffected by rhIGF-I. This study demonstrates that a low rhIGF-I dose inhibits, but does not normalize, spontaneous and GHRH-stimulated GH secretion in AN, pointing also to the existence of a defective hypothalamic control of GH release. Moreover, the increased IGFBP-1 levels might curtail the negative IGF-I feedback in AN.

  4. Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes.

    PubMed

    Ciccarelli, R; Di Iorio, P; Bruno, V; Battaglia, G; D'Alimonte, I; D'Onofrio, M; Nicoletti, F; Caciagli, F

    1999-09-01

    Pharmacological activation of A(1) adenosine receptor with 2-chloro-N6-cyclopentyladenosine (CCPA) or mGlu3 metabotropic glutamate receptors with (2S,2'R,3'R)-2-(2', 3'-dicarboxycyclopropyl)glycine (DCG-IV) or aminopyrrolidine-2R, 4R-dicarboxylate (2R,4R-APDC) enhanced the release of nerve growth factor (NGF) or S-100beta protein from rat cultured astrocytes. Stimulation of release by CCPA and DCG-IV or 2R,4R-APDC was inhibited by the A(1) adenosine receptor antagonist 8-cyclopentyl-1, 3-dipropylxanthine and by the mGlu2/3 receptor antagonist (2S,1'S, 2'S,3'R)-2-(2'-carboxy-3'-phenylcyclopropyl)glycine (PCCG-4), respectively. Time-course studies revealed a profound difference between the release of S-100beta protein and the release of NGF in response to extracellular signals. Stimulation of S-100beta protein exhibited rapid kinetics, peaking after 1 h of drug treatment, whereas the enhancement of NGF release was much slower, requiring at least 6 h of A(1) adenosine or mGlu3 receptor activation. In addition, stimulation of NGF but not S-100beta release was substantially reduced in cultures treated with the protein synthesis inhibitor cycloheximide. In addition, a 6-8 h treatment of cultured astrocytes with A(1) or mGlu3 receptor agonists increased the levels of both NGF mRNA and NGF-like immunoreactive proteins, including NGF prohormone. We conclude that activation of A(1) adenosine or mGlu3 receptors produces pleiotropic effects in astrocytes, stimulating the synthesis and/or the release of protein factors. Astrocytes may therefore become targets for drugs that stimulate the local production of neurotrophic factors in the CNS, and this may provide the basis for a novel therapeutic strategy in chronic neurodegenerative disorders. PMID:10457374

  5. Glioblastoma-derived Macrophage Colony-stimulating Factor (MCSF) Induces Microglial Release of Insulin-like Growth Factor-binding Protein 1 (IGFBP1) to Promote Angiogenesis.

    PubMed

    Nijaguna, Mamatha Bangalore; Patil, Vikas; Urbach, Serge; Shwetha, Shivayogi D; Sravani, Kotha; Hegde, Alangar S; Chandramouli, Bangalore A; Arivazhagan, Arimappamagan; Marin, Philippe; Santosh, Vani; Somasundaram, Kumaravel

    2015-09-18

    Glioblastoma (grade IV glioma/GBM) is the most common primary adult malignant brain tumor with poor prognosis. To characterize molecular determinants of tumor-stroma interaction in GBM, we profiled 48 serum cytokines and identified macrophage colony-stimulating factor (MCSF) as one of the elevated cytokines in sera from GBM patients. Both MCSF transcript and protein were up-regulated in GBM tissue samples through a spleen tyrosine kinase (SYK)-dependent activation of the PI3K-NFκB pathway. Ectopic overexpression and silencing experiments revealed that glioma-secreted MCSF has no role in autocrine functions and M2 polarization of macrophages. In contrast, silencing expression of MCSF in glioma cells prevented tube formation of human umbilical vein endothelial cells elicited by the supernatant from monocytes/microglial cells treated with conditioned medium from glioma cells. Quantitative proteomics based on stable isotope labeling by amino acids in cell culture showed that glioma-derived MCSF induces changes in microglial secretome and identified insulin-like growth factor-binding protein 1 (IGFBP1) as one of the MCSF-regulated proteins secreted by microglia. Silencing IGFBP1 expression in microglial cells or its neutralization by an antibody reduced the ability of supernatants derived from microglial cells treated with glioma cell-conditioned medium to induce angiogenesis. In conclusion, this study shows up-regulation of MCSF in GBM via a SYK-PI3K-NFκB-dependent mechanism and identifies IGFBP1 released by microglial cells as a novel mediator of MCSF-induced angiogenesis, of potential interest for developing targeted therapy to prevent GBM progression.

  6. Effects of long-term growth hormone-releasing factor treatment on growth, feed conversion efficiency and dry matter intake in growing female buffaloes (Bubalus bubalis).

    PubMed

    Mondal, M; Prakash, B S

    2005-08-01

    Effects of long-term growth hormone-releasing factor (GRF) on growth performance, feed conversion efficiency (FCE) and dry matter intake (DMI) were studied in growing buffaloes. Twelve female Murrah buffaloes of 6-8 months of age were divided into two groups of six each on the basis of their body weights so that the average body weights of the groups did not differ (p > 0.05). Animals of each group were administered intravenously with either sterile distilled water (control group) or equal volume of GRF solution containing 10 mug GRF (1-44)-NH2/100 kg body weight (treatment group) at fortnight interval from week 6 (5-week pre-treatment period) for 36 weeks (weeks 6-42 treatment period). Thereafter a 10-week post-treatment period was added. All the animals were weighed consecutively 2 days in a week and the average body weight of the two observations in the week was thus considered for further calculation. Dry matter intake was recorded daily. Average daily gain, FCE and DMI/100 kg body weight were also calculated. Plasma progesterone was estimated in the samples collected twice a week at 3-4-day intervals to assess whether either group had begun ovarian cycles. It was found that ADG and FCE were higher (p < 0.01) in GRF-treated animals during treatment and even 10-week post-treatment period. Interestingly, total DMI was not different (p > 0.05) between the groups during treatment period but found to be lower in GRF treated animals during post-treatment period. The DMI/100 kg body weight was lower (p < 0.01) in GRF-treated animals during treatment and even after cessation of treatment for 10 weeks. The GRF administration for long-term increased (p < 0.05) plasma progesterone. Plasma progesterone concentrations suggest that no animal from either group reached puberty till the end of the experiment. In conclusion, repeated GRF administration for longer term decreased (p < 0.01) DMI/100 kg body weight and increased (p < 0.01) FCE and enabled the animals to grow faster

  7. Effects of long-term growth hormone-releasing factor treatment on growth, feed conversion efficiency and dry matter intake in growing female buffaloes (Bubalus bubalis).

    PubMed

    Mondal, M; Prakash, B S

    2005-08-01

    Effects of long-term growth hormone-releasing factor (GRF) on growth performance, feed conversion efficiency (FCE) and dry matter intake (DMI) were studied in growing buffaloes. Twelve female Murrah buffaloes of 6-8 months of age were divided into two groups of six each on the basis of their body weights so that the average body weights of the groups did not differ (p > 0.05). Animals of each group were administered intravenously with either sterile distilled water (control group) or equal volume of GRF solution containing 10 mug GRF (1-44)-NH2/100 kg body weight (treatment group) at fortnight interval from week 6 (5-week pre-treatment period) for 36 weeks (weeks 6-42 treatment period). Thereafter a 10-week post-treatment period was added. All the animals were weighed consecutively 2 days in a week and the average body weight of the two observations in the week was thus considered for further calculation. Dry matter intake was recorded daily. Average daily gain, FCE and DMI/100 kg body weight were also calculated. Plasma progesterone was estimated in the samples collected twice a week at 3-4-day intervals to assess whether either group had begun ovarian cycles. It was found that ADG and FCE were higher (p < 0.01) in GRF-treated animals during treatment and even 10-week post-treatment period. Interestingly, total DMI was not different (p > 0.05) between the groups during treatment period but found to be lower in GRF treated animals during post-treatment period. The DMI/100 kg body weight was lower (p < 0.01) in GRF-treated animals during treatment and even after cessation of treatment for 10 weeks. The GRF administration for long-term increased (p < 0.05) plasma progesterone. Plasma progesterone concentrations suggest that no animal from either group reached puberty till the end of the experiment. In conclusion, repeated GRF administration for longer term decreased (p < 0.01) DMI/100 kg body weight and increased (p < 0.01) FCE and enabled the animals to grow faster.

  8. Formation of dentin-like particles in dentin defects above exposed pulp by controlled release of fibroblast growth factor 2 from gelatin hydrogels.

    PubMed

    Kikuchi, Naoki; Kitamura, Chiaki; Morotomi, Takahiko; Inuyama, Yoshio; Ishimatsu, Hirotaka; Tabata, Yashuhiko; Nishihara, Tatsuji; Terashita, Masamichi

    2007-10-01

    The induction of dentin formation on exposed dental pulp is a major challenge in research on the regeneration of the dentin-pulp complex. We examined the effects of fibroblast growth factor 2 (FGF2), which was delivered in either a collagen sponge (noncontrolled release) or incorporated into gelatin hydrogels (controlled release), on the formation of dentin in exposed rat molar pulps. During the early phase of pulp wound healing, pulp cell proliferation and invasion of vessels into dentin defects above exposed pulp were induced in both groups. In the late phase, the induction of dentin formation was distinctly different between the 2 types of FGF2 release. The noncontrolled release of free FGF2 from collagen sponge induced excessive reparative dentin formation in the residual dental pulp, although dentin defects were not noted. In contrast, controlled release of FGF2 from gelatin hydrogels induced the formation of dentin-like particles with dentin defects above exposed pulp. These results suggest the possibility of a novel therapeutic approach for dentin-pulp complex by controlled release of bioactive FGF2.

  9. Evaluation of the effect of calcium gluconate and bovine thrombin on the temporal release of transforming growth factor beta 1 and platelet-derived growth factor isoform BB from feline platelet concentrates

    PubMed Central

    2012-01-01

    Background There are not reported regarding the protocols for obtaining platelet concentrates (PC) in cats for medical purposes. The objectives of this study were: 1) to describe a manual method for producing two kinds of PC in cats (PC-A and PC-B), 2) to describe the cellular population of the PC, 3) to measure and compare the effect of calcium gluconate (CG) and bovine thrombin (BT) on the temporal release of transforming growth factor beta 1 (TGF-β1) and platelet-derived growth factor type BB (PDGF-BB) at 3 and 12 hours post-activation and 4) to establish correlations between the cellular population of both PCs and the concentration of growth factors (GF). Blood samples were taken from 16 cats for complete blood count, plasma collection and PC preparation. The PC were arbitrarily divided into two fractions, specifically, PC-A (lower fraction) and PC-B (upper fraction). Results The platelet counts were significantly different (P<0.05) between the PC and whole blood but not between the PC fractions. The TGF-β1 concentration efficiencies for PC-A and PC-B activated with CG were 42.86% and 46.54%, and activated with BT were 42.88% and 54.64%, respectively. The PDGF-BB concentration efficiencies for PC-A and PC-B activated with CG were 61.36% and 60.61%, and activated with BT were 65.64% and 72.12%, respectively. The temporal release of GFs showed no statistically significant difference (P>0.05) between the activating substances at the time or for any PC fraction. Conclusions Whatever the activation means, these preparations of cat PC provide significant concentrations of platelets and GFs for possible clinical or experimental use. PMID:23131192

  10. Extracellular Matrix (ECM) Multilayer Membrane as a Sustained Releasing Growth Factor Delivery System for rhTGF-β3 in Articular Cartilage Repair

    PubMed Central

    Park, Sang-Hyug; Kim, Moon Suk; Kim, Young Jick; Choi, Byung Hyune; Lee, Chun Tek; Park, So Ra; Min, Byoung-Hyun

    2016-01-01

    Recombinant human transforming growth factor beta-3 (rhTGF-β3) is a key regulator of chondrogenesis in stem cells and cartilage formation. We have developed a novel drug delivery system that continuously releases rhTGF-β3 using a multilayered extracellular matrix (ECM) membrane. We hypothesize that the sustained release of rhTGF-β3 could activate stem cells and result in enhanced repair of cartilage defects. The properties and efficacy of the ECM multilayer-based delivery system (EMLDS) are investigated using rhTGF-β3 as a candidate drug. The bioactivity of the released rhTGF-ß3 was evaluated through chondrogenic differentiation of mesenchymal stem cells (MSCs) using western blot and circular dichroism (CD) analyses in vitro. The cartilage reparability was evaluated through implanting EMLDS with endogenous and exogenous MSC in both in vivo and ex vivo models, respectively. In the results, the sustained release of rhTGF-ß3 was clearly observed over a prolonged period of time in vitro and the released rhTGF-β3 maintained its structural stability and biological activity. Successful cartilage repair was also demonstrated when rabbit MSCs were treated with rhTGF-β3-loaded EMLDS ((+) rhTGF-β3 EMLDS) in an in vivo model and when rabbit chondrocytes and MSCs were treated in ex vivo models. Therefore, the multilayer ECM membrane could be a useful drug delivery system for cartilage repair. PMID:27258120

  11. Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis.

    PubMed

    Amirkhosravi, A; Amaya, M; Siddiqui, F; Biggerstaff, J P; Meyer, T V; Francis, J L

    1999-01-01

    Evidence that platelets play a role in tumor metastasis includes the observation of circulating tumor cell-platelet aggregates and the anti-metastatic effect of thrombocytopenia and anti-platelet drugs. Platelets have recently been shown to contain vascular endothelial growth factor (VEGF) which is released during clotting. We therefore studied the effects of (1) tumor cell-platelet adherence and tumor cell TF activity on platelet VEGF release; and (2) the effects of GpIIb/IIIa blockade on tumor cell-induced platelet VEGF release, tumor cell-induced thrombocytopenia and experimental metastasis. Adherent A375 human melanoma cells (TF+) and KG1 myeloid leukemia (TF-) cells were cultured in RPMI containing 10% fetal bovine serum. Platelet-rich plasma was obtained from normal citrated whole blood and the presence of VEGF (34 and 44 kDa isoforms) confirmed by immunoblotting. Platelet-rich plasma with or without anti-GpIIb/IIIa (Abciximab) was added to A375 monolayers and supernatant VEGF measured by ELISA. Tumor cell-induced platelet activation and release were determined by CD62P expression and serotonin release respectively. In vitro, tumor cell-platelet adherence was evaluated by flow cytometry. In vivo, thrombocytopenia and lung seeding were assessed 30 min and 18 days, respectively, after i.v. injection of Lewis Lung carcinoma (LL2) cells into control or murine 7E3 F(ab')(2) (6 mg/ kg) athymic rats. Maximal in vitro platelet activation (72% serotonin release) occurred 30 min after adding platelets to tumor cells. At this time, 87% of the A375 cells had adhered to platelets. Abciximab significantly (P<0.05) reduced platelet adherence to tumor cells as evidenced by flow cytometry. Incubation of A375 cells with platelets induced VEGF release in a time-dependent manner. This release was significantly inhibited by Abciximab (81% at 30 min; P<0.05). In the presence of fibrinogen and FII, VEGF release induced by A375 (TF+) cells was significantly higher than that induced

  12. Blockade of GpIIb/IIIa inhibits the release of vascular endothelial growth factor (VEGF) from tumor cell-activated platelets and experimental metastasis.

    PubMed

    Amirkhosravi, A; Amaya, M; Siddiqui, F; Biggerstaff, J P; Meyer, T V; Francis, J L

    1999-01-01

    Evidence that platelets play a role in tumor metastasis includes the observation of circulating tumor cell-platelet aggregates and the anti-metastatic effect of thrombocytopenia and anti-platelet drugs. Platelets have recently been shown to contain vascular endothelial growth factor (VEGF) which is released during clotting. We therefore studied the effects of (1) tumor cell-platelet adherence and tumor cell TF activity on platelet VEGF release; and (2) the effects of GpIIb/IIIa blockade on tumor cell-induced platelet VEGF release, tumor cell-induced thrombocytopenia and experimental metastasis. Adherent A375 human melanoma cells (TF+) and KG1 myeloid leukemia (TF-) cells were cultured in RPMI containing 10% fetal bovine serum. Platelet-rich plasma was obtained from normal citrated whole blood and the presence of VEGF (34 and 44 kDa isoforms) confirmed by immunoblotting. Platelet-rich plasma with or without anti-GpIIb/IIIa (Abciximab) was added to A375 monolayers and supernatant VEGF measured by ELISA. Tumor cell-induced platelet activation and release were determined by CD62P expression and serotonin release respectively. In vitro, tumor cell-platelet adherence was evaluated by flow cytometry. In vivo, thrombocytopenia and lung seeding were assessed 30 min and 18 days, respectively, after i.v. injection of Lewis Lung carcinoma (LL2) cells into control or murine 7E3 F(ab')(2) (6 mg/ kg) athymic rats. Maximal in vitro platelet activation (72% serotonin release) occurred 30 min after adding platelets to tumor cells. At this time, 87% of the A375 cells had adhered to platelets. Abciximab significantly (P<0.05) reduced platelet adherence to tumor cells as evidenced by flow cytometry. Incubation of A375 cells with platelets induced VEGF release in a time-dependent manner. This release was significantly inhibited by Abciximab (81% at 30 min; P<0.05). In the presence of fibrinogen and FII, VEGF release induced by A375 (TF+) cells was significantly higher than that induced

  13. Prostaglandin E2 requirement for transforming growth factor beta 1 inhibition of elicited macrophage 14 kDa phospholipase A2 release.

    PubMed Central

    McCord, M.; Bolognese, B.; Marshall, L. A.

    1995-01-01

    1. Cultured elicited-peritoneal macrophages release a soluble type II 14 kDa phospholipase A2 (PLA2) over time, reaching a plateau by 20-24 h of incubation and maintaining these levels over 72 h. Prostaglandin E2 (PGE2) is also produced but does not plateau until 48-72 h. 2. Transforming growth factor beta 1 (TGF beta 1) reduces cellular 14 kDa PLA2 and its subsequent release by approximately half, but does not alter PGE2 production. Co-incubation of TGF beta 1 with indomethacin interfered, in a concentration-dependent manner, with the ability of TGF beta 1 to reduce cellular 14 kDa PLA2 and its subsequent release over 24 h. The regulation of TGF beta 1 was not specific to indomethacin since other non-steroidal anti-inflammatory drugs had the same effect. This suggested that cyclooxygenase activity was essential for TGF beta 1 to exert its effect and indeed, the addition of exogenous PGE2 restored the TGF beta 1 action. 3. PGE2 alone exerted a concentration-dependent negative feedback action on elicited-macrophage 14 kDa PLA2 release. The inhibitory concentration (IC50 = approximately 180 ng PGE2 ml-1) approximated the PGE2 levels measured in the 24 h macrophage conditioned media (85-140 ng PGE2 ml-1) where PLA2 release began to plateau. Further, incubation of cells with indomethacin over 48 h resulted in the enhancement of 14 kDa PLA2 activity compared to that released from untreated cells. Forskolin failed to inhibit 14 kDa PLA2 release, suggesting PGE2 was not acting through an increase in adenylate cyclase. 4. Taken together, the data are consistent with the immunosuppressive aspects reported for both mediators during inflammation and demonstrates the requirement of PGE2 for TGF beta 1 action on the elicited macrophage. Images Figure 3 PMID:8590973

  14. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition.

    PubMed

    Chuang, H H; Prescott, E D; Kong, H; Shields, S; Jordt, S E; Basbaum, A I; Chao, M V; Julius, D

    2001-06-21

    Tissue injury generates endogenous factors that heighten our sense of pain by increasing the response of sensory nerve endings to noxious stimuli. Bradykinin and nerve growth factor (NGF) are two such pro-algesic agents that activate G-protein-coupled (BK2) and tyrosine kinase (TrkA) receptors, respectively, to stimulate phospholipase C (PLC) signalling pathways in primary afferent neurons. How these actions produce sensitization to physical or chemical stimuli has not been elucidated at the molecular level. Here, we show that bradykinin- or NGF-mediated potentiation of thermal sensitivity in vivo requires expression of VR1, a heat-activated ion channel on sensory neurons. Diminution of plasma membrane phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) levels through antibody sequestration or PLC-mediated hydrolysis mimics the potentiating effects of bradykinin or NGF at the cellular level. Moreover, recruitment of PLC-gamma to TrkA is essential for NGF-mediated potentiation of channel activity, and biochemical studies suggest that VR1 associates with this complex. These studies delineate a biochemical mechanism through which bradykinin and NGF produce hypersensitivity and might explain how the activation of PLC signalling systems regulates other members of the TRP channel family. PMID:11418861

  15. Sustained release of hepatocyte growth factor by cationic self-assembling peptide/heparin hybrid hydrogel improves β-cell survival and function through modulating inflammatory response

    PubMed Central

    Liu, Shuyun; Zhang, Lanlan; Cheng, Jingqiu; Lu, Yanrong; Liu, Jingping

    2016-01-01

    Inflammatory response is a major cause of grafts dysfunction in islet transplantation. Hepatocyte growth factor (HGF) had shown anti-inflammatory activity in multiple diseases. In this study, we aim to deliver HGF by self-assembling peptide/heparin (SAP/Hep) hybrid gel to protect β-cell from inflammatory injury. The morphological and slow release properties of SAPs were analyzed. Rat INS-1 β-cell line was treated with tumor necrosis factor α in vitro and transplanted into rat kidney capsule in vivo, and the viability, apoptosis, function, and inflammation of β-cells were evaluated. Cationic KLD1R and KLD2R self-assembled to nanofiber hydrogel, which showed higher binding affinity for Hep and HGF because of electrostatic interaction. Slow release of HGF from cationic SAP/Hep gel is a two-step mechanism involving binding affinity with Hep and molecular diffusion. In vitro and in vivo results showed that HGF-loaded KLD2R/Hep gel promoted β-cell survival and insulin secretion, and inhibited cell apoptosis, cytokine release, T-cell infiltration, and activation of NFκB/p38 MAPK pathways in β-cells. This study suggested that SAP/Hep gel is a promising carrier for local delivery of bioactive proteins in islet transplantation. PMID:27729786

  16. Chronic pulsatile shear stress alters insulin-like growth factor-I (IGF-I) binding protein release in vitro.

    PubMed

    Elhadj, Selim; Akers, R Michael; Forsten-Williams, Kimberly

    2003-02-01

    Insulin-like growth factor-I (IGF-I) is a potent smooth muscle cell mitogen indicated to have a role in vascular disease. IGF-I stimulates proliferation via receptor activation but its activity is mediated by IGF binding proteins (IGFBPs). Since hemodynamics have been linked to vascular proliferative disorders, we studied how pulsatile low (5 +/- 2 dynes/cm2) and high (23 +/- 8 dynes/cm2) shear stresses impacted IGFBP metabolism in bovine aortic endothelial cells using the Cellmax capillary system. We modeled the pulsatile flow in our system using the Womersley model for flow inside a rigid tube and harmonic analysis revealed that the flow was sinusoidal with a frequency of approximately 0.3 Hz for both shear stress treatments. Laminar flow was confirmed and the phase lag between the pressure and the flow found to be insignificant. Thus, our study provides a necessary characterization of this in vitro system as well as an investigation into how shear impacts the IGF axis. We found a significant difference in IGFBP distribution between treatments and, given that IGFBPs regulate IGF-I activity and that IGF-I-independent activities have been suggested for IGFBP-3, suggest that shear stress may indirectly regulate IGF-I activity, and, by extension, the effect of IGF-I on vascular pathologies. PMID:12627824

  17. Role of transiently altered sarcolemmal membrane permeability and basic fibroblast growth factor release in the hypertrophic response of adult rat ventricular myocytes to increased mechanical activity in vitro.

    PubMed Central

    Kaye, D; Pimental, D; Prasad, S; Mäki, T; Berger, H J; McNeil, P L; Smith, T W; Kelly, R A

    1996-01-01

    One of the trophic factors that has been implicated in initiating or facilitating growth in response to increased mechanical stress in several tissues and cell types is basic fibroblast growth factor (bFGF; FGF-2). Although mammalian cardiac muscle cells express bFGF, it is not known whether it plays a role in mediating cardiac adaptation to increased load, nor how release of the cytosolic 18-kD isoform of bFGF would be regulated in response to increased mechanical stress. To test the hypothesis that increased mechanical activity induces transient alterations in sarcolemmal permeability that allow cytosolic bFGF to be released and subsequently to act as an autocrine and paracrine growth stimulus, we examined primary isolates of adult rat ventricular myocytes maintained in serum-free, defined medium that were continually paced at 3 Hz for up to 5 d. Paced myocytes, but not nonpaced control cells, exhibited a "hypertrophic" response, which was characterized by increases in the rate of phenylalanine incorporation, total cellular protein content, and cell size. These changes could be mimicked in control cells by exogenous recombinant bFGF and could be blocked in continually paced cells by a specific neutralizing anti-bFGF antibody. In addition, medium conditioned by continually paced myocytes contained significantly more bFGF measured by ELISA and more mitogenic activity for 3T3 cells, activity that could be reduced by a neutralizing anti-bFGF antibody. The hypothesis that transient membrane disruptions sufficient to allow release of cytosolic bFGF occur in paced myocytes was examined by monitoring the rate of uptake into myocytes from the medium of 10-kD dextran linked to fluorescein. Paced myocytes exhibited a significantly higher rate of fluoresceinlabeled dextran uptake. These data are consistent with the hypothesis that nonlethal, transient alterations in sarcolemmal membrane permeability with release of cytosolic bFGF is one mechanism by which increased

  18. Experiment K-7-22: Growth Hormone Regulation Synthesis and Secretion in Microgravity. Part 2; Hypothalamic Growth Hormone-Releasing Factor, Somatostatin Immunoreactivity, and Messenger RNA Levels in Microgravity

    NASA Technical Reports Server (NTRS)

    Sawchenko, P. E.; Arias, C.; Krasnov, I.; Grindeland, R. E.; Vale, W.

    1994-01-01

    Immunohistochemical analyses of hypothalamic hormones carried out on tissue from rats flown on an earlier flight (Cosmos 1887) suggested preferential effects on hypophysiotropic principles involved in the regulation of growth hormone secretion and synthesis. We found that staining in the median eminence for peptides that provide both stimulatory (growth hormone-releasing factor, or GRF) and inhibitory (somatostatin, SS) influences on growth hormone secretion were depressed in flight animals relative to synchronous controls, while staining for other neuroendocrine peptides, cortocotropin-releasing factor and arginine vasopressin, were similar in these two groups. While this suggests some selective impact of weightlessness on the two principal central nervous system regulators of growth hormone dynamics, the fact that both GRF- and SS-immunoreactivity (IR) appeared affected in the same direction is somewhat problematic, and makes tentative any intimation that effects on CNS control mechanisms may be etiologically significant contributors to the sequelae of reduced growth hormone secretion seen in prolonged space flight. To provide an additional, and more penetrating, analysis we attempted in hypothalamic material harvested from animals flown on Cosmos 2044 to complement immunohistochemical analyses of GRF and SS staining with quantitative, in situ assessments of messenger RNAs encoding the precursors for both these hormones.

  19. Effect of intravenous bovine growth hormone or human pancreatic growth hormone-releasing factor on milk production and plasma hormones and metabolites in sheep.

    PubMed

    Hart, I C; Chadwick, P M; James, S; Simmonds, A D

    1985-05-01

    Although it is well known that exogenous bovine GH (bGH) increases milk yield in ruminants it has not been possible to determine whether an increase in endogenous GH secretion has the same effect. The recent isolation of human pancreatic GH-releasing factor (hpGRF-44) has enabled this comparison of the effects of bGH and hpGRF-44 on milk production in sheep. Three pairs of Dorset ewes underwent three 4-day treatments according to a Latin square design. Treatment 1 involved: 2-hourly i.v. injections (approximately 3.0 ml) of bGH (15 micrograms/kg; 1.8 units/mg); treatment 2: 2-hourly i.v. injections (approximately 3.0 ml) of hpGRF-44 (0.6 microgram/kg); treatment 3: 2-hourly i.v. injections (3.0 ml) of the vehicle. Treatment periods were separated by 10 days. Sheep were milked twice daily and the milk was analysed for fat, protein and lactose. Blood samples (5.0 ml) were taken before and at 15, 45, 75 and 100 min after every third injection throughout the 4 days. Plasma was analysed for insulin, glucose, urea and non-esterified fatty acids (NEFA). The changes in plasma GH stimulated by hpGRF-44 were consistent and repeatable throughout the 4 days of treatment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3921646

  20. Mild and efficient strategy for site-selective aldehyde modification of glycosaminoglycans: tailoring hydrogels with tunable release of growth factor.

    PubMed

    Wang, Shujiang; Oommen, Oommen P; Yan, Hongji; Varghese, Oommen P

    2013-07-01

    Aldehydes have been used as an important bioorthogonal chemical reporter for conjugation of large polymers and bioactive substances. However, generating aldehyde functionality on carbohydrate-based biopolymers without changing its native chemical structure has always persisted as a challenging task. The common methods employed to achieve this require harsh reaction conditions, which often compromise the structural integrity and biological function of these sensitive molecules. Here we report a mild and simple method to graft aldehydes groups on glycosaminoglycans (GAGs) in a site-selective manner without compromising the structural integrity of the biopolymer. This regio-selective modification was achieved by conjugating the amino-glycerol moiety on the carboxylate residue of the polymer, which allowed selective cleavage of pendent diol groups without interfering with the C2-C3 diol groups of the native glucopyranose residue. Kinetic evaluation of this reaction demonstrated significant differences in second-order reaction rate for periodate oxidation (by four-orders of magnitude) between the two types of vicinal diols. We employed this chemistry to develop aldehyde modifications of sulfated and nonsulfated GAGs such as hyaluronic acid (HA), heparin (HP), and chondroitin sulfate (CS). We further utilized these aldehyde grafted GAGs to tailor extracellular matrix mimetic injectable hydrogels and evaluated its rheological properties. The composition of the hydrogels was also found to modulate release of therapeutic protein such as FGF-2, demonstrating controlled release (60%) for over 14 days. In short, our result clearly demonstrates a versatile strategy to graft aldehyde groups on sensitive biopolymers under mild conditions that could be applied for various bioconjugation and biomedical applications such as drug delivery and regenerative medicine. PMID:23721079

  1. Mild and efficient strategy for site-selective aldehyde modification of glycosaminoglycans: tailoring hydrogels with tunable release of growth factor.

    PubMed

    Wang, Shujiang; Oommen, Oommen P; Yan, Hongji; Varghese, Oommen P

    2013-07-01

    Aldehydes have been used as an important bioorthogonal chemical reporter for conjugation of large polymers and bioactive substances. However, generating aldehyde functionality on carbohydrate-based biopolymers without changing its native chemical structure has always persisted as a challenging task. The common methods employed to achieve this require harsh reaction conditions, which often compromise the structural integrity and biological function of these sensitive molecules. Here we report a mild and simple method to graft aldehydes groups on glycosaminoglycans (GAGs) in a site-selective manner without compromising the structural integrity of the biopolymer. This regio-selective modification was achieved by conjugating the amino-glycerol moiety on the carboxylate residue of the polymer, which allowed selective cleavage of pendent diol groups without interfering with the C2-C3 diol groups of the native glucopyranose residue. Kinetic evaluation of this reaction demonstrated significant differences in second-order reaction rate for periodate oxidation (by four-orders of magnitude) between the two types of vicinal diols. We employed this chemistry to develop aldehyde modifications of sulfated and nonsulfated GAGs such as hyaluronic acid (HA), heparin (HP), and chondroitin sulfate (CS). We further utilized these aldehyde grafted GAGs to tailor extracellular matrix mimetic injectable hydrogels and evaluated its rheological properties. The composition of the hydrogels was also found to modulate release of therapeutic protein such as FGF-2, demonstrating controlled release (60%) for over 14 days. In short, our result clearly demonstrates a versatile strategy to graft aldehyde groups on sensitive biopolymers under mild conditions that could be applied for various bioconjugation and biomedical applications such as drug delivery and regenerative medicine.

  2. Action of antithymocyte globulin on normal human erythroid progenitor cell proliferation in vitro: erythropoietic growth-enhancing factors are released from marrow accessory cells.

    PubMed

    Mangan, K F; D'Alessandro, L; Mullaney, M T

    1986-04-01

    has potent dose-dependent erythroid progenitor cell growth-enhancing effects. In addition to the ability of HATG to lyse T-suppressor cells, these findings suggest that HATG may also stimulate erythropoiesis indirectly by releasing growth-enhancing factor(s) from T cells and other marrow accessory cells, sensitizing erythroid progenitor cells to low concentrations to erythropoietin, and stimulating growth of bipotential progenitor cells. Collectively, these effects may explain the efficacy of HATG in the treatment of some patients with erythropoietic marrow failure states. PMID:2420910

  3. (Latent) transforming growth factor beta in liver parenchymal cells, its injury-dependent release, and paracrine effects on rat hepatic stellate cells.

    PubMed

    Roth, S; Michel, K; Gressner, A M

    1998-04-01

    Cultured parenchymal liver cells (PC) were recently recognized to contain (latent) transforming growth factor beta (TGF-beta) while the expression of TGF-beta mRNA remains controversial. This study was designed to analyze PC in different microenvironments (liver in situ, highly purified, isolated, and cultured PC) regarding the qualitative and quantitative content of mature and latent TGF-beta protein (immunostainings, enzyme-linked immunosorbent assay [ELISA], and enzyme-labeled fluorescence [ELF] technique). The results were compared with its gene expression (reverse-transcription polymerase chain reaction [RT-PCR]). In all microenvironments, PC contained latent TGF-beta, which was partially activated after cell isolation and culture. The amount of total TGF-beta (mature plus latent) of latency-associated peptide (LAP) and of latent TGF-beta binding protein (LTBP) were shown to decrease during culture. In contrast, TGF-beta2 and TGF-beta3 mRNA and LTBP-1 and -3 mRNA expression were first detectable after culture. Permeabilization of cell membranes in whole liver and of isolated PC with streptolysin O or carbon tetrachloride, respectively, released TGF-beta, a part of which was integrated in the large latent complex as estimated by analytical gel filtration chromatography. The TGF-beta released by damaged PC induces paracrine effects on hepatic stellate cell cultures. It stimulates hyaluronan synthesis and antagonizes the effect of mitogenic factor(s) of PC on [3H]thymidine incorporation. The results strongly suggest that the main part of hepatocellular TGF-beta is not generated by de novo synthesis but from uptake into the liver in vivo. The immunodetection of preexisting mature TGF-beta after isolation of the cells is probably caused by intracellular activation of latent TGF-beta. The injury-dependent discharge of TGF-beta from PC might be an important mechanism for initiation and perpetuation of various forms of chronic human liver diseases.

  4. The effect of continuous release of recombinant human epidermal growth factor (rh-EGF) in chitosan film on full thickness excisional porcine wounds.

    PubMed

    Hong, Joon Pio; Kim, Yeun Wha; Lee, Sang Kil; Kim, Sun Hee; Min, Kyung Hyun

    2008-10-01

    The purpose of this article is to evaluate the effect of continuously released recombinant human epidermal growth factor (rh-EGF) in chitosan film in full thickness porcine wounds. A total of 10 domestic pigs (Yorkshire species) weighing 18 to 22 kg between the ages of 50 to 60 days were used. The wounds were divided into 3 groups and treated selectively with rh-EGF in chitosan film (EGF 20 ug/wound/d), chitosan film without rh-EGF, or remained as the control group. One hundred percent healing time was observed, and hematoxylin and eosin and Anti Ki-67 antibody immunohistochemical staining were performed. The 100% healing time and Anti Ki-67 antibody immunohistochemical staining showed statistical significance of the rh-EGF chitosan film-treated group against the control group (P < 0.05). But it did not reveal any statistical significance over the chitosan film-treated group. In this preliminary study, although continuous release of rh-EGF in chitosan film accelerates epithelialization, the benefit of the combination of rh-EGF in chitosan cannot be determined over the use of chitosan alone. Further analysis using complex wound models such as diabetes or infection, which may have different pathology in healing, will be needed to evaluate the potential benefit/synergistic effectiveness.

  5. A new growth factor controlled drug release system to promote healing of bone fractures: nanospheres of recombinant human bone morphogenetic-2 and polylactic acid.

    PubMed

    Chen, Lin; Liu, Lei; Li, Cai; Tan, Yinghui; Zhang, Gang

    2011-04-01

    To prepare a new drug control release system, which can markedly promote the healing of bone fractures. Optimized water-in-oil-in-water multiple emulsion evaporation method, prepared nanospheres of recombinant human bone morphogenetic-2 and polylactic acid (rhBMP-2-PLA-Ns). Its physical character was determined by the enzyme linked immunosorbent assay method. Its bioactivity was measured with the microculture tetrazolium test immunohistochemical analyses, alizarin red staining and western blot analysis. rhBMP-2-PLA-Ns exhibited an even and uniform spherical appearance without adhesion, with a particle size distribution between 35 and 65 nm, and a mean size of 45 nm. The drug loading volume and encapsulation efficiency reached ([124.73 +/- 0.41] x 10(-3))% and (90.54 +/- 1.32)%, respectively. The drug release in vitro persisted for 14 days, with a mean concentration of 73.44 +/- 5.38 ng/ml, and corresponded to the Higuichi equation (r = 0.9962). The microculture tetrazolium test showed that 4 days later, the optical density value ranking was rhBMP-2-PLA-N group > rhBMP-2 group > blank control group. Fluorescence immunocytochemical analysis showed that 10 days later the fluorescent density of the rhBMP-2-PLA-N group was significantly higher than the other two groups. Western blot analysis confirmed that the amount of vascular endothelial growth factor in the rhBMP-2-PLA-N group was the greatest. This study showed that rhBMP-2-PLA-Ns have excellent biological activity, can promote proliferation, differentiation and mineralization of osteoblasts. The drug release time is suitable for fracture healing and is an ideal delivery system for fracture healing. PMID:21776677

  6. A Lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor.

    PubMed

    Yan, Fang; Liu, Liping; Dempsey, Peter J; Tsai, Yu-Hwai; Raines, Elaine W; Wilson, Carole L; Cao, Hailong; Cao, Zheng; Liu, LinShu; Polk, D Brent

    2013-10-18

    p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis, and preserves barrier function by transactivation of the EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study is to determine the mechanisms by which p40 transactivates the EGFR in intestinal epithelial cells. Here we show that p40-conditioned medium activates EGFR in young adult mouse colon epithelial cells and human colonic epithelial cell line, T84 cells. p40 up-regulates a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) catalytic activity, and broad spectrum metalloproteinase inhibitors block EGFR transactivation by p40 in these two cell lines. In ADAM17-deficient mouse colonic epithelial (ADAM17(-/-) MCE) cells, p40 transactivation of EGFR is blocked, but can be rescued by re-expression with WT ADAM17. Furthermore, p40 stimulates release of heparin binding (HB)-EGF, but not transforming growth factor (TGF)α or amphiregulin, in young adult mouse colon cells and ADAM17(-/-) MCE cells overexpressing WT ADAM17. Knockdown of HB-EGF expression by siRNA suppresses p40 effects on transactivating EGFR and Akt, preventing apoptosis, and preserving tight junction function. The effects of p40 on HB-EGF release and ADAM17 activation in vivo are examined after administration of p40-containing pectin/zein hydrogel beads to mice. p40 stimulates ADAM17 activity and EGFR activation in colonic epithelial cells and increases HB-EGF levels in blood from WT mice, but not from mice with intestinal epithelial cell-specific ADAM17 deletion. Thus, these data define a mechanism of a probiotic-derived soluble protein in modulating intestinal epithelial cell homeostasis through ADAM17-mediated HB-EGF release, leading to transactivation of EGFR.

  7. Growth differentiation factor-15 promotes glutamate release in medial prefrontal cortex of mice through upregulation of T-type calcium channels

    PubMed Central

    Liu, Dong-Dong; Lu, Jun-Mei; Zhao, Qian-Ru; Hu, Changlong; Mei, Yan-Ai

    2016-01-01

    Growth differentiation factor-15 (GDF-15) has been implicated in ischemic brain injury and synapse development, but its involvement in modulating neuronal excitability and synaptic transmission remain poorly understood. In this study, we investigated the effects of GDF-15 on non-evoked miniature excitatory post-synaptic currents (mEPSCs) and neurotransmitter release in the medial prefrontal cortex (mPFC) in mice. Incubation of mPFC slices with GDF-15 for 60 min significantly increased the frequency of mEPSCs without effect on their amplitude. GDF-15 also significantly elevated presynaptic glutamate release, as shown by HPLC. These effects were blocked by dual TGF-β type I receptor (TβRI) and TGF-β type II receptor (TβRII) antagonists, but not by a TβRI antagonist alone. Meanwhile, GDF-15 enhanced pERK level, and inhibition of MAPK/ERK activity attenuated the GDF-15-induced increases in mEPSC and glutamate release. Blocking T-type calcium channels reduced the GDF-15 induced up-regulation of synaptic transmission. Membrane-protein extraction and use of an intracellular protein-transport inhibitor showed that GDF-15 promoted CaV3.1 and CaV3.3 α-subunit expression by trafficking to the membrane. These results confirm previous findings in cerebellar granule neurons, in which GDF-15 induces its neurobiological effects via TβRII and activation of the ERK pathway, providing novel insights into the mechanism of GDF-15 function in cortical neurons. PMID:27353765

  8. A Lactobacillus rhamnosus GG-derived Soluble Protein, p40, Stimulates Ligand Release from Intestinal Epithelial Cells to Transactivate Epidermal Growth Factor Receptor*

    PubMed Central

    Yan, Fang; Liu, Liping; Dempsey, Peter J.; Tsai, Yu-Hwai; Raines, Elaine W.; Wilson, Carole L.; Cao, Hailong; Cao, Zheng; Liu, LinShu; Polk, D. Brent

    2013-01-01

    p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis, and preserves barrier function by transactivation of the EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study is to determine the mechanisms by which p40 transactivates the EGFR in intestinal epithelial cells. Here we show that p40-conditioned medium activates EGFR in young adult mouse colon epithelial cells and human colonic epithelial cell line, T84 cells. p40 up-regulates a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) catalytic activity, and broad spectrum metalloproteinase inhibitors block EGFR transactivation by p40 in these two cell lines. In ADAM17-deficient mouse colonic epithelial (ADAM17−/− MCE) cells, p40 transactivation of EGFR is blocked, but can be rescued by re-expression with WT ADAM17. Furthermore, p40 stimulates release of heparin binding (HB)-EGF, but not transforming growth factor (TGF)α or amphiregulin, in young adult mouse colon cells and ADAM17−/− MCE cells overexpressing WT ADAM17. Knockdown of HB-EGF expression by siRNA suppresses p40 effects on transactivating EGFR and Akt, preventing apoptosis, and preserving tight junction function. The effects of p40 on HB-EGF release and ADAM17 activation in vivo are examined after administration of p40-containing pectin/zein hydrogel beads to mice. p40 stimulates ADAM17 activity and EGFR activation in colonic epithelial cells and increases HB-EGF levels in blood from WT mice, but not from mice with intestinal epithelial cell-specific ADAM17 deletion. Thus, these data define a mechanism of a probiotic-derived soluble protein in modulating intestinal epithelial cell homeostasis through ADAM17-mediated HB-EGF release, leading to transactivation of EGFR. PMID:24043629

  9. Growth factor signalling.

    PubMed

    de Laat, S W; Boonstra, J; Defize, L H; Kruijer, W; van der Saag, P T; Tertoolen, L G; van Zoelen, E J; den Hertog, J

    1999-01-01

    Signalling between cells in the developing vertebrate embryo is essential for normal embryonic development. In the mid 1970's, signal transduction research started at the Hubrecht Laboratory with special emphasis on analysis of the signalling mechanisms that direct cell proliferation and differentiation. The introduction of in vitro model systems contributed tremendously to the success of the signal transduction research at the Hubrecht Laboratory. Initially neuroblastoma cell lines, and later embryonal carcinoma and embryonal stem cells played an important role in identification of the molecular key players in developmental signalling. For instance, embryonal carcinoma cells were used to identify and characterise polypeptide growth factors. Growth factor signalling research was extended to analysis of growth factor receptor activation. Moreover, the second messenger systems that are linked to growth factor receptors were studied, as well as the nuclear responses to growth factor receptor activation. Finally, the role of growth factor signalling in differentiation was established using embryonal carcinoma cells. Here, we will review work that was characteristic for the growth factor receptor signalling research that was done at the Hubrecht Laboratory between 1980 and the early 1990's.

  10. Sustained dual release of placental growth factor-2 and bone morphogenic protein-2 from heparin-based nanocomplexes for direct osteogenesis

    PubMed Central

    Liu, Yun; Deng, Li-Zhi; Sun, Hai-Peng; Xu, Jia-Yun; Li, Yi-Ming; Xie, Xin; Zhang, Li-Ming; Deng, Fei-Long

    2016-01-01

    Objective To compare the direct osteogenic effect between placental growth factor-2 (PlGF-2) and bone morphogenic protein-2 (BMP-2). Methods Three groups of PlGF-2/BMP-2-loaded heparin–N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) nanocomplexes were prepared: those with 0.5 μg PlGF-2; with 1.0 μg BMP-2; and with 0.5 μg PlGF-2 combined with 1.0 μg BMP-2. The loading efficiencies and release profiles of these growth factors (GFs) in this nanocomplex system were quantified using enzyme-linked immunosorbent assay, their biological activities were evaluated using cell counting kit-8, cell morphology, and cell number counting assays, and their osteogenic activities were quantified using alkaline phosphatase and Alizarin Red S staining assays. Results The loading efficiencies were more than 99% for the nanocomplexes loaded with just PlGF-2 and for those loaded with both PlGF-2 and BMP-2. For the nanocomplex loaded with just BMP-2, the loading efficiency was more than 97%. About 83%–84% of PlGF-2 and 89%–91% of BMP-2 were stably retained on the nanocomplexes for at least 21 days. In in vitro biological assays, PlGF-2 exhibited osteogenic effects comparable to those of BMP-2 despite its dose in the experiments being lower than that of BMP-2. Moreover, the results implied that heparin-based nanocomplexes encapsulating two GFs have enhanced potential in the enhancement of osteoblast function. Conclusion PlGF-2-loaded heparin–HTCC nanocomplexes may constitute a promising system for bone regeneration. Moreover, the dual delivery of PlGF-2 and BMP-2 appears to have greater potential in bone tissue regeneration than the delivery of either GFs alone. PMID:27042064

  11. GABA release from mouse axonal growth cones

    PubMed Central

    Gao, Xiao-Bing; van den Pol, Anthony N

    2000-01-01

    Using developing hypothalamic neurons from transgenic mice that express high levels of green fluorescent protein in growing axons, and an outside-out patch from mature neuronal membranes that contain neurotransmitter receptors as a sensitive detector, we found that GABA is released by a vesicular mechanism from the growth cones of developing axons prior to synapse formation. A low level of GABA release occurs spontaneously from the growth cone, and this is substantially increased by evoked action potentials. Neurotransmitters such as acetylcholine can enhance protein kinase C (PKC) activity even prior to synapse formation; PKC activation caused a substantial increase in spontaneous GABA release from the growth cone, probably acting at the axon terminal. These data indicate that GABA is secreted from axons during a stage of neuronal development when GABA is excitatory, and that neuromodulators could alter GABA release from the growing axon, potentially enabling other developing neurons of different transmitter phenotype to modulate the early actions of GABA. PMID:10718743

  12. FGF growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua; Takahashi, Kazuyuki

    2012-07-24

    The present invention provides a fibroblast growth factor heparin-binding analog of the formula: ##STR00001## where R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, X, Y and Z are as defined, pharmaceutical compositions, coating compositions and medical devices including the fibroblast growth factor heparin-binding analog of the foregoing formula, and methods and uses thereof.

  13. Comparative immunohistochemical study of the distribution of neuropeptide Y, growth hormone-releasing factor and the carboxyterminus of precursor protein GHRF in the human hypothalamic infundibular area.

    PubMed

    Ciofi, P; Tramu, G; Bloch, B

    1990-04-01

    It is now well documented that various polyclonal antisera to the human growth hormone-releasing factor (hGHRF, somatocrinin) visualize in the brain by immunohistochemistry the classical hypothalamic hypophysiotropic neurons and also antigens present in otherwise characterized peptidergic neuronal systems. The nature of these antigens is still an open question. One of these hGHRF antisera, raised against an immunogen of hGHRF1-44NH2, labels in the arcuate nucleus of the human mediobasal hypothalamus the neuropeptide Y (NPY) containing neurons which for the most part constitute a tuberoextrainfundibular system. The identity of the hGHRF-like substance present in these neurons with true somatocrinin has been assessed by performing a comparative immunohistochemical study including sequential double and triple labeling using the antiserum to hGHRF1-44NH2 in conjunction with antisera to the carboxyterminus of preprosomatocrinin (CTPG) and to NPY. This made it feasible to dissociate the hGHRF1-44NH2-immunoreactive neurons into two major subpopulations costaining either for CTPG of NPY, and a minor neuronal group displaying simultaneously the three labelings. A subset of arcuate neurons also showed NPY staining only. These results suggest that (1) the hGHRF-like antigen present in the majority of the NPY neurons is not true somatocrinin, or alternatively that preprosomatocrinin undergoes a unique maturational processing in these neurons, and (2) a subset of tuberoinfundibular somatocrininergic neurons produces and releases NPY which may be involved in the multifactorial control of the pituitary function.

  14. Growth factors for nanobacteria

    NASA Astrophysics Data System (ADS)

    Ciftcioglu, Neva; Kajander, E. Olavi

    1999-12-01

    Nanobacteria are novel microorganisms recently isolated from fetal bovine serum and blood of cows and humans. These coccoid, gram negative bacteria in alpha-2 subgroup of Proteobacteria grow slowly under mammalian cell culture conditions but not in common media for microbes. Now we have found two different kinds of culture supplement preparations that improve their growth and make them culturable in the classical sense. These are supernatant fractions of conditioned media obtained from 1 - 3 months old nanobacteria cultures and from about a 2 weeks old Bacillus species culture. Both improved multiplication and particle yields and the latter increased their resistance to gentamicin. Nanobacteria cultured with any of the methods shared similar immunological property, structure and protein pattern. The growth supporting factors were heat-stabile and nondialyzable, and dialysis improved the growth promoting action. Nanobacteria formed stony colonies in a bacteriological medium supplemented with the growth factors. This is an implication that nanobacterial growth is influenced by pre-existing bacterial flora.

  15. Peptide growth factors, part A

    SciTech Connect

    Barnes, D.; Sirbasku, D.A.

    1987-01-01

    This book contains information on the following topics: Epidermal Growth Factor;Transforming Growth Factors;Bone and Cartilage Growth Factors;Somatomedin/Insulin-Like Growth Factors;Techniques for the Study of Growth Factor Activity;Assays, Phosphorylation, and Surface Membrane Effects.

  16. New microbial growth factor

    NASA Technical Reports Server (NTRS)

    Bok, S. H.; Casida, L. E., Jr.

    1977-01-01

    A screening procedure was used to isolate from soil a Penicillium sp., two bacterial isolates, and a Streptomyces sp. that produced a previously unknown microbial growth factor. This factor was an absolute growth requirement for three soil bacteria. The Penicillium sp. and one of the bacteria requiring the factor, an Arthrobacter sp., were selected for more extensive study concerning the production and characteristics of the growth factor. It did not seem to be related to the siderochromes. It was not present in soil extract, rumen fluid, or any other medium component tested. It appears to be a glycoprotein of high molecular weight and has high specific activity. When added to the diets for a meadow-vole mammalian test system, it caused an increased consumption of diet without a concurrent increase in rate of weight gain.

  17. Effects of early vaccination with a gonadotropin releasing factor analog-diphtheria toxoid conjugate on boar taint and growth performance of male pigs.

    PubMed

    Kantas, D; Papatsiros, V; Tassis, P; Tzika, E; Pearce, M C; Wilson, S

    2014-05-01

    The aim of this study was to evaluate safety (in terms of detecting possible adverse clinical effects attributable to vaccination), efficacy, and effects on growth performance of a gonadotropin releasing factor analog-diphtheria toxoid conjugate (commercially distributed as Improvac; Zoetis, Zaventem, Belgium) in male pigs raised in a commercial Greek farm. A total of 1,230 male pigs was enrolled in 16 weekly batches and allocated to 3 groups: barrows (castrated on the next day after birth [study Day 0]), pigs vaccinated with the above-mentioned product, and intact boars. Vaccinated pigs were injected subcutaneously with 2 mL of the anti-gonadotropin releasing factor (GnRF) vaccine at 9 to 11 wk of age (60-78 d) and 15 to 17 wk of age (102-120 d) and slaughtered at 22 to 25 wk of age (152-176 d). No clinical abnormalities or adverse events attributable to vaccination occurred. Mean BW of vaccinated pigs was 6% greater compared with barrows at slaughter (P < 0.0001). The vaccinated pigs had greater ADG than barrows from castration to slaughter (8%). In detail, a lower ADG from first to second vaccination (-12%; P < 0.0001) and a 27% greater ADG from second vaccination to slaughter (P < 0.0001) were observed. The ADG of vaccinated pigs and intact boars was not significantly different throughout the study, except from first to second vaccination (boars greater; P = 0.0059) and second vaccination to slaughter (vaccinates greater; P = 0.0390). Feed conversion ratio of barrows was 11 and 8% greater compared with vaccinated pigs (P = 0.0005) and boars (P = 0.0062) from first to second vaccination but was 23 to 26% lower compared with vaccinated pigs (P < 0.0001) and intact boars (P < 0.0001) from first vaccination to slaughter and 7 to 9.5% lower from the second vaccination to slaughter (P = 0.0029 and P = 0.0003 for vaccinates and intact boars, respectively). At slaughter, the belly fat androstenone concentration of all vaccinated pigs and 64% of intact boars was below

  18. Effects of early vaccination with a gonadotropin releasing factor analog-diphtheria toxoid conjugate on boar taint and growth performance of male pigs.

    PubMed

    Kantas, D; Papatsiros, V; Tassis, P; Tzika, E; Pearce, M C; Wilson, S

    2014-05-01

    The aim of this study was to evaluate safety (in terms of detecting possible adverse clinical effects attributable to vaccination), efficacy, and effects on growth performance of a gonadotropin releasing factor analog-diphtheria toxoid conjugate (commercially distributed as Improvac; Zoetis, Zaventem, Belgium) in male pigs raised in a commercial Greek farm. A total of 1,230 male pigs was enrolled in 16 weekly batches and allocated to 3 groups: barrows (castrated on the next day after birth [study Day 0]), pigs vaccinated with the above-mentioned product, and intact boars. Vaccinated pigs were injected subcutaneously with 2 mL of the anti-gonadotropin releasing factor (GnRF) vaccine at 9 to 11 wk of age (60-78 d) and 15 to 17 wk of age (102-120 d) and slaughtered at 22 to 25 wk of age (152-176 d). No clinical abnormalities or adverse events attributable to vaccination occurred. Mean BW of vaccinated pigs was 6% greater compared with barrows at slaughter (P < 0.0001). The vaccinated pigs had greater ADG than barrows from castration to slaughter (8%). In detail, a lower ADG from first to second vaccination (-12%; P < 0.0001) and a 27% greater ADG from second vaccination to slaughter (P < 0.0001) were observed. The ADG of vaccinated pigs and intact boars was not significantly different throughout the study, except from first to second vaccination (boars greater; P = 0.0059) and second vaccination to slaughter (vaccinates greater; P = 0.0390). Feed conversion ratio of barrows was 11 and 8% greater compared with vaccinated pigs (P = 0.0005) and boars (P = 0.0062) from first to second vaccination but was 23 to 26% lower compared with vaccinated pigs (P < 0.0001) and intact boars (P < 0.0001) from first vaccination to slaughter and 7 to 9.5% lower from the second vaccination to slaughter (P = 0.0029 and P = 0.0003 for vaccinates and intact boars, respectively). At slaughter, the belly fat androstenone concentration of all vaccinated pigs and 64% of intact boars was below

  19. Effects of the breed, sex and age on cellular content and growth factor release from equine pure-platelet rich plasma and pure-platelet rich gel

    PubMed Central

    2013-01-01

    Background There is no information on the effects of the breed, gender and age on the cellular content and growth factor (GF) release from equine pure-platelet rich plasma (P-PRP) and pure-platelet rich gel (P-PRG). The objectives of this study were: 1) to compare the cellular composition of P-PRP with whole blood and platelet poor plasma (PPP); 2) to compare the concentration of transforming GF beta 1 (TGF-β1) and platelet derived GF isoform BB (PDGF-BB) between P-PRP treated with non-ionic detergent (P-PRP+NID), P-PRG (activated with calcium gluconate -CG-), PPP+NID, PPP gel (PPG), and plasma and; 3) to evaluate and to correlate the effect of the breed, gender and age on the cellular and GF concentration for each blood component. Forty adult horses, 20 Argentinean Creole Horses (ACH) and, 20 Colombian Creole Horses (CCH) were included. Data were analyzed by parametric (i.e.: t-test, one way ANOVA) and non parametric (Kruskal-Wallis test, Wilcoxon test) tests. Correlation analysis was also performed by using the Spearman and Pearson tests. A p ≤ 0.05 was set as significant for all tests. All the blood components were compared for platelet (PLT), leukocyte (WBC), TGF-β1 and PDGF-BB concentrations. The effect of the breed, gender and age on these variables was analyzed. A P ≤ 0.05 was accepted as significant for all the tests. Results PLT counts were 1.8 and 0.6 times higher in P-PRP than in whole blood and PPP, respectively; WBC counts were 0.5 and 0.1 times lower in P-PRP, in comparison with whole blood and PPP, respectively. TGF-β1 and PDGF-BB concentrations were 2.3 and 262 times higher, respectively, in P-PRG than in plasma, and 0.59 and 0.48 times higher, respectively, in P-PRG than in PPG. P-PRG derived from CCH females or young horses presented significantly (P < 0.001) higher PDGF-BB concentrations than P-PRG derived from ACH males or older horses. Conclusions Our results indicated that P-PRP obtained by a manual method was affected by

  20. Autocrine growth factors and solid tumor malignancy.

    PubMed Central

    Walsh, J. H.; Karnes, W. E.; Cuttitta, F.; Walker, A.

    1991-01-01

    The ability of malignant cells to escape the constraint that normally regulate cell growth and differentiation has been a primary focus of attention for investigators of cancer cell biology. An outcome of this attention has been the discovery that the protein products of oncogenes play a role in the activation of growth signal pathways. A second outcome, possibly related to abnormal oncogene expression, has been the discovery that malignant cells frequently show an ability to regulate their own growth by the release of autocrine growth modulatory substances. Most important, the growth of certain malignant cell types has been shown to depend on autocrine growth circuits. A malignant tumor whose continued growth depends on the release of an autocrine growth factor may be vulnerable to treatment with specific receptor antagonists or immunoneutralizing antibodies designed to break the autocrine circuit. Information is rapidly emerging concerning autocrine growth factors in selected human solid tissue malignancy. Images PMID:1926844

  1. Peptide growth factors, part B

    SciTech Connect

    Barnes, D.; Sirbasku, D.A.

    1987-01-01

    This book discusses the following topics: Platelet-Derived Growth Factor;Nerve and Glial Growth Factors;PC12 Pheochromocytoma Cells;Techniques for the Study of Growth Factor Activity;Genetic Approaches and Biological Effects.

  2. Predictors of Treatment Response to Tesamorelin, a Growth Hormone-Releasing Factor Analog, in HIV-Infected Patients with Excess Abdominal Fat

    PubMed Central

    Mangili, Alexandra; Falutz, Julian; Mamputu, Jean-Claude; Stepanians, Miganush; Hayward, Brooke

    2015-01-01

    Background Tesamorelin, a synthetic analog of human growth hormone-releasing factor, decreases visceral adipose tissue (VAT) in human immunodeficiency virus (HIV)-infected patients with lipodystrophy. Objectives 1) To evaluate the utility of patient characteristics and validated disease-risk scores, namely indicator variables for the metabolic syndrome defined by the International Diabetes Federation (MetS-IDF) or the National Cholesterol Education Program (MetS-NCEP) and the Framingham Risk Score (FRS), as predictors of VAT reduction during tesamorelin therapy at 3 and 6 months, and 2) To explore the characteristics of patients who reached a threshold of VAT <140 cm2, a level associated with lower risk of adverse health outcomes, after 6 months of treatment with tesamorelin. Methods Data were analyzed from two Phase 3 studies in which HIV-infected patients with excess abdominal fat were randomized in a 2:1 ratio to receive tesamorelin 2 mg (n = 543) or placebo (n = 263) subcutaneously daily for 6 months, using ANOVA and ANCOVA models. Results Metabolic syndrome (MetS-IDF or MetS-NCEP) and FRS were significantly associated with VAT at baseline. Presence of metabolic syndrome ([MetS-NCEP), triglyceride levels >1.7 mmol/L, and white race had a significant impact on likelihood of response to tesamorelin after 6 months of therapy (interaction p-values 0.054, 0.063, and 0.025, respectively). No predictive factors were identified at 3 months. The odds of a VAT reduction to <140 cm2 for subjects treated with tesamorelin was 3.9 times greater than that of subjects randomized to placebo after controlling for study, gender, baseline body mass index (BMI) and baseline VAT (95% confidence interval [CI] 2.03; 7.44). Conclusions Individuals with baseline MetS-NCEP, elevated triglyceride levels, or white race were most likely to experience reductions in VAT after 6 months of tesamorelin treatment. The odds of response of VAT <140 cm2 was 3.9 times greater for tesamorelin

  3. Effect of Photobiomodulation on Transforming Growth Factor-β1, Platelet-Derived Growth Factor-BB, and Interleukin-8 Release in Palatal Wounds After Free Gingival Graft Harvesting: A Randomized Clinical Study

    PubMed Central

    Lutfioğlu, Muge; Aydogdu, Ahmet; Saygun, N. Isil; Serdar, Muhittin A.

    2016-01-01

    Abstract Objective: This study evaluated the impact of photobiomodulation (PBM) on the healing of the donor palatal area following free gingival graft (FGG) harvesting by examining changes in transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF)-BB, and interleukin (IL)-8 levels in palatal wound fluid (PWF). Material and methods: Thirty patients were selected and randomly assigned to receive PBM (laser group) or PBM sham (sham group) in the palatine area after FGG harvesting. A neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (1064 nm) was applied to the test sites immediately after surgery and every 24 h thereafter for 4 days. PWF was collected on Days 7 and 12, and PWF TGF-β1, PDGF-BB, and IL-8 levels were analyzed by enzyme-linked immunosorbent assays (ELISA). Results: PWF TGF-β1, PDGF-BB, and IL-8 levels were significantly lower on Day 12 than on Day 7 for both groups. PWF TGF-β1, PDGF-BB, and IL-8 levels of the laser group were significantly higher than those of sham group on Day 7 (p < 0.05). PWF TGF-β1 levels were also significantly higher in laser group than in the sham group on Day 12; however, differences in PDGF-BB and IL-8 levels between groups on Day 12 were statistically nonsignificant. Conclusions: Observed increases in PWF TGF-β1, PDGF-BB, and IL-8 levels suggest that PBM may accelerate wound healing by stimulating production of selected mediators. PMID:27088277

  4. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue.

    PubMed

    Lv, Jia; Xiu, Peng; Tan, Jie; Jia, Zhaojun; Cai, Hong; Liu, Zhongjun

    2015-06-24

    Electron beam melting (EBM)-fabricated porous titanium implants possessing low elastic moduli and tailored structures are promising biomaterials for orthopedic applications. However, the bio-inert nature of porous titanium makes reinforcement with growth factors (GFs) a promising method to enhance implant in vivo performance. Bone-morphogenic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) are key factors of angiogenesis and osteogenesis. Therefore, the present study is aimed at evaluating EBM-fabricated porous titanium implants incorporating GF-doped fibrin glue (FG) as composite scaffolds providing GFs for improvement of angiogenesis and osteogenesis in rabbit femoral condyle defects. BMP-2 and VEGF were added into the constituent compounds of FG, and then this GF-doped FG was subsequently injected into the porous scaffolds. In five groups of implants, angiogenesis and osteogenesis were evaluated at 4 weeks post-implantation using Microfil perfusion and histological analysis: eTi (empty scaffolds), cTi (containing undoped FG), BMP/cTi (containing 50 μg rhBMP-2), VEGF/cTi (containing 0.5 μg VEGF) and Dual/cTi (containing 50 μg rhBMP-2 and 0.5 μg VEGF). The results demonstrate that these composite implants are biocompatible and provide the desired gradual release of the bioactive growth factors. Incorporation of GF delivery, whether a single factor or dual factors, significantly enhanced both angiogenesis and osteogenesis inside the porous scaffolds. However, the synergistic effect of the dual factors combination was observable on angiogenesis but absent on osteogenesis. In conclusion, fibrin glue is a biocompatible material that could be employed as a delivery vehicle in EBM-fabricated porous titanium for controlled release of BMP-2 and VEGF. Application of this method for loading a porous titanium scaffold to incorporate growth factors is a convenient and promising strategy for improving osteogenesis of critical-sized bone defects.

  5. Customized Ca–P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor

    PubMed Central

    Duan, Bin; Wang, Min

    2010-01-01

    Integrating an advanced manufacturing technique, nanocomposite material and controlled delivery of growth factor to form multifunctional tissue engineering scaffolds was investigated in this study. Based on calcium phosphate (Ca–P)/poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposite microspheres, three-dimensional Ca–P/PHBV nanocomposite scaffolds with customized architecture, controlled porosity and totally interconnected porous structure were successfully fabricated using selective laser sintering (SLS), one of the rapid prototyping technologies. The cytocompatibility of sintered Ca–P/PHBV nanocomposite scaffolds, as well as PHBV polymer scaffolds, was studied. For surface modification of nanocomposite scaffolds, gelatin was firstly physically entrapped onto the scaffold surface and heparin was subsequently immobilized on entrapped gelatin. The surface-modification improved the wettability of scaffolds and provided specific binding site between conjugated heparin and the growth factor recombinant human bone morphogenetic protein-2 (rhBMP-2). The surface-modified Ca–P/PHBV nanocomposite scaffolds loaded with rhBMP-2 significantly enhanced the alkaline phosphatase activity and osteogenic differentiation markers in gene expression of C3H10T1/2 mesenchymal stem cells. Together with osteoconductive nanocomposite material and controlled growth factor delivery strategies, the use of SLS technique to form complex scaffolds will provide a promising route towards individualized bone tissue regeneration. PMID:20504805

  6. Basic fibroblast growth factor (basic FGF) in isolated ovine thyroid follicles: thyrotropin stimulation and effects of basic FGF on DNA synthesis, iodine uptake and organification, and the release of insulin-like growth factors (IGFs) and IGF-binding proteins.

    PubMed

    Hill, D J; Phillips, I D; Wang, J F; Becks, G P

    1994-01-01

    We examined the effects of thyroid-stimulating hormone (TSH) on basic fibroblast growth factor (basic FGF) expression in isolated ovine thyroid follicles in vitro, and the effects of exogenous basic FGF on thyroid growth and function, to elucidate the significance of increased basic FGF expression during TSH-induced rat thyroid hyperplasia in vivo. Primary cultures of ovine thyroid follicles were maintained in serum-free Ham's modified F-12M medium containing transferrin, somatostatin, and glycyl-histidyl-lysine (designated 3H) with or without basic FGF alone, or in combination with TSH (100 microU/mL) and cortisol (10 nM). Following 48 h incubation, cells were harvested and total RNA prepared for the detection of basic FGF mRNA using Northern blot analysis and ribonuclease protection assay. Basic FGF in the cytoplasm and extracellular matrix fractions was quantified by radioimmunoassay. Basic FGF mRNA transcripts of 3.7, 3.0, and 2.2 kb, respectively, were found in thyroid follicles cultured in 3H medium, and the abundance of each increased between 2- and 3-fold following incubation with 10-50 microU/mL TSH, although higher concentrations of TSH were less effective. Similar results were seen using a more sensitive ribonuclease protection assay. Cells cultured in control, 3H medium contained 2.4 +/- 0.5 fmol immunoreactive basic FGF/micrograms cell DNA within the cytoplasm and 21.1 +/- 1.5 fmol/micrograms DNA within the extracellular matrix (mean +/- SD, n = 6). A significant increase (p < 0.05) in basic FGF content was seen in both cell compartments following incubation with 50 or 100 microU/mL TSH, while 250 microU/mL was less effective.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7519916

  7. Release, biological potency, and biochemical integrity of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) combined with Augment(TM) Bone Graft or GEM 21S beta-tricalcium phosphate (beta-TCP).

    PubMed

    Young, C S; Ladd, P A; Browning, C F; Thompson, A; Bonomo, J; Shockley, K; Hart, C E

    2009-12-16

    Over 10 million surgical procedures are performed annually in the United States to treat musculoskeletal injuries, and a significant portion of these involve orthopedic bone grafting. The goals of the study were to evaluate the in vitro and in vivo release kinetics, biological potency and biochemical integrity of rhPDGF-BB combined with large (1000-2000 microm) and small (250-1000 microm) beta-TCP particles. Recombinant human platelet-derived growth factor B homodimer (rhPDGF-BB) is a protein growth factor under development as a therapeutic for accelerating bone healing. Release of the protein was monitored in vitro by ELISA, and in vivo by measurement of radioactive rhPDGF-BB implanted in rat calvarial defects. Biological activity was measured using a cell-based bioassay, and biochemical integrity was determined by SDS-PAGE and high pressure size exclusion chromatography (HPSEC). Release of rhPDGF-BB occurred rapidly from beta-TCP both in vitro and in vivo. Almost 100% of the rhPDGF-BB was recovered from large and small beta-TCP after 90 min in vitro. Approximately 90% of the rhPDGF-BB was depleted from calvarial defect sites within 72 h of implantation. RhPDGF-BB retained 100% of its biological potency compared to reference standard rhPDGF-BB, manifested as a single band at ~30 kDa by SDS-PAGE and a single peak eluted after 13 min by HPSEC following release from beta-TCP. RhPDGF-BB is rapidly released from large and small beta-TCP particles and is biochemically unaltered following release. PMID:19577598

  8. Effect of long-term administration of an analog of growth hormone-releasing factor on the GH response in rats.

    PubMed

    Karashima, T; Olsen, D; Schally, A V

    1987-06-22

    The effect of the repeated or continuous administration of an analog of GH releasing factor (GH-RF), D-Tyr-1, D-Ala-2, Nle-27, GH-RF(1-29)-NH2 (DBO-29), on the subsequent response to this peptide was investigated in pentobarbital-anesthetized male rats. A sc administration of this analog induced a greater and more prolonged GH release than doses 10 times larger of GH-RF(1-29). The GH increase after sc injection of 10 micrograms/kg bw of the analog was greater than that induced by iv administration of 2 micrograms/kg bw of GH-RF(1-44). Pretreatment with 10 micrograms/kg bw of the analog did not affect the pituitary response to a strong stimulus (20 micrograms/kg bw) of GH-RF(1-44), 24 h later. Pretreatment with the analog in doses of 10 micrograms/kg bw, sc twice a day, 5 days per week for 4 weeks, significantly diminished the GH release in response to a sc injection of the analog (10 micrograms/kg bw), as compared to vehicle-pretreated controls (P less than 0.01). On the other hand, a continuous sc administration of 0.4 micrograms/h of the analog to intact rats for 7 days did not result in a decrease in GH response to a sc injection of the analog (10 micrograms/kg bw). Since the rats injected repeatedly with the analog for 4 weeks still showed a marked, although somewhat reduced response, analogs of this type may be useful clinically.

  9. Growth Hormone-Releasing Hormone in Diabetes

    PubMed Central

    Fridlyand, Leonid E.; Tamarina, Natalia A.; Schally, Andrew V.; Philipson, Louis H.

    2016-01-01

    Growth hormone-releasing hormone (GHRH) is produced by the hypothalamus and stimulates growth hormone synthesis and release in the anterior pituitary gland. In addition, GHRH is an important regulator of cellular functions in many cells and organs. Expression of GHRH G-Protein Coupled Receptor (GHRHR) has been demonstrated in different peripheral tissues and cell types, including pancreatic islets. Among the peripheral activities, recent studies demonstrate a novel ability of GHRH analogs to increase and preserve insulin secretion by beta-cells in isolated pancreatic islets, which makes them potentially useful for diabetes treatment. This review considers the role of GHRHR in the beta-cell and addresses the unique engineered GHRH agonists and antagonists for treatment of type 2 diabetes mellitus. We discuss the similarity of signaling pathways activated by GHRHR in pituitary somatotrophs and in pancreatic beta-cells and possible ways as to how the GHRHR pathway can interact with glucose and other secretagogues to stimulate insulin secretion. We also consider the hypothesis that novel GHRHR agonists can improve glucose metabolism in Type 2 diabetes by preserving the function and survival of pancreatic beta-cells. Wound healing and cardioprotective action with new GHRH agonists suggest that they may prove useful in ameliorating certain diabetic complications. These findings highlight the future potential therapeutic effectiveness of modulators of GHRHR activity for the development of new therapeutic approaches in diabetes and its complications. PMID:27777568

  10. Effects of antagonists of growth hormone-releasing hormone (GHRH) on GH and insulin-like growth factor I levels in transgenic mice overexpressing the human GHRH gene, an animal model of acromegaly.

    PubMed

    Kovacs, M; Kineman, R D; Schally, A V; Zarandi, M; Groot, K; Frohman, L A

    1997-11-01

    Transgenic mice overexpressing the human GH-releasing hormone (hGHRH) gene, an animal model of acromegaly, were used to investigate the effects of potent GHRH antagonists MZ-4-71 and MZ-5-156 on the excessive GH and insulin-like growth factor I (IGF-I) secretion caused by overproduction of hGHRH. Because metallothionein (MT)-GHRH mice express the hGHRH transgene in various tissues, including the pituitary and hypothalamus, initial experiments focused on the effectiveness of the GHRH antagonists in blocking basal and stimulated GH secretion from pituitary cells in vitro. Both MZ-4-71 and MZ-5-156 suppressed basal release of GH from superfused MT-GHRH pituitary cells, apparently by blocking the action of endogenously produced hGHRH. In addition, these antagonists effectively eliminated the response to stimulatory action of exogenous hGHRH(1-29)NH2 (30 and 100 nM). To ascertain whether MZ-4-71 and MZ-5-156 could antagonize the effect of hGHRH hyperstimulation in vivo, each antagonist was administered to MT-GHRH transgenic mice in a single iv dose of 10-200 microg. Both compounds decreased serum GH levels in transgenic mice by 39-72% at 1 h after injection. The inhibitory effect of 50 microg MZ-5-156 was maintained for 5 h. Twice daily ip administration of 100 microg MZ-5-156 for 3 days suppressed the highly elevated serum GH and IGF-I concentrations in transgenic mice by 56.8% and 39.0%, respectively. This treatment also reduced IGF-I messenger RNA levels in the liver by 21.8% but did not affect the level of GH messenger RNA in the pituitary. Our results demonstrate that GHRH antagonists MZ-4-71 and MZ-5-156 can inhibit elevated GH levels caused by overproduction of hGHRH. The suppression of circulating GH concentrations induced by the antagonists seems to be physiologically relevant, because both IGF-I secretion and synthesis also were reduced. Our findings, showing the suppression of GH and IGF-I secretion with GHRH antagonists, suggest that this class of analogs

  11. DNA Damage Response Proteins and Oxygen Modulate Prostaglandin E2 Growth Factor Release in Response to Low and High LET Ionizing Radiation

    PubMed Central

    Allen, Christopher P.; Tinganelli, Walter; Sharma, Neelam; Nie, Jingyi; Sicard, Cory; Natale, Francesco; King, Maurice; Keysar, Steven B.; Jimeno, Antonio; Furusawa, Yoshiya; Okayasu, Ryuichi; Fujimori, Akira; Durante, Marco; Nickoloff, Jac A.

    2015-01-01

    Common cancer therapies employ chemicals or radiation that damage DNA. Cancer and normal cells respond to DNA damage by activating complex networks of DNA damage sensor, signal transducer, and effector proteins that arrest cell cycle progression, and repair damaged DNA. If damage is severe enough, the DNA damage response (DDR) triggers programed cell death by apoptosis or other pathways. Caspase 3 is a protease that is activated upon damage and triggers apoptosis, and production of prostaglandin E2 (PGE2), a potent growth factor that can enhance growth of surviving cancer cells leading to accelerated tumor repopulation. Thus, dying tumor cells can promote growth of surviving tumor cells, a pathway aptly named Phoenix Rising. In the present study, we surveyed Phoenix Rising responses in a variety of normal and established cancer cell lines, and in cancer cell lines freshly derived from patients. We demonstrate that IR induces a Phoenix Rising response in many, but not all cell lines, and that PGE2 production generally correlates with enhanced growth of cells that survive irradiation, and of unirradiated cells co-cultured with irradiated cells. We show that PGE2 production is stimulated by low and high LET ionizing radiation, and can be enhanced or suppressed by inhibitors of key DDR proteins. PGE2 is produced downstream of caspase 3 and the cyclooxygenases COX1 and COX2, and we show that the pan COX1–2 inhibitor indomethacin blocks IR-induced PGE2 production in the presence or absence of DDR inhibitors. COX1–2 require oxygen for catalytic activity, and we further show that PGE2 production is markedly suppressed in cells cultured under low (1%) oxygen concentration. Thus, Phoenix Rising is most likely to cause repopulation of tumors with relatively high oxygen, but not in hypoxic tumors. This survey lays a foundation for future studies to further define tumor responses to radiation and inhibitors of the DDR and Phoenix Rising to enhance the efficacy of

  12. Effect of different growth hormone-releasing factors on the concentrations of growth hormone, insulin and metabolites in the plasma of sheep maintained in positive and negative energy balance.

    PubMed

    Hart, I C; Chadwick, P M; Coert, A; James, S; Simmonds, A D

    1985-04-01

    Three experiments were conducted to compare the ability of different preparations of growth hormone-releasing factor (GRF) to stimulate GH secretion in sheep maintained in positive and negative energy balance. In experiment 1 five sheep were injected (i.v.) with three preparations of human pancreatic GRF (hpGRF-44, hpGRF-40, hpGRF-29-NH2) and one preparation of rat hypothalamic GRF (rhGRF-29-NH2) all at 98.0 pmol/kg, or control vehicle, in a Latin square design when the animals either had free access to food or were fed half their maintenance requirements. Analysis of plasma samples, obtained before and for 150 min after injection, revealed that the reduced food intake resulted in the expected changes in body weight and circulating GH, insulin, glucose, urea and non-esterified fatty acids. The maximum post-injection concentrations of GH did not differ between either the two levels of feeding or the four GRF preparations but the mean post-injection concentration of GH was significantly higher for all GRF treatments on the restricted ration (P less than 0.001). The mean post-injection response to rhGRF-29-NH2 was less than that obtained with hpGRF-44 for sheep with food available ad libitum (P less than 0.05) and was clearly more persistent for all GRF treatments in animals fed the reduced diet (P less than 0.001). In experiment 2 the same five sheep were injected i.v. with rhGRF-29-NH2 (98.0 pmol/kg) when they had free access to food and after food had been withdrawn for 3 days.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2859343

  13. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  14. Metabolism of growth hormone releasing peptides.

    PubMed

    Thomas, Andreas; Delahaut, Philippe; Krug, Oliver; Schänzer, Wilhelm; Thevis, Mario

    2012-12-01

    New, potentially performance enhancing compounds have frequently been introduced to licit and illicit markets and rapidly distributed via worldwide operating Internet platforms. Developing fast analytical strategies to follow these new trends is one the most challenging issues for modern doping control analysis. Even if reference compounds for the active drugs are readily obtained, their unknown metabolism complicates effective testing strategies. Recently, a new class of small C-terminally amidated peptides comprising four to seven amino acid residues received considerable attention of sports drug testing authorities due to their ability to stimulate growth hormone release from the pituitary. The most promising candidates are the growth hormone releasing peptide (GHRP)-1, -2, -4, -5, -6, hexarelin, alexamorelin, and ipamorelin. With the exemption of GHRP-2, the entity of these peptides represents nonapproved pharmaceuticals; however, via Internet providers, all compounds are readily available. To date, only limited information on the metabolism of these substances is available and merely one metabolite for GHRP-2 is established. Therefore, a comprehensive in vivo (po and iv administration in rats) and in vitro (with human serum and recombinant amidase) study was performed in order to generate information on urinary metabolites potentially useful for routine doping controls. The urine samples from the in vivo experiments were purified by mixed-mode cation-exchange solid-phase extraction and analyzed by ultrahigh-performance liquid chromatography (UHPLC) separation followed by high-resolution/high-accuracy mass spectrometry. Combining the high resolution power of a benchtop Orbitrap mass analyzer for the first metabolite screening and the speed of a quadrupole/time-of-flight (Q-TOF) instrument for identification, urinary metabolites were screened by means of a sensitive full scan analysis and subsequently confirmed by high-accuracy product ion scan experiments. Two

  15. Oncogenes, genes, and growth factors

    SciTech Connect

    Guroff, G.

    1989-01-01

    This book contains 12 chapters. Some of the chapter titles are: The Epidermal Growth Factor Receptor Gene; Structure and Expression of the Nerve Growth Factor Gene; The Erythropoietin Gene; The Interleukin-2 Gene; The Transferrin Gene; and The Transferrin Receptor Gene.

  16. Novel biodegradable polymers for local growth factor delivery.

    PubMed

    Amsden, Brian

    2015-11-01

    Growth factors represent an important therapeutic protein drug class, and would benefit significantly from formulations that provide sustained, local release to realize their full clinical potential. Biodegradable polymer-based delivery platforms have been examined to achieve this end; however, formulations based on conventional polymers have yet to yield a clinical product. This review examines new polymer biomaterials that have been developed for growth factor delivery. The dosage forms are discussed in terms of their mechanism of release, the stability of the released growth factor, their method of preparation, and their potential for clinical translation. PMID:26614555

  17. Comparison of the effect of calcium gluconate and batroxobin on the release of transforming growth factor beta 1 in canine platelet concentrates

    PubMed Central

    2012-01-01

    Background The clinical use of autologous platelet concentrates (also known as platelet-rich plasma) on the field of regenerative therapy, in the last decade has been the subject of several studies especially in equine medicine and surgery. The objectives of this study was: 1) to describe and compare the cellular population in whole blood, lower fraction (A) and upper fraction (B) of platelet concentrates, 2) to measure and compare the transforming growth factor beta 1 (TGF-β1) concentration in plasma and both platelet concentrates after be activated with calcium gluconate or batroxobin plus calcium gluconate and, 3) to determine correlations between cell counts in platelet concentrates and concentrations of TGF-β1. Blood samples were taken from 16 dogs for complete blood count, plasma collection and platelet concentrates preparation. The platelet concentrates (PC) were arbitrarily divided into two fractions, specifically, PC-A (lower fraction) and PC-B (upper fraction). The Platelet concentrates were analyzed by hemogram. After activated with calcium gluconate or batroxobin plus calcium gluconate, TGF-β1 concentration was determined in supernatants of platelet concentrates and plasma. Results There were differences statistically significant (P < 0.05) for the platelet count and leukocyte count and TGF-β1 concentration between whole blood, plasma and both platelet concentrates. A significant correlation was found between the number of platelets in both platelet concentrates and TGF-β1 concentration. Platelet collection efficiency was 46.34% and 28.16% for PC-A and PC-B, respectively. TGF-β1 concentration efficiency for PC activated with calcium gluconate was 47.75% and 31.77%, for PC-A and PC-B, respectively. PC activated with batroxobin plus CG showed 46.87% and 32.24% for PC-A and PC-B, respectively. Conclusions The methodology used in this study allows the concentration of a number of platelets and TGF-β1 that might be acceptable for a biological

  18. Dual delivery of vascular endothelial growth factor and hepatocyte growth factor coacervate displays strong angiogenic effects.

    PubMed

    Awada, Hassan K; Johnson, Noah R; Wang, Yadong

    2014-05-01

    Controlled delivery of multiple growth factors (GFs) holds great potential for the clinical treatment of ischemic diseases and might be more therapeutically effective to reestablish vasculature than the provision of a single GF. Vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) are two potent angiogenic factors. However, due to rapid degradation and dilution in the body, their clinical potential will rely on an effective mode of delivery. A coacervate, composed of heparin and a biodegradable polycation, which protects GFs from proteolysis and potentiates their bioactivities, is developed. Here, the coacervate incorporates VEGF and HGF and sustains their release for at least three weeks. Their strong angiogenic effects on endothelial cell proliferation and tube formation in vitro are confirmed. Furthermore, it is demonstrated that coacervate-based delivery of these factors has stronger effects than free application of both factors and to coacervate delivery of each GF separately.

  19. Epidermal growth factor (EGF) ligand release by substrate-specific a disintegrin and metalloproteases (ADAMs) involves different protein kinase C (PKC) isoenzymes depending on the stimulus.

    PubMed

    Dang, Michelle; Dubbin, Karen; D'Aiello, Antonio; Hartmann, Monika; Lodish, Harvey; Herrlich, Andreas

    2011-05-20

    The dysregulation of EGF family ligand cleavage has severe consequences for the developing as well as the adult organism. Therefore, their production is highly regulated. The limiting step is the ectodomain cleavage of membrane-bound precursors by one of several a disintegrin and metalloprotease (ADAM) metalloproteases, and understanding the regulation of cleavage is an important goal of current research. We have previously reported that in mouse lung epithelial cells, the pro-EGF ligands TGFα, neuregulin 1β (NRG), and heparin-binding EGF are differentially cleaved depending on the cleavage stimulus (Herrlich, A., Klinman, E., Fu, J., Sadegh, C., and Lodish, H. (2008) FASEB J.). In this study in mouse embryonic fibroblasts that lack different ADAMs, we show that induced cleavage of EGF ligands can involve the same substrate-specific metalloprotease but does require different stimulus-dependent signaling pathways. Cleavage was stimulated by phorbol ester (12-O-tetradecanoylphorbol-13-acetate (TPA), a mimic of diacylglycerol and PKC activator), hypertonic stress, lysophosphatidic acid (LPA)-induced G protein-coupled receptor activation, or by ionomycin-induced intracellular calcium release. Although ADAMs showed substrate preference (ADAM17, TGFα and heparin-binding EGF; and ADAM9, NRG), substrate cleavage differed substantially with the stimulus, and cleavage of the same substrate depended on the presence of different, sometimes multiple, PKC isoforms. For instance, classical PKC was required for TPA-induced but not hypertonic stress-induced cleavage of all EGF family ligands. Inhibition of PKCζ enhanced NRG release upon TPA stimulation, but it blocked NRG release in response to hypertonic stress. Our results suggest a model in which substantial regulation of ectodomain cleavage occurs not only on the metalloprotease level but also on the level of the substrate or of a third protein.

  20. Superoxide radicals increase transforming growth factor-{beta}1 and collagen release from human lung fibroblasts via cellular influx through chloride channels

    SciTech Connect

    Qi Shufan Hartog, Gertjan J.M. den; Bast, Aalt

    2009-05-15

    Reactive oxygen species (ROS) have been implicated in the pathogenesis of fibrosis. However, it remains unclear which ROS is the major cause. We hypothesize that superoxide elicits specific toxicity to human lung fibroblasts and plays an important role in the development of pulmonary fibrosis. In this study, superoxide generated from xanthine and xanthine oxidase activated lung fibroblasts by increasing the release of TGF-{beta}1 and collagen. This was associated with increased levels of intracellular superoxide. SOD and tempol, by scavenging respectively extracellular and intracellular superoxide, prevented the activation of fibroblasts induced by exposure to exogenous superoxide, whereas catalase did not. Moreover, hydrogen peroxide did not activate fibroblasts. Apparently, superoxide rather than hydrogen peroxide is involved in the regulation of TGF-{beta}1 and collagen release in lung fibroblasts. The chloride channel blocker, DIDS, inhibited the increase of intracellular superoxide levels induced by exogenous superoxide and consequently prevented the activation of fibroblasts. This suggests that the cellular influx of superoxide through chloride channels is essential for superoxide-induced activation of fibroblasts. ERK1/2 and p38 MAPKs are involved in the intracellular pathway leading to superoxide-induced fibroblasts activation. Superoxide possesses until now undiscovered specific pro-fibrotic properties in human lung fibroblasts. This takes place via the cellular influx of superoxide through chloride channels rather than via the formation of hydrogen peroxide.

  1. Interstitial fibrosis and growth factors.

    PubMed Central

    Lasky, J A; Brody, A R

    2000-01-01

    Interstitial pulmonary fibrosis (IPF) is scarring of the lung caused by a variety of inhaled agents including mineral particles, organic dusts, and oxidant gases. The disease afflicts millions of individuals worldwide, and there are no effective therapeutic approaches. A major reason for this lack of useful treatments is that few of the molecular mechanisms of disease have been defined sufficiently to design appropriate targets for therapy. Our laboratory has focused on the molecular mechanisms through which three selected peptide growth factors could play a role in the development of IPF. Hundreds of growth factors and cytokines could be involved in the complex disease process. We are studying platelet-derived growth factor because it is the most potent mesenchymal cell mitogen yet described, transforming growth factor beta because it is a powerful inducer of extracellular matrix (scar tissue) components by mesenchymal cells, and tumor necrosis factor alpha because it is a pleiotropic cytokine that we and others have shown is essential for the development of IPF in animal models. This review describes some of the evidence from studies in humans, in animal models, and in vitro, that supports the growth factor hypothesis. The use of modern molecular and transgenic technologies could elucidate those targets that will allow effective therapeutic approaches. Images Figure 1 Figure 2 PMID:10931794

  2. Chronic exposure to nerve growth factor increases acetylcholine and glutamate release from cholinergic neurons of the rat medial septum and diagonal band of Broca via mechanisms mediated by p75NTR.

    PubMed

    Huh, Carey Y L; Danik, Marc; Manseau, Frédéric; Trudeau, Louis-Eric; Williams, Sylvain

    2008-02-01

    Basal forebrain neurons play an important role in memory and attention. In addition to cholinergic and GABAergic neurons, glutamatergic neurons and neurons that can corelease acetylcholine and glutamate have recently been described in the basal forebrain. Although it is well known that nerve growth factor (NGF) promotes synaptic function of cholinergic basal forebrain neurons, how NGF affects the newly identified basal forebrain neurons remains undetermined. Here, we examined the effects of NGF on synaptic transmission of medial septum and diagonal band of Broca (MS-DBB) neurons expressing different neurotransmitter phenotypes. We used MS-DBB neurons from 10- to 13-d-old rats, cultured on astrocytic microislands to promote the development of autaptic connections. Evoked and spontaneous postsynaptic currents were recorded, and neurotransmitters released were characterized pharmacologically. We found that chronic exposure to NGF significantly increased acetylcholine and glutamate release from cholinergic MS-DBB neurons, whereas glutamate and GABA transmission from noncholinergic MS-DBB neurons were not affected by NGF. Interestingly, the NGF-induced increase in neurotransmission was mediated by p75(NTR). These results demonstrate a previously unidentified role of NGF and its receptor p75(NTR); their interactions are crucial for cholinergic and glutamatergic transmission in the septohippocampal pathway. PMID:18256260

  3. Polyelectrolyte Complex for Heparin Binding Domain Osteogenic Growth Factor Delivery.

    PubMed

    Wing Moon Lam, Raymond; Abbah, Sunny Akogwu; Ming, Wang; Naidu, Mathanapriya; Ng, Felly; Tao, Hu; Goh Cho Hong, James; Ting, Kang; Hee Kit, Wong

    2016-01-01

    During reconstructive bone surgeries, supraphysiological amounts of growth factors are empirically loaded onto scaffolds to promote successful bone fusion. Large doses of highly potent biological agents are required due to growth factor instability as a result of rapid enzymatic degradation as well as carrier inefficiencies in localizing sufficient amounts of growth factor at implant sites. Hence, strategies that prolong the stability of growth factors such as BMP-2/NELL-1, and control their release could actually lower their efficacious dose and thus reduce the need for larger doses during future bone regeneration surgeries. This in turn will reduce side effects and growth factor costs. Self-assembled PECs have been fabricated to provide better control of BMP-2/NELL-1 delivery via heparin binding and further potentiate growth factor bioactivity by enhancing in vivo stability. Here we illustrate the simplicity of PEC fabrication which aids in the delivery of a variety of growth factors during reconstructive bone surgeries. PMID:27585207

  4. Do the fibrin architecture and leukocyte content influence the growth factor release of platelet concentrates? An evidence-based answer comparing a pure platelet-rich plasma (P-PRP) gel and a leukocyte- and platelet-rich fibrin (L-PRF).

    PubMed

    Dohan Ehrenfest, David M; Bielecki, Tomasz; Jimbo, Ryo; Barbé, Giovanni; Del Corso, Marco; Inchingolo, Francesco; Sammartino, Gilberto

    2012-06-01

    Platelet concentrates for surgical use are tools of regenerative medicine designed for the local release of platelet growth factors into a surgical or wounded site, in order to stimulate tissue healing or regeneration. Leukocyte content and fibrin architecture are 2 key characteristics of all platelet concentrates and allow to classify these technologies in 4 families, but very little is known about the impact of these 2 parameters on the intrinsic biology of these products. In this demonstration, we highlight some outstanding differences in the growth factor and matrix protein release between 2 families of platelet concentrate: Pure Platelet-Rich Plasma (P-PRP, here the Anitua's PRGF - Preparation Rich in Growth Factors - technique) and Leukocyte- and Platelet-Rich Fibrin (L-PRF, here the Choukroun's method). These 2 families are the extreme opposites in terms of fibrin architecture and leukocyte content. The slow release of 3 key growth factors (Transforming Growth Factor β1 (TGFβ1), Platelet-Derived Growth Factor AB (PDGF-AB) and Vascular Endothelial Growth Factor (VEGF)) and matrix proteins (fibronectin, vitronectin and thrombospondin-1) from the L-PRF and P-PRP gel membranes in culture medium is described and discussed. During 7 days, the L-PRF membranes slowly release significantly larger amounts of all these molecules than the P-PRP gel membranes, and the 2 products display different release patterns. In both platelet concentrates, vitronectin is the sole molecule to be released almost completely after only 4 hours, suggesting that this molecule is not trapped in the fibrin matrix and not produced by the leukocytes. Moreover the P-PRP gel membranes completely dissolve in the culture medium after less than 5 days only, while the L-PRF membranes are still intact after 7 days. This simple demonstration shows that the polymerization and final architecture of the fibrin matrix considerably influence the strength and the growth factor trapping/release potential

  5. Treatment of true precocious puberty with a potent luteinizing hormone-releasing factor agonist: effect on growth, sexual maturation, pelvic sonography, and the hypothalamic-pituitary-gonadal axis.

    PubMed

    Styne, D M; Harris, D A; Egli, C A; Conte, F A; Kaplan, S L; Rivier, J; Vale, W; Grumbach, M M

    1985-07-01

    We used the LHRH agonist D-Trp6-Pro6-N-ethylamide LHRH (LHRH-A) to treat 19 children (12 girls and 7 boys) with true precocious puberty. Fourteen patients had idiopathic true precocious puberty, 4 had a hamartoma of the tuber cinereum, and 1 had a hypothalamic astrocytoma. Basal gonadotropin secretion and responses to native LHRH decreased within 1 week of initiation LHRH-A therapy, and sex steroid secretion decreased within 2 weeks to or within the prepubertal range. Ultrasonographic evaluation of the uterus indicated a postmenarchal size and shape in all 11 girls studied before treatment, which reverted to prepubertal size and configuration in 5 girls during LHRH-A therapy. The enlarged ovaries decreased in size and the multiple ovarian follicular cysts regressed. Sexual characteristics ceased advancing or reverted toward the prepubertal state in all patients receiving therapy for 6-36 months. All 5 girls with menarche before therapy had no further menses. Three girls had hot flashes after LHRH-A-induced reduction of the plasma estradiol concentration. Height velocity, SDs above the mean height velocity for age, and SDs above the mean height for age decreased during LHRH-A therapy; the velocity of skeletal maturation decreased after 12 months of LHRH-A therapy and was sustained during continued therapy over 18-36 months. In 4 patients, a subnormal growth rate (less than 4.5 cm/yr) occurred during LHRH-A therapy. Six patients had cutaneous reactions of LHRH-A, but no demonstrable circulating antibodies to LHRH-A. In 2 patients in whom LHRH-A therapy was discontinued because of skin reactions, precocious sexual maturation resumed at the previous rate for the ensuing 6-12 months; subsequently, they were desensitized to LHRH-A, and during a second course of therapy, their secondary sexual development and sex steroid levels again quickly decreased. LHRH-A proved an effective and safe treatment for true precocious puberty in boys as well as girls with central

  6. The suppression of fibroblast growth factor 2/fibroblast growth factor 4-dependent tumour angiogenesis and growth by the anti-growth factor activity of dextran derivative (CMDB7).

    PubMed Central

    Bagheri-Yarmand, R.; Kourbali, Y.; Mabilat, C.; Morère, J. F.; Martin, A.; Lu, H.; Soria, C.; Jozefonvicz, J.; Crépin, M.

    1998-01-01

    Our previous studies showed that carboxymethyl benzylamide dextran (CMDB7) blocks basic fibroblast growth factor (FGF-2)-dependent cell proliferation of a human breast epithelial line (HBL100), suggesting its potential role as a potent antiangiogenic substance. The derived cell line (HH9), which was transformed with the hst/FGF4 gene, has been shown to be highly proliferative in vitro and to induce angiogenic tumours in nude mice. We show here that CMDB7 inhibits the mitogenic activities of the conditioned media from HBL 100 and HH9 cells in a dose-dependent manner. When HH9 cells were injected s.c. into nude mice, CMDB7 treatment (300 mg kg(-1) week(-1)) suppressed the tumour take and the tumour growth by about 50% and 80% respectively. Immunohistochemical analysis showed a highly significant decrease, by more than threefold, in the endothelial density of viable tumour regions, together with a significant increase in the necrosis area. This antiangiogenic activity of CMDB7 was further demonstrated by direct inhibition of calf pulmonary artery (CPAE) and human umbilical vein (HUVEC) endothelial cell proliferation and migration in vitro. In addition, we showed that CMDB7 inhibits specifically the mitogenic effects of the growth factors that bind to heparin such as FGF-2, FGF-4, platelet-derived growth factor (PDGF-BB) and transforming growth factor (TGF-beta1), but not those of epidermal growth factor (EGF) and insulin-like growth factor (IGF-1). These results demonstrate that CMDB7 inhibits FGF-2/FGF-4-dependent tumour growth and angiogenesis, most likely by disrupting the autocrine and paracrine effects of growth factors released from the tumour cells. Images Figure 4 PMID:9662260

  7. Growth factors in orthopedic surgery

    PubMed Central

    Zaharia, C; Despa, N; Simionescu, M; Jinga, V; Fleseriu, I

    2010-01-01

    Growth factors have represented an essential issue of interest for the researchers and clinicians in orthopedics and trauma over the last 40 years. In the last 10 to 15 years, the advances registered in this field have permitted the identification of the most active cellular and humoral factors as well as the improvement of their use in the orthopedic and trauma surgery. Their domain of application has been continuously enlarged and the results have been visible from the beginning. The authors present their appreciation on the actual state of this subject as well as their experience with results and related conclusions. PMID:20302195

  8. Acidic fibroblast growth factor and keratinocyte growth factor stimulate fetal rat pulmonary epithelial growth.

    PubMed

    Deterding, R R; Jacoby, C R; Shannon, J M

    1996-10-01

    We have shown that pulmonary epithelial growth and differentiation can occur if pulmonary mesenchyme is replaced with a mixture of growth factors [total growth medium (TGM)] that consists of adult rat bronchoalveolar lavage fluid, insulin, epidermal growth factor (EGF), cholera toxin (CT), acidic fibroblast growth factor (aFGF), and fetal bovine serum. In the present study, we have defined the importance of specific components of TGM. Day 14 fetal rat distal lung epithelium, devoid of mesenchyme, was enrobed in growth factor-depleted Matrigel and cultured for 5 days in various soluble factors. We found that deleting aFGF or CT from TGM significantly reduced DNA synthesis. Epithelial proliferation was not significantly different when keratinocyte growth factor (KGF) replaced aFGF in TGM. KGF, however, required the presence of a basal medium containing CT, insulin, and serum for optimal proliferation. We then added specific growth factors to the basal medium and showed that aFGF and KGF were more potent mitogens than EGF, transforming growth factor-alpha, and hepatocyte growth factor. Additionally, basal medium + KGF also allowed progression to a distal alveolar phenotype. We conclude that aFGF and KGF may be important mediators in epithelial-mesenchymal interactions. PMID:8897895

  9. Mapping the human growth hormone-releasing hormone receptor (GHRHR) gene to the short arm of chromosome 7(7p13-p21) near the epidermal growth factor receptor (EGFR) gene

    SciTech Connect

    Vamvakopoulos, N.C. ); Kunz, J.; Olberding, U. ); Scherer, S.W. ); Sioutopoulou, O.T. ); Schneider, V.; Durkin, A.S.; Nierman, W.C. )

    1994-03-15

    In this report, the authors have assigned the human GHRHR gene to chromosome 7p13-p21, using polymerase chain reaction (PCR) amplification of DNA from well-defined human-rodent somatic cell hybrids. The GHRHR gene was assigned to human chromosome 7 by discordancy analysis (data not shown) of PCR amplification products from NIGMS mapping panel Nos. 1 and 2 DNA templates. The PCR primers (p[sub f], 5[prime]-GCTGCCTCATCACGCCACTGGAGTCCAC-3[prime]; and P[sub r], 5[prime]-CAGGTTTATTGGCTCCTCTGAGCCTTGG-3[prime]) amplified a 276-bp-long fragment from the 3[prime] untranslated region of the human GHRHR gene. Subsequently, they determined the location of the GHRHR gene within human chromosome 7 by PCR amplification of genomic DNA template from somatic cell hybrids that contain deletions of this chromosome. Amplification of the 276-bp DNA fragment was seen only in the cell lines that contained an intact chromosome 7 short arm. The lack of amplification using genomic DNA from 0044 Rag 1-15 and It A9 2-21-14 maps this gene to 7p13-p21. Additionally, the appropriate amplified product was observed from the human chromosome 4 containing NIGMS panel 2 cell line GM10115. This line was reported to have retained a small region of human chromosome 7 containing the epidermal growth factor receptor (EGFR) gene that is mapped to 7p12-p13. The authors conclude that the human GHRHR gene maps to the small arm of chromosome 7 within 7p13-p21 and close to the EGFR gene. This assignment is consistent with the syntenic relationship between mouse chromosome 6 and human chromosome 7 in this region.

  10. Transforming growth factor-beta 1 and fibroblast growth factors in rat growth plate.

    PubMed

    Jingushi, S; Scully, S P; Joyce, M E; Sugioka, Y; Bolander, M E

    1995-09-01

    Chondrocytes in the growth plate progress in an orderly fashion from resting through proliferating to hypertrophic cells. In the region of hypertrophic chondrocytes, the cartilage is invaded by capillary loops and endochondral ossification is initiated. It is currently believed that growth factors may regulate the proliferation and maturation of chondrocytes and the synthesis of extracellular matrix in the growth plate. The ordered sequence of proliferation and differentiation observed in the growth plate provides a unique opportunity to study the role of acidic fibroblast growth factor, basic fibroblast growth factor, and transforming growth factor-beta 1 in the regulation of these processes. In this study, expression of the mRNA of these growth factors was examined using total RNA extracted from the physis and epiphysis of rat tibias. Transforming growth factor-beta 1 mRNA was detected by Northern hybridization. Expression of the genes encoding acidic and basic fibroblast growth factors was demonstrated by polymerase chain reaction amplification. In addition, using polyclonal antibodies against these growth factors, we localized them by immunohistochemical analysis. Strong intracellular staining with a predominantly nuclear pattern was observed in chondrocytes from the proliferating and upper hypertrophic zones. In contrast, chondrocytes in the resting zone stained only faintly for the presence of these growth factors. Some chondrocytes in the resting zone adjacent to the proliferating zone stained with these antibodies, and the antibodies also stained cells in the zone of Ranvier, which regulates latitudinal bone growth. Lastly, the location of transforming growth factor-beta 1 was examined further with use of a polyclonal antipeptide antibody specific for its extracellular epitope.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7472755

  11. Mental illness, criminal risk factors and parole release decisions.

    PubMed

    Matejkowski, Jason; Draine, Jeffrey; Solomon, Phyllis; Salzer, Mark S

    2011-01-01

    Research has not examined whether higher rates of parole denial among inmates with mental illness (MI) are the result of the increased presence of criminal risk factors among this population. Employing a representative sample of inmates with (n  =  219) and without (n  =  184) MI receiving parole release decisions in 2007, this study tested whether the central eight risk factors for recidivism considered in parole release decisions intervened in the relationship between MI and parole release. MI was associated with possession of a substance use disorder, antisocial personality disorder and violent charges while incarcerated; however, these factors were not related to release decisions. MI was found to have neither a direct nor an indirect effect on release decisions. While results indicate that release decisions appear, to some extent, to be evidence-based, they also suggest considerable discretion is being implemented by parole board members in release decisions above and beyond consideration of criminal risk factors.

  12. Epidermal growth factor and growth in vivo

    SciTech Connect

    Rhodes, J.A.

    1986-01-01

    Epidermal growth factor (EGF) causes a dose-dependent thickening of the epidermis in suckling mice. The cellular mechanisms underlying this thickening were analyzed by measuring the effect of EGF on the cell-cycle. Neonatal mice were given daily injections of either 2ug EGF/g body weight/day or an equivalent volume of saline, and on the seventh day received a single injection of /sup 3/H-thymidine. At various times the mice were perfused with fixative; 1um sections of skin were stained with a modification of Harris' hematoxylin and were autoradiographed. The sections were analyzed using three methods based on the dependence on time after injection of /sup 3/H-thymidine of: frequency of labelled mitoses, labelling index, and reciprocal grains/nucleus. It was found that EGF caused a two-fold increase in the cell production rate. The effect of exogenous EGF on the morphology of gastric mucosa and incisors of suckling mice was also studied. The gastric mucosa appeared thicker in EGF-treated animals, but the effect was not statistically significant. In contrast to its effect on epidermis and gastric mucosa, EGF caused a significant, dose-dependent decrease in the size of the incisors. Because the mouse submandibular salivary gland is the major source of EGF the effect of sialoadenectomy on female reproductive functions was examined. Ablation of the submandibular gland had no effect on: length of estrus cycle, ability of the female to produce litters, length of the gestation period, litter size, and weight of the litter at birth. There was also no effect on survival of the offspring or on age at which the eyelids separated.

  13. Corticotropin-releasing factor administered centrally, but not peripherally, stimulates hippocampal acetylcholine release.

    PubMed

    Day, J C; Koehl, M; Le Moal, M; Maccari, S

    1998-08-01

    In addition to corticotropin-releasing factor's well-known role in mediating hormonal and behavioral responses to stress, this peptide also reportedly affects arousal and cognition, processes that classically have been associated with forebrain cholinergic systems. Corticotropin-releasing factor stimulation of cholinergic neurons might thus provide a mechanism for this peptide's cognitive effects. To examine this possibility, the present experiments characterize the effect of corticotropin-releasing factor on cholinergic neurotransmission, using in vivo microdialysis to measure hippocampal acetylcholine release. Corticotropin-releasing factor (0.5-5.0 microg/rat intracerebroventricularly) was found to increase dialysate concentrations of acetylcholine in a dose-dependent manner in comparison with a control injection, the ovine peptide having a greater effect than the same dose of the human/rat peptide. This effect was found to be centrally mediated, independent of the peripheral effects of an exogenous corticotropin-releasing factor injection; subcutaneous injections of the peptide increased plasma concentrations of corticosterone, the adrenal hormone ultimately secreted in the rat's stress response, to the same level as did the central injections, without affecting hippocampal acetylcholine release. These results demonstrate that corticotropin-releasing factor, acting centrally, regulates hippocampal cholinergic activity, and suggest that corticotropin-releasing factor/acetylcholine interactions may underlie some of the previously identified roles of these neurotransmitters in arousal, cognition, and stress.

  14. Corticotropin-releasing factor administered centrally, but not peripherally, stimulates hippocampal acetylcholine release.

    PubMed

    Day, J C; Koehl, M; Le Moal, M; Maccari, S

    1998-08-01

    In addition to corticotropin-releasing factor's well-known role in mediating hormonal and behavioral responses to stress, this peptide also reportedly affects arousal and cognition, processes that classically have been associated with forebrain cholinergic systems. Corticotropin-releasing factor stimulation of cholinergic neurons might thus provide a mechanism for this peptide's cognitive effects. To examine this possibility, the present experiments characterize the effect of corticotropin-releasing factor on cholinergic neurotransmission, using in vivo microdialysis to measure hippocampal acetylcholine release. Corticotropin-releasing factor (0.5-5.0 microg/rat intracerebroventricularly) was found to increase dialysate concentrations of acetylcholine in a dose-dependent manner in comparison with a control injection, the ovine peptide having a greater effect than the same dose of the human/rat peptide. This effect was found to be centrally mediated, independent of the peripheral effects of an exogenous corticotropin-releasing factor injection; subcutaneous injections of the peptide increased plasma concentrations of corticosterone, the adrenal hormone ultimately secreted in the rat's stress response, to the same level as did the central injections, without affecting hippocampal acetylcholine release. These results demonstrate that corticotropin-releasing factor, acting centrally, regulates hippocampal cholinergic activity, and suggest that corticotropin-releasing factor/acetylcholine interactions may underlie some of the previously identified roles of these neurotransmitters in arousal, cognition, and stress. PMID:9681452

  15. Platelet-rich growth factor in oral and maxillofacial surgery

    PubMed Central

    Pal, Uma Shanker; Mohammad, Shadab; Singh, Rakesh K.; Das, Somdipto; Singh, Nimisha; Singh, Mayank

    2012-01-01

    Platelet-rich growth factor is an innovative regenerative therapy used to promote hard and soft tissue healing. It involves the application of autologous platelet-leukocyte-rich plasma containing growth factors and thrombin directly to the site of treatment. It is the intrinsic growth factors released by activated platelets which are concentrated in a topical gel formula. Clinically, it is an affordable treatment with potentially broad spectrum of applications in maxillofacial surgery especially in the treatment of complex or refractory wounds. The present article reviews its various applications not only in the specialization of oral and maxillofacial surgery but also in regenerative medicine. PMID:23833484

  16. Dopamine release by Ulvaria obscura (Chlorophyta): environmental triggers and impacts on photosynthesis, growth, and survival of the releaser.

    PubMed

    Van Alstyne, Kathryn L; Anderson, Katie J; van Hees, Daniel H; Gifford, Sue-Ann

    2013-08-01

    In the NE Pacific, Ulvaria obscura is a common component of "green tide" blooms. It is also the only alga known to produce dopamine, which is released into seawater on sunny days when Ulvaria is emersed and then rehydrated. To better understand the mechanisms associated with dopamine release, we experimentally determined whether light quantity and quality, desiccation, temperature, exudates from conspecifics, and dissolved dopamine caused dopamine release. We also examined the effects of desiccation on Ulvaria's ability to photosynthesize, grow, and survive. Desiccation was the only factor that caused significant amounts of dopamine to be lost from U. obscura tissues. The loss of water from Ulvaria tissues was strongly and positively correlated with the loss of dopamine after rehydration. Only 56% of desiccated algae survived for 1 week, compared to 100% of undesiccated control algae. Desiccated algae lost 77% of their pigmented surface area and grew only 15% as much as undesiccated algae, which remained fully pigmented. The oxygen saturation of water containing Ulvaria that was desiccated and then rehydrated was significantly lower than that of seawater containing undesiccated algae. Thus, desiccation, which is coupled with dopamine release, is associated with the deterioration and death of some, but not all, tissues in Ulvaria. Although dopamine released into seawater can reduce the survival or growth of potential competitors, its release is associated with significant physiological stress and tissue mortality. However, the survival and continued growth of some Ulvaria tissues indicates that a net fitness benefit to release dopamine following desiccation cannot be ruled out.

  17. Growth Factors and Tension-Induced Skeletal Muscle Growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  18. Regulation of Pituitary MT1 Melatonin Receptor Expression by Gonadotrophin-Releasing Hormone (GnRH) and Early Growth Response Factor-1 (Egr-1): In Vivo and In Vitro Studies

    PubMed Central

    Bae, Sung-Eun; Wright, Ian K.; Wyse, Cathy; Samson-Desvignes, Nathalie; Le Blanc, Pascale; Laroche, Serge; Hazlerigg, David G.; Johnston, Jonathan D.

    2014-01-01

    Melatonin receptor expression exhibits profound developmental changes through poorly understood mechanisms. In mammals, a current model suggests that pubertal reactivation of gonadotrophin-releasing hormone (GnRH) secretion down-regulates MT1 melatonin receptors in pituitary gonadotroph cells, via the induction of early growth response factor-1 (EGR-1). Here we have examined this model by testing the hypotheses that inhibition of Mt1 expression by GnRH occurs directly in gonadotroph cells, can be reversed in adulthood by blockade of GnRH receptors, and requires EGR-1. We first confirmed the endogenous expression of Mt1 mRNA in the αT3-1 gonadotroph cell line. Stimulation of these cells with a GnRH agonist resulted in a rapid increase of Egr-1 mRNA expression, which peaked after 30–60 minutes, and a more prolonged elevation of nuclear EGR-1 immunoreactivity. Moreover, the GnRH agonist significantly decreased Mt1 mRNA. We then treated adult male rats with the GnRH antagonist cetrorelix or saline. After 4 weeks of daily injections, cetrorelix significantly reduced serum LH concentration and testis weight, with histological analysis confirming absence of spermatogenesis. Despite the successful inhibition of GnRH signalling, pituitary Mt1 expression was unchanged. Next we studied the proximal region of the rat Mt1 promoter. Consistent with previous work, over-expression of the transcription factor PITX-1 increased Mt1-luciferase reporter activity; this effect was dependent on the presence of consensus PITX-1 promoter binding regions. Over-expression of EGR-1 inhibited PITX-1-stimulated activity, even following mutation of the consensus EGR-1 binding site. Finally, we studied Egr1−/− mice and observed no difference in pituitary Mt1 expression between Egr1−/− and wild-type litter mates. This work demonstrates that GnRH receptor activation directly down-regulates Mt1 expression in gonadotroph cells. However, pituitary Mt1 expression in adults is unaltered by

  19. Regulation of pituitary MT1 melatonin receptor expression by gonadotrophin-releasing hormone (GnRH) and early growth response factor-1 (Egr-1): in vivo and in vitro studies.

    PubMed

    Bae, Sung-Eun; Wright, Ian K; Wyse, Cathy; Samson-Desvignes, Nathalie; Le Blanc, Pascale; Laroche, Serge; Hazlerigg, David G; Johnston, Jonathan D

    2014-01-01

    Melatonin receptor expression exhibits profound developmental changes through poorly understood mechanisms. In mammals, a current model suggests that pubertal reactivation of gonadotrophin-releasing hormone (GnRH) secretion down-regulates MT1 melatonin receptors in pituitary gonadotroph cells, via the induction of early growth response factor-1 (EGR-1). Here we have examined this model by testing the hypotheses that inhibition of Mt1 expression by GnRH occurs directly in gonadotroph cells, can be reversed in adulthood by blockade of GnRH receptors, and requires EGR-1. We first confirmed the endogenous expression of Mt1 mRNA in the αT3-1 gonadotroph cell line. Stimulation of these cells with a GnRH agonist resulted in a rapid increase of Egr-1 mRNA expression, which peaked after 30-60 minutes, and a more prolonged elevation of nuclear EGR-1 immunoreactivity. Moreover, the GnRH agonist significantly decreased Mt1 mRNA. We then treated adult male rats with the GnRH antagonist cetrorelix or saline. After 4 weeks of daily injections, cetrorelix significantly reduced serum LH concentration and testis weight, with histological analysis confirming absence of spermatogenesis. Despite the successful inhibition of GnRH signalling, pituitary Mt1 expression was unchanged. Next we studied the proximal region of the rat Mt1 promoter. Consistent with previous work, over-expression of the transcription factor PITX-1 increased Mt1-luciferase reporter activity; this effect was dependent on the presence of consensus PITX-1 promoter binding regions. Over-expression of EGR-1 inhibited PITX-1-stimulated activity, even following mutation of the consensus EGR-1 binding site. Finally, we studied Egr1-/- mice and observed no difference in pituitary Mt1 expression between Egr1-/- and wild-type litter mates. This work demonstrates that GnRH receptor activation directly down-regulates Mt1 expression in gonadotroph cells. However, pituitary Mt1 expression in adults is unaltered by blockade of

  20. Growth hormone (GH)-releasing activity of chicken GH-releasing hormone (GHRH) in chickens.

    PubMed

    Harvey, S; Gineste, C; Gaylinn, B D

    2014-08-01

    Two peptides with sequence similarities to growth hormone releasing hormone (GHRH) have been identified by analysis of the chicken genome. One of these peptides, chicken (c) GHRH-LP (like peptide) was previously found to poorly bind to chicken pituitary membranes or to cloned and expressed chicken GHRH receptors and had little, if any, growth hormone (GH)-releasing activity in vivo or in vitro. In contrast, a second more recently discovered peptide, cGHRH, does bind to cloned and expressed cGHRH receptors and increases cAMP activity in transfected cells. The possibility that this peptide may have in vivo GH-releasing activity was therefore assessed. The intravenous (i.v.) administration of cGHRH to immature chickens, at doses of 3-100 μg/kg, significantly increased circulating GH concentrations within 10 min of injection and the plasma GH levels remained elevated for at least 30 min after the injection of maximally effective doses. The plasma GH responses to cGHRH were comparable with those induced by human (h) or porcine (p) GHRH preparations and to that induced by thyrotropin releasing hormone (TRH). In marked contrast, the i.v. injection of cGHRH-LP had no significant effect on circulating GH concentrations in immature chicks. GH release was also increased from slaughterhouse chicken pituitary glands perifused for 5 min with cGHRH at doses of 0.1 μg/ml or 1.0 μg/ml, comparable with GH responses to hGHRH1-44. In contrast, the perifusion of chicken pituitary glands with cGHRH-LP had no significant effect on GH release. In summary, these results demonstrate that cGHRH has GH-releasing activity in chickens and support the possibility that it is the endogenous ligand of the cGHRH receptor.

  1. Controlled Multiple Growth Factor Delivery from Bone Tissue Engineering Scaffolds via Designed Affinity

    PubMed Central

    Suárez-González, Darilis; Lee, Jae Sung; Diggs, Alisha; Lu, Yan; Nemke, Brett; Markel, Mark; Hollister, Scott J.

    2014-01-01

    It is known that angiogenesis plays an important role in bone regeneration and that release of angiogenic and osteogenic growth factors can enhance bone formation. Multiple growth factors play key roles in processes that lead to tissue formation/regeneration during natural tissue development and repair. Therefore, treatments aiming to mimic tissue regeneration can benefit from multiple growth factor release, and there remains a need for simple clinically relevant approaches for dual growth factor release. We hypothesized that mineral coatings could be used as a platform for controlled incorporation and release of multiple growth factors. Specifically, mineral-coated scaffolds were “dip coated” in multiple growth factor solutions, and growth factor binding and release were dictated by the growth factor-mineral binding affinity. Beta tricalcium phosphate (β-TCP) scaffolds were fabricated using indirect solid-free form fabrication techniques and coated with a thin conformal mineral layer. Mineral-coated β-TCP scaffolds were sequentially dipped in recombinant human vascular endothelial growth factor (rhVEGF) and a modular bone morphogenetic peptide, a mineral-binding version of bone morphogenetic protein 2 (BMP2), solutions to allow for the incorporation of each growth factor. The dual release profile showed sustained release of both growth factors for over more than 60 days. Scaffolds releasing either rhVEGF alone or the combination of growth factors showed an increase in blood vessel ingrowth in a dose-dependent manner in a sheep intramuscular implantation model. This approach demonstrates a “modular design” approach, in which a controllable biologics carrier is integrated into a structural scaffold as a thin surface coating. PMID:24350567

  2. Algorithmic complexity of growth hormone release in humans.

    PubMed

    Prank, K; Wagner, M; Brabant, G

    1997-01-01

    Most hormones are secreted in an pulsatile rather than in a constant manner. This temporal pattern of pulsatile hormone release plays an important role in the regulation of cellular function and structure. In healthy humans growth hormone (GH) secretion is characterized by distinct pulses whereas patients bearing a GH producing tumor accompanied with excessive secretion (acromegaly) exhibit a highly irregular pattern of GH release. It has been hypothesized that this highly disorderly pattern of GH release in acromegaly arises from random events in the GH-producing tumor under decreased normal control of GH secretion. Using a context-free grammar complexity measure (algorithmic complexity) in conjunction with random surrogate data sets we demonstrate that the temporal pattern of GH release in acromegaly is not significantly different from a variety of stochastic processes. In contrast, normal subjects clearly exhibit deterministic structure in their temporal patterns of GH secretion. Our results support the hypothesis that GH release in acromegaly is due to random events in the GH-producing tumorous cells which might become independent from hypothalamic regulation.

  3. Algorithmic complexity of growth hormone release in humans

    SciTech Connect

    Prank, K.; Wagner, M.; Brabant, G.

    1996-12-31

    Most hormones are secreted in an pulsatile rather than in a constant manner. This temporal pattern of pulsatile hormone release plays an important role in the regulation of cellular function and structure. In healthy humans growth hormone (GH) secretion is characterized by distinct pulses whereas patients bearing a GH producing tumor accompanied with excessive secretion (acromegaly) exhibit a highly irregular pattern of GH release. It has been hypothesized that this highly disorderly pattern of GH release in acromegaly arises from random events in the GH-producing tumor under decreased normal control of GH secretion. Using a context-free grammar complexity measure (algorithmic complexity) in conjunction with random surrogate data sets we demonstrate that the temporal pattern of GH release in acromegaly is not significantly different from a variety of stochastic processes. In contrast, normal subjects clearly exhibit deterministic structure in their temporal patterns of GH secretion. Our results support the hypothesis that GH release in acromegaly is due to random events in the GH-producing tumorous cells which might become independent from hypothalamic regulation. 17 refs., 1 fig., 2 tabs.

  4. Growth Factors in Proliferative Diabetic Retinopathy

    PubMed Central

    Khan, Zia Ali

    2003-01-01

    Many growth factors are implicated in the pathogenesis of proliferative diabetic retinopathy. Alteration of growth factors and their receptors in diabetes has been shown in both experimental and clinical studies. Sustained hyperglycemia resulting from long-standing diabetes leads to several biochemical abnormalities that consequently result in retinal hypoxia. Retinal oxygenation state regulates various growth factors that promote angiogenesis in order to meet the oxygen demands of the tissue. However, unregulated expression of these growth factors and induction of complex cascades leading to augmentation of other proangiogenic factors, which may not be regulated by tissue oxygenation, leads to uncontrolled retinal neovascularization and blindness in diabetic patients. PMID:14668050

  5. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  6. Epidermal growth factor receptor not equal to nerve growth factor.

    PubMed

    Williams, L R

    1989-01-01

    I am perplexed by the authors' complete lack of definition of neurotrophic factors. The agents Butcher and Woolf want to blame are neurite promoting factors, not neurotrophic factors. Treatment of Alzheimer's disease with NGF antagonists might instead exacerbate the death of both basal forebrain neurons and their cortical target neurons, accelerating the progress of dementia.

  7. Vascular endothelial growth factor and fibroblast growth factor 2 delivery from spinal cord bridges to enhance angiogenesis following injury.

    PubMed

    De Laporte, Laura; des Rieux, Anne; Tuinstra, Hannah M; Zelivyanskaya, Marina L; De Clerck, Nora M; Postnov, Andrei A; Préat, Véronique; Shea, Lonnie D

    2011-09-01

    The host response to spinal cord injury can lead to an ischemic environment that can induce cell death and limits cell transplantation approaches to promote spinal cord regeneration. Spinal cord bridges that provide a localized and sustained release of vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF-2) were investigated for their ability to promote angiogenesis and nerve growth within the injury. Bridges were fabricated by fusion of poly(lactide-co-glycolide) microspheres using a gas foaming/particulate leaching technique, and proteins were incorporated by encapsulation into the microspheres and/or mixing with the microspheres before foaming. Compared to the mixing method, encapsulation reduced the losses during leaching and had a slower protein release, while VEGF was released more rapidly than FGF-2. In vivo implantation of bridges loaded with VEGF enhanced the levels of VEGF within the injury at 1 week, and bridges releasing VEGF and FGF-2 increased the infiltration of endothelial cells and the formation of blood vessel at 6 weeks postimplantation. Additionally, substantial neurofilament staining was observed within the bridge; however, no significant difference was observed between bridges with or without protein. Bridges releasing angiogenic factors may provide an approach to overcome an ischemic environment that limits regeneration and cell transplantation-based approaches.

  8. Growth factor transgenes interactively regulate articular chondrocytes.

    PubMed

    Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2013-04-01

    Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair.

  9. Myogenic expression of an injectable protease-resistant growth hormone-releasing hormone augments long-term growth in pigs

    NASA Technical Reports Server (NTRS)

    Draghia-Akli, R.; Fiorotto, M. L.; Hill, L. A.; Malone, P. B.; Deaver, D. R.; Schwartz, R. J.

    1999-01-01

    Ectopic expression of a new serum protease-resistant porcine growth hormone-releasing hormone, directed by an injectable muscle-specific synthetic promoter plasmid vector (pSP-HV-GHRH), elicits growth in pigs. A single 10 mg intramuscular injection of pSP-HV-GHRH DNA followed by electroporation in three-week-old piglets elevated serum GHRH levels by twofold to fourfold, enhanced growth hormone secretion, and increased serum insulin-like growth factor-I by threefold to sixfold over control pigs. After 65 days the average body weight of the pigs injected with pSP-HV-GHRH was approximately 37% greater than the placebo-injected controls and resulted in a significant reduction in serum urea concentration, indicating a decrease in amino acid catabolism. Evaluation of body composition indicated a uniform increase in mass, with no organomegaly or associated pathology.

  10. [Growth factors in proliferative diabetic retinopathy].

    PubMed

    Ioniţă, M

    1997-01-01

    This work presents the possible implications of the angiogenic growth factors and some cell mediators in the initiation and development of the neovascular proliferation in diabetic retinopathy. According to the physiopathologic theories stated above, that are implied in the generation of proliferative diabetic retinopathy, here are some therapeutic experiments based on the action of the angiogenic growth factors. PMID:9409959

  11. How does the pathophysiological context influence delivery of bone growth factors?☆

    PubMed Central

    Yu, Xiaohua; Suárez-González, Darilis; Khalil, Andrew S.; Murphy, William L.

    2014-01-01

    “Orthobiologics” represents an important category of therapeutics for the regeneration of bone defects caused by injuries or diseases, and bone growth factors are a particularly rapidly growing sub-category. Clinical application of bone growth factors has accelerated in the last two decades with the introduction of BMPs into clinical bone repair. Optimal use of growth factor-mediated treatments heavily relies on controlled delivery, which can substantially influence the local growth factor dose, release kinetics, and biological activity. The characteristics of the surrounding environment, or “context”, during delivery can dictate growth factor loading efficiency, release and biological activity. This review discusses the influence of the surrounding environment on therapeutic delivery of bone growth factors. We specifically focus on pathophysiological components, including soluble components and cells, and how they can actively influence the therapeutic delivery and perhaps efficacy of bone growth factors. PMID:25453269

  12. Growth factors from genes to clinical application

    SciTech Connect

    Sara, V.R. ); Hall, K.; Low, H. )

    1990-01-01

    The last decade has witnessed an explosion in the identification of growth factors and their receptors. This has been greatly facilitated by recombinant DNA technology, which has provided the tools not only to identify these proteins at the gene level but also to produce recombinant proteins for evaluating their biological activities. With the help of such techniques, we are moving toward an understanding of the biosynthesis of growth factors and their receptors, structure-function relationships, as well as mechanisms for intracellular signal transmission. The possibility of modifying these factors has opened new fields of clinical application. In this paper, four major areas of growth factor research are presented: the characterization of growth factor genes and their protein products, growth factor receptors and signal transduction by the receptors to mediate biological action, the biological actions of the various growth factors, and the role of growth factors in health and disease and their possible clinical application. Some of the topics covered include: structure of the IGFs and their variants; isoforms of PDGF receptor types; tyrosine kinase activation; structure of G-proteins in biological membranes; possible therapeutic application of NGF in the treatment of Parkinson's and Alzheimer's diseases; PDGF's possible role in the development of several fibroproliferative diseases and its therapeutic application in wound healing; and the possible use of angiogenic inhibitors in tumor treatment.

  13. growl: Growth factor and growth rate of expanding universes

    NASA Astrophysics Data System (ADS)

    Hamilton, Andrew J. S.

    2015-12-01

    Growl calculates the linear growth factor Da and its logarithmic derivative dln D/dln a in expanding Friedmann-Robertson-Walker universes with arbitrary matter and vacuum densities. It permits rapid and stable numerical evaluation.

  14. Interactions of growth hormone secretagogues and growth hormone-releasing hormone/somatostatin.

    PubMed

    Tannenbaum, G S; Bowers, C Y

    2001-02-01

    The class of novel synthetic compounds termed growth hormone secretagogues (GHSs) act in the hypothalamus through, as yet, unknown pathways. We performed physiologic and histochemical studies to further understand how the GHS system interacts with the well-established somatostatin (SRIF)/growth hormone-releasing hormone (GHRH) neuroendocrine system for regulating pulsatile GH secretion. Comparison of the GH-releasing activities of the hexapeptide growth hormone-releasing peptide-6 (GHRP-6) and GHRH administered intravenously to conscious adult male rats showed that the pattern of GH responsiveness to GHRP-6 was markedly time-dependent, similar to that observed with GHRH. Immunoneutralization of endogenous SRIF reversed the blunted GH response to GHRP-6 at trough times, suggesting that GHRP-6 neither disrupts nor inhibits the cyclical release of endogenous hypothalamic SRIF. By striking contrast, passive immunization with anti-GHRH serum virtually obliterated the GH responses to GHRP-6, irrespective of the time of administration. These findings suggest that the GHSs do not act by altering SRIF release but, rather, stimulate GH release via GHRH-dependent pathways. Our dual chromogenic and autoradiographic in situ hybridization experiments revealed that a subpopulation of GHRH mRNA-containing neurons in the arcuate (Arc) nucleus and ventromedial nucleus (VMN) of the hypothalamus expressed the GHS receptor (GHS-R) gene. These results provide strong anatomic evidence that GHSs may directly stimulate GHRH release into hypophyseal portal blood, and thereby influence GH secretion, through interaction with the GHS-R on GHRH- containing neurons. Altogether, these findings support the notion that an additional neuroendocrine pathway may exist to regulate pulsatile GH secretion, possibly through the influence of the newly discovered GHS natural peptide, ghrelin. PMID:11322498

  15. Autocrine growth factors for human tumor clonogenic cells.

    PubMed

    Hamburger, A W; White, C P

    1985-11-01

    A human epithelial-derived cell line, SW-13, releases a soluble substance that functions as an autocrine growth factor. SW-13 cells, derived from a human adenocarcinoma of the adrenal cortex, form a few small colonies when suspended in soft agar at low densities. The number of colonies increased significantly when either viable SW-13 cells or serum-free medium conditioned by SW-13 cells (CM) was added to agar underlayers. CM increased colony formation in a dose-dependent fashion. Clonal growth at low cell densities was dependent on the presence of both horse serum and SW-13 CM. Neither activity alone was capable of sustaining growth. Even when cells were plated at high densities CM could not substitute for serum, but could reduce the threshold serum concentration. The results suggest that autocrine and serum-derived factors act in concert to maintain clonal growth of epithelial tumor cells in soft agar.

  16. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, H. H.

    1987-01-01

    Muscle tissue culture techniques were developed to grow skeletal myofibers which differentiate into more adult-like myofibers. Mechanical simulation studies of these muscle cells in a newly developed mechanical cell simulator can now be performed to study growth processes in skeletal muscle. Conditions in the mechanical cell simulator were defined where mechanical activity can either prevent muscle wasting or stimulate muscle growth. The role of endogenous and exogenous growth factors in tension-induced muscle growth is being investigated under the defined conditions of tissue culture.

  17. Environmental factors influencing growth and pubertal development.

    PubMed Central

    Delemarre-van de Waal, H A

    1993-01-01

    Postnatal growth is based on hereditary signals and environmental factors in a complex regulatory network. Each factor must be in an optimal state for normal growth of the child. Fetal conditions may also have consequences on postnatal height. Intrauterine growth retardation can be recovered postnatally, although postnatal growth remains depressed in about one-third of cases. After birth, the environment may exert either a positive or negative effect on growth. In underdeveloped countries, malnutrition plays a major role in inhibiting the growth process. Children from families of higher socioeconomic classes are taller than their coevals in the lower socioeconomic groups. Urbanization also has a positive effect on growth. Better child care is supported by sufficient food supply, appropriate health and sanitation services, and a higher level of education. Over the last century, these factors have induced a taller stature and a more rapid maturity in Europe, North America, and Australia; a phenomenon which has been referred to as "the secular trend" in growth. Recently, a secular trend has also been reported in some developing countries. Although urbanization in general appears to be associated with better conditions of living, this is not the case in the slums of South America or in Africa where rural children are better off than children living in the poor cities. This paper describes in more detail the different hereditary and environmental factors that act during the fetal period and postnatally, and which play a role in human growth and pubertal development. PMID:8243404

  18. Vascular growth factors in neuropsychiatry

    PubMed Central

    Newton, Samuel S.; Fournier, Neil M.; Duman, Ronald S.

    2014-01-01

    Recent advances in understanding the cellular and molecular basis of psychiatric illnesses have shed light on the important role played by trophic factors in modulating functional parameters associated with disease causality and drug action. Disease mechanisms are now thought to involve multiple cell types, including neurons and endothelial cells. These functionally distinct but interactively coupled cell types engage in cellular cross talk via shared and common signaling molecules. Dysregulation in their cellular signaling pathways influences brain function and alters behavioral performance. Multifunctional trophic factors such as VEGF and EPO that possess both neurotrophic and angiogenic actions are of particular interest due to their ability to rescue structural and plasticity deficits in neurons and vasculature. Obtaining insight into the behavioral, cellular and molecular actions of multi-functional trophic factors has the potential to open new and transformative therapeutic approaches. PMID:23475069

  19. Factors affecting water quality in the releases from hydropower reservoirs

    SciTech Connect

    Ruane, R.J.; Hauser, G.E. )

    1990-01-01

    Typical water quality concerns with releases from hydropower reservoirs include low dissolved oxygen, inappropriate temperature for downstream uses, supersaturation of total dissolved gases, and water quality constituents associated with low dissolved oxygen. Except for supersaturation of total dissolved gases, which is usually caused by by-passing turbines and spilling water, all of these concerns are related to the limnology of the upstream reservoir. Various limnological factors affect water quality, particularly dissolved oxygen (DO) in turbine releases. This paper describes three groups of reservoirs, thermal stratification characteristics for each group, DO effects for each group, the main factors that affect DO in TVA turbine releases, and other water quality constituents that are related to low DO.

  20. Growth hormone, prolactin and thyrotrophin responses to thyrotrophin-releasing hormone in diabetic patients.

    PubMed Central

    Harrower, A. D.

    1980-01-01

    Growth hormone (GH), prolactin (PRL) and thyrotrophin (TSH) responses to thyrotrophin-releasing hormone (TRH) were studied in 15 insulin-dependent diabetic patients. Basal plasma GH levels were raised above 5 mu./l in 6 patients and following the injection of TRH there was a significant rise in plasma GH levels in 9. The mean rise in plasma GH from basal to peak values was significant in the group as a whole (P < 0.01). Basal PRL and TSH levels were normal and rose normally in response to TRH. GH release may be qualitatively abnormal in some diabetics and any such loss of specificity of GH-releasing mechanisms would further contribute to the raised GH levels found in many diabetics which would be of importance if GH is a factor in the aetiology of diabetic microangiopathy. PMID:6777767

  1. Extracellular matrix-inspired growth factor delivery systems for bone regeneration

    SciTech Connect

    Martino, Mikaël M.; Briquez, Priscilla S.; Maruyama, Kenta; Hubbell, Jeffrey A.

    2015-04-17

    Growth factors are very promising molecules to enhance bone regeneration. However, their translation to clinical use has been seriously limited, facing issues related to safety and cost-effectiveness. These problems derive from the vastly supra-physiological doses of growth factor used without optimized delivery systems. Therefore, these issues have motivated the development of new delivery systems allowing better control of the spatio-temporal release and signaling of growth factors. Because the extracellular matrix (ECM) naturally plays a fundamental role in coordinating growth factor activity in vivo, a number of novel delivery systems have been inspired by the growth factor regulatory function of the ECM. After introducing the role of growth factors during the bone regeneration process, this review exposes different issues that growth factor-based therapies have encountered in the clinic and highlights recent delivery approaches based on the natural interaction between growth factor and the ECM.

  2. Extracellular matrix-inspired growth factor delivery systems for bone regeneration.

    PubMed

    Martino, Mikaël M; Briquez, Priscilla S; Maruyama, Kenta; Hubbell, Jeffrey A

    2015-11-01

    Growth factors are very promising molecules to enhance bone regeneration. However, their translation to clinical use has been seriously limited, facing issues related to safety and cost-effectiveness. These problems derive from the vastly supra-physiological doses of growth factor used without optimized delivery systems. Therefore, these issues have motivated the development of new delivery systems allowing better control of the spatiotemporal release and signaling of growth factors. Because the extracellular matrix (ECM) naturally plays a fundamental role in coordinating growth factor activity in vivo, a number of novel delivery systems have been inspired by the growth factor regulatory function of the ECM. After introducing the role of growth factors during the bone regeneration process, this review exposes different issues that growth factor-based therapies have encountered in the clinic and highlights recent delivery approaches based on the natural interaction between growth factor and the ECM.

  3. New Clue Found to Growth Factor Action.

    ERIC Educational Resources Information Center

    Hoffman, Michelle

    1991-01-01

    Discussed is the discovery which may help to explain epidermal growth factor effects on the cell skeleton. The role of a protein called profilin in the regulation of the microfilament system is described. (CW)

  4. Fibroblast Growth Factor Homologous Factors Modulate Cardiac Calcium Channels

    PubMed Central

    Hennessey, Jessica A.; Wei, Eric Q.; Pitt, Geoffrey S.

    2013-01-01

    Rationale Fibroblast growth factor (FGF) homologous factors (FHFs, FGF11-14) are intracellular modulators of voltage-gated Na+ channels, but their cellular distribution in cardiomyocytes indicated that they performed other functions. Objective We aimed to uncover novel roles for FHFs in cardiomyocytes starting with a proteomic approach to identify novel interacting proteins. Methods and Results Affinity purification of FGF13 from rodent ventricular lysates followed by mass spectroscopy revealed an interaction with Junctophilin-2, a protein that organizes the close apposition of the L-type Ca2+ channel, CaV1.2, and the ryanodine receptor, RyR2, in the dyad. Immunocytochemical analysis revealed overall T-tubule structure and localization RyR2 were unaffected by FGF13 knockdown in adult ventricular cardiomyocytes, but localization of CaV1.2 was affected. FGF13 knockdown decreased CaV1.2 current density, and reduced the amount of CaV1.2 at the surface due to aberrant localization of the channels. CaV1.2 current density and channel localization were rescued by expression of an shRNA-insensitive FGF13, indicating a specific role for FGF13. Consistent with these newly discovered effects on CaV1.2, we demonstrated that FGF13 also regulated Ca2+-induced Ca2+ release, indicated by a smaller Ca2+ transient after FGF13 knockdown. Further, FGF13 knockdown caused a profound decrease in the cardiac action potential half width. Conclusions This study demonstrates that FHFs are not only potent modulators voltage-gated Na+ channels, but also affect Ca2+ channels and their function. We predict that FHF loss-of-function mutations would adversely affect currents through both Na+ and Ca2+ channels, suggesting that FHFs may be arrhythmogenic loci, leading to arrhythmias through a novel, dual-ion channel mechanism. PMID:23804213

  5. Priming Dental Pulp Stem Cells With Fibroblast Growth Factor-2 Increases Angiogenesis of Implanted Tissue-Engineered Constructs Through Hepatocyte Growth Factor and Vascular Endothelial Growth Factor Secretion.

    PubMed

    Gorin, Caroline; Rochefort, Gael Y; Bascetin, Rumeyza; Ying, Hanru; Lesieur, Julie; Sadoine, Jérémy; Beckouche, Nathan; Berndt, Sarah; Novais, Anita; Lesage, Matthieu; Hosten, Benoit; Vercellino, Laetitia; Merlet, Pascal; Le-Denmat, Dominique; Marchiol, Carmen; Letourneur, Didier; Nicoletti, Antonino; Vital, Sibylle Opsahl; Poliard, Anne; Salmon, Benjamin; Muller, Laurent; Chaussain, Catherine; Germain, Stéphane

    2016-03-01

    Tissue engineering strategies based on implanting cellularized biomaterials are promising therapeutic approaches for the reconstruction of large tissue defects. A major hurdle for the reliable establishment of such therapeutic approaches is the lack of rapid blood perfusion of the tissue construct to provide oxygen and nutrients. Numerous sources of mesenchymal stem cells (MSCs) displaying angiogenic potential have been characterized in the past years, including the adult dental pulp. Establishment of efficient strategies for improving angiogenesis in tissue constructs is nevertheless still an important challenge. Hypoxia was proposed as a priming treatment owing to its capacity to enhance the angiogenic potential of stem cells through vascular endothelial growth factor (VEGF) release. The present study aimed to characterize additional key factors regulating the angiogenic capacity of such MSCs, namely, dental pulp stem cells derived from deciduous teeth (SHED). We identified fibroblast growth factor-2 (FGF-2) as a potent inducer of the release of VEGF and hepatocyte growth factor (HGF) by SHED. We found that FGF-2 limited hypoxia-induced downregulation of HGF release. Using three-dimensional culture models of angiogenesis, we demonstrated that VEGF and HGF were both responsible for the high angiogenic potential of SHED through direct targeting of endothelial cells. In addition, FGF-2 treatment increased the fraction of Stro-1+/CD146+ progenitor cells. We then applied in vitro FGF-2 priming to SHED before encapsulation in hydrogels and in vivo subcutaneous implantation. Our results showed that FGF-2 priming is more efficient than hypoxia at increasing SHED-induced vascularization compared with nonprimed controls. Altogether, these data demonstrate that FGF-2 priming enhances the angiogenic potential of SHED through the secretion of both HGF and VEGF.

  6. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells.

    PubMed Central

    Kuwabara, K; Ogawa, S; Matsumoto, M; Koga, S; Clauss, M; Pinsky, D J; Lyn, P; Leavy, J; Witte, L; Joseph-Silverstein, J

    1995-01-01

    Wound repair and tumor vascularization depend upon blood vessel growth into hypoxic tissue. Although hypoxia slows endothelial cell (EC) proliferation and suppresses EC basic fibroblast growth factor (bFGF) expression, we report that macrophages (MPs) exposed to PO2 approximately 12-14 torr (1 torr = 133.3 Pa) synthesize and release in a time-dependent manner platelet-derived growth factor (PDGF) and acidic/basic FGFs (a/bFGFs), which stimulate the growth of hypoxic ECs. Chromatography of hypoxic MP-conditioned medium on immobilized heparin with an ascending NaCl gradient resolved three peaks of mitogenic activity: activity of the first peak was neutralized by antibody to PDGF; activity of the second peak was neutralized by antibody to aFGF; and activity of the third peak was neutralized by antibody to bFGF. Metabolically labeled lysates and supernatants from MPs exposed to hypoxia showed increased synthesis and release of immunoprecipitable PDGF and a/bFGF in the absence of changes in cell viability. Possible involvement of a heme-containing oxygen sensor in MP elaboration of growth factors was suggested by the induction of bFGF and PDGF by normoxic MPs exposed to nickel or cobalt, although metabolic inhibitors such as sodium azide were without effect. These results suggest a paracrine model in which hypoxia stimulates MP release of PDGF and a/bFGF, inducing EC proliferation and potentially promoting angiogenesis in hypoxic environments. Images Fig. 1 Fig. 3 Fig. 4 PMID:7538678

  7. Host factors involved in retroviral budding and release.

    PubMed

    Martin-Serrano, Juan; Neil, Stuart J D

    2011-06-16

    The plasma membrane is the final barrier that enveloped viruses must cross during their egress from the infected cell. Here, we review recent insights into the cell biology of retroviral assembly and release; these insights have driven a new understanding of the host proteins, such as the ESCRT machinery, that are used by retroviruses to promote their final separation from the host cell. We also review antiviral host factors such as tetherin, which can directly inhibit the release of retroviral particles. These studies have illuminated the role of the lipid bilayer as the unexpected target for virus restriction by the innate immune response.

  8. Predictive factors for intrauterine growth restriction

    PubMed Central

    Albu, AR; Anca, AF; Horhoianu, VV; Horhoianu, IA

    2014-01-01

    Abstract Reduced fetal growth is seen in about 10% of the pregnancies but only a minority has a pathological background and is known as intrauterine growth restriction or fetal growth restriction (IUGR / FGR). Increased fetal and neonatal mortality and morbidity as well as adult pathologic conditions are often associated to IUGR. Risk factors for IUGR are easy to assess but have poor predictive value. For the diagnostic purpose, biochemical serum markers, ultrasound and Doppler study of uterine and spiral arteries, placental volume and vascularization, first trimester growth pattern are object of assessment today. Modern evaluations propose combined algorithms using these strategies, all with the goal of a better prediction of risk pregnancies. Abbreviations: SGA = small for gestational age; IUGR = intrauterine growth restriction; FGR = fetal growth restriction; IUFD = intrauterine fetal demise; HIV = human immunodeficiency virus; PAPP-A = pregnancy associated plasmatic protein A; β-hCG = beta human chorionic gonadotropin; MoM = multiple of median; ADAM-12 = A-disintegrin and metalloprotease 12; PP-13 = placental protein 13; VEGF = vascular endothelial growth factor; PlGF = placental growth factor; sFlt-1 = soluble fms-like tyrosine kinase-1; UAD = uterine arteries Doppler ultrasound; RI = resistence index; PI = pulsatility index; VOCAL = Virtual Organ Computer–Aided Analysis software; VI = vascularization index; FI = flow index; VFI = vascularization flow index; PQ = placental quotient PMID:25408721

  9. Insulin-like growth factor 1 and hair growth.

    PubMed

    Su, H Y; Hickford, J G; Bickerstaffe, R; Palmer, B R

    1999-11-01

    Insulin-like growth factor 1 (IGF-1) has been identified as an important growth factor in many biological systems.[1] It shares considerable structural homology with insulin and exerts insulin-like effects on food intake and glucose metabolism. Recently it has been suggested to play a role in regulating cellular proliferation and migration during the development of hair follicles. [2,3] To exert its biological effects, the IGF-1 is required to activate cells by binding to specific cell-surface receptors. The type I IGF receptor (IGF-1R) is the only IGF receptor to have IGF-mediated signaling functions.[1] In circulation, this growth factor mediates endocrine action of growth hormone (GH) on somatic growth and is bound to specific binding proteins (BPs). The latter control IGF transport, efflux from vascular compartments and association with cell surface receptors.[4] In tissues, IGF-1 is produced by mesenchymal type cells and acts in a paracrine and autocrine fashion by binding to the IGF-1R. This binding activates the receptor tyrosine kinase (RTK) that triggers the downstream responses and finally stimulates cell division.[5] IGF-1 may therefore be able to stimulate the proliferation of hair follicle cells through cellular signaling pathways of its receptors. Local infusion of IGF-1 into sheep has been reported to be capable of stimulating protein synthesis in the skin.[6] It may also increase the production of wool keratin. Recently, transgenic mice overexpressing IGF-1 in the skin have been shown to have earlier hair follicle development than controls.[7] In addition, this growth factor plays an important role in many cell types as a survival factor to prevent cell death.[8] This anti-apoptotic function of IGF-1 may be important to the development of follicle cells as follicles undergo a growth cycle where the regressive, catagen phase is apoptosis driven. In this review, the effects of IGF-1 on follicle cell proliferation and differentiation are discussed. In

  10. Organic growth factor requirements of some yeasts.

    PubMed

    Madan, M; Gulati, N

    1980-01-01

    Some sporogenous yeasts (Brettanomyces bruxellensis, Debaryomyces hansenii, Hansenula ciferrii, Hansenula polymorpha, Pichia polymorpha, Saccharomycopsis guttulata, and Saccharomyces chevalieri), isolated from various fruits have been examined for their organic growth factor requisites. H. ciferrii was completely deficient in thiamine, biotin, inositol, riboflavin, niacin, and partially deficient in pantothenic acid. It required an external supply of 0.1-1.0 ppm thiamine, 0.01-0.1 ppm biotin, 10.0 ppm inositol, 0.10 ppm niacin and riboflavin for its optimum growth. H. polymorpha showed partial deficiency only in xanthine. P. polymorpha gave indications of partial deficiencies in thiamine and biotin. S. guttulata was completely deficient in biotin, and partially deficient in adenine sulphate. It required 0.01 ppm biotin for optimum growth. S chevalieri was completely deficient in pyridoxine and partially deficient in thiamine. It required 0.1 ppm pyridoxine for maximum growth. D. hansenii and B bruxellensis were auxoautotrophic for the various growth factors studied. PMID:7242379

  11. PLGA microsphere-mediated growth hormone release hormone expression induces intergenerational growth.

    PubMed

    Ren, Xiao-Hui; Zhang, Yong-Liang; Luo, Hu-Ying; Li, Hong-Yi; Liu, Song-Cai; Zhang, Ming-Jun; Ouyang, Song-Ying; Xi, Qian-Yun; Jiang, Qing-Yan

    2009-01-01

    To improve animal growth, growth hormone-releasing hormone (GHRH) expression vectors that maintain constant GHRH expression can be directly injected into muscles. To deliver the GHRH expression vectors, biodegradable microspheres have been used as a sustained release system. Although administering GHRH through microspheres is a common practice, the intergenerational effects of this delivery system are unknown. To investigate the intergenerational effects of polylactic-co-glycolic acid (PLGA) encapsulated plasmid-mediated GHRH supplements, pCMV-Rep-GHRH microspheres were injected into pregnant mice. Growth and expression of GHRH were measured in the offspring. RT-PCR and immunohistochemistry reveal GHRH expression 3-21 days post-injection. The proportion of GH-positive cells in the GHRH treated offspring was 48.2% higher than in the control group (P < 0.01). The GHRH treated offspring were 6.15% (P < 0.05) larger than the control offspring. At day 49 post-injection, IGF-I serum levels were significantly higher in the treatment group than in the control group. This study confirms that intramuscular expression of GHRH mediated by PLGA microspheres significantly enhances intergenerational growth.

  12. Uniformity of Peptide Release Is Maintained by Methylation of Release Factors.

    PubMed

    Pierson, William E; Hoffer, Eric D; Keedy, Hannah E; Simms, Carrie L; Dunham, Christine M; Zaher, Hani S

    2016-09-27

    Termination of protein synthesis on the ribosome is catalyzed by release factors (RFs), which share a conserved glycine-glycine-glutamine (GGQ) motif. The glutamine residue is methylated in vivo, but a mechanistic understanding of its contribution to hydrolysis is lacking. Here, we show that the modification, apart from increasing the overall rate of termination on all dipeptides, substantially increases the rate of peptide release on a subset of amino acids. In the presence of unmethylated RFs, we measure rates of hydrolysis that are exceptionally slow on proline and glycine residues and approximately two orders of magnitude faster in the presence of the methylated factors. Structures of 70S ribosomes bound to methylated RF1 and RF2 reveal that the glutamine side-chain methylation packs against 23S rRNA nucleotide 2451, stabilizing the GGQ motif and placing the side-chain amide of the glutamine toward tRNA. These data provide a framework for understanding how release factor modifications impact termination. PMID:27681416

  13. Uniformity of Peptide Release Is Maintained by Methylation of Release Factors.

    PubMed

    Pierson, William E; Hoffer, Eric D; Keedy, Hannah E; Simms, Carrie L; Dunham, Christine M; Zaher, Hani S

    2016-09-27

    Termination of protein synthesis on the ribosome is catalyzed by release factors (RFs), which share a conserved glycine-glycine-glutamine (GGQ) motif. The glutamine residue is methylated in vivo, but a mechanistic understanding of its contribution to hydrolysis is lacking. Here, we show that the modification, apart from increasing the overall rate of termination on all dipeptides, substantially increases the rate of peptide release on a subset of amino acids. In the presence of unmethylated RFs, we measure rates of hydrolysis that are exceptionally slow on proline and glycine residues and approximately two orders of magnitude faster in the presence of the methylated factors. Structures of 70S ribosomes bound to methylated RF1 and RF2 reveal that the glutamine side-chain methylation packs against 23S rRNA nucleotide 2451, stabilizing the GGQ motif and placing the side-chain amide of the glutamine toward tRNA. These data provide a framework for understanding how release factor modifications impact termination.

  14. Placenta Growth Factor in Diabetic Wound Healing

    PubMed Central

    Cianfarani, Francesca; Zambruno, Giovanna; Brogelli, Laura; Sera, Francesco; Lacal, Pedro Miguel; Pesce, Maurizio; Capogrossi, Maurizio C.; Failla, Cristina Maria; Napolitano, Monica; Odorisio, Teresa

    2006-01-01

    Reduced microcirculation and diminished expression of growth factors contribute to wound healing impairment in diabetes. Placenta growth factor (PlGF), an angiogenic mediator promoting pathophysiological neovascularization, is expressed during cutaneous wound healing and improves wound closure by enhancing angiogenesis. By using streptozotocin-induced diabetic mice, we here demonstrate that PlGF induction is strongly reduced in diabetic wounds. Diabetic transgenic mice overexpressing PlGF in the skin displayed accelerated wound closure compared with diabetic wild-type littermates. Moreover, diabetic wound treatment with an adenovirus vector expressing the human PlGF gene (AdCMV.PlGF) significantly accelerated the healing process compared with wounds treated with a control vector. The analysis of treated wounds showed that PlGF gene transfer improved granulation tissue formation, maturation, and vascularization, as well as monocytes/macrophages local recruitment. Platelet-derived growth factor, fibroblast growth factor-2, and vascular endothelial growth factor mRNA levels were increased in AdCMV.PlGF-treated wounds, possibly enhancing PlGF-mediated effects. Finally, PlGF treatment stimulated cultured dermal fibroblast migration, pointing to a direct role of PlGF in accelerating granulation tissue maturation. In conclusion, our data indicate that reduced PlGF expression contributes to impaired wound healing in diabetes and that PlGF gene transfer to diabetic wounds exerts therapeutic activity by promoting different aspects of the repair process. PMID:17003476

  15. Ectopic acromegaly due to growth hormone releasing hormone.

    PubMed

    Ghazi, Ali A; Amirbaigloo, Alireza; Dezfooli, Azizollah Abbasi; Saadat, Navid; Ghazi, Siavash; Pourafkari, Marina; Tirgari, Farrokh; Dhall, Dheepti; Bannykh, Serguei; Melmed, Shlomo; Cooper, Odelia

    2013-04-01

    Acromegaly secondary to extra-pituitary tumors secreting growth hormone releasing hormone (GHRH) is rarely encountered. We review the literature on ectopic acromegaly and present the index report of ectopic acromegaly secondary to GHRH secretion from a mediastinal paraganglioma. Clinical and pathological manifestations and therapeutic management of 99 patients with ectopic acromegaly are reviewed. Acromegaly secondary to ectopic GHRH secretion is usually caused by a neuroendocrine tumor in the lung and pancreas. We report an additional cause of ectopic acromegaly from a mediastinal paraganglioma. Diagnostic criteria of ectopic GHRH syndrome include biochemical and pathologic tumoral confirmation of GHRH secretion and expression. Management of ectopic acromegaly consists of surgical resection of the primary tumor and biochemical normalization, with possible adjuvant use of somatostatin analogs. The review demonstrates that there are several tumor types, including paragangliomas which may secrete GHRH, leading to acromegaly. Clinical and laboratory manifestations of the syndrome and challenges in diagnosis and management of these rarely encountered patients require early diagnosis and appropriate treatment to prevent long-term morbidity and mortality with ectopic acromegaly. PMID:22983831

  16. Growth factor delivery methods in the management of sports injuries: the state of play.

    PubMed

    Creaney, L; Hamilton, B

    2008-05-01

    In recent years there have been rapid developments in the use of growth factors for accelerated healing of injury. Growth factors have been used in maxillo-facial and plastic surgery with success and the technology is now being developed for orthopaedics and sports medicine applications. Growth factors mediate the biological processes necessary for repair of soft tissues such as muscle, tendon and ligament following acute traumatic or overuse injury, and animal studies have demonstrated clear benefits in terms of accelerated healing. There are various ways of delivering higher doses of growth factors to injured tissue, but each has in common a reliance on release of growth factors from blood platelets. Platelets contain growth factors in their alpha-granules (insulin-like growth factor-1, basic fibroblast growth factor, platelet-derived growth factor, epidermal growth factor, vascular endothelial growth factor, transforming growth factor-beta(1)) and these are released upon injection at the site of an injury. Three commonly utilised techniques are known as platelet-rich plasma, autologous blood injections and autologous conditioned serum. Each of these techniques has been studied clinically in humans to a very limited degree so far, but results are promising in terms of earlier return to play following muscle and particularly tendon injury. The use of growth factors in sports medicine is restricted under the terms of the World Anti-Doping Agency (WADA) anti-doping code, particularly because of concerns regarding the insulin-like growth factor-1 content of such preparations, and the potential for abuse as performance-enhancing agents. The basic science and clinical trials related to the technology are reviewed, and the use of such agents in relation to the WADA code is discussed. PMID:17984193

  17. Serum growth factors in asbestosis patients.

    PubMed

    Li, Yongliang; Karjalainen, Antti; Koskinen, Heikki; Vainio, Harri; Pukkala, Eero; Hemminki, Kari; Brandt-Rauf, Paul W

    2009-02-01

    Various growth factors, including platelet-derived growth factor (PDGF) and transforming growth factor (TGF)-beta, have been implicated in the pathogenesis of asbestos-induced disease. PDGF and TGF-beta levels were determined by enzyme-linked immunosorbent assays in the banked serum samples of a cohort of workers with asbestosis, and the relationships of the growth factor levels to the subsequent development of cancer and to the radiographic severity and progression of asbestosis in the cohort were examined. Serum levels of PDGF and TGF-beta were found to be unrelated to the development of cancer, and serum levels of PDGF were found to be unrelated to the severity and progression of asbestosis. However, serum levels of TGF-beta were found to be statistically significantly related to disease severity (p = 0.01), increasing approximately 2.4-fold from ILO radiographic category 0 to category 3, and they were marginally related to disease progression (p = 0.07), in multivariate analysis controlling for other contributory factors including cumulative asbestos exposure. This suggests that serum TGF-beta may be a useful biomarker for asbestos-induced fibrotic disease. PMID:19283526

  18. Therapeutic potential of growth factors and their antagonists.

    PubMed Central

    Garner, A.

    1992-01-01

    This article describes studies with four peptides, epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), gastrin-releasing peptide/bombesin (GRP), and gastrin. The mitogenic and anti-secretory activities of EGF/TGF alpha appear to be mediated by a single class of high-affinity membrane receptors but may involve different signal transducing mechanisms. Biological activity of EGF resides in the N-terminal 42 amino acid fragment with the C-terminal undecapeptide determining binding affinity. A parenteral depot formulation of an EGF-related peptide or a small molecule agonist of the EGF receptor could have utility in treating various ulcerative disorders of the gut. Although antagonism of EGF (and thus TGF alpha) receptors and/or transducing mechanisms is frequently cited as a potential therapeutic approach to hyperproliferative diseases, blocking the action of TGF alpha, GRP, or gastrin with neutralizing antibodies or receptor antagonists did not influence the growth of a wide range of solid tumors in nude mice. These findings suggest that, unless tumor growth displays absolute dependency on one particular mitogen, antagonism of a specific growth factor is unlikely to have great effect in cancer therapy. PMID:1341074

  19. Role of Corticotropin-releasing Factor in Gastrointestinal Permeability

    PubMed Central

    Rodiño-Janeiro, Bruno K; Alonso-Cotoner, Carmen; Pigrau, Marc; Lobo, Beatriz; Vicario, María; Santos, Javier

    2015-01-01

    The interface between the intestinal lumen and the mucosa is the location where the majority of ingested immunogenic particles face the scrutiny of the vast gastrointestinal immune system. Upon regular physiological conditions, the intestinal micro-flora and the epithelial barrier are well prepared to process daily a huge amount of food-derived antigens and non-immunogenic particles. Similarly, they are ready to prevent environmental toxins and microbial antigens to penetrate further and interact with the mucosal-associated immune system. These functions promote the development of proper immune responses and oral tolerance and prevent disease and inflammation. Brain-gut axis structures participate in the processing and execution of response signals to external and internal stimuli. The brain-gut axis integrates local and distant regulatory networks and super-systems that serve key housekeeping physiological functions including the balanced functioning of the intestinal barrier. Disturbance of the brain-gut axis may induce intestinal barrier dysfunction, increasing the risk of uncontrolled immunological reactions, which may indeed trigger transient mucosal inflammation and gut disease. There is a large body of evidence indicating that stress, through the brain-gut axis, may cause intestinal barrier dysfunction, mainly via the systemic and peripheral release of corticotropin-releasing factor. In this review, we describe the role of stress and corticotropin-releasing factor in the regulation of gastrointestinal permeability, and discuss the link to both health and pathological conditions. PMID:25537677

  20. Placental Growth Factor Administration Abolishes Placental Ischemia-Induced Hypertension.

    PubMed

    Spradley, Frank T; Tan, Adelene Y; Joo, Woo S; Daniels, Garrett; Kussie, Paul; Karumanchi, S Ananth; Granger, Joey P

    2016-04-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia because placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and vascular endothelial growth factor are both natural ligands for sFlt-1, vascular endothelial growth factor also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to 4 groups: normal pregnant or RUPP±infusion of recombinant human PlGF (180 μg/kg per day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than normal pregnant rats. Infusion of recombinant human PlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that recombinant human PlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. PMID:26831193

  1. Material-mediated proangiogenic factor release pattern modulates quality of regenerated blood vessels.

    PubMed

    Rich, Max H; Lee, Min Kyung; Baek, Kwanghyun; Jeong, Jae Hyun; Kim, Dong Hyun; Millet, Larry J; Bashir, Rashid; Kong, Hyunjoon

    2014-12-28

    Hydrogels designed to sustainably release bioactive molecules are extensively used to enhance tissue repair and regenerative therapies. Along this line, numerous efforts are made to control the molecular release rate and amount. In contrast, few efforts are made to control the molecular release pattern, and, subsequently, modulate the spatial organization of newly forming tissues, including blood vessels. Therefore, using a hydrogel printed to release vascular endothelial growth factor (VEGF) into a pre-defined pattern, this study demonstrates that spatial distribution of VEGF is important in guiding growth direction of new blood vessels, and also in retaining the structural integrity of pre-existing vasculature. Guided by a computational model, we fabricated a patch composed of micro-sized VEGF-releasing poly(ethylene glycol) diacrylate (PEGDA) hydrogel cylinders using an ink-jet printer. Interestingly, hydrogel printed with computationally optimized spacing created anisotropically aligned vasculature exclusively when the printed gel pattern was placed parallel to pre-existing blood vessels. In contrast, vascular sprouting from placing the printed gel pattern perpendicular to pre-existing vessels resulted in deformation and structural disintegration of the original vasculature. We envision that this study will be useful to better understand angiogenesis-modulated neovascularization and further improve the treatment quality for various wounds and tissue defects. PMID:25450405

  2. Material-mediated proangiogenic factor release pattern modulates quality of regenerated blood vessels.

    PubMed

    Rich, Max H; Lee, Min Kyung; Baek, Kwanghyun; Jeong, Jae Hyun; Kim, Dong Hyun; Millet, Larry J; Bashir, Rashid; Kong, Hyunjoon

    2014-12-28

    Hydrogels designed to sustainably release bioactive molecules are extensively used to enhance tissue repair and regenerative therapies. Along this line, numerous efforts are made to control the molecular release rate and amount. In contrast, few efforts are made to control the molecular release pattern, and, subsequently, modulate the spatial organization of newly forming tissues, including blood vessels. Therefore, using a hydrogel printed to release vascular endothelial growth factor (VEGF) into a pre-defined pattern, this study demonstrates that spatial distribution of VEGF is important in guiding growth direction of new blood vessels, and also in retaining the structural integrity of pre-existing vasculature. Guided by a computational model, we fabricated a patch composed of micro-sized VEGF-releasing poly(ethylene glycol) diacrylate (PEGDA) hydrogel cylinders using an ink-jet printer. Interestingly, hydrogel printed with computationally optimized spacing created anisotropically aligned vasculature exclusively when the printed gel pattern was placed parallel to pre-existing blood vessels. In contrast, vascular sprouting from placing the printed gel pattern perpendicular to pre-existing vessels resulted in deformation and structural disintegration of the original vasculature. We envision that this study will be useful to better understand angiogenesis-modulated neovascularization and further improve the treatment quality for various wounds and tissue defects.

  3. Mesoporous bioactive glass scaffolds for efficient delivery of vascular endothelial growth factor.

    PubMed

    Wu, Chengtie; Fan, Wei; Chang, Jiang; Xiao, Yin

    2013-09-01

    In this article, we, for the first time, investigated mesoporous bioactive glass scaffolds for the delivery of vascular endothelial growth factor. We have found that mesoporous bioactive glass scaffolds have significantly higher loading efficiency and more sustained release of vascular endothelial growth factor than non-mesoporous bioactive glass scaffolds. In addition, vascular endothelial growth factor delivery from mesoporous bioactive glass scaffolds has improved the viability of endothelial cells. The study has suggested that mesopore structures in mesoporous bioactive glass scaffolds play an important role in improving the loading efficiency, decreasing the burst release, and maintaining the bioactivity of vascular endothelial growth factor, indicating that mesoporous bioactive glass scaffolds are an excellent carrier of vascular endothelial growth factor for potential bone tissue engineering applications.

  4. Delivery of Alginate Scaffold Releasing Two Trophic Factors for Spinal Cord Injury Repair

    PubMed Central

    Grulova, I.; Slovinska, L.; Blaško, J.; Devaux, S.; Wisztorski, M.; Salzet, M.; Fournier, I.; Kryukov, O.; Cohen, S.; Cizkova, D.

    2015-01-01

    Spinal cord injury (SCI) has been implicated in neural cell loss and consequently functional motor and sensory impairment. In this study, we propose an alginate -based neurobridge enriched with/without trophic growth factors (GFs) that can be utilized as a therapeutic approach for spinal cord repair. The bioavailability of key GFs, such as Epidermal Growth factor (EGF) and basic Fibroblast Growth Factor (bFGF) released from injected alginate biomaterial to the central lesion site significantly enhanced the sparing of spinal cord tissue and increased the number of surviving neurons (choline acetyltransferase positive motoneurons) and sensory fibres. In addition, we document enhanced outgrowth of corticospinal tract axons and presence of blood vessels at the central lesion. Tissue proteomics was performed at 3, 7 and 10 days after SCI in rats indicated the presence of anti-inflammatory factors in segments above the central lesion site, whereas in segments below, neurite outgrowth factors, inflammatory cytokines and chondroitin sulfate proteoglycan of the lectican protein family were overexpressed. Collectively, based on our data, we confirm that functional recovery was significantly improved in SCI groups receiving alginate scaffold with affinity-bound growth factors (ALG +GFs), compared to SCI animals without biomaterial treatment. PMID:26348665

  5. Epidermal Growth Factor and Intestinal Barrier Function.

    PubMed

    Tang, Xiaopeng; Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng; Fang, Rejun

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  6. Epidermal Growth Factor and Intestinal Barrier Function

    PubMed Central

    Liu, Hu; Yang, Shufen; Li, Zuohua; Zhong, Jinfeng

    2016-01-01

    Epidermal growth factor (EGF) is a 53-amino acid peptide that plays an important role in regulating cell growth, survival, migration, apoptosis, proliferation, and differentiation. In addition, EGF has been established to be an effective intestinal regulator helping to protect intestinal barrier integrity, which was essential for the absorption of nutrients and health in humans and animals. Several researches have demonstrated that EGF via binding to the EGF receptor and subsequent activation of Ras/MAPK, PI3K/AKT, PLC-γ/PKC, and STATS signal pathways regulates intestinal barrier function. In this review, the relationship between epidermal growth factor and intestinal development and intestinal barrier is described, to provide a better understanding of the effects of EGF on intestine development and health. PMID:27524860

  7. Nerve growth factor promotes human hemopoietic colony growth and differentiation

    SciTech Connect

    Matsuda, H.; Coughlin, M.D.; Bienenstock, J.; Denburg, J.A. )

    1988-09-01

    Nerve growth factor (NGF) is a neurotropic polypeptide necessary for the survival and growth of some central neurons, as well as sensory afferent and sympathetic neurons. Much is now known of the structural and functional characteristics of NGF, whose gene has recently been clones. Since it is synthesized in largest amounts by the male mouse submandibular gland, its role exclusively in nerve growth is questionable. These experiments indicate that NGF causes a significant stimulation of granulocyte colonies grown from human peripheral blood in standard hemopoietic methylcellulose assays. Further, NGF appears to act in a relatively selective fashion to induce the differentiation of eosinophils and basophils/mast cells. Depletion experiments show that the NGF effect may be T-cell dependent and that NGF augments the colony-stimulating effect of supernatants from the leukemic T-cell (Mo) line. The hemopoietic activity of NGF is blocked by {sup 125}I-polyclonal and monoclonal antibodies to NGF. The authors conclude that NGF may indirectly act as a local growth factor in tissues other than those of the nervous system by causing T cells to synthesize or secrete molecules with colony-stimulating activity. In view of the synthesis of NGF in tissue injury, the involvement of basophils/mast cells and eosinophils in allergic and other inflammatory processes, and the association of mast cells with fibrosis and tissue repair, they postulate that NGF plays an important biological role in a variety of repair processes.

  8. Vascular endothelial growth factor B, a novel growth factor for endothelial cells.

    PubMed Central

    Olofsson, B; Pajusola, K; Kaipainen, A; von Euler, G; Joukov, V; Saksela, O; Orpana, A; Pettersson, R F; Alitalo, K; Eriksson, U

    1996-01-01

    We have isolated and characterized a novel growth factor for endothelial cells, vascular endothelial growth factor B (VEGF-B), with structural similarities to vascular endothelial growth factor (VEGF) and placenta growth factor. VEGF-B was particularly abundant in heart and skeletal muscle and was coexpressed with VEGF in these and other tissues. VEGF-B formed cell-surface-associated disulfide-linked homodimers and heterodimerized with VEGF when coexpressed. Conditioned medium from transfected 293EBNA cells expressing VEGF-B stimulated DNA synthesis in endothelial cells. Our results suggest that VEGF-B has a role in angiogenesis and endothelial cell growth, particularly in muscle. Images Fig. 3 Fig. 4 Fig. 5 PMID:8637916

  9. Interactions of release factor RF3 with the translation machinery.

    PubMed

    O'Connor, Michael

    2015-08-01

    The bacterial release factor RF3 is a GTPase that has been implicated in multiple, incompletely understood steps of protein synthesis. This study explores the genetic interaction of RF3 with other components of the translation machinery. RF3 contributes to translation termination by recycling the class I release factors RF1 and RF2 off post-termination ribosomes. RF3 has also been implicated in dissociation of peptidyl-tRNAs from elongating ribosomes and in a post-peptidyltransferase quality control (post-PT QC) mechanism that selectively terminates ribosomes carrying erroneous peptides. A majority of the in vivo studies on RF3 have been carried out in K-12 strains of Escherichia coli which carry a partially defective RF2 protein with an Ala to Thr substitution at position 246. Here, the contribution of the K-12 specific RF2 variant to RF3 activities has been investigated. Strain reconstruction experiments in both E. coli and Salmonella enterica demonstrate that defects in termination and post-PT QC that are associated with RF3 loss, as well as phenotypes uncovered by phenotypic profiling, are all substantially ameliorated when the incompletely active K-12-specific RF2 protein is replaced by a fully active Ala246 RF2. These results indicate that RF3 loss is well tolerated in bacteria with fully active class I release factors, but that many of the previously reported phenotypes for RF3 deletion strains have been compromised by the presence of a partially defective RF2. PMID:25636454

  10. Puberty, statural growth, and growth hormone release in children with cerebral palsy

    PubMed Central

    Kuperminc, Michelle N.; Gurka, Matthew J.; Houlihan, Christine M.; Henderson, Richard C.; Roemmich, James N.; Rogol, Alan D.

    2010-01-01

    Objective Children with cerebral palsy (CP) are smaller than normally growing children.. The association between the growth hormone (GH) axis and growth in children with CP during puberty is unknown. We compared growth and markers of the GH axis in pre-pubertal and pubertal children with moderate to severe CP and without CP over a three-year period. Study design Twenty children with CP, ages 6–18, Gross Motor Function Classification System levels III–V, were compared to a group of sixty-three normally growing children of similar age. Anthropometry, Tanner stage, bone age, and laboratory analyses were performed every six months for three years. Laboratory values included spontaneous overnight GH release, fasting IGF-1 and IGFBP-3. Repeated measures models were used to evaluate interactions among Tanner stage and group (children with CP vs. reference children), taking into account gender, age, and nutritional status. Results Children with CP grew more slowly than those without CP at all Tanner stages (p<0.01). Patterns of IGF-1 and GH secretion in children with CP were similar to those of the reference group; however, the concentrations of IGF-1 (p<0.01) and GH (p<0.01) were lower in girls with CP, with a similar trend for boys (p=0.10 and 0.14, respectively). Conclusions Diminished circulating IGF-1 and GH concentrations may explain the differences in growth between the two groups. PMID:20216931

  11. Nerve Growth Factor and Diabetic Neuropathy

    PubMed Central

    Vinik, Aaron

    2003-01-01

    Neuropathy is one of the most debilitating complications of both type 1 and type 2 diabetes, with estimates of prevalence between 50–90% depending on the means of detection. Diabetic neuropathies are heterogeneous and there is variable involvement of large myelinated fibers and small, thinly myelinated fibers. Many of the neuronal abnormalities in diabetes can be duplicated by experimental depletion of specific neurotrophic factors, their receptors or their binding proteins. In experimental models of diabetes there is a reduction in the availability of these growth factors, which may be a consequence of metabolic abnormalities, or may be independent of glycemic control. These neurotrophic factors are required for the maintenance of the neurons, the ability to resist apoptosis and regenerative capacity. The best studied of the neurotrophic factors is nerve growth factor (NGF) and the related members of the neurotrophin family of peptides. There is increasing evidence that there is a deficiency of NGF in diabetes, as well as the dependent neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) that may also contribute to the clinical symptoms resulting from small fiber dysfunction. Similarly, NT3 appears to be important for large fiber and IGFs for autonomic neuropathy. Whether the observed growth factor deficiencies are due to decreased synthesis, or functional, e.g. an inability to bind to their receptor, and/or abnormalities in nerve transport and processing, remains to be established. Although early studies in humans on the role of neurotrophic factors as a therapy for diabetic neuropathy have been unsuccessful, newer agents and the possibilities uncovered by further studies should fuel clinical trials for several generations. It seems reasonable to anticipate that neurotrophic factor therapy, specifically targeted at different nerve fiber populations, might enter the therapeutic armamentarium. PMID:14668049

  12. Inhibitory effects of antagonists of growth hormone-releasing hormone on growth and invasiveness of PC3 human prostate cancer.

    PubMed

    Muñoz-Moreno, Laura; Arenas, M Isabel; Schally, Andrew V; Fernández-Martínez, Ana B; Zarka, Elías; González-Santander, Marta; Carmena, María J; Vacas, Eva; Prieto, Juan C; Bajo, Ana M

    2013-02-15

    New approaches are needed to the therapy of advanced prostate cancer. This study determined the effect of growth hormone-releasing hormone (GHRH) antagonists, JMR-132 and JV-1-38 on growth of PC3 tumors as well as on angiogenesis and metastasis through the evaluation of various factors that contribute largely to the progression of prostate cancer. Human PC3 androgen-independent prostate cancer cells were injected subcutaneously into nude mice. The treatment with JMR-132 (10 μg/day) or JV-1-38 (20 μg/day) lasted 41 days. We also evaluated the effects of JMR-132 and JV-1-38 on proliferation, cell adhesion and migration in PC-3 cells in vitro. Several techniques (Western blot, reverse transcription polymerase chain reaction, immunohistochemistry, ELISA and zymography) were used to evaluate the expression levels of GHRH receptors and its splice variants, GHRH, vascular endothelial growth factor (VEGF), hypoxia inducible factor (HIF)-1α, metalloproteinases (MMPs) -2 and -9, β-catenin and E-cadherin. GHRH antagonists suppressed the proliferation of PC-3 cells in vitro and significantly inhibited growth of PC3 tumors. After treatment with these analogues, we found an increase in expression of GHRH receptor accompanied by a decrease of GHRH levels, a reduction in both VEGF and HIF-1α expression and in active forms of MMP-2 and MMP-9, a significant increase in levels of membrane-associated β-catenin and a significant decline in E-cadherin. These results support that the blockade of GHRH receptors can modulate elements involved in angiogenesis and metastasis. Consequently, GHRH antagonists could be considered as suitable candidates for therapeutic trials in the management of androgen-independent prostate cancer.

  13. Effect of Deletion of Ghrelin-O-Acyltransferase on the Pulsatile Release of Growth Hormone in Mice.

    PubMed

    Xie, T Y; Ngo, S T; Veldhuis, J D; Jeffery, P L; Chopin, L K; Tschöp, M; Waters, M J; Tolle, V; Epelbaum, J; Chen, C; Steyn, F J

    2015-12-01

    Ghrelin, a gut hormone originating from the post-translational cleavage of preproghrelin, is the endogenous ligand of growth hormone secretagogue receptor 1a (GHS-R1a). Within the growth hormone (GH) axis, the biological activity of ghrelin requires octanoylation by ghrelin-O-acyltransferase (GOAT), conferring selective binding to the GHS-R1a receptor via acylated ghrelin. Complete loss of preproghrelin-derived signalling (through deletion of the Ghrl gene) contributes to a decline in peak GH release; however, the selective contribution of endogenous acyl-ghrelin to pulsatile GH release remains to be established. We assessed the pulsatile release of GH in ad lib. fed male germline goat(-/-) mice, extending measures to include mRNA for key hypothalamic regulators of GH release, and peripheral factors that are modulated relative to GH release. The amount of GH released was reduced in young goat(-/-) mice compared to age-matched wild-type mice, whereas pulse frequency and irregularity increased. Altered GH release did not coincide with alterations in hypothalamic Ghrh, Srif, Npy or Ghsr mRNA expression, or pituitary GH content, suggesting that loss of Goat does not compromise canonical mechanisms that contribute to pituitary GH production and release. Although loss of Goat resulted in an irregular pattern of GH release (characterised by an increase in the number of GH pulses observed during extended secretory events), this did not contribute to a change in the expression of sexually dimorphic GH-dependent liver genes. Of interest, circulating levels of insulin-like growth factor (IGF)-1 were elevated in goat(-/-) mice. This rise in circulating levels of IGF-1 was correlated with an increase in GH pulse frequency, suggesting that sustained or increased IGF-1 release in goat(-/-) mice may occur in response to altered GH release patterning. Our observations demonstrate that germline loss of Goat alters GH release and patterning. Although the biological relevance of

  14. Incisional wound healing in transforming growth factor-beta1 null mice.

    PubMed

    Koch, R M; Roche, N S; Parks, W T; Ashcroft, G S; Letterio, J J; Roberts, A B

    2000-01-01

    Expression of endogenous transforming growth factor-beta1 is reduced in many animal models of impaired wound healing, and addition of exogenous transforming growth factor-beta has been shown to improve healing. To test the hypothesis that endogenous transforming growth factor-beta1 is essential for normal wound repair, we have studied wound healing in mice in which the transforming growth factor-beta1 gene has been deleted by homologous recombination. No perceptible differences were observed in wounds made in 3-10-day-old neonatal transforming growth factor-beta1 null mice compared to wild-type littermates. To preclude interference from maternally transferred transforming growth factor-beta1, cutaneous wounds were also made on the backs of 30-day-old transforming growth factor-beta1 null and littermate control mice treated with rapamycin, which extends their lifetime and suppresses the inflammatory response characteristic of the transforming growth factor-beta1 null mice. Again, no impairment in healing was seen in transforming growth factor-beta1 null mice. Instead these wounds showed an overall reduction in the amount of granulation tissue and an increased rate of epithelialization compared to littermate controls. Our data suggest that release of transforming growth factor-beta1 from degranulating platelets or secretion by infiltrating macrophages and fibroblasts is not critical to initiation or progression of tissue repair and that endogenous transforming growth factor-beta1 may actually function to increase inflammation and retard wound closure.

  15. Transforming growth factor (TGF)-. alpha. in human milk

    SciTech Connect

    Okada, Masaki; Wakai, Kae; Shizume, Kazuo ); Iwashita, Mitsutoshi ); Ohmura, Eiji; Kamiya, Yoshinobu; Murakami, Hitomi; Onoda, Noritaka; Tsushima, Toshio

    1991-01-01

    Transforming growth factor (TGF)-{alpha} and epidermal growth factor (EGF) were measured in human milk by means of homologous radioimmunoassay. As previously reported, EGF concentration in the colostrum was approximately 200 ng/ml and decreased to 50 ng/ml by day 7 postpartum. The value of immunoreactive (IR)-TGF-{alpha} was 2.2-7.2 ng/ml, much lower than that of EGF. In contrast to EGF, the concentration of IR-TGF-{alpha} was fairly stable during the 7 postpartum days. There was no relationship between the concentrations of IR-TGF-{alpha} and IR-EGF, suggesting that the regulatory mechanism in the release of the two growth factors is different. On gel-chromatography using a Sephadex G-50 column, IR-EGF appeared in the fraction corresponding to that of authentic human EGF, while 70%-80% of the IR-TGF-{alpha} was eluted as a species with a molecular weight greater than that of authentic human TGF-{alpha}. Although the physiological role of TGF-{alpha} in milk is not known, it is possible that it is involved in the development of the mammary gland and/or the growth of newborn infants.

  16. New detection methods of growth hormone and growth factors.

    PubMed

    Bidlingmaier, Martin

    2012-01-01

    Human growth hormone (GH), but also GH related growth factors like the insulin-like growth factor-1 (IGF-1) are known to be abused in sports. Although the scientific evidence supporting a distinct effect of GH on performance in healthy trained subjects is limited, it has been repeatedly found with athletes or trainers, and the recent introduction of a first test to detect GH doping has led to a number of positive cases. Currently, there is no test for the detection of IGF-1 introduced worldwide, but confiscation of the drug from sports teams can be taken as indirect evidence for its abuse. The major biochemical difficulty for the detection of GH is that the recombinant form is identical in physicochemical properties to the endogenous GH secreted by the pituitary gland. Furthermore, the very short half-life of GH in circulation inherently shortens the window of opportunity where the drug can be detected. Two strategies have been followed for more than a decade to develop a test to detect the application of recombinant GH: the marker approach, which is based on the elevation of GH-dependent markers above the level seen under physiological conditions evoked by administration of recombinant GH, and the isoform approach, which is based on a change in the pattern of GH isoforms in circulation following the injection of recombinant GH.

  17. Growth hormone, insulin-like growth factor system and carcinogenesis.

    PubMed

    Boguszewski, Cesar Luiz; Boguszewski, Margaret Cristina da Silva; Kopchick, John J

    2016-01-01

    The growth hormone (GH) and insulin-like growth factor (IGF) system plays an important role in the regulation of cell proliferation, differentiation, apoptosis, and angiogenesis. In terms of cell cycle regulation, the GH-IGF system induces signalling pathways for cell growth that compete with other signalling systems that result in cell death; thus the final effect of these opposed forces is critical for normal and abnormal cell growth. The association of the GH-IGF system with carcinogenesis has long been hypothesised, mainly based on in vitro studies and the use of a variety of animal models of human cancer, and also on epidemiological and clinical evidence in humans. While ample experimental evidence supports a role of the GH-IGF system in tumour promotion and progression, with several of its components being currently tested as central targets for cancer therapy, the strength of evidence from patients with acromegaly, GH deficiency, or treated with GH is much weaker. In this review, we will attempt to consolidate this data. (Endokrynol Pol 2016; 67 (4): 414-426). PMID:27387246

  18. The scope and sequence of growth factor delivery for vascularized bone tissue regeneration.

    PubMed

    Bayer, E A; Gottardi, R; Fedorchak, M V; Little, S R

    2015-12-10

    Bone regeneration is a complex process, that in vivo, requires the highly coordinated presentation of biochemical cues to promote the various stages of angiogenesis and osteogenesis. Taking inspiration from the natural healing process, a wide variety of growth factors are currently being released within next generation tissue engineered scaffolds (in a variety of ways) in order to heal non-union fractures and bone defects. This review will focus on the delivery of multiple growth factors to the bone regeneration niche, specifically 1) dual growth factor delivery signaling and crosstalk, 2) the importance of growth factor timing and temporal separation, and 3) the engineering of delivery systems that allow for temporal control over presentation of soluble growth factors. Alternative methods for growth factor presentation, including the use of gene therapy and platelet-rich plasma scaffolds, are also discussed.

  19. Epidermal growth factor receptor signaling in tissue

    SciTech Connect

    Shvartsman, Stanislav; Wiley, H. S.; Lauffenburger, Douglas A.

    2004-08-01

    Abstract: A peptide purified from the salivary gland of a mouse was shown few years ago to accelerate incisor eruption and eyelid opening in newborn mice, and was named epidermal growth factor (EGF). The members of this family of peptide growth factors had been identified in numerous physiological and pathological contexts. EGF binds to a cell surface EGF receptor, which induces a biochemical modification (phosphorylation) of the receptor's cytoplasmic tail. There is a growing consensus in the research community that, in addition to cellular and molecular studies, the dynamics of the EGFR network and its operation must be examined in tissues. A key challenge is to integrate the existing molecular and cellular information into a system-level description of the EGFR network at the tissue and organism level. In this paper, the two examples of EGFR signaling in tissues are described, and the recent efforts to model EGFR autocrine loops, which is a predominant mode of EGFR activation in vivo, are summarized.

  20. Growth hormone-releasing hormone stimulates GH release while inhibiting ghrelin- and sGnRH-induced LH release from goldfish pituitary cells.

    PubMed

    Grey, Caleb L; Chang, John P

    2013-06-01

    Goldfish GH-releasing hormone (gGHRH) has been recently identified and shown to stimulate GH release in goldfish. In goldfish, neuroendocrine regulation of GH release is multifactorial and known stimulators include goldfish ghrelin (gGRLN19) and salmon gonadotropin-releasing hormone (sGnRH), factors that also enhance LH secretion. To further understand the complex regulation of pituitary hormone release in goldfish, we examined the interactions between gGHRH, gGRLN19, and sGnRH on GH and LH release from primary cultures of goldfish pituitary cells in perifusion. Treatment with 100nM gGHRH for 55min stimulated GH release. A 5-min pulse of either 1nM gGRLN19 or 100nM sGnRH induced GH release in naïve cells, and these were just as effective in cells receiving gGHRH. Interestingly, gGHRH abolished both gGRLN19- and sGnRH-induced LH release and reduced basal LH secretion levels. These results suggest that gGHRH does not interfere with sGnRH or gGRLN19 actions in the goldfish somatotropes and further reveal, for the first time, that GHRH may act as an inhibitor of stimulated and basal LH release by actions at the level of pituitary cells.

  1. Insulin-like growth factor 1 blocks collagen release and down regulates matrix metalloproteinase-1, -3, -8, and -13 mRNA expression in bovine nasal cartilage stimulated with oncostatin M in combination with interleukin 1α

    PubMed Central

    Hui, W; Rowan, A; Cawston, T

    2001-01-01

    OBJECTIVE—To investigate the effect of insulin-like growth factor 1 (IGF1) on the release of collagen, and the production and expression of matrix metalloproteinases (MMPs) induced by the proinflammatory cytokine interleukin 1α (IL1α) in combination with oncostatin M (OSM) from bovine nasal cartilage and primary human articular chondrocytes.
METHODS—Human articular chondrocytes and bovine nasal cartilage were cultured with and without IGF1 in the presence of IL1α or IL1α + OSM. The release of collagen was measured by an assay for hydroxyproline. Collagenase activity was determined with the diffuse fibril assay using 3H acetylated collagen. The expression of MMP-1, MMP-3, MMP-8, MMP-13, and tissue inhibitor of metalloproteinase 1 (TIMP-1) mRNA was analysed by northern blot.
RESULTS—IGF1 can partially inhibit the release of collagen induced by IL1α or IL1α + OSM from bovine nasal cartilage. This was accompanied by a reduced secretion and activation of collagenase by bovine nasal cartilage. IGF1 can also down regulate IL1α or IL1α + OSM induced MMP-1, MMP-3, MMP-8, and MMP-13 mRNA expression in human articular chondrocytes and bovine chondrocytes. It had no significant effect on the production and expression of TIMP-1 mRNA in chondrocytes.
CONCLUSION—This study shows for the first time that IGF1 can partially block the release of collagen from cartilage and suggests that down regulation of collagenases by IGF1 may be an important mechanism in preventing cartilage resorption initiated by proinflammatory cytokines.

 PMID:11171688

  2. Milk Epidermal Growth Factor and Gut Protection

    PubMed Central

    Dvorak, Bohuslav

    2010-01-01

    Maternal milk is a complex fluid with multifunctional roles within the developing gastrointestinal tract. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) are members of the family of EGF-related peptides. Biological actions of these growth factors are mediated via interaction with the EGF-receptor (EGF-R). In the early postnatal period, breast milk is the major source of EGF for the developing intestinal mucosa. HB-EGF is also detected in breast milk, but in concentrations 2 to 3 times lower than EGF. Under normal physiological conditions, the intestinal epithelium undergoes a continuing process of cell proliferation, differentiation and maturation. EGF plays an important role in these processes. In pathophysiologic situations, EGF contributes to epithelial protection from injury and post-injury mucosal repair. Necrotizing enterocolitis (NEC) is a devastating disease affecting prematurely born infants. The pathogenesis of NEC is not known and there is no effective treatment for this disease. In an experimental NEC model, oral administration of a physiological dose of EGF significantly reduces the incidence and severity of NEC. HB-EGF provides similar protection against NEC, but only when pharmacological doses are used. Further studies are necessary before EGF can be introduced as an efficient therapeutic approach of intestinal injury. PMID:20105663

  3. Sequential Platelet-Derived Growth Factor–Simvastatin Release Promotes Dentoalveolar Regeneration

    PubMed Central

    Chong, Li Yen; Dovban, Alex S.M.; Lim, Lum Peng; Lim, Jason C.; Kuo, Mark Yen-Ping; Wang, Chi-Hwa

    2014-01-01

    Objectives: Timely augmentation of the physiological events of dentoalveolar repair is a prerequisite for the optimization of the outcome of regeneration. This study aimed to develop a treatment strategy to promote dentoalveolar regeneration by the combined delivery of the early mitogenic factor platelet-derived growth factor (PDGF) and the late osteogenic differentiation factor simvastatin. Materials and Methods: By using the coaxial electrohydrodynamic atomization technique, PDGF and simvastatin were encapsulated in a double-walled poly(d,l-lactide) and poly(d,l-lactide-co-glycolide) (PDLLA–PLGA) microspheres in five different modes: microspheres encapsulating bovine serum albumin (BB), PDGF alone (XP), simvastatin alone (SB), PDGF-in-core and simvastatin-in-shell (PS), and simvastatin-in-core and PDGF-in-shell (SP). The microspheres were characterized using scanning electronic microscopy, and the in vitro release profile was evaluated. Microspheres were delivered to fill large osteotomy sites on rat maxillae for 14 and 28 days, and the outcome of regeneration was evaluated by microcomputed tomography and histological assessments. Results: Uniform 20-μm controlled release microspheres were successfully fabricated. Parallel PDGF–simvastatin release was noted in the PS group, and the fast release of PDGF followed by the slow release of simvastatin was noted in the SP group. The promotion of osteogenesis was observed in XP, PS, and SP groups at day 14, whereas the SP group demonstrated the greatest bone fill, trabecular numbers, and thickest trabeculae. Bone bridging was evident in the PS and SP group, with significantly increased osteoblasts in the SP group, and osteoclastic cell recruitment was promoted in all bioactive molecule-treated groups. At day 28, osteogenesis was promoted in all bioactive molecule-treated groups. Initial corticalization was noted in the XP, PS, and SP groups. Osteoblasts appeared to be decreased in all groups, and significantly, a

  4. Divergent effects of epidermal growth factor and transforming growth factors on a human endometrial carcinoma cell line.

    PubMed

    Korc, M; Haussler, C A; Trookman, N S

    1987-09-15

    Epidermal growth factor (EGF), at concentrations ranging from 0.83 to 4.98 nM, markedly inhibited the proliferation of RL95-2 cells that were seeded at low plating densities (4.7 X 10(3) cells/cm2). Under the same incubation conditions, 16.6 pM EGF enhanced cell proliferation. At high plating densities (2.5 X 10(4) cells/cm2) 0.83 nM EGF also stimulated cell proliferation. Both the inhibitory and stimulatory effects of EGF were mimicked by transforming growth factor-alpha (TGF-alpha). However, the inhibitory action of TGF-alpha was always greater that of EGF. Binding studies with 125I-labeled TGF-alpha indicated that maximal cell surface binding of TGF-alpha occurred at 15 min, whereas maximal internalization occurred at 45 min. Both cell surface and internalized radioactivity declined sharply thereafter. Analysis of radioactivity released into the incubation medium during pulse-chase experiments indicated that RL95-2 cells extensively degraded both TGF-alpha and EGF. The lysosomotropic compound methylamine arrested the generation of low-molecular-weight degradation products of EGF, but not of TGF-alpha. In contrast to EGF and TGF-alpha, transforming growth factor-beta (TGF-beta) inhibited the proliferation of RL95-2 cells that were seeded at either low or high plating densities. Further, transforming growth factor-beta induced the appearance of large cuboidal cells that were readily distinguished from cells treated with either EGF or TGF-alpha. These findings point to complex regulatory actions of growth factors on the proliferation of RL95-2 cells and suggest that the processing of TGF-alpha following EGF receptor activation is distinct from the processing of EGF. PMID:3497713

  5. A Review of Bioactive Release from Nerve Conduits as a Neurotherapeutic Strategy for Neuronal Growth in Peripheral Nerve Injury

    PubMed Central

    Choonara, Yahya E.; Bijukumar, Divya; du Toit, Lisa C.

    2014-01-01

    Peripheral nerve regeneration strategies employ the use of polymeric engineered nerve conduits encompassed with components of a delivery system. This allows for the controlled and sustained release of neurotrophic growth factors for the enhancement of the innate regenerative capacity of the injured nerves. This review article focuses on the delivery of neurotrophic factors (NTFs) and the importance of the parameters that control release kinetics in the delivery of optimal quantities of NTFs for improved therapeutic effect and prevention of dose dumping. Studies utilizing various controlled-release strategies, in attempt to obtain ideal release kinetics, have been reviewed in this paper. Release strategies discussed include affinity-based models, crosslinking techniques, and layer-by-layer technologies. Currently available synthetic hollow nerve conduits, an alternative to the nerve autografts, have proven to be successful in the bridging and regeneration of primarily the short transected nerve gaps in several patient cases. However, current research emphasizes on the development of more advanced nerve conduits able to simulate the effectiveness of the autograft which includes, in particular, the ability to deliver growth factors. PMID:25143934

  6. Growth Hormone and Insulin-Like Growth Factor-1.

    PubMed

    Nicholls, Adam R; Holt, Richard I G

    2016-01-01

    Human growth hormone (GH) was first isolated from the human pituitary gland in 1945 and found to promote the growth of children with hypopituitarism. Since the formation of the World Anti-Doping Association, human GH has appeared on the list of forbidden substances. There is a significant amount of anecdotal evidence that human GH is misused by athletes to enhance performance, and there have been a number of high-profile cases of GH use in professional sport. GH secretagogues (GH-Ss), which increase GH secretion, and insulin-like growth factor (IGF-1), which mediates many of the effects of GH, are also misused, although there is less evidence for this. The effectiveness of GH, IGF-1, and GH-Ss as performance-enhancing drugs remains unclear. Evidence from studies of GH use in people with hypopituitarism show several desirable outcomes, including increased lean body mass, increased strength, and increased exercise capacity. These anabolic and metabolic properties, coupled with the difficulty in detecting them, make them attractive as agents of misuse. Studies in healthy young adults have also demonstrated a performance benefit with GH and IGF-1. PMID:27347885

  7. Regulation of gonadotropins by corticotropin-releasing factor and urocortin.

    PubMed

    Kageyama, Kazunori

    2013-01-01

    While stress activates the hypothalamic-pituitary-adrenal (HPA) axis, it suppresses the hypothalamic-pituitary-gonadal (HPG) axis. Corticotropin-releasing factor (CRF) is a major regulatory peptide in the HPA axis during stress. Urocortin 1 (Ucn1), a member of the CRF family of peptides, has a variety of physiological functions and both CRF and Ucn1 contribute to the stress response via G protein-coupled seven transmembrane receptors. Ucn2 and Ucn3, which belong to a separate paralogous lineage from CRF, are highly selective for the CRF type 2 receptor (CRF(2) receptor). The HPA and HPG axes interact with each other, and gonadal function and reproduction are suppressed in response to various stressors. In this review, we focus on the regulation of gonadotropins by CRF and Ucn2 in pituitary gonadotrophs and of gonadotropin-releasing hormone (GnRH) via CRF receptors in the hypothalamus. In corticotrophs, stress-induced increases in CRF stimulate Ucn2 production, which leads to the inhibition of gonadotropin secretion via the CRF(2) receptor in the pituitary. GnRH in the hypothalamus is regulated by a variety of stress conditions. CRF is also involved in the suppression of the HPG axis, especially the GnRH pulse generator, via CRF receptors in the hypothalamus. Thus, complicated regulation of GnRH in the hypothalamus and gonadotropins in the pituitary via CRF receptors contributes to stress responses and adaptation of gonadal functions.

  8. Sugarcane transgenics expressing MYB transcription factors show improved glucose release

    DOE PAGESBeta

    Poovaiah, Charleson R.; Bewg, William P.; Lan, Wu; Ralph, John; Coleman, Heather D.

    2016-07-15

    In this study, sugarcane, a tropical C4 perennial crop, is capable of producing 30-100 tons or more of biomass per hectare annually. The lignocellulosic residue remaining after sugar extraction is currently underutilized and can provide a significant source of biomass for the production of second-generation bioethanol. As a result, MYB31 and MYB42 were cloned from maize and expressed in sugarcane with and without the UTR sequences. The cloned sequences were 98 and 99 % identical to the published nucleotide sequences. The inclusion of the UTR sequences did not affect any of the parameters tested. There was little difference in plantmore » height and the number of internodes of the MYB-overexpressing sugarcane plants when compared with controls. MYB transgene expression determined by qPCR exhibited continued expression in young and maturing internodes. MYB31 downregulated more genes within the lignin biosynthetic pathway than MYB42. MYB31 and MYB42 expression resulted in decreased lignin content in some lines. All MYB42 plants further analyzed showed significant increases in glucose release by enzymatic hydrolysis in 72 h, whereas only two MYB31 plants released more glucose than control plants. This correlated directly with a significant decrease in acid-insoluble lignin. Soluble sucrose content of the MYB42 transgenic plants did not vary compared to control plants. In conclusion, this study demonstrates the use of MYB transcription factors to improve the production of bioethanol from sugarcane bagasse remaining after sugar extraction.« less

  9. Purification of autocrine growth factor from conditioned medium of rat sarcoma (XC) cells.

    PubMed

    Checiówna, D; Klein, A

    1996-01-01

    Transformation of rat cells by Rous sarcoma virus(es) induced the release of growth factors into serum-free conditioned media. An PR-RSV-transformed rat cell line, XC, produced and released polypeptide factors which promote anchorage-dependent and anchorage-independent growth of XC cells. One of the autocrine factors of XC cells was purified to homogeneity by four-step procedure: ultrafiltration, ion-exchange chromatography on MonoS, reverse-phase chromatography on Spherisorb ODS2 and gel filtration on Superose 12. The factor gave a single band on SDS-electrophoresis on polyacrylamide gel and was assumed to have a molecular weight of 16 kDa. The factor is a potent mitogen for XC cells; half-maximal stimulation of DNA synthesis was achieved at a concentration of 0.8 ng/ml. The peptide is probably one of the family of EGF-like heparin-binding growth factors.

  10. The effects of control release fertilizer (CRF) on palm growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutri-Pak is a slow release fertilizer in a micro-pore polyethylene packet where moisture enters the packet through micro-pores located on both sides of the packet. Water dissolves the fertilizer and it slowly seeps through the same micro-pores as a vapor into the soil gradually providing nutrients ...

  11. Uptake and release of [3H]GABA by growth cones isolated from neonatal rat brain.

    PubMed

    Gordon-Weeks, P R; Lockerbie, R O; Pearce, B R

    1984-11-23

    A subcellular fraction highly enriched in neuronal growth cones was isolated from 5-day-old rat forebrain by a recently described method. The growth cone fraction was shown to have a sodium- and temperature-dependent, high-affinity (Km = 4.4 microM) uptake system for [3H]GABA. Electron microscopic autoradiography confirmed that this uptake was into growth cones since only these structures were heavily labelled with silver grains. High potassium induced the release of newly accumulated [3H]GABA from the growth cone fraction, about half of which was Ca2+-dependent. The presence of uptake and release systems for GABA in growth cones may simply reflect the development of growth cones into nerve terminals. Alternatively, these observations may indicate a role for neurotransmitter release in synaptogenesis.

  12. Inhibitory effects of a luteinizing hormone-releasing hormone agonist on basal and epidermal growth factor-induced cell proliferation and metastasis-associated properties in human epidermoid carcinoma A431 cells.

    PubMed

    Huang, Ying-Tang; Hwang, Jiuan-Jiuan; Lee, Lung-Ta; Liebow, Charles; Lee, Ping-Ping H; Ke, Ferng-Chun; Lo, Tung-Bin; Schally, Andrew V; Lee, Ming-Ting

    2002-06-01

    The purpose of this study was to investigate the effects of a potent LHRH agonist, [D-Trp(6)]LHRH on the basal and EGF-induced cell proliferation and the metastasis-associated properties in A431 human epidermoid carcinoma. [D-Trp(6)]LHRH time-dependently inhibited the basal and EGF-stimulated growth of A431 cancer cells. It is assumed that phosphorylation/dephosphorylation of cellular proteins is highly related to cell growth. This study demonstrates that [D-Trp(6)]LHRH decreased the basal and EGF-induced total cellular kinase activity, particularly the tyrosine phosphorylation of several cellular proteins including the EGFR. In contrast, [D-Trp(6)]LHRH did not cause detectable changes in basal and EGF-stimulated serine/threonine phosphorylation of A431 cellular proteins. The inhibitory effect of [D-Trp(6)]LHRH on A431 cell proliferation was associated with apoptosis as evidenced by the cell morphology and DNA integrity (ladder pattern), the expression of interleukin 1beta-converting enzyme (ICE) and activation of caspase. Furthermore, EGF could rescue the remaining attached A431 cells following [D-Trp(6)]LHRH treatment for 48 hr, which suggests that limited exposure to [D-Trp(6)]LHRH did not channel all cells to irreversible apoptotic process. We also determined the effects of [D-Trp(6)]LHRH on metastasis-associated properties in A431 cells. [D-Trp(6)]LHRH reduced both basal and EGF-stimulated secretion of MMP-9 and MMP-2. In addition, [D-Trp(6)]LHRH suppressed the basal and EGF-induced invasive activity of A431 cells based on an in vitro invasion assay. In conclusion, this study indicates that [D-Trp(6)]LHRH may act partly through activating tyrosine phosphatase activity to inhibit cell proliferation and the metastasis-associated properties of A431 cancer cells. Our work suggests that [D-Trp(6)]LHRH may be therapeutically useful in limiting the tumor growth and metastasis of some neoplasms.

  13. Factors controlling phosphorus release from sediments in coastal archipelago areas.

    PubMed

    Puttonen, Irma; Kohonen, Tuula; Mattila, Johanna

    2016-07-15

    In coastal archipelago areas of the northern Baltic Sea, significantly higher phosphate concentrations (6.0±4.5μmol/l, mean±SD) were measured in water samples close to the sediment surface compared with those from 1m above the seafloor (1.6±2.0μmol/l). The results indicated notable phosphate release from sediments under the bottom water oxygen concentrations of up to 250μmol/l, especially in areas that had experienced recent temporal fluctuation between oxic and hypoxic/anoxic conditions. No single factor alone was found to control the elevated PO4-P concentrations in the near-bottom water. In addition to the oxygen in the water, the contents of potentially mobile phosphorus fractions, grain-size, the organic content at the sediment surface, and the water depth were all important factors controlling the internal loading of phosphorus. The complexity of this process needs to be accounted for in assessments of the internal loading of phosphorus and in potential mitigation plans. PMID:27184132

  14. The accuracy of codon recognition by polypeptide release factors

    PubMed Central

    Freistroffer, David V.; Kwiatkowski, Marek; Buckingham, Richard H.; Ehrenberg, Måns

    2000-01-01

    The precision with which individual termination codons in mRNA are recognized by protein release factors (RFs) has been measured and compared with the decoding of sense codons by tRNA. An Escherichia coli system for protein synthesis in vitro with purified components was used to study the accuracy of termination by RF1 and RF2 in the presence or absence of RF3. The efficiency of factor-dependent termination at all sense codons differing from any of the three stop codons by a single mutation was measured and compared with the efficiency of termination at the three stop codons. RF1 and RF2 discriminate against sense codons related to stop codons by between 3 and more than 6 orders of magnitude. This high level of accuracy is obtained without energy-driven error correction (proofreading), in contrast to codon-dependent aminoacyl-tRNA recognition by ribosomes. Two codons, UAU and UGG, stand out as hotspots for RF-dependent premature termination. PMID:10681447

  15. Decorin: A Growth Factor Antagonist for Tumor Growth Inhibition

    PubMed Central

    Järvinen, Tero A. H.; Prince, Stuart

    2015-01-01

    Decorin (DCN) is the best characterized member of the extracellular small leucine-rich proteoglycan family present in connective tissues, typically in association with or “decorating” collagen fibrils. It has substantial interest to clinical medicine owing to its antifibrotic, anti-inflammatory, and anticancer effects. Studies on DCN knockout mice have established that a lack of DCN is permissive for tumor development and it is regarded as a tumor suppressor gene. A reduced expression or a total disappearance of DCN has been reported to take place in various forms of human cancers during tumor progression. Furthermore, when used as a therapeutic molecule, DCN has been shown to inhibit tumor progression and metastases in experimental cancer models. DCN affects the biology of various types of cancer by targeting a number of crucial signaling molecules involved in cell growth, survival, metastasis, and angiogenesis. The active sites for the neutralization of different growth factors all reside in different parts of the DCN molecule. An emerging concept that multiple proteases, especially those produced by inflammatory cells, are capable of cleaving DCN suggests that native DCN could be inactivated in a number of pathological inflammatory conditions. In this paper, we review the role of DCN in cancer. PMID:26697491

  16. Corticotropin releasing factor (CRF): immunocytochemical localization and radioimmunoassay (RIA). [Rats

    SciTech Connect

    Vigh, S.; Merchenthaler, I.; Torres-Aleman, I.; Sueiras-Diaz, J.; Coy, D.; Carter, W.H.; Petrusz, P.; Schally, A.V.

    1982-11-29

    Two fragments of the amino acid sequence corresponding to ovine corticotropin releasing factor (CRF 37-41 and CRF 22-41), as well as the full sequence of 41 residues (CRF 1-41), synthesized in our laboratories by solid-phase methods, were coupled to bovine serum albumin (BSA) with glutaraldehyde. New Zealand white rabbits were immunized with the emulsified mixtures of peptide-BSA conjugates and Freund's adjuvant as immunogens. The specificity of the generated antibodies was studied by agar-gel diffusion, absorption tests in the immunohistochemical system, and with the aid of displacement curves in RIA. /sup 125/I-Tyr(35)-CRF 36-41 and /sup 125/I-Tyr(0)-CRF 1-41 were used as radioligands in the RIA. The minimum detectable dose was 20 pg. The linearity observed in RIA for immunoreactive CRF in extracts of rat hypothalami, together with the immunocytochemical findings in the rat brain, indicate the presence of substance(s) immunologically indistinguishable from CRF. Immunohistochemistry with the peroxidase-antiperoxidase (PAP) technique detected the following CRF-immunoreactive structures in vibratome sections of hypothalami of colchicine-treated rats: CRF-containing cell bodies were observed mainly in smaller neurons of the paraventricular nucleus. CRF-positive nerve fibers and/or terminals were present in the external zone of the median eminence, with some immunoreactive CRF also present in the internal zone. The CRF-positive terminals were localized in the central regions of the median eminence. Data reinforce the view that this polypeptide plays a physiological role in the control of ACTH release.

  17. Modeling Vascularized Bone Regeneration Within a Porous Biodegradable CaP Scaffold Loaded with Growth Factors

    PubMed Central

    Sun, X; Kang, Y; Bao, J; Zhang, Y; Yang, Y; Zhou, X

    2013-01-01

    Osteogenetic microenvironment is a complex constitution in which extracellular matrix (ECM) molecules, stem cells and growth factors each interact to direct the coordinate regulation of bone tissue development. Importantly, angiogenesis improvement and revascularization are critical for osteogenesis during bone tissue regeneration processes. In this study, we developed a three-dimensional (3D) multi-scale system model to study cell response to growth factors released from a 3D biodegradable porous calcium phosphate (CaP) scaffold. Our model reconstructed the 3D bone regeneration system and examined the effects of pore size and porosity on bone formation and angiogenesis. The results suggested that scaffold porosity played a more dominant role in affecting bone formation and angiogenesis compared with pore size, while the pore size could be controlled to tailor the growth factor release rate and release fraction. Furthermore, a combination of gradient VEGF with BMP2 and Wnt released from the multi-layer scaffold promoted angiogenesis and bone formation more readily than single growth factors. These results demonstrated that the developed model can be potentially applied to predict vascularized bone regeneration with specific scaffold and growth factors. PMID:23566802

  18. Skeletal Myogenic Differentiation of Urine-Derived Stem Cells and Angiogenesis Using Microbeads Loaded with Growth Factors

    PubMed Central

    Liu, Guihua; Pareta, Rajesh A; Wu, Rongpei; Shi, Yingai; Zhou, Xiaobo; Liu, Hong; Deng, Chunhua; Sun, Xiangzhou; Atala, Anthony; Opara, Emmanuel C; Zhang, Yuanyuan

    2012-01-01

    To provide site-specific delivery and targeted release of growth factors to implanted urine-derived stem cells (USCs), we prepared microbeads of alginate containing growth factors. The growth factors included VEGF, IGF-1, FGF-1, PDGF, HGF and NGF. Radiolabeled growth factors were loaded separately and used to access the in vitro release from the microbeads with a gamma counter over 4 weeks. In vitro endothelial differentiation of USCs by the released VEGF from the microbeads in a separate experiment confirmed that the released growth factors from the microbeads were bioactive. USCs and microbeads were mixed with the collagen gel type 1 (2 mg/ml) and used for in vivo studies through subcutaneous injection into nude mice. Four weeks after subcutaneous injection, we found that grafted cell survival was improved and more cells expressed myogenic and endothelial cell transcripts and markers compared to controls. More vessel formation and innervations were observed in USCs combined with six growth factors cocktail incorporated in microbeads compared to controls. In conclusion, a combination of growth factors released locally from the alginate microbeads induced USCs to differentiate into a myogenic lineage, enhanced revascularization and innervation, and stimulated resident cell growth in vivo. This approach could potentially be used for cell therapy in the treatment of stress urinary incontinence. PMID:23137393

  19. Effects of hypothalamic dopamine on growth hormone-releasing hormone-induced growth hormone secretion and thyrotropin-releasing hormone-induced prolactin secretion in goats.

    PubMed

    Jin, Jin; Hashizume, Tsutomu

    2015-06-01

    The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on the secretion of growth hormone (GH) in goats. The GH-releasing response to an intravenous (i.v.) injection of GH-releasing hormone (GHRH, 0.25 μg/kg body weight (BW)) was examined after treatments to augment central DA using carbidopa (carbi, 1 mg/kg BW) and L-dopa (1 mg/kg BW) in male and female goats under a 16-h photoperiod (16 h light, 8 h dark) condition. GHRH significantly and rapidly stimulated the release of GH after its i.v. administration to goats (P < 0.05). The carbi and L-dopa treatments completely suppressed GH-releasing responses to GHRH in both male and female goats (P < 0.05). The prolactin (PRL)-releasing response to an i.v. injection of thyrotropin-releasing hormone (TRH, 1 μg/kg BW) was additionally examined in male goats in this study to confirm modifications to central DA concentrations. The treatments with carbi and L-dopa significantly reduced TRH-induced PRL release in goats (P < 0.05). These results demonstrated that hypothalamic DA was involved in the regulatory mechanisms of GH, as well as PRL secretion in goats.

  20. Transcription-dependent epidermal growth factor receptor activation by hepatocyte growth factor.

    PubMed

    Reznik, Thomas E; Sang, Yingying; Ma, Yongxian; Abounader, Roger; Rosen, Eliot M; Xia, Shuli; Laterra, John

    2008-01-01

    The mechanisms and biological implications of coordinated receptor tyrosine kinase coactivation remain poorly appreciated. Epidermal growth factor receptor (EGFR) and c-Met are frequently coexpressed in cancers, including those associated with hepatocyte growth factor (HGF) overexpression, such as malignant astrocytoma. In a previous analysis of the HGF-induced transcriptome, we found that two EGFR agonists, transforming growth factor-alpha and heparin-binding epidermal growth factor-like growth factor (HB-EGF), are prominently up-regulated by HGF in human glioma cells. We now report that stimulating human glioblastoma cells with recombinant HGF induces biologically relevant EGFR activation. EGFR phosphorylation at Tyr(845) and Tyr(1068) increased 6 to 24 h after cell stimulation with HGF and temporally coincided with the induction of transforming growth factor-alpha (~5-fold) and HB-EGF (~23-fold) expression. Tyr(845) and Tyr(1068) phosphorylation, in response to HGF, was inhibited by cycloheximide and actinomycin D, consistent with a requirement for DNA transcription and RNA translation. Specifically, blocking HB-EGF binding to EGFR with the antagonist CRM197 inhibited HGF-induced EGFR phosphorylation by 60% to 80% and inhibited HGF-induced S-G(2)-M transition. CRM197 also inhibited HGF-induced anchorage-dependent cell proliferation but had no effect on HGF-mediated cytoprotection. These findings establish that EGFR can be activated with functional consequences by HGF as a result of EGFR ligand expression. This transcription-dependent cross-talk between the HGF receptor c-Met and EGFR expands our understanding of receptor tyrosine kinase signaling networks and may have considerable consequences for oncogenic mechanisms and cancer therapeutics.

  1. Keratinocyte growth factor and hepatocyte growth factor/scatter factor are heparin-binding growth factors for alveolar type II cells in fibroblast-conditioned medium.

    PubMed Central

    Panos, R J; Rubin, J S; Csaky, K G; Aaronson, S A; Mason, R J

    1993-01-01

    Epithelial-mesenchymal interactions mediate aspects of normal lung growth and development and are important in the restoration of normal alveolar architecture after lung injury. To determine if fibroblasts are a source of soluble growth factors for alveolar type II cells, we investigated the effect of fibroblast-conditioned medium (CM) on alveolar type II cell DNA synthesis. Serum-free CM from confluent adult human lung fibroblasts was concentrated fivefold by lyophilization. Type II cells were isolated from adult rats by elastase dissociation and incubated with [3H]thymidine and varying dilutions of concentrated CM and serum from day 1 to 3 of culture. Stimulation of type II cell DNA synthesis by fibroblast-CM was maximal after 48 h of conditioning and required the presence of serum. The activity of the CM was eliminated by boiling and by treatment with trypsin, pepsin, or dithiothreitol and was additive with saturating concentrations of acidic fibroblast growth factor, epidermal growth factor, and insulin. The growth factor activity bound to heparin-Sepharose and was eluted with 0.6 and 1.0 M NaCl. Neutralizing antibody studies demonstrated that the primary mitogens isolated in the 0.6 and 1.0 M NaCl fractions were keratinocyte growth factor (KGF, fibroblast growth factor 7) and hepatocyte growth factor/scatter factor (HGF/SF), respectively. HGF/SF was demonstrated in the crude CM and KGF was detected in the 0.6 M NaCl eluent by immunoblotting. Northern blot analysis confirmed that the lung fibroblasts expressed both KGF and HGF/SF transcripts. Human recombinant KGF and HGF/SF induced a concentration- and serum-dependent increase in rat alveolar type II cell DNA synthesis. We conclude that adult human lung fibroblasts produce at least two soluble heparin-binding growth factors, KGF and HGF/SF, which promote DNA synthesis and proliferation of rat alveolar type II cells in primary culture. KGF and HGF/SF may be important stimuli for alveolar type II cell

  2. Interaction of epidermal growth factor with vasoactive hormones in the regulation of phospholipase A2.

    PubMed

    Hack, N; Margolis, B; Schlessinger, J; Skorecki, K

    1991-01-01

    The interaction of growth factors with their receptors initiates a series of intracellular events that are of critical importance in the control of normal cell proliferation. In this regard considerable attention has focused on the coupling of phospholipase C-gamma to growth factor receptor tyrosine kinases. In contrast, the interaction of growth factors with phospholipase A2 has received less attention, most likely because the arachidonic acid release response has been considered to be an accompaniment of phospholipase C activation. Work from our laboratory using a well defined model system demonstrated a distinct coupling relationship of epidermal growth factor to phospholipase A2. This review focuses on the interaction of the epidermal growth factor receptor with phospholipases involved in both mitogenic and non-mitogenic responses and discusses their possible relation with vasoactive hormones.

  3. Differential involvement of signaling pathways in the regulation of growth hormone release by somatostatin and growth hormone-releasing hormone in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Wang, Bin; Qin, Chaobin; Zhang, Cong; Jia, Jirong; Sun, Caiyun; Li, Wensheng

    2014-02-15

    Somatostatin is the most effective inhibitor of GH release, and GHRH was recently identified as one of the primary GH-releasing factors in teleosts. In this study, we analyzed the possible intracellular transduction pathways that are involved in the mechanisms induced by SRIF and GHRH to regulate GH release. Using a pharmacological approach, the blockade of the PLC/IP/PKC pathway reversed the SRIF-induced inhibition of GH release but did not affect the GHRH-induced stimulation of GH release. Furthermore, SRIF reduced the GH release induced by two PKC activators. Inhibitors of the AC/cAMP/PKA pathway reversed both the SRIF- and GHRH-induced effects on GH release. Moreover, the GH release evoked by forskolin and 8-Br-cAMP were completely abolished by SRIF. The blockade of the NOS/NO pathway attenuated the GHRH-induced GH release but had minimal effects on the inhibitory actions of SRIF. In addition, inhibitors of the sGC/cGMP pathway did not modify the SRIF- or GHRH-induced regulation of GH release. Taken together, these findings indicate that the SRIF-induced inhibition of GH release is mediated by both the PLC/IP/PKC and the AC/cAMP/PKA pathways and not by the NOS/NO/sGC/cGMP pathway. In contrast, the GHRH-induced stimulation of GH secretion is mediated by both the AC/cAMP/PKA and the NOS/NO pathways and is independent of the sGC/cGMP pathway and the PLC/IP/PKC system.

  4. Autologous Growth Factor Injections in Chronic Tendinopathy

    PubMed Central

    Sandrey, Michelle A.

    2014-01-01

    Reference: de Vos RJ, van Veldhoven PLJ, Moen MH, Weir A, Tol JL. Autologous growth factor injections in chronic tendinopathy: a systematic review. Br Med Bull. 2010;95:63–77. Clinical Question: The authors of this systematic review evaluated the literature to critically consider the effects of growth factors delivered through autologous whole-blood and platelet-rich–plasma (PRP) injections in managing wrist-flexor and -extensor tendinopathies, plantar fasciopathy, and patellar tendinopathy. The primary question was, according to the published literature, is there sufficient evidence to support the use of growth factors delivered through autologous whole-blood and PRP injections for chronic tendinopathy? Data Sources: The authors performed a comprehensive, systematic literature search in October 2009 using PubMed, MEDLINE, EMBASE, CINAHL, and the Cochrane library without time limits. The following key words were used in different combinations: tendinopathy, tendinosis, tendinitis, tendons, tennis elbow, plantar fasciitis, platelet rich plasma, platelet transfusion, and autologous blood or injection. The search was limited to human studies in English. All bibliographies from the initial literature search were also viewed to identify additional relevant studies. Study Selection: Studies were eligible based on the following criteria: (1) Articles were suitable (inclusion criteria) if the participants had been clinically diagnosed as having chronic tendinopathy; (2) the design had to be a prospective clinical study, randomized controlled trial, nonrandomized clinical trial, or prospective case series; (3) a well-described intervention in the form of a growth factor injection with either PRP or autologous whole blood was used; and (4) the outcome was reported in terms of pain or function (or both). Data Extraction: All titles and abstracts were assessed by 2 researchers, and all relevant articles were obtained. Two researchers independently read the full text of

  5. Flavonoids Released Naturally from Alfalfa Seeds Enhance Growth Rate of Rhizobium meliloti1

    PubMed Central

    Hartwig, Ueli A.; Joseph, Cecillia M.; Phillips, Donald A.

    1991-01-01

    Alfalfa (Medicago sativa L.) releases different flavonoids from seeds and roots. Imbibing seeds discharge 3′,4′,5,7-substituted flavonoids; roots exude 5-deoxy molecules. Many, but not all, of these flavonoids induce nodulation (nod) genes in Rhizobium meliloti. The dominant flavonoid released from alfalfa seeds is identified here as quercetin-3-O-galactoside, a molecule that does not induce nod genes. Low concentrations (1-10 micromolar) of this compound, as well as luteolin-7-O-glucoside, another major flavonoid released from germinating seeds, and the aglycones, quercetin and luteolin, increase growth rate of R. meliloti in a defined minimal medium. Tests show that the 5,7-dihydroxyl substitution pattern on those molecules was primarily responsible for the growth effect, thus explaining how 5-deoxy flavonoids in root exudates fail to enhance growth of R. meliloti. Luteolin increases growth by a mechanism separate from its capacity to induce rhizobial nod genes, because it still enhanced growth rate of R. meliloti lacking functional copies of the three known nodD genes. Quercetin and luteolin also increased growth rate of Pseudomonas putida. They had no effect on growth rate of Bacillus subtilis or Agrobacterium tumefaciens, but they slowed growth of two fungal pathogens of alfalfa. These results suggest that alfalfa can create ecochemical zones for controlling soil microbes by releasing structurally different flavonoids from seeds and roots. PMID:16668056

  6. Release factor one is nonessential in Escherichia coli.

    PubMed

    Johnson, David B F; Wang, Chong; Xu, Jianfeng; Schultz, Matthew D; Schmitz, Robert J; Ecker, Joseph R; Wang, Lei

    2012-08-17

    Recoding a stop codon to an amino acid may afford orthogonal genetic systems for biosynthesizing new protein and organism properties. Although reassignment of stop codons has been found in extant organisms, a model organism is lacking to investigate the reassignment process and to direct code evolution. Complete reassignment of a stop codon is precluded by release factors (RFs), which recognize stop codons to terminate translation. Here we discovered that RF1 could be unconditionally knocked out from various Escherichia coli stains, demonstrating that the reportedly essential RF1 is generally dispensable for the E. coli species. The apparent essentiality of RF1 was found to be caused by the inefficiency of a mutant RF2 in terminating all UAA stop codons; a wild type RF2 was sufficient for RF1 knockout. The RF1-knockout strains were autonomous and unambiguously reassigned UAG to encode natural or unnatural amino acids (Uaas) at multiple sites, affording a previously unavailable model for studying code evolution and a unique host for exploiting Uaas to evolve new biological functions.

  7. Conformational thermostabilisation of corticotropin releasing factor receptor 1.

    PubMed

    Kean, James; Bortolato, Andrea; Hollenstein, Kaspar; Marshall, Fiona H; Jazayeri, Ali

    2015-01-01

    Recent technical advances have greatly facilitated G-protein coupled receptors crystallography as evidenced by the number of successful x-ray structures that have been reported recently. These technical advances include novel detergents, specialised crystallography techniques as well as protein engineering solutions such as fusions and conformational thermostabilisation. Using conformational thermostabilisation, it is possible to generate variants of GPCRs that exhibit significantly increased stability in detergent micelles whilst preferentially occupying a single conformation. In this paper we describe for the first time the application of this technique to a member of a class B GPCR, the corticotropin releasing factor receptor 1 (CRF1R). Mutational screening in the presence of the inverse agonist, CP-376395, resulted in the identification of a construct with twelve point mutations that exhibited significantly increased thermal stability in a range of detergents. We further describe the subsequent construct engineering steps that eventually yielded a crystallisation-ready construct which recently led to the solution of the first x-ray structure of a class B receptor. Finally, we have used molecular dynamic simulation to provide structural insight into CRF1R instability as well as the stabilising effects of the mutants, which may be extended to other class B receptors considering the high degree of structural conservation. PMID:26159865

  8. Failure of growth hormone-suppressing agents to affect TSH-releasing hormone- and LH-releasing hormone-induced growth hormone release in acromegaly.

    PubMed

    Nakagawa, K; Obara, T

    1977-01-01

    In patients with acromegaly whose basal plasma GH levels were suppressed with 9 mg/day of dexamethasone for 2 days, TRH-(6 cases) and LHRH-(1 case) induced GH release were unaffected when the responses were compared to the basal levels. Phentolamine infusion, 70 mg in 150 min, or hyperglycemia induced by iv infusion of 700 ml of 50% glucose solution also did not suppress TRH-induced GH release in 2 acromegalic patients whose basal GH levels were lowered with these agents alone. These results seem to indicate that dexamethasone does not affect TRH- or LHRH-induced GH release per se, but affects the basal state which determines the absolute level of response. They also support the concept that TRH and LHRH act directly on pituitary tumor cells to release GH in acromegaly.

  9. Systems Biology of Vascular Endothelial Growth Factors

    PubMed Central

    Mac Gabhann, Feilim; Popel, Aleksander S.

    2009-01-01

    Several cytokine families have roles in development, maintenance and remodeling of the microcirculation. Of these, the VEGF family is one of the best studied and one of the most complex. Five VEGF ligand genes and five cell surface receptor genes are known in the human, and each of these may be transcribed as multiple splice isoforms to generate an extensive family of proteins, many of which are subject to further proteolytic processing. Using the VEGF family as an example, we describe the current knowledge of growth factor expression, processing and transport in vivo. Experimental studies and computational simulations are being used to measure and predict the activity of these molecules, and we describe avenues of research that seek to fill the remaining gaps in our understanding of VEGF family behavior. PMID:18608994

  10. Epidermal growth factor (urogastrone) in human tissues.

    PubMed

    Hirata, Y; Orth, D N

    1979-04-01

    Human epidermal growth factor (hEGF), which stimulates the growth of a variety of tissues, was first isolated from mouse submandibular glands, but is also excreted in large amounts (about 50 micrograms/day) in human urine and is probably identical to human beta-urogastrone (hUG), a potent inhibitor of stimulated gastric acid secretion. However, the primary tissue source of hEGF/hUG is as yet unknown. The hEGF/hUG in homogenates of human salivary glands and a wide variety of other endocrine and nonendocrine tissues was extracted by Amberlite CG-50 cation exchange chromatography and immune affinity chromatography using the immunoglobulin fraction of rabbit anti-hEGF serum covalently bound to agarose. The extracts were subjected to homologous hEGF RIA. Immunoreactive hEGF was found in extracts of adult submandibular gland, thyroid gland, duodenum, jejunum, and kidney, but not in several fetal tissues. The tissue immunoreactive hEGF was similar to standard hEGF in terms of immunoreactivity and elution from Sephadex G-50 Fine resin, but its concentrations were very low (1.3-5.5 ng/g wet tissue). Thus, it is not certain that these tissues represent the only source of the large amounts of hEGF/hUG that appear to be filtered by the kidneys each day.

  11. The Fibroblast Growth Factor signaling pathway

    PubMed Central

    Ornitz, David M; Itoh, Nobuyuki

    2015-01-01

    The signaling component of the mammalian Fibroblast Growth Factor (FGF) family is comprised of eighteen secreted proteins that interact with four signaling tyrosine kinase FGF receptors (FGFRs). Interaction of FGF ligands with their signaling receptors is regulated by protein or proteoglycan cofactors and by extracellular binding proteins. Activated FGFRs phosphorylate specific tyrosine residues that mediate interaction with cytosolic adaptor proteins and the RAS-MAPK, PI3K-AKT, PLCγ, and STAT intracellular signaling pathways. Four structurally related intracellular non-signaling FGFs interact with and regulate the family of voltage gated sodium channels. Members of the FGF family function in the earliest stages of embryonic development and during organogenesis to maintain progenitor cells and mediate their growth, differentiation, survival, and patterning. FGFs also have roles in adult tissues where they mediate metabolic functions, tissue repair, and regeneration, often by reactivating developmental signaling pathways. Consistent with the presence of FGFs in almost all tissues and organs, aberrant activity of the pathway is associated with developmental defects that disrupt organogenesis, impair the response to injury, and result in metabolic disorders, and cancer. © 2015 Wiley Periodicals, Inc. PMID:25772309

  12. [Growth Hormone-Insulin Growth Factor I (GH-IGF-I) axis and growth].

    PubMed

    Castell, A-L; Sadoul, J-L; Bouvattier, C

    2013-10-01

    Normal human linear growth results from an evolutionary process expressing the sum effect of multiple genes. The growth hormone (GH) - insulin like growth factor (IGF)-I axis is one of the main actors in the growth process. Defects in this axis can be responsible for short or tall stature. Short stature is defined as smaller than - 2 standard deviations (SD). It is a very common reason for consultation in pediatrics; indeed, 2.5 % of children are concerned. Multiple causes make diagnosis difficult. In this article, we detail the most common constitutional causes of small size, including those related to a defect in the GH-IGF-I axis. Then, we report, the first results of the clinical and genetic study conducted on 213 patients with gigantism. Tall stature is defined by a height superior to 2 SD. Finally, recent work linking epigenetics and growth - via signaling pathways of GH-IGF-I axis - will be presented. PMID:24356290

  13. [Growth Hormone-Insulin Growth Factor I (GH-IGF-I) axis and growth].

    PubMed

    Castell, A-L; Sadoul, J-L; Bouvattier, C

    2013-10-01

    Normal human linear growth results from an evolutionary process expressing the sum effect of multiple genes. The growth hormone (GH) - insulin like growth factor (IGF)-I axis is one of the main actors in the growth process. Defects in this axis can be responsible for short or tall stature. Short stature is defined as smaller than - 2 standard deviations (SD). It is a very common reason for consultation in pediatrics; indeed, 2.5 % of children are concerned. Multiple causes make diagnosis difficult. In this article, we detail the most common constitutional causes of small size, including those related to a defect in the GH-IGF-I axis. Then, we report, the first results of the clinical and genetic study conducted on 213 patients with gigantism. Tall stature is defined by a height superior to 2 SD. Finally, recent work linking epigenetics and growth - via signaling pathways of GH-IGF-I axis - will be presented.

  14. Factors affecting the release of flavor encapsulated in carbohydrate matrixes.

    PubMed

    Gunning, Y M; Gunning, P A; Kemsley, E K; Parker, R; Ring, S G; Wilson, R H; Blake, A

    1999-12-01

    The effects of water content and temperature variation on the release of flavor components into the headspace over flavors, encapsulated by an extrusion process, in low water content carbohydrate matrixes is studied. The largest amounts of release occurred when the matrix was above its glass transition temperature, whether this was due to increased water content or elevated temperature. Under these conditions up to 70% of the sucrose in the matrix crystallized over a period of 10 days, as quantified using Fourier transform Raman spectroscopy. Smaller amounts of headspace release occurred when the water content of the encapsulated flavor system was decreased from 3. 5 to 3.1% w/w. Small amounts of release occurred from the "as prepared" materials, which were associated with the presence of small amounts of unencapsulated flavor oil with direct access to the headspace. It was concluded that release due to matrix permeability was relatively slow as compared with the above mechanisms.

  15. Role of growth hormone-releasing hormone in dyslipidemia associated with experimental type 1 diabetes

    PubMed Central

    Romero, Maritza J.; Lucas, Rudolf; Dou, Huijuan; Sridhar, Supriya; Czikora, Istvan; Mosieri, Eby M.; Rick, Ferenc G.; Block, Norman L.; Sridhar, Subbaramiah; Fulton, David; Weintraub, Neal L.; Bagi, Zsolt; Schally, Andrew V.

    2016-01-01

    Dyslipidemia associated with triglyceride-rich lipoproteins (TRLs) represents an important residual risk factor for cardiovascular and chronic kidney disease in patients with type 1 diabetes (T1D). Levels of growth hormone (GH) are elevated in T1D, which aggravates both hyperglycemia and dyslipidemia. The hypothalamic growth hormone-releasing hormone (GHRH) regulates the release of GH by the pituitary but also exerts separate actions on peripheral GHRH receptors, the functional role of which remains elusive in T1D. In a rat model of streptozotocin (STZ)-induced T1D, GHRH receptor expression was found to be up-regulated in the distal small intestine, a tissue involved in chylomicron synthesis. Treatment of T1D rats with a GHRH antagonist, MIA-602, at a dose that did not affect plasma GH levels, significantly reduced TRL, as well as markers of renal injury, and improved endothelial-dependent vasorelaxation. Glucagon-like peptide 1 (GLP-1) reduces hyperglucagonemia and postprandial TRL, the latter in part through a decreased synthesis of apolipoprotein B-48 (ApoB-48) by intestinal cells. Although plasma GLP-1 levels were elevated in diabetic animals, this was accompanied by increased rather than reduced glucagon levels, suggesting impaired GLP-1 signaling. Treatment with MIA-602 normalized GLP-1 and glucagon to control levels in T1D rats. MIA-602 also decreased secretion of ApoB-48 from rat intestinal epithelial cells in response to oleic acid stimulation in vitro, in part through a GLP-1–dependent mechanism. Our findings support the hypothesis that antagonizing the signaling of GHRH in T1D may improve GLP-1 function in the small intestine, which, in turn, diminishes TRL and reduces renal and vascular complications. PMID:26831066

  16. Stress-Derived Corticotropin Releasing Factor Breaches Epithelial Endotoxin Tolerance

    PubMed Central

    Yu, Yong; Geng, Xiao-Rui; Yang, Gui; Liu, Zhi-Gang; Zheng, Peng-Yuan; Yang, Ping-Chang

    2013-01-01

    Background and aims Loss of the endotoxin tolerance of intestinal epithelium contributes to a number of intestinal diseases. The etiology is not clear. Psychological stress is proposed to compromise the intestinal barrier function. The present study aims to elucidate the role of the stress-derived corticotropin releasing factor (CRF) in breaching the established intestinal epithelial endotoxin tolerance. Methods Epithelial cells of HT-29, T84 and MDCK were exposed to lipopolysaccharide to induce the endotoxin tolerance; the cells were then stimulated with CRF. The epithelial barrier function was determined using as indicators of the endotoxin tolerant status. A water-avoid stress mouse model was employed to test the role of CRF in breaching the established endotoxin tolerance in the intestine. Results The established endotoxin tolerance in the epithelial cell monolayers was broken down by a sequent exposure to CRF and LPS manifesting a marked drop of the transepithelial resistance (TER) and an increase in the permeability to a macromolecular tracer, horseradish peroxidase (HRP). The exposure to CRF also increased the expression of Cldn2 in the epithelial cells, which could be mimicked by over expression of TLR4 in epithelial cells. Over expression of Cldn2 resulted in low TER in epithelial monolayers and high permeability to HRP. After treating mice with the 10-day chronic stress, the intestinal epithelial barrier function was markedly compromised, which could be prevented by blocking either CRF, or TLR4, or Cldn2. Conclusions Psychological stress-derived CRF can breach the established endotoxin tolerance in the intestinal mucosa. PMID:23840363

  17. Transforming growth factor-β and fibrosis

    PubMed Central

    Verrecchia, Franck; Mauviel, Alain

    2007-01-01

    Transforming growth factor-β (TGF-β), a prototype of multifunctional cytokine, is a key regulator of extracellular matrix (ECM) assembly and remodeling. Specifically, TGF-β isoforms have the ability to induce the expression of ECM proteins in mesenchymal cells, and to stimulate the production of protease inhibitors that prevent enzymatic breakdown of the ECM. Elevated TGF-β expression in affected organs, and subsequent deregulation of TGF-β functions, correlates with the abnormal connective tissue deposition observed during the onset of fibrotic diseases. During the last few years, tremendous progress has been made in the understanding of the molecular aspects of intracellular signaling downstream of the TGF-β receptors. In particular, Smad proteins, TGF-β receptor kinase substrates that translocate into the cell nucleus to act as transcription factors, have been studied extensively. The role of Smad3 in the transcriptional regulation of typeIcollagen gene expression and in the development of fibrosis, demonstrated both in vitro and in animal models with a targeted deletion of Smad3, is of critical importance because it may lead to novel therapeutic strategies against these diseases. This review focuses on the mechanisms underlying Smad modulation of fibrillar collagen expression and how it relates to fibrotic processes. PMID:17589920

  18. Design of Growth Factor Sequestering Biomaterials

    PubMed Central

    Belair, David G.; Le, Ngoc Nhi; Murphy, William L.

    2014-01-01

    Growth factors (GFs) are major regulatory proteins that can govern cell fate, migration, and organization. Numerous aspects of the cell milieu can modulate cell responses to GFs, and GF regulation is often achieved by the native extracellular matrix (ECM). For example, the ECM can sequester GFs and thereby control GF bioavailability. In addition, GFs can exert distinct effects depending on whether they are sequestered in solution, at two-dimensional interfaces, or within three-dimensional matrices. Understanding how the context of GF sequestering impacts cell function in the native ECM can instruct the design of soluble or insoluble GF sequestering moieties, which can then be used in a variety of bioengineering applications. This Feature Article provides an overview of the natural mechanisms of GF sequestering in the cell milieu, and reviews the recent bioengineering approaches that have sequestered GFs to modulate cell function. Results to date demonstrate that the cell response to GF sequestering depends on the affinity of the sequestering interaction, the spatial proximity of sequestering in relation to cells, the source of the GF (supplemented or endogenous), and the phase of the sequestering moiety (soluble or insoluble). We highlight the importance of context for the future design of biomaterials that can leverage endogenous molecules in the cell milieu and mitigate the need for supplemented factors. PMID:25182455

  19. Injectable fibroblast growth factor-2 coacervate for persistent angiogenesis.

    PubMed

    Chu, Hunghao; Gao, Jin; Chen, Chien-Wen; Huard, Johnny; Wang, Yadong

    2011-08-16

    Enhancing the maturity of the newly formed blood vessels is critical for the success of therapeutic angiogenesis. The maturation of vasculature relies on active participation of mural cells to stabilize endothelium and a basal level of relevant growth factors. We set out to design and successfully achieved robust angiogenesis using an injectable polyvalent coacervate of a polycation, heparin, and fibroblast growth factor-2 (FGF2). FGF2 was loaded into the coacervate at nearly 100% efficiency. In vitro assays demonstrated that the matrix protected FGF2 from proteolytic degradations. FGF2 released from the coacervate was more effective in the differentiation of endothelial cells and chemotaxis of pericytes than free FGF2. One injection of 500 ng of FGF2 in the coacervate elicited comprehensive angiogenesis in vivo. The number of endothelial and mural cells increased significantly, and the local tissue contained more and larger blood vessels with increased circulation. Mural cells actively participated during the whole angiogenic process: Within 7 d of the injection, pericytes were recruited to close proximity of the endothelial cells. Mature vasculature stabilized by vascular smooth muscle cells persisted till at least 4 wk. On the other hand, bolus injection of an identical amount of free FGF2 induced weak angiogenic responses. These results demonstrate the potential of polyvalent coacervate as a new controlled delivery platform.

  20. Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis

    PubMed Central

    Calvo, Charles-Félix; Fontaine, Romain H.; Soueid, Jihane; Tammela, Tuomas; Makinen, Taija; Alfaro-Cervello, Clara; Bonnaud, Fabien; Miguez, Andres; Benhaim, Lucile; Xu, Yunling; Barallobre, Maria-José; Moutkine, Imane; Lyytikkä, Johannes; Tatlisumak, Turgut; Pytowski, Bronislaw; Zalc, Bernard; Richardson, William; Kessaris, Nicoletta; Garcia-Verdugo, Jose Manuel; Alitalo, Kari; Eichmann, Anne; Thomas, Jean-Léon

    2011-01-01

    Neural stem cells (NSCs) are slowly dividing astrocytes that are intimately associated with capillary endothelial cells in the subventricular zone (SVZ) of the brain. Functionally, members of the vascular endothelial growth factor (VEGF) family can stimulate neurogenesis as well as angiogenesis, but it has been unclear whether they act directly via VEGF receptors (VEGFRs) expressed by neural cells, or indirectly via the release of growth factors from angiogenic capillaries. Here, we show that VEGFR-3, a receptor required for lymphangiogenesis, is expressed by NSCs and is directly required for neurogenesis. Vegfr3:YFP reporter mice show VEGFR-3 expression in multipotent NSCs, which are capable of self-renewal and are activated by the VEGFR-3 ligand VEGF-C in vitro. Overexpression of VEGF-C stimulates VEGFR-3-expressing NSCs and neurogenesis in the SVZ without affecting angiogenesis. Conversely, conditional deletion of Vegfr3 in neural cells, inducible deletion in subventricular astrocytes, and blocking of VEGFR-3 signaling with antibodies reduce SVZ neurogenesis. Therefore, VEGF-C/VEGFR-3 signaling acts directly on NSCs and regulates adult neurogenesis, opening potential approaches for treatment of neurodegenerative diseases. PMID:21498572

  1. Growth factors and cardiovascular structure. Implications for calcium antagonist therapy.

    PubMed

    Re, R N; Chen, L

    1991-07-01

    Abnormalities of cellular growth regulation are integral to the development of cardiovascular disorders such as atherogenesis, ventricular hypertrophy, and diabetic glomerulopathy. Moreover, cellular growth is in large measure controlled by peptide and nonpeptide growth factors that mediate their actions, in part, through the transcriptional regulation of normal cellular genes called protooncogenes. Because angiotensin II is one such growth regulatory factor and because changes in intracellular calcium are intimately involved in the action of angiotensin and other growth factors, it is likely that inhibitors of angiotensin action and calcium-channel-blocking agents will be found to have useful growth regulatory properties. PMID:1910639

  2. Transcriptional down-regulation of epidermal growth factor receptors by nerve growth factor treatment of PC12 cells.

    PubMed

    Shibutani, M; Lazarovici, P; Johnson, A C; Katagiri, Y; Guroff, G

    1998-03-20

    Treatment of PC12 cells with nerve growth factor leads to a decrease in the number of epidermal growth factor receptors on the cell membrane. The mRNA for the epidermal growth factor receptor decreases in a comparable fashion. This decrease appears due to a decrease in the transcription of the epidermal growth factor receptor gene because first, there is no difference in the stability of the epidermal growth factor receptor mRNA, second, newly transcribed epidermal growth factor receptor mRNA is decreased in nerve growth factor-differentiated cells, and third, constructs containing the promoter region of the epidermal growth factor receptor gene are transcribed much less readily in nerve growth factor-differentiated cells than in untreated cells. The decreases in mRNA are not seen in the p140(trk)-deficient variant PC12nnr5 cells nor in cells containing either dominant-negative Ras or dominant-negative Src. Treatment with nerve growth factor also increases the cellular content of GCF2, a putative transcription factor inhibitory for the transcription of the epidermal growth factor receptor gene. The increase in GCF2, like the decrease in the epidermal growth factor receptor mRNA, is not seen in PC12nnr5 cells nor in cells expressing either dominant-negative Ras or dominant-negative Src. The results suggest that nerve growth factor-induced down-regulation of the epidermal growth factor receptor is under transcriptional control, is p140(trk)-, Ras-, and Src-dependent, and may involve transcriptional repression by GCF2.

  3. Endorsement of Growth Factors in Experiential Training Groups

    ERIC Educational Resources Information Center

    Kiweewa, John; Gilbride, Dennis; Luke, Melissa; Seward, Derek

    2013-01-01

    The purpose of this study was to identify student growth factors during a semester long Master's level group counseling class. Results indicated that 12 growth factors accounted for 86% of the total number of critical incidents that participants reported as influencing their personal growth and awareness during the group experience. Two other…

  4. Gene Expression of Growth Factors and Growth Factor Receptors for Potential Targeted Therapy of Canine Hepatocellular Carcinoma

    PubMed Central

    IIDA, Gentoku; ASANO, Kazushi; SEKI, Mamiko; SAKAI, Manabu; KUTARA, Kenji; ISHIGAKI, Kumiko; KAGAWA, Yumiko; YOSHIDA, Orie; TESHIMA, Kenji; EDAMURA, Kazuya; WATARI, Toshihiro

    2013-01-01

    ABSTRACT The purpose of this study was to evaluate the gene expression of growth factors and growth factor receptors of primary hepatic masses, including hepatocellular carcinoma (HCC) and nodular hyperplasia (NH), in dogs. Quantitative real-time reverse transcriptase-polymerase chain reaction was performed to measure the expression of 18 genes in 18 HCCs, 10 NHs, 11 surrounding non-cancerous liver tissues and 4 healthy control liver tissues. Platelet-derived growth factor-B (PDGF-B), transforming growth factor-α, epidermal growth factor receptor, epidermal growth factor and hepatocyte growth factor were found to be differentially expressed in HCC compared with NH and the surrounding non-cancerous and healthy control liver tissues. PDGF-B is suggested to have the potential to become a valuable ancillary target for the treatment of canine HCC. PMID:24189579

  5. Biohybrid networks of selectively desulfated glycosaminoglycans for tunable growth factor delivery.

    PubMed

    Zieris, Andrea; Dockhorn, Ron; Röhrich, Anika; Zimmermann, Ralf; Müller, Martin; Welzel, Petra B; Tsurkan, Mikhail V; Sommer, Jens-Uwe; Freudenberg, Uwe; Werner, Carsten

    2014-12-01

    Sulfation patterns of glycosaminoglycans (GAG) govern the electrostatic complexation of biomolecules and thus allow for modulating the release profiles of growth factors from GAG-based hydrogels. To explore options related to this, selectively desulfated heparin derivatives were prepared, thoroughly characterized, and covalently converted with star-shaped poly(ethylene glycol) into binary polymer networks. The impact of the GAG sulfation pattern on the network characteristics of the obtained hydrogels was theoretically evaluated by mean field methods and experimentally analyzed by rheometry and swelling measurements. Sulfation-dependent differences of reactivity and miscibility of the heparin derivatives were shown to determine network formation. A theory-based design concept for customizing growth factor affinity and physical characteristics was introduced and validated by quantifying the release of fibroblast growth factor 2 from a set of biohybrid gels. The resulting new class of cell-instructive polymer matrices with tunable GAG sulfation will be instrumental for multiple applications in biotechnology and medicine. PMID:25329425

  6. Nano-Fibrous Tissue Engineering Scaffolds Capable of Growth Factor Delivery

    PubMed Central

    Hu, Jiang

    2011-01-01

    Tissue engineering aims at constructing biological substitutes to repair damaged tissues. Three-dimensional (3D) porous scaffolds are commonly utilized to define the 3D geometry of tissue engineering constructs and provide adequate pore space and surface to support cell attachment, migration, proliferation, differentiation and neo tissue genesis. Biomimetic 3D scaffolds provide synthetic microenvironments that mimic the natural regeneration microenvironments and promote tissue regeneration process. While nano-fibrous (NF) scaffolds are constructed to mimic the architecture of NF extracellular matrix, controlled-release growth factors are incorporated to modulate the regeneration process. The present article summarizes current advances in methods to fabricate NF polymer scaffolds and the technologies to incorporate controlled growth factor delivery systems into 3D scaffolds, followed by examples of accelerated regeneration when the scaffolds with growth factor releasing capacity are applied in animal models. PMID:21234657

  7. Biohybrid networks of selectively desulfated glycosaminoglycans for tunable growth factor delivery.

    PubMed

    Zieris, Andrea; Dockhorn, Ron; Röhrich, Anika; Zimmermann, Ralf; Müller, Martin; Welzel, Petra B; Tsurkan, Mikhail V; Sommer, Jens-Uwe; Freudenberg, Uwe; Werner, Carsten

    2014-12-01

    Sulfation patterns of glycosaminoglycans (GAG) govern the electrostatic complexation of biomolecules and thus allow for modulating the release profiles of growth factors from GAG-based hydrogels. To explore options related to this, selectively desulfated heparin derivatives were prepared, thoroughly characterized, and covalently converted with star-shaped poly(ethylene glycol) into binary polymer networks. The impact of the GAG sulfation pattern on the network characteristics of the obtained hydrogels was theoretically evaluated by mean field methods and experimentally analyzed by rheometry and swelling measurements. Sulfation-dependent differences of reactivity and miscibility of the heparin derivatives were shown to determine network formation. A theory-based design concept for customizing growth factor affinity and physical characteristics was introduced and validated by quantifying the release of fibroblast growth factor 2 from a set of biohybrid gels. The resulting new class of cell-instructive polymer matrices with tunable GAG sulfation will be instrumental for multiple applications in biotechnology and medicine.

  8. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy

    PubMed Central

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody–drug conjugates. The FGF1V–valine–citrulline–MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V–vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235

  9. Design and characteristics of cytotoxic fibroblast growth factor 1 conjugate for fibroblast growth factor receptor-targeted cancer therapy.

    PubMed

    Szlachcic, Anna; Zakrzewska, Malgorzata; Lobocki, Michal; Jakimowicz, Piotr; Otlewski, Jacek

    2016-01-01

    Fibroblast growth factor receptors (FGFRs) are attractive candidate cancer therapy targets as they are overexpressed in multiple types of tumors, such as breast, prostate, bladder, and lung cancer. In this study, a natural ligand of FGFR, an engineered variant of fibroblast growth factor 1 (FGF1V), was conjugated to a potent cytotoxic drug, monomethyl auristatin E (MMAE), and used as a targeting agent for cancer cells overexpressing FGFRs, similar to antibodies in antibody-drug conjugates. The FGF1V-valine-citrulline-MMAE conjugate showed a favorable stability profile, bound FGFRs on the cell surface specifically, and efficiently released the drug (MMAE) upon cleavage by the lysosomal protease cathepsin B. Importantly, the conjugate showed a prominent cytotoxic effect toward cell lines expressing FGFR. FGF1V-vcMMAE was highly cytotoxic at concentrations even an order of magnitude lower than those found for free MMAE. This effect was FGFR-specific as cells lacking FGFR did not show any increased mortality. PMID:27563235

  10. Growth factor involvement in tension-induced skeletal muscle growth

    NASA Technical Reports Server (NTRS)

    Vandenburgh, Herman W.

    1987-01-01

    New muscle tissue culture techniques were developed to grow embryonic skeletal myofibers which are able to differentiate into more adultlike myofibers. Studies on mechanical simulation of cultured muscle cell growth will now be more directly applicable to mechanically-induced growth in adult muscle, and lead to better models for understanding muscle tissue atrophy caused by disuse in the microgravity of space.

  11. [Stem cells and growth factors in wound healing].

    PubMed

    Pikuła, Michał; Langa, Paulina; Kosikowska, Paulina; Trzonkowski, Piotr

    2015-01-02

    Wound healing is a complex process which depends on the presence of various types of cells, growth factors, cytokines and the elements of extracellular matrix. A wound is a portal of entry for numerous pathogens, therefore during the evolution wound healing process has formed very early, being critical for the survival of every individual. Stem cells, which give rise to their early descendants progenitor cells and subsequently differentiated cells, play a specific role in the process of wound healing. Among the most important cells which take part in wound healing the following cells need to be distinguished: epidermal stem cells, dermal precursor of fibroblasts, adipose-derived stem cells as well as bone marrow cells. The activity of these cells is strictly regulated by various growth factors, inter alia epidermal growth factor (EGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), vascular endothelial growth factor (VEGF). Any disorders in functioning of stem cells and biological activity of growth factors may lead to the defects in wound healing, for instance delayed wound healing or creation of hypertrophic scars. Therefore, knowledge concerning the mechanisms of wound healing is extremely essential from clinical point of view. In this review the current state of the knowledge of the role of stem cells and growth factors in the process of wound healing has been presented. Moreover, some clinical aspects of wound healing as well as the possibility of the therapy based on stem cells and growth factors have included.

  12. Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides.

    PubMed

    Nässel, Dick R; Vanden Broeck, Jozef

    2016-01-01

    Insulin, insulin-like growth factors (IGFs) and insulin-like peptides (ILPs) are important regulators of metabolism, growth, reproduction and lifespan, and mechanisms of insulin/IGF signaling (IIS) have been well conserved over evolution. In insects, between one and 38 ILPs have been identified in each species. Relatively few insect species have been investigated in depth with respect to ILP functions, and therefore we focus mainly on the well-studied fruitfly Drosophila melanogaster. In Drosophila eight ILPs (DILP1-8), but only two receptors (dInR and Lgr3) are known. DILP2, 3 and 5 are produced by a set of neurosecretory cells (IPCs) in the brain and their biosynthesis and release are controlled by a number of mechanisms differing between larvae and adults. Adult IPCs display cell-autonomous sensing of circulating glucose, coupled to evolutionarily conserved mechanisms for DILP release. The glucose-mediated DILP secretion is modulated by neurotransmitters and neuropeptides, as well as by factors released from the intestine and adipocytes. Larval IPCs, however, are indirectly regulated by glucose-sensing endocrine cells producing adipokinetic hormone, or by circulating factors from the intestine and fat body. Furthermore, IIS is situated within a complex physiological regulatory network that also encompasses the lipophilic hormones, 20-hydroxyecdysone and juvenile hormone. After release from IPCs, the ILP action can be modulated by circulating proteins that act either as protective carriers (binding proteins), or competitive inhibitors. Some of these proteins appear to have additional functions that are independent of ILPs. Taken together, the signaling with multiple ILPs is under complex control, ensuring tightly regulated IIS in the organism.

  13. Epidermal growth factor receptor distribution in burn wounds. Implications for growth factor-mediated repair.

    PubMed Central

    Wenczak, B A; Lynch, J B; Nanney, L B

    1992-01-01

    Epidermal growth factor (EGF) along with several related peptide growth factors has been shown both in vivo and in vitro to accelerate events associated with epidermal wound repair. EGF and transforming growth factor alpha act by binding to a common EGF receptor tyrosine kinase thereby initiating a series of events which ultimately regulate cell proliferation. This study examined the immunohistochemical localization of EGF receptor (EGF-R) in burn wound margins, adjacent proliferating epithelium, and closely associated sweat ducts, sebaceous glands, and hair follicles. Tissue specimens removed during surgical debridement were obtained from full and partial thickness burn wounds in 32 patients with total body surface area burns ranging from 2 to 88%. In the early postburn period (days 2-4), prominent staining for EGF-R was found in undifferentiated, marginal keratinocytes, adjacent proliferating, hypertrophic epithelium, and both marginal and nonmarginal hair follicles, sweat ducts, and sebaceous glands. During the late postburn period (days 5-16), EGF-R was depleted along leading epithelial margins; however, immunoreactive EGF-R remained intensely positive in the hypertrophic epithelium and all skin appendages. Increased detection of immunoreactive EGF-R and the presence of [125I]EGF binding in the hypertrophic epithelium correlated positively with proliferating cell nuclear antigen distributions. Thus, the presence of EGF-R in the appropriate keratinocyte populations suggests a functional role for this receptor during wound repair. Dynamic modulation in EGF receptor distribution during the temporal sequence of repair provides further evidence that an EGF/transforming growth factor alpha/EGF-R-mediated pathway is activated during human wound repair. Images PMID:1361495

  14. Transcriptional modulation of transin gene expression by epidermal growth factor and transforming growth factor beta

    SciTech Connect

    Machida, C.M.; Muldoon, L.L.; Rodland, K.D.; Magun, B.E.

    1988-06-01

    Transin is a transformation-associated gene which is expressed constitutively in rat fibroblasts transformed by a variety of oncogenes and in malignant mouse skin carcinomas but not benign papillomas or normal skin. It has been demonstrated that, in nontransformed Rat-1 cells, transin RNA expression is modulated positively by epidermal growth factor (EGF) and negatively by transforming growth factor beta (TGF-BETA); other peptide growth factors were found to have no effect on transin expression. Results presented here indicate that both protein synthesis and continuous occupancy of the EGF receptor by EGF were required for sustained induction of transin RNA. Treatment with TGF-BETA inhibited the ability of EGF to induce transin, whether assayed at the transcriptional level by nuclear run-on analysis or at the level of transin RNA accumulation by Northern (RNA) blot analysis of cellular RNA. TGF-BETA both blocked initial production of transin transcription by EGF and halted established production of transin transcripts during prolonged treatment. These results suggest that TGF-BETA acts at the transcriptional level to antagonize EGF-mediated induction of transin gene expression.

  15. Direct binding of hepatocyte growth factor and vascular endothelial growth factor to CD44v6

    PubMed Central

    Volz, Yvonne; Koschut, David; Matzke-Ogi, Alexandra; Dietz, Marina S.; Karathanasis, Christos; Richert, Ludovic; Wagner, Moritz G.; Mély, Yves; Heilemann, Mike; Niemann, Hartmut H.; Orian-Rousseau, Véronique

    2015-01-01

    CD44v6, a member of the CD44 family of transmembrane glycoproteins is a co-receptor for two receptor tyrosine kinases (RTKs), Met and VEGFR-2 (vascular endothelial growth factor receptor 2). CD44v6 is not only required for the activation of these RTKs but also for signalling. In order to understand the role of CD44v6 in Met and VEGFR-2 activation and signalling we tested whether CD44v6 binds to their ligands, HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor), respectively. FACS analysis and cellular ELISA showed binding of HGF and VEGF only to cells expressing CD44v6. Direct binding of CD44v6 to HGF and VEGF was demonstrated in pull-down assays and the binding affinities were determined using MicroScale Thermophoresis, fluorescence correlation spectroscopy and fluorescence anisotropy. The binding affinity of CD44v6 to HGF is in the micromolar range in contrast with the high-affinity binding measured in the case of VEGF and CD44v6, which is in the nanomolar range. These data reveal a heparan sulfate-independent direct binding of CD44v6 to the ligands of Met and VEGFR-2 and suggest different roles of CD44v6 for these RTKs. PMID:26181364

  16. Epidermal growth factor receptors in the oesophagus.

    PubMed Central

    Jankowski, J; Murphy, S; Coghill, G; Grant, A; Wormsley, K G; Sanders, D S; Kerr, M; Hopwood, D

    1992-01-01

    The quantity and distribution of epidermal growth factor receptors (EGF-R) in oesophageal mucosa was studied in the oesophagus in order to determine its role in oesophageal disease. Fifty five biopsies were taken from different levels of the oesophagus in 25 consecutive patients undergoing endoscopy. Another group of eight patients with histologically proven Barrett's oesophagitis had a biopsy taken from the area of columnar lined oesophagus. A peripheral, membranous pattern was seen predominantly confined to the basal and immediately suprabasal cells in all of the first group of patients. In the superficial cells a few granular cytoplasmic structures were positive. All patients with Barrett's oesophagitis showed EGF-R staining of the surface epithelium. A computerised planimeter was used to determine the proportion of stained areas of squamous cells which were expressed as a percentage of the total area of squamous cells. The difference in the area of cells stained for EGF-R between normal and inflamed oesophageal mucosa (29.5% and 43.1% respectively) was significant (p less than 0.001). Images Figure 1 PMID:1582583

  17. Nerve growth factor actions on the brain

    SciTech Connect

    Martinez, H.J.

    1989-01-01

    We examined the effect of the trophic protein, nerve growth factor (NGF), on cultures of fetal rat neostriatum and basal forebrain-medial septal area (BF-MS) to define its role in brain development. Treatment of cultures with NGF resulted in an increase in the specific activity of the cholinergic enzyme choline acetyltransferase (CAT) in both brain areas. CAT was immunocytochemically localized to neurons. In the BF-MS, NGF treatment elicited a marked increase in staining intensity and an apparent increase in the number of CAT-positive neurons. Moreover, treatment of BF-MS cultures with NGF increased the activity of acetylcholinesterase, suggesting that the cholinergic neuron as a whole was affected. To begin defining mechanisms of action of NGF in the BF-MS, we detected NGF receptors by two independent methods. Receptors were localized to two different cellular populations: neuron-like cells, and non-neuron-like cells. Dissociation studies with ({sup 125}I)NGF suggested that high affinity receptors were localized to the neuron-like population. Only low-affinity receptors were localized to the non-neuron-like cells. Moreover, employing combined immunocytochemistry and ({sup 125}I)NGF autoradiography, we detected a subpopulation of CAT-containing neutrons that exhibited high-affinity binding. Unexpectedly, a gamma-aminobutyric acid (GABA)-containing cell group also expressed high affinity binding. However, only subsets of cholinergic or GABA neurons expressed high-affinity biding, suggesting that these transmitter populations are composed of differentially response subpopulations.

  18. [Epidermal growth factor, innovation and safety].

    PubMed

    Esquirol Caussa, Jordi; Herrero Vila, Elisabeth

    2015-10-01

    Bioidentical recombinant human epidermal growth factor (rhEGF) is available in concentrations and purity suitable for therapeutic use in long time stable formulations. Beneficial effects in several skin pathologies and lesions have been reported (traumatic and surgical wound healing, laser induced wounds, abnormal scars, keloids, radiation or chemotherapy induced dermatitis, post inflammatory hyperpigmentation or for skin aging damage repairing) and also may be considered for the treatment of several oropharingeal and high gastroesophageal tract mucosa diseases (mouth sores, pharyngeal fistulas, ulcers), and several corneal or conjunctive mucosa lesions. rhEGF has not shown any important side or collateral effects in humans or in laboratory experimentation animals, showing optimal tolerability and safety with continuous use for months. Compounding gives advantages of versatility, individualization, personalization, molecular stability, safety and effectiveness in ideal conditions, showing good tissue penetration, both on intact skin and skin lesions that expose the lower planes to the surface. rhEGF compounds can be considered for prevention or as a treatment of diverse skin and mucosa diseases and conditions through compounding preparations.

  19. Fibroblast Growth Factor Signaling in Metabolic Regulation.

    PubMed

    Nies, Vera J M; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T; Atkins, Annette R; Evans, Ronald M; Jonker, Johan W; Downes, Michael Robert

    2015-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  20. [Growth factors in human tooth development].

    PubMed

    Bellone, C; Barni, T; Pagni, L; Balboni, G C; Vannelli, G B

    1990-03-01

    Our research concerns the immunohistochemical localization of EGF and IGF-I receptors in the tooth germ, using monoclonal antibodies. The results show that in the early phases of human tooth development EGF and IGF-I receptors are present. At bud stage both receptors are localized at dental laminae level, in some epithelial cells of the tooth bud and in some mesenchymal cells. At cap stage the receptors are present in the outer and inner enamel epithelium, and in some cells of stellate reticulum. As far as concerns the mesenchymal cells, some cells of dental papilla in contact with enamel organ, are intensely positive. The immunopositivity is present also in some mesenchymal cells at follicular level. At late cap stage and at early bell stage receptors are not present at inner enamel epithelium level but they can be detectable in the mesenchyma of dental papilla and in some cells of the follicle. On the basis of these results it may be hypothesized that EGF and IGF-I can act as growth factors in the modulation of cellular proliferation and differentiation during the human tooth morphogenesis. Moreover, it is possible that these substances can play a role in the mesenchymal-epithelial interaction in the developing human tooth.

  1. Transforming growth factor beta1 and aldosterone

    PubMed Central

    Matsuki, Kota; Hathaway, Catherine K.; Chang, Albert S.; Smithies, Oliver; Kakoki, Masao

    2016-01-01

    Purpose of review It is well established that blocking renin-angiotensin II-aldosterone system (RAAS) is effective for the treatment of cardiovascular and renal complications in hypertension and diabetes mellitus. Although the induction of transforming growth factor beta1 (TGFbeta1) by components of RAAS mediates the hypertrophic and fibrogenic changes in cardiovascular-renal complications, it is still controversial as to whether TGFbeta1 can be a target to prevent such complications. Here we review recent findings on the role of TGFbeta1 in fluid homeostasis, focusing on the relationship with aldosterone. Recent findings TGFbeta1 suppresses adrenal production of aldosterone and renal tubular sodium reabsorption. We have generated mice with TGFbeta1 mRNA expression graded in five steps from 10% to 300% normal, and found that blood pressure and plasma volume are negatively regulated by TGFbeta1. Notably, the 10 % hypomorph exhibits primary aldosteronism and sodium and water retention due to markedly impaired urinary excretion of water and electrolytes. Summary These results identify TGFbeta signaling as an important counterregulatory system against aldosterone. Understanding the molecular mechanisms for the suppressive effects of TGFbeta1 on adrenocortical and renal function may further our understanding of primary aldosteronism as well as assist in the development of novel therapeutic strategies for hypertension. PMID:25587902

  2. Evaluation of emulsion electrospun polycaprolactone/hyaluronan/epidermal growth factor nanofibrous scaffolds for wound healing.

    PubMed

    Wang, Zhenbei; Qian, Yuna; Li, Linhao; Pan, Lianhong; Njunge, Lucy W; Dong, Lili; Yang, Li

    2016-01-01

    Wound healing scaffolds provide cells with structural integrity and can also deliver biological agents to establish a skin tissue-specific microenvironment to regulate cell functions and to accelerate the healing process. In this study, we fabricated biodegradable nanofibrous scaffolds with an emulsion electrospinning technique. The scaffolds were composed of polycaprolactone, hyaluronan and encapsulating epidermal growth factor. The morphology and core-sheath structure of the nanofibers were characterized by scanning electron microscopy and transmission electron microscopy. The scaffolds were also characterized for chemical composition and hydrophilicity with a Fourier-transform infrared analysis, energy dispersive spectroscopy and the water contact angle. An in vitro model protein bovine serum albumin and epidermal growth factor release study was conducted to evaluate the sustained release potential of the core-sheath structured nanofibers with and without the hyaluronan component. Additionally, an in vitro cultivation of human skin keratinocytes (HaCaT) and fibroblasts on polycaprolactone/hyaluronan and polycaprolactone/hyaluronan-epidermal growth factor scaffolds showed a significant synergistic effect of hyaluronan and epidermal growth factor on cell proliferation and infiltration. Furthermore, there was an up-regulation of the wound-healing-related genes collagen I, collagen III and TGF-β in polycaprolactone/hyaluronan/epidermal growth factor scaffolds compared with control groups. In the full-thickness wound model, the enhanced regeneration of fully functional skin was facilitated by epidermal regeneration in the polycaprolactone/hyaluronan/epidermal growth factor treatment group. Our findings suggest that bioactivity and hemostasis of the hyaluronan-based nanofibrous scaffolds have the capability to encapsulate and control the release of growth factors that can serve as skin tissue engineering scaffolds for wound healing.

  3. Stopping (or slowing) the revolving door: factors related to NGRI acquittees' maintenance of a conditional release.

    PubMed

    Monson, C M; Gunnin, D D; Fogel, M H; Kyle, L L

    2001-06-01

    The current study sought to extend the knowledge about factors associated with NGRI acquittees' maintenance of a conditional release after hospital discharge. The medical and forensic records of 125 NGRI acquittees were reviewed to collect a variety of demographic, clinical, criminal, and aftercare factors. A hierarchical survival analysis approach to determining success was compared to data analysis strategies typically employed in the area. Survival analysis, which accounts for both conditional release success status and time on conditional release, revealed that minority status, substance abuse diagnosis, and a prior criminal history were the factors that significantly predicted conditional release revocation. Treatment and policy implications of these results are discussed.

  4. Supramolecular Nanofibers Enhance Growth Factor Signaling by Increasing Lipid Raft Mobility.

    PubMed

    Newcomb, Christina J; Sur, Shantanu; Lee, Sungsoo S; Yu, Jeong Min; Zhou, Yan; Snead, Malcolm L; Stupp, Samuel I

    2016-05-11

    The nanostructures of self-assembling biomaterials have been previously designed to tune the release of growth factors in order to optimize biological repair and regeneration. We report here on the discovery that weakly cohesive peptide nanostructures in terms of intermolecular hydrogen bonding, when combined with low concentrations of osteogenic growth factor, enhance both BMP-2 and Wnt mediated signaling in myoblasts and bone marrow stromal cells, respectively. Conversely, analogous nanostructures with enhanced levels of internal hydrogen bonding and cohesion lead to an overall reduction in BMP-2 signaling. We propose that the mechanism for enhanced growth factor signaling by the nanostructures is related to their ability to increase diffusion within membrane lipid rafts. The phenomenon reported here could lead to new nanomedicine strategies to mediate growth factor signaling for translational targets. PMID:27070195

  5. Supramolecular Nanofibers Enhance Growth Factor Signaling by Increasing Lipid Raft Mobility.

    PubMed

    Newcomb, Christina J; Sur, Shantanu; Lee, Sungsoo S; Yu, Jeong Min; Zhou, Yan; Snead, Malcolm L; Stupp, Samuel I

    2016-05-11

    The nanostructures of self-assembling biomaterials have been previously designed to tune the release of growth factors in order to optimize biological repair and regeneration. We report here on the discovery that weakly cohesive peptide nanostructures in terms of intermolecular hydrogen bonding, when combined with low concentrations of osteogenic growth factor, enhance both BMP-2 and Wnt mediated signaling in myoblasts and bone marrow stromal cells, respectively. Conversely, analogous nanostructures with enhanced levels of internal hydrogen bonding and cohesion lead to an overall reduction in BMP-2 signaling. We propose that the mechanism for enhanced growth factor signaling by the nanostructures is related to their ability to increase diffusion within membrane lipid rafts. The phenomenon reported here could lead to new nanomedicine strategies to mediate growth factor signaling for translational targets.

  6. Vascular endothelial growth factor in central nervous system injuries - a vascular growth factor getting nervous?

    PubMed

    Sköld, Mattias K; Kanje, Martin

    2008-11-01

    Vascular Endothelial Growth Factor (VEGF) is recognized as a central factor in growth, survival and permeability of blood vessels in both physiological and pathological conditions. It is as such of importance for vascular responses in various central nervous system (CNS) disorders. Accumulating evidence suggest that VEGF may also act as a neuroprotective and neurotrophic factor supporting neuronal survival and neuronal regeneration. Findings of neuropilins as shared co-receptors between molecules with such seemingly different functions as the axon guidance molecules semaphorins and VEGF has further boosted the interest in the role of VEGF in neural tissue injury and repair mechanisms. Thus, VEGF most likely act in parallel or concurrent on cells in both the vascular and nervous system. The present review gives a summary of known or potential aspects of the VEGF system in the healthy and diseased nervous system. The potential benefits but also problems and pitfalls in intervening in the actions of such a multifunctional factor as VEGF in the disordered CNS are also covered.

  7. Growth Hormone-Insulin-Like Growth Factor Axis, Thyroid Axis, Prolactin, and Exercise.

    PubMed

    Hackney, Anthony C; Davis, Hope C; Lane, Amy R

    2016-01-01

    This chapter addresses what is known about the endocrine system components growth hormone (GH)-insulin-like growth factor (IGF) axis, thyroid axis, and prolactin relative to exercise and exercise training. Each one of these hormone axes contributes to the maintenance of homeostasis in the body through impact on a multitude of physiological systems. The homeostatic disruption of exercise causes differing responses in each hormone axis. GH levels increase with sufficient stimulation, and IGFs are released in response to GH from the anterior pituitary providing multiple roles including anabolic properties. Changes in the thyroid hormones T3 and T4 vary greatly with exercise, from increases/decreases to no change in levels across different exercise types, intensities and durations. These ambiguous findings could be due to numerous confounding factors (e.g. nutrition status) within the research. Prolactin increases proportionally to the intensity of the exercise. The magnitude may be augmented with extended durations; conflicting findings have been reported with resistance training. While the responses to exercise vary, it appears there may be overall adaptive and regenerative impacts on the body into recovery by these hormones through immune and tissue inflammatory responses/mediations. Nonetheless, well-designed exercise research studies are still needed on each of these hormones, especially thyroid hormones and prolactin. PMID:27348437

  8. Factors Associated with Releasing for Adoption among Adolescent Mothers.

    ERIC Educational Resources Information Center

    Donnelly, Brenda W.; Voydanoff, Patricia

    1991-01-01

    Examined relative importance of demographic characteristics, perceived alternatives to early childbearing, attitudes toward adoption and expectations regarding pregnancy, and relationships and experiences in adolescent mothers' (n=177) decisions to keep or release their child for adoption. Results indicated demographic characteristics and…

  9. Immunohistochemical localization of the epidermal growth factor, transforming growth factor alpha, and their receptor in the human mesonephros and metanephros.

    PubMed

    Bernardini, N; Bianchi, F; Lupetti, M; Dolfi, A

    1996-07-01

    , glomerulus, and tubules) of renal anlagen might release the growth factors while the cells of the urinary tract (i.e., collecting duct, pelvis, etc.) may be their targets.

  10. Extracellular distribution of diffusible growth factors controlled by heparan sulfate proteoglycans during mammalian embryogenesis.

    PubMed

    Matsuo, Isao; Kimura-Yoshida, Chiharu

    2014-12-01

    During mouse embryogenesis, diffusible growth factors, i.e. fibroblast growth factors, Wnt, bone morphogenetic protein and Hedgehog family members, emanating from localized areas can travel through the extracellular space and reach their target cells to specify the cell fate and form tissue architectures in coordination. However, the mechanisms by which these growth factors travel great distances to their target cells and control the signalling activity as morphogens remain an enigma. Recent studies in mice and other model animals have revealed that heparan sulfate proteoglycans (HSPGs) located on the cell surface (e.g. syndecans and glypicans) and in the extracellular matrix (ECM; e.g. perlecan and agrin) play crucial roles in the extracellular distribution of growth factors. Principally, the function of HSPGs depends primarily on the fine features and localization of their heparan sulfate glycosaminoglycan chains. Cell-surface-tethered HSPGs retain growth factors as co-receptors and/or endocytosis mediators, and enzymatic release of HSPGs from the cell membrane allows HSPGs to transport or move multiple growth factors. By contrast, ECM-associated HSPGs function as a reservoir or barrier in a context-dependent manner. This review is focused on our current understanding of the extracellular distribution of multiple growth factors controlled by HSPGs in mammalian development.

  11. Fibroblast Growth Factor Signaling in Metabolic Regulation

    PubMed Central

    Nies, Vera J. M.; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T.; Atkins, Annette R.; Evans, Ronald M.; Jonker, Johan W.; Downes, Michael Robert

    2016-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions. PMID:26834701

  12. Novel Drosophila receptor that binds multiple growth factors

    SciTech Connect

    Rosner, M.R.; Thompson, K.L.; Garcia, V.; Decker, S.J.

    1986-05-01

    The authors have recently reported the identification of a novel growth factor receptor from Drosophila cell cultures that has dual binding specificity for both insulin and epidermal growth factor (EGF). This 100 kDa protein is also antigenically related to the cytoplasmic region of the mammalian EGF receptor-tyrosine kinase. They now report that this protein binds to mammalian nerve growth factor and human transforming growth factor alpha as well as insulin and EGF with apparent dissociation constants ranging from 10/sup -6/ to 10/sup -8/ M. The 100 kDa protein can be affinity-labeled with these /sup 125/I-labeled growth factors after immunoprecipitation with anti-EGF receptor antiserum. These four growth factors appear to share a common binding site, as evidenced by their ability to block affinity labelling by /sup 125/I-insulin. No significant binding to the 100 kDa protein was observed with platelet-derived growth factor, transforming growth factor beta, or glucagon. The 100 kDa Drosophila protein has a unique ligand-binding spectrum with no direct counterpart in mammalian cells and may represent an evolutionary precursor of the mammalian receptors for these growth factors.

  13. Growth factor array fabrication using a color ink jet printer.

    PubMed

    Watanabe, Kohei; Miyazaki, Takeshi; Matsuda, Ryoichi

    2003-04-01

    We have developed a novel method for growth factor analysis using a commercial color ink jet printer to fabricate substrata patterned with growth factors. We prepared substrata with insulin printed in a simple pattern or containing multiple areas of varying quantities of printed insulin. When we cultured the mouse myoblast cell line, C2C12, on the insulin-patterned substrata, the cells were grown in the same pattern with the insulin-printed pattern. Cell culture with the latter substrata demonstrated that quantity control of insulin deposition by a color ink jet printer is possible. For further applications, we developed substrata with insulin-like growth factor-I (IGF-I) and basic fibroblast growth factor (bFGF) spotted in 16 different areas in varying combinations and concentrations (growth factor array). With this growth factor array, C2C12 cells were cultured, and the onset of muscle cell differentiation was monitored for the expression of the myogenic regulator myogenin. The ratio of cells expressing myogenin varied with the doses of IGF-I and bFGF in the sections, demonstrating a feasibility of growth factor array fabrication by a color ink jet printer. Since a printer manipulates several colors, this method can be easily applied to multivariate analyses of growth factors and attachment factors affecting cell growth and differentiation. This method may provide a powerful tool for cell biology and tissue engineering, especially for stem cell research in investigating unknown conditions for differentiation.

  14. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  15. Effect of catch-and-release angling on growth and survival of rainbow trout, Oncorhynchus mykiss

    USGS Publications Warehouse

    Pope, K.L.; Wilde, G.R.; Knabe, D.W.

    2007-01-01

    Catch-and-release angling is popular in many parts of the world and plays an increasingly important role in fish conservation efforts. Although survival rates associated with catch-and-release angling are well documented for many species, sublethal effects have been less studied. An experiment was conducted to directly assess the effects of catch-and-release angling on growth and survival of rainbow trout, Oncorhynchus mykiss (Walbaum). Catch-and-release events were simulated in laboratory tanks maintained at 15-16 ??C with hooks manually placed in pre-designated locations in the mouths of the fish. There were no differences in standard length (P = 0.59) or wet weight (P = 0.81) gained between caught and uncaught fish over a 1-month angling and recovery period. Survival was 96.99 ?? 0.06% for rainbow trout caught and released, and did not vary with number (one, two or four) of captures. Thus, catch-and-release angling appears to have little effect on growth and mortality of rainbow trout hooked in the mouth. ?? 2007 The Authors. Journal compilation 2007 Blackwell Publishing Ltd.

  16. [Effects of slow/controlled release fertilizers on the growth and nutrient use efficiency of pepper].

    PubMed

    Tang, Shuan-Hu; Zhang, Fa-Bao; Huang, Xu; Chen, Jian-Sheng; Xu, Pei-Zhi

    2008-05-01

    Pot trails were conducted from 2003 to 2005 to study the effects of slow/controlled release fertilizers on the growth and nutrient use efficiency of pepper. The results indicated that in comparison with conventional splitting fertilization (T1), basal application of polymer-coated controlled release fertilizer (T2) enhanced the single fruit mass and vitamin C concentration, improved the root activity, and increased the fruit yield by 8.4%, but no significant effect was observed on the dissoluble sugar concentration in fruit. NH4MgPO4-coated controlled release fertilizer (T3) increased the dissoluble sugar concentration by 5.67%, but had less effect on single fruit mass and vitamin C concentration. Under the application of T3, the root system had a vigorous growth at early stages but became infirm at later stages, resulting in a lower yield. Comparing with T1, the application of 3 slow release fertilizers increased the dissoluble sugar concentration in fruit, enhanced the root activity, but had less effect on the yield. All test slow/controlled release fertilizers increased the use efficiency of N, P, and K significantly, with an exception for T2 which increased the use efficiency of N and K but decreased that of P. It was demonstrated that an appropriate application of slow/controlled release fertilizers could enhance pepper' s root activity and improve nutrient use efficiency. PMID:18655582

  17. [Effects of slow/controlled release fertilizers on the growth and nutrient use efficiency of pepper].

    PubMed

    Tang, Shuan-Hu; Zhang, Fa-Bao; Huang, Xu; Chen, Jian-Sheng; Xu, Pei-Zhi

    2008-05-01

    Pot trails were conducted from 2003 to 2005 to study the effects of slow/controlled release fertilizers on the growth and nutrient use efficiency of pepper. The results indicated that in comparison with conventional splitting fertilization (T1), basal application of polymer-coated controlled release fertilizer (T2) enhanced the single fruit mass and vitamin C concentration, improved the root activity, and increased the fruit yield by 8.4%, but no significant effect was observed on the dissoluble sugar concentration in fruit. NH4MgPO4-coated controlled release fertilizer (T3) increased the dissoluble sugar concentration by 5.67%, but had less effect on single fruit mass and vitamin C concentration. Under the application of T3, the root system had a vigorous growth at early stages but became infirm at later stages, resulting in a lower yield. Comparing with T1, the application of 3 slow release fertilizers increased the dissoluble sugar concentration in fruit, enhanced the root activity, but had less effect on the yield. All test slow/controlled release fertilizers increased the use efficiency of N, P, and K significantly, with an exception for T2 which increased the use efficiency of N and K but decreased that of P. It was demonstrated that an appropriate application of slow/controlled release fertilizers could enhance pepper' s root activity and improve nutrient use efficiency.

  18. Application of photoremovable protecting group for controlled release of plant growth regulators by sunlight.

    PubMed

    Atta, Sanghamitra; Ikbal, Mohammed; Kumar, Ashutosh; Pradeep Singh, N D

    2012-06-01

    We report a novel technique for controlled release of plant growth regulators (PGRs) by sunlight using photoremovable protecting group (PRPG) as a delivery device. In the present work, carboxyl-containing PGRs of the auxin group [indoleacetic acid (IAA) and naphthoxyacetic acid (NOAA)] were chemically caged using PRPGs of coumarin derivatives. Photophysical studies showed that caged PGRs exhibited good fluorescence properties. Irradiation of caged PGRs by sunlight in both aqueous ethanol and soil media resulted in controlled release of PGRs. The results of the bioactivity experiments indicated that caged PGRs showed better enhancement in the root and shoot length growth of Cicer arietinum compared to PGRs after 10days of sunlight exposure. Our results indicated that use of PRPG as a delivery device for controlled release of PGRs by sunlight in soil holds great interest for field application since it can overcome the rapid loss of PGRs in environmental conditions.

  19. Application of photoremovable protecting group for controlled release of plant growth regulators by sunlight.

    PubMed

    Atta, Sanghamitra; Ikbal, Mohammed; Kumar, Ashutosh; Pradeep Singh, N D

    2012-06-01

    We report a novel technique for controlled release of plant growth regulators (PGRs) by sunlight using photoremovable protecting group (PRPG) as a delivery device. In the present work, carboxyl-containing PGRs of the auxin group [indoleacetic acid (IAA) and naphthoxyacetic acid (NOAA)] were chemically caged using PRPGs of coumarin derivatives. Photophysical studies showed that caged PGRs exhibited good fluorescence properties. Irradiation of caged PGRs by sunlight in both aqueous ethanol and soil media resulted in controlled release of PGRs. The results of the bioactivity experiments indicated that caged PGRs showed better enhancement in the root and shoot length growth of Cicer arietinum compared to PGRs after 10days of sunlight exposure. Our results indicated that use of PRPG as a delivery device for controlled release of PGRs by sunlight in soil holds great interest for field application since it can overcome the rapid loss of PGRs in environmental conditions. PMID:22513094

  20. [Effects of crop tree release on stand growth and stand structure of Cunninghamia lanceolata plantation].

    PubMed

    Wu, Jian-qiang; Wang, Yi-xiang; Yang, Yi; Zhu, Ting-ting; Zhu, Xu-dan

    2015-02-01

    Crop trees were selected in a 26-year-old even-aged Cunninghamia lanceolata plantation in Lin' an, and compared in plots that were released and unreleased to examine growth and structure responses for 3 years after thinning. Crop tree release significantly increased the mean increments of diameter and volume of individual tree by 1.30 and 1.25 times relative to trees in control stands, respectively. The increments of diameter and volume of crop trees were significantly higher than those of general trees in thinning plots, crop trees and general trees in control plots, which suggested that the responses from different tree types to crop tree release treatment were different. Crop tree release increased the average distances of crop trees to the nearest neighboring trees, reducing competition among crop trees by about 68.2%. 3-year stand volume increment for thinning stands had no significant difference with that of control stands although the number of trees was only 81.5% of the control. Crop trees in thinned plots with diameters over than 14 cm reached 18.0% over 3 years, compared with 12.0% for trees without thinning, suggesting that crop tree release benefited the larger individual trees. The pattern of tree locations in thinning plots tended to be random, complying with the rule that tree distribution pattern changes with growth. Crop tree release in C. lanceolata plantation not only promoted the stand growth, but also optimized the stand structure, benefiting crop trees sustained rapid growth and larger diameter trees production.

  1. Acoustic droplet-hydrogel composites for spatial and temporal control of growth factor delivery and scaffold stiffness.

    PubMed

    Fabiilli, Mario L; Wilson, Christopher G; Padilla, Frédéric; Martín-Saavedra, Francisco M; Fowlkes, J Brian; Franceschi, Renny T

    2013-07-01

    Wound healing is regulated by temporally and spatially restricted patterns of growth factor signaling, but there are few delivery vehicles capable of the "on-demand" release necessary for recapitulating these patterns. Recently we described a perfluorocarbon double emulsion that selectively releases a protein payload upon exposure to ultrasound through a process known as acoustic droplet vaporization (ADV). In this study, we describe a delivery system composed of fibrin hydrogels doped with growth factor-loaded double emulsion for applications in tissue regeneration. Release of immunoreactive basic fibroblast growth factor (bFGF) from the composites increased up to 5-fold following ADV and delayed release was achieved by delaying exposure to ultrasound. Releasates of ultrasound-treated materials significantly increased the proliferation of endothelial cells compared to sham controls, indicating that the released bFGF was bioactive. ADV also triggered changes in the ultrastructure and mechanical properties of the fibrin as bubble formation and consolidation of the fibrin in ultrasound-treated composites were accompanied by up to a 22-fold increase in shear stiffness. ADV did not reduce the viability of cells suspended in composite scaffolds. These results demonstrate that an acoustic droplet-hydrogel composite could have broad utility in promoting wound healing through on-demand control of growth factor release and/or scaffold architecture. PMID:23535233

  2. Acoustic droplet–hydrogel composites for spatial and temporal control of growth factor delivery and scaffold stiffness

    PubMed Central

    Fabiilli, Mario L.; Wilson, Christopher G.; Padilla, Frédéric; Martín-Saavedra, Francisco M.; Fowlkes, J. Brian; Franceschi, Renny T.

    2013-01-01

    Wound healing is regulated by temporally and spatially restricted patterns of growth factor signaling, but there are few delivery vehicles capable of the “on-demand” release necessary for recapitulating these patterns. Recently we described a perfluorocarbon double emulsion that selectively releases a protein payload upon exposure to ultrasound through a process known as acoustic droplet vaporization (ADV). In this study, we describe a delivery system composed of fibrin hydrogels doped with growth factor-loaded double emulsion for applications in tissue regeneration. Release of immunoreactive basic fibroblast growth factor (bFGF) from the composites increased up to 5-fold following ADV and delayed release was achieved by delaying exposure to ultrasound. Releasates of ultrasound-treated materials significantly increased the proliferation of endothelial cells compared to sham controls, indicating that the released bFGF was bioactive. ADV also triggered changes in the ultrastructure and mechanical properties of the fibrin as bubble formation and consolidation of the fibrin in ultrasound-treated composites were accompanied by up to a 22-fold increase in shear stiffness. ADV did not reduce the viability of cells suspended in composite scaffolds. These results demonstrate that an acoustic droplet–hydrogel composite could have broad utility in promoting wound healing through on-demand control of growth factor release and/or scaffold architecture. PMID:23535233

  3. Autocrine release of TGF-beta by portal fibroblasts regulates cell growth.

    PubMed

    Wells, Rebecca G; Kruglov, Emma; Dranoff, Jonathan A

    2004-02-13

    Portal fibroblasts (PF) are a newly isolated population of fibrogenic cells in the liver postulated to play a significant role in early biliary fibrosis. Because transforming growth factor-beta (TGF)-beta is a key growth factor in fibrosis, we characterized the response of PF to TGF-beta. We demonstrate that PF produce significant amounts of TGF-beta2 and, unlike activated hepatic stellate cells (HSC), express all three TGF-beta receptors and are growth inhibited by TGF-beta1 and TGF-beta2. Fibroblast growth factor (FGF)-2, but not platelet derived growth factor (PDGF), causes PF proliferation. These data suggest a mechanism whereby HSC eclipse PF as the dominant myofibroblast population in biliary fibrosis.

  4. Growth hormone-releasing hormone (GHRH) polymorphisms associated with carcass traits of meat in Korean cattle

    PubMed Central

    Cheong, Hyun Sub; Yoon, Du-Hak; Kim, Lyoung Hyo; Park, Byung Lae; Choi, Yoo Hyun; Chung, Eui Ryong; Cho, Yong Min; Park, Eng Woo; Cheong, Il-Cheong; Oh, Sung-Jong; Yi, Sung-Gon; Park, Taesung; Shin, Hyoung Doo

    2006-01-01

    Background Cold carcass weight (CW) and longissimus muscle area (EMA) are the major quantitative traits in beef cattle. In this study, we found several polymorphisms of growth hormone-releasing hormone (GHRH) gene and examined the association of polymorphisms with carcass traits (CW and EMA) in Korean native cattle (Hanwoo). Results By direct DNA sequencing in 24 unrelated Korean cattle, we identified 12 single nucleotide polymorphisms within the 9 kb full gene region, including the 1.5 kb promoter region. Among them, six polymorphic sites were selected for genotyping in our beef cattle (n = 428) and five marker haplotypes (frequency > 0.1) were identified. Statistical analysis revealed that -4241A>T showed significant associations with CW and EMA. Conclusion Our findings suggest that polymorphisms in GHRH might be one of the important genetic factors that influence carcass yield in beef cattle. Sequence variation/haplotype information identified in this study would provide valuable information for the production of a commercial line of beef cattle. PMID:16749938

  5. Presence of growth factors in palmar and plantar fibromatoses.

    PubMed

    Zamora, R L; Heights, R; Kraemer, B A; Erlich, H P; Groner, J P

    1994-05-01

    Palmar and plantar fibromatoses are disease processes in which the presence of certain growth factors has not been defined. Monoclonal antibodies against transforming growth factor-beta, epidermal growth factor, procollagen type 1, fibronectin, phosphotyrosine residues, and CD41 platelet antigen were used in standard immunoperoxidase staining to study 36 nodules and 24 cords obtained from patients with fibromatoses. The specimens were studied via light microscopy, and staining intensity was quantitated using a computer-enhanced video system. Transforming growth factor-beta staining paralleled procollagen I, fibronectin, and phosphotyrosine staining within the nodule (early stages) but not the cord (late stages) tissue. These factors showed significant increased staining in the early stage of fibromatosis when compared to the late stage. This study is a preliminary demonstration of the presence of transforming growth factor-beta in palmar and plantar fibromatoses.

  6. Clinical application of growth factors and cytokines in wound healing.

    PubMed

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2014-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of nonhealing wounds (e.g., pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted an online search of Medline/PubMed and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies, and future research possibilities. In this review, we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include granulocyte-macrophage colony-stimulating factor, platelet-derived growth factor, vascular endothelial growth factor, and basic fibroblast growth factor. While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy.

  7. 76 FR 68183 - Highlights of the Exposure Factors Handbook: 2011 Update Release of Final Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-03

    ... AGENCY Highlights of the Exposure Factors Handbook: 2011 Update Release of Final Report AGENCY... the report Highlights of the Exposure Factors Handbook: 2011 Update. The Highlights of the Exposure Factors Handbook: 2011 Update provides a summary of the recommended exposure factors extracted from...

  8. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction

    PubMed Central

    Shah, Nisarg J.; Hyder, Md. Nasim; Quadir, Mohiuddin A.; Dorval Courchesne, Noémie-Manuelle; Seeherman, Howard J.; Nevins, Myron; Spector, Myron; Hammond, Paula T.

    2014-01-01

    Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration. PMID:25136093

  9. Adaptive growth factor delivery from a polyelectrolyte coating promotes synergistic bone tissue repair and reconstruction.

    PubMed

    Shah, Nisarg J; Hyder, Md Nasim; Quadir, Mohiuddin A; Dorval Courchesne, Noémie-Manuelle; Seeherman, Howard J; Nevins, Myron; Spector, Myron; Hammond, Paula T

    2014-09-01

    Traumatic wounds and congenital defects that require large-scale bone tissue repair have few successful clinical therapies, particularly for craniomaxillofacial defects. Although bioactive materials have demonstrated alternative approaches to tissue repair, an optimized materials system for reproducible, safe, and targeted repair remains elusive. We hypothesized that controlled, rapid bone formation in large, critical-size defects could be induced by simultaneously delivering multiple biological growth factors to the site of the wound. Here, we report an approach for bone repair using a polyelectrolye multilayer coating carrying as little as 200 ng of bone morphogenetic protein-2 and platelet-derived growth factor-BB that were eluted over readily adapted time scales to induce rapid bone repair. Based on electrostatic interactions between the polymer multilayers and growth factors alone, we sustained mitogenic and osteogenic signals with these growth factors in an easily tunable and controlled manner to direct endogenous cell function. To prove the role of this adaptive release system, we applied the polyelectrolyte coating on a well-studied biodegradable poly(lactic-co-glycolic acid) support membrane. The released growth factors directed cellular processes to induce bone repair in a critical-size rat calvaria model. The released growth factors promoted local bone formation that bridged a critical-size defect in the calvaria as early as 2 wk after implantation. Mature, mechanically competent bone regenerated the native calvaria form. Such an approach could be clinically useful and has significant benefits as a synthetic, off-the-shelf, cell-free option for bone tissue repair and restoration.

  10. Strain-energy release rate analysis of cyclic delamination growth in compressively loaded laminates

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.

    1984-01-01

    Delamination growth in compressively loaded composite laminates was studied analytically and experimentally. The configuration used was a laminate with an across-the-width delamination. An approximate super-position stress analysis was developed to quantify the effects of various geometric, material, and load parameters on mode 1 and mode 2 strain energy release rates G sub 1 and G sub 2, respectively. Calculated values of G sub 1 and G sub 2 were then compared with measured cyclic delamination growth rates to determine the relative importance of G sub 1 and G sub 2. High growth rates were observed only when G sub 1 was large. However, slow growth was observed even when G sub 1 was negligibly small. This growth was apparently due to a large value of G sub 2.

  11. Strain energy release rate analysis of cyclic delamination growth in compressively loaded laminates

    NASA Technical Reports Server (NTRS)

    Whitcomb, J. D.

    1983-01-01

    Delamination growth in compressively loaded composite laminates was studied analytically and experimentally. The configuration used was a laminate with an across-the-width delamination. An approximate super-position stress analysis was developed to quantify the effects of various geometric, material, and load parameters on mode 2 and mode 2 strain energy release rates G sub/1 and G sub 2, respectively. Calculated values of G sub 1 and G sub 2 were then compared with measured cyclic delamination growth rates to determine the relative importance of G sub 1 and G sub 2. High growth rates were observed only when G sub 1 was large. However, slow growth was observed even when G sub 1 was negligibly small. This growth apparently was due to a large value of G sub 2.

  12. Connective tissue growth factor is a substrate of ADAM28

    SciTech Connect

    Mochizuki, Satsuki; Tanaka, Rena; Shimoda, Masayuki; Onuma, Junko; Fujii, Yutaka; Jinno, Hiromitsu; Okada, Yasunori

    2010-11-26

    Research highlights: {yields} The hyper-variable region in the cysteine-rich domain of ADAM28 binds to C-terminal domain of CTGF. {yields} ADAM28 cleaves CTGF alone and CTGF in the CTGF/VEGF{sub 165} complex. {yields} CTGF digestion by ADAM28 releases biologically active VEGF{sub 165} from the complex. {yields} ADAM28, CTGF and VEGF{sub 165} are commonly co-expressed by carcinoma cells in human breast carcinoma tissues. {yields} These suggest that ADAM28 promotes VEGF{sub 165}-induced angiogenesis in the breast carcinomas by selective CTGF digestion in the CTGF/VEGF{sub 165} complex. -- Abstract: ADAM28, a member of the ADAM (a disintegrin and metalloproteinase) gene family, is over-expressed by carcinoma cells and the expression correlates with carcinoma cell proliferation and progression in human lung and breast carcinomas. However, information about substrates of ADAM28 is limited. We screened interacting molecules of ADAM28 in human lung cDNA library by yeast two-hybrid system and identified connective tissue growth factor (CTGF). Binding of CTGF to proADAM28 was demonstrated by yeast two-hybrid assay and protein binding assay. ADAM28 cleaved CTGF in dose- and time-dependent manners at the Ala{sup 181}-Tyr{sup 182} and Asp{sup 191}-Pro{sup 192} bonds in the hinge region of the molecule. ADAM28 selectively digested CTGF in the complex of CTGF and vascular endothelial growth factor{sub 165} (VEGF{sub 165}), releasing biologically active VEGF{sub 165} from the complex. RT-PCR and immunohistochemical analyses demonstrated that ADAM28, CTGF and VEGF are commonly co-expressed in the breast carcinoma tissues. These data provide the first evidence that CTGF is a novel substrate of ADAM28 and suggest that ADAM28 may promote VEGF{sub 165}-induced angiogenesis in the breast carcinomas by the CTGF digestion in the CTGF/VEGF{sub 165} complex.

  13. Growth factor effects on costal chondrocytes for tissue engineering fibrocartilage.

    PubMed

    Johns, D E; Athanasiou, K A

    2008-09-01

    Tissue-engineered fibrocartilage could become a feasible option for replacing tissues such as the knee meniscus or temporomandibular joint disc. This study employed five growth factors (insulin-like growth factor-I, transforming growth factor-beta1, epidermal growth factor, platelet-derived growth factor-BB, and basic fibroblast growth factor) in a scaffoldless approach with costal chondrocytes, attempting to improve biochemical and mechanical properties of engineered constructs. Samples were quantitatively assessed for total collagen, glycosaminoglycans, collagen type I, collagen type II, cells, compressive properties, and tensile properties at two time points. Most treated constructs had lower biomechanical and biochemical properties than the controls with no growth factors, suggesting a detrimental effect, but the treatment with insulin-like growth factor-I tended to improve the constructs. Additionally, the 6-week time point was consistently better than that at 3 weeks, with total collagen, glycosaminoglycans, and aggregate modulus doubling during this time. Further optimization of the time in culture and exogenous stimuli will be important in making a more functional replacement tissue. PMID:18597118

  14. Delivery of growth factors for tissue regeneration and wound healing.

    PubMed

    Koria, Piyush

    2012-06-01

    Growth factors are soluble secreted proteins capable of affecting a variety of cellular processes important for tissue regeneration. Consequently, the self-healing capacity of patients can be augmented by artificially enhancing one or more processes important for healing through the application of growth factors. However, their application in clinics remains limited due to lack of robust delivery systems and biomaterial carriers. Interestingly, all clinically approved therapies involving growth factors utilize some sort of a biomaterial carrier for growth factor delivery. This suggests that biomaterial delivery systems are extremely important for successful usage of growth factors in regenerative medicine. This review outlines the role of growth factors in tissue regeneration, and their application in both pre-clinical animal models of regeneration and clinical trials is discussed. Additionally, current status of biomaterial substrates and sophisticated delivery systems such as nanoparticles for delivery of exogenous growth factors and peptides in humans are reviewed. Finally, issues and possible future research directions for growth factor therapy in regenerative medicine are discussed.

  15. Effects of epidermal growth factor on neural crest cells in tissue culture

    SciTech Connect

    Erickson, C.A.; Turley, E.A.

    1987-04-01

    Epidermal growth factor (EGF) stimulates the release of hyaluronic acid (HA) and chondroitin sulfate proteoglycan (CSPG) from quail trunk neural crest cultures in a dose-dependent fashion. It also promotes the expression of cell-associated heparan sulfate proteoglycan (HSPG) as detected by immunofluorescence and immunoprecipitation of the /sup 3/H-labeled proteoglycan. Furthermore, EGF stimulates (/sup 3/H)thymidine incorporation into total cell DNA. These results raise the possibility that EGF or an analogous growth factor is involved in regulation of neural crest cell morphogenesis.

  16. Comparative survival and growth of Atlantic salmon from egg stocking and fry releases

    USGS Publications Warehouse

    Johnson, James H.

    2004-01-01

    First summer survival and subsequent growth of Atlantic salmon Salmo salar planted as eggs and fry in a tributary of Cayuga Lake, New York, were examined for 3 years. Atlantic salmon were planted in December 1999-2001 in 20 Whitlock-Vibert (W-V) egg incubators, each containing 300 eyed eggs. The following May, 500 fin-clipped Atlantic salmon fry were released in the same stream section. In autumn, a backpack electroshocker was used to capture fry to assess survival and growth. Mean survival was significantly greater for fry (27.9%) than eggs (0.8%). In autumn, mean length was significantly greater for Atlantic salmon released as fry (90.1 mm) than those planted as eggs (76.2 mm), probably owing to accelerated growth in the hatchery caused by warmer water temperatures (i.e., hatchery, 9.4A?C; stream, 5.1A?C). Releasing Atlantic salmon fry in May was nearly 11 times more costly in terms of hatchery effort than was releasing eggs in December. Although the survival of Atlantic salmon eggs in W-V incubators was low, when considering production costs, the use of egg plantings may warrant consideration under certain restoration or enhancement situations.

  17. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth

    PubMed Central

    1992-01-01

    Hepatocyte Growth Factor (HGF, also known as Scatter Factor) is a powerful mitogen or motility factor in different cells, acting through the tyrosine kinase receptor encoded by the MET protooncogene. Endothelial cells express the MET gene and expose at the cell surface the mature protein (p190MET) made of a 50 kD (alpha) subunit disulfide linked to a 145-kD (beta) subunit. HGF binding to endothelial cells identifies two sites with different affinities. The higher affinity binding site (Kd = 0.35 nM) corresponds to the p190MET receptor. Sub- nanomolar concentrations of HGF, but not of a recombinant inactive precursor, stimulate the receptor kinase activity, cell proliferation and motility. HGF induces repairs of a wound in endothelial cell monolayer. HGF stimulates the scatter of endothelial cells grown on three-dimensional collagen gels, inducing an elongated phenotype. In the rabbit cornea, highly purified HGF promotes neovascularization at sub-nanomolar concentrations. HGF lacks activities related to hemostasis-thrombosis, inflammation and endothelial cells accessory functions. These data show that HGF is an in vivo potent angiogenic factor and in vitro induces endothelial cells to proliferate and migrate. PMID:1383237

  18. Expression of vascular endothelial growth factor and basic fibroblast growth factor in extramammary Paget disease

    PubMed Central

    Xu, Xiaoyun; Shao, Ning; Qiao, Di; Wang, Zengjun; Song, Ningjing; Song, Ninghong

    2015-01-01

    Extramammary Paget’s disease (EMPD) is a special type of cancers. The etiology of the disease is still unclear. We aimed to study the expression differences of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in EMPD tissues and corresponding adjacent normal tissues. The mRNA expression was detected by RT-PCR and the protein expression was explored by immunohistochemistry. Higher immunostaining signal scores of bFGF and VEGF in EMPD tissues had been found (z = -3.827, P < 0.001, z = -3.729, P < 0.001, respectively). In addition, the mRNA expression of bFGF and VEGF was higher in EMPD tissues, which had been validated by RT-PCR (t = 5.771, P < 0.001, t = 3.304, P = 0.004, respectively). The VEGF and bFGF might be the key signaling proteins in angiogenesis of EMPD. How to block the VEGF and bFGF in EMPD and to destroy the blood supply of the tumor cells becomes the focus of our future research. PMID:26045818

  19. Phosphorus released from sediment of Dianchi Lake and its effect on growth of Microcystis aeruginosa.

    PubMed

    Liu, Junzhuo; Luo, Xiongxin; Zhang, Naiming; Wu, Yonghong

    2016-08-01

    Phosphorus stored in lake sediments is an inner nutrient source and can be released into overlying water to exacerbate algal blooms. A simulated microcosm of Dianchi Lake was built to investigate phosphorus release from sediments to overlying water and its effect on the growth of Microcystis aeruginosa. The sediments of Dianchi Lake had a total phosphorus (TP) content of 1.7-1.8 mg g(-1) with Ca bound phosphorus (Ca-P, 50-54 %) and organic phosphorus (Org-P, 28-32 %) as the main fractions. The sediments released 8 % of TP into the overlying water with Fe/Al bound phosphorus (Fe/Al-P, 26 %) and Org-P (65 %) being the main fractions released. The phosphorus concentration of the overlying water increased from 0.14-0.16 to 0.28-0.33 mg L(-1). The biomass density of M. aeruginosa was positively correlated (R (2) = 0.825) with the concentration of orthophosphate, which was the predominant bioavailable phosphorus fraction for algal growth. Org-P can be partly utilized by M. aeruginosa but will not cause a bloom. A good understanding of the geochemical cycles of phosphorus is needed for regulating phosphorus release from sediments and thereby reducing the risk of cyanobacterial blooms. PMID:27155834

  20. Vascular Endothelial Growth Factor is a Secreted Angiogenic Mitogen

    NASA Astrophysics Data System (ADS)

    Leung, David W.; Cachianes, George; Kuang, Wun-Jing; Goeddel, David V.; Ferrara, Napoleone

    1989-12-01

    Vascular endothelial growth factor (VEGF) was purified from media conditioned by bovine pituitary folliculostellate cells (FC). VEGF is a heparin-binding growth factor specific for vascular endothelial cells that is able to induce angiogenesis in vivo. Complementary DNA clones for bovine and human VEGF were isolated from cDNA libraries prepared from FC and HL60 leukemia cells, respectively. These cDNAs encode hydrophilic proteins with sequences related to those of the A and B chains of platelet-derived growth factor. DNA sequencing suggests the existence of several molecular species of VEGF. VEGFs are secreted proteins, in contrast to other endothelial cell mitogens such as acidic or basic fibroblast growth factors and platelet-derived endothelial cell growth factor. Human 293 cells transfected with an expression vector containing a bovine or human VEGF cDNA insert secrete an endothelial cell mitogen that behaves like native VEGF.

  1. Antagonists of growth hormone-releasing hormone inhibit growth of androgen-independent prostate cancer through inactivation of ERK and Akt kinases.

    PubMed

    Rick, Ferenc G; Schally, Andrew V; Szalontay, Luca; Block, Norman L; Szepeshazi, Karoly; Nadji, Mehrdad; Zarandi, Marta; Hohla, Florian; Buchholz, Stefan; Seitz, Stephan

    2012-01-31

    The management of castration-resistant prostate cancer (CRPC) presents a clinical challenge because of limitations in efficacy of current therapies. Novel therapeutic strategies for the treatment of CRPC are needed. Antagonists of hypothalamic growth hormone-releasing hormone (GHRH) inhibit growth of various malignancies, including androgen-dependent and independent prostate cancer, by suppressing diverse tumoral growth factors, especially GHRH itself, which acts as a potent autocrine/paracrine growth factor in many tumors. We evaluated the effects of the GHRH antagonist, JMR-132, on PC-3 human androgen-independent prostate cancer cells in vitro and in vivo. JMR-132 suppressed the proliferation of PC-3 cells in vitro in a dose-dependent manner and significantly inhibited growth of PC-3 tumors by 61% (P < 0.05). The expression of GHRH, GHRH receptors, and their main splice variant, SV1, in PC-3 cells and tumor xenografts was demonstrated by RT-PCR and Western blot. The content of GHRH protein in PC-3 xenografts was lowered markedly, by 66.3% (P < 0.01), after treatment with JMR-132. GHRH induced a significant increase in levels of ERK, but JMR-132 abolished this outcome. Our findings indicate that inhibition of PC-3 prostate cancer by JMR-132 involves inactivation of Akt and ERK. The inhibitory effect produced by GHRH antagonist can result in part from inactivation of the PI3K/Akt/mammalian target of rapamycin and Raf/MEK/ERK pathways and from the reduction in GHRH produced by cancer cells. Our findings support the role of GHRH as an autocrine growth factor in prostate cancer and suggest that antagonists of GHRH should be considered for further development as therapy for CRPC.

  2. Mesocosm experiments to assess factors affecting phosphorus retention and release in an extended Wisconsin wetland

    USGS Publications Warehouse

    Elder, J.F.; Manion, B.J.; Goddard, G.L.

    1997-01-01

    Phosphorus retention by wetland sediments and vegetation was investigated in Jackson Creek wetland, an extension of an existing prairie marsh in southeastern Wisconsin. The extended wetland construction was undertaken in 1992-93 to help reduce the phosphorus loading to a downstream eutrophic lake. Two approaches were used to study potential and actual phosphorus retention in the system. Mesocosm experiments of 20-40 days duration indicated that retention of total and dissolved reactive phosphorus in mesocosm cells containing macrophytes and/or sediments was reduced by factors of 2-20 relative to cells containing only water or a copper algicide to suppress metabolic activity. In contrast to the nutrient trapping function, these results show a potential for net phosphorus release that can be associated with increased biological richness. Measurements of water flow and nutrient loads at the wetland's inflow and outflow points demonstrated 9-39% net uptake of phosphorus on an annual scale but frequent occurrences of net phosphorus release over shorter (one-month) time scales. These episodes of release are most likely during the summer months. Thus, the wetland role in phosphorus cycling is not one of a true source or sink, although the annual budget data alone suggest substantial net retention. Effective management of the wetland for its nutrient trapping potential can be hindered by this oversimplification. The system is instead subject to relatively short-term alternation between net import and export. The periodic phosphorus export, although representing a small fraction of net annual import, could be critical for growth of macrophyte and algal communities downstream.

  3. Heparin-conjugated poly(lactic-co-glycolic acid) nanospheres enhance large-wound healing by delivering growth factors in platelet-rich plasma.

    PubMed

    La, Wan-Geun; Yang, Hee Seok

    2015-04-01

    Platelet-rich plasma (PRP) contains many growth factors that are involved in tissue regeneration processes. For successful tissue regeneration, protein growth factors require a delivery vehicle for long-term and sustained release to a defect site in order to maintain their bioactivity. Previously, we showed that heparin-conjugated poly(lactic-co-glycolic acid) nanospheres (HCPNs) can provide long-term delivery of growth factors with affinity for heparin. In this study, we hypothesize that treatment of a skin wound with a mixture of PRP and HCPNs would provide long-term delivery of several growth factors contained in PRP to promote the skin wound healing process with preservation of bioactivity. The release of platelet-derived growth factor-BB (PDGF-BB), contained in PRP, from HCPN with fibrin gel (FG) showed a prolonged release period versus a PRP mixture with FG alone (FG-PRP). Also, growth factors released from PRP with HCPN and FG showed sustained human dermal fibroblast growth for 12 days. Full-thickness skin wound treatment in mice with FG-HCPN-PRP resulted in much faster wound closure as well as dermal and epidermal regeneration at day 9 compared with treatment with FG-HCPN or FG-PRP. The enhanced wound healing using FG-HCPN-PRP may be due to the prolonged release not only of PDGF-BB but also of other growth factors in the PRP. The delivered growth factors accelerated angiogenesis at the wound site. PMID:25284020

  4. Heparin-conjugated poly(lactic-co-glycolic acid) nanospheres enhance large-wound healing by delivering growth factors in platelet-rich plasma.

    PubMed

    La, Wan-Geun; Yang, Hee Seok

    2015-04-01

    Platelet-rich plasma (PRP) contains many growth factors that are involved in tissue regeneration processes. For successful tissue regeneration, protein growth factors require a delivery vehicle for long-term and sustained release to a defect site in order to maintain their bioactivity. Previously, we showed that heparin-conjugated poly(lactic-co-glycolic acid) nanospheres (HCPNs) can provide long-term delivery of growth factors with affinity for heparin. In this study, we hypothesize that treatment of a skin wound with a mixture of PRP and HCPNs would provide long-term delivery of several growth factors contained in PRP to promote the skin wound healing process with preservation of bioactivity. The release of platelet-derived growth factor-BB (PDGF-BB), contained in PRP, from HCPN with fibrin gel (FG) showed a prolonged release period versus a PRP mixture with FG alone (FG-PRP). Also, growth factors released from PRP with HCPN and FG showed sustained human dermal fibroblast growth for 12 days. Full-thickness skin wound treatment in mice with FG-HCPN-PRP resulted in much faster wound closure as well as dermal and epidermal regeneration at day 9 compared with treatment with FG-HCPN or FG-PRP. The enhanced wound healing using FG-HCPN-PRP may be due to the prolonged release not only of PDGF-BB but also of other growth factors in the PRP. The delivered growth factors accelerated angiogenesis at the wound site.

  5. Material factors influencing metallic whisker growth

    NASA Astrophysics Data System (ADS)

    Rodekohr, Chad L.

    Whiskering refers to the formation of slender, long, metallic filaments, much thinner than a human hair, that grow on a metallic thin film surface. They are readily observed for pure and alloyed zinc (Zn), silver (Ag), cadmium (Cd), indium (In), and tin (Sn) surfaces. The longest reported whisker length is 4.5 mm long but most high-aspect ratio whiskers range from 1-500 mum. The focus of this research is upon Sn whiskers. Sn whiskers pose serious reliability problems for the electronics industry and are known to be the source of failure in a wide range of electronic devices, such as nuclear power facilities, heart pacemakers, commercial satellites, aviation radar, telecommunication equipment, and desktop computers. The problem with whiskering has been recently exacerbated by the worldwide shift to lead (Pb) free electronics and the continuing reduction in electrical contact pitches. A thorough understanding of the growth mechanism of Sn whiskers is urgently needed. Currently, there is no universally accepted model that explains the broad range of observations on whiskering. The goals of this research are: (1) to develop a more detailed understanding of the physical mechanisms leading to the initiation and growth of Sn whiskers and (2) to outline reasonable mitigation strategies that could be followed to reduce or eliminate the problem of Sn whiskers. The major contributions of this work are: (1) A reliable method for growing Sn whiskers with predictable incubation times has been developed and tested. (2) A surface oxide is not necessary for whisker growth. (3) Intermetallic compounds (IMC) are not necessary for whisker growth. (4) Smoother, not rougher, substrate surfaces promote whisker growth. (5) Whiskers grow under both compressive and tensile thin film stress states. (6) Whisker growth increases with externally applied compression and tension forces. (7) Sn whiskers are composed of pure Sn except for the expected thin, native Sn oxide on their surface. (8) For

  6. TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF)

    EPA Science Inventory

    TITLE:
    TERATOGENIC RESPONSES ARE MODULATED IN MICE LACKING EXPRESSION OF EPIDERMAL GROWTH FACTOR (EGF) AND TRANSFORMING GROWTH FACTOR-ALPHA (TGF). AUTHORS (ALL): Abbott, Barbara D.1; Best, Deborah S.1; Narotsky, Michael G.1. SPONSOR NAME: None INSTITUTIONS (ALL): 1. Repro Tox ...

  7. The discovery of basic fibroblast growth factor/fibroblast growth factor-2 and its role in haematological malignancies.

    PubMed

    Ribatti, Domenico; Vacca, Angelo; Rusnati, Marco; Presta, Marco

    2007-01-01

    Basic fibroblast growth factor/fibroblast growth factor-2 is one of the best characterized of the pro-angiogenic cytokines. This review describes its history, as well as its role in tumor angiogenesis associated with haematological malignancies, as traced by the main contributions to the international medical literature.

  8. FACTORS RELATING TO THE RELEASE OF STACHYBOTRYS CHARTARUM SPORES FROM CONTAMINATED SOURCES

    EPA Science Inventory

    The paper describes preliminary results of a research project to determine the factors that control the release of S. chartarum spores from a contaminated source and test ways to reduce spore release and thus exposure. As anticipated, S. chartarum spore emissions from gypsum boar...

  9. EDUCATION AS A FACTOR IN ECONOMIC GROWTH.

    ERIC Educational Resources Information Center

    MACKERTICH, ALEX

    THE VALUE OF AN EDUCATION IN THE ECONOMIC GROWTH OF AN UNDERDEVELOPED COUNTRY (INDIA) WAS INVESTIGATED USING THE CASE STUDY APPROACH. DATA WERE GATHERED AT BOTH THE CENTRAL GOVERNMENT AND VILLAGE LEVELS THROUGH INTERVIEWS WITH INDIAN GOVERNMENT OFFICIALS AND FROM OFFICIAL GOVERNMENT PUBLICATIONS CONCERNING THE NATION'S EDUCATIONAL EFFORTS, AS…

  10. Epidermal growth factor suppresses insulin-like growth factor binding protein 3 levels in human papillomavirus type 16-immortalized cervical epithelial cells and thereby potentiates the effects of insulin-like growth factor 1.

    PubMed

    Hembree, J R; Agarwal, C; Eckert, R L

    1994-06-15

    Human ectocervical epithelial cells are a primary target for infection by oncogenic papillomaviruses, which are strongly implicated as causative agents in the genesis of cervical cancer. Growth factors have been implicated as agents that stimulate proliferation and enhance the possibility of malignant transformation. In the present study we utilize several human papillomavirus (HPV) type 16-immortalized ectocervical epithelial cell lines to investigate the effects of epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) on cell proliferation and the production of IGF binding proteins (IGFBPs). ECE16-1 cells, an HPV16-immortalized/nontumorigenic cell line, maintained in defined medium, produce and release high levels of IGFBP-3 (38/42 kDa) as well as smaller amounts of a 24-kDa IGFBP. Supplementation of defined medium with EGF causes a dose-dependent increase in cell growth and a concomitant decrease in the levels of IGFBP-3 released into the culture medium. EGF suppression of IGFBP-3 is maintained even when EGF-stimulated cell growth is suppressed 67% due to the simultaneous presence of 3 ng/ml of TGF beta 1, indicating that EGF suppression of IGFBP-3 levels is independent of EGF effects on cell growth. EGF suppression of IGFBP-3 production is correlated with a reduction in IGFBP-3 mRNA level. In the presence of EGF, the growth response of the cells to ng amounts of IGF-I is significantly enhanced. Moreover, the simultaneous presence of both EGF and IGF-I reduces the level of IGFBP-3 more efficiently than EGF alone. We also observe that the IGFBP-3 level is decreased and the 24-kDa IGFBP level is increased in HPV16-positive tumorigenic versus nontumorigenic cell lines. This is the first report of EGF acting as a positive regulator of IGF-I action via the IGFBPs. On the basis of these findings, we propose that EGF stimulates ECE16-1 cell growth via a dual-action mechanism by (a) stimulating growth directly via the EGF mitogenic pathway and (b

  11. Relationship between nitric oxide- and calcium-dependent signal transduction pathways in growth hormone release from dispersed goldfish pituitary cells.

    PubMed

    Chang, John P; Sawisky, Grant R; Davis, Philip J; Pemberton, Joshua G; Rieger, Aja M; Barreda, Daniel R

    2014-09-15

    Nitric oxide (NO) and Ca(2+) are two of the many intracellular signal transduction pathways mediating the control of growth hormone (GH) secretion from somatotropes by neuroendocrine factors. We have previously shown that the NO donor sodium nitroprusside (SNP) elicits Ca(2+) signals in identified goldfish somatotropes. In this study, we examined the relationships between NO- and Ca(2+)-dependent signal transduction mechanisms in GH secretion from primary cultures of dispersed goldfish pituitary cells. Morphologically identified goldfish somatotropes stained positively for an NO-sensitive dye indicating they may be a source of NO production. In 2h static incubation experiments, GH release responses to the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) were attenuated by CoCl2, nifedipine, verapamil, TMB-8, BHQ, and KN62. In column perifusion experiments, the ability of SNP to induce GH release was impaired in the presence of TMB-8, BHQ, caffeine, and thapsigargin, but not ryanodine. Caffeine-elicited GH secretion was not affected by the NO scavenger PTIO. These results suggest that NO-stimulated GH release is dependent on extracellular Ca(2+) availability and voltage-sensitive Ca(2+) channels, as well as intracellular Ca(2+) store(s) that possess BHQ- and/or thapsigargin-inhibited sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases, as well as TMB-8- and/or caffeine-sensitive, but not ryanodine-sensitive, Ca(2+)-release channels. Calmodulin kinase-II also likely participates in NO-elicited GH secretion but caffeine-induced GH release is not upstream of NO production. These findings provide insights into how NO actions many integrate with Ca(2+)-dependent signalling mechanisms in goldfish somatotropes and how such interactions may participate in the GH-releasing actions of regulators that utilize both NO- and Ca(2+)-dependent transduction pathways. PMID:25038498

  12. Relationship between nitric oxide- and calcium-dependent signal transduction pathways in growth hormone release from dispersed goldfish pituitary cells.

    PubMed

    Chang, John P; Sawisky, Grant R; Davis, Philip J; Pemberton, Joshua G; Rieger, Aja M; Barreda, Daniel R

    2014-09-15

    Nitric oxide (NO) and Ca(2+) are two of the many intracellular signal transduction pathways mediating the control of growth hormone (GH) secretion from somatotropes by neuroendocrine factors. We have previously shown that the NO donor sodium nitroprusside (SNP) elicits Ca(2+) signals in identified goldfish somatotropes. In this study, we examined the relationships between NO- and Ca(2+)-dependent signal transduction mechanisms in GH secretion from primary cultures of dispersed goldfish pituitary cells. Morphologically identified goldfish somatotropes stained positively for an NO-sensitive dye indicating they may be a source of NO production. In 2h static incubation experiments, GH release responses to the NO donor S-nitroso-N-acetyl-d,l-penicillamine (SNAP) were attenuated by CoCl2, nifedipine, verapamil, TMB-8, BHQ, and KN62. In column perifusion experiments, the ability of SNP to induce GH release was impaired in the presence of TMB-8, BHQ, caffeine, and thapsigargin, but not ryanodine. Caffeine-elicited GH secretion was not affected by the NO scavenger PTIO. These results suggest that NO-stimulated GH release is dependent on extracellular Ca(2+) availability and voltage-sensitive Ca(2+) channels, as well as intracellular Ca(2+) store(s) that possess BHQ- and/or thapsigargin-inhibited sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPases, as well as TMB-8- and/or caffeine-sensitive, but not ryanodine-sensitive, Ca(2+)-release channels. Calmodulin kinase-II also likely participates in NO-elicited GH secretion but caffeine-induced GH release is not upstream of NO production. These findings provide insights into how NO actions many integrate with Ca(2+)-dependent signalling mechanisms in goldfish somatotropes and how such interactions may participate in the GH-releasing actions of regulators that utilize both NO- and Ca(2+)-dependent transduction pathways.

  13. Reduced growth factor requirement of keloid-derived fibroblasts may account for tumor growth

    SciTech Connect

    Russell, S.B.; Trupin, K.M.; Rodriguez-Eaton, S.; Russell, J.D.; Trupin, J.S.

    1988-01-01

    Keloids are benign dermal tumors that form during an abnormal wound-healing process is genetically susceptible individuals. Although growth of normal and keloid cells did not differ in medium containing 10% (vol/vol) fetal bovine serum, keloid culture grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) fetal bovine serum, keloid cultures grew to significantly higher densities than normal cells in medium containing 5% (vol/vol) plasma or 1% fetal bovine serum. Conditioned medium from keloid cultures did not stimulate growth of normal cells in plasma nor did it contain detectable platelet-derived growth factor or epidermal growth factor. Keloid fibroblasts responded differently than normal adult fibroblasts to transforming growth factor ..beta... Whereas transforming growth factor ..beta.. reduced growth stimulation by epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from normal adult skin or scars, it enhanced the activity of epidermal growth factor in cells from keloids. Normal and keloid fibroblasts also responded differently to hydrocortisone: growth was stimulated in normal adult cells and unaffected or inhibited in keloid cells. Fetal fibroblasts resembled keloid cells in their ability to grow in plasma and in their response to hydrocortisone. The ability of keloid fibroblasts to grow to higher cell densities in low-serum medium than cells from normal adult skin or from normal early or mature scars suggests that a reduced dependence on serum growth factors may account for their prolonged growth in vivo. Similarities between keloid and fetal cells suggest that keloids may result from the untimely expression of growth-control mechanism that is developmentally regulated.

  14. The CB1 receptor mediates the peripheral effects of ghrelin on AMPK activity but not on growth hormone release.

    PubMed

    Kola, Blerina; Wittman, Gábor; Bodnár, Ibolya; Amin, Faisal; Lim, Chung Thong; Oláh, Márk; Christ-Crain, Mirjam; Lolli, Francesca; van Thuijl, Hinke; Leontiou, Chrysanthia A; Füzesi, Tamás; Dalino, Paolo; Isidori, Andrea M; Harvey-White, Judith; Kunos, George; Nagy, György M; Grossman, Ashley B; Fekete, Csaba; Korbonits, Márta

    2013-12-01

    This study aimed to investigate whether the growth hormone release and metabolic effects of ghrelin on AMPK activity of peripheral tissues are mediated by cannabinoid receptor type 1 (CB1) and the central nervous system. CB1-knockout (KO) and/or wild-type mice were injected peripherally or intracerebroventricularly with ghrelin and CB1 antagonist rimonabant to study tissue AMPK activity and gene expression (transcription factors SREBP1c, transmembrane protein FAS, enzyme PEPCK, and protein HSL). Growth hormone levels were studied both in vivo and in vitro. Peripherally administered ghrelin in liver, heart, and adipose tissue AMPK activity cannot be observed in CB1-KO or CB1 antagonist-treated mice. Intracerebroventricular ghrelin treatment can influence peripheral AMPK activity. This effect is abolished in CB1-KO mice and by intracerebroventricular rimonabant treatment, suggesting that central CB1 receptors also participate in the signaling pathway that mediates the effects of ghrelin on peripheral tissues. Interestingly, in vivo or in vitro growth hormone release is intact in response to ghrelin in CB1-KO animals. Our data suggest that the metabolic effects of ghrelin on AMPK in peripheral tissues are abolished by the lack of functional CB1 receptor via direct peripheral effect and partially through the central nervous system, thus supporting the existence of a possible ghrelin-cannabinoid-CB1-AMPK pathway.

  15. Effects of cocaine and corticotropin-releasing factor on pulsatile ACTH and cortisol release in ovariectomized rhesus monkeys.

    PubMed

    Sarnyai, Z; Mello, N K; Mendelson, J H; Nguyen, P H; Erös-Sarnyai, M

    1995-09-01

    Cocaine stimulates ACTH secretion by a corticotropin-releasing factor (CRF)-dependent mechanism in male rats, rhesus monkeys, and humans. To determine the generality of this effect, we examined the effects of acute cocaine administration on the pulsatile release of ACTH and cortisol in three ovariectomized (OVX) rhesus monkeys and compared its effects to stimulation with CRF. Venous blood samples were collected at 2-min intervals for 60 min before and after iv administration of cocaine (0.4 and 0.8 mg/kg) and CRF (1.0 and 10 micrograms/kg). Cluster analysis procedures were used to evaluate the pulsatile characteristics of ACTH and cortisol release. After placebo administration, an ACTH pulse frequency of 3 peaks/h was detected. After cocaine administration, plasma cocaine levels peaked at 92 +/- 3.0 and 201 +/- 60 ng/mL within 2 min. However, in contrast to normal intact males, cocaine did not stimulate the pulsatile release of ACTH in OVX females. Cocaine (0.4 mg/kg) decreased ACTH incremental peak height and valley levels compared with pre-cocaine values, and a higher dose of cocaine produced no changes in ACTH release. Bolus injection of a low dose of CRF (1.0 micrograms/kg, iv) significantly increased ACTH incremental peak height (P < 0.05), and a higher dose of CRF (10 micrograms/kg) increased ACTH peak amplitude, percentage increase in peak amplitude, area under the peaks, and incremental peak heights as well as ACTH valley level and nadir (10 micrograms/kg, iv) (P < 0.05). ACTH pulse frequency did not change after CRF or cocaine administration. Pulsatile release of cortisol was 2.7 peaks/h under placebo conditions and did not change after cocaine or CRF administration. Cortisol pulse amplitude was increased after low and high doses of CRF. High doses of CRF (10 micrograms/kg) also increased the mean level of cortisol valleys. In summary, we found that CRF but not cocaine stimulated pulsatile ACTH and cortisol release in OVX rhesus monkeys. The profound ACTH

  16. Growth Factors Regulate Expression of Mineral Associated Genes in Cementoblasts

    PubMed Central

    Saygin, N. Esra; Tokiyasu, Yoshihiko; Giannobile, William V.; Somerman, Martha J.

    2008-01-01

    Background Knowledge of the responsiveness of cells within the periodontal region to specific bioactive agents is important for improving regenerative therapies. The aim of this study was to determine the effect of specific growth factors, insulin-like growth factor-I (IGF-I), platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β (TGF-β) on cementoblasts in vitro and ex vivo. Methods Osteocalcin (OC) promoter driven SV40 transgenic mice were used to obtain immortalized cementoblasts. Growth factor effects on DNA synthesis were assayed by [3H]-thymidine incorporation. Northern analysis was used to determine the effects of growth factors on gene expression profile. Effects of growth factors on cementoblast induced biomineralization were determined in vitro (von Kossa stain) and ex vivo (re-implantation of cells in immunodeficient (SCID) mice). Results All growth factors stimulated DNA synthesis compared to control. Twenty-four hour exposure of cells to PDGF-BB or TGF-β resulted in a decrease in bone sialoprotein (BSP) and osteocalcin (OCN) mRNAs while PDGF-BB also increased osteopontin (OPN) mRNA. Cells exposed to IGF-I for 24 hours exhibited decreased transcripts for OCN and OPN with an upregulation of BSP mRNA noted at 72 hours. In vitro mineralization was inhibited by continuous application of PDGF-BB or TGF-β, while cells exposed to these factors prior to implantation into SCID mice still promoted biomineralization. Conclusions These data indicate IGF-I, PDGF-BB, and TGF-β influence mitogenesis, phenotypic gene expression profile, and biomineralization potential of cementoblasts suggesting that such factors alone or in combination with other agents may provide trigger factors required for regenerating periodontal tissues. PMID:11063392

  17. Corneal organ cultures in tyrosinemia release chemotactic factors.

    PubMed

    Lohr, K M; Hyndiuk, R A; Hatchell, D L; Kurth, C E

    1985-05-01

    Corneal inflammation with subsequent scarring and blindness occurs in the inherited human metabolic disease tyrosinemia type II, yet putative inflammatory mediators in this disorder and in the avascular cornea in general are poorly defined. In a Tyr-fed rat model of tyrosinemia type II, intracellular crystals, presumably Tyr, are hypothesized to be responsible for the increased lysosomal activity observed in corneal epithelial lesions. Because polymorphonuclear leukocytes (PMNs) are seen only at the site of these lesions, we used this model to study humoral mediators released from Tyr-fed rat corneal organ cultures. Only Tyr-fed rats developed stromal edema and linear granular opacities in gray edematous corneal epithelium, compatible with a noninfectious keratitis. Electron micrographs confirmed epithelial edema and showed focal epithelial necrosis with PMN invasion of the stroma. Only Tyr-fed rat corneal culture supernatants contained chemotactic activity that was heat labile and moderately trypsin sensitive. Four peaks with varying amounts of chemotactic activity were found on Sephadex G-75 chromatography. Although the identity of these peaks of activity has not yet been established, we suggest that they may be responsible for the PMN infiltration observed in this model of corneal inflammation.

  18. High-growth-factor implosions (HEP4)

    SciTech Connect

    Landen, O.L.; Keane, C.J.; Hammel, B.A.

    1996-06-01

    In inertial confinement fusion (ICF), the kinetic energy of an ablating, inward-driven, solid spherical shell is used to compressionally heat the low-density fuel inside. For a given drive, the maximum achievable compressed fuel density and temperature - and hence the maximum neutron production rate depend on the degree of shell isentropy and integrity maintained during the compression. Shell integrity will be degraded by hydrodynamic instability growth of areal density imperfections in the capsule. Surface imperfections on the shell grow as a result of the Richtmyer-Meshkov and Rayleigh-Taylor (RT) instabilities when the shell is accelerated by the ablating lower-density plasma. Perturbations at the outer capsule surface are transferred hydrodynamically to the inner surface, where deceleration of the shell by the lower-density fuel gives rise to further RT growth at the pusher-fuel interface.

  19. Targeting the Insulin Growth Factor and the Vascular Endothelial Growth Factor Pathways in Ovarian Cancer

    PubMed Central

    Shao, Minghai; Hollar, Stacy; Chambliss, Daphne; Schmitt, Jordan; Emerson, Robert; Chelladurai, Bhadrani; Perkins, Susan; Ivan, Mircea; Matei, Daniela

    2015-01-01

    Antiangiogenic therapy is emerging as a highly promising strategy for the treatment of ovarian cancer, but the clinical benefits are usually transitory. The purpose of this study was to identify and target alternative angiogenic pathways that are upregulated in ovarian xenografts during treatment with bevacizumab. For this, angiogenesis-focused gene expression arrays were used to measure gene expression levels in SKOV3 and A2780 serous ovarian xenografts treated with bevacizumab or control. Reverse transcription-PCR was used for results validation. The insulin growth factor 1 (IGF-1) was found upregulated in tumor and stromal cells in the two ovarian xenograft models treated with bevacizumab. Cixutumumab was used to block IGF-1 signaling in vivo. Dual anti-VEGF and IGF blockade with bevacizumab and cixutumumab resulted in increased inhibition of tumor growth. Immunohistochemistry measured multivessel density, Akt activation, and cell proliferation, whereas terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling (TUNEL) assay measured apoptosis in ovarian cancer xenografts. Bevacizumab and cixutumumab combination increased tumor cell apoptosis in vivo compared with therapy targeting either individual pathway. The combination blocked angiogenesis and cell proliferation but not more significantly than each antibody alone. In summary, IGF-1 activation represents an important mechanism of adaptive escape during anti-VEGF therapy in ovarian cancer. This study provides the rationale for designing bevacizumab-based combination regimens to enhance antitumor activity. PMID:22700681

  20. Latent transforming growth factor binding protein 4 regulates transforming growth factor beta receptor stability.

    PubMed

    Su, Chi-Ting; Huang, Jenq-Wen; Chiang, Chih-Kang; Lawrence, Elizabeth C; Levine, Kara L; Dabovic, Branka; Jung, Christine; Davis, Elaine C; Madan-Khetarpal, Suneeta; Urban, Zsolt

    2015-07-15

    Mutations in the gene for the latent transforming growth factor beta binding protein 4 (LTBP4) cause autosomal recessive cutis laxa type 1C. To understand the molecular disease mechanisms of this disease, we investigated the impact of LTBP4 loss on transforming growth factor beta (TGFβ) signaling. Despite elevated extracellular TGFβ activity, downstream signaling molecules of the TGFβ pathway, including pSMAD2 and pERK, were down-regulated in LTBP4 mutant human dermal fibroblasts. In addition, TGFβ receptors 1 and 2 (TGFBR1 and TGFBR2) were reduced at the protein but not at the ribonucleic acid level. Treatment with exogenous TGFβ1 led to an initially rapid increase in SMAD2 phosphorylation followed by a sustained depression of phosphorylation and receptor abundance. In mutant cells TGFBR1 was co-localized with lysosomes. Treatment with a TGFBR1 kinase inhibitor, endocytosis inhibitors or a lysosome inhibitor, normalized the levels of TGFBR1 and TGFBR2. Co-immunoprecipitation demonstrated a molecular interaction between LTBP4 and TGFBR2. Knockdown of LTBP4 reduced TGFβ receptor abundance and signaling in normal cells and supplementation of recombinant LTBP4 enhanced these measures in mutant cells. In a mouse model of Ltbp4 deficiency, reduced TGFβ signaling and receptor levels were normalized upon TGFBR1 kinase inhibitor treatment. Our results show that LTBP4 interacts with TGFBR2 and stabilizes TGFβ receptors by preventing their endocytosis and lysosomal degradation in a ligand-dependent and receptor kinase activity-dependent manner. These findings identify LTBP4 as a key molecule required for the stability of the TGFβ receptor complex, and a new mechanism by which the extracellular matrix regulates cytokine receptor signaling.

  1. Latent transforming growth factor binding protein 4 regulates transforming growth factor beta receptor stability

    PubMed Central

    Su, Chi-Ting; Huang, Jenq-Wen; Chiang, Chih-Kang; Lawrence, Elizabeth C.; Levine, Kara L.; Dabovic, Branka; Jung, Christine; Davis, Elaine C.; Madan-Khetarpal, Suneeta; Urban, Zsolt

    2015-01-01

    Mutations in the gene for the latent transforming growth factor beta binding protein 4 (LTBP4) cause autosomal recessive cutis laxa type 1C. To understand the molecular disease mechanisms of this disease, we investigated the impact of LTBP4 loss on transforming growth factor beta (TGFβ) signaling. Despite elevated extracellular TGFβ activity, downstream signaling molecules of the TGFβ pathway, including pSMAD2 and pERK, were down-regulated in LTBP4 mutant human dermal fibroblasts. In addition, TGFβ receptors 1 and 2 (TGFBR1 and TGFBR2) were reduced at the protein but not at the ribonucleic acid level. Treatment with exogenous TGFβ1 led to an initially rapid increase in SMAD2 phosphorylation followed by a sustained depression of phosphorylation and receptor abundance. In mutant cells TGFBR1 was co-localized with lysosomes. Treatment with a TGFBR1 kinase inhibitor, endocytosis inhibitors or a lysosome inhibitor, normalized the levels of TGFBR1 and TGFBR2. Co-immunoprecipitation demonstrated a molecular interaction between LTBP4 and TGFBR2. Knockdown of LTBP4 reduced TGFβ receptor abundance and signaling in normal cells and supplementation of recombinant LTBP4 enhanced these measures in mutant cells. In a mouse model of Ltbp4 deficiency, reduced TGFβ signaling and receptor levels were normalized upon TGFBR1 kinase inhibitor treatment. Our results show that LTBP4 interacts with TGFBR2 and stabilizes TGFβ receptors by preventing their endocytosis and lysosomal degradation in a ligand-dependent and receptor kinase activity-dependent manner. These findings identify LTBP4 as a key molecule required for the stability of the TGFβ receptor complex, and a new mechanism by which the extracellular matrix regulates cytokine receptor signaling. PMID:25882708

  2. Chronic [D-Ala2]-growth hormone-releasing hormone administration attenuates age-related deficits in spatial memory.

    PubMed

    Thornton, P L; Ingram, R L; Sonntag, W E

    2000-02-01

    The age-related decline in growth hormone is one of the most robust endocrine markers of biological aging and has been hypothesized to contribute to the physiological deficits observed in aged animals. However, there have been few studies of the impact of this hormonal decline on brain aging. In this study, the effect of long-term subcutaneous administration of [D-Ala2]-growth hormone-releasing hormone (GHRH) on one measure of brain function, memory, was investigated. Animals were injected daily with 2.3 microg of [D-Ala2]-GHRH or saline from 9 to 30 months of age, and the spatial learning and reference memory of animals were assessed by using the Morris water maze and compared with those of 6-month-old animals. Results indicated that spatial memory decreased with age and that chronic [D-Ala2]-GHRH prevented this age-related decrement (24% improvement in the annulus-40 time and 23% improvement in the number of platform crossings compared with saline treated, age-matched controls; p < .05 each). No changes were noted in sensorimotor performance. [D-Ala2]-GHRH attenuated the age-related decline in plasma concentrations of insulinlike growth factor-1 (IGF-1) (p <.05). These data suggest that growth hormone and IGF-1 have important effects on brain function, that the decline in growth hormone and IGF-1 with age contributes to impairments in reference memory, and that these changes can be reversed by the chronic administration of GHRH.

  3. [Effects of applying controlled-release compound fertilizer on Platycodon grandiflorum growth].

    PubMed

    Zhu, Li-xiang; Wang, Jian-hua

    2010-09-01

    A pot experiment was conducted in 2008 to study the effects of applying controlled-release compound fertilizer (N:P2O5:K2O = 14:14:14) on the growth of Platycodon grandiflorum in the medicinal herbal farm of Shandong Agricultural University. Comparing with the application of common compound fertilizer (N:P2O5: K2O=15: 15: 15), applying equivalent amount of the controlled-release fertilizer increased the leaf chlorophyll content, root volume, root activity, and root diameter of P. grandiflorum at the late growth stage, but decreased the root length. When the N application rate was 0.24 and 0.32 g x kg(-1) soil, applying the controlled-release compound fertilizer increased the root yield by 26.78% and 22.50%, and the root soluble sugar, protein, and total saponin contents by 9.77% and 6.99%, 11.38% and 2.20%, and 8.85% and 5.47%, respectively, compared with applying the common compound fertilizer. More nitrogen application made the root soluble sugar content decreased but the total saponin content increased. Under our experimental condition, applying the controlled-release compound fertilizer with an application rate of 0.24 g N x kg(-1) soil could obtain the best effect for P. grandiflorum. PMID:21265152

  4. [Effects of applying controlled-release compound fertilizer on Platycodon grandiflorum growth].

    PubMed

    Zhu, Li-xiang; Wang, Jian-hua

    2010-09-01

    A pot experiment was conducted in 2008 to study the effects of applying controlled-release compound fertilizer (N:P2O5:K2O = 14:14:14) on the growth of Platycodon grandiflorum in the medicinal herbal farm of Shandong Agricultural University. Comparing with the application of common compound fertilizer (N:P2O5: K2O=15: 15: 15), applying equivalent amount of the controlled-release fertilizer increased the leaf chlorophyll content, root volume, root activity, and root diameter of P. grandiflorum at the late growth stage, but decreased the root length. When the N application rate was 0.24 and 0.32 g x kg(-1) soil, applying the controlled-release compound fertilizer increased the root yield by 26.78% and 22.50%, and the root soluble sugar, protein, and total saponin contents by 9.77% and 6.99%, 11.38% and 2.20%, and 8.85% and 5.47%, respectively, compared with applying the common compound fertilizer. More nitrogen application made the root soluble sugar content decreased but the total saponin content increased. Under our experimental condition, applying the controlled-release compound fertilizer with an application rate of 0.24 g N x kg(-1) soil could obtain the best effect for P. grandiflorum.

  5. Engineering a growth factor embedded nanofiber matrix niche to promote vascularization for functional cardiac regeneration.

    PubMed

    Lakshmanan, Rajesh; Kumaraswamy, Priyadharshini; Krishnan, Uma Maheswari; Sethuraman, Swaminathan

    2016-08-01

    The major loss of tissue extracellular matrix (ECM) after myocardial ischemia is a serious burden that gradually leads to heart failure. Due to lack of available treatment methods to restore the cardiac function, various research strategies have come up to treat the ischemic myocardium. However these have met with limited success due to the complexity of the cardiac tissue, which exhibits a nanofibrous collagenous matrix with spatio-temporal localization of a combination of growth factors. To mimic the topographical and chemical cues of the natural cardiac tissue, we have fabricated a growth factor embedded nanofibrous scaffold through electrospinning. In our previous work, we have reported a nanofibrous matrix made of PLCL and PEOz with an average diameter of 500 nm. The scaffold properties were specifically characterized in vitro for cardio-compatibility. In the present study, we have loaded dual growth factors VEGF and bFGF in the nanofiber matrix and investigated its suitability for cardiac tissue engineering. The encapsulation and release of dual growth factors from the matrix were studied using XPS and ELISA. Bioactivity of the loaded growth factors towards proliferation and migration of endothelial cells (HUVECs) was evaluated through MTS and Boyden chamber assays respectively. The efficiency of growth factors on the nanofibrous matrix to activate signaling molecules was studied in HUVECs through gene expression analysis. Preclinical evaluation of the growth factor embedded nanofibrous patch in a rabbit acute myocardial infarction (AMI) model was studied and cardiac function assessment was made through ECG and echocardiography. The evidence for angiogenesis in the patch secured regions was analyzed through histopathology and immunohistochemistry. Our results confirm the effectiveness of growth factor embedded nanofiber matrix in restoration of cardiac function after ischemia when compared to conventional patch material thereby exhibiting promise as a

  6. Growth cones isolated from developing rat forebrain: uptake and release of GABA and noradrenaline.

    PubMed

    Lockerbie, R O; Gordon-Weeks, P R; Pearce, B R

    1985-08-01

    A growth cone-enriched fraction isolated from neonatal rat forebrain was shown to accumulate gamma-amino [3H]butyric acid ([3H]-GABA) and [3H]noradrenaline ([3H]NA). Uptake of both neurotransmitters was sodium- and temperature-dependent and exhibited saturation kinetics with Km values of 17.7 microM and 4.5 microM respectively and Vmax values of 114 pmol/min/mg protein and 59 pmol/min/mg protein respectively. Electron microscopic autoradiography showed that about 50% of isolated growth cones can accumulate [3H]GABA. Inhibitor studies showed that beta-alanine was a relatively weak inhibitor of [3H]GABA uptake compared to nipecotic acid and diamino-butyric acid. Growth cone fractions preloaded with [3H]GABA and [3H]NA demonstrated a K+ (25 mM) -induced release of both neurotransmitters. Of the K+-stimulated release of [3H]GABA 50% was Ca2+-dependent, whereas the release of [3H]NA was entirely Ca2+-independent.

  7. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  8. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O.; Pena, Louis A.; Lin, Xinhua

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  9. The effect of pasteurization on transforming growth factor alpha and transforming growth factor beta 2 concentrations in human milk.

    PubMed

    McPherson, R J; Wagner, C L

    2001-01-01

    +/- SEM: 99.4+/-6.7% of raw milk, range 79%-120%). In conclusion, both TGF-alpha and TGF-beta2 were well-preserved in whole milk after holder pasteurization at 56.5 degrees C. The relative increase in growth factor concentration in some of the samples may be attributable to the release of that factor from the cellular and/or fat compartments into the aqueous fraction of human milk. These findings have implications regarding use of donor milk as an alternate source of growth factors and cytokines for the newborn gut when mother's milk is unavailable.

  10. Growth factor(s) produced during infection with an adenovirus variant stimulates proliferation of nonestablished epithelial cells.

    PubMed

    Quinlan, M P; Sullivan, N; Grodzicker, T

    1987-05-01

    Infection of primary baby rat kidney cells with an adenovirus variant that encodes only the 12S gene of the E1A region, adenovirus type 5 (Ad5) 12S, results in the production of a growth factor that stimulates primary epithelial cells to proliferate. Increased epithelial cell DNA synthesis and proliferation is detectable between 24 and 36 hr after the addition of conditioned medium from Ad5 12S infected cells and not from cells infected with an E1A deletion mutant virus, Ad5 dl312. This mitogenic factor(s) is effective in the absence of serum and can override the inhibitory effect of serum on primary epithelial cells. Furthermore, there is a requirement for the continued presence of the growth factor(s) in the Ad5 12S conditioned medium to maintain epithelial cell proliferation, and the conditioned medium can maintain these cells in a proliferative state for at least 6 wk. The stimulatory activity in Ad5 12S conditioned medium is associated with large molecular weight complexes, from which it can be released by 4 M NaCl. Several characteristics of the growth factor(s) indicate that it is a unique mitogen for epithelial cells. PMID:2953026

  11. Prenatal stress enhances stress- and corticotropin-releasing factor-induced stimulation of hippocampal acetylcholine release in adult rats.

    PubMed

    Day, J C; Koehl, M; Deroche, V; Le Moal, M; Maccari, S

    1998-03-01

    There is growing evidence that stressors occurring during pregnancy can impair biological and behavioral responses to stress in the adult offspring. For instance, prenatal stress enhances emotional reactivity, anxiety, and depressive-like behaviors associated with a prolonged stress-induced corticosterone secretion and a reduction in hippocampal corticosteroid receptors. Among the neurotransmitters involved in these hormonal and behavioral responses, acetylcholine may play a critical role. However, it is unknown whether prenatal stressful events also may influence the development of cholinergic systems. In the present study, hippocampal acetylcholine was measured, by in vivo microdialysis, in both male and female adult prenatally stressed rats, under basal conditions, after a mild stress (saline injection) or after intracerebroventricular administration of corticotropin-releasing factor (CRF; 0.1 nM). No difference in basal release of acetylcholine was observed between control and prenatally stressed rats of both genders. Mild stress was found to increase hippocampal acetylcholine release to a greater extent in prenatally stressed rats than in controls. In males, the CRF-induced increase in hippocampal acetylcholine release was larger in prenatally stressed rats, as compared with controls, during the first hour after the injection and in females during the third hour after the injection. These data indicate that prenatal stress has long-term effects on the development of forebrain cholinergic systems. The augmented increase in hippocampal acetylcholine release after the mild stress and CRF injection in prenatally stressed rats may be involved in some of the hormonal and behavioral abnormalities found in prenatally stressed rats. PMID:9465013

  12. The effects of a continuous infusion of hexarelin on pulsatile growth hormone release, growth axis and galanin gene expression and on the response of the growth axis to growth hormone-releasing hormone.

    PubMed

    Conley, L K; Brogan, R S; Giustina, A; Wehrenberg, W B

    2000-05-01

    The effect of a 6 hour continuous infusion of Hexarelin (100 micrograms/hour) on GH peak frequency, amplitude and duration, GH trough concentrations, the interval between successive peaks and the pituitary responsiveness to GHRH, as well as GH axis and galanin mRNA contents, were examined in conscious adult male rats. Plasma GH concentrations peaked within 15 minutes after the initiation of Hexarelin infusion, but returned to baseline levels by 60 minutes. No significant differences between Hexarelin and saline infused rats were noted for any of the parameters of pulsatile GH release analyzed. However, following a 6 hour infusion, rats treated with Hexarelin demonstrated a greater GH responsiveness to GHRH (delta GH: 57 +/- 16 ng/ml for Hexarelin infused; 21 +/- 7 ng/ml for saline infused; p < 0.05). Furthermore, the rats infused with Hexarelin demonstrated decreased GHRH and increased hypothalamic galanin mRNA contents as compared to the saline infused rats, while hypothalamic somatostatin and pituitary GH mRNA contents appeared unchanged. Rats infused with Hexarelin had lower pituitary galanin mRNA content than did the rats which were infused with saline. Collectively, these results suggest that Hexarelin may not act via alteration of somatostatin synthesis and that suppression of somatostatin's action at the pituitary can not be excluded. The current study also suggests that other hypothalamic pathways aside from those currently defined for the growth axis may be involved in the mechanism by which Hexarelin and the other GH-releasing peptides elicit GH release.

  13. Ghrelin-induced growth hormone release from goldfish pituitary cells is nitric oxide dependent.

    PubMed

    Grey, Caleb L; Chang, John P

    2012-11-01

    Ghrelin (GRLN) is an important neuroendocrine regulator of growth hormone (GH) release in vertebrates. Previous studies show goldfish (g)GRLN(19)-induced GH from the goldfish pituitary involves voltage sensitive Ca(2+) channels, increases in intracellular Ca(2+) and the PKC signalling pathway. We set out to examine the role of the nitric oxide (NO) pathway in gGLRN(19)-induced GH release from primary cultures of goldfish pituitary cells using pharmacological regulators in cell column perifusion systems. The NO scavenger PTIO abolished gGRLN(19)-induced GH release and co-treatment with the NO donor SNP and GRLN did not produce additive GH release responses. Nitric oxide synthase (NOS) inhibitors 1400 W and 7-Ni abolished GRLN-induced GH release while treatment with another NOS inhibitor, AGH, had no significant effect. Taken together, these results demonstrate that the NOS/NO is an integral component of gGRLN(19)-induced signalling within the goldfish pituitary cells, and given the relative specificity of AGH for inducible NOS and endothelial NOS isoforms, suggests that neuronal NOS is the likely NOS isoform utilized in goldfish somatotropes by this physiological regulator.

  14. Co-stimulation of gastrointestinal tumour cell growth by gastrin, transforming growth factor alpha and insulin like growth factor-I.

    PubMed Central

    Durrant, L. G.; Watson, S. A.; Hall, A.; Morris, D. L.

    1991-01-01

    Epidermal growth factor receptors and insulin like growth factor-I receptors were co-expressed on two gastric and three colorectal tumour cell lines. Previous studies have shown that gastrin receptors were also expressed at a low level or two of these cell lines. Both TGF alpha and IGF-I promoted cell growth in all of the cell lines tested. The cell doubling time of a colorectal cell line was reduced from 48 to 30-34 h. Furthermore the effects of the growth factors were additive. Each growth factor also increased the response of the cells to gastrin, but a combination of both growth factors and gastrin did not further increase growth. PMID:1846553

  15. Therapeutic modulation of growth factors and cytokines in regenerative medicine.

    PubMed

    Ioannidou, Effie

    2006-01-01

    Regeneration that takes place in the human body is limited throughout life. Therefore, when organs are irreparably damaged, they are usually replaced with an artificial device or donor organ. The term "regenerative medicine" covers the restoration or replacement of cells, tissues, and organs. Stem cells play a major role in regenerative medicine by providing the way to repopulate organs damaged by disease. Stem cells have the ability to self renew and to regenerate cells of diverse lineages within the tissue in which they reside. Stem cells could originate from embryos or adult tissues. Growth factors are proteins that may act locally or systemically to affect the growth of cells in several ways. Various cell activities, including division, are influenced by growth factors. Cytokines are a family of low-molecular-weight proteins that are produced by numerous cell types and are responsible for regulating the immune response, inflammation, tissue remodeling and cellular differentiation. Target cells of growth factors and cytokines are mesenchymal, epithelial and endothelial cells. These molecules frequently have overlapping activities and can act in an autocrine or paracrine fashion. A complex network of growth factors and cytokines guides cellular differentiation and regeneration in all organs and tissues. The aim of this paper is to review the role of growth factors and cytokines in different organs or systems and explore their therapeutic application in regenerative medicine. The role of stem cells combined with growth factors and cytokines in the regeneration of vascular and hematopoietic, neural, skeletal, pancreatic, periodontal, and mucosal tissue is reviewed. There is evidence that supports the use of growth factors and cytokines in the treatment of neurological diseases, diabetes, cardiovascular disease, periodontal disease, cancer and its complication, oral mucositis. After solving the ethical issues and establishing clear and reasonable regulations

  16. Efficacy and Safety of Sustained-Release Recombinant Human Growth Hormone in Korean Adults with Growth Hormone Deficiency

    PubMed Central

    Kim, Youngsook; Hong, Jae Won; Chung, Yoon-Sok; Kim, Sung-Woon; Cho, Yong-Wook; Kim, Jin Hwa; Kim, Byung-Joon

    2014-01-01

    Purpose The administration of recombinant human growth hormone in adults with growth hormone deficiency has been known to improve metabolic impairment and quality of life. Patients, however, have to tolerate daily injections of growth hormone. The efficacy, safety, and compliance of weekly administered sustained-release recombinant human growth hormone (SR-rhGH, Declage™) supplement in patients with growth hormone deficiency were evaluated. Materials and Methods This trial is 12-week prospective, single-arm, open-label trial. Men and women aged ≥20 years with diagnosed growth hormone deficiency (caused by pituitary tumor, trauma and other pituitary diseases) were eligible for this study. Each subject was given 2 mg (6 IU) of SR-rhGH once a week, subcutaneously for 12 weeks. Efficacy and safety at baseline and within 30 days after the 12th injection were assessed and compared. Score of Assessment of Growth Hormone Deficiency in Adults (AGHDA score) for quality of life and serum IGF-1 level. Results The IGF-1 level of 108.67±74.03 ng/mL was increased to 129.01±68.37 ng/mL (p=0.0111) and the AGHDA QoL score was decreased from 9.80±6.51 to 7.55±5.76 (p<0.0001) at week 12 compared with those at baseline. Adverse events included pain, swelling, erythema, and warmth sensation at the administration site, but many adverse events gradually disappeared during the investigation. Conclusion Weekly administered SR-rhGH for 12 weeks effectively increased IGF-1 level and improved the quality of life in patients with GH deficiency without serious adverse events. PMID:24954335

  17. Functional Impact of Corticotropin-Releasing Factor Exposure on Tau Phosphorylation and Axon Transport

    PubMed Central

    Le, Michelle H.; Weissmiller, April M.; Monte, Louise; Lin, Po Han; Hexom, Tia C.; Natera, Orlangie; Wu, Chengbiao; Rissman, Robert A.

    2016-01-01

    Stress exposure or increased levels of corticotropin-releasing factor (CRF) induce hippocampal tau phosphorylation (tau-P) in rodent models, a process that is dependent on the type-1 CRF receptor (CRFR1). Although these preclinical studies on stress-induced tau-P provide mechanistic insight for epidemiological work that identifies stress as a risk factor for Alzheimer’s disease (AD), the actual impact of stress-induced tau-P on neuronal function remains unclear. To determine the functional consequences of stress-induced tau-P, we developed a novel mouse neuronal cell culture system to explore the impact of acute (0.5hr) and chronic (2hr) CRF treatment on tau-P and integral cell processes such as axon transport. Consistent with in vivo reports, we found that chronic CRF treatment increased tau-P levels and caused globular accumulations of phosphorylated tau in dendritic and axonal processes. Furthermore, while both acute and chronic CRF treatment led to significant reduction in CREB activation and axon transport of brain-derived neurotrophic factor (BDNF), this was not the case with mitochondrial transport. Acute CRF treatment caused increased mitochondrial velocity and distance traveled in neurons, while chronic CRF treatment modestly decreased mitochondrial velocity and greatly increased distance traveled. These results suggest that transport of cellular energetics may take priority over growth factors during stress. Tau-P was required for these changes, as co-treatment of CRF with a GSK kinase inhibitor prevented CRF-induced tau-P and all axon transport changes. Collectively, our results provide mechanistic insight into the consequences of stress peptide-induced tau-P and provide an explanation for how chronic stress via CRF may lead to neuronal vulnerability in AD. PMID:26790099

  18. Seasonal growth and mortality of juveniles of Lampsilis fasciola (Bivalvia: Unionidae) released to a fish hatchery raceway

    USGS Publications Warehouse

    Hanlon, S.D.; Neves, R.J.

    2006-01-01

    Recent efforts to restore remnant or extirpated populations of freshwater mussels have focused on artificial propagation as an effective and practical conservation strategy. Although artificially cultured juveniles have been produced and released to the wild at various times of the year, no study has investigated the best time of year to release these juveniles. Newly metamorphosed juveniles of the wavyrayed lampmussel (Lampsilis fasciola) were released into a stream-fed fish hatchery raceway during March, June, and September. Growth and survival rates were measured 32, 52, 72, and 92 days post-metamorphosis. Juveniles released in June experienced the greatest growth and survival rates. Juveniles released in September and March experienced high mortality within the first month of release and exhibited poor growth in the cool water conditions typical of those seasons. Overwinter survival exhibited a size-dependent relationship.

  19. Chimeric Aptamer-Gelatin Hydrogels as an Extracellular Matrix Mimic for Loading Cells and Growth Factors

    PubMed Central

    Zhang, Xiaolong; Battig, Mark R.; Chen, Niancao; Gaddes, Erin R.; Duncan, Katelyn L.; Wang, Yong

    2016-01-01

    It is important to synthesize materials to recapitulate critical functions of biological systems for a variety of applications such as tissue engineering and regenerative medicine. The purpose of this study was to synthesize a chimeric hydrogel as a promising extracellular matrix (ECM) mimic using gelatin, a nucleic acid aptamer and polyethylene glycol (PEG). This hydrogel had a macroporous structure that was highly permeable for fast molecular transport. Despite its high permeability, it could strongly sequester and sustainably release growth factors with high bioactivity. Notably, growth factors retained in the hydrogel could maintain ~50% bioactivity during a 14-day release test. It also provided cells with effective binding sites, which led to high efficiency of cell loading into the macroporous hydrogel matrix. When cells and growth factors were co-loaded into the chimeric hydrogel, living cells could still be observed by day 14 in a static serum-reduced culture condition. Thus, this chimeric aptamer-gelatin hydrogel constitutes a promising biomolecular ECM mimic for loading cells and growth factors. PMID:26791559

  20. Mechanical perturbation-induced ethylene releases apical dominance in Pharbitis nil by restricting shoot growth

    NASA Technical Reports Server (NTRS)

    Prasad, T. K.; Cline, M. G.

    1985-01-01

    Mechanical perturbation (MP, rubbing) or internodes of Pharbitis nil shoots initiates release of lateral buds (LB) from apical dominance within 48 h. Evidence is presented which suggests that MP promotion of LB outgrowth is mediated by ethylene-induced restriction of main shoot growth. Ethylene production in the internodes is stimulated by MP within 2 h. Effects of MP are mimicked by treatments with 1-aminocyclopropane-1-carboxylic acid (ACC) and are negated by the inhibitors of ethylene production or action, aminoethoxy vinylglycine (AVG) and AgNO3. The fact that effects of MP, ACC, and ethylene inhibitors are observed to occur on main shoot growth at least 24 h before they are observed to occur on LB growth suggests a possible cause and effect relationship. MP also causes an increase in internode diameter. MP stimulation of ethylene production appears to be mediated by ACC synthase. The results of this study and our previous studies suggest that apical dominance may be released by any mechanism which induces ethylene restriction of main shoot growth.

  1. Intraspecific genetic analysis, gamete release performance, and growth of Sargassum muticum (Fucales, Phaeophyta) from China

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Pang, Shaojun; Gao, Suqin; Shan, Tifeng

    2013-11-01

    Sargassum muticum is one of the most abundant and conspicuous native macroalgae species on the northern coasts of China. It often forms large-scale seaweed beds in subtidal zones. This investigation was designed to understand the intraspecific genetic relationships of this alga based on samples collected from four northern coastal sites of China, and to evaluate gamete release and growth capacity in laboratory conditions. The nuclear internal transcribed spacer 2 (ITS2) sequences of 16 samples from four locations were identical. Based on cox3 gene and partial rbcLS operon sequences, intraspecific genetic variability was detected with three and two ribotypes, respectively. Temperature, not irradiance, was shown to significantly affect gamete release and fertilization. Elevated temperature and irradiance enhanced the growth of germlings and vegetative branchlets. Maximum growth rate of germlings was detected at 18-24°C and an irradiance of 60-100 μmol photons/(m2·s). Under ambient conditions (12-25°C and 60-125 μmol photons/(m2·s)), relative growth rate of young branchlets could reach 7.5%/d.

  2. Dietary zinc affects concentrations of insulin, insulin-like growth factor-I and growth hormone in lambs

    SciTech Connect

    Droke, E.A.; Spears, J.W.; Armstrong, J.D. )

    1991-03-15

    Glucose tolerance and concentrations of insulin, growth hormone (GH) and insulin-like growth factor-I (IGF-I) were evaluated in lambs deficient, marginal or adequate in zinc (Zn). Lambs were fed a semipurified diet that contained either 3.7, 8.7, or 43.7 mg Zn/kg. Zinc deficiency resulted in lower serum insulin levels 1 h after feeding while levels in marginal lambs were not different from that of adequate lambs. Dietary Zn did not affect plasma glucose post feeding. One h after IV glucose administration plasma glucose concentrations were lower in deficient lambs compared to adequate lambs; marginal lambs had intermediate glucose levels. Concentration of GH before and after feeding or glucose challenge were not affected by Zn status; however, serum IGF-I was lower in deficient than in marginal or adequate lambs. A GH releasing factor (GRF) analog was given to evaluate the release of GH. Serum GH in response to GRF challenge was higher in deficient lambs and tended to be higher in marginal lambs when compared to adequate lambs. Impaired growth observed with Zn deficiency may be mediated in part by its effect on insulin, GH and IGF-I concentrations.

  3. Bioengineered sequential growth factor delivery stimulates brain tissue regeneration after stroke.

    PubMed

    Wang, Yuanfei; Cooke, Michael J; Sachewsky, Nadia; Morshead, Cindi M; Shoichet, Molly S

    2013-11-28

    Stroke is a leading cause of disability with no effective regenerative treatment. One promising strategy for achieving tissue repair involves the stimulation of endogenous neural stem/progenitor cells through sequential delivery of epidermal growth factor (EGF) followed by erythropoietin (EPO). Yet currently available delivery strategies such as intracerebroventricular (ICV) infusion cause significant tissue damage. We designed a novel delivery system that circumvents the blood brain barrier and directly releases growth factors to the brain. Sequential release of the two growth factors is a key in eliciting tissue repair. To control release, we encapsulate pegylated EGF (EGF-PEG) in poly(lactic-co-glycolic acid) (PLGA) nanoparticles and EPO in biphasic microparticles comprised of a PLGA core and a poly(sebacic acid) coating. EGF-PEG and EPO polymeric particles are dispersed in a hyaluronan methylcellulose (HAMC) hydrogel which spatially confines the particles and attenuates the inflammatory response of brain tissue. Our composite-mediated, sequential delivery of EGF-PEG and EPO leads to tissue repair in a mouse stroke model and minimizes damage compared to ICV infusion. PMID:23933523

  4. Visualization of growth factor receptor sites in rat forebrain

    SciTech Connect

    Quirion, R.; Araujo, D.; Nair, N.P.; Chabot, J.G.

    1988-01-01

    It is now known that various growth factors may also act in the central nervous system. Among them, it has recently been shown that epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) may possess trophic effects in the mammalian brain. We report here on the respective autoradiographic distribution of (/sup 125/I)EGF and (/sup 125/I)IGF-I receptor binding sites in the rat brain, both during ontogeny and in adulthood. It appears that (/sup 125/I)EGF sites are mostly found in the rat forebrain during brain development. On the other hand, (/sup 125/I)IGF-I sites are more widely distributed both during ontogeny and in adulthood. These results reveal the plasticity of the expression of EGF and IGF-I receptor sites in the mammalian brain. This could be relevant for the respective role of these two growth factors in the development and maintenance of neuronal function.

  5. Abnormal Growth Factor/Cytokine Network in Gastric Cancer

    PubMed Central

    2008-01-01

    Gastric cancer cells express a broad spectrum of the growth factor/cytokine receptor systems that organize the complex interaction between cancer cells and stromal cells in tumor microenvironment, which confers cell growth, apoptosis, morphogenesis, angiogenesis, progression and metastasis. However, these abnormal growth factor/cytokine networks differ in the two histological types of gastric cancer. Importantly, activation of nuclear factor-kB pathway by Helicobacter pylori infection may act as a key player for induction of growth factor/cytokine networks in gastritis and pathogenesis of gastric cancer. Better understanding of these events will no doubt provide new approaches for biomarkers of diagnosis and effective therapeutic targeting of gastric cancer. PMID:19308687

  6. Cardiac Regeneration using Growth Factors: Advances and Challenges

    PubMed Central

    Rebouças, Juliana de Souza; Santos-Magalhães, Nereide Stela; Formiga, Fabio Rocha

    2016-01-01

    Myocardial infarction is the most significant manifestation of ischemic heart disease and is associated with high morbidity and mortality. Novel strategies targeting at regenerating the injured myocardium have been investigated, including gene therapy, cell therapy, and the use of growth factors. Growth factor therapy has aroused interest in cardiovascular medicine because of the regeneration mechanisms induced by these biomolecules, including angiogenesis, extracellular matrix remodeling, cardiomyocyte proliferation, stem-cell recruitment, and others. Together, these mechanisms promote myocardial repair and improvement of the cardiac function. This review aims to address the strategic role of growth factor therapy in cardiac regeneration, considering its innovative and multifactorial character in myocardial repair after ischemic injury. Different issues will be discussed, with emphasis on the regeneration mechanisms as a potential therapeutic resource mediated by growth factors, and the challenges to make these proteins therapeutically viable in the field of cardiology and regenerative medicine. PMID:27355588

  7. A nanoparticulate injectable hydrogel as a tissue engineering scaffold for multiple growth factor delivery for bone regeneration

    PubMed Central

    Dyondi, Deepti; Webster, Thomas J; Banerjee, Rinti

    2013-01-01

    Gellan xanthan gels have been shown to be excellent carriers for growth factors and as matrices for several tissue engineering applications. Gellan xanthan gels along with chitosan nanoparticles of 297 ± 61 nm diameter, basic fibroblast growth factor (bFGF), and bone morphogenetic protein 7 (BMP7) were employed in a dual growth factor delivery system to promote the differentiation of human fetal osteoblasts. An injectable system with ionic and temperature gelation was optimized and characterized. The nanoparticle loaded gels showed significantly improved cell proliferation and differentiation due to the sustained release of growth factors. A differentiation marker study was conducted, analyzed, and compared to understand the effect of single vs dual growth factors and free vs encapsulated growth factors. Dual growth factor loaded gels showed a higher alkaline phosphatase and calcium deposition compared to single growth factor loaded gels. The results suggest that encapsulation and stabilization of growth factors within nanoparticles and gels are promising for bone regeneration. Gellan xanthan gels also showed antibacterial effects against Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis, the common pathogens in implant failure. PMID:23293519

  8. Injectable, rapid gelling and highly flexible hydrogel composites as growth factor and cell carriers.

    PubMed

    Wang, Feng; Li, Zhenqing; Khan, Mahmood; Tamama, Kenichi; Kuppusamy, Periannan; Wagner, William R; Sen, Chandan K; Guan, Jianjun

    2010-06-01

    A family of injectable, rapid gelling and highly flexible hydrogel composites capable of releasing insulin-like growth factor (IGF-1) and delivering mesenchymal stromal cell (MSC) were developed. Hydrogel composites were fabricated from Type I collagen, chondroitin sulfate (CS) and a thermosensitive and degradable hydrogel copolymer based on N-isopropylacrylamide, acrylic acid, N-acryloxysuccinimide and a macromer poly(trimethylene carbonate)-hydroxyethyl methacrylate. The hydrogel copolymer was gellable at body temperature before degradation and soluble at body temperature after degradation. Hydrogel composites exhibited LCSTs around room temperature. They could easily be injected through a 26-gauge needle at 4 degrees C, and were capable of gelling within 6s at 37 degrees C to form highly flexible gels with moduli matching those of the rat and human myocardium. The hydrogel composites showed good oxygen permeability; the oxygen pressure within the hydrogel composites was similar to that in the air. The effects of collagen and CS contents on LCST, gelation time, injectability, mechanical properties and degradation properties were investigated. IGF-1 was loaded into the hydrogel composites for enhanced cell survival/growth. The released IGF-1 remained bioactive during a 2-week release period. Small fraction of CS in the hydrogel composites significantly decreased IGF-1 release rate. The release kinetics appeared to be controlled mainly by hydrogel composite water content, degradation and interaction with IGF-1. Human MSC adhesion on the hydrogel composites was comparable to that on the tissue culture plate. MSCs were encapsulated in the hydrogel composites and were found to grow inside during a 7-day culture period. IGF-1 loading significantly accelerated MSC growth. RT-PCR analysis demonstrated that MSCs maintained their multipotent differentiation potential in hydrogel composites with and without IGF-1. These injectable and rapid gelling hydrogel composites

  9. Vascular endothelial growth factor and diabetes: the agonist versus antagonist paradox.

    PubMed

    Duh, E; Aiello, L P

    1999-10-01

    Much of the morbidity and mortality associated with diabetes is primarily attributable to sequelae of microvascular and macrovascular disease. Over the past decade, dramatic progress has been achieved in elucidating the fundamental processes underlying the pathogenesis of these complications. Angiogenic factors in particular now appear to play a pivotal role in the development of microvascular complications as well as the response to macrovascular disease. Hyperglycemia, other growth factors, advanced glycation end products, oxidative stress, and ischemia can increase growth factor expression. In some microvascular tissues, the result is pathologic neovascularization and increased vascular permeability. These responses account for much of the visual loss associated with diabetic retinopathy and may, in addition, serve a significant role in nephropathy and neuropathy. In contrast, recent data suggest that vascular collateralization resulting from ischemia-induced growth factor release in tissues compromised by macrovascular disease may be important in reducing clinical symptoms and tissue damage. This angiogenic response, which may be beneficial in coronary artery and peripheral limb disease, appears to be reduced in patients with diabetes. Thus, two apparently diametrically opposed therapeutic paradigms are arising for the treatment of vascular complications in diabetes. Indeed, growth factor antagonists have been used successfully in diabetes-related animal models to block angiogenic and permeability complications in the retina and kidney. Conversely, growth factor agonists have been successfully used to stimulate collateral vessel formation and reduce ischemic symptoms from macrovascular disease in the coronary arteries and peripheral limbs. Both of these approaches are currently being evaluated in clinical trials for their respective indications. Thus, as these divergent therapeutic modalities begin to enter the clinical arena, this apparent paradox necessitates

  10. Polymethylmethacrylate-induced release of bone-resorbing factors

    SciTech Connect

    Herman, J.H.; Sowder, W.G.; Anderson, D.; Appel, A.M.; Hopson, C.N. )

    1989-12-01

    A pseudomembranous structure that has the histological characteristics of a foreign-body-like reaction invariably develops at the bone-cement interface in the proximity of resorption of bone around aseptically loosened cemented prostheses. This study was an attempt to implicate polymethylmethacrylate in this resorptive process. Unfractionated peripheral-blood mononuclear cells (consisting of lymphocytes and monocytes) and surface-adherent cells (monocyte-enriched) were prepared from control subjects who did and did not have clinical evidence of osteoarthrosis and from patients who had osteoarthrosis and were having a revision for failure of a cemented hip or knee implant. Cells were cultured for varying periods in the presence and absence of nonpolymerized methacrylate (one to two-micrometer spherules), pulverized polymerized material, or culture chambers that were pre-coated with polymerized cement. Conditioned media that were derived from both methacrylate-stimulated cell populations were shown to contain specific bone-resorbing mediators (interleukin-1, tumor necrosis factor, or prostaglandin E2) and to directly affect bone resorption in 45Ca-labeled murine limb-bone assays.

  11. Drug release and bone growth studies of antimicrobial peptide-loaded calcium phosphate coating on titanium.

    PubMed

    Kazemzadeh-Narbat, Mehdi; Noordin, Shahryar; Masri, Bassam A; Garbuz, Donald S; Duncan, Clive P; Hancock, Robert E W; Wang, Rizhi

    2012-07-01

    Preventing infection is one of the major challenges in total hip and joint arthroplasty. The main concerns of local drug delivery as a solution have been the evolution of antibiotic-resistant bacteria and the potential inhibition of osseointegration caused by the delivery systems. This work investigated the in vitro drug release, antimicrobial performance, and cytotoxicity, as well as the in vivo bone growth of an antimicrobial peptide loaded into calcium phosphate coated Ti implants in a rabbit model. Two potent AMP candidates (HHC36: KRWWKWWRR, Tet213: KRWWKWWRRC) were first investigated through an in vitro cytotoxicity assay. MTT absorbance values revealed that HHC36 showed much lower cytotoxicity (minimal cytotoxic concentration 200 μg/mL) than Tet 213 (50 μg/mL). The AMP HHC36 loaded onto CaP (34.7 ± 4.2 μg/cm(2)) had a burst release during the first few hours followed by a slow and steady release for 7 days as measured spectrophotometrically. The CaP-AMP coatings were antimicrobial against Staphylococcus aureus and Pseudomonas aeruginosa strains in colony-forming units (CFU) in vitro assays. No cytotoxicity was observed on CaP-AMP samples against MG-63 osteoblast-like cells after 5 days in vitro. In a trabecular bone growth in vivo study using cylindrical implants, loading of AMP HHC36 did not impair bone growth onto the implants. Significant bone on-growth was observed on CaP-coated Ti with or without HHC36 loading, as compared with Ti alone. The current AMP-CaP coating thus offers in vivo osteoconductivity to orthopedic implants. It also offers in vitro antimicrobial property, with its in vivo performance to be confirmed in future animal infection models.

  12. Regulation of human amnion cell growth and morphology by sera, plasma, and growth factors.

    PubMed

    Gaffney, E V; Grimaldi, M A

    1981-01-01

    The requirements of human epithelial cells derived from the amnion membrane for serum factors were investigated. The growth promoting effects of human whole blood serum (WBS), platelet-poor defibrinogenated plasma, and plasma-derived serum (PDS) were examined in primary cultures of these ectodermal cells. The numbers of population doublings recorded after 10 days in the presence of 10% WBS, defibrinogenated plasma, or PDS were 2.3, 2.0 or 1.5, respectively. Although dialysis of sera or plasma had little effect on growth promotion, it markedly decreased the capacity of plasma to maintain cells in culture beyond 10 days. The differences in growth activities could not be attributed to the presence of anticoagulant in plasma and PDS or to the presence of excess calcium in PDS. Platelet lysates and purified platelet-derived growth factor had no effect on growth. Amnion cell growth was enhanced by epidermal growth factor (EGF) or hydrocortisone, but the glucocorticoid did not condition cells to respond to growth factors. Insulin and fibroblast growth factor singly or in combination had no effect on cell replication. Giant cell formation accompanied maintenance in hydrocortisone with defibrinogenated plasma and PDS. Discrete regions of dense population appeared in the presence of hydrocortisone, EGF, and undialyzed supplements.

  13. Lifetime growth in wild meerkats: incorporating life history and environmental factors into a standard growth model.

    PubMed

    English, Sinéad; Bateman, Andrew W; Clutton-Brock, Tim H

    2012-05-01

    Lifetime records of changes in individual size or mass in wild animals are scarce and, as such, few studies have attempted to model variation in these traits across the lifespan or to assess the factors that affect them. However, quantifying lifetime growth is essential for understanding trade-offs between growth and other life history parameters, such as reproductive performance or survival. Here, we used model selection based on information theory to measure changes in body mass over the lifespan of wild meerkats, and compared the relative fits of several standard growth models (monomolecular, von Bertalanffy, Gompertz, logistic and Richards). We found that meerkats exhibit monomolecular growth, with the best model incorporating separate growth rates before and after nutritional independence, as well as effects of season and total rainfall in the previous nine months. Our study demonstrates how simple growth curves may be improved by considering life history and environmental factors, which may be particularly relevant when quantifying growth patterns in wild populations.

  14. Central administration of chicken growth hormone-releasing hormone decreases food intake in chicks.

    PubMed

    Tachibana, Tetsuya; Sugimoto, Ikue; Ogino, Madoka; Khan, Md Sakirul Islam; Masuda, Keiko; Ukena, Kazuyoshi; Wang, Yajun

    2015-02-01

    Growth hormone-releasing hormone (GHRH) is well known as a stimulator of growth hormone (GH) secretion. GHRH not only stimulates GH release but also modifies feeding behavior and energy homeostasis in rodents. In chickens (Gallus gallus domesticus), on the other hand, two types of GHRH, namely, chicken GHRH (cGHRH) and cGHRH-like peptide (cGHRH-LP), have been identified. The purpose of the present study was to investigate the effect of central injection of cGHRH and cGHRH-LP on feeding behavior in chicks. Intracerebroventricular (ICV) injection of both cGHRH and cGHRH-LP (0.04 to 1 nmol) significantly decreased food intake without any abnormal behavior in chicks. Furthermore, the feeding-inhibitory effect was not abolished by co-injection of the antagonist for pituitary adenylate cyclase-activating polypeptide (PACAP) or corticotropin-releasing hormone (CRH) receptors, suggesting that the anorexigenic effect of cGHRH and cGHRH-LP might not be related to the PACAP and CRH systems in the brain of chicks. Finally, 24-h food deprivation increased mRNA expression of cGHRH but not cGHRH-LP in the diencephalon. These results suggest that central cGHRH is related to inhibiting feeding behavior and energy homeostasis in chicks.

  15. Psycho-Social Factors as Predictors of Success in a Work-Release Program.

    ERIC Educational Resources Information Center

    Brahen, Leonard S.; And Others

    1979-01-01

    Investigates the significance of social and environmental factors as predictors of the rehabilitative potential of an inmate. Work history must be used as a whole. The more recent a good history, the more successful an inmate's jail record. Work factors may aid in selecting narcotics-addicted inmates for work-release programs. (Author/BEF)

  16. Controlled Release Strategies for Bone, Cartilage, and Osteochondral Engineering—Part II: Challenges on the Evolution from Single to Multiple Bioactive Factor Delivery

    PubMed Central

    Santo, Vítor E.; Mano, João F.; Reis, Rui L.

    2013-01-01

    The development of controlled release systems for the regeneration of bone, cartilage, and osteochondral interface is one of the hot topics in the field of tissue engineering and regenerative medicine. However, the majority of the developed systems consider only the release of a single growth factor, which is a limiting step for the success of the therapy. More recent studies have been focused on the design and tailoring of appropriate combinations of bioactive factors to match the desired goals regarding tissue regeneration. In fact, considering the complexity of extracellular matrix and the diversity of growth factors and cytokines involved in each biological response, it is expected that an appropriate combination of bioactive factors could lead to more successful outcomes in tissue regeneration. In this review, the evolution on the development of dual and multiple bioactive factor release systems for bone, cartilage, and osteochondral interface is overviewed, specifically the relevance of parameters such as dosage and spatiotemporal distribution of bioactive factors. A comprehensive collection of studies focused on the delivery of bioactive factors is also presented while highlighting the increasing impact of platelet-rich plasma as an autologous source of multiple growth factors. PMID:23249320

  17. Growth Factor-Bearing Polymer Brushes--Versatile Bioactive Substrates Influencing Cell Response.

    PubMed

    Psarra, Evmorfia; Foster, Elena; König, Ulla; You, Jungmok; Ueda, Yuichiro; Eichhorn, Klaus-J; Müller, Martin; Stamm, Manfred; Revzin, Alexander; Uhlmann, Petra

    2015-11-01

    In this study we present the development of responsive nanoscale substrates exhibiting cell-guiding properties based on incorporated bioactive signaling cues. The investigative approach considered the effect of two different surface-bound growth factors (GFs) on cell behavior and response: hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF). Two surface biofunctionalization strategies were explored in order to conceive versatile, bioactive thin polymer brush films. Polymer brushes made of tethered poly(acrylic)acid (PAA) polymer layers with a high grafting density of polymer chains were biofunctionalized with GFs either by physisorption or chemisorption. Both GFs showed high binding efficiencies to PAA brushes based on their initial loading concentrations. The GF release kinetics can be distinguished depending on the applied biofunctionalization method. Specifically, a high initial burst followed by a constant slow release was observed in the case of both physisorbed HGF and bFGF. In contrast, the release kinetics of chemisorbed GFs were quite different. Remarkably, chemisorbed HGF remained bound to the brush surface for over 1 week, whereas 50% of chemisorbed bFGF was released slowly. Furthermore, the effect of these GF-biofunctionalized PAA brushes on different cells was investigated. A human hepatoma cell line (HepG2) was used to analyze the bioactivity of HGF-modified PAA brushes by measuring cell growth inhibition and scattering effects. Additionally, the differentiation of mouse embryonic stem cells (mESCs) toward endoderm was studied on bFGF-modified PAA brush surfaces. Finally, the results illustrate that PAA brushes, particularly those biofunctionalized with chemisorbed GFs, produce an expected measurable effect on both cell types. Therefore, PAA polymer brushes biofunctionalized with GFs can be used as bioactive cell culture substrates with tuned efficiency. PMID:26447354

  18. Distribution of insulin-like growth factors in condylar hyperplasia.

    PubMed

    Götz, Werner; Lehmann, Tim Sebastian; Appel, Thorsten Robin; Rath-Deschner, Birgit; Dettmeyer, Reinhard; Luder, Hans-Ulrich; Reich, Rudolf H; Jäger, Andreas

    2007-01-01

    Condylar hyperplasia (CH) is a local overgrowth of the condylar process of the temporomandibular joint (TMJ) of unknown etiology. Probably, growth factors like the insulin-like growth factors (IGFs) are involved in its pathogenesis. Specimens from 12 patients were investigated histologically and immunohistochemically to obtain the distribution of the IGFs-I and -II and the IGF1 receptor. The results revealed juvenile and adult subtypes. While generally IGF-II could only be detected weakly, in the juvenile cases strong immunostaining for IGF-I in cartilage and bone supposes an influence on pathological growth processes. PMID:17695990

  19. Mediation of wound-related Rous sarcoma virus tumorigenesis by TFG (transforming growth factor)-. beta

    SciTech Connect

    Sieweke, M.H.; Bissell, M.J. ); Thompson, N.L.; Sporn, M.B. )

    1990-06-29

    In Rous sarcoma virus (RSV)-infected chickens, wounding leads to tumor formation with nearly 100% frequency in tissues that would otherwise remain tumor-free. Identifying molecular mediators of this phenomenon should yield important clues to the mechanisms involved in RSV tumorigenesis. Immunohistochemical staining showed that TGF-{beta} is present locally shortly after wounding, but not in unwounded controls. In addition, subcutaneous administration of recombinant transforming growth factor {beta}1 (TGF-{beta}1) could substitute completely for wounding in tumor induction. A treatment protocol of four doses of 800 nanograms of TGF-{beta} resulted in v-src-expressing tumors with 100% frequency; four doses of only 10 nanograms still led to tumor formation in 80% of the animals. This effect was specific, as other growth factors with suggested roles in would healing did not elicit the same response. Epidermal growth factor (EGF) or TGF-{alpha} had no effect, and platelet-derived growth factor (PDGF) or insulin-like growth factor-1 (IGF-1) yielded only occasional tumors after longer latency. TGF-{beta} release during the would-healing response may thus be a critical event that creates a conducive environment for RSV tumorigenesis and may act as a cofactor for transformation in this system. 31 refs., 3 figs., 2 tabs.

  20. Nerve growth factor binding domain of the nerve growth factor receptor

    SciTech Connect

    Welcher, A.A.; Bitler, C.M.; Radeke, M.J.; Shooter, E.M. )

    1991-01-01

    A structural analysis of the rat low-affinity nerve growth factor (NGF) receptor was undertaken to define the NGF binding domain. Mutant NGF receptor DNA constructs were expressed in mouse fibroblasts or COS cells, and the ability of the mutant receptors to bind NGF was assayed. In the first mutant, all but 16 amino acid residues of the intracellular domain of the receptor were removed. This receptor bound NGF with a K{sub d} comparable to that of the wild-type receptor. A second mutant contained only the four cysteine-rich sequences from the extracellular portion of the protein. This mutant was expressed in COS cells and the resultant protein was a secreted soluble form of the receptor that was able to bind NGF. Two N-terminal deletions, in which either the first cystein-rich sequence or the first and part of the second cystein-rich sequences were removed, bound NGF. However, a mutant lacking all four cysteine-rich sequences was unable to bind NGF. These results show that the four cysteine-rich sequences of the NGF receptor contain the NGF binding domain.

  1. Factors to predict positive results of gonadotropin releasing hormone stimulation test in girls with suspected precocious puberty.

    PubMed

    Nam, Hyo-Kyoung; Rhie, Young Jun; Son, Chang Sung; Park, Sang Hee; Lee, Kee-Hyoung

    2012-02-01

    Sometimes, the clinical findings and the results of the gonadotropin-releasing hormone (GnRH) stimulation test are inconsistent in girls with early breast development and bone age advancement. We aimed to investigate the factors predicting positive results of the GnRH stimulation test in girls with suspected central precocious puberty (CPP). We reviewed the records of 574 girls who developed breast budding before the age of 8 yr and underwent the GnRH stimulation test under the age of 9 yr. Positive results of the GnRH stimulated peak luteinizing hormone (LH) level were defined as 5 IU/L and over. Girls with the initial positive results (n = 375) showed accelerated growth, advanced bone age and higher serum basal LH, follicle-stimulating hormone, and estradiol levels, compared to those with the initial negative results (n = 199). Girls with the follow-up positive results (n = 64) showed accelerated growth and advanced bone age, compared to those with the follow-up negative results. In the binary logistic regression, the growth velocity ratio was the most significant predictive factor of positive results. We suggest that the rapid growth velocity is the most useful predictive factor for positive results in the GnRH stimulation test in girls with suspected precocious puberty.

  2. [Novel role of growth factors in ovary function].

    PubMed

    Amsterdam, Abraham

    2010-12-01

    The development of the DNA microarray technique facilitated systematic studies of the modulation of gene function. Considerable attention has been focused on members of the growth factor family to elucidate the main regulators of oocyte maturation and ovarian follicle rupture. Among these growth factors, it was found, both in rodents and in humans, that amphiregulin (Ar) and epiregulin (Ep) of the epidermal growth factor (EGF) family were dramatically up-regulated by gonadotrophins in the intact ovary and in primary granulosa cells, respectively. Their role in cumulus expansion and oocyte maturation was established in rodents, and their synthesis under LH stimulation in granulosa cells was demonstrated in humans. To be activated, Ar and Ep must be cleaved by a disintegrin and metalloproteinases (ADAMs) family. However, the precise processing of Ar and Ep by the cumulus cells is still obscure. Future investigations using DNA microarray technique may reveal the repertoire of genes activated in Ar- and Ep-stimulated cumulus cells and may help elucidate the molecular basis of ovulation. EFG-like factors are also involved in triggering ovarian cancer The author hypothesized that the normal ovary maintains cyclicity in the formation of these growth factors preventing the ovary from developing ovarian cancer In ovarian cancer these growth factors are continuously formed in an autocrine manner, leading to transformation and subsequently to ovarian cancer. These growth factors are essential for both normal and neoplastic transformation of the ovary. Taking into consideration these growth factors in the treatment of ovarian malfunction may be one way of curing ovarian cancer. PMID:21916103

  3. Colorectal carcinoma cells (Caco-2) secrete stroma-inducing growth factors in a stroma-oriented direction.

    PubMed

    Wardelmann, Eva; Kiriakidis, Serafim; Dreschers, Stephan; Behrens, Peter; Heim, Inge; Krischler, Jutta; Pfeifer, Ulrich; Wernert, Nicolas

    2003-01-01

    Understanding of the mechanisms by which epithelial tumor cells induce their supportive stroma in carcinomas is of great general interest for the development of new therapeutic anticancer strategies. In the present study we investigated whether polarized colorectal carcinoma cells (Caco-2) release well-known stroma-inducing factors diffusely or specifically at the stroma-oriented cell pole. We demonstrate that Caco-2 cells secrete vascular endothelial growth factor, tumor necrosis factor alpha and platelet-derived growth factor preferentially towards a basolateral stroma-oriented direction. Other cytokines such as several interleukines, basic fibroblastic growth factor and prostaglandin E2 are not secreted in significant amounts by Caco 2 cells. We conclude that the directed secretion of stroma-regulating factors might play a central role in the regulation of both tumor angiogenesis and tumor invasion in carcinomas with a polarized growth pattern.

  4. Hierarchical Nanofibrous Microspheres with Controlled Growth Factor Delivery for Bone Regeneration.

    PubMed

    Ma, Chi; Jing, Yan; Sun, Hongchen; Liu, Xiaohua

    2015-12-01

    The integration of controlled growth factor delivery and biomimetic architecture into a microsphere is a challenging but attractive strategy for developing new injectable biomaterials. In this work, a unique hierarchical nanosphere-encapsulated-in-microsphere scaffolding system is developed. First, heparin-conjugated gelatin (HG) is synthesized, which provides binding domains for bone morphogenetic protein 2 (BMP2) to stabilize this growth factor, protect it from denaturation and proteolytic degradation, and subsequently prolong its sustained release. Next, a unique approach is developed which includes a water-in-oil-in-oil double emulsion process and a thermally induced phase separation to encapsulate BMP2-binding HG nanospheres into nanofibrous microspheres. The nanofibrous microsphere is self-assembled from synthetic nanofibers, and has superior surface area, high porosity, low density, and is an excellent carrier to support cell adhesion and tissue in-growth. BMP2 in the hierarchical microsphere is released in a multiple-controlled manner by the binding with heparin and encapsulation of the nanosphere and microsphere. An in vivo calvarial defect model confirms that this microsphere is an excellent osteoinductive scaffold for enhanced bone regeneration. By choosing different growth factors, this hierarchical microsphere system can easily be applied to other types of tissue regeneration. The work expands the ability to develop new injectable biomaterials for advanced regenerative therapies.

  5. The effects of bleomycin on alveolar macrophage growth factor secretion.

    PubMed Central

    Denholm, E. M.; Phan, S. H.

    1989-01-01

    Previous work in this laboratory has demonstrated increased secretion of fibroblast growth factor (MDGF) activity by alveolar macrophages obtained from mice with bleomycin-induced pulmonary fibrosis. The mechanism by which bleomycin promotes this increase in MDGF secretion is not clear, however. The purpose of this study was to determine the direct effects of bleomycin on alveolar macrophages. Normal rat alveolar macrophages obtained by lavage were cultured in the presence or absence of bleomycin; conditioned media from these cultures were dialyzed to remove bleomycin and then assayed in vitro for MDGF activity. Alveolar macrophages incubated with 0.01 microgram to 1 microgram/ml bleomycin for 18 hours secreted significantly more MDGF than macrophages incubated without bleomycin. Viability of macrophages as determined by exclusion of trypan blue and release of LDH was unaffected by any dose tested. Maximal MDGF production was seen with bleomycin doses of greater than or equal to 0.1 microgram/ml. When alveolar macrophages were incubated with 0.1 microgram/ml bleomycin for 0.5-18 hours, MDGF activity was detected as early as 1 hour, with peak responses found at 4-8 hours. Macrophages stimulated with bleomycin continued to produce significant amounts of MDGF even after bleomycin was removed and replaced with fresh (bleomycin-free) media. MDGF secretion by bleomycin-stimulated alveolar macrophages was inhibited by cycloheximide, and the 5-lipoxygenase inhibitors NDGA (nordihydroguairetic acid) and BW755c, indicating not only a requirement for protein synthesis but also for metabolites of the 5-lipoxygenase pathway of arachidonic acid metabolism for full expression of activity(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2464942

  6. Insulin-like 3-induced rat preantral follicular growth is mediated by growth differentiation factor 9.

    PubMed

    Xue, Kai; Kim, Ji Young; Liu, Jia-yin; Tsang, Benjamin K

    2014-01-01

    The communication of somatic cells and oocytes by intrafollicular paracrine factors is essential for follicular growth in the ovary. Insulin-like 3 (INSL3) is a theca cell-secreted paracrine factor. Androgens and growth differentiation factor 9 (GDF9), an oocyte-derived growth factor, are essential for follicular development. Using a rat preantral follicle culture model, we examined in the present study the influence of INSL3 on preantral follicular growth and the molecular mechanisms involved. We have observed that the receptor for INSL3, relaxin/insulin-like family peptide receptor 2 (RXFP2), was exclusively expressed in oocytes. Recombinant INSL3 stimulated Gdf9 expression, preantral follicular growth, and testosterone synthesis in vitro. Inhibition of the cAMP/protein kinase A signaling pathway (with cAMP antagonist, 8-bromoadenosine 3',5'-cyclic monophosphorothioate, Rp-isomer) attenuated INSL3-induced Gdf9 expression and preantral follicular growth. Moreover, knocking down Gdf9 expression (with small interfering RNA) or inhibiting GDF9 signaling (with SB431542, an activin receptor-like kinase receptor 5 inhibitor, or specific inhibitor of mothers against decapentaplegic homolog 3) or androgen action (with flutamide, an androgen receptor antagonist) suppressed INSL3-induced preantral follicular growth. In addition, LH and DHT regulated the expression of Insl3 mRNA in preantral follicles. These observations suggest that INSL3 is a key theca cell-derived growth factor for preantral follicle and that its action is mediated by GDF9.

  7. Sustained-release genistein from nanostructured lipid carrier suppresses human lens epithelial cell growth

    PubMed Central

    Liu, Jin-Lu; Zhang, Wen-Ji; Li, Xue-Dong; Yang, Na; Pan, Wei-San; Kong, Jun; Zhang, Jin-Song

    2016-01-01

    AIM To design and investigate the efficacy of a modified nanostructured lipid carrier loaded with genistein (Gen-NLC) to inhibit human lens epithelial cells (HLECs) proliferation. METHODS Gen-NLC was made by melt emulsification method. The morphology, particle size (PS), zeta potentials (ZP), encapsulation efficiency (EE) and in vitro release were characterized. The inhibition effect of nanostructured lipid carrier (NLC), genistein (Gen) and Gen-NLC on HLECs proliferation was evaluated by cell counting kit-8 (CCK-8) assay, gene and protein expression of the proliferation marker Ki67 were evaluated with real-time quantitative polymerase chain reaction (RT-qPCR) and immunofluorescence analyses. RESULTS The mean PS of Gen-NLC was 80.12±1.55 nm with a mean polydispersity index of 0.11±0.02. The mean ZP was -7.14±0.38 mV and the EE of Gen in the nanoparticles was 92.3%±0.73%. Transmission electron microscopy showed that Gen-NLC displayed spherical-shaped particles covered by an outer-layer structure. In vitro release experiments demonstrated a prolonged drug release for 72h. The CCK-8 assay results showed the NLC had no inhibitory effect on HLECs and Gen-NLC displayed a much more prominent inhibitory effect on cellular growth compared to Gen of the same concentration. The mRNA and protein expression of Ki67 in LECs decreased significantly in Gen-NLC group. CONCLUSION Sustained drug release by Gen-NLCs may impede HLEC growth. PMID:27275415

  8. Cutaneous adverse reactions specific to epidermal growth factor receptor inhibitors

    PubMed Central

    Lupu, I; Voiculescu, VM; Bacalbasa, N; Prie, BE; Cojocaru, I; Giurcaneanu, C

    2015-01-01

    Classical antineoplastic therapy is encumbered by extensively studied adverse reactions, most often of systemic nature. The emergence of new generations of anticancer treatments, including epidermal growth factor receptor inhibitors, besides improving the response to treatment and the survival rate, is accompanied by the occurrence of new specific side effects, incompletely studied. These side effects are most often cutaneous (hand foot syndrome, acneiform reactions), and in some cases are extremely severe, requiring dose reduction or drug discontinuation. The prevention of the cutaneous adverse effects and their treatment require a close collaboration between the oncologist and the dermatologist. The occurrence of some of these skin adverse effects may be a favorable prognostic factor for the response to the cancer treatment and the overall survival. Abbreviations: EGFR = epidermal growth factor receptors; EGFRI = epidermal growth factor receptors inhibitors PMID:26361513

  9. Recycling of epidermal growth factor in a human pancreatic carcinoma cell line

    SciTech Connect

    Korc, M.; Magun, B.E.

    1985-09-01

    PANC-1 human pancreatic carcinoma cells readily bound and internalized /sup 125/I-labeled epidermal growth factor (EGF). Bound /sup 125/I-labeled EGF was then partially processed to a number of high molecular weight acidic species. Percoll gradient centrifugation of cell homogenates indicated that the majority of /sup 125/I activity localized to several intracellular vesicular compartments. Both intact EGF and its processed species were subsequently released into the incubation medium. A major portion of the released radioactivity was capable of rebinding to the cell. Only a small amount of bound /sup 125/I-labeled EGF was degraded to low molecular weight products, and this degradation was completely blocked by methylamine. These findings suggest that in PANC-1 cells, bound EGF undergoes only limited processing. Both intact EGF and its major processed species bypass the cellular degradative pathways, are slowly released from the cell, and then rebind to the cell.

  10. Effective Delivery of Doxycycline and Epidermal Growth Factor for Expedited Healing of Chronic Wounds

    NASA Astrophysics Data System (ADS)

    Kulkarni, Abhilash

    The problems and high medical costs associated with chronic wounds necessitate an economical bioactive wound dressing. A new strategy was investigated to inhibit MMP-9 proteases and to release epidermal growth factor (EGF) to enhance healing. Doxycycline (DOX) and EGF were encapsulated on polyacrylic acid modified polyurethane film (PAA-PU) using Layer-by-Layer (LbL) assembly. The number of bilayers tuned the concentration of DOX and EGF released over time with over 94% bioactivity of EGF retained over 4 days. A simple wound model in which MMP-9 proteases were added to cell culture containing fibroblast cells demonstrated that DOX inhibited the proteases providing a protective environment for the released EGF to stimulate cell migration and proliferation at a faster healing rate. In the presence of DOX, only small amounts of the highly bioactive EGF are sufficient to close the wound. Results show that this is new and promising bioactive dressing for effective wound management.

  11. Novel Polymeric Scaffolds Using Protein Microbubbles as Porogen and Growth Factor Carriers

    PubMed Central

    Nair, Ashwin; Thevenot, Paul; Dey, Jagannath; Shen, Jinhui; Sun, Man-Wu; Yang, Jian

    2010-01-01

    Polymeric tissue engineering scaffolds prepared by conventional techniques like salt leaching and phase separation are greatly limited by their poor biomolecule-delivery abilities. Conventional methods of incorporation of various growth factors, proteins, and/or peptides on or in scaffold materials via different crosslinking and conjugation techniques are often tedious and may affect scaffold's physical, chemical, and mechanical properties. To overcome such deficiencies, a novel two-step porous scaffold fabrication procedure has been created in which bovine serum albumin microbubbles (henceforth MB) were used as porogen and growth factor carriers. Polymer solution mixed with MB was phase separated and then lyophilized to create porous scaffold. MB scaffold triggered substantially lesser inflammatory responses than salt-leached and conventional phase-separated scaffolds in vivo. Most importantly, the same technique was used to produce insulin-like growth factor-1 (IGF-1)–eluting porous scaffolds, simply by incorporating IGF-1–loaded MB (MB-IGF-1) with polymer solution before phase separation. In vitro such MB-IGF-1 scaffolds were able to promote cell growth to a much greater extent than scaffold soaked in IGF-1, confirming the bioactivity of the released IGF-1. Further, such MB-IGF-1 scaffolds elicited IGF-1–specific collagen production in the surrounding tissue in vivo. This novel growth factor–eluting scaffold fabrication procedure can be used to deliver a range of single or combination of bioactive biomolecules to substantially promote cell growth and function in degradable scaffold. PMID:19327002

  12. Hepatocyte growth factor, hepatocyte growth factor activator and arginine in a rat fulminant colitis model

    PubMed Central

    Zwintscher, Nathan P.; Shah, Puja M.; Salgar, Shashikumar K.; Newton, Christopher R.; Maykel, Justin A.; Samy, Ahmed; Jabir, Murad; Steele, Scott R.

    2016-01-01

    Introduction Dextran sodium sulfate (DSS) is commonly used to induce a murine fulminant colitis model. Hepatocyte growth factor (HGF) has been shown to decrease the symptoms of inflammatory bowel disease (IBD) but the effect of its activator, HGFA, is not well characterized. Arginine reduces effects of oxidative stress but its effect on IBD is not well known. The primary aim is to determine whether HGF and HGFA, or arginine will decrease IBD symptoms such as pain and diarrhea in a DSS-induced fulminant colitis murine model. Methods A severe colitis was induced in young, male Fischer 344 rats with 4% (w/v) DSS oral solution for seven days; rats were sacrificed on day 10. Rats were divided into five groups of 8 animals: control, HGF (700 mcg/kg/dose), HGF and HGFA (10 mcg/dose), HGF and arginine, and high dose HGF (2800 mcg/kg/dose). Main clinical outcomes were pain, diarrhea and weight loss. Blinded pathologists scored the terminal ileum and distal colon. Results DSS reliably induced severe active colitis in 90% of animals (n = 36/40). There were no differences in injury scores between control and treatment animals. HGF led to 1.38 fewer days in pain (p = 0.036), while arginine led to 1.88 fewer days of diarrhea (P = 0.017) compared to controls. 88% of HGFA-treated rats started regaining weight (P < 0.001). Discussion/Conclusion Although treatment was unable to reverse fulminant disease, HGF and arginine were associated with decreased days of pain and diarrhea. These clinical interventions may reduce associated symptoms for severe IBD patients, even when urgent surgical intervention remains the only viable option. PMID:27144006

  13. Hypothalamic hamartoma: a source of luteinizing-hormone-releasing factor in precocious puberty.

    PubMed

    Judge, D M; Kulin, H E; Page, R; Santen, R; Trapukdi, S

    1977-01-01

    The presence of a hypothalamic hamartoma and precocious puberty in a 19-month-old boy provided an opportunity to study their relation. Excised tissue had the ultrastructural characteristics of an independent neuroendocrine unit -- i.e., neurons containing neurosecretory granules and blood vessels with fenestrated endothelium and double basement membranes. Immunofluorescence studies using specific antibody to luteinizing-hormone-releasing factor showed antigenicity to the factor in the hamartoma. The testicular-hypothalamic-pituitary axis was tested. Clomiphene unresponsiveness suggested a lack of maturation of central-nervous-system events characteristic of normal puberty. The negative feedback system between gonad and brain was intact but partially resistant to steroid suppression. These studies suggest that hypothalamic hamartomas may cause precocious puberty by autonomous production and release of luteinizing-hormone-releasing factor into vessels that communicate with the pituitary portal blood system.

  14. Acromegalic gigantism with low serum level of growth hormone and elevated serum insulin-like growth factor-I.

    PubMed

    Miyazaki, R; Yoshida, T; Sakane, N; Yasuda, T; Umekawa, T; Kondo, M; Shimatsu, A; Hizuka, N; Sano, T

    1995-03-01

    In a case of acromegalic gigantism with hyperprolactinemia is reported, the basal serum growth hormone (GH) levels ranged from 1.2 to 1.9 ng/ml. Serum GH response to either insulin-induced hypoglycemia or GH-releasing hormone was blunted. Frequent blood sampling showed non-pulsatile GH secretion. Serum prolactin and insulin-like growth factor-I (IGF-I) levels were elevated. After unsuccessful surgery, bromocriptine treatment normalized serum prolactin without affecting serum GH and IGF-I levels. Combined administration of octreotide with bromocriptine reduced serum GH and IGF-I levels. In this case, non-pulsatile GH secretion and enhanced tissue sensitivity to GH may induce hypersecretion of IGF-I and cause clinical acromegalic gigantism. PMID:7787324

  15. Strategies for Controlled Delivery of Growth Factors and Cells for Bone Regeneration

    PubMed Central

    Vo, Tiffany N.; Kasper, F. Kurtis; Mikos, Antonios G.

    2012-01-01

    The controlled delivery of growth factors and cells within biomaterial carriers can enhance and accelerate functional bone formation. The carrier system can be designed with preprogrammed release kinetics to deliver bioactive molecules in a localized, spatiotemporal manner most similar to the natural wound healing process. The carrier can also act as an extracellular matrix-mimicking substrate for promoting osteoprogenitor cellular infiltration and proliferation for integrative tissue repair. This review discusses the role of various regenerative factors involved in bone healing and their appropriate combinations with different delivery systems for augmenting bone regeneration. The general requirements of protein, cell and gene therapy are described, with elaboration on how the selection of materials, configurations and processing affects growth factor and cell delivery and regenerative efficacy in both in vitro and in vivo applications for bone tissue engineering. PMID:22342771

  16. Beclin 1 regulates growth factor receptor signaling in breast cancer.

    PubMed

    Rohatgi, R A; Janusis, J; Leonard, D; Bellvé, K D; Fogarty, K E; Baehrecke, E H; Corvera, S; Shaw, L M

    2015-10-16

    Beclin 1 is a haploinsufficient tumor suppressor that is decreased in many human tumors. The function of beclin 1 in cancer has been attributed primarily to its role in the degradative process of macroautophagy. However, beclin 1 is a core component of the vacuolar protein sorting 34 (Vps34)/class III phosphatidylinositoI-3 kinase (PI3KC3) and Vps15/p150 complex that regulates multiple membrane-trafficking events. In the current study, we describe an alternative mechanism of action for beclin 1 in breast cancer involving its control of growth factor receptor signaling. We identify a specific stage of early endosome maturation that is regulated by beclin 1, the transition of APPL1-containing phosphatidyIinositol 3-phosphate-negative (PI3P(-)) endosomes to PI3P(+) endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P(-)/APPL(+)-signaling-competent compartment. As a result, suppression of BECN1 sustains growth factor-stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Our data identify a novel role for beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of beclin 1 expression would enhance breast cancer progression.

  17. Cytokine and Growth Factor Responses After Radiotherapy for Localized Ependymoma

    SciTech Connect

    Merchant, Thomas E. Li Chenghong; Xiong Xiaoping; Gaber, M. Waleed

    2009-05-01

    Purpose: To determine the time course and clinical significance of cytokines and peptide growth factors in pediatric patients with ependymoma treated with postoperative radiotherapy (RT). Methods and Materials: We measured 15 cytokines and growth factors (fibroblast growth factor, epidermal growth factor, vascular endothelial growth factor [VEGF], interleukin [IL]-1{beta}, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, interferon-{gamma}, tumor necrosis factor-{alpha}, granulocyte-macrophage colony-stimulating factor, monocyte chemoattractant protein-1, and macrophage inflammatory protein-{alpha}) from 30 patients before RT and 2 and 24 h, weekly for 6 weeks, and at 3, 6, 9, and 12 months after the initiation of RT. Two longitudinal models for the trend of log-transformed measurements were fitted, one during treatment and one through 12 months. Results: During RT, log IL-8 declined at a rate of -0.10389/wk (p = 0.0068). The rate of decline was greater (p = 0.028) for patients with an infratentorial tumor location. The decline in IL-8 after RT was significant when stratified by infratentorial tumor location (p = 0.0345) and more than one surgical procedure (p = 0.0272). During RT, the decline in log VEGF was significant when stratified by the presence of a ventriculoperitoneal shunt. After RT, the log VEGF declined significantly at a rate of -0.06207/mo. The decline was significant for males (p = 0.0222), supratentorial tumors (p = 0.0158), one surgical procedure (p = 0.0222), no ventriculoperitoneal shunt (p = 0.0005), and the absence of treatment failure (p = 0.0028). Conclusion: The pro-inflammatory cytokine IL-8 declined significantly during RT and the decline differed according to tumor location. The angiogenesis factor VEGF declined significantly during the 12 months after RT. The decline was greater in males, those without a ventriculoperitoneal shunt, and in those with favorable disease factors, including one surgical procedure, supratentorial tumor location, and

  18. Growth factors in porcine full and partial thickness burn repair. Differing targets and effects of keratinocyte growth factor, platelet-derived growth factor-BB, epidermal growth factor, and neu differentiation factor.

    PubMed Central

    Danilenko, D. M.; Ring, B. D.; Tarpley, J. E.; Morris, B.; Van, G. Y.; Morawiecki, A.; Callahan, W.; Goldenberg, M.; Hershenson, S.; Pierce, G. F.

    1995-01-01

    The topical application of recombinant growth factors such as epidermal growth factor, platelet-derived growth factor-BB homodimer (rPDGF-BB), keratinocyte growth factor (rKGF), and neu differentiation factor has resulted in significant acceleration of healing in several animal models of wound repair. In this study, we established highly reproducible and quantifiable full and deep partial thickness porcine burn models in which burns were escharectomized 4 or 5 days postburn and covered with an occlusive dressing to replicate the standard treatment in human burn patients. We then applied these growth factors to assess their efficacy on several parameters of wound repair: extracellular matrix and granulation tissue production, percent reepithelialization, and new epithelial area. In full thickness burns, only rPDGF-BB and the combination of rPDGF-BB and rKGF induced significant changes in burn repair. rPDGF-BB induced marked extracellular matrix and granulation tissue production (P = 0.013) such that the burn defect was filled within several days of escharectomy, but had no effect on new epithelial area or reepithelialization. The combination of rPDGF-BB and rKGF in full thickness burns resulted in a highly significant increase in extracellular matrix and granulation tissue area (P = 0.0009) and a significant increase in new epithelial area (P = 0.007), but had no effect on reepithelialization. In deep partial thickness burns, rKGF induced the most consistent changes. Daily application of rKGF induced a highly significant increase in new epithelial area (P < 0.0001) but induced only a modest increase in reepithelialization (83.7% rKGF-treated versus 70.2% control; P = 0.016) 12 days postburn. rKGF also doubled the number of fully reepithelialized burns (P = 0.02) at 13 days postburn, at least partially because of marked stimulation of both epidermal and follicular proliferation as assessed by proliferating cell nuclear antigen expression. In situ hybridization for

  19. Influences of key factors on manganese release from soil of a reservoir shore.

    PubMed

    Chen, Lei; Zheng, Xilai; Wang, Tiejun; Zhang, Junjie

    2015-08-01

    In the summertime, the manganese pollution in moderately deep lakes and reservoirs caused by thermal stratification processes has been a serious problem. To mitigate the issue, understanding the key factors that control manganese releases from reservoir soils is a critical step. To this end, batch experiments and the response surface methodology (RSM) analysis were conducted in this study to investigate the release of Mn(diss) and Mn(III) (0.45 μm filterable) from soil samples collected along a reservoir shore under different combined effects of pH, dissolved oxygen (DO), temperature, and dissolved organic carbon (DOC). According to the three-dimensional (3-D) response surfaces plotted from the mathematical model, the highest concentrations of Mn(diss) and Mn(III) released from the studied soils were achieved when the release process was carried out at 30.0 °C using a citric acid solution (10.8 mg/L) of pH 6.0 with the DO concentration of 0.0 mg/L. It was found that pH was the most significant factor affecting the release of Mn(diss) and Mn(III) among the four factors. The combined effect of pH and DOC was also very significant to stimulate Mn(III) releases. In addition, both Mn(diss) and Mn(III) followed the same release principle under the coupled effects of the four factors. A close agreement between experimental and predicted values from the developed models was found.

  20. Somatostatin and macrophage function: modulation of hydrogen peroxide, nitric oxide and tumor necrosis factor release.

    PubMed

    Chao, T C; Cheng, H P; Walter, R J

    1995-07-21

    Recent studies have shown that somatostatin modulates lymphocyte function, but the effects of somatostatin on macrophage function are not clearly defined. In the present study, peritoneal macrophages (Mluminal diameter) obtained from male rats were treated in vitro with somatostatin or octreotide and their effects on the release of hydrogen peroxide (H2O2), nitrite, and tumor necrosis factor (TNF) determined. Macrophages treated with somatostatin (10(-9) M to 10(-7) M) or octreotide (10(-8) M and 10(-7) M) released significantly greater amounts of PMA-stimulated H2O2 than did the untreated controls. In addition, 10(-9) M of somatostatin significantly enhanced PMA-stimulated H2O2 release by LPS-treated Mluminal diameter. Octreotide had no effect on H2O2 release by LPS-treated Mluminal diameter. At concentrations of 10(-14) M, 10(-13) M, or greater than 10(-8) M, somatostatin or octreotide suppressed nitrite release by Mluminal diameter. Somatostatin or octreotide did not affect nitrite release by LPS-treated Mluminal diameter. On the other hand, Mluminal diameter treated with 10(-11) M of somatostatin or octreotide released greater amounts of TNF than did the untreated controls. In contrast, TNF release by Mluminal diameter treated with 10(-9) M to 10(-5) M of somatostatin or 10(-7) M to 10(-5) M of octreotide was less than that of the controls. Anti-TNF antibody (1:1000) caused a reduction in the release of H2O2 and nitrite. These findings demonstrate that somatostatin and octreotide modulate the release of H2O2, nitric oxide, and TNF by Mluminal diameter depending on the concentration of hormones used.

  1. A novel sustained-release formulation of recombinant human growth hormone and its pharmacokinetic, pharmacodynamic and safety profiles.

    PubMed

    Wei, Yi; Wang, Yuxia; Kang, Aijun; Wang, Wei; Ho, Sa V; Gao, Junfeng; Ma, Guanghui; Su, Zhiguo

    2012-07-01

    An effective and safe formulation of sustained-release rhGH for two months using poly(monomethoxypolyethylene glycol-co-D,L-lactide) (mPEG-PLA, PELA) microspheres was developed to reduce the frequency of medication. The rhGH-loaded PELA microspheres with a narrow size distribution were successfully prepared by a double emulsion method combined with a premix membrane emulsification technique without any exogenous stabilizing excipients. The narrow size distribution of the microspheres would guarantee repeatable productivity and release behavior. Moreover, the amphiphilic PELA improved the bioactivity retention of protein drugs since it prevented protein contact with the oil/water interface and the hydrophobic network, and modulated diffusion of acidic degradation products from the carrier system. These PELA microspheres were compared in vivo with commercial rhGH solution, conventional poly(D,L-lactic acid) (PLA) and poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres. Administration of rhGH-PELA could extend the duration of rhGH release (for up to 56 days) and increase area under the curve (AUC) compared to rhGH solution, PLA or PLGA microspheres in Sprague-Dawley (SD) rats. In addition, rhGH-PELA microspheres induced a greater response in total insulin-like growth factor-1 (IGF-1) and insulin-like growth factor binding protein-3 (IGFBP-3) than other rhGH formulations. With a hypophysectomized SD rat model, the pharmacological efficacy of rhGH-PELA microspheres was shown to be better than that from daily administration of rhGH solutions over 6 days based on body weight gain and width of the tibial growth plate. Histological examination of the injection sites indicated a significantly milder inflammatory response than that observed after injection of PLA and PLGA microspheres. Neither anti-rhGH antibodies nor the toxic effects on heart, liver and kidney were detectable after administration of rhGH-PELA microspheres in SD rats. These results suggest that rh

  2. Autocrine ligands of the epithelial growth factor receptor mediate inflammatory responses to diesel exhaust particles

    PubMed Central

    2014-01-01

    Background Diesel exhaust is associated with cardiovascular and respiratory mortality and morbidity. Acute exposure leads to increased IL-8 expression and airway neutrophilia, however the mechanism of this response is unknown. Objectives: As cigarette smoke-induced IL-8 expression by epithelial cells involves transactivation of the epidermal growth factor receptor (EGFR), we studied the effects of diesel exhaust particles (DEP) on IL-8 release and the role of the EGFR. Methods Primary bronchial epithelial cells (PBEC) were exposed to DEPs or carbon black. IL-8 and EGFR ligand expression (transforming growth factor alpha (TGFα), heparin-binding EGF-like growth factor, and amphiregulin (AR)) were assessed by quantitative RT-PCR and ELISA. Results DEP, but not carbon black, caused a dose-dependent increase in mitogen-activated protein kinase (MAPK) activation and IL-8 expression, however above 50 μg/ml there was an increase in cytotoxicity. At 50 μg/ml, DEPs stimulated transcription and release of IL-8 and EGFR ligands. IL-8 release was blocked by EGFR neutralizing antibodies, an EGFR-selective tyrosine kinase inhibitor and by the metalloprotease inhibitor, GM6001, which blocks EGFR ligand shedding. Neutralizing antibodies to AR, TGFα and heparin-binding (HB)-EGF reduced DEP-induced IL-8 by >50%. Conclusion Expression of IL-8 in response to DEPs is dependent on EGFR activation and that autocrine production of EGFR ligands makes a substantial contribution to this response. Capsule Summary: This study identifies a mechanism whereby diesel particles stimulates IL-8 release from bronchial epithelial cells. This mechanism may help to explain the recruitment of neutrophils into the airways of people exposed to particulate air pollution. PMID:24555532

  3. Hammerhead Ribozyme-Mediated Knockdown of mRNA for Fibrotic Growth Factors: Transforming Growth Factor-Beta 1 and Connective Tissue Growth Factor

    PubMed Central

    Robinson, Paulette M.; Blalock, Timothy D.; Yuan, Rong; Lewin, Alfred S.; Schultz, Gregory S.

    2013-01-01

    Excessive scarring (fibrosis) is a major cause of pathologies in multiple tissues, including lung, liver, kidney, heart, cornea, and skin. The transforming growth factor- β (TGF- β) system has been shown to play a key role in regulating the formation of scar tissue throughout the body. Furthermore, connective tissue growth factor (CTGF) has been shown to mediate most of the fibrotic actions of TGF- β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. Currently, no approved drugs selectively and specifically regulate scar formation. Thus, there is a need for a drug that selectively targets the TGF- β cascade at the molecular level and has minimal off-target side effects. This chapter focuses on the design of hammerhead ribozymes, measurement of kinetic activity, and assessment of knockdown mRNAs of TGF- β and CTGF in cell cultures. PMID:22131029

  4. Stimulatory effect of luteinizing hormone, insulin-like growth factor-1, and epidermal growth factor on vascular endothelial growth factor production in cultured bubaline luteal cells.

    PubMed

    Chouhan, V S; Dangi, S S; Babitha, V; Verma, M R; Bag, S; Singh, G; Sarkar, M

    2015-10-15

    The purpose of this study was to evaluate the temporal (24, 48, and 72 hours) and dose-dependent (0, 5, 10, and 100 ng/mL of LH, insulin-like growth factor 1 [IGF-1], and EGF) in vitro expression and secretion patterns of vascular endothelial growth factor (VEGF) in luteal cell culture during different stages of estrous cycle in water buffaloes. Corpus luteum samples from ovaries of early luteal phase (ELP; Days 1-4), midluteal phase (Days 5-10), and late luteal phase (Days 11-16) were collected from a local slaughterhouse. The samples were then processed and cultured in (serum containing) appropriate cell culture medium and incubated separately with three factors (LH, IGF-1, or EGF) at the previously mentioned three dose-duration combinations. At the end of the respective incubation periods, VEGF was assayed in the spent culture medium by ELISA, whereas the cultured cells were used for VEGF mRNA expression by quantitative real-time polymerase chain reaction. The results of the present study disclosed dose- and time-dependent stimulatory effects of LH, IGF-1, and EGF on VEGF production in bubaline luteal cells. The VEGF expression and secretion from the cultured luteal cells were highest during the ELP, intermediate in the midluteal phase, and lowest in the late luteal phase of the estrous cycle for all the three tested factors. Comparison of the results of the three treatments depicted EGF as the most potent stimulating factor followed by IGF-1 and LH. Immunocytochemistry findings in luteal cell culture of ELP agreed with the VEGF expression and secretion. In conclusion, mRNA expression, protein secretion, and immunolocalization of VEGF data clearly indicated for the first time that LH, IGF-1, and EGF play an important role in stimulating luteal angiogenesis in buffalo CL. The highest expression and secretion of VEGF in the ELP might be associated with the development of blood vessels in early growth of CL, which in turn gets augmented by the aforementioned

  5. Stimulatory effect of luteinizing hormone, insulin-like growth factor-1, and epidermal growth factor on vascular endothelial growth factor production in cultured bubaline luteal cells.

    PubMed

    Chouhan, V S; Dangi, S S; Babitha, V; Verma, M R; Bag, S; Singh, G; Sarkar, M

    2015-10-15

    The purpose of this study was to evaluate the temporal (24, 48, and 72 hours) and dose-dependent (0, 5, 10, and 100 ng/mL of LH, insulin-like growth factor 1 [IGF-1], and EGF) in vitro expression and secretion patterns of vascular endothelial growth factor (VEGF) in luteal cell culture during different stages of estrous cycle in water buffaloes. Corpus luteum samples from ovaries of early luteal phase (ELP; Days 1-4), midluteal phase (Days 5-10), and late luteal phase (Days 11-16) were collected from a local slaughterhouse. The samples were then processed and cultured in (serum containing) appropriate cell culture medium and incubated separately with three factors (LH, IGF-1, or EGF) at the previously mentioned three dose-duration combinations. At the end of the respective incubation periods, VEGF was assayed in the spent culture medium by ELISA, whereas the cultured cells were used for VEGF mRNA expression by quantitative real-time polymerase chain reaction. The results of the present study disclosed dose- and time-dependent stimulatory effects of LH, IGF-1, and EGF on VEGF production in bubaline luteal cells. The VEGF expression and secretion from the cultured luteal cells were highest during the ELP, intermediate in the midluteal phase, and lowest in the late luteal phase of the estrous cycle for all the three tested factors. Comparison of the results of the three treatments depicted EGF as the most potent stimulating factor followed by IGF-1 and LH. Immunocytochemistry findings in luteal cell culture of ELP agreed with the VEGF expression and secretion. In conclusion, mRNA expression, protein secretion, and immunolocalization of VEGF data clearly indicated for the first time that LH, IGF-1, and EGF play an important role in stimulating luteal angiogenesis in buffalo CL. The highest expression and secretion of VEGF in the ELP might be associated with the development of blood vessels in early growth of CL, which in turn gets augmented by the aforementioned

  6. Analysis of release cutting effects on increment and growth in Oriental beech (Fagus orientalis Lipsky) stand.

    PubMed

    Yücesan, Zafer; Ozçelik, Sevilay; Oktan, Ercan

    2015-09-01

    In the present study, the effects of release cuttings on stand structures and increment and growth relations were investigated in afforested oriental beech (Fagus orientalis Lipsky) stands. To maximize spatial variation in dataset, stratified random sampling was used to layout transects. 24 sampling plots were determined which reflects average characteristics of actual stand structure. 8 sampling plots were selected from unthinned stands, 8 sampling plots were selected from lightly thinned (19% of the total basal area removed) stand and 8 sampling plots were selected from heavily thinned (40% of the total basal area removed) stand. Light thinning was done in the year 2008 and heavy thinning in 2009. Stem analyses were carried out and pre- and post-treatment height, diameter, basal area and volume increments were examined according to thinning intensities. Obtained results showed that removal of 40% of the basal area does not contribute to stand increment and growth more positively than those in stands treated by removal of 19% of the basal area. Expected increase in height and diameter increment did not occurr post-treatment in 2008 and 2009. However, in only lightly thinned stands mean basal area increment increased after treatment. Release cuttings in beech stand needs to be practiced at least twice every 5 to 6 years, provided that peculiar characteristics of every habitat are considered.

  7. Modulation of colony stimulating factor release and apoptosis in human colon cancer cells by anticancer drugs

    PubMed Central

    Calatayud, S; Warner, T D; Mitchell, J A

    2002-01-01

    Modulation of the immune response against tumour cells is emerging as a valuable approach for cancer treatment. Some experimental studies have shown that secretion of colony stimulating factors by cancer cells reduces their tumorigenicity and increases their immunogenicity probably by promoting the cytolitic and antigen presenting activities of leukocytes. We have observed that human colon cancer cells (HT-29) are able to secrete granulocyte-macrophage-colony stimulating factor, granulocyte-colony stimulating factor and macrophage-colony stimulating factor when stimulated with cytokines (IL-1β and TNF-α). In this study we assessed, for the first time, the effects of several anticancer drugs on colony stimulating factor release or apoptosis in HT-29 cells. Cytokine-induced release of granulocyte-macrophage-colony stimulating factor, granulocyte-colony stimulating factor and macrophage-colony stimulating factor was significantly increased by cisplatin and 6-mercaptopurine. Taxol only increased macrophage-colony stimulating factor release while reduced that of granulocyte-colony stimulating factor. No changes in colony stimulating factor secretion were observed after treatment with methotrexate. Only cisplatin and taxol induced apoptosis in these cells. Secretion of colony stimulating factors by colon cancer cells may contribute to the immune host response against them. Anticancer drugs such as cisplatin and 6-mercaptopurine increase colony stimulating factor secretion by cytokine stimulated cancer cells probably through mechanisms different to those leading to cell apoptosis, an effect that may contribute to their anti-neoplasic action. British Journal of Cancer (2002) 86, 1316–1321. DOI: 10.1038/sj/bjc/6600240 www.bjcancer.com © 2002 Cancer Research UK PMID:11953891

  8. Growth factors with heparin binding affinity in human synovial fluid

    SciTech Connect

    Hamerman, D.; Taylor, S.; Kirschenbaum, I.; Klagsbrun, M.; Raines, E.W.; Ross, R.; Thomas, K.A.

    1987-12-01

    Synovial effusions were obtained from the knees of 15 subjects with joint trauma, menisceal or ligamentous injury, or osteoarthritis. Heparin-Sepharose affinity chromatography of these synovial fluids revealed, in general, three major peaks of mitogenic activity as measured by incorporation of /sup 3/H-thymidine into 3T3 cells. Gradient elution patterns showed activities at 0.5M NaCl, which is characteristic of platelet derived growth factor, and at 1.1 M NaCl and 1.6M NaCl, indicative of acidic and basic fibroblast growth factors, respectively. The identities of these mitogenic fractions were confirmed by specific immunologic and receptor-binding assays. The presence of platelet derived, acidic and basic fibroblast growth factors in the synovial fluid may contribute to wound healing in the arthritic joint.

  9. Epidermal growth factor, from gene organization to bedside

    PubMed Central

    Zeng, Fenghua; Harris, Raymond C.

    2014-01-01

    In 1962, epidermal growth factor (EGF) was discovered by Dr. Stanley Cohen while studying nerve growth factor (NGF). It was soon recognized that EGF is the prototypical member of a family of peptide growth factors that activate the EGF receptors, and that the EGF/EGF receptor signaling pathway plays important roles in proliferation, differentiation and migration of a variety of cell types, especially in epithelial cells. After the basic characterization of EGF function in the first decade or so after its discovery, the studies related to EGF and its signaling pathway have extended to a broad range of investigations concerning its biological and pathophysiological roles in development and in human diseases. In this review, we briefly describe the gene organization and tissue distribution of EGF, with emphasis on its biological and pathological roles in human diseases. PMID:24513230

  10. Androgen-dependent somatotroph function in a hypogonadal adolescent male: evidence for control of exogenous androgens on growth hormone release

    SciTech Connect

    Mauras, N.; Blizzard, R.M.; Rogol, A.D.

    1989-03-01

    A 14(10/12)-year-old white male with primary gonadal failure following testicular irradiation for acute lymphocytic leukemia was evaluated for poor growth. He had received 2400 rad of prophylactic cranial irradiation. The growth velocity had decelerated from 7 to 3.2 cm/yr over 3 years. His bone age was 12(0/12) years (by TW2-RUS), and his peak growth hormone (GH) response to provocative stimuli was 1.4 ng/mL. The 24-hour GH secretion was studied by drawing blood every 20 minutes for 24 hours. The resulting GH profile was analyzed by a computerized pulse detection algorithm, CLUSTER. Timed serum GH samples were also obtained after a 1 microgram/kg IV bolus injection of the GH releasing factor (GRH). The studies showed a flat 24-hour profile and a peak GH response to GRH of 3.9 ng/ml. Testosterone enanthate treatment was started, 100 mg IM every 4 weeks. Ten months after the initiation of therapy the calculated growth rate was 8.6 cm/yr. The 24-hour GH study and GRH responses were repeated at the time, showing a remarkably normal 24-hour GH secretory pattern and a peak GH response to GRH of 14.4 ng/mL. Testosterone therapy was discontinued, and 4 months later similar studies were repeated. A marked decrease in the mean 24-hour GH secretion and mean peak height occurred, but with maintenance of the GH pulse frequency. The GH response to GRH was intermediate, with a peak of 8 ng/mL. There was no further growth during those 4 months despite open epiphyses.

  11. Growth hormone-releasing hormone (GHRH) antagonists inhibit the proliferation of androgen-dependent and -independent prostate cancers

    PubMed Central

    Letsch, Markus; Schally, Andrew V.; Busto, Rebeca; Bajo, Ana M.; Varga, Jozsef L.

    2003-01-01

    The antiproliferative effects of an antagonist of growth hormone-releasing hormone (GHRH) JV-1-38 were evaluated in nude mice bearing s.c. xenografts of LNCaP and MDA-PCa-2b human androgen-sensitive and DU-145 androgen-independent prostate cancers. In the androgen-sensitive models, JV-1-38 greatly potentiated the antitumor effect of androgen deprivation induced by surgical castration, but was ineffective when given alone. Thus, in castrated animals bearing MDA-PCa-2b cancers, the administration of JV-1-38 for 35 days virtually arrested tumor growth (94% inhibition vs. intact control, P < 0.01; and 75% vs. castrated control, P < 0.05). The growth of LNCaP tumors was also powerfully suppressed by JV-1-38 combined with castration (83% inhibition vs. intact control, P < 0.01; and 68% vs. castrated control, P < 0.05). However, in androgen-independent DU-145 cancers, JV-1-38 alone could inhibit tumor growth by 57% (P < 0.05) after 45 days. In animals bearing MDA-PCa-2b and LNCaP tumors, the reduction in serum prostate-specific antigen levels, after therapy with JV-1-38, paralleled the decrease in tumor volume. Inhibition of MDA-PCa-2b and DU-145 cancers was associated with the reduction in the expression of mRNA and protein levels of vascular endothelial growth factor. The mRNA expression for GHRH receptor splice variants was found in all these models of prostate cancer. Our results demonstrate that GHRH antagonists inhibit androgen-independent prostate cancers and, after combination with androgen deprivation, also androgen-sensitive tumors. Thus, the therapy with GHRH antagonist could be considered for the management of both androgen-dependent or -independent prostate cancers. PMID:12538852

  12. Platelet activating factor induces dopamine release in PC-12 cell line

    SciTech Connect

    Bussolino, F.; Tessari, F.; Turrini, F.; Braquet, P.; Camussi, G.; Prosdocimi, M.; Bosia, A. Institut Henri Beaufour, Le Plessis Robinson )

    1988-10-01

    The ability of platelet activating factor (PAF) to stimulate dopamine release and modify calcium homeostasis in PC-12 cell line was studied. PAF-induced dopamine release is related to its molecular form, with only the R-form steric configuration ((R)PAF), but not its S-form or its 2-lyso derivative, effective at being active. In addition, PAF acts at very low concentrations in a dose-dependent manner (0.1-30 nM). Preincubation with PAF receptor antagonists (CV-3988 and BN52021) as well as the specific desensitization of PC-12 cells to (R)PAF abolish the (R)PAF-induced dopamine release. Several lines of evidence suggest that dopamine release is dependent on a (R)PAF-induced calcium influx and efflux modulation. Dopamine release by PC-12 cells challenged with (R)PAF is associated with a rapid {sup 45}Ca influx and efflux and a rise in cytoplasmic calcium concentrations ((Ca{sup 2+}){sub i}) evaluated by using the calcium indicators fura-2 and quin2. At 30 nM (R)PAF, the absence of extracellular calcium inhibits the dopamine release but not the rise of (Ca{sup 2+}){sub i} from the internal stores, suggesting the importance of calcium influx in (R)PAF-induced dopamine release. PAF, which has been reported to be synthesized by stimulated neuronal cells may thus have a physiological modulatory role on cells with neurosecretory properties.

  13. Cultured human foreskin fibroblasts produce a factor that stimulates their growth with properties similar to basic fibroblast growth factor

    SciTech Connect

    Story, M.T. )

    1989-05-01

    To determine if fibroblasts could be a source of fibroblast growth factor (FGF) in tissue, cells were initiated in culture from newborn human foreskin. Fibroblast cell lysates promoted radiolabeled thymidine uptake by cultured quiescent fibroblasts. Seventy-nine percent of the growth-promoting activity of lysates was recovered from heparin-Sepharose. The heparin-binding growth factor reacted on immunoblots with antiserum to human placenta-derived basic FGF and competed with iodinated basic FGF for binding to antiserum to (1-24)bFGF synthetic peptide. To confirm that fibroblasts were the source of the growth factor, cell lysates were prepared from cells incubated with radiolabeled methionine. Heparin affinity purified material was immunoprecipitated with basic FGF antiserum and electrophoresed. Radiolabeled material was detected on gel autoradiographs in the same molecular weight region as authentic iodinated basic FGF. The findings are consistant with the notion that cultured fibroblasts express basic FGF. As these cells also respond to the mitogen, it is possible that the regulation of their growth is under autocrine control. Fibroblasts may be an important source of the growth factor in tissue.

  14. Expression and localization of epidermal growth factor, transforming growth factor-α and epidermal growth factor receptor in the canine testis

    PubMed Central

    TAMADA, Hiromichi; TAKEMOTO, Kohei; TOMINAGA, Masato; KAWATE, Noritoshi; TAKAHASHI, Masahiro; HATOYA, Shingo; MATSUYAMA, Satoshi; INABA, Toshio; SAWADA, Tsutomu

    2015-01-01

    Gene expression of epidermal growth factor (EGF), transforming growth factor-α (TGF-α) and EGF receptor (EGF-R) and the localization of the corresponding proteins in the canine testis were studied. Levels of mRNA expressions were determined by semiquantitative reverse transcription polymerase chain reaction in the testes of the peripubertal (4–6 months), young adult (3–4 years), advanced adult (7–8 years) and senescent (11–16 years) groups. The EGF-R mRNA level in the testes of the peripubertal group was significantly higher than those in the other groups, whereas there was no difference in EGF and TGF-α mRNA levels among groups. Immunohistochemical stainings for EGF, TGF-α and EGF-R in the testis revealed that immunoreactivity in the seminiferous epithelium and Sertoli cell was weak and nonspecific for the stage of spermatogenesis, and distinct staining was found in Leydig cells. These results suggest that the EGF family of growth factors may be involved in testicular maturation and function in the dog. PMID:26498203

  15. Sites of epidermal growth factor synthesis and action in the pituitary: paracrine and autocrine interactions.

    PubMed

    Childs, G V; Armstrong, J

    2001-03-01

    1. Epidermal growth factor (EGF) is produced by growth hormone (GH) cells and gonadotropes in normal pituitary cell populations. The studies were initiated to determine whether EGF is a paracrine or autocrine regulator of gonadotrope function. 2. The first group of studies tested for the presence of EGF receptors in gonadotropes from cycling female rats by immunolabelling. Expression varied with the stage of the cycle. At the highest point (metoestrus), only a few EGF target cells are gonadotropes, identified by their content of luteinizing hormone (LH)-beta mRNA. Expression by gonadotropes then increased to reach a peak of 50% of cells during pro-oestrus. 3. Studies investigating the regulation of expression of EGF receptor (R) showed that all culture conditions (in media with or without serum) and EGF itself both stimulated expression of the receptor by gonadotropes in populations from oestrus or metoestrus rats. Gonadotropin-releasing hormone (GnRH) also stimulated EGFR expression in follicle-stimulating hormone (FSH) gonadotropes from oestrus animals. Additional tests of expression of immediate early genes (c-fos) showed that, after 15 min, EGF stimulated expression in cells with FSH antigens. 4. Epidermal growth factor also stimulated gonadotrope proliferation, as detected by the MTT cell growth/cell death assays and bromodeoxyuridine uptake by gonadotropes during the S phase (DNA synthesis) of the cell cycle. 5. Epidermal growth factor and GnRH both stimulated a significant increase in the percentage of mitotic gonadotropes. Epidermal growth factor may be an autocrine or a paracrine growth factor to maintain and develop the gonadotrope population and EGF may also be involved in early differentiation events that prepare cells to support the LH surge.

  16. Platelet-activating factor induces eosinophil peroxidase release from purified human eosinophils.

    PubMed Central

    Kroegel, C; Yukawa, T; Dent, G; Chanez, P; Chung, K F; Barnes, P J

    1988-01-01

    The degranulation response of purified human eosinophils to platelet-activating factor (PAF) has been studied. PAF induced release of eosinophil peroxidase (EPO) and beta-glucuronidase from highly purified human eosinophils with an EC50 of 0.9 nM. The order of release was comparable with that induced by phorbol myristate acetate (PMA). The new specific PAF antagonist 3-[4-(2-chlorophenyl)-9-methyl-H-thieno[3,2-f] [1,2,4]triazolo-[4,3a][1,4]-diazepin-2-yl](4-morpholinyl)- 1-propane-one (WEB 2086) inhibited the PAF-induced enzyme release by human eosinophils in a dose-dependent manner. The viability of eosinophils were unaffected both by PAF and WEB 2086. The results suggest that PAF may amplify allergic and inflammatory reactions by release of preformed proteins from eosinophil granules. PMID:3410498

  17. Deconstructing the Iboga Alkaloid Skeleton: Potentiation of FGF2-induced Glial Cell Line-Derived Neurotrophic Factor Release by a Novel Compound.

    PubMed

    Gassaway, Madalee M; Jacques, Teresa L; Kruegel, Andrew C; Karpowicz, Richard J; Li, Xiaoguang; Li, Shu; Myer, Yves; Sames, Dalibor

    2016-01-15

    Modulation of growth factor signaling pathways in the brain represents a new experimental approach to treating neuropsychiatric disorders such as depression, anxiety, and addiction. Neurotrophins and growth factors exert synaptic, neuronal, and circuit level effects on a wide temporal range, which suggests a possibility of rapid and lasting therapeutic effects. Consequently, identification of small molecules that can either enhance the release of growth factors or potentiate their respective pathways will provide a drug-like alternative to direct neurotrophin administration or viral gene delivery and thus represents an important frontier in chemical biology and drug design. Glial cell line-derived neurotrophic factor (GDNF), in particular, has been implicated in marked reduction of alcohol consumption in rodent addiction models, and the natural product ibogaine, a substance used traditionally in ritualistic ceremonies, has been suggested to increase the synthesis and release of GDNF in the dopaminergic system in rats. In this report, we describe a novel iboga analog, XL-008, created by unraveling the medium size ring of the ibogamine skeleton, and its ability to induce release of GDNF in C6 glioma cells. Additionally, XL-008 potentiates the release of GDNF induced by fibroblast growth factor 2 (FGF2), another neurotrophin implicated in major depressive disorder, increasing potency more than 2-fold (from 7.85 ± 2.59 ng/mL to 3.31 ± 0.98 ng/mL) and efficacy more than 3-fold. The GDNF release by both XL-008 and the FGF2/XL-008 mixture was found to be mediated through the MEK and PI3K signaling pathways but not through PLCγ in C6 glioma cells. PMID:26517751

  18. Deconstructing the Iboga Alkaloid Skeleton: Potentiation of FGF2-induced Glial Cell Line-Derived Neurotrophic Factor Release by a Novel Compound.

    PubMed

    Gassaway, Madalee M; Jacques, Teresa L; Kruegel, Andrew C; Karpowicz, Richard J; Li, Xiaoguang; Li, Shu; Myer, Yves; Sames, Dalibor

    2016-01-15

    Modulation of growth factor signaling pathways in the brain represents a new experimental approach to treating neuropsychiatric disorders such as depression, anxiety, and addiction. Neurotrophins and growth factors exert synaptic, neuronal, and circuit level effects on a wide temporal range, which suggests a possibility of rapid and lasting therapeutic effects. Consequently, identification of small molecules that can either enhance the release of growth factors or potentiate their respective pathways will provide a drug-like alternative to direct neurotrophin administration or viral gene delivery and thus represents an important frontier in chemical biology and drug design. Glial cell line-derived neurotrophic factor (GDNF), in particular, has been implicated in marked reduction of alcohol consumption in rodent addiction models, and the natural product ibogaine, a substance used traditionally in ritualistic ceremonies, has been suggested to increase the synthesis and release of GDNF in the dopaminergic system in rats. In this report, we describe a novel iboga analog, XL-008, created by unraveling the medium size ring of the ibogamine skeleton, and its ability to induce release of GDNF in C6 glioma cells. Additionally, XL-008 potentiates the release of GDNF induced by fibroblast growth factor 2 (FGF2), another neurotrophin implicated in major depressive disorder, increasing potency more than 2-fold (from 7.85 ± 2.59 ng/mL to 3.31 ± 0.98 ng/mL) and efficacy more than 3-fold. The GDNF release by both XL-008 and the FGF2/XL-008 mixture was found to be mediated through the MEK and PI3K signaling pathways but not through PLCγ in C6 glioma cells.

  19. Effects of growth factors on temporomandibular joint disc cells.

    PubMed

    Detamore, Michael S; Athanasiou, Kyriacos A

    2004-07-01

    The effects of growth factors on cartilaginous tissues are well documented. An exception is the temporomandibular joint (TMJ) disc, where data for growth factor effects on proliferation and biosynthesis are very limited. The purpose of this study was to quantify proliferation of and synthesis by TMJ disc cells cultured in monolayer with either platelet derived growth factor-AB (PDGF), basic fibroblast growth factor (bFGF) or insulin-like growth factor-I (IGF), at either a low (10 ng/ml) or high (100 ng/ml) concentration. Proliferation was assessed with a DNA quantitation technique, collagen synthesis was measured via a hydroxyproline assay, and GAG synthesis was determined with a dimethylmethylene blue dye binding assay at 14 days. Overall, the most beneficial growth factor was bFGF, which was most potent in increasing proliferation and GAG synthesis, and also effective in promoting collagen synthesis. At the high concentration, bFGF resulted in 96% more cells than the control and 30 to 45% more cells than PDGF and IGF. PDGF and bFGF were the most potent upregulators of GAG synthesis, producing 2-3 times more GAG than the control. IGF had no significant effect on GAG production, although at its higher concentration it increased collagen production by 4.5 times over the control. Collagen synthesis was promoted by bFGF at its lower concentration, with levels 4.2 times higher than the control, whereas PDGF had no significant effect on collagen production. In general, higher concentrations increased proliferation, whereas lower concentrations favoured biosynthesis. PMID:15126139

  20. Design and Fabrication of a Biodegradable, Covalently Crosslinked Shape-Memory Alginate Scaffold for Cell and Growth Factor Delivery

    PubMed Central

    Wang, Lin; Shansky, Janet; Borselli, Cristina; Mooney, David

    2012-01-01

    The successful use of transplanted cells and/or growth factors for tissue repair is limited by a significant cell loss and/or rapid growth factor diffusion soon after implantation. Highly porous alginate scaffolds formed with covalent crosslinking have been used to improve cell survival and growth factor release kinetics, but require open-wound surgical procedures for insertion and have not previously been designed to readily degrade in vivo. In this study, a biodegradable, partially crosslinked alginate scaffold with shape-memory properties was fabricated for minimally invasive surgical applications. A mixture of high and low molecular weight partially oxidized alginate modified with RGD peptides was covalently crosslinked using carbodiimide chemistry. The scaffold was compressible 11-fold and returned to its original shape when rehydrated. Scaffold degradation properties in vitro indicated ∼85% mass loss by 28 days. The greater than 90% porous scaffolds released the recombinant growth factor insulin-like growth factor-1 over several days in vitro and allowed skeletal muscle cell survival, proliferation, and migration from the scaffold over a 28-day period. The compressible scaffold thus has the potential to be delivered by a minimally invasive technique, and when rehydrated in vivo with cells and/or growth factors, could serve as a temporary delivery vehicle for tissue repair. PMID:22646518

  1. Epidermal Growth Factor-Like Growth Factors in the Follicular Fluid: Role in Oocyte Development and Maturation

    PubMed Central

    Hsieh, Minnie; Zamah, A. Musa; Conti, Marco

    2015-01-01

    The growth and maturation of the ovarian follicle requires the coordinate function of somatic cells and the oocyte. Over the past three decades, numerous growth factors involved in the bidirectional signals between the somatic and germ cells have been identified. A possible function of epidermal growth factor (EGF) signaling at selected stages of follicle maturation had been proposed early on and is supported by many observations of in vitro effects of this growth factor on steroidogenesis, oocyte maturation, and cumulus expansion. However, attempts to link EGF levels in the follicular fluid with the state of follicle and oocyte maturation have been inconclusive. More recently, data generated using mouse genetic models perturbing ovulation and fertility indicate that EGF-like growth factors, rather than EGF itself, accumulate in the follicle at the time of ovulation. EGF-like growth factor mRNA is regulated by the luteinizing hormone surge, and corresponding proteins are detected in the follicle. The EGF-like growth factors amphiregulin, epiregulin, and betacellulin are potent stimulators of oocyte maturation and cumulus expansion, and perturbation of this EGF network in vivo impairs ovulation. Similar findings in species other than the mouse confirm an important physiological role for this network at the time of ovulation. Whether this network also plays a critical role in humans and whether it can be used as a biological marker of follicle development or for the improvement of fertility remains to be determined. This review summarizes the most recent findings on the EGF network during ovulation and the potential clinical applications of manipulating this intercellular communication pathway in the control of fertility. PMID:19197805

  2. Luteinizing hormone releasing factor in rat hypophysial portal blood collected during electrical stimulation of the hypothalamus

    PubMed Central

    Harris, G. W.; Ruf, K. B.

    1970-01-01

    1. Ovulation was induced in Nembutal-blocked pro-oestrous rats by electrical stimulation of the hypothalamus. 2. The same type of electrical stimulation was applied during the collection of hypophysial portal blood. 3. Pooled hypophysial portal plasma from donors in pro-oestrus, oestrus and met-oestrus was assayed for ovarian ascorbic acid depleting (OAAD) activity. 4. Electrical stimulation of the hypothalamus increased the OAAD activity, believed to be due to luteinizing hormone releasing factor (LRF), in pro-oestrus and met-oestrus, but not in oestrus. 5. It is concluded that the hypothalamic nerve fibres responsible for releasing LRF into the hypophysial portal vessels are depleted of their store of this releasing factor, or are refractory to electrical stimulation, during oestrus. PMID:5499765

  3. Cytokines and growth factors which regulate bone cell function

    NASA Astrophysics Data System (ADS)

    Seino, Yoshiki

    Everybody knows that growth factors are most important in making bone. Hormones enhance bone formation from a long distance. Growth factors promote bone formation as an autocrine or paracrine factor in nearby bone. BMP-2 through BMP-8 are in the TGF-β family. BMP makes bone by enchondral ossification. In bone, IGF-II is most abundant, second, TGF-β, and third IGF-I. TGF-β enhances bone formation mainly by intramembranous ossification in vivo. TGF-β affects both cell proliferation and differentiation, however, TGF-β mainly enhances bone formation by intramembranous ossification. Interestingly, TGF-β is increased by estrogen(E 2), androgen, vitamin D, TGF-β and FGF. IGF-I and IGF-II also enhance bone formation. At present it remains unclear why IGF-I is more active in bone formation than IGF-II, although IGF-II is more abundant in bone compared to IGF-I. However, if only type I receptor signal transduction promotes bone formation, the strong activity of IGF-I in bone formation is understandable. GH, PTH and E 2 promotes IGF-I production. Recent data suggest that hormones containing vitamin D or E 2 enhance bone formation through growth factors. Therefore, growth factors are the key to clarifying the mechanism of bone formation.

  4. Complementary Effects of Two Growth Factors in Multifunctionalized Silk Nanofibers for Nerve Reconstruction

    PubMed Central

    Jose, Rodrigo R.; Vigneron, Pascale; Bresson, Damien; Fitzpatrick, Vincent; Marin, Frédéric; Kaplan, David L.; Egles, Christophe

    2014-01-01

    With the aim of forming bioactive guides for peripheral nerve regeneration, silk fibroin was electrospun to obtain aligned nanofibers. These fibers were functionalized by incorporating Nerve Growth Factor (NGF) and Ciliary NeuroTrophic Factor (CNTF) during electrospinning. PC12 cells grown on the fibers confirmed the bioavailability and bioactivity of the NGF, which was not significantly released from the fibers. Primary neurons from rat dorsal root ganglia (DRGs) were grown on the nanofibers and anchored to the fibers and grew in a directional fashion based on the fiber orientation, and as confirmed by growth cone morphology. These biofunctionalized nanofibers led to a 3-fold increase in neurite length at their contact, which was likely due to the NGF. Glial cell growth, alignment and migration were stimulated by the CNTF in the functionalized nanofibers. Organotypic culture of rat fetal DRGs confirmed the complementary effect of both growth factors in multifunctionalized nanofibers, which allowed glial cell migration, alignment and parallel axonal growth in structures resembling the ‘bands of Bungner’ found in situ. Graftable multi-channel conduits based on biofunctionalized aligned silk nanofibers were developed as an organized 3D scaffold. Our bioactive silk tubes thus represent new options for a biological and biocompatible nerve guidance conduit. PMID:25313579

  5. Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis.

    PubMed Central

    Connolly, D T; Heuvelman, D M; Nelson, R; Olander, J V; Eppley, B L; Delfino, J J; Siegel, N R; Leimgruber, R M; Feder, J

    1989-01-01

    Vascular permeability factor (VPF) is an Mr 40-kD protein that has been purified from the conditioned medium of guinea pig line 10 tumor cells grown in vitro, and increases fluid permeability from blood vessels when injected intradermally. Addition of VPF to cultures of vascular endothelial cells in vitro unexpectedly stimulated cellular proliferation. VPF promoted the growth of new blood vessels when administered into healing rabbit bone grafts or rat corneas. The identity of the growth factor activity with VPF was established in four ways: (a) the molecular weight of the activity in preparative SDS-PAGE was the same as VPF (Mr approximately 40 kD); (b) multiple isoforms (pI greater than or equal to 8) for both VPF and the growth-promoting activity were observed; (c) a single, unique NH2-terminal amino acid sequence was obtained; (d) both growth factor and permeability-enhancing activities were immunoadsorbed using antipeptide IgG that recognized the amino terminus of VPF. Furthermore, 125I-VPF was shown to bind specifically and with high affinity to endothelial cells in vitro and could be chemically cross-linked to a high-molecular weight cell surface receptor, thus demonstrating a mechanism whereby VPF can interact directly with endothelial cells. Unlike other endothelial cell growth factors, VPF did not stimulate [3H]thymidine incorporation or promote growth of other cell types including mouse 3T3 fibroblasts or bovine smooth muscle cells. VPF, therefore, appears to be unique in its ability to specifically promote increased vascular permeability, endothelial cell growth, and angio-genesis. Images PMID:2478587

  6. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates.

    PubMed

    Kipryushina, Yulia O; Yakovlev, Konstantin V; Odintsova, Nelly A

    2015-12-01

    This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed.

  7. 77 FR 4227 - Implantation or Injectable Dosage Form New Animal Drugs; Gonadotropin Releasing Factor Analog...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... regulations in 21 CFR 522.1083 are amended to reflect the approval. In accordance with the freedom of... CFR part 522 continues to read as follows: Authority: 21 U.S.C. 360b. 0 2. In Sec. 522.1083, revise paragraphs (c)(1) and (c)(3) to read as follows: Sec. 522.1083 Gonadotropin releasing factor...

  8. Ethanol and corticotropin releasing factor receptor modulation of central amygdala neurocircuitry: An update and future directions.

    PubMed

    Silberman, Yuval; Winder, Danny G

    2015-05-01

    The central amygdala is a critical brain region for many aspects of alcohol dependence. Much of the work examining the mechanisms by which the central amygdala mediates the development of alcohol dependence has focused on the interaction of acute and chronic ethanol with central amygdala corticotropin releasing factor signaling. This work has led to a great deal of success in furthering the general understanding of central amygdala neurocircuitry and its role in alcohol dependence. Much of this work has primarily focused on the hypothesis that ethanol utilizes endogenous corticotropin releasing factor signaling to upregulate inhibitory GABAergic transmission in the central amygdala. Work that is more recent suggests that corticotropin releasing factor also plays an important role in mediating anxiety-like behaviors via the enhancement of central amygdala glutamatergic transmission, implying that ethanol/corticotropin releasing factor interactions may modulate excitatory neurotransmission in this brain region. In addition, a number of studies utilizing optogenetic strategies or transgenic mouse lines have begun to examine specific central amygdala neurocircuit dynamics and neuronal subpopulations to better understand overall central amygdala neurocircuitry and the role of neuronal subtypes in mediating anxiety-like behaviors. This review will provide a brief update on this literature and describe some potential future directions that may be important for the development of better treatments for alcohol addiction.

  9. 76 FR 27888 - Implantation or Injectable Dosage Form New Animal Drugs; Gonadotropin Releasing Factor-Diphtheria...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... drug regulations to reflect approval of a new animal drug application (NADA) filed by Pfizer, Inc. The NADA provides for the veterinary prescription use of gonadotropin releasing factor-diphtheria toxoid...-5755, filed NADA 141-322 that provides for the veterinary prescription use of IMPROVEST...

  10. Growth factors in the treatment of early osteoarthritis

    PubMed Central

    Civinini, Roberto; Nistri, Lorenzo; Martini, Caterina; Redl, Birgit; Ristori, Gabriele; Innocenti, Massimo

    2013-01-01

    Summary Regenerative medicine is the science that studies the regeneration of biological tissues obtained through use of cells, with the aid of support structures and with biomolecules such as growth factors. As regards the growth factors the PRP, or the platelet-rich plasma, obtained from a withdrawal of autologous blood, concentrating the platelets, represents a safe, economical, easy to prepare and easy to apply source of growth factors. Numerous growth factors are in fact within the platelets and in particular a large number of them have a specific activity on neo-proliferation, on cartilage regeneration and in particular also an antiapoptotic effect on chondroblasts: - The PDGF which regulates the secretion and synthesis of collagen;- The EGF that causes cellular proliferation, endothelial chemotaxis and angiogenesis;- The VEGF that increases angiogenesis and vascular permeability;- The TGF-beta that stimulates the proliferation of undifferentiated MSC, stimulates chemotaxis of endothelial cells and angiogenesis;- The bFGF that promotes the growth and differentiation of chondrocytes and osteoblasts stimulates mitogenesis of mesenchymal cells, chondrocytes and osteoblasts. These properties have led to the development of studies that evaluated the efficacy of treatment of infiltrations in the knee and hip with platelet-derived growth factors. Regarding the knee it was demonstrated that in patients with moderate degree of gonarthrosis, the PRP is able to significantly reduce the pain and improve joint function, both on placebo and towards infiltrations with hyaluronic acid. The success of the treatment was proportional to the age of and inversely proportional to the severity of osteoarthritis according to Kellgren and Lawrence classification. The possibility of infiltrations guided with ultrasound into the hip led us to extend the indications also to hip arthrosis, as already showed by Sanchez. Even in coxarthrosis preliminary results at 6 and 12 months show that

  11. Factors affecting Staphylococcus epidermidis growth in peritoneal dialysis solutions.

    PubMed Central

    McDonald, W A; Watts, J; Bowmer, M I

    1986-01-01

    Staphylococcus epidermidis is the most frequent cause of peritonitis complicating continuous ambulatory peritoneal dialysis. We studied factors that might influence the growth of S. epidermidis in commercially available peritoneal dialysis solution (PDS). Test strains were inoculated into PDS and incubated overnight at 37 degrees C. Samples were removed at appropriate intervals, bacterial counts were performed, and growth curves were constructed. We studied the effects of various osmolarities, the neutralization and acidification of fresh and spent PDS, and the effect of intraperitoneal dwell time on the ability PDS to support growth of S. epidermidis. In fresh PDS, numbers of bacteria remained constant after 24 h. No significant differences in growth were observed among PDS with 0.5, 1.5, 2.5, and 4.25% glucose. Neutralizing acidic fresh PDS had no effect on bacterial growth. However, growth did occur in spent PDS. PDS which was recovered after only 2 h in the peritoneal cavity supported growth to the same extent as did PDS recovered after 4 to 6 h. Mean log10 changes after 24 h of incubation were as follows: for fresh PDS, -1.3; after 2 h dwell time, 2.9; after 4 h dwell time, 1.9; and after 6 h dwell time, 1.3. Acidification of spent PDS to less than pH 6.35 produced less rapid growth; mean log10 increases after 24 h of incubation were 1.9 for pH 7.75, 1.6 for pH 6.35, 0.6 for pH 5.75, and 0.7 for pH 4.95. Fresh PDS of all available osmolarities neither supported the growth of S. epidermidis nor was bactericidal. Spent PDS supported bacterial growth, and this growth was partly independent of the neutralization which occurred during the dialysis. PMID:3722356

  12. Binding, sequestration, and processing of epidermal growth factor and nerve growth factor by PC12 cells. [Rats

    SciTech Connect

    Chandler, C.E.; Herschman, H.R.

    1983-03-01

    Th rat PC12 pheochromocytoma cell line exhibits biological responses to both nerve growth factor (NGF) and epidermal growth factor (EGF). The existence of receptors and biological responses on a common cell for these two well-characterized polypeptide growth factors makes this an attractive system for comparison of ligand binding and processing. Both NGF and EGF are bound to PC12 cells in a competable form at 4/sup 0/C. At 37/sup 0/C both ligands are ''sequestered,'' but at different rates and to different extents. While sequestration happens rapidly and nearly quantitatively for bound EGF, the dissociation reaction appears to compete favorably with NFG sequestration. Both EGF and NGF are degraded by PC12 cells. Sequestered EGF, however, is degraded to a greater extent than sequestered NGF.

  13. Micro-structured, spontaneously eroding hydrogels accelerate endothelialization through presentation of conjugated growth factors.

    PubMed

    Jensen, Bettina E B; Edlund, Katrine; Zelikin, Alexander N

    2015-05-01

    Growth factors represent highly potent and highly efficacious means of communication to cells. At the same time, these proteins are fragile and relatively small sized--rendering their immobilization and controlled release from biomaterials challenging. In this work, we establish a method to incorporate growth factors into the physical hydrogels based on poly(vinyl alcohol), PVA. The latter have a long and successful history of biomedical applications and approval for diverse use in human patients, but are also characterized with scant opportunities for bioconjugation and functionalization. Herein, we develop the conjugation of growth factors to the micro-structured, spontaneously eroding physical hydrogels based on PVA. Protein conjugation was elaborated using model substrates, albumin and lysozyme, which aided to reveal specificity of chemical reactions and benign, non-harmful nature of the established protocols. Surface-adhered format of hydrogel analyses allowed to quantify bioconjugation reactions and enzymatic activity of the immobilized proteins and to visualize the hydrogels with immobilized cargo. In cell culture, immobilized growth factors were effective in communicating to adhering cells and specifically enhanced proliferation rates of the cells containing the corresponding receptors. At the same time, proliferation of the cells devoid of these receptors was un-altered. PMID:25725560

  14. Micro-structured, spontaneously eroding hydrogels accelerate endothelialization through presentation of conjugated growth factors.

    PubMed

    Jensen, Bettina E B; Edlund, Katrine; Zelikin, Alexander N

    2015-05-01

    Growth factors represent highly potent and highly efficacious means of communication to cells. At the same time, these proteins are fragile and relatively small sized--rendering their immobilization and controlled release from biomaterials challenging. In this work, we establish a method to incorporate growth factors into the physical hydrogels based on poly(vinyl alcohol), PVA. The latter have a long and successful history of biomedical applications and approval for diverse use in human patients, but are also characterized with scant opportunities for bioconjugation and functionalization. Herein, we develop the conjugation of growth factors to the micro-structured, spontaneously eroding physical hydrogels based on PVA. Protein conjugation was elaborated using model substrates, albumin and lysozyme, which aided to reveal specificity of chemical reactions and benign, non-harmful nature of the established protocols. Surface-adhered format of hydrogel analyses allowed to quantify bioconjugation reactions and enzymatic activity of the immobilized proteins and to visualize the hydrogels with immobilized cargo. In cell culture, immobilized growth factors were effective in communicating to adhering cells and specifically enhanced proliferation rates of the cells containing the corresponding receptors. At the same time, proliferation of the cells devoid of these receptors was un-altered.

  15. TGF-β2 treatment enhances cytoprotective factors released from embryonic stem cells and inhibits apoptosis in infarcted myocardium.

    PubMed

    Singla, Dinender K; Singla, Reetu D; Lamm, Stephanie; Glass, Carley

    2011-04-01

    We investigated whether factors released from mouse embryonic stem (ES) cells primed with and without transforming growth factor (TGF)-β2 inhibit iodoacetic acid (IAA)- and H(2)O(2)-induced apoptosis in the cell culture system as well as after transplantation in the infarcted heart. We generated conditioned media (CMs) from ES cells primed with and without TGF-β2 and determined their effects on IAA- and H(2)O(2)-induced apoptosis in H9c2 cells. We also transplanted both ES-CMs in the infarcted heart to determine the effects on apoptosis and cardiac function after myocardial infarction (MI) at day (D)1 and D14. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) staining, apoptotic ELISA, and cell viability data demonstrated significantly (P < 0.05) reduced apoptosis with ES-CM compared with controls in both cell culture models. Moreover, TGF-β2-primed ES-CM (T-ES-CM) demonstrated enhanced beneficial effects, with further reduced (P < 0.05) apoptosis compared with ES-CM, suggesting the a presence of additional cytoprotective released factors after TGF-β2 treatment. Next, our in vivo apoptosis data suggested significant decrease in apoptosis with both ES-CMs compared with MI alone at D1 and D14. Notably, T-ES-CM demonstrated significant (P < 0.05) inhibition of apoptosis and fibrosis with improved cardiac function compared with ES-CM at D14, whereas no such effects were observed at D1. Next, we confirmed that apoptosis is mediated through a prosurvival Akt pathway. Moreover, we determined that after TGF-β2 treatment there was a two- to fivefold increase in cytoprotective released factors (interleukin-10, stem cell factor, tissue inhibitor of matrix metalloproteinase-1, and VEGF) with T-ES-CM compared with ES-CM. In conclusion, we suggest that factors released from ES cells with and without TGF-β2 treatment contain antiapoptotic factors that inhibit apoptosis in vitro and in vivo. We also suggest that T-ES-CM demonstrates additional

  16. Prodomains of transforming growth factor beta (TGFbeta) superfamily members specify different functions: extracellular matrix interactions and growth factor bioavailability.

    PubMed

    Sengle, Gerhard; Ono, Robert N; Sasaki, Takako; Sakai, Lynn Y

    2011-02-18

    The specific functions of the prodomains of TGFβ superfamily members are largely unknown. Interactions are known between prodomains of TGFβ-1-3 and latent TGFβ-binding proteins and between prodomains of BMP-2, -4, -7, and -10 and GDF-5 and fibrillins, raising the possibility that latent TGFβ-binding proteins and fibrillins may mediate interactions with all other prodomains of this superfamily. This possibility is tested in this study. Results show that the prodomain of BMP-5 interacts with the N-terminal regions of fibrillin-1 and -2 in a site similar to the binding sites for other bone morphogenetic proteins. However, in contrast, the prodomain of GDF-8 (myostatin) interacts with the glycosaminoglycan side chains of perlecan. The binding site for the GDF-8 prodomain is likely the heparan sulfate chain present on perlecan domain V. These results support and extend the emerging concept that TGFβ superfamily prodomains target their growth factor dimers to extracellular matrix macromolecules. In addition, biochemical studies of prodomain·growth factor complexes were performed to identify inactive complexes. For some members of the superfamily, the prodomain is noncovalently associated with its growth factor dimer in an inactive complex; for others, the prodomain·growth factor complex is active, even though the prodomain is noncovalently associated with its growth factor dimer. Results show that the BMP-10 prodomain, in contrast to BMP-4, -5, and -7 prodomains, can inhibit the bioactivity of the BMP-10 growth factor and suggest that the BMP-10 complex is like TGFβ and GDF-8 complexes, which can be activated by cleavage of the associated prodomain.

  17. An ideal preparation for dermal regeneration: skin renewal growth factors, the growth factor composites from porcine platelets.

    PubMed

    Wang, Kuo-Hsien; Wu, Yo-Ping Greg; Lo, Wen-Cheng

    2012-12-01

    The use of growth factor composites from platelets has been introduced to many areas of clinical applications and studies. With the richest source of growth factors (GFs), beneficial effects have been shown on tissue regeneration and wound healing. However, animal and clinical studies have revealed inconsistent outcomes with the use of platelet-derived growth factors (PDGFs), which were likely due to variations in the presence and concentrations of GFs between various sources. Autologous PDGFs are considered to be safer, but they are limited by the feasibility of large-scale production to be used extensively in the acute phase, greater surface area, or general cosmetic applications. This study employed a simple process to obtain growth factor composites from activated platelets of porcine origin, namely skin renewal growth factors (SRGF). The functions of SRGF were subsequently evaluated on cultured human fibroblasts, keratinocytes, and melanocytes. Our data revealed that SRGF significantly promoted the proliferation of fibroblasts, accompanied by increased expression of collagens (types I, III, IV, and VIII) and proteoglycans. Diminished proliferation and arrested differentiation of keratinocytes were evidenced by the attenuated expression of laminin V and keratin 10. In addition, SRGF also suppressed the growth of melanocytes and reduced the expression of microphthalmia-associated transcription factor (MITF), tyrosinase, and paired box 3 (PAX3), which mediates melanogensis. Our results suggest that SRGF possesses beneficial properties and is a promising and cost-effective composition for the development of a safe cosmetic agent or topical products for skin regeneration. The development of SRGF may also provide an alternative strategy for tissue engineering.

  18. Functional upregulation of system xc- by fibroblast growth factor-2.

    PubMed

    Liu, Xiaoqian; Resch, Jon; Rush, Travis; Lobner, Doug

    2012-02-01

    The cystine/glutamate antiporter (system xc-) is a Na(+)-independent amino acid transport system. Disruption of this system may lead to multiple effects in the CNS including decreased cellular glutathione. Since multiple neurological diseases involve glutathione depletion, and disruption of growth factor signaling has also been implicated in these diseases, it is possible that some growth factors effects are mediated by regulation of system xc-. We tested the growth factors fibroblast growth factor-2 (FGF-2), insulin-like growth factor-1 (IGF-1), neuregulin-1 (NRG), neurotrophin-4 (NT-4), and brain derived neurotrophic factor (BDNF) on system xc- mediated 14C-cystine uptake in mixed neuronal and glial cortical cultures. Only FGF-2 significantly increased cystine uptake. The effect was observed in astrocyte-enriched cultures, but not in cultures of neurons or microglia. The increase was blocked by the system xc- inhibitor (s)-4-carboxyphenylglycine, required at least 12 h FGF-2 treatment, and was prevented by the protein synthesis inhibitor cycloheximide. Kinetic analysis indicated FGF-2 treatment increased the V(max) for cystine uptake while the K(m) remained the same. Quantitative PCR showed an increase in mRNA for xCT, the functional subunit of system xc-, beginning at 3 h of FGF-2 treatment, with a dramatic increase after 12 h. Blocking FGFR1 with PD 166866 blocked the FGF-2 effect. Treatment with a PI3-kinase inhibitor (LY-294002) or a MEK/ERK inhibitor (U0126) for 1 h prior to and during the FGF-2 treatment, each partially blocked the increased cystine uptake. The upregulation of system xc- by FGF-2 may be responsible for some of the known physiological actions of FGF-2. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'.

  19. Growth Hormone-Releasing Hormone and Its Analogues: Significance for MSCs-Mediated Angiogenesis

    PubMed Central

    Tao, Quanwei; Ma, Qunchao; Chen, Huiqiang; Wang, Jian'an

    2016-01-01

    Mesenchymal stromal cells (MSCs) are promising candidates for regenerative medicine because of their multipotency, immune-privilege, and paracrine properties including the potential to promote angiogenesis. Accumulating evidence suggests that the inherent properties of cytoprotection and tissue repair by native MSCs can be enhanced by various preconditioning stimuli implemented prior to cell transplantation. Growth hormone-releasing hormone (GHRH), a stimulator in extrahypothalamus systems including tumors, has attracted great attentions in recent years because GHRH and its agonists could promote angiogenesis in various tissues. GHRH and its agonists are proangiogenic in responsive tissues including tumors, and GHRH antagonists have been tested as antitumor agents through their ability to suppress angiogenesis and cell growth. GHRH-R is expressed by MSCs and evolving work from our laboratory indicates that treatment of MSCs with GHRH agonists prior to cell transplantation markedly enhanced the angiogenic potential and tissue reparative properties of MSCs through a STAT3 signaling pathway. In this review we summarized the possible effects of GHRH analogues on cell growth and development, as well as on the proangiogenic properties of MSCs. We also discussed the relationship between GHRH analogues and MSC-mediated angiogenesis. The analyses provide new insights into molecular pathways of MSCs-based therapies and their augmentation by GHRH analogues. PMID:27774107

  20. Influences of the environment on the endocrine and paracrine fish growth hormone-insulin-like growth factor-I system.

    PubMed

    Reinecke, M

    2010-04-01

    Insulin-like growth factor-I (IGF-I) is a key component of the complex system that regulates differentiation, development, growth and reproduction of fishes. The IGF-I gene is mainly expressed in the liver that represents the principal source of endocrine IGF-I but also in numerous other organs where the hormone most probably acts in an autocrine-paracrine manner. The primary stimulus for synthesis and release of IGF-I is growth hormone (GH) from the anterior pituitary. Thus, in analogy to mammals, it is usual to speak of a fish 'GH-IGF-I axis'. The GH-IGF-I system is affected by changes in the environment and probably represents a target of endocrine disrupting compounds (EDC) that impair many physiological processes in fishes. Thus, the review deals with the influences of changes in different environmental factors, such as food availability, temperature, photoperiod, season, salinity and EDCs, on GH gene expression in pituitary, IGF-I gene expression in liver and extrahepatic sites and the physiological effects resulting from the evoked alterations in endocrine and local IGF-I. Environmental influences certainly interact with each other but for convenience of the reader they will be dealt with in separate sections. Current trends in GH-IGF-I research are analysed and future focuses are suggested at the end of the sections. PMID:20537012

  1. Assessing the Factors of Regional Growth Decline of Sugar Maple

    NASA Astrophysics Data System (ADS)

    Bishop, D. A.; Beier, C. M.; Pederson, N.; Lawrence, G. B.; Stella, J. C.; Sullivan, T. J.

    2014-12-01

    Sugar maple (Acer saccharum Marsh) is among the most ecologically, economically and culturally important trees in North America, but has experienced a decline disease across much of its range. We investigated the climatic and edaphic factors associated with A. saccharum growth in the Adirondack Mountains (USA) using a well-replicated tree-ring network incorporating a range of soil fertility (base cation availability). We found that nearly 3 in 4 A. saccharum trees exhibited declining growth rates during the last several decades, regardless of tree age or size. Although diameter growth was consistently higher on base-rich soils, the negative trends in growth were largely consistent across the soil chemistry gradient. Sensitivity of sugar maple growth to climatic variability was overall weaker than expected, but were also non-stationary during the 20th century. We observed increasingly positive responses to late-winter precipitation, increasingly negative responses to growing season temperatures, and strong positive responses to moisture availability during the 1960s drought that became much weaker during the recent pluvial. Further study is needed of these factors and their interactions as potential mechanisms for sugar maple growth decline.

  2. Exercise induced release of von Willebrand factor: evidence for hypoxic reperfusion microvascular injury in rheumatoid arthritis.

    PubMed Central

    Farrell, A J; Williams, R B; Stevens, C R; Lawrie, A S; Cox, N L; Blake, D R

    1992-01-01

    Experimental evidence suggests that rheumatoid synovitis may be perpetuated by the generation of reactive oxygen species during hypoxic reperfusion injury. The latter occurs because increased intra-articular pressure during exercise exceeds synovial capillary perfusion pressure, impairing blood flow. The object of this study was to establish a marker for and the mechanism of synovial hypoxic reperfusion injury. Von Willebrand factor (vWF) is only released from endothelial cells and platelets and is an in vivo and in vitro marker of endothelial injury. In vivo exercise induced changes in plasma vWF were therefore investigated in patients with rheumatoid arthritis (RA) compared with controls and in vitro vWF release by human umbilical vein endothelial cells subjected to hypoxia reperfusion. Pre-exercise plasma vWF levels were 1001 and 817 IU/l, increasing after exercise to 1658 and 845 IU/l in patients with RA and controls respectively. Von Willebrand factor release from human umbilical vein endothelial cells followed a biphasic pattern, occurring during both hypoxia and reperfusion. Hypoxia reperfusion induced vWF release by human umbilical vein endothelial cells in vitro suggests that exercise induced vWF release in patients with RA is best explained by synovial hypoxic reperfusion injury. This study supports evidence that generation of reactive oxygen species plays a principal part in synovial hypoxic reperfusion injury and suggests vWF as a useful marker of this phenomenon. Images PMID:1444624

  3. The Transcription Factor NIN-LIKE PROTEIN7 Controls Border-Like Cell Release.

    PubMed

    Karve, Rucha; Suárez-Román, Frank; Iyer-Pascuzzi, Anjali S

    2016-07-01

    The root cap covers the tip of the root and functions to protect the root from environmental stress. Cells in the last layer of the root cap are known as border cells, or border-like cells (BLCs) in Arabidopsis (Arabidopsis thaliana). These cells separate from the rest of the root cap and are released from its edge as a layer of living cells. BLC release is developmentally regulated, but the mechanism is largely unknown. Here, we show that the transcription factor NIN-LIKE PROTEIN7 (NLP7) is required for the proper release of BLCs in Arabidopsis. Mutations in NLP7 lead to BLCs that are released as single cells instead of an entire layer. NLP7 is highly expressed in BLCs and is activated by exposure to low pH, a condition that causes BLCs to be released as single cells. Mutations in NLP7 lead to decreased levels of cellulose and pectin. Cell wall-loosening enzymes such as CELLULASE5 (CEL5) and a pectin lyase-like gene, as well as the root cap regulators SOMBRERO and BEARSKIN1/2, are activated in nlp7-1 seedlings. Double mutant analysis revealed that the nlp7-1 phenotype depends on the expression level of CEL5 Mutations in NLP7 lead to an increase in susceptibility to a root-infecting fungal pathogen. Together, these data suggest that NLP7 controls the release of BLCs by acting through the cell wall-loosening enzyme CEL5.

  4. Cytotoxic T lymphocyte-dependent tumor growth inhibition by a vascular endothelial growth factor-superantigen conjugate

    SciTech Connect

    Sun, Qingwen; Jiang, Songmin; Han, Baohui; Sun, Tongwen; Li, Zhengnan; Zhao, Lina; Gao, Qiang; Sun, Jialin

    2012-11-02

    Highlights: Black-Right-Pointing-Pointer We construct and purify a fusion protein VEGF-SEA. Black-Right-Pointing-Pointer VEGF-SEA strongly repressed the growth of murine solid sarcoma 180 (S180) tumors. Black-Right-Pointing-Pointer T cells driven by VEGF-SEA were accumulated around tumor cells bearing VEGFR by mice image model. Black-Right-Pointing-Pointer VEGF-SEA can serve as a tumor targeting agent and sequester CTLs into the tumor site. Black-Right-Pointing-Pointer The induced CTLs could release the cytokines, perforins and granzyme B to kill the tumor cells. -- Abstract: T cells are major lymphocytes in the blood and passengers across the tumor vasculature. If these T cells are retained in the tumor site, a therapeutic potential will be gained by turning them into tumor-reactive cytotoxic T lymphocytes (CTLs). A fusion protein composed of human vascular endothelial growth factor (VEGF) and staphylococcal enterotoxin A (SEA) with a D227A mutation strongly repressed the growth of murine solid sarcoma 180 (S180) tumors (control versus VEGF-SEA treated with 15 {mu}g, mean tumor weight: 1.128 g versus 0.252 g, difference = 0.876 g). CD4{sup +} and CD8{sup +} T cells driven by VEGF-SEA were accumulated around VEGFR expressing tumor cells and the induced CTLs could release the tumoricidal cytokines, such as interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). Meanwhile, intratumoral CTLs secreted cytolytic pore-forming perforin and granzyme B proteins around tumor cells, leading to the death of tumor cells. The labeled fusion proteins were gradually targeted to the tumor site in an imaging mice model. These results show that VEGF-SEA can serve as a tumor targeting agent and sequester active infiltrating CTLs into the tumor site to kill tumor cells, and could therefore be a potential therapeutical drug for a variety of cancers.

  5. Assaying binding of nerve growth factor to cell surface receptors

    SciTech Connect

    Vale, R.D.; Shooter, E.M.

    1985-01-01

    The paper describes methods both for the radioiodination of nerve growth factor (NGF) and for assaying NFG receptors by reversible binding techniques. Preparation of (/sup 125/I)NGF along with a rapid method for determining the amount of cell-bound ligand have allowed the detection of NGF receptors on a number of cell types.

  6. Role of fibroblast growth factors in organ regeneration and repair.

    PubMed

    El Agha, Elie; Kosanovic, Djuro; Schermuly, Ralph T; Bellusci, Saverio

    2016-05-01

    In its broad sense, regeneration refers to the renewal of lost cells, tissues or organs as part of the normal life cycle (skin, hair, endometrium etc.) or as part of an adaptive mechanism that organisms have developed throughout evolution. For example, worms, starfish and amphibians have developed remarkable regenerative capabilities allowing them to voluntarily shed body parts, in a process called autotomy, only to replace the lost parts afterwards. The bizarre myth of the fireproof homicidal salamander that can survive fire and poison apple trees has persisted until the 20th century. Salamanders possess one of the most robust regenerative machineries in vertebrates and attempting to draw lessons from limb regeneration in these animals and extrapolate the knowledge to mammals is a never-ending endeavor. Fibroblast growth factors are potent morphogens and mitogens that are highly conserved among the animal kingdom. These growth factors play key roles in organogenesis during embryonic development as well as homeostatic balance during postnatal life. In this review, we provide a summary about the current knowledge regarding the involvement of fibroblast growth factor signaling in organ regeneration and repair. We also shed light on the use of these growth factors in previous and current clinical trials in a wide array of human diseases.

  7. Immunocytochemical expression of growth factors by odontogenic jaw cysts.

    PubMed Central

    Li, T.; Browne, R. M.; Matthews, J. B.

    1997-01-01

    AIM: To determine the immunocytochemical pattern of expression of transforming growth factor (TGF) alpha, epidermal growth factor (EGF), and TGF beta in the three most common types of odontogenic jaw cyst. METHODS: Growth factor expression was detected in paraffin wax sections of odontogenic cysts (27 odontogenic keratocysts, 10 dentigerous cysts, and 10 radicular cysts) using a streptavidin-biotin peroxidase technique with monoclonal antibodies directed against TGF alpha (clone 213-4.4) and TGF beta (clone TB21) and a polyclonal antibody directed against EGF (Z-12). RESULTS: The epithelial linings of all cysts showed reactivity for TGF alpha which was mainly localised to basal and suprabasal layers. Odontogenic keratocyst linings expressed higher levels of TGF alpha than those of dentigerous and radicular cysts, with 89% (24/27) of odontogenic keratocysts exhibiting a strong positive reaction compared with 50% (five of 10) of dentigerous and radicular cysts, respectively. EGF reactivity was similar in all cyst groups, weaker than that for TGF alpha and predominantly suprabasal. TGF alpha and EGF were also detected in endothelial cells, fibroblasts and inflammatory cells within the cyst walls. The most intense TGF beta staining in odontogenic cysts was extracellular within the fibrous tissue capsules, irrespective of cyst type. CONCLUSIONS: These results, together with previous studies of EGF receptor, indicate differential expression of TGF alpha, EGF and their common receptor between the different types of odontogenic cyst, suggesting that these growth factors (via autocrine or paracrine, or both, pathways) may be involved in their pathogenesis. Images PMID:9208810

  8. Fibroblast Growth Factor-2 Alters the Nature of Extinction

    ERIC Educational Resources Information Center

    Graham, Bronwyn M.; Richardson, Rick

    2011-01-01

    These experiments examined the effects of the NMDA-receptor (NMDAr) antagonist MK801 on reacquisition and re-extinction of a conditioned fear that had been previously extinguished before injection of fibroblast growth factor-2 (FGF2) or vehicle. Recent findings have shown that relearning and re-extinction, unlike initial learning and extinction,…

  9. Total Chemical Synthesis of Biologically Active Vascular Endothelial Growth Factor

    SciTech Connect

    Mandal, Kalyaneswar; Kent, Stephen B.H.

    2011-09-15

    The 204-residue covalent-dimer vascular endothelial growth factor (VEGF, see picture) with full mitogenic activity was prepared from three unprotected peptide segments by one-pot native chemical ligations. The covalent structure of the synthetic VEGF was confirmed by precise mass measurement, and the three-dimensional structure of the synthetic protein was determined by high-resolution X-ray crystallography.

  10. Megakaryocyte growth and development factor is a potent growth factor for primitive hematopoietic progenitors in the human fetus.

    PubMed