Science.gov

Sample records for growth factor-beta superfamily

  1. Developmental tumours, early differentiation and the transforming growth factor beta superfamily.

    PubMed

    Mummery, C L; van den Eijnden-van Raaij, A J

    1999-01-01

    Embryonal carcinoma and embryonic stem cells have been very useful models for identifying some of the factors that regulate differentiation in early mammalian development. Here, we present a brief history of their original isolation and characterization and of their later introduction into the Hubrecht Laboratory. We illustrate in a review their contribution to our current understanding of the function of transforming growth factor beta and ligands binding to the receptors of a related factor, activin, in development with some of our own work.

  2. Temporal mRNA expression of transforming growth factor-beta superfamily members and inhibitors in the developing rainbow trout ovary

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Members of the transforming growth factor-beta (TGF-beta) superfamily have critical roles in ovarian development in mammals, yet many of these peptides have not been characterized or even identified in fish. Although much is known about the endocrine control of ovarian development in fishes, little...

  3. Prodomains of transforming growth factor beta (TGFbeta) superfamily members specify different functions: extracellular matrix interactions and growth factor bioavailability.

    PubMed

    Sengle, Gerhard; Ono, Robert N; Sasaki, Takako; Sakai, Lynn Y

    2011-02-18

    The specific functions of the prodomains of TGFβ superfamily members are largely unknown. Interactions are known between prodomains of TGFβ-1-3 and latent TGFβ-binding proteins and between prodomains of BMP-2, -4, -7, and -10 and GDF-5 and fibrillins, raising the possibility that latent TGFβ-binding proteins and fibrillins may mediate interactions with all other prodomains of this superfamily. This possibility is tested in this study. Results show that the prodomain of BMP-5 interacts with the N-terminal regions of fibrillin-1 and -2 in a site similar to the binding sites for other bone morphogenetic proteins. However, in contrast, the prodomain of GDF-8 (myostatin) interacts with the glycosaminoglycan side chains of perlecan. The binding site for the GDF-8 prodomain is likely the heparan sulfate chain present on perlecan domain V. These results support and extend the emerging concept that TGFβ superfamily prodomains target their growth factor dimers to extracellular matrix macromolecules. In addition, biochemical studies of prodomain·growth factor complexes were performed to identify inactive complexes. For some members of the superfamily, the prodomain is noncovalently associated with its growth factor dimer in an inactive complex; for others, the prodomain·growth factor complex is active, even though the prodomain is noncovalently associated with its growth factor dimer. Results show that the BMP-10 prodomain, in contrast to BMP-4, -5, and -7 prodomains, can inhibit the bioactivity of the BMP-10 growth factor and suggest that the BMP-10 complex is like TGFβ and GDF-8 complexes, which can be activated by cleavage of the associated prodomain.

  4. In vitro treatment with 17,20b-dihydroxy-4-pregnen-3-one regulates mRNA levels of transforming growth factor beta superfamily members in rainbow trout (Oncorhynchus mykiss) ovarian tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transforming growth factor beta (TGFB) superfamily members are important paracrine/autocrine regulators of ovarian development and steroidogenesis in mammals, but their reproductive role in fishes is not well understood. Our objectives were 3-fold: to determine if key TGFB superfamily transcripts a...

  5. Transforming growth factor beta1 and aldosterone

    PubMed Central

    Matsuki, Kota; Hathaway, Catherine K.; Chang, Albert S.; Smithies, Oliver; Kakoki, Masao

    2016-01-01

    Purpose of review It is well established that blocking renin-angiotensin II-aldosterone system (RAAS) is effective for the treatment of cardiovascular and renal complications in hypertension and diabetes mellitus. Although the induction of transforming growth factor beta1 (TGFbeta1) by components of RAAS mediates the hypertrophic and fibrogenic changes in cardiovascular-renal complications, it is still controversial as to whether TGFbeta1 can be a target to prevent such complications. Here we review recent findings on the role of TGFbeta1 in fluid homeostasis, focusing on the relationship with aldosterone. Recent findings TGFbeta1 suppresses adrenal production of aldosterone and renal tubular sodium reabsorption. We have generated mice with TGFbeta1 mRNA expression graded in five steps from 10% to 300% normal, and found that blood pressure and plasma volume are negatively regulated by TGFbeta1. Notably, the 10 % hypomorph exhibits primary aldosteronism and sodium and water retention due to markedly impaired urinary excretion of water and electrolytes. Summary These results identify TGFbeta signaling as an important counterregulatory system against aldosterone. Understanding the molecular mechanisms for the suppressive effects of TGFbeta1 on adrenocortical and renal function may further our understanding of primary aldosteronism as well as assist in the development of novel therapeutic strategies for hypertension. PMID:25587902

  6. Transforming growth factor-betas and vascular disorders.

    PubMed

    Bobik, Alex

    2006-08-01

    Transforming growth factor-beta (TGF-beta) superfamily members, TGF-beta and bone morphogenetic proteins (BMPs), are potent regulatory cytokines with diverse functions on vascular cells. They signal through heteromeric type I and II receptor complexes activating Smad-dependent and Smad-independent signals, which regulate proliferation, differentiation, and survival. They are potent regulators of vascular development and vessel remodeling and play key roles in atherosclerosis and restenosis, regulating endothelial, smooth muscle cell, macrophage, T cell, and probably vascular calcifying cell responses. In atherosclerosis, TGF-beta regulates lesion phenotype by controlling T-cell responses and stimulating smooth muscle cells to produce collagen. It contributes to restenosis by augmenting neointimal cell proliferation and collagen accumulation. Defective TGF-beta signaling in endothelial cells attributable to mutations in endoglin or the type I receptor ALK-1 leads to hereditary hemorrhagic telangiectasia, whereas defective BMP signaling attributable to mutations in the BMP receptor II has been associated with development of primary pulmonary hypertension. The development of mouse models with either cell type-specific or general inactivation of TGF-beta/BMP signaling has started to reveal the importance of the regulatory network of TGF-beta/BMP pathways in vivo and their significance for atherosclerosis, hereditary hemorrhagic telangiectasia, and primary pulmonary hypertension. This review highlights recent findings that have advanced our understanding of the roles of TGF-beta superfamily members in regulating vascular cell responses and provides likely avenues for future research that may lead to novel pharmacological therapies for the treatment or prevention of vascular disorders. PMID:16675726

  7. Incisional wound healing in transforming growth factor-beta1 null mice.

    PubMed

    Koch, R M; Roche, N S; Parks, W T; Ashcroft, G S; Letterio, J J; Roberts, A B

    2000-01-01

    Expression of endogenous transforming growth factor-beta1 is reduced in many animal models of impaired wound healing, and addition of exogenous transforming growth factor-beta has been shown to improve healing. To test the hypothesis that endogenous transforming growth factor-beta1 is essential for normal wound repair, we have studied wound healing in mice in which the transforming growth factor-beta1 gene has been deleted by homologous recombination. No perceptible differences were observed in wounds made in 3-10-day-old neonatal transforming growth factor-beta1 null mice compared to wild-type littermates. To preclude interference from maternally transferred transforming growth factor-beta1, cutaneous wounds were also made on the backs of 30-day-old transforming growth factor-beta1 null and littermate control mice treated with rapamycin, which extends their lifetime and suppresses the inflammatory response characteristic of the transforming growth factor-beta1 null mice. Again, no impairment in healing was seen in transforming growth factor-beta1 null mice. Instead these wounds showed an overall reduction in the amount of granulation tissue and an increased rate of epithelialization compared to littermate controls. Our data suggest that release of transforming growth factor-beta1 from degranulating platelets or secretion by infiltrating macrophages and fibroblasts is not critical to initiation or progression of tissue repair and that endogenous transforming growth factor-beta1 may actually function to increase inflammation and retard wound closure.

  8. Transforming Growth Factor Beta and Excess Burden of Renal Disease

    PubMed Central

    August, Phyllis; Sharma, Vijay; Ding, Ruchuang; Schwartz, Joseph E.; Suthanthiran, Manikkam

    2009-01-01

    End-stage renal disease (ESRD) is more frequent in African Americans (blacks) compared to whites. Because renal fibrosis is a correlate of progressive renal failure and a dominant feature of ESRD, and because transforming growth factor beta 1 (TGF-β1) can induce fibrosis and renal insufficiency, we hypothesized that TGF-β1 hyperexpression is more frequent in blacks compared to whites. We measured circulating levels of TGF-β1 in black and white patients with ESRD, hypertension, and in normal patients. We demonstrated that circulating levels of TGF-β1 are higher in black ESRD patients, hypertensive patients, and normal control patients compared to their white counterparts. Our preliminary genetic analyses suggest that TGF-β1 DNA polymorphisms are different in blacks and whites. Our observations of hyperexpression of TGF-β1 in blacks suggest a mechanism for the increased prevalence of renal failure and hypertensive target organ damage in this population. PMID:19768163

  9. The latent transforming growth factor beta binding protein (LTBP) family.

    PubMed Central

    Oklü, R; Hesketh, R

    2000-01-01

    The transforming growth factor beta (TGFbeta) cytokines are a multi-functional family that exert a wide variety of effects on both normal and transformed mammalian cells. The secretion and activation of TGFbetas is regulated by their association with latency-associated proteins and latent TGFbeta binding proteins (LTBPs). Over the past few years, three members of the LTBP family have been identified, in addition to the protoype LTBP1 first sequenced in 1990. Three of the LTBP family are expressed in a variety of isoforms as a consequence of alternative splicing. This review summarizes the differences between the isoforms in terms of the effects on domain structure and hence possible function. The close identity between LTBPs and members of the fibrillin family, mutations in which have been linked directly to Marfan's syndrome, suggests that anomalous expression of LTBPs may be associated with disease. Recent data indicating that differential expression of LTBP1 isoforms occurs during the development of coronary heart disease is considered, together with evidence that modulation of LTBP function, and hence of TGFbeta activity, is associated with a variety of cancers. PMID:11104663

  10. The Neuroprotective Functions of Transforming Growth Factor Beta Proteins

    PubMed Central

    Dobolyi, Arpád; Vincze, Csilla; Pál, Gabriella; Lovas, Gábor

    2012-01-01

    Transforming growth factor beta (TGF-β) proteins are multifunctional cytokines whose neural functions are increasingly recognized. The machinery of TGF-β signaling, including the serine kinase type transmembrane receptors, is present in the central nervous system. However, the 3 mammalian TGF-β subtypes have distinct distributions in the brain suggesting different neural functions. Evidence of their involvement in the development and plasticity of the nervous system as well as their functions in peripheral organs suggested that they also exhibit neuroprotective functions. Indeed, TGF-β expression is induced following a variety of types of brain tissue injury. The neuroprotective function of TGF-βs is most established following brain ischemia. Damage in experimental animal models of global and focal ischemia was shown to be attenuated by TGF-βs. In addition, support for their neuroprotective actions following trauma, sclerosis multiplex, neurodegenerative diseases, infections, and brain tumors is also accumulating. The review will also describe the potential mechanisms of neuroprotection exerted by TGF-βs including anti-inflammatory, -apoptotic, -excitotoxic actions as well as the promotion of scar formation, angiogenesis, and neuroregeneration. The participation of these mechanisms in the neuroprotective effects of TGF-βs during different brain lesions will also be discussed. PMID:22942700

  11. Transforming growth factor-beta 1 and fibroblast growth factors in rat growth plate.

    PubMed

    Jingushi, S; Scully, S P; Joyce, M E; Sugioka, Y; Bolander, M E

    1995-09-01

    Chondrocytes in the growth plate progress in an orderly fashion from resting through proliferating to hypertrophic cells. In the region of hypertrophic chondrocytes, the cartilage is invaded by capillary loops and endochondral ossification is initiated. It is currently believed that growth factors may regulate the proliferation and maturation of chondrocytes and the synthesis of extracellular matrix in the growth plate. The ordered sequence of proliferation and differentiation observed in the growth plate provides a unique opportunity to study the role of acidic fibroblast growth factor, basic fibroblast growth factor, and transforming growth factor-beta 1 in the regulation of these processes. In this study, expression of the mRNA of these growth factors was examined using total RNA extracted from the physis and epiphysis of rat tibias. Transforming growth factor-beta 1 mRNA was detected by Northern hybridization. Expression of the genes encoding acidic and basic fibroblast growth factors was demonstrated by polymerase chain reaction amplification. In addition, using polyclonal antibodies against these growth factors, we localized them by immunohistochemical analysis. Strong intracellular staining with a predominantly nuclear pattern was observed in chondrocytes from the proliferating and upper hypertrophic zones. In contrast, chondrocytes in the resting zone stained only faintly for the presence of these growth factors. Some chondrocytes in the resting zone adjacent to the proliferating zone stained with these antibodies, and the antibodies also stained cells in the zone of Ranvier, which regulates latitudinal bone growth. Lastly, the location of transforming growth factor-beta 1 was examined further with use of a polyclonal antipeptide antibody specific for its extracellular epitope.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7472755

  12. Loss of transforming growth factor-beta 2 leads to impairment of central synapse function

    PubMed Central

    Heupel, Katharina; Sargsyan, Vardanush; Plomp, Jaap J; Rickmann, Michael; Varoqueaux, Frédérique; Zhang, Weiqi; Krieglstein, Kerstin

    2008-01-01

    Background The formation of functional synapses is a crucial event in neuronal network formation, and with regard to regulation of breathing it is essential for life. Members of the transforming growth factor-beta (TGF-β) superfamily act as intercellular signaling molecules during synaptogenesis of the neuromuscular junction of Drosophila and are involved in synaptic function of sensory neurons of Aplysia. Results Here we show that while TGF-β2 is not crucial for the morphology and function of the neuromuscular junction of the diaphragm muscle of mice, it is essential for proper synaptic function in the pre-Bötzinger complex, a central rhythm organizer located in the brainstem. Genetic deletion of TGF-β2 in mice strongly impaired both GABA/glycinergic and glutamatergic synaptic transmission in the pre-Bötzinger complex area, while numbers and morphology of central synapses of knock-out animals were indistinguishable from their wild-type littermates at embryonic day 18.5. Conclusion The results demonstrate that TGF-β2 influences synaptic function, rather than synaptogenesis, specifically at central synapses. The functional alterations in the respiratory center of the brain are probably the underlying cause of the perinatal death of the TGF-β2 knock-out mice. PMID:18854036

  13. Transforming growth factor beta (TGF-β) isomers influence cell detachment of MG-63 bone cells.

    PubMed

    Sefat, Farshid; Khaghani, Seyed Ali; Nejatian, Touraj; Genedy, Mohammed; Abdeldayem, Ali; Moghaddam, Zoha Salehi; Denyer, Morgan C T; Youseffi, Mansour

    2015-12-01

    Bone repair and wound healing are modulated by different stimuli. There is evidence that Transforming Growth Factor-beta (TGF-β) super-family of cytokines have significant effects on bone structure by regulating the replication and differentiation of chondrocytes, osteoblasts and osteoclasts. There is also significant evidence that interactions with extracellular matrix molecules influence cell behaviour. In this study cell surface attachment was examined via a trypsinization assay using various TGF-β isomers in which the time taken to trypsinize cells from the surface provided a means of assessing the strength of attachment. Three TGF-β isomers (TGF-β1, 2 and 3), four combined forms (TGF-β(1+2), TGF-β(1+3), TGF-β(2+3) and TGF-β(1+2+3)) along with four different controls (BSA, HCl, BSA/HCl and negative control) were investigated in this study. The results indicated that treatment with TGF-β1, 2, 3 and HCl decreased cell attachment, however, this effect was significantly greater in the case of TGF-β3 (p<0.001) indicating perhaps that TGF-β3 does not act alone in cell detachment, but instead functions synergistically with signalling pathways that are dependent on the availability of hydrogen ions. Widefield Surface Plasmon Resonance (WSPR) microscope was also used to investigate cell surface interactions.

  14. Molecular characterisation of sea bream (Sparus aurata) transforming growth factor beta1.

    PubMed

    Tafalla, C; Aranguren, R; Secombes, C J; Castrillo, J L; Novoa, B; Figueras, A

    2003-05-01

    A transforming growth factor beta1 (TGF beta1) full length cDNA was characterised and sequenced from the head kidney of sea bream (Sparus aurata) previously challenged with a nodavirus. The cloned cDNA of 1778bp contains a predicted open reading frame of 379 amino acids, which includes the mature peptide region of 112 amino acids. The regulating region of the peptide possesses four potential N-linked glycosylation sites (N-X-T/S), as well as an RGD integrin binding site, an RKKR tetrabasic cut site and nine conserved cysteines all characteristic of the TGF beta superfamily. Compared to other teleost TGF beta1 genes, the sea bream TGF beta1 is most closely related to hybrid striped bass (Moronesaxatilis xM. chrysops) TGF beta1 (80% amino acid identity). The genomic organisation of TGF beta1 was determined through the generation of contiguous PCR clones. The sea bream TGF beta1 gene is approximately 3.6kb in length and consists of five coding regions. Two introns are absent in comparison to the genomic organisation of rainbow trout Oncorhynchus mykiss TGF beta1, whilst an additional intron not present in other sequenced TGF beta genes, but present in the trout TGF beta1 gene, is conserved in sea bream.A reverse transcription polymerase chain reaction (RT-PCR) assay was developed to study TGF beta expression in different sea bream tissues. Constitutive TGF beta1 expression was detected in the liver, brain, muscle, kidney, heart, gills and spleen of sea bream, as well as in head kidney macrophages and blood leucocytes.

  15. X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-beta signaling.

    PubMed

    Birkey Reffey, S; Wurthner, J U; Parks, W T; Roberts, A B; Duckett, C S

    2001-07-13

    X-linked inhibitor of apoptosis protein (XIAP) is a potent suppressor of apoptotic cell death, which functions by directly inhibiting caspases, the principal effectors of apoptosis. Here we report that XIAP can also function as a cofactor in the regulation of gene expression by transforming growth factor-beta (TGF-beta). XIAP, but not the related proteins c-IAP1 or c-IAP2, associated with several members of the type I class of the TGF-beta receptor superfamily and potentiated TGF-beta-induced signaling. Although XIAP-mediated activation of c-Jun N-terminal kinase and nuclear factor kappa B was found to require the TGF-beta signaling intermediate Smad4, the ability of XIAP to suppress apoptosis was found to be Smad4-independent. These data implicate a role for XIAP in TGF-beta-mediated signaling that is distinct from its anti-apoptotic functions.

  16. Transforming growth factor-beta1 upregulates myostatin expression in mouse C2C12 myoblasts.

    PubMed

    Budasz-Rwiderska, M; Jank, M; Motyl, T

    2005-06-01

    Myostatin (MSTN) and transforming growth factor-beta1 (TGF-beta1) belong to the same TGF-beta superfamily of proteins. They are involved in regulation of skeletal muscle growth and development as well as muscle catabolism. The aim of the present study was to investigate the relationship between MSTN and TGF-beta1 expression in proliferating and differentiating mouse C2C12 myoblasts cultured in normal and catabolic conditions and to evaluate the effect of exogenous TGF-beta1 as well as "knock down" of TGF-beta1 receptor type II on MSTN expression in proliferating and differentiating myogenic cells. The direct effect of TGF-beta1 on myostatin was also examined. Myostatin expression increased gradually with cell confluency in proliferating cultures, while the level of TGF-beta1, detected in the form of a 100 kDa small latent complex diminished. Myostatin expression was accompanied by a partial cell cycle arrest. Three forms of myostatin were found: a 52 kDa precursor, a 40 kDa latency associated propeptide, and a 26 kDa active peptide. A decrease in myostatin and TGF-beta1 levels was observed during the first three days of differentiation, which was subsequently followed by significant increase of their expression during next three to four days of differentiation. Catabolic state induced by dexamethasone significantly increased the level of all forms of myostatin as well as latent (100 kDa) and active (25 kDa) forms of TGF-beta1 in differentiating myoblasts in a dose dependent manner. Exogenous TGF-beta1 (2 ng/ml) significantly increased myostatin levels both in proliferating and differentiating C2C12 myoblasts, whereas silencing of the TGF-beta1 receptor II gene significantly lowered myostatin level in examined cells. The presented results indicate that TGF-beta1 may control myostatin-related regulation of myogenesis through up-regulation of myostatin, predominantly in the course of terminal differentiation and glucocorticoid-dependent catabolic stimulation.

  17. Latent transforming growth factor binding protein 4 regulates transforming growth factor beta receptor stability.

    PubMed

    Su, Chi-Ting; Huang, Jenq-Wen; Chiang, Chih-Kang; Lawrence, Elizabeth C; Levine, Kara L; Dabovic, Branka; Jung, Christine; Davis, Elaine C; Madan-Khetarpal, Suneeta; Urban, Zsolt

    2015-07-15

    Mutations in the gene for the latent transforming growth factor beta binding protein 4 (LTBP4) cause autosomal recessive cutis laxa type 1C. To understand the molecular disease mechanisms of this disease, we investigated the impact of LTBP4 loss on transforming growth factor beta (TGFβ) signaling. Despite elevated extracellular TGFβ activity, downstream signaling molecules of the TGFβ pathway, including pSMAD2 and pERK, were down-regulated in LTBP4 mutant human dermal fibroblasts. In addition, TGFβ receptors 1 and 2 (TGFBR1 and TGFBR2) were reduced at the protein but not at the ribonucleic acid level. Treatment with exogenous TGFβ1 led to an initially rapid increase in SMAD2 phosphorylation followed by a sustained depression of phosphorylation and receptor abundance. In mutant cells TGFBR1 was co-localized with lysosomes. Treatment with a TGFBR1 kinase inhibitor, endocytosis inhibitors or a lysosome inhibitor, normalized the levels of TGFBR1 and TGFBR2. Co-immunoprecipitation demonstrated a molecular interaction between LTBP4 and TGFBR2. Knockdown of LTBP4 reduced TGFβ receptor abundance and signaling in normal cells and supplementation of recombinant LTBP4 enhanced these measures in mutant cells. In a mouse model of Ltbp4 deficiency, reduced TGFβ signaling and receptor levels were normalized upon TGFBR1 kinase inhibitor treatment. Our results show that LTBP4 interacts with TGFBR2 and stabilizes TGFβ receptors by preventing their endocytosis and lysosomal degradation in a ligand-dependent and receptor kinase activity-dependent manner. These findings identify LTBP4 as a key molecule required for the stability of the TGFβ receptor complex, and a new mechanism by which the extracellular matrix regulates cytokine receptor signaling.

  18. Latent transforming growth factor binding protein 4 regulates transforming growth factor beta receptor stability

    PubMed Central

    Su, Chi-Ting; Huang, Jenq-Wen; Chiang, Chih-Kang; Lawrence, Elizabeth C.; Levine, Kara L.; Dabovic, Branka; Jung, Christine; Davis, Elaine C.; Madan-Khetarpal, Suneeta; Urban, Zsolt

    2015-01-01

    Mutations in the gene for the latent transforming growth factor beta binding protein 4 (LTBP4) cause autosomal recessive cutis laxa type 1C. To understand the molecular disease mechanisms of this disease, we investigated the impact of LTBP4 loss on transforming growth factor beta (TGFβ) signaling. Despite elevated extracellular TGFβ activity, downstream signaling molecules of the TGFβ pathway, including pSMAD2 and pERK, were down-regulated in LTBP4 mutant human dermal fibroblasts. In addition, TGFβ receptors 1 and 2 (TGFBR1 and TGFBR2) were reduced at the protein but not at the ribonucleic acid level. Treatment with exogenous TGFβ1 led to an initially rapid increase in SMAD2 phosphorylation followed by a sustained depression of phosphorylation and receptor abundance. In mutant cells TGFBR1 was co-localized with lysosomes. Treatment with a TGFBR1 kinase inhibitor, endocytosis inhibitors or a lysosome inhibitor, normalized the levels of TGFBR1 and TGFBR2. Co-immunoprecipitation demonstrated a molecular interaction between LTBP4 and TGFBR2. Knockdown of LTBP4 reduced TGFβ receptor abundance and signaling in normal cells and supplementation of recombinant LTBP4 enhanced these measures in mutant cells. In a mouse model of Ltbp4 deficiency, reduced TGFβ signaling and receptor levels were normalized upon TGFBR1 kinase inhibitor treatment. Our results show that LTBP4 interacts with TGFBR2 and stabilizes TGFβ receptors by preventing their endocytosis and lysosomal degradation in a ligand-dependent and receptor kinase activity-dependent manner. These findings identify LTBP4 as a key molecule required for the stability of the TGFβ receptor complex, and a new mechanism by which the extracellular matrix regulates cytokine receptor signaling. PMID:25882708

  19. Sustained activation of fibroblast transforming growth factor-beta/Smad signaling in a murine model of scleroderma.

    PubMed

    Takagawa, Shinsuke; Lakos, Gabriella; Mori, Yasuji; Yamamoto, Toshiyuki; Nishioka, Kiyoshi; Varga, John

    2003-07-01

    Transforming growth factor-beta is responsible for triggering a cascade of events leading to fibrosis in scleroderma. The Smads are intracellular signal transducers recently shown to mediate fibroblast activation and other profibrotic responses elicited by transforming growth factor-betain vitro. To understand better the involvement of Smads in the pathogenesis of fibrosis, we examined Smad expression and activation in situ in a murine model of scleroderma. Bleomycin injections induced striking dermal infiltration with macrophages by 3 d, and progressive fibrosis by 2 wk. Infiltrating macrophages and resident fibroblasts expressed Smad3, the positive mediator for transforming growth factor-beta responses. Importantly, in bleomycin-injected skin, fibroblasts showed predominantly nuclear localization of Smad3 and intense staining for phospho-Smad2/3. Furthermore, phosphorylated Smad2/3 in fibroblasts was detected even after the resolution of inflammation. Expression of Smad7, the endogenous inhibitor of transforming growth factor-beta/Smad signaling, was strongly induced in dermal cells by transforming growth factor-beta, but not by bleomycin injections. Collectively, these results indicate that bleomycin-induced murine scleroderma is associated with rapid and sustained induction of transforming growth factor-beta/Smad signaling in resident dermal fibroblasts. Despite apparent activation of the intracellular transforming growth factor-beta signaling pathway in the lesional dermis, the expression of transforming growth factor-beta-inducible Smad7 was not upregulated. In light of the critical function of Smad7 as an endogenous inhibitor of Smad signaling that restricts the duration and magnitude of transforming growth factor-beta responses, and as a mediator of apoptosis, relative Smad7 deficiency observed in the present studies may account for sustained activation of transforming growth factor-beta/Smad signaling in lesional tissues. These findings raise the

  20. Levels of transforming growth factor beta and transforming growth factor beta receptors in rat liver during growth, regression by apoptosis and neoplasia.

    PubMed

    Grasl-Kraupp, B; Rossmanith, W; Ruttkay-Nedecky, B; Müllauer, L; Kammerer, B; Bursch, W; Schulte-Hermann, R

    1998-09-01

    Transforming growth factor beta1 (TGF-beta1) has been implicated as inhibitor of cell proliferation and a potent inducer of apoptosis in vitro and in vivo after the administration of high doses. To assess the role of endogenous TGF-beta1, we quantitated the cytokine and its receptors in rat liver during regenerative and hyperplastic growth, regression by apoptosis, and in hepatocellular carcinoma (HCC). This was accomplished by Northern blot analysis and by RNase protection assay of the messenger RNA (mRNA) of TGF-beta1 and TGF-beta receptors (TbetaR) types I to III and by an activity bioassay of the TGF-beta proteins. Untreated rat livers were found to contain 15.6 +/- 4.8 ng TGF-beta1 protein/g tissue; TGF-beta2 protein was not detected. To induce toxic cell death and subsequent regenerative DNA synthesis in the liver, rats were treated with a necrogenic dose of carbon tetrachloride (CCl4). After 24 and 48 hours, there was an upregulation of TGF-beta1 (mRNA, up to tenfold; protein, about twofold) and of TbetaRs (mRNA: two- to fourfold); that indicates an overall enhanced production of and sensitivity to TGF-beta1, which may serve to confine the regenerative response. Hyperplastic liver growth and regression of the hyperplasia were induced by treatment with cyproterone acetate (CPA) or nafenopin (NAF) followed by withdrawal; neither mRNAs of TGF-beta1 and TbetaR types I to III nor TGF-beta1 protein exhibited significant changes during the growth phase or during regression by apoptosis. We also studied neoplastic growth. HCC, obtained after long-term treatment with NAF, exhibited high rates of cell replication and apoptosis. The majority of lesions contained mRNA and protein of TGF-beta1 and mRNA of TbetaR types I to III at concentrations similar to those of the surrounding tissue. In conclusion, during liver regeneration there is a pronounced upregulation of expression of both TGF-beta1 and TbetaRs I to III, but not during mitogen-induced liver growth or

  1. Transcriptional modulation of transin gene expression by epidermal growth factor and transforming growth factor beta

    SciTech Connect

    Machida, C.M.; Muldoon, L.L.; Rodland, K.D.; Magun, B.E.

    1988-06-01

    Transin is a transformation-associated gene which is expressed constitutively in rat fibroblasts transformed by a variety of oncogenes and in malignant mouse skin carcinomas but not benign papillomas or normal skin. It has been demonstrated that, in nontransformed Rat-1 cells, transin RNA expression is modulated positively by epidermal growth factor (EGF) and negatively by transforming growth factor beta (TGF-BETA); other peptide growth factors were found to have no effect on transin expression. Results presented here indicate that both protein synthesis and continuous occupancy of the EGF receptor by EGF were required for sustained induction of transin RNA. Treatment with TGF-BETA inhibited the ability of EGF to induce transin, whether assayed at the transcriptional level by nuclear run-on analysis or at the level of transin RNA accumulation by Northern (RNA) blot analysis of cellular RNA. TGF-BETA both blocked initial production of transin transcription by EGF and halted established production of transin transcripts during prolonged treatment. These results suggest that TGF-BETA acts at the transcriptional level to antagonize EGF-mediated induction of transin gene expression.

  2. Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta.

    PubMed Central

    Coffey, R J; Bascom, C C; Sipes, N J; Graves-Deal, R; Weissman, B E; Moses, H L

    1988-01-01

    Transforming growth factor beta (TGF beta) is a potent inhibitor of epithelial cell proliferation. A nontumorigenic epidermal growth factor (EGF)-dependent epithelial cell line, BALB/MK, is reversibly growth arrested by TGF beta. TGF beta will also abrogate EGF-stimulated mitogenesis of quiescent BALB/MK cells. Increased levels of calcium (greater than 1.0 mM) will induce differentiation in BALB/MK cells; in contrast, TGF beta-mediated growth inhibition does not result in induction of terminal differentiation. In the present study, the effects of TGF beta and calcium on growth factor-inducible gene expression were examined. TGF beta markedly decreased c-myc and KC gene expression in rapidly growing BALB/MK cells and reduced the EGF induction of c-myc and KC in a quiescent population of cells. TGF beta exerted its control over c-myc expression at a posttranscriptional level, and this inhibitory effect was dependent on protein synthesis. TGF beta had no effect on c-fos gene expression, whereas 1.5 mM calcium attenuated EGF-induced c-fos expression in quiescent cells. Expression of beta-actin, however, was slightly increased in both rapidly growing and EGF-restimulated quiescent BALB/MK cells treated with TGF beta. Thus, in this system, TGF beta selectively reduced expression of certain genes associated with cell proliferation (c-myc and KC), and at least part of the TGF beta effect was at a posttranscriptional level. Images PMID:2463471

  3. Constitutive activation of transforming growth factor Beta receptor 1 in the mouse uterus impairs uterine morphology and function.

    PubMed

    Gao, Yang; Duran, Samantha; Lydon, John P; DeMayo, Francesco J; Burghardt, Robert C; Bayless, Kayla J; Bartholin, Laurent; Li, Qinglei

    2015-02-01

    Despite increasing evidence pointing to the essential involvement of the transforming growth factor beta (TGFB) superfamily in reproduction, a definitive role of TGFB signaling in the uterus remains to be unveiled. In this study, we generated a gain-of-function mouse model harboring a constitutively active (CA) TGFB receptor 1 (TGFBR1), the expression of which was conditionally induced by the progesterone receptor (Pgr)-Cre recombinase. Overactivation of TGFB signaling was verified by enhanced phosphorylation of SMAD2 and increased expression of TGFB target genes in the uterus. TGFBR1 Pgr-Cre CA mice were sterile. Histological, cellular, and molecular analyses demonstrated that constitutive activation of TGFBR1 in the mouse uterus promoted formation of hypermuscled uteri. Accompanying this phenotype was the upregulation of a battery of smooth muscle genes in the uterus. Furthermore, TGFB ligands activated SMAD2/3 and stimulated the expression of a smooth muscle maker gene, alpha smooth muscle actin (ACTA2), in human uterine smooth muscle cells. Immunofluorescence microscopy identified a marked reduction of uterine glands in TGFBR1 Pgr-Cre CA mice within the endometrial compartment that contained myofibroblast-like cells. Thus, constitutive activation of TGFBR1 in the mouse uterus caused defects in uterine morphology and function, as evidenced by abnormal myometrial structure, dramatically reduced uterine glands, and impaired uterine decidualization. These results underscore the importance of a precisely controlled TGFB signaling system in establishing a uterine microenvironment conducive to normal development and function.

  4. Constitutive Activation of Transforming Growth Factor Beta Receptor 1 in the Mouse Uterus Impairs Uterine Morphology and Function1

    PubMed Central

    Gao, Yang; Duran, Samantha; Lydon, John P.; DeMayo, Francesco J.; Burghardt, Robert C.; Bayless, Kayla J.; Bartholin, Laurent; Li, Qinglei

    2014-01-01

    ABSTRACT Despite increasing evidence pointing to the essential involvement of the transforming growth factor beta (TGFB) superfamily in reproduction, a definitive role of TGFB signaling in the uterus remains to be unveiled. In this study, we generated a gain-of-function mouse model harboring a constitutively active (CA) TGFB receptor 1 (TGFBR1), the expression of which was conditionally induced by the progesterone receptor (Pgr)-Cre recombinase. Overactivation of TGFB signaling was verified by enhanced phosphorylation of SMAD2 and increased expression of TGFB target genes in the uterus. TGFBR1 Pgr-Cre CA mice were sterile. Histological, cellular, and molecular analyses demonstrated that constitutive activation of TGFBR1 in the mouse uterus promoted formation of hypermuscled uteri. Accompanying this phenotype was the upregulation of a battery of smooth muscle genes in the uterus. Furthermore, TGFB ligands activated SMAD2/3 and stimulated the expression of a smooth muscle maker gene, alpha smooth muscle actin (ACTA2), in human uterine smooth muscle cells. Immunofluorescence microscopy identified a marked reduction of uterine glands in TGFBR1 Pgr-Cre CA mice within the endometrial compartment that contained myofibroblast-like cells. Thus, constitutive activation of TGFBR1 in the mouse uterus caused defects in uterine morphology and function, as evidenced by abnormal myometrial structure, dramatically reduced uterine glands, and impaired uterine decidualization. These results underscore the importance of a precisely controlled TGFB signaling system in establishing a uterine microenvironment conducive to normal development and function. PMID:25505200

  5. Heart and liver defects and reduced transforming growth factor beta2 sensitivity in transforming growth factor beta type III receptor-deficient embryos.

    PubMed

    Stenvers, Kaye L; Tursky, Melinda L; Harder, Kenneth W; Kountouri, Nicole; Amatayakul-Chantler, Supavadee; Grail, Dianne; Small, Clayton; Weinberg, Robert A; Sizeland, Andrew M; Zhu, Hong-Jian

    2003-06-01

    The type III transforming growth factor beta (TGFbeta) receptor (TbetaRIII) binds both TGFbeta and inhibin with high affinity and modulates the association of these ligands with their signaling receptors. However, the significance of TbetaRIII signaling in vivo is not known. In this study, we have sought to determine the role of TbetaRIII during development. We identified the predominant expression sites of TbetaRIII mRNA as liver and heart during midgestation and have disrupted the murine TbetaRIII gene by homologous recombination. Beginning at embryonic day 13.5, mice with mutations in TbetaRIII developed lethal proliferative defects in heart and apoptosis in liver, indicating that TbetaRIII is required during murine somatic development. To assess the effects of the absence of TbetaRIII on the function of its ligands, primary fibroblasts were generated from TbetaRIII-null and wild-type embryos. Our results indicate that TbetaRIII deficiency differentially affects the activities of TGFbeta ligands. Notably, TbetaRIII-null cells exhibited significantly reduced sensitivity to TGFbeta2 in terms of growth inhibition, reporter gene activation, and Smad2 nuclear localization, effects not observed with other ligands. These data indicate that TbetaRIII is an important modulator of TGFbeta2 function in embryonic fibroblasts and that reduced sensitivity to TGFbeta2 may underlie aspects of the TbetaRIII mutant phenotype.

  6. The type III transforming growth factor-beta receptor negatively regulates nuclear factor kappa B signaling through its interaction with beta-arrestin2.

    PubMed

    You, Hye Jin; How, Tam; Blobe, Gerard C

    2009-08-01

    Transforming growth factor-beta (TGF-beta) increases or decreases nuclear factor kappa B (NFkappaB) signaling in a context-dependent manner through mechanisms that remain to be defined. The type III transforming growth factor-beta receptor (TbetaRIII) is a TGF-beta superfamily co-receptor with emerging roles in both mediating and regulating TGF-beta superfamily signaling. We have previously reported a novel interaction of TbetaRIII with the scaffolding protein, beta-arrestin2, which results in TbetaRIII internalization and downregulation of TGF-beta signaling. beta-arrestin2 also scaffolds interacting receptors with the mitogen-activated protein kinase and NFkappaB-signaling pathways. Here, we demonstrate that TbetaRIII, through its interaction with beta-arrestin2, negatively regulates NFkappaB signaling in MCF10A breast epithelial and MDA-MB-231 breast cancer cells. Increasing TbetaRIII expression reduced NFkappaB-mediated transcriptional activation and IkappaBalpha degradation, whereas a TbetaRIII mutant unable to interact with beta-arrestin2, TbetaRIII-T841A, had no effect. In a reciprocal manner, short hairpin RNA-mediated silencing of either TbetaRIII expression or beta-arrestin2 expression increased NFkappaB-mediated transcriptional activation and IkappaBalpha degradation. Functionally, TbetaRIII-mediated repression of NFkappaB signaling is important for TbetaRIII-mediated inhibition of breast cancer cell migration. These studies define a mechanism through which TbetaRIII regulates NFkappaB signaling and expand the roles of this TGF-beta superfamily co-receptor in regulating epithelial cell homeostasis.

  7. Retinoic acid modulates rat Ito cell proliferation, collagen, and transforming growth factor beta production.

    PubMed Central

    Davis, B H; Kramer, R T; Davidson, N O

    1990-01-01

    Recent studies suggest that vitamin A plays an inhibitory role with respect to "activation" of the hepatic Ito cell, a likely effector of hepatic fibrogenesis. Ito cell "activation" during fibrogenesis is characterized by a decrease in intracellular vitamin A and an increase in cellular proliferation and collagen production. To explore the hypothesis that retinoids have the capacity to diminish Ito cell activation, cultured Ito cells were exposed to retinoic acid and its effects assessed on three key features: cell proliferation, collagen protein production and mRNA abundance, and transforming growth factor beta protein production. Retinoic acid was 100-1,000X more potent than retinol with respect to inhibition of Ito cell proliferation. Interstitial collagen and transforming growth factor beta production were also reduced by 10(-6) M retinoic acid. The relative abundance of type I collagen mRNA however, was not significantly altered. By contrast, retinoic acid administration to rats caused a marked reduction in the abundance of type I collagen mRNA in both total hepatic and purified Ito cell RNA. The relative abundance of rat hepatic fibronectin or apolipoprotein E mRNA was not significantly altered. These studies demonstrate that retinoic acid can differentially modulate several key features of hepatic fibrogenesis in vitro and in vivo. Images PMID:2254460

  8. The recombinant proregion of transforming growth factor beta1 (latency-associated peptide) inhibits active transforming growth factor beta1 in transgenic mice.

    PubMed

    Böttinger, E P; Factor, V M; Tsang, M L; Weatherbee, J A; Kopp, J B; Qian, S W; Wakefield, L M; Roberts, A B; Thorgeirsson, S S; Sporn, M B

    1996-06-11

    All three isoforms of transforming growth factors beta (TGF-betal, TGF-beta2, and TGF-beta3) are secreted as latent complexes and activated extracellularly, leading to the release of the mature cytokines from their noncovalently associated proregions, also known as latency-associated peptides (LAPs). The LAP region of TGF-beta1 was expressed in a baculovirus expression system and purified to homogeneity. In vitro assays of growth inhibition and gene induction mediated by TGF-beta3 demonstrate that recombinant TGF-beta1 LAP is a potent inhibitor of the activities of TGF-betal, -beta2, and -beta3. Effective dosages of LAP for 50% neutralization of TGF-beta activities range from 4.7- to 80-fold molar excess depending on the TGF-beta isoform and activity examined. Using 125I-labeled LAP, we show that the intraperitoneal application route is effective for systemic administration of LAP. Comparison of concentrations of LAP in tissues shows a homogenous pattern in most organs with the exception of heart and muscle, in which levels of LAP are 4- to 8-fold lower. In transgenic mice with elevated hepatic levels of bioactive TGF-betal, treatment with recombinant LAP completely reverses suppression of the early proliferative response induced by TGF-beta1 in remnant livers after partial hepatectomy. The results suggest that recombinant LAP is a potent inhibitor of bioactive TGF-beta both in vitro and in vivo, after intraperitoneal administration. Recombinant LAP should be a useful tool for novel approaches to study and therapeutically modulate pathophysiological processes mediated by TGF-beta3.

  9. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death.

    PubMed Central

    Kulkarni, A B; Huh, C G; Becker, D; Geiser, A; Lyght, M; Flanders, K C; Roberts, A B; Sporn, M B; Ward, J M; Karlsson, S

    1993-01-01

    To delineate specific developmental roles of transforming growth factor beta 1 (TGF-beta 1) we have disrupted its cognate gene in mouse embryonic stem cells by homologous recombination to generate TGF-beta 1 null mice. These mice do not produce detectable amounts of either TGF-beta 1 RNA or protein. After normal growth for the first 2 weeks they develop a rapid wasting syndrome and die by 3-4 weeks of age. Pathological examination revealed an excessive inflammatory response with massive infiltration of lymphocytes and macrophages in many organs, but primarily in heart and lungs. Many lesions resembled those found in autoimmune disorders, graft-vs.-host disease, or certain viral diseases. This phenotype suggests a prominent role for TGF-beta 1 in homeostatic regulation of immune cell proliferation and extravasation into tissues. Images PMID:8421714

  10. Interferon-alpha inhibits murine macrophage transforming growth factor-beta mRNA expression.

    PubMed

    Dhanani, S; Huang, M; Wang, J; Dubinett, S M

    1994-06-01

    Transforming growth factor-beta (TGF-beta), a multifunctional polypeptide is produced by a wide variety of cells and regulates a broad array of physiological and pathological functions. TGF-beta appears to play a central role in pulmonary fibrosis and may contribute to tumor-associated immunosuppression. Alveolar macrophages are a rich source of TGF-beta and are intimately involved in lung inflammation. We therefore chose to study TGF-beta regulation in murine alveolar macrophages as well as an immortalized peritoneal macrophage cell line (IC-21). Murine macrophages were incubated with cytokines to evaluate their role in regulating TGF-beta mRNA expression. We conclude that IFN-alpha downregulates TGF-beta mRNA expression in murine macrophages. PMID:8088926

  11. Role of transforming growth factor-beta (TGF) beta in the physiopathology of rheumatoid arthritis.

    PubMed

    Gonzalo-Gil, Elena; Galindo-Izquierdo, María

    2014-01-01

    Transforming growth factor-beta (TGF-β) is a cytokine with pleiotropic functions in hematopoiesis, angiogenesis, cell proliferation, differentiation, migration and apoptosis. Although its role in rheumatoid arthritis is not well defined, TGF-β activation leads to functional immunomodulatory effects according to environmental conditions. The function of TGF-β in the development of arthritis in murine models has been extensively studied with controversial results. Recent findings point to a non-relevant role for TGF-β in a mice model of collagen-induced arthritis. The study of TGF-β on T-cell responses has shown controversial results as an inhibitor or promoter of the inflammatory response. This paper presents a review of the role of TGF-β in animal models of arthritis.

  12. Transforming growth factor Beta2 is required for valve remodeling during heart development.

    PubMed

    Azhar, Mohamad; Brown, Kristen; Gard, Connie; Chen, Hwudaurw; Rajan, Sudarsan; Elliott, David A; Stevens, Mark V; Camenisch, Todd D; Conway, Simon J; Doetschman, Thomas

    2011-09-01

    Although the function of transforming growth factor beta2 (TGFβ2) in epithelial mesenchymal transition (EMT) is well studied, its role in valve remodeling remains to be fully explored. Here, we used histological, morphometric, immunohistochemical and molecular approaches and showed that significant dysregulation of major extracellular matrix (ECM) components contributed to valve remodeling defects in Tgfb2(-/-) embryos. The data indicated that cushion mesenchymal cell differentiation was impaired in Tgfb2(-/-) embryos. Hyaluronan and cartilage link protein-1 (CRTL1) were increased in hyperplastic valves of Tgfb2(-/-) embryos, indicating increased expansion and diversification of cushion mesenchyme into the cartilage cell lineage during heart development. Finally, Western blot and immunohistochemistry analyses indicate that the activation of SMAD2/3 was decreased in Tgfb2(-/-) embryos during valve remodeling. Collectively, the data indicate that TGFβ2 promotes valve remodeling and differentiation by inducing matrix organization and suppressing cushion mesenchyme differentiation into cartilage cell lineage during heart development.

  13. The pleiotropic roles of transforming growth factor beta inhomeostasis and carcinogenesis of endocrine organs.

    SciTech Connect

    Fleisch, Markus C.; Maxwell, Christopher A.; Barcellos-Hoff,Mary-Helen

    2006-01-13

    Transforming growth factor beta (TGF-beta) is a ubiquitous cytokine that plays a critical role in numerous pathways regulating cellular and tissue homeostasis. TGF-beta is regulated by hormones and is a primary mediator of hormone response in uterus, prostate and mammary gland. This review will address the role of TGF-beta in regulating hormone dependent proliferation and morphogenesis. The subversion of TGF-beta regulation during the processes of carcinogenesis, with particular emphasis on its effects on genetic stability and epithelial to mesenchymal transition (EMT), will also be examined. An understanding of the multiple and complex mechanisms of TGF-beta regulation of epithelial function, and the ultimate loss of TGF-beta function during carcinogenesis, will be critical in the design of novel therapeutic interventions for endocrine-related cancers.

  14. Transforming growth factor beta differentially modulates the inducible nitric oxide synthase gene in distinct cell types.

    PubMed

    Gilbert, R S; Herschman, H R

    1993-08-31

    Nitric oxide is a mediator of paracrine cell signalling. An inducible form of nitric oxide synthase (iNOS) is expressed in macrophages and in Swiss 3T3 cells. Transforming growth factor beta (TGF-beta) is a cytokine that modulates many cellular functions. We find that TGF-beta cannot induce iNOS mRNA expression, either in macrophage cell lines or in Swiss 3T3 cells. However, TGF-beta attenuates lipopolysaccharide induction of iNOS mRNA in macrophages. In contrast, TGF-beta enhances iNOS induction by phorbol ester, serum or lipopolysaccharide in 3T3 cells. Thus TGF-beta can inhibit or augment iNOS mRNA induction in response to primary inducers, depending on the cell type in question.

  15. Regulation of proliferation of embryonic heart mesenchyme: Role of transforming growth factor-beta 1 and the interstitial matrix

    SciTech Connect

    Choy, M.; Armstrong, M.T.; Armstrong, P.B. )

    1990-10-01

    Proliferation of atrioventricular cushion mesenchyme of the embryonic avian heart maintained in three-dimensional aggregate culture is stimulated by interaction with the interstitial matrix. Chicken serum or transforming growth factor-beta 1, which stimulates proliferation, induces matrix deposition in regions of the aggregate showing high labeling indices with tritiated thymidine. Dispersed heart mesenchyme interstitial matrix introduced into serum-free culture is incorporated into the aggregate and stimulates cellular proliferation similar to serum or transforming growth factor-beta 1. Proliferation is reversibly inhibited by the peptide Gly-Arg-Gly-Asp-Ser-Pro. It is suggested that transforming growth factor-beta 1 stimulates the production of interstitial matrix and that a sufficient stimulus for proliferation in this system is the presence of the matrix, which acts as the adhesive support for cellular anchorage.

  16. Recombinant soluble betaglycan is a potent and isoform-selective transforming growth factor-beta neutralizing agent.

    PubMed Central

    Vilchis-Landeros, M M; Montiel, J L; Mendoza, V; Mendoza-Hernández, G; López-Casillas, F

    2001-01-01

    Betaglycan is an accessory receptor of members of the transforming growth factor-beta (TGF-beta) superfamily, which regulates their actions through ligand-dependent interactions with type II receptors. A natural soluble form of betaglycan is found in serum and extracellular matrices. Soluble betaglycan, prepared as a recombinant protein using the baculoviral expression system, inhibits the actions of TGF-beta. Because of its potential use as an anti-TGF-beta therapeutic agent, we have purified and characterized baculoviral recombinant soluble betaglycan. Baculoviral soluble betaglycan is a homodimer formed by two 110 kDa monomers associated by non-covalent interactions. This protein is devoid of glycosaminoglycan chains, although it contains the serine residues, which, in vertebrate cells, are modified by these carbohydrates. On the other hand, mannose-rich carbohydrates account for approximately 20 kDa of the mass of the monomer. End-terminal sequence analysis of the soluble betaglycan showed that Gly(24) is the first residue of the mature protein. Similarly to the natural soluble betaglycan, baculoviral soluble betaglycan has an equilibrium dissociation constant (K(d)) of 3.5 nM for TGF-beta1. Ligand competition assays indicate that the relative affinities of recombinant soluble betaglycan for the TGF-beta isoforms are TGF-beta2>TGF-beta3>TGF-beta1. The anti-TGF-beta potency of recombinant soluble betaglycan in vitro is 10-fold higher for TGF-beta2 than for TGF-beta1. Compared with a commercial pan-specific anti-TGF-beta neutralizing antibody, recombinant soluble betaglycan is more potent against TGF-beta2 and similar against TGF-beta1. These results indicate that baculoviral soluble betaglycan has the biochemical and functional properties that would make it a suitable agent for the treatment of the diseases in which excess TGF-beta plays a central physiopathological role. PMID:11256966

  17. Mediation of wound-related Rous sarcoma virus tumorigenesis by TFG (transforming growth factor)-. beta

    SciTech Connect

    Sieweke, M.H.; Bissell, M.J. ); Thompson, N.L.; Sporn, M.B. )

    1990-06-29

    In Rous sarcoma virus (RSV)-infected chickens, wounding leads to tumor formation with nearly 100% frequency in tissues that would otherwise remain tumor-free. Identifying molecular mediators of this phenomenon should yield important clues to the mechanisms involved in RSV tumorigenesis. Immunohistochemical staining showed that TGF-{beta} is present locally shortly after wounding, but not in unwounded controls. In addition, subcutaneous administration of recombinant transforming growth factor {beta}1 (TGF-{beta}1) could substitute completely for wounding in tumor induction. A treatment protocol of four doses of 800 nanograms of TGF-{beta} resulted in v-src-expressing tumors with 100% frequency; four doses of only 10 nanograms still led to tumor formation in 80% of the animals. This effect was specific, as other growth factors with suggested roles in would healing did not elicit the same response. Epidermal growth factor (EGF) or TGF-{alpha} had no effect, and platelet-derived growth factor (PDGF) or insulin-like growth factor-1 (IGF-1) yielded only occasional tumors after longer latency. TGF-{beta} release during the would-healing response may thus be a critical event that creates a conducive environment for RSV tumorigenesis and may act as a cofactor for transformation in this system. 31 refs., 3 figs., 2 tabs.

  18. Transforming growth factor-beta requires its target plasminogen activator inhibitor-1 for cytostatic activity.

    PubMed

    Kortlever, Roderik M; Nijwening, Jeroen H; Bernards, René

    2008-09-01

    The cytokine transforming growth factor beta (TGFbeta) has strong antiproliferative activity in most normal cells but contributes to tumor progression in the later stages of oncogenesis. It is not fully understood which TGFbeta target genes are causally involved in mediating its cytostatic activity. We report here that suppression of the TGFbeta target gene encoding plasminogen activator inhibitor-1 (PAI-1) by RNA interference leads to escape from the cytostatic activity of TGFbeta both in human keratinocytes (HaCaTs) and primary mouse embryo fibroblasts. Consistent with this, PAI-1 knock-out mouse embryo fibroblasts are also resistant to TGFbeta growth arrest. Conversely, we show that ectopic expression of PAI-1 in proliferating HaCaT cells induces a growth arrest. PAI-1 knockdown does not interfere with canonical TGFbeta signaling as judged by SMAD phosphorylation and induction of bona fide TGFbeta target genes. Instead, knockdown of PAI-1 results in sustained activation of protein kinase B. Significantly, we find that constitutive protein kinase B activity leads to evasion of the growth-inhibitory action of TGFbeta. Our data are consistent with a model in which induction of PAI-1 by TGFbeta is critical for the induction of proliferation arrest.

  19. Transforming growth factor-beta 1 does not relate to hypertension in pre-eclampsia.

    PubMed

    Hennessy, A; Orange, S; Willis, N; Painter, D M; Child, A; Horvath, J S

    2002-11-01

    1. Pre-eclampsia is a human disease of pregnancy characterized by high blood pressure, proteinuria and end-organ damage, if severe. Pre-eclampsia is thought to be related to changes in early placental development, with the formation of a shallower than normal placental bed. 2. Transforming growth factor (TGF)-beta1 is a multifunctional fibrogenic growth factor involved in immune regulation that is elevated in some populations with a high risk of hypertensive end-organ disease related to increases in endothelin release. Transforming growth factor-beta1 is also an important factor in placental implantation. Alterations in TGF-beta1 may be related to abnormal placental development in early pregnancy and, thus, are a candidate for the development of hypertension in pre-eclampsia. 3. The aim of the present study was to examine the placental distribution and serum concentration of TGF-beta1 in patients with pre-eclampsia compared with normal pregnancy. 4. Patients with pre-eclampsia (n = 12) were compared with patients with normal pregnancy (n = 14). Transforming growth factor-beta1 was determined by TGF-beta1 Max ELISA (Promega, Madsion, WI, USA) after serum dilution (1/150) and acid activation. Placental distribution was determined by immunostaining with TGF-beta1 (Santa Cruz, Santa Cruz, CA, USA; 20 ng/mL) and the villi and decidual trophoblast were scored for intensity and extent of staining. 5. Patients with pre-eclampsia had a mean gestational age of 36 weeks, whereas those with a normal pregnancy had a mean gestational age of 39.0 +/- 0.4 weeks. There was no difference in TGF-beta1 concentration between the two groups (mean (+/-SEM) 27.1 +/- 1.0 vs 26.4 +/- 0.7 pg/mL for normal pregnancy and pre-eclampsia, respectively; P = 0.73, Mann-Whitney U-test). There was no correlation between systolic or diastolic blood pressure and TGF-beta1 concentration (regression analysis P = 0.4 and 0.2). Immunostaining was absent in the villous trophoblast cells and endovascular and

  20. Transforming growth factor-beta and its implication in the malignancy of gliomas.

    PubMed

    Roy, Laurent-Olivier; Poirier, Marie-Belle; Fortin, David

    2015-03-01

    Malignant gliomas are the most common type of primary malignant brain tumors. They are characterized by enhanced growing capabilities, neoangiogenic proliferation, and extensive infiltration of the brain parenchyma, which make their complete surgical resection impossible. Together with transient and refractory responses to standard therapy, these aggressive neoplasms are incurable and present a median survival of 12 to 14 months. Transforming growth factor-beta (TGF-β) is a pleiotropic cytokine of which two of the three isoforms expressed in humans have been shown to be overexpressed proportionally to the histologic grade of glioma malignancy. The increase of chromosomal aberrations and genetic mutations observed in glioma cells turns TGF-β into an oncogene. For that reason, it plays critical roles in glioma progression through induction of several genes implicated in many carcinogenic processes such as proliferation, angiogenesis, and invasion. Consequently, investigators have begun developing innovative therapeutics targeting this growth factor or its signaling pathway in an attempt to hinder TGF-β's appalling effects in order to refine the treatment of malignant gliomas and improve their prognosis. In this paper, we extensively review the TGF-β-induced oncogenic pathways and discuss the diverse new molecules targeting this growth factor. PMID:24590691

  1. Transforming growth factor-beta regulates stearoyl coenzyme A desaturase expression through a Smad signaling pathway.

    PubMed

    Samuel, William; Nagineni, Chandrasekharam N; Kutty, R Krishnan; Parks, W Tony; Gordon, Joel S; Prouty, Stephen M; Hooks, John J; Wiggert, Barbara

    2002-01-01

    The regulation of stearoyl-CoA desaturase (SCD), a rate-limiting enzyme in the synthesis of unsaturated fatty acids, is physiologically important because the ratio of saturated to unsaturated fatty acids is thought to control cellular functions by modulating the structural integrity and fluidity of cell membranes. Transforming growth factor-beta (TGF-beta), a multifunctional cytokine, increased SCD mRNA expression in cultured human retinal pigment epithelial cells. This response was elicited by all three TGF-beta isoforms, beta1, beta2, and beta3. However, SCD mRNA expression was not increased either by other members of the TGF-beta family or by other growth factors or cytokines. TGF-beta also increased SCD mRNA expression in several other cell lines tested. The increase in SCD mRNA expression was preceded by a marked increase in Smad2 phosphorylation in TGF-beta-treated human retinal pigment epithelial cells. TGF-beta did not induce SCD mRNA expression in a Smad4-deficient cell line. However, Smad4 overexpression restored the TGF-beta effect in this cell line. Moreover, TGF-beta-induced SCD mRNA expression was effectively blocked by the overexpression of Smad7, an inhibitory Smad. Thus, a TGF-beta signal transduction pathway involving Smad proteins appears to regulate the cellular expression of the SCD gene, and this regulation may play an important role in lipid metabolism.

  2. Development and application of fully functional epitope-tagged forms of transforming growth factor-beta.

    PubMed

    Wolfraim, Lawrence A; Alkemade, Gonnie M; Alex, Biju; Sharpe, Shellyann; Parks, W Tony; Letterio, John J

    2002-08-01

    Administration of transforming growth factor-beta (TGF-beta) has been found to be of therapeutic benefit in various mouse disease models and has potential clinical usefulness. However, the ability to track the distribution of exogenously administered, recombinant forms of these proteins has been restricted by cross-reactivity with endogenous TGF-beta and related TGF-beta isoforms. We describe novel FLAG- and hemagglutinin (HA)-tagged versions of mature TGF-beta1 that retain full biological activity as demonstrated by their ability to inhibit the growth of Mv1Lu epithelial cells, and to induce phosphorylation of the TGF-beta signaling intermediate, smad 2. Intracellular FLAG- and HA-TGF-beta1 can be detected in transfected cells by confocal immunofluorescence microscopy. We also describe sandwich ELISAs designed to specifically detect epitope-tagged TGF-beta and demonstrate the utility of these tagged ligands as probes for TGF-beta receptor expression by flow cytometry. The design of these fully functional epitope-tagged TGF-beta proteins should facilitate studies such as the evaluation of in vivo peptide pharmacodynamics and trafficking of TGF-beta ligand-receptor complexes.

  3. Regulation of experimental autoimmune neuritis by transforming growth factor-beta 1.

    PubMed

    Gregorian, S K; Lee, W P; Beck, L S; Rostami, A; Amento, E P

    1994-06-01

    Experimental autoimmune neuritis (EAN) is a T-cell-mediated autoimmune disease characterized by demyelination and mononuclear cell infiltration of the peripheral nervous system. It is induced in Lewis rats by administration of myelin P2 protein or a synthetic peptide (SP-26) corresponding to amino acid residues 53-78 of bovine P2 protein. The effects of transforming growth factor-beta 1 (TGF-beta 1) on the clinical signs, histological changes, cell-mediated immune responses, and secretion of interferon-gamma (IFN-gamma) by lymphoid cells of rats with EAN were examined. Systemic administration of TGF-beta 1 markedly inhibited the clinical signs and histological changes of EAN when given intraperitoneally every other day for Days 0 through 18. In addition, it decreased proliferative responses and reduced the delayed-type hypersensitivity (DTH) response to SP-26 compared to control rats. The reduction in clinical severity correlated with skin test unresponsiveness (DTH) to the disease-inducing agent (SP-26) as well to decreased cellular responsiveness to the antigen in vitro. The decrease in cellular responsiveness extended to a decrease in at least one T cell lymphokine, IFN-gamma. The profound effect of TGF-beta on disease progression in EAN, a T-cell-mediated process, is consistent with a direct effect of this growth factor on T lymphocytes. PMID:7515330

  4. Transforming growth factor-{beta}2 enhances differentiation of cardiac myocytes from embryonic stem cells

    SciTech Connect

    Kumar, Dinender . E-mail: Dinender.Kumar@uvm.edu; Sun, Baiming

    2005-06-24

    Stem cell therapy holds great promise for the treatment of injured myocardium, but is challenged by a limited supply of appropriate cells. Three different isoforms of transforming growth factor-{beta} (TGF-{beta}) -{beta}1, -{beta}2, and -{beta}3 exhibit distinct regulatory effects on cell growth, differentiation, and migration during embryonic development. We compared the effects of these three different isoforms on cardiomyocyte differentiation from embryonic stem (ES) cells. In contrast to TGF-{beta}1, or -{beta}3, treatment of mouse ES cells with TGF-{beta}2 isoform significantly increased embryoid body (EB) proliferation as well as the extent of the EB outgrowth that beat rhythmically. At 17 days, 49% of the EBs treated with TGF-{beta}2 exhibited spontaneous beating compared with 15% in controls. Cardiac myocyte specific protein markers sarcomeric myosin and {alpha}-actin were demonstrated in beating EBs and cells isolated from EBs. In conclusion, TGF-{beta}2 but not TGF-{beta}1, or -{beta}3 promotes cardiac myocyte differentiation from ES cells.

  5. Regulation of experimental autoimmune neuritis by transforming growth factor-beta 1.

    PubMed

    Gregorian, S K; Lee, W P; Beck, L S; Rostami, A; Amento, E P

    1994-06-01

    Experimental autoimmune neuritis (EAN) is a T-cell-mediated autoimmune disease characterized by demyelination and mononuclear cell infiltration of the peripheral nervous system. It is induced in Lewis rats by administration of myelin P2 protein or a synthetic peptide (SP-26) corresponding to amino acid residues 53-78 of bovine P2 protein. The effects of transforming growth factor-beta 1 (TGF-beta 1) on the clinical signs, histological changes, cell-mediated immune responses, and secretion of interferon-gamma (IFN-gamma) by lymphoid cells of rats with EAN were examined. Systemic administration of TGF-beta 1 markedly inhibited the clinical signs and histological changes of EAN when given intraperitoneally every other day for Days 0 through 18. In addition, it decreased proliferative responses and reduced the delayed-type hypersensitivity (DTH) response to SP-26 compared to control rats. The reduction in clinical severity correlated with skin test unresponsiveness (DTH) to the disease-inducing agent (SP-26) as well to decreased cellular responsiveness to the antigen in vitro. The decrease in cellular responsiveness extended to a decrease in at least one T cell lymphokine, IFN-gamma. The profound effect of TGF-beta on disease progression in EAN, a T-cell-mediated process, is consistent with a direct effect of this growth factor on T lymphocytes.

  6. Vertebral Artery Aneurysm Mimicking as Left Subclavian Artery Aneurysm in a Patient with Transforming Growth Factor Beta Receptor II Mutation.

    PubMed

    Afifi, Rana O; Dhillon, Baltej Singh; Sandhu, Harleen K; Charlton-Ouw, Kristofer M; Estrera, Anthony L; Azizzadeh, Ali

    2015-10-01

    We report successful endovascular repair of a left vertebral artery aneurysm in a patient with transforming growth factor beta receptor II mutation. The patient was initially diagnosed with a left subclavian artery aneurysm on computed tomography angiography. The patient consented to publication of this report.

  7. Tyrosine dephosphorylation of nuclear proteins mimics transforming growth factor {beta}1 stimulation of {alpha}2(I) collagen gene expression

    SciTech Connect

    Greenwel, P.; Hu, Wei; Ramirez, F.; Kohanski, R.A.

    1995-12-01

    This report describes how the transforming growth factor {beta}1 (TGF-{beta}1) stimulates the transcription of the gene coding for collagen I (COL1A2). The report goes on to correlate tyrosine dephosphorylation, increased binding of a transcriptional complex and TGF-{beta}1 stimulation of gene expression. 33 refs., 8 figs., 1 tab.

  8. Analysis of the transforming growth factor-beta 1 gene promoter polymorphisms in early osseointegrated implant failure.

    PubMed

    Dos Santos, Maria Cristina Leme Godoy; Campos, Maria Isabela Guimarães; Souza, Ana Paula; Scarel-Caminaga, Raquel Mantuaneli; Mazzonetto, Renato; Line, Sergio Roberto Peres

    2004-09-01

    Transforming growth factor-beta 1 is a multifunctional cytokine involved in extracellular matrix deposition, reduction of inflammation, and promotion of wound healing. Single nucleotide polymorphisms in the promoter region of human transforming growth factor-beta 1 gene, C-509T and G-800A, have been shown to increase the transcriptional activity of this cytokine and have been associated with a variety of diseases. The objective of this study was to investigate the possible association between these single nucleotide polymorphisms and the early implant failure. A sample of 68 nonsmoking patients was divided into two groups: a test group comprising 28 patients with one or more early failed implants and a control group consisting of 40 individuals with one or more healthy implants. Genomic DNA from oral mucosa was amplified by polymerase chain reaction and analyzed by restriction fragment length polymorphism. The significance of the differences in observed frequencies of single nucleotide polymorphisms was assessed using the chi square test and Fisher's exact test. The cited single nucleotide polymorphisms in transforming growth factor-beta 1 were analyzed in combination as haplotype using the computer program ARLEQUIN. The authors did not observe significant differences in the allele and genotypes to both single nucleotide polymorphisms of transforming growth factor-beta 1 gene (C-509T and G-800A) between control and early implant failure groups. The distribution of the haplotypes arranged as allele and genotypes were similar between control and test groups. These results indicate that C-509T and G-800A polymorphisms in the transforming growth factor-beta 1 gene are not associated separately or in haplotype combinations with early implant failure, suggesting that the presence of those single nucleotide polymorphisms alone do not constitute a genetic risk factor for early implant failure in the Brazilian population. PMID:15359164

  9. Inhibition of spermidine synthase gene expression by transforming growth factor-beta 1 in hepatoma cells.

    PubMed Central

    Nishikawa, Y; Kar, S; Wiest, L; Pegg, A E; Carr, B I

    1997-01-01

    We screened genes responsive to transforming growth factor-beta (TGF-beta 1) protein in a human hepatoma cell line (Hep3B) using a PCR-mediated differential display technique, in order to investigate the mechanisms involved in TGF-beta-induced growth suppression. We found a gene that was down-regulated by TGF-beta 1 to be completely identical in an approx. 620 bp segment to the gene for the enzyme spermidine synthase, which mediates the conversion of putrescine into spermidine. Both spermidine synthase mRNA expression and its enzyme activity were decreased after TGF-beta 1 treatment of Hep3B cells. The inhibition of spermidine synthase gene expression by TGF-beta 1 protein was also observed in other hepatoma cell lines. The expression of genes for other biosynthetic enzymes in polyamine metabolism (ornithine decarboxylase and S-adenosylmethionine decarboxylase) was also inhibited to the same extent as for spermidine synthase, while the gene expression of spermidine/spermine N1-acetyltransferase, a catabolic enzyme, was relatively resistant to TGF-beta 1. Spermine levels in Hep3B cells were decreased by TGF-beta 1 treatment, although the levels of spermidine and putrescine were unchanged, probably due to compensation by remaining spermidine/spermine N1-acetyltransferase activity. Exogenously added spermidine or spermine, but not putrescine, partially antagonized the growth-inhibitor effects of TGF-beta 1 on Hep3B cells. Our data suggest that down-regulation of gene expression of the enzymes involved in polyamine metabolism, including spermidine synthase, may be associated with the mechanism of TGF-beta-induced growth suppression. PMID:9020892

  10. Transforming growth factor-beta 1 is decreased in remodeling hypertensive bovine pulmonary arteries.

    PubMed Central

    Botney, M D; Parks, W C; Crouch, E C; Stenmark, K; Mecham, R P

    1992-01-01

    The development of pulmonary hypertension in hypoxic newborn calves is associated with a complex pattern of increased tropoelastin and type I procollagen synthesis and deposition by smooth muscle cells in large elastic pulmonary arteries compared to normoxic controls. We examined the possibility that transforming growth factor-beta 1 (TGF-beta 1) may be associated with the production of extracellular matrix protein in this model of pulmonary hypertension. Medial smooth muscle cells in both normotensive and hypertensive vessels, as assessed by immunohistochemistry, were the major source of TGF-beta 1. Staining was confined to foci of smooth muscle cells in the outer media and appeared greater in normotensive than hypertensive vessels. Consistent with the immunohistochemistry, a progressive, age-dependent increase in normotensive pulmonary artery TGF-beta 1 mRNA was observed after birth, whereas TGF-beta 1 mRNA remained at low, basal levels in hypertensive, remodeling pulmonary arteries. These observations suggest that local expression of TGF-beta 1 is not associated with increased extracellular matrix protein synthesis in this model of hypoxic pulmonary hypertension. Images PMID:1569202

  11. Transforming growth factor-beta signaling in thoracic aortic aneurysm development: a paradox in pathogenesis

    PubMed Central

    Jones, Jeffrey A.; Spinale, Francis G.; Ikonomidis, John S.

    2008-01-01

    Thoracic aortic aneurysms (TAAs) are potentially devastating, and due to their asymptomatic behavior, pose a serious health risk characterized by the lack of medical treatment options and high rates of surgical morbidity and mortality. Independent of the inciting stimuli (biochemical/mechanical), TAA development proceeds by a multifactorial process influenced by both cellular and extracellular mechanisms, resulting in alterations of the structure and composition of the vascular extracellular matrix (ECM). While the role of enhanced ECM proteolysis in TAA formation remains undisputed, little attention has been focused on the upstream signaling events that drive the remodeling process. Recent evidence highlighting the dysregulation of transforming growth factor-beta (TGF-β) signaling in ascending TAAs from Marfan syndrome patients has stimulated an interest in this intracellular signaling pathway. However, paradoxical discoveries have implicated both enhanced TGF-β signaling and loss of function TGF-β receptor mutations, in aneurysm formation; obfuscating a clear functional role for TGF-β in aneurysm development. In an effort to elucidate this subject, TGF-β signaling and its role in vascular remodeling and pathology will be reviewed, with the aim of identifying potential mechanisms of how TGF-β signaling may contribute to the formation and progression of TAA. PMID:18765947

  12. Genetic variations in the transforming growth factor beta pathway as predictors of bladder cancer risk.

    PubMed

    Wei, Hua; Kamat, Ashish M; Aldousari, Saad; Ye, Yuanqing; Huang, Maosheng; Dinney, Colin P; Wu, Xifeng

    2012-01-01

    Bladder cancer is the fifth most common cancer in the United States, and identifying genetic markers that may predict susceptibility in high-risk population is always needed. The purpose of our study is to determine whether genetic variations in the transforming growth factor-beta (TGF-β) pathway are associated with bladder cancer risk. We identified 356 single-nucleotide polymorphisms (SNPs) in 37 key genes from this pathway and evaluated their association with cancer risk in 801 cases and 801 controls. Forty-one SNPs were significantly associated with cancer risk, and after adjusting for multiple comparisons, 9 remained significant (Q-value ≤0.1). Haplotype analysis further revealed three haplotypes within VEGFC and two haplotypes in EGFR were significantly associated with increased bladder cancer risk compared to the most common haplotype. Classification and regression tree analysis further revealed potential high-order gene-gene interactions, with VEGFC: rs3775194 being the initial split, which suggests that this variant is responsible for the most variation in risk. Individuals carrying the common genotype for VEGFC: rs3775194 and EGFR: rs7799627 and the variant genotype for VEGFR: rs4557213 had a 4.22-fold increase in risk, a much larger effect magnitude than that conferred by common genotype for VEGFR: rs4557213. Our study provides the first epidemiological evidence supporting a connection between TGF-β pathway variants and bladder cancer risk.

  13. Role of transforming growth factor-beta in the development of the mouse embryo

    PubMed Central

    1987-01-01

    Using immunohistochemical methods, we have investigated the role of transforming growth factor-beta (TGF-beta) in the development of the mouse embryo. For detection of TGF-beta in 11-18-d-old embryos, we have used a polyclonal antibody specific for TGF-beta type 1 and the peroxidase-antiperoxidase technique. Staining of TGF-beta is closely associated with mesenchyme per se or with tissues derived from mesenchyme, such as connective tissue, cartilage, and bone. TGF-beta is conspicuous in tissues derived from neural crest mesenchyme, such as the palate, larynx, facial mesenchyme, nasal sinuses, meninges, and teeth. Staining of all of these tissues is greatest during periods of morphogenesis. In many instances, intense staining is seen in mesenchyme when critical interactions with adjacent epithelium occur, as in the development of hair follicles, teeth, and the submandibular gland. Marked staining is also seen when remodeling of mesenchyme or mesoderm occurs, as during formation of digits from limb buds, formation of the palate, and formation of the heart valves. The presence of TGF-beta is often coupled with pronounced angiogenic activity. The histochemical results are discussed in terms of the known biochemical actions of TGF-beta, especially its ability to control both synthesis and degradation of both structural and adhesion molecules of the extracellular matrix. PMID:3320058

  14. Role of transforming growth factor Beta in corneal function, biology and pathology.

    PubMed

    Tandon, A; Tovey, J C K; Sharma, A; Gupta, R; Mohan, R R

    2010-08-01

    Transforming growth factor-beta (TGFbeta) is a pleiotropic multifunctional cytokine that regulates several essential cellular processes in many parts of the body including the cornea. Three isoforms of TGFbeta are known in mammals and the human cornea expresses all of them. TGFbeta1 has been shown to play a central role in scar formation in adult corneas whereas TGFbeta2 and TGFbeta3 have been implicated to play a critical role in corneal development and scarless wound healing during embryogenesis. The biological effects of TGFbeta in the cornea have been shown to follow Smad dependent as well as Smad-independent signaling pathways depending upon cellular responses and microenvironment. Corneal TGFbeta expression is necessary for maintaining corneal integrity and corneal wound healing. On the other hand, TGFbeta is perhaps the most important cytokine in the pathogenesis of fibrotic disease in the cornea. Although the transformation of keratocytes to myofibroblasts induced by TGFbeta is largely believed to cause corneal fibrosis or scarring, the precise molecular mechanism(s) involved in this process is still unknown. Currently no drugs are available to treat corneal scarring effectively without causing significant side effects. Many approaches to treat TGFbeta-mediated corneal scarring are under investigation. These include blocking of TGFbeta, TGFbeta receptor, TGFbeta function and/or TGFbeta maturation. Other strategies such as modulating keratocyte proliferation, apoptosis, transcription and DNA condensation are also being investigated. The potential of gene therapy to neutralize the pathologic effects of TGFbeta has also been demonstrated recently.

  15. Transforming growth factor-beta (TGF-beta) and programmed cell death in the vertebrate retina.

    PubMed

    Duenker, Nicole

    2005-01-01

    Programmed cell death (PCD) is a precisely regulated phenomenon essential for the homeostasis of multicellular organisms. Developmental systems, particularly the nervous system, have provided key observations supporting the physiological role of PCD. We have recently shown that transforming growth factor-beta (TGF-beta) plays an important role in mediating ontogenetic PCD in the nervous system. As part of the central nervous system the developing retina serves as an ideal model system for investigating apoptotic processes during neurogenesis in vivo as it is easily accessible experimentally and less complex due to its limited number of different neurons. This review summarizes data indicating a pivotal role of TGF-beta in mediating PCD in the vertebrate retina. The following topics are discussed: expression of TGF-beta isoforms and receptors in the vertebrate retina, the TGF-beta signaling pathway, functions and molecular mechanisms of PCD in the nervous system, TGF-beta-mediated retinal apoptosis in vitro and in vivo, and interactions of TGF-beta with other pro- and anti-apoptotic factors.

  16. Cardiac fibroblasts are predisposed to convert into myocyte phenotype: Specific effect of transforming growth factor. beta

    SciTech Connect

    Eghbali, M.; Tomek, R.; Woods, C.; Bhambi, B. )

    1991-02-01

    Cardiac fibroblasts are mainly responsible for the synthesis of major extracellular matrix proteins in the heart, including fibrillar collagen types I and III and fibronectin. In this report we show that these cells, when stimulated by transforming growth factor {beta}{sub 1} (TGF-{beta}{sub 1}), acquire certain myocyte-specific properties. Cultured cardiac fibroblasts from adult rabbit heart were treated with TGF-{beta}{sub 1}, (10-15 ng/ml) for different periods of time. Northern hybridization analysis of total RNA showed that cells treated with TGF-{beta}{sub 1} became stained with a monoclonal antibody to muscle-specific actin. After treatment of quiescent cells with TGF-{beta}{sub 1}, cell proliferation (as measured by ({sup 3}H)thymidine incorporation) was moderately increased. Cultured cardiac fibroblasts at the subconfluent stage, when exposed to TGF-{beta}{sub 1} in the presence of 10% fetal bovine serum, gave rise to a second generation of slowly growing cells that expressed muscle-specific actin filaments. The findings demonstrate that cardiac fibroblasts can be made to differentiate into cells that display many characteristics of cardiac myocytes. TGF-{beta}{sub 1} seems to be a specific inducer of such conversion.

  17. Differential expression of transforming growth factor-beta in the interstitial tissue of testis during aging.

    PubMed

    Jung, Jae-Chang; Park, Geun-Tae; Kim, Kook-Hee; Woo, Ju Hyung; An, Jung-Min; Kim, Ki-Chul; Chung, Hae Young; Bae, Young-Seuk; Park, Jeen Woo; Kang, Shin-Sung; Lee, Young-Sup

    2004-05-01

    Transforming growth factor-betas (TGF-betas) have significant effects on testis development. The pattern of TGF-beta expression in aging testis has not been established to date. We examined age-related changes in the expression of TGF-beta and its receptors in the testis using Western blot analysis. TGF-beta1 expression increased continuously in aging rat testis, whereas no age-associated changes were observed for TGF-beta3. Strong expression of TGF-beta2, as well as type I and II receptors was observed in 12-month-old testis, but following this time, expression decreased dramatically. Interestingly, TGF-beta2 and -beta3 displayed strong and similar expression patterns in liver, regardless of age, suggesting that the down-regulation of TGF-beta2 is testis-specific. We observed significant induction of p53 and p21WAF1 in 18-month-old testis that appeared to correspond with aging. Moreover, caloric restriction (CR) prevented age-related decrease in TGF-beta2 expression. Using immunohistochemistry, we showed that all TGF-beta1, -beta2, and -beta3 proteins are expressed primarily in interstitial cells, which are located in the space between adjoining seminiferous tubules. Our data collectively indicate that aging in the testis is regulated by differential expression of TGF-beta proteins, and decreased levels of TGF-beta2 contribute to the aging process.

  18. Immunocytochemical localization of latent transforming growth factor-beta1 activation by stimulated macrophages

    NASA Technical Reports Server (NTRS)

    Chong, H.; Vodovotz, Y.; Cox, G. W.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1999-01-01

    Transforming growth factor-beta1 (TGF-beta) is secreted in a latent form consisting of mature TGF-beta noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-beta from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-beta action. We have identified two events associated with latent TGF-beta (LTGF-beta) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-beta concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-gamma and lipopolysaccharide reportedly activate LTGF-beta via cell membrane-bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-beta activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-beta epitopes. The induction of TGF-beta immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-beta activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-beta and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-beta activation provides an important tool for studies of its regulation.

  19. Dynamics of Transforming Growth Factor Beta Signaling in Wound Healing and Scarring

    PubMed Central

    Finnson, Kenneth W.; McLean, Sarah; Di Guglielmo, Gianni M.; Philip, Anie

    2013-01-01

    Significance Wound healing is an intricate biological process in which the skin, or any other tissue, repairs itself after injury. Normal wound healing relies on the appropriate levels of cytokines and growth factors to ensure that cellular responses are mediated in a coordinated manner. Among the many growth factors studied in the context of wound healing, transforming growth factor beta (TGF-β) is thought to have the broadest spectrum of effects. Recent Advances Many of the molecular mechanisms underlying the TGF-β/Smad signaling pathway have been elucidated, and the role of TGF-β in wound healing has been well characterized. Targeting the TGF-β signaling pathway using therapeutic agents to improve wound healing and/or reduce scarring has been successful in pre-clinical studies. Critical Issues Although TGF-β isoforms (β1, β2, β3) signal through the same cell surface receptors, they display distinct functions during wound healing in vivo through mechanisms that have not been fully elucidated. The challenge of translating preclinical studies targeting the TGF-β signaling pathway to a clinical setting may require more extensive preclinical research using animal models that more closely mimic wound healing and scarring in humans, and taking into account the spatial, temporal, and cell-type–specific aspects of TGF-β isoform expression and function. Future Directions Understanding the differences in TGF-β isoform signaling at the molecular level and identification of novel components of the TGF-β signaling pathway that critically regulate wound healing may lead to the discovery of potential therapeutic targets for treatment of impaired wound healing and pathological scarring. PMID:24527343

  20. Effect of transforming growth factor beta on synthesis of glycosaminoglycans by human lung fibroblasts

    SciTech Connect

    Dubaybo, B.A.; Thet, L.A. )

    1990-09-01

    The processes of lung growth, injury, and repair are characterized by alterations in fibroblast synthesis and interstitial distribution of extracellular matrix components. Transforming growth factor beta (TGF-beta), which is postulated to play a role in modulating lung repair, alters the distribution of several matrix components such as collagen and fibronectin. We studied the effect of TGF-beta on the synthesis and distribution of the various glycosaminoglycans (GAGs) and whether these effects may explain its role in lung repair. Human diploid lung fibroblasts (IMR-90) were exposed to various concentrations of TGF-beta (0-5 nM) for variable periods of time (0-18 h). Newly synthesized GAGs were labeled with either (3H)glucosamine or (35S)sulfate. Individual GAGs were separated by size exclusion chromatography after serial enzymatic and chemical digestions and quantitated using scintillation counting. There was a dose-dependent increase in total GAG synthesis with maximal levels detected after 6 h of exposure. This increase was noted in all individual GAG types measured and was observed in both the cell associated GAGs (cell-matrix fraction) as well as the GAGs released into the medium (medium fraction). In the cell-matrix fraction, TGF-beta increased the proportion of heparan sulfate that was membrane bound as well as the proportion of dermatan sulfate in the intracellular compartment. In the medium fraction, TGF-beta increased the proportion of hyaluronic acid, chondroitin sulfate and dermatan sulfate released. We conclude that the role of TGF-beta in lung growth and repair may be related to increased synthesis of GAGs by human lung fibroblasts as well as alterations in the distribution of individual GAGs.

  1. Transforming growth factor: beta signaling is essential for limb regeneration in axolotls.

    PubMed

    Lévesque, Mathieu; Gatien, Samuel; Finnson, Kenneth; Desmeules, Sophie; Villiard, Eric; Pilote, Mireille; Philip, Anie; Roy, Stéphane

    2007-01-01

    Axolotls (urodele amphibians) have the unique ability, among vertebrates, to perfectly regenerate many parts of their body including limbs, tail, jaw and spinal cord following injury or amputation. The axolotl limb is the most widely used structure as an experimental model to study tissue regeneration. The process is well characterized, requiring multiple cellular and molecular mechanisms. The preparation phase represents the first part of the regeneration process which includes wound healing, cellular migration, dedifferentiation and proliferation. The redevelopment phase represents the second part when dedifferentiated cells stop proliferating and redifferentiate to give rise to all missing structures. In the axolotl, when a limb is amputated, the missing or wounded part is regenerated perfectly without scar formation between the stump and the regenerated structure. Multiple authors have recently highlighted the similarities between the early phases of mammalian wound healing and urodele limb regeneration. In mammals, one very important family of growth factors implicated in the control of almost all aspects of wound healing is the transforming growth factor-beta family (TGF-beta). In the present study, the full length sequence of the axolotl TGF-beta1 cDNA was isolated. The spatio-temporal expression pattern of TGF-beta1 in regenerating limbs shows that this gene is up-regulated during the preparation phase of regeneration. Our results also demonstrate the presence of multiple components of the TGF-beta signaling machinery in axolotl cells. By using a specific pharmacological inhibitor of TGF-beta type I receptor, SB-431542, we show that TGF-beta signaling is required for axolotl limb regeneration. Treatment of regenerating limbs with SB-431542 reveals that cellular proliferation during limb regeneration as well as the expression of genes directly dependent on TGF-beta signaling are down-regulated. These data directly implicate TGF-beta signaling in the

  2. Cellular localization of transforming growth factor-beta expression in bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Zhang, K.; Flanders, K. C.; Phan, S. H.

    1995-01-01

    Bleomycin-induced pulmonary fibrosis is associated with increased lung transforming growth factor-beta (TGF-beta) gene expression, but cellular localization of the source of this expression has not been unequivocally established. In this study, lung fibrosis was induced in rats by endotracheal bleomycin injection on day 0 and, on selected days afterwards, lungs were harvested for in situ hybridization, immunohistochemical and histochemical analyses for TGF-beta 1 mRNA and protein expression, and cell identification. The results show that control lungs express essentially no detectable TGF-beta 1 mRNA or protein in the parenchyma. Before day 3 after bleomycin treatment, scattered bronchiolar epithelial cells, mononuclear cells, and eosinophils expressed elevated levels of TGF-beta 1. Between days 3 and 14, there was a major increase in the number of eosinophils, myofibroblasts, and fibroblasts strongly expressing TGF-beta 1 mRNA and protein. TGF-beta 1-producing cells were predominantly localized within areas of injury and active fibrosis. After day 14, the intensity and number of TGF-beta 1-expressing cells significantly declined and were predominantly found in fibroblasts in fibrotic areas. The expression of TGF-beta 1 protein was generally coincident with that for mRNA with the exception of bronchiolar epithelial cells in which strong protein expression was unaccompanied by a commensurate increase in mRNA. The study demonstrates that myofibroblasts, fibroblasts, and eosinophils represent the major sources of increased lung TGF-beta 1 expression in this model of pulmonary fibrosis. Images Figure 2 Figure 3 Figure 4 PMID:7543734

  3. Amyloid beta-peptide possesses a transforming growth factor-beta activity.

    PubMed

    Huang, S S; Huang, F W; Xu, J; Chen, S; Hsu, C Y; Huang, J S

    1998-10-16

    Amyloid beta-peptide (Abeta) of 39-42 amino acid residues is a major constituent of Alzheimer's disease neurite plaques. Abeta aggregates (fibrils) are believed to be responsible for neuronal damage and dysfunction, as well as microglia and astrocyte activation in disease lesions by multiple mechanisms. Since Abeta aggregates possess the multiple valencies of an FAED motif (20th to 23rd amino acid residues), which resembles the putative transforming growth factor-beta (TGF-beta) active site motif, we hypothesize that Abeta monomers and Abeta aggregates may function as TGF-beta antagonists and partial agonists, analogous to previously described monovalent and multivalent TGF-beta peptide antagonists and agonists (Huang, S. S., Liu, Q., Johnson, F. E., Konish, Y., and Huang, J. S. (1997) J. Biol. Chem. 272, 27155-27159). Here, we report that the Abeta monomer, Abeta-(1-40) and its fragment, containing the motif inhibit radiolabeled TGF-beta binding to cell-surface TGF-beta receptors in mink lung epithelial cells (Mv1Lu cells). Abeta-(1-40)-bovine serum albumin conjugate (Abeta-(1-40)-BSA), a multivalent synthetic analogue of Abeta aggregates, exhibited cytotoxicity toward bovine cerebral endothelial cells and rat post-mitotic differentiated hippocampal neuronal cells (H19-7 cells) and inhibitory activities of radiolabeled TGF-beta binding to TGF-beta receptors and TGF-beta-induced plasminogen activator inhibitor-1 expression, that were approximately 100-670 times more potent than those of Abeta-(1-40) monomers. At less than micromolar concentrations, Abeta-(1-40)-BSA but not Abeta-(1-40) monomers inhibited proliferation of Mv1Lu cells. Since TGF-beta is an organizer of responses to neurodegeneration and is also found in neurite plaques, the TGF-beta antagonist and partial agonist activities of Abeta monomers and aggregates may play an important role in the pathogenesis of the disease.

  4. Activity-dependent release of transforming growth factor-beta in a neuronal network in vitro.

    PubMed

    Lacmann, A; Hess, D; Gohla, G; Roussa, E; Krieglstein, K

    2007-12-12

    For neurotrophins and also for members of the transforming growth factor beta (TGF-beta) family an activity-dependent regulation of synthesis and release has been proposed. Together with the observation that the secretion of neurotransmitters is initiated by neurotrophic factors, it is reasonable to assume that they might act as retrograde modulators enhancing the efficacy and stabilization of synapses. In the present study, we have tested this hypothesis and studied the release and regulation of TGF-beta in vitro using mouse primary hippocampal neurons at embryonic day E16.5 as model. We show that neuronal activity regulates TGF-beta release and TGF-beta expression in vitro. Treatment of the cultures with KCl, 3-veratroylveracevine (veratridine), glutamate or carbamylcholine chloride (carbachol) increased the levels of secreted TGF-beta, as assessed by the MLEC/plasminogen activator inhibitor (PAI)-luciferase-assay, whereas TGF-beta release stimulated by KCl or veratridine was reduced in the presence of tetrodotoxin or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA). In addition, application of glutamate significantly upregulated expression of TGF-beta2 and TGF-beta3 in the culture. Notably, KCl stimulation caused Smad (composite term from SMA (C. elegans) and MAD=mothers against dpp (Drosophila)) translocation into the nucleus and upregulated TGF-beta inducible early gene (Tieg1) expression, demonstrating that activity-dependent released TGF-beta may exert autocrine actions and thereby activate the TGF-beta-dependent signaling pathway. Together, these results suggest an activity-dependent release and gene transcription of TGF-beta from mouse hippocampal neurons in vitro as well as subsequent autocrine functions of the released TGF-beta within the hippocampal network.

  5. Invasive candidiasis stimulates hepatocyte and monocyte production of active transforming growth factor beta.

    PubMed

    Letterio, J J; Lehrnbecher, T; Pollack, G; Walsh, T J; Chanock, S J

    2001-08-01

    Candida albicans is an opportunistic fungal pathogen and a major cause of morbidity and mortality in patients with compromised immune function. The cytokine response to tissue invasion by C. albicans can influence the differentiation and function of lymphocytes and other mononuclear cells that are critical components of the host response. While the production of transforming growth factor beta (TGF-beta) has been documented in mice infected with C. albicans and is known to suppress phagocyte function, the cellular source and role of this cytokine in the pathogenesis of systemic candidiasis are not well understood. We have investigated the source of production of TGF-beta by immunohistochemical studies in tissue samples from patients with an uncommon complication of lymphoreticular malignancy, chronic disseminated candidiasis (CDC), and from a neutropenic-rabbit model of CDC. Liver biopsy specimens from patients with documented CDC demonstrated intense staining for extracellular matrix-associated TGF-beta1 within inflammatory granulomas, as well as staining for TGF-beta1 and TGF-beta3 within adjacent hepatocytes. These results correlate with the immunolocalization of TGF-beta observed in livers of infected neutropenic rabbits, using a neutralizing antibody that recognizes the mature TGF-beta protein. Human peripheral blood monocytes incubated with C. albicans in vitro release large amounts of biologically active TGF-beta1. The data demonstrate that local production of active TGF-betas by hepatocytes and by infected mononuclear cells is a component of the response to C. albicans infection that most probably contributes to disease progression in the immunocompromised host.

  6. Redox-mediated activation of latent transforming growth factor-beta 1

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Dix, T. A.; Chatterjee, A. (Principal Investigator)

    1996-01-01

    Transforming growth factor beta 1 (TGF beta) is a multifunctional cytokine that orchestrates response to injury via ubiquitous cell surface receptors. The biological activity of TGF beta is restrained by its secretion as a latent complex (LTGF beta) such that activation determines the extent of TGF beta activity during physiological and pathological events. TGF beta action has been implicated in a variety of reactive oxygen-mediated tissue processes, particularly inflammation, and in pathologies such as reperfusion injury, rheumatoid arthritis, and atherosclerosis. It was recently shown to be rapidly activated after in vivo radiation exposure, which also generates reactive oxygen species (ROS). In the present studies, the potential for redox-mediated LTGF beta activation was investigated using a cell-free system in which ROS were generated in solution by ionizing radiation or metal ion-catalyzed ascorbate reaction. Irradiation (100 Gray) of recombinant human LTGF beta in solution induced 26% activation compared with that elicited by standard thermal activation. Metal-catalyzed ascorbate oxidation elicited extremely efficient recombinant LTGF beta activation that matched or exceeded thermal activation. The efficiency of ascorbate activation depended on ascorbate concentrations and the presence of transition metal ions. We postulate that oxidation of specific amino acids in the latency-conferring peptide leads to a conformation change in the latent complex that allows release of TGF beta. Oxidative activation offers a novel route for the involvement of TGF beta in tissue processes in which ROS are implicated and endows LTGF beta with the ability to act as a sensor of oxidative stress and, by releasing TGF beta, to function as a signal for orchestrating the response of multiple cell types. LTGF beta redox sensitivity is presumably directed toward recovery of homeostasis; however, oxidation may also be a mechanism of LTGF beta activation that can be deleterious during

  7. Neuroprotection by glial metabotropic glutamate receptors is mediated by transforming growth factor-beta.

    PubMed

    Bruno, V; Battaglia, G; Casabona, G; Copani, A; Caciagli, F; Nicoletti, F

    1998-12-01

    The medium collected from cultured astrocytes transiently exposed to the group-II metabotropic glutamate (mGlu) receptor agonists (2S,1'R, 2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV) or (S)-4-carboxy-3-hydroxyphenylglycine (4C3HPG) is neuroprotective when transferred to mixed cortical cultures challenged with NMDA (). The following data indicate that this particular form of neuroprotection is mediated by transforming growth factor-beta (TGFbeta). (1) TGFbeta1 and -beta2 were highly neuroprotective against NMDA toxicity, and their action was less than additive with that produced by the medium collected from astrocytes treated with DCG-IV or 4C3HPG (GM/DCG-IV or GM/4C3HPG); (2) antibodies that specifically neutralized the actions of TGFbeta1 or -beta2 prevented the neuroprotective activity of DCG-IV or 4C3HPG, as well as the activity of GM/DCG-IV or GM/4C3HPG; and (3) a transient exposure of cultured astrocytes to either DCG-IV or 4C3HPG led to a delayed increase in both intracellular and extracellular levels of TGFbeta. We therefore conclude that a transient activation of group-II mGlu receptors (presumably mGlu3 receptors) in astrocytes leads to an increased formation and release of TGFbeta, which in turn protects neighbor neurons against excitotoxic death. These results offer a new strategy for increasing the local production of neuroprotective factors in the CNS. PMID:9822720

  8. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta 1.

    PubMed Central

    Oberhammer, F A; Pavelka, M; Sharma, S; Tiefenbacher, R; Purchio, A F; Bursch, W; Schulte-Hermann, R

    1992-01-01

    In previous studies hepatocytes undergoing cell death by apoptosis but not normal hepatocytes in rat liver showed immunostaining for transforming growth factor beta 1 (TGF-beta 1). Staining was much stronger with antibodies recognizing the pro-region of TGF-beta 1 than the mature peptide itself. Therefore we investigated the ability of both forms of TGF-beta 1 to induce apoptosis in primary cultures of rat hepatocytes. Mature TGF-beta 1 induced rounding up of the cells and fragmentation into multiple vesicles. As revealed by the DNA-specific stain H33258, the chromatin of these cells condensed and segregated into masses at the nuclear membrane; this was obviously followed by fragmentation of the nucleus. Ultrastructurally the cytoplasm was well preserved, as demonstrated by the presence of intact cell organelles. These features strongly suggest the occurrence of apoptosis. Quantification of nuclei with condensed chromatin revealed that mature TGF-beta 1 was 30-fold more effective than the TGF-beta 1 latency-associated protein complex. Finally, we administered TGF-beta 1 in vivo using an experimental model in which regression of rat liver was initiated by a short preceding treatment with the hepatomitogen cyproterone acetate. Two doses of TGF-beta 1, each 1 nM/kg, augmented the incidence of apoptotic hepatocytes 5-fold. Equimolar doses of TGF-beta 1 latency-associated protein complex were ineffective. These studies suggest that TGF-beta 1 is involved in the initiation of apoptosis in the liver and that the mature form of TGF-beta 1 is the active principle. Images PMID:1608949

  9. Genetic polymorphisms in transforming growth factor beta-1 (TGFB1) and childhood asthma and atopy

    PubMed Central

    Li, Huiling; Romieu, Isabelle; Wu, Hao; Sienra-Monge, Juan-Jose; Ramírez-Aguilar, Matiana; del Río-Navarro, Blanca Estela; Lara-Sánchez, Irma del Carmen; Kistner, Emily O.; Gjessing, Håkon K.; London, Stephanie J.

    2007-01-01

    Transforming growth factor beta-1 (TGFB1) may influence asthma by modulating allergic airway inflammation and airway remodeling. The role of single nucleotide polymorphisms (SNPs) of TGFB1 in asthma remains inconclusive. We examined TGFB1 SNPs in relation to asthma risk and degree of atopy among 546 case-parent triads, consisting of asthmatics aged 4 to 17 years and their parents in Mexico City. Atopy to 24 aeroallergens was determined by skin prick tests. We genotyped five TGFB1 SNPs, including two known functional SNPs [C-509T (rs1800469), T869C (rs1982073)] and three others (rs7258445, rs1800472, rs8179181), using TaqMan and Masscode assays. We analyzed the data using log-linear and polytomous logistic methods. Three associated SNPs, including the two known functional SNPs, were statistically significantly related to asthma risk. Individuals carrying the T allele of C-509T had an increased risk of asthma [relative risk (RR) = 1.42, 95% confidence interval (CI) = 1.08–1.87 for one copy; RR (95%CI) = 1.95 (1.36–2.78) for two copies]. For T869C, the RRs (95%CI) were 1.47 (1.09–1.98) for one and 2.00 (1.38–2.90) for two copies of the C allele. Similar results were found for rs7258445. The haplotype containing all three risk alleles conferred an increased risk of asthma (RR = 1.48, 95% CI = 1.11–1.95 for one copy; RR = 1.77, 95% CI = 1.22–2.57 for two copies). These three SNPs were also related to the degree of atopy. This largest study to date of genetic variation in TGFB1 and asthma and atopy adds to increasing evidence for a role in these disorders. PMID:17333284

  10. Immunohistochemical detection of active transforming growth factor-beta in situ using engineered tissue

    NASA Technical Reports Server (NTRS)

    Barcellos-Hoff, M. H.; Ehrhart, E. J.; Kalia, M.; Jirtle, R.; Flanders, K.; Tsang, M. L.; Chatterjee, A. (Principal Investigator)

    1995-01-01

    The biological activity of transforming growth factor-beta 1 (TGF-beta) is governed by dissociation from its latent complex. Immunohistochemical discrimination of active and latent TGF-beta could provide insight into TGF-beta activation in physiological and pathological processes. However, evaluation of immunoreactivity specificity in situ has been hindered by the lack of tissue in which TGF-beta status is known. To provide in situ analysis of antibodies to differentiate between these functional forms, we used xenografts of human tumor cells modified by transfection to overexpress latent TGF-beta or constitutively active TGF-beta. This comparison revealed that, whereas most antibodies did not differentiate between TGF-beta activation status, the immunoreactivity of some antibodies was activation dependent. Two widely used peptide antibodies to the amino-terminus of TGF-beta, LC(1-30) and CC(1-30) showed marked preferential immunoreactivity with active TGF-beta versus latent TGF-beta in cryosections. However, in formalin-fixed, paraffin-embedded tissue, discrimination of active TGF-beta by CC(1-30) was lost and immunoreactivity was distinctly extracellular, as previously reported for this antibody. Similar processing-dependent extracellular localization was found with a neutralizing antibody raised to recombinant TGF-beta. Antigen retrieval recovered cell-associated immunoreactivity of both antibodies. Two antibodies to peptides 78-109 showed mild to moderate preferential immunoreactivity with active TGF-beta only in paraffin sections. LC(1-30) was the only antibody tested that discriminated active from latent TGF-beta in both frozen and paraffin-embedded tissue. Thus, in situ discrimination of active versus latent TGF-beta depends on both the antibody and tissue preparation. We propose that tissues engineered to express a specific form of a given protein provide a physiological setting in which to evaluate antibody reactivity with specific functional forms of a

  11. Differential regulation of mesothelial cell fibrinolysis by transforming growth factor beta 1.

    PubMed

    Falk, P; Ma, C; Chegini, N; Holmdahl, L

    2000-10-01

    Inflammation and tissue trauma during the surgical procedure reduce the peritoneal fibrinolytic capacity. These conditions promote adhesion formation, and are associated with increased expression of transforming growth factor beta 1 (TGF-beta1). The objective of the present study was to investigate whether TGF-beta1 regulates the expression of fibrinolytic components in peritoneal mesothelial cells. Human peritoneal mesothelial cells (HPMC) were cultured and treated with various concentrations of human recombinant TGF-beta1 (0.1, 1.0 and 10 ng/mL) for 24 h. Levels of tissue- and urokinase plasminogen activator (t-PA and uPA), plasminogen activator inhibitor type-1 (PAI-1) and type-2 (PAI-2) mRNA and protein were assessed by quantitative reverse transcriptase polymerase chain reaction (Q-RT-PCR) and ELISA, respectively. HPMC expressed these components at the gene and protein level. TGF-beta1 downregulated, dose-dependently t-PA mRNA and protein to about 50% of control values (p = 0.0010), and doubled PAI-1 protein production (p = 0.0008) compared to untreated controls. Although uPA gene expression increased in cells exposed to TGF-beta1, the corresponding protein concentration in conditioned media did not. PAI-2 was not affected, either at the gene or protein level. In conclusion, the results indicate that fibrinolytic capacity of mesothelial cells is reduced by TGF-beta1, suggesting that peritoneal adhesion formation induced by TGF-beta1 may be mediated, in part, through reduction in fibrin degradation capacity at an early stage of peritoneal tissue repair.

  12. Transforming Growth Factor Beta 1 Augments Calvarial Defect Healing and Promotes Suture Regeneration

    PubMed Central

    Shakir, Sameer; MacIsaac, Zoe M.; Naran, Sanjay; Smith, Darren M.; Bykowski, Michael R.; Cray, James J.; Craft, Timothy K.; Wang, Dan; Weiss, Lee; Campbell, Phil G.; Mooney, Mark P.; Losee, Joseph E.

    2015-01-01

    Background: Repair of complex cranial defects is hindered by a paucity of appropriate donor tissue. Bone morphogenetic protein 2 (BMP2) and transforming growth factor beta 1 (TGFβ1) have been shown separately to induce bone formation through physiologically distinct mechanisms and potentially improve surgical outcome for cranial defect repair by obviating the need for donor tissue. We hypothesize that a combination of BMP2 and TGFβ1 would improve calvarial defect healing by augmenting physiologic osteogenic mechanisms. Methods/Results: Coronal suturectomies (3×15 mm) were performed in 10-day-old New Zealand White rabbits. DermaMatrix™ (3×15mm) patterned with four treatments (vehicle, 350 ng BMP2, 200 ng TGFβ1, or 350 ng BMP2+200 ng TGFβ1) was placed in suturectomy sites and rabbits were euthanized at 6 weeks of age. Two-dimensional (2D) defect healing, bone volume, and bone density were quantified by computed tomography. Regenerated bone was qualitatively assessed histologically. One-way analysis of variance revealed significant group main effects for all bone quantity measures. Analysis revealed significant differences in 2D defect healing, bone volume, and bone density between the control group and all treatment groups, but no significant differences were detected among the three growth factor treatment groups. Qualitatively, TGFβ1 treatment produced bone with morphology most similar to native bone. TGFβ1-regenerated bone contained a suture-like tissue, growing from the lateral edge of the defect margin toward the midline. Unique to the BMP2 treatment group, regenerated bone contained lacunae with chondrocytes, demonstrating the presence of endochondral ossification. Conclusions/Significance: Total healing in BMP2 and TGFβ1 treatment groups is not significantly different. The combination of BMP2+TGFβ1 did not significantly increase bone healing compared with treatment with BMP2 or TGFβ1 alone postoperatively at 4 weeks. We highlight the

  13. Human pulmonary acinar aplasia: reduction of transforming growth factor-beta ligands and receptors.

    PubMed

    Chen, M F; Gray, K D; Prentice, M A; Mariano, J M; Jakowlew, S B

    1999-07-01

    Pulmonary hypoplasia has been found in the human neonatal autopsy population and has been attributed to an alteration in epithelial-mesenchymal interactions during development of the lung. Pulmonary acinar aplasia is a very rare and severe form of pulmonary hypoplasia. The transforming growth factor-betas (TGF-beta) are multifunctional regulatory peptides that are secreted by a variety of normal and malignant cells and are expressed in developing organs including the lung; their tissue distribution patterns have possible significance for signaling roles in many epithelial-mesenchymal interactions. Here, we report our examination of TGF-beta in the lungs of a term female infant diagnosed with pulmonary acinar aplasia whose autopsy revealed extremely hypoplastic lungs with complete absence of alveolar ducts and alveoli. Immunohistochemical and in situ hybridization analyses were used to localize and measure the proteins and mRNA, respectively, for TGF-beta1, TGF-beta2, TGF-beta3, and TGF-beta type I and type II receptors (TGF-beta RI and RII) in formalin-fixed and paraffin-embedded sections of these hypoplastic lungs and normal lungs. Immunostaining for TGF-beta1, TGF-beta2, and TGF-beta RI and RII was significantly lower in the bronchial epithelium and muscle of the hypoplastic lungs than in normal lungs, whereas no difference was detected in staining for other proteins including Clara cell 10-kD protein, adrenomedullin, hepatocyte growth factor/scatter factor, and hepatocyte growth factor receptor/Met in the hypoplastic and normal lungs or in the liver and kidneys of this infant compared with normal liver and kidney. In addition, in situ hybridization showed that TGF-beta1 and TGF-beta RI transcripts were considerably reduced in the bronchial epithelium of the hypoplastic lung compared with normal lung. These results show that there is a selective reduction of TGF-beta in pulmonary acinar aplasia and suggest that the signaling action of TGF-beta in epithelial

  14. The types II and III transforming growth factor-beta receptors form homo-oligomers

    PubMed Central

    1994-01-01

    Affinity-labeling experiments have detected hetero-oligomers of the types I, II, and III transforming growth factor beta (TGF-beta) receptors which mediate intracellular signaling by TGF-beta, but the oligomeric state of the individual receptor types remains unknown. Here we use two types of experiments to show that a major portion of the receptor types II and III forms homo-oligomers both in the absence and presence of TGF-beta. Both experiments used COS-7 cells co-transfected with combinations of these receptors carrying different epitope tags at their extracellular termini. In immunoprecipitation experiments, radiolabeled TGF-beta was bound and cross-linked to cells co-expressing two differently tagged type II receptors. Sequential immunoprecipitations using anti-epitope monoclonal antibodies showed that type II TGF-beta receptors form homo-oligomers. In cells co- expressing epitope-tagged types II and III receptors, a low level of co- precipitation of the ligand-labeled receptors was observed, indicating that some hetero-oligomers of the types II and III receptors exist in the presence of ligand. Antibody-mediated cross-linking studies based on double-labeling immunofluorescence explored co-patching of the receptors at the cell surface on live cells. In cells co-expressing two differently tagged type II receptors or two differently tagged type III receptors, forcing one receptor into micropatches by IgG induced co- patching of the receptor carrying the other tag, labeled by noncross- linking monovalent Fab'. These studies showed that homo-oligomers of the types II and III receptors exist on the cell surface in the absence or presence of TGF-beta 1 or -beta 2. In cells co-expressing types II and III receptors, the amount of heterocomplexes at the cell surface was too low to be detected in the immunofluorescence co-patching experiments, confirming that hetero-oligomers of the types II and III receptors are minor and probably transient species. PMID:8027173

  15. Modulation of growth and differentiation in normal human keratinocytes by transforming growth factor-beta

    SciTech Connect

    Matsumoto, K.; Hashimoto, K.; Hashiro, M.; Yoshimasa, H.; Yoshikawa, K. )

    1990-10-01

    The effect of transforming growth factor-type beta 1(TGF-beta) on the growth and differentiation of normal human skin keratinocytes cultured in serum-free medium was investigated. TGF-beta markedly inhibited the growth of keratinocytes at the concentrations greater than 2 ng/ml under low Ca2+ conditions (0.1 mM). Growth inhibition was accompanied by changes in cell functions related to proliferation. Remarkable inhibition of DNA synthesis was demonstrated by the decrease of (3H)thymidine incorporation. The decrease of (3H)thymidine incorporation was observed as early as 3 hr after addition of TGF-beta. TGF-beta also decreased c-myc messenger RNA (mRNA) expression 30 min after addition of TGF-beta. This rapid reduction of c-myc mRNA expression by TGF-beta treatment is possibly one of the main factors in the process of TGF-beta-induced growth inhibition of human keratinocytes. Since growth inhibition and induction of differentiation are closely related in human keratinocytes, the growth-inhibitory effect of TGF-beta under high Ca2+ conditions was examined. TGF-beta inhibited the growth of keratinocytes under high Ca2+ conditions in the same manner as under low Ca2+ conditions, suggesting that it is a strong growth inhibitor in both low and high Ca2+ environments. The induction of keratinocyte differentiation was evaluated by measuring involucrin expression and cornified envelope formation: TGF-beta at 20 ng/ml increased involucrin expression from 9.3% to 18.8% under high Ca2+ conditions, while it decreased involucrin expression from 7.0% to 3.3% under low Ca2+ conditions. Cornified envelope formation was modulated in a similar way by addition of TGF-beta: TGF-beta at 20 ng/ml decreased cornified envelope formation by 53% under low Ca2+ conditions, while it enhanced cornified envelope formation by 30.7% under high Ca2+ conditions.

  16. Transforming growth factor beta mRNA increases during liver regeneration: a possible paracrine mechanism of growth regulation.

    PubMed Central

    Braun, L; Mead, J E; Panzica, M; Mikumo, R; Bell, G I; Fausto, N

    1988-01-01

    Transforming growth factor beta (TGF-beta) is a growth factor with multiple biological properties including stimulation and inhibition of cell proliferation. To determine whether TGF-beta is involved in hepatocyte growth responses in vivo, we measured the levels of TGF-beta mRNA in normal liver and during liver regeneration after partial hepatectomy in rats. TGF-beta mRNA increases in the regenerating liver and reaches a peak (about 8 times higher than basal levels) after the major wave of hepatocyte cell division and mitosis have taken place and after the peak expression of the ras protooncogenes. Although hepatocytes from normal and regenerating liver respond to TGF-beta, they do not synthesize TGF-beta mRNA. Instead, the message is present in liver nonparenchymal cells and is particularly abundant in cell fractions enriched for endothelial cells. TGF-beta inhibits epidermal growth factor-induced DNA synthesis in vitro in hepatocytes from normal or regenerating liver, although the dose-response curves vary according to the culture medium used. We conclude that TGF-beta may function as the effector of an inhibitory paracrine loop that is activated during liver regeneration, perhaps to prevent uncontrolled hepatocyte proliferation. Images PMID:3422749

  17. A functional connection between pRB and transforming growth factor beta in growth inhibition and mammary gland development.

    PubMed

    Francis, Sarah M; Bergsied, Jacqueline; Isaac, Christian E; Coschi, Courtney H; Martens, Alison L; Hojilla, Carlo V; Chakrabarti, Subrata; Dimattia, Gabriel E; Khoka, Rama; Wang, Jean Y J; Dick, Frederick A

    2009-08-01

    Transforming growth factor beta (TGF-beta) is a crucial mediator of breast development, and loss of TGF-beta-induced growth arrest is a hallmark of breast cancer. TGF-beta has been shown to inhibit cyclin-dependent kinase (CDK) activity, which leads to the accumulation of hypophosphorylated pRB. However, unlike other components of TGF-beta cytostatic signaling, pRB is thought to be dispensable for mammary development. Using gene-targeted mice carrying subtle missense changes in pRB (Rb1(DeltaL) and Rb1(NF)), we have discovered that pRB plays a critical role in mammary gland development. In particular, Rb1 mutant female mice have hyperplastic mammary epithelium and defects in nursing due to insensitivity to TGF-beta growth inhibition. In contrast with previous studies that highlighted the inhibition of cyclin/CDK activity by TGF-beta signaling, our experiments revealed that active transcriptional repression of E2F target genes by pRB downstream of CDKs is also a key component of TGF-beta cytostatic signaling. Taken together, our work demonstrates a unique functional connection between pRB and TGF-beta in growth control and mammary gland development.

  18. Growth Hormone Induces Transforming Growth Factor-Beta-Induced Protein in Podocytes: Implications for Podocyte Depletion and Proteinuria.

    PubMed

    Chitra, P Swathi; Swathi, T; Sahay, Rakesh; Reddy, G Bhanuprakash; Menon, Ram K; Kumar, P Anil

    2015-09-01

    The glomerular podocytes form a major size selective barrier for the filtration of serum proteins and reduced podocyte number is a critical event in the pathogenesis of proteinuria during diabetic nephropathy (DN). An elevated level of growth hormone (GH) is implicated as a causative factor in the development of nephropathy in patients with type 1 diabetes mellitus. We have previously shown that podocytes express GH receptor and are a target for GH action. To elucidate the molecular basis for the effects of GH on podocyte depletion, we conducted PCR-array analyses for extracellular matrix and adhesion molecules in podocytes. Our studies reveal that GH increases expression of a gene that encodes transforming growth factor-beta-induced protein (TGFBIp) expression. Similarly, microarray data retrieved from the Nephromine database revealed elevation of TGFBIp in patients with DN. Treatment with GH results in increased secretion of extracellular TGFBIp by podocytes. Both GH and TGFBIp induced apoptosis and epithelial mesenchymal transition (EMT) of podocytes. Exposure of podocytes to GH and TGFBIp resulted in increased migration of cells and altered podocyte permeability to albumin across podocyte monolayer. Administration of GH to rats induced EMT and apoptosis in the glomerular fraction of the kidney. Therefore, we conclude that the GH-dependent increase in TGFBIp in the podocyte is one of the mechanisms responsible for podocyte depletion in DN. PMID:25740786

  19. Cloning the promoter for transforming growth factor-beta type III receptor. Basal and conditional expression in fetal rat osteoblasts

    NASA Technical Reports Server (NTRS)

    Ji, C.; Chen, Y.; McCarthy, T. L.; Centrella, M.

    1999-01-01

    Transforming growth factor-beta binds to three high affinity cell surface molecules that directly or indirectly regulate its biological effects. The type III receptor (TRIII) is a proteoglycan that lacks significant intracellular signaling or enzymatic motifs but may facilitate transforming growth factor-beta binding to other receptors, stabilize multimeric receptor complexes, or segregate growth factor from activating receptors. Because various agents or events that regulate osteoblast function rapidly modulate TRIII expression, we cloned the 5' region of the rat TRIII gene to assess possible control elements. DNA fragments from this region directed high reporter gene expression in osteoblasts. Sequencing showed no consensus TATA or CCAAT boxes, whereas several nuclear factors binding sequences within the 3' region of the promoter co-mapped with multiple transcription initiation sites, DNase I footprints, gel mobility shift analysis, or loss of activity by deletion or mutation. An upstream enhancer was evident 5' proximal to nucleotide -979, and a silencer region occurred between nucleotides -2014 and -2194. Glucocorticoid sensitivity mapped between nucleotides -687 and -253, whereas bone morphogenetic protein 2 sensitivity co-mapped within the silencer region. Thus, the TRIII promoter contains cooperative basal elements and dispersed growth factor- and hormone-sensitive regulatory regions that can control TRIII expression by osteoblasts.

  20. Differential cell cycle response of nontumorigenic and tumorigenic human papillomavirus-positive keratinocytes towards transforming growth factor-beta1.

    PubMed

    Hasskarl, J; Butz, K; Whitaker, N; Ullmann, A; Dürst, M; Hoppe-Seyler, F

    2000-01-01

    Human papillomaviruses (HPVs) are causative agents of a number of malignancies in humans, including cervical cancer. Their tumorigenic potential is linked to expression of the viral E6/E7 genes which can interfere with normal cell cycle control by targeting p53, p21WAF1, p27KIP1, and pRb. We show here that nontumorigenic and tumorigenic HPV-positive keratinocytes (HPK) exhibit striking differences in the response of cell cycle regulatory genes towards transforming growth factor beta-beta1. Treatment with this agent led to an efficient induction of p53 and the growth-inhibitory p15INK4 and p21WAF1 genes only in nontumorigenic HPKs and was linked to an efficient reduction in viral E6/E7 oncogene expression. This was associated with increased pRb levels, exhibiting sustained hypophosphorylation, and a permanent growth arrest in the G1 phase of the cell cycle. In contrast, tumorigenic HPKs exhibited only a modest rise in p53 protein levels and a substantially reduced induction of the p15INK4 and p21WAF1 genes, which was linked to a lesser degree of viral oncogene repression. In addition, tumorigenic HPKs rapidly resumed cell growth after a transient G1 arrest, concomitantly with the reappearance of hyperphosphorylated pRb. These results support the notion that the progression of HPV-positive cells to a malignant phenotype is associated with increased resistance to growth inhibition by transforming growth factor-beta1. This is linked in the tumorigenic cells to a lack of persistent G1 arrest, inefficient induction of several cell cycle control genes involved in growth inhibition, and inefficient repression of the growth-promoting viral E6/E7 oncogenes. PMID:10794545

  1. Effect of transforming growth factor beta (TGF-β) receptor I kinase inhibitor on prostate cancer bone growth.

    PubMed

    Wan, Xinhai; Li, Zhi-Gang; Yingling, Jonathan M; Yang, Jun; Starbuck, Michael W; Ravoori, Murali K; Kundra, Vikas; Vazquez, Elba; Navone, Nora M

    2012-03-01

    Transforming growth factor beta 1 (TGF-β1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA. In vivo, the right femurs of male SCID mice were injected with PCa cells. We monitored the tumor burden in control- and LY2109761-treated mice with MRI analysis and the PCa-induced bone response with X-ray and micro-CT analyses. Histologic changes in bone were studied by performing bone histomorphometric evaluations. PCa cells and PMOs expressed TGF-β receptor I. TGF-β1 induced pathway activation (as assessed by induced expression of p-Smad2) and inhibited cell growth in PC-3 cells and PMOs but not in MDA PCa 2b cells. LY2109761 had no effect on PCa cells but induced PMO proliferation in vitro. As expected, LY2109761 reversed the TGF-β1-induced pathway activation and growth inhibition in PC-3 cells and PMOs. In vivo, LY2109761 treatment for 6weeks resulted in increased volume in normal bone and increased osteoblast and osteoclast parameters. In addition, LY2109761 treatment significantly inhibited the growth of MDA PCa 2b and PC-3 in the bone of SCID mice (p<0.05); moreover, it resulted in significantly less bone loss and change in osteoclast-associated parameters in the PC-3 tumor-bearing bones than in the untreated mice. In summary, we report for the first time that targeting TGF-β receptors with LY2109761 can control PCa bone growth while increasing the mass of normal bone. This increased bone mass in nontumorous bone may be a desirable side effect of LY2109761 treatment for men with osteopenia or osteoporosis secondary to androgen-ablation therapy, reinforcing the benefit of effectively controlling PCa growth

  2. Effect of transforming growth factor beta (TGF-β) receptor I kinase inhibitor on prostate cancer bone growth.

    PubMed

    Wan, Xinhai; Li, Zhi-Gang; Yingling, Jonathan M; Yang, Jun; Starbuck, Michael W; Ravoori, Murali K; Kundra, Vikas; Vazquez, Elba; Navone, Nora M

    2012-03-01

    Transforming growth factor beta 1 (TGF-β1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA. In vivo, the right femurs of male SCID mice were injected with PCa cells. We monitored the tumor burden in control- and LY2109761-treated mice with MRI analysis and the PCa-induced bone response with X-ray and micro-CT analyses. Histologic changes in bone were studied by performing bone histomorphometric evaluations. PCa cells and PMOs expressed TGF-β receptor I. TGF-β1 induced pathway activation (as assessed by induced expression of p-Smad2) and inhibited cell growth in PC-3 cells and PMOs but not in MDA PCa 2b cells. LY2109761 had no effect on PCa cells but induced PMO proliferation in vitro. As expected, LY2109761 reversed the TGF-β1-induced pathway activation and growth inhibition in PC-3 cells and PMOs. In vivo, LY2109761 treatment for 6weeks resulted in increased volume in normal bone and increased osteoblast and osteoclast parameters. In addition, LY2109761 treatment significantly inhibited the growth of MDA PCa 2b and PC-3 in the bone of SCID mice (p<0.05); moreover, it resulted in significantly less bone loss and change in osteoclast-associated parameters in the PC-3 tumor-bearing bones than in the untreated mice. In summary, we report for the first time that targeting TGF-β receptors with LY2109761 can control PCa bone growth while increasing the mass of normal bone. This increased bone mass in nontumorous bone may be a desirable side effect of LY2109761 treatment for men with osteopenia or osteoporosis secondary to androgen-ablation therapy, reinforcing the benefit of effectively controlling PCa growth

  3. Effect of transforming growth factor beta (TGF-β) receptor I kinase inhibitor on prostate cancer bone growth

    PubMed Central

    Wan, Xinhai; Li, Zhi-Gang; Yingling, Jonathan M.; Yang, Jun; Starbuck, Michael W.; Ravoori, Murali K.; Kundra, Vikas; Vazquez, Elba; Navone, Nora M.

    2012-01-01

    Transforming growth factor beta 1 (TGF-β1) has been implicated in the pathogenesis of prostate cancer (PCa) bone metastasis. In this study, we tested the antitumor efficacy of a selective TGF-β receptor I kinase inhibitor, LY2109761, in preclinical models. The effect of LY2109761 on the growth of MDA PCa 2b and PC-3 human PCa cells and primary mouse osteoblasts (PMOs) was assessed in vitro by measuring radiolabeled thymidine incorporation into DNA. In vivo, the right femurs of male SCID mice were injected with PCa cells. We monitored the tumor burden in control- and LY2109761-treated mice with MRI analysis and the PCa-induced bone response with x-ray and micro-CT analyses. Histologic changes in bone were studied by performing bone histomorphometric evaluations. PCa cells and PMOs expressed TGF-β receptor I. TGF-β1 induced pathway activation (as assessed by induced expression of p-Smad2) and inhibited cell growth in PC-3 cells and PMOs but not in MDA PCa 2b cells. LY2109761 had no effect on PCa cells but induced PMO proliferation in vitro. As expected, LY2109761 reversed the TGF-β1–induced pathway activation and growth inhibition in PC-3 cells and PMOs. In vivo, LY2109761 treatment for 6 weeks resulted in increased volume in normal bone and increased osteoblast and osteoclast parameters. In addition, LY2109761 treatment significantly inhibited the growth of MDA PCa 2b and PC-3 in the bone of SCID mice (p < 0.05); moreover, it resulted in significantly less bone loss and change in osteoclast-associated parameters in the PC-3 tumor–bearing bones than in the untreated mice. In summary, we report for the first time that targeting TGF-β receptors with LY2109761 can control PCa bone growth while increasing the mass of normal bone. This increased bone mass in nontumorous bone may be a desirable side effect of LY2109761 treatment for men with osteopenia or osteoporosis secondary to androgen-ablation therapy, reinforcing the benefit of effectively controlling PCa

  4. Connective tissue growth factor/CCN2-null mouse embryonic fibroblasts retain intact transforming growth factor-{beta} responsiveness

    SciTech Connect

    Mori, Yasuji; Hinchcliff, Monique; Wu, Minghua; Warner-Blankenship, Matthew; Lyons, Karen M.

    2008-03-10

    Background: The matricellular protein connective tissue growth factor (CCN2) has been implicated in pathological fibrosis, but its physiologic role remains elusive. In vitro, transforming growth factor-{beta} (TGF-{beta}) induces CCN2 expression in mesenchymal cells. Because CCN2 can enhance profibrotic responses elicited by TGF-{beta}, it has been proposed that CCN2 functions as an essential downstream signaling mediator for TGF-{beta}. To explore this notion, we characterized TGF-{beta}-induced activation of fibroblasts from CCN2-null (CCN2{sup -/-}) mouse embryos. Methods: The regulation of CCN2 expression was examined in vivo in a model of fibrosis induced by bleomycin. Cellular TGF-{beta} signal transduction and regulation of collagen gene expression were examined in CCN2{sup -/-} MEFs by immunohistochemistry, Northern, Western and RT-PCR analysis, immunocytochemistry and transient transfection assays. Results: Bleomycin-induced skin fibrosis in the mouse was associated with substantial CCN2 up-regulation in lesional fibroblasts. Whereas in vitro proliferation rate of CCN2{sup -/-} MEFs was markedly reduced compared to wild type MEFs, TGF-{beta}-induced activation of the Smad pathways, including Smad2 phosphorylation, Smad2/3 and Smad4 nuclear accumulation and Smad-dependent transcriptional responses, were unaffected by loss of CCN2. The stimulation of COL1A2 and fibronectin mRNA expression and promoter activity, and of corresponding protein levels, showed comparable time and dose-response in wild type and CCN2{sup -/-} MEFs, whereas stimulation of alpha smooth muscle actin and myofibroblast transdifferentiation showed subtle impairment in MEFs lacking CCN2. Conclusion: Whereas endogenous CCN2 plays a role in regulation of proliferation and TGF-{beta}-induced myofibroblast transdifferentiation, it appears to be dispensable for Smad-dependent stimulation of collagen and extracellular matrix synthesis in murine embryonic fibroblasts.

  5. A Putatively Functional Haplotype in the Gene Encoding Transforming Growth Factor Beta-1 as a Potential Biomarker for Radiosensitivity

    SciTech Connect

    Schirmer, Markus A.; Brockmoeller, Juergen; Rave-Fraenk, Margret; Virsik, Patricia; Wilken, Barbara; Kuehnle, Elna; Campean, Radu; Hoffmann, Arne O.; Mueller, Katarina; Goetze, Robert G.; Neumann, Michael; Janke, Joerg H.; Nasser, Fatima; Wolff, Hendrik A.; Ghadimi, B. Michael; Schmidberger, Heinz; Hess, Clemens F.; Christiansen, Hans; Hille, Andrea

    2011-03-01

    Purpose: To determine whether genetic variability in TGFB1 is related to circulating transforming growth factor-{beta}1 (TGF-{beta}1) plasma concentrations after radiotherapy and to radiosensitivity of lymphoid cells. Patients and Methods: Transforming growth factor-{beta}1 plasma concentrations (n = 79) were measured in patients 1 year after radiotherapy and chromosomal aberrations (n = 71) ex vivo before therapy start. Furthermore, TGF-{beta}1 secretion and apoptosis were measured in isolated peripheral blood mononuclear cells of 55 healthy volunteers. These phenotypes were analyzed in relation to five germline polymorphisms in the 5' region of the TGFB1 gene. Because of high linkage disequilibrium, these five polymorphisms reflect frequent genetic variation in this region. A presumed impact of TGF-{beta}1 on DNA damage or repair was measured as micronucleus formation in 30 lymphoblastoid cell lines. Results: We identified a hypofunctional genetic haplotype termed H3 tagging the 5' region of the TGFB1 gene encoding TGF-{beta}1. H3 was associated with lower TGF-{beta}1 plasma concentrations in patients (p = 0.01) and reduced TGF-{beta}1 secretion in irradiated peripheral blood mononuclear cells (p = 0.003). Furthermore, cells with H3 were less prone to induction of chromosomal aberrations (p = 0.001) and apoptosis (p = 0.003) by irradiation. The hypothesis that high TGF-{beta}1 could sensitize cells to DNA damage was further supported by increased micronuclei formation in 30 lymphoblastoid cell lines when preincubated with TGF-{beta}1 before irradiation (p = 0.04). Conclusions: On the basis of TGF-{beta}1 plasma levels and radiation sensitivity of lymphoid cells, this study revealed a putatively hypofunctional TGFB1 haplotype. The significance of this haplotype and the suggested link between TGF-{beta}1 function and DNA integrity should be further explored in other cell types, as well as other experimental and clinical conditions.

  6. Calycosin inhibits migration and invasion through modulation of transforming growth factor beta-mediated mesenchymal properties in U87 and U251 cells

    PubMed Central

    Nie, Xiao-hu; Ou-yang, Jia; Xing, Ying; Li, Dan-yan; Liu, Ru-en; Xu, Ru-xiang

    2016-01-01

    In this study, we investigated the potential anticancer effects of calycosin against human glioblastoma cells, including the impacts on cell proliferation, apoptosis, and cell cycle distribution. We further studied its inhibitory activity on migration and invasion in U87 and U251 cells. Furthermore, transforming growth factor beta-mediated reductions of mesenchymal-associated genes/activators, matrix metalloproteinases-2, and -9 were detected in this process. Administration of calycosin in a glioblastoma xenograft model showed that calycosin could not only reduce tumor volume but also suppress transforming growth factor beta as well as its downstream molecules. These results revealed calycosin as a potential antitumor agent in human glioblastoma. PMID:26955262

  7. Induction of transforming growth factor beta by the antiestrogens droloxifene, tamoxifen, and toremifene in MCF-7 cells.

    PubMed

    Knabbe, C; Zugmaier, G; Schmahl, M; Dietel, M; Lippman, M E; Dickson, R B

    1991-01-01

    We have previously shown that transforming growth factor beta (TGF beta) is a hormonally regulated negative growth factor in estrogen responsive MCF-7 human breast cancer cells. We have now compared the antiestrogens tamoxifen, droloxifene (3-hydroxytamoxifen), and toremifene in their ability to induce the secretion of autoinhibitory TGF beta by MCF-7 cells. The main results are as follows: induction of TGF beta secretion by droloxifene is about two to three times higher than by identical concentrations of tamoxifen or toremifene. A 5-10 times higher concentration of tamoxifen or toremifene than droloxifene is necessary to reach a similar induction of TGF beta secretion. In contrast to tamoxifen, intermittent application of droloxifene is as effective as continuous treatment in inducing TGF beta secretion. We conclude from these data that TGF beta proteins represent markers of antiestrogen action and might also play a pivotal role in their mechanism of action. Droloxifene is a more effective inducer of TGF beta and a more potent growth inhibitor for estrogen responsive human breast cancer cells than tamoxifen and toremifene in vitro. Therefore, droloxifene might also possess a higher antiestrogenic potential in treatment of human breast cancer.

  8. Increased expression of heme oxygenase-1 in human retinal pigment epithelial cells by transforming growth factor-beta.

    PubMed

    Kutty, R K; Nagineni, C N; Kutty, G; Hooks, J J; Chader, G J; Wiggert, B

    1994-05-01

    Antibodies specific for heme oxygenase-1 (HO-1) were produced in rabbits, using the multiple antigen peptide (MAP) technique, and were employed to investigate the ability of transforming growth factor-beta 1 (TGF-beta 1) to induce the HO-1 protein in cultured human retinal pigment epithelial (RPE) cells. Western blot analyses showed that the cytokine induced HO-1 in these cells in a time- and dose-dependent manner. TGF-beta 1 also increased the mRNA for HO-1 in treated cells prior to the increase in HO-1 protein. The induction was effectively blocked by a neutralizing antibody preparation against TGF-beta 1. When tested under similar conditions, other growth factors such as basic fibroblast growth factor-I, platelet-derived growth factor, insulin-like growth factor, transforming growth factor-alpha, and epidermal growth factor did not show appreciable induction of HO-1. Lipopolysaccharide, tumor necrosis factor-alpha, and interferon-gamma were also not inducers, although TGF-beta 2 effectively induced HO-1. Heavy metal ions and thiol reagents were also highly potent inducers of HO-1 in human RPE cells. The induction of HO-1 by TGF-beta 1 was also observed in bovine choroid fibroblasts, but not in HELA, HEL or bovine corneal fibroblasts. Our results demonstrate for the first time that HO-1 can be induced by an important cytokine, TGF-beta 1, causing an increase in the expression of both HO-1 message and protein in specific neuroepithelial and fibroblast cells.

  9. Distinct roles for mammalian target of rapamycin complexes in the fibroblast response to transforming growth factor-beta.

    PubMed

    Rahimi, Rod A; Andrianifahanana, Mahefatiana; Wilkes, Mark C; Edens, Maryanne; Kottom, Theodore J; Blenis, John; Leof, Edward B

    2009-01-01

    Transforming growth factor-beta (TGF-beta) promotes a multitude of diverse biological processes, including growth arrest of epithelial cells and proliferation of fibroblasts. Although the TGF-beta signaling pathways that promote inhibition of epithelial cell growth are well characterized, less is known about the mechanisms mediating the positive response to this growth factor. Given that TGF-beta has been shown to promote fibrotic diseases and desmoplasia, identifying the fibroblast-specific TGF-beta signaling pathways is critical. Here, we investigate the role of mammalian target of rapamycin (mTOR), a known effector of phosphatidylinositol 3-kinase (PI3K) and promoter of cell growth, in the fibroblast response to TGF-beta. We show that TGF-beta activates mTOR complex 1 (mTORC1) in fibroblasts but not epithelial cells via a PI3K-Akt-TSC2-dependent pathway. Rapamycin, the pharmacologic inhibitor of mTOR, prevents TGF-beta-mediated anchorage-independent growth without affecting TGF-beta transcriptional responses or extracellular matrix protein induction. In addition to mTORC1, we also examined the role of mTORC2 in TGF-beta action. mTORC2 promotes TGF-beta-induced morphologic transformation and is required for TGF-beta-induced Akt S473 phosphorylation but not mTORC1 activation. Interestingly, both mTOR complexes are necessary for TGF-beta-mediated growth in soft agar. These results define distinct and overlapping roles for mTORC1 and mTORC2 in the fibroblast response to TGF-beta and suggest that inhibitors of mTOR signaling may be useful in treating fibrotic processes, such as desmoplasia. PMID:19117990

  10. Stromal inhibition of prostatic epithelial cell proliferation not mediated by transforming growth factor beta.

    PubMed Central

    Kooistra, A.; van den Eijnden-van Raaij, A. J.; Klaij, I. A.; Romijn, J. C.; Schröder, F. H.

    1995-01-01

    The paracrine influence of prostatic stroma on the proliferation of prostatic epithelial cells was investigated. Stromal cells from the human prostate have previously been shown to inhibit anchorage-dependent as well as anchorage-independent growth of the prostatic tumour epithelial cell lines PC-3 and LNCaP. Antiproliferative activity, mediated by a diffusible factor in the stromal cell conditioned medium, was found to be produced specifically by prostatic stromal cells. In the present study the characteristics of this factor were examined. It is demonstrated that prostate stroma-derived inhibiting factor is an acid- and heat-labile, dithiothreitol-sensitive protein. Although some similarities with type beta transforming growth factor (TGF-beta)-like inhibitors are apparent, evidence is presented that the factor is not identical to TGF-beta or to the TGF-beta-like factors activin and inhibin. Absence of TGF-beta activity was shown by the lack of inhibitory response of the TGF-beta-sensitive mink lung cell line CCL-64 to prostate stromal cell conditioned medium and to concentrated, partially purified preparations of the inhibitor. Furthermore, neutralising antibodies against TGF-beta 1 or TGF-beta 2 did not cause a decline in the level of PC-3 growth inhibition caused by partially purified inhibitor. Using Northern blot analyses, we excluded the involvement of inhibin or activin. It is concluded that the prostate stroma-derived factor may be a novel growth inhibitor different from any of the currently described inhibiting factors. Images Figure 5 PMID:7543773

  11. Transforming growth factor-beta reverses a posttranscriptional defect in elastin synthesis in a cutis laxa skin fibroblast strain.

    PubMed Central

    Zhang, M C; Giro, M; Quaglino, D; Davidson, J M

    1995-01-01

    Skin fibroblasts from two cases of autosomal recessive cutis laxa (CL), having insignificant elastin production and mRNA levels, were challenged with transforming growth factor beta-1 (TGF-beta 1). Elastin production was brought from undetectable values to amounts typical of normal human skin fibroblasts in a dose-dependent fashion. Basic fibroblast growth factor (100 ng/ml) alone or in combination with TGF-beta 1 reduced elastin production and mRNA expression in CL skin fibroblasts more extensively than in normal cells. In situ hybridization showed that these effects were at the transcript level. One of the CL strains was examined in detail. Transcription rates for elastin were similar in normal and CL and unchanged by TGF-beta 1 or TGF-beta 2 (10 ng/ml), while in CL elastin mRNA half-life was increased > 10-fold by TGF-beta 2 and reduced 6-fold after TGF-beta 2 withdrawal, as compared with a control strain. Cycloheximide partially reversed elastin mRNA instability. These data are consistent with a defect in elastin mRNA stability that requires synthesis of labile factors or intact translational machinery, resulting in an extremely low steady state level of mRNA present in this strain of CL. Furthermore, TGF-beta can relieve elastin mRNA instability in at least one CL strain and elastin production defects in both CL strains. Images PMID:7884000

  12. Pretreatment with transforming growth factor beta-3 protects small intestinal stem cells against radiation damage in vivo.

    PubMed Central

    Potten, C. S.; Booth, D.; Haley, J. D.

    1997-01-01

    The gastrointestinal tract, with its rapid cell replacement, is sensitive to cytotoxic damage and can be a site of dose-limiting toxicity in cancer therapy. Here, we have investigated the use of one growth modulator to manipulate the cell cycle status of gastrointestinal stem cells before cytotoxic exposure to minimize damage to this normal tissue. Transforming growth factor beta-3 (TGF-beta3), a known inhibitor of cell cycle progression through G1, was used to alter intestinal crypt stem cell sensitivity before 12-16 Gy of gamma irradiation, which was used as a model cytotoxic agent. Using a crypt microcolony assay as a measure of functional competence of gastrointestinal stem cells, it was shown that the administration of TGF-beta3 over a 24-h period before irradiation increased the number of surviving crypts by four- to six-fold. To test whether changes in crypt survival are reflected in the well-being of the animal, survival time analyses were performed. After 14.5 Gy of radiation, only 35% of the animals survived within a period of about 12 days, while prior treatment with TGF-beta3 provided significant protection against this early gastrointestinal animal death, with 95% of the treated animals surviving for greater than 30 days. PMID:9166937

  13. Prominent expression of transforming growth factor beta2 gene in the chicken embryonic gonad as revealed by suppressive subtraction cloning.

    PubMed

    Hattori Ma, Masa-aki; Furuta, Hiroki; Hiyama, Yoshio; Kato, Yukio; Fujihara, Noboru

    2002-02-01

    cDNA cloning from chicken embryonic gonad subtracted from tissues of the brain, heart, liver, gizzard, mesonephros, and muscle was performed to identify growth factor genes with expression unique to embryonic ovary and testis. We obtained several cDNA clones encoding known and many unknown genes. We found for the first time that the transforming growth factor beta2 (TGF-beta2) is preferentially expressed in the chicken embryonic ovary and testis. cDNA subtraction cloning with respect to the selective expression of TGF-beta2 in the ovary and testis was further analyzed by reverse transcription-polymerase chain reaction analyses of other embryonic tissues. The ontogeny of TGF-beta2 was evaluated in chicken embryonic ovary and testis. In both testis and ovary, the levels of TGF-beta2 transcripts were high during the early period of embryonic development (E7), gradually decreased until the late embryonic days (E14--E17), and then slightly increased at the last embryonic day (E21). There was no difference in the TGF-beta2 transcripts per RNA between the left and the right ovaries. TGF-beta2 may have a critical role in the regulation of the development of chicken ovarian and testicular germ cells during the embryonic period.

  14. The interaction of the transforming growth factor-betas with heparin/heparan sulfate is isoform-specific.

    PubMed

    Lyon, M; Rushton, G; Gallagher, J T

    1997-07-18

    We have undertaken a comparative study of the interaction of the three mammalian transforming growth factor-betas (TGF-beta) with heparin and heparan sulfate. TGF-beta1 and -beta2, but not -beta3, bind to heparin and the highly sulfated liver heparan sulfate. These polysaccharides potentiate the biological activity of TGF-beta1 (but not the other isoforms), whereas a low sulfated mucosal heparan sulfate fails to do so. Potentiation is due to antagonism of the binding and inactivation of TGF-beta1 by alpha2-macroglobulin, rather than by modulation of growth factor-receptor interactions. TGF-beta2.alpha2-macroglobulin complexes are more refractory to heparin/heparan sulfate, and those involving TGF-beta3 cannot be affected. Comparison of the amino acid sequences of the TGF-beta isoforms strongly implicates the basic amino acid residue at position 26 of each monomer as being a vital binding determinant. A model is proposed in which polysaccharide binding occurs at two distinct sites on the TGF-beta dimer. Interaction with heparin and liver heparan sulfate may be most effective because of the ability of the dimer to co-operatively engage two specific sulfated binding sequences, separated by a distance of approximately seven disaccharides, within the same chain.

  15. Magnetic field-responsive release of transforming growth factor beta 1 from heparin-modified alginate ferrogels.

    PubMed

    Kim, Hwi; Park, Honghyun; Lee, Jae Won; Lee, Kuen Yong

    2016-10-20

    Stimuli-responsive polymeric systems have been widely used for various drug delivery and tissue engineering applications. Magnetic stimulation can be also exploited to regulate the release of pharmaceutical drugs, growth factors, and cells from hydrogels in a controlled manner, on-demand. In the present study, alginate ferrogels containing iron oxide nanoparticles were fabricated via ionic cross-linking, and their various characteristics were investigated. The deformation of the ferrogels was dependent on the polymer concentration, calcium concentration, iron oxide concentration, and strength of magnetic field. To modulate the release of transforming growth factor beta 1 (TGF-β1) under magnetic stimulation, alginate was chemically modified with heparin, as TGF-β1 has a heparin-binding domain. Alginate was first modified with ethylenediamine, and heparin was then conjugated to the ethylenediamine-modified alginate via carbodiimide chemistry. Conjugation of heparin to alginate was confirmed by infrared spectroscopy and proton nuclear magnetic resonance spectroscopy. Sustained release of TGF-β1 from alginate-g-heparin ferrogels was achieved, and application of a magnetic field to the ferrogels regulated TGF-β1 release, resultantly enhancing chondrogenic differentiation of ATDC5 cells, which were used as a model chondrogenic cell line. Alginate-based ferrogels that release drugs in a controlled manner may therefore be useful in many biomedical applications. PMID:27474590

  16. Human plasma epidermal growth factor/beta-urogastrone is associated with blood platelets.

    PubMed Central

    Oka, Y; Orth, D N

    1983-01-01

    Human epidermal growth factor (hEGF) has previously been isolated from urine and probably is identical to human beta-urogastrone (hUG). Immunoreactive hEGF/UG has been found in the plasma of normal subjects. In this study, using immunoaffinity chromatography to extract hEGF/UG from plasma, we found that immunoreactive hEGF/UG in blood was associated with blood platelets. It was present in platelet-rich, but not platelet-poor plasma and serum, and was found predominantly in the platelet fraction of whole blood. Sephadex G-50 Fine gel-exclusion chromatography of an extract of outdated blood bank platelets revealed two hEGF/UG components, one of which eluted in the void volume, and the other of which coeluted with purified standard hEGF/UG. The former hEGF/UG component was a high-molecular weight form that was cleaved into hEGF/UG by incubation with either mouse EGF/UG-associated arginine esterase or trypsin. It appeared to be identical to the high-molecular weight hEGF/UG previously reported in human urine, except for its apparently equal activities in radioimmunoassay and radioreceptor assay. The latter hEGF/UG component was immunologically, biologically, and physiochemically indistinguishable from highly purified hEGF/UG from human urine and was immunologically different from purified human platelet-derived growth factor. Platelet-associated hEGF/UG may account for the mitogenic activity of serum in cell lines in which platelet-derived growth factor is not active. Since hEGF/UG appears to be liberated from platelets during coagulation, platelet-associated EGF/UG may be involved in normal vascular and tissue repair and in the pathogenesis of atherosclerotic lesions. The discovery that the EGF/UG in plasma is associated with blood platelets raises important new possibilities for its role in human health and disease. PMID:6603475

  17. Transforming Growth Factor Beta 3 Is Required for Excisional Wound Repair In Vivo

    PubMed Central

    Le, Mark; Naridze, Rachelle; Morrison, Jasmine; Biggs, Leah C.; Rhea, Lindsey; Schutte, Brian C.; Kaartinen, Vesa; Dunnwald, Martine

    2012-01-01

    Wound healing is a complex process that relies on proper levels of cytokines and growth factors to successfully repair the tissue. Of particular interest are the members of the transforming growth factor family. There are three TGF-ß isoforms–TGF- ß 1, 2, and 3, each isoform showing a unique expression pattern, suggesting that they each play a distinct function during development and repair. Previous studies reported an exclusive role for TGF-ß 3 in orofacial development and a potent anti-scarring effect. However, the role of TGF- ß 3 in excisional wound healing and keratinocyte migration remains poorly understood. We tested the effect of TGF-ß 3 levels on excisional cutaneous wounds in the adult mouse by directly injecting recombinant TGF-ß 3 or neutralizing antibody against TGF-ß 3 (NAB) in the wounds. Our results demonstrate that TGF-ß 3 does not promote epithelialization. However, TGF-ß 3 is necessary for wound closure as wounds injected with neutralizing antibody against TGF-ß 3 showed increased epidermal volume and proliferation in conjunction with a delay in keratinocyte migration. Wild type keratinocytes treated with NAB and Tgfb3-deficient keratinocytes closed an in vitro scratch wound with no delay, suggesting that our in vivo observations likely result from a paracrine effect. PMID:23110169

  18. Transforming growth factor-beta1 mediates cellular response to DNA damage in situ

    NASA Technical Reports Server (NTRS)

    Ewan, Kenneth B.; Henshall-Powell, Rhonda L.; Ravani, Shraddha A.; Pajares, Maria Jose; Arteaga, Carlos; Warters, Ray; Akhurst, Rosemary J.; Barcellos-Hoff, Mary Helen

    2002-01-01

    Transforming growth factor (TGF)-beta1 is rapidly activated after ionizing radiation, but its specific role in cellular responses to DNA damage is not known. Here we use Tgfbeta1 knockout mice to show that radiation-induced apoptotic response is TGF-beta1 dependent in the mammary epithelium, and that both apoptosis and inhibition of proliferation in response to DNA damage decrease as a function of TGF-beta1 gene dose in embryonic epithelial tissues. Because apoptosis in these tissues has been shown previously to be p53 dependent, we then examined p53 protein activation. TGF-beta1 depletion, by either gene knockout or by using TGF-beta neutralizing antibodies, resulted in decreased p53 Ser-18 phosphorylation in irradiated mammary gland. These data indicate that TGF-beta1 is essential for rapid p53-mediated cellular responses that mediate cell fate decisions in situ.

  19. Potassium inhibits dietary salt-induced transforming growth factor-beta production.

    PubMed

    Ying, Wei-Zhong; Aaron, Kristal; Wang, Pei-Xuan; Sanders, Paul W

    2009-11-01

    Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-beta, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-beta. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-beta demonstrated increased (35.2%) amounts of active TGF-beta in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-beta but did not affect production of TGF-beta by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the alpha subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-beta but did not alter TGF-beta production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-beta in animals receiving the high-salt diet but did not change urinary active TGF-beta in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake.

  20. Transforming Growth Factor Beta Receptor I Inhibitor Sensitizes Drug-resistant Pancreatic Cancer Cells to Gemcitabine

    PubMed Central

    Kim, Yeon Jeong; Hwang, Jae Seok; Hong, Young Bin; Bae, Insoo; Seong, Yeon-Sun

    2012-01-01

    Background Resistance to gemcitabine is a major obstacle in the treatment of advanced pancreatic cancer. Previous exploration of protein kinase inhibitors demonstrated that blocking transforming growth factor-β (TGFβ) signal enhances the efficacy of gemcitabine in pancreatic cancer cells. Materials and Methods We analyzed the cell viability after combinational treatment of TGFβ receptor I (TβRI) inhibitors, SB431542 and SB525334 with gemcitabine in pancreatic cancer cells. In addition, apoptotic cell death and cell migration were measured. Results Combination with TβRI inhibitors significantly augmented the cytotoxicity of gemcitabine in both parental and gemcitabine resistant pancreatic cancer cells. SB525334 significantly increased apoptotic cell death in gemcitabine-resistant cells. Treatment of SB525334 also reduced AKT signal pathway, which plays crucial role in gemcitabine resistance. Migration assay also revealed that blocking TβRI reduces cell migration. Conclusion Chemotherapeutic approaches using SB525334 might enhance the treatment benefit of the gemcitabine-containing regimens in the treatment of pancreatic cancer patients. PMID:22399597

  1. Transforming growth factor-beta improves healing of radiation-impaired wounds

    SciTech Connect

    Bernstein, E.F.; Harisiadis, L.; Salomon, G.; Norton, J.; Sollberg, S.; Uitto, J.; Glatstein, E.; Glass, J.; Talbot, T.; Russo, A. )

    1991-09-01

    Exogenously applied TGF-{beta} 1 has been shown to increase wound strength in incisional wounds early in the healing process. An impaired wound healing model was first established in guinea pigs by isolating flaps of skin and irradiating the flaps to 15 Gray in one fraction using a 4-MeV linear accelerator. Incisions made 2 d after irradiation were excised 7 d later, and showed decreased linear wound bursting strength (WBS) as compared to non-irradiated control wounds on the contralateral side of each animal (p = 0.001). The effect of TGF-{beta}on healing of radiation-impaired wounds was studied using this model. Skin on both left and right sides of guinea pigs was irradiated as above. A linear incision was made in each side. Collagen with either 1, 5, or 20 micrograms of TGF-{beta} was applied to one side prior to closure with staples, whereas the contralateral side received saline in collagen. Wounds given either 1 or 5 micrograms of TGF-{beta} were found to be stronger than controls at 7 d (p less than 0.05), whereas those receiving the higher 20-micrograms dose were weaker than controls (p less than 0.05). Thus, TGF-{beta} in lower doses improved healing at 7 d but very large amounts of the growth factor actually impaired healing. In situ hybridization done on wound samples showed increased type I collagen gene expression by fibroblasts in wounds treated with 1 micrograms TGF-{beta} over control wounds. These results indicate that TGF-{beta} improved wound healing as demonstrated by increased WBS. This improvement is accompanied by an up-regulation of collagen gene expression by resident fibroblasts.

  2. Transforming growth factor. beta. sub 1 is present at sites of extracellular matrix gene expression in human pulmonary fibrosis

    SciTech Connect

    Broekelmann, T.J.; Limper, A.H.; McDonald, J.A. ); Colby, T.V. )

    1991-08-01

    Idiopathic pulmonary fibrosis is an inexorably fatal disorder characterized by connective tissue deposition within the terminal air spaces resulting in loss of lung function and eventual respiratory failure. Previously, the authors demonstrated that foci of activated fibroblasts expressing high levels of fibronectin, procollagen, and smooth muscle actin and thus resembling those found in healing wounds are responsible for the connective tissue deposition and scarring in idiopathic pulmonary fibrosis. Using in situ hybridization and immunohistochemistry, they now demonstrate the presence of transforming growth factor {beta}{sub 1} (TGF-{beta}{sub 1}), a potent profibrotic cytokine, in the foci containing these activated fibroblasts. These results suggest that matrix-associated TGF-{beta}{sub 1} may serve as a stimulus for the persistent expression of connective tissue genes. One potential source of the TGF-{beta}{sub 1} is the alveolar macrophage, and they demonstrate the expression of abundant TGF-{beta}{sub 1} mRNA in alveolar macrophages in lung tissue from patients with idiopathic pulmonary fibrosis.

  3. Transforming growth factor-beta 1 stimulates synthesis of proteoglycan aggregates in calf articular cartilage organ cultures

    SciTech Connect

    Morales, T.I. )

    1991-04-01

    Previous work showed that transforming growth factor-beta 1 (TGF-beta 1), added alone to bovine cartilage organ cultures, stimulated (35S)sulfate incorporation into macromolecular material but did not investigate the fidelity of the stimulated system to maintain synthesis of cartilage-type proteoglycans. This paper provides evidence that chondrocytes synthesize the appropriate proteoglycan matrix under TGF-beta 1 stimulation: (1) there is a coordinated increase in hyaluronic acid and proteoglycan monomer synthesis, (2) link-stable proteoglycan aggregates are assembled, (3) the hybrid chondroitin sulfate/keratan sulfate monomeric species is synthesized, and (4) there is an increase in protein core synthesis. Some variation in glycosylation patterns was observed when proteoglycans synthesized under TGF-beta 1 stimulation were compared to those synthesized under basal conditions. Thus comparing TGF-beta 1 to basal samples respectively, the monomers were larger (Kav on Sepharose CL-2B = 0.29 vs 0.41), the chondroitin sulfate chains were longer by approximately 3.5 kDa, the percentage of total glycosaminoglycan in keratan sulfate increased slightly from approximately 4% (basal) to approximately 6%, and the unsulfated disaccharide decreased from 28% (basal) to 12%. All of these variations are in the direction of a more anionic proteoglycan. Since the ability of proteoglycans to confer resiliency to the cartilage matrix is directly related to their anionic nature, these changes would presumably have a beneficial effect on tissue function.

  4. Transforming growth factor-beta and its effect on reepithelialization of partial-thickness ear wounds in transgenic mice.

    PubMed

    Tredget, Eric B; Demare, Jack; Chandran, Geethan; Tredget, Edward E; Yang, Liju; Ghahary, Aziz

    2005-01-01

    Transforming growth factor-beta (TGF-beta) is known to affect nearly every aspect of wound repair. Many of the effects have been extensively investigated; however, the primary effect of endogenously derived TGF-beta on wound reepithelialization is still not completely understood. To examine this, two types of wounds were made on a transgenic mouse over-expressing TGF-beta1. Full-thickness back wounds were made to compare the wound healing process in the presence of compensatory healing mechanisms. Superficial partial-thickness ear wounds involving only the epidermis were made to determine the effect of TGF-beta on reepithelialization. In the partial-thickness ear wounds, at later time points, the transgenic group had smaller epithelial gaps than the wild-type mice. A greater number of actively proliferating cells, as determined by bromodeoxyuridine incorporation, was also found in the transgenic mice at post-injury day 8. These results show that TGF-beta1 stimulates the rate of reepithelialization at later time points in partial-thickness wounds. However, in the full-thickness back wounds, the transgenic animals exhibited a slower reepithelialization rate at all time points and the number of bromodeoxyuridine-positive cells was fewer. Our findings would suggest that the overexpression of TGF-beta1 speeds the rate of wound closure in partial-thickness wounds by promoting keratinocyte migration. In full-thickness wounds, however, the overexpression of TGF-beta1 slows the rate of wound reepithelialization.

  5. Transforming growth factor-beta response to mycobacterial infection in striped bass Morone saxatilis and hybrid tilapia Oreochromis spp.

    PubMed

    Harms, Craig A; Howard, Kristina E; Wolf, Jeffrey C; Smith, Stephen A; Kennedy-Stoskopf, Suzanne

    2003-10-15

    Striped bass (Morone saxatilis) and hybrid tilapia (Oreochromis spp.) were experimentally infected with Mycobacterium marinum. Splenic mononuclear cell transforming growth factor-beta (TGF-beta) mRNA was measured by reverse transcription quantitative-competitive PCR (RT-qcPCR). In histologic sections of liver and anterior kidney, the area of each section that was occupied by granulomas and the total area of each section were measured by computer-assisted image analysis and compared as a proportion (the granuloma proportion). Infected striped bass splenic mononuclear cell TGF-beta mRNA expression was significantly lower than uninfected controls, while for tilapia there was no significant difference between infected and control fish. Mycobacterial granuloma proportion of liver and anterior kidney sections was significantly greater for infected striped bass than tilapia. Three (of 10) infected tilapia with the most pronounced inflammatory response displayed a decrease in TGF-beta mRNA expression, similar to the overall striped bass response to mycobacterium challenge. Downregulation of TGF-beta and failure to modulate the immune response may be related to excessive inflammatory damage to organs observed in mycobacteria-sensitive fish species.

  6. Clinical and prognostic significance of serum transforming growth factor-beta1 levels in patients with pancreatic ductal adenocarcinoma

    PubMed Central

    Zhao, J.; Liang, Y.; Yin, Q.; Liu, S.; Wang, Q.; Tang, Y.; Cao, C.

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) has a poor 5-year survival rate of 5%. Biomarkers for the early detection of pancreatic cancer are urgently needed. Transforming growth factor-beta1 (TGF-β1) is elevated in the tissues and plasma of patients with PDAC. However, no studies systemically report prognostic significance of plasma TGF-β1 levels in PDAC. In the present study, we assessed the prognostic significance of serum TGF-β levels in patients with PDAC. TGF-β levels were determined in serum from 146 PDAC patients, and 58 patients with benign pancreatic conditions. Regression models were used to correlate TGF-β levels to gender, age, stage, class, and metastasis. Survival analyses were performed using multivariate Cox models. Serum levels of TGF-β1 distinguished PDAC from benign pancreatic conditions (P<0.001) and healthy control subjects (P<0.001). Serum levels of TGF-β also distinguished tumor stage (P=0.002) and lymph node metastasis (P=0.001). High serum levels of TGF-β1 were significantly correlated with reduced patient survival. Multivariate analysis revealed that TGF-β1, lymph node metastasis and tumor stage were independent factors for PDAC survival. Our results indicate that serum TGF-β1 may be used as a potential prognostic marker for PDAC. PMID:27464025

  7. Oxidant-induced atrogin-1 and transforming growth factor-beta1 precede alcohol-related myopathy in rats.

    PubMed

    Otis, Jeffrey S; Brown, Lou Ann S; Guidot, David M

    2007-12-01

    Alcohol-related chronic myopathy is characterized by severe biochemical and structural changes to skeletal muscle. Our goals were to: (1) identify early regulatory elements that precede the overt manifestation of plantaris atrophy; and (2) circumvent these derangements by supplementing alcohol-fed rats with the glutathione precursor, procysteine. After 6 weeks of daily ingestion, before the development of overt atrophy of the plantaris muscle, alcohol increased several markers of oxidative stress and increased gene expressions of atrogin-1 and transforming growth factor-beta1 (TGF-beta1) by approximately 60- and approximately 65-fold, respectively, which were attenuated by procysteine supplementation. Interestingly, after 28 weeks of alcohol ingestion, when overt plantaris atrophy had developed, atrogin-1 and TGF-beta1 gene expression had returned to baseline levels. Together, these findings suggest that alcohol-induced, redox-sensitive alterations drive pro-atrophy signaling pathways that precede muscle atrophy. Therefore, targeted anti-oxidant treatments such as procysteine supplementation may benefit individuals with chronic alcohol abuse, particularly if given prior to the development of clinically significant myopathy.

  8. Proteoglycan expression in bleomycin lung fibroblasts: role of transforming growth factor-beta(1) and interferon-gamma.

    PubMed

    Venkatesan, Narayanan; Roughley, Peter J; Ludwig, Mara S

    2002-10-01

    Bleomycin (BM)-induced pulmonary fibrosis involves excess production of proteoglycans (PGs). Because transforming growth factor-beta(1) (TGF-beta(1)) promotes fibrosis, and interferon-gamma (IFN-gamma) inhibits it, we hypothesized that TGF-beta(1) treatment would upregulate PG production in fibrotic lung fibroblasts, and IFN-gamma would abrogate this effect. Primary lung fibroblast cultures were established from rats 14 days after intratracheal instillation of saline (control) or BM (1.5 units). PGs were extracted and subjected to Western blot analysis. Bleomycin-exposed lung fibroblasts (BLF) exhibited increased production of versican (VS), heparan sulfate proteoglycan (HSPG), and biglycan (BG) compared with normal lung fibroblasts (NLF). Compared with NLF, BLF released significantly increased amounts of TGF-beta(1). TGF-beta(1) (5 ng/ml for 48 h) upregulated PG expression in both BLF and NLF. Incubation of BLF with anti-TGF-beta antibody (1, 5, and 10 microg/ml) inhibited PG expression in a dose-dependent manner. Treatment of BLF with IFN-gamma (500 U. ml(-1) x 48 h) reduced VS, HSPG, and BG expression. Furthermore, IFN-gamma inhibited TGF-beta(1)-induced increases in PG expression by these fibroblasts. Activation of fibroblasts by TGF-beta(1) promotes abnormal deposition of PGs in fibrotic lungs; downregulation of TGF-beta(1) by IFN-gamma may have potential therapeutic benefits in this disease. PMID:12225958

  9. Targeted expression of transforming growth factor-beta 1 in intracardiac grafts promotes vascular endothelial cell DNA synthesis.

    PubMed Central

    Koh, G Y; Kim, S J; Klug, M G; Park, K; Soonpaa, M H; Field, L J

    1995-01-01

    Intracardiac grafts comprised of genetically modified skeletal myoblasts were assessed for their ability to effect long-term delivery of recombinant transforming growth factor-beta (TGF-beta) to the heart. C2C12 myoblasts were stably transfected with a construct comprised of an inducible metallothionein promoter fused to a modified TGF-beta 1 cDNA. When cultured in medium supplemented with zinc sulfate, cells carrying this transgene constitutively secrete active TGF-beta 1. These genetically modified myoblasts were used to produce intracardiac grafts in syngeneic C3Heb/FeJ hosts. Viable grafts were observed as long as three months after implantation, and immunohistological analyses of mice maintained on water supplemented with zinc sulfate revealed the presence of grafted cells which stably expressed TGF-beta 1. Regions of apparent neovascularization, as evidenced by tritiated thymidine incorporation into vascular endothelial cells, were observed in the myocardium which bordered grafts expressing TGF-beta 1. The extent of vascular endothelial cell DNA synthesis could be modulated by altering dietary zinc. Similar effects on the vascular endothelial cells were not seen in mice with grafts comprised of nontransfected cells. This study indicates that genetically modified skeletal myoblast grafts can be used to effect the local, long-term delivery of recombinant molecules to the heart. Images PMID:7529257

  10. Transforming growth factor-beta response to mycobacterial infection in striped bass Morone saxatilis and hybrid tilapia Oreochromis spp.

    PubMed

    Harms, Craig A; Howard, Kristina E; Wolf, Jeffrey C; Smith, Stephen A; Kennedy-Stoskopf, Suzanne

    2003-10-15

    Striped bass (Morone saxatilis) and hybrid tilapia (Oreochromis spp.) were experimentally infected with Mycobacterium marinum. Splenic mononuclear cell transforming growth factor-beta (TGF-beta) mRNA was measured by reverse transcription quantitative-competitive PCR (RT-qcPCR). In histologic sections of liver and anterior kidney, the area of each section that was occupied by granulomas and the total area of each section were measured by computer-assisted image analysis and compared as a proportion (the granuloma proportion). Infected striped bass splenic mononuclear cell TGF-beta mRNA expression was significantly lower than uninfected controls, while for tilapia there was no significant difference between infected and control fish. Mycobacterial granuloma proportion of liver and anterior kidney sections was significantly greater for infected striped bass than tilapia. Three (of 10) infected tilapia with the most pronounced inflammatory response displayed a decrease in TGF-beta mRNA expression, similar to the overall striped bass response to mycobacterium challenge. Downregulation of TGF-beta and failure to modulate the immune response may be related to excessive inflammatory damage to organs observed in mycobacteria-sensitive fish species. PMID:12963276

  11. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway

    PubMed Central

    Herbertz, Stephan; Sawyer, J Scott; Stauber, Anja J; Gueorguieva, Ivelina; Driscoll, Kyla E; Estrem, Shawn T; Cleverly, Ann L; Desaiah, Durisala; Guba, Susan C; Benhadji, Karim A; Slapak, Christopher A; Lahn, Michael M

    2015-01-01

    Transforming growth factor-beta (TGF-β) signaling regulates a wide range of biological processes. TGF-β plays an important role in tumorigenesis and contributes to the hallmarks of cancer, including tumor proliferation, invasion and metastasis, inflammation, angiogenesis, and escape of immune surveillance. There are several pharmacological approaches to block TGF-β signaling, such as monoclonal antibodies, vaccines, antisense oligonucleotides, and small molecule inhibitors. Galunisertib (LY2157299 monohydrate) is an oral small molecule inhibitor of the TGF-β receptor I kinase that specifically downregulates the phosphorylation of SMAD2, abrogating activation of the canonical pathway. Furthermore, galunisertib has antitumor activity in tumor-bearing animal models such as breast, colon, lung cancers, and hepatocellular carcinoma. Continuous long-term exposure to galunisertib caused cardiac toxicities in animals requiring adoption of a pharmacokinetic/pharmacodynamic-based dosing strategy to allow further development. The use of such a pharmacokinetic/pharmacodynamic model defined a therapeutic window with an appropriate safety profile that enabled the clinical investigation of galunisertib. These efforts resulted in an intermittent dosing regimen (14 days on/14 days off, on a 28-day cycle) of galunisertib for all ongoing trials. Galunisertib is being investigated either as monotherapy or in combination with standard antitumor regimens (including nivolumab) in patients with cancer with high unmet medical needs such as glioblastoma, pancreatic cancer, and hepatocellular carcinoma. The present review summarizes the past and current experiences with different pharmacological treatments that enabled galunisertib to be investigated in patients. PMID:26309397

  12. Vascular smooth muscle cells from injured rat aortas display elevated matrix production associated with transforming growth factor-beta activity.

    PubMed Central

    Rasmussen, L. M.; Wolf, Y. G.; Ruoslahti, E.

    1995-01-01

    The arterial response to injury is characterized by a short period of increased proliferation and migration of vascular smooth muscle cells, followed by an extended period of extracellular matrix accumulation in the intima. Transforming growth factor-beta (TGF-beta) has been implicated as a causative factor in the formation of extracellular matrix in this process, which leads to progressive thickening of the intima, known as intimal hyperplasia. In vitro analysis of vascular smooth muscle cells harvested from normal rat aortas and from aortas injured 14 days earlier showed that both types of cells attached equally well to culture dishes but that the initial spreading of the cells was increased in cells derived from injured vessels. Cells from the injured arteries produced more fibronectin and proteoglycans into the culture medium than the cells from normal arteries and contained more TGF-beta 1 mRNA. TGF-beta 1 increased proteoglycan synthesis by normal smooth muscle cells, and the presence of a neutralizing anti-TGF-beta 1 antibody reduced proteoglycan synthesis by the cells from injured arteries in culture. Fibronectin synthesis was not altered by these treatments. These results indicate that the accumulation of extracellular matrix components in neointimal lesions is at least partially caused by autocrine TGF-beta activity in vascular smooth muscle cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7573349

  13. Novel chitosan/collagen scaffold containing transforming growth factor-{beta}1 DNA for periodontal tissue engineering

    SciTech Connect

    Zhang Yufeng; Cheng Xiangrong . E-mail: Xiangrongcheng@hotmail.com; Wang Jiawei; Wang Yining; Shi Bin; Huang Cui; Yang Xuechao; Liu Tongjun

    2006-05-26

    The current rapid progression in tissue engineering and local gene delivery system has enhanced our applications to periodontal tissue engineering. In this study, porous chitosan/collagen scaffolds were prepared through a freeze-drying process, and loaded with plasmid and adenoviral vector encoding human transforming growth factor-{beta}1 (TGF-{beta}1). These scaffolds were evaluated in vitro by analysis of microscopic structure, porosity, and cytocompatibility. Human periodontal ligament cells (HPLCs) were seeded in this scaffold, and gene transfection could be traced by green fluorescent protein (GFP). The expression of type I and type III collagen was detected with RT-PCR, and then these scaffolds were implanted subcutaneously into athymic mice. Results indicated that the pore diameter of the gene-combined scaffolds was lower than that of pure chitosan/collagen scaffold. The scaffold containing Ad-TGF-{beta}1 exhibited the highest proliferation rate, and the expression of type I and type III collagen up-regulated in Ad-TGF-{beta}1 scaffold. After implanted in vivo, EGFP-transfected HPLCs not only proliferated but also recruited surrounding tissue to grow in the scaffold. This study demonstrated the potential of chitosan/collagen scaffold combined Ad-TGF-{beta}1 as a good substrate candidate in periodontal tissue engineering.

  14. Induction of Transforming Growth Factor Beta Receptors following Focal Ischemia in the Rat Brain

    PubMed Central

    Pál, Gabriella; Lovas, Gábor; Dobolyi, Arpád

    2014-01-01

    Transforming growth factor-βs (TGF-βs) regulate cellular proliferation, differentiation, and survival. TGF-βs bind to type I (TGF-βRI) and II receptors (TGF-βRII), which are transmembrane kinase receptors, and an accessory type III receptor (TGF-βRIII). TGF-β may utilize another type I receptor, activin-like kinase receptor (Alk1). TGF-β is neuroprotective in the middle cerebral artery occlusion (MCAO) model of stroke. Recently, we reported the expression pattern of TGF-β1-3 after MCAO. To establish how TGF-βs exert their actions following MCAO, the present study describes the induction of TGF-βRI, RII, RIII and Alk1 at 24 h, 72 h and 1 mo after transient 1 h MCAO as well as following 24 h permanent MCAO using in situ hybridization histochemistry. In intact brain, only TGF-βRI had significant expression: neurons in cortical layer IV contained TGF-βRI. At 24 h after the occlusion, no TGF-β receptors showed induction. At 72 h following MCAO, all four types of TGF-β receptors were induced in the infarct area, while TGF-βRI and RII also appeared in the penumbra. Most cells with elevated TGF-βRI mRNA levels were microglia. TGF-βRII co-localized with both microglial and endothelial markers while TGF-βRIII and Alk1 were present predominantly in endothels. All four TGF-β receptors were induced within the lesion 1 mo after the occlusion. In particular, TGF-βRIII was further induced as compared to 72 h after MCAO. At this time point, TGF-βRIII signal was predominantly not associated with blood vessels suggesting its microglial location. These data suggest that TGF-β receptors are induced after MCAO in a timely and spatially regulated fashion. TGF-β receptor expression is preceded by increased TGF-β expression. TGF-βRI and RII are likely to be co-expressed in microglial cells while Alk1, TGF-βRII, and RIII in endothels within the infarct where TGF-β1 may be their ligand. At later time points, TGF-βRIII may also appear in glial cells to potentially

  15. Production of Gastrointestinal Tumors in Mice by Modulating Latent Transforming Growth Factor Beta 1 Activation

    PubMed Central

    Shibahara, Kotaro; Ota, Mitsuhiko; Horiguchi, Masahito; Yoshinaga, Keiji; Melamed, Jonathan; Rifkin, Daniel B

    2012-01-01

    Transforming growth factor-β (TGF-β) and its signaling pathways are important mediators in the suppression of cancers of the gastrointestinal (GI) tract. TGF-β is released from cells in a latent complex consisting of TGF-β, the TGF-β propeptide (LAP) and a latent TGF-β binding protein (LTBP). We previously generated mice in which the LTBP-binding cysteine residues in LAP TGF-β1 were mutated to serine precluding covalent interactions with LTBP. These Tgfb1C33S/C33S mice develop multiorgan inflammation and tumors consistent with reduced TGF-β1 activity. To test whether further reduction in active TGF-β levels would yield additional tumors and a phenotype more similar to Tgfb1-/- mice, we generated mice that express TGF-β1C33S and are deficient in either integrin β8 or TSP-1, known activators of latent TGF-β1. In addition we generated mice that have one mutant allele and one null allele at the Tgfb1 locus, reasoning that these mice should synthesize half the total amount of TGF-β1 as Tgfb1C33S/C33S mice and the amount of active TGF-β1 would be correspondingly decreased compared to Tgfb1C33S/C33S mice. These compound mutant mice displayed more severe inflammation and higher tumor numbers than the parental Tgfb1C33S/C33S animals. The level of active TGF-β1 in compound mutant mice appeared to be decreased compared to Tgfb1C33S/C33S mice as determined from analyses of surrogate markers of active TGF-β, such as P-Smad2, C-Myc, KI-67, and markers of cell cycle traverse. We conclude that these mutant mice provide a useful system for modulating TGF-β levels in a manner that determines tumor number and inflammation within the GI tract. PMID:23117884

  16. Angiotensin II-induced hypertrophy of cultured murine proximal tubular cells is mediated by endogenous transforming growth factor-beta.

    PubMed Central

    Wolf, G; Mueller, E; Stahl, R A; Ziyadeh, F N

    1993-01-01

    Previous studies by our group have demonstrated that angiotensin II (ANG II), as a single factor in serum-free medium, induces cellular hypertrophy of a cultured murine proximal tubular cell line (MCT). The present study was performed to test the hypothesis that this growth effect was mediated by activation of endogenous transforming growth factor-beta (TGF-beta). Exogenous TGF-beta 1 (1 ng/ml) mimicked the growth effects observed with 10(-8) M ANG II (inhibition of DNA synthesis and induction of cellular hypertrophy). A neutralizing anti-TGF-beta antibody attenuated the ANG II-induced increase in de novo protein and total RNA synthesis as well as total protein content. This antibody also abolished the ANG II-mediated inhibition of [3H]thymidine incorporation into quiescent MCT cells. Control IgG or an unrelated antibody had no effect. A bioassay for TGF-beta using mink lung epithelial cells revealed that MCT cells treated with ANG II released active TGF-beta into the cell culture supernatant. Northern blot analysis and semi-quantitative cDNA amplification demonstrated increases in steady-state levels for TGF-beta 1 mRNA after ANG II stimulation of MCT cells, but not in a syngeneic murine mesangial cell line. Our data indicate that the ANG II-induced hypertrophy in MCT cells is mediated by synthesis and activation of endogenous TGF-beta. It is intriguing to speculate that TGF-beta may play a role in the early tubular cell hypertrophy and the subsequent interstitial scarring observed in several models of chronic renal injury that are characterized by increased activity of intrarenal ANG II. Images PMID:7690779

  17. Altered regulation of Src tyrosine kinase by transforming growth factor beta1 in a human hepatoma cell line.

    PubMed

    Fukuda, K; Kawata, S; Tamura, S; Matsuda, Y; Inui, Y; Igura, T; Inoue, S; Kudara, T; Matsuzawa, Y

    1998-09-01

    Transforming growth factor betas (TGF-betas) are the potent growth inhibitors for various cell types. Certain transformed cells, however, show poor response to TGF-beta-induced growth inhibition, which contributes to their uncontrolled proliferation. Recently, we have reported that TGF-beta1 induces degradation of activated Src tyrosine kinase in rat fibroblasts. To elucidate the alteration in TGF-beta signaling pathway in tumor cells that cannot respond to the cytokine, we compared the effects of TGF-beta1 on Src kinase in two human hepatoma cell lines, TGF-beta1-insensitive Mahlavu cells and TGF-beta1-sensitive HepG2 cells. TGF-beta1 decreased Src kinase activity in HepG2 cells, but increased cellular Src levels and Src kinase activity in Mahlavu cells. Co-incubation of Mahlavu cells with TGF-beta1 and 12-O-tetradecanoyl phorbol 13-acetate (TPA) decreased Src protein levels and Src kinase activity, inducing TGF-beta1 sensitivity. TGF-beta1 induced tyrosine dephosphorylation of Ras guanosine triphosphatase-activating protein (Ras-GAP) and Ras inactivation in HepG2 cells, but induced Ras-GAP phosphorylation and Ras activation in Mahlavu cells. The Src kinase inhibitor abolished the increase of Src kinase activity in TGF-beta1-treated Mahlavu cells, and induced TGF-beta1 sensitivity. These findings suggest that regulation of Src kinase by TGF-beta1 is altered in Mahlavu cells. The altered regulation of Src may contribute to TGF-beta1 insensitivity in this cell line, at least in part through activation of Ras.

  18. Myofibroblast accumulation induced by transforming growth factor-beta is involved in the pathogenesis of nasal polyps.

    PubMed

    Wang, Q P; Escudier, E; Roudot-Thoraval, F; Abd-Al Samad, I; Peynegre, R; Coste, A

    1997-07-01

    Myofibroblasts that express alpha-smooth muscle actin (alpha-SMA) are detected in many chronic inflammatory diseases. Transforming growth factor-beta (TGF-beta) is a potent inducer of myofibroblast accumulation in tissues. In this study, scattered myofibroblasts and TGF-beta were quantified and localized in nasal polyps (NPs) and normal nasal mucosa (NM). NPs were sampled in 16 patients during ethmoidectomy and NM was obtained from 10 control subjects during rhinoplasty. alpha-SMA and TGF-beta were detected using immunohistochemistry and the numbers of labeled cells were quantified (alpha-SMA and TGF-beta indices) and compared between NPs and NM. In eight NPs, in which the pedicle was preserved, alpha-SMA and TGF-beta were evaluated and compared in the pedicle, central, and tip areas. Finally, TGF-beta expression was compared between low (zone 1), moderate (zone 2), and high (zone 3) zones of alpha-SMA positivity. alpha-SMA and TGF-beta indices were significantly higher in NPs than in NM. In the eight selected NPs, alpha-SMA-positive cells were significantly more abundant in the pedicle than in the central and tip areas, whereas TGF-beta-positive cells were significantly more numerous in the pedicle than in the tip area. The number of TGF-beta-positive cells was significantly higher in zone 3 than in zone 1 of alpha-SMA positivity. Myofibroblasts, which are abundant in NPs but rare in NM, could be involved in the growth of NPs by inducing extracellular matrix accumulation. The local development of myofibroblasts in NPs could be controlled by TGF-beta, locally produced by inflammatory cells.

  19. Generation of mice carrying a knockout-first and conditional-ready allele of transforming growth factor beta2 gene.

    PubMed

    Ishtiaq Ahmed, A S; Bose, Gracelyn C; Huang, Li; Azhar, Mohamad

    2014-09-01

    Transforming growth factor beta2 (TGFβ2) is a multifunctional protein which is expressed in several embryonic and adult organs. TGFB2 mutations can cause Loeys Dietz syndrome, and its dysregulation is involved in cardiovascular, skeletal, ocular, and neuromuscular diseases, osteoarthritis, tissue fibrosis, and various forms of cancer. TGFβ2 is involved in cell growth, apoptosis, cell migration, cell differentiation, cell-matrix remodeling, epithelial-mesenchymal transition, and wound healing in a highly context-dependent and tissue-specific manner. Tgfb2(-/-) mice die perinatally from congenital heart disease, precluding functional studies in adults. Here, we have generated mice harboring Tgfb2(βgeo) (knockout-first lacZ-tagged insertion) gene-trap allele and Tgfb2(flox) conditional allele. Tgfb2(βgeo/βgeo) or Tgfb2(βgeo/-) mice died at perinatal stage from the same congenital heart defects as Tgfb2(-/-) mice. β-galactosidase staining successfully detected Tgfb2 expression in the heterozygous Tgfb2(βgeo) fetal tissue sections. Tgfb2(flox) mice were produced by crossing the Tgfb2(+/βgeo) mice with the FLPeR mice. Tgfb2(flox/-) mice were viable. Tgfb2 conditional knockout (Tgfb2(cko/-) ) fetuses were generated by crossing of Tgfb2(flox/-) mice with Tgfb2(+/-) ; EIIaCre mice. Systemic Tgfb2(cko/-) embryos developed cardiac defects which resembled the Tgfb2(βgeo/βgeo) , Tgfb2(βgeo/-) , and Tgfb2(-/-) fetuses. In conclusion, Tgfb2(βgeo) and Tgfb2(flox) mice are novel mouse strains which will be useful for investigating the tissue specific expression and function of TGFβ2 in embryonic development, adult organs, and disease pathogenesis and cancer. genesis

  20. The anticancer agent prodigiosin induces p21WAF1/CIP1 expression via transforming growth factor-beta receptor pathway.

    PubMed

    Soto-Cerrato, Vanessa; Viñals, Francesc; Lambert, James R; Pérez-Tomás, Ricardo

    2007-11-01

    The anticancer agent prodigiosin has been shown to act as an efficient immunosuppressant, eliciting cell cycle arrest at non-cytotoxic concentrations, and potent proapoptotic and antimetastatic effects at higher concentrations. Gene expression profiling of MCF-7 cells after treatment with a non-cytotoxic concentration of prodigiosin showed that expression of the p21WAF1/CIP1 gene, a negative cell cycle regulator was induced. In this study, we show that prodigiosin induces p21 expression leading to cell cycle blockade. Subsequently, we attempted to elucidate the molecular mechanisms involved in prodigiosin-mediated p21 gene expression. We demonstrate that prodigiosin induces p21 in a p53-independent manner as prodigiosin induced p21 in cells with both mutated and dominant negative p53. Conversely, the transforming growth factor-beta (TGF-beta) pathway has been found to be necessary for p21 induction. Prodigiosin-mediated p21 expression was blocked by SB431542, a TGF-beta receptor inhibitor. Nevertheless, this pathway alone is not enough to induce p21 expression. The TGF-beta family member (nonsteroidal anti-inflammatory drug)-activated gene 1/growth differentiation factor 15 (NAG-1) may activate this pathway, as it has previously been suggested to signal through the TGF-beta pathway and is overexpressed in response to prodigiosin treatment. We show that NAG-1 colocalizes with TGF-beta receptor type I, suggesting a possible interaction between them. Taken together, these results suggest the TGF-beta pathway is required for induction of p21 expression after prodigiosin treatment of MCF-7 cells.

  1. 1,25-dihydroxyvitamin D3 stimulates transforming growth factor-beta1 synthesis by mouse renal proximal tubular cells.

    PubMed

    Weinreich, T; Landolt, M; Booy, C; Wüthrich, R; Binswanger, U

    1999-01-01

    1,25-dihydroxyvitamin D3 [1,25-(OH)2 D3] is a secosteroid hormone with effects on cell growth, differentiation and immunoregulatory functions in a number of tissues not primarily involved in mineral metabolism. We recently demonstrated growth-regulating effects of 1, 25-(OH)2 D3 on human mesangial cells and proximal tubular cells. To investigate whether 1,25-(OH)2 D3 might also affect the synthesis of cytokines and growth factors in proximal tubular cells, we assessed in the present study the expression and secretion of transforming growth factor-beta1 (TGF-beta1) in a mouse proximal tubular cell line (MCT) in vitro. TGF-beta1 synthesis was measured by a monospecific ELISA in culture supernatant. The secreted TGF-beta1 was proven to be biologically active by means of a bioassay system (CCL-64 mink lung epithelial cell proliferation assay). TGF-beta1 gene expression was assessed by RT-PCR. To analyze whether TGF-beta1 expression mediates the 1,25-(OH)2 D3-induced antiproliferative actions in MCT, proliferation studies in the absence or presence of a blocking monoclonal anti TGF-beta1-3 antibody were performed. 1, 25-(OH)2 D3 (10(-11) to 10(-7) M) specifically increased the TGF-beta1 protein secretion in MCT with a maximum at 10(-8) M. No detectable effect was found with 25 D3 at 10 times higher concentrations. A synthetic 20-epi analogue, MC 1288, increased TGF-beta1 secretion up to similar amounts at equimolar concentrations as the natural hormone 1,25-(OH)2 D3. Steady-state TGF-beta1 mRNA concentration in MCT was transiently increased by 1, 25-(OH)2 D3 between 12 and 24 h, returning to control values at 48 h. Blocking TGF-beta1 did not reduce or abrogate the antiproliferative effect of 1,25-(OH)2 D3. In conclusion, 1,25-(OH)2 D3 stimulates TGF-beta1 expression in renal proximal tubular cells, a growth factor with anti-inflammatory and profibrotic actions which plays an important role in the development and progression of nephrosclerosis. PMID:10394107

  2. The effect of transforming growth factor beta1 (TGF-beta1) on the regenerate bone in distraction osteogenesis.

    PubMed

    Ozkan, Korhan; Eralp, Levent; Kocaoglu, Mehmet; Ahishali, Bulent; Bilgic, Bilge; Mutlu, Zihni; Turker, Mehmet; Ozkan, Feyza Unlu; Sahin, Kemal; Guven, Melih

    2007-04-01

    Distraction osteogenesis is a well established clinical treatment for limb length discrepancy and skeletal deformities. Transforming growth factor beta 1 (TGF-beta1) is a multifunctional peptide which controls proliferation and expression of cells specific to bone like chondrocytes, osteoblasts, osteoclasts including mesenchymal precursor cells. To decrease the external fixation time with increasing the strength of regenerate (newly formed bone after distraction) we tested the effect of locally applied transforming growth factor beta 1 on distraction osteogenesis. A total of 28 mature female white New zealand rabbits weighing 3,5 kg-4,5 kg were studied. 10 animals were belonging to biomechanical testing group (5 for the study and 5 for the control subgroups), and the others were to histology group. In biomechanical group after tibial osteotomy TGF-beta1 was applied subperiosteally for 5 days just proximal to osteotomy site. Control group received only the solvent. Seven days after tibial osteotomy distraction was started at a rate of 0.25 mm/12 hours for 3 weeks with a unilateral fixator. Rabbits were sacrificed at the end of a consolidation period 8 week after tibial osteotomy. We assessed density of the elongation zone of rabbit tibial bones with the computed tomography. Then biomechanical parametres were assessed using the torsional testing using the material testing machine. In histology group rabbits were classified as control and study (rabbits that were given TGF-beta1). Rabbits were sacrificed at the end of first week, second week and fourth week also at the end of consolidation period 8 week after tibial osteotomy. Immunohistochemical and histologic parameters were examined. Biomechanical testing was applied as torsional testing. These values are used in determination of maximal loading, stiffness and energy absorbed during testing (brittleness). The histomorphometric examination looked for the differences between the study and control groups in terms of

  3. Platelet-derived growth factor-BB and transforming growth factor beta 1 selectively modulate glycosaminoglycans, collagen, and myofibroblasts in excisional wounds.

    PubMed Central

    Pierce, G. F.; Vande Berg, J.; Rudolph, R.; Tarpley, J.; Mustoe, T. A.

    1991-01-01

    Recombinant platelet-derived growth factor (PDGF) and transforming growth factor beta 1 (TGF-beta 1) influence the rate of extracellular matrix formed in treated incisional wounds. Because incisional healing processes are difficult to quantify, a full-thickness excisional wound model in the rabbit ear was developed to permit detailed analyses of growth-factor-mediated tissue repair. In the present studies, quantitative and qualitative differences in acute inflammatory cell influx, glycosaminoglycan (GAG) deposition, collagen formation, and myofibroblast generation in PDGF-BB (BB homodimer)- and TGF-beta 1-treated wounds were detected when analyzed histochemically and ultrastructurally. Although both growth factors significantly augmented extracellular matrix formation and healing in 10-day wounds compared with controls (P less than 0.002). PDGF-BB markedly increased macrophage influx and GAG deposition, whereas TGF-beta 1 selectively induced significantly more mature collagen bundles at the leading edge of new granulation tissue (P = 0.007). Transforming growth factor-beta 1-treated wound fibroblasts demonstrated active collagen fibrillogenesis and accretion of subfibrils at the ultrastructural level. Myofibroblasts, phenotypically modified fibroblasts considered responsible for wound contraction, were observed in control, but were absent in early growth-factor-treated granulating wounds. These results provide important insights into the mechanisms of soft tissue repair and indicate that 1) PDGF-BB induces an inflammatory response and provisional matrix synthesis within wounds that is qualitatively similar but quantitatively increased compared with normal wounds; 2) TGF-beta 1 preferentially triggers synthesis and more rapid maturation of collagen within early wounds; and 3) both growth factors inhibit the differentiation of fibroblasts into myofibroblasts, perhaps because wound contraction is not required, due to increased extracellular matrix synthesis. Images

  4. Strip biosensor for amplified detection of nerve growth factor-beta based on a molecular translator and catalytic DNA circuit.

    PubMed

    Liu, Jun; Lai, Ting; Mu, Kejie; Zhou, Zheng

    2014-10-01

    We have demonstrated a new visual detection approach based on a molecular translator and a catalytic DNA circuit for the detection of nerve growth factor-beta (NGF-β). In this assay, a molecular translator based on the binding-induced DNA strand-displacement reaction was employed to convert the input protein to an output DNA signal. The molecular translator is composed of a target recognition element and a signal output element. Target recognition is achieved by the binding of the anti-NGF-β antibody to the target protein. Polyclonal anti-NGF-β antibody is conjugated to DNA1 and DNA2. The antibody conjugated DNA1 is initially hybridized to DNA3 to form a stable DNA1/DNA3 duplex. In the presence of NGF-β, the binding of the same target protein brings DNA1 and DNA2 into close proximity, resulting in an increase in their local effective concentration. This process triggers the strand-displacement reaction between DNA2 and DNA3 and releases the output DNA3. The released DNA3 is further amplified by a catalytic DNA circuit. The product of the catalytic DNA circuit is detected by a strip biosensor. This proposed assay has high sensitivity and selectivity with a dynamic response ranging from 10 fM to 10 pM, and its detection limit is 10 fM of NGF-β. This work provides a sensitive, enzyme-free, and universal strategy for the detection of other proteins. PMID:25068151

  5. Vaccination route that induces transforming growth factor beta production fails to elicit protective immunity against Leishmania donovani infection.

    PubMed

    Bhowmick, Sudipta; Mazumdar, Tuhina; Ali, Nahid

    2009-04-01

    BALB/c mice immunized intraperitoneally (i.p.) and intravenously (i.v.) with Leishmania donovani promastigote membrane antigens (LAg), either free or encapsulated in liposomes, were protected against challenge infection with L. donovani, whereas mice immunized by the subcutaneous (s.c.) and intramuscular routes were not protected. Protected mice showed strong parasite resistance in both the liver and spleen, along with enhanced immunoglobulin G2a and delayed-type hypersensitivity responses. Again, mice vaccinated through the i.p. and i.v. routes showed high levels of NO production after challenge infection. s.c. vaccination resulted in an increased capacity of the spleen cells to produce prechallenge transforming growth factor beta (TGF-beta) levels during the in vitro antigen recall response, whereas i.p. immunization induced production of prechallenge gamma interferon, interleukin-12 (IL-12), and IL-4 levels, with a Th1 bias. Exposure to antigen-stimulated splenocyte supernatants of i.p. but not s.c. immunized mice activated macrophages for in vitro parasite killing. As an enhanced level of TGF-beta was detected in supernatants from unprotected s.c. immunized mice, neutralization by anti-TGF-beta antibody enhanced in vitro macrophage killing activity. The suppressive role of this cytokine was evaluated in vivo by vaccination with liposomal LAg and anti-TGF-beta antibody. Upon parasite challenge, these animals showed significant protection in both the liver and spleen. Moreover, the addition of recombinant TGF-beta in splenocyte supernatants of i.p. immunized mice in vitro as well as in vivo inhibited the protective ability of the macrophages by the i.p. route. Thus, the induction of high prechallenge TGF-beta limits the efficacy of vaccination by routes that are nonprotective.

  6. Regulation of transglutaminase type II by transforming growth factor-beta 1 in normal and transformed human epidermal keratinocytes.

    PubMed

    George, M D; Vollberg, T M; Floyd, E E; Stein, J P; Jetten, A M

    1990-07-01

    This study examines the effect of transforming growth factor-beta 1 (TGF-beta 1) on the expression of Type I and II transglutaminase in normal human epidermal keratinocytes (NHEK cells). Treatment of undifferentiated NHEK cells with 100 pM TGF-beta 1 caused a 10- to 15-fold increase in the activity of a soluble transglutaminase. Based on its cellular distribution and immunoreactivity this transglutaminase was identified as Type II (tissue) transglutaminase. TGF-beta 1 did not enhance the levels of the membrane-bound Type I (epidermal) transglutaminase activity which is induced during squamous cell differentiation and did not increase Type II transglutaminase activity in differentiated NHEK cells. Several SV40 large T antigen-immortalized NHEK cell lines also exhibited a dramatic increase in transglutaminase Type II activity after TGF-beta 1 treatment; however, TGF-beta 1 did not induce any significant change in transglutaminase activity in the carcinoma-derived cell lines SCC-13, SCC-15, and SQCC/Y1. Half-maximal stimulation of transglutaminase Type II activity in NHEK cells occurred at a dose of 15 pM TGF-beta 1. TGF-beta 2 was about equally effective. This enhancement in transglutaminase activity was related to an increase in the amount of transglutaminase Type II protein as indicated by immunoblot analysis. Northern blot analyses using a specific cDNA probe for Type II transglutaminase showed that exposure of NHEK cells to TGF-beta 1 caused a marked increase in the mRNA levels of this enzyme which could be observed as early as 4 h after the addition of TGF-beta 1. Maximal induction of transglutaminase Type II mRNA occurred between 18 and 24 h. The increase in Type II transglutaminase mRNA levels was blocked by the presence of cycloheximide, suggesting that this increase in mRNA by TGF-beta 1 is dependent on protein synthesis. PMID:1972706

  7. Expression of transforming growth factor-beta in developing rat cerebral cortex: effects of prenatal exposure to ethanol.

    PubMed

    Miller, Michael W

    2003-06-01

    The effects of prenatal ethanol exposure on the spatiotemporal expression of transforming growth factor-beta (TGFbeta) and its receptors in developing rat cerebral cortex in vivo were examined. Pregnant Long-Evans rats were fed ad libitum with a diet containing ethanol from gestational day (G) 6 through G21 or were pair fed an isocaloric nonalcoholic liquid diet. A quantitative immunoblotting study showed that expression of TGFbeta ligands was differentially affected by ethanol; ethanol decreased TGFbeta1 expression fetally and in the mature cortex and increased TGFbeta2 at most ages. A complementary immunohistochemical experiment generated similar results so far as the timing of ligand expression was concerned. In both control and ethanol-treated rats, TGFbeta1 was expressed by cells in the two neocortical proliferative zones and neurons in the cortical plate. TGFbeta2 was expressed principally by radial glia and astrocytes in developing rats. In the adult, both ligands were expressed by glia and neurons. Ethanol virtually eliminated the TGFbeta1 expression in the perinatal subventricular zone. The TGFbeta2-positive radial glial labeling was transient and was lost earlier in ethanol-treated neonates than in controls. Concomitantly, the appearance of TGFbeta2-positive glia occurred earlier in the ethanol-treated rats. The expression of only one receptor (TGFbetaIr) was affected by ethanol; it was increased during the pre- and early postnatal periods. TGFbetaIr was expressed by glia perinatally and by all cell types in weanlings. As with TGFbeta2, ethanol exposure promoted the loss of TGFbetaIr expression in radial glia and the precocious expression among astrocytes. TGFbetaIIr was expressed primarily by neurons. Thus, TGFbeta ligands and receptors are strategically placed both in time and space to regulate cell proliferation and migration. Ethanol, which affects both of these processes, has marked effects on the TGFbeta system and apparently promotes the early

  8. Targeting expression of a transforming growth factor beta 1 transgene to the pregnant mammary gland inhibits alveolar development and lactation.

    PubMed Central

    Jhappan, C; Geiser, A G; Kordon, E C; Bagheri, D; Hennighausen, L; Roberts, A B; Smith, G H; Merlino, G

    1993-01-01

    Transforming growth factor-beta 1 (TGF-beta 1) possesses highly potent, diverse and often opposing cell-specific activities, and has been implicated in the regulation of a variety of physiologic and developmental processes. To determine the effects of in vivo overexpression of TGF-beta 1 on mammary gland function, transgenic mice were generated harboring a fusion gene consisting of the porcine TGF-beta 1 cDNA placed under the control of regulatory elements of the pregnancy-responsive mouse whey-acidic protein (WAP) gene. Females from two of four transgenic lines were unable to lactate due to inhibition of the formation of lobuloalveolar structures and suppression of production of endogenous milk protein. In contrast, ductal development of the mammary glands was not overtly impaired. There was a complete concordance in transgenic mice between manifestation of the lactation-deficient phenotype and expression of RNA from the WAP/TGF-beta 1 transgene, which was present at low levels in the virgin gland, but was greatly induced at mid-pregnancy. TGF-beta 1 was localized to numerous alveoli and to the periductal extracellular matrix in the mammary gland of transgenic females late in pregnancy by immunohistochemical analysis. Glands reconstituted from cultured transgenic mammary epithelial cells duplicated the inhibition of lobuloalveolar development observed in situ in the mammary glands of pregnant transgenic mice. Results from this transgenic model strongly support the hypothesis that TGF-beta 1 plays an important in vivo role in regulating the development and function of the mammary gland. Images PMID:8491177

  9. Glutathione levels discriminate between oxidative stress and transforming growth factor-beta signaling in activated rat hepatic stellate cells.

    PubMed

    De Bleser, P J; Xu, G; Rombouts, K; Rogiers, V; Geerts, A

    1999-11-26

    Reactive oxygen species are implicated in the pathogenesis of several diseases, including Alzheimer's disease, multiple sclerosis, human immunodeficiency virus, and liver fibrosis. With respect to liver fibrosis, we have investigated differences in antioxidant enzymes expression in stellate cells (SCs) and parenchymal cells from normal and CCl(4)-treated rat livers. We observed an increase in the expression of catalase in activated SCs. Treatment with transforming growth factor-beta (TGF-beta) increased the production of H(2)O(2). Treatment with catalase decreased TGF-beta expression. Addition of H(2)O(2) resulted in increased TGF-beta production. 3-Amino-1,2,4-triazole abolished the capacity of SCs to remove H(2)O(2). A paradoxical increase in capacity was observed when the cells were pretreated with diethyl maleate. Treatment with 3-amino-1, 2,4-triazole increased TGF-beta production. A paradoxical decrease of TGF-beta production was observed with diethyl maleate. Treatment of the cells with N-acetylcysteine resulted in increased TGF-beta production. TGF-beta decreased the capacity of the SCs to remove H(2)O(2.) An increase in the capacity to remove H(2)O(2) was observed when TGF-beta was removed by neutralizing antibodies. In conclusion, our results suggest: 1) a link between cellular GSH levels and TGF-beta production and 2) that cellular GSH levels discriminate whether H(2)O(2) is the result of oxidative stress or acts as second messenger in the TGF-beta signal transduction pathway.

  10. Association of Transforming Growth Factor Beta-1-509C/T Gene Polymorphism with Ischemic Stroke: A Meta Analysis

    PubMed Central

    Kumar, Pradeep; Kumar, Amit; Srivastava, Mukesh Kumar; Misra, Shubham; Pandit, Awadh Kishor; Prasad, Kameshwar

    2016-01-01

    Introduction: Transforming Growth Factor-Beta 1 (TGF-β1) is a pleiotropic cytokine with potent anti-inflammatory property, which has been considered as an essential risk factor in the inflammatory process of Ischemic Stroke (IS), by involving in the pathophysiological progression of hypertension, atherosclerosis, and lipid metabolisms. -509C/T TGF-β1 gene polymorphism has been found to be associated with the risk of IS. The aim of this meta-analysis was to provide a relatively comprehensive account of the relation between -509C/T gene polymorphisms of TGF-β1 and susceptibility to IS. Methods: A review of literature for eligible genetic association Studies published before October 20, 2014 was conducted in the PubMed, EMBASE, Google Scholar and Trip database. The strength of association was calculated by pooled odds ratios (ORs) with 95% confidence intervals using RevMan 5.3 software. Heterogeneity was examined using Higgins I-squared, Tau-squared, and Chi-squared tests. Results: A total of 2 studies involving 614 cases and 617 controls were found. The overall estimates did not show any significant relation between TGF-β1-509C/T polymorphism and risk of IS under dominant (CC+CT vs. TT: OR=1.01, 95%CI=0.31 to 3.26; P=0.99), recessive (CC vs. CT+TT: OR=0.94, 95%CI=0.47 to 1.90; P=0.87), and allelic models (T vs. C: OR=1.06, 95%CI=0.55 to 2.04; P=0.86). Conclusion: This meta-analysis showed that TGF-β1-509C/T gene polymorphism has no significant association with the susceptibility of IS. Further well-designed prospective studies with larger sample size are needed to confirm these findings. PMID:27303603

  11. Assessment of the frequency of the transforming growth factor beta-1 sequence polymorphisms in patients with alcohol dependence syndrome.

    PubMed

    Augustyńska, Beata; Araszkiewicz, Aleksander; Woźniak, Marcin; Grzybowski, Tomasz; Skonieczna, Katarzyna; Woźniak, Alina; Żyła, Magdalena

    2015-01-01

    Alcohol abuse is one of the most significant factors in the development of liver fibrosis. The pathomechanism of liver fibrosis is the same regardless of its etiology. Fibrosis is a sign of an imbalance between the synthesis of the extracellular matrix components and their degradation. Among the many cytokines that affect hepatic stellate cell activation it seems that transforming growth factor beta (TGF-β) is the most significant, either as the direct factor stimulating polymerase chain reaction (HSC) proliferation and transformation into myofibroblasts, or as the direct factor causing an increase in the activity of genes responsible for the synthesis of extracellular matrix components. The aim of the study was to reveal possible dependencies and differences between the presence of certain alleles of the TGF-β1 gene and its blood level in the study and control group. Blood samples were obtained from 39 patients, the control group consisted of 21 patients. The results obtained in the course of this study showed no statistically significant differences between the frequencies of particular polymorphisms. In the case of haplotype frequencies, insignificant differences were found for the algorithm Excoffier-Laval-Balding predicted haplotypes while one significant difference between the study and control groups was detected in case of the TC haplotype frequency predicted using the Expectation-Maximization algorithm. However, the difference in frequency of TC haplotype predicted by both algorithms was not significant. Genetic analysis of two single nucleotide polymorphisms (SNPs) in exon I of the TGF-β1 gene did not show significant differences between the occurrence of particular polymorphisms and haplotypes in the populations under study.

  12. Transforming growth factor-beta-dependent and -independent pathways of induction of tubulointerstitial fibrosis in beta6(-/-) mice.

    PubMed

    Ma, Li-Jun; Yang, Haichun; Gaspert, Ariana; Carlesso, Gianluca; Barty, Melissa M; Davidson, Jeffrey M; Sheppard, Dean; Fogo, Agnes B

    2003-10-01

    Transforming growth factor-beta1 (TGF-beta1) and the renin-angiotensin-aldosterone system are key mediators in kidney fibrosis. Integrin alphavbeta6, a heterodimeric matrix receptor expressed in epithelia, binds and activates latent TGF-beta1. We used beta6 integrin-null mice (beta6(-/-)) to determine the role of local TGF-beta1 activation in renal fibrosis in the unilateral ureteral obstruction (UUO) model. Obstructed kidneys from beta6(-/-) mice showed less injury than obstructed kidneys from wild-type (WT) mice, associated with lower collagen I, collagen III, plasminogen activator inhibitor (PAI-1), and TGF-beta1 mRNA levels and lower collagen content. Infusion with either angiotensin II (Ang II) or aldosterone (Aldo) or combination in beta6(-/-) UUO mice significantly increased collagen contents to levels comparable to those in identically treated WT. Active TGF-beta protein expression in beta6(-/-) mice was less in UUO kidneys with or without Ang II infusion compared to matched WT mice. Activated Smad 2 levels in beta6(-/-) obstructed kidneys were lower than in WT UUO mice, and did not increase when fibrosis was induced in beta6(-/-) UUO mice by Ang II infusion. Anti-TGF-beta antibody only partially decreased this Ang II-stimulated fibrosis in beta6(-/-) UUO kidneys. In situ hybridization and immunostaining showed low expression of PAI-1 mRNA and protein in tubular epithelium in beta6(-/-) UUO kidneys, with increased PAI-1 expression in response to Ang II, Aldo, or both. Our results indicate that interruption of alphavbeta6-mediated activation of TGF-beta1 can protect against tubulointerstitial fibrosis. Further, the robust induction of tubulointerstitial fibrosis without increase in activated Smad 2 levels in obstructed beta6(-/-) mice by Ang II suggests the existence of a TGF-beta1-independent pathway of induction of fibrosis through angiotensin.

  13. Uncovering the profile of mutations of transforming growth factor beta-induced gene in Chinese corneal dystrophy patients

    PubMed Central

    Hao, Xiao-Dan; Zhang, Yang-Yang; Chen, Peng; Li, Su-Xia; Wang, Ye

    2016-01-01

    AIM To uncover the mutations profile of transforming growth factor beta-induced (TGFBI) gene in Chinese corneal dystrophy patients and further investigate the characteristics of genotype-phenotype correlations. METHODS Forty-two subjects (6 unrelated families including 15 patients and 8 unaffected members, and 19 sporadic patients) of Chinese origin were subjected to phenotypic and genotypic characterization. The corneal phenotypes of patients were documented by slit lamp photography. Mutation screening of the coding regions of TGFBI was performed by direct sequencing. RESULTS We detected four corneal dystrophy types. The most frequent phenotypes were granular corneal dystrophy (GCD) (including 3 families and 8 sporadic patients) and lattice corneal dystrophy (LCD) (including 2 families and 9 sporadic patients). The next phenotypes were corneal dystrophy of Bowman layer (CDB) (1 family and 1 sporadic patient) and epithelial basement membrane dystrophy (EBMD) (1 sporadic patient). Six distinct mutations responsible for TGFBI corneal dystrophies were identified in 30 individuals with corneal dystrophies. Those were, p.R124H mutation in 1 family and 2 sporadic patients with GCD, p.R555W mutation in 2 families and 3 sporadic patients with GCD, p.R124C mutation in 2 families and 7 sporadic patients with LCD, p.A620D mutation in 1 sporadic patient with LCD, p.H626R mutation in 1 sporadic patient with LCD, and p.R555Q in 1 family and 1 sporadic patient with CDB. No mutation was detected in the remaining 3 atypical GCD patients and 1 EBMD patient. CONCLUSION GCD and LCD are the most frequent phenotypes in Chinese population. R555W was the most common mutation for GCD; R124C was the most common mutation for LCD. Our findings extend the mutational spectrum of TFGBI, and this is the extensively delineated TGFBI mutation profile associated with the various corneal dystrophies in the Chinese population. PMID:26949635

  14. Overexpression of granulocyte-macrophage colony-stimulating factor induces pulmonary granulation tissue formation and fibrosis by induction of transforming growth factor-beta 1 and myofibroblast accumulation.

    PubMed Central

    Xing, Z.; Tremblay, G. M.; Sime, P. J.; Gauldie, J.

    1997-01-01

    We have previously reported that transfer to rat lung of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene leads to high expression of GM-CSF between days 1 and 4 and granulation tissue formation followed by an irreversible fibrotic response starting from day 12 onward. In the current study, we investigated the underlying mechanisms. We found that GM-CSF overexpression did not enhance production of tumor necrosis factor-alpha in a significant manner at any time after GM-CSF gene transfer. However, the content of transforming growth factor-beta 1 in bronchoalveolar lavage fluid was markedly induced at day 4 and appeared to be maximal around day 7 and remained high at day 12. Macrophages purified from bronchoalveolar lavage fluid 7 days after GM-CSF gene transfer spontaneously released significant quantities of transforming growth factor-beta 1 protein in vitro. After peak transforming growth factor-beta 1 production was the emergence of alpha-smooth muscle actin-rich myofibroblasts. Accumulation of these cells was most prominent at day 12 within the granulation tissues and they were still present in fibrotic areas between days 12 and 24 and diminished markedly afterward. Thus, we provide the first in vivo evidence that tumor necrosis factor-alpha may be dissociated from participation in a fibrotic process in the lung and GM-CSF may play a more direct role in pulmonary fibrogenesis at least in part through its capability to induce transforming growth factor-beta 1 in macrophages and the subsequent emergence of myofibroblast phenotypes. This GM-CSF transgene lung model is useful for a stepwise dissection of both cellular and molecular events involved in pulmonary fibrosis. Images Figure 2 Figure 5 Figure 6 PMID:9006322

  15. Association between Plasma Levels of Transforming Growth Factor-beta1, IL-23 and IL-17 and the Severity of Autism in Egyptian Children

    ERIC Educational Resources Information Center

    Hashim, Haitham; Abdelrahman, Hadeel; Mohammed, Doaa; Karam, Rehab

    2013-01-01

    It has been recently shown that dysregulation of transforming growth factor-beta1 (TGF-beta1), IL-23 and IL-17 has been identified as a major factor involved in autoimmune disorders. Based on the increasing evidence of immune dysfunction in autism the aim of this study was to measure serum levels of TGF-beta1, IL-23 and IL-17 in relation to the…

  16. Transforming growth factor-beta 1 stimulates glomerular mesangial cell synthesis of the 72-kd type IV collagenase.

    PubMed Central

    Marti, H. P.; Lee, L.; Kashgarian, M.; Lovett, D. H.

    1994-01-01

    Transforming growth factor-beta 1 (TGF-beta 1) is generally considered to exert positive effects on the accumulation of extracellular matrices. These occur as the net result of enhanced matrix protein synthesis, diminished matrix metalloproteinase (MMP) synthesis, and augmented production of specific inhibitors, including the tissue inhibitor of metalloproteinases (TIMP-1). Given that glomerular TGF-beta 1 synthesis is induced by inflammation, the effects of this cytokine on synthesis of the 72-kd type IV collagenase and TIMP-1 by cultured human mesangial cells were evaluated. Concentrations of TGF-beta 1 of 5 ng/ml and above specifically stimulated the synthesis of the 72-kd type IV collagenase. This effect was independent of the stimulatory effect of TGF-beta 1 on TIMP-1 synthesis, which was maximal in a lower concentration range (0.1 to 1 ng/ml). Most significantly, the net effect at the higher concentrations of TGF-beta 1 was an excess of enzyme over the TIMP-1 inhibitor. Northern blot analysis of TGF-beta 1-stimulated human mesangial cells demonstrated a specific increase in the abundance of the 3.1 kb mRNA transcript encoding the 72-kd type IV collagenase, presumably mediated by a direct stimulation of 72-kd type IV collagenase mRNA transcription observed as early as 3 hours after exposure to TGF-beta 1. These studies were extended to an analysis of the expression of TGF-beta 1 and 72-kd type IV collagenase mRNAs in normal and nephritic rats. In normal animals, basal TGF-beta 1 and 72-kd type IV collagenase mRNA expression was observed in a strictly mesangial distribution. After induction of acute immune complex-mediated glomerulonephritis, there was a major increase in TGF-beta 1 and 72-kd type IV collagenase mRNA expression, which was strictly limited to the expanded, hypercellular mesangial compartment. Enhanced synthesis of the mesangial type IV collagenase in response to TGF-beta 1 released during glomerular inflammatory processes could have an important

  17. Transforming Growth Factor Beta 1 Modulates the Functional Expression of the Neurokinin-1 Receptor in Human Keratocytes

    PubMed Central

    Roux, Sandrine Le; Borbely, Gabor; Słoniecka, Marta; Backman, Ludvig J.; Danielson, Patrik

    2016-01-01

    ABSTRACT Purpose: Transforming growth factor beta 1 (TGF-β1) is a cytokine involved in a variety of processes, such as differentiation of fibroblasts into myofibroblasts. TGF-β1 has also been shown to delay the internalization of the neurokinin-1 receptor (NK-1 R) after its activation by its ligand, the neuropeptide substance P (SP). NK-1 R comprises two naturally occurring variants, a full-length and a truncated form, triggering different cellular responses. SP has been shown to affect important events in the cornea – such as stimulating epithelial cell proliferation – processes that are involved in corneal wound healing and thus in maintaining the transparency of the corneal stroma. An impaired signaling through NK-1 R could thus impact the visual quality. We hypothesize that TGF-β1 modulates the expression pattern of NK-1 R in human corneal stroma cells, keratocytes. The purpose of this study was to test that hypothesis. Methods: Cultures of primary keratocytes were set up with cells derived from healthy human corneas, obtained from donated transplantation graft leftovers, and characterized by immunocytochemistry and Western blot. Immunocytochemistry for TGF-β receptors and NK-1 R was performed. Gene expression was assessed with real-time polymerase chain reaction (qPCR). Results: Expression of TGF-β receptors was confirmed in keratocytes in vitro. Treating the cells with TGF-β1 significantly reduced the gene expression of NK-1 R. Furthermore, immunocytochemistry for NK-1 R demonstrated that it is specifically the expression of the full-length isotype of the receptor that is reduced after treatment with TGF-β1, which was also confirmed with qPCR using a specific probe for the full-length receptor. Conclusions: TGF-β1 down-regulates the gene expression of the full-length variant of NK-1 R in human keratocytes, which might impact its signaling pathway and thus explain the known delay in internalization after activation by SP seen with TGF-β1 treatment

  18. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation

    NASA Technical Reports Server (NTRS)

    Ehrhart, E. J.; Segarini, P.; Tsang, M. L.; Carroll, A. G.; Barcellos-Hoff, M. H.; Chatterjee, A. (Principal Investigator)

    1997-01-01

    The biological activity of transforming growth factor beta1 (TGF-beta) is controlled by its secretion as a latent complex in which it is noncovalently associated with latency-associated peptide (LAP). Activation is the extracellular process in which TGF-beta is released from LAP, and is considered to be a primary regulatory control. We recently reported rapid and persistent changes in TGF-beta immunoreactivity in conjunction with extracellular matrix remodeling in gamma-irradiated mouse mammary gland. Our hypothesis is that these specific changes in immunoreactivity are indicative of latent TGF-beta activation. In the present study, we determined the radiation dose response and tested whether a functional relationship exists between radiation-induced TGF-beta and collagen type III remodeling. After radiation exposures as low as 0.1 Gy, we detected increased TGF-beta immunoreactivity in the mammary epithelium concomitant with decreased LAP immunostaining, which are events consistent with activation. Quantitative image analysis demonstrated a significant (P=0.0005) response at 0.1 Gy without an apparent threshold and a linear dose response to 5 Gy. However, in the adipose stroma, loss of LAP demonstrated a qualitative threshold at 0.5 Gy. Loss of LAP paralleled induction of collagen III immunoreactivity in this tissue compartment. We tested whether TGF-beta mediates collagen III expression by treating animals with TGF-beta panspecific monoclonal antibody, 1D11.16, administered i.p. shortly before irradiation. Radiation-induced collagen III staining in the adipose stroma was blocked in an antibody dose-dependent manner, which persisted through 7 days postirradiation. RNase protection assay revealed that radiation-induced elevation of total gland collagen III mRNA was also blocked by neutralizing antibody treatment. These data provide functional confirmation of the hypothesis that radiation exposure leads to latent TGF-beta activation, support our interpretation of the

  19. Lack of Radiation Dose or Quality Dependence of Epithelial-to-Mesenchymal Transition (EMT) Mediated by Transforming Growth Factor {beta}

    SciTech Connect

    Andarawewa, Kumari L.; Costes, Sylvain V.; Fernandez-Garcia, Ignacio; Chou, William S.; Ravani, Shraddha A.; Park, Howard; Barcellos-Hoff, Mary Helen

    2011-04-01

    Purpose: Epithelial-to-mesenchymal transition (EMT) is a phenotype that alters cell morphology, disrupts morphogenesis, and increases motility. Our prior studies have shown that the progeny of human mammary epithelial cells (HMECs) irradiated with 2 Gy undergoes transforming growth factor {beta} (TGF-{beta})-mediated EMT. In this study we determined whether radiation dose or quality affected TGF-{beta}-mediated EMT. Methods and Materials: HMECs were cultured on tissue culture plastic or in Matrigel (BD Biosciences, San Jose, CA) and exposed to low or high linear energy transfer (LET) and TGF-{beta} (400 pg/mL). Image analysis was used to measure membrane-associated E-cadherin, a marker of functional epithelia, or fibronectin, a product of mesenchymal cells, as a function of radiation dose and quality. Results: E-cadherin was reduced in TGF-{beta}-treated cells irradiated with low-LET radiation doses between 0.03 and 2 Gy compared with untreated, unirradiated cells or TGF-{beta} treatment alone. The radiation quality dependence of TGF-{beta}-mediated EMT was determined by use of 1 GeV/amu (gigaelectron volt / atomic mass unit) {sup 56}Fe ion particles at the National Aeronautics and Space Administration's Space Radiation Laboratory. On the basis of the relative biological effectiveness of 2 for {sup 56}Fe ion particles' clonogenic survival, TGF-{beta}-treated HMECs were irradiated with equitoxic 1-Gy {sup 56}Fe ion or 2-Gy {sup 137}Cs radiation in monolayer. Furthermore, TGF-{beta}-treated HMECs irradiated with either high- or low-LET radiation exhibited similar loss of E-cadherin and gain of fibronectin and resulted in similar large, poorly organized colonies when embedded in Matrigel. Moreover, the progeny of HMECs exposed to different fluences of {sup 56}Fe ion underwent TGF-{beta}-mediated EMT even when only one-third of the cells were directly traversed by the particle. Conclusions: Thus TGF-{beta}-mediated EMT, like other non-targeted radiation effects, is

  20. Acceleration of wound healing in gastric ulcers by local injection of neutralising antibody to transforming growth factor beta 1.

    PubMed Central

    Ernst, H; Konturek, P; Hahn, E G; Brzozowski, T; Konturek, S J

    1996-01-01

    BACKGROUND: Application of neutralising antibodies (NAs) to transforming growth factor beta 1 (TGF beta 1) improves wound healing in experimental glomerulonephritis and dermal incision wounds. TGF beta 1 has been detected in the stomach, but despite the fact that this cytokine plays a central part in wound healing no information is available to determine if modulation of the TGF beta 1 profile influences the healing of gastric ulcers. This study examines gastric ulcer healing in the rat after local injection of NAs to TGF beta 1. METHOD: Chronic gastric ulcers were induced in Wistar rats by the application of 100% acetic acid to the serosal surface of the stomach. Immediately after ulcer induction and on day 2, NAs to TGF beta 1 (50 micrograms), TGF beta 1 (50 ng), saline or control antibodies (IgG; 50 micrograms) were locally injected into the subserosa. Controls received no subserosal injections. Animals were killed on day 5 or 11, the ulcer area was measured planimetrically, sections were embedded in paraffin wax, and stained with trichrome or haematoxylin and eosin. Depth of residual ulcer was assessed on day 11 by a scale of 0-3, the percentage of connective tissue was determined by a semiquantitative matrix score and granulocytes and macrophages in the ulcer bed were also assessed. RESULTS: The application of NAs to TGF beta 1 led to a significant acceleration of gastric ulcer healing on day 11 (0.6 (SD 0.8) v 3.7 (SD 2.6) mm2), a reduction in macrophages (23.7 (SD 22.6) v 38 (26) per 40 x power field) and granulocytes (8.5 (SD 5.6) v 20 (10) per 40 x power field), fewer histological residual ulcers (mean 1 (SD 0.9) v 2 (1.1)), a reduced matrix score, and a regenerative healing pattern. Excessive scarring was seen in the TGF beta 1 treated group. CONCLUSION: Further treatment of gastric ulcers may induce a new treatment modality by local injection of NA to TGF beta 1 in an attempt to accelerate and improve ulcer healing. Images Figure 2 Figure 3 PMID:8991853

  1. Transforming Growth Factor Beta Family: Insight into the Role of Growth Factors in Regulation of Fracture Healing Biology and Potential Clinical Applications

    PubMed Central

    Poniatowski, Łukasz A.; Gasik, Robert

    2015-01-01

    The transforming growth factor beta (TGF-β) family forms a group of three isoforms, TGF-β1, TGF-β2, and TGF-β3, with their structure formed by interrelated dimeric polypeptide chains. Pleiotropic and redundant functions of the TGF-β family concern control of numerous aspects and effects of cell functions, including proliferation, differentiation, and migration, in all tissues of the human body. Amongst many cytokines and growth factors, the TGF-β family is considered a group playing one of numerous key roles in control of physiological phenomena concerning maintenance of metabolic homeostasis in the bone tissue. By breaking the continuity of bone tissue, a spread-over-time and complex bone healing process is initiated, considered a recapitulation of embryonic intracartilaginous ossification. This process is a cascade of local and systemic phenomena spread over time, involving whole cell lineages and various cytokines and growth factors. Numerous in vivo and in vitro studies in various models analysing cytokines and growth factors' involvement have shown that TGF-β has a leading role in the fracture healing process. This paper sums up current knowledge on the basis of available literature concerning the role of the TGF-β family in the fracture healing process. PMID:25709154

  2. Transforming growth factor Beta family: insight into the role of growth factors in regulation of fracture healing biology and potential clinical applications.

    PubMed

    Poniatowski, Łukasz A; Wojdasiewicz, Piotr; Gasik, Robert; Szukiewicz, Dariusz

    2015-01-01

    The transforming growth factor beta (TGF-β) family forms a group of three isoforms, TGF-β1, TGF-β2, and TGF-β3, with their structure formed by interrelated dimeric polypeptide chains. Pleiotropic and redundant functions of the TGF-β family concern control of numerous aspects and effects of cell functions, including proliferation, differentiation, and migration, in all tissues of the human body. Amongst many cytokines and growth factors, the TGF-β family is considered a group playing one of numerous key roles in control of physiological phenomena concerning maintenance of metabolic homeostasis in the bone tissue. By breaking the continuity of bone tissue, a spread-over-time and complex bone healing process is initiated, considered a recapitulation of embryonic intracartilaginous ossification. This process is a cascade of local and systemic phenomena spread over time, involving whole cell lineages and various cytokines and growth factors. Numerous in vivo and in vitro studies in various models analysing cytokines and growth factors' involvement have shown that TGF-β has a leading role in the fracture healing process. This paper sums up current knowledge on the basis of available literature concerning the role of the TGF-β family in the fracture healing process.

  3. The combination of epidermal growth factor and transforming growth factor-beta induces novel phenotypic changes in mouse liver stem cell lines.

    PubMed

    Isfort, R J; Cody, D B; Stuard, S B; Randall, C J; Miller, C; Ridder, G M; Doersen, C J; Richards, W G; Yoder, B K; Wilkinson, J E; Woychik, R P

    1997-12-01

    Mouse liver stem cell (oval cell) lines were investigated in order to determine the role which two families of growth and differentiation factors (GDFs), epidermal growth factor (EGF) family and transforming growth factor beta (TGF-beta) family, play in liver regeneration. EGF family members, including EGF, amphiregulin, betacellulin, heparin-binding epidermal growth factor, and TGF-alpha, were mitogenic for oval cell lines while TGF-beta family members, including TGF-beta1, TGF-beta2 and TGF-beta3, inhibited mitogenesis and induced apoptosis in oval cell lines. Surprisingly, the combination of EGF family members and TGF-ss family members resulted in neither proliferation nor apoptosis but instead in a novel cellular response, cellular scattering in tissue culture and morphological differentiation in Matrigel. Analysis of the signal transduction pathways activated by exposure of oval cell lines to either EGF, EGF+TGF-beta, or TGF-beta indicated that novel combinations of intracellular signals result following stimulation of the cells with the combination of EGF+TGF-beta. These data reveal that the dynamics of synergistic GDF action following tissue injury and regeneration results in a new level of complexity not obvious from the study of individual GDFs.

  4. Effects of different transforming growth factor beta (TGF-β) isomers on wound closure of bone cell monolayers.

    PubMed

    Sefat, Farshid; Denyer, Morgan C T; Youseffi, Mansour

    2014-09-01

    This study aimed at determining the role of the transforming growth factor-beta (TGF-β) isomers and their combinations in bone cell behaviour using MG63 cells. The work examined how TGF-β1, 2 and 3 and their solvent and carrier (HCl and BSA, respectively) effected cell morphology, cell proliferation and integrin expression. This study also aimed at examining how the TGF-βs and their solvent and carrier influenced wound closure in an in vitro wound closure model and how TGF-βs influence extracellular matrix (ECM) secretion and integrin expression. The wound healing response in terms of healing rate to the TGF-βs and their solvent/carrier was investigated in 300 μm ± 10-30 μm SD wide model wounds induced in fully confluent monolayers of MG63 bone cells. The effect of different TGF-β isomers and their combinations on proliferation rate and cell length of human bone cells were also assessed. Immunostaining was used to determine if TGF-βs modifies integrin expression and ECM secretion by the bone cells. Imaging with WSPR allowed observation of the focal contacts without the need for immunostaining. The wound healing results indicated that TGF-β3 has a significant effect on the wound healing process and its healing rate was found to be higher than the control (p < 0.001), TGF-β1 (p < 0.001), TGF-β2 (p < 0.001), BSA/HCl (p < 0.001) and HCl (p < 0.001) in ascending order. It was also found that TGF-β1 and TGF-β2 treatment significantly improved wound closure rate in comparison to the controls (p < 0.001). All TGF-β combinations induced a faster healing rate than the control (p < 0.001). It was expected that the healing rate following treatment with TGF-β combinations would be greater than those healing rates following treatments with TGF-β isomers alone, but this was not the case. The results also suggest that cell morphological changes were observed significantly more in cells treated with TGF-β(2 + 3) and TGF-β(1 + 3) (p < 0.001). Any cell treated

  5. The transforming growth factor-beta 3 knock-out mouse: an animal model for cleft palate.

    PubMed

    Koo, S H; Cunningham, M C; Arabshahi, B; Gruss, J S; Grant, J H

    2001-09-15

    The recent report of a transforming growth factor-beta 3 (TGF-beta 3) knock-out mouse in which 100 percent of the homozygous pups have cleft palate raised the question as to the potential usefulness of these animals as a model for cleft palate research. The specific aim in this study was to carefully document the anatomy of the cleft palate in the TGF-beta 3 knock-out mice as compared with wild type controls. Special attention was paid to the levator veli palatini muscle, the tensor veli palatini muscle, and their respective innervation. Because the TGF-beta 3 knock-out is lethal in the early perinatal period and because the heterozygotes are phenotypically normal, polymerase chain reaction was required to genotype the animals before mating. Time-mated pregnancies between proven heterozygotes were then delivered by cesarean section at gestational day 18.5 to prevent maternal cannibalism of homozygote pups. All delivered pups were killed and their tails processed by polymerase chain reaction to verify genotype. The heads were then fixed and sectioned in axial, coronal, or sagittal planes. Sections were stained with hematoxylin and eosin or processed for immunohistochemistry with nerve specific protein gene product 9.5 and calcitonin gene-related peptide antibodies. Sections were analyzed in a serial fashion. Nine wild type control animals were analyzed along with nine TGF-beta 3 knock-out homozygotes. Time matings between proven heterozygotes yielded wild type pups, heterozygote pups, and homozygote knock-out pups in the expected mendelian ratios (28 percent to 46 percent to 26 percent; n = 43). The results demonstrated 100 percent clefting in the homozygous TGF-beta 3 knock-out pups. Complete clefting of the secondary palate was seen in four of nine and incomplete clefting was seen in five of nine. The levator veli palatini and tensor veli palatini muscles were demonstrated coursing parallel to the cleft margin in all cleft mice. The orientation of these muscles

  6. Harnessing High Density Lipoproteins to Block Transforming Growth Factor Beta and to Inhibit the Growth of Liver Tumor Metastases

    PubMed Central

    Medina-Echeverz, José; Fioravanti, Jessica; Díaz-Valdés, Nancy; Frank, Kathrin; Aranda, Fernando; Gomar, Celia; Ardaiz, Nuria; Dotor, Javier; Umansky, Viktor; Prieto, Jesús; Berraondo, Pedro

    2014-01-01

    Transforming growth factor β (TGF-β) is a powerful promoter of cancer progression and a key target for antitumor therapy. As cancer cells exhibit active cholesterol metabolism, high density lipoproteins (HDLs) appear as an attractive delivery system for anticancer TGFβ-inhibitory molecules. We constructed a plasmid encoding a potent TGF-β-blocking peptide (P144) linked to apolipoprotein A-I (ApoA-I) through a flexible linker (pApoLinkerP144). The ApoLinkerP144 sequence was then incorporated into a hepatotropic adeno-associated vector (AAVApoLinkerP144). The aim was to induce hepatocytes to produce HDLs containing a modified ApoA-I capable of blocking TGF-β. We observed that transduction of the murine liver with pApoLinkerP144 led to the appearance of a fraction of circulating HDL containing the fusion protein. These HDLs were able to attenuate TGF-β signaling in the liver and to enhance IL-12 -mediated IFN-γ production. Treatment of liver metastasis of MC38 colorectal cancer with AAVApoLinkerP144 resulted in a significant reduction of tumor growth and enhanced expression of IFN-γ and GM-CSF in cancerous tissue. ApoLinkerP144 also delayed MC38 liver metastasis in Rag2−/−IL2rγ−/− immunodeficient mice. This effect was associated with downregulation of TGF-β target genes essential for metastatic niche conditioning. Finally, in a subset of ret transgenic mice, a model of aggressive spontaneous metastatic melanoma, AAVApoLinkerP144 delayed tumor growth in association with increased CD8+ T cell numbers in regional lymph nodes. In conclusion, modification of HDLs to transport TGF-β-blocking molecules is a novel and promising approach to inhibit the growth of liver metastases by immunological and non-immunological mechanisms. PMID:24797128

  7. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation.

    PubMed

    Chen, Pei-Yu; Qin, Lingfeng; Li, Guangxin; Tellides, George; Simons, Michael

    2016-01-01

    Smooth muscle cells (SMCs) in normal blood vessels exist in a highly differentiate state characterized by expression of SMC-specific contractile proteins ("contractile phenotype"). Following blood vessel injury in vivo or when cultured in vitro in the presence of multiple growth factors, SMC undergo a phenotype switch characterized by the loss of contractile markers and appearance of expression of non-muscle proteins ("proliferative phenotype"). While a number of factors have been reported to modulate this process, its regulation remains uncertain. Here we show that induction of SMC FGF signaling inhibits TGFβ signaling and converts contractile SMCs to the proliferative phenotype. Conversely, inhibition of SMC FGF signaling induces TGFβ signaling converting proliferating SMCs to the contractile phenotype, even in the presence of various growth factors in vitro or vascular injury in vivo. The importance of this signaling cross-talk is supported by in vivo data that show that an SMC deletion of a pan-FGF receptor adaptor Frs2α (fibroblast growth factor receptor substrate 2 alpha) in mice profoundly reduces neointima formation and vascular remodelling following carotid artery ligation. These results demonstrate that FGF-TGFβ signaling antagonism is the primary regulator of the SMC phenotype switch. Manipulation of this cross-talk may be an effective strategy for treatment of SMC-proliferation related diseases. PMID:27634335

  8. Fibroblast growth factor (FGF) signaling regulates transforming growth factor beta (TGFβ)-dependent smooth muscle cell phenotype modulation

    PubMed Central

    Chen, Pei-Yu; Qin, Lingfeng; Li, Guangxin; Tellides, George; Simons, Michael

    2016-01-01

    Smooth muscle cells (SMCs) in normal blood vessels exist in a highly differentiate state characterized by expression of SMC-specific contractile proteins (“contractile phenotype”). Following blood vessel injury in vivo or when cultured in vitro in the presence of multiple growth factors, SMC undergo a phenotype switch characterized by the loss of contractile markers and appearance of expression of non-muscle proteins (“proliferative phenotype”). While a number of factors have been reported to modulate this process, its regulation remains uncertain. Here we show that induction of SMC FGF signaling inhibits TGFβ signaling and converts contractile SMCs to the proliferative phenotype. Conversely, inhibition of SMC FGF signaling induces TGFβ signaling converting proliferating SMCs to the contractile phenotype, even in the presence of various growth factors in vitro or vascular injury in vivo. The importance of this signaling cross-talk is supported by in vivo data that show that an SMC deletion of a pan-FGF receptor adaptor Frs2α (fibroblast growth factor receptor substrate 2 alpha) in mice profoundly reduces neointima formation and vascular remodelling following carotid artery ligation. These results demonstrate that FGF-TGFβ signaling antagonism is the primary regulator of the SMC phenotype switch. Manipulation of this cross-talk may be an effective strategy for treatment of SMC-proliferation related diseases. PMID:27634335

  9. Synergistic Action of Fibroblast Growth Factor-2 and Transforming Growth Factor-beta1 Enhances Bioprinted Human Neocartilage Formation

    PubMed Central

    Cui, Xiaofeng; Breitenkamp, Kurt; Lotz, Martin; D’Lima, Darryl

    2012-01-01

    Bioprinting as a promising but unexplored approach for cartilage tissue engineering has the advantages of high throughput, digital control, and highly accurate placement of cells and biomaterial scaffold to the targeted 3D locations with simultaneous polymerization. This study tested feasibility of using bioprinting for cartilage engineering and examined the influence of cell density, growth and differentiation factors. Human articular chondrocytes were printed at various densities, stimulated transiently with growth factors and subsequently with chondrogenic factors. Samples were cultured for up to 4 weeks to evaluate cell proliferation and viability, mechanical properties, mass swelling ratio, water content, gene expression, ECM production, DNA content, and histology. Bioprinted samples treated with FGF-2/TGF-β1 had the best chondrogenic properties among all groups apparently due to synergistic stimulation of cell proliferation and chondrogenic phenotype. ECM production per chondrocyte in low cell density was much higher than that in high cell seeding density. This finding was also verified by mechanical testing and histology. In conclusion, cell seeding density that is feasible for bioprinting also appears optimal for human neocartilage formation when combined with appropriate growth and differentiation factors. PMID:22508498

  10. The effect of pasteurization on transforming growth factor alpha and transforming growth factor beta 2 concentrations in human milk.

    PubMed

    McPherson, R J; Wagner, C L

    2001-01-01

    Transforming growth factor alpha (TGF-alpha) and beta 2 (TGF-beta2) are present in human milk and are involved in growth differentiation and repair of neonatal intestinal epithelia. Heat treatment at 56 degrees C has been shown effective for providing safe banked donor milk, with good retention of other biologically active factors. The purpose of our study was to determine the effect of heat sterilization on TGF-alpha and TGF-beta2 concentrations in human milk. Twenty milk samples were collected from 20 lactating mothers in polypropylene containers and frozen at -20 degrees C for transport or storage. Before heat treatment by holder pasteurization, the frozen milk was thawed and divided into 1-mL aliquots. All samples were heated in an accurately regulated water bath until a holding temperature was achieved, then held for 30 minutes using constant agitation. Holding temperature ranged from 56.5 degrees C to 56.9 degrees C. The milk was then stored at 4 degrees C overnight for analysis the following day. The concentration of TGF-alpha was measured by radioimmunoassay. Mean concentration +/- SD of TGF-alpha in raw milk samples was 119+/-50 pg/mL, range 57 to 234. The mean concentration +/- SD of TGF-alpha in heat treated samples was 113+/-50 pg/mL, range 51 to 227. TGF-alpha concentration was minimally affected by pasteurization, with an overall loss of 6.1%. Of 19 samples, 4 had increased and 15 had decreased concentrations after pasteurization (mean percent SEM: 94%+/-7% of raw milk, range 72%+/-107%). The concentration of acid-activated TGF-beta2 was measured by enzyme-linked immunosorbent assay. Mean concentration +/- SD of TGF-beta2 in raw milk samples was 5624+/-5038 pg/mL, range 195 to 15480. The mean concentration +/- SD of TGF-beta2 in heat-treated samples was 5073+/-4646 pg/mL, range 181 to 15140. TGF-beta2 survived with relatively little loss (0.6%): of 18 samples, 11 had increased and 7 had decreased concentrations after pasteurization (mean percent

  11. Design and Selection of Antisense Oligonucleotides Targeting Transforming Growth Factor Beta (TGF-β) Isoform mRNAs for the Treatment of Solid Tumors.

    PubMed

    Jaschinski, Frank; Korhonen, Hanna; Janicot, Michel

    2015-01-01

    Transforming growth factor beta isoforms (TGF-β1, -β2, and -β3) are cytokines associated with a wide range of biological processes in oncology including tumor cell invasion and migration, angiogenesis, immunosuppression, as well as regulation of tumor stem cell properties. Hence, blocking the TGF-β signaling pathways may have a multifold therapeutic benefit for the treatment of solid tumors. Here, we describe the identification and selection processes for the development of highly potent and selective chemically modified antisense oligodeoxynucleotides (fully phosphorothioate locked nucleic acid gapmers) allowing effective and selective suppression of TGF-β isoform expression in cell-based assays and in vivo preclinical models.

  12. Participation of tenascin and transforming growth factor-beta in reciprocal epithelial-mesenchymal interactions of MCF7 cells and fibroblasts.

    PubMed

    Chiquet-Ehrismann, R; Kalla, P; Pearson, C A

    1989-08-01

    The tumor stroma is essential for the development of the tumor epithelium. Tenascin is an extracellular matrix protein highly expressed in the stroma of malignant mammary tumors. We therefore tested whether in vitro MCF7 cells were able to induce fibroblasts to synthesize tenascin. Indeed MCF7 cell-conditioned medium contained tenascin-inducing activity. This activity was shown to be transforming growth factor-beta. The morphology of the MCF7 cells was in turn affected by the addition of tenascin to the culture medium. The cells partially detached from the substratum and lost their cell-cell contracts.

  13. Regulation of growth and gene expression in human papillomavirus-transformed keratinocytes by transforming growth factor-beta: implications for the control of papillomavirus infection.

    PubMed

    Braun, L; Dürst, M; Mikumo, R; Crowley, A; Robinson, M

    1992-01-01

    Cervical carcinogenesis is a multistep process that appears to be initiated by infection of squamous epithelial cells in the cervix with one of a limited number of human papillomavirus (HPV) types. However, the mechanisms involved in the evolution of benign, HPV-induced lesions to malignancy have not yet been fully elucidated. Transforming growth factor-beta (TGF-beta), a multifunctional growth factor produced by cells in the skin, inhibits the proliferation of foreskin and cervical keratinocytes in vitro. We examined the effects of TGF-beta on growth and virus early-gene expression in cell lines immortalized by two HPV types associated with cervical carcinogenesis as well as the expression of TGF-beta 1 mRNA transcripts in normal and HPV-positive cells in vivo and in vitro. We found that normal and HPV-positive cells expressed similar levels of TGF-beta 1 mRNAs and exhibited similar patterns of responsiveness to three isoforms of TGF-beta in both monolayer and modified organotypic cultures. Of particular interest is our finding that the expression of the E6 and E7 early viral transforming regions of both HPV16 and HPV18 was reversibly and rapidly inhibited by TGF-beta. In one HPV16-positive cell line examined in detail, inhibition of HPV expression required protein synthesis and occurred at the level of transcription. HPV-immortalized cells selected for resistance to in vitro differentiation signals remained sensitive to TGF-beta-mediated growth inhibition. These results, showing that both growth and virus gene expression in HPV-transformed cells were responsive to TGF-beta, suggest that endogenous growth factors produced by different cell types in squamous epithelium may play a role in the progression of cervical neoplasia. PMID:1326988

  14. Effects of transforming growth factor beta and epidermal growth factor on cell proliferation and the formation of bone nodules in isolated fetal rat calvaria cells.

    PubMed

    Antosz, M E; Bellows, C G; Aubin, J E

    1989-08-01

    When cells enzymatically isolated from fetal rat calvaria (RC cells) are cultured in vitro in the presence of ascorbic acid and Na beta-glycerophosphate, discrete three-dimensional nodules form with the histologic, immunohistochemical, and ultrastructural characteristics of bone (Bellows et al; Calcified Tissue International 38:143-154, 1986; Bhargava et al., Bone, 9:155-163, 1988). Quantitation of the number of bone nodules that forms provides a colony assay for osteoprogenitor cells present in the RC population (Bellows and Aubin, Develop. Biol., 133:8-13, 1989). Continuous culture with either epidermal growth factor (EGF) or transforming growth factor beta (TGF-beta) results in dose-dependent inhibition of bone nodule formation; however, the former causes increased proliferation and saturation density, while the latter reduces both parameters. Addition of EGF (48 h pulse, 2-200 ng/ml) to RC cells at day 1 after plating results in increased proliferation and population saturation density and an increased number of bone nodules formed. Similar pulses at confluence and in postconfluent multilayered cultures when nodules first begin forming (approx. day 11) inhibited bone nodule formation and resulted in a smaller stimulation of cell proliferation. Forty-eight hour pulses of TGF-beta (0.01-1 ng/ml) reduced bone nodule formation and proliferation at all times examined, with pulses on day 1 causing maximum inhibition. The effects of pulses with TGF-beta and EGF on inhibition of nodule formation are independent of the presence of serum in the culture medium during the pulse. The data suggest that whereas EGF can either stimulate or inhibit the formation of bone nodules depending upon the time and duration of exposure, TGF-B inhibits bone nodule formation under all conditions tested. Moreover, these effects on osteoprogenitor cell differentiation do not always correlate with the effects of the growth factors on RC cell proliferation. PMID:2787326

  15. Sorting nexin 6, a novel SNX, interacts with the transforming growth factor-beta family of receptor serine-threonine kinases.

    PubMed

    Parks, W T; Frank, D B; Huff, C; Renfrew Haft, C; Martin, J; Meng, X; de Caestecker, M P; McNally, J G; Reddi, A; Taylor, S I; Roberts, A B; Wang, T; Lechleider, R J

    2001-06-01

    Sorting nexins (SNX) comprise a family of proteins with homology to several yeast proteins, including Vps5p and Mvp1p, that are required for the sorting of proteins to the yeast vacuole. Human SNX1, -2, and -4 have been proposed to play a role in receptor trafficking and have been shown to bind to several receptor tyrosine kinases, including receptors for epidermal growth factor, platelet-derived growth factor, and insulin as well as the long form of the leptin receptor, a glycoprotein 130-associated receptor. We now describe a novel member of this family, SNX6, which interacts with members of the transforming growth factor-beta family of receptor serine-threonine kinases. These receptors belong to two classes: type II receptors that bind ligand, and type I receptors that are subsequently recruited to transduce the signal. Of the type II receptors, SNX6 was found to interact strongly with ActRIIB and more moderately with wild type and kinase-defective mutants of TbetaRII. Of the type I receptors, SNX6 was found to interact only with inactivated TbetaRI. SNXs 1-4 also interacted with the transforming growth factor-beta receptor family, showing different receptor preferences. Conversely, SNX6 behaved similarly to the other SNX proteins in its interactions with receptor tyrosine kinases. Strong heteromeric interactions were also seen among SNX1, -2, -4, and -6, suggesting the formation in vivo of oligomeric complexes. These findings are the first evidence for the association of the SNX family of molecules with receptor serine-threonine kinases.

  16. Cloning and biological activity of epigen, a novel member of the epidermal growth factor superfamily.

    PubMed

    Strachan, L; Murison, J G; Prestidge, R L; Sleeman, M A; Watson, J D; Kumble, K D

    2001-05-25

    High throughput sequencing of a mouse keratinocyte library was used to identify an expressed sequence tag with homology to the epidermal growth factor (EGF) family of growth factors. We have named the protein encoded by this expressed sequence tag Epigen, for epithelial mitogen. Epigen encodes a protein of 152 amino acids that contains features characteristic of the EGF superfamily. Two hydrophobic regions, corresponding to a putative signal sequence and transmembrane domain, flank a core of amino acids encompassing six cysteine residues and two putative N-linked glycosylation sites. Epigen shows 24-37% identity to members of the EGF superfamily including EGF, transforming growth factor alpha, and Epiregulin. Northern blotting of several adult mouse tissues indicated that Epigen was present in testis, heart, and liver. Recombinant Epigen was synthesized in Escherichia coli and refolded, and its biological activity was compared with that of EGF and transforming growth factor alpha in several assays. In epithelial cells, Epigen stimulated the phosphorylation of c-erbB-1 and mitogen-activated protein kinases and also activated a reporter gene containing enhancer sequences present in the c-fos promoter. Epigen also stimulated the proliferation of HaCaT cells, and this proliferation was blocked by an antibody to the extracellular domain of the receptor tyrosine kinase c-erbB-1. Thus, Epigen is the newest member of the EGF superfamily and, with its ability to promote the growth of epithelial cells, may constitute a novel molecular target for wound-healing therapy. PMID:11278323

  17. Newly synthesized proteoglycans secreted by sequentially derived populations of cells from new-born rat calvaria: effects of transforming growth factor-beta and matrigenin activity.

    PubMed

    Chopra, R K; Li, Z M; Vickery, S; Anastassiades, T

    1990-10-01

    Three populations (1, 3 and 6) of bone cells, derived from rat calvaria by sequential enzymatic digestion, were cultured with [3H]glucosamine and [35S]sulfate, in the presence or absence of transforming growth factor-beta (TGF-beta) or bone-derived matrigenin activity. Population 6 synthesized a chondroitin sulfate proteoglycan (PG) and responded to the addition of the factors by increased rates of synthesis of hyaluronic acid (HA) and PG and an increase in the size of the HA. Comparisons of populations 1, 3 and 6 showed an ordered, spontaneous increase in HA and PG synthesis. However, the addition of matrigenin activity resulted in a much greater stimulation of PG, but not HA, synthesis in population 1 compared to population 6, suggesting a cellular organization in the calvarium whose net effect would be to direct PG synthesis towards the periphery of the tissue.

  18. Prevention of experimental autoimmune encephalomyelitis in DA rats by grafting primary skin fibroblasts engineered to express transforming growth factor-beta1.

    PubMed

    Zargarova, T; Kulakova, O; Prassolov, V; Zharmukhamedova, T; Tsyganova, V; Turobov, V; Ivanov, D; Parfenov, M; Sudomoina, M; Chernajovsky, Y; Favorova, O

    2004-08-01

    To determine whether primary fibroblasts producing latent transforming growth factor beta1 (TGF-beta1) are capable of down-regulating experimental autoimmune encephalomyelitis (EAE), a retroviral vector TGF-beta1-pBabe-neo (-5'UTR) was used for efficient gene transfer into primary skin fibroblasts of DA rats. After heat activation, conditioned medium from the transduced fibroblasts was found to inhibit significantly in vitro proliferation of lymphocytes from lymph nodes of DA rats with EAE. Intraperitoneal administration of TGF-beta1-transduced fibroblasts into DA rats during the priming phase of EAE resulted in a significant reduction in mortality and in the mean clinical and EAE scores versus the control immunized animals treated with non-transduced fibroblasts.

  19. Transforming growth factor-beta type I receptor/ALK5 contributes to doxazosin-induced apoptosis in H9C2 cells.

    PubMed

    Yang, Yi-Fan; Wu, Chau-Chung; Chen, Wen-Pin; Su, Ming-Jai

    2009-12-01

    The mechanism of doxazosin-induced apoptosis through alpha(1)-adrenoceptor-independent pathway has been reported in various types of cell models. However, the molecular events involved in this effect are still not fully discovered. In present study, we proposed that the transforming growth factor-beta type I receptor (TbetaRI/ALK5) may contribute to the doxazosin-induced apoptosis in H9C2 cardiomyoblasts. Via the detection of cell viability, apoptotic nuclei, and caspase-3 activity, we found that doxazosin induced concentration- and time-dependent apoptosis in H9C2 cells. The cell apoptosis induced by 30 muM doxazosin was exacerbated by the addition of 10 ng/ml transforming growth factor-beta1 (TGF-beta1). Doxazosin or TGF-beta1 alone respectively elevated p38 mitogen-activated protein kinases (MAPK) and Smad3 protein phosphorylation in H9C2 cells. However, the cotreatment of doxazosin and TGF-beta1 attenuated the TGF-beta1-induced Smad3 protein phosphorylation and increased doxazosin-induced p38 MAPK protein phosphorylation. Furthermore, inhibitors of TbetaRI/ALK5 (SB431542) and p38 MAPK (SB202190) or TbetaRI/ALK5 knockdown all dramatically reduced the doxazosin-induced apoptosis in H9C2 cells. In conclusion, our results demonstrated that TbetaRI/ALK5-p38 MAPK phosphorylation signaling pathway could contribute to doxazosin-induced cell apoptosis, which could be further enhanced by TGF-beta1 in association with attenuating Smad3 phosphorylation in H9C2 cells.

  20. Role of LncRNA-activated by transforming growth factor beta in the progression of hepatitis C virus-related liver fibrosis.

    PubMed

    Fu, Na; Niu, Xuemin; Wang, Yang; Du, Huijuan; Wang, Baoyu; Du, Jinghua; Li, Ya; Wang, Rongqi; Zhang, Yuguo; Zhao, Suxian; Sun, Dianxing; Qiao, Liang; Nan, Yuemin

    2016-08-01

    Long non-coding RNA (LncRNA)-activated by transforming growth factor-beta (LncRNA-ATB) is a key regulator of transforming growth factor-beta (TGF-β) signaling pathway, and is positively correlated with the development of liver cirrhosis and vascular invasion of hepatocellular carcinoma (HCC). However, the role of LncRNA-ATB in hepatitis C virus (HCV)-related liver fibrosis remains largely unknown. In the present study, we confirmed a high expression level of LncRNA-ATB in the liver tissues and plasma samples of patients with HCV-related hepatic fibrosis, and the plasma level of LncRNA-ATB was significantly correlated with liver fibrosis stages. Furthermore, increased expression level of LncRNA-ATB was also present in activated hepatic stellate cells (HSCs), and knockdown of LncRNA-ATB inhibited the expression of alpha-smooth muscle actin (α-SMA) and alpha-1 type I collagen (Col1A1). LncRNA-ATB was found to share the common miRNA responsive element of miR-425-5p with TGF-β type II receptor (TGF-βRII) and SMAD2. Ectopic expression of LncRNA-ATB in HSCs could upregulate the protein expression of TGF-βRII and SMAD2 by inhibiting the endogenous miR-425-5p. Moreover, overexpression of miR-425-5p could partly abrogate the expression of TGF-βRII and SMAD2 induced by LncRNA-ATB. Hence, we conclude that LncRNA-ATB promotes HCV-induced liver fibrogenesis by activating HSCs and increasing collagen I production through competitively binding to miR-425-5p. LncRNA-ATB may be a novel diagnostic biomarker and a potential therapeutic target for HCV-related hepatic fibrosis. PMID:27585228

  1. Transforming growth factor-beta1-induced activation of the Raf-MEK-MAPK signaling pathway in rat lung fibroblasts via a PKC-dependent mechanism.

    PubMed

    Axmann, A; Seidel, D; Reimann, T; Hempel, U; Wenzel, K W

    1998-08-19

    In fibroblasts transforming growth factor-beta1 (TGF-beta1) regulates cell proliferation and turnover of macromolecular components of the extracellular matrix. Here, intracellular signaling events in growth-inhibited embryonic rat lung fibroblasts (RFL-6) upon stimulation with TGF-beta1 were investigated. TGF-beta1 rapidly induced the activation of c-Raf-1, MEK-1, and MAPK p42 and p44. The activation of this pathway by TGF-beta1 did not depend on autocrine platelet-derived growth factor (PDGF) or basic fibroblast growth factor (bFGF). Inhibition of the binding of growth factors to their tyrosine kinase receptors did not affect MAPK activation by TGF-beta1. Ras activation by TGF-beta1 was significantly lower compared to the activation by PDGF or bFGF. The intracellular transduction of the TGF-beta1 signal was completely suppressed by depletion or inhibition of protein kinase C (PKC). It is shown that calcium-dependent isoforms of PKC are required for MAPK activation by TGF-beta1. PMID:9712718

  2. Overexpression of apolipoprotein A-I fused to an anti-transforming growth factor beta peptide modulates the tumorigenicity and immunogenicity of mouse colon cancer cells.

    PubMed

    Medina-Echeverz, José; Vasquez, Marcos; Gomar, Celia; Ardaiz, Nuria; Berraondo, Pedro

    2015-06-01

    Transforming growth factor beta (TGF-β) promotes tumor growth, invasion and metastasis in established tumors. In this study, we analyzed the effect of overexpressing an anti-TGF-β peptide fused to apolipoprotein A-I (ApoA-I) as a scaffold molecule. We generated and characterized stable MC38 colon carcinoma clones expressing ApoA-I fused to the anti-TGF-β peptide P144 and ApoA-I as control cells. We evaluated in vitro the gene expression profile, cell cycle and anchorage-independent growth. The in vivo tumorigenic potential and immunogenicity were analyzed inoculating the MC38 clones into C57BL/6 mice, recombination-activating gene 1 knockout mice or mice deficient in NK cells either subcutaneously or intrasplenically to generate hepatic metastases. While overexpression of ApoA-I had no effect on the parameters analyzed, ApoA-I fused to P144 markedly diminished the tumorigenic capacity and metastatic potential of MC38 in vitro and in vivo, thus generating a highly immunogenic cell line. MC38 cells transfected with ApoA-I fused to P144 triggered memory T cell responses able to eliminate the parental cell line upon re-challenge. In summary, expression of ApoA-I fused to P144 is a novel strategy to modulate TGF-β in tumor cells. These results highlight the potential of TGF-β as a target in the development of new antitumor treatments.

  3. Expression of transforming growth factor-beta 1, -beta 2, and -beta 3 in human developing teeth: immunolocalization according to the odontogenesis phases.

    PubMed

    Sassá Benedete, Ana Paula; Sobral, Ana Paula Veras; Lima, Dirce Mary Correia; Kamibeppu, Leonardo; Soares, Fernando Augusto; Lourenço, Silvia Vanessa

    2008-01-01

    Transforming growth factor-beta (TGF-beta) is a multifunctional growth factor that has several biological effects in vivo, including control of cell growth and differentiation, cell migration, lineage determination, motility, adhesion, apoptosis, and synthesis and degradation of extracellular matrix, and TGF-beta plays an important role in regulating tissue repair and regeneration. Our study analyzed the participation of TGF-beta 1, -beta 2, and -beta 3 in the different stages of morphogenesis and differentiation of human developing dental organ using immunohistochemistry. The maxillae and mandibles of 10 human embryos ranging from 8 to 23 weeks of gestation were employed, according to the approval of the ethical committee. Our study revealed that the TGF-beta subunits-beta 1, beta 2, and beta 3-were present in the various stages of tooth development, but the expression varied according to the differentiation stage, tissue, and TGF-beta subunit. Our results indicated that TGF-beta 1 is closely related to differentiation of enamel organ and initiation of matrix secretion, TGF-beta 2 to cellular differentiation, and TGF-beta 3 to mineral maturation matrix.

  4. Loss of responsiveness to transforming growth factor beta induces malignant transformation of nontumorigenic rat prostate epithelial cells.

    PubMed

    Tang, B; de Castro, K; Barnes, H E; Parks, W T; Stewart, L; Böttinger, E P; Danielpour, D; Wakefield, L M

    1999-10-01

    Transforming growth factor (TGF)-betas are multifunctional growth factors, the properties of which include the potent inhibition of epithelial cell growth. Expression patterns of TGF-betas and TGF-beta receptors in the normal prostate indicate that these growth regulators play key roles in prostatic development and proliferative homeostasis. Importantly, TGF-beta receptor levels are frequently diminished in malignant human prostate tissue. To test the hypothesis that loss of TGF-beta responsiveness is causally involved in the tumorigenic process, we have used retroviral transduction to introduce a dominant-negative mutant type II TGF-beta receptor (DNR) into the premalignant rat prostatic epithelial cell line, NRP-152. High-level expression of the DNR abolished the ability of TGF-beta to inhibit cell growth, to promote cell differentiation, and to induce apoptosis, and it partially blocked the induction of extracellular matrix gene expression. When injected into nude mice, NRP-152-DNR cells formed carcinomas at 13 of 34 sites, compared with 0 of 30 sites for parental and control cells (P = 0.0001). We conclude that the type II TGF-beta receptor is an important tumor suppressor in the prostate, and furthermore, that loss of TGF-beta responsiveness can contribute early in the tumorigenic process by causing the malignant transformation of preneoplastic cells.

  5. Differential response of nontumorigenic and tumorigenic human papillomavirus type 16-positive epithelial cells to transforming growth factor beta 1.

    PubMed

    Braun, L; Dürst, M; Mikumo, R; Gruppuso, P

    1990-11-15

    The transforming growth factor (TGF) beta s are multifunctional polypeptide growth factors with diverse biological effects, including inhibition of epithelial cell proliferation both in vitro and in vivo. To investigate the possible role of TGF beta 1 in the regulation of papillomavirus infection and papillomavirus-associated transformation, we compared the response to TGF beta 1 of normal keratinocytes, human papillomavirus, type 16 (HPV 16)-positive-immortalized keratinocytes (nontumorigenic), and HPV 16-positive cervical carcinoma cells (tumorigenic) with respect to DNA synthesis and protooncogene expression. All HPV 16-immortalized cell lines were nearly as inhibited by TGF beta 1 as normal keratinocytes, whereas two cervical carcinoma cell lines (Caski and Siha) were refractory to growth inhibition by TGF beta 1. Cell surface receptors for TGF beta 1 were present on both normal and carcinoma cell lines. In all cases, growth inhibition by TGF beta 1 was accompanied by suppression of Steady-state levels of c-myc mRNA. In contrast, TGF beta 1 induced the expression of c-jun mRNA transcripts in normal, immortalized, and tumorigenic cells. We also studied the effect of TGF beta 1 on HPV 16 mRNA expression. Steady-state levels of HPV 16 mRNA transcripts were suppressed by TGF beta 1 in the nontumorigenic HPK cells but were unaffected in the tumorigenic lines. These findings suggest that TGF beta 1 may be an in vivo modulator of HPV infection and that loss of responsiveness to this growth inhibitory signal may be involved in HPV-associated malignant transformation. PMID:2171761

  6. Expression of transforming growth factor-beta isoforms in small round cell tumors of childhood. An immunohistochemical study.

    PubMed Central

    McCune, B. K.; Patterson, K.; Chandra, R. S.; Kapur, S.; Sporn, M. B.; Tsokos, M.

    1993-01-01

    The transforming growth factor (TGF)-betas are a highly conserved group of potent multifunctional cell regulatory proteins with variable effects on cell growth and differentiation. Most of the small round cell group of childhood tumors are thought to arise from either primitive mesenchyme or neuroectoderm and show evidence of skeletal muscle or neural differentiation, and rarely both. To investigate the possibility that the TGF-betas have a role in the growth or differentiation of these neoplasms, we used antibodies specific for peptide sequences of the three known mammalian TGF-beta isoforms (TGF-betas 1, 2, and 3) to probe for TGF-beta protein expression in a total of 49 cases. TGF-beta 1 immunoreactivity was present in 16/17 (94%) of rhabdomyosarcomas, and the staining intensity was usually strong. TGF-beta 1 was also present in three of three ectomesenchymomas. In contrast, TGF-beta 1 was absent in all but one out of nine poorly differentiated neuroblastomas. Differentiating neuronal cells of ganglioneuroblastomas, however, were strongly positive for TGF-beta 1. Ewing's sarcomas and peripheral primitive neuroectodermal tumors had a less consistent, but usually positive, staining pattern. TGF-beta 3 staining patterns were very similar to those of TGF-beta 1. TGF-beta 2 immunoreactivity was only rarely detected in this group of tumors. The results suggest different roles for TGF-betas 1 and 3 in neuroblastoma and rhabdomyosarcoma. Expression of TGF-betas 1 and 3 is associated with neuronal differentiation of neuroblastoma. In contrast, these proteins may promote the growth of rhabdomyosarcoma by suppressing differentiation. Images Figure 1 Figure 2 Figure 3 PMID:8380955

  7. Binding of transforming growth factor-beta (TGF-beta) to pregnancy zone protein (PZP). Comparison to the TGF-beta-alpha 2-macroglobulin interaction.

    PubMed

    Philip, A; Bostedt, L; Stigbrand, T; O'Connor-McCourt, M D

    1994-04-15

    Pregnancy zone protein (PZP) is quantitatively the most important pregnancy-associated plasma protein and it has strong similarity to alpha 2-macroglobulin. Since alpha 2-macroglobulin is a binding protein for transforming growth factors-beta (TGF-beta), it was of interest to test whether the related protein, PZP, also binds to these growth-regulatory proteins. Using affinity-labelling methods, we demonstrate that PZP binds both TGF-beta 1 and TGF-beta 2 and that the binding characteristics are similar to those of the TGF-beta-alpha 2-macroglobulin interaction. TGF-beta 2 and TGF-beta 1 bind to PZP in a predominantly noncovalent manner in vitro. TGF-beta 1 and TGF-beta 2 bind to both the dimeric and tetrameric forms of PZP. Our studies also indicate that PZP binds TGF-beta 2 with higher affinity than TGF-beta 1. Finally, we demonstrate that PZP inhibits the binding of TGF-beta 1 and TGF-beta 2 to their cell surface receptors. The increased level of PZP during pregnancy may affect the action of TGF-beta by regulating the distribution, clearance and/or general availability of TGF-beta. The preferential binding of TGF-beta 2 over TGF-beta 1 by PZP implies that PZP may differentially regulate the action of TGF-beta 1 and TGF-beta 2.

  8. Cross-talk between Smad and p38 MAPK signalling in transforming growth factor {beta} signal transduction in human glioblastoma cells

    SciTech Connect

    Dziembowska, Magdalena; Danilkiewicz, Malgorzata; Wesolowska, Aleksandra; Zupanska, Agata; Chouaib, Salem; Kaminska, Bozena . E-mail: bozenakk@nencki.gov.pl

    2007-03-23

    Transforming growth factor-beta (TGF-{beta}) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation, and survival. Malignant tumour cells often do not respond to TGF-{beta} by growth inhibition, but retain responsiveness to cytokine in regulating extracellular matrix deposition, cell adhesion, and migration. We demonstrated that TGF-{beta}1 does not affect viability or proliferation of human glioblastoma T98G, but increases transcriptional responses exemplified by induction of MMP-9 expression. TGF-{beta} receptors were functional in T98G glioblastoma cells leading to SMAD3/SMAD4 nuclear translocation and activation of SMAD-dependent promoter. In parallel, a selective activation of p38 MAPK, and phosphorylation of its substrates: ATF2 and c-Jun proteins were followed by a transient activation of AP-1 transcription factor. Surprisingly, an inhibition of p38 MAPK with a specific inhibitor, SB202190, abolished TGF-inducible activation of Smad-dependent promoter and decreased Smad2 phosphorylation. It suggests an unexpected interaction between Smad and p38 MAPK pathways in TGF-{beta}1-induced signalling.

  9. Factor-binding element in the human c-myc promoter involved in transcriptional regulation by transforming growth factor. beta. 1 and by the retinoblastoma gene product

    SciTech Connect

    Pietenpol, J.A.; Stein, R.W.; Moses, H.L. ); Muenger, K.; Howley, P.M. )

    1991-11-15

    Previous studies have shown that transforming growth factor {beta}1 (TGF-{beta}1) inhibition of keratinocyte proliferation involves suppression of c-myc transcription, and indirect evidence has suggested that the retinoblastoma gene product (pRB) may be involved in this process. In this study, transient expression of pRB in skin keratinocytes was shown to repress transcription of the human c-myc promoter region was required for regulation by both TGF-{beta}1 and pRB. These sequences, termed the TGF-{beta} control element (TCE), lie between positions {minus}86 and {minus}63 relative to the P1 transcription start site. Oligonucleotides containing the TCE bound to several nuclear factors in mobility-shift assays using extracts from cells with or without normal pRB. Binding of some factors was inhibited by TGF-{beta}1 treatment of TGF-{beta}-sensitive but not TGF-{beta}-insensitive cells. These data indicate that pRB can suppress c-myc transcription and growth inhibition.

  10. Synergistic effect of vitamin D and low concentration of transforming growth factor beta 1, a potential role in dermal wound healing.

    PubMed

    Ding, Jie; Kwan, Peter; Ma, Zengshuan; Iwashina, Takashi; Wang, Jianfei; Shankowsky, Heather A; Tredget, Edward E

    2016-09-01

    Dermal wound healing, in which transforming growth factor beta 1 (TGFβ1) plays an important role, is a complex process. Previous studies suggest that vitamin D has a potential regulatory role in TGFβ1 induced activation in bone formation, and there is cross-talk between their signaling pathways, but research on their effects in other types of wound healing is limited. The authors therefore wanted to explore the role of vitamin D and its interaction with low concentration of TGFβ1 in dermal fibroblast-mediated wound healing through an in vitro study. Human dermal fibroblasts were treated with vitamin D, TGFβ1, both, or vehicle, and then the wound healing functions of dermal fibroblasts were measured. To further explore possible mechanisms explaining the synergistic effect of vitamin D and TGFβ1, targeted gene silencing of the vitamin D receptor was performed. Compared to either factor alone, treatment of fibroblasts with both vitamin D and low concentration of TGFβ1 increased gene expression of TGFβ1, connective tissue growth factor, and fibronectin 1, and enhanced fibroblast migration, myofibroblast formation, and collagen production. Vitamin D receptor gene silencing blocked this synergistic effect of vitamin D and TGFβ1 on both collagen production and myofibroblast differentiation. Thus a synergistic effect of vitamin D and low TGFβ1 concentration was found in dermal fibroblast-mediated wound healing in vitro. This study suggests that supplementation of vitamin D may be an important step to improve wound healing and regeneration in patients with a vitamin D deficiency. PMID:27222384

  11. Spontaneous production of transforming growth factor-beta 2 by primary cultures of bronchial epithelial cells. Effects on cell behavior in vitro.

    PubMed Central

    Sacco, O; Romberger, D; Rizzino, A; Beckmann, J D; Rennard, S I; Spurzem, J R

    1992-01-01

    The ability of airway epithelial cells to produce transforming growth factor-beta (TGF-beta) may be an important mechanism for the control of growth, differentiation, and repair of the airway epithelium. To determine whether airway epithelial cells are capable of producing TGF-beta, we examined primary cultures of bovine bronchial epithelial cells. Using a bioassay, TGF-beta activity was detected readily in media conditioned by bovine bronchial epithelial cells. Neutralizing antisera to TGF-beta 1 and TGF-beta 2 were used to demonstrate that the majority of the activity was of the TGF-beta 2 isoform. Interestingly, some of the TGF-beta activity was present in the conditioned media as "active" TGF-beta, not requiring acid activation. The production of TGF-beta was variable, depending on cell density and the presence of retinoic acid. The presence of endogenously produced active TGF-beta in the culture media was shown to modulate the behavior of the cell cultures as evidenced by the effects of TGF-beta-neutralizing antisera on cell size and fibronectin production. Our results suggest that active TGF-beta produced by airway epithelial cells may function in an autocrine or paracrine manner to modulate epithelial cell behavior. PMID:1401072

  12. Synergistic effect of vitamin D and low concentration of transforming growth factor beta 1, a potential role in dermal wound healing.

    PubMed

    Ding, Jie; Kwan, Peter; Ma, Zengshuan; Iwashina, Takashi; Wang, Jianfei; Shankowsky, Heather A; Tredget, Edward E

    2016-09-01

    Dermal wound healing, in which transforming growth factor beta 1 (TGFβ1) plays an important role, is a complex process. Previous studies suggest that vitamin D has a potential regulatory role in TGFβ1 induced activation in bone formation, and there is cross-talk between their signaling pathways, but research on their effects in other types of wound healing is limited. The authors therefore wanted to explore the role of vitamin D and its interaction with low concentration of TGFβ1 in dermal fibroblast-mediated wound healing through an in vitro study. Human dermal fibroblasts were treated with vitamin D, TGFβ1, both, or vehicle, and then the wound healing functions of dermal fibroblasts were measured. To further explore possible mechanisms explaining the synergistic effect of vitamin D and TGFβ1, targeted gene silencing of the vitamin D receptor was performed. Compared to either factor alone, treatment of fibroblasts with both vitamin D and low concentration of TGFβ1 increased gene expression of TGFβ1, connective tissue growth factor, and fibronectin 1, and enhanced fibroblast migration, myofibroblast formation, and collagen production. Vitamin D receptor gene silencing blocked this synergistic effect of vitamin D and TGFβ1 on both collagen production and myofibroblast differentiation. Thus a synergistic effect of vitamin D and low TGFβ1 concentration was found in dermal fibroblast-mediated wound healing in vitro. This study suggests that supplementation of vitamin D may be an important step to improve wound healing and regeneration in patients with a vitamin D deficiency.

  13. Inhibition of Transforming Growth Factor-Beta1 SignalingAttenuates Ataxia Telangiectasia Mutated Activity in Response toGenotoxic Stress

    SciTech Connect

    Kirshner, Julia; Jobling, Michael F.; Pajares, Maria Jose; Ravani, Shraddha A.; Glick, Adam; Lavin, Martin F.; Koslov, Sergei; Shiloh, Yosef; Barcellos-Hoff, Mary Helen

    2006-01-01

    Ionizing radiation causes DNA damage that elicits a cellular program of damage control coordinated by the kinase activity of ataxia telangiectasia mutated protein (ATM). Transforming growth factor {beta} (TGF{beta})-1, which is activated by radiation, is a potent and pleiotropic mediator of physiologic and pathologic processes. Here we show that TGF{beta} inhibition impedes the canonical cellular DNA damage stress response. Irradiated Tgf{beta}I null murine epithelial cells or human epithelial cells treated with a small-molecule inhibitor of TGF{beta} type I receptor kinase exhibit decreased phosphorylation of Chk2, Rad17, and p53; reduced H2AX radiation-induced foci; and increased radiosensitivity compared with TGF{beta} competent cells. We determined that loss of TGF{beta} signaling in epithelial cells truncated ATM autophosphorylation and significantly reduced its kinase activity, without affecting protein abundance. Addition of TGF{beta} restored functional ATM and downstream DNA damage responses. These data reveal a heretofore undetected critical link between the microenvironment and ATM, which directs epithelial cell stress responses, cell fate, and tissue integrity. Thus, Tgf{beta}I, in addition to its role in homoeostatic growth control, plays a complex role in regulating responses to genotoxic stress, the failure of which would contribute to the development of cancer; conversely, inhibiting TGF{beta} may be used to advantage in cancer therapy.

  14. P144, a Transforming Growth Factor beta inhibitor peptide, generates antitumoral effects and modifies SMAD7 and SKI levels in human glioblastoma cell lines.

    PubMed

    Gallo-Oller, Gabriel; Vollmann-Zwerenz, Arabel; Meléndez, Bárbara; Rey, Juan A; Hau, Peter; Dotor, Javier; Castresana, Javier S

    2016-10-10

    Glioblastoma (GBM) is the most prevalent malignant primary brain tumor, accounting for 60-70% of all gliomas. Current median patient survival time is 14-16 months after diagnosis. Numerous efforts in therapy have not significantly altered the nearly uniform lethality of this malignancy. The Transforming Growth Factor beta (TGF-β) signaling pathway plays a key role in GBM and is implicated in proliferation, invasion and therapy resistance. Several inhibitors of the TGF-β pathway have entered clinical trials or are under development. In this work, the therapeutic potential of P144, a TGF-β inhibitor peptide, was analyzed. P144 decreased proliferation, migration, invasiveness, and tumorigenicity in vitro, whereas apoptosis and anoikis were significantly increased for GBM cell lines. SMAD2 phosphorylation was reduced, together with a downregulation of SKI and an upregulation of SMAD7 at both transcriptional and translational levels. Additionally, P144 was able to impair tumor growth and increase survival in an in vivo flank model. Our findings suggest a potential effect of P144 in vitro and in vivo that is mediated by regulation of transcriptional target genes of the TGF-β pathway, suggesting a therapeutic potential of P144 for GBM treatment.

  15. P144, a Transforming Growth Factor beta inhibitor peptide, generates antitumoral effects and modifies SMAD7 and SKI levels in human glioblastoma cell lines.

    PubMed

    Gallo-Oller, Gabriel; Vollmann-Zwerenz, Arabel; Meléndez, Bárbara; Rey, Juan A; Hau, Peter; Dotor, Javier; Castresana, Javier S

    2016-10-10

    Glioblastoma (GBM) is the most prevalent malignant primary brain tumor, accounting for 60-70% of all gliomas. Current median patient survival time is 14-16 months after diagnosis. Numerous efforts in therapy have not significantly altered the nearly uniform lethality of this malignancy. The Transforming Growth Factor beta (TGF-β) signaling pathway plays a key role in GBM and is implicated in proliferation, invasion and therapy resistance. Several inhibitors of the TGF-β pathway have entered clinical trials or are under development. In this work, the therapeutic potential of P144, a TGF-β inhibitor peptide, was analyzed. P144 decreased proliferation, migration, invasiveness, and tumorigenicity in vitro, whereas apoptosis and anoikis were significantly increased for GBM cell lines. SMAD2 phosphorylation was reduced, together with a downregulation of SKI and an upregulation of SMAD7 at both transcriptional and translational levels. Additionally, P144 was able to impair tumor growth and increase survival in an in vivo flank model. Our findings suggest a potential effect of P144 in vitro and in vivo that is mediated by regulation of transcriptional target genes of the TGF-β pathway, suggesting a therapeutic potential of P144 for GBM treatment. PMID:27473823

  16. The insulin-like growth factor-binding protein (IGFBP) superfamily.

    PubMed

    Hwa, V; Oh, Y; Rosenfeld, R G

    1999-12-01

    multiple names already associated with each IGFBP related protein, and reinforces the concept of a relationship with the IGFBPs. Beyond the N-terminal domain, there is a lack of structural similarity between the IGFBP-rPs and IGFBPs. The C-terminal domains do share similarities to other internal domains found in numerous other proteins. For example, the similarity of the IGFBP C terminus to the thyroglobulin type-I domain shows that the IGFBPs are also structurally related to numerous other proteins carrying the same domain (87). Interestingly, the functions of the different C-terminal domains in members of the IGFBP superfamily include interactions with the cell surface or ECM, suggesting that, even if they share little sequence similarities, the C-terminal domains may be functionally related. The evolutionary conservation of the N-terminal domain and functional studies support the notion that IGFBPs and IGFBP-rPs together form an IGFBP superfamily. A superfamily delineates between closely related (classified as a family) and distantly related proteins. The IGFBP superfamily is therefore composed of distantly related families. The modular nature of the constituents of the IGFBP superfamily, particularly their preservation of an highly conserved N-terminal domain, seems best explained by the process of exon shuffling of an ancestral gene encoding this domain. Over the course of evolution, some members evolved into high-affinity IGF binders and others into low-affinity IGF binders, thereby conferring on the IGFBP superfamily the ability to influence cell growth by both IGF-dependent and IGF-independent means (Fig. 10). A final word, from Stephen Jay Gould (218): "But classifications are not passive ordering devices in a world objectively divided into obvious categories. Taxonomies are human decisions imposed upon nature--theories about the causes of nature's order. The chronicle of historical changes in classification provides our finest insight into conceptual revolutions

  17. Specific inhibition of transforming growth factor-beta2 expression in human osteoblast cells by antisense phosphorothioate oligonucleotides.

    PubMed

    Shen, Z J; Kim, S K; Kwon, O S; Lee, Y S; Moon, B J

    2001-04-01

    To elucidate the role of endogenous transforming growth factor (TGF)-beta2 on human osteoblast cell, antisense phosphorothioate oligonucleotides (S-ODNs) complementary to regions in mRNA of TGF-beta2 were synthesized and examined their effects on TGF-beta2 production and cell proliferation in a human osteoblast cell line ROS 17/2. Antisense S-ODNs were designated for three different target regions in the mRNA of TGF-beta2. Among several antisense S-ODN analyzed, an oligonucleotide (AS-11) complementary to the translation initiation site of mRNA of TGF-beta2 demonstrated a selective and strong inhibitory effect on TGF-beta2 production in osteoblast cells. Other antisense S-ODNs which were designated for other regions in mRNA of TGF-beta2 and one- or three-base mismatched analogs of AS-11 showed little or much less antisense activities than AS-11. Therefore, the most effective target site in mRNA of TGF-beta2 is at the initiation codon region. The antisense effects of AS-11 were observed without reduction of levels of mRNA of TGF-beta2. Furthermore, the inhibition of TGF-beta2 expression by antisense S-ODN appeared to enhance cell proliferation, demonstrating the growth inhibitory effect of autocrine TGF-beta2 in osteoblast cells.

  18. Transforming Growth Factor Beta Signaling Is Essential for the Autonomous Formation of Cartilage-Like Tissue by Expanded Chondrocytes

    PubMed Central

    Tekari, Adel; Luginbuehl, Reto; Hofstetter, Willy; Egli, Rainer J.

    2015-01-01

    Cartilage is a tissue with limited self-healing potential. Hence, cartilage defects require surgical attention to prevent or postpone the development of osteoarthritis. For cell-based cartilage repair strategies, in particular autologous chondrocyte implantation, articular chondrocytes are isolated from cartilage and expanded in vitro to increase the number of cells required for therapy. During expansion, the cells lose the competence to autonomously form a cartilage-like tissue, that is in the absence of exogenously added chondrogenic growth factors, such as TGF-βs. We hypothesized that signaling elicited by autocrine and/or paracrine TGF-β is essential for the formation of cartilage-like tissue and that alterations within the TGF-β signaling pathway during expansion interfere with this process. Primary bovine articular chondrocytes were harvested and expanded in monolayer culture up to passage six and the formation of cartilage tissue was investigated in high density pellet cultures grown for three weeks. Chondrocytes expanded for up to three passages maintained the potential for autonomous cartilage-like tissue formation. After three passages, however, exogenous TGF-β1 was required to induce the formation of cartilage-like tissue. When TGF-β signaling was blocked by inhibiting the TGF-β receptor 1 kinase, the autonomous formation of cartilage-like tissue was abrogated. At the initiation of pellet culture, chondrocytes from passage three and later showed levels of transcripts coding for TGF-β receptors 1 and 2 and TGF-β2 to be three-, five- and five-fold decreased, respectively, as compared to primary chondrocytes. In conclusion, the autonomous formation of cartilage-like tissue by expanded chondrocytes is dependent on signaling induced by autocrine and/or paracrine TGF-β. We propose that a decrease in the expression of the chondrogenic growth factor TGF-β2 and of the TGF-β receptors in expanded chondrocytes accounts for a decrease in the activity of

  19. MicroRNA-26a modulates transforming growth factor beta-1-induced proliferation in human fetal lung fibroblasts

    SciTech Connect

    Li, Xiaoou; Liu, Lian; Shen, Yongchun; Wang, Tao; Chen, Lei; Xu, Dan; Wen, Fuqiang

    2014-11-28

    Highlights: • Endogenous miR-26a inhibits TGF-beta 1 induced proliferation of lung fibroblasts. • miR-26a induces G1 arrest through directly targeting 3′-UTR of CCND2. • TGF indispensable receptor, TGF-beta R I, is regulated by miR-26a. • miR-26a acts through inhibiting TGF-beta 2 feedback loop to reduce TGF-beta 1. • Collagen type I and connective tissue growth factor are suppressed by miR-26a. - Abstract: MicroRNA-26a is a newly discovered microRNA that has a strong anti-tumorigenic capacity and is capable of suppressing cell proliferation and activating tumor-specific apoptosis. However, whether miR-26a can inhibit the over-growth of lung fibroblasts remains unclear. The relationship between miR-26a and lung fibrosis was explored in the current study. We first investigated the effect of miR-26a on the proliferative activity of human lung fibroblasts with or without TGF-beta1 treatment. We found that the inhibition of endogenous miR-26a promoted proliferation and restoration of mature miR-26a inhibited the proliferation of human lung fibroblasts. We also examined that miR-26a can block the G1/S phase transition via directly targeting 3′-UTR of CCND2, degrading mRNA and decreasing protein expression of Cyclin D2. Furthermore, we showed that miR-26a mediated a TGF-beta 2-TGF-beta 1 feedback loop and inhibited TGF-beta R I activation. In addition, the overexpression of miR-26a also significantly suppressed the TGF-beta 1-interacting-CTGF–collagen fibrotic pathway. In summary, our studies indicated an essential role of miR-26a in the anti-fibrotic mechanism in TGF-beta1-induced proliferation in human lung fibroblasts, by directly targeting Cyclin D2, regulating TGF-beta R I as well as TGF-beta 2, and suggested the therapeutic potential of miR-26a in ameliorating lung fibrosis.

  20. Targeting Transforming Growth Factor-Beta1 (TGF-β1) Inhibits Tumorigenesis of Anaplastic Thyroid Carcinoma Cells Through ERK1/2-NFκkB-PUMA Signaling.

    PubMed

    Yin, Qiang; Liu, Shan; Dong, Anbing; Mi, Xiufang; Hao, Fengyun; Zhang, Kejun

    2016-06-30

    BACKGROUND The transforming growth factor-beta (TGF-β) signaling pathway plays a critical role in promoting tumor growth. TGF-β1was found to be overexpressed in anaplastic thyroid cancer (ATC). We therefore tested our hypothesis that targeting TGF-β1 inhibits tumorigenesis of ATC cells. MATERIAL AND METHODS Effects of TGF-β1 stimulation or TGF-β1 inhibition by small interfering RNA (TGF-β1siRNA) on proliferation, colony formation, and apoptosis in 8505C cells in vitro was detected using siRNAs and inhibitors to examine the TGF-β1 signaling pathway. A subcutaneously implanted tumor model of 8505C cells in nude mice was used to assess the effects of TGF-β1 inhibition on tumorigenesis development. RESULTS TGF-β1siRNAs decreased proliferation and colony formation, and increased apoptosis in 8505C cells in vitro and inhibited tumor growth in vivo. TGF-β1siRNA inhibited phosphorylation ERK1/2 (pERK1/2) and increased p65-dependant PUMA mRNA and protein expression. Knockdown of p65 or PUMA by siRNA reduced TGF-β1siRNA-induced apoptosis, as well as caspase-3 and PARP activation. Upregulation of p65 or PUMA expression by TGF-β1siRNA requires pERK1/2 inhibition. TGF-β1 shRNA inhibited tumor growth in vivo. CONCLUSIONS Therapies targeting the TGF-β1 pathway may be more effective to prevent primary tumor formation. The ability of this therapy to decrease tumorigenesis may be related to ERK1/2/NF-κB/PUMA signaling.

  1. Targeting Transforming Growth Factor-Beta1 (TGF-β1) Inhibits Tumorigenesis of Anaplastic Thyroid Carcinoma Cells Through ERK1/2-NFκkB-PUMA Signaling.

    PubMed

    Yin, Qiang; Liu, Shan; Dong, Anbing; Mi, Xiufang; Hao, Fengyun; Zhang, Kejun

    2016-01-01

    BACKGROUND The transforming growth factor-beta (TGF-β) signaling pathway plays a critical role in promoting tumor growth. TGF-β1was found to be overexpressed in anaplastic thyroid cancer (ATC). We therefore tested our hypothesis that targeting TGF-β1 inhibits tumorigenesis of ATC cells. MATERIAL AND METHODS Effects of TGF-β1 stimulation or TGF-β1 inhibition by small interfering RNA (TGF-β1siRNA) on proliferation, colony formation, and apoptosis in 8505C cells in vitro was detected using siRNAs and inhibitors to examine the TGF-β1 signaling pathway. A subcutaneously implanted tumor model of 8505C cells in nude mice was used to assess the effects of TGF-β1 inhibition on tumorigenesis development. RESULTS TGF-β1siRNAs decreased proliferation and colony formation, and increased apoptosis in 8505C cells in vitro and inhibited tumor growth in vivo. TGF-β1siRNA inhibited phosphorylation ERK1/2 (pERK1/2) and increased p65-dependant PUMA mRNA and protein expression. Knockdown of p65 or PUMA by siRNA reduced TGF-β1siRNA-induced apoptosis, as well as caspase-3 and PARP activation. Upregulation of p65 or PUMA expression by TGF-β1siRNA requires pERK1/2 inhibition. TGF-β1 shRNA inhibited tumor growth in vivo. CONCLUSIONS Therapies targeting the TGF-β1 pathway may be more effective to prevent primary tumor formation. The ability of this therapy to decrease tumorigenesis may be related to ERK1/2/NF-κB/PUMA signaling. PMID:27356491

  2. Polyamine metabolism and transforming growth factor-beta signaling are affected in Caco-2 cells by differentially cooked broccoli extracts.

    PubMed

    Furniss, Caroline S M; Bennett, Richard N; Bacon, James R; LeGall, Gwen; Mithen, Richard F

    2008-10-01

    The health benefits of consuming cruciferous vegetables are widely considered to be due to the biological activity of glucosinolate degradation products. However, it is conceivable that other phytochemicals within crucifers may also have biological activity that may contribute to health benefits. In this study, we analyzed global gene expression in Caco-2 cells exposed to extracts derived from broccoli that had been heat treated to different extents to result in contrasting profiles of glucosinolates and their degradation products. Extracts microwaved for 0, 1, and 4 min contained 9.5, 25.5, and 0 micromol/L sulforaphane and induced changes in expression of 381, 1017, and 101 genes, respectively (>2 fold; P < 0.01). Seventy-two genes showed similar changes in expression after treatment with all 3 extracts. These included genes involved in polyamine catabolism and transforming growth factor (TGF)-beta signaling. Consistent with these changes in gene expression, subsequent studies demonstrated that exposing cells to these extracts, including the 4-min extract that contained no glucosinolate degradation products, increased putrescine and N-acetyl-spermine concentration, and suppressed the TGFbeta1-mediated induction of phosphorylated Smad 2. This is the first report, to our knowledge, of phytochemicals from a cruciferous vegetable affecting both a signaling pathway and a catabolic process.

  3. Overexpression of transforming growth factor-beta1 in fetal monkey lung results in prenatal pulmonary fibrosis.

    PubMed

    Tarantal, A F; Chen, H; Shi, T T; Lu, C-H; Fang, A B; Buckley, S; Kolb, M; Gauldie, J; Warburton, D; Shi, W

    2010-10-01

    Altered transforming growth factor (TGF)-β expression levels have been linked to a variety of human respiratory diseases, including bronchopulmonary dysplasia and pulmonary fibrosis. However, a causative role for aberrant TGF-β in neonatal lung diseases has not been defined in primates. Exogenous and transient TGF-β1 overexpression in fetal monkey lung was achieved by transabdominal ultrasound-guided fetal intrapulmonary injection of adenoviral vector expressing TGF-β1 at the second or third trimester of pregnancy. The lungs were then harvested near term, and fixed for histology and immunohistochemistry. Lung hypoplasia was observed where TGF-β1 was overexpressed during the second trimester. The most clearly marked phenotype consisted of severe pulmonary and pleural fibrosis, which was independent of the gestational time point when TGF-β1 was overexpressed. Increased cell proliferation, particularly in α-smooth muscle actin-positive myofibroblasts, was detected within the fibrotic foci. But epithelium to mesenchyme transdifferentiation was not detected. Massive collagen fibres were deposited on the inner and outer sides of the pleural membrane, with an intact elastin layer in the middle. This induced fibrotic pathology persisted even after adenoviral-mediated TGF-β1 overexpression was no longer evident. Therefore, overexpression of TGF-β1 within developing fetal monkey lung results in severe and progressive fibrosis in lung parenchyma and pleural membrane, in addition to pulmonary hypoplasia.

  4. Transforming Growth Factor-Beta (TGF-β) Signaling in Paravertebral Muscles in Juvenile and Adolescent Idiopathic Scoliosis

    PubMed Central

    Kwiecien, Magdalena

    2014-01-01

    Most researchers agree that idiopathic scoliosis (IS) is a multifactorial disease influenced by complex genetic and environmental factors. The onset of the spinal deformity that determines the natural course of the disease, usually occurs in the juvenile or adolescent period. Transforming growth factors β (TGF-βs) and their receptors, TGFBRs, may be considered as candidate genes related to IS susceptibility and natural history. This study explores the transcriptional profile of TGF-βs, TGFBRs, and TGF-β responsive genes in the paravertebral muscles of patients with juvenile and adolescent idiopathic scoliosis (JIS and AIS, resp.). Muscle specimens were harvested intraoperatively and grouped according to the side of the curve and the age of scoliosis onset. The results of microarray and qRT-PCR analysis confirmed significantly higher transcript abundances of TGF-β2, TGF-β3, and TGFBR2 in samples from the curve concavity of AIS patients, suggesting a difference in TGF-β signaling in the pathogenesis of juvenile and adolescent curves. Analysis of TGF-β responsive genes in the transcriptomes of patients with AIS suggested overrepresentation of the genes localized in the extracellular region of curve concavity: LTBP3, LTBP4, ITGB4, and ITGB5. This finding suggests the extracellular region of paravertebral muscles as an interesting target for future molecular research into AIS pathogenesis. PMID:25313366

  5. Ionizing Radiation Promotes Migration and Invasion of Cancer Cells Through Transforming Growth Factor-Beta-Mediated Epithelial-Mesenchymal Transition

    SciTech Connect

    Zhou Yongchun; Liu Junye; Li Jing; Zhang Jie; Xu Yuqiao; Zhang Huawei; Qiu Lianbo; Ding Guirong; Su Xiaoming; Mei Shi; Guo Guozhen

    2011-12-01

    Purpose: To examine whether ionizing radiation enhances the migratory and invasive abilities of cancer cells through transforming growth factor (TGF-{beta})-mediated epithelial-mesenchymal transition (EMT). Methods and Materials: Six cancer cell lines originating from different human organs were irradiated by {sup 60}Co {gamma}-ray at a total dose of 2 Gy, and the changes associated with EMT, including morphology, EMT markers, migration and invasion, were observed by microscope, Western blot, immunofluorescence, scratch assay, and transwell chamber assay, respectively. Then the protein levels of TGF-{beta} in these cancer cells were detected by enzyme-linked immunosorbent assay, and the role of TGF-{beta} signaling pathway in the effect of ionizing radiation on EMT was investigate by using the specific inhibitor SB431542. Results: After irradiation with {gamma}-ray at a total dose of 2 Gy, cancer cells presented the mesenchymal phenotype, and compared with the sham-irradiation group the expression of epithelial markers was decreased and of mesenchymal markers was increased, the migratory and invasive capabilities were strengthened, and the protein levels of TGF-{beta} were enhanced. Furthermore, events associated with EMT induced by IR in A549 could be reversed through inhibition of TGF-{beta} signaling. Conclusions: These results suggest that EMT mediated by TGF-{beta} plays a critical role in IR-induced enhancing of migratory and invasive capabilities in cancer cells.

  6. Inhibition of fatty acid oxidation activates transforming growth factor-beta in cerebrospinal fluid and decreases spontaneous motor activity.

    PubMed

    Fujikawa, Teppei; Fujita, Ryo; Iwaki, Yoko; Matsumura, Shigenobu; Fushiki, Tohru; Inoue, Kazuo

    2010-10-01

    We have previously reported that transforming growth factor (TGF)-beta in the cerebrospinal fluid (CSF) is involved in the mechanism underlying the regulation of spontaneous motor activity (SMA) by the central nervous system after exercise. However, it remained unclear what physiological condition triggers the activation of TGF-beta. We hypothesized that the shortage of energy derived from fatty acid (FA) oxidation observed in the early phase of exercise activated TGF-beta in the CSF. To test this hypothesis, we investigated whether mercaptoacetate (MA), an inhibitor of FA oxidation, could induce an activation of TGF-beta in the CSF and a decrease in SMA. Intraperitoneal (i.p.) administration of MA activated TGF-beta in CSF in rats and depressed SMA; 2-deoxyglucose, an inhibitor of carbohydrate oxidation, on the other hand, depressed SMA but failed to activate CSF TGF-beta. Intracisternal administration of anti-TGF-beta antibody abolished the depressive effect of MA on SMA. We also found that the depression of SMA and the activation of TGF-beta in the CSF by i.p. MA administration were eliminated by vagotomy. Our data suggest that TGF-beta in the CSF is activated by the inhibition of FA oxidation via the vagus nerve and that this subsequently induces depression of SMA.

  7. TRANSFORMING GROWTH FACTOR-BETA MEDIATED SUPPRESSION OF ANTI-TUMOR T CELLS REQUIRES FOXP1 TRANSCRIPTION FACTOR EXPRESSION

    PubMed Central

    Stephen, Tom L.; Rutkowski, Melanie R.; Allegrezza, Michael J.; Perales-Puchalt, Alfredo; Tesone, Amelia J.; Svoronos, Nikolaos; Nguyen, Jenny M.; Sarmin, Fahmida; Borowsky, Mark E.; Tchou, Julia; Conejo-Garcia, Jose R.

    2014-01-01

    SUMMARY Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the up-regulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8+ T cells from proliferating and up-regulating Granzyme-B and interferon-γ (IFN-γ) in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors, and promoted protection against tumor re-challenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in pre-activated CD8+ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation. PMID:25238097

  8. Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung.

    PubMed Central

    Sime, P J; Xing, Z; Graham, F L; Csaky, K G; Gauldie, J

    1997-01-01

    Transforming growth factor (TGF)-beta1 has been implicated in the pathogenesis of fibrosis based upon its matrix-inducing effects on stromal cells in vitro, and studies demonstrating increased expression of total TGF-beta1 in fibrotic tissues from a variety of organs. The precise role in vivo of this cytokine in both its latent and active forms, however, remains unclear. Using replication-deficient adenovirus vectors to transfer the cDNA of porcine TGF-beta1 to rat lung, we have been able to study the effect of TGF-beta1 protein in the respiratory tract directly. We have demonstrated that transient overexpression of active, but not latent, TGF-beta1 resulted in prolonged and severe interstitial and pleural fibrosis characterized by extensive deposition of the extracellular matrix (ECM) proteins collagen, fibronectin, and elastin, and by emergence of cells with the myofibroblast phenotype. These results illustrate the role of TGF-beta1 and the importance of its activation in the pulmonary fibrotic process, and suggest that targeting active TGF-beta1 and steps involved in TGF-beta1 activation are likely to be valuable antifibrogenic therapeutic strategies. This new and versatile model of pulmonary fibrosis can be used to study such therapies. PMID:9259574

  9. Effects of transforming growth factor-beta in the development of inflammatory pseudotumour-like lesions in a murine model.

    PubMed

    Guariniello, Luciana Doria; Correa, Mariangela; Jasiulionis, Miriam Galvonas; Machado, Joel; Silva, José Antônio; Pesquero, João Bosco; Carneiro, Célia Regina Whitaker

    2006-06-01

    Alterations in transforming growth factor (TGF)-beta signalling have been frequently implicated in human cancer, and an important mechanism underlying its pro-oncogenic nature is suppression of the host antitumour immune response. Considering the immunosuppressive effect of TGF-beta, we asked whether human tumour cells, known to secrete TGF-beta in culture, would survive and grow when implanted into the peritoneal cavity of immunocompetent mice. Therefore, we developed a xenogeneic model where mice were intraperitoneally (i.p.) injected with a TGF-beta-secreting human colorectal adenocarcinoma cell line, LISP-A10. Although animals did not develop macroscopic tumours, the recovery and isolation of human tumour cells was achieved when an inflammatory environment was locally induced by the administration of complete Freund's adjuvant (CFA). This procedure significantly increased TGF-beta concentrations in the peritoneal fluid and was accompanied by impaired activation of the host-specific immune response against LISP-A10 cells. Furthermore, inflammatory lesions resembling human inflammatory pseudotumours (IPTs) were observed on the surface of i.p. organs. These lesions could be induced by either injection of LISP-A10 cells, cells-conditioned medium or recombinant TGF-beta but only after administration of CFA. In addition, host cyclooxygenase-2 and kinin receptors played an important role in the induction of TGF-beta-mediated IPT-like lesions in our experimental model. PMID:16709227

  10. Protective effects of melittin on transforming growth factor-{beta}1 injury to hepatocytes via anti-apoptotic mechanism

    SciTech Connect

    Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun; Park, Yoon-Yub; Han, Sang-Mi; Park, Kwan-kyu

    2011-10-15

    Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-{beta}1-induced apoptosis in hepatocytes. TGF-{beta}1-treated hepatocytes were exposed to low doses (0.5 and 1 {mu}g/mL) and high dose (2 {mu}g/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-{beta}1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-{beta}1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-{beta}1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-{beta}1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-{beta}1-mediated injury. - Highlights: > We investigated the anti-apoptotic effect of melittin on TGF-{beta}1-induced hepatocyte. > TGF-{beta}1 induces hepatocyte apoptosis. > TGF-{beta}1-treated hepatocytes were exposed to low doses and high dose of melittin. > Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.

  11. Inhibition of transforming growth factor-beta signaling induces left ventricular dilation and dysfunction in the pressure-overloaded heart.

    PubMed

    Lucas, Jason A; Zhang, Yun; Li, Peng; Gong, Kaizheng; Miller, Andrew P; Hassan, Erum; Hage, Fadi; Xing, Dongqi; Wells, Bryan; Oparil, Suzanne; Chen, Yiu-Fai

    2010-02-01

    This study utilized a transgenic mouse model that expresses an inducible dominant-negative mutation of the transforming growth factor (TGF)-beta type II receptor (DnTGFbetaRII) to define the structural and functional responses of the left ventricle (LV) to pressure-overload stress in the absence of an intact TGF-beta signaling cascade. DnTGFbetaRII and nontransgenic (NTG) control mice (male, 8-10 wk) were randomized to receive Zn(2+) (25 mM ZnSO(4) in drinking H(2)O to induce DnTGFbetaRII gene expression) or control tap H(2)O and then further randomized to undergo transverse aortic constriction (TAC) or sham surgery. At 7 days post-TAC, interstitial nonmyocyte proliferation (Ki67 staining) was greatly reduced in LV of DnTGFbetaRII+Zn(2+) mice compared with the other TAC groups. At 28 and 120 days post-TAC, collagen deposition (picrosirius-red staining) in LV was attenuated in DnTGFbetaRII+Zn(2+) mice compared with the other TAC groups. LV end systolic diameter and end systolic and end diastolic volumes were markedly increased, while ejection fraction and fractional shortening were significantly decreased in TAC-DnTGFbetaRII+Zn(2+) mice compared with the other groups at 120 days post-TAC. These data indicate that interruption of TGF-beta signaling attenuates pressure-overload-induced interstitial nonmyocyte proliferation and collagen deposition and promotes LV dilation and dysfunction in the pressure-overloaded heart, thus creating a novel model of dilated cardiomyopathy. PMID:19933419

  12. Transforming growth factor-beta/Smad3 signaling regulates insulin gene transcription and pancreatic islet beta-cell function.

    PubMed

    Lin, Huei-Min; Lee, Ji-Hyeon; Yadav, Hariom; Kamaraju, Anil K; Liu, Eric; Zhigang, Duan; Vieira, Anthony; Kim, Seong-Jin; Collins, Heather; Matschinsky, Franz; Harlan, David M; Roberts, Anita B; Rane, Sushil G

    2009-05-01

    Pancreatic islet beta-cell dysfunction is a signature feature of Type 2 diabetes pathogenesis. Consequently, knowledge of signals that regulate beta-cell function is of immense clinical relevance. Transforming growth factor (TGF)-beta signaling plays a critical role in pancreatic development although the role of this pathway in the adult pancreas is obscure. Here, we define an important role of the TGF-beta pathway in regulation of insulin gene transcription and beta-cell function. We identify insulin as a TGF-beta target gene and show that the TGF-beta signaling effector Smad3 occupies the insulin gene promoter and represses insulin gene transcription. In contrast, Smad3 small interfering RNAs relieve insulin transcriptional repression and enhance insulin levels. Transduction of adenoviral Smad3 into primary human and non-human primate islets suppresses insulin content, whereas, dominant-negative Smad3 enhances insulin levels. Consistent with this, Smad3-deficient mice exhibit moderate hyperinsulinemia and mild hypoglycemia. Moreover, Smad3 deficiency results in improved glucose tolerance and enhanced glucose-stimulated insulin secretion in vivo. In ex vivo perifusion assays, Smad3-deficient islets exhibit improved glucose-stimulated insulin release. Interestingly, Smad3-deficient islets harbor an activated insulin-receptor signaling pathway and TGF-beta signaling regulates expression of genes involved in beta-cell function. Together, these studies emphasize TGF-beta/Smad3 signaling as an important regulator of insulin gene transcription and beta-cell function and suggest that components of the TGF-beta signaling pathway may be dysregulated in diabetes.

  13. Mechanisms of electroacupuncture effects on acute cerebral ischemia/reperfusion injury: possible association with upregulation of transforming growth factor beta 1

    PubMed Central

    Wang, Wen-biao; Yang, Lai-fu; He, Qing-song; Li, Tong; Ma, Yi-yong; Zhang, Ping; Cao, Yi-sheng

    2016-01-01

    Electroacupuncture at the head acupoints Baihui (GV20) and Shuigou (GV26) improves recovery of neurological function following ischemic cerebrovascular events, but its mechanism remains incompletely understood. We hypothesized that the action of electroacupuncture at these acupoints is associated with elevated serum levels of transforming growth factor beta 1 (TGF-β1). To test this, we established a rat model of cerebral ischemia by middle cerebral artery occlusion. Electroacupuncture was performed at Baihui and Shuigou with a “disperse-dense” wave at an alternating frequency of 2 and 150 Hz, and at a constant intensity of 3 mA. Each electroacupuncture session lasted 30 minutes and was performed every 12 hours for 3 days. Neurological severity scores were lower in injured rats after acupuncture than in those not subjected to treatment. Furthermore, serum level of TGF-β1 was greater after electroacupuncture than after no treatment. Our results indicate that electroacupuncture at Baihui and Shuigou increases the serum level of TGF-β1 in rats with acute cerebral ischemia/reperfusion injury, and exerts neuroprotective effects. PMID:27630692

  14. Transforming growth factor-beta can suppress tumorigenesis through effects on the putative cancer stem or early progenitor cell and committed progeny in a breast cancer xenograft model.

    PubMed

    Tang, Binwu; Yoo, Naomi; Vu, Mary; Mamura, Mizuko; Nam, Jeong-Seok; Ooshima, Akira; Du, Zhijun; Desprez, Pierre-Yves; Anver, Miriam R; Michalowska, Aleksandra M; Shih, Joanna; Parks, W Tony; Wakefield, Lalage M

    2007-09-15

    The transforming growth factor-beta (TGF-beta) pathway has tumor-suppressor activity in many epithelial tissues. Because TGF-beta is a potent inhibitor of epithelial cell proliferation, it has been widely assumed that this property underlies the tumor-suppressor effect. Here, we have used a xenograft model of breast cancer to show that endogenous TGF-beta has the potential to suppress tumorigenesis through a novel mechanism, involving effects at two distinct levels in the hierarchy of cellular progeny that make up the epithelial component of the tumor. First, TGF-beta reduces the size of the putative cancer stem or early progenitor cell population, and second it promotes differentiation of a more committed, but highly proliferative, progenitor cell population to an intrinsically less proliferative state. We further show that reduced expression of the type II TGF-beta receptor correlates with loss of luminal differentiation in a clinical breast cancer cohort, suggesting that this mechanism may be clinically relevant. At a molecular level, the induction of differentiation by TGF-beta involves down-regulation of Id1, and forced overexpression of Id1 can promote tumorigenesis despite persistence of the antiproliferative effect of TGF-beta. These data suggest new roles for the TGF-beta pathway in regulating tumor cell dynamics that are independent of direct effects on proliferation.

  15. The mechanism and significance of synergistic induction of the expression of plasminogen activator inhibitor-1 by glucocorticoid and transforming growth factor beta in human ovarian cancer cells.

    PubMed

    Pan, Xiao-yu; Wang, Yan; Su, Jie; Huang, Gao-xiang; Cao, Dong-mei; Qu, Shen; Lu, Jian

    2015-05-15

    Plasminogen activator inhibitor-1 (PAI-1) plays a key role in tissue remodeling and tumor development by suppression of plasminogen activator function. Glucocorticoids (GCs) and transforming growth factor beta (TGF-β) signal pathways cross-talk to regulate gene expression, but the mechanism is poorly understood. Here we investigated the mechanism and significance of co-regulation of PAI-1 by TGF-β and dexamethasone (DEX), a synthetic glucocorticoid in ovarian cancer cells. We found that TGF-β and DEX showed rapidly synergistic induction of PAI-1 expression, which contributed to the early pro-adhesion effects. The synergistic induction effect was accomplished by several signal pathways, including GC receptor (GR) pathway and TGF-β-activated p38MAPK, ERK and Smad3 pathways. TGF-β-activated p38MAPK and ERK pathways cross-talked with GR pathway to augment the expression of PAI-1 through enhancing DEX-induced GR phosphorylation at Ser211 in ovarian cancer cells. These findings reveal possible novel mechanisms by which TGF-β pathways cooperatively cross-talk with GR pathway to regulate gene expression.

  16. Cellular distribution of transforming growth factor-beta 1 and procollagen types I, III, and IV transcripts in carbon tetrachloride-induced rat liver fibrosis.

    PubMed Central

    Nakatsukasa, H; Nagy, P; Evarts, R P; Hsia, C C; Marsden, E; Thorgeirsson, S S

    1990-01-01

    The cellular distribution and temporal expression of transcripts from transforming growth factor-beta 1 (TGF-beta 1) and procollagen alpha 1(I), alpha 1(III), and alpha 1(IV) genes were studied in carbon tetrachloride (CCl4)-induced rat liver fibrosis by using in situ hybridization technique. During the fibrotic process, TGF-beta 1 and procollagen genes were similarly and predominantly expressed in Desmin-positive perisinusoidal cells (e.g., fat-storing cells and myofibroblasts) and fibroblasts and their expression continued to be higher than those observed in control rats. These transcripts were also observed in inflammatory cells mainly granulocytes and macrophage-like cells at the early stages of liver fibrosis. The production of extracellular matrix along small blood vessels and fibrous septa coincided with the expression of these genes. Expression of TGF-beta 1 and procollagen genes were not detected in hepatocytes throughout the experiment. No significant differences in cellular distribution or time course of gene expression among procollagen alpha 1(I), alpha 1(III), and alpha 1(IV) were observed. Desmin-positive perisinusoidal cells and fibroblasts appeared to play the principal role in synthesis of collagens in CCl4-induced hepatic fibrosis. The simultaneous expression of TGF-beta 1 and procollagen genes in mesenchymal cells, including Desmin-positive perisinusoidal cells, during hepatic fibrosis suggests the possibility that TGF-beta 1 may have an important role in the production of fibrosis. Images PMID:1693377

  17. Transforming Growth Factor Beta 1 Induces Tight Junction Disruptions and Loss of Transepithelial Resistance Across Porcine Vas Deferens Epithelial Cells1

    PubMed Central

    Pierucci-Alves, Fernando; Yi, Sheng; Schultz, Bruce D.

    2011-01-01

    ABSTRACT Epithelial cells lining the male excurrent duct contribute to male fertility by employing a number of physiological mechanisms that generate a luminal microenvironment conducive to spermatozoa maturation and storage. Among these mechanisms, male duct epithelia establish intercellular tight junctions that constitute a barrier to paracellular diffusion of water, solutes, large molecules, and cells. Mechanisms regulating the male duct epithelial barrier remain unidentified. Transforming growth factor beta (TGFB) is a regulatory cytokine present in high concentrations in human semen. This study examined whether TGFB has any effects on epithelial function exhibited by primary cultures of porcine vas deferens epithelia. TGFB1 exposure caused a 70%–99% decrease in basal transepithelial electrical resistance (RTE, a sensitive indicator of barrier integrity), while a significant decrease in anion secretory response to forskolin was detected at the highest levels of TGFB1 exposure employed. SB431542, a selective TGFB receptor I (TGFBR1) inhibitor, prevented decreases in barrier function. Results also demonstrated that TGFB1 exposure modifies the distribution pattern of tight junction proteins occludin and claudin 7. TGFBR1 is localized at the apical border of the native porcine vas deferens epithelium. Pharmacological inhibition of mitogen-activated protein kinase (MAPK) 11 (also known as p38-MAPK) did not alter the effect of TGFB1 on RTE significantly. These data suggest that epithelia lining the vas deferens are subject to disruptions in the physical barrier if active TGFB becomes bioavailable in the luminal fluid, which might be expected to compromise fertility. PMID:21957188

  18. Effect of recombinant adeno-associated virus mediated transforming growth factor-beta1 on corneal allograft survival after high-risk penetrating keratoplasty.

    PubMed

    Zhou, Lianhong; Zhu, Xiangxiang; Tan, Jinquan; Wang, Jiong; Xing, Yiqiao

    2013-06-01

    Corneal transplantation is one of the most common and successful transplant surgeries performed around the world. However, the high-risk corneal transplantation remains a high level of corneal graft failure. Gene transfer of immunomodulatory molecules is considered as one potential strategy in preventing allograft rejection. It is worthy evaluating the effects of the immunemodulating agent on corneal allograft rejection. The purpose of this paper is to investigate the effects and mechanisms of recombinant adeno-associated virus mediated transforming growth factor-beta1 (rAAV-TGF-beta1) on corneal allograft survival using a high-risk rat model after penetrating keratoplasty (PKP). The mean survival time (MST) of corneal grafts was observed and immuno-histochemical staining of TGF-beta1 and Ox-62 was performed in the study. The MST showed significant prolongation in the rAAV-TGF-beta1 group compared to the allograft group. The rejection index (RI) at day 10 revealed was significantly greater in the allograft group than that of the other two groups. Besides the increase of TGF-beta1, the expression of Ox-62 decreasing in rAAV-TGF-beta1 transplanted recipients was detected after transplantation. In short, treatment with rAAV-TGF-beta1 prolongs corneal allograft survival and inhibits the Ox-62 expression in grafts after high-risk PKP.

  19. [The role of transforming growth factor-beta (TGF-beta) in the pathogenesis of primary megaureter. A histological and immunocytochemical study].

    PubMed

    Romeo, G; Nicòtina, P A; Arena, F; Romeo, C; Ferlazzo, G

    1995-01-01

    Histologic and Transforming Growth Factor Beta (TGF-beta) immunostain patterns were sought in resected distal urinary tracts from 17 Primary Megaureter (PM) affected children, referred to surgery. Comparative observations were also carried out on embryonal and fetal ureteral buds of both humans and bovines. A reciprocal resemblance was mainly objectivized between the resected "narrowed" ureters of patients under 18 months, and the fetal ureteral buds at 26th and 38th gestational week. A development delay was irrespectively observed in PM "narrowed" ureters, at the longitudinal muscle-bundles in the parietal juxta-luminal compartment. A consistent TGF-beta immunostain cytoplasmic reaction there selectively depicted the growing mesenchymal lines, including both the undifferentiated single cells and the muscle-like profiled ones. These results agree with very recent reports perspecting a segmental maturation delay as a pathogenetic moment of PM. Because of the acquired potent TGF-beta inhibitory role on myoblasts differentiation, the present study substantiates a persistent TGF-beta role in perinatal ureter dilations.

  20. Mechanisms of electroacupuncture effects on acute cerebral ischemia/reperfusion injury: possible association with upregulation of transforming growth factor beta 1.

    PubMed

    Wang, Wen-Biao; Yang, Lai-Fu; He, Qing-Song; Li, Tong; Ma, Yi-Yong; Zhang, Ping; Cao, Yi-Sheng

    2016-07-01

    Electroacupuncture at the head acupoints Baihui (GV20) and Shuigou (GV26) improves recovery of neurological function following ischemic cerebrovascular events, but its mechanism remains incompletely understood. We hypothesized that the action of electroacupuncture at these acupoints is associated with elevated serum levels of transforming growth factor beta 1 (TGF-β1). To test this, we established a rat model of cerebral ischemia by middle cerebral artery occlusion. Electroacupuncture was performed at Baihui and Shuigou with a "disperse-dense" wave at an alternating frequency of 2 and 150 Hz, and at a constant intensity of 3 mA. Each electroacupuncture session lasted 30 minutes and was performed every 12 hours for 3 days. Neurological severity scores were lower in injured rats after acupuncture than in those not subjected to treatment. Furthermore, serum level of TGF-β1 was greater after electroacupuncture than after no treatment. Our results indicate that electroacupuncture at Baihui and Shuigou increases the serum level of TGF-β1 in rats with acute cerebral ischemia/reperfusion injury, and exerts neuroprotective effects. PMID:27630692

  1. Increase in transforming growth factor-beta in the brain during infection is related to fever, not depression of spontaneous motor activity.

    PubMed

    Matsumura, S; Shibakusa, T; Fujikawa, T; Yamada, H; Inoue, K; Fushiki, T

    2007-02-01

    When viral infection occurs, this information is transmitted to the brain, and symptoms such as fever and tiredness are induced. One of the causes of these symptoms is the secretion of proinflammatory cytokines in blood and the brain. In this study, the i.p. administration of polyinosinic:polycytidylic acid (poly I:C), a synthetic double-stranded RNA, to rats was used as an infection model. Poly I:C decreased spontaneous motor activity (SMA) 2 h after i.p. administration, and this decrease was maintained thereafter. The concentration of active transforming growth factor-beta (TGF-beta) in cerebrospinal fluid (CSF) increased 1 h after the administration. This increase occurred earlier than those in the concentrations of other proinflammatory cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha), in serum. The intracisternal administration of an anti-TGF-beta antibody partially inhibited fever induced by poly I:C administration; however, this treatment did not affect the decrease in SMA. Furthermore, intracisternal administration of TGF-beta raised the body temperature. These results indicate that TGF-beta in the brain, which was increased by poly I:C administration, is associated with fever but not with a decrease in SMA.

  2. Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1.

    PubMed Central

    Saharinen, J; Taipale, J; Keski-Oja, J

    1996-01-01

    Transforming growth factor-betas (TGF-betas) are produced by most cells in large latent complexes of TGF-beta and its propeptide (LAP) associated with a binding protein. The latent TGF-beta binding proteins (LTBPs-1, -2 and -3) mediate the secretion and, subsequently, the association of latent TGF-beta complexes with the extracellular matrix (ECM). The association of beta1-LAP with LTBP-1 was characterized at the molecular level with an expression system in mammalian cells, where TGF-beta1 and various fragments of LTBP-1 were co-expressed and secreted with the aid of a signal peptide synthesized to the LTBP-1 constructs. Immunoblotting of the fusion protein complexes indicated that the third 8-Cys repeat of LTBP-1 bound covalently to the LAP region of TGF-beta1. The cysteine required for the association between LTBP-1 and beta1-LAP was mapped to Cys33 of beta1-LAP. The N-terminal region of LTBP-1 consisting of the first 400 amino acids was found to associate covalently with the ECM. The data indicate that an 8-Cys repeat of LTBP is capable of covalent and specific protein-protein interactions. These interactions are mediated by exchanging cysteine disulfide bonds between the core 8-Cys repeat and an optionally associated protein during the secretion. This is, to our knowledge, the first demonstration of an extracellular protein module that is able to exchange cysteine disulfide bonds with heterologous ligand proteins. Images PMID:8617200

  3. Inhibition of transforming growth factor-beta-induced liver fibrosis by a retinoic acid derivative via the suppression of Col 1A2 promoter activity.

    PubMed

    Yang, Kun-Lin; Chang, Wen-Teng; Hung, Kuo-Chen; Li, Eric I C; Chuang, Chia-Chang

    2008-08-22

    Transforming growth factor-beta1 (TGF-beta1) mediates expression of collagen 1A2 (Col 1A2) gene via a synergistic cooperation between Smad2/Smad3 and Sp1, both act on the Col 1A2 gene promoter. In our previous study, we reported that a retinoic acid derivative obtained from Phellinus linteus (designated PL) antagonizes TGF-beta-induced liver fibrosis through regulation of ROS and calcium influx. In this continuing study we seek further the effect of PL on the Smad signaling pathway. We used a Col 1A2 promoter-luciferase construct to study the action of PL on Smad through TGF-beta. We found that PL decreases the promoter activity of Col 1A2, hinders the translocalization of phosphorylated Smad2/3-Smad 4 complex from cytosol into nucleus and inhibits Sp1 binding activity. These results suggest that PL inhibits TGF-beta1-induced Col 1A2 promoter activity through blocking ROS and calcium influx as well as impeding Sp1 binding and translocalization of pSmad 2/3-Smad4 complex into nucleus.

  4. Long Non-Coding RNA MALAT1 Mediates Transforming Growth Factor Beta1-Induced Epithelial-Mesenchymal Transition of Retinal Pigment Epithelial Cells

    PubMed Central

    Yang, Shuai; Yao, Haipei; Li, Min; Li, Hui; Wang, Fang

    2016-01-01

    Purpose To study the role of long non-coding RNA (lncRNA) MALAT1 in transforming growth factor beta 1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells. Methods ARPE-19 cells were cultured and exposed to TGF-β1. The EMT of APRE-19 cells is confirmed by morphological change, as well as the increased expression of alpha-smooth muscle actin (αSMA) and fibronectin, and the down-regulation of E-cadherin and Zona occludin-1(ZO-1) at both mRNA and protein levels. The expression of lncRNA MALAT1 in RPE cells were detected by quantitative real-time PCR. Knockdown of MALAT1 was achieved by transfecting a small interfering RNA (SiRNA). The effect of inhibition of MALAT1 on EMT, migration, proliferation, and TGFβ signalings were observed. MALAT1 expression was also detected in primary RPE cells incubated with proliferative vitreoretinopathy (PVR) vitreous samples. Results The expression of MALAT1 is significantly increased in RPE cells incubated with TGFβ1. MALAT1 silencing attenuates TGFβ1-induced EMT, migration, and proliferation of RPE cells, at least partially through activating Smad2/3 signaling. MALAT1 is also significantly increased in primary RPE cells incubated with PVR vitreous samples. Conclusion LncRNA MALAT1 is involved in TGFβ1-induced EMT of human RPE cells and provides new understandings for the pathogenesis of PVR. PMID:27019196

  5. Effects of periodontal therapy on white blood cell count and levels of transforming growth factor beta in serum of subjects with severe periodontitis.

    PubMed

    Leite, A C E; Carneiro, V M A; Morandini, A C; Ramos-Junior, E S; Guimarães, M C M

    2015-03-28

    This study aimed to investigate the effects of nonsurgical periodontal therapy on white blood cell (WBC) count and levels of transforming growth factor beta (TGF—β) in serum from subjects with severe periodontitis. Serum from 28 subjects with periodontitis (mean age: 34.36±6.24; 32% men) and 27 healthy controls (mean age: 33.18±6.42; 33% men) were collected prior to therapy. Blood samples were obtained from 23 subjects who completed therapy (9—12 months). A well—controlled periodontal treatment protocol was established in three stages: mechanical periodontal therapy (scaling and root planning), reinstrumentation of dental sites, and supportive periodontal therapy. Periodontal and systemic parameters such as the total number of WBCs and TGF—β levels, accessed by enzyme—linked immunosorbent assay (ELISA), were included. After therapy, all clinical periodontal parameters decreased (p<0.0001). There were no statistical differences in WBC count between experimental and control groups before or after therapy. However, after therapy, the mean value of lymphocytes in patients with localized aggressive periodontitis (LAgP) was statistically higher than that of patients with generalized chronic periodontitis (GCP) (p<0.0357). Additionally, TGF—β levels in LAgP and GCP patients were higher compared to controls before therapy (p<0.05 and p<0.01, respectively). In LAgP patients, periodontal therapy was associated with increased number of lymphocytes.

  6. Coordinate regulation of transforming growth factor beta gene expression and cell proliferation in hamster lungs undergoing bleomycin-induced pulmonary fibrosis.

    PubMed Central

    Raghow, B; Irish, P; Kang, A H

    1989-01-01

    The number of mesenchymal cells, as well as their ability to synthesize extracellular matrix (ECM) components, greatly increase in the interstitium of fibrotic lungs. We have previously shown that the transcription of type I procollagen and fibronectin genes in the lungs is preferentially elevated during the early stages of bleomycin-induced pulmonary fibrosis (Raghow, R., S. Lurie, J. M. Seyer, and A. H. Kang. 1985, J. Clin. Invest. 76:1734-1739. Since a cytokine-like transforming growth factor beta (TGF beta) that is capable of enhancing mesenchymal cell proliferation and ECM synthesis could be potentially involved in this process, we investigated the temporal relationship between the regulation of TGF beta gene transcription and cellular proliferation in the bleomycin-treated hamster lungs. We observed a transient 5-7-fold increase in the accumulation of TGF beta transcripts, a concomitant 3-4-fold elevation in the cellular proliferation, and 8-10-fold stimulation of DNA synthesis in these lungs; all three parameters peaked around day 10 after bleomycin administration. Based on these results, we conclude that regulation of TGF beta gene expression may contribute significantly to the early events that lead to bleomycin-induced pulmonary fibrosis. Images PMID:2480367

  7. Expression of transforming growth factor beta-like molecules in normal and regenerating arms of the crinoid Antedon mediterranea: immunocytochemical and biochemical evidence.

    PubMed Central

    Patruno, M; Smertenko, A; Candia Carnevali, M D; Bonasoro, F; Beesley, P W; Thorndyke, M C

    2002-01-01

    The phylum Echinodermata is well known for its extensive regenerative capabilities. Although there are substantial data now available that describe the histological and cellular bases of this phenomenon, little is known about the regulatory molecules involved. Here, we use an immunochemical approach to explore the potential role played by putative members of the transforming growth factor-beta (TGF-beta) family of secreted proteins in the arm regeneration process of the crinoid Antedon mediterranea. We show that a TGF-beta-like molecule is present in normal and regenerating arms both in a propeptide form and in a mature form. During regeneration, the expression of the mature form is increased and appears to be accompanied by the appearance of an additional isoform. Immunocytochemistry indicates that TGF-beta-like molecules are normally present in the nervous tissue and are specifically localized in both neural elements and non-neural migratory cells, mainly at the level of the brachial nerve. This pattern increases during regeneration, when the blastemal cells show a particularly striking expression of this molecule. Our data indicate that a TGF-beta-like molecule (or molecules) is normally present in the adult nervous tissues of A. mediterranea and is upregulated significantly during regeneration. We suggest that it can play an important part in the regenerative process. PMID:12350260

  8. The protective effects of ambroxol on radiation lung injury and influence on production of transforming growth factor beta1 and tumor necrosis factor alpha.

    PubMed

    Xia, De-Hong; Xi, Lei; Xv, Chen; Mao, Wei-Dong; Shen, Wei-Sheng; Shu, Zhong-Qin; Yang, Hong-Zhi; Dai, Min

    2010-09-01

    The aim of this article was to investigate the effect of ambroxol on radiation lung injury and the expression of transforming growth factor beta(1) (TGF-beta(1)), as well as tumor necrosis factor alpha (TNF-alpha) in plasma. Totally, 120 patients with locally advanced lung cancer in radiotherapy were randomized into treatment and control groups. Patients in the treatment group took ambroxol orally at a dosage of 90 mg, three times per day for 3 months from the beginning of radiotherapy. The expression of TGF-beta(1) and TNF-alpha in plasma was analyzed. The clinical symptoms and lung diffusing capacity were monitored using high resolving power computed tomography. The level of TGF-beta(1) in the control group was increased (11.8 +/- 5.5 ng/ml), whereas in ambroxol-treated patients, the increase was not significant (5.6 +/- 2.6 ng/ml, P < 0.001). Radiotherapy-induced elevation of TNF-alpha levels, seen in control patients, was also abolished after treatment with ambroxol (5.1 +/- 1.0 vs. 2.4 +/- 0.8 ng/ml, P < 0.001). In the treatment group, carbon monoxide diffusion capacity was not significantly decreased at 6, 12, and 18 months post-radiotherapy, compared with the control group (P < 0.05). Ambroxol decreased the expression of TGF-beta(1) and TNF-alpha, and minimized the diminishment of lung diffusion capacity after radiotherapy.

  9. Mechanisms of electroacupuncture effects on acute cerebral ischemia/reperfusion injury: possible association with upregulation of transforming growth factor beta 1

    PubMed Central

    Wang, Wen-biao; Yang, Lai-fu; He, Qing-song; Li, Tong; Ma, Yi-yong; Zhang, Ping; Cao, Yi-sheng

    2016-01-01

    Electroacupuncture at the head acupoints Baihui (GV20) and Shuigou (GV26) improves recovery of neurological function following ischemic cerebrovascular events, but its mechanism remains incompletely understood. We hypothesized that the action of electroacupuncture at these acupoints is associated with elevated serum levels of transforming growth factor beta 1 (TGF-β1). To test this, we established a rat model of cerebral ischemia by middle cerebral artery occlusion. Electroacupuncture was performed at Baihui and Shuigou with a “disperse-dense” wave at an alternating frequency of 2 and 150 Hz, and at a constant intensity of 3 mA. Each electroacupuncture session lasted 30 minutes and was performed every 12 hours for 3 days. Neurological severity scores were lower in injured rats after acupuncture than in those not subjected to treatment. Furthermore, serum level of TGF-β1 was greater after electroacupuncture than after no treatment. Our results indicate that electroacupuncture at Baihui and Shuigou increases the serum level of TGF-β1 in rats with acute cerebral ischemia/reperfusion injury, and exerts neuroprotective effects.

  10. Quantitative trait analysis reveals transforming growth factor-beta2 as a positive regulator of early hematopoietic progenitor and stem cell function.

    PubMed

    Langer, Jessica C; Henckaerts, Els; Orenstein, Jonathan; Snoeck, Hans-Willem

    2004-01-01

    Elucidation of pathways involved in mouse strain-dependent variation in the hematopoietic stem cell (HSC) compartment may reveal novel mechanisms relevant in vivo. Here, we demonstrate genetically determined variation in the proliferation of lin-Sca1++kit+ (LSK) primitive hematopoietic progenitor cells in response to transforming growth factor-beta (TGF-beta) 2, the dose response of which was biphasic with a stimulatory effect at low concentrations. In contrast, the dose responses of TGF-beta1 or -beta3 were inhibitory and did not show mouse strain-dependent variation. A quantitative trait locus (QTL) for the effect of TGF-beta2 was identified on chromosome 4 overlapping with a QTL regulating the frequency of LSK cells. These overlapping QTL were corroborated by the observation that the frequency of LSK cells is lower in adult Tgfb2+/- mice than in wild-type littermates, indicating that TGF-beta2 is a genetically determined positive regulator LSK number in vivo. Furthermore, adult Tgfb2+/- mice have a defect in competitive repopulation potential that becomes more pronounced upon serial transplantation. In fetal TGF-beta2-deficient HSCs, a defect only appears after serial reconstitution. These data suggest that TGF-beta2 can act cell autonomously and is important for HSCs that have undergone replicative stress. Thus, TGF-beta2 is a novel, genetically determined positive regulator of adult HSCs.

  11. Disruption of transforming growth factor-beta signaling through beta-spectrin ELF leads to hepatocellular cancer through cyclin D1 activation.

    PubMed

    Kitisin, K; Ganesan, N; Tang, Y; Jogunoori, W; Volpe, E A; Kim, S S; Katuri, V; Kallakury, B; Pishvaian, M; Albanese, C; Mendelson, J; Zasloff, M; Rashid, A; Fishbein, T; Evans, S R T; Sidawy, A; Reddy, E P; Mishra, B; Johnson, L B; Shetty, K; Mishra, L

    2007-11-01

    Transforming growth factor-beta (TGF-beta) signaling members, TGF-beta receptor type II (TBRII), Smad2, Smad4 and Smad adaptor, embryonic liver fodrin (ELF), are prominent tumor suppressors in gastrointestinal cancers. Here, we show that 40% of elf(+/-) mice spontaneously develop hepatocellular cancer (HCC) with markedly increased cyclin D1, cyclin-dependent kinase 4 (Cdk4), c-Myc and MDM2 expression. Reduced ELF but not TBRII, or Smad4 was observed in 8 of 9 human HCCs (P<0.017). ELF and TBRII are also markedly decreased in human HCC cell lines SNU-398 and SNU-475. Restoration of ELF and TBRII in SNU-398 cells markedly decreases cyclin D1 as well as hyperphosphorylated-retinoblastoma (hyperphosphorylated-pRb). Thus, we show that TGF-beta signaling and Smad adaptor ELF suppress human hepatocarcinogenesis, potentially through cyclin D1 deregulation. Loss of ELF could serve as a primary event in progression toward a fully transformed phenotype and could hold promise for new therapeutic approaches in human HCCs.

  12. Glial fibrillary acidic protein gene promoter is differently modulated by transforming growth factor-beta 1 in astrocytes from distinct brain regions.

    PubMed

    Sousa, Vivian de Oliveira; Romão, Luciana; Neto, Vivaldo Moura; Gomes, Flávia Carvalho Alcantara

    2004-04-01

    The expression of glial fibrillary acidic protein (GFAP), the major intermediate filament protein of mature astrocytes, is regulated under developmental and pathological conditions. Recently, we have investigated GFAP gene modulation by using a transgenic mouse bearing part of the GFAP gene promoter linked to the beta-galactosidase reporter gene. We demonstrated that cerebral cortex neurons activate the GFAP gene promoter, inducing transforming growth factor-beta 1 (TGF-beta 1) secretion by astrocytes. Here, we report that cortical neurons or conditioned medium derived from them do not activate the GFAP gene promoter of transgenic astrocytes derived from midbrain and cerebellum suggesting a neuroanatomical regional specificity of this phenomenon. Surprisingly, they do induce synthesis of TGF-beta 1 by these cells. Western blot and immunocytochemistry assays revealed wild distribution of TGF receptor in all subpopulations of astrocytes and expression of TGF-beta 1 in neurons derived from all regions, thus indicating that the unresponsiveness of the cerebellar and midbrain GFAP gene to TGF-beta 1 is not due to a defect in TGF-beta 1 signalling. Together, our data highlight the great complexity of neuron-glia interactions and might suggest a distinct mechanism underlying modulation of the GFAP gene in the heterogeneous population of astrocytes throughout the central nervous system.

  13. Mutation in transforming growth factor beta induced protein associated with granular corneal dystrophy type 1 reduces the proteolytic susceptibility through local structural stabilization.

    PubMed

    Underhaug, Jarl; Koldsø, Heidi; Runager, Kasper; Nielsen, Jakob Toudahl; Sørensen, Charlotte S; Kristensen, Torsten; Otzen, Daniel E; Karring, Henrik; Malmendal, Anders; Schiøtt, Birgit; Enghild, Jan J; Nielsen, Niels Chr

    2013-12-01

    Hereditary mutations in the transforming growth factor beta induced (TGFBI) gene cause phenotypically distinct corneal dystrophies characterized by protein deposition in cornea. We show here that the Arg555Trp mutant of the fourth fasciclin 1 (FAS1-4) domain of the protein (TGFBIp/keratoepithelin/βig-h3), associated with granular corneal dystrophy type 1, is significantly less susceptible to proteolysis by thermolysin and trypsin than the WT domain. High-resolution liquid-state NMR of the WT and Arg555Trp mutant FAS1-4 domains revealed very similar structures except for the region around position 555. The Arg555Trp substitution causes Trp555 to be buried in an otherwise empty hydrophobic cavity of the FAS1-4 domain. The first thermolysin cleavage in the core of the FAS1-4 domain occurs on the N-terminal side of Leu558 adjacent to the Arg555 mutation. MD simulations indicated that the C-terminal end of helix α3' containing this cleavage site is less flexible in the mutant domain, explaining the observed proteolytic resistance. This structural change also alters the electrostatic properties, which may explain increased propensity of the mutant to aggregate in vitro with 2,2,2-trifluoroethanol. Based on our results we propose that the Arg555Trp mutation disrupts the normal degradation/turnover of corneal TGFBIp, leading to accumulation and increased propensity to aggregate through electrostatic interactions.

  14. Immunohistochemical localization of transforming growth factor-beta 1 in the lungs of patients with systemic sclerosis, cryptogenic fibrosing alveolitis and other lung disorders.

    PubMed

    Corrin, B; Butcher, D; McAnulty, B J; Dubois, R M; Black, C M; Laurent, G J; Harrison, N K

    1994-02-01

    To study the role of transforming growth factor-beta 1 (TGF-beta 1) in the pathogenesis of pulmonary fibrosis we have examined lung biopsies from nine patients with systemic sclerosis and interstitial lung disease, eight with 'lone' cryptogenic fibrosing alveolitis, two with cystic fibrosis, two with extrinsic allergic alveolitis, two with Langerhans' cell histiocytosis, one with lymphangioleiomyomatosis, one with giant cell interstitial pneumonia, and one adenocarcinoma of the lung. In cryptogenic fibrosing alveolitis, both 'lone' and associated with systemic sclerosis alveolar macrophages, bronchial epithelium and hyperplastic type II pneumonocytes expressed intracellular TGF-beta 1. Extracellular TGF-beta 1 was found in the fibrous tissue immediately beneath the bronchial and hyperplastic alveolar epithelium. In normal lung, however, the alveolar epithelium and alveolar interstitium were negative for both forms of TGF-beta 1. There was strong expression of TGF-beta 1 in hyperplastic mesothelium and its underlying connective tissue and in Langerhans' cells in the two cases of histiocytosis. In the organizing pneumonia in cystic fibrosis, the intraalveolar buds of granulation tissue reacted strongly for the extracellular form of TGF-beta 1 and the overlying hyperplastic epithelium expressed the intracellular form. In lymphangioleiomyomatosis, the aberrant smooth muscle cells strongly expressed intracellular TGF-beta 1 and the extracellular form was expressed in the adjacent connective tissue. In giant cell interstitial pneumonia, the numerous alveolar macrophage including the multinucleate forms, expressed intracellular TGF-beta 1, as did the hyperplastic alveolar epithelium.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Transforming growth factor-beta1 regulation of ATF-3 and identification of ATF-3 target genes in breast cancer cells.

    PubMed

    Kwok, Sukyee; Rittling, Susan R; Partridge, Nicola C; Benson, Chellakkan S; Thiyagaraj, Mayuranathan; Srinivasan, Narasimhan; Selvamurugan, Nagarajan

    2009-10-01

    Transforming growth factor-beta1 (TGF-beta1) is a crucial molecule for stimulation of breast cancer invasion and formation of bone metastases. The molecular mechanisms of how TGF-beta1 mediates these effects have yet to be completely determined. We have found that activating transcription factor-3 (ATF-3) is strongly stimulated and its level is sustained by TGF-beta1 in highly invasive and metastatic human breast cancer (MDA-MB231) and in mouse mammary pad tumor cells (r3T). ATF-3 is also overexpressed in human primary breast cancer tissue. Overexpression of ATF-3 increased normal human mammary epithelial cell number and DNA synthesis suggesting a role for ATF-3 in cell proliferation. The functional role of ATF-3 in breast cancer progression was determined by the RNA interference technique. Knockdown of ATF-3 by ATF-3 shRNA in MDA-MB231 cells decreased expression of cell cycle gene, cyclin A1 in MDA-MB231 cells. ATF-3 shRNA also decreased expression of an invasive and metastatic gene, matrix metalloproteinase-13 (MMP-13; collagenase-3) in these cells. Chromatin immunoprecipitation experiments identified the direct physical interaction of ATF-3 protein on the human MMP-13 promoter. Thus, the dysregulation of ATF-3 by TGF-beta1 is likely to activate cyclin A1 and MMP-13 genes in breast cancer cells and that would be key to the subsequent cancer cell invasion and metastasis.

  16. [Absence of correlation between the concentrations of carcinoembryonic antigen (CEA) and the tumor growth factor beta 2 (TGFB2) in the two main types of breast macrocysts].

    PubMed

    Ruibal, A; Núñez, M I; Schneider, J; del Río, M f; Delgado, S; Rabadán, F; Tejerina, A

    1999-01-01

    In order to study the possible correlation between carcinoembryonic antigen (CEA) and cellular proliferation, we assayed the concentrations of this substance in the fluid of 77 bening macrocysts of the breast classified according to their Na+/K+ ratio and compared them with those of transforming growth factor beta 2. CEA levels correlated positively and significantly with the cationic ratio, the concentrations of albumin, glucose, Cl- and pH and were higher (range: 2.5-81.5, median 12.8 vs range: 0.4-41.5, median 3.2 ng/ml (p: 0.00000) in type 2 (Na+/K+ > 3) than in type 1 (Na+/K+ < 3) cysts. There was no correlation between CEA and TGFb2, nor between the former and dehydroepiandrosterone sulphate levels. These results led us to suggest that the high CEA concentrations in type 2 cysts seem to be the consequence of loos of cellular differentiation and disruption of the cyst wall lining as well as the acquisition of embryonary properties by the latter as a consequence of a reduced hormonal microenvironment. PMID:10352320

  17. JARID2 is involved in transforming growth factor-beta-induced epithelial-mesenchymal transition of lung and colon cancer cell lines.

    PubMed

    Tange, Shoichiro; Oktyabri, Dulamsuren; Terashima, Minoru; Ishimura, Akihiko; Suzuki, Takeshi

    2014-01-01

    Histone methylation plays a crucial role in various biological and pathological processes including cancer development. In this study, we discovered that JARID2, an interacting component of Polycomb repressive complex-2 (PRC2) that catalyzes methylation of lysine 27 of histone H3 (H3K27), was involved in Transforming Growth Factor-beta (TGF-ß)-induced epithelial-mesenchymal transition (EMT) of A549 lung cancer cell line and HT29 colon cancer cell line. The expression of JARID2 was increased during TGF-ß-induced EMT of these cell lines and knockdown of JARID2 inhibited TGF-ß-induced morphological conversion of the cells associated with EMT. JARID2 knockdown itself had no effect in the expression of EMT-related genes but antagonized TGF-ß-dependent expression changes of EMT-related genes such as CDH1, ZEB family and microRNA-200 family. Chromatin immunoprecipitation assays showed that JARID2 was implicated in TGF-ß-induced transcriptional repression of CDH1 and microRNA-200 family genes through the regulation of histone H3 methylation and EZH2 occupancies on their regulatory regions. Our study demonstrated a novel role of JARID2 protein, which may control PRC2 recruitment and histone methylation during TGF-ß-induced EMT of lung and colon cancer cell lines.

  18. Transforming growth factor-beta suppresses tumor necrosis factor alpha-induced matrix metalloproteinase-9 expression in monocytes.

    PubMed

    Vaday, G G; Schor, H; Rahat, M A; Lahat, N; Lider, O

    2001-04-01

    The inflammatory response is marked by the release of several cytokines with multiple roles in regulating leukocyte activities, including the secretion of matrix metalloproteinases (MMPs). Although the effects of individual cytokines on monocyte MMP expression have been studied extensively, few studies have examined the influence of combinations of cytokines, which are likely present at inflammatory sites. Herein, we report our investigation of the combinatorial effects of tumor necrosis factor (TNF)-alpha and transforming growth factor (TGF)-beta on MMP-9 synthesis. We found that TGF-beta suppressed TNF-alpha-induced MMP-9 secretion by MonoMac-6 monocytic cells in a dose-dependent manner, with a maximal effect of TGF-beta observed at 1 ng/ml. Such suppression was likely regulated at the pretranslational level, because steady-state mRNA levels of TNF-alpha-induced MMP-9 were reduced by TGF-beta, and pulse-chase radiolabeling also showed a decrease in new MMP-9 protein synthesis. The suppressive effects of TGF-beta were time dependent, because short exposures to TNF-alpha before TGF-beta or simultaneous exposure to both cytokines efficiently reduced MMP-9 secretion. Expression of the tissue inhibitor of metalloproteinases (TIMP)-1 and TNF-alpha receptors was unaffected by either cytokine individually or in combination. Affinity binding with radiolabeled TGF-beta demonstrated that levels of TGF-beta receptors were not increased after preincubation with TGF-beta. Suppression of TNFalpha-induced MMP-9 secretion by TGF-beta correlated with a reduction in prostaglandin E2 (PGE2) secretion. Furthermore, the effect of TGF-beta or indomethacin on blockage of TNF-alpha-stimulated MMP-9 production was reversed by the addition of either exogenous PGE2 or the cyclic AMP (cAMP) analogue Bt2cAMP. Thus, we concluded that TGF-beta acts as a potent suppressor of TNF-alpha-induced monocyte MMP-9 synthesis via a PGE2- and cAMP-dependent mechanism. These results suggest that various

  19. Transforming growth factor-beta 1 stimulates vascular smooth muscle cell L-proline transport by inducing system A amino acid transporter 2 (SAT2) gene expression.

    PubMed Central

    Ensenat, D; Hassan, S; Reyna, S V; Schafer, A I; Durante, W

    2001-01-01

    Transforming growth factor-beta1 (TGF-beta 1) is a multifunctional cytokine that contributes to arterial remodelling by stimulating vascular smooth muscle cell (SMC) growth and collagen synthesis at sites of vascular injury. Since l-proline is essential for the synthesis of collagen, we examined whether TGF-beta 1 regulates the transcellular transport of l-proline by vascular SMCs. l-Proline uptake by vascular SMCs was primarily sodium-dependent, pH-sensitive, blocked by neutral amino acids and alpha-(methylamino)isobutyric acid, and exhibited trans-inhibition. Treatment of SMCs with TGF-beta 1 stimulated l-proline transport in a concentration- and time-dependent manner. The TGF-beta 1-mediated l-proline uptake was inhibited by cycloheximide or actinomycin D. Kinetic studies indicated that TGF-beta 1-induced l-proline transport was mediated by an increase in transport capacity independent of any changes in the affinity for l-proline. TGF-beta 1 stimulated the expression of system A amino acid transporter 2 (SAT2) mRNA in a time-dependent fashion that paralleled the increase in l-proline transport. Reverse transcriptase PCR failed to detect the presence of SAT1 or amino acid transporter 3 (ATA3) in either untreated or TGF-beta 1-treated SMCs. These results demonstrate that l-proline transport by vascular SMCs is mediated predominantly by the SAT and that TGF-beta 1 stimulates SMC l-proline uptake by inducing the expression of the SAT2 gene. The ability of TGF-beta 1 to induce SAT2 expression may function to provide SMCs with the necessary levels of l-proline required for collagen synthesis and cell growth. PMID:11716780

  20. In vitro expression of the alpha-smooth muscle actin isoform by rat lung mesenchymal cells: regulation by culture condition and transforming growth factor-beta.

    PubMed

    Mitchell, J J; Woodcock-Mitchell, J L; Perry, L; Zhao, J; Low, R B; Baldor, L; Absher, P M

    1993-07-01

    alpha-Smooth muscle actin (alpha SM actin)-containing cells recently have been demonstrated in intraalveolar lesions in both rat and human tissues following lung injury. In order to develop model systems for the study of such cells, we examined cultured lung cell lines for this phenotype. The adult rat lung fibroblast-like "RL" cell lines were found to express alpha SM actin mRNA and protein and to organize this actin into stress fiber-like structures. Immunocytochemical staining of subclones of the RL87 line demonstrated the presence in the cultures of at least four cell phenotypes, one that fails to express alpha SM actin and three distinct morphologic types that do express alpha SM actin. The proportion of cellular actin that is the alpha-isoform was modulated by the culture conditions. RL cells growing at low density expressed minimal alpha SM actin. On reaching confluent densities, however, alpha SM actin increased to at least 20% of the total actin content. This effect, combined with the observation that the most immunoreactive cells were those that displayed overlapping cell processes in culture, suggests that cell-cell contact may be involved in actin isoform regulation in these cells. Similar to the response of some smooth muscle cell lines, alpha SM actin expression in RL cells also was promoted by conditions, e.g., maintenance in low serum medium, which minimize cell division. alpha SM actin expression was modulated in RL cells by the growth factor transforming growth factor-beta. Addition of this cytokine to growing cells substantially elevated the proportion of alpha SM actin protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Lead alters parathyroid hormone-related peptide and transforming growth factor-beta1 effects and AP-1 and NF-kappaB signaling in chondrocytes.

    PubMed

    Zuscik, Michael J; Pateder, Dhruv B; Puzas, J Edward; Schwarz, Edward M; Rosier, Randy N; O'Keefe, Regis J

    2002-07-01

    The skeletal system is an important target for lead toxicity. One of the impacts of lead in the skeleton, the inhibition of axial bone development, is likely due to its effect on the normal progression of chondrocyte maturation that is central to the process of endochondral ossification. Since little is known about the effect of lead on chondrocyte function/maturation, its impact on (1) growth factor-induced proliferation, (2) expression of maturation-specific markers type X collagen and BMP-6, and (3) the activity of AP-1 and NF-kappaB was examined in chick growth plate and sternal chondrocyte models. Exposure to lead alone (1-30 microM) resulted in a dose-dependent inhibition of thymidine incorporation in growth plate chondrocytes. Lead also blunted the stimulation of thymidine incorporation by parathyroid hormone-related peptide (PTHrP) and transforming growth factor-beta1 (TGF-beta1), two critical regulators of chondrocyte maturation. Lead (1 and 10 microM), TGF-beta1 (3 ng/ml) and PTHrP (10(-7) M) all significantly inhibited the expression of type X collagen, a marker of chondrocyte terminal differentiation. However, when in combination, lead completely reversed the inhibition of type X collagen by PTHrP and TGF-beta1. The effect of lead on BMP-6. an inducer of terminal differentiation. was also examined. Independently, lead and TGF-beta1 were without effect on BMP-6 expression, but PTHrP significantly suppressed it. Comparatively, lead did not alter PTHrP-mediated suppression of BMP-6, but in combination with TGF-beta1. BMP-6 expression was increased 3-fold. To determine if lead effects on signaling might play a role in facilitating these events, the impact of lead on NF-kappaB and AP-1 signaling was assessed using luciferase reporter constructs in sternal chondrocytes. Lead had no effect on the AP-1 reporter, but it dose-dependently inhibited the NF-kappaB reporter. PTHrP, which signals through AP-1, did not activate the NF-kappaB reporter and did not affect

  2. Overview of Transforming Growth Factor β Superfamily Involvement in Glioblastoma Initiation and Progression.

    PubMed

    Nana, Andre Wendindonde; Yang, Pei-Ming; Lin, Hung-Yun

    2015-01-01

    Glioblastoma, also known as glioblastoma multiforme (GBM), is the most aggressive of human brain tumors and has a stunning progression with a mean survival of one year from the date of diagnosis. High cell proliferation, angiogenesis and/or necrosis are histopathological features of this cancer, which has no efficient curative therapy. This aggressiveness is associated with particular heterogeneity of the tumor featuring multiple genetic and epigenetic alterations, but also with implications of aberrant signaling driven by growth factors. The transforming growth factor β (TGFβ) superfamily is a large group of structurally related proteins including TGFβ subfamily members Nodal, Activin, Lefty, bone morphogenetic proteins (BMPs) and growth and differentiation factor (GDF). It is involved in important biological functions including morphogenesis, embryonic development, adult stem cell differentiation, immune regulation, wound healing and inflammation. This superfamily is also considered to impact on cancer biology including that of GBM, with various effects depending on the member. The TGFβ subfamily, in particular, is overexpressed in some GBM types which exhibit aggressive phenotypes. This subfamily impairs anti-cancer immune responses in several ways, including immune cells inhibition and major histocompatibility (MHC) class I and II abolishment. It promotes GBM angiogenesis by inducing angiogenic factors such as vascular endothelial growth factor (VEGF), plasminogen activator inhibitor (PAI-I) and insulin- like growth factor-binding protein 7 (IGFBP7), contributes to GBM progression by inducing metalloproteinases (MMPs), "pro-neoplastic" integrins (αvβ3, α5β1) and GBM initiating cells (GICs) as well as inducing a GBM mesenchymal phenotype. Equally, Nodal promotes GICs, induces cancer metabolic switch and supports GBM cell proliferation, but is negatively regulated by Lefty. Activin promotes GBM cell proliferation while GDF yields immune-escape function

  3. Anbmp2/4 is a new member of the transforming growth factor-beta superfamily isolated from a crinoid and involved in regeneration.

    PubMed Central

    Patruno, M; McGonnell, I; Graham, A; Beesley, P; Candia Carnevali, M D; Thorndyke, M

    2003-01-01

    Invertebrates have frequently been used to help understand the complexities of regulatory gene function and evolution. The bone morphogenetic proteins (BMPs) are a highly conserved group of secreted regulatory factors that play an important part in early embryonic patterning. In the present study we have used the remarkable regenerative potential of crinoid echinoderms to explore the BMPs' site of expression in an adult developmental programme. Our results suggest that a crinoid BMP2/4 homologue is actively involved during the early stages of blastemal regeneration at a time when fundamental patterns are being established. This supports the idea of an evolutionary developmental programme where essential gene families are conserved throughout phylogeny in terms of both expression and function. PMID:12965024

  4. Evidence against a blood derived origin for transforming growth factor beta induced protein in corneal disorders caused by mutations in the TGFBI gene

    PubMed Central

    Karring, Henrik; Valnickova, Zuzana; Thøgersen, Ida B.; Hedegaard, Chris J.; Møller-Pedersen, Torben; Kristensen, Torsten; Klintworth, Gordon K.

    2007-01-01

    Purpose Several inherited corneal disorders in humans result from mutations in the transforming growth factor beta induced gene (TGFBI), which encodes for the extracellular transforming growth factor beta induced protein (TGFBIp) that is one of the most abundant proteins in the cornea. We previously reported a significant amount of TGFBIp in plasma by immunoblotting using the only TGFBIp antiserum (anti-p68βig-h3) available at that time (anti-p68βig-h3 was generated against residues Val210-His683 of TGFBIp). This observation raised the possibility that a fraction of corneal TGFBIp may originate from the plasma. However, recent experiments in our laboratory indicated that the anti-p68βig-h3 antiserum cross-reacts with an environmental protein contaminant. Therefore, we investigated the specificity of the originally utilized anti-p68βig-h3 antiserum and re-evaluated the amount of TGFBIp in human plasma by immunoblotting using a new specific antiserum. Methods The observed cross-reactivity of the previously utilized anti-p68βig-h3 antiserum was tested by immunoblotting and the antigen identity was determined by mass spectrometry. A part of human TGFBI encoding an NH2-terminal 11.4 kDa fragment of TGFBIp (residues Gly134-Ile236) was amplified by polymerase chain reaction (PCR) and cloned in E. coli. The TGFBIp fragment was expressed in E. coli, purified by Ni2+-affinity chromatography, and used to immunize rabbits to produce a specific antiserum (anti-TGFBIp134-236). To enhance the detection of possible TGFBIp in plasma by allowing a higher sample load, albumin and immunoglobulin G (IgG) were specifically depleted from normal human plasma by affinity chromatography. The presence of TGFBIp in plasma was investigated by immunoblotting using the anti-TGFBIp134-236 antiserum. Purified TGFBIp from porcine corneas was used for estimation of the TGFBIp detection limit. Results The previously utilized TGFBIp antiserum, anti-p68βig-h3, cross-reacted with human keratin-1

  5. Plasmid DNA encoding transforming growth factor-beta1 suppresses chronic disease in a streptococcal cell wall-induced arthritis model.

    PubMed Central

    Song, X Y; Gu, M; Jin, W W; Klinman, D M; Wahl, S M

    1998-01-01

    Transforming growth factor beta is a potent immunomodulator with both pro- and antiinflammatory activities. Based on its immunosuppressive actions, exogenous TGF-beta has been shown to inhibit autoimmune and chronic inflammatory diseases. To further explore the potential therapeutic role of TGF-beta, we administered a plasmid DNA encoding human TGF-beta1 intramuscularly to rats with streptococcal cell wall-induced arthritis. A single dose of 300 microg plasmid DNA encoding TGF-beta1, but not vector DNA, administered at the peak of the acute phase profoundly suppressed the subsequent evolution of chronic erosive disease typified by disabling joint swelling and deformity (articular index = 8.17+/-0. 17 vs. 1.25+/-0.76, n = 6, day 26, P < 0.01). Moreover, delivery of the TGF-beta1 DNA even as the chronic phase commenced virtually eliminated subsequent inflammation and arthritis. Both radiologic and histopathologic as well as molecular evidence supported the marked inhibitory effect of TGF-beta1 DNA on synovial pathology, with decreases in the inflammatory cell infiltration, pannus formation, cartilage and bone destruction, and the expression of proinflammatory cytokines that characterize this model. Increases in TGF-beta1 protein were detected in the circulation of TGF-beta1 DNA-treated animals, consistent with the observed therapeutic effects being TGF-beta1 dependent. These observations provide the first evidence that gene transfer of plasmid DNA encoding TGF-beta1 provides a mechanism to deliver this potent cytokine that effectively suppresses ongoing inflammatory pathology in arthritis. PMID:9637694

  6. Effects of gamma interferon, interleukin-10, and transforming growth factor beta on the survival of Mycobacterium avium subsp. paratuberculosis in monocyte-derived macrophages from naturally infected cattle.

    PubMed

    Khalifeh, M S; Stabel, J R

    2004-04-01

    Gamma interferon (IFN-gamma) plays a significant role in the control of mycobacterial infections, including Mycobacterium avium subsp. paratuberculosis. However, the contribution of other immunoregulatory cytokines, such as interleukin-10 (IL-10) and transforming growth factor beta (TGF-beta), in Johne's disease has not been investigated as yet. In this study, we examined the effects of in vivo and in vitro infection with M. avium subsp. paratuberculosis on the production of IFN-gamma, IL-10, and TGF-beta by peripheral blood mononuclear cells (PBMC). We also examined the effects of exogenous IFN-gamma, IL-10, and TGF-beta on M. avium subsp. paratuberculosis survival in the cell cultures. PBMC obtained from naturally infected cows, regardless of their disease status, specifically upregulated IL-10 and TGF-beta in culture supernatants in response to stimulation with live M. avium subsp. paratuberculosis. Nonstimulated PBMC recovered from subclinically infected animals secreted the lowest levels of TGF-beta, but after stimulation with live M. avium subsp. paratuberculosis, TGF-beta levels in the culture supernatants increased to levels similar to that produced by PBMC from healthy animals. The numbers of viable M. avium subsp. paratuberculosis recovered from cultures from naturally infected animals were higher than those from healthy cows after in vitro infection with M. avium subsp. paratuberculosis. The addition of exogenous IL-10 and TGF-beta to PBMC isolated from healthy cows inhibited the bactericidal activity of these cells as evidenced by the increased number of viable M. avium subsp. paratuberculosis recovered from these cultures compared to cell cultures containing medium alone. These data suggest important immune regulatory roles for IL-10 and TGF-beta during infection with M. avium subsp. paratuberculosis that may be directly related to their effects on macrophage activation and killing of M. avium subsp. paratuberculosis.

  7. Smad-binding defective mutant of transforming growth factor beta type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines.

    PubMed

    Tian, Fang; Byfield, Stacey DaCosta; Parks, W Tony; Stuelten, Christina H; Nemani, Deepa; Zhang, Ying E; Roberts, Anita B

    2004-07-01

    The role of transforming growth factor beta (TGF-beta) in carcinogenesis is complex, with tumor suppressor and pro-oncogenic activities depending on the particular tumor cell and its stage in malignant progression. We previously have demonstrated in breast cancer cell lines that Smad2/3 signaling played a dominant role in mediating tumor suppressor effects on well-differentiated breast cancer cell lines grown as xenografts and prometastatic effects on a more invasive, metastatic cell line. Our present data based on selective interference with activation of endogenous Smad2 and Smad3 by stable expression of a mutant form of the TGF-beta type I receptor (RImL45) unable to bind Smad2/3 but with a functional kinase again show that reduction in Smad2/3 signaling by expression of RImL45 enhanced the malignancy of xenografted tumors of the well-differentiated MCF10A-derived tumor cell line MCF10CA1h, resulting in formation of larger tumors with a higher proliferative index and more malignant histologic features. In contrast, expression of RImL45 in the more aggressive MCF10CA1a cell line strongly suppressed formation of lung metastases following tail vein injection. These results suggest a causal, dominant role for the endogenous Smad2/3 signaling pathway in the tumor suppressor and prometastatic activities of TGF-beta in these cells. Using an in vitro assay, we further show that non-Smad signaling pathways, including p38 and c-Jun NH(2)-terminal kinase, cooperate with TGF-beta/Smads in enhancing migration of metastatic MCF10CA1a cells, but that, although necessary for migration, these other pathways are not sufficient for metastasis.

  8. No Effect of the Transforming Growth Factor {beta}1 Promoter Polymorphism C-509T on TGFB1 Gene Expression, Protein Secretion, or Cellular Radiosensitivity

    SciTech Connect

    Reuther, Sebastian; Metzke, Elisabeth; Bonin, Michael; Petersen, Cordula; Dikomey, Ekkehard; Raabe, Annette

    2013-02-01

    Purpose: To study whether the promoter polymorphism (C-509T) affects transforming growth factor {beta}1 gene (TGFB1) expression, protein secretion, and/or cellular radiosensitivity for both human lymphocytes and fibroblasts. Methods and Materials: Experiments were performed with lymphocytes taken either from 124 breast cancer patients or 59 pairs of normal monozygotic twins. We used 15 normal human primary fibroblast strains as controls. The C-509T genotype was determined by polymerase chain reaction-restriction fragment length polymorphism or TaqMan single nucleotide polymorphism (SNP) genotyping assay. The cellular radiosensitivity of lymphocytes was measured by G0/1 assay and that of fibroblasts by colony assay. The amount of extracellular TGFB1 protein was determined by enzyme-linked immunosorbent assay, and TGFB1 expression was assessed via microarray analysis or reverse transcription-polymerase chain reaction. Results: The C-509T genotype was found not to be associated with cellular radiosensitivity, neither for lymphocytes (breast cancer patients, P=.811; healthy donors, P=.181) nor for fibroblasts (P=.589). Both TGFB1 expression and TGFB1 protein secretion showed considerable variation, which, however, did not depend on the C-509T genotype (protein secretion: P=.879; gene expression: lymphocytes, P=.134, fibroblasts, P=.605). There was also no general correlation between TGFB1 expression and cellular radiosensitivity (lymphocytes, P=.632; fibroblasts, P=.573). Conclusion: Our data indicate that any association between the SNP C-509T of TGFB1 and risk of normal tissue toxicity cannot be ascribed to a functional consequence of this SNP, either on the level of gene expression, protein secretion, or cellular radiosensitivity.

  9. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    SciTech Connect

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.; Fromigue, O.; Modrowski, D.; Zerath, E.; Marie, P.J. . E-mail: pierre.marie@larib.inserm.fr

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2 administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.

  10. Spleen tyrosine kinase mediates high glucose-induced transforming growth factor-{beta}1 up-regulation in proximal tubular epithelial cells

    SciTech Connect

    Yang, Won Seok; Chang, Jai Won; Han, Nam Jeong; Lee, Sang Koo; Park, Su-Kil

    2012-09-10

    The role of spleen tyrosine kinase (Syk) in high glucose-induced intracellular signal transduction has yet to be elucidated. We investigated whether Syk is implicated in high glucose-induced transforming growth factor-{beta}1 (TGF-{beta}1) up-regulation in cultured human proximal tubular epithelial cells (HK-2 cell). High glucose increased TGF-{beta}1 gene expression through Syk, extracellular signal-regulated kinase (ERK), AP-1 and NF-{kappa}B. High glucose-induced AP-1 DNA binding activity was decreased by Syk inhibitors and U0126 (an ERK inhibitor). Syk inhibitors suppressed high glucose-induced ERK activation, whereas U0126 had no effect on Syk activation. High glucose-induced NF-{kappa}B DNA binding activity was also decreased by Syk inhibitors. High glucose increased nuclear translocation of p65 without serine phosphorylation of I{kappa}B{alpha} and without degradation of I{kappa}B{alpha}, but with an increase in tyrosine phosphorylation of I{kappa}B{alpha} that may account for the activation of NF-{kappa}B. Both Syk inhibitors and Syk-siRNA attenuated high glucose-induced I{kappa}B{alpha} tyrosine phosphorylation and p65 nuclear translocation. Depletion of p21-activated kinase 2 (Pak2) by transfection of Pak2-siRNA abolished high glucose-induced Syk activation. In summary, high glucose-induced TGF-{beta}1 gene transcription occurred through Pak2, Syk and subsequent ERK/AP-1 and NF-{kappa}B pathways. This suggests that Syk might be implicated in the diabetic kidney disease.

  11. Cross-modulation by transforming growth factor beta in human tuberculosis: suppression of antigen-driven blastogenesis and interferon gamma production.

    PubMed Central

    Hirsch, C S; Hussain, R; Toossi, Z; Dawood, G; Shahid, F; Ellner, J J

    1996-01-01

    In tuberculosis, Mycobacterium tuberculosis (MTB)-stimulated T-cell responses are depressed transiently, whereas antibody levels are increased. Lymphoproliferative responses of peripheral blood mononuclear cells (PBMCs) from Pakistani tuberculosis (TB) patients to both mycobacterial and candidal antigens were suppressed by approximately 50% when compared to healthy purified protein derivative (PPD)-positive household contacts. Production of interferon gamma (IFN-gamma) in response to PPD also was depressed by 78%. Stimulation with PPD and the 30-kDa alpha antigen of MTB (30-kDa antigen) induced greater secretion of transforming growth factor beta (TGF-beta), but not interleukin 10 (IL-10) or tumor necrosis factor alpha (TNF-alpha), by PBMCs from TB patients compared to healthy contacts. The degree of suppression correlated with the duration of treatment; patients treated for <1 month had significantly lower T-cell blastogenesis and IFN-gamma production and higher levels of TGF-beta than did patients treated for >1 month. Neutralizing antibody to TGF-beta normalized lymphocyte proliferation in response to PPD, partially restored blastogenesis to candidal antigen, and significantly increased PPD-stimulated production of IFN-gamma in TB patients but not in contacts. Neutralizing antibody to IL-10 augmented, but did not normalize, T-cell responses to both PPD and candida in TB patients and candidal antigen in contacts. TGF-beta, produced in response to MTB antigens, therefore plays a prominent role in down-regulating potentially protective host effector mechanisms and looms as an important mediator of immunosuppression in TB. Images Fig. 4 PMID:8622912

  12. Circulating levels of osteoclast activating cytokines, interleukin-11 and transforming growth factor-beta2, as valuable biomarkers for the assessment of bone turnover in postmenopausal osteoporosis.

    PubMed

    Shaarawy, Mohamed; Zaki, Sameh; Sheiba, Mamdouh; El-Minawi, Ahmad M

    2003-01-01

    The objective of this study was to evaluate the role of osteoclast activating cytokines, interleukin-11 (IL-11) and transforming growth factor-beta2 (TGF-beta2) in the assessment of bone turnover in postmenopausal osteoporosis (PO). Eighty postmenopausal osteoporotic women with lumbar spine bone mineral densities (BMD) as measured by DEXA that were more than 2.5 SD below the normal mean of healthy women (controls), participated in this study. Various therapeutic modalities (hormone replacement therapy, HRT, alendronate, calcitonin and 1alpha-hydroxyvitamin D (alfacalcidol) were administered for 12 months to 4 groups of postmenopausal osteoporotic patients. Fasting blood samples and two hour urine samples were collected from control subjects and from patients before and after treatment. Serum samples were assayed for IL-11, TGF-beta2, osteocalcin (OC) and bone alkaline phosphatase (B-ALP), whereas urine samples were assayed for N-telopeptide for type I collagen (NTX) and deoxypyridinoline (DPyr). The results demonstrated a significant increase of both IL-11 and TGF-beta2 in postmenopausal osteoporosis. Positive correlations exist between TGF-beta2 or IL-11 and markers of bone resorption (NTX and DPyr). Moreover, there was a significant positive correlation between TGF-beta2 and IL-11. Therapeutic modalities enhancing bone formation and/or with antiresorptive effect revealed a significant decrease in markers of bone resorption, formation and osteoclast activating cytokines, indicating a decrease in bone turnover. The decrease of IL-11 and TGF-beta2 may be attributed to a drug inhibitory effect of these cytokines on enhancing osteoblast mediated osteoid degradation. In conclusion, both serum IL-11 and TGF-beta2 determinations may be considered as biomarkers for the assessment of bone turnover and for monitoring antiresorptive therapy in postmenopausal osteoporosis.

  13. Prostaglandin E2 requirement for transforming growth factor beta 1 inhibition of elicited macrophage 14 kDa phospholipase A2 release.

    PubMed Central

    McCord, M.; Bolognese, B.; Marshall, L. A.

    1995-01-01

    1. Cultured elicited-peritoneal macrophages release a soluble type II 14 kDa phospholipase A2 (PLA2) over time, reaching a plateau by 20-24 h of incubation and maintaining these levels over 72 h. Prostaglandin E2 (PGE2) is also produced but does not plateau until 48-72 h. 2. Transforming growth factor beta 1 (TGF beta 1) reduces cellular 14 kDa PLA2 and its subsequent release by approximately half, but does not alter PGE2 production. Co-incubation of TGF beta 1 with indomethacin interfered, in a concentration-dependent manner, with the ability of TGF beta 1 to reduce cellular 14 kDa PLA2 and its subsequent release over 24 h. The regulation of TGF beta 1 was not specific to indomethacin since other non-steroidal anti-inflammatory drugs had the same effect. This suggested that cyclooxygenase activity was essential for TGF beta 1 to exert its effect and indeed, the addition of exogenous PGE2 restored the TGF beta 1 action. 3. PGE2 alone exerted a concentration-dependent negative feedback action on elicited-macrophage 14 kDa PLA2 release. The inhibitory concentration (IC50 = approximately 180 ng PGE2 ml-1) approximated the PGE2 levels measured in the 24 h macrophage conditioned media (85-140 ng PGE2 ml-1) where PLA2 release began to plateau. Further, incubation of cells with indomethacin over 48 h resulted in the enhancement of 14 kDa PLA2 activity compared to that released from untreated cells. Forskolin failed to inhibit 14 kDa PLA2 release, suggesting PGE2 was not acting through an increase in adenylate cyclase. 4. Taken together, the data are consistent with the immunosuppressive aspects reported for both mediators during inflammation and demonstrates the requirement of PGE2 for TGF beta 1 action on the elicited macrophage. Images Figure 3 PMID:8590973

  14. Inhibition of liver fibrosis by solubilized coenzyme Q10: Role of Nrf2 activation in inhibiting transforming growth factor-beta1 expression

    SciTech Connect

    Choi, Hoo-Kyun; Pokharel, Yuba Raj; Lim, Sung Chul; Han, Hyo-Kyung; Ryu, Chang Seon; Kim, Sang Kyum; Kwak, Mi Kyong; Kang, Keon Wook

    2009-11-01

    Coenzyme Q10 (CoQ10), an endogenous antioxidant, is important in oxidative phosphorylation in mitochondria. It has anti-diabetic and anti-cardiovascular disease effects, but its ability to protect against liver fibrosis has not been studied. Here, we assessed the ability of solubilized CoQ10 to improve dimethylnitrosamine (DMN)-induced liver fibrogenesis in mice. DMN treatments for 3 weeks produced a marked liver fibrosis as assessed by histopathological examination and tissue 4-hydroxyproline content. Solubilized CoQ10 (10 and 30 mg/kg) significantly inhibited both the increases in fibrosis score and 4-hydroxyproline content induced by DMN. Reverse transcription-polymerase chain reaction and Western blot analyses revealed that solubilized CoQ10 inhibited increases in the transforming growth factor-beta1 (TGF-beta1) mRNA and alpha-smooth muscle actin (alpha-SMA) protein by DMN. Interestingly, hepatic glutamate-cysteine ligase (GCL) and glutathione S-transferase A2 (GSTA2) were up-regulated in mice treated with CoQ10. Solubilized CoQ10 also up-regulated antioxidant enzymes such as catalytic subunits of GCL and GSTA2 via activating NF-E2 related factor2 (Nrf2)/antioxidant response element (ARE) in H4IIE hepatoma cells. Moreover, CoQ10's inhibition of alpha-SMA and TGF-beta1 expressions disappeared in Nrf2-null MEF cells. In contrast, Nrf2 overexpression significantly decreased the basal expression levels of alpha-SMA and TGF-beta1 in Nrf2-null MEF cells. These results demonstrated that solubilized CoQ10 inhibited DMN-induced liver fibrosis through suppression of TGF-beta1 expression via Nrf2/ARE activation.

  15. A transforming growth factor. beta. (TGF-. beta. ) receptor from human placenta exhibits greater affinity for TGF-. beta. 2 than for TGF-. beta. 1

    SciTech Connect

    Mitchell, E.J.; O'Connor-McCourt, M.D. )

    1991-04-30

    Affinity-labeling techniques have been used to identify three types of high-affinity receptors for transforming growth factor {beta} (TGF-{beta}) on the surface of many cells in culture. Here the authors demonstrate that membrane preparations from tissue sources may also be used as an alternative system for studying the binding properties of TGF-{beta} receptors. Using a chemical cross-linking technique with {sup 125}I-TGF-{beta}1 and {sup 125}I-TGF-{beta}2 and bis(sulfosuccinimidyl)suberate (BS{sup 3}), they have identified and characterized two high-affinity binding components in membrane preparations derived from human term placenta. The larger species, which migrates as a diffuse band of molecular mass 250-350 kDa on sodium dodecyl sulfate-polyacrylamide electrophoresis gels, is characteristic of the TGF-{beta} receptor type III, a proteoglycan containing glycosaminoglycan (GAG) chains of chondroitin and heparan sulfate. The smaller species of molecular mass 140 kDa was identified as the core glycoprotein of this type III receptor by using the techniques of enzymatic deglycosylation and peptide mapping. Competition experiments, using {sup 125}I-TGF-{beta}1 or {sup 125}I-TGF-{beta}2 and varying amounts of competing unlabeled TGF-{beta}1 or TGF-{beta}2, revealed that both the placental type III proteoglycan and its core glycoprotein belong to a novel class of type III receptors that exhibit a greater affinity for TGF-{beta}2 than for TGF-{beta}1. This preferential binding of TGF-{beta}2 to placental type III receptors suggests differential roles for TGF-{beta}2 and TGF-{beta} 1 in placental function.

  16. Negative regulation of inducible nitric-oxide synthase expression mediated through transforming growth factor-beta-dependent modulation of transcription factor TCF11.

    PubMed

    Berg, David T; Gupta, Akanksha; Richardson, Mark A; O'Brien, Lee A; Calnek, David; Grinnell, Brian W

    2007-12-21

    Inducible nitric-oxide synthase (iNOS) plays a central role in the regulation of vascular function and response to injury. A central mediator controlling iNOS expression is transforming growth factor-beta (TGF-beta), which represses its expression through a mechanism that is poorly understood. We have identified a binding site in the iNOS promoter that interacts with the nuclear heterodimer TCF11/MafG using chromatin immunoprecipitation and mutation analyses. We demonstrate that binding at this site acts to repress the induction of iNOS gene expression by cytokines. We show that this repressor is induced by TGF-beta1 and by Smad6-short, which enhances TGF-beta signaling. In contrast, the up-regulation of TCF11/MafG binding could be suppressed by overexpression of the TGF-beta inhibitor Smad7, and a small interfering RNA to TCF11 blocked the suppression of iNOS by TGF-beta. The binding of TCF11/MafG to the iNOS promoter could be enhanced by phorbol 12-myristate 13-acetate and suppressed by the protein kinase C inhibitor staurosporine. Moreover, the induction of TCF11/MafG binding by TGF-beta and Smad6-short could be blocked by staurosporine, and the effect of TGF-beta was blocked by the selective protein kinase C inhibitor calphostin C. Consistent with the in vitro data, we found suppression of TCF11 coincident with iNOS up-regulation in a rat model of endotoxemia, and we observed a highly significant negative correlation between TCF11 and nitric oxide production. Furthermore, treatment with activated protein C, a serine protease effective in septic shock, blocked the down-regulation of TCF11 and suppressed endotoxin-induced iNOS. Overall, our results demonstrate a novel mechanism by which iNOS expression is regulated in the context of inflammatory activation.

  17. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling.

    PubMed

    Quan, Taihao; He, Tianyuan; Kang, Sewon; Voorhees, John J; Fisher, Gary J

    2004-09-01

    Ultraviolet (UV) irradiation from the sun reduces production of type I procollagen (COLI), the major structural protein in human skin. This reduction is a key feature of the pathophysiology of premature skin aging (photoaging). Photoaging is the most common form of skin damage and is associated with skin carcinoma. TGF-beta/Smad pathway is the major regulator of type I procollagen synthesis in human skin. We have previously reported that UV irradiation impairs transforming growth factor-beta (TGF-beta)/Smad signaling in mink lung epithelial cells. We have investigated the mechanism of UV irradiation impairment of the TGF-beta/Smad pathway and the impact of this impairment on type I procollagen production in human skin fibroblasts, the major collagen-producing cells in skin. We report here that UV irradiation impairs TGF-beta/Smad pathway in human skin by down-regulation of TGF-beta type II receptor (TbetaRII). This loss of TbetaRII occurs within 8 hours after UV irradiation and precedes down-regulation of type I procollagen expression in human skin in vivo. In human skin fibroblasts, UV-induced TbetaRII down-regulation is mediated by transcriptional repression and results in 90% reduction of specific, cell-surface binding of TGF-beta. This loss of TbetaRII prevents downstream activation of Smad2/3 by TGF-beta, thereby reducing expression of type I procollagen. Preventing loss of TbetaRII by overexpression protects against UV inhibition of type I procollagen gene expression in human skin fibroblasts. UV-induced down-regulation of TbetaRII, with attendant reduction of type I procollagen production, is a critical molecular mechanism in the pathophysiology of photoaging.

  18. Regulation of T-cell interaction with fibronectin by transforming growth factor-beta is associated with altered Pyk2 phosphorylation.

    PubMed

    Brill, A; Franitza, S; Lider, O; Hershkoviz, R

    2001-10-01

    Although the involvement of transforming growth factor-beta (TGF-beta) in inflammatory reactions has been extensively studied, its mode of action in the context of the extracellular matrix (ECM) is still not fully understood. We undertook this study in an attempt to reveal the putative roles of TGF-beta in T-cell adhesion and migration. We found that a 60-min treatment of T cells with TGF-beta regulates T-cell adhesion to fibronectin (FN), a prototype cell adhesion protein of the ECM, depending on the presence of other activators. At 5 pg/ml to 1 ng/ml, TGF-beta alone induced T-cell adhesion to FN in an integrin alpha4/beta1- and integrin alpha5/beta1-dependent manner. TGF-beta also attenuated T-cell migration on the stromal cell-derived factor (SDF)-1alpha gradients. These effects of TGF-beta were not accompanied by alteration in the expression of very-late activation antigen type 4 (VLA-4) and VLA-5, nor were they mediated by the cyclo-oxygenase pathway. The cellular mechanism underlying the adhesion-regulating activities of TGF-beta involves adhesion-associated cytoskeletal elements. TGF-beta induced the phosphorylation of focal adhesion kinase Pyk2, but not extracellular signal-regulated kinase (ERK), and this effect was markedly increased in the presence of immobilized FN, suggesting a collaborative role for FN-specific integrins. Indeed, TGF-beta-induced Pyk2 phosphorylation was inhibited by monoclonal antibodies against VLA-4, VLA-5 and CD29. Thus, TGF-beta, which may appear at extravascular sites during inflammation, affects the adhesion of T cells to ECM glycoproteins and their migration by its ability to differentially induce or inhibit the phosphorylation of Pyk2. PMID:11683954

  19. Pharmacological induction of transforming growth factor-beta1 in rat models enhances radiation injury in the intestine and the heart.

    PubMed

    Boerma, Marjan; Wang, Junru; Sridharan, Vijayalakshmi; Herbert, Jean-Marc; Hauer-Jensen, Martin

    2013-01-01

    Radiation therapy in the treatment of cancer is dose limited by radiation injury in normal tissues such as the intestine and the heart. To identify the mechanistic involvement of transforming growth factor-beta 1 (TGF-β1) in intestinal and cardiac radiation injury, we studied the influence of pharmacological induction of TGF-β1 with xaliproden (SR 57746A) in rat models of radiation enteropathy and radiation-induced heart disease (RIHD). Because it was uncertain to what extent TGF-β induction may enhance radiation injury in heart and intestine, animals were exposed to irradiation schedules that cause mild to moderate (acute) radiation injury. In the radiation enteropathy model, male Sprague-Dawley rats received local irradiation of a 4-cm loop of rat ileum with 7 once-daily fractions of 5.6 Gy, and intestinal injury was assessed at 2 weeks and 12 weeks after irradiation. In the RIHD model, male Sprague-Dawley rats received local heart irradiation with a single dose of 18 Gy and were followed for 6 months after irradiation. Rats were treated orally with xaliproden starting 3 days before irradiation until the end of the experiments. Treatment with xaliproden increased circulating TGF-β1 levels by 300% and significantly induced expression of TGF-β1 and TGF-β1 target genes in the irradiated intestine and heart. Various radiation-induced structural changes in the intestine at 2 and 12 weeks were significantly enhanced with TGF-β1 induction. Similarly, in the RIHD model induction of TGF-β1 augmented radiation-induced changes in cardiac function and myocardial fibrosis. These results lend further support for the direct involvement of TGF-β1 in biological mechanisms of radiation-induced adverse remodeling in the intestine and the heart.

  20. Superficial zone protein (lubricin) in the different tissue compartments of the knee joint: modulation by transforming growth factor beta 1 and interleukin-1 beta.

    PubMed

    Lee, Sang Yang; Niikura, Takahiro; Reddi, A Hari

    2008-11-01

    Superficial-zone protein (SZP), also known as lubricin, is a key mediator of boundary lubrication and plays an important role in the functional integrity of the diarthrodial joint. The aim of this investigation was to examine the role of transforming growth factor beta (TGF-beta) and interleukin-1 beta (IL-1beta) on the expression of SZP in various compartments of the bovine knee joint: the superficial zone of articular cartilage, synovium, meniscus, and anterior and posterior cruciate ligaments. The effects of TGF-beta1 and IL-1beta on SZP expression were examined in explants and cells from the different tissue compartments. TGF-beta1 up-regulated the expression of SZP in cultured explants, but IL-1beta down-regulated it. Quantitative analysis of secreted proteins in the medium of the cells demonstrated significant stimulation by TGF-beta1 and inhibition by IL1-beta of the accumulation of SZP protein in all four tissues. Real-time polymerase chain reaction analysis revealed that TGF-beta1 significantly up-regulated SZP expression and that IL-1beta down-regulated it. These results revealed the modulation of SZP expression in various compartments of the knee joint by TGF-beta1 and IL-1beta. In addition, SZP was found to be immunolocalized at the surface layer of cells in histological sections of all four tissue compartments. Collectively, results of the current study on regulation of SZP expression by TGF-beta and IL-1 help provide new insights, into tissue engineering strategies to repair and regenerate the different tissue compartments in the articular joint with optimal lubrication.

  1. Concurrent and distinct transcription and translation of transforming growth factor-beta type I and type II receptors in rodent embryogenesis.

    PubMed

    Mariano, J M; Montuenga, L M; Prentice, M A; Cuttitta, F; Jakowlew, S B

    1998-11-01

    The transforming growth factor-betas (TGF-betas) are multifunctional regulatory polypeptides that play a crucial role in many cell processes and function through a set of cell surface protein receptors that includes TGF-beta type I (RI) and type II (RII). The present study reports a comprehensive comparison of the patterns of expression of TGF-beta RI and RII proteins and mRNAs in the developing mouse embryo using immunohistochemical and in situ hybridization analyses. Although widespread expression of both TGF-beta receptors was detected throughout the embryonic development period so that many similarities occur in localization of the TGF-beta receptors, TGF-beta RI was expressed in a well-defined, non-uniform pattern that was different in many respects from that of TGF-beta RII. Whereas higher levels of TGF-beta RI compared to TGF-beta RII were detected in some tissues of the embryo at the beginning of organogenesis, the level of TGF-beta RII increased more dramatically than that of TGF-beta RI during late organogenesis; this was especially true in many neural structures where TGF-beta RI and RII were comparable by day 16. The lung, kidney and intestine, in which epithelial-mesenchymal interactions occur, showed a complex pattern of TGF-beta RI and Rll expression. Additionally, northern blot hybridization and reverse transcription-polymerase chain reaction (RT-PCR) amplification showed non-uniform expression of the transcripts for TGF-beta RI and RII in embryonic and adult mouse and rat tissues. These data show that regulation of TGF-beta1 RI and RII occurs concurrently, but distinctly, in a spatial and temporal manner in rodent embryogenesis which may allow control of signal transduction of TGF-beta during development. PMID:9879710

  2. Transforming growth factor-{beta}1 regulates fibronectin isoform expression and splicing factor SRp40 expression during ATDC5 chondrogenic maturation

    SciTech Connect

    Han Fei; Gilbert, James R.; Harrison, Gerald; Adams, Christopher S.; Freeman, Theresa; Tao Zhuliang; Zaka, Raihana; Liang Hongyan; Williams, Charlene; Tuan, Rocky S.; Norton, Pamela A.; Hickok, Noreen J. . E-mail: Noreen.Hickok@jefferson.edu

    2007-05-01

    Fibronectin (FN) isoform expression is altered during chondrocyte commitment and maturation, with cartilage favoring expression of FN isoforms that includes the type II repeat extra domain B (EDB) but excludes extra domain A (EDA). We and others have hypothesized that the regulated splicing of FN mRNAs is necessary for the progression of chondrogenesis. To test this, we treated the pre-chondrogenic cell line ATDC5 with transforming growth factor-{beta}1, which has been shown to modulate expression of the EDA and EDB exons, as well as the late markers of chondrocyte maturation; it also slightly accelerates the early acquisition of a sulfated proteoglycan matrix without affecting cell proliferation. When chondrocytes are treated with TGF-{beta}1, the EDA exon is preferentially excluded at all times whereas the EDB exon is relatively depleted at early times. This regulated alternative splicing of FN correlates with the regulation of alternative splicing of SRp40, a splicing factor facilitating inclusion of the EDA exon. To determine if overexpression of the SRp40 isoforms altered FN and FN EDA organization, cDNAs encoding these isoforms were overexpressed in ATDC5 cells. Overexpression of the long-form of SRp40 yielded an FN organization similar to TGF-{beta}1 treatment; whereas overexpression of the short form of SRp40 (which facilitates EDA inclusion) increased formation of long-thick FN fibrils. Therefore, we conclude that the effects of TGF-{beta}1 on FN splicing during chondrogenesis may be largely dependent on its effect on SRp40 isoform expression.

  3. (Latent) transforming growth factor beta in liver parenchymal cells, its injury-dependent release, and paracrine effects on rat hepatic stellate cells.

    PubMed

    Roth, S; Michel, K; Gressner, A M

    1998-04-01

    Cultured parenchymal liver cells (PC) were recently recognized to contain (latent) transforming growth factor beta (TGF-beta) while the expression of TGF-beta mRNA remains controversial. This study was designed to analyze PC in different microenvironments (liver in situ, highly purified, isolated, and cultured PC) regarding the qualitative and quantitative content of mature and latent TGF-beta protein (immunostainings, enzyme-linked immunosorbent assay [ELISA], and enzyme-labeled fluorescence [ELF] technique). The results were compared with its gene expression (reverse-transcription polymerase chain reaction [RT-PCR]). In all microenvironments, PC contained latent TGF-beta, which was partially activated after cell isolation and culture. The amount of total TGF-beta (mature plus latent) of latency-associated peptide (LAP) and of latent TGF-beta binding protein (LTBP) were shown to decrease during culture. In contrast, TGF-beta2 and TGF-beta3 mRNA and LTBP-1 and -3 mRNA expression were first detectable after culture. Permeabilization of cell membranes in whole liver and of isolated PC with streptolysin O or carbon tetrachloride, respectively, released TGF-beta, a part of which was integrated in the large latent complex as estimated by analytical gel filtration chromatography. The TGF-beta released by damaged PC induces paracrine effects on hepatic stellate cell cultures. It stimulates hyaluronan synthesis and antagonizes the effect of mitogenic factor(s) of PC on [3H]thymidine incorporation. The results strongly suggest that the main part of hepatocellular TGF-beta is not generated by de novo synthesis but from uptake into the liver in vivo. The immunodetection of preexisting mature TGF-beta after isolation of the cells is probably caused by intracellular activation of latent TGF-beta. The injury-dependent discharge of TGF-beta from PC might be an important mechanism for initiation and perpetuation of various forms of chronic human liver diseases.

  4. Renal expression of fibrotic matrix proteins and of transforming growth factor-beta (TGF-beta) isoforms in TGF-beta transgenic mice.

    PubMed

    Mozes, M M; Böttinger, E P; Jacot, T A; Kopp, J B

    1999-02-01

    Renal pathology in mice that are transgenic for the murine albumin enhancer/promoter linked to a full-length porcine transforming growth factor-beta1 (TGF-beta1) gene has been described previously. In these mice, transgene expression is limited to the liver and the plasma level of TGF-beta is increased. The earliest renal pathologic change is glomerulosclerosis, at 3 wk of age, and this is followed by tubulointerstitial fibrosis. In this study, it was hypothesized that circulating TGF-beta1 increases renal extracellular matrix accumulation and activates local TGF-beta gene expression. Immunostaining at 5 wk revealed increased amounts of collagen I and III within the mesangium, glomerular capillary loops, and interstitium, while the amount of collagen IV was normal. Similarly, Northern analysis showed increased expression of mRNA encoding collagen I and III, as well as biglycan and decorin, while the expression of collagen IV was unchanged. These changes began as early as 1 wk of age, a time before the appearance of glomerulosclerosis. To evaluate matrix degradation, collagenase IV activity was evaluated by gelatin zymography and an increase in matrix metalloproteinase-2 was found. Finally, the production of tissue inhibitors of metalloproteinase was evaluated. Tissue inhibitor of metalloproteinase-1 (TIMP-1) mRNA was increased 18-fold, while TIMP-2 and TIMP-3 were unchanged. In 2-wk-old transgenic kidney, local expression of TGF-beta1, beta2, and beta3 protein was similar to wild-type mice. In 5-wk-old transgenic mice, TGF-beta1 and beta2 protein was present in increased amounts within glomeruli, and renal TGF-beta1 mRNA was increased threefold. It is concluded that elevated levels of circulating TGF-beta1 may act on the kidney to increase matrix protein production and decrease matrix remodeling. Only after glomerulosclerosis is established does local glomerular overproduction of TGF-beta become manifest.

  5. Platelet-rich plasma increases transforming growth factor-beta1 expression at graft-host interface following autologous osteochondral transplantation in a rabbit model

    PubMed Central

    Boakye, Lorraine A; Ross, Keir A; Pinski, John M; Smyth, Niall A; Haleem, Amgad M; Hannon, Charles P; Fortier, Lisa A; Kennedy, John G

    2015-01-01

    AIM: To explore the effect of platelet-rich plasma on protein expression patterns of transforming growth factor-beta1 (TGF-β1) in cartilage following autologous osteochondral transplantation (AOT) in a rabbit knee cartilage defect model. METHODS: Twelve New Zealand white rabbits received bilateral AOT. In each rabbit, one knee was randomized to receive an autologous platelet rich plasma (PRP) injection and the contralateral knee received saline injection. Rabbits were euthanized at 3, 6 and 12 wk post-operatively. Articular cartilage sections were stained with TGF-β1 antibody. Histological regions of interest (ROI) (left, right and center of the autologous grafts interfaces) were evaluated using MetaMorph. Percentage of chondrocytes positive for TGF-β1 was then assessed. RESULTS: Percentage of chondrocytes positive for TGF-β1 was higher in PRP treated knees for selected ROIs (left; P = 0.03, center; P = 0.05) compared to control and was also higher in the PRP group at each post-operative time point (P = 6.6 × 10-4, 3.1 × 10-4 and 7.3 × 10-3 for 3, 6 and 12 wk, respectively). TGF-β1 expression was higher in chondrocytes of PRP-treated knees (36% ± 29% vs 15% ± 18%) (P = 1.8 × 10-6) overall for each post-operative time point and ROI. CONCLUSION: Articular cartilage of rabbits treated with AOT and PRP exhibit increased TGF-β1 expression compared to those treated with AOT and saline. Our findings suggest that adjunctive PRP may increase TGF-β1 expression, which may play a role in the chondrogenic effect of PRP in vivo. PMID:26716092

  6. miR-663 overexpression induced by endoplasmic reticulum stress modulates hepatocellular carcinoma cell apoptosis via transforming growth factor beta 1

    PubMed Central

    Huang, Yawei; Liu, Jiatao; Fan, Lulu; Wang, Fang; Yu, Hanqing; Wei, Wei; Sun, Guoping

    2016-01-01

    microRNAs are commonly dysregulated in a number of human cancers, for example, hepatocellular carcinoma (HCC), but the precise mechanism of dysregulation has not been extensively studied. Although previous studies have indicated that HCC cells are resistant to endoplasmic reticulum (ER) stress-induced apoptosis, little is known about the relationship between microRNAs and ER stress-mediated apoptosis resistance. In this study, we have demonstrated for the first time that the expression level of miR-663 was significantly upregulated in HCC cells co-incubated with tunicamycin, an ER stress inducer, as measured by a microRNA-chromatin immunoprecipitation microarray and quantitative real-time polymerase chain reaction; however, the effect of miR-663 on HCC cell apoptosis remains unknown. To investigate the potential involvement of miR-663 in HCC, HepG2 cells were transfected with mimics or inhibitors of miR-663. Consequently, we identified that downregulation of miR-663 suppressed HCC cell proliferation and promoted apoptosis under ER stress. Target gene analysis further predicted that the effects of miR-663 on HCC cells were mediated by directly targeting transforming growth factor beta 1 (TGFB1). Interestingly, the expression levels of TGFB1 changed inversely after downregulation or upregulation of miR-663 by inhibitors or mimics of miR-663 in HepG2 cells. Additionally, TGFB1 knockdown inhibited apoptosis in HepG2 cells. In sum, our study identifies a role for miR-663 as a critical regulator of ER stress-mediated apoptosis resistance in HCC cells via TGFB1. Accordingly, therapies aimed at the miR-663/TGFB1 axis might represent a hopeful strategy to overcome apoptosis resistance in HCC. PMID:27073326

  7. Puerarin Attenuates Cardiac Hypertrophy Partly Through Increasing Mir-15b/195 Expression and Suppressing Non-Canonical Transforming Growth Factor Beta (Tgfβ) Signal Pathway

    PubMed Central

    Zhang, Xiuzhou; Liu, Yuxiang; Han, Qingliang

    2016-01-01

    Background Previous studies demonstrated that puerarin has therapeutic effects on cardiac hypertrophy. This study aimed to explore whether the effect of puerarin on attenuating cardiac hypertrophy is related to regulation of microRNAs (miRNAs) and the transforming growth factor beta (TGFβ) signal pathway. Material/Methods The therapeutic effect of puerarin was assessed using an angiotensin (Ang) II-induced heart hypertrophy model in mice. The primary cardiomyocytes were used as an in vitro model. MiR-15 family expression was quantified using qRT-PCR analysis. The expression of the genes involved in canonical and non-canonical TGFβ signal pathways was measured using qRT-PCR and Western blot analysis. In vitro cardiac hypertrophic features were assessed by quantifying cardiac hypertrophic genes and measurement of cell surface, protein synthesis, and total protein content. Results Puerarin attenuated cardiac hypertrophy and increased miR-15b and miR-195 expression in the mouse cardiac hypertrophy model and in primary cardiomyocytes. It suppressed both canonical and non-canonical TGFβ signal pathways, partially through miR-15b and miR-195. Puerarin reduced mRNA expression of cardiac hypertrophic genes, reduced cell surface area, and lowered the rate of protein synthesis and the total protein content induced by Ang II. Knockdown of endogenous miR-15b and miR-195 partly abrogated these effects. Knockdown of endogenous p38, but not Smad2/3/4, presented similar effects as miR-15b. Conclusions Puerarin administration enhances miR-15b and miR-195 expression in an Ang II-induced cardiac hypertrophy model, through which it suppresses both canonical and non-canonical TGFβ signal pathways at the same time. However, the effect of puerarin on attenuating cardiac hypertrophy is mainly through the non-canonical TGFβ pathway. PMID:27145790

  8. Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer

    SciTech Connect

    Yue, Dongli; Zhang, Zhen; Li, Jieyao; Chen, Xinfeng; Ping, Yu; Liu, Shasha; Shi, Xiaojuan; Li, Lifeng; Wang, Liping; Huang, Lan; Zhang, Bin; and others

    2015-08-01

    Esophageal cancer is one of the most lethal solid malignancies. Mounting evidence demonstrates that cancer stem cells (CSCs) are able to cause tumor initiation, metastasis and responsible for chemotherapy and radiotherapy failures. As CSCs are thought to be the main reason of therapeutic failure, these cells must be effectively targeted to elicit long-lasting therapeutic responses. We aimed to enrich and identify the esophageal cancer cell subpopulation with stem-like properties and help to develop new target therapy strategies for CSCs. Here, we found esophageal cancer cells KYSE70 and TE1 could form spheres in ultra low attachment surface culture and be serially passaged. Sphere-forming cells could redifferentiate and acquire morphology comparable to parental cells, when return to adherent culture. The sphere-forming cells possessed the key criteria that define CSCs: persistent self-renewal, overexpression of stemness genes (SOX2, ALDH1A1 and KLF4), reduced expression of differentiation marker CK4, chemoresistance, strong invasion and enhanced tumorigenic potential. SB525334, transforming growth factor-beta 1(TGF-β1) inhibitor, significantly inhibited migration and invasion of sphere-forming stem-like cells and had no effect on sphere-forming ability. In conclusion, esophageal cancer sphere-forming cells from KYSE70 and TE1 cultured in ultra low attachment surface possess cancer stem cell properties, providing a model for CSCs targeted therapy. TGF-β1 promotes the migration and invasion of sphere-forming stem-like cells, which may guide future studies on therapeutic strategies targeting these cells. - Highlights: • Esophageal cancer sphere-forming cells possess cancer stem cell properties. • Sphere-forming cells enhance TGF-β1 pathway activity. • TGF-β 1 inhibitor suppresses the migration and invasion of sphere-forming cells.

  9. Silencing of the transforming growth factor-beta (TGFbeta) receptor II by Kruppel-like factor 14 underscores the importance of a negative feedback mechanism in TGFbeta signaling.

    PubMed

    Truty, Mark J; Lomberk, Gwen; Fernandez-Zapico, Martin E; Urrutia, Raul

    2009-03-01

    The role of non-Smad proteins in the regulation of transforming growth factor-beta (TGFbeta) signaling is an emerging line of active investigation. Here, we characterize the role of KLF14, as a TGFbeta-inducible, non-Smad protein that silences the TGFbeta receptor II (TGFbetaRII) promoter. Together with endocytosis, transcriptional silencing is a critical mechanism for down-regulating TGFbeta receptors at the cell surface. However, the mechanisms underlying transcriptional repression of these receptors remain poorly understood. KLF14 has been chosen from a comprehensive screen of 24 members of the Sp/KLF family due to its TGFbeta inducibility, its ability to regulate the TGFbetaRII promoter, and the fact that this protein had yet to be functionally characterized. We find that KLF14 represses the TGFbetaRII, a function that is augmented by TGFbeta treatment. Mapping of the TGFbetaRII promoter, in combination with site-directed mutagenesis, electromobility shift, and chromatin immunoprecipitation assays, have identified distinct GC-rich sequences used by KLF14 to regulate this promoter. Mechanistically, KLF14 represses the TGFbetaRII promoter via a co-repressor complex containing mSin3A and HDAC2. Furthermore, the TGFbeta pathway activation leads to recruitment of a KLF14-mSin3A-HDAC2 repressor complex to the TGFbetaRII promoter, as well as the remodeling of chromatin to increase histone marks that associate with transcriptional silencing. Thus, these results describe a novel negative-feedback mechanism by which TGFbetaRII activation at the cell surface induces the expression of KLF14 to ultimately silence the TGFbetaRII and further expand the network of non-Smad transcription factors that participate in the TGFbeta pathway. PMID:19088080

  10. Transforming growth factor-beta 3 stimulates cartilage matrix elaboration by human marrow-derived stromal cells encapsulated in photocrosslinked carboxymethylcellulose hydrogels: potential for nucleus pulposus replacement.

    PubMed

    Gupta, Michelle S; Cooper, Elana S; Nicoll, Steven B

    2011-12-01

    Degeneration of the nucleus pulposus (NP) has been implicated as a major cause of low back pain. Tissue engineering strategies using marrow-derived stromal cells (MSCs) have been used to develop cartilaginous tissue constructs, which may serve as viable NP replacements. Supplementation with growth factors, such as transforming growth factor-beta 3 (TGF-β3), has been shown to enhance the differentiation of MSCs and promote functional tissue development of such constructs. A potential candidate material that may be useful as a scaffold for NP tissue engineering is carboxymethylcellulose (CMC), a biocompatible, cost-effective derivative of cellulose. Photocrosslinked CMC hydrogels have been shown to support NP cell viability and promote phenotypic matrix deposition capable of maintaining mechanical properties when cultured in serum-free, chemically defined medium (CDM) supplemented with TGF-β3. However, MSCs have not been characterized using this hydrogel system. In this study, human MSCs (hMSCs) were encapsulated in photocrosslinked CMC hydrogels and cultured in CDM with and without TGF-β3 to determine the effect of the growth factor on the differentiation of hMSCs toward an NP-like phenotype. Constructs were evaluated for matrix elaboration and functional properties consistent with native NP tissue. CDM supplemented with TGF-β3 resulted in significantly higher glycosaminoglycan content (762.69±220.79 ng/mg wet weight) and type II collagen (COL II) content (6.25±1.64 ng/mg wet weight) at day 21 compared with untreated samples. Immunohistochemical analyses revealed uniform, pericellular, and interterritorial staining for chondroitin sulfate proteoglycan and COL II in growth factor-supplemented constructs compared with faint, strictly pericellular staining in untreated constructs at 21 days. Consistent with matrix deposition, mechanical properties of hydrogels treated with TGF-β3 increased over time and exhibited the highest peak stress in stress-relaxation (

  11. Hammerhead Ribozyme-Mediated Knockdown of mRNA for Fibrotic Growth Factors: Transforming Growth Factor-Beta 1 and Connective Tissue Growth Factor

    PubMed Central

    Robinson, Paulette M.; Blalock, Timothy D.; Yuan, Rong; Lewin, Alfred S.; Schultz, Gregory S.

    2013-01-01

    Excessive scarring (fibrosis) is a major cause of pathologies in multiple tissues, including lung, liver, kidney, heart, cornea, and skin. The transforming growth factor- β (TGF- β) system has been shown to play a key role in regulating the formation of scar tissue throughout the body. Furthermore, connective tissue growth factor (CTGF) has been shown to mediate most of the fibrotic actions of TGF- β, including stimulation of synthesis of extracellular matrix and differentiation of fibroblasts into myofibroblasts. Currently, no approved drugs selectively and specifically regulate scar formation. Thus, there is a need for a drug that selectively targets the TGF- β cascade at the molecular level and has minimal off-target side effects. This chapter focuses on the design of hammerhead ribozymes, measurement of kinetic activity, and assessment of knockdown mRNAs of TGF- β and CTGF in cell cultures. PMID:22131029

  12. Transforming growth factor-beta 1 differentially regulates proliferation, morphology, and extracellular matrix expression by three neural crest-derived neuroblastoma cell lines.

    PubMed

    Rogers, S L; Cutts, J L; Gegick, P J; McGuire, P G; Rosenberger, C; Krisinski, S

    1994-04-01

    We reported previously (S. L. Rogers, P. J. Gegick, S. M. Alexander, and P. G. McGuire, Dev. Biol. 151, 191-203, 1992) that transforming growth factor-beta 1 (TGF beta 1) inhibited proliferation, up-regulated fibronectin synthesis, and suppressed melanogenesis in a population of quail neural crest cells in vitro. Here, we report that cell lines derived from the parent SK-N-SH neuroblastoma line (R. A. Ross, B. A. Spengler, and J. L. Biedler, J. Natl. Cancer Inst. 71, 741-747, 1983) respond differentially to TGF beta 1, and their responses provide further insights into the actions of this growth factor on neural crest subpopulations. The SH-EP cell line exhibits primarily nonneuronal traits and responded to TGF beta 1 with increased thymidine uptake after 6 days of culture, increased expression of fibronectin mRNA and protein, and decreased laminin synthesis. Many SH-EP cells also acquired a dramatically elongated morphology, reminiscent of Schwann cells in culture. Thymidine uptake by the neuronal SY5Y cell line was not substantially altered. Neither fibronectin mRNA nor protein was detectable in either TGF beta 1-treated or untreated cultures, although laminin synthesis was upregulated by the growth factor. In TGF beta 1-treated cultures of the intermediate SH-IN cell line, which has been reported to display both neuronal and nonneuronal characteristics, there was marked flattening of many cells, a steady decrease in thymidine uptake, and increased expression of both fibronectin and laminin. The observed responses of SH-IN cells mimic those observed in primary neural crest cultures and appear to represent similar differentiation toward a mesenchymal phenotype. These results substantiate the idea that closely related but diverging neural crest-derived cell types respond selectively to TGF beta 1 and demonstrate that these SK-N-SH-derived cell lines will be useful in experimental approaches that will allow us to infer mechanisms underlying regulation of neural crest

  13. Angiotensin II-induced pro-fibrotic effects require p38MAPK activity and transforming growth factor beta 1 expression in skeletal muscle cells.

    PubMed

    Morales, María Gabriela; Vazquez, Yaneisi; Acuña, María José; Rivera, Juan Carlos; Simon, Felipe; Salas, José Diego; Alvarez Ruf, Joel; Brandan, Enrique; Cabello-Verrugio, Claudio

    2012-11-01

    Fibrotic disorders are typically characterised by excessive connective tissue and extracellular matrix (ECM) deposition that preclude the normal healing of different tissues. Several skeletal muscle dystrophies are characterised by extensive fibrosis. Among the factors involved in skeletal muscle fibrosis is angiotensin II (Ang-II), a key protein of the renin-angiotensin system (RAS). We previously demonstrated that myoblasts responded to Ang-II by increasing the ECM protein levels mediated by AT-1 receptors, implicating an Ang-II-induced reactive oxygen species (ROS) by a NAD(P)H oxidase-dependent mechanism. In this paper, we show that in myoblasts, Ang-II induced the increase of transforming growth factor beta 1 (TGF-β1) and connective tissue growth factor (CTGF) expression through its AT-1 receptor. This effect is dependent of the NAD(P)H oxidase (NOX)-induced ROS, as indicated by a decrease of the expression of both pro-fibrotic factors when the ROS production was inhibited via the NOX inhibitor apocynin. The increase in pro-fibrotic factors levels was paralleled by enhanced p38MAPK and ERK1/2 phosphorylation in response to Ang-II. However, only the p38MAPK activity was critical for the Ang-II-induced fibrotic effects, as indicated by the decrease in the Ang-II-induced TGF-β1 and CTGF expression and fibronectin levels by SB-203580, an inhibitor of the p38MAPK, but not by U0126, an inhibitor of ERK1/2 phosphorylation. Furthermore, we showed that the Ang-II-dependent p38MAPK activation, but not the ERK1/2 phosphorylation, was necessary for the NOX-derived ROS. In addition, we demonstrated that TGF-β1 expression was required for the Ang-II-induced pro-fibrotic effects evaluated by using SB-431542, an inhibitor of TGF-βRI kinase activity, and by knocking down TGF-β1 levels by shRNA technique. These results strongly suggest that the fibrotic response to Ang-II is mediated by the AT-1 receptor and requires the p38MAPK phosphorylation, NOX-induced ROS, and TGF

  14. Expression of Cyclooxygenase-2 and Transforming Growth Factor-beta1 in HCV-Induced Chronic Liver Disease and Hepatocellular Carcinoma

    PubMed Central

    El-Bassiouny, Azza E.I.; Zoheiry, Mona M.K.; Nosseir, Mona M.F.; El-Ahwany, Eman G.; Ibrahim, Raafat A.; El-Bassiouni, Nora E.I.

    2007-01-01

    Cyclooxygenase-2 (COX-2) and transforming growth factor-beta1 (TGF-beta1) were modulated in a variety of viral infections, but there is a paucity of data about their role in the pathologic process of cirrhosis and/or hepatocellular carcinoma (HCC) following chronic hepatitis C virus (HCV) infection. The material of the current study included 50 cases of chronic hepatitis C (CHC) without cirrhosis, 30 cases of CHC with cirrhosis, and 30 cases of HCC with HCV admitted to the Gastroenterology and Hepatology Department of Theodor Bilharz Research Institute, Giza, Egypt. Fifteen wedge liver biopsies, taken during laparoscopic cholecystectomy, were included in the study as normal controls. Laboratory investigations, serologic markers for viral hepatitis, and serum alpha fetoprotein levels (alpha-FP) were done for all cases of the study. Immunohistochemistry using primary antibodies against both factors revealed weak to faint immunoreactivity to COX-2 and TGF-beta1 in normal hepatic tissue (< 30% and < 50% of the cells, respectively). COX-2 expression was upregulated in patients with CHC with and without cirrhosis, yet 80% of positively stained cirrhotic cases showed marked staining intensity. Higher COX-2 expression was observed in well-differentiated HCC cases (80%) with marked staining intensity (75%) compared with advanced HCC tumors (P < .001). TGF-beta1 was expressed in the hepatocytes of all cases of CHC with and without cirrhosis as well as in 67% of HCC cases. Extensive cytoplasmic expression was detected in 52%, 93.3%, and 46.6% of CHC patients without cirrhosis, patients with cirrhosis, and patients with HCC, respectively. A positive correlation was observed between hepatic expression of COX-2 and TGF-beta1 (r = 0.67, P < .05); however, no correlation was detected between the latter and grade of HCC differentiation (r = 0.33, P > .05). Conclusion These findings may suggest that TGF-beta1 plays a role in hepatic cell damage following HCV infection thus stressing

  15. Different Risk Indictors of Diabetic Nephropathy in Transforming Growth Factor-beta1 T869C CC/CT Genotype and TT Genotype

    PubMed Central

    MOU, Xin; LIU, Yinghui; ZHOU, Diyi; HU, Yongbin; MA, Guoling; SHOU, Chengmin; CHEN, Jiawei; ZHOU, Danyang

    2016-01-01

    Background: Transforming growth factor-beta 1(TGF-β1) T869C (rs1800470, the same below) gene polymorphism is notably relative with the development of Diabetic Nephropathy (DN), and CC/CT genotype diabetic have higher frequency of than TT genotype diabetic. To find out individual risk factors in the two genotypes especially in susceptible genotype could provide more efficient and targeted prevention. Methods: This was a prospective cohort study. A total of 251 type 2 diabetes mellitus (T2DM) patients [53.4% male, 56(52–67) years] were enrolled in this cohort study. Multiple concerned factors were collected and the relationship of these risk factors and development of DN were evaluated by Cox regression analysis. Hazard ratios of development of DN were calculated by Kaplan-Meier curves and the Cox proportional hazards model for CC/CT genotype versus TT genotype patients. Results: TGF-β1 T869C gene polymorphism was an independent predictor of DN in T2DM patients (HR, 2.08; 95%CI, 1.18–3.66; P=0.012). Hyperlipemia (HR, 1.91; 95%CI, 1.19–3.08; P=0.007), age (HR, 0.95; 95%CI, 0.93–0.98; P=0.001) and smoking status (HR, 2.36; 95%CI, 1.07–5.21; P=0.033) were risk indictors of the development of DN in CC/CT genotype patients. HbA1c (HR, 2.8; 95%CI, 1.07–7.30; P=0.036), hypertension (HR, 7.46; 95%CI, 1.38–40.29; P=0.02), and hyperlipemia (HR, 12.33; 95%CI, 1.05–145.39; P=0.046) were risk indictors for the development of DN in TT genotype patients. Conclusion: TGF-β1 T869C gene polymorphism was an independent predictor of DN for T2DM patients and CC/CT genotype had higher susceptibility to DN. CC/CT genotype and TT genotype patients had different risk indictors of DN. PMID:27648419

  16. Role of Flightless-I (Drosophila) homolog in the transcription activation of type I collagen gene mediated by transforming growth factor beta

    SciTech Connect

    Lim, Mi-Sun; Jeong, Kwang Won

    2014-11-21

    Highlights: • FLII activates TGFβ-mediated expression of COL1A2 gene. • TGFβ induces the association of FLII with SMAD3 and BRG1 in A549 cells. • FLII is required for the recruitment of SWI/SNF complex and chromatin accessibility to COL1A2 promoter. - Abstract: Flightless-I (Drosophila) homolog (FLII) is a nuclear receptor coactivator that is known to interact with other transcriptional regulators such as the SWI/SNF complex, an ATP-dependent chromatin-remodeling complex, at the promoter or enhancer region of estrogen receptor (ER)-α target genes. However, little is known about the role of FLII during transcription initiation in the transforming growth factor beta (TGFβ)/SMAD-dependent signaling pathway. Here, we demonstrate that FLII functions as a coactivator in the expression of type I collagen gene induced by TGFβ in A549 cells. FLII activates the reporter gene driven by COL1A2 promoter in a dose-dependent manner. Co-expression of GRIP1, CARM1, or p300 did not show any synergistic activation of transcription. Furthermore, the level of COL1A2 expression correlated with the endogenous level of FLII mRNA level. Depletion of FLII resulted in a reduction of TGFβ-induced expression of COL1A2 gene. In contrast, over-expression of FLII caused an increase in the endogenous expression of COL1A2. We also showed that FLII is associated with Brahma-related gene 1 (BRG1) as well as SMAD in A549 cells. Notably, the recruitment of BRG1 to the COL1A2 promoter region was decreased in FLII-depleted A549 cells, suggesting that FLII is required for TGFβ-induced chromatin remodeling, which is carried out by the SWI/SNF complex. Furthermore, formaldehyde-assisted isolation of regulatory elements (FAIRE)-quantitative polymerase chain reaction (qPCR) experiments revealed that depletion of FLII caused a reduction in chromatin accessibility at the COL1A2 promoter. These results suggest that FLII plays a critical role in TGFβ/SMAD-mediated transcription of the COL1A2 gene

  17. Different Risk Indictors of Diabetic Nephropathy in Transforming Growth Factor-beta1 T869C CC/CT Genotype and TT Genotype

    PubMed Central

    MOU, Xin; LIU, Yinghui; ZHOU, Diyi; HU, Yongbin; MA, Guoling; SHOU, Chengmin; CHEN, Jiawei; ZHOU, Danyang

    2016-01-01

    Background: Transforming growth factor-beta 1(TGF-β1) T869C (rs1800470, the same below) gene polymorphism is notably relative with the development of Diabetic Nephropathy (DN), and CC/CT genotype diabetic have higher frequency of than TT genotype diabetic. To find out individual risk factors in the two genotypes especially in susceptible genotype could provide more efficient and targeted prevention. Methods: This was a prospective cohort study. A total of 251 type 2 diabetes mellitus (T2DM) patients [53.4% male, 56(52–67) years] were enrolled in this cohort study. Multiple concerned factors were collected and the relationship of these risk factors and development of DN were evaluated by Cox regression analysis. Hazard ratios of development of DN were calculated by Kaplan-Meier curves and the Cox proportional hazards model for CC/CT genotype versus TT genotype patients. Results: TGF-β1 T869C gene polymorphism was an independent predictor of DN in T2DM patients (HR, 2.08; 95%CI, 1.18–3.66; P=0.012). Hyperlipemia (HR, 1.91; 95%CI, 1.19–3.08; P=0.007), age (HR, 0.95; 95%CI, 0.93–0.98; P=0.001) and smoking status (HR, 2.36; 95%CI, 1.07–5.21; P=0.033) were risk indictors of the development of DN in CC/CT genotype patients. HbA1c (HR, 2.8; 95%CI, 1.07–7.30; P=0.036), hypertension (HR, 7.46; 95%CI, 1.38–40.29; P=0.02), and hyperlipemia (HR, 12.33; 95%CI, 1.05–145.39; P=0.046) were risk indictors for the development of DN in TT genotype patients. Conclusion: TGF-β1 T869C gene polymorphism was an independent predictor of DN for T2DM patients and CC/CT genotype had higher susceptibility to DN. CC/CT genotype and TT genotype patients had different risk indictors of DN.

  18. Comparison of the effect of calcium gluconate and batroxobin on the release of transforming growth factor beta 1 in canine platelet concentrates

    PubMed Central

    2012-01-01

    Background The clinical use of autologous platelet concentrates (also known as platelet-rich plasma) on the field of regenerative therapy, in the last decade has been the subject of several studies especially in equine medicine and surgery. The objectives of this study was: 1) to describe and compare the cellular population in whole blood, lower fraction (A) and upper fraction (B) of platelet concentrates, 2) to measure and compare the transforming growth factor beta 1 (TGF-β1) concentration in plasma and both platelet concentrates after be activated with calcium gluconate or batroxobin plus calcium gluconate and, 3) to determine correlations between cell counts in platelet concentrates and concentrations of TGF-β1. Blood samples were taken from 16 dogs for complete blood count, plasma collection and platelet concentrates preparation. The platelet concentrates (PC) were arbitrarily divided into two fractions, specifically, PC-A (lower fraction) and PC-B (upper fraction). The Platelet concentrates were analyzed by hemogram. After activated with calcium gluconate or batroxobin plus calcium gluconate, TGF-β1 concentration was determined in supernatants of platelet concentrates and plasma. Results There were differences statistically significant (P < 0.05) for the platelet count and leukocyte count and TGF-β1 concentration between whole blood, plasma and both platelet concentrates. A significant correlation was found between the number of platelets in both platelet concentrates and TGF-β1 concentration. Platelet collection efficiency was 46.34% and 28.16% for PC-A and PC-B, respectively. TGF-β1 concentration efficiency for PC activated with calcium gluconate was 47.75% and 31.77%, for PC-A and PC-B, respectively. PC activated with batroxobin plus CG showed 46.87% and 32.24% for PC-A and PC-B, respectively. Conclusions The methodology used in this study allows the concentration of a number of platelets and TGF-β1 that might be acceptable for a biological

  19. Transforming growth factor-beta2 utilizes the canonical Smad-signaling pathway to regulate tissue transglutaminase expression in human trabecular meshwork cells.

    PubMed

    Tovar-Vidales, Tara; Clark, Abbot F; Wordinger, Robert J

    2011-10-01

    Transforming growth factor-beta2 (TGF-β2) is elevated in the aqueous humor of patients with glaucoma. This growth factor is known to increase extracellular matrix (ECM) deposition in the trabecular meshwork (TM) as well as increase intraocular pressure (IOP) in perfused human cultured anterior eye segments. In addition overexpression of TGF-β2 in the mouse TM leads to elevated IOP. Exogenous TGF-β2 also increases tissue transglutaminase (TGM2) protein levels and enzyme activity in TM cells. TGM2 is a calcium-dependent enzyme that mediates cross-linking of ECM proteins, thus making ECM proteins resistant to enzymatic degradation and physical breakdown. We have investigated the signaling pathway by which TGF-β2 induces TGM2 in human TM cells. Primary cultures of human TM cells (N = 6) were treated for 48 h with TGF-β2 (0-10 ng/ml) in serum-free medium. TGM2 enzyme activity differences between non-treated and TGF-β2 treated TM cells were studied using a biotin cadaverine assay. Endogenous TGF-β2 protein levels were examined in normal trabecular meshwork (NTM) and glaucomatous trabecular meshwork (GTM) cell strains. Immunohistochemistry was used to evaluate the expression and co-localization of TGF-β2 and TGM2 in NTM and GTM tissues. Activation of Smad3 signaling pathway was evaluated by western immunoblot analysis using phospho-specific antibodies following exogenous TGF-β2 treatment. Pharmacological specific inhibitor of Smad3 (SIS3) and short interfering (si)RNAs were used to suppress Smad3 activity and CTGF gene expression respectively. Endogenous TGF-β2 levels were significantly elevated in cultured GTM cells (p < 0.05) when compared to NTM cells. Immunohistochemistry studies also demonstrated elevated expression and co-localization of both TGF-β2 and TGM2 in glaucoma human TM tissues. Exogenous TGF-β2 increased both TGM2 protein levels and enzyme activity in TM cells. Phosphorylation of Smad3 was stimulated in TM cell strains by exogenous TGF

  20. Transforming growth factor-beta and response to anticancer therapies in human liver and gastric tumors in vitro and in vivo.

    PubMed

    Liu, P; Menon, K; Alvarez, E; Lu, K; Teicher, B A

    2000-03-01

    Liver cancer and gastric cancer are the most common solid tumors worldwide. Transforming growth factor-beta (TGF-beta) production and lack of response to TGF-beta growth inhibitory effects have been associated with tumor progression and therapeutic resistance. HepG2, Hep3B, and SK-HEP-1 human liver cancer lines produce 3, 5.7, and 2.5 ng TGF-beta1; 1.4, 2, and 4 ng TGF-beta2 and 0.15, 0.2 and 0.22 ng TGF-beta3 per 107 cells (24 h). Expression of the TGF-beta type I receptor is 20x, 1x, and 0.6x the level in mink lung MvLu1 cells in the HepG2, Hep3B, and SK-HEP-1 cells, respectively. HepG2 and Hep3B cells do not express the TGF-beta type II receptor while SK-HEP-1 cells express 7x the level found in mink lung MvLu1 cells. Hs 746T, KATO III, RF-1, and RF-48 human gastric cancer cell lines produce 12. 5, 0.35, 0.4, and 0.4 ng TGF-beta1; 2.6, 0.95, 0.5, and 0.52 ng TGF-beta2 and 0.42, 0.17, 0.12, and 0.14 ng TGF-beta3 per 107 cells (24 h). Expression of TGF-beta type I receptor is 0.7x, 0.7x, 0.8x, 0.6x the level in mink lung MvLu1 cells in the Hs 746T, KATO III, RF-1 and RF-48 cells, respectively. KATO III cells are lacking in the TGF-beta type II receptor while Hs 746T, RF-1 and RF-48 cells express 10x, 0.8x, and 1x the levels in mink lung MvLu1 cells. The IC50 for TGF-beta1 is >10 ng/ml in all of these lines except RF-48 where TGF-beta1 is mitogenic. The response of the cell lines to radiation, doxorubicin, mitomycin C, cisplatin, 5-fluorouracil, methotrexate, and gemcitabine showed that SK-HEP-1 was the most drug resistant liver cancer cell line and KATO III was the most drug resistant gastric cancer cell line. Overall, there was no correlation between TGF-beta secretion in cell culture and sensitivity of the cells to anticancer agents. Increased TGF-beta1 levels were detectable in the plasma of nude mice bearing Hep3B and Hs 746T xenografts. Those tumors which secreted greater amounts of TGF-beta were more therapeutically resistant in vivo.

  1. Platelet-derived growth factor (BB homodimer), transforming growth factor-beta 1, and basic fibroblast growth factor in dermal wound healing. Neovessel and matrix formation and cessation of repair.

    PubMed Central

    Pierce, G. F.; Tarpley, J. E.; Yanagihara, D.; Mustoe, T. A.; Fox, G. M.; Thomason, A.

    1992-01-01

    Recombinant platelet-derived growth factor (BB homodimer, rPDGF-BB), transforming growth factor beta 1 (rTGF-beta 1), and basic fibroblast growth factor (rbFGF) can accelerate healing of soft tissues. However, little information is available characterizing the components of wound matrix induced by these growth factors and the molecular mechanisms underlying accelerated repair and wound maturation. In this study, the composition, quantity, and rate of extracellular matrix deposition within growth factor-treated lapine ear excisional wounds were analyzed at different stages of healing using specific histochemical and immunohistochemical stains, coupled with image analysis techniques. Single application of optimal concentrations of each growth factor accelerated normal healing by 30% (P less than 0.0003); rPDGF-BB markedly augmented early glycosaminoglycan (GAG) and fibronectin deposition, but induced significantly greater levels of collagen later in the repair process, compared with untreated wounds rTGF-beta 1 treatment led to rapidly enhanced collagen synthesis and maturation, without increased GAG deposition. In contrast, rbFGF treatment induced a predominantly angiogenic response in wounds, with a marked increase in endothelia and neovessels (P less than 0.0001), and increased wound collagenolytic activity (P less than 0.03). rbFGF-treated wounds did not evolve into collagen-containing scars and continued to accumulate only provisional matrix well past wound closure. These results provide new evidence that growth factors influence wound repair via different mechanisms: 1) rPDGF-BB accelerates deposition of provisional wound matrix; 2) rTGF-beta 1 accelerates deposition and maturation of collagen; and 3) rbFGF induces a profound monocellular angiogenic response which may lead to a marked delay in wound maturation, and the possible loss of the normal signal(s) required to stop repair. These results suggest that specific growth factors may selectively regulate

  2. Expression of TGF-beta superfamily growth factors, their receptors, the associated SMADs and antagonists in five isolated size-matched populations of pre-antral follicles from normal human ovaries.

    PubMed

    Kristensen, Stine Gry; Andersen, Kasper; Clement, Christian Alexandro; Franks, Stephen; Hardy, Kate; Andersen, Claus Yding

    2014-04-01

    In mammals, members of the transforming growth factor-beta (TGF-β) superfamily are known to have key roles in the regulation of follicular growth and development. The aim of the study was to evaluate the expression of TGF-β superfamily growth factors, their receptors, downstream SMAD signalling molecules and TGF-β/bone morphogenetic protein (BMP) antagonists during early human folliculogenesis. Human pre-antral follicles were enzymatically isolated from surplus ovarian tissue obtained from women having ovarian cortical tissue frozen for fertility preservation. A total of 348 human pre-antral follicles, ranging from 40 to 200 µm in diameter, were isolated from ovarian tissue obtained from 15 women, aged 24-34 years. Isolated pre-antral follicles were grouped according to diameter in five size-matched populations spanning the primordial, primary and secondary stage follicles and analysed by whole-genome microarray analysis. Selected proteins/genes were analysed by immunocytochemistry and quantitative RT-PCR. TGF-β superfamily genes with overall highest mRNA expressions levels included growth differentiation factors 9 (GDF9), BMP15, BMP6, BMP-receptor-2 (BMPR2), anti-Müllerian hormone receptor 2 (AMHR2), TGFβR3, inhibin-α (INHA) and intracellular SMAD3 and SMAD4. Moreover, genes which were differentially expressed from the primordial to the late secondary stage follicles included GDF9, BMP15, AMH, INHBB, TGFβR3, SMAD4 and antagonists Follistatin (FST) and GREM1. Collectively, these data indicate that the active TGF-β superfamily pathways in early human folliculogenesis consist of primarily GDF9 combined with possible synergistic effects of BMP15 through the BMPR2 and intracellular activation of SMAD3 and SMAD4, and that AMH and INHBB are engaged in intrafollicular events from the onset of follicular growth. Moreover, the presence of multiple TGF-β/BMP antagonists imply that certain growth factors are subjected to local regulation on different levels that

  3. Effect of some peroxisome proliferators on transforming growth factor-beta 1 gene expression and insulin-like growth factor II/mannose-6-phosphate receptor gene expression in rat liver.

    PubMed

    Rumsby, P C; Davies, M J; Price, R J; Lake, B G

    1994-02-01

    Male Sprague-Dawley rats were given daily oral doses of either corn oil (control), 80 mg/kg nafenopin (NAF), 50 mg/kg methylclofenapate (MCP), 50 mg/kg Wy-14,643 (WY) or 250 mg/kg clofibric acid (CA) for 7 days. All four compounds increased relative liver weight and produced hepatic peroxisome proliferation as assessed by induction of both peroxisomal (palmitoyl-CoA oxidation) and microsomal (lauric acid 12-hydroxylase) fatty acid oxidising enzyme activities. RNA was extracted from liver samples and analysed for expression of transforming growth factor-beta 1 (TGF-beta 1) and the insulin-like growth factor II/mannose-6-phosphate (IGFII/Man6P) receptor (which may be involved in transporting latent TGF-beta 1 into hepatocytes). TGF-beta 1 mRNA levels were increased to 151-178% of control by all four compounds, whereas NAF, MCP and WY, but not CA, increased IGFII/Man6P receptor mRNA levels to 195-209% of control. The induction of TGF-beta 1 and IGFII/Man6P receptor expression by short term treatment with peroxisome proliferators may represent an adaptive response to limit the initial hyperplastic effects of such compounds.

  4. Escape from negative regulation of growth by transforming growth factor beta and from the induction of apoptosis by the dietary agent sodium butyrate may be important in colorectal carcinogenesis.

    PubMed

    Hague, A; Manning, A M; van der Stappen, J W; Paraskeva, C

    1993-09-01

    There are a number of lines of evidence suggesting that transforming growth factor beta (TGF beta) has an important role in the control of intestinal growth and differentiation. In vivo localization studies show that TGF beta expression occurs predominantly in the differentiated non proliferating cells of the intestinal epithelium. The use of an antisense expression vector for TGF beta resulted in an increased tumorigenicity in an antisense-transfected cancer cell line. In vitro proliferation studies showed colorectal premalignant adenoma cells to be more sensitive to the growth inhibitory effects of TGF beta than colorectal cancer cells. Furthermore the conversion of an adenoma to a carcinoma was accompanied by a reduced response to the inhibitory effects of TGF beta. The acquisition of partial or complete resistance to the inhibitory effects of TGF beta may be an important late event in colorectal carcinogenesis. Of further interest is the possibility that clonal selection could occur even more rapidly in colorectal tumour cells which not only had lost response to TGF beta inhibition but produced TGF beta and were growth stimulated by it. This could have the advantage of not only inhibiting the growth of surrounding less malignantly advanced cells but of also escaping from their potential growth suppressive influence. Carcinogenesis is not, however, simply losing response to negative regulators of growth; the fully malignant cell has to acquire new characteristics of invasiveness and metastatic potential. Growth factors including TGF beta may have a role in the complex cascade of events leading to the activation of proteolytic enzymes which are involved in progression to an invasive phenotype. Cell proliferation in the large bowel, as well as being under the control of endogenous growth factors, is also under the influence of dietary components in the lumen such as the naturally occurring fatty acid sodium butyrate. Sodium butyrate at physiological concentrations

  5. Studying TGF-beta superfamily signaling by knockouts and knockins.

    PubMed

    Chang, H; Lau, A L; Matzuk, M M

    2001-06-30

    The transforming growth factor beta (TGF-beta) superfamily has profound effects on many aspects of animal development. In the last decade, our laboratory and others have performed in vivo functional studies on multiple components of the TGF-beta superfamily signal transduction pathway, including upstream ligands, transmembrane receptors, receptor-associated proteins and downstream Smad proteins. We have taken gene knockout approaches to generate null alleles of the genes of interest, as well as a gene knockin approach to replace the mature region of one TGF-beta superfamily ligand with another. We found that activin betaB, expressed in the spatiotemporal pattern of activin betaA, can function as a hypomorphic allele of activin betaA and rescue the craniofacial defects and neonatal lethal phenotype of activin betaA-deficient mice. With the knockout approach, we have shown that the expression pattern of a component in the TGF-beta superfamily signal transduction cascade does not necessarily predict its in vivo function. Two liver-specific activins, activin betaC and activin betaE are dispensable for liver development, regeneration and function, whereas ubiquitously expressed Smad5 has specific roles in the development of multiple embryonic and extraembryonic tissues. PMID:11451570

  6. Transforming Growth Factor Beta (TGF-β) Is a Muscle Biomarker of Disease Progression in ALS and Correlates with Smad Expression.

    PubMed

    Si, Ying; Kim, Soojin; Cui, Xiangqin; Zheng, Lei; Oh, Shin J; Anderson, Tina; AlSharabati, Mohammad; Kazamel, Mohamed; Volpicelli-Daley, Laura; Bamman, Marcas M; Yu, Shaohua; King, Peter H

    2015-01-01

    We recently identified Smads1, 5 and 8 as muscle biomarkers in human ALS. In the ALS mouse, these markers are elevated and track disease progression. Smads are signal transducers and become activated upon receptor engagement of ligands from the TGF-β superfamily. Here, we sought to characterize ligands linked to activation of Smads in ALS muscle and their role as biomarkers of disease progression. RNA sequencing data of ALS muscle samples were mined for TGF-β superfamily ligands. Candidate targets were validated by qRT-PCR in a large cohort of human ALS muscle biopsy samples and in the G93A SOD1 mouse. Protein expression was evaluated by Western blot, ELISA and immunohistochemistry. C2C12 muscle cells were used to assess Smad activation and induction. TGF-β1, 2 and 3 mRNAs were increased in ALS muscle samples compared to controls and correlated with muscle strength and Smads1, 2, 5 and 8. In the G93A SOD1 mouse, the temporal pattern of TGF-β expression paralleled the Smads and increased with disease progression. TGF-β1 immunoreactivity was detected in mononuclear cells surrounding muscle fibers in ALS samples. In muscle cells, TGF-β ligands were capable of activating Smads. In conclusion, TGF-β1, 2 and 3 are novel biomarkers of ALS in skeletal muscle. Their correlation with weakness in human ALS and their progressive increase with advancing disease in the ALS mouse suggest that they, as with the Smads, can track disease progression. These ligands are capable of upregulating and activating Smads and thus may contribute to the Smad signaling pathway in ALS muscle.

  7. Evaluation of the effect of calcium gluconate and bovine thrombin on the temporal release of transforming growth factor beta 1 and platelet-derived growth factor isoform BB from feline platelet concentrates

    PubMed Central

    2012-01-01

    Background There are not reported regarding the protocols for obtaining platelet concentrates (PC) in cats for medical purposes. The objectives of this study were: 1) to describe a manual method for producing two kinds of PC in cats (PC-A and PC-B), 2) to describe the cellular population of the PC, 3) to measure and compare the effect of calcium gluconate (CG) and bovine thrombin (BT) on the temporal release of transforming growth factor beta 1 (TGF-β1) and platelet-derived growth factor type BB (PDGF-BB) at 3 and 12 hours post-activation and 4) to establish correlations between the cellular population of both PCs and the concentration of growth factors (GF). Blood samples were taken from 16 cats for complete blood count, plasma collection and PC preparation. The PC were arbitrarily divided into two fractions, specifically, PC-A (lower fraction) and PC-B (upper fraction). Results The platelet counts were significantly different (P<0.05) between the PC and whole blood but not between the PC fractions. The TGF-β1 concentration efficiencies for PC-A and PC-B activated with CG were 42.86% and 46.54%, and activated with BT were 42.88% and 54.64%, respectively. The PDGF-BB concentration efficiencies for PC-A and PC-B activated with CG were 61.36% and 60.61%, and activated with BT were 65.64% and 72.12%, respectively. The temporal release of GFs showed no statistically significant difference (P>0.05) between the activating substances at the time or for any PC fraction. Conclusions Whatever the activation means, these preparations of cat PC provide significant concentrations of platelets and GFs for possible clinical or experimental use. PMID:23131192

  8. Different expression of mu-opiate receptor in chronic and acute wounds and the effect of beta-endorphin on transforming growth factor beta type II receptor and cytokeratin 16 expression.

    PubMed

    Bigliardi, P L; Sumanovski, L T; Büchner, S; Rufli, T; Bigliardi-Qi, M

    2003-01-01

    There is evidence that neuropeptides, especially the opiate receptor agonists, are involved in wound healing. We have previously observed that beta-endorphin, the endogenous ligand for the mu-opiate receptor, stimulates the expression of cytokeratin 16 in a dose-dependent manner in human skin organ cultures. Cytokeratin 16 is expressed in hyperproliferative epidermis such as psoriasis and wound healing. Therefore we were interested to study whether epidermal mu-opiate receptor expression is changed at the wound margins in acute and chronic wounds. Using classical and confocal microscopy, we were able to compare the expression level of mu-opiate receptors and the influence of beta-endorphin on transforming growth factor beta type II receptor in organ culture. Our results show indeed a significantly decreased expression of mu-opiate receptors on keratinocytes close to the wound margin of chronic wounds compared to acute wounds. Additionally beta-endorphin upregulates the expression of transforming growth factor beta type II receptor in human skin organ cultures. These results suggest a crucial role of opioid peptides not only in pain control but also in wound healing. Opioid peptides have already been used in animal models in treatment of wounds; they induce fibroblast proliferation and growth of capillaries, and accelerate the maturation of granulation tissue and the epithelization of the defect. Furthermore opioid peptides may fine-tune pain and the inflammatory response while healing takes place. This new knowledge could potentially be used to design new locally applied drugs to improve the healing of painful chronic wounds.

  9. T cell receptor (TCR)-transgenic CD8 lymphocytes rendered insensitive to transforming growth factor beta (TGFβ) signaling mediate superior tumor regression in an animal model of adoptive cell therapy

    PubMed Central

    2012-01-01

    Tumor antigen-reactive T cells must enter into an immunosuppressive tumor microenvironment, continue to produce cytokine and deliver apoptotic death signals to affect tumor regression. Many tumors produce transforming growth factor beta (TGFβ), which inhibits T cell activation, proliferation and cytotoxicity. In a murine model of adoptive cell therapy, we demonstrate that transgenic Pmel-1 CD8 T cells, rendered insensitive to TGFβ by transduction with a TGFβ dominant negative receptor II (DN), were more effective in mediating regression of established B16 melanoma. Smaller numbers of DN Pmel-1 T cells effectively mediated tumor regression and retained the ability to produce interferon-γ in the tumor microenvironment. These results support efforts to incorporate this DN receptor in clinical trials of adoptive cell therapy for cancer. PMID:22713761

  10. Responsiveness to transforming growth factor-beta (TGF-beta)-mediated growth inhibition is a function of membrane-bound TGF-beta type II receptor in human breast cancer cells.

    PubMed

    Lynch, M A; Petrel, T A; Song, H; Knobloch, T J; Casto, B C; Ramljak, D; Anderson, L M; DeGroff, V; Stoner, G D; Brueggemeier, R W; Weghorst, C M

    2001-01-01

    Transforming growth factor-beta (TGF-beta) is a potent inhibitor of growth and proliferation of breast epithelial cells, and loss of sensitivity to its effects has been associated with malignant transformation and tumorigenesis. The biological effects of TGF-beta are mediated by the TGF-beta receptor complex, a multimer composed of TGF-beta receptor type I (TbetaR-I) and TGF-beta receptor type II (TbetaR-II) subunits. Evidence suggests that loss of expression of Tbeta3R-II is implicated in the loss of sensitivity of tumorigenic breast cell lines to TGF-beta-mediated growth inhibition. A panel of human breast cell lines, including the immortalized MCF-10F and tumorigenic MCF-7, ZR75-1, BT474, T47-D, MDA-MB231, BT20, and SKBR-3 cell lines, was characterized for responsiveness to TGF-beta-induced G1 growth arrest. Only the nontumorigenic MCF-10F and the tumorigenic MDA-MB231 cell lines demonstrated a significant inhibitory response to TGF-beta1 and a significant binding of 125I-labeled TGF-beta ligand. While expression of TbetaR-I mRNA was similar across the panel of cell lines, TbetaR-II mRNA expression was decreased significantly in all seven tumorigenic cell lines in comparison with the nontumorigenic MCF- 10F cell line. When total cellular protein was fractionated by centrifugation, TbetaR-I protein was observed in both the cytosolic and membrane fractions at similar levels in all cell lines; however, TbetaR-II protein was present in the cytosolic fraction in all cell lines, but was observed in the membrane fraction of only the TGF-beta-responsive MCF-10F and MDA-MB231 cells. Thus, lack of membrane-bound TbetaR-II protein appears to be an important determinant of resistance to TGF-beta-mediated growth inhibition in this group of breast cell lines. PMID:11444526

  11. Down-regulation of TSC-22 (transforming growth factor beta-stimulated clone 22) markedly enhances the growth of a human salivary gland cancer cell line in vitro and in vivo.

    PubMed

    Nakashiro, K; Kawamata, H; Hino, S; Uchida, D; Miwa, Y; Hamano, H; Omotehara, F; Yoshida, H; Sato, M

    1998-02-01

    We have recently isolated TSC-22 (transforming growth factor beta-stimulated clone 22) cDNA as a new anticancer drug (Vesnarinone)-inducible gene in a human salivary gland cancer cell line, TYS. We conducted the present study to examine whether up-regulation or down-regulation of TSC-22 can affect the growth of TYS cells in vitro and in vivo. We constructed an expression vector containing sense- or antisense-oriented human TSC-22 cDNA under the transcriptional control of the SR alpha promoter. We cotransfected TYS cells with the sense or antisense expression vector and pSV2neo and obtained more than 200 G418-resistant colonies in each sense or antisense transfectant. Approximately 80% of representative G418-resistant clones expressed the transcripts from transfected sense or antisense TSC-22 cDNA. To avoid the clonal heterogeneity of the cells, we mixed all of the G418-resistant colonies together in each sense or antisense transfectant and examined the expression of TSC-22 protein, in vitro growth, and the tumorigenicity in nude mice. The expression of TSC-22 protein was examined by solid-phase ELISA using a specific antibody against recombinant TSC-22 protein. The expression of TSC-22 protein was up-regulated in the sense transfectants and down-regulated in the antisense transfectants. Contrary to our expectation, up-regulation of TSC-22 protein did not affect both in vitro and in vivo growth of TYS cells. However, down-regulation of TSC-22 markedly enhanced the growth of TYS cells in vitro and in vivo. Furthermore, we examined the expression of TSC-22 mRNA in several human salivary gland tumors. The mRNA expression of TSC-22 in benign and malignant salivary gland tumors was significantly decreased when compared to that in tumor-free salivary glands (P < 0.05; one-way ANOVA), and in some salivary gland tumors, the expression of TSC-22 mRNA was not detectable by reverse transcription-PCR. These results suggest that down-regulation of TSC-22 may play a major role on

  12. Cystatin superfamily.

    PubMed

    Ochieng, Josiah; Chaudhuri, Gautam

    2010-02-01

    Cystatins, the classical inhibitors of C1 cysteine proteinases, have been extensively studied and reviewed in the literature. Over the last 20 years, however, proteins containing cystatin domains but lacking protease inhibitory activities have been identified, and most likely more will be described in the near future. These proteins together with family 1, 2, and 3 cystatins constitute the cystatin superfamily. Mounting evidence points to the new roles that some members of the superfamily have acquired over the course of their evolution. This review is focused on the roles of cystatins in: 1) tumorigenesis, 2) stabilization of matrix metalloproteinases, 3) glomerular filtration rate, 4) immunomodulation, and 5) neurodegenerative diseases. It is the goal of this review to get as many investigators as possible to take a second look at the cystatin superfamily regarding their potential involvement in serious human ailments.

  13. The anti-fibrotic effect of liver growth factor is associated with decreased intrahepatic levels of matrix metalloproteinases 2 and 9 and transforming growth factor beta 1 in bile duct-ligated rats.

    PubMed

    Díaz-Gil, Juan J; García-Monzón, Carmelo; Rúa, Carmen; Martín-Sanz, Paloma; Cereceda, Rosa M; Miquilena-Colina, María E; Machín, Celia; Fernández-Martínez, Amalia; García-Cañero, Rarael

    2008-05-01

    Liver growth factor (LGF), a mitogen for liver cells, behaves as an anti-fibrotic agent even in extrahepatic sites, but its mechanistic basis is unknown. We aimed to determine the intrahepatic expression pattern of key modulators of liver fibrosis in bile duct-ligated rats (BDL) after injection of LGF. BDL rats received either LGF (4.5 microg/ratXdose, two doses/week, at time 0 or 2 or 5w after operation, depending on the group (BDL+LGF groups, n=20) or saline (BDL+S groups, n=20). Groups were compared in terms of fibrosis (histomorphometry), liver function (aminopyrine breath test), matrix metalloproteinases MMP-2 and MMP-9, transforming growth factor beta 1 (TGF-beta1) and liver endoglin content (Western blotting), and serum tissue inhibitor of metalloproteinases 1 (TIMP-1) levels (ELISA). In BDL+LGF rats, the fibrotic index was significantly lower at 5w, p=0.006, and at 8w, p=0.04, than in BDL+S rats. Liver function values in BDL+LGF rats were higher than those obtained in BDL+S rats (80% at 5w and 79% at 8w, versus 38% and 29%, p<0.01, taking healthy controls as 100%). Notably, in BDL+LGF rats the intrahepatic expression levels of both MMPs were lower at 2w (MMP-2, p=0.03; MMP-9, p=0.05) and 5w (MMP-2, p=0.05, MMP-9, p=0.04). In addition, the hepatic TGF-beta1 level in BDL+LGF rats was lower at 2w (36%, p=0.008), 5w (50%) and 8wk (37%), whereas intrahepatic endoglin expression remained constant in all BDL rats studied. LGF ameliorates liver fibrosis and improves liver function in BDL rats. The LGF-induced anti-fibrotic effect is associated with a decreased hepatic level of MMP-2, MMP-9 and TGF-beta1 in fibrotic rats.

  14. Spontaneous adenocarcinoma immunoreactive to cyclooxygenase-2 and transforming growth factor-beta1 in the buccal salivary gland of a Richardson's ground squirrel (Spermophilus richardsonii).

    PubMed

    Yamate, Jyoji; Yamamoto, Emi; Nabe, Mikoto; Kuwamura, Mitsuru; Fujita, Daisuke; Sasai, Hiroshi

    2007-10-01

    The ground squirrel is used as an experimental animal because of its unique biological nature. A 3-year-old female Richardson's ground squirrel developed a mass, 1.5 cm in diameter, in the buccal mucosa. The mass consisted of neoplastic epithelial cells showing acinar, ductular, intraductal papillary, solid, and lobular growth patterns; the cells were immunoreactive to cytokeratin, cyclooxygenase-2 (a marker of malignancy) and TGF-beta1. After resection, the tumor recurred with increased area having a solid or lobular pattern with little differentiation. This tumor was diagnosed as an adenocarcinoma arising from the buccal gland, the first case reported in the ground squirrel. A prominent desmoplastic reaction was present. The interstitial cells reacted to alpha-smooth muscle actin and vimentin, indicating a myofibroblastic nature, presumably induced by epithelial TGF-beta1.

  15. Long-term exposure of proximal tubular epithelial cells to glucose induces transforming growth factor-beta 1 synthesis via an autocrine PDGF loop.

    PubMed

    Fraser, Donald; Brunskill, Nigel; Ito, Takafumi; Phillips, Aled

    2003-12-01

    We have recently reported increased transforming growth factor (TGF)-beta1 gene transcription in proximal tubular cells within 12 hours of exposure to 25 mmol/L D-glucose, with a requirement for a second stimulus such as platelet-derived growth factor (PDGF) to increase its translation in short-term experiments. In the current study we investigated the effect on TGF-beta 1 production of prolonged exposure of proximal tubular cells to high glucose concentrations. Enzyme-linked immunosorbent assay of cell culture supernatant showed significant increase in latent TGF-beta 1 only after 7 days exposure to high glucose. Radiolabeling of glucose-stimulated cells with (3)H amino acids and subsequent immunoprecipitation of TGF-beta 1 demonstrated de novo synthesis from day 5 of high glucose exposure onwards. Similarly, polysome analysis showed enhanced translation of TGF-beta mRNA after 4 or more days of high glucose exposure. TGF-beta 1 synthesis, following addition of glucose, was inhibited by blockade of the PDGF-alpha receptor subunit. Glucose did not alter PDGF expression, nor expression of PDGF alpha-receptors. Activation of the receptor following addition of 25 mm D-glucose could be demonstrated suggesting increased sensitivity to endogenous PDGF. Exposure to glucose activated p38MAP kinase, and inhibition of this activation abrogated both glucose induced TGF-beta 1 transcriptional activation and TGF-beta 1 synthesis. Inhibition of p38MAP kinase did not influence the effect of exogenous PDGF when cells were stimulated sequentially by glucose and PDGF. We postulate that glucose induces an early increase in TGF-beta 1 transcription via activation of p38MAP kinase. In addition, glucose causes a late increase in PDGF-dependent TGF-beta 1 translation by enhancing cellular sensitivity to PDGF. This provides a potential explanation for the clinical observation that prolonged poor glycemic control may contribute to progression of diabetic nephropathy. PMID:14633628

  16. Adenoviral delivery of an antisense RNA complementary to the 3' coding sequence of transforming growth factor-beta1 inhibits fibrogenic activities of hepatic stellate cells.

    PubMed

    Arias, Monica; Lahme, Birgit; Van de Leur, Eddy; Gressner, Axel M; Weiskirchen, Ralf

    2002-06-01

    Liver fibrosis occurs as a consequence of the transdifferentiationof hepatic stellate cells into myofibroblasts and is associated with an increased expression and activation of transforming growth factor (TGF)-beta1. This pluripotent, profibrogenic cytokine stimulates matrix synthesis and decreases matrix degradation, resulting in fibrosis. Thus, blockade of synthesis or sequestering of mature TGF-beta1 is a primary target for the development of antifibrotic approaches. The purpose of this study was to investigate whether the administration of adenoviruses constitutively expressing an antisense mRNA complementary to the 3' coding sequence of TGF-beta1 is able to suppress the synthesis of TGF-beta1 in culture-activated hepatic stellate cells. We demonstrate that the adenoviral vehicle directs high-level expression of the transgene and proved that the transduced antisense is biologically active by immunoprecipitation, Western blot, quantitative TGF-beta1 ELISA, and cell proliferation assays. Additionally, the biological function of the transgene was confirmed by analysis of differential activity of TGF-beta1-responsive genes using cell ELISA, Northern blotting, and by microarray technology, respectively. Furthermore, we examined the effects of that transgene on the expression of TGF-beta2, TGF-beta3, collagen type alpha1(I), latent transforming growth factor binding protein 1, types I and II TGF-beta receptors, and alpha-smooth muscle actin. Our results indicate that the administration of antisense mRNA offers a feasible approach to block autocrine TGF-beta1 signaling in hepatic stellate cells and may be useful and applicable in future to the treatment of fibrosis in chronic liver diseases.

  17. The immunomodulatory activity of human amniotic fluid can be correlated with transforming growth factor-beta 1 (TGF-beta 1) and beta 2 activity.

    PubMed Central

    Lang, A K; Searle, R F

    1994-01-01

    The role of alphafetoprotein (AFP) in the immunomodulatory activity of amniotic fluids (AF) from normally progressing human pregnancy (weeks 14-16) was investigated. A panel of 42 AF (25% v/v) reduced significantly phytohaemagglutinin (PHA)-induced peripheral blood mononuclear cell (PBMC) proliferation in serum-free cultures with a mean per cent inhibition of 68.4 +/- 5.5%. In contrast, AFP preparations, with one exception (U.AFP), failed to display inhibitory activity. Pretreatment of AF with anti-TGF-beta 1 and beta 2 antibodies used alone resulted in the mean per cent loss of inhibition of 33.1 +/- 3.9% and 52.3 +/- 7.5%, respectively. A summative loss of AF-mediated inhibition was detected when anti-TGF-beta 1 and beta 2 antibodies were used in combination, but immunomodulation was rarely abolished 100% by this treatment. Anti-TGF-beta 2 antibody treatment, unlike anti-TGF-beta 1 antibody treatment, reversed the inhibitory activity of U.AFP. The amount of TGF-beta 1 and beta 2 contained in human AF was studied by growth inhibition of Mv1 Lu cells. The mean levels of TGF-beta 1 and beta 2 in AF were 11 +/- 0.9 U/ml and 2.3 +/- 0.4 U/ml, respectively, which corresponds with a mean per cent inhibition of 49 +/- 4.7%. U.AFP also significantly inhibited Mv1 Lu cell growth. To investigate the mechanism of AF-mediated inhibition, the effect of AF and AFP on IL-2 production by concanavalin A (Con A)-stimulated PBMC blasts was determined by the CTLL-2 cell bioassay. IL-2 production was reduced 55.5% in AF-treated blasts and 61% in U.AFP-treated blasts compared with controls. Our findings indicate that the immunomodulatory activity of human AF can be correlated with TGF-beta 1 and beta 2 and not with AFP, the inhibitory activity of U.AFP preparation reflecting copurifying TGF-beta 2 activity. PMID:7518368

  18. Targeting Transforming Growth Factor-Beta1 (TGF-β1) Inhibits Tumorigenesis of Anaplastic Thyroid Carcinoma Cells Through ERK1/2-NF-κB-PUMA Signaling

    PubMed Central

    Yin, Qiang; Liu, Shan; Dong, Anbing; Mi, Xiufang; Hao, Fengyun; Zhang, Kejun

    2016-01-01

    Background The transforming growth factor-beta (TGF-β) signaling pathway plays a critical role in promoting tumor growth. TGF-β1was found to be overexpressed in anaplastic thyroid cancer (ATC). We therefore tested our hypothesis that targeting TGF-β1 inhibits tumorigenesis of ATC cells. Material/Methods Effects of TGF-β1 stimulation or TGF-β1 inhibition by small interfering RNA (TGF-β1siRNA) on proliferation, colony formation, and apoptosis in 8505C cells in vitro was detected using siRNAs and inhibitors to examine the TGF-β1 signaling pathway. A subcutaneously implanted tumor model of 8505C cells in nude mice was used to assess the effects of TGF-β1 inhibition on tumorigenesis development. Results TGF-β1siRNAs decreased proliferation and colony formation, and increased apoptosis in 8505C cells in vitro and inhibited tumor growth in vivo. TGF-β1siRNA inhibited phosphorylation ERK1/2 (pERK1/2) and increased p65-dependant PUMA mRNA and protein expression. Knockdown of p65 or PUMA by siRNA reduced TGF-β1siRNA-induced apoptosis, as well as caspase-3 and PARP activation. Upregulation of p65 or PUMA expression by TGF-β1siRNA requires pERK1/2 inhibition. TGF-β1 shRNA inhibited tumor growth in vivo. Conclusions Therapies targeting the TGF-β1 pathway may be more effective to prevent primary tumor formation. The ability of this therapy to decrease tumorigenesis may be related to ERK1/2/NF-κB/PUMA signaling. PMID:27356491

  19. Transforming growth factor beta 1 enhances expression of 50 kDa protein related to 2'-5' oligoadenylate synthetase in human sperm cells.

    PubMed

    Naz, R K; Kumar, R

    1991-01-01

    Human cellular polypeptide factors, namely interferon-alpha, interferon-gamma transforming growth factor (TGF)-alpha, and TGF-beta 1, were analyzed for their effect on motility of human sperm cells. Both interferons caused an inhibition of sperm cell motility due to direct cytotoxic effects without inducing 2'-5' oligoadenylate [2-5(A)]synthetase activity. TGF-alpha affected neither motility nor the levels of 2-5(A) synthetase in sperm cells. TGF-beta 1 had no affect on sperm motility, yet it caused an induction of 2-5(A)synthetase activity. Western immunoblot analysis of TGF-beta 1-treated sperm indicated an enhancement of a 50 kDa protein. Metabolic labeling of sperm cells revealed biosynthesis of one major protein of 50 kDa and at least five minor proteins in the range of 30-92 kDa; the level of 50 kDa protein increased after treatment with TGF-beta 1. The treatment of sperm cells with TGF-beta 1 did not affect their penetration in zona-free hamster eggs (SPA). These results indicate that TGF-beta 1 enhances expression of a 50 kDa protein related to 2-5(A) synthetase in human sperm cells along with other minor proteins, and this increase does not affect sperm motility and SPA.

  20. Effects of transforming growth factor beta1 (TGFbeta-1) and dentin non-collagenous proteins (DNCP) on human embryonic ectomesenchymal cells in a three-dimensional culture system.

    PubMed

    Deng, Manjing; Shi, Junnan; Smith, Anthony J; Jin, Yan

    2005-11-01

    Cranial neural crest-derived ectomesenchymal cells represent a population of pluripotent stem cells giving rise to many of the various oro-facial and dental tissues. The factors determining the terminal fate of these cells are still unclear. The potentiality of human embryonic ectomesenchymal cells from the first branchial arch have been investigated when isolated and grown in a three-dimensional (3D)-collagen gel culture system in the presence of dentin matrix-derived non-collagenous proteins (DNCP) and TGFbeta-1. Functional differentiation of cells showing some characteristics of odontoblast-like cells could be observed when the cells were cultured with DNCP+TGFbeta-1 or DNCP, however, only cytological differentiation was observed during culture with TGFbeta-1 alone. The characteristics of these cells was assessed by morphological appearance, expression of the odontoblast phenotype marker dentin sialophosphoprotein (DSPP), increased alkaline phosphatase levels and formation of mineralised nodules in vitro. The results indicate that these embryonic cells from the first branchial arch are capable of responding to the inductive stimulus of DNCP or DNCP+TGFbeta-1 when isolated and grown in the 3D collagen gel culture system. The capacity of the isolated cells to differentiate into mineralizing cells showing some characteristics of odontoblast-like cells under these growth conditions highlights the potential of such approaches for tissue engineering strategies for hard-tissue regeneration after injury. PMID:15871903

  1. Transforming growth factor-beta-induced stimulation of formation of collagen fiber network and anti-fibrotic effect of taurine in an in vitro model of hepatic fibrosis.

    PubMed

    Kato, Junya; Ido, Akio; Hasuike, Satoru; Uto, Hirofumi; Hori, Takeshi; Hayashi, Katsuhiro; Murakami, Shigeru; Terano, Akira; Tsubouchi, Hirohito

    2004-09-01

    The cell strain M, which was established from normal rat liver cells, is characterized by the active formation of a collagen fiber network. In this study, we investigated the characterization of M cells and evaluated the anti-fibrogenic effects of taurine using this culture system. M cells expressed cytokeratin (CK)8, CK18, vimentin, and alpha-smooth muscle actin, whereas expression of CK-19 or desmin was not detected. Also, M cells expressed transforming growth factor (TGF)-beta1, -beta2, and TGF-beta type I and II receptors, and treatment with TGF-beta1 (1ng/ml) for 6 days markedly stimulated the formation of a collagen fiber network and expression of procollagen alpha1(I) mRNA. When M cells were treated with various concentrations of taurine (10-50mM), network formation and procollagen alpha1(I) expression were significantly suppressed in a dose dependent manner. Additionally, even in the presence of TGF-beta1, taurine treatment effectively reduced the formation of a collagen fiber network. These results suggest that M cells exhibit features of not only hepatocytes but also myofibroblasts, and TGF-beta1 plays an important role in the formation of collagen fiber networks in this culture system. Additionally, this M cell culture system is appropriate for use as an in vitro model of hepatic fibrosis in the evaluation of the anti-fibrogenic effects of various agents.

  2. Metformin attenuates transforming growth factor beta (TGF-β) mediated oncogenesis in mesenchymal stem-like/claudin-low triple negative breast cancer.

    PubMed

    Wahdan-Alaswad, Reema; Harrell, J Chuck; Fan, Zeying; Edgerton, Susan M; Liu, Bolin; Thor, Ann D

    2016-01-01

    Mesenchymal stem-like/claudin-low (MSL/CL) breast cancers are highly aggressive, express low cell-cell adhesion cluster containing claudins (CLDN3/CLDN4/CLDN7) with enrichment of epithelial-to-mesenchymal transition (EMT), immunomodulatory, and transforming growth factor-β (TGF-β) genes. We examined the biological, molecular and prognostic impact of TGF-β upregulation and/or inhibition using in vivo and in vitro methods. Using publically available breast cancer gene expression databases, we show that upregulation and enrichment of a TGF-β gene signature is most frequent in MSL/CL breast cancers and is associated with a worse outcome. Using several MSL/CL breast cancer cell lines, we show that TGF-β elicits significant increases in cellular proliferation, migration, invasion, and motility, whereas these effects can be abrogated by a specific inhibitor against TGF-β receptor I and the anti-diabetic agent metformin, alone or in combination. Prior reports from our lab show that TNBC is exquisitely sensitive to metformin treatment. Mechanistically, metformin blocks endogenous activation of Smad2 and Smad3 and dampens TGF-β-mediated activation of Smad2, Smad3, and ID1 both at the transcriptional and translational level. We report the use of ID1 and ID3 as clinical surrogate markers, where high expression of these TGF-β target genes was correlated to poor prognosis in claudin-low patients. Given TGF-β's role in tumorigenesis and immunomodulation, blockade of this pathway using direct kinase inhibitors or more broadly acting inhibitors may dampen or abolish pro-carcinogenic and metastatic signaling in patients with MCL/CL TNBC. Metformin therapy (with or without other agents) may be a heretofore unrecognized approach to reduce the oncogenic activities associated with TGF-β mediated oncogenesis. PMID:26919310

  3. Metformin attenuates transforming growth factor beta (TGF-β) mediated oncogenesis in mesenchymal stem-like/claudin-low triple negative breast cancer.

    PubMed

    Wahdan-Alaswad, Reema; Harrell, J Chuck; Fan, Zeying; Edgerton, Susan M; Liu, Bolin; Thor, Ann D

    2016-01-01

    Mesenchymal stem-like/claudin-low (MSL/CL) breast cancers are highly aggressive, express low cell-cell adhesion cluster containing claudins (CLDN3/CLDN4/CLDN7) with enrichment of epithelial-to-mesenchymal transition (EMT), immunomodulatory, and transforming growth factor-β (TGF-β) genes. We examined the biological, molecular and prognostic impact of TGF-β upregulation and/or inhibition using in vivo and in vitro methods. Using publically available breast cancer gene expression databases, we show that upregulation and enrichment of a TGF-β gene signature is most frequent in MSL/CL breast cancers and is associated with a worse outcome. Using several MSL/CL breast cancer cell lines, we show that TGF-β elicits significant increases in cellular proliferation, migration, invasion, and motility, whereas these effects can be abrogated by a specific inhibitor against TGF-β receptor I and the anti-diabetic agent metformin, alone or in combination. Prior reports from our lab show that TNBC is exquisitely sensitive to metformin treatment. Mechanistically, metformin blocks endogenous activation of Smad2 and Smad3 and dampens TGF-β-mediated activation of Smad2, Smad3, and ID1 both at the transcriptional and translational level. We report the use of ID1 and ID3 as clinical surrogate markers, where high expression of these TGF-β target genes was correlated to poor prognosis in claudin-low patients. Given TGF-β's role in tumorigenesis and immunomodulation, blockade of this pathway using direct kinase inhibitors or more broadly acting inhibitors may dampen or abolish pro-carcinogenic and metastatic signaling in patients with MCL/CL TNBC. Metformin therapy (with or without other agents) may be a heretofore unrecognized approach to reduce the oncogenic activities associated with TGF-β mediated oncogenesis.

  4. Nuclear-factor-{kappa}B (NF-{kappa}B) and radical oxygen species play contrary roles in transforming growth factor-{beta}1 (TGF-{beta}1)-induced apoptosis in hepatocellular carcinoma (HCC) cells

    SciTech Connect

    Wang Fang Kaur, Swayamjot; Cavin, Lakita G.; Arsura, Marcello

    2008-12-26

    Nuclear-Factor-{kappa}B (NF-{kappa}{beta} can counteract transforming growth factor-{beta}1 (TGF-{beta}1)-induced apoptosis in malignant hepatocytes through up-regulation of its downstream genes, such as X-linked inhibitor of apoptosis protein (XIAP). Reports have demonstrated that TGF-{beta}1 can induce oxidative stress, and c-Jun N-terminal Kinase1 (JNK1) is indispensable for TGF-{beta}1-induced apoptosis pathway, but the relationship between radical oxygen species (ROS) and the activation of JNKs is still unclear. In the present study, we found that ROS can induce JNK activation in TGF-{beta}1 mediated apoptosis in hepatocytes. The inhibitors of hydrogen peroxide and superoxide, which were produced by mitochondria under stress, could inhibit the phosphorylation of c-Jun in XIAP knockdown cells. In conclusion, it is the first time to show that both NF-{kappa}B and antioxidants can counteract TGF-{beta}1-induced apoptosis in hepatic cell death through JNK1 pathway.

  5. Microsatellite instability and frameshift mutations in BAX and transforming growth factor-beta RII genes are very uncommon in acute lymphoblastic leukemia in vivo but not in cell lines.

    PubMed

    Molenaar, J J; Gérard, B; Chambon-Pautas, C; Cavé, H; Duval, M; Vilmer, E; Grandchamp, B

    1998-07-01

    Mutations in the DNA mismatch repair (MMR) system lead to an instability of simple repetitive DNA sequences involved in several cancer types. This instability is reflected in a high mutation rate of microsatellites, and recent studies in colon cancer indicate that defects in MMR result in frequent frameshift mutations in mononucleotide repeats located in the coding regions of BAX and transforming growth factor-beta (TGF-beta) receptor genes. Circumstantial evidence suggests that the MMR defect may be involved in some lymphoid malignancies, although several allelotype analyses have concluded on the low level of microsatellite instability in acute lymphoblastic leukemias. To further evaluate the implication of MMR defects in leukemogenesis, we have studied a series of 98 children with acute lymphoblastic leukemia and 14 leukemic cell lines using several indicators of MMR defects. Microsatellite markers were compared between blast and normal DNA from the same patients and mutations were sought in mononucleotide repeat sequences of BAX and TGF-beta receptor II (TGF-beta RII). The absence of microsatellite instability (MI) and the absence of mutations in the genes examined from patient's leukemic cells contrasted with the observation that half of the cell lines displayed a high degree of MI and that three of seven of these mutator cell lines harbored mutations in BAX and/or TGF-beta RII. From these results we conclude that MMR defects are very uncommon in freshly isolated blasts but are likely to be selected for during the establishment of cell lines.

  6. The Int7G24A variant of transforming growth factor-beta receptor type I is a risk factor for colorectal cancer in the male Spanish population: a case-control study

    PubMed Central

    2009-01-01

    Background The Int7G24A variant of transforming growth factor-beta receptor type I (TGFBR1) has been shown to increase the risk for kidney, ovarian, bladder, lung and breast cancers. Its role in colorectal cancer (CRC) has not been established. The aims of this study were to assess the association of TGFBR1*Int7G24A variant with CRC occurrence, patient age, gender, tumour location and stage. Methods We performed a case-control study with 504 cases of sporadic CRC; and 504 non-cancerous age, gender and ethnically matched controls. Genotyping analysis was performed using allelic discrimination assay by real time PCR. Results The Int7G24A variant was associated with increased CRC incidence in an additive model of inheritance (P for trend = 0.005). No significant differences were found between Int7G24A genotypes and tumour location or stage. Interestingly, the association of the Int7G24A variant with CRC risk was significant in men (odds ratio 4.10 with 95% confidence intervals 1.41-11.85 for homozygous individuals; P for trend = 0.00023), but not in women. We also observed an increase in susceptibility to CRC for individuals aged less than 70 years. Conclusion Our data suggest that the Int7G24A variant represents a risk factor for CRC in the male Spanish population. PMID:19930569

  7. Effect of transforming growth factor beta 2 on marrow-infused foam poly(propylene fumarate) tissue-engineered constructs for the repair of critical-size cranial defects in rabbits.

    PubMed

    Dean, David; Wolfe, Michael S; Ahmad, Yusra; Totonchi, Ali; Chen, Jeffrey E-K; Fisher, John P; Cooke, Malcolm N; Rimnac, Clare M; Lennon, Donald P; Caplan, Arnold I; Topham, Neal S; Mikos, Antonios G

    2005-01-01

    This study investigates the osseointegration of poly(propylene fumarate) (PPF) with beta-tricalcium phosphate (beta-TCP) scaffolds in a critical-size (diameter, 1.6 cm), cranial defect in 4-month-old rabbits (n = 51), killed at 6 or 12 weeks. Two molecular weights of PPF were used to produce bilayer scaffolds with 0.5-mm solid external and 2.0-mm porous internal layers. The porous layer was infused with bone marrow aspirate, with half the animals receiving 0.8 microg of transforming growth factor beta2 (TGF-beta2). No foreign body or inflammatory response was observed externally or on histological examination of explants. Statistical analysis of histological areal and linear measures of new bone formation found significantly more bone at the later sacrifice time, followed by implants receiving TGF-beta2, followed by low molecular weight PPF implants. Approximately 40% of the explants were tested for incorporation strength with a one-point "push-in" test. Because no permanent fixation was used, implant strength (28.37-129.03 N; range, 6.4 to 29.0 lb of resistance) was due entirely to new bone formation. The strongest bone was seen in implants receiving TGF-beta2-infused marrow in animals killed at 12 weeks. These results support the use of PPF as an osteogenic substrate and future research into preoperative fabrication of critical size and supercritical-size cranial prosthetic implants.

  8. Expression of transforming growth factor beta (TGF beta) receptors and expression of TGF beta 1, TGF beta 2 and TGF beta 3 in human small cell lung cancer cell lines.

    PubMed Central

    Damstrup, L.; Rygaard, K.; Spang-Thomsen, M.; Skovgaard Poulsen, H.

    1993-01-01

    A panel of 21 small cell lung cancer cell (SCLC) lines were examined for the presence of Transforming growth factor beta receptors (TGF beta-r) and the expression of TGF beta mRNAs. By the radioreceptor assay we found high affinity receptors to be expressed in six cell lines. scatchard analysis of the binding data demonstrated that the cells bound between 4.5 and 27.5 fmol mg-1 protein with a KD ranging from 16 to 40 pM. TGF beta 1 binding to the receptors was confirmed by cross-linking TGF beta 1 to the TGF beta-r. Three classes of TGF beta-r were demonstrated, type I and type II receptors with M(r) = 65,000 and 90,000 and the betaglycan (type III) with M(r) = 280,000. Northern blotting showed expression of TGF beta 1 mRNA in ten, TGF beta 2 mRNA in two and TGF beta 3 mRNA in seven cell lines. Our results provide, for the first time, evidence that a large proportion of a broad panel of SCLC cell lines express TGF beta-receptors and also produce TGF beta mRNAs. Images Figure 3 Figure 4 PMID:8388229

  9. Interleukin-1, tumor necrosis factor-alpha, and transforming growth factor-beta 1 and integrative meniscal repair: influences on meniscal cell proliferation and migration

    PubMed Central

    2011-01-01

    Introduction Interleukin-1 (IL-1) and tumor necrosis factor-α (TNF-α) are up-regulated in injured and osteoarthritic knee joints. IL-1 and TNF-α inhibit integrative meniscal repair; however, the mechanisms by which this inhibition occurs are not fully understood. Transforming growth factor-β1 (TGF-β1) increases meniscal cell proliferation and accumulation, and enhances integrative meniscal repair. An improved understanding of the mechanisms modulating meniscal cell proliferation and migration will help to improve approaches for enhancing intrinsic or tissue-engineered repair of the meniscus. The goal of this study was to examine the hypothesis that IL-1 and TNF-α suppress, while TGF-β1 enhances, cellular proliferation and migration in cell and tissue models of meniscal repair. Methods A micro-wound assay was used to assess meniscal cell migration and proliferation in response to the following treatments for 0, 24, or 48 hours: 0 to 10 ng/mL IL-1, TNF-α, or TGF-β1, in the presence or absence of 10% serum. Proliferated and total cells were fluorescently labeled and imaged using confocal laser scanning microscopy and the number of proliferated, migrated, and total cells was determined in the micro-wound and edges of each image. Meniscal cell proliferation was also assessed throughout meniscal repair model explants treated with 0 or 10 ng/mL IL-1, TNF-α, or TGF-β1 for 14 days. At the end of the culture period, biomechanical testing and histological analyses were also performed. Statistical differences were assessed using an ANOVA and Newman-Keuls post hoc test. Results IL-1 and TNF-α decreased cell proliferation in both cell and tissue models of meniscal repair. In the presence of serum, TGF-β1 increased outer zone cell proliferation in the micro-wound and in the cross section of meniscal repair model explants. Both IL-1 and TNF-α decreased the integrative shear strength of repair and extracellular matrix deposition in the meniscal repair model system

  10. Time Course, Distribution and Cell Types of Induction of Transforming Growth Factor Betas following Middle Cerebral Artery Occlusion in the Rat Brain

    PubMed Central

    Pál, Gabriella; Vincze, Csilla; Renner, Éva; Wappler, Edina A.; Nagy, Zoltán; Lovas, Gábor; Dobolyi, Arpád

    2012-01-01

    Transforming growth factor-βs (TGF-β1–3) are cytokines that regulate the proliferation, differentiation, and survival of various cell types. The present study describes the induction of TGF-β1–3 in the rat after focal ischemia at 3 h, 24 h, 72 h and 1 month after transient (1 h) or permanent (24 h) middle cerebral artery occlusion (MCAO) using in situ hybridization histochemistry and quantitative analysis. Double labeling with different markers was used to identify the localization of TGF-β mRNA relative to the penumbra and glial scar, and the types of cells expressing TGF-βs. TGF-β1 expression increased 3 h after MCAO in the penumbra and was further elevated 24 h after MCAO. TGF-β1 was present mostly in microglial cells but also in some astrocytes. By 72 h and 1 month after the occlusion, TGF-β1 mRNA-expressing cells also appeared in microglia within the ischemic core and in the glial scar. In contrast, TGF-β2 mRNA level was increased in neurons but not in astrocytes or microglial cells in layers II, III, and V of the ipsilateral cerebral cortex 24 h after MCAO. TGF-β3 was not induced in cells around the penumbra. Its expression increased in only a few cells in layer II of the cerebral cortex 24 h after MCAO. The levels of TGF-β2 and -β3 decreased at subsequent time points. Permanent MCAO further elevated the levels of all 3 subtypes of TGF-βs suggesting that reperfusion is not a major factor in their induction. TGF-β1 did not co-localize with either Fos or ATF-3, while the co-localization of TGF-β2 with Fos but not with ATF-3 suggests that cortical spreading depolarization, but not damage to neural processes, might be the mechanism of induction for TGF-β2. The results imply that endogenous TGF-βs are induced by different mechanisms following an ischemic attack in the brain suggesting that they are involved in distinct spatially and temporally regulated inflammatory and neuroprotective processes. PMID:23056426

  11. The actions of 2,3,7,8-tetrachlorodibenzo-p-dioxin on transforming growth factor-beta2 promoter activity are localized to the TATA box binding region and controlled through a tyrosine kinase-dependent pathway.

    PubMed

    Lee, D C; Barlow, K D; Gaido, K W

    1996-03-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a widespread environmental contaminant and suspected human carcinogen, is believed to act by altering expression of a number of genes involved in cell growth control. In a previous study, we demonstrated the transcriptional down regulation of transforming growth factor-beta2 (TGF-beta2) by TCDD. To identify the region of the TGF-beta2 promoter necessary for the observed down-regulation by TCDD, we studied the effect of TCDD on a series of TGF-beta2 gene promoter deletions ranging from 1391 to 64 base pairs upstream of the transcription start site. We demonstrate that the effect of TCDD on TGF-beta2 promoter activity is localized to the TATA box sequence. The effect of TCDD on TGF-beta2 transcription is dose-dependent, exhibiting saturation kinetics maximal by 10 nM. Time course experiments show that the maximum decrease (30-50%) in promoter activity by a 10 nM dose of TCDD is complete by 24 hr. DNAase I footprinting and gel shift experiments indicate a single shifted protein complex in this region that we conclude is the transcription initiation complex. TCDD does not appear to significantly alter this complex suggesting that gross alterations in the proteins associated with this sequence do not occur. Treatment of the cells with various protein kinase inhibitors had no significant effect on the TCDD-induced decrease in promoter activity with the exception of genistein, a tyrosine kinase inhibitor. Genistein reverses the effect of TCDD on TGF-beta2 promoter activity back to control levels. Thus, TCDD can modulate gene transcription by acting at the transcription initiation complex via a tyrosine kinase-dependent pathway.

  12. Vascular endothelial growth factor promotes macrophage apoptosis through stimulation of tumor necrosis factor superfamily member 14 (TNFSF14/LIGHT).

    PubMed

    Petreaca, Melissa L; Yao, Min; Ware, Carl; Martins-Green, Manuela M

    2008-01-01

    Resolution of inflammation is critical for normal wound healing. Inflammation is prolonged and fails to resolve properly in chronic wounds. We used in vivo and in vitro approaches to show that vascular endothelial growth factor (VEGF) induces macrophage apoptosis and to delineate mechanisms involved in this process. VEGF inhibition during wound healing leads to an increased number of macrophages remaining in wounds, suggesting the involvement of VEGF in removal of these cells from the wound. If this effect has physiological relevance, it likely occurs via apoptosis. We show that VEGF increases apoptosis of macrophages in vitro using Annexin V-FITC staining and caspase activation. Microarray analysis, reverse transcription-polymerase chain reaction, and immunoblotting showed that VEGF increases the expression of tumor necrosis factor superfamily member 14 (TNFSF14/LIGHT) in macrophages. We also show that in macrophages LIGHT promotes apoptosis through the lymphotoxin beta receptor. Moreover, inhibition of LIGHT prevents VEGF-induced death, suggesting that LIGHT mediates VEGF-induced macrophage apoptosis. Taken together, our results identify a novel role for VEGF and for LIGHT in macrophage apoptosis during wound healing, an event critical in the resolution of inflammation. This finding may lead to the development of new strategies to improve resolution of inflammation in problematic wounds. PMID:19128255

  13. Transforming growth factor-beta1 upregulation triggers pulmonary artery smooth muscle cell proliferation and apoptosis imbalance in rats with hypoxic pulmonary hypertension via the PTEN/AKT pathways.

    PubMed

    Liu, Yun; Cao, Yonggang; Sun, Shuyang; Zhu, Jinquan; Gao, Shan; Pang, Jie; Zhu, Daling; Sun, Zengxian

    2016-08-01

    Transforming growth factor-beta1 (TGFβ1) and Phosphatase and Tensin homolog deleted on chromosome ten (PTEN) are involved in the regulation of proliferation, differentiation, migration and apoptosis of various cell types. In previous studies, we have shown that TGFβ1 and PTEN play an important role in the progression of pulmonary vascular remodeling induced by pulmonary artery smooth muscle cells (PASMCs). However, the mechanisms involved in the activation of PASMCs between TGFβ1 and PTEN pathways remain unknown. We found that pulmonary vascular walls in hypoxic pulmonary arterial hypertension (PAH) rats were thicker than the vessels from normal rats in vivo. Substantially higher levels of TGFβ1 and significant loss of PTEN expression were observed in the lungs of PAH rats when compared with normoxia. Meanwhile, AKT, a downstream proliferative signaling protein of the PTEN antagonist PI3K, was markedly activated in the lungs of PAH rats. In vitro studies using PASMCs showed that TGFβ1 increased cell proliferation in PTEN-dependent manner. Moreover, we found that TGFβ1 enhanced cell survival, up-regulated the expression of Bcl-2 and procaspase-3, decreased the number of TUNEL-positive cells and caspase-3 expression in PASMCs under serum-deprived (SD) condition via PI3K/AKT pathway. The results further establish that TGFβ1 promoted PAH by decreasing PTEN expression and increasing PI3K/AKT activation in the lung. In conclusion, TGFβ1 mediated PTEN inactivation and resistance to apoptosis seems to be key mediators of lung vascular remodeling associated with PAH. These findings further clarify molecular mechanisms that support targeting PTEN/AKT signaling pathway to attenuate pathogenic derangements in PAH.

  14. Association of Transforming Growth Factor Beta-1 (TGF-β1) Genetic Variation with Type 2 Diabetes and End Stage Renal Disease in Two Large Population Samples from North India

    PubMed Central

    Raina, Priyanka; Sikka, Ruhi; Kaur, Ramandeep; Sokhi, Jasmine; Singh, Virinder

    2015-01-01

    Abstract Geographic and ethnic differences impart an immense influence on the genetic susceptibility to Type 2 diabetes (T2D) and diabetic nephropathy (DN). Transforming growth factor-beta1 (TGF-β1), a ubiquitously expressed pro-fibrotic cytokine plays a pivotal role in mediating the hypertrophic and fibrotic manifestations of DN. The present study is aimed to study the association of TGF-β1 g.869T>C (rs1800470) and g.-509C>T (rs1800469) polymorphism in T2D and end stage renal disease (ESRD) cases from the two geographically and ethnically different populations from North India. A total of 1313 samples comprising 776 samples from Punjab (204 with ESRD, 257 without ESRD, and 315 healthy controls) and 537 samples from Jammu and Kashmir (150 with ESRD, 187 without ESRD, and 200 controls) were genotyped for TGF-β1 (rs1800470 and rs1800469) using ARMS-PCR. The CC genotype of rs1800470 increased ESRD risk by 3.1–4.5-fold in both populations. However, for rs1800469, the TT genotype provided 5.5-fold risk towards ESRD cases from Jammu and Kashmir and no risk for the cases from Punjab. The haplotype C-T conferred nearly a 2–3-fold risk towards T2D and ESRD and diplotype CC-CT conferred a 4-fold risk towards ESRD. Our results conclude that TGF-β1 (rs1800470) may increase the risk of both ESRD and T2D in both populations, but TGF-β1 (rs1800469) provided risk for only ESRD in the population of Jammu and Kashmir. The present study is one of the large sample sized genetic association studies of T2D and ESRD from Indian population and adds to the scholarship on global health omics. PMID:25871499

  15. Association of Transforming Growth Factor Beta-1 (TGF-β1) Genetic Variation with Type 2 Diabetes and End Stage Renal Disease in Two Large Population Samples from North India.

    PubMed

    Raina, Priyanka; Sikka, Ruhi; Kaur, Ramandeep; Sokhi, Jasmine; Matharoo, Kawaljit; Singh, Virinder; Bhanwer, A J S

    2015-05-01

    Geographic and ethnic differences impart an immense influence on the genetic susceptibility to Type 2 diabetes (T2D) and diabetic nephropathy (DN). Transforming growth factor-beta1 (TGF-β1), a ubiquitously expressed pro-fibrotic cytokine plays a pivotal role in mediating the hypertrophic and fibrotic manifestations of DN. The present study is aimed to study the association of TGF-β1 g.869T>C (rs1800470) and g.-509C>T (rs1800469) polymorphism in T2D and end stage renal disease (ESRD) cases from the two geographically and ethnically different populations from North India. A total of 1313 samples comprising 776 samples from Punjab (204 with ESRD, 257 without ESRD, and 315 healthy controls) and 537 samples from Jammu and Kashmir (150 with ESRD, 187 without ESRD, and 200 controls) were genotyped for TGF-β1 (rs1800470 and rs1800469) using ARMS-PCR. The CC genotype of rs1800470 increased ESRD risk by 3.1-4.5-fold in both populations. However, for rs1800469, the TT genotype provided 5.5-fold risk towards ESRD cases from Jammu and Kashmir and no risk for the cases from Punjab. The haplotype C-T conferred nearly a 2-3-fold risk towards T2D and ESRD and diplotype CC-CT conferred a 4-fold risk towards ESRD. Our results conclude that TGF-β1 (rs1800470) may increase the risk of both ESRD and T2D in both populations, but TGF-β1 (rs1800469) provided risk for only ESRD in the population of Jammu and Kashmir. The present study is one of the large sample sized genetic association studies of T2D and ESRD from Indian population and adds to the scholarship on global health omics.

  16. Transforming growth factor beta 1-responsive element: closely associated binding sites for USF and CCAAT-binding transcription factor-nuclear factor I in the type 1 plasminogen activator inhibitor gene.

    PubMed Central

    Riccio, A; Pedone, P V; Lund, L R; Olesen, T; Olsen, H S; Andreasen, P A

    1992-01-01

    Transforming growth factor beta (TGF-beta) is the name of a group of closely related polypeptides characterized by a multiplicity of effects, including regulation of extracellular proteolysis and turnover of the extracellular matrix. Its cellular mechanism of action is largely unknown. TGF-beta 1 is a strong and fast inducer of type 1 plasminogen activator inhibitor gene transcription. We have identified a TGF-beta 1-responsive element in the 5'-flanking region of the human type 1 plasminogen activator inhibitor gene and shown that it is functional both in its natural context and when fused to a heterologous nonresponsive promoter. Footprinting and gel retardation experiments showed that two different nuclear factors, present in extracts from both TGF-beta 1-treated and nontreated cells, bind to adjacent sequences contained in the responsive unit. A palindromic sequence binds a trans-acting factor(s) of the CCAAT-binding transcription factor-nuclear factor I family. A partially overlapping dyad symmetry interacts with a second protein that much evidence indicates to be USF. USF is a transactivator belonging to the basic helix-loop-helix family of transcription factors. Mutations which abolish the binding of either CCAAT-binding transcription factor-nuclear factor I or USF result in reduction of transcriptional activation upon exposure to TGF-beta 1, thus showing that both elements of the unit are necessary for the TGF-beta 1 response. We discuss the possible relationship of these findings to the complexity of the TGF-beta action. Images PMID:1549130

  17. Transforming growth factor beta 1 augments mitogen-induced prostaglandin synthesis and expression of the TIS10/prostaglandin synthase 2 gene both in Swiss 3T3 cells and in murine embryo fibroblasts.

    PubMed

    Gilbert, R S; Reddy, S T; Kujubu, D A; Xie, W; Luner, S; Herschman, H R

    1994-04-01

    Transforming growth factor-beta (TGF-beta), a potent cytokine, modulates a wide variety of biological responses. Among its actions, TGF-beta can augment prostaglandin synthesis in several cell types. Although TGF-beta alone has no effect on prostaglandin production in Swiss 3T3 cells, we find that TGF-beta augments the ability of tetradecanoyl phorbol acetate (TPA) or serum to stimulate PGE2 production. The TIS10 gene is a primary response gene encoding a second form of prostaglandin synthase (PGS), the rate-limiting enzyme in the biosynthesis of prostaglandins, thromboxanes, and prostacyclins from arachidonic acid. TIS10/PGS-2 expression is induced by mitogens in Swiss 3T3 cells. TGF-beta also augments mitogen-induced synthesis and accumulation of TIS10/PGS-2 protein and induction of TIS10/PGS-2 message in Swiss 3T3 cells. In contrast, TGF-beta has little or no effect on the level of PGS-1 (EC1.14.99.1) message, either alone or in concert with TPA or serum. TGF-beta concentrations in the range of 0.01-0.10 ng/ml (0.4-4.0 pM) maximally enhance mitogen induction of TIS10/PGS-2 message. TPA-induced accumulation of unspliced TIS10/PGS-2 transcript is augmented by TGF-beta, suggesting that this cytokine exerts its effect on expression of the TIS10/PGS-2 gene by transcriptional regulation. TGF-beta also augments TPA-induced prostaglandin production, TIS10/PGS-2 antigen accumulation, and TIS10/PGS-2 message induction in primary cultures of mouse embryo fibroblasts. Dexamethasone attenuates TGF-beta enhancement of all these mitogen-induced responses: PGE2 accumulation, appearance of TIS10/PGS-2 protein and message, and accumulation of TIS10/PGS-2 unprocessed transcript.

  18. Transforming growth factor beta 1 (TGF beta 1) is an autocrine positive regulator of colon carcinoma U9 cells in vivo as shown by transfection of a TGF beta 1 antisense expression plasmid.

    PubMed

    Huang, F; Newman, E; Theodorescu, D; Kerbel, R S; Friedman, E

    1995-12-01

    A transforming growth factor beta1 (TGF beta1) antisense expression plasmid under constitutive control of the Rous sarcoma virus promoter was introduced into the highly tumorigenic and invasive colon carcinoma U9A cell line, which uses its autocrine TGF beta1 as a growth-stimulating factor. Stable transfectants were infrequent, and only the K6 transfectant exhibited 39 and 33%, respectively, of the levels of TGF beta1 mRNA and active, secreted TGF beta1 protein of the parental line. K6 exhibited no change in TGF beta2 expression, and TGF beta3 expression was not detected in either parental or transfectant cells. Compared to the parental line, the K6 antisense transfectant exhibited a 3-fold increase in lag time in anchorage-dependent colony formation. The parental line was 44 times as invasive through a collagen l-coated polycarbonate membrane in vitro as K6 cells and, after s.c. injection at low-cell inocula, U9A cells induced tumors 75 times as large in vivo as did the K6 antisense transfectant. The decreases in in vitro invasion and anchorage-dependent colony formation seen in K6 cells were largely reversed by the addition of TGF beta1. Tumors that did arise from the K6 antisense transfectant cells had lost antisense TGF beta1 expression and expressed the same TGF beta1 mRNA levels as controls. U9A cells were more metastatic to the liver after intrasplenic injection than K6 cells. These findings demonstrate a role for autocrine TGE beta1 in colon cancer tumorigenicity and invasion. They also show that a relatively small decrease in TGF beta1 levels was enough to markedly decrease colon carcinoma cell aggressiveness. This is not unprecedented, as we had found in an earlier study that a small, 2-4-fold increase in TGF beta1 protein levels in human colon cancers correlated with disease progression to metastases (E. Friedman et al., Cancer Epidemiol, Biomarkers & Prev., 4:549-554, 1995).

  19. Transforming growth factor-beta1 stimulates heme oxygenase-1 expression via the PI3K/Akt and NF-kappaB pathways in human lung epithelial cells.

    PubMed

    Lin, Chen-Chun; Chiang, Ling-Ling; Lin, Chien-Huang; Shih, Chung-Hung; Liao, Yi-Ting; Hsu, Ming-Jen; Chen, Bing-Chang

    2007-04-10

    A previous report showed that transforming growth factor-beta1 (TGF-beta1) can induce heme oxygenase-1 (HO-1) expression, attenuate cellular injury, and maintain tissue homeostasis. In this study, we investigated the involvement of phosphoinositide-3-OH-kinase (PI3K)/Akt and the nuclear factor-kappaB (NF-kappaB) signaling pathway in TGF-beta1-induced HO-1 expression in human lung epithelial cells (A549). Treatment of A549 cells with TGF-beta1 caused HO-1 to be expressed in a concentration- and time-dependent manner. Treatment of A549 cells with LY 294002 (2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one, a PI3K inhibitor), an Akt inhibitor, and the dominant negative mutant of Akt (Akt DN) inhibited TGF-beta1-induced HO-1 expression and HO-1-luciferase activity. Stimulation of cells with TGF-beta1 caused an increase in Akt phosphorylation in a time-dependent manner, which was inhibited by wortmannin and LY 294002 (PI3K inhibitors). In addition, treatment of A549 cells with Bay 117082 ((E)-3-[4-methylphenylsulfonyl]-2-propenenitrile, an IkappaB phosphorylation inhibitor), pyrrolidine dithiocarbamate (PDTC, an NF-kappaB inhibitor), and the dominant negative mutant of IkappaBalpha (IkappaBalphaM) inhibited TGF-beta1-induced HO-1 expression and HO-1-luciferase activity. Treatment of A549 cells with TGF-beta1-induced IkappaB kinase alpha/beta (IKKalpha/beta) phosphorylation, IkappaBalpha phosphorylation, IkappaBalpha degradation, p65 Ser536 phosphorylation, and kappaB-luciferase activity. The TGF-beta1-mediated increases in IKKalpha/beta phosphorylation, p65 Ser536 phosphorylation, and kappaB-luciferase activity were inhibited by LY 294002, an Akt inhibitor, and Akt DN. Taken together, these results suggest that the PI3K/Akt dependent IKKalpha/beta/NF-kappaB signaling pathway plays an important role in TGF-beta1-induced HO-1 expression in A549 cells.

  20. Inorganic pyrophosphate generation by transforming growth factor-beta-1 is mainly dependent on ANK induction by Ras/Raf-1/extracellular signal-regulated kinase pathways in chondrocytes.

    PubMed

    Cailotto, Frederic; Bianchi, Arnaud; Sebillaud, Sylvie; Venkatesan, Narayanan; Moulin, David; Jouzeau, Jean-Yves; Netter, Patrick

    2007-01-01

    ANK is a multipass transmembrane protein transporter thought to play a role in the export of intracellular inorganic pyrophosphate and so to contribute to the pathophysiology of chondrocalcinosis. As transforming growth factor-beta-1 (TGF-beta1) was shown to favor calcium pyrophosphate dihydrate deposition, we investigated the contribution of ANK to the production of extracellular inorganic pyrophosphate (ePPi) by chondrocytes and the signaling pathways involved in the regulation of Ank expression by TGF-beta1. Chondrocytes were exposed to 10 ng/mL of TGF-beta1, and Ank expression was measured by quantitative polymerase chain reaction and Western blot. ePPi was quantified in cell supernatants. RNA silencing was used to define the respective roles of Ank and PC-1 in TGF-beta1-induced ePPi generation. Finally, selective kinase inhibitors and dominant-negative/overexpression plasmid strategies were used to explore the contribution of several signaling pathways to Ank induction by TGF-beta1. TGF-beta1 strongly increased Ank expression at the mRNA and protein levels, as well as ePPi production. Using small interfering RNA technology, we showed that Ank contributed approximately 60% and PC-1 nearly 20% to TGF-beta1-induced ePPi generation. Induction of Ank by TGF-beta1 required activation of the extracellular signal-regulated kinase (ERK) pathway but not of p38-mitogen-activated protein kinase or of protein kinase A. In line with the general protein kinase C (PKC) inhibitor calphostin C, Gö6976 (a Ca2+-dependent PKC inhibitor) diminished TGF-beta1-induced Ank expression by 60%, whereas a 10% inhibition was observed with rottlerin (a PKCdelta inhibitor). These data suggest a regulatory role for calcium in TGF-beta1-induced Ank expression. Finally, we demonstrated that the stimulatory effect of TGF-beta1 on Ank expression was inhibited by the suppression of the Ras/Raf-1 pathway, while being enhanced by their constitutive activation. Transient overexpression of Smad 7, an

  1. Transforming growth factor beta stabilizes p15INK4B protein, increases p15INK4B-cdk4 complexes, and inhibits cyclin D1-cdk4 association in human mammary epithelial cells.

    PubMed Central

    Sandhu, C; Garbe, J; Bhattacharya, N; Daksis, J; Pan, C H; Yaswen, P; Koh, J; Slingerland, J M; Stampfer, M R

    1997-01-01

    The effects of transforming growth factor beta (TGF-beta) were studied in closely related human mammary epithelial cells (HMEC), both finite-life-span 184 cells and immortal derivatives, 184A1S, and 184A1L5R, which differ in their cell cycle responses to TGF-beta but express type I and type II TGF-beta receptors and retain TGF-beta induction of extracellular matrix. The arrest-resistant phenotype was not due to loss of cyclin-dependent kinase (cdk) inhibitors. TGF-beta was shown to regulate p15INK4B expression at at least two levels: mRNA accumulation and protein stability. In TGF-beta-arrested HMEC, there was not only an increase in p15 mRNA but also a major increase in p5INK4B protein stability. As cdk4- and cdk6-associated p15INK4B increased during TGF-beta arrest of sensitive cells, there was a loss of cyclin D1, p21Cip1, and p27Kip1 from these kinase complexes, and cyclin E-cdk2-associated p27Kip1 increased. In HMEC, p15INK4B complexes did not contain detectable cyclin. p15INK4B from both sensitive and resistant cells could displace in vitro cyclin D1, p21Cip1, and p27Kip1 from cdk4 isolated from sensitive cells. Cyclin D1 could not be displaced from cdk4 in the resistant 184A1L5R cell lysates. Thus, in TGF-beta arrest, p15INK4B may displace already associated cyclin D1 from cdks and prevent new cyclin D1-cdk complexes from forming. Furthermore, p27Kip1 binding shifts from cdk4 to cyclin E-cdk2 during TGF-beta-mediated arrest. The importance of posttranslational regulation of p15INK4B by TGF-beta is underlined by the observation that in TGF-beta-resistant 184A1L5R, although the p15 transcript increased, p15INK4B protein was not stabilized and did not accumulate, and cyclin D1-cdk association and kinase activation were not inhibited. PMID:9111314

  2. Plasminogen activator inhibitor-I-related regulation of procollagen I ({alpha}{sub 1} and {alpha}{sub 2}) by antitransforming growth factor-{beta}{sub 1} treatment during radiation-impaired wound healing

    SciTech Connect

    Schultze-Mosgau, Stefan; Thorwarth, Michael; Roedel, Franz; Melnychenko, Ivan; Grabenbauer, Gerhard G.; Amann, Kerstin; Wehrhan, Falk

    2006-01-01

    Purpose: Plasminogen activator inhibitor (PAI)-1 mediates transforming growth factor-{beta}{sub 1} (TGF-{beta}{sub 1})-related signaling by stimulating collagen Type I synthesis in radiation-impaired wound healing. The regulation of {alpha}(I)-procollagen is contradictory in fibroblasts of different fibrotic lesions. It is not known whether anti-TGF-{beta}{sub 1} treatment specifically inhibits {alpha}(I)-procollagen synthesis. We used an experimental wound healing study to address anti-TGF-{beta}{sub 1}-associated influence on {alpha}(I)-procollagen synthesis. Methods and Materials: A free flap was transplanted into the preirradiated (40 Gy) or nonirradiated neck region of Wistar rats: Group 1 (n = 8) surgery alone; Group 2 (n = 14) irradiation and surgery; Group 3 (n = 8) irradiation and surgery and anti-TGF-{beta}{sub 1} treatment. On the 14th postoperative day, skin samples were processed for fibroblast culture, in situ hybridization for TGF-{beta}{sub 1}, immunohistochemistry, and immunoblotting for PAI-1, {alpha}{sub 1}/{alpha}{sub 2}(I)-procollagen. Results: Anti-TGF-{beta}{sub 1} significantly reduced TGF-{beta}{sub 1} mRNA (p < 0.05) and PAI-1 expression (p < 0.05). Anti-TGF-{beta}{sub 1} treatment in vivo significantly reduced {alpha}{sub 1}(I)-procollagen protein (p < 0.05) and the number of expressing cells (p < 0.05) in contrast to significantly increased (p < 0.05) {alpha}{sub 2}(I)-procollagen expression. Conclusion: These results emphasize anti-TGF-{beta}{sub 1} treatment to reduce radiation-induced fibrosis by decreasing {alpha}{sub 1}(I)-procollagen synthesis in vivo. {alpha}{sub 1}(I)-procollagen and {alpha}{sub 2}(I)-procollagen might be differentially regulated by anti-TGF-{beta}{sub 1} treatment. Increased TGF-{beta} signaling in irradiated skin fibroblasts seemed to be reversible, as shown by a reduction in PAI-1 expression after anti-TGF-{beta}{sub 1} treatment.

  3. Analysis of the local kinetics and localization of interleukin-1 alpha, tumour necrosis factor-alpha and transforming growth factor-beta, during the course of experimental pulmonary tuberculosis.

    PubMed Central

    Hernandez-Pando, R; Orozco, H; Arriaga, K; Sampieri, A; Larriva-Sahd, J; Madrid-Marina, V

    1997-01-01

    A mouse model of pulmonary tuberculosis induced by the intratracheal instillation of live and virulent mycobacteria strain H37-Rv was used to examine the relationship of the histopathological findings with the local kinetics production and cellular distribution of tumour necrosis factor-alpha (TNF-alpha), interleukin-1 alpha (IL-1 alpha) and transforming growth factor-beta (TGF-beta). The histopathological and immunological studies showed two phases of the disease: acute or early and chronic or advanced. The acute phase was characterized by inflammatory infiltrate in the alveolar-capillary interstitium, blood vessels and bronchial wall with formation of granulomas. During this acute phase, which lasted from 1 to 28 days, high percentages of TNF-alpha and IL-1 alpha immunostained activated macrophages were observed principally in the interstium-intralveolar inflammatory infiltrate and in granulomas. Electron microscopy studies of these cells, showed extensive rough endoplasmic reticulum, numerous lysosomes and occasional mycobacteria. Double labelling with colloid gold showed that TNF-alpha and IL-1 alpha were present in the same cells, but were confined to separate vacuoles near the Golgi area, and mixed in larger vacuoles near to cell membrane. The concentration of TNF-alpha and IL-1 alpha as well as their respective mRNAs were elevated in the early phase, particularly at day 3 when the bacillary count decreased. A second peak was seen at days 14 and 21-28 when granulomas appeared and evolved to full maturation. In contrast, TGF-beta production and numbers of immunoreactive cells were low in comparison with the advanced phase of the disease. The chronic phase was characterized by histopathological changes indicative of more severity (i.e. pneumonia, focal necrosis and extensive interstitial fibrosis) with a decrease in the TNF-alpha and IL-1 alpha production that coincided with the highest level of TGF-beta. The bacillary counts were highest as the macrophages

  4. Phylogenomic Analyses Reveal the Evolutionary Origin of the Inhibin α-Subunit, a Unique TGFβ Superfamily Antagonist

    PubMed Central

    Zhu, Jie; Braun, Edward L.; Kohno, Satomi; Antenos, Monica; Xu, Eugene Y.; Cook, Robert W.; Lin, S. Jack; Moore, Brandon C.; Guillette, Louis J.; Jardetzky, Theodore S.; Woodruff, Teresa K.

    2010-01-01

    Transforming growth factor-beta (TGFβ) homologues form a diverse superfamily that arose early in animal evolution and control cellular function through membrane-spanning, conserved serine-threonine kinases (RII and RI receptors). Activin and inhibin are related dimers within the TGFβ superfamily that share a common β-subunit. The evolution of the inhibin α-subunit created the only antagonist within the TGFβ superfamily and the only member known to act as an endocrine hormone. This hormone introduced a new level of complexity and control to vertebrate reproductive function. The novel functions of the inhibin α-subunit appear to reflect specific insertion-deletion changes within the inhibin β-subunit that occurred during evolution. Using phylogenomic analysis, we correlated specific insertions with the acquisition of distinct functions that underlie the phenotypic complexity of vertebrate reproductive processes. This phylogenomic approach presents a new way of understanding the structure-function relationships between inhibin, activin, and the larger TGFβ superfamily. PMID:20209104

  5. The expansin superfamily.

    PubMed

    Sampedro, Javier; Cosgrove, Daniel J

    2005-01-01

    The expansin superfamily of plant proteins is made up of four families, designated alpha-expansin, beta-expansin, expansin-like A and expansin-like B. alpha-Expansin and beta-expansin proteins are known to have cell-wall loosening activity and to be involved in cell expansion and other developmental events during which cell-wall modification occurs. Proteins in these two families bind tightly to the cell wall and their activity is typically assayed by their stimulation of cell-wall extension and stress relaxation; no bona fide enzymatic activity has been detected for these proteins. Alpha-expansin proteins and some, but not all, beta-expansin proteins are implicated as catalysts of 'acid growth', the enlargement of plant cells stimulated by low extracellular pH. A divergent group of beta-expansin genes are expressed at high levels in the pollen of grasses but not of other plant groups. They probably function to loosen maternal cell walls during growth of the pollen tube towards the ovary. All expansins consist of two domains; domain 1 is homologous to the catalytic domain of proteins in the glycoside hydrolase family 45 (GH45); expansin domain 2 is homologous to group-2 grass pollen allergens, which are of unknown biological function. Experimental evidence suggests that expansins loosen cell walls via a nonenzymatic mechanism that induces slippage of cellulose microfibrils in the plant cell wall.

  6. Early stimulation and late inhibition of peroxisome proliferator-activated receptor gamma (PPAR gamma) gene expression by transforming growth factor beta in human aortic smooth muscle cells: role of early growth-response factor-1 (Egr-1), activator protein 1 (AP1) and Smads.

    PubMed Central

    Fu, Mingui; Zhang, Jifeng; Lin, Yimin; Zhu, Xiaojun; Zhao, Luning; Ahmad, Mushtaq; Ehrengruber, Markus U; Chen, Yuqing E

    2003-01-01

    Transforming growth factor beta (TGF beta) and peroxisome proliferator-activated receptor gamma (PPAR gamma) play major roles in the development of vascular diseases. It has been documented that PPAR gamma activation inhibits the TGF beta signal pathway in vascular smooth muscle cells (VSMC). Here we examined whether TGF beta can regulate PPAR gamma expression. Northern blot analyses revealed that both TGF beta 1 and 2 exert a biphasic effect (early stimulation and late repression) on PPAR gamma gene expression in VSMC. TGF beta rapidly and transiently induced early growth-response factor-1 (Egr-1) expression through the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1 (MEK1)/ERK-mediated pathway. Inhibition of MEK1/ERK by PD98059 not only abrogated the induction of Egr-1 but also abolished the rapid and transient induction of PPAR gamma by TGF beta. Furthermore, overexpression of NAB2, a repressor of Egr-1 activation, also blocked the induction of PPAR gamma by TGF beta in VSMC, suggesting that Egr-1 mediates the rapid and transient induction of PPAR gamma by TGF beta. With regard to the TGF beta repression of PPAR gamma expression, activator protein 1 (AP1) and Smad3/4 dramatically inhibited the PPAR gamma promoter activity in transient-transfection studies. In contrast, adenovirus-mediated overexpression of a dominant-negative form of c-Jun partially rescued the TGF beta-induced PPAR gamma repression in VSMC. Taken together, our data demonstrate that Egr-1, AP1 and Smad are part components of the TGF beta signal transduction pathway that regulates PPAR gamma expression. PMID:12457461

  7. Major facilitator superfamily domain-containing protein 2a (MFSD2A) has roles in body growth, motor function, and lipid metabolism.

    PubMed

    Berger, Justin H; Charron, Maureen J; Silver, David L

    2012-01-01

    The metabolic adaptations to fasting in the liver are largely controlled by the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARα), where PPARα upregulates genes encoding the biochemical pathway for β-oxidation of fatty acids and ketogenesis. As part of an effort to identify and characterize nutritionally regulated genes that play physiological roles in the adaptation to fasting, we identified Major facilitator superfamily domain-containing protein 2a (Mfsd2a) as a fasting-induced gene regulated by both PPARα and glucagon signaling in the liver. MFSD2A is a cell-surface protein homologous to bacterial sodium-melibiose transporters. Hepatic expression and turnover of MFSD2A is acutely regulated by fasting/refeeding, but expression in the brain is constitutive. Relative to wildtype mice, gene-targeted Mfsd2a knockout mice are smaller, leaner, and have decreased serum, liver and brown adipose triglycerides. Mfsd2a knockout mice have normal liver lipid metabolism but increased whole body energy expenditure, likely due to increased β-oxidation in brown adipose tissue and significantly increased voluntary movement, but surprisingly exhibited a form of ataxia. Together, these results indicate that MFSD2A is a nutritionally regulated gene that plays myriad roles in body growth and development, motor function, and lipid metabolism. Moreover, these data suggest that the ligand(s) that are transported by MFSD2A play important roles in these physiological processes and await future identification. PMID:23209793

  8. The microbicidal activity of interferon-gamma-treated macrophages against Trypanosoma cruzi involves an L-arginine-dependent, nitrogen oxide-mediated mechanism inhibitable by interleukin-10 and transforming growth factor-beta.

    PubMed

    Gazzinelli, R T; Oswald, I P; Hieny, S; James, S L; Sher, A

    1992-10-01

    The present study was carried out to determine the effector mechanism of anti-Trypanosoma cruzi activity by interferon (IFN)-gamma plus lipopolysaccharide (LPS)-treated macrophages. A macrophage cell line (IC-21) that failed to mount an appreciable oxidative burst was nevertheless found able to control T. cruzi growth after exposure to IFN-gamma alone or IFN-gamma plus LPS. Moreover, microbicidal functions of both inflammatory macrophages and IC-21 against T. cruzi was found to be inhibited in the presence of NG-monomethyl-L-arginine (NGMMA), a competitive inhibitor of L-arginine. Addition of supplemental L-arginine to the culture overcame the capacity of NGMMA to block activated macrophage anti-T. cruzi functions. The ability of NGMMA to reverse both parasite growth inhibition and killing by IFN-gamma plus LPS-activated macrophages was found to correlate with the suppression of nitrite accumulation in the culture supernatants. Together, these results implicate the L-arginine-dependent production of nitric oxide in T. cruzi killing by activated macrophages. We also tested the ability of interleukin(IL)-10 and transforming growth factor (TGF)-beta, to block regulation of T. cruzi growth in this system. Both IL-10 and TGF-beta inhibited anti-parasite function by IFN-gamma-activated macrophages, with an optimal dose of 100 units/ml and 0.5 ng/ml, respectively. Moreover, when used in combination, suboptimal doses of IL-10 and TGF-beta were found to produce a synergistic inhibitory effect in the regulation of T. cruzi growth. The ability of IL-10 and TGF-beta to suppress microbicidal function was also positively correlated with inhibition of nitrite generation in macrophage culture supernatants. These results predict an in vivo role for IL-10 and TGF-beta in promoting parasite survival in the face of the host cell-mediated immune response. PMID:1396957

  9. Attenuation of the DNA Damage Response by Transforming Growth Factor-Beta Inhibitors Enhances Radiation Sensitivity of Non–Small-Cell Lung Cancer Cells In Vitro and In Vivo

    SciTech Connect

    Du, Shisuo; Bouquet, Sophie; Lo, Chen-Hao; Pellicciotta, Ilenia; Bolourchi, Shiva; Parry, Renate; Barcellos-Hoff, Mary Helen

    2015-01-01

    Purpose: To determine whether transforming growth factor (TGF)-β inhibition increases the response to radiation therapy in human and mouse non–small-cell lung carcinoma (NSCLC) cells in vitro and in vivo. Methods and Materials: TGF-β–mediated growth response and pathway activation were examined in human NSCLC NCI-H1299, NCI-H292, and A549 cell lines and murine Lewis lung cancer (LLC) cells. Cells were treated in vitro with LY364947, a small-molecule inhibitor of the TGF-β type 1 receptor kinase, or with the pan-isoform TGF-β neutralizing monoclonal antibody 1D11 before radiation exposure. The DNA damage response was assessed by ataxia telangiectasia mutated (ATM) or Trp53 protein phosphorylation, γH2AX foci formation, or comet assay in irradiated cells. Radiation sensitivity was determined by clonogenic assay. Mice bearing syngeneic subcutaneous LLC tumors were treated with 5 fractions of 6 Gy and/or neutralizing or control antibody. Results: The NCI-H1299, A549, and LLC NSCLC cell lines pretreated with LY364947 before radiation exposure exhibited compromised DNA damage response, indicated by decreased ATM and p53 phosphorylation, reduced γH2AX foci, and increased radiosensitivity. The NCI-H292 cells were unresponsive. Transforming growth factor-β signaling inhibition in irradiated LLC cells resulted in unresolved DNA damage. Subcutaneous LLC tumors in mice treated with TGF-β neutralizing antibody exhibited fewer γH2AX foci after irradiation and significantly greater tumor growth delay in combination with fractionated radiation. Conclusions: Inhibition of TGF-β before radiation attenuated DNA damage recognition and increased radiosensitivity in most NSCLC cells in vitro and promoted radiation-induced tumor control in vivo. These data support the rationale for concurrent TGF-β inhibition and RT to provide therapeutic benefit in NSCLC.

  10. The transcription factor EGR-1 suppresses transformation of human fibrosarcoma HT1080 cells by coordinated induction of transforming growth factor-beta1, fibronectin, and plasminogen activator inhibitor-1.

    PubMed

    Liu, C; Yao, J; de Belle, I; Huang, R P; Adamson, E; Mercola, D

    1999-02-12

    Re-expression of EGR-1 in fibrosarcoma HT1080 suppresses transformation including tumorigenicity (Huang, R.-P., Liu, C., Fan, Y., Mercola, D., and Adamson, E. (1995) Cancer Res. 55, 5054-5062) owing in part to up-regulation of the transforming growth factor (TGF)-beta1 promoter by EGR-1 which suppresses growth by an autocrine mechanism (Liu, C., Adamson, E., and Mercola, D. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 11831-11836). Here we show that enhanced cell attachment contributes to the suppression via increased secretion of fibronectin (FN) and also of plasminogen activator inhibitor-1 (PAI-1). The secretion of FN and PAI-1 is strongly correlated with EGR-1 expression (RPEARSON = 0.971 and 0. 985, respectively). Addition of authentic TGF-beta1 to parental cells greatly stimulated secretion of PAI-1 but not FN, whereas addition of TGF-beta antibody or lipofection with specific antisense TGF-beta1 oligonucleotides to EGR-1-regulated cells completely inhibits the secretion of PAI-1 but not FN. However, in gel mobility shift assays pure EGR-1 or nuclear extracts of EGR-1-regulated cells specifically bind to two GC-rich elements of the human FN promoter at positions -75/-52 and -4/+18, indicating that the increased secretion of FN is likely due to direct up-regulation by EGR-1. Moreover, adhesion was greatly enhanced in EGR-1-regulated cells and was reversed by treatment with Arg-Gly-Asp (RGD) or PAI-1 antibody indicating that the secreted proteins are functional. We conclude that EGR-1 regulates the coordinated expression of gene products important for cell attachment ("oikis" factor) and normal growth control.

  11. 17-Beta-estradiol inhibits transforming growth factor-beta signaling and function in breast cancer cells via activation of extracellular signal-regulated kinase through the G protein-coupled receptor 30.

    PubMed

    Kleuser, Burkhard; Malek, Daniela; Gust, Ronald; Pertz, Heinz H; Potteck, Henrik

    2008-12-01

    Breast cancer development and breast cancer progression involves the deregulation of growth factors leading to uncontrolled cellular proliferation, invasion and metastasis. Transforming growth factor (TGF)-beta plays a crucial role in breast cancer because it has the potential to act as either a tumor suppressor or a pro-oncogenic chemokine. A cross-communication between the TGF-beta signaling network and estrogens has been postulated, which is important for breast tumorigenesis. Here, we provide evidence that inhibition of TGF-beta signaling is associated with a rapid estrogen-dependent nongenomic action. Moreover, we were able to demonstrate that estrogens disrupt the TGF-beta signaling network as well as TGF-beta functions in breast cancer cells via the G protein-coupled receptor 30 (GPR30). Silencing of GPR30 in MCF-7 cells completely reduced the ability of 17-beta-estradiol (E2) to inhibit the TGF-beta pathway. Likewise, in GPR30-deficient MDA-MB-231 breast cancer cells, E2 achieved the ability to suppress TGF-beta signaling only after transfection with GPR30-encoding plasmids. It is most interesting that the antiestrogen fulvestrant (ICI 182,780), which possesses agonistic activity at the GPR30, also diminished TGF-beta signaling. Further experiments attempted to characterize the molecular mechanism by which activated GPR30 inhibits the TGF-beta pathway. Our results indicate that GPR30 induces the stimulation of the mitogen-activated protein kinases (MAPKs), which interferes with the activation of Smad proteins. Inhibition of MAPK activity prevented the ability of E2 from suppressing TGF-beta signaling. These findings are of great clinical relevance, because down-regulation of TGF-beta signaling is associated with the development of breast cancer resistance in response to antiestrogens.

  12. Absence of the Yeast Hsp31 Chaperones of the DJ-1 Superfamily Perturbs Cytoplasmic Protein Quality Control in Late Growth Phase

    PubMed Central

    Amm, Ingo; Norell, Derrick; Wolf, Dieter H.

    2015-01-01

    The Saccharomyces cerevisiae heat shock proteins Hsp31, Hsp32, Hsp33 and Hsp34 belong to the DJ-1/ThiJ/PfpI superfamily which includes the human protein DJ-1 (PARK7) as the most prominent member. Mutations in the DJ-1 gene are directly linked to autosomal recessive, early-onset Parkinson’s disease. DJ-1 acts as an oxidative stress-induced chaperone preventing aggregation and fibrillation of α-synuclein, a critical factor in the development of the disease. In vivo assays in Saccharomyces cerevisiae using the model substrate ΔssCPY*Leu2myc (ΔssCL*myc) as an aggregation-prone misfolded cytoplasmic protein revealed an influence of the Hsp31 chaperone family on the steady state level of this substrate. In contrast to the ubiquitin ligase of the N-end rule pathway Ubr1, which is known to be prominently involved in the degradation process of misfolded cytoplasmic proteins, the absence of the Hsp31 chaperone family does not impair the degradation of newly synthesized misfolded substrate. Also degradation of substrates with strong affinity to Ubr1 like those containing the type 1 N-degron arginine is not affected by the absence of the Hsp31 chaperone family. Epistasis analysis indicates that one function of the Hsp31 chaperone family resides in a pathway overlapping with the Ubr1-dependent degradation of misfolded cytoplasmic proteins. This pathway gains relevance in late growth phase under conditions of nutrient limitation. Additionally, the Hsp31 chaperones seem to be important for maintaining the cellular Ssa Hsp70 activity which is important for Ubr1-dependent degradation. PMID:26466368

  13. Tissue inhibitor of metalloproteinase-3 is up-regulated by transforming growth factor-beta1 in vitro and expressed in fibroblastic foci in vivo in idiopathic pulmonary fibrosis.

    PubMed

    García-Alvarez, Jorge; Ramirez, Remedios; Checa, Marco; Nuttall, Robert K; Sampieri, Clara L; Edwards, Dylan R; Selman, Moisés; Pardo, Annie

    2006-05-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by fibroblast expansion and extracellular matrix accumulation. However, the mechanisms involved in matrix remodeling have not been elucidated. In this study, the authors aimed to evaluate the expression of the tissue inhibitors of matrix metalloproteinases (TIMPs) in human fibroblasts and whole tissues from IPF and normal lungs. They also determined the role of mitogen-activated protein kinase (MAPK) in TIMP3 expression. TIMP1, TIMP2, and TIMP3 were highly expressed in lung fibroblasts. Transforming growth factor (TGF)-beta1, a profibrotic mediator, induced strong up-regulation of TIMP3 at the mRNA and protein levels. The authors examined whether the MAPK pathway was involved in TGF-beta1-induced TIMP3 expression. TGF-beta1 induced the phosphorylation of p38 and extracellular signal-regulated kinase (ERK)1/2. Biochemical blockade of p38 by SB203580, but not of the ERK MAPK pathway, inhibited the effect of this factor. The effect was also blocked by the tyrosine kinase inhibitor genistein and by antagonizing TGF-beta1 receptor type I (activin-linked kinase [ALK5]). In IPF tissues TIMP3 gene expression was significantly increased and the protein was localized to fibroblastic foci and extracellular matrix. Our findings suggest that TGF-beta1-induced TIMP3 may be an important mediator in lung fibrogenesis.

  14. Increased expression of the homologue of enhancer-of-split 1 protects neurons from beta amyloid neurotoxicity and hints at an alternative role for transforming growth factor beta1 as a neuroprotector

    PubMed Central

    2012-01-01

    Introduction Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of β-amyloid (Aβ) in the brain, which produces progressive neuronal loss and dementia. We recently demonstrated that the noxious effects of Aβ on cultured hippocampal neurons are in part provoked by the antagonism of nerve growth factor (NGF) signalling, which impairs the activation of nuclear factor κB (NF-κB) by impeding the tyrosine phosphorylation of I-κBα. As a result, the expression of the homologue of Enhancer-of split 1 (Hes1) gene is downregulated and ultimately, gamma-aminobutyric acid (GABA)-ergic connectivity is lost. Methods Hes1 activity was promoted in cultured hippocampal neurons by overexpressing a Hes1-encoding plasmid or by upregulating this gene by activating NF-κB through different approaches (overexpressing either the I-κB kinaseβ, or p65/RelA/NF-κB). Alternatively neurons were exposed to TGFβ1. Dendrite patterning, GABAergic connectivity and cell survival were analyzed by immunofluorescence microscopy. Hes1 expression was determined by real-time PCR. NF-κB activation was measured using the dual-luciferase reporter assay. Results The expression of Hes1 abolished the effects of Aβ on dendritic patterning and GABAergic input, and it prevented the death of the cultured neurons. TGFβ1, a known neuroprotector, could counteract the deleterious effects of Aβ by inducing NF-κB activation following the serine phosphorylation of I-κBα. Indeed, the number of GABAergic terminals generated by inducing Hes1 expression was doubled. Conclusion Our data define some of the mechanisms involved in Aβ-mediated cell death and they point to potential means to counteract this noxious activity. PMID:22849569

  15. A Major Facilitator Superfamily protein encoded by TcMucK gene is not required for cuticle pigmentation, growth and development in Tribolium castaneum.

    PubMed

    Mun, Seulgi; Noh, Mi Young; Osanai-Futahashi, Mizuko; Muthukrishnan, Subbaratnam; Kramer, Karl J; Arakane, Yasuyuki

    2014-06-01

    Insect cuticle pigmentation and sclerotization (tanning) are vital physiological processes for insect growth, development and survival. We have previously identified several colorless precursor molecules as well as enzymes involved in their biosynthesis and processing to yield the mature intensely colored body cuticle pigments. A recent study indicated that the Bombyx mori (silkmoth) gene, BmMucK, which encodes a protein orthologous to a Culex pipiens quiquefasciatus (Southern house mosquito) cis,cis, muconate transporter, is a member of the "Major Facilitator Superfamily" (MFS) of transporter proteins and is associated with the appearance of pigmented body segments of naturally occurring body color mutants of B. mori. While RNA interference of the BmMucK gene failed to result in any observable phenotype, RNAi using a dsRNA for an orthologous gene from the red flour beetle, Tribolium castaneum, was reported to result in molting defects and darkening of the cuticle and some body parts, leading to the suggestion that orthologs of MucK genes may differ in their functions among insects. To verify the role and essentiality of the ortholog of this gene in development and body pigmentation function in T. castaneum we obtained cDNAs for the orthologous gene (TcMucK) from RNA isolated from the GA-1 wild-type strain of T. castaneum. The sequence of a 1524 nucleotides-long cDNA for TcMucK which encodes the putatively full-length protein, was assembled from two overlapping RT-PCR fragments and the expression profile of this gene during development was analyzed by real-time PCR. This cDNA encodes a 55.8 kDa protein consisting of 507 amino acid residues and includes 11 putative transmembrane segments. Transcripts of TcMucK were detected throughout all of the developmental stages analyzed. The function of this gene was explored by injection of two different double-stranded RNAs targeting different regions of the TcMucK gene (dsTcMucKs) into young larvae to down

  16. Connective tissue growth factor differentially binds to members of the cystine knot superfamily and potentiates platelet-derived growth factor-B signaling in rabbit corneal fibroblast cells

    PubMed Central

    Pi, Liya; Chung, Pei-Yu; Sriram, Sriniwas; Rahman, Masmudur M; Song, Wen-Yuan; Scott, Edward W; Petersen, Bryon E; Schultz, Gregory S

    2015-01-01

    AIM: To study the binding of connective tissue growth factor (CTGF) to cystine knot-containing ligands and how this impacts platelet-derived growth factor (PDGF)-B signaling. METHODS: The binding strengths of CTGF to cystine knot-containing growth factors including vascular endothelial growth factor (VEGF)-A, PDGF-B, bone morphogenetic protein (BMP)-4, and transforming growth factor (TGF)-β1 were compared using the LexA-based yeast two-hybrid system. EYG48 reporter strain that carried a wild-type LEU2 gene under the control of LexA operators and a lacZ reporter plasmid (p80p-lacZ) containing eight high affinity LexA binding sites were used in the yeast two-hybrid analysis. Interactions between CTGF and the tested growth factors were evaluated based on growth of transformed yeast cells on selective media and colorimetric detection in a liquid β-galactosidase activity assay. Dissociation constants of CTGF to VEGF-A isoform 165 or PDGF-BB homo-dimer were measured in surface plasma resonance (SPR) analysis. CTGF regulation in PDGF-B presentation to the PDGF receptor β (PDGFRβ) was also quantitatively assessed by the SPR analysis. Combinational effects of CTGF protein and PDGF-BB on activation of PDGFRβ and downstream signaling molecules ERK1/2 and AKT were assessed in rabbit corneal fibroblast cells by Western analysis. RESULTS: In the LexA-based yeast two-hybrid system, cystine knot motifs of tested growth factors were fused to the activation domain of the transcriptional factor GAL4 while CTGF was fused to the DNA binding domain of the bacterial repressor protein LexA. Yeast co-transformants containing corresponding fusion proteins for CTGF and all four tested cystine knot motifs survived on selective medium containing galactose and raffinose but lacking histidine, tryptophan, and uracil. In liquid β-galactosidase assays, CTGF expressing cells that were co-transformed with the cystine knot of VEGF-A had the highest activity, at 29.88 ± 0.91 fold above controls

  17. Diversity in protein domain superfamilies

    PubMed Central

    Das, Sayoni; Dawson, Natalie L; Orengo, Christine A

    2015-01-01

    Whilst ∼93% of domain superfamilies appear to be relatively structurally and functionally conserved based on the available data from the CATH-Gene3D domain classification resource, the remainder are much more diverse. In this review, we consider how domains in some of the most ubiquitous and promiscuous superfamilies have evolved, in particular the plasticity in their functional sites and surfaces which expands the repertoire of molecules they interact with and actions performed on them. To what extent can we identify a core function for these superfamilies which would allow us to develop a ‘domain grammar of function’ whereby a protein's biological role can be proposed from its constituent domains? Clearly the first step is to understand the extent to which these components vary and how changes in their molecular make-up modifies function. PMID:26451979

  18. EXPRESSION PROFILING OF TGFß SUPERFAMILY GENES IN DEVELOPING OROFACIAL TISSUE

    PubMed Central

    Mukhopadhyay, Partha; Greene, Robert M.; Pisano, M. Michele

    2010-01-01

    Background Numerous signaling molecules have been shown to participate in the dynamic process of orofacial development. Amongst these signal mediators, members of the transforming growth factor ß (TGFß) superfamily have been shown to play critical roles. Developing orofacial tissue expresses TGFß and BMP mRNAs, their protein isoforms and TGFß- and BMP-specific receptors. All these molecules display unique temporo-spatial patterns of expression in embryonic orofacial tissue, suggesting functional roles in orofacial development. For example, the TGFßs and BMPs regulate maxillary mesenchymal cell proliferation and extracellular matrix synthesis. This is particularly noteworthy in that perturbation of either process results in orofacial clefting. Although the cellular and phenotypic effects of the TGFß superfamily of growth factors on embryonic orofacial tissue have been extensively studied, the specific genes that function as effectors of these cytokines in orofacial development has not been well defined. Methods In the present study, oligonucleotide-based microarray technology was utilized to provide a comprehensive analysis of the expression of the panoply of genes related to the TGFß superfamily, as well as those encoding diverse groups of proteins functionally associated with this superfamily, during orofacial ontogenesis. Results Of the ~7000 genes whose expression was detected in the developing orofacial region, 249 have been identified that encode proteins related to the TGFß superfamily. Expression of several (27) of these genes was temporally regulated. In addition, several candidate genes, whose precise role in orofacial development is still unknown, were also identified. Examples of genes constituting this cluster include: TGFß1-induced anti-apoptotic factor-1 and -2, TGFß-induced factor 2, TGFß1 induced transcript -1 and -4, TGFß inducible early growth response 1, follistatin-like 1, follistatin-like 3, Tmeff (transmembrane protein with EGF

  19. Tumor necrosis factor beta and ultraviolet radiation are potent regulators of human keratinocyte ICAM-1 expression

    SciTech Connect

    Krutmann, J.; Koeck, A.S.; Schauer, E.; Parlow, F.; Moeller, A.K.; Kapp, A.; Foerster, E.S.; Schoepf, E.L.; Luger, T.A. )

    1990-08-01

    Intercellular adhesion molecule-1 (ICAM-1) functions as a ligand of leukocyte function-associated antigen-1 (LFA-1), as well as a receptor for human picorna virus, and its regulation thus affects various immunologic and inflammatory reactions. The weak, constitutive ICAM-1 expression on human keratinocytes (KC) can be up-regulated by cytokines such as interferon-gamma (IFN gamma) and tumor necrosis factor alpha (TNF alpha). In order to further examine the regulation of KC ICAM-1 expression, normal human KC or epidermoid carcinoma cells (KB) were incubated with different cytokines and/or exposed to ultraviolet (UV) radiation. Subsequently, ICAM-1 expression was monitored cytofluorometrically using a monoclonal anti-ICAM-1 antibody. Stimulation of cells with recombinant human (rh) interleukin (IL) 1 alpha, rhIL-4, rhIL-5, rhIL-6, rh granulocyte/macrophage colony-stimulating factor (GM-CSF), rh interferon alpha (rhIFN alpha), and rh transforming growth factor beta (TGF beta) did not increase ICAM-1 surface expression. In contrast, rhTNF beta significantly up-regulated ICAM-1 expression in a time- and dose-dependent manner. Moreover, the combination of rhTNF beta with rhIFN gamma increased the percentage of ICAM-1-positive KC synergistically. This stimulatory effect of rhTNF beta was further confirmed by the demonstration that rhTNF beta was capable of markedly enhancing ICAM-1 mRNA expression in KC. Finally, exposure of KC in vitro to sublethal doses of UV radiation (0-100 J/m2) prior to cytokine (rhIFN tau, rhTNF alpha, rhTNF beta) stimulation inhibited ICAM-1 up-regulation in a dose-dependent fashion. These studies identify TNF beta and UV light as potent regulators of KC ICAM-1 expression, which may influence both attachment and detachment of leukocytes and possibly viruses to KC.

  20. TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity.

    PubMed Central

    Krieglstein, K; Suter-Crazzolara, C; Fischer, W H; Unsicker, K

    1995-01-01

    The superfamily of transforming growth factors-beta (TGF-beta) comprises an expanding list of multifunctional proteins serving as regulators of cell proliferation and differentiation. Prominent members of this family include the TGF-beta s 1-5, activins, bone morphogenetic proteins and a recently discovered glial cell line-derived neurotrophic factor (GDNF). In the present study we demonstrate and compare the survival promoting and neuroprotective effects of TGF-beta 1, -2 and -3, activin A and GDNF for midbrain dopaminergic neurons in vitro. All proteins increase the survival of tyrosine hydroxylase-immunoreactive dopaminergic neurons isolated from the embryonic day (E) 14 rat mesencephalon floor to varying extents (TGF-beta s 2.5-fold, activin A and GDNF 1.6-fold). TGF-beta s, activin A and GDNF did not augment numbers of very rarely observed astroglial cells visualized by using antibodies to glial fibrillary acidic protein and had no effect on cell proliferation monitored by incorporation of BrdU. TGF-beta 1 and activin A protected dopaminergic neurons against N-methyl-4-phenylpiridinium ion toxicity. Reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that TGF-beta 2 mRNA, but not GDNF mRNA, is expressed in the E14 rat midbrain floor and in mesencephalic cultures. We conclude that TGF-beta s 1-3, activin A and GDNF share a neurotrophic capacity for developing dopaminergic neurons, which is not mediated by astroglial cells and not accompanied by an increase in cell proliferation. Images PMID:7882977

  1. Superfamilies of evolved and designed networks.

    PubMed

    Milo, Ron; Itzkovitz, Shalev; Kashtan, Nadav; Levitt, Reuven; Shen-Orr, Shai; Ayzenshtat, Inbal; Sheffer, Michal; Alon, Uri

    2004-03-01

    Complex biological, technological, and sociological networks can be of very different sizes and connectivities, making it difficult to compare their structures. Here we present an approach to systematically study similarity in the local structure of networks, based on the significance profile (SP) of small subgraphs in the network compared to randomized networks. We find several superfamilies of previously unrelated networks with very similar SPs. One superfamily, including transcription networks of microorganisms, represents "rate-limited" information-processing networks strongly constrained by the response time of their components. A distinct superfamily includes protein signaling, developmental genetic networks, and neuronal wiring. Additional superfamilies include power grids, protein-structure networks and geometric networks, World Wide Web links and social networks, and word-adjacency networks from different languages.

  2. Evolutionary History of the Photolyase/Cryptochrome Superfamily in Eukaryotes

    PubMed Central

    Mei, Qiming; Dvornyk, Volodymyr

    2015-01-01

    Background Photolyases and cryptochromes are evolutionarily related flavoproteins, which however perform distinct physiological functions. Photolyases (PHR) are evolutionarily ancient enzymes. They are activated by light and repair DNA damage caused by UV radiation. Although cryptochromes share structural similarity with DNA photolyases, they lack DNA repair activity. Cryptochrome (CRY) is one of the key elements of the circadian system in animals. In plants, CRY acts as a blue light receptor to entrain circadian rhythms, and mediates a variety of light responses, such as the regulation of flowering and seedling growth. Results We performed a comprehensive evolutionary analysis of the CRY/PHR superfamily. The superfamily consists of 7 major subfamilies: CPD class I and CPD class II photolyases, (6–4) photolyases, CRY-DASH, plant PHR2, plant CRY and animal CRY. Although the whole superfamily evolved primarily under strong purifying selection (average ω = 0.0168), some subfamilies did experience strong episodic positive selection during their evolution. Photolyases were lost in higher animals that suggests natural selection apparently became weaker in the late stage of evolutionary history. The evolutionary time estimates suggested that plant and animal CRYs evolved in the Neoproterozoic Era (~1000–541 Mya), which might be a result of adaptation to the major climate and global light regime changes occurred in that period of the Earth’s geological history. PMID:26352435

  3. Cloning and sequencing hybrid striped bass (Morone saxatilis x M. chrysops) transforming growth factor-beta (TGF-beta), and development of a reverse transcription quantitative competitive polymerase chain reaction (RT-qcPCR) assay to measure TGF-beta mRNA of teleost fish.

    PubMed

    Harms, C A; Kennedy-Stoskopf, S; Horne, W A; Fuller, F J; Tompkins, W A

    2000-01-01

    A transforming growth factor (TGF)-beta was isolated and cloned from hybrid striped bass (Morone saxatilis x M. chrysops) anterior kidney mononuclear cells. This isolate (Genbank accession number AF140363) contains an open reading frame of 1146 bases coding for a 382 amino acid protein most similar to rainbow trout TGF-beta (57.3 and 78.6% identity with precursor and active protein, respectively) and rat TGF-beta 1 (41.1 and 68.8% identity with precursor and active protein, respectively). Consensus primers were demonstrated to amplify specifically by polymerase chain reaction (PCR), a TGF-beta segment from 14 species of teleost fish comprising 10 taxonomic families in 7 orders. A reverse transcription quantitative competitive polymerase chain reaction (RT-qcPCR) assay was devised to measure TGF-beta mRNA expression in teleost fish. Higher levels of TGF-beta mRNA expression were detected in mononuclear cells of peripheral blood than from spleen or anterior kidney.

  4. Revisiting the Non-Animal Peroxidase Superfamily.

    PubMed

    Lazzarotto, Fernanda; Turchetto-Zolet, Andreia Carina; Margis-Pinheiro, Márcia

    2015-12-01

    Peroxidases reduce peroxide through substrate oxidation in order to alleviate oxidative stress in aerobic organisms. Since the initial description of the non-animal peroxidase superfamily, great effort has been made to characterize this large and heterogeneous group of proteins. Next generation sequencing data have permitted an in-depth study of the molecular evolution of this superfamily and allowed us to perform a phylogenetic reconstruction. Through this analysis, we identified two additional class I members and, here, we discuss the similarities and differences among members of this class. Our results provide new insights into the organization of these antioxidant enzymes, allowing us to propose a new model for the emergence and evolution of this superfamily.

  5. GDF11 forms a bone morphogenetic protein 1-activated latent complex that can modulate nerve growth factor-induced differentiation of PC12 cells.

    PubMed

    Ge, Gaoxiang; Hopkins, Delana R; Ho, Wen-Bin; Greenspan, Daniel S

    2005-07-01

    All transforming growth factor beta (TGF-beta) superfamily members are synthesized as precursors with prodomain sequences that are proteolytically removed by subtilisin-like proprotein convertases (SPCs). For most superfamily members, this is believed sufficient for activation. Exceptions are TGF-betas 1 to 3 and growth differentiation factor 8 (GDF8), also known as myostatin, which form noncovalent, latent complexes with their SPC-cleaved prodomains. Sequence similarities between TGF-betas 1 to 3, myostatin, and superfamily member GDF11, also known as bone morphogenetic protein 11 (BMP11), prompted us to examine whether GDF11 might be capable of forming a latent complex with its cleaved prodomain. Here we demonstrate that GDF11 forms a noncovalent latent complex with its SPC-cleaved prodomain and that this latent complex is activated via cleavage at a single specific site by members of the developmentally important BMP1/Tolloid family of metalloproteinases. Evidence is provided for a molecular model whereby formation and activation of this complex may play a general role in modulating neural differentiation. In particular, mutant GDF11 prodomains impervious to cleavage by BMP1/Tolloid proteinases are shown to be potent stimulators of neurodifferentiation, with potential for therapeutic applications.

  6. Independent evolution of four heme peroxidase superfamilies.

    PubMed

    Zámocký, Marcel; Hofbauer, Stefan; Schaffner, Irene; Gasselhuber, Bernhard; Nicolussi, Andrea; Soudi, Monika; Pirker, Katharina F; Furtmüller, Paul G; Obinger, Christian

    2015-05-15

    Four heme peroxidase superfamilies (peroxidase-catalase, peroxidase-cyclooxygenase, peroxidase-chlorite dismutase and peroxidase-peroxygenase superfamily) arose independently during evolution, which differ in overall fold, active site architecture and enzymatic activities. The redox cofactor is heme b or posttranslationally modified heme that is ligated by either histidine or cysteine. Heme peroxidases are found in all kingdoms of life and typically catalyze the one- and two-electron oxidation of a myriad of organic and inorganic substrates. In addition to this peroxidatic activity distinct (sub)families show pronounced catalase, cyclooxygenase, chlorite dismutase or peroxygenase activities. Here we describe the phylogeny of these four superfamilies and present the most important sequence signatures and active site architectures. The classification of families is described as well as important turning points in evolution. We show that at least three heme peroxidase superfamilies have ancient prokaryotic roots with several alternative ways of divergent evolution. In later evolutionary steps, they almost always produced highly evolved and specialized clades of peroxidases in eukaryotic kingdoms with a significant portion of such genes involved in coding various fusion proteins with novel physiological functions.

  7. Effects of Transforming Growth Factor Beta 1 in Cerebellar Development: Role in Synapse Formation

    PubMed Central

    Araujo, Ana P. B.; Diniz, Luan P.; Eller, Cristiane M.; de Matos, Beatriz G.; Martinez, Rodrigo; Gomes, Flávia C. A.

    2016-01-01

    Granule cells (GC) are the most numerous glutamatergic neurons in the cerebellar cortex and represent almost half of the neurons of the central nervous system. Despite recent advances, the mechanisms of how the glutamatergic synapses are formed in the cerebellum remain unclear. Among the TGF-β family, TGF-beta 1 (TGF-β1) has been described as a synaptogenic molecule in invertebrates and in the vertebrate peripheral nervous system. A recent paper from our group demonstrated that TGF-β1 increases the excitatory synapse formation in cortical neurons. Here, we investigated the role of TGF-β1 in glutamatergic cerebellar neurons. We showed that the expression profile of TGF-β1 and its receptor, TβRII, in the cerebellum is consistent with a role in synapse formation in vitro and in vivo. It is low in the early postnatal days (P1–P9), increases after postnatal day 12 (P12), and remains high until adulthood (P30). We also found that granule neurons express the TGF-β receptor mRNA and protein, suggesting that they may be responsive to the synaptogenic effect of TGF-β1. Treatment of granular cell cultures with TGF-β1 increased the number of glutamatergic excitatory synapses by 100%, as shown by immunocytochemistry assays for presynaptic (synaptophysin) and post-synaptic (PSD-95) proteins. This effect was dependent on TβRI activation because addition of a pharmacological inhibitor of TGF-β, SB-431542, impaired the formation of synapses between granular neurons. Together, these findings suggest that TGF-β1 has a specific key function in the cerebellum through regulation of excitatory synapse formation between granule neurons. PMID:27199658

  8. KLF10, transforming growth factor-{beta}-inducible early gene 1, acts as a tumor suppressor

    SciTech Connect

    Song, Ki-Duk; Kim, Duk-Jung; Lee, Jong Eun; Yun, Cheol-Heui; Lee, Woon Kyu

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer KLF10{sup -/-} mice exhibited accelerated papilloma development after DMBA/TPA treatment. Black-Right-Pointing-Pointer KLF10{sup -/-} keratinocytes showed increased proliferation and apoptosis. Black-Right-Pointing-Pointer KLF10{sup -/-} MEFs yielded more colonies than wild-type one with H-Ras transfection. Black-Right-Pointing-Pointer KLF10 dose-dependently activated p21{sup WAF1/CIP1} transcription. Black-Right-Pointing-Pointer KLF10 is a tumor suppressor and that it targets p21{sup WAF1/CIP1} transcription. -- Abstract: Krueppel-like factor 10 (KLF10) has been suggested to be a putative tumor suppressor. In the present study, we generated KLF10 deficient mice to explore this hypothesis in vivo. KLF10 deficient mice exhibited increased predisposition to skin tumorigenesis and markedly accelerated papilloma development after DMBA/TPA treatment. On the other hand, KLF10 deficient keratinocytes showed increased proliferation and apoptosis. In colony formation assays after oncogenic H-Ras transfection, KLF10 deficient mouse embryonic fibroblasts (MEFs) yielded more colonies than wild-type MEFs. Furthermore, KLF10 dose-dependently activated p21{sup WAF1/CIP1} transcription, which was independent of p53 and Sp1 binding sites in p21{sup WAF1/CIP1} promoter. This study demonstrates that KLF10 is a tumor suppressor and that it targets p21{sup WAF1/CIP1} transcription.

  9. Specific binding of endocrine transforming growth factor-beta 1 to vascular endothelium.

    PubMed Central

    Dickson, K; Philip, A; Warshawsky, H; O'Connor-McCourt, M; Bergeron, J J

    1995-01-01

    The presentation of recombinant biologically active 125I-TGF-beta 1 via the bloodstream to potential target cells in mice and rats was evaluated by quantitative light and electron microscope radioautography. Specificity was evaluated by in vivo competition with excess unlabeled TGF-beta 1, and integrity of the ligand at the binding site was demonstrated by trichloroacetic acid precipitation after extraction from tissues. The distribution of radiolabel at 2.5, 15, 30, 45, and 60 min after 125I-TGF-beta 1 injection revealed radiolabel principally over microvasculature endothelium but at times > 2.5 min over endothelial endocytic components indicative of internalization. Nonspecific binding of 125I-TGF-beta 1 to the apex of the proximal convoluted tubule of the kidney indicated it as the likely site of rapid clearance of TGF-beta 1 from the circulation, while a comparison of the binding of 125I-TGF-beta 1 (endothelial) to that of 125I-TGF-beta 1 complexed with alpha 2-macroglobulin-methylamine (liver parenchyma) indicated that clearance of TGF-beta 1 complexed alpha 2-macroglobulin was likely via the hepatic alpha 2-macroglobulin receptor. The endothelial TGF-beta receptors uncovered here are likely involved in the local regulatory mechanism of leukocyte and monocyte adhesion and tissue infiltration regulated by endocrine TGF-beta 1. Images PMID:7539454

  10. Smad3 is necessary for transforming growth factor-beta2 induced ocular hypertension in mice.

    PubMed

    McDowell, Colleen M; Tebow, Holly E; Wordinger, Robert J; Clark, Abbot F

    2013-11-01

    TGFβ2 induces extracellular matrix (ECM) remodeling and alters the cytoskeleton by both the canonical Smad and non-canonical signaling pathways. TGFβ2 regulates the expression of ECM proteins in trabecular meshwork (TM) cells, increases intraocular pressure (IOP) in an ex vivo perfusion organ culture model, and induces ocular hypertension in rodent eyes. A necessary step in the canonical Smad signaling pathway is phosphorylation of receptor protein Smad3 by the TGF-β receptor complex. The purpose of this study was to determine whether TGFβ2 signals in vivo through the canonical Smad signaling pathway in the TM using Smad3 knockout (KO) mice. Ad5.hTGFβ2(226/228) (2.5 × 10(7) pfu) was injected intravitreally into one eye of homozygous (WT), heterozygous (HET), and homozygous (KO) 129-Smad3(tm1Par)/J mice (n = 9-10 mice/group), with the uninjected contralateral eye serving as the control. IOP measurements were taken using a rebound tonometer. To test the effect of TGFβ2 signaling on the ECM, fibronectin expression was determined by immunohistochemistry and qPCR analysis. Transduction of the TM with viral vector Ad5.hTGFβ2(226/228) caused a statistically significant difference in IOP exposure between Smad3 genotypes: WT, 187.7 ± 23.9 mmHg*day (n = 9); HET, 95.6 ± 24.5 mmHg*day (n = 9); KO, 52.8 ± 25.2 mmHg*day (n = 10); (p < 0.05 WT versus HET, p < 0.01 WT versus KO). Immunohistochemistry and qPCR analysis showed that Ad5.hTGFβ2(226/228) increased fibronectin expression in the TM of WT mice (2.23 ± 0.24 fold) compared to Smad3 KO mice (0.99 ± 0.19 fold), p < 0.05. These results demonstrate Smad3 is a necessary signaling protein for TGFβ2-induced ocular hypertension and fibronectin deposition in the TM.

  11. Transforming growth factor-beta activation in irradiated murine mammary gland.

    PubMed Central

    Barcellos-Hoff, M H; Derynck, R; Tsang, M L; Weatherbee, J A

    1994-01-01

    The biological activity of TGF-beta, an important modulator of cell proliferation and extracellular matrix formation, is governed by dissociation of mature TGF-beta from an inactive, latent TGF-beta complex in a process that is critical to its role in vivo. So far, it has not been possible to monitor activation in vivo since conventional immunohistochemical detection does not accurately discriminate latent versus active TGF-beta, nor have events associated with activation been defined well enough to serve as in situ markers of this process. We describe here a modified immunodetection method using differential antibody staining that allows the specific detection of active versus latent TGF-beta. Under these conditions, we report that an antibody raised to latency-associated peptide detects latent TGF-beta, and we demonstrate that LC(1-30) antibodies specifically recognize active TGF-beta 1 in tumor xenografts overproducing active TGF-beta 1, without cross-reactivity in tumors expressing similar levels of latent TGF-beta 1. We previously reported that TGF-beta immunoreactivity increases in murine mammary gland after whole-body 60Co-gamma radiation exposure. Using differential antibody staining we now show that radiation exposure specifically generates active TGF-beta 1. While latent TGF-beta 1 was widely distributed in unirradiated tissue, active TGF-beta 1 distribution was restricted. Active TGF-beta 1 increased significantly within 1 h of irradiation concomitant with decreased latent TGF-beta immunoreactivity. This rapid shift in immunoreactivity provides the first evidence for activation of TGF-beta in situ. This reciprocal pattern of expression persisted for 3 d and was accompanied by decreased recovery of latent TGF-beta 1 from irradiated tissue. Radiation-induced activation of TGF-beta may have profound implications for understanding tissue effects caused by radiation therapy. Images PMID:8113421

  12. Utility of the Amborella trichopoda expansin superfamily in elucidating the history of angiosperm expansins.

    PubMed

    Seader, Victoria H; Thornsberry, Jennifer M; Carey, Robert E

    2016-03-01

    Expansins form a superfamily of plant proteins that assist in cell wall loosening during growth and development. The superfamily is divided into four families: EXPA, EXPB, EXLA, and EXLB (Sampedro and Cosgrove in Genome Biol 6:242, 2005. doi: 10.1186/gb-2005-6-12-242 ). Previous studies on Arabidopsis, rice, and Populus trichocarpa have clarified the evolutionary history of expansins in angiosperms (Sampedro et al. in Plant J 44:409-419, 2005. doi: 10.1111/j.1365-313X.2005.02540.x ). Amborella trichopoda is a flowering plant that diverged very early. Thus, it is a sister lineage to all other extant angiosperms (Amborella Genome Project in 342:1241089, 2013. doi: 10.1126/science.1241089 ). Because of this relationship, comparing the A. trichopoda expansin superfamily with those of other flowering plants may indicate which expansin genes were present in the last common ancestor of all angiosperms. The A. trichopoda expansin superfamily was assembled using BLAST searches with angiosperm expansin queries. The search results were analyzed and annotated to isolate the complete A. trichopoda expansin superfamily. This superfamily is similar to other angiosperm expansin superfamilies, but is somewhat smaller. This is likely because of a lack of genome duplication events (Amborella Genome Project 2013). Phylogenetic and syntenic analyses of A. trichopoda expansins have improved our understanding of the evolutionary history of expansins in angiosperms. Nearly all of the A. trichopoda expansins were placed into an existing Arabidopsis-rice expansin clade. Based on the results of phylogenetic and syntenic analyses, we estimate there were 12-13 EXPA genes, 2 EXPB genes, 1 EXLA gene, and 2 EXLB genes in the last common ancestor of all angiosperms.

  13. Utility of the Amborella trichopoda expansin superfamily in elucidating the history of angiosperm expansins.

    PubMed

    Seader, Victoria H; Thornsberry, Jennifer M; Carey, Robert E

    2016-03-01

    Expansins form a superfamily of plant proteins that assist in cell wall loosening during growth and development. The superfamily is divided into four families: EXPA, EXPB, EXLA, and EXLB (Sampedro and Cosgrove in Genome Biol 6:242, 2005. doi: 10.1186/gb-2005-6-12-242 ). Previous studies on Arabidopsis, rice, and Populus trichocarpa have clarified the evolutionary history of expansins in angiosperms (Sampedro et al. in Plant J 44:409-419, 2005. doi: 10.1111/j.1365-313X.2005.02540.x ). Amborella trichopoda is a flowering plant that diverged very early. Thus, it is a sister lineage to all other extant angiosperms (Amborella Genome Project in 342:1241089, 2013. doi: 10.1126/science.1241089 ). Because of this relationship, comparing the A. trichopoda expansin superfamily with those of other flowering plants may indicate which expansin genes were present in the last common ancestor of all angiosperms. The A. trichopoda expansin superfamily was assembled using BLAST searches with angiosperm expansin queries. The search results were analyzed and annotated to isolate the complete A. trichopoda expansin superfamily. This superfamily is similar to other angiosperm expansin superfamilies, but is somewhat smaller. This is likely because of a lack of genome duplication events (Amborella Genome Project 2013). Phylogenetic and syntenic analyses of A. trichopoda expansins have improved our understanding of the evolutionary history of expansins in angiosperms. Nearly all of the A. trichopoda expansins were placed into an existing Arabidopsis-rice expansin clade. Based on the results of phylogenetic and syntenic analyses, we estimate there were 12-13 EXPA genes, 2 EXPB genes, 1 EXLA gene, and 2 EXLB genes in the last common ancestor of all angiosperms. PMID:26646380

  14. The superfamily of organic anion transporting polypeptides.

    PubMed

    Hagenbuch, B; Meier, P J

    2003-01-10

    Organic anion transporting polypeptides (Oatps/OATPs) form a growing gene superfamily and mediate transport of a wide spectrum of amphipathic organic solutes. Different Oatps/OATPs have partially overlapping and partially distinct substrate preferences for organic solutes such as bile salts, steroid conjugates, thyroid hormones, anionic oligopeptides, drugs, toxins and other xenobiotics. While some Oatps/OATPs are preferentially or even selectively expressed in one tissue such as the liver, others are expressed in multiple organs including the blood-brain barrier (BBB), choroid plexus, lung, heart, intestine, kidney, placenta and testis. This review summarizes the actual state of the rapidly expanding OATP superfamily and covers the structural properties, the genomic classification, the phylogenetic relationships and the functional transport characteristics. In addition, we propose a new species independent and open ended nomenclature and classification system, which is based on divergent evolution and agrees with the guidelines of the Human Genome Nomenclature Committee.

  15. Prenyltransferases of the dimethylallyltryptophan synthase superfamily.

    PubMed

    Yu, Xia; Li, Shu-Ming

    2012-01-01

    Prenylated natural products often have interesting biological and pharmacological activities clearly distinct from their nonprenylated precursors. Prenyltransferases are responsible for the attachment of prenyl moieties to a number of acceptors and contribute significantly to structural and biological diversity of these compounds in nature. In the past 8 years, significant progress has been achieved in the molecular biological, biochemical, and structural biological investigation of the prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily. These soluble enzymes are involved in the biosynthesis of fungal secondary metabolites and mainly catalyze prenylation of diverse indole derivatives, including tryptophan and tryptophan-containing cyclic dipeptides. The members of the DMATS superfamily show promising flexibility toward their aromatic substrates and catalyze highly regio- and stereoselective prenyltransfer reactions. These features were successfully used for chemoenzymatic synthesis, not only for production of prenylated simple indoles and cyclic dipeptides but also for prenylated hydroxynaphthalenes and flavonoids, which are usually found in bacteria and plants, respectively.

  16. The aldo-keto reductase superfamily homepage.

    PubMed

    Hyndman, David; Bauman, David R; Heredia, Vladi V; Penning, Trevor M

    2003-02-01

    The aldo-keto reductases (AKRs) are one of the three enzyme superfamilies that perform oxidoreduction on a wide variety of natural and foreign substrates. A systematic nomenclature for the AKR superfamily was adopted in 1996 and was updated in September 2000 (visit www.med.upenn.edu/akr). Investigators have been diligent in submitting sequences of functional proteins to the Web site. With the new additions, the superfamily contains 114 proteins expressed in prokaryotes and eukaryotes that are distributed over 14 families (AKR1-AKR14). The AKR1 family contains the aldose reductases, the aldehyde reductases, the hydroxysteroid dehydrogenases and steroid 5beta-reductases, and is the largest. Other families of interest include AKR6, which includes potassium channel beta-subunits, and AKR7 the aflatoxin aldehyde reductases. Two new families include AKR13 (yeast aldose reductase) and AKR14 (Escherichia coli aldehyde reductase). Crystal structures of many AKRs and their complexes with ligands are available in the PDB and accessible through the Web site. Each structure has the characteristic (alpha/beta)(8)-barrel motif of the superfamily, a conserved cofactor binding site and a catalytic tetrad, and variable loop structures that define substrate specificity. Although the majority of AKRs are monomeric proteins of about 320 amino acids in length, the AKR2, AKR6 and AKR7 family may form multimers. To expand the nomenclature to accommodate multimers, we recommend that the composition and stoichiometry be listed. For example, AKR7A1:AKR7A4 (1:3) would designate a tetramer of the composition indicated. The current nomenclature is recognized by the Human Genome Project (HUGO) and the Web site provides a link to genomic information including chromosomal localization, gene boundaries, human ESTs and SNPs and much more.

  17. Precambrian origins of the TNFR superfamily.

    PubMed

    Quistad, S D; Traylor-Knowles, N

    2016-01-01

    The evolution of the tumor necrosis factor/tumor necrosis factor receptor superfamily (TNF/TNFR) is complicated and not well understood. To date, most TNFR studies have focused on vertebrate models leaving the role of TNFRs in invertebrates largely unexplored. The evolution of important cellular processes including stress response, apoptosis, development, and inflammation will be better understood by examining the TNF/TNFR superfamily in ancient invertebrate phyla. How widespread is this gene family within the evolutionary tree of life and is there evidence for similar function in invertebrates? A first step is to identify the presence or absence of these genes within basal metazoan taxa using the signature cysteine-rich domain (CRD) of the TNFR superfamily. In this perspective, we will start by examining what is currently known about the function of TNFRs in invertebrates. Then, we will assess the role of TNFRs in apoptosis and explore the origins of the domains found in TNFRs including the death domain (DD) and CRD. Finally, we will examine the phylogenetic relationship between TNFRs containing DDs identified to date. From these data, we propose a model for a Precambrian origin of TNFRs and their functional role in apoptosis.

  18. The neurexin superfamily of Caenorhabditis elegans.

    PubMed

    Haklai-Topper, Liat; Soutschek, Jürgen; Sabanay, Helena; Scheel, Jochen; Hobert, Oliver; Peles, Elior

    2011-01-01

    The neurexin superfamily is a group of transmembrane molecules mediating cell-cell contacts and generating specialized membranous domains in polarized epithelial and nerves cells. We describe here the domain organization and expression of the entire, core neurexin superfamily in the nematode Caenorhabditis elegans, which is composed of three family members. One of the superfamily members, nrx-1, is an ortholog of vertebrate neurexin, the other two, itx-1 and nlr-1, are orthologs of the Caspr subfamily of neurexin-like genes. Based on reporter gene analysis, we find that nrx-1 is exclusively expressed in most if not all cells of the nervous system and localizes to presynaptic specializations. itx-1 and nrx-1 reporter genes are expressed in non-overlapping patterns within and outside the nervous system. ITX-1 protein co-localizes with β-G-spectrin to a subapical domain within intestinal cells. These studies provide a starting point for further functional analysis of this family of proteins.

  19. Precambrian origins of the TNFR superfamily.

    PubMed

    Quistad, S D; Traylor-Knowles, N

    2016-01-01

    The evolution of the tumor necrosis factor/tumor necrosis factor receptor superfamily (TNF/TNFR) is complicated and not well understood. To date, most TNFR studies have focused on vertebrate models leaving the role of TNFRs in invertebrates largely unexplored. The evolution of important cellular processes including stress response, apoptosis, development, and inflammation will be better understood by examining the TNF/TNFR superfamily in ancient invertebrate phyla. How widespread is this gene family within the evolutionary tree of life and is there evidence for similar function in invertebrates? A first step is to identify the presence or absence of these genes within basal metazoan taxa using the signature cysteine-rich domain (CRD) of the TNFR superfamily. In this perspective, we will start by examining what is currently known about the function of TNFRs in invertebrates. Then, we will assess the role of TNFRs in apoptosis and explore the origins of the domains found in TNFRs including the death domain (DD) and CRD. Finally, we will examine the phylogenetic relationship between TNFRs containing DDs identified to date. From these data, we propose a model for a Precambrian origin of TNFRs and their functional role in apoptosis. PMID:27551546

  20. Precambrian origins of the TNFR superfamily

    PubMed Central

    Quistad, S D; Traylor-Knowles, N

    2016-01-01

    The evolution of the tumor necrosis factor/tumor necrosis factor receptor superfamily (TNF/TNFR) is complicated and not well understood. To date, most TNFR studies have focused on vertebrate models leaving the role of TNFRs in invertebrates largely unexplored. The evolution of important cellular processes including stress response, apoptosis, development, and inflammation will be better understood by examining the TNF/TNFR superfamily in ancient invertebrate phyla. How widespread is this gene family within the evolutionary tree of life and is there evidence for similar function in invertebrates? A first step is to identify the presence or absence of these genes within basal metazoan taxa using the signature cysteine-rich domain (CRD) of the TNFR superfamily. In this perspective, we will start by examining what is currently known about the function of TNFRs in invertebrates. Then, we will assess the role of TNFRs in apoptosis and explore the origins of the domains found in TNFRs including the death domain (DD) and CRD. Finally, we will examine the phylogenetic relationship between TNFRs containing DDs identified to date. From these data, we propose a model for a Precambrian origin of TNFRs and their functional role in apoptosis. PMID:27551546

  1. The Nuclear Receptor Superfamily at Thirty.

    PubMed

    McEwan, Iain J

    2016-01-01

    The human genome codes for 48 members of the nuclear receptor superfamily, half of which have known ligands. Natural ligands for nuclear receptors are generally lipophilic in nature and include steroid hormones, bile acids, fatty acids, thyroid hormones, certain vitamins, and prostaglandins. Nuclear receptors regulate gene expression programs controlling development, differentiation, metabolic homeostasis and reproduction, in both a temporal and a tissue-selective manner. Since the original cloning of the cDNAs for the estrogen and glucocorticoid receptors, large strides have been made in our understanding of the structure and function of this family of transcription factors and their role in pathophysiology. PMID:27246330

  2. The P450 gene superfamily: recommended nomenclature.

    PubMed

    Nebert, D W; Adesnik, M; Coon, M J; Estabrook, R W; Gonzalez, F J; Guengerich, F P; Gunsalus, I C; Johnson, E F; Kemper, B; Levin, W

    1987-02-01

    A nomenclature for the P450 gene superfamily is proposed based on evolution. Recommendations include Roman numerals for distinct gene families, capital letters for subfamilies, and Arabic numerals for individual genes. An updating of this list, which presently includes 65 entries, will be required every 1-2 years. Assignment of orthologous genes is presently uncertain in some cases--between widely diverged species and especially in the P450II family due to the large number of genes. As more is known, it might become necessary to change some gene assignments that are based on our present knowledge. PMID:3829886

  3. Effects of sex steroids on expression of genes regulating growth-related mechanisms in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Cleveland, Beth M; Weber, Gregory M

    2015-05-15

    Effects of a single injection of 17β-estradiol (E2), testosterone (T), or 5β-dihydrotestosterone (DHT) on expression of genes central to the growth hormone (GH)/insulin-like growth factor (IGF) axis, muscle-regulatory factors, transforming growth factor-beta (TGFβ) superfamily signaling cascade, and estrogen receptors were determined in rainbow trout (Oncorhynchus mykiss) liver and white muscle tissue. In liver in addition to regulating GH sensitivity and IGF production, sex steroids also affected expression of IGF binding proteins, as E2, T, and DHT increased expression of igfbp2b and E2 also increased expression of igfbp2 and igfbp4. Regulation of this system also occurred in white muscle in which E2 increased expression of igf1, igf2, and igfbp5b1, suggesting anabolic capacity may be maintained in white muscle in the presence of E2. In contrast, DHT decreased expression of igfbp5b1. DHT and T decreased expression of myogenin, while other muscle regulatory factors were either not affected or responded similarly for all steroid treatments. Genes within the TGFβ superfamily signaling cascade responded to steroid treatment in both liver and muscle, suggesting a regulatory role for sex steroids in the ability to transmit signals initiated by TGFβ superfamily ligands, with a greater number of genes responding in liver than in muscle. Estrogen receptors were also regulated by sex steroids, with era1 expression increasing for all treatments in muscle, but only E2- and T-treatment in liver. E2 reduced expression of erb2 in liver. Collectively, these data identify how physiological mechanisms are regulated by sex steroids in a manner that promotes the disparate effects of androgens and estrogens on growth in salmonids.

  4. A Superfamily of Arabidopsis Thaliana Retrotransposons

    PubMed Central

    Konieczny, A.; Voytas, D. F.; Cummings, M. P.; Ausubel, F. M.

    1991-01-01

    We describe a superfamily of Arabidopsis thaliana retrotransposable elements that consists of at least ten related families designated Ta1-Ta10. The Ta1 family has been described previously. Two genomic clones representing the Ta2 and Ta3 elements were isolated from an A. thaliana (race Landsberg erecta) λ library using sequences derived from the reverse transcriptase region of Ta1 as hybridization probes. Nucleotide sequence analysis showed that the Ta1, Ta2 and Ta3 families share >75% amino acid identity in pairwise comparisons of their reverse transcriptase and RNase H genes. In addition to Ta1, Ta2 and Ta3, we identified seven other related retrotransposon families in Landsberg erecta, Ta4-Ta10, using degenerate primers and the polymerase chain reaction to amplify a highly conserved region of retrotransposon-encoded reverse transcriptase. One to two copies of elements Ta2-Ta10 are present in the genomes of the A. thaliana races Landsberg erecta and Columbia indicating that the superfamily comprises at least 0.1% of the A. thaliana genome. The nucleotide sequences of the reverse transcriptase regions of the ten element families place them in the category of copia-like retrotransposons and phylogenetic analysis of the amino acid sequences suggests that horizontal transfer may have played a role in their evolution. PMID:1709409

  5. The SUPERFAMILY database in 2007: families and functions.

    PubMed

    Wilson, Derek; Madera, Martin; Vogel, Christine; Chothia, Cyrus; Gough, Julian

    2007-01-01

    The SUPERFAMILY database provides protein domain assignments, at the SCOP 'superfamily' level, for the predicted protein sequences in over 400 completed genomes. A superfamily groups together domains of different families which have a common evolutionary ancestor based on structural, functional and sequence data. SUPERFAMILY domain assignments are generated using an expert curated set of profile hidden Markov models. All models and structural assignments are available for browsing and download from http://supfam.org. The web interface includes services such as domain architectures and alignment details for all protein assignments, searchable domain combinations, domain occurrence network visualization, detection of over- or under-represented superfamilies for a given genome by comparison with other genomes, assignment of manually submitted sequences and keyword searches. In this update we describe the SUPERFAMILY database and outline two major developments: (i) incorporation of family level assignments and (ii) a superfamily-level functional annotation. The SUPERFAMILY database can be used for general protein evolution and superfamily-specific studies, genomic annotation, and structural genomics target suggestion and assessment.

  6. Cooperative Effects of FOXL2 with the Members of TGF-β Superfamily on FSH Receptor mRNA Expression and Granulosa Cell Proliferation from Hen Prehierarchical Follicles

    PubMed Central

    Qin, Ning; Fan, Xian-Cong; Xu, Xiao-Xing; Tyasi, Thobela Louis; Li, Shi-Jun; Zhang, Ying-Ying; Wei, Man-Li; Xu, Ri-Fu

    2015-01-01

    Forkhead box L2 (FOXL2) is a member of the forkhead nuclear factor 3 gene family and plays an essential role in ovarian growth and maturation in mammals. However, its potential effects and regulative mechanism in development of chicken ovarian prehierarchical follicles remain unexplored. In this study, the cooperative effects of FOXL2 with activin A, growth differentiation factor-9 (GDF9) and follistatin, three members of the transforming growth factor beta (TGF-β) superfamily that were previously suggested to exert a critical role in follicle development was investigated. We demonstrated herein, using in-situ hybridization, Northern blot and immunohistochemical analyses of oocytes and granulosa cells in various sizes of prehierarchical follicles that both FOXL2 transcripts and FOXL2 proteins are predominantly expressed in a highly similar expression pattern to that of GDF9 gene. In addition, the FOXL2 transcript was found at lower levels in theca cells in the absence of GDF9. Furthermore, culture of granulosa cells (GCs) from the prehierarchical follicles (6–8 mm) in conditioned medium revealed that in the pcDNA3.0-FOXL2 transfected GCs, there was a more dramatic increase in FSHR mRNA expression after treatment with activin A (10 ng/ml) or GDF9 (100 ng/ml) for 24 h which caused a stimulatory effect on the GC proliferation. In contrast, a significant decrease of FSHR mRNA was detected after treatment with follistatin (50 ng/ml) and resulted in an inhibitory effect on the cell proliferation. The results of this suggested that FOXL2 plays a bidirectional modulating role involved in the intracellular FSHR transcription and GC proliferation via an autocrine regulatory mechanism in a positive or negative manner through cooperation with activin A and/or GDF9, and follistatin in the hen follicle development. This cooperative action may be mediated by the examined Smad signals and simultaneously implicated in modulation of the StAR, CCND2, and CYP11A1 expression. PMID

  7. Cooperative Effects of FOXL2 with the Members of TGF-β Superfamily on FSH Receptor mRNA Expression and Granulosa Cell Proliferation from Hen Prehierarchical Follicles.

    PubMed

    Qin, Ning; Fan, Xian-Cong; Xu, Xiao-Xing; Tyasi, Thobela Louis; Li, Shi-Jun; Zhang, Ying-Ying; Wei, Man-Li; Xu, Ri-Fu

    2015-01-01

    Forkhead box L2 (FOXL2) is a member of the forkhead nuclear factor 3 gene family and plays an essential role in ovarian growth and maturation in mammals. However, its potential effects and regulative mechanism in development of chicken ovarian prehierarchical follicles remain unexplored. In this study, the cooperative effects of FOXL2 with activin A, growth differentiation factor-9 (GDF9) and follistatin, three members of the transforming growth factor beta (TGF-β) superfamily that were previously suggested to exert a critical role in follicle development was investigated. We demonstrated herein, using in-situ hybridization, Northern blot and immunohistochemical analyses of oocytes and granulosa cells in various sizes of prehierarchical follicles that both FOXL2 transcripts and FOXL2 proteins are predominantly expressed in a highly similar expression pattern to that of GDF9 gene. In addition, the FOXL2 transcript was found at lower levels in theca cells in the absence of GDF9. Furthermore, culture of granulosa cells (GCs) from the prehierarchical follicles (6-8 mm) in conditioned medium revealed that in the pcDNA3.0-FOXL2 transfected GCs, there was a more dramatic increase in FSHR mRNA expression after treatment with activin A (10 ng/ml) or GDF9 (100 ng/ml) for 24 h which caused a stimulatory effect on the GC proliferation. In contrast, a significant decrease of FSHR mRNA was detected after treatment with follistatin (50 ng/ml) and resulted in an inhibitory effect on the cell proliferation. The results of this suggested that FOXL2 plays a bidirectional modulating role involved in the intracellular FSHR transcription and GC proliferation via an autocrine regulatory mechanism in a positive or negative manner through cooperation with activin A and/or GDF9, and follistatin in the hen follicle development. This cooperative action may be mediated by the examined Smad signals and simultaneously implicated in modulation of the StAR, CCND2, and CYP11A1 expression.

  8. The SUPERFAMILY 1.75 database in 2014: a doubling of data

    PubMed Central

    Oates, Matt E.; Stahlhacke, Jonathan; Vavoulis, Dimitrios V.; Smithers, Ben; Rackham, Owen J.L.; Sardar, Adam J.; Zaucha, Jan; Thurlby, Natalie; Fang, Hai; Gough, Julian

    2015-01-01

    We present updates to the SUPERFAMILY 1.75 (http://supfam.org) online resource and protein sequence collection. The hidden Markov model library that provides sequence homology to SCOP structural domains remains unchanged at version 1.75. In the last 4 years SUPERFAMILY has more than doubled its holding of curated complete proteomes over all cellular life, from 1400 proteomes reported previously in 2010 up to 3258 at present. Outside of the main sequence collection, SUPERFAMILY continues to provide domain annotation for sequences provided by other resources such as: UniProt, Ensembl, PDB, much of JGI Phytozome and selected subcollections of NCBI RefSeq. Despite this growth in data volume, SUPERFAMILY now provides users with an expanded and daily updated phylogenetic tree of life (sTOL). This tree is built with genomic-scale domain annotation data as before, but constantly updated when new species are introduced to the sequence library. Our Gene Ontology and other functional and phenotypic annotations previously reported have stood up to critical assessment by the function prediction community. We have now introduced these data in an integrated manner online at the level of an individual sequence, and—in the case of whole genomes—with enrichment analysis against a taxonomically defined background. PMID:25414345

  9. The SUPERFAMILY 1.75 database in 2014: a doubling of data.

    PubMed

    Oates, Matt E; Stahlhacke, Jonathan; Vavoulis, Dimitrios V; Smithers, Ben; Rackham, Owen J L; Sardar, Adam J; Zaucha, Jan; Thurlby, Natalie; Fang, Hai; Gough, Julian

    2015-01-01

    We present updates to the SUPERFAMILY 1.75 (http://supfam.org) online resource and protein sequence collection. The hidden Markov model library that provides sequence homology to SCOP structural domains remains unchanged at version 1.75. In the last 4 years SUPERFAMILY has more than doubled its holding of curated complete proteomes over all cellular life, from 1400 proteomes reported previously in 2010 up to 3258 at present. Outside of the main sequence collection, SUPERFAMILY continues to provide domain annotation for sequences provided by other resources such as: UniProt, Ensembl, PDB, much of JGI Phytozome and selected subcollections of NCBI RefSeq. Despite this growth in data volume, SUPERFAMILY now provides users with an expanded and daily updated phylogenetic tree of life (sTOL). This tree is built with genomic-scale domain annotation data as before, but constantly updated when new species are introduced to the sequence library. Our Gene Ontology and other functional and phenotypic annotations previously reported have stood up to critical assessment by the function prediction community. We have now introduced these data in an integrated manner online at the level of an individual sequence, and--in the case of whole genomes--with enrichment analysis against a taxonomically defined background. PMID:25414345

  10. The Aldehyde Dehydrogenase Gene Superfamily Resource Center

    PubMed Central

    2009-01-01

    The website http://www.aldh.org is a publicly available database for nomenclature and functional and molecular sequence information for members of the aldehyde dehydrogenase (ALDH) gene superfamily for animals, plants, fungi and bacteria. The site has organised gene-specific records. It provides synopses of ALDH gene records, marries trivial terms to correct nomenclature and links global accession identifiers with source data. Server-side alignment software characterises the integrity of each sequence relative to the latest genomic assembly and provides identifier-specific detail reports, including a graphical presentation of the transcript's exon - intron structure, its size, coding sequence, genomic strand and locus. Also included are a summary of substrates, inhibitors and enzyme kinetics. The site provides reference lists and is designed to facilitate data mining by interested investigators. PMID:20038501

  11. The extended protein kinase C superfamily.

    PubMed Central

    Mellor, H; Parker, P J

    1998-01-01

    Members of the mammalian protein kinase C (PKC) superfamily play key regulatory roles in a multitude of cellular processes, ranging from control of fundamental cell autonomous activities, such as proliferation, to more organismal functions, such as memory. However, understanding of mammalian PKC signalling systems is complicated by the large number of family members. Significant progress has been made through studies based on comparative analysis, which have defined a number of regulatory elements in PKCs which confer specific location and activation signals to each isotype. Further studies on simple organisms have shown that PKC signalling paradigms are conserved through evolution from yeast to humans, underscoring the importance of this family in cellular signalling and giving novel insights into PKC function in complex mammalian systems. PMID:9601053

  12. Comparative analysis of cystatin superfamily in platyhelminths.

    PubMed

    Guo, Aijiang

    2015-01-01

    The cystatin superfamily is comprised of cysteine proteinase inhibitors and encompasses at least 3 subfamilies: stefins, cystatins and kininogens. In this study, the platyhelminth cystatin superfamily was identified and grouped into stefin and cystatin subfamilies. The conserved domain of stefins (G, QxVxG) was observed in all members of platyhelminth stefins. The three characteristics of cystatins, the cystatin-like domain (G, QxVxG, PW), a signal peptide, and one or two conserved disulfide bonds, were observed in platyhelminths, with the exception of cestodes, which lacked the conserved disulfide bond. However, it is noteworthy that cestode cystatins had two tandem repeated domains, although the second tandem repeated domain did not contain a cystatin-like domain, which has not been previously reported. Tertiary structure analysis of Taenia solium cystatin, one of the cestode cystatins, demonstrated that the N-terminus of T. solium cystatin formed a five turn α-helix, a five stranded β-pleated sheet and a hydrophobic edge, similar to the structure of chicken cystatin. Although no conserved disulfide bond was found in T. solium cystatin, the models of T. solium cystatin and chicken cystatin corresponded at the site of the first disulfide bridge of the chicken cystatin. However, the two models were not similar regarding the location of the second disulfide bridge of chicken cystatin. These results showed that T. solium cystatin and chicken cystatin had similarities and differences, suggesting that the biochemistry of T. solium cystatin could be similar to chicken cystatin in its inhibitory function and that it may have further functional roles. The same results were obtained for other cestode cystatins. Phylogenetic analysis showed that cestode cystatins constituted an independent clade and implied that cestode cystatins should be considered to have formed a new clade during evolution.

  13. Comparative Analysis of Cystatin Superfamily in Platyhelminths

    PubMed Central

    Guo, Aijiang

    2015-01-01

    The cystatin superfamily is comprised of cysteine proteinase inhibitors and encompasses at least 3 subfamilies: stefins, cystatins and kininogens. In this study, the platyhelminth cystatin superfamily was identified and grouped into stefin and cystatin subfamilies. The conserved domain of stefins (G, QxVxG) was observed in all members of platyhelminth stefins. The three characteristics of cystatins, the cystatin-like domain (G, QxVxG, PW), a signal peptide, and one or two conserved disulfide bonds, were observed in platyhelminths, with the exception of cestodes, which lacked the conserved disulfide bond. However, it is noteworthy that cestode cystatins had two tandem repeated domains, although the second tandem repeated domain did not contain a cystatin-like domain, which has not been previously reported. Tertiary structure analysis of Taenia solium cystatin, one of the cestode cystatins, demonstrated that the N-terminus of T. solium cystatin formed a five turn α-helix, a five stranded β-pleated sheet and a hydrophobic edge, similar to the structure of chicken cystatin. Although no conserved disulfide bond was found in T. solium cystatin, the models of T. solium cystatin and chicken cystatin corresponded at the site of the first disulfide bridge of the chicken cystatin. However, the two models were not similar regarding the location of the second disulfide bridge of chicken cystatin. These results showed that T. solium cystatin and chicken cystatin had similarities and differences, suggesting that the biochemistry of T. solium cystatin could be similar to chicken cystatin in its inhibitory function and that it may have further functional roles. The same results were obtained for other cestode cystatins. Phylogenetic analysis showed that cestode cystatins constituted an independent clade and implied that cestode cystatins should be considered to have formed a new clade during evolution. PMID:25853513

  14. TGF-β superfamily signaling in muscle and tendon adaptation to resistance exercise

    PubMed Central

    Gumucio, Jonathan P; Sugg, Kristoffer B; Mendias, Christopher L

    2015-01-01

    Numerous studies in muscle and tendon have identified a central role of the TGF-β superfamily of cytokines in the regulation of extracellular matrix growth and remodeling, protein degradation, and cell proliferation and differentiation. Here we provide a novel framework for TGF-β and myostatin signaling in controlling the coordinated adaptation of both skeletal muscle and tendon tissue to resistance training. PMID:25607281

  15. Deficiency of monoclonal non-specific suppressor factor beta (MNSFB) promotes pregnancy loss in mice.

    PubMed

    Gu, Yan; He, Yaping; Zhang, Xuan; Shi, Yan; Yang, Qian; Yu, Lin; Sun, Zhaogui; Zhang, Huiqing; Wang, Jianmei; Gao, Xiang; Wang, Jian

    2015-06-01

    Maternal immune tolerance to the semi-allogenic fetus is required for successful pregnancy in mammals. Monoclonal nonspecific suppressor factor beta (MNSFB) is an immunosuppressive factor present in uterine epithelial and stromal cells, as well as in macrophages and T cells. Although the functional neutralization of MNSFB using specific antibodies against it lead to failed embryo implantation in mice, the exact role of MNSFB at the fetal-maternal interface remains unclear. The present study generated conditional heterozygous Mnsfb-deficient (Mnsfb(+/) (-) ) mice using the LoxP/Cre system. Western-blot analyses showed that uterine MNSFB protein in Mnsfb(+/-) mice was remarkably down-regulated compared to that in the wild-type (Mnsfb(+/+) ) mice. The litter size of female Mnsfb(+/-) mice was significantly reduced, which corresponded to developmental failure of embryos beyond Day 11 of pregnancy. The expression level of MNSFB protein was also lower in the failing compared to the normal embryos. An aberrant interaction between the embryos of Day-4 pregnant wild-type mice and endometrial stromal cells of female Mnsfb(+/-) mice was observed in vitro. The uterine Day-5 abundance of P53, BAX, and BCL-G in pregnant Mnsfb(+/-) mice was significantly decreased compared to that of wild-type mice, whereas the expression of P27 and tumor necrosis factor alpha (TNFA) was elevated. By comparison, the levels of MNSFB and BAX proteins in human decidual tissues obtained from recurrent spontaneous miscarriage patients were significantly reduced compared to those obtained from legal medial abortion, highlighting the involvement of MNSFB in the pathogenesis of recurrent spontaneous miscarriage. Together, these results demonstrated that a deficiency in MNSFb is associated with pregnancy loss, probably through reduced P53 and/or increased TNFA production at the fetal-maternal interface. PMID:26031240

  16. Soybean (Glycine max) expansin gene superfamily origins: segmental and tandem duplication events followed by divergent selection among subfamilies

    PubMed Central

    2014-01-01

    Background Expansins are plant cell wall loosening proteins that are involved in cell enlargement and a variety of other developmental processes. The expansin superfamily contains four subfamilies; namely, α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). Although the genome sequencing of soybeans is complete, our knowledge about the pattern of expansion and evolutionary history of soybean expansin genes remains limited. Results A total of 75 expansin genes were identified in the soybean genome, and grouped into four subfamilies based on their phylogenetic relationships. Structural analysis revealed that the expansin genes are conserved in each subfamily, but are divergent among subfamilies. Furthermore, in soybean and Arabidopsis, the expansin gene family has been mainly expanded through tandem and segmental duplications; however, in rice, segmental duplication appears to be the dominant process that generates this superfamily. The transcriptome atlas revealed notable differential expression in either transcript abundance or expression patterns under normal growth conditions. This finding was consistent with the differential distribution of the cis-elements in the promoter region, and indicated wide functional divergence in this superfamily. Moreover, some critical amino acids that contribute to functional divergence and positive selection were detected. Finally, site model and branch-site model analysis of positive selection indicated that the soybean expansin gene superfamily is under strong positive selection, and that divergent selection constraints might have influenced the evolution of the four subfamilies. Conclusion This study demonstrated that the soybean expansin gene superfamily has expanded through tandem and segmental duplication. Differential expression indicated wide functional divergence in this superfamily. Furthermore, positive selection analysis revealed that divergent selection constraints might have

  17. Phylogenetic characterization of transport protein superfamilies: superiority of SuperfamilyTree programs over those based on multiple alignments.

    PubMed

    Chen, Jonathan S; Reddy, Vamsee; Chen, Joshua H; Shlykov, Maksim A; Zheng, Wei Hao; Cho, Jaehoon; Yen, Ming Ren; Saier, Milton H

    2011-01-01

    Transport proteins function in the translocation of ions, solutes and macromolecules across cellular and organellar membranes. These integral membrane proteins fall into >600 families as tabulated in the Transporter Classification Database (www.tcdb.org). Recent studies, some of which are reported here, define distant phylogenetic relationships between families with the creation of superfamilies. Several of these are analyzed using a novel set of programs designed to allow reliable prediction of phylogenetic trees when sequence divergence is too great to allow the use of multiple alignments. These new programs, called SuperfamilyTree1 and 2 (SFT1 and 2), allow display of protein and family relationships, respectively, based on thousands of comparative BLAST scores rather than multiple alignments. Superfamilies analyzed include: (1) Aerolysins, (2) RTX Toxins, (3) Defensins, (4) Ion Transporters, (5) Bile/Arsenite/Riboflavin Transporters, (6) Cation:Proton Antiporters, and (7) the Glucose/Fructose/Lactose superfamily within the prokaryotic phosphoenol pyruvate-dependent Phosphotransferase System. In addition to defining the phylogenetic relationships of the proteins and families within these seven superfamilies, evidence is provided showing that the SFT programs outperform programs that are based on multiple alignments whenever sequence divergence of superfamily members is extensive. The SFT programs should be applicable to virtually any superfamily of proteins or nucleic acids.

  18. The glucagon superfamily: precursor structure and gene organization.

    PubMed

    Bell, G I

    1986-01-01

    The glucagon superfamily includes the polypeptides glucagon, secretin, vasoactive inhibitory peptide (VIP), gastric inhibitory peptide and growth hormone-releasing factor (GHRF). Complementary DNA clones which encode the precursors to glucagon, VIP and GHRF have been isolated. Although the sizes and sequences of preproglucagon, prepro VIP and preproGHRF are distinct, the structural organization of the three precursors is similar. Each has a signal peptide, an NH2-terminal peptide and one, two or three peptides whose sequences are related to glucagon. Prepro VIP and preproGHRF also have a COOH-terminal peptide. The sequences of two different anglerfish preproglucagon molecules have been determined and they contain the sequences of glucagon and a related peptide. In contrast, hamster, cow and rat preproglucagon contain the sequences of glucagon and two related peptides. Human and rat prepro VIP contain the sequences of VIP and the related peptide PHM/PHI-27. Human and rat preproGHRF contain the sequence of only one peptide related to glucagon, i.e., GHRF. The genes for both preproglucagon and preproGHRF have been isolated. Their exon-intron organization indicates that each exon encodes a functionally distinct region of the precursor and mRNA. PMID:3092195

  19. New superfamilies of eukaryotic DNA transposons and their internal divisions.

    PubMed

    Bao, Weidong; Jurka, Matthew G; Kapitonov, Vladimir V; Jurka, Jerzy

    2009-05-01

    Despite their enormous diversity and abundance, all currently known eukaryotic DNA transposons belong to only 15 superfamilies. Here, we report two new superfamilies of DNA transposons, named Sola and Zator. Sola transposons encode DDD-transposases (transposase, TPase) and are flanked by 4-bp target site duplications (TSD). Elements from the Sola superfamily are distributed in a variety of species including bacteria, protists, plants, and metazoans. They can be divided into three distinct groups of elements named Sola1, Sola2, and Sola3. The elements from each group have extremely low sequence identity to each other, different termini, and different target site preferences. However, all three groups belong to a single superfamily based on significant PSI-Blast identities between their TPases. The DDD TPase sequences encoded by Sola transposons are not similar to any known TPases. The second superfamily named Zator is characterized by 3-bp TSD. The Zator superfamily is relatively rare in eukaryotic species, and it evolved from a bacterial transposon encoding a TPase belonging to the "transposase 36" family (Pfam07592). These transposons are named TP36 elements (abbreviated from transposase 36).

  20. Genome-wide analysis of the AP2/ERF superfamily in peach (Prunus persica).

    PubMed

    Zhang, C H; Shangguan, L F; Ma, R J; Sun, X; Tao, R; Guo, L; Korir, N K; Yu, M L

    2012-10-17

    We identified 131 AP2/ERF (APETALA2/ethylene-responsive factor) genes in material from peach using the gene sequences of AP2/ERF amino acids of Arabidopsis thaliana (Brassicaceae) as probes. Based on the number of AP2/ERF domains and individual gene characteristics, the AP2/ERF superfamily gene in peach can be classified broadly into three families, ERF (ethylene-responsive factor), RAV (related to ABI3/VP1), and AP2 (APETALA2), containing 104, 5, and 21 members, respectively, along with a solo gene (ppa005376m). The 104 genes in the ERF family were further divided into 11 groups based on the group classification made for Arabidopsis. The scaffold localizations of the AP2/ERF genes indicated that 129 AP2/ERF genes were all located on scaffolds 1 to 8, except for two genes, which were on scaffolds 17 and 10. Although the primary structure varied among AP2/ERF superfamily proteins, their tertiary structures were similar. Most ERF family genes have no introns, while members of the AP2 family have more introns than genes in the ERF and RAV families. All sequences of AP2 family genes were disrupted by introns into several segments of varying sizes. The expression of the AP2/ERF superfamily genes was highest in the mesocarp; it was far higher than in the other seven tissues that we examined, implying that AP2/ERF superfamily genes play an important role in fruit growth and development in the peach. These results will be useful for selecting candidate genes from specific subgroups for functional analysis.

  1. Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility — A Review

    PubMed Central

    de Castro, Fernanda Cavallari; Cruz, Maria Helena Coelho; Leal, Claudia Lima Verde

    2016-01-01

    Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9) and the bone morphogenetic protein 15 (BMP15), belong to the transforming growth factor beta (TGF-β) superfamily, have been implicated as essential for follicular development. The GDF9 and BMP15 participate in the evolution of the primordial follicle to primary follicle and play an important role in the later stages of follicular development and maturation, increasing the steroidogenic acute regulatory protein expression, plasminogen activator and luteinizing hormone receptor (LHR). These factors are also involved in the interconnections between the oocyte and surrounding cumulus cells, where they regulate absorption of amino acids, glycolysis and biosynthesis of cholesterol cumulus cells. Even though the mode of action has not been fully established, in vitro observations indicate that the factors GDF9 and BMP15 stimulate the growth of ovarian follicles and proliferation of cumulus cells through the induction of mitosis in cells and granulosa and theca expression of genes linked to follicular maturation. Thus, seeking greater understanding of the action of these growth factors on the development of oocytes, the role of GDF9 and BMP15 in ovarian function is summarized in this brief review. PMID:26954112

  2. Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility - A Review.

    PubMed

    de Castro, Fernanda Cavallari; Cruz, Maria Helena Coelho; Leal, Claudia Lima Verde

    2016-08-01

    Growth factors play an important role during early ovarian development and folliculogenesis, since they regulate the migration of germ cells to the gonadal ridge. They also act on follicle recruitment, proliferation/atresia of granulosa cells and theca, steroidogenesis, oocyte maturation, ovulation and luteinization. Among the growth factors, the growth differentiation factor 9 (GDF9) and the bone morphogenetic protein 15 (BMP15), belong to the transforming growth factor beta (TGF-β) superfamily, have been implicated as essential for follicular development. The GDF9 and BMP15 participate in the evolution of the primordial follicle to primary follicle and play an important role in the later stages of follicular development and maturation, increasing the steroidogenic acute regulatory protein expression, plasminogen activator and luteinizing hormone receptor (LHR). These factors are also involved in the interconnections between the oocyte and surrounding cumulus cells, where they regulate absorption of amino acids, glycolysis and biosynthesis of cholesterol cumulus cells. Even though the mode of action has not been fully established, in vitro observations indicate that the factors GDF9 and BMP15 stimulate the growth of ovarian follicles and proliferation of cumulus cells through the induction of mitosis in cells and granulosa and theca expression of genes linked to follicular maturation. Thus, seeking greater understanding of the action of these growth factors on the development of oocytes, the role of GDF9 and BMP15 in ovarian function is summarized in this brief review.

  3. Novel excitatory Conus peptides define a new conotoxin superfamily.

    PubMed

    Jimenez, Elsie C; Shetty, Reshma P; Lirazan, Marcelina; Rivier, Jean; Walker, Craig; Abogadie, Fe C; Yoshikami, Doju; Cruz, Lourdes J; Olivera, Baldomero M

    2003-05-01

    A new class of Conus peptides, the I-superfamily of conotoxins, has been characterized using biochemical, electrophysiological and molecular genetic methods. Peptides in this superfamily have a novel pattern of eight Cys residues. Five peptides that elicited excitatory symptomatology, r11a, r11b, r11c, r11d and r11e, were purified from Conus radiatus venom; four were tested on amphibian peripheral axons and shown to elicit repetitive action potentials, consistent with being members of the 'lightning-strike cabal' of toxins that effect instant immobilization of fish prey. A parallel analysis of Conus cDNA clones revealed a new class of conotoxin genes that was particularly enriched (with 18 identified paralogues) in a Conus radiatus venom duct library; several C. radiatus clones encoded the excitatory peptides directly characterized from venom. The remarkable diversity of related I-superfamily peptides within a single Conus species is unprecedented. When combined with the excitatory effects observed on peripheral circuitry, this unexpected diversity suggests a corresponding molecular complexity of the targeted signaling components in peripheral axons; the I-conotoxin superfamily should provide a rich lode of pharmacological tools for dissecting and understanding these. Thus, the I-superfamily conotoxins promise to provide a significant new technology platform for dissecting the molecular components of axons. PMID:12694387

  4. The role of growth factors and cytokines during implantation: endocrine and paracrine interactions.

    PubMed

    Guzeloglu-Kayisli, Ozlem; Kayisli, Umit Ali; Taylor, Hugh S

    2009-01-01

    Implantation, a critical step for establishing pregnancy, requires molecular and cellular events resulting in uterine growth and differentiation, blastocyst adhesion, invasion, and placental formation. Successful implantation requires a receptive endometrium, a normal and functional embryo at the blastocyst stage, and a synchronized dialogue between maternal and embryonic tissues. In addition to the well-characterized role of sex steroids, the complexity of embryo implantation and placentation is exemplified by the number of cytokines and growth factors with demonstrated roles in these processes. Disturbances in the normal expression and action of these cytokines result in an absolute or partial failure of implantation and abnormal placental formation in mice and human. Members of the gp130 cytokine family, interleukin-11 (IL-11) and leukemia inhibitory factor, the transforming growth factor beta superfamily, the colony-stimulating factors, and the IL-1 and IL-15 systems are crucial molecules for a successful implantation. Chemokines are also important, both in recruiting specific cohorts of leukocytes to the implantation site and in trophoblast trafficking and differentiation. This review provides discussion of the embryonic and uterine factors that are involved in the process of implantation in autocrine, paracrine, and/or juxtacrine manners at the hormonal, cellular, and molecular levels. PMID:19197806

  5. Meeting report - TGF-β superfamily: signaling in development and disease.

    PubMed

    Zhang, Ying E; Newfeld, Stuart J

    2013-11-01

    The latest advances on the transforming growth factor β (TGF-β) and bone morphogenetic protein (BMP) signaling pathways were reported at the July 2013 FASEB Summer Research Conference 'The TGF-β Superfamily: Development and Disease'. The meeting was held in Steamboat Springs, Colorado, USA at 6700 feet above sea level in the Rocky Mountains. This was the seventh biannual meeting in the series. In attendance were investigators from a broad range of disciplines with a common interest in the mechanics of TGF-β and BMP signaling pathways, their normal developmental and homeostatic functions, and the diseases associated with pathway misregulation. PMID:24172535

  6. Transforming growth factor-beta1 induces activation of Ras, Raf-1, MEK and MAPK in rat hepatic stellate cells.

    PubMed

    Reimann, T; Hempel, U; Krautwald, S; Axmann, A; Scheibe, R; Seidel, D; Wenzel, K W

    1997-02-10

    The transdifferentiation of hepatic stellate cells into myofibroblast-like cells and the proliferation of the transdifferentiated cells are controlled by TGF-beta1. Little is known about the intracellular signal transducers of TGF-beta1. In this paper we show that in cultured hepatic stellate cells TGF-beta1 induces activation of Ras, Raf-1, MEK and MAPK p42 and p44. The activation of MAPK depends on the activation of MEK. Our data exclude that the observed effects are mediated by a bFGF or PDGF autocrine loop. PMID:9038360

  7. SPARC Regulates Transforming Growth Factor Beta Induced (TGFBI) Extracellular Matrix Deposition and Paclitaxel Response in Ovarian Cancer Cells.

    PubMed

    Tumbarello, David A; Andrews, Melissa R; Brenton, James D

    2016-01-01

    TGFBI has been shown to sensitize ovarian cancer cells to the cytotoxic effects of paclitaxel via an integrin receptor-mediated mechanism that modulates microtubule stability. Herein, we determine that TGFBI localizes within organized fibrillar structures in mesothelial-derived ECM. We determined that suppression of SPARC expression by shRNA decreased the deposition of TGFBI in mesothelial-derived ECM, without affecting its overall protein expression or secretion. Conversely, overexpression of SPARC increased TGFBI deposition. A SPARC-YFP fusion construct expressed by the Met5a cell line co-localized with TGFBI in the cell-derived ECM. Interestingly, in vitro produced SPARC was capable of precipitating TGFBI from cell lysates dependent on an intact SPARC carboxy-terminus with in vitro binding assays verifying a direct interaction. The last 37 amino acids of SPARC were shown to be required for the TGFBI interaction while expression of a SPARC-YFP construct lacking this region (aa 1-256) did not interact and co-localize with TGFBI in the ECM. Furthermore, ovarian cancer cells have a reduced motility and decreased response to the chemotherapeutic agent paclitaxel when plated on ECM derived from mesothelial cells lacking SPARC compared to control mesothelial-derived ECM. In conclusion, SPARC regulates the fibrillar ECM deposition of TGFBI through a novel interaction, subsequently influencing cancer cell behavior. PMID:27622658

  8. SPARC Regulates Transforming Growth Factor Beta Induced (TGFBI) Extracellular Matrix Deposition and Paclitaxel Response in Ovarian Cancer Cells

    PubMed Central

    Andrews, Melissa R.; Brenton, James D.

    2016-01-01

    TGFBI has been shown to sensitize ovarian cancer cells to the cytotoxic effects of paclitaxel via an integrin receptor-mediated mechanism that modulates microtubule stability. Herein, we determine that TGFBI localizes within organized fibrillar structures in mesothelial-derived ECM. We determined that suppression of SPARC expression by shRNA decreased the deposition of TGFBI in mesothelial-derived ECM, without affecting its overall protein expression or secretion. Conversely, overexpression of SPARC increased TGFBI deposition. A SPARC-YFP fusion construct expressed by the Met5a cell line co-localized with TGFBI in the cell-derived ECM. Interestingly, in vitro produced SPARC was capable of precipitating TGFBI from cell lysates dependent on an intact SPARC carboxy-terminus with in vitro binding assays verifying a direct interaction. The last 37 amino acids of SPARC were shown to be required for the TGFBI interaction while expression of a SPARC-YFP construct lacking this region (aa 1–256) did not interact and co-localize with TGFBI in the ECM. Furthermore, ovarian cancer cells have a reduced motility and decreased response to the chemotherapeutic agent paclitaxel when plated on ECM derived from mesothelial cells lacking SPARC compared to control mesothelial-derived ECM. In conclusion, SPARC regulates the fibrillar ECM deposition of TGFBI through a novel interaction, subsequently influencing cancer cell behavior. PMID:27622658

  9. Transforming growth factor-beta1 null mutation causes infertility in male mice associated with testosterone deficiency and sexual dysfunction.

    PubMed

    Ingman, Wendy V; Robertson, Sarah A

    2007-08-01

    TGFbeta1 is a multifunctional cytokine implicated in gonad and secondary sex organ development, steroidogenesis, and spermatogenesis. To determine the physiological requirement for TGFbeta1 in male reproduction, Tgfb1 null mutant mice on a Prkdc(scid) immunodeficient background were studied. TGFbeta1-deficient males did not deposit sperm or induce pseudopregnancy in females, despite an intact reproductive tract with morphologically normal penis, seminal vesicles, and testes. Serum and intratesticular testosterone and serum androstenedione were severely diminished in TGFbeta1-deficient males. Testosterone deficiency was secondary to disrupted pituitary gonadotropin secretion because serum LH and to a lesser extent serum FSH were reduced, and exogenous LH replacement with human chorionic gonadotropin (hCG) induced serum testosterone to control levels. In the majority of TGFbeta1-deficient males, spermatogenesis was normal and sperm were developmentally competent as assessed by in vitro fertilization. Analysis of sexual behavior revealed that although TGFbeta1 null males showed avid interest in females and engaged in mounting activity, intromission was infrequent and brief, and ejaculation was not attained. Administration of testosterone to adult males, even after neonatal androgenization, was ineffective in restoring sexual function; however, erectile reflexes and ejaculation could be induced by electrical stimulation. These studies demonstrate the profound effect of genetic deficiency in TGFbeta1 on male fertility, implicating this cytokine in essential roles in the hypothalamic-pituitary-gonadal axis and in testosterone-independent regulation of mating competence.

  10. Reorganization of endothelial cord-like structures on basement membrane complex (Matrigel): involvement of transforming growth factor beta 1.

    PubMed

    Kuzuya, M; Kinsella, J L

    1994-11-01

    The formation of capillary-like network structures by cultured vascular endothelial cells on reconstituted basement membrane matrix, Matrigel, models endothelial cell differentiation, the final step of angiogenesis (Kubota et al., 1988; Grant et al., 1989). When endothelial cells derived from bovine aorta and brain capillaries were plated on Matrigel, DNA synthesis was suppressed and a network of capillary-like structures rapidly formed in 8-12 h. With time, the network broke down, resulting in dense cellular cords radiating from multiple cellular clusters in 16-24 h. Finally, multicellular aggregates of cells were formed as the network underwent further retraction. Network regression was prevented when either dithiothreitol (DTT) or anti-TGF-beta 1 antibodies were added during the assay. The addition of exogenous TGF-beta 1 promoted the regression of endothelial cells into the clusters. This response to TGF-beta 1 was blocked by potent serine threonine protein kinase inhibitors, H-7 and HA100. TGF-beta 1 was released from polymerized Matrigel by incubation with Dulbecco's modified eagle's medium (DMEM) in the absence of cells. The Matrigel-conditioned DMEM inhibited endothelial DNA synthesis even in the presence of anti-TGF-beta 1 antibodies. These results suggest that TGF-beta 1 and possibly other soluble factors from Matrigel may be important for differentiation and remodeling of endothelial cells in a capillary network with possible implications for wound healing and development.

  11. Hyperthermia induces expression of transforming growth factor-beta s in rat cardiac cells in vitro and in vivo.

    PubMed Central

    Flanders, K C; Winokur, T S; Holder, M G; Sporn, M B

    1993-01-01

    Hyperthermia causes changes in expression of TGF-beta mRNA and protein in cultured cardiac cells, as well as in the heart in vivo. 12 h after hyperthermia, primary cultures of neonatal rat cardiomyocytes show a two- to threefold decreased expression of TGF-beta mRNAs which returns to control levels by 48 h after heat shock. In cultures of cardiac fibroblasts, expression of TGF-beta mRNAs increases 5-25-fold, 12-48 h after heat shock, while fetal bovine heart endothelial cells show little change in TGF-beta expression after hyperthermia. In each case, mRNAs for TGF-beta s 1, 2, and 3 are regulated similarly. Hearts isolated from rats exposed to hyperthermia show an initial 20-fold decrease in TGF-beta 1 and 3 mRNA levels which return to control levels by 24 h and subsequently are elevated two- to threefold above normal 48-72 h after heat shock; there is little change in TGF-beta 2 mRNA. Expression of immunoreactive TGF-beta 1 and 3 protein, localized intracellularly in myocytes, follows the same pattern as the mRNA expression. By 72 h, some myocytes show hyperstaining for TGF-beta 1. Staining for extracellular TGF-beta 1/3 exhibits the opposite time course, being most intense 3-6 h after heat shock and returning to control levels by 48 h. The increase in TGF-beta s after hyperthermia could play a role in mediating the reported cardioprotective effects of heat shock. Images PMID:8326008

  12. Transforming Growth Factor-Beta Signaling in the Neural Stem Cell Niche: A Therapeutic Target for Huntington's Disease

    PubMed Central

    Kandasamy, Mahesh; Reilmann, Ralf; Winkler, Jürgen; Bogdahn, Ulrich; Aigner, Ludwig

    2011-01-01

    The neural stem cell niches possess the regenerative capacity to generate new functional neurons in the adult brain, suggesting the possibility of endogenous neuronal replacement after injury or disease. Huntington disease (HD) is a neurodegenerative disease and characterized by neuronal loss in the basal ganglia, leading to motor, cognitive, and psychological disabilities. Apparently, in order to make use of the neural stem cell niche as a therapeutic concept for repair strategies in HD, it is important to understand the cellular and molecular composition of the neural stem cell niche under such neurodegenerative conditions. This paper mainly discusses the current knowledge on the regulation of the hippocampal neural stem cell niche in the adult brain and by which mechanism it might be compromised in the case of HD. PMID:21766020

  13. Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade.

    PubMed Central

    Ohno, M; Cooke, J P; Dzau, V J; Gibbons, G H

    1995-01-01

    The endothelium has the capacity to modulate vascular structure in response to hemodynamic stimuli. We tested the hypothesis that exposure of the endothelium to increased laminar shear stress induces the expression of TGF beta 1 via a signal transduction pathway modulated by K+ channel currents. Although TGF beta 1 is normally secreted in a latent, inactive form, exposure of cultured endothelial cells to steady laminar shear stress (20 dynes/cm2) induced increased generation of biologically active TGF beta 1. This increase in active TGF beta 1 was associated with a sustained increase in TGF beta 1 mRNA expression within 2 h of stimulation. TGF beta 1 mRNA levels increased in direct proportion to the intensity of the shear stress within the physiologic range. The effect of shear stress on TGF beta 1 mRNA expression was regulated at the transcriptional level as defined by nuclear run-off studies and transient transfection of a TGF beta 1 promoter-reporter gene construct. Blockade of endothelial K+ channels with tetraethylammonium significantly inhibited: activation of TGF beta 1 gene transcription; increase in steady state mRNA levels; and generation of active TGF beta 1 in response to shear stress. These data suggest that endothelial K+ channels and autocrine-paracrine TGF beta 1 may be involved in the mechanotransduction mechanisms mediating flow-induced vascular remodeling. Images PMID:7883983

  14. Selenium deficiency and thyroid fibrosis. A key role for macrophages and transforming growth factor beta (TGF-beta).

    PubMed

    Contempre, B; Le Moine, O; Dumont, J E; Denef, J F; Many, M C

    1996-11-29

    Free radical damage and fibrosis caused by selenium deficiency are thought to be involved in the pathogenesis of myxoedematous cretinism. So far, no pathway explains the link between selenium deficiency and tissue fibrosis. Pharmacological doses of iodine induce necrosis in iodine-deficient thyroids. Necrosis is much increased if the glands are also selenium-deficient, which then evolve to fibrosis. This rat model was reproduced to explore the role of selenium deficiency in defective tissue repair. At first, proliferation indexes of epithelial cells and fibroblasts were comparable between selenium-deficient and control groups. Then, in selenium-deficient thyroids the inflammatory reaction was more marked being mainly composed of macrophages. The proliferation index of the epithelial cells decreased, while that of the fibroblasts increased. These thyroids evolved to fibrosis. TGF-beta immunostaining was prominent in the macrophages of selenium-deficient rats. Anti TGF-beta antibodies restored the proliferation indexes, and blocked the evolution to fibrosis. In selenium deficiency, an active fibrotic process occurs in the thyroid, in which the inflammatory reaction and an excess of TGF-beta play a key role. PMID:9027319

  15. TGF-β superfamily members from the helminth Fasciola hepatica show intrinsic effects on viability and development.

    PubMed

    Japa, Ornampai; Hodgkinson, Jane E; Emes, Richard D; Flynn, Robin J

    2015-03-11

    The helminth Fasciola hepatica causes fasciolosis throughout the world, a major disease of livestock and an emerging zoonotic disease in humans. Sustainable control mechanisms such as vaccination are urgently required. To discover potential vaccine targets we undertook a genome screen to identify members of the transforming growth factor (TGF) family of proteins. Herein we describe the discovery of three ligands belonging to this superfamily and the cloning and characterisation of an activin/TGF like molecule we term FhTLM. FhTLM has a limited expression pattern both temporally across the parasite stages but also spatially within the worm. Furthermore, a recombinant form of this protein is able to enhance the rate (or magnitude) of multiple developmental processes of the parasite indicating a conserved role for this protein superfamily in the developmental biology of a major trematode parasite. Our study demonstrates for the first time the existence of this protein superfamily within F. hepatica and assigns a function to one of the three identified ligands. Moreover further exploration of this superfamily may yield future targets for diagnostic or vaccination purposes due to its stage restricted expression and functional role.

  16. The Insect Chemoreceptor Superfamily Is Ancient in Animals.

    PubMed

    Robertson, Hugh M

    2015-11-01

    The insect chemoreceptor superfamily consists of 2 gene families, the highly diverse gustatory receptors (GRs) found in all arthropods with sequenced genomes and the odorant receptors that evolved from a GR lineage and have been found only in insects to date. Here, I describe relatives of the insect chemoreceptor superfamily, specifically the basal GR family, in diverse other animals, showing that the superfamily dates back at least to early animal evolution. GR-Like (GRL) genes are present in the genomes of the placozoan Trichoplax adhaerens, an anemone Nematostella vectensis, a coral Acropora digitifera, a polychaete Capitella teleta, a leech Helobdella robusta, the nematode Caenorhabditis elegans (and many other nematodes), 3 molluscs (a limpet Lottia gigantea, an oyster Crassostrea gigas, and the sea hare Aplysia californica), the sea urchin Strongylocentrotus purpuratus, and the sea acorn Saccoglossus kowalevskii. While some of these animals contain multiple divergent GRL lineages, GRLs have been lost entirely from other animal lineages such as vertebrates. GRLs are absent from the ctenophore Mnemiopsis leidyi, the demosponge Amphimedon queenslandica, and 2 available chaonoflagellate genomes, so it remains unclear whether this superfamily originated before or during animal evolution. PMID:26354932

  17. The phytochrome red/far-red photoreceptor superfamily

    PubMed Central

    Sharrock, Robert A

    2008-01-01

    Proteins of the phytochrome superfamily of red/far-red light receptors have a variety of biological roles in plants, algae, bacteria and fungi and demonstrate a diversity of spectral sensitivities and output signaling mechanisms. Over the past few years the first three-dimensional structures of phytochrome light-sensing domains from bacteria have been determined. PMID:18771590

  18. Functional Diversity of Haloacid Dehalogenase Superfamily Phosphatases from Saccharomyces cerevisiae

    PubMed Central

    Kuznetsova, Ekaterina; Nocek, Boguslaw; Brown, Greg; Makarova, Kira S.; Flick, Robert; Wolf, Yuri I.; Khusnutdinova, Anna; Evdokimova, Elena; Jin, Ke; Tan, Kemin; Hanson, Andrew D.; Hasnain, Ghulam; Zallot, Rémi; de Crécy-Lagard, Valérie; Babu, Mohan; Savchenko, Alexei; Joachimiak, Andrzej; Edwards, Aled M.; Koonin, Eugene V.; Yakunin, Alexander F.

    2015-01-01

    The haloacid dehalogenase (HAD)-like enzymes comprise a large superfamily of phosphohydrolases present in all organisms. The Saccharomyces cerevisiae genome encodes at least 19 soluble HADs, including 10 uncharacterized proteins. Here, we biochemically characterized 13 yeast phosphatases from the HAD superfamily, which includes both specific and promiscuous enzymes active against various phosphorylated metabolites and peptides with several HADs implicated in detoxification of phosphorylated compounds and pseudouridine. The crystal structures of four yeast HADs provided insight into their active sites, whereas the structure of the YKR070W dimer in complex with substrate revealed a composite substrate-binding site. Although the S. cerevisiae and Escherichia coli HADs share low sequence similarities, the comparison of their substrate profiles revealed seven phosphatases with common preferred substrates. The cluster of secondary substrates supporting significant activity of both S. cerevisiae and E. coli HADs includes 28 common metabolites that appear to represent the pool of potential activities for the evolution of novel HAD phosphatases. Evolution of novel substrate specificities of HAD phosphatases shows no strict correlation with sequence divergence. Thus, evolution of the HAD superfamily combines the conservation of the overall substrate pool and the substrate profiles of some enzymes with remarkable biochemical and structural flexibility of other superfamily members. PMID:26071590

  19. SUPERFAMILY--sophisticated comparative genomics, data mining, visualization and phylogeny.

    PubMed

    Wilson, Derek; Pethica, Ralph; Zhou, Yiduo; Talbot, Charles; Vogel, Christine; Madera, Martin; Chothia, Cyrus; Gough, Julian

    2009-01-01

    SUPERFAMILY provides structural, functional and evolutionary information for proteins from all completely sequenced genomes, and large sequence collections such as UniProt. Protein domain assignments for over 900 genomes are included in the database, which can be accessed at http://supfam.org/. Hidden Markov models based on Structural Classification of Proteins (SCOP) domain definitions at the superfamily level are used to provide structural annotation. We recently produced a new model library based on SCOP 1.73. Family level assignments are also available. From the web site users can submit sequences for SCOP domain classification; search for keywords such as superfamilies, families, organism names, models and sequence identifiers; find over- and underrepresented families or superfamilies within a genome relative to other genomes or groups of genomes; compare domain architectures across selections of genomes and finally build multiple sequence alignments between Protein Data Bank (PDB), genomic and custom sequences. Recent extensions to the database include InterPro abstracts and Gene Ontology terms for superfamiles, taxonomic visualization of the distribution of families across the tree of life, searches for functionally similar domain architectures and phylogenetic trees. The database, models and associated scripts are available for download from the ftp site.

  20. Comparative anatomy of the aldo-keto reductase superfamily.

    PubMed Central

    Jez, J M; Bennett, M J; Schlegel, B P; Lewis, M; Penning, T M

    1997-01-01

    The aldo-keto reductases metabolize a wide range of substrates and are potential drug targets. This protein superfamily includes aldose reductases, aldehyde reductases, hydroxysteroid dehydrogenases and dihydrodiol dehydrogenases. By combining multiple sequence alignments with known three-dimensional structures and the results of site-directed mutagenesis studies, we have developed a structure/function analysis of this superfamily. Our studies suggest that the (alpha/beta)8-barrel fold provides a common scaffold for an NAD(P)(H)-dependent catalytic activity, with substrate specificity determined by variation of loops on the C-terminal side of the barrel. All the aldo-keto reductases are dependent on nicotinamide cofactors for catalysis and retain a similar cofactor binding site, even among proteins with less than 30% amino acid sequence identity. Likewise, the aldo-keto reductase active site is highly conserved. However, our alignments indicate that variation ofa single residue in the active site may alter the reaction mechanism from carbonyl oxidoreduction to carbon-carbon double-bond reduction, as in the 3-oxo-5beta-steroid 4-dehydrogenases (Delta4-3-ketosteroid 5beta-reductases) of the superfamily. Comparison of the proposed substrate binding pocket suggests residues 54 and 118, near the active site, as possible discriminators between sugar and steroid substrates. In addition, sequence alignment and subsequent homology modelling of mouse liver 17beta-hydroxysteroid dehydrogenase and rat ovary 20alpha-hydroxysteroid dehydrogenase indicate that three loops on the C-terminal side of the barrel play potential roles in determining the positional and stereo-specificity of the hydroxysteroid dehydrogenases. Finally, we propose that the aldo-keto reductase superfamily may represent an example of divergent evolution from an ancestral multifunctional oxidoreductase and an example of convergent evolution to the same active-site constellation as the short

  1. CREST - a large and diverse superfamily of putative transmembrane hydrolases

    PubMed Central

    2011-01-01

    Background A number of membrane-spanning proteins possess enzymatic activity and catalyze important reactions involving proteins, lipids or other substrates located within or near lipid bilayers. Alkaline ceramidases are seven-transmembrane proteins that hydrolyze the amide bond in ceramide to form sphingosine. Recently, a group of putative transmembrane receptors called progestin and adipoQ receptors (PAQRs) were found to be distantly related to alkaline ceramidases, raising the possibility that they may also function as membrane enzymes. Results Using sensitive similarity search methods, we identified statistically significant sequence similarities among several transmembrane protein families including alkaline ceramidases and PAQRs. They were unified into a large and diverse superfamily of putative membrane-bound hydrolases called CREST (alkaline ceramidase, PAQR receptor, Per1, SID-1 and TMEM8). The CREST superfamily embraces a plethora of cellular functions and biochemical activities, including putative lipid-modifying enzymes such as ceramidases and the Per1 family of putative phospholipases involved in lipid remodeling of GPI-anchored proteins, putative hormone receptors, bacterial hemolysins, the TMEM8 family of putative tumor suppressors, and the SID-1 family of putative double-stranded RNA transporters involved in RNA interference. Extensive similarity searches and clustering analysis also revealed several groups of proteins with unknown function in the CREST superfamily. Members of the CREST superfamily share seven predicted core transmembrane segments with several conserved sequence motifs. Conclusions Universal conservation of a set of histidine and aspartate residues across all groups in the CREST superfamily, coupled with independent discoveries of hydrolase activities in alkaline ceramidases and the Per1 family as well as results from previous mutational studies of Per1, suggests that the majority of CREST members are metal-dependent hydrolases

  2. Expression of growth/differentiation factor 1 in the nervous system: Conservation of a bicistronic structure

    SciTech Connect

    Lee, Sejin )

    1991-05-15

    Growth/differentiation factor 1 (GDF-1) is a recently described member of the transforming growth factor {beta} superfamily isolated from a day-8.5 mouse embryo cDNA library. Northern (RNA) analysis of embryonic mRNA detected two GDF-1 transcripts (1.4 kilobases (kb) and 3.0 kb in length) displaying distinct temporal patterns of expression. Only the 3.0-kb transcript was detected in adult tissues, where its expression was restricted almost exclusively to the central nervous system. Comparison of murine and human brain cDNA sequences corresponding to the 3.0-kb transcript revealed high conservation of two nonoverlapping open reading frames with poor conservation of the intervening spacer region and the putative 5{prime} and 3{prime} untranslated sequences. By immunohistochemical analysis, the protein encoded by the downstream open reading frame (GDF-1) was detected exclusively in the brain, spinal cord, and peripheral nerves in day-14.5 mouse embryos. The upstream open reading frame encodes a protein of unknown function containing multiple putative membrane-spanning domains. These findings raise the possibility that this mRNA may give rise to two different proteins.

  3. Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp. pekinensis)

    PubMed Central

    2013-01-01

    Background Chinese cabbage (Brassica rapa ssp. pekinensis) is a member of one of the most important leaf vegetables grown worldwide, which has experienced thousands of years in cultivation and artificial selection. The entire Chinese cabbage genome sequence, and more than forty thousand proteins have been obtained to date. The genome has undergone triplication events since its divergence from Arabidopsis thaliana (13 to 17 Mya), however a high degree of sequence similarity and conserved genome structure remain between the two species. Arabidopsis is therefore a viable reference species for comparative genomics studies. Variation in the number of members in gene families due to genome triplication may contribute to the broad range of phenotypic plasticity, and increased tolerance to environmental extremes observed in Brassica species. Transcription factors are important regulators involved in plant developmental and physiological processes. The AP2/ERF proteins, one of the most important families of transcriptional regulators, play a crucial role in plant growth, and in response to biotic and abiotic stressors. Our analysis will provide resources for understanding the tolerance mechanisms in Brassica rapa ssp. pekinensis. Results In the present study, 291 putative AP2/ERF transcription factor proteins were identified from the Chinese cabbage genome database, and compared with proteins from 15 additional species. The Chinese cabbage AP2/ERF superfamily was classified into four families, including AP2, ERF, RAV, and Soloist. The ERF family was further divided into DREB and ERF subfamilies. The AP2/ERF superfamily was subsequently divided into 15 groups. The identification, classification, phylogenetic reconstruction, conserved motifs, chromosome distribution, functional annotation, expression patterns, and interaction networks of the AP2/ERF transcription factor superfamily were predicted and analyzed. Distribution mapping results showed AP2/ERF superfamily genes were

  4. Repertoire and evolution of TNF superfamily in Crassostrea gigas: implications for expansion and diversification of this superfamily in Mollusca.

    PubMed

    Gao, Dahai; Qiu, Limei; Gao, Qiang; Hou, Zhanhui; Wang, Lingling; Song, Linsheng

    2015-08-01

    Tumor necrosis factor superfamily (TNFSF) members represent a group of cytokines participating in diverse immunological, pathological and developmental pathways. However, compared with deuterostomia and cnidaia, the composition and evolution of TNF homologous in protostomia are still not well understood. In the present study, a total of 81 TNF superfamily (TNFSF) genes from 15 mollusk species, including 23 TNFSF genes from Crassostrea gigas, were surveyed by genome-wide bioinformatics analysis. The phylogenetic analysis showed that 14 out of 23 C. gigas TNFSF genes in five clades exhibited orthologous relationships with Pinctada fucata TNFSF genes. Moreover, there were 15 C. gigas TNFSF genes located in oyster-specific clusters, which were contributed by small-scaled tandem and/or segmental duplication events in oyster. By comparing the sequences of duplicated TNFSF pairs, exon loss and variant in exon/intron length were revealed as the major modes of divergence in gene structure. Most of the duplicated C. gigas TNFSF pairs were evolved under purifying selection with consistent tissue expression patterns, implying functional constraint shaped diversification. This study demonstrated the expansion and early divergence of TNF superfamily in C. gigas, which provides potential insight into revealing the evolution and function of this superfamily in mollusk.

  5. Increased mRNA encoding for transforming factor-beta in CD4+ cells from patients with IgA nephropathy.

    PubMed

    Lai, K N; Ho, R T; Leung, J C; Lai, F M; Li, P K

    1994-09-01

    IgA nephropathy (IgAN) is a mesangial proliferative glomerulonephritis characterized by predominant mesangial IgA deposits. Recently, transforming growth factor-beta (TGF-beta) is shown to exert widespread effects on extracellular matrix by enhancing its accumulation. In an experimental model of acute mesangial glomerulonephritis TGF-beta appeared to be involved in the process of glomerulosclerosis, and treatment with antagonists of TGF-beta prevented the development of glomerulosclerosis. We examined the TGF-beta mRNA expression by mitogen activated CD4+ T cells from 31 patients with IgAN, 25 healthy controls and 10 patients with minimal change nephropathy (MCN) or focal glomerulonephritis (FGN) who were comparable in age and sex. The cytokine gene was analyzed with reverse transcription followed by polymerase chain reaction and was semiquantitated by normalizing the differences occurring during reverse transcription and polymerase chain reaction using a housekeeping gene, beta-actin. CD4+ T cells from IgA nephritic patients expressed a higher level of TGF-beta mRNA than that of healthy controls or that of MCN/FGN [TGF-beta/actin ratio 1.11 (median), range 0.24 to 3.87 vs. 0.88, range 0.2 to 3.83, P = 0.0157 and 0.36 range 0.09 to 1.6, P = 0.006]. When the biopsies were classified into three grades according to the severity of glomerular and interstitial pathology, there were highly significant differences between the TGF-beta mRNA in CD4+ T cells from the three groups of IgA nephritic patients (grade 1, 0.52, range 0.24 to 0.79; grade 2, 1.2, range 0.5 to 3.33; grade 3, 2.17, range 1.45 to 3.87].(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Characterizing the evolution and functions of the M-superfamily conotoxins.

    PubMed

    Zhou, Maojun; Wang, Lei; Wu, Yun; Zhu, Xiaoyan; Feng, Yuchao; Chen, Zelin; Li, Yuxin; Sun, Dandan; Ren, Zhenghua; Xu, Anlong

    2013-12-15

    Conotoxins from cone snails are valuable in physiology research and therapeutic applications. Evolutionary mechanisms of conotoxins have been investigated in several superfamilies, but there is no phylogenetic analysis on M-superfamily conotoxins. In this study, we characterized identical sequences, gene structure, novel cysteine frameworks, functions and evolutionary mechanisms of M-superfamily conotoxins. Identical M-superfamily conotoxins can be found in different Conus species from the analysis of novel 467 M-superfamily conotoxin sequences and other published M-superfamily conotoxins sequences. M-superfamily conotoxin genes consist of two introns and three exons from the results of genome walking. Eighteen cysteine frameworks were identified from the M-superfamily conotoxins, and 10 of the 18 may be generated from framework III. An analysis between diet types and phylogeny of the M-superfamily conotoxins indicate that M-superfamily conotoxins might not evolve in a concerted manner but were subject to birth-and-death evolution. Codon usage analysis shows that position-specific codon conservation is not restricted to cysteines, but also to other conserved residues. By analysing primary structures and physiological functions of M-superfamily conotoxins, we proposed a hypothesis that insertions and deletions, especially insertions in the third cysteine loop, are involved in the creation of new functions and structures of the M-superfamily conotoxins.

  7. Clinical targeting of the TNF and TNFR superfamilies

    PubMed Central

    Croft, Michael; Benedict, Chris A.; Ware, Carl F.

    2013-01-01

    Inhibitors of tumour necrosis factor (TNF) are among the most successful protein-based drugs (biologics) and have proven to be clinically efficacious at reducing inflammation associated with several autoimmune diseases. As a result, attention is focusing on the therapeutic potential of additional members of the TNF superfamily of structurally related cytokines. Many of these TNF-related cytokines or their cognate receptors are now in preclinical or clinical development as possible targets for modulating inflammatory diseases and cancer as well as other indications. This Review focuses on the biologics that are currently in clinical trials for immune-related diseases and other syndromes, discusses the successes and failures to date as well as the expanding therapeutic potential of modulating the activity of this superfamily of molecules. PMID:23334208

  8. Panoramic view of a superfamily of phosphatases through substrate profiling.

    PubMed

    Huang, Hua; Pandya, Chetanya; Liu, Chunliang; Al-Obaidi, Nawar F; Wang, Min; Zheng, Li; Toews Keating, Sarah; Aono, Miyuki; Love, James D; Evans, Brandon; Seidel, Ronald D; Hillerich, Brandan S; Garforth, Scott J; Almo, Steven C; Mariano, Patrick S; Dunaway-Mariano, Debra; Allen, Karen N; Farelli, Jeremiah D

    2015-04-21

    Large-scale activity profiling of enzyme superfamilies provides information about cellular functions as well as the intrinsic binding capabilities of conserved folds. Herein, the functional space of the ubiquitous haloalkanoate dehalogenase superfamily (HADSF) was revealed by screening a customized substrate library against >200 enzymes from representative prokaryotic species, enabling inferred annotation of ∼35% of the HADSF. An extremely high level of substrate ambiguity was revealed, with the majority of HADSF enzymes using more than five substrates. Substrate profiling allowed assignment of function to previously unannotated enzymes with known structure, uncovered potential new pathways, and identified iso-functional orthologs from evolutionarily distant taxonomic groups. Intriguingly, the HADSF subfamily having the least structural elaboration of the Rossmann fold catalytic domain was the most specific, consistent with the concept that domain insertions drive the evolution of new functions and that the broad specificity observed in HADSF may be a relic of this process. PMID:25848029

  9. Thermal stability of the polyheme cytochrome c3 superfamily.

    PubMed

    Florens, L; Bianco, P; Haladjian, J; Bruschi, M; Protasevich, I; Makarov, A

    1995-10-16

    The cytochrome c3 superfamily includes Desulfovibrio polyheme cytochromes c. We report the characteristic thermal stability parameters of the Desulfovibrio desulfuricans Norway (D.d.N.) cytochromes c3 (M(r) 13,000 and M(r) 26,000) and the Desulfovibrio vulgaris Hildenborough (D.v.H.) cytochrome c3 (M(r) 13,000) and high molecular mass cytochrome c (Hmc), as obtained with the help of electronic spectroscopy, voltammetric techniques and differential scanning calorimetry. The polyheme cytochromes are denatured over a wide range of temperatures: the D.v.H. cytochrome c3 is highly thermostable (Td = 121 degrees C) contrary to the D.d.N. protein (Td = 73 degrees C). The thermostability of the polyheme cytochromes is redox state dependent. The results are discussed in the light of the structural and functional relationships within the cytochrome c3 superfamily. PMID:7589483

  10. Panoramic view of a superfamily of phosphatases through substrate profiling

    PubMed Central

    Huang, Hua; Pandya, Chetanya; Liu, Chunliang; Al-Obaidi, Nawar F.; Wang, Min; Zheng, Li; Toews Keating, Sarah; Aono, Miyuki; Love, James D.; Evans, Brandon; Seidel, Ronald D.; Hillerich, Brandan S.; Garforth, Scott J.; Almo, Steven C.; Mariano, Patrick S.; Dunaway-Mariano, Debra; Allen, Karen N.; Farelli, Jeremiah D.

    2015-01-01

    Large-scale activity profiling of enzyme superfamilies provides information about cellular functions as well as the intrinsic binding capabilities of conserved folds. Herein, the functional space of the ubiquitous haloalkanoate dehalogenase superfamily (HADSF) was revealed by screening a customized substrate library against >200 enzymes from representative prokaryotic species, enabling inferred annotation of ∼35% of the HADSF. An extremely high level of substrate ambiguity was revealed, with the majority of HADSF enzymes using more than five substrates. Substrate profiling allowed assignment of function to previously unannotated enzymes with known structure, uncovered potential new pathways, and identified iso-functional orthologs from evolutionarily distant taxonomic groups. Intriguingly, the HADSF subfamily having the least structural elaboration of the Rossmann fold catalytic domain was the most specific, consistent with the concept that domain insertions drive the evolution of new functions and that the broad specificity observed in HADSF may be a relic of this process. PMID:25848029

  11. Role of Tumor Necrosis Factor Superfamily in Neuroinflammation and Autoimmunity.

    PubMed

    Sonar, Sandip; Lal, Girdhari

    2015-01-01

    Tumor necrosis factor superfamily (TNFSF) molecules play an important role in the activation, proliferation, differentiation, and migration of immune cells into the central nervous system (CNS). Several TNF superfamily molecules are known to control alloimmunity, autoimmunity, and immunity. Development of transgenic and gene knockout animals, and monoclonal antibodies against TNFSF molecules have increased our understanding of individual receptor-ligand interactions, and their intracellular signaling during homeostasis and neuroinflammation. A strong clinical association has been observed between TNFSF members and CNS autoimmunity such as multiple sclerosis and also in its animal model experimental autoimmune encephalomyelitis. Therefore, they are promising targets for alternative therapeutic options to control autoimmunity. Although, TNFSF ligands are widely distributed and have diverse functions, we have restricted the discussions in this review to TNFSF receptor-ligand interactions and their role in the pathogenesis of neuroinflammation and CNS autoimmunity.

  12. CD147 Immunoglobulin Superfamily Receptor Function and Role in Pathology

    PubMed Central

    Iacono, Kathryn T.; Brown, Amy L.; Greene, Mark I.; Saouaf, Sandra J.

    2008-01-01

    The immunoglobulin superfamily member CD147 plays an important role in fetal, neuronal, lymphocyte and extracellular matrix development. Here we review the current understanding of CD147 expression and protein interactions with regard to CD147 function and its role in pathologic conditions including heart disease, Alzheimer’s disease, stroke and cancer. A model linking hypoxic conditions found within the tumor microenvironment to up-regulation of CD147 expression and tumor progression is introduced. PMID:17945211

  13. CD147 immunoglobulin superfamily receptor function and role in pathology.

    PubMed

    Iacono, Kathryn T; Brown, Amy L; Greene, Mark I; Saouaf, Sandra J

    2007-12-01

    The immunoglobulin superfamily member CD147 plays an important role in fetal, neuronal, lymphocyte and extracellular matrix development. Here we review the current understanding of CD147 expression and protein interactions with regard to CD147 function and its role in pathologic conditions including heart disease, Alzheimer's disease, stroke and cancer. A model linking hypoxic conditions found within the tumor microenvironment to upregulation of CD147 expression and tumor progression is introduced. PMID:17945211

  14. Roles for the TGFβ superfamily in the development and survival of midbrain dopaminergic neurons.

    PubMed

    Hegarty, Shane V; Sullivan, Aideen M; O'Keeffe, Gerard W

    2014-10-01

    The adult midbrain contains 75% of all dopaminergic neurons in the CNS. Within the midbrain, these neurons are divided into three anatomically and functionally distinct clusters termed A8, A9 and A10. The A9 group plays a functionally non-redundant role in the control of voluntary movement, which is highlighted by the motor syndrome that results from their progressive degeneration in the neurodegenerative disorder, Parkinson's disease. Despite 50 years of investigation, treatment for Parkinson's disease remains symptomatic, but an intensive research effort has proposed delivering neurotrophic factors to the brain to protect the remaining dopaminergic neurons, or using these neurotrophic factors to differentiate dopaminergic neurons from stem cell sources for cell transplantation. Most neurotrophic factors studied in this context have been members of the transforming growth factor β (TGFβ) superfamily. In recent years, an intensive research effort has focused on understanding the function of these proteins in midbrain dopaminergic neuron development and their role in the molecular architecture that regulates the development of this brain region, with the goal of applying this knowledge to develop novel therapies for Parkinson's disease. In this review, the current evidence showing that TGFβ superfamily members play critical roles in the regulation of midbrain dopaminergic neuron induction, differentiation, target innervation and survival during embryonic and postnatal development is analysed, and the implications of these findings are discussed.

  15. The evolution of the actin binding NET superfamily

    PubMed Central

    Hawkins, Timothy J.; Deeks, Michael J.; Wang, Pengwei; Hussey, Patrick J.

    2014-01-01

    The Arabidopsis Networked (NET) superfamily are plant-specific actin binding proteins which specifically label different membrane compartments and identify specialized sites of interaction between actin and membranes unique to plants. There are 13 members of the superfamily in Arabidopsis, which group into four distinct clades or families. NET homologs are absent from the genomes of metazoa and fungi; furthermore, in plantae, NET sequences are also absent from the genome of mosses and more ancient extant plant clades. A single family of the NET proteins is found encoded in the club moss genome, an extant species of the earliest vascular plants. Gymnosperms have examples from families 4 and 3, with a hybrid form of NET1 and 2 which shows characteristics of both NET1 and NET2. In addition to NET3 and 4 families, the NET1 and pollen-expressed NET2 families are found only as independent sequences in Angiosperms. This is consistent with the divergence of reproductive actin. The four families are conserved across Monocots and Eudicots, with the numbers of members of each clade expanding at this point, due, in part, to regions of genome duplication. Since the emergence of the NET superfamily at the dawn of vascular plants, they have continued to develop and diversify in a manner which has mirrored the divergence and increasing complexity of land-plant species. PMID:24926301

  16. The evolution of the actin binding NET superfamily.

    PubMed

    Hawkins, Timothy J; Deeks, Michael J; Wang, Pengwei; Hussey, Patrick J

    2014-01-01

    The Arabidopsis Networked (NET) superfamily are plant-specific actin binding proteins which specifically label different membrane compartments and identify specialized sites of interaction between actin and membranes unique to plants. There are 13 members of the superfamily in Arabidopsis, which group into four distinct clades or families. NET homologs are absent from the genomes of metazoa and fungi; furthermore, in plantae, NET sequences are also absent from the genome of mosses and more ancient extant plant clades. A single family of the NET proteins is found encoded in the club moss genome, an extant species of the earliest vascular plants. Gymnosperms have examples from families 4 and 3, with a hybrid form of NET1 and 2 which shows characteristics of both NET1 and NET2. In addition to NET3 and 4 families, the NET1 and pollen-expressed NET2 families are found only as independent sequences in Angiosperms. This is consistent with the divergence of reproductive actin. The four families are conserved across Monocots and Eudicots, with the numbers of members of each clade expanding at this point, due, in part, to regions of genome duplication. Since the emergence of the NET superfamily at the dawn of vascular plants, they have continued to develop and diversify in a manner which has mirrored the divergence and increasing complexity of land-plant species.

  17. The evolution of the actin binding NET superfamily.

    PubMed

    Hawkins, Timothy J; Deeks, Michael J; Wang, Pengwei; Hussey, Patrick J

    2014-01-01

    The Arabidopsis Networked (NET) superfamily are plant-specific actin binding proteins which specifically label different membrane compartments and identify specialized sites of interaction between actin and membranes unique to plants. There are 13 members of the superfamily in Arabidopsis, which group into four distinct clades or families. NET homologs are absent from the genomes of metazoa and fungi; furthermore, in plantae, NET sequences are also absent from the genome of mosses and more ancient extant plant clades. A single family of the NET proteins is found encoded in the club moss genome, an extant species of the earliest vascular plants. Gymnosperms have examples from families 4 and 3, with a hybrid form of NET1 and 2 which shows characteristics of both NET1 and NET2. In addition to NET3 and 4 families, the NET1 and pollen-expressed NET2 families are found only as independent sequences in Angiosperms. This is consistent with the divergence of reproductive actin. The four families are conserved across Monocots and Eudicots, with the numbers of members of each clade expanding at this point, due, in part, to regions of genome duplication. Since the emergence of the NET superfamily at the dawn of vascular plants, they have continued to develop and diversify in a manner which has mirrored the divergence and increasing complexity of land-plant species. PMID:24926301

  18. Plasmodium interspersed repeats: the major multigene superfamily of malaria parasites

    PubMed Central

    Janssen, Christoph S.; Phillips, R. Stephen; Turner, C. Michael R.; Barrett, Michael P.

    2004-01-01

    Functionally related homologues of known genes can be difficult to identify in divergent species. In this paper, we show how multi-character analysis can be used to elucidate the relationships among divergent members of gene superfamilies. We used probabilistic modelling in conjunction with protein structural predictions and gene-structure analyses on a whole-genome scale to find gene homologies that are missed by conventional similarity-search strategies and identified a variant gene superfamily in six species of malaria (Plasmodium interspersed repeats, pir). The superfamily includes rif in P.falciparum, vir in P.vivax, a novel family kir in P.knowlesi and the cir/bir/yir family in three rodent malarias. Our data indicate that this is the major multi-gene family in malaria parasites. Protein localization of products from pir members to the infected erythrocyte membrane in the rodent malaria parasite P.chabaudi, demonstrates phenotypic similarity to the products of pir in other malaria species. The results give critical insight into the evolutionary adaptation of malaria parasites to their host and provide important data for comparative immunology between malaria parasites obtained from laboratory models and their human counterparts. PMID:15507685

  19. Evolution of cyclic amidohydrolases: a highly diversified superfamily.

    PubMed

    Barba, Matthieu; Glansdorff, Nicolas; Labedan, Bernard

    2013-09-01

    Dihydroorotases are universal proteins catalyzing the third step of pyrimidine biosynthesis. These zinc metalloenzymes belong to the superfamily of cyclic amidohydrolases, comprising also other enzymes that are involved in degradation of either purines (allantoinases), pyrimidines (dihydropyrimidinases) or hydantoins (hydantoinases). The evolutionary relationships between these mechanistically related enzymes were estimated after designing a method to build an accurate multiple sequence alignment. The amino acid sequences that have been crystallized were used to build a seed alignment. All the remaining homologues were progressively added by aligning their HMM profiles to the seed HMM profile, allowing to obtain a reliable phylogeny of the superfamily. This helped us to propose a new evolutionary classification of dihydroorotases into three major types, while at the same time disentangling an important part of the history of their complex structure-function relationships. Although differing in their substrate specificity, allantoinases, hydantoinases and dihydropyrimidinases are found to be phylogenetically closer to DHOase Type I than the proximity of the three DHOase types to each other. This suggests that the primordial cyclic amidohydrolase was a multifunctional, highly evolvable generalist, with high conformational diversity allowing for promiscuous activities. Then, successive gene duplications allowed resolving the primordial substrate ambiguity in various substrate specificities. The present-day superfamily of cyclic amidohydrolases is the result of the progressive divergence of these ancestral paralogous copies by descent with modification.

  20. An efficient, multiply promiscuous hydrolase in the alkaline phosphatase superfamily

    PubMed Central

    van Loo, Bert; Jonas, Stefanie; Babtie, Ann C.; Benjdia, Alhosna; Berteau, Olivier; Hyvönen, Marko; Hollfelder, Florian

    2010-01-01

    We report a catalytically promiscuous enzyme able to efficiently promote the hydrolysis of six different substrate classes. Originally assigned as a phosphonate monoester hydrolase (PMH) this enzyme exhibits substantial second-order rate accelerations ((kcat/KM)/kw), ranging from 107 to as high as 1019, for the hydrolyses of phosphate mono-, di-, and triesters, phosphonate monoesters, sulfate monoesters, and sulfonate monoesters. This substrate collection encompasses a range of substrate charges between 0 and -2, transition states of a different nature, and involves attack at two different reaction centers (P and S). Intrinsic reactivities (half-lives) range from 200 days to 105 years under near neutrality. The substantial rate accelerations for a set of relatively difficult reactions suggest that efficient catalysis is not necessarily limited to efficient stabilization of just one transition state. The crystal structure of PMH identifies it as a member of the alkaline phosphatase superfamily. PMH encompasses four of the native activities previously observed in this superfamily and extends its repertoire by two further activities, one of which, sulfonate monoesterase, has not been observed previously for a natural enzyme. PMH is thus one of the most promiscuous hydrolases described to date. The functional links between superfamily activities can be presumed to have played a role in functional evolution by gene duplication. PMID:20133613

  1. Growth differentiation factor 9 (Gdf9) was localized in the female as well as male germ cells in a protogynous hermaphroditic teleost fish, ricefield eel Monopterus albus.

    PubMed

    He, Zhi; Wu, Yangsheng; Xie, Jun; Wang, Taixin; Zhang, Lihong; Zhang, Weimin

    2012-09-01

    Growth differentiation factor 9 (GDF9) is a member of the transforming growth factor beta (TGFb) superfamily. As an oocyte-derived growth factor, GDF9 plays key roles in regulating follicle development. In the present study, we identified a gdf9 homologue from the ovary of ricefield eel, and analyzed its expression both at the mRNA and protein levels. Ricefield eel Gdf9 showed high homologies with those of other teleosts, especially perciformes fish. RT-PCR analysis revealed that ricefield eel gdf9 was expressed exclusively in the ovary and testis. The mRNA levels of gdf9 in the ovary were increased significantly at the pre-vitellogenic (PV) stage and then decreased significantly along with vitellogenesis. During the natural sex change, expression of ricefield eel gdf9 was peaked at the intersexual stages. The immunoreactivity for Gdf9 was localized exclusively in the cytoplasm of the oocytes in the ovary, particularly the oocytes at early stages, but not in the oogonia. Interestingly, strong immunoreactive signals were also detected in the degenerating oocytes in the intersexual gonad. Furthermore, the Gdf9 immunoreactivity was demonstrated for the first time to be localized in the cytoplasm of spermatogonia and spermatocytes of ricefield eel, a teleost fish. Taken together, the results of present study suggested that Gdf9 may play important roles in the folliculogenesis as well as spermatogenesis in ricefield eels.

  2. Purification and renaturation of recombinant human lymphotoxin (tumour necrosis factor beta) expressed in Escherichia coli as inclusion bodies.

    PubMed

    Jin, H; Uddin, M S; Huang, Y L; Teo, W K

    1994-01-01

    High level expression of recombinant human tumour necrosis factor beta (rhTNF-beta) in Escherichia coli results in the formation of two portions of protein, namely soluble active protein and insoluble protein which is inactive and aggregates in the form of inclusion bodies (IBs). In this study, a procedure for purification and renaturation of rhTNF-beta from inclusion bodies has been designed and verified experimentally with a product purity of more than 90% and a recovery of about 30%. The procedure includes washing of IBs with specific wash buffer (Triton X-100/EDTA/lysozyme/PMSF), their solubilization with 8 mol dm-3 alkaline urea, purification with ion-exchange columns, refolding with renaturation buffer and finally concentration and desalination with an ultrafiltration membrane. The characteristics of the renatured protein were identical with those of purified protein from the soluble fraction as demonstrated by (1) SDS-PAGE, (2) cytotoxic activity on mouse L929 cells, (3) N-terminal amino acid sequence, and (4) gel filtration chromatography.

  3. Effect of transforming growth factor-β3 on mono and multilayer chondrocytes.

    PubMed

    Sefat, Farshid; Youseffi, Mansour; Khaghani, Seyed Ali; Soon, Chin Fhung; Javid, Farideh

    2016-07-01

    Articular cartilage is an avascular and flexible connective tissue found in joints. It produces a cushioning effect at the joints and provides low friction to protect the ends of the bones from wear and tear/damage. It has poor repair capacity and any injury can result pain and loss of mobility. Transforming growth factor-beta (TGF-β), a cytokine superfamily, regulates cell function, including differentiation and proliferation. Although the function of the TGF-βs in various cell types has been investigated, their function in cartilage repair is as yet not fully understood. The effect of TGF-β3 in biological regulation of primary chondrocyte was investigated in this work. TGF-β3 provided fibroblastic morphology to chondrocytes and therefore overall reduction in cell proliferation was observed. The length of the cells supplemented with TGF-β3 were larger than the cells without TGF-β3 treatment. This was caused by the fibroblast like cells (dedifferentiated chondrocytes) which occupied larger areas compared to cells without TGF-β3 addition. The healing process of the model wound closure assay of chondrocyte multilayer was slowed down by TGF-β3, and this cytokine negatively affected the strength of chondrocyte adhesion to the cell culture surface. PMID:27108397

  4. The role of tumor necrosis factor receptor superfamily members in mammalian brain development, function and homeostasis

    PubMed Central

    Twohig, Jason P.; Cuff, Simone M.; Yong, Audrey A.; Wang, Eddie C.Y.

    2012-01-01

    Tumor necrosis factor receptor superfamily (TNFRSF) members were initially identified as immunological mediators, and are still commonly perceived as immunological molecules. However, our understanding of the diversity of TNFRSF members’ roles in mammalian physiology has grown significantly since the first discovery of TNFRp55 (TNFRSF1) in 1975. In particular, the last decade has provided evidence for important roles in brain development, function and the emergent field of neuronal homeostasis. Recent evidence suggests that TNFRSF members are expressed in an overlapping regulated pattern during neuronal development, participating in the regulation of neuronal expansion, growth, differentiation and regional pattern development. This review examines evidence for non-immunological roles of TNFRSF members in brain development, function and maintenance under normal physiological conditions. In addition, several aspects of brain function during inflammation will also be described, when illuminating and relevant to the non-immunological role of TNFRSF members. Finally, key questions in the field will be outlined. PMID:21861782

  5. Presence of growth factors in palmar and plantar fibromatoses.

    PubMed

    Zamora, R L; Heights, R; Kraemer, B A; Erlich, H P; Groner, J P

    1994-05-01

    Palmar and plantar fibromatoses are disease processes in which the presence of certain growth factors has not been defined. Monoclonal antibodies against transforming growth factor-beta, epidermal growth factor, procollagen type 1, fibronectin, phosphotyrosine residues, and CD41 platelet antigen were used in standard immunoperoxidase staining to study 36 nodules and 24 cords obtained from patients with fibromatoses. The specimens were studied via light microscopy, and staining intensity was quantitated using a computer-enhanced video system. Transforming growth factor-beta staining paralleled procollagen I, fibronectin, and phosphotyrosine staining within the nodule (early stages) but not the cord (late stages) tissue. These factors showed significant increased staining in the early stage of fibromatosis when compared to the late stage. This study is a preliminary demonstration of the presence of transforming growth factor-beta in palmar and plantar fibromatoses.

  6. A New Protein Superfamily: TPPP-Like Proteins

    PubMed Central

    Orosz, Ferenc

    2012-01-01

    The introduction of the term ‘Tubulin Polymerization Promoting Protein (TPPP)-like proteins’ is suggested. They constitute a eukaryotic protein superfamily, characterized by the presence of the p25alpha domain (Pfam05517, IPR008907), and named after the first identified member, TPPP/p25, exhibiting microtubule stabilizing function. TPPP-like proteins can be grouped on the basis of two characteristics: the length of their p25alpha domain, which can be long, short, truncated or partial, and the presence or absence of additional domain(s). TPPPs, in the strict sense, contain no other domains but one long or short p25alpha one (long- and short-type TPPPs, respectively). Proteins possessing truncated p25alpha domain are first described in this paper. They evolved from the long-type TPPPs and can be considered as arthropod-specific paralogs of long-type TPPPs. Phylogenetic analysis shows that the two groups (long-type and truncated TPPPs) split in the common ancestor of arthropods. Incomplete p25alpha domains can be found in multidomain TPPP-like proteins as well. The various subfamilies occur with a characteristic phyletic distribution: e. g., animal genomes/proteomes contain almost without exception long-type TPPPs; the multidomain apicortins occur almost exclusively in apicomplexan parasites. There are no data about the physiological function of these proteins except two human long-type TPPP paralogs which are involved in developmental processes of the brain and the musculoskeletal system, respectively. I predict that the superfamily members containing long or partial p25alpha domain are often intrinsically disordered proteins, while those with short or truncated domain(s) are structurally ordered. Interestingly, members of this superfamily connected or maybe connected to diseases are intrinsically disordered proteins. PMID:23166627

  7. The barber's pole worm CAP protein superfamily--A basis for fundamental discovery and biotechnology advances.

    PubMed

    Mohandas, Namitha; Young, Neil D; Jabbar, Abdul; Korhonen, Pasi K; Koehler, Anson V; Amani, Parisa; Hall, Ross S; Sternberg, Paul W; Jex, Aaron R; Hofmann, Andreas; Gasser, Robin B

    2015-12-01

    Parasitic worm proteins that belong to the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 (CAP) superfamily are proposed to play key roles in the infection process and the modulation of immune responses in host animals. However, there is limited information on these proteins for most socio-economically important worms. Here, we review the CAP protein superfamily of Haemonchus contortus (barber's pole worm), a highly significant parasitic roundworm (order Strongylida) of small ruminants. To do this, we mined genome and transcriptomic datasets, predicted and curated full-length amino acid sequences (n=45), undertook systematic phylogenetic analyses of these data and investigated transcription throughout the life cycle of H. contortus. We inferred functions for selected Caenorhabditis elegans orthologs (including vap-1, vap-2, scl-5 and lon-1) based on genetic networking and by integrating data and published information, and were able to infer that a subset of orthologs and their interaction partners play pivotal roles in growth and development via the insulin-like and/or the TGF-beta signalling pathways. The identification of the important and conserved growth regulator LON-1 led us to appraise the three-dimensional structure of this CAP protein by comparative modelling. This model revealed the presence of different topological moieties on the canonical fold of the CAP domain, which coincide with an overall charge separation as indicated by the electrostatic surface potential map. These observations suggest the existence of separate sites for effector binding and receptor interactions, and thus support the proposal that these worm molecules act in similar ways as venoms act as ligands for chemokine receptors or G protein-coupled receptor effectors. In conclusion, this review should guide future molecular studies of these molecules, and could support the development of novel interventions against haemonchosis.

  8. Tumor Necrosis Factor Superfamily in Innate Immunity and Inflammation

    PubMed Central

    Šedý, John; Bekiaris, Vasileios; Ware, Carl F.

    2015-01-01

    The tumor necrosis factor superfamily (TNFSF) and its corresponding receptor superfamily (TNFRSF) form communication pathways required for developmental, homeostatic, and stimulus-responsive processes in vivo. Although this receptor–ligand system operates between many different cell types and organ systems, many of these proteins play specific roles in immune system function. The TNFSF and TNFRSF proteins lymphotoxins, LIGHT (homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for herpes virus entry mediator [HVEM], a receptor expressed by T lymphocytes), lymphotoxin-β receptor (LT-βR), and HVEM are used by embryonic and adult innate lymphocytes to promote the development and homeostasis of lymphoid organs. Lymphotoxin-expressing innate-acting B cells construct microenvironments in lymphoid organs that restrict pathogen spread and initiate interferon defenses. Recent results illustrate how the communication networks formed among these cytokines and the coreceptors B and T lymphocyte attenuator (BTLA) and CD160 both inhibit and activate innate lymphoid cells (ILCs), innate γδ T cells, and natural killer (NK) cells. Understanding the role of TNFSF/TNFRSF and interacting proteins in innate cells will likely reveal avenues for future therapeutics for human disease. PMID:25524549

  9. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    PubMed Central

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer. PMID:26512702

  10. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    PubMed

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  11. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    PubMed

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer. PMID:26512702

  12. Structure-Based Phylogenetic Analysis of the Lipocalin Superfamily

    PubMed Central

    Lakshmi, Balasubramanian; Mishra, Madhulika; Srinivasan, Narayanaswamy; Archunan, Govindaraju

    2015-01-01

    Lipocalins constitute a superfamily of extracellular proteins that are found in all three kingdoms of life. Although very divergent in their sequences and functions, they show remarkable similarity in 3-D structures. Lipocalins bind and transport small hydrophobic molecules. Earlier sequence-based phylogenetic studies of lipocalins highlighted that they have a long evolutionary history. However the molecular and structural basis of their functional diversity is not completely understood. The main objective of the present study is to understand functional diversity of the lipocalins using a structure-based phylogenetic approach. The present study with 39 protein domains from the lipocalin superfamily suggests that the clusters of lipocalins obtained by structure-based phylogeny correspond well with the functional diversity. The detailed analysis on each of the clusters and sub-clusters reveals that the 39 lipocalin domains cluster based on their mode of ligand binding though the clustering was performed on the basis of gross domain structure. The outliers in the phylogenetic tree are often from single member families. Also structure-based phylogenetic approach has provided pointers to assign putative function for the domains of unknown function in lipocalin family. The approach employed in the present study can be used in the future for the functional identification of new lipocalin proteins and may be extended to other protein families where members show poor sequence similarity but high structural similarity. PMID:26263546

  13. Diversity, classification and function of the plant protein kinase superfamily

    PubMed Central

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants. PMID:22889912

  14. Comparative analysis of cation/proton antiporter superfamily in plants

    SciTech Connect

    Ye, Chuyu; Yang, Xiaohan; Xia, Xinli; Yin, Weilun

    2013-01-01

    The cation/proton antiporter superfamily is associated with the transport of monovalent cations across membranes. This superfamily was annotated in the Arabidopsis genome and some members were functionally characterized. In the present study, a systematic analysis of the cation/proton antiporter genes in diverse plant specieswas reported.We identified 240 cation/proton antiporters in alga, moss, and angiosperm. A phylogenetic tree was constructed showing these 240members are separated into three families, i.e., Na+/H+ exchangers, K+ efflux antiporters, and cation/H+ exchangers. Our analysis revealed that tandem and/or segmental duplications contribute to the expansion of cation/H+ exchangers in the examined angiospermspecies. Sliding windowanalysis of the nonsynonymous/synonymous substitution ratios showed some differences in the evolutionary fate of cation/proton antiporter paralogs. Furthermore, we identified over-represented motifs among these 240 proteins and foundmostmotifs are family specific, demonstrating diverse evolution of the cation/proton antiporters among three families. In addition, we investigated the co-expressed genes of the cation/proton antiporters in Arabidopsis thaliana. The results showed some biological processes are enriched in the co-expressed genes, suggesting the cation/proton antiporters may be involved in these biological processes. Taken together, this study furthers our knowledge on cation/proton antiporters in plants.

  15. Aquaporin superfamily with unusual npa boxes: S-aquaporins (superfamily, sip-like and subcellular-aquaporins).

    PubMed

    Ishibashi, K

    2006-10-30

    Thirteen aquaporins have been identified in mammals. They all have highly conserved two asparagineproline-alanine (NPA) boxes that are important for the formation of water permeating pore except AQP11 and 12,which have low homology (~20%) with other AQPs and have poorly conserved NPA boxes. Such poorly conserved aquaporin-like sequences are widely found in database. Among them, SIPs from plants indeed have a water channel function and are localized in the cytosol, suggesting their roles in intracellular homeostasis. Based on their water channel function, at least in SIPs, and low homology with other AQPs, they will be subgrouped as a superfamily of AQPs. Accordingly, they are tentatively named S-aquaporins (superfamily, SIP-like and subcellular-aquaporins). Currently, their functional and biological grounds for an independent subfamily are not sufficient and may be reclassified into several subgroups in the future. The disruption of one of S-aquaporins, AQP11, produced neonatally fatal polycystic kidneys. AQP11 is also localized intracellularly. Further works on S-aquaporins will provide new insights into the functions and roles of aquaporins.

  16. Subtilases: the superfamily of subtilisin-like serine proteases.

    PubMed Central

    Siezen, R. J.; Leunissen, J. A.

    1997-01-01

    Subtilases are members of the clan (or superfamily) of subtilisin-like serine proteases. Over 200 subtilases are presently known, more than 170 of which with their complete amino acid sequence. In this update of our previous overview (Siezen RJ, de Vos WM, Leunissen JAM, Dijkstra BW, 1991, Protein Eng 4:719-731), details of more than 100 new subtilases discovered in the past five years are summarized, and amino acid sequences of their catalytic domains are compared in a multiple sequence alignment. Based on sequence homology, a subdivision into six families is proposed. Highly conserved residues of the catalytic domain are identified, as are large or unusual deletions and insertions. Predictions have been updated for Ca(2+)-binding sites, disulfide bonds, and substrate specificity, based on both sequence alignment and three-dimensional homology modeling. PMID:9070434

  17. Covalent Docking Predicts Substrates for Haloalkanoate Dehalogenase Superfamily Phosphatases

    PubMed Central

    2015-01-01

    Enzyme function prediction remains an important open problem. Though structure-based modeling, such as metabolite docking, can identify substrates of some enzymes, it is ill-suited to reactions that progress through a covalent intermediate. Here we investigated the ability of covalent docking to identify substrates that pass through such a covalent intermediate, focusing particularly on the haloalkanoate dehalogenase superfamily. In retrospective assessments, covalent docking recapitulated substrate binding modes of known cocrystal structures and identified experimental substrates from a set of putative phosphorylated metabolites. In comparison, noncovalent docking of high-energy intermediates yielded nonproductive poses. In prospective predictions against seven enzymes, a substrate was identified for five. For one of those cases, a covalent docking prediction, confirmed by empirical screening, and combined with genomic context analysis, suggested the identity of the enzyme that catalyzes the orphan phosphatase reaction in the riboflavin biosynthetic pathway of Bacteroides. PMID:25513739

  18. Modeling catalytic promiscuity in the alkaline phosphatase superfamily

    PubMed Central

    Duarte, Fernanda; Amrein, Beat Anton

    2013-01-01

    In recent years, it has become increasingly clear that promiscuity plays a key role in the evolution of new enzyme function. This finding has helped to elucidate fundamental aspects of molecular evolution. While there has been extensive experimental work on enzyme promiscuity, computational modeling of the chemical details of such promiscuity has traditionally fallen behind the advances in experimental studies, not least due to the nearly prohibitive computational cost involved in examining multiple substrates with multiple potential mechanisms and binding modes in atomic detail with a reasonable degree of accuracy. However, recent advances in both computational methodologies and power have allowed us to reach a stage in the field where we can start to overcome this problem, and molecular simulations can now provide accurate and efficient descriptions of complex biological systems with substantially less computational cost. This has led to significant advances in our understanding of enzyme function and evolution in a broader sense. Here, we will discuss currently available computational approaches that can allow us to probe the underlying molecular basis for enzyme specificity and selectivity, discussing the inherent strengths and weaknesses of each approach. As a case study, we will discuss recent computational work on different members of the alkaline phosphatase superfamily (AP) using a range of different approaches, showing the complementary insights they have provided. We have selected this particular superfamily, as it poses a number of significant challenges for theory, ranging from the complexity of the actual reaction mechanisms involved to the reliable modeling of the catalytic metal centers, as well as the very large system sizes. We will demonstrate that, through current advances in methodologies, computational tools can provide significant insight into the molecular basis for catalytic promiscuity, and, therefore, in turn, the mechanisms of protein

  19. The cellulose synthase superfamily in fully sequenced plants and algae

    PubMed Central

    2009-01-01

    Background The cellulose synthase superfamily has been classified into nine cellulose synthase-like (Csl) families and one cellulose synthase (CesA) family. The Csl families have been proposed to be involved in the synthesis of the backbones of hemicelluloses of plant cell walls. With 17 plant and algal genomes fully sequenced, we sought to conduct a genome-wide and systematic investigation of this superfamily through in-depth phylogenetic analyses. Results A single-copy gene is found in the six chlorophyte green algae, which is most closely related to the CslA and CslC families that are present in the seven land plants investigated in our analyses. Six proteins from poplar, grape and sorghum form a distinct family (CslJ), providing further support for the conclusions from two recent studies. CslB/E/G/H/J families have evolved significantly more rapidly than their widely distributed relatives, and tend to have intragenomic duplications, in particular in the grape genome. Conclusion Our data suggest that the CslA and CslC families originated through an ancient gene duplication event in land plants. We speculate that the single-copy Csl gene in green algae may encode a mannan synthase. We confirm that the rest of the Csl families have a different evolutionary origin than CslA and CslC, and have proposed a model for the divergence order among them. Our study provides new insights about the evolution of this important gene family in plants. PMID:19646250

  20. The Arabidopsis CDPK-SnRK superfamily of protein kinases.

    PubMed

    Hrabak, Estelle M; Chan, Catherine W M; Gribskov, Michael; Harper, Jeffrey F; Choi, Jung H; Halford, Nigel; Kudla, Jorg; Luan, Sheng; Nimmo, Hugh G; Sussman, Michael R; Thomas, Martine; Walker-Simmons, Kay; Zhu, Jian-Kang; Harmon, Alice C

    2003-06-01

    The CDPK-SnRK superfamily consists of seven types of serine-threonine protein kinases: calcium-dependent protein kinase (CDPKs), CDPK-related kinases (CRKs), phosphoenolpyruvate carboxylase kinases (PPCKs), PEP carboxylase kinase-related kinases (PEPRKs), calmodulin-dependent protein kinases (CaMKs), calcium and calmodulin-dependent protein kinases (CCaMKs), and SnRKs. Within this superfamily, individual isoforms and subfamilies contain distinct regulatory domains, subcellular targeting information, and substrate specificities. Our analysis of the Arabidopsis genome identified 34 CDPKs, eight CRKs, two PPCKs, two PEPRKs, and 38 SnRKs. No definitive examples were found for a CCaMK similar to those previously identified in lily (Lilium longiflorum) and tobacco (Nicotiana tabacum) or for a CaMK similar to those in animals or yeast. CDPKs are present in plants and a specific subgroup of protists, but CRKs, PPCKs, PEPRKs, and two of the SnRK subgroups have been found only in plants. CDPKs and at least one SnRK have been implicated in decoding calcium signals in Arabidopsis. Analysis of intron placements supports the hypothesis that CDPKs, CRKs, PPCKs and PEPRKs have a common evolutionary origin; however there are no conserved intron positions between these kinases and the SnRK subgroup. CDPKs and SnRKs are found on all five Arabidopsis chromosomes. The presence of closely related kinases in regions of the genome known to have arisen by genome duplication indicates that these kinases probably arose by divergence from common ancestors. The PlantsP database provides a resource of continuously updated information on protein kinases from Arabidopsis and other plants.

  1. Implications of Mycobacterium Major Facilitator Superfamily for Novel Measures against Tuberculosis.

    PubMed

    Wang, Rui; Zhang, Zhen; Xie, Longxiang; Xie, Jianping

    2015-01-01

    Major facilitator superfamily (MFS) is an important secondary membrane transport protein superfamily conserved from prokaryotes to eukaryotes. The MFS proteins are widespread among bacteria and are responsible for the transfer of substrates. Pathogenic Mycobacterium MFS transporters, their distribution, function, phylogeny, and predicted crystal structures were studied to better understand the function of MFS and to discover specific inhibitors of MFS for better tuberculosis control.

  2. P-type ATPase superfamily: evidence for critical roles for kingdom evolution.

    PubMed

    Okamura, Hideyuki; Denawa, Masatsugu; Ohniwa, Ryosuke; Takeyasu, Kunio

    2003-04-01

    The P-type ATPase has become a protein superfamily. On the basis of sequence similarities, the phylogenetic analyses, and substrate specificities, this superfamily can be classified into 5 families and 11 subfamilies. A comparative phylogenetic analysis demonstrates the relationship between the molecular evolution of these subfamilies and the establishment of the kingdoms of living things. PMID:12763799

  3. Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies

    PubMed Central

    Furnham, Nicholas; Dawson, Natalie L.; Rahman, Syed A.; Thornton, Janet M.; Orengo, Christine A.

    2016-01-01

    Enzymes, as biological catalysts, form the basis of all forms of life. How these proteins have evolved their functions remains a fundamental question in biology. Over 100 years of detailed biochemistry studies, combined with the large volumes of sequence and protein structural data now available, means that we are able to perform large-scale analyses to address this question. Using a range of computational tools and resources, we have compiled information on all experimentally annotated changes in enzyme function within 379 structurally defined protein domain superfamilies, linking the changes observed in functions during evolution to changes in reaction chemistry. Many superfamilies show changes in function at some level, although one function often dominates one superfamily. We use quantitative measures of changes in reaction chemistry to reveal the various types of chemical changes occurring during evolution and to exemplify these by detailed examples. Additionally, we use structural information of the enzymes active site to examine how different superfamilies have changed their catalytic machinery during evolution. Some superfamilies have changed the reactions they perform without changing catalytic machinery. In others, large changes of enzyme function, in terms of both overall chemistry and substrate specificity, have been brought about by significant changes in catalytic machinery. Interestingly, in some superfamilies, relatives perform similar functions but with different catalytic machineries. This analysis highlights characteristics of functional evolution across a wide range of superfamilies, providing insights that will be useful in predicting the function of uncharacterised sequences and the design of new synthetic enzymes. PMID:26585402

  4. The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification

    PubMed Central

    Majorek, Karolina A.; Dunin-Horkawicz, Stanislaw; Steczkiewicz, Kamil; Muszewska, Anna; Nowotny, Marcin; Ginalski, Krzysztof; Bujnicki, Janusz M.

    2014-01-01

    Ribonuclease H-like (RNHL) superfamily, also called the retroviral integrase superfamily, groups together numerous enzymes involved in nucleic acid metabolism and implicated in many biological processes, including replication, homologous recombination, DNA repair, transposition and RNA interference. The RNHL superfamily proteins show extensive divergence of sequences and structures. We conducted database searches to identify members of the RNHL superfamily (including those previously unknown), yielding >60 000 unique domain sequences. Our analysis led to the identification of new RNHL superfamily members, such as RRXRR (PF14239), DUF460 (PF04312, COG2433), DUF3010 (PF11215), DUF429 (PF04250 and COG2410, COG4328, COG4923), DUF1092 (PF06485), COG5558, OrfB_IS605 (PF01385, COG0675) and Peptidase_A17 (PF05380). Based on the clustering analysis we grouped all identified RNHL domain sequences into 152 families. Phylogenetic studies revealed relationships between these families, and suggested a possible history of the evolution of RNHL fold and its active site. Our results revealed clear division of the RNHL superfamily into exonucleases and endonucleases. Structural analyses of features characteristic for particular groups revealed a correlation between the orientation of the C-terminal helix with the exonuclease/endonuclease function and the architecture of the active site. Our analysis provides a comprehensive picture of sequence-structure-function relationships in the RNHL superfamily that may guide functional studies of the previously uncharacterized protein families. PMID:24464998

  5. Ancient expansion of the ribonuclease A superfamily revealed by genomic analysis of placental and marsupial mammals.

    PubMed

    Cho, Soochin; Zhang, Jianzhi

    2006-05-24

    Members of the ribonuclease (RNase) A superfamily participate in a diverse array of biological processes, including digestion, angiogenesis, innate immunity, and possibly male reproduction. The superfamily is vertebrate-specific, with 13-20 highly divergent members in primates and rodents, but only a few members in chicken and fish. This has led to the proposal that the superfamily started off from a progenitor with structural similarities to angiogenin and that the superfamily underwent a dramatic expansion during mammalian evolution. To date this evolutionary expansion and understand the functional diversification of the superfamily, we here determine its entire repertoire in the sequenced genomes of dog, cow, and opossum. We identified 7, 20, and 21 putatively functional RNase genes from these three species, respectively. Many of the identified genes are highly divergent from all previously known RNase genes, thus representing new lineages within the superfamily. Phylogenetic analysis indicates that the superfamily expansion predated the separation of placental and marsupial mammals and that differential gene loss and duplication occurred in different species, generating a great variation in gene number and content among extant mammals.

  6. Large-Scale Analysis Exploring Evolution of Catalytic Machineries and Mechanisms in Enzyme Superfamilies.

    PubMed

    Furnham, Nicholas; Dawson, Natalie L; Rahman, Syed A; Thornton, Janet M; Orengo, Christine A

    2016-01-29

    Enzymes, as biological catalysts, form the basis of all forms of life. How these proteins have evolved their functions remains a fundamental question in biology. Over 100 years of detailed biochemistry studies, combined with the large volumes of sequence and protein structural data now available, means that we are able to perform large-scale analyses to address this question. Using a range of computational tools and resources, we have compiled information on all experimentally annotated changes in enzyme function within 379 structurally defined protein domain superfamilies, linking the changes observed in functions during evolution to changes in reaction chemistry. Many superfamilies show changes in function at some level, although one function often dominates one superfamily. We use quantitative measures of changes in reaction chemistry to reveal the various types of chemical changes occurring during evolution and to exemplify these by detailed examples. Additionally, we use structural information of the enzymes active site to examine how different superfamilies have changed their catalytic machinery during evolution. Some superfamilies have changed the reactions they perform without changing catalytic machinery. In others, large changes of enzyme function, in terms of both overall chemistry and substrate specificity, have been brought about by significant changes in catalytic machinery. Interestingly, in some superfamilies, relatives perform similar functions but with different catalytic machineries. This analysis highlights characteristics of functional evolution across a wide range of superfamilies, providing insights that will be useful in predicting the function of uncharacterised sequences and the design of new synthetic enzymes. PMID:26585402

  7. Molecular characterisation of growth differentiation factor 9 (gdf9) and bone morphogenetic protein 15 (bmp15) and their patterns of gene expression during the ovarian reproductive cycle in the European sea bass.

    PubMed

    Halm, S; Ibañez, A J; Tyler, C R; Prat, F

    2008-09-10

    Members of the transforming growth factor-beta superfamily, growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15), have crucial roles in primary follicle growth in mammals. To initiate investigations into their significance in teleost oogenesis, we set out to clone and characterise the cDNAs of gdf9 and bmp15 and analysed their patterns of gene expression during the ovarian reproductive cycle in the European sea bass (Dicentrachus labrax). Sea bass gdf9 and bmp15 cDNAs were 2200 and 2049 bp long, coding for 438 and 459 amino acids (aas), respectively, and were most similar to zebrafish gdf9 and bmp15 (64.4 and 56.1%, respectively). By Northern analysis, sea bass gdf9 and bmp15 mRNA transcripts were detected in the ovary only of the tissues analysed and their sizes were 2.2 and 2.1 kb, respectively. Dot-blot analysis revealed high levels of gdf9 and bmp15 expression in the ovary during primary oocyte growth and previtellogenesis (July to October), with a significant decline at the onset of vitellogenesis (November) and remaining low until the beginning of new oocyte growth (April/May). There was a highly significant positive correlation (r=0.939) between gdf9 and bmp15 gene expression in individual samples. The high levels of gdf9 and bmp15 mRNA transcripts in the ovary, especially during the previtellogenic growth period suggest an important role for these factors in early primary oocyte growth in the European sea bass.

  8. Inhibitors of nucleotidyltransferase superfamily enzymes suppress herpes simplex virus replication.

    PubMed

    Tavis, John E; Wang, Hong; Tollefson, Ann E; Ying, Baoling; Korom, Maria; Cheng, Xiaohong; Cao, Feng; Davis, Katie L; Wold, William S M; Morrison, Lynda A

    2014-12-01

    Herpesviruses are large double-stranded DNA viruses that cause serious human diseases. Herpesvirus DNA replication depends on multiple processes typically catalyzed by nucleotidyltransferase superfamily (NTS) enzymes. Therefore, we investigated whether inhibitors of NTS enzymes would suppress replication of herpes simplex virus 1 (HSV-1) and HSV-2. Eight of 42 NTS inhibitors suppressed HSV-1 and/or HSV-2 replication by >10-fold at 5 μM, with suppression at 50 μM reaching ∼1 million-fold. Five compounds in two chemical families inhibited HSV replication in Vero and human foreskin fibroblast cells as well as the approved drug acyclovir did. The compounds had 50% effective concentration values as low as 0.22 μM with negligible cytotoxicity in the assays employed. The inhibitors suppressed accumulation of viral genomes and infectious particles and blocked events in the viral replication cycle before and during viral DNA replication. Acyclovir-resistant mutants of HSV-1 and HSV-2 remained highly sensitive to the NTS inhibitors. Five of six NTS inhibitors of the HSVs also blocked replication of another herpesvirus pathogen, human cytomegalovirus. Therefore, NTS enzyme inhibitors are promising candidates for new herpesvirus treatments that may have broad efficacy against members of the herpesvirus family.

  9. Involvement of Members of the Cadherin Superfamily in Cancer

    PubMed Central

    Berx, Geert; van Roy, Frans

    2009-01-01

    We review the role of cadherins and cadherin-related proteins in human cancer. Cellular and animal models for human cancer are also dealt with whenever appropriate. E-cadherin is the prototype of the large cadherin superfamily and is renowned for its potent malignancy suppressing activity. Different mechanisms for inactivating E-cadherin/CDH1 have been identified in human cancers: inherited and somatic mutations, aberrant protein processing, increased promoter methylation, and induction of transcriptional repressors such as Snail and ZEB family members. The latter induce epithelial mesenchymal transition, which is also associated with induction of “mesenchymal” cadherins, a hallmark of tumor progression. VE-cadherin/CDH5 plays a role in tumor-associated angiogenesis. The atypical T-cadherin/CDH13 is often silenced in cancer cells but up-regulated in tumor vasculature. The review also covers the status of protocadherins and several other cadherin-related molecules in human cancer. Perspectives for emerging cadherin-related anticancer therapies are given. PMID:20457567

  10. Phylogenetic relationships among superfamilies of Neritimorpha (Mollusca: Gastropoda).

    PubMed

    Uribe, Juan E; Colgan, Don; Castro, Lyda R; Kano, Yasunori; Zardoya, Rafael

    2016-11-01

    Despite the extraordinary morphological and ecological diversity of Neritimorpha, few studies have focused on the phylogenetic relationships of this lineage of gastropods, which includes four extant superfamilies: Neritopsoidea, Hydrocenoidea, Helicinoidea, and Neritoidea. Here, the nucleotide sequences of the complete mitochondrial genomes of Georissa bangueyensis (Hydrocenoidea), Neritina usnea (Neritoidea), and Pleuropoma jana (Helicinoidea) and the nearly complete mt genomes of Titiscania sp. (Neritopsoidea) and Theodoxus fluviatilis (Neritoidea) were determined. Phylogenetic reconstructions using probabilistic methods were based on mitochondrial (13 protein coding genes and two ribosomal rRNA genes), nuclear (partial 28S rRNA, 18S rRNA, actin, and histone H3 genes) and combined sequence data sets. All phylogenetic analyses except one converged on a single, highly supported tree in which Neritopsoidea was recovered as the sister group of a clade including Helicinoidea as the sister group of Hydrocenoidea and Neritoidea. This topology agrees with the fossil record and supports at least three independent invasions of land by neritimorph snails. The mitochondrial genomes of Titiscania sp., G. bangueyensis, N. usnea, and T. fluviatilis share the same gene organization previously described for Nerita mt genomes whereas that of P. jana has undergone major rearrangements. We sequenced about half of the mitochondrial genome of another species of Helicinoidea, Viana regina, and confirmed that this species shares the highly derived gene order of P. jana.

  11. Phylogenetic relationships among superfamilies of Neritimorpha (Mollusca: Gastropoda).

    PubMed

    Uribe, Juan E; Colgan, Don; Castro, Lyda R; Kano, Yasunori; Zardoya, Rafael

    2016-11-01

    Despite the extraordinary morphological and ecological diversity of Neritimorpha, few studies have focused on the phylogenetic relationships of this lineage of gastropods, which includes four extant superfamilies: Neritopsoidea, Hydrocenoidea, Helicinoidea, and Neritoidea. Here, the nucleotide sequences of the complete mitochondrial genomes of Georissa bangueyensis (Hydrocenoidea), Neritina usnea (Neritoidea), and Pleuropoma jana (Helicinoidea) and the nearly complete mt genomes of Titiscania sp. (Neritopsoidea) and Theodoxus fluviatilis (Neritoidea) were determined. Phylogenetic reconstructions using probabilistic methods were based on mitochondrial (13 protein coding genes and two ribosomal rRNA genes), nuclear (partial 28S rRNA, 18S rRNA, actin, and histone H3 genes) and combined sequence data sets. All phylogenetic analyses except one converged on a single, highly supported tree in which Neritopsoidea was recovered as the sister group of a clade including Helicinoidea as the sister group of Hydrocenoidea and Neritoidea. This topology agrees with the fossil record and supports at least three independent invasions of land by neritimorph snails. The mitochondrial genomes of Titiscania sp., G. bangueyensis, N. usnea, and T. fluviatilis share the same gene organization previously described for Nerita mt genomes whereas that of P. jana has undergone major rearrangements. We sequenced about half of the mitochondrial genome of another species of Helicinoidea, Viana regina, and confirmed that this species shares the highly derived gene order of P. jana. PMID:27456746

  12. THE SLCO (FORMER SLC21) SUPERFAMILY OF TRANSPORTERS

    PubMed Central

    Hagenbuch, Bruno; Stieger, Bruno

    2012-01-01

    The members of the organic anion transporting polypeptide superfamily (OATPs) are classified within the SLCO solute carrier family. All functionally well characterized members are predicted to have 12 transmembrane domains and are sodium-independent transport systems that mediate the transport of a broad range of endo- as well as xenobiotics. Substrates are mainly amphipathic organic anions with a molecular weight of more than 300 Da, but some of the known transported substrates are also neutral or even positively charged. Among the well characterized substrates are numerous drugs including statins, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, antibiotics, antihistaminics, antihypertensives and anticancer drugs. Based on their amino acid sequence identities, the different OATPs cluster into families (in general with more than 40% amino acid sequence identity) and subfamilies (more than 60% amino acid identity). With the sequencing of genomes from different species and the computerized prediction of encoded proteins more than 300 OATPs can be found in the databases, however only a fraction of them have been identified in humans, rodents, and some additional species important for pharmaceutical research like the rhesus monkey (Macaca mulatta), the dog (Canis lupus familiaris) and the pig (Sus scrofa). These OATPs form 6 families (OATP1–OATP6) and 13 subfamilies. In this review we try to summarize what is currently known about OATPs with respect to endogenous substrates, tissue distribution, transport mechanisms, regulation of expression, structure-function relationship and mutations and polymorphisms. PMID:23506880

  13. Unusual properties of the cytochrome P450 superfamily

    PubMed Central

    Lamb, David C.; Waterman, Michael R.

    2013-01-01

    During the early years of cytochrome P450 research, a picture of conserved properties arose from studies of mammalian forms of these monooxygenases. They included the protohaem prosthetic group, the cysteine residue that coordinates to the haem iron and the reduced CO difference spectrum. Alternatively, the most variable feature of P450s was the enzymatic activities, which led to the conclusion that there are a large number of these enzymes, most of which have yet to be discovered. More recently, studies of these enzymes in other eukaryotes and in prokaryotes have led to the discovery of unexpected P450 properties. Many are variations of the original properties, whereas others are difficult to explain because of their unique nature relative to the rest of the known members of the superfamily. These novel properties expand our appreciation of the broad view of P450 structure and function, and generate curiosity concerning the evolution of P450s. In some cases, structural properties, previously not found in P450s, can lead to enzymatic activities impacting the biological function of organisms containing these enzymes; whereas, in other cases, the biological reason for the variations are not easily understood. Herein, we present particularly interesting examples in detail rather than cataloguing them all. PMID:23297356

  14. Molecular characterization of the Brassica rapa auxin-repressed, superfamily genes, BrARP1 and BrDRM1.

    PubMed

    Lee, Jeongyeo; Han, Ching-Tack; Hur, Yoonkang

    2013-01-01

    Two auxin-repressed superfamily genes, auxin-repressed protein 1 (ARP1) and dormancy-associated protein 1 (DRM1), are highly expressed in both the dormant buds and non-growing tissues of several plant species. To further identify the function of these proteins in Chinese cabbage (Brassica rapa L. ssp. pekinensis), we examined comprehensive expression patterns of BrARP1 and BrDRM1 under various developmental and stress conditions. We also examined these same genes in transgenic Arabidopsis plants. Both genes were expressed in all tissues tested, but their levels were highest in mature tissues accompanied by low levels of the growth-associated marker, B. rapa ribosomal protein 27. Expression of both genes was induced by abiotic stresses, such as chilling, heat shock, and salt treatment. Overexpression of either BrARP1 or BrDRM1 in Arabidopsis causes a reduction in vegetative growth and seed productivity, without affecting morphology. The lengths of petioles and siliques were greatly reduced. Simultaneous expression of both genes showed an additive effect on the growth suppression, resulting in significant reduction in plant size. Knock-out of Arabidopsis ARP1, DRM1, or both, neither affected growth rate nor final size. Results suggest BrARP1 and BrDRM1 are either involved in growth arrest, or stop growth, possibly from inhibition of either cell elongation or cell expansion, thereby creating a "growth brake".

  15. Molecular characterization of the Brassica rapa auxin-repressed, superfamily genes, BrARP1 and BrDRM1.

    PubMed

    Lee, Jeongyeo; Han, Ching-Tack; Hur, Yoonkang

    2013-01-01

    Two auxin-repressed superfamily genes, auxin-repressed protein 1 (ARP1) and dormancy-associated protein 1 (DRM1), are highly expressed in both the dormant buds and non-growing tissues of several plant species. To further identify the function of these proteins in Chinese cabbage (Brassica rapa L. ssp. pekinensis), we examined comprehensive expression patterns of BrARP1 and BrDRM1 under various developmental and stress conditions. We also examined these same genes in transgenic Arabidopsis plants. Both genes were expressed in all tissues tested, but their levels were highest in mature tissues accompanied by low levels of the growth-associated marker, B. rapa ribosomal protein 27. Expression of both genes was induced by abiotic stresses, such as chilling, heat shock, and salt treatment. Overexpression of either BrARP1 or BrDRM1 in Arabidopsis causes a reduction in vegetative growth and seed productivity, without affecting morphology. The lengths of petioles and siliques were greatly reduced. Simultaneous expression of both genes showed an additive effect on the growth suppression, resulting in significant reduction in plant size. Knock-out of Arabidopsis ARP1, DRM1, or both, neither affected growth rate nor final size. Results suggest BrARP1 and BrDRM1 are either involved in growth arrest, or stop growth, possibly from inhibition of either cell elongation or cell expansion, thereby creating a "growth brake". PMID:23065269

  16. BAHD superfamily of acyl-CoA dependent acyltransferases in Populus and Arabidopsis: bioinformatics and gene expression

    SciTech Connect

    Yu, X.; Liu, C.

    2009-04-03

    Plant acyl-CoA dependent acyltransferases constitute a large specific protein superfamily, named BAHD. Using the conserved sequence motifs of BAHD members, we searched the genome sequences of Populus and Arabidopsis, and identified, respectively, 94- and 61-putative genes. Subsequently, we analyzed the phylogeny, gene structure, and chromosomal distribution of BAHD members of both species; then, we profiled expression patterns of BAHD genes by 'in silico' northern- and microarray-analyses based on public databases, and by RT-PCR. While our genomic- and bioinformatic- analyses provided full sets of BAHD superfamily genes, and cleaned up a few existing annotation errors, importantly it led to our recognizing several unique Arabidopsis BAHD genes that inversely overlapped with their neighboring genes on the genome, and disclosing a potential natural anti-sense regulation for gene expressions. Systemic gene-expression profiling of BAHD members revealed distinct tissue-specific/preferential expression patterns, indicating their diverse biological functions. Our study affords a strong knowledge base for understanding BAHD members evolutionary relationships and gene functions implicated in plant growth, development and metabolism.

  17. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea

    PubMed Central

    Vijayakumar, Harshavardhanan; Thamilarasan, Senthil Kumar; Shanmugam, Ashokraj; Natarajan, Sathishkumar; Jung, Hee-Jeong; Park, Jong-In; Kim, HyeRan; Chung, Mi-Young; Nou, Ill-Sup

    2016-01-01

    Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS). Currently, understanding of their function(s) during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST) and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible) under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT) and cold susceptible (CS) lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants. PMID:27472324

  18. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons

    PubMed Central

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2016-01-01

    Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail. PMID:26909348

  19. The major facilitator superfamily transporter ZIFL2 modulates cesium and potassium homeostasis in Arabidopsis.

    PubMed

    Remy, Estelle; Cabrito, Tânia R; Batista, Rita A; Teixeira, Miguel C; Sá-Correia, Isabel; Duque, Paula

    2015-01-01

    Potassium (K(+)) is an essential mineral nutrient for plant growth and development, with numerous membrane transporters and channels having been implicated in the maintenance and regulation of its homeostasis. The cation cesium (Cs(+)) is toxic for plants but shares similar chemical properties to the K(+) ion and hence competes with its transport. Here, we report that K(+) and Cs(+) homeostasis in Arabidopsis thaliana also requires the action of ZIFL2 (Zinc-Induced Facilitator-Like 2), a member of the Major Facilitator Superfamily (MFS) of membrane transporters. We show that the Arabidopsis ZIFL2 is a functional transporter able to mediate K(+) and Cs(+) influx when heterologously expressed in yeast. Promoter-reporter, reverse transcription-PCR and fluorescent protein fusion experiments indicate that the predominant ZIFL2.1 isoform is targeted to the plasma membrane of endodermal and pericyle root cells. ZIFL2 loss of function and overexpression exacerbate and alleviate plant sensitivity, respectively, upon Cs(+) and excess K(+) supply, also influencing Cs(+) whole-plant partitioning. We propose that the activity of this Arabidopsis MFS carrier promotes cellular K(+) efflux in the root, thereby restricting Cs(+)/K(+) xylem loading and subsequent root to shoot translocation under conditions of Cs(+) or high K(+) external supply.

  20. Prodomains regulate the synthesis, extracellular localisation and activity of TGF-β superfamily ligands.

    PubMed

    Harrison, Craig A; Al-Musawi, Sara L; Walton, Kelly L

    2011-10-01

    All transforming growth factor-β (TGF-β) ligands are synthesised as precursor molecules consisting of a signal peptide, an N-terminal prodomain and a C-terminal mature domain. During synthesis, prodomains interact non-covalently with mature domains, maintaining the molecules in a conformation competent for dimerisation. Dimeric precursors are cleaved by proprotein convertases, and TGF-β ligands are secreted from the cell non-covalently associated with their prodomains. Extracellularly, prodomains localise TGF-β ligands within the vicinity of their target cells via interactions with extracellular matrix proteins, including fibrillin and perlecan. For some family members (TGF-β1, TGF-β2, TGF-β3, myostatin, GDF-11 and BMP-10), prodomains bind with high enough affinity to suppress biological activity. The subsequent mechanism of activation of these latent TGF-β ligands varies according to cell type and context, but all activating mechanisms directly target prodomains. Thus, prodomains control many aspects of TGF-β superfamily biology, and alterations in prodomain function are often associated with disease.

  1. Reciprocal Interactions between Cell Adhesion Molecules of the Immunoglobulin Superfamily and the Cytoskeleton in Neurons.

    PubMed

    Leshchyns'ka, Iryna; Sytnyk, Vladimir

    2016-01-01

    Cell adhesion molecules of the immunoglobulin superfamily (IgSF) including the neural cell adhesion molecule (NCAM) and members of the L1 family of neuronal cell adhesion molecules play important functions in the developing nervous system by regulating formation, growth and branching of neurites, and establishment of the synaptic contacts between neurons. In the mature brain, members of IgSF regulate synapse composition, function, and plasticity required for learning and memory. The intracellular domains of IgSF cell adhesion molecules interact with the components of the cytoskeleton including the submembrane actin-spectrin meshwork, actin microfilaments, and microtubules. In this review, we summarize current data indicating that interactions between IgSF cell adhesion molecules and the cytoskeleton are reciprocal, and that while IgSF cell adhesion molecules regulate the assembly of the cytoskeleton, the cytoskeleton plays an important role in regulation of the functions of IgSF cell adhesion molecules. Reciprocal interactions between NCAM and L1 family members and the cytoskeleton and their role in neuronal differentiation and synapse formation are discussed in detail. PMID:26909348

  2. Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea.

    PubMed

    Vijayakumar, Harshavardhanan; Thamilarasan, Senthil Kumar; Shanmugam, Ashokraj; Natarajan, Sathishkumar; Jung, Hee-Jeong; Park, Jong-In; Kim, HyeRan; Chung, Mi-Young; Nou, Ill-Sup

    2016-01-01

    Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS). Currently, understanding of their function(s) during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST) and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible) under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT) and cold susceptible (CS) lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants. PMID:27472324

  3. Identification of a Ly-6 superfamily gene expressed in lateral line neuromasts in zebrafish.

    PubMed

    Ji, Dongrui; Li, Lingyi; Zhang, Shicui; Li, Hongyan

    2015-01-01

    Lymphocyte antigen-6 (Ly-6) superfamily members have been identified in zebrafish, but the expression and function of these Ly-6 genes remain largely unknown. Posterior lateral line (pLL) system is produced by migrating pLL primordium (pLLp). Chemokine signaling, Notch, Wnt, and fibroblast growth factor (FGF) signaling regulate migration of pLLp cells and formation of neuromasts. However, the mechanism of neuromast deposition remains to be explored. Identification of novel genes expressed in pLLp will certainly help the study of such a process. Here we identified a Ly-6 gene called neuromast-expressed gpi-anchored lymphocyte antigen-6 (negaly6), which was specifically expressed in neuromast. Quantitative real-time PCR (qRT-PCR) analysis showed that negaly6 started to be expressed at 24 hpf, and whole-mount in situ hybridization analysis indicated that negaly6 was highly expressed in the trailing zone of pLLp and mature neuromast. Furthermore, negaly6 expression was inhibited by FGF signaling antagonist but not by Wnt signaling agonist or antagonist. Collectively, these data indicate that negaly6 may be associated with the regulation of neuromast deposition via FGF signaling pathway.

  4. Checklist of the superfamilies Oestroidea and Hippoboscoidea of Finland (Insecta, Diptera)

    PubMed Central

    Pohjoismäki, Jaakko; Kahanpää, Jere

    2014-01-01

    Abstract An updated checklist of the superfamilies Oestroidea and Hippoboscoidea recorded from Finland is presented. The checklist covers the following families: Calliphoridae, Rhiniidae, Sarcophagidae, Rhinophoridae, Tachinidae, Oestridae and Hippoboscidae. PMID:25337034

  5. Bringing Bioactive Compounds into Membranes: The UbiA Superfamily of Intramembrane Aromatic Prenyltransferases.

    PubMed

    Li, Weikai

    2016-04-01

    The UbiA superfamily of intramembrane prenyltransferases catalyzes a key biosynthetic step in the production of ubiquinones, menaquinones, plastoquinones, hemes, chlorophylls, vitamin E, and structural lipids. These lipophilic compo