Science.gov

Sample records for growth factor-induced neurite

  1. Atlastin regulates store-operated calcium entry for nerve growth factor-induced neurite outgrowth

    PubMed Central

    Li, Jing; Yan, Bing; Si, Hongjiang; Peng, Xu; Zhang, Shenyuan L.; Hu, Junjie

    2017-01-01

    Homotypic membrane fusion of the endoplasmic reticulum (ER) is mediated by a class of dynamin-like GTPases known as atlastin (ATL). Depletion of or mutations in ATL cause an unbranched ER morphology and hereditary spastic paraplegia (HSP), a neurodegenerative disease characterized by axon shortening in corticospinal motor neurons and progressive spasticity of the lower limbs. How ER shaping is linked to neuronal defects is poorly understood. Here, we show that dominant-negative mutants of ATL1 in PC-12 cells inhibit nerve growth factor (NGF)-induced neurite outgrowth. Overexpression of wild-type or mutant ATL1 or depletion of ATLs alters ER morphology and affects store-operated calcium entry (SOCE) by decreasing STIM1 puncta formation near the plasma membrane upon calcium depletion of the ER. In addition, blockage of the STIM1-Orai pathway effectively abolishes neurite outgrowth of PC-12 cells stimulated by NGF. These results suggest that SOCE plays an important role in neuronal regeneration, and mutations in ATL1 may cause HSP, partly by undermining SOCE. PMID:28240257

  2. Nerve growth factor-induced neurite sprouting in PC12 cells involves sigma-1 receptors: implications for antidepressants.

    PubMed

    Takebayashi, Minoru; Hayashi, Teruo; Su, Tsung-Ping

    2002-12-01

    One theory concerning the action of antidepressants relates to the drugs' ability to induce an adaptive plasticity in neurons such as neurite sprouting. Certain antidepressants are known to bind to sigma-1 receptors (Sig-1R) with high affinity. Sig-1R are dynamic endoplasmic reticulum proteins that are highly concentrated at the tip of growth cones in cultured cells. We therefore tested the hypotheses that Sig-1R might participate in the neurite sprouting and that antidepressants with Sig-1R affinity may promote the neuronal sprouting via Sig-1R. The prototypic Sig-1R agonist (+)-pentazocine [(+)PTZ], as well as the Sig-1R-active antidepressants imipramine and fluvoxamine, although ineffective by themselves, were found to enhance the nerve growth factor (NGF)-induced neurite sprouting in PC12 cells in a dose-dependent manner. A Sig-1R antagonist N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)phenyl]-ethylamine monohydrochloride (NE100) blocked the enhancements caused by these Sig-1R agonists. In separate experiments, we found that NGF dose and time dependently increased Sig-1R in PC12 cells. Chronic treatment of cells with (+)PTZ, imipramine, or fluvoxamine also increased Sig-1R. These latter results suggested that NGF induces the neurite sprouting by increasing Sig-1R. Indeed, the overexpression of Sig-1R per se in PC12 cells enhanced the NGF-induced neurite sprouting. Furthermore, antisense deoxyoligonucleotides directed against Sig-1R attenuated the NGF-induced neurite sprouting. Thus, when taken together, our results indicate that Sig-1R play an important role in the NGF-induced neurite sprouting and that certain antidepressants may facilitate neuronal sprouting in the brain via Sig-1R.

  3. Lithium ion inhibits nerve growth factor-induced neurite outgrowth and phosphorylation of nerve growth factor-modulated microtubule-associated proteins

    PubMed Central

    1985-01-01

    LiCl (2.5-20 mM) reversibly suppressed nerve growth factor (NGF)- induced neurite outgrowth by cultured rat PC 12 pheochromocytoma cells. Similar concentrations of LiCl also reversibly blocked NGF-dependent regeneration of neurites by PC12 cells that had been primed by long- term pre-exposure to NGF and by cultured newborn mouse sympathetic neurons. In contrast, transcription-dependent responses of PC12 cells to NGF such as priming and induction of the NGF-inducible large external glycoprotein, occurred despite the presence of Li+. SDS PAGE analysis of total cellular phosphoproteins (labeled by 2-h exposure to 32P-orthophosphate) from neurite-bearing primed PC12 cells revealed that Li+ reversibly inhibited the phosphorylation of a band of Mr 64,000 that was barely detectable in NGF-untreated PC12 cells. However, Li+ did not appear to affect the labeling of other phosphoproteins in either NGF-primed or untreated PC12 cultures, nor did it affect the rapid increase in phosphorylation of several proteins that occurs when NGF is first added to unprimed cultures. Several criteria indicated that the NGF-inducible phosphoprotein of Mr 64,000 is a microtubule- associated protein (MAP). Of the NGF-inducible phosphorylated MAPs that have been detected in PC12 cells (Mr 64,000, 72,000, 80,000, and 320,000), several (Mr 64,000, 72,000, and 80,000) were found to be substantially less phosphorylated in the presence of Li+. Neither a phorbol ester tumor promotor nor permeant cAMP analogs reversed the inhibitory effects of Li+ on neurite outgrowth or on phosphorylation of the component of Mr 64,000. Microtubules are a major and required constituent of neurites, and MAPs may regulate the assembly and stability of neuritic microtubules. The observation that Li+ selectively inhibits NGF-induced neurite outgrowth and MAP phosphorylation suggests a possible causal relationship between these two events. PMID:4030895

  4. Potentiation of Nerve Growth Factor-Induced Neurite Outgrowth by Fluvoxamine: Role of Sigma-1 Receptors, IP3 Receptors and Cellular Signaling Pathways

    PubMed Central

    Nishimura, Tomoko; Ishima, Tamaki; Iyo, Masaomi; Hashimoto, Kenji

    2008-01-01

    Background Selective serotonin reuptake inhibitors (SSRIs) have been widely used and are a major therapeutic advance in psychopharmacology. However, their pharmacology is quite heterogeneous. The SSRI fluvoxamine, with sigma-1 receptor agonism, is shown to potentiate nerve-growth factor (NGF)-induced neurite outgrowth in PC 12 cells. However, the precise cellular and molecular mechanisms underlying potentiation by fluvoxamine are not fully understood. In this study, we examined the roles of cellular signaling pathways in the potentiation of NGF-induced neurite outgrowth by fluvoxamine and sigma-1 receptor agonists. Methods and Findings The effects of three SSRIs (fluvoxamine, sertraline, paroxetine) and three sigma-1 receptor agonists (SA4503, 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP), and dehydroepiandrosterone (DHEA)-sulfate) on NGF-induced neurite outgrowth in PC12 cells were examined. Also examined were the effects of the sigma-1 receptor antagonist NE-100, inositol 1,4,5-triphosphate (IP3) receptor antagonist, and specific inhibitors of signaling pathways in the potentiation of NGF-induced neurite outgrowth by selective sigma-1 receptor agonist SA4503. Fluvoxamine (but not sertraline or paroxetine) and the sigma-1 receptor agonists SA4503, PPBP, and DHEA-sulfate significantly potentiated NGF-induced neurite outgrowth in PC12 cells in a concentration-dependent manner. The potentiation by fluvoxamine and the three sigma-1 receptor agonists was blocked by co-administration of the selective sigma-1 receptor antagonist NE-100, suggesting that sigma-1 receptors play a role in blocking the enhancement of NGF-induced neurite outgrowth. Moreover, the potentiation by SA4503 was blocked by co-administration of the IP3 receptor antagonist xestospongin C. In addition, the specific inhibitors of phospholipase C (PLC-γ), phosphatidylinositol 3-kinase (PI3K), p38MAPK, c-Jun N-terminal kinase (JNK), and the Ras/Raf/mitogen-activated protein kinase (MAPK) signaling pathways

  5. P2X1 Receptor-Mediated Ca(2+) Influx Triggered by DA-9801 Potentiates Nerve Growth Factor-Induced Neurite Outgrowth.

    PubMed

    Back, Moon Jung; Lee, Hae Kyung; Lee, Joo Hyun; Fu, Zhicheng; Son, Mi Won; Choi, Sang Zin; Go, Hyo Sang; Yoo, Sungjae; Hwang, Sun Wook; Kim, Dae Kyong

    2016-11-16

    Nerve growth factor (NGF)-induced neuronal regeneration has emerged as a strategy to treat neuronal degeneration-associated disorders. However, direct NGF administration is limited by the occurrence of adverse effects at high doses of NGF. Therefore, development of a therapeutic strategy to promote the NGF trophic effect is required. In view of the lack of understanding of the mechanism for potentiating the NGF effect, this study investigated molecular targets of DA-9801, a well-standardized Dioscorea rhizome extract, which has a promoting effect on NGF. An increase in intracellular calcium ion level was induced by DA-9801, and chelation of extracellular calcium ions with ethylene-bis(oxyethylenenitrilo)tetraacetic acid (EGTA) suppressed the potentiating effect of DA-9801 on NGF-induced neurite outgrowth. In addition, EGTA treatment reduced the DA-9801-induced phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2), the major mediators of neurite outgrowth. To find which calcium ion-permeable channel contributes to the calcium ion influx induced by DA-9801, we treated PC12 cells with various inhibitors of calcium ion-permeable channels. NF449, a P2X1 receptor selective antagonist, significantly abolished the potentiating effect of DA-9801 on NGF-induced neurite outgrowth and abrogated the DA-9801-induced ERK1/2 phosphorylation. In addition, transfection with siRNA of P2X1 receptor significantly reduced the DA-9801-enhanced neurite outgrowth. In conclusion, calcium ion influx through P2X1 receptor mediated the promoting effect of DA-9801 on NGF-induced neurite outgrowth via ERK1/2 phosphorylation.

  6. ERK5 Activity Is Required for Nerve Growth Factor-induced Neurite Outgrowth and Stabilization of Tyrosine Hydroxylase in PC12 Cells*

    PubMed Central

    Obara, Yutaro; Yamauchi, Arata; Takehara, Shin; Nemoto, Wataru; Takahashi, Maho; Stork, Philip J. S.; Nakahata, Norimichi

    2009-01-01

    Extracellular signal-regulated kinases (ERKs) play important physiological roles in proliferation, differentiation, and gene expression. ERK5 is approximately twice the size of ERK1/2, and its amino-terminal half contains the kinase domain that shares homology with ERK1/2 and TEY activation motif, whereas the carboxyl-terminal half is unique. In this study, we examined a physiological role of ERK5 in rat pheochromocytoma cells (PC12), comparing it with ERK1/2. Nerve growth factor (NGF) induced phosphorylation of both ERK5 and ERK1/2, whereas the cAMP analog dibutyryl cAMP (Bt2cAMP) caused only ERK1/2 phosphorylation. U0126, at 30 μm, that blocks ERK1/2 signaling selectively attenuated neurite outgrowth induced by NGF and Bt2cAMP, but BIX02188 and BIX02189, at 30 μm, that block ERK5 signaling and an ERK5 dominant-negative mutant suppressed only NGF-induced neurite outgrowth. Next, we examined the expression of tyrosine hydroxylase, a rate-limiting enzyme of catecholamine biosynthesis. Both NGF and Bt2cAMP increased tyrosine hydroxylase gene promoter activity in an ERK1/2-dependent manner but was ERK5-independent. However, when both ERK5 and ERK1/2 signalings were inhibited, tyrosine hydroxylase protein up-regulation by NGF and Bt2cAMP was abolished, because of the loss of stabilization of tyrosine hydroxylase protein by ERK5. Taking these results together, ERK5 is involved in neurite outgrowth and stabilization of tyrosine hydroxylase in PC12 cells, and ERK5, along with ERK1/2, plays essential roles in the neural differentiation process. PMID:19581298

  7. Distinctive effect on nerve growth factor-induced PC12 cell neurite outgrowth by two unique neolignan enantiomers from Illicium merrillianum

    NASA Astrophysics Data System (ADS)

    Tian, Xinhui; Yue, Rongcai; Zeng, Huawu; Li, Honglin; Shan, Lei; He, Weiwei; Shen, Yunheng; Zhang, Weidong

    2015-11-01

    Merrillianoid (1), a racemic neolignan possessing the characteristic benzo-2,7-dioxabicyclo[3.2.1]octane moiety, was isolated from the branches and leaves of Illicium merrillianum. Chiral separation of 1 gave two enantiomers (+)-1 and (-)-1. The structure of 1 was established by comprehensive spectroscopic analysis and single crystal X-ray diffraction. The absolute configurations of enantiomers were determined by quantum mechanical calculation. Compound (+)-1 exhibited a better neurotrophic activity than racemate 1 by promoting nerve growth factor (NGF) induced PC12 cell neurite outgrowth, while (-)-1 showed a distinctive inhibitory effect. Furthermore, a mechanism study indicated that the two enantiomers influenced NGF-induced neurite outgrowth of PC12 cells possibly by interacting with the trkA receptor, and extracellular signal regulated kinases 1/2 (ERK1/2) and mitogen-activated protein kinase (MEK) in Ras/ERK signal cascade. But the phosphorylation level of serine/threonine kinase Akt1 and Akt2 in PI3K/Akt signal pathway showed no significant difference between (+)-1 and (-)-1.

  8. Phosphorylation of p85 beta PIX, a Rac/Cdc42-specific guanine nucleotide exchange factor, via the Ras/ERK/PAK2 pathway is required for basic fibroblast growth factor-induced neurite outgrowth.

    PubMed

    Shin, Eun-Young; Shin, Kyung-Sun; Lee, Chan-Soo; Woo, Kyung-Nam; Quan, Song-Hua; Soung, Nak-Kyun; Kim, Young Gyu; Cha, Choong Ik; Kim, Seung-Ryul; Park, Dongeun; Bokoch, Gary M; Kim, Eung-Gook

    2002-11-15

    Guanine nucleotide exchange factors (GEFs) have been implicated in growth factor-induced neuronal differentiation through the activation of small GTPases. Although phosphorylation of these GEFs is considered an activation mechanism, little is known about the upstream of PAK-interacting exchange factor (PIX), a member of the Dbl family of GEFs. We report here that phosphorylation of p85 betaPIX/Cool/p85SPR is mediated via the Ras/ERK/PAK2 pathway. To understand the role of p85 betaPIX in basic fibroblast growth factor (bFGF)-induced neurite outgrowth, we established PC12 cell lines that overexpress the fibroblast growth factor receptor-1 in a tetracycline-inducible manner. Treatment with bFGF induces the phosphorylation of p85 betaPIX, as determined by metabolic labeling and mobility shift upon gel electrophoresis. Interestingly, phosphorylation of p85 betaPIX is inhibited by PD98059, a specific MEK inhibitor, suggesting the involvement of the ERK cascade. PAK2, a major PAK isoform in PC12 cells as well as a binding partner of p85 betaPIX, also functions upstream of p85 betaPIX phosphorylation. Surprisingly, PAK2 directly binds to ERK, and its activation is dependent on ERK. p85 betaPIX specifically localizes to the lamellipodia at neuronal growth cones in response to bFGF. A mutant form of p85 betaPIX (S525A/T526A), in which the major phosphorylation sites are replaced by alanine, shows significant defect in targeting. Moreover, expression of the mutant p85 betaPIX efficiently blocks PC12 cell neurite outgrowth. Our study defines a novel signaling pathway for bFGF-induced neurite outgrowth that involves activation of the PAK2-p85 betaPIX complex via the ERK cascade and subsequent translocation of this complex.

  9. A model for neurite growth and neuronal morphogenesis.

    PubMed

    Li, G H; Qin, C D

    1996-02-01

    A model is presented for tensile regulation of neuritic growth. It is proposed that the neurite tension can be determined by Hooke's law and determines the growth rate of neurites. The growth of a neurite is defined as the change in its unstretched length. Neuritic growth rate is assumed to increase in proportion to tension magnitude over a certain threshold [Dennerll et al., J. Cell Biol. 107: 665-674 (1988)]. The movement of branch nodes also contributes to the neuronal morphogenesis. It is supposed that the rate of a branch-node displacement is in proportion to the resultant neuritic tension exerted on this node. To deal with the growth-cone movement, it is further supposed that the environment exerts a traction force on the growth cone and the rate of growth-cone displacement is determined by the vector sum of the neuritic tension and the traction force. A group of differential equations are used to describe the model. The key point of the model is that the traction force and the neuritic tension are in opposition to generate a temporal contrast-enhancing mechanism. Results of a simulation study suggest that the model can explain some phenomena related to neuronal morphogenesis.

  10. Serum- and substratum-dependent modulation of neuritic growth.

    PubMed

    Skaper, S D; Selak, I; Varon, S

    1983-01-01

    Explants of embryonic day 8 (E8) chicken dorsal root ganglia (DRG) have been cultured with medium containing serum or the serum-free supplement N1 on one of three substrata: collagen, polyornithine (PORN), or PORN exposed to a polyornithine-binding neurite-promoting factor (PNPF-PORN). Replicate cultures were maintained with or without nerve growth factor (NGF). NGF elicited its classical neuritic outgrowth on all three substrata in serum-containing or serum-free medium. In the absence of NGF, however, a gradation of increasing neurite growth was seen with: PNPF-PORN greater than PORN greater than collagen. This response occurred in both media. In addition, the neuritic halo in each instance was markedly more developed in the absence of serum, especially on PNPF-PORN. Nonneuronal behaviors reflected both serum and substratum influences: thus, nonneuronal outgrowth consisted mainly of flat cells with serum and collagen, was nonexistent with serum and PORN or PNPF-PORN, and involved mostly Schwann-like scattered cells in the absence of serum on any one substratum. The serum-dependent behaviors of ganglionic neurites were examined further with explants from chicken E11 sympathetic ganglia. A single substratum was used (PORN), without exogenous trophic factor. Neurite outgrowth was depressed by the presence of fetal calf serum, thus supporting the generality of this phenomenon. Lastly, PC12 cells, a clonal line of rat pheochromocytoma, will grow neurites in the presence of NGF after 48 hr in serum-free, but not serum-containing media. Addition of serum to serum-free cultures at this time results in the rapid and complete retraction of neurites.

  11. Can hippocampal neurites and growth cones climb over obstacles?

    PubMed

    Lien, Thuy Linh; Ban, Jelena; Tormen, Massimo; Migliorini, Elisa; Grenci, Gianluca; Pozzato, Alessandro; Torre, Vincent

    2013-01-01

    Guidance molecules, such as Sema3A or Netrin-1, can induce growth cone (GC) repulsion or attraction in the presence of a flat surface, but very little is known of the action of guidance molecules in the presence of obstacles. Therefore we combined chemical and mechanical cues by applying a steady Netrin-1 stream to the GCs of dissociated hippocampal neurons plated on polydimethylsiloxane (PDMS) surfaces patterned with lines 2 µm wide, with 4 µm period and with a height varying from 100 to 600 nm. GC turning experiments performed 24 hours after plating showed that filopodia crawl over these lines within minutes. These filopodia do not show staining for the adhesion marker Paxillin. GCs and neurites crawl over lines 100 nm high, but less frequently and on a longer time scale over lines higher than 300 nm; neurites never crawl over lines 600 nm high. When neurons are grown for 3 days over patterned surfaces, also neurites can cross lines 300 nm and 600 nm high, grow parallel to and on top of these lines and express Paxillin. Axons - selectively stained with SMI 312 - do not differ from dendrites in their ability to cross these lines. Our results show that highly motile structures such as filopodia climb over high obstacle in response to chemical cues, but larger neuronal structures are less prompt and require hours or days to climb similar obstacles.

  12. Fetal calf serum-mediated inhibition of neurite growth from ciliary ganglion neurons in vitro.

    PubMed

    Davis, G E; Skaper, S D; Manthorpe, M; Moonen, G; Varon, S

    1984-01-01

    Embryonic chick ciliary ganglion (CG) neurons cultured in fetal calf serum-containing medium have been previously reported to extend neurites on polyornithine (PORN) substrata precoated with a neurite-promoting factor (PNPF) from rat schwannoma-conditioned medium. On PORN substrata alone, however, no neuritic growth occurred. This was interpreted as evidence that PORN was an incompetent substratum for ciliary neuritic growth. In this study, we now find that an untreated PORN substratum allows neuritic growth in serum-free defined medium. When PNPF was added to PORN, a more rapid and extensive neuritic response occurred. After 5 hr of culture, a 60% neuritic response occurred on PNPF/PORN, whereas no neurons initiated neurites until 10-12 hr on PORN. The inhibitory effect of fetal calf serum noted above on PORN could be obtained in part by pretreating the substratum with serum for 1 hr. Maximal inhibitory effects in the PORN pretreatment were achieved after 30 min and were not further improved by treatments up to 4 hr. Bovine serum albumin was also found to inhibit neurite growth on PORN to about 60% of the inhibition obtained by an equivalent amount of serum protein. Fetal calf serum was shown to cause a 15% reduction in the percentage of neurons bearing neurites after its addition to 18-hr serum-free PORN cultures and to cause statistically significant reductions in neurite lengths measured 2 hr later.

  13. Large-scale analysis of neurite growth dynamics on micropatterned substrates†‡

    PubMed Central

    Wissner-Gross, Zachary D.; Scott, Mark A.; Ku, David; Ramaswamy, Priya

    2011-01-01

    During both development and regeneration of the nervous system, neurons display complex growth dynamics, and several neurites compete to become the neuron’s single axon. Numerous mathematical and biophysical models have been proposed to explain this competition, which remain experimentally unverified. Large-scale, precise, and repeatable measurements of neurite dynamics have been difficult to perform, since neurons have varying numbers of neurites, which themselves have complex morphologies. To overcome these challenges using a minimal number of primary neurons, we generated repeatable neuronal morphologies on a large scale using laser-patterned micron-wide stripes of adhesive proteins on an otherwise highly non-adherent substrate. By analyzing thousands of quantitative time-lapse measurements of highly reproducible neurite growth dynamics, we show that total neurite growth accelerates until neurons polarize, that immature neurites compete even at very short lengths, and that neuronal polarity exhibits a distinct transition as neurites grow. Proposed neurite growth models agree only partially with our experimental observations. We further show that simple yet specific modifications can significantly improve these models, but still do not fully predict the complex neurite growth behavior. Our high-content analysis puts significant and nontrivial constraints on possible mechanistic models of neurite growth and specification. The methodology presented here could also be employed in large-scale chemical and target-based screens on a variety of complex and subtle phenotypes for therapeutic discoveries using minimal numbers of primary neurons. PMID:20976322

  14. Insulin signaling regulates neurite growth during metamorphic neuronal remodeling

    PubMed Central

    Gu, Tingting; Zhao, Tao; Hewes, Randall S.

    2014-01-01

    Summary Although the growth capacity of mature neurons is often limited, some neurons can shift through largely unknown mechanisms from stable maintenance growth to dynamic, organizational growth (e.g. to repair injury, or during development transitions). During insect metamorphosis, many terminally differentiated larval neurons undergo extensive remodeling, involving elimination of larval neurites and outgrowth and elaboration of adult-specific projections. Here, we show in the fruit fly, Drosophila melanogaster (Meigen), that a metamorphosis-specific increase in insulin signaling promotes neuronal growth and axon branching after prolonged stability during the larval stages. FOXO, a negative effector in the insulin signaling pathway, blocked metamorphic growth of peptidergic neurons that secrete the neuropeptides CCAP and bursicon. RNA interference and CCAP/bursicon cell-targeted expression of dominant-negative constructs for other components of the insulin signaling pathway (InR, Pi3K92E, Akt1, S6K) also partially suppressed the growth of the CCAP/bursicon neuron somata and neurite arbor. In contrast, expression of wild-type or constitutively active forms of InR, Pi3K92E, Akt1, Rheb, and TOR, as well as RNA interference for negative regulators of insulin signaling (PTEN, FOXO), stimulated overgrowth. Interestingly, InR displayed little effect on larval CCAP/bursicon neuron growth, in contrast to its strong effects during metamorphosis. Manipulations of insulin signaling in many other peptidergic neurons revealed generalized growth stimulation during metamorphosis, but not during larval development. These findings reveal a fundamental shift in growth control mechanisms when mature, differentiated neurons enter a new phase of organizational growth. Moreover, they highlight strong evolutionarily conservation of insulin signaling in neuronal growth regulation. PMID:24357229

  15. IPP5 inhibits neurite growth in primary sensory neurons by maintaining TGF-β/Smad signaling.

    PubMed

    Han, Qing-Jian; Gao, Nan-Nan; Guo-QiangMa; Zhang, Zhen-Ning; Yu, Wen-Hui; Pan, Jing; Wang, Qiong; Zhang, Xu; Bao, Lan

    2013-01-15

    During nerve regeneration, neurite growth is regulated by both intrinsic molecules and extracellular factors. Here, we found that inhibitor 5 of protein phosphatase 1 (IPP5), a newly identified inhibitory subunit of protein phosphatase 1 (PP1), inhibited neurite growth in primary sensory neurons as an intrinsic regulator. IPP5 was highly expressed in the primary sensory neurons of rat dorsal root ganglion (DRG) and was downregulated after sciatic nerve axotomy. Knocking down IPP5 with specific shRNA increased the length of the longest neurite, the total neurite length and the number of neurite ends in cultured rat DRG neurons. Mutation of the PP1-docking motif K(8)IQF(11) or the PP1-inhibiting motif at Thr(34) eliminated the IPP5-induced inhibition of neurite growth. Furthermore, biochemical experiments showed that IPP5 interacted with type I transforming growth factor-β receptor (TβRI) and PP1 and enhanced transforming growth factor-β (TGF-β)/Smad signaling in a PP1-dependent manner. Overexpressing IPP5 in DRG neurons aggravated TGF-β-induced inhibition of neurite growth, which was abolished by blocking PP1 or IPP5 binding to PP1. Blockage of TGF-β signaling with the TβRI inhibitor SB431542 or Smad2 shRNA attenuated the IPP5-induced inhibition of neurite growth. Thus, these data indicate that selectively expressed IPP5 inhibits neurite growth by maintaining TGF-β signaling in primary sensory neurons.

  16. Growth cone-like waves transport actin and promote axonogenesis and neurite branching

    PubMed Central

    Flynn, Kevin C.; Pak, Chi W.; Shaw, Alisa E.; Bradke, Frank; Bamburg, James R.

    2010-01-01

    Axonogenesis involves a shift from uniform delivery of materials to all neurites to preferential delivery to the putative axon, supporting its more rapid extension. Waves, growth cone-like structures that propagate down the length of neurites, were shown previously to correlate with neurite growth in dissociated cultured hippocampal neurons. Waves are similar to growth cones in their structure, composition and dynamics. Here, we report that waves form in all undifferentiated neurites, but occur more frequently in the future axon during initial neuronal polarization. Moreover, wave frequency and their impact on neurite growth are altered in neurons treated with stimuli that enhance axonogenesis. Coincident with wave arrival, growth cones enlarge and undergo a marked increase in dynamics. Through their engorgement of filopodia along the neurite shaft, waves can induce de novo neurite branching. Actin in waves maintains much of its cohesiveness during transport whereas actin in non-wave regions of the neurite rapidly diffuses as measured by live cell imaging of photoactivated GFP-actin and photoconversion of Dendra-actin. Thus, waves represent an alternative axonal transport mechanism for actin. Waves also occur in neurons in organotypic hippocampal slices where they propagate along neurites in the dentate gyrus and the CA regions and induce branching. Taken together, our results indicate that waves are physiologically relevant and contribute to axon growth and branching via the transport of actin and by increasing growth cone dynamics. PMID:19513994

  17. Arf6 Guanine Nucleotide Exchange Factor Cytohesin-2 Binds to CCDC120 and Is Transported Along Neurites to Mediate Neurite Growth*

    PubMed Central

    Torii, Tomohiro; Miyamoto, Yuki; Tago, Kenji; Sango, Kazunori; Nakamura, Kazuaki; Sanbe, Atsushi; Tanoue, Akito; Yamauchi, Junji

    2014-01-01

    The mechanism of neurite growth is complicated, involving continuous cytoskeletal rearrangement and vesicular trafficking. Cytohesin-2 is a guanine nucleotide exchange factor for Arf6, an Arf family molecular switch protein, controlling cell morphological changes such as neuritogenesis. Here, we show that cytohesin-2 binds to a protein with a previously unknown function, CCDC120, which contains three coiled-coil domains, and is transported along neurites in differentiating N1E-115 cells. Transfection of the small interfering RNA (siRNA) specific for CCDC120 into cells inhibits neurite growth and Arf6 activation. When neurites start to extend, vesicles containing CCDC120 and cytohesin-2 are transported in an anterograde manner rather than a retrograde one. As neurites continue extension, anterograde vesicle transport decreases. CCDC120 knockdown inhibits cytohesin-2 localization into vesicles containing CCDC120 and diffuses cytohesin-2 in cytoplasmic regions, illustrating that CCDC120 determines cytohesin-2 localization in growing neurites. Reintroduction of the wild type CCDC120 construct into cells transfected with CCDC120 siRNA reverses blunted neurite growth and Arf6 activity, whereas the cytohesin-2-binding CC1 region-deficient CCDC120 construct does not. Thus, cytohesin-2 is transported along neurites by vesicles containing CCDC120, and it mediates neurite growth. These results suggest a mechanism by which guanine nucleotide exchange factor for Arf6 is transported to mediate neurite growth. PMID:25326380

  18. New function of the adaptor protein SH2B1 in brain-derived neurotrophic factor-induced neurite outgrowth.

    PubMed

    Shih, Chien-Hung; Chen, Chien-Jen; Chen, Linyi

    2013-01-01

    Neurite outgrowth is an essential process for the establishment of the nervous system. Brain-derived neurotrophic factor (BDNF) binds to its receptor TrkB and regulates axonal and dendritic morphology of neurons through signal transduction and gene expression. SH2B1 is a signaling adaptor protein that regulates cellular signaling in various physiological processes. The purpose of this study is to investigate the role of SH2B1 in the development of the central nervous system. In this study, we show that knocking down SH2B1 reduces neurite formation of cortical neurons whereas overexpression of SH2B1β promotes the development of hippocampal neurons. We further demonstrate that SH2B1β promotes BDNF-induced neurite outgrowth and signaling using the established PC12 cells stably expressing TrkB, SH2B1β or SH2B1β mutants. Our data indicate that overexpressing SH2B1β enhances BDNF-induced MEK-ERK1/2, and PI3K-AKT signaling pathways. Inhibition of MEK-ERK1/2 and PI3K-AKT pathways by specific inhibitors suggest that these two pathways are required for SH2B1β-promoted BDNF-induced neurite outgrowth. Moreover, SH2B1β enhances BDNF-stimulated phosphorylation of signal transducer and activator of transcription 3 at serine 727. Finally, our data indicate that the SH2 domain and tyrosine phosphorylation of SH2B1β contribute to BDNF-induced signaling pathways and neurite outgrowth. Taken together, these findings demonstrate that SH2B1β promotes BDNF-induced neurite outgrowth through enhancing pathways involved MEK-ERK1/2 and PI3K-AKT.

  19. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    NASA Astrophysics Data System (ADS)

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  20. Dynamic aspects of amphibian neurite growth and the effects of an applied electric field.

    PubMed Central

    McCaig, C D

    1986-01-01

    The dynamics of growth of earliest spinal neurites from Xenopus laevis have been studied in vitro in the presence and absence of an applied d.c. electric field. Control and cathode-directed neurites grew at a rate of about 30 micron/h: growth of anodal-facing neurites was 8 times slower. Periods of arrested growth were common in cultured neurones; these lasted 2-3 times longer in an applied electric field. The likelihood and the severity of neurite reabsorption was greatest in neurites directed towards the anode. Many neurites turned to direct their growth towards the cathode. As this happened their rate of growth increased 2-3-fold. The electric field further shaped neurite morphology by increasing the number of filopodia at the growth cone and by increasing the number of cytoplasmic spines along a neurite shaft. The electric field induced an asymmetry in the distribution of these cytoplasmic projections; greater numbers being found on the cathodal-facing than on the anodal-facing side. Implications of these data for nerve growth in development and in regeneration are discussed. Images Plate 1 PMID:3795068

  1. Micropatterned Methacrylate Polymers Direct Spiral Ganglion Neurite and Schwann Cell Growth

    PubMed Central

    Clarke, Joseph C.; Tuft, Bradley W.; Clinger, John D.; Levine, Rachel; Figueroa, Lucas Sievens; Guymon, C. Allan; Hansen, Marlan R.

    2011-01-01

    Significant advances in the functional outcomes achieved with cochlear implantation will likely require tissue-engineering approaches to improve the neural prosthesis interface. One strategy is to direct spiral ganglion neuron (SGN) axon growth in a highly organized fashion to approximate or contact stimulating electrodes. Here we assessed the ability of micropatterns induced by photopolymerization in methacrylate (MA) polymer systems to direct cultured neonatal rat SGN neurite growth and alignment of SG Schwann cells (SGSCs). SGN survival and neurite length were comparable among various polymer compositions. Remarkably, there was no significant difference in SGN survival or neurite length between laminin and non-laminin coated MA polymer substrates, suggesting high biocompatibility with SG tissue. Micropatterning with photopolymerization generated microchannels with a ridge periodicity of 50 µm and channel depths of 0.6–1.0 µm. SGN neurites grew within the grooves of the microchannels. These topographies strongly induced alignment of dissociated SGN neurites and SGSCs to parallel the pattern. By contrast, fibroblasts failed to align with the micropattern suggesting cell specific responses to topographical cues. SGN neurites extending from explants turned to parallel the pattern as they encountered the microchannels. The extent of turning was significantly correlated with angle at which the neurite initially encountered the pattern. These results indicate that SGN neurites respond to microtopographical features and that these features can be used to direct neurite growth in a highly organized fashion. PMID:21616131

  2. Organic and inorganic lead inhibit neurite growth in vertebrate and invertebrate neurons in culture.

    PubMed

    Audesirk, G; Shugarts, D; Nelson, G; Przekwas, J

    1989-12-01

    Neurons from brains of chick embryos and pond snails (Lymnaea stagnalis) were cultured for 3 to 4 d in the presence of no toxins, inorganic lead (PbCl2), or organic lead (triethyl lead chloride). In chick neurons, inorganic lead reduced the percentage of cells that grew neurites (IC50 = 270 microM total lead, approximately 70 nM free Pb2+) but did not reduce the number of neurites per cell or the mean neurite length. Triethyl lead reduced the percentage of cells that grew neurites (IC50 = 0.24 microM) and the mean neurite length (extrapolated IC50 = 3.6 microM) but did not reduce the number of neurites per cell. In Lymnaea neurons, inorganic lead reduced the percentage of cells that grew neurites (IC50 = 13 microM total lead; approximately 10 nM free Pb2+). Triethyl lead reduced the percentage of cells that grew neurites (IC50 = 0.4 microM) and exerted significant toxicity at 0.2 microM. The two forms of lead affected neurite growth in qualitatively different ways, which suggests that their mechanisms of action are different.

  3. Quercetin promotes neurite growth through enhancing intracellular cAMP level and GAP-43 expression.

    PubMed

    Chen, Ming-Ming; Yin, Zhi-Qi; Zhang, Lu-Yong; Liao, Hong

    2015-09-01

    The present study was designed to investigate the role of quercetin on neurite growth in N1E-115 cells and the underlying mechanisms. Quercetin was evaluated for its effects on cell numbers of neurites, neurite length, intracellular cAMP content, and Gap-43 expression in N1E-115 cells in vitro by use of microscopy, LANCE(tm) cAMP 384 kit, and Western blot analysis, respectively. Our results showed that quercetin could increase the neurite length in a concentration-dependent manner, but had no effect on the numbers of cells. Quercetin significantly increased the expression of cellular cAMP in a time- and concentration-dependent manner. The Gap-43 expression was up-regulated in a time-dependent manner. In conclusion, quercetin could promote neurite growth through increasing the intracellular cAMP level and Gap-43 expression.

  4. Neurite outgrowth at the interface of 2D and 3D growth environments

    NASA Astrophysics Data System (ADS)

    Kofron, Celinda M.; Fong, Vivian J.; Hoffman-Kim, Diane

    2009-02-01

    Growing neurons navigate complex environments, but in vitro systems for studying neuronal growth typically limit the cues to flat surfaces or a single type of cue, thereby limiting the resulting growth. Here we examined the growth of neurons presented with two-dimensional (2D) substrate-bound cues when these cues were presented in conjunction with a more complex three-dimensional (3D) architecture. Dorsal root ganglia (DRG) explants were cultured at the interface between a collagen I matrix and a glass coverslip. Laminin (LN) or chondroitin sulfate proteoglycans (CSPG) were uniformly coated on the surface of the glass coverslip or patterned in 50 µm tracks by microcontact printing. Quantitative analysis of neurite outgrowth with a novel grid system at multiple depths in the gel revealed several interesting trends. Most of the neurites extended at the surface of the gel when LN was presented whereas more neurites extended into the gel when CSPG was presented. Patterning of cues did not affect neurite density or depth of growth. However, neurite outgrowth near the surface of the gel aligned with LN patterns, and these extensions were significantly longer than neurites extended in other cultures. In interface cultures, DRG growth patterns varied with the type of cue where neurite density was higher in cultures presenting LN than in cultures presenting CSPG. These results represent an important step toward understanding how neurons integrate local structural and chemical cues to make net growth decisions.

  5. Growth, collapse, and stalling in a mechanical model for neurite motility

    NASA Astrophysics Data System (ADS)

    Recho, Pierre; Jerusalem, Antoine; Goriely, Alain

    2016-03-01

    Neurites, the long cellular protrusions that form the routes of the neuronal network, are capable of actively extending during early morphogenesis or regenerating after trauma. To perform this task, they rely on their cytoskeleton for mechanical support. In this paper, we present a three-component active gel model that describes neurites in the three robust mechanical states observed experimentally: collapsed, static, and motile. These states arise from an interplay between the physical forces driven by growth of the microtubule-rich inner core of the neurite and the acto-myosin contractility of its surrounding cortical membrane. In particular, static states appear as a mechanical traction or compression balance of these two parallel structures. The model predicts how the response of a neurite to a towing force depends on the force magnitude and recovers the response of neurites to several drug treatments that modulate the cytoskeleton active and passive properties.

  6. Changing growth of neurites of sensory ganglion by terahertz radiation

    NASA Astrophysics Data System (ADS)

    Tsurkan, M. V.; Smolyanskaya, O. A.; Bespalov, V. G.; Penniyainen, V. A.; Kipenko, A. V.; Lopatina, E. V.; Krylov, B. V.

    2012-02-01

    Application of terahertz radiation for the creation of medical equipment and solving of biological problems has become widely spread. From this point of view, the influence of THz radiation on the nerve fibers is of primary concern. In addition, several studies indicated both stimulating and depressive effects on nerve cells. However, the mechanism of this effect has not yet been studied, including the dose and exposure time. Our research was devoted to the impact of broadband pulsed THz radiation in the frequency range of 0.05 to 2 THz on the neurite growth in the sensory ganglia of 10-12-day chicken embryos. Dependence of changes in functional responses of cells on the average output power has been found. An increase in the stimulating effect was observed at the lowest power density used (0.5 μW/cm2). Through non-destructive process and choosing the correct parameters of THz radiation, potential control of neural response becomes possible, which can subsequently lead to new medical treatments.

  7. Survival and neurite growth of chick embryo spinal cord cells in serum-free culture.

    PubMed

    Tanaka, H; Obata, K

    1982-07-01

    Cell survival and neurite growth were investigated in serum-free spinal cord cell cultures on polyornithine coating (PORN). Cells were obtained from 6- or 7-day-old chick embryos. Isolated spinal cord cells required promoting factors for their survival and neurite growth. The survival-promoting factors were initially present in spinal cord cells. High density cultures, co-cultures with spinal cord explants, and spinal cord extract promoted survival of isolated spinal cord cells in MEM with no additives. Other tissue extracts (brain, liver, heart and skeletal muscle), serum, and serum-free conditioned medium (SF-CM) of muscle or glioma C6 cells also promoted survival. The active substances in the brain extract and SF-CM were shown to be protein and were separated into 3 fractions (approximately molecular weight 150,000, 70,000, 40,000) by gel filtration chromatography. Survival and neurite growth were suggested to be promoted by different factors because: (1) survival was promoted by both tissue extract and SF-CM, but neurite growth was promoted only by SF-CM; (2) the neurite growth-stimulating activity of SF-CM was lost following dialysis and heat (100 degrees C, 2 min) treatment; however, the survival-promoting activity was not. It was also suggested that spinal cord cells produce neurite growth promoting factors, but did not initially contain these factors.

  8. Oxytocin Increases Neurite Length and Expression of Cytoskeletal Proteins Associated with Neuronal Growth.

    PubMed

    Lestanova, Z; Bacova, Z; Kiss, A; Havranek, T; Strbak, V; Bakos, J

    2016-06-01

    Neuropeptide oxytocin acts as a growth and differentiation factor; however, its effects on neurite growth are poorly understood. The aims of the present study were (1) to evaluate time effects of oxytocin on expression of nestin and MAP2; (2) to measure the effect of oxytocin on gene expression of β-actin, vimentin, cofilin, and drebrin; and (3) to measure changes in neurite length and number in response to oxytocin/oxytocin receptor antagonist L-371,257. Exposure of SH-SY5Y cells to 1 μM oxytocin resulted in a significant increase in gene expression and protein levels of nestin after 12, 24, and 48 h. Oxytocin treatment induced no changes in gene expression of MAP2; however, a decrease of protein levels was observed in all time intervals. Gene expression of β-actin, vimentin, and drebrin increased in response to oxytocin. Oxytocin induced significant elongation of neurites after 12, 24, and 48 h. No change in neurite length was observed in the presence of the combination of retinoic acid and oxytocin receptor antagonist L-371,257. Oxytocin treatment for 12 h increased the number of neurites. Overall, the present data suggest that oxytocin contributes to the regulation of expression of cytoskeletal proteins associated with growth of neuronal cones and induces neurite elongation mediated by oxytocin receptors at least in certain types of neuronal cells.

  9. Tiam1 as a signaling mediator of nerve growth factor-dependent neurite outgrowth.

    PubMed

    Shirazi Fard, Shahrzad; Kele, Julianna; Vilar, Marçal; Paratcha, Gustavo; Ledda, Fernanda

    2010-03-19

    Nerve Growth Factor (NGF)-induced neuronal differentiation requires the activation of members of the Rho family of small GTPases. However, the molecular mechanisms through which NGF regulates cytoskeletal changes and neurite outgrowth are not totally understood. In this work, we identify the Rac1-specific guanine exchange factor (GEF) Tiam1 as a novel mediator of NGF/TrkA-dependent neurite elongation. In particular, we report that knockdown of Tiam1 causes a significant reduction in Rac1 activity and neurite outgrowth induced by NGF. Physical interaction between Tiam1 and active Ras (Ras-GTP), but not tyrosine phosphorylation of Tiam1, plays a central role in Rac1 activation by NGF. In addition, our findings indicate that Ras is required to associate Tiam1 with Rac1 and promote Rac1 activation upon NGF stimulation. Taken together, these findings define a novel molecular mechanism through which Tiam1 mediates TrkA signaling and neurite outgrowth induced by NGF.

  10. Enhanced Neurite Growth from Mammalian Neurons in Three-Dimensional Salmon Fibrin Gels

    PubMed Central

    Ju, Yo-El; Janmey, Paul A.; McCormick, Margaret; Sawyer, Evelyn S.; Flanagan, Lisa A.

    2007-01-01

    Three-dimensional fibrin matrices have been used as cellular substrates in vitro and as bridging materials for central nervous system repair. Cells can be embedded within fibrin gels since the polymerization process is non-toxic, making fibrin an attractive scaffold for transplanted cells. Most studies have utilized fibrin prepared from human or bovine blood proteins. However, fish fibrin may be well suited for neuronal growth since fish undergo remarkable central nervous system regeneration and molecules implicated in this process are present in fibrin. We assessed the growth of mammalian central nervous system neurons in bovine, human, and salmon fibrin and found that salmon fibrin gels encouraged the greatest degree of neurite (dendrite and axon) growth and were the most resistant to degradation by cellular proteases. The neurite growth-promoting effect was not due to the thrombin used to polymerize the gels or to any copurifying plasminogen. Co-purified fibronectin partially accounted for the effect on neurites, and blockade of fibrinogen/fibrin-binding integrins markedly decreased neurite growth. Anion exchange chromatography revealed different elution profiles for salmon and mammalian fibrinogens. These data demonstrate that salmon fibrin encourages the growth of neurites from mammalian neurons and suggest that salmon fibrin may be a beneficial scaffold for neuronal regrowth after CNS injury. PMID:17258313

  11. Androgen regulation of axon growth and neurite extension in motoneurons

    PubMed Central

    Fargo, Keith N.; Galbiati, Mariarita; Foecking, Eileen M.; Poletti, Angelo; Jones, Kathryn J.

    2008-01-01

    Androgens act on the CNS to affect motor function through interaction with a widespread distribution of intracellular androgen receptors (AR). This review highlights our work on androgens and process outgrowth in motoneurons, both in vitro and in vivo. The actions of androgens on motoneurons involve the generation of novel neuronal interactions that are mediated by the induction of androgen-dependent neurite or axonal outgrowth. Here, we summarize the experimental evidence for the androgenic regulation of the extension and regeneration of motoneuron neurites in vitro using cultured immortalized motoneurons, and axons in vivo using the hamster facial nerve crush paradigm. We place particular emphasis on the relevance of these effects to SBMA and peripheral nerve injuries. PMID:18387610

  12. Design of 3D engineered protein hydrogels for tailored control of neurite growth

    PubMed Central

    Lampe, Kyle J.; Antaris, Alexander L.; Heilshorn, Sarah C.

    2013-01-01

    The design of bioactive materials allows for tailored studies probing cell-biomaterial interactions; however, relatively few studies have examined effects of ligand density and material stiffness on neurite growth in 3D. Elastin-like proteins (ELPs) have been designed with modular bioactive and structural regions to enable the systematic characterization of design parameters within 3D materials. To promote neurite outgrowth and better understand the effects of common biomaterial design parameters on neuronal cultures, we here focused on cell-adhesive ligand density and hydrogel stiffness as design variables for ELP hydrogels. With the inherent design freedom of engineered proteins, these 3D ELP hydrogels enabled decoupled investigation into the effects of biomechanics and biochemistry on neurite outgrowth from dorsal root ganglia (DRG). Increasing the cell-adhesive RGD ligand density from 0 to 1.9 × 107 ligands/μm3 led to a significant increase in the rate, length, and density of neurite outgrowth, as quantified by a high-throughput algorithm developed for dense neurite analysis. An approximately two-fold improvement in total neurite outgrowth was observed in materials with the higher ligand density at all time-points through 7 days. ELP hydrogels with initial elastic moduli of 0.5, 1.5, or 2.1 kPa and identical RGD ligand densities revealed that the most compliant materials led to the greatest outgrowth, with some neurites extending over 1800 μm by day 7. Given the ability of ELP hydrogels to efficiently promote neurite outgrowth within defined and tunable 3D microenvironments, these materials may be useful in developing therapeutic nerve guides and the further study of basic neuron-biomaterial interactions. PMID:23128159

  13. Influence of bone morphogenetic protein-2 on spiral ganglion neurite growth in vitro.

    PubMed

    Volkenstein, Stefan; Brors, D; Hansen, S; Minovi, A; Laub, M; Jennissen, H P; Dazert, S; Neumann, A

    2009-09-01

    Recombinant human bone morphogenetic protein-2 (rhBMP-2) is a growth factor of the transforming growth factor-beta superfamily. Members of this protein family are involved in the development of various mammalian tissues, including the inner ear. As their notations indicate, they also have well-known effects on bone formation and regeneration. In this study, we examined the influence of rhBMP-2 on spiral ganglion (SG) neurite growth in vitro and showed the presence of its most preferred receptor BMPR-IB in spiral ganglion cells both in vitro and in vivo. SG explants of postnatal day 4 rats were analysed for neurite length and number after organotypical cell culture for 72 h, fixation and immunolabeling. Different concentrations of rhBMP-2 were used in a serum-free culture media. Neurite growth was compared with control groups that lacked stimulative effects; with neutrophin-3 (NT-3), which is a well-established positive stimulus on neurite length and number; and with combinations of these parameters. The results display that neurite number and total neurite length per explant in particular concentrations of rhBMP-2 increased by a maximum factor of two, while the mean neurite length was not affected. NT-3 demonstrated a much more potent effect, delivering a maximum increase of a factor of five. Furthermore, a combination of both growth factors shows a predominant effect on NT-3. Immunohistological detection of BMPR-IB was successful both in cell culture explants and in paraffin-embedded sections of animals of different ages. The results show that rhBMP-2 is, among other growth factors, a positive stimulus for SG neurite growth in vitro. Most growth factors are unstable and cannot be attached to surfaces without loss of their biological function. In contrast, rhBMP-2 can be attached to metal surfaces without loss of activity. Our findings suggest in vivo studies and a future clinical application of rhBMP-2 in cochlear implant technology to improve the tissue

  14. Polyester with Pendent Acetylcholine-Mimicking Functionalities Promotes Neurite Growth.

    PubMed

    Wang, Shaofei; Jeffries, Eric; Gao, Jin; Sun, Lijie; You, Zhengwei; Wang, Yadong

    2016-04-20

    Successful regeneration of nerves can benefit from biomaterials that provide a supportive biochemical and mechanical environment while also degrading with controlled inflammation and minimal scar formation. Herein, we report a neuroactive polymer functionalized by covalent attachment of the neurotransmitter acetylcholine (Ach). The polymer was readily synthesized in two steps from poly(sebacoyl diglyceride) (PSeD), which previously demonstrated biocompatibility and biodegradation in vivo. Distinct from prior acetylcholine-biomimetic polymers, PSeD-Ach contains both quaternary ammonium and free acetyl moieties, closely resembling native acetylcholine structure. The polymer structure was confirmed via (1)H nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Hydrophilicity, charge, and thermal properties of PSeD-Ach were determined by tensiometer, zetasizer, differential scanning calorimetry, and thermal gravimetric analysis, respectively. PC12 cells exhibited the greatest proliferation and neurite outgrowth on PSeD-Ach and laminin substrates, with no significant difference between these groups. PSeD-Ach yielded much longer neurite outgrowth than the control polymer containing ammonium but no the acetyl group, confirming the importance of the entire acetylcholine-like moiety. Furthermore, PSeD-Ach supports adhesion of primary rat dorsal root ganglions and subsequent neurite sprouting and extension. The sprouting rate is comparable to the best conditions from previous report. Our findings are significant in that they were obtained with acetylcholine-like functionalities in 100% repeating units, a condition shown to yield significant toxicity in prior publications. Moreover, PSeD-Ach exhibited favorable mechanical and degradation properties for nerve tissue engineering application. Humidified PSeD-Ach had an elastic modulus of 76.9 kPa, close to native neural tissue, and could well recover from cyclic dynamic compression. PSeD-Ach showed a gradual in

  15. Retinoic acid induces neurite outgrowth and growth cone turning in invertebrate neurons.

    PubMed

    Dmetrichuk, Jennifer M; Carlone, Robert L; Spencer, Gaynor E

    2006-06-01

    Identification of molecules involved in neurite outgrowth during development and/or regeneration is a major goal in the field of neuroscience. Retinoic acid (RA) is a biologically important metabolite of vitamin A that acts as a trophic factor and has been implicated in neurite outgrowth and regeneration in many vertebrate species. Although abundant in the CNS of many vertebrates, the precise role of RA in neural regeneration has yet to be determined. Moreover, very little information is available regarding the role of RA in invertebrate nervous systems. Here, we demonstrate for the first time that RA induces neurite outgrowth from invertebrate neurons. Using individually identified neurons isolated from the CNS of Lymnaea stagnalis, we demonstrated that a significantly greater proportion of cells produced neurite outgrowth in RA. RA also extended the duration of time that cells remained electrically excitable in vitro, and we showed that exogenously applied RA acted as a chemoattractive factor and induced growth cone turning toward the source of RA. This is the first demonstration that RA can induce turning of an individual growth cone. These data strongly suggest that the actions of RA on neurite outgrowth and cell survival are highly conserved across species.

  16. Effects of DDT and permethrin on neurite growth in cultured neurons of chick embryo brain and Lymnaea stagnalis.

    PubMed

    Ferguson, C A; Audesirk, G

    1990-01-01

    The pesticides permethrin and 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT), dissolved in either ethanol (EtOH) or dimethylsulphoxide (DMSO), were studied to determine their effect on neurite growth from cultured neurons of Lymnaea stagnalis and embryonic chicks. Both of these toxins decreased the percentage of neurons growing neurites, mean neurite length, and number of neurites/cell in a dose-dependent manner. DMSO increased the toxicity of permethrin and DDT in L. stagnalis neurons. EtOH was not used as a solvent with the embryonic chick cultures. Pre-existing neurites of L. stagnalis neurons exposed to permethrin regressed in a dose- and time-dependent manner. These two toxins may affect neurite outgrowth through interference with intracellular calcium regulation.

  17. GAP-43 overexpression in adult mouse Purkinje cells overrides myelin-derived inhibition of neurite growth.

    PubMed

    Gianola, Sara; Rossi, Ferdinando

    2004-02-01

    Up-regulation of growth-associated proteins in adult neurons promotes axon regeneration and neuritic elongation onto nonpermissive substrates. To investigate the interaction between these molecules and myelin-related inhibitory factors, we examined transgenic mice in which overexpression of the growth-associated protein GAP-43 is driven by the Purkinje cell-specific promoter L7. Contrary to their wild-type counterparts, which have extremely poor regenerative capabilities, axotomized transgenic Purkinje cells exhibit profuse sprouting along the intracortical neurite and at the severed stump [Buffo et al. (1997) J. Neurosci., 17, 8778-8791]. Here, we investigated the relationship between such sprouting axons and oligodendroglia to ask whether GAP-43 overexpression enables Purkinje neurites to overcome myelin-derived inhibition. Intact transgenic Purkinje axons display normal morphology and myelination. Following injury, however, many GAP-43-overexpressing neurite stumps are devoid of myelin cover and sprout into white matter regions containing densely packed myelin and Nogo-A- or MAG-immunopositive oligodendrocytes. The intracortical segments of these neurites show focal accumulations of GAP-43, which are associated with disrupted or retracted myelin sheaths. Numerous sprouts originate from such demyelinated segments and spread into the granular layer. Some myelin loss, though not axon sprouting, is also evident in wild-type mice, but this phenomenon is definitely more rapid and extensive in transgenic cerebella. Thus, GAP-43-overexpressing Purkinje axons are endowed with enhanced capabilities for growing into nonpermissive territories and show a pronounced tendency to lose myelin. Our observations suggest that accumulation of GAP-43 along precise axon segments disrupts the normal axon-glia interaction and enhances the retraction of oligodendrocytic processes to facilitate the outgrowth of neuritic sprouts.

  18. Controlled neuronal cell patterning and guided neurite growth on micropatterned nanofiber platforms

    NASA Astrophysics Data System (ADS)

    Malkoc, Veysi; Gallego-Perez, Daniel; Nelson, Tyler; Lannutti, John J.; Hansford, Derek J.

    2015-12-01

    Patterning neuronal cells and guiding neurite growth are important for applications such as prosthetics, cell based biosensors, and tissue engineering. In this paper, a microdevice is presented that provides neuronal cell patterning and guided neurite growth on a collagen coated gelatin/PCL nanofiber mat. The pattern consisted of a grid of polystyrene microwells/nodes to confine the cell bodies and orthogonal grooves to guide neurite growth from each node. Vacuum assisted cell seeding was used to localize cell bodies in the microwells and physically separate the cells during seeding. The electrospun nanofiber mats under the polystyrene microstructures were coated with collagen to enhance the cellular attachment and enhance differentiation. We evaluated the performance of our device using adhesion, viability, and differentiation assays of neuron-like PC12 cells compared to controls for vacuum seeding, spatial isolation and guidance, and collagen coating of the fibers. The device provided PC12 cell patterning with increased adhesion, differentiation, and guided neurite outgrowth compared to controls, demonstrating its potential for in vitro neuronal cell patterning studies.

  19. Control of neurite outgrowth and growth cone motility by phosphatidylinositol-3-kinase.

    PubMed

    Tornieri, Karine; Welshhans, Kristy; Geddis, Matthew S; Rehder, Vincent

    2006-04-01

    Phosphatidylinositol-3-kinase (PI-3K) has been reported to affect neurite outgrowth both in vivo and in vitro. Here we investigated the signaling pathways by which PI-3K affects neurite outgrowth and growth cone motility in identified snail neurons in vitro. Inhibition of PI-3K with wortmannin (2 microM) or LY 294002 (25 microM) resulted in a significant elongation of filopodia and in a slow-down of neurite outgrowth. Experiments using cytochalasin and blebbistatin, drugs that interfere with actin polymerization and myosin II activity, respectively, demonstrated that filopodial elongation resulting from PI-3K inhibition was dependent on actin polymerization. Inhibition of strategic kinases located downstream of PI-3K, such as Akt, ROCK, and MEK, also caused significant filopodial elongation and a slow-down in neurite outgrowth. Another growth cone parameter, filopodial number, was not affected by inhibition of PI-3K, Akt, ROCK, or MEK. A detailed study of growth cone behavior showed that the filopodial elongation induced by inhibiting PI-3K, Akt, ROCK, and MEK was achieved by increasing two motility parameters: the rate with which filopodia extend (extension rate) and the time that filopodia spend elongating. Whereas the inhibition of ROCK or Akt (both activated by the lipid kinase activity of PI-3K) and MEK (activated by the protein kinase activity of PI-3K) had additive effects, simultaneous inhibition of Akt and ROCK showed no additive effect. We further demonstrate that the effects on filopodial dynamics investigated were calcium-independent. Taken together, our results suggest that inhibition of PI-3K signaling results in filopodial elongation and a slow-down of neurite advance, reminiscent of growth cone searching behavior.

  20. Effects of nerve growth factor and heart cell conditioned medium on neurite regeneration of aged sympathetic neurons in culture.

    PubMed

    Uchida, Y; Tomonaga, M

    1985-11-25

    The effects of nerve growth factor (NGF) and heart-cell-conditioned medium (HCM) on the neurite regeneration of aged sympathetic neurons were investigated in culture. Investigation of HCM was carried out by two different methods: one was the use of whole HCM on collagen substratum, which reflected component(s) effective in solution (HCM-S); the other was the use of polyornithine (PORN)-binding component(s) (P-HCM). Superior cervical ganglion neurons prepared from male mice from 6 to 30 months of age were cultured in MEM-10% FCS on collagen or gelatin-PORN substratum for 3 days. The number of neurons with neurites and the length of neurites were quantified as neurite production and elongation, respectively. Neuronal survival was not affected by addition of NGF, HCM-S or P-HCM. Neurite production of early adult neurons was enhanced by NGF, HCM-S or P-HCM. In contrast, neurite production of aged neurons was enhanced by only HCM-S, but not NGF or P-HCM. HCM-S did not promote neurite elongation in neurons at any age. Neurite elongation of early adult neurons was enhanced by NGF or P-HCM. Neurite elongation of aged neurons was enhanced by P-HCM. However, responsiveness of NGF for neurite elongation varied according to substrata. No age-related difference was found in neurite production and elongation in the absence of NGF, HCM-S or P-HCM. These results indicate that responsiveness of aged sympathetic neurons is various in different growth factors.

  1. Synergistic effects of cyclic AMP and nerve growth factor on neurite outgrowth and microtubule stability of PC12 cells

    PubMed Central

    1985-01-01

    The outgrowth of neurites from rat PC12 cells stimulated by combined treatment of nerve growth factor (NGF) with cAMP is significantly more rapid and extensive than the outgrowth induced by either factor alone. We have compared the responses of PC12 cells under three different growth conditions, NGF alone, cAMP alone, and combined treatment, with respect to surface morphology, rapidity of neurite outgrowth, and stability of neurite microtubules, to understand the synergistic action of NGF and cAMP on PC12. Surface events at early times in these growth conditions varied, suggesting divergent pathways of action of NGF and cAMP. This suggestion is strongly supported by the finding that cells exposed to saturating levels of dibutyryl cAMP without substantial neurite outgrowth initiated neurites within 5 min of NGF. This response has been adopted as a convenient assay for NGF. Neurites that regenerated in the three growth conditions showed marked differences in stability to treatments that depolymerize microtubules. The results indicate that microtubules in cells treated with both NGF and cAMP are significantly more stable than in either growth factor alone. We suggest that a shift of the assembly equilibrium favoring tubulin assembly is a necessary prerequisite for the initiation of neurites by PC12. PMID:2982887

  2. Tiam1 as a Signaling Mediator of Nerve Growth Factor-Dependent Neurite Outgrowth

    PubMed Central

    Vilar, Marçal; Paratcha, Gustavo; Ledda, Fernanda

    2010-01-01

    Nerve Growth Factor (NGF)-induced neuronal differentiation requires the activation of members of the Rho family of small GTPases. However, the molecular mechanisms through which NGF regulates cytoskeletal changes and neurite outgrowth are not totally understood. In this work, we identify the Rac1-specific guanine exchange factor (GEF) Tiam1 as a novel mediator of NGF/TrkA-dependent neurite elongation. In particular, we report that knockdown of Tiam1 causes a significant reduction in Rac1 activity and neurite outgrowth induced by NGF. Physical interaction between Tiam1 and active Ras (Ras-GTP), but not tyrosine phosphorylation of Tiam1, plays a central role in Rac1 activation by NGF. In addition, our findings indicate that Ras is required to associate Tiam1 with Rac1 and promote Rac1 activation upon NGF stimulation. Taken together, these findings define a novel molecular mechanism through which Tiam1 mediates TrkA signaling and neurite outgrowth induced by NGF. PMID:20333299

  3. Hearing development and spiral ganglion neurite growth in VASP deficient mice.

    PubMed

    Dazert, Stefan; Schick, Bernhard; Hartensuer, Rene; Volkenstein, Stefan; Aletsee, Christoph; Hansen, Stefan; Shehata-Dieler, Wafaa E; Eigenthaler, Martin; Walter, Ulrich; Ryan, Allen F; Brors, Dominik

    2007-10-31

    Vasodilator-stimulated phosphoprotein (VASP) has been found to be involved in intracellular signalling pathways and to play an important role in the actin associated organization and formation of the cytoskeleton. Since differential VASP expression was noted in inner ear tissues, the present study was performed to investigate the hearing development in VASP deficient mice. Hearing development in VASP-/- mice and wild type animals was investigated by auditory brain stem (ABR) measurements. In addition, inner ear tissues of wild type animals were tested for VASP expression using PCR, Western blot analysis, in situ hybridisation, and immunohistochemistry. To compare spiral ganglion (SG) neurite growth, SG explants from VASP-/- and wild type mice were analyzed under cell culture conditions. The electroacoustical results of the present study indicate that VASP deficient mice present with a later onset of hearing during postnatal development compared to wild type animals. Transient VASP expression was detected in neonatal SG of wild type mice. Tissue culture experiments with SG explants from VASP-/- animals revealed significant alterations in SG neurite extension compared to wild types. The present findings suggest a role for VASP during neonatal development of the mammalian cochlea and allow speculation on a possible delayed innervation of cochlear hair cells due to changes in SG neurite growth in VASP-deficient mice. Temporary VASP deficits in the neonatal inner ear may be compensated by related proteins like MENA leading to a delayed but complete development of hearing function in VASP-/- animals.

  4. Spatial Phosphoprotein Profiling Reveals a Compartmentalized Extracellular Signal-regulated Kinase Switch Governing Neurite Growth and Retraction

    SciTech Connect

    Wang, Yingchun; Yang, Feng; Fu, Yi; Huang, Xiahe; Wang, Wei; Jiang, Xining; Gritsenko, Marina A.; Zhao, Rui; Monroe, Matthew E.; Pertz, Olivier C.; Purvine, Samuel O.; Orton, Daniel J.; Jacobs, Jon M.; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

    2011-05-20

    Abstract - Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signaling pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.

  5. Intact glycosaminoglycans from intervertebral disc-derived notochordal cell-conditioned media inhibit neurite growth while maintaining neuronal cell viability.

    PubMed

    Purmessur, Devina; Cornejo, Marisa C; Cho, Samuel K; Roughley, Peter J; Linhardt, Robert J; Hecht, Andrew C; Iatridis, James C

    2015-05-01

    Painful human intervertebral discs (IVDs) exhibit nerve growth deep into the IVD. Current treatments for discogenic back pain do not address the underlying mechanisms propagating pain and are often highly invasive or only offer temporary symptom relief. The notochord produces factors during development that pattern the spine and inhibit the growth of dorsal root ganglion (DRG) axons into the IVD. We hypothesize that notochordal cell (NC)-conditioned medium (NCCM) includes soluble factors capable of inhibiting neurite growth and may represent a future therapeutic target. To test if NCCM can inhibit neurite growth and determine if NC-derived glycosaminoglycans (GAGs) are necessary candidates for this inhibition. Human neuroblastoma (SH-SY5Y) cells and rat DRG cells were treated with NCCM in two-dimensional culture in vitro, and digestion and mechanistic studies determined if specific GAGs were responsible for inhibitory effects. Notochordal cell-conditioned medium was generated from porcine nucleus pulposus tissue that was cultured in Dulbecco's modified eagle's medium for 4 days. A dose study was performed using SH-SY5Y cells that were seeded in basal medium for 24 hours and neurite outgrowth and cell viability were assessed after treatment with basal media or NCCM (10% and 100%) for 48 hours. Glycosaminoglycans from NCCM were characterized using multiple digestions and liquid chromatography mass spectroscopy (LC-MS). Neurite growth was assessed on both SH-SY5Y and DRG cells after treatment with NCCM with and without GAG digestion. Notochordal cell-conditioned medium significantly inhibited the neurite outgrowth from SH-SY5Y cells compared with basal controls without dose or cytotoxic effects; % of neurite expressing cells were 39.0±2.9%, 27.3±3.6%, and 30.2±2.7% and mean neurite length was 60.3±3.5, 50.8±2.4, 53.2±3.7 μm for basal, 10% NCCM, and 100% NCCM, respectively. Digestions and LC-MS determined that chondroitin-6-sulfate was the major GAG chain in

  6. Basic Fibroblast Growth Factor Induces Angiogenesis in vitro

    NASA Astrophysics Data System (ADS)

    Montesano, R.; Vassalli, J.-D.; Baird, A.; Guillemin, R.; Orci, L.

    1986-10-01

    Fibroblast growth factors (FGFs) are potent mitogens for vascular and capillary endothelial cells in vitro and can stimulate the formation of blood capillaries (angiogenesis) in vivo. A crucial event in this process is the invasion of the perivascular extracellular matrix by sprouting endothelial cells. Using a recently developed in vitro model of angiogenesis, we show here that highly purified basic pituitary FGF can induce capillary endothelial cells to invade a three-dimensional collagen matrix and to organize themselves to form characteristic tubules that resemble blood capillaries. We also show that basic FGF concomitantly stimulates endothelial cells to produce a urokinase-type plasminogen activator, a protease that has been implicated in the neovascular response. The results demonstrate that basic FGF can stimulate processes that are characteristic of angiogenesis in vivo, including endothelial cell migration, invasion, and production of plasminogen activator.

  7. Keratinocyte growth factor induces pancreatic ductal epithelial proliferation.

    PubMed

    Yi, E S; Yin, S; Harclerode, D L; Bedoya, A; Bikhazi, N B; Housley, R M; Aukerman, S L; Morris, C F; Pierce, G F; Ulich, T R

    1994-07-01

    Keratinocyte growth factor (KGF) causes a proliferation of pancreatic ductal epithelial cells in adult rats after daily systemic administration for 1 to 2 weeks. Even before the proliferation of intralobular ducts is histologically evident, KGF also induces proliferating cell nuclear antigen expression within the ductal epithelium of intercalated, intralobular, and interlobular ducts. KGF also causes incorporation of 5-bromodeoxyuridine in ductal epithelial cells. Epithelial cell proliferation is histologically most prominent at the level of the intralobular ducts adjacent to and within the islets of Langerhans. Pancreatic ductal proliferation is not histologically apparent in rats sacrificed 7 to 10 days after the cessation of KGF administration. The pancreatic hormones insulin, glucagon, somatostatin, and pancreatic polypeptide are normally distributed within islets that demonstrate intrainsular ductal proliferation. The proliferating ductal epithelium does not show endocrine differentiation as evidenced by the lack of immunoreactivity for pancreatic hormones. KGF is a potent in vivo mitogen for pancreatic ductal epithelial cells.

  8. Connective tissue growth factor induces cardiac hypertrophy through Akt signaling

    SciTech Connect

    Hayata, Nozomi; Fujio, Yasushi; Yamamoto, Yasuhiro; Iwakura, Tomohiko; Obana, Masanori; Takai, Mika; Mohri, Tomomi; Nonen, Shinpei; Maeda, Makiko; Azuma, Junichi

    2008-05-30

    In the process of cardiac remodeling, connective tissue growth factor (CTGF/CCN2) is secreted from cardiac myocytes. Though CTGF is well known to promote fibroblast proliferation, its pathophysiological effects in cardiac myocytes remain to be elucidated. In this study, we examined the biological effects of CTGF in rat neonatal cardiomyocytes. Cardiac myocytes stimulated with full length CTGF and its C-terminal region peptide showed the increase in cell surface area. Similar to hypertrophic ligands for G-protein coupled receptors, such as endothelin-1, CTGF activated amino acid uptake; however, CTGF-induced hypertrophy is not associated with the increased expression of skeletal actin or BNP, analyzed by Northern-blotting. CTGF treatment activated ERK1/2, p38 MAPK, JNK and Akt. The inhibition of Akt by transducing dominant-negative Akt abrogated CTGF-mediated increase in cell size, while the inhibition of MAP kinases did not affect the cardiac hypertrophy. These findings indicate that CTGF is a novel hypertrophic factor in cardiac myocytes.

  9. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    SciTech Connect

    Chen, Chih-Hao; Kuo, Shyh Ming; Liu, Guei-Sheung; Chen, Wan-Nan U.; Chuang, Chin-Wen; Liu, Li-Feng

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  10. Epidermal Growth Factor-induced Vacuolar (H+)-ATPase Assembly

    PubMed Central

    Xu, Yanqing; Parmar, Amanda; Roux, Emmanuelle; Balbis, Alejandro; Dumas, Victor; Chevalier, Stephanie; Posner, Barry I.

    2012-01-01

    Using proteomics and immunofluorescence, we demonstrated epidermal growth factor (EGF) induced recruitment of extrinsic V1 subunits of the vacuolar (H+)-ATPase (V-ATPase) to rat liver endosomes. This was accompanied by reduced vacuolar pH. Bafilomycin, an inhibitor of V-ATPase, inhibited EGF-stimulated DNA synthesis and mammalian target of rapamycin complex 1 (mTORC1) activation as indicated by a decrease in eukaryotic initiation factor 4E-binding 1 (4E-BP1) phosphorylation and p70 ribosomal S6 protein kinase (p70S6K) phosphorylation and kinase activity. There was no corresponding inhibition of EGF-induced Akt and extracellular signal-regulated kinase (Erk) activation. Chloroquine, a neutralizer of vacuolar pH, mimicked bafilomycin effects. Bafilomycin did not inhibit the association of mTORC1 with Raptor nor did it affect AMP-activated protein kinase activity. Rather, the intracellular concentrations of essential but not non-essential amino acids were decreased by bafilomycin in EGF-treated primary rat hepatocytes. Cycloheximide, a translation elongation inhibitor known to augment intracellular amino acid levels, prevented the effect of bafilomycin on amino acids levels and completely reversed its inhibition of EGF-induced mTORC1 activation. In vivo administration of EGF stimulated the recruitment of Ras homologue enriched in brain (Rheb) but not mammalian target of rapamycin (mTOR) to endosomes and lysosomes. This was inhibited by chloroquine treatment. Our results suggest a role for vacuolar acidification in EGF signaling to mTORC1. PMID:22689575

  11. Identification of a Peripheral Nerve Neurite Growth-Promoting Activity by Development and Use of an in vitro Bioassay

    NASA Astrophysics Data System (ADS)

    Sandrock, Alfred W.; Matthew, William D.

    1987-10-01

    The effective regeneration of severed neuronal axons in the peripheral nerves of adult mammals may be explained by the presence of molecules in situ that promote the effective elongation of neurites. The absence of such molecules in the central nervous system of these animals may underlie the relative inability of axons to regenerate in this tissue after injury. In an effort to identify neurite growth-promoting molecules in tissues that support effective axonal regeneration, we have developed an in vitro bioassay that is sensitive to substrate-bound factors of peripheral nerve that influence the growth of neurites. In this assay, neonatal rat superior cervical ganglion explants are placed on longitudinal cryostat sections of fresh-frozen sciatic nerve, and the regrowing axons are visualized by catecholamine histofluorescence. Axons are found to regenerate effectively over sciatic nerve tissue sections. When ganglia are similarly explanted onto cryostat sections of adult rat central nervous system tissue, however, axonal regeneration is virtually absent. We have begun to identify the molecules in peripheral nerve that promote effective axonal regeneration by examining the effect of antibodies that interfere with the activity of previously described neurite growth-promoting factors. Axonal elongation over sciatic nerve tissue was found to be sensitive to the inhibitory effects of INO (for inhibitor of neurite outgrowth), a monoclonal antibody that recognizes and inhibits a neurite growth-promoting activity from PC-12 cell-conditioned medium. The INO antigen appears to be a molecular complex of laminin and heparan sulfate proteoglycan. In contrast, a rabbit antiserum that recognizes laminin purified from mouse Engelbreth-Holm-Swarm (EHS) sarcoma, stains the Schwann cell basal lamina of peripheral nerve, and inhibits neurite growth over purified laminin substrata has no detectable effect on the rate of axonal regeneration in our assay.

  12. Nerve growth factor-immobilized polypyrrole: Bioactive electrically conducting polymer for enhanced neurite extension

    PubMed Central

    Gomez, Natalia; Schmidt, Christine E.

    2010-01-01

    Biomaterials that present multiple stimuli are attractive for a number of biomedical applications. In particular, electrical and biological cues are important factors to include in interfaces with neurons for applications such as nerve conduits and neural probes. Here, we report the combination of these two stimuli, by immobilizing nerve growth factor (NGF) on the surface of the electrically conducting polymer polypyrrole (PPy). NGF was immobilized using an intermediate linker provided by a layer of polyallylamine conjugated to an arylazido functional group. Upon exposure to UV light and activation of the azido groups, NGF was fixed to the substrate. Three different surface concentrations were obtained (0.21–0.98 ng/mm2) and similar levels of neurite extension were observed on immobilized NGF as with soluble NGF. Additionally, electrical stimulation experiments were conducted with the modified polymer and revealed a 50% increase in neurite outgrowth in PC12 cells compared to experiments without electrical stimulation. This novel modification of PPy provides both electrical and biological stimulation, by presenting tethered growth factors and only producing a small decrease in the material's properties (conductivity ~10 S cm−1) when compared to other modification techniques (conductivity ~10−3–10−6 S cm−1. PMID:17111407

  13. Nerve growth factor and cytokines mediate lymphoid tissue-induced neurite outgrowth from mouse superior cervical ganglia in vitro.

    PubMed

    Kannan, Y; Bienenstock, J; Ohta, M; Stanisz, A M; Stead, R H

    1996-07-01

    Superior cervical ganglia (SCG) from neonatal mice were cultured with adult murine lymphoid tissue explants in Matrigel (Collaborative Biomedical, Bedford, MA). After 1 and 2 days in culture, many neurites grew toward thymus and spleen. Normal mesenteric lymph node (MLN) induced a smaller effect; however, activated MLN (isolated from mice 10 days after infection with Nippostrongylus brasiliensis; Nb-MLN-10d) caused significantly increased neurite outgrowth. To determine the roles of nerve growth factor (NGF) and cytokines in the promotion of neuritogenesis by lymphoid tissues, anti-NGF and various anti-cytokines were added to cocultures. Anti-NGF inhibited most of the neurite outgrowth toward thymus and spleen but only partially that toward Nb-MLN-10d. Anti-mouse IL-1 beta also significantly reduced the number of neurites growing toward thymus, spleen, and normal MLN. The number of neurites growing toward Nb-MLN-10d was significantly reduced by anti-IL-1 beta, anti-IL-3, anti-IL-6, or anti-GM-CSF. Exogenous IL-1 beta and IL-3 caused neurite outgrowth in single SCG cultures; and the IL-1 beta-, but not the IL-3-, mediated effect was completely blocked by anti-NGF. In one-day thymus/SCG cocultures, endogenous IL-1 was not detectable at concentrations sufficient to cause nerve growth; however, ample NGF was present in the thymic tissues and culture supernatants, but not in SCG. These data suggest that IL-1 mediates NGF production in lymphoid tissues, which in turn induces the growth of sympathetic nerves. Moreover, IL-3, IL-6, or GM-CSF produced during inflammation might also play important roles in the stimulation of nerve growth in vivo.

  14. Obesity and Postmenopausal Breast Cancer Risk: Determining the Role of Growth Factor-Induced Aromatase Expression

    DTIC Science & Technology

    2013-01-01

    Moreau T, Senouci K, Salmon RJ, Fourquet A, Asselain B. Is obesity an independent prognosis factor in woman breast cancer ? Breast Cancer Res Treat...1 AD__________________________ Award number: W81XWH-11-1-0132 Title: Obesity and Postmenopausal Breast Cancer Risk: Determining the Role... Obesity and Postmenopausal Breast Cancer Risk: Determining the Role of Growth Factor-Induced Aromatase Expression 5a. CONTRACT NUMBER 5b. GRANT

  15. The serine/threonine kinase Ndr2 controls integrin trafficking and integrin-dependent neurite growth.

    PubMed

    Rehberg, Kati; Kliche, Stefanie; Madencioglu, Deniz A; Thiere, Marlen; Müller, Bettina; Meineke, Bernhard Manuel; Freund, Christian; Budinger, Eike; Stork, Oliver

    2014-04-09

    Integrins have been implicated in various processes of nervous system development, including proliferation, migration, and differentiation of neuronal cells. In this study, we show that the serine/threonine kinase Ndr2 controls integrin-dependent dendritic and axonal growth in mouse hippocampal neurons. We further demonstrate that Ndr2 is able to induce phosphorylation at the activity- and trafficking-relevant site Thr(788/789) of β1-integrin to stimulate the PKC- and CaMKII-dependent activation of β1-integrins, as well as their exocytosis. Accordingly, Ndr2 associates with integrin-positive early and recycling endosomes in primary hippocampal neurons and the surface expression of activated β1-integrins is reduced on dendrites of Ndr2-deficient neurons. The role of Ndr2 in dendritic differentiation is also evident in vivo, because Ndr2-null mutant mice show arbor-specific alterations of dendritic complexity in the hippocampus. This indicates a role of Ndr2 in the fine regulation of dendritic growth; in fact, treatment of primary neurons with Semaphorin 3A rescues Ndr2 knock-down-induced dendritic growth deficits but fails to enhance growth beyond control level. Correspondingly, Ndr2-null mutant mice show a Semaphorin 3A(-/-)-like phenotype of premature dendritic branching in the hippocampus. The results of this study show that Ndr2-mediated integrin trafficking and activation are crucial for neurite growth and guidance signals during neuronal development.

  16. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    SciTech Connect

    Montesano, Roberto Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hitherto unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.

  17. New potent accelerator of neurite outgrowth from Lawsonia inermis flower under non-fasting condition.

    PubMed

    Oda, Yoshimi; Nakashima, Souichi; Nakamura, Seikou; Yano, Mamiko; Akiyama, Masanori; Imai, Kayo; Kimura, Tomohito; Nakata, Akiko; Tani, Miyuki; Matsuda, Hisashi

    2016-07-01

    The methanolic extract of Lawsonia inermis L. (henna) showed accelerative effects on nerve growth factor-induced neurite outgrowth in PC12 cells under non-fasting conditions. To elucidate the active constituents responsible for the neuronal differentiation, we conducted a search of the constituents and examined their accelerative effects on neurite outgrowth in PC12 cells. We isolated a new acetophenone glycoside, inermioside A, which exerted a significant accelerative effect on neurite outgrowth. We also confirmed the activities of nine known compounds, including quercetin and lalioside. In addition, we found that quercetin, one of the active constituents, increased Vav3 mRNA expression.

  18. Negletein as a neuroprotectant enhances the action of nerve growth factor and induces neurite outgrowth in PC12 cells.

    PubMed

    Phan, Chia-Wei; Sabaratnam, Vikineswary; Bovicelli, Paolo; Righi, Giuliana; Saso, Luciano

    2016-11-12

    Negletein has been shown to have therapeutic potential for inflammation-associated diseases, but its effect on neurite outgrowth is still unknown. The present study showed that negletein alone did not trigger PC12 cells to differentiate and extend neurites. When compared with the cells in the untreated control, a significant (P < 0.05) induction and a higher neurite outgrowth activity was observed when the cells were cotreated with negletein (10 µM) and a low dose of nerve growth factor (NGF; 5 ng/mL). The neurite outgrowth process was blocked by the tyrosine kinase receptor (Trk) inhibitor, K252a, suggesting that the neuritogenic effect was NGF-dependent. Negletein (10 µM) together with NGF (5 ng/mL) enhanced the phosphorylation of extracellular signal-regulated kinases (ERKs), protein kinase B (Akt), and cAMP response element-binding protein (CREB). The growth associated protein-43 (GAP-43) and the NGF level were also upregulated by negletein (10 µM) and a low dose of NGF (5 ng/mL). Negletein at nanomolar concentration also was found to be sufficient to mediate the survival of serum-deprived PC12 cells up to 72 h. Taken together, negletein might be useful as an efficient bioactive compound to protect neurons from cell death and promote neuritogenesis. © 2016 BioFactors, 42(6):591-599, 2016.

  19. Optimization of adult sensory neuron electroporation to study mechanisms of neurite growth

    PubMed Central

    McCall, Julianne; Nicholson, LaShae; Weidner, Norbert; Blesch, Armin

    2012-01-01

    The development of eukaryotic transfection technologies has been rapid in recent years, providing the opportunity to better analyze cell-autonomous mechanisms influencing various cellular processes, including cell-intrinsic regulators of regenerative neurite growth and survival. Electroporation is one of the more effective methodologies for transfection of post-mitotic neurons demonstrating sufficient neuronal survival and transfection efficiency. To further maximize the number of transfected neurons especially with large plasmids, to limit the cellular exposure to serum, and to minimize the number of animals required for cell isolation per experiment, we compared two state-of-the-art electroporation devices for in vitro transfection of adult rat dorsal root ganglion (DRG) neuron cultures. By refining different parameters, transfection efficiencies of 39–42% could be achieved using the Lonza 4D-Nucleofector X-unit system, 1.5–2-fold higher rates than those that have been previously published for adult DRG neurons using smaller plasmid sizes. Our protocol further limits the number of cells required to 3 × 105 cells per 20 μl reaction using only 2 μg DNA/reaction and allows for the complete omission of serum post-transfection. Application of this optimized protocol will contribute to furthering the study of neuron-intrinsic mechanisms responsible for growth and survival under physiological and pathophysiological conditions. PMID:22347167

  20. Antibody-mediated inhibition of Nogo-A signaling promotes neurite growth in PC-12 cells

    PubMed Central

    Yazdi, Iman K; Taghipour, Nima; Hmaidan, Sarah; Palomba, Roberto; Scaria, Shilpa; Munoz, Alvaro; Boone, Timothy B; Tasciotti, Ennio

    2016-01-01

    The use of a monoclonal antibody to block the neurite outgrowth inhibitor Nogo-A has been of great interest for promoting axonal recovery as a treatment for spinal cord injury. While several cellular and non-cellular assays have been developed to quantify the bioactive effects of Nogo-A signaling, demand still exists for the development of a reliable approach to characterize the effectiveness of the anti-Nogo-A antibody. In this study, we developed and validated a novel cell-based approach to facilitate the biological quantification of a Nogo-A antibody using PC-12 cells as an in vitro neuronal cell model. Changes in the mRNA levels of the neuronal differentiation markers, growth-associated protein 43 and neurofilament light-polypeptide, suggest that activation of the Nogo-A pathway suppresses axonal growth and dendrite formation in the tested cell line. We found that application of anti-Nogo-A monoclonal antibody can significantly enhance the neuronal maturity of PC-12 cells by blocking the Nogo-A inhibitory effects, providing enhanced effects on neural maturity at the molecular level. No adverse effects were observed on cell viability. PMID:27027860

  1. TTLL7 Is a Mammalian β-Tubulin Polyglutamylase Required for Growth of MAP2-positive Neurites*S

    PubMed Central

    Ikegami, Koji; Mukai, Masahiro; Tsuchida, Jun-ichi; Heier, Robb L.; MacGregor, Grant R.; Setou, Mitsutoshi

    2011-01-01

    Microtubules form a cytoskeletal framework that influences cell shape and provides structural support for the cell. Microtubules in the nervous system undergo a unique post-translational modification, polyglutamylation of the C termini of their tubulin subunits. The mammalian enzymes that perform β-tubulin polyglutamylation as well as their physiological functions in the neuronal tissue remain elusive. We report identification of a mammalian polyglutamylase with specificity for β-tubulin as well as its distribution and function in neurite growth. To identify putative tubulin polyglutamylases, we searched tubulin tyrosine ligase-like (TTLL) proteins for those predominantly expressed in the nervous system. Of 13 TTLL proteins, TTLL7 was transcribed at the highest level in the nervous system. Recombinant TTLL7 catalyzed tubulin polyglutamylation with high preference to β-tubulin in vitro. When expressed in HEK293T cells, TTLL7 demonstrated specificity for β-tubulin and not for α-tubulin or nucleosome assembly protein 1. Consistent with these findings, knockdown of TTLL7 in a primary culture of superior cervical ganglion neurons caused a loss of polyglutamylated β-tubulin. Following stimulation of PC12 cells with nerve growth factor to differentiate, the level of TTLL7 increased concomitantly with polyglutamylation of β-tubulin. Short interference RNA-mediated knockdown of TTLL7 repressed nerve growth factor-stimulated MAP (microtubule-associated protein) 2-positive neurite growth in PC12 cells. Consistent with having a role in the growth of MAP2-positive neurites, TTLL7 accumulated within a MAP2-enriched somatodendritic portion of superior cervical ganglion, as did polyglutamylated β-tubulin. Anti-TTLL7 antibody revealed that TTLL7 was distributed in a somatodendritic compartment in the mouse brain. These findings indicate that TTLL7 is a β-tubulin polyglutamylase and is required for the growth of MAP2-positive neurites in PC12 cells. PMID:16901895

  2. C. elegans fmi-1/flamingo and Wnt pathway components interact genetically to control the anteroposterior neurite growth of the VD GABAergic neurons

    PubMed Central

    Najarro, Elvis Huarcaya; Ackley, Brian D.

    2013-01-01

    Directed axonal growth is essential to establish neuronal networks. During the early development of the VD neurons, an anterior neurite that will become the VD axon extends along the anteroposterior (A/P) axis in the ventral nerve cord (VNC) in Caenorhabditis elegans. Little is known about the cellular and molecular mechanisms that are important for correct neurite growth in the VNC. In fmi-1/flamingo mutant animals, we observed that some postembryonically born VD neurons had a posterior neurite instead of a normal anterior neurite, which caused aberrant VD commissure patterning along the A/P axis. In addition, VD anterior neurites had underextension defects in the VNC in fmi-1 animals, whereas VD commissure growth along the dorsoventral (D/V) axis occurred normally in these animals, suggesting that fmi-1 is important for neurite growth along the A/P axis but not the D/V axis. We also uncovered unknown details of the early development of the VD neurons, indicating that the neurite defects arose during their early development. Interestingly, though fmi-1 is present at this time in the VNC, we did not observe FMI-1 in the VD neurons themselves, suggesting that fmi-1 might be working in a cell non-autonomous fashion. Furthermore, fmi-1 appears to be working in a novel pathway, independently from the planar cell polarity pathway and in parallel to lin-17/frizzled and dsh-1/dishevelled, to determine the direction of neurite growth. Our findings indicate that redundant developmental pathways regulate neurite growth in the VNC in C. elegans. PMID:23376536

  3. C. elegans fmi-1/flamingo and Wnt pathway components interact genetically to control the anteroposterior neurite growth of the VD GABAergic neurons.

    PubMed

    Huarcaya Najarro, Elvis; Ackley, Brian D

    2013-05-01

    Directed axonal growth is essential to establish neuronal networks. During the early development of the VD neurons, an anterior neurite that will become the VD axon extends along the anteroposterior (A/P) axis in the ventral nerve cord (VNC) in Caenorhabditis elegans. Little is known about the cellular and molecular mechanisms that are important for correct neurite growth in the VNC. In fmi-1/flamingo mutant animals, we observed that some postembryonically born VD neurons had a posterior neurite instead of a normal anterior neurite, which caused aberrant VD commissure patterning along the A/P axis. In addition, VD anterior neurites had underextension defects in the VNC in fmi-1 animals, whereas VD commissure growth along the dorsoventral (D/V) axis occurred normally in these animals, suggesting that fmi-1 is important for neurite growth along the A/P axis but not the D/V axis. We also uncovered unknown details of the early development of the VD neurons, indicating that the neurite defects arose during their early development. Interestingly, though fmi-1 is present at this time in the VNC, we did not observe FMI-1 in the VD neurons themselves, suggesting that fmi-1 might be working in a cell non-autonomous fashion. Furthermore, fmi-1 appears to be working in a novel pathway, independently from the planar cell polarity pathway and in parallel to lin-17/frizzled and dsh-1/dishevelled, to determine the direction of neurite growth. Our findings indicate that redundant developmental pathways regulate neurite growth in the VNC in C. elegans.

  4. Effects of laminin-coated carbon nanotube/chitosan fibers on guided neurite growth.

    PubMed

    Huang, Yi-Cheng; Hsu, Sung-Hao; Kuo, Wen-Chun; Chang-Chien, Cheng-Lun; Cheng, Henrich; Huang, Yi-You

    2011-10-01

    This study assesses the ability and potential of carbon nanotube (CNT)/chitosan to guide axon re-growth after nerve injuries. The CNT/chitosan fibers were produced via the coagulation and hydrodynamic focusing method. Fiber width and morphology were adjusted using such parameters as syringe pumping rate and the coagulant used. The CNT/chitosan fiber diameters were 50-300 μm for syringe pumping rates of 6-48 mL/h. Polyethylene glycol/NaOH (25%, w/w) solution was a suitable coagulant for forming fibers with small diameters. Physical property tests demonstrate that the CNT/chitosan composites had superior tensile strength and electrical conductivity compared with those of chitosan alone. The MTT and LDH tests reveal that CNT/chitosan composites were not cytotoxic. To improve the neural cell affinity of CNT/chitosan fibers, laminin was incorporated onto fiber surfaces via the oxygen plasma technique; cell adhesion ratio increased significantly from 3.5% to 72.2% with this surface modification. Immunofluorescence staining and SEM imaging indicate that PC12 cells adhered successfully and grew on the laminin (LN)-coated CNT/chitosan films and fibers. Experimental results show that PC12 grown on LN-coated CNT/chitosan fibers in vitro extend longitudinally oriented neurites in a manner similar to that of native peripheral nerves. With the inherent electrical properties of CNTs, oriented CNT/chitosan fibers have a potential for use as nerve conduits in nerve tissue engineering.

  5. Regulation of neurite outgrowth mediated by neuronal calcium sensor-1 and inositol 1,4,5-trisphosphate receptor in nerve growth cones.

    PubMed

    Iketani, M; Imaizumi, C; Nakamura, F; Jeromin, A; Mikoshiba, K; Goshima, Y; Takei, K

    2009-07-07

    Calcium acts as an important second messenger in the intracellular signal pathways in a variety of cell functions. Strictly controlled intracellular calcium is required for proper neurite outgrowth of developing neurons. However, the molecular mechanisms of this process are still largely unknown. Neuronal calcium sensor-1 (NCS-1) is a high-affinity and low-capacity calcium binding protein, which is specifically expressed in the nervous system. NCS-1 was distributed throughout the entire region of growth cones located at a distal tip of neurite in cultured chick dorsal root ganglion neurons. In the central domain of the growth cone, however, NCS-1 was distributed in a clustered specific pattern and co-localized with the type 1 inositol 1,4,5-trisphosphate receptor (InsP(3)R1). The pharmacological inhibition of InsP(3) receptors decreased the clustered specific distribution of NCS-1 in the growth cones and inhibited neurite outgrowth but did not change the growth cone morphology. The acute and localized loss of NCS-1 function in the growth cone induced by chromophore-assisted laser inactivation (CALI) resulted in the growth arrest of neurites and lamellipodial and filopodial retractions. These findings suggest that NCS-1 is involved in the regulation of both neurite outgrowth and growth cone morphology. In addition, NCS-1 is functionally linked to InsP(3)R1, which may play an important role in the regulation of neurite outgrowth.

  6. Acetylation of RNA polymerase II regulates growth-factor-induced gene transcription in mammalian cells.

    PubMed

    Schröder, Sebastian; Herker, Eva; Itzen, Friederike; He, Daniel; Thomas, Sean; Gilchrist, Daniel A; Kaehlcke, Katrin; Cho, Sungyoo; Pollard, Katherine S; Capra, John A; Schnölzer, Martina; Cole, Philip A; Geyer, Matthias; Bruneau, Benoit G; Adelman, Karen; Ott, Melanie

    2013-11-07

    Lysine acetylation regulates transcription by targeting histones and nonhistone proteins. Here we report that the central regulator of transcription, RNA polymerase II, is subject to acetylation in mammalian cells. Acetylation occurs at eight lysines within the C-terminal domain (CTD) of the largest polymerase subunit and is mediated by p300/KAT3B. CTD acetylation is specifically enriched downstream of the transcription start sites of polymerase-occupied genes genome-wide, indicating a role in early stages of transcription initiation or elongation. Mutation of lysines or p300 inhibitor treatment causes the loss of epidermal growth-factor-induced expression of c-Fos and Egr2, immediate-early genes with promoter-proximally paused polymerases, but does not affect expression or polymerase occupancy at housekeeping genes. Our studies identify acetylation as a new modification of the mammalian RNA polymerase II required for the induction of growth factor response genes.

  7. Retrograde degeneration of neurite membrane structural integrity of nerve growth cones following in vitro exposure to mercury.

    PubMed

    Leong, C C; Syed, N I; Lorscheider, F L

    2001-03-26

    Inhalation of mercury vapor (Hg0) inhibits binding of GTP to rat brain tubulin, thereby inhibiting tubulin polymerization into microtubules. A similar molecular lesion has also been observed in 80% of brains from patients with Alzheimer disease (AD) compared to age-matched controls. However the precise site and mode of action of Hg ions remain illusive. Therefore, the present study examined whether Hg ions could affect membrane dynamics of neurite growth cone morphology and behavior. Since tubulin is a highly conserved cytoskeletal protein in both vertebrates and invertebrates, we hypothesized that growth cones from animal species could be highly susceptible to Hg ions. To test this possibility, the identified, large Pedal A (PeA) neurons from the central ring ganglia of the snail Lymnoea stagnalis were cultured for 48 h in 2 ml brain conditioned medium (CM). Following neurite outgrowth, metal chloride solution (2 microl) of Hg, Al, Pb, Cd, or Mn (10(-7) M) was pressure applied directly onto individual growth cones. Time-lapse images with inverted microscopy were acquired prior to, during, and after the metal ion exposure. We demonstrate that Hg ions markedly disrupted membrane structure and linear growth rates of imaged neurites in 77% of all nerve growth cones. When growth cones were stained with antibodies specific for both tubulin and actin, it was the tubulin/microtubule structure that disintegrated following Hg exposure. Moreover, some denuded neurites were also observed to form neurofibrillary aggregates. In contrast, growth cone exposure to other metal ions did not effect growth cone morphology, nor was their motility rate compromised. To determine the growth suppressive effects of Hg ions on neuronal sprouting, cells were cultured either in the presence or absence of Hg ions. We found that in the presence of Hg ions, neuronal somata failed to sprout, whereas other metalic ions did not effect growth patterns of cultured PeA cells. We conclude that this

  8. [The stimulating effect of destabilase, a component of Hirudo medicinalis salivary gland secretion, on sensory neuron neurite growth in organotypic culture].

    PubMed

    Chalisova, N I; Zhuravskiĭ, S G; Penniiaĭnen, V A; Berezhnoĭ, S N; Artamonova, I I; Zavalova, L L; Baskova, I P

    1999-01-01

    The effect of destabilase, a component of Hirudo medicinalis salivary gland secret, was investigated in organotypic tissue culture of dorsal root ganglia (DRG) of 10-11-day old chick embryos. Native destabilase in concentrations 0.01 and 0.05 ng/ml was active, inducing a more intensive neurite growth in DRG that in the control. The stabilizing activity of destabilase was lost following reverse-phase chromatography. Neurite-stimulating effects of the drug "pyjavit" is due presumably to neurite-stimulating activity of destabilase.

  9. Cbl competitively inhibits epidermal growth factor-induced activation of phospholipase C-gamma1.

    PubMed

    Choi, Jang Hyun; Bae, Sun Sik; Park, Jong Bae; Ha, Sang Hoon; Song, Hebok; Kim, Jae-Ho; Cocco, Lucio; Ryu, Sung Ho; Suh, Pann-Ghill

    2003-04-30

    Phospholipase C-gamma1 (PLC-gamma1) plays pivotal roles in cellular growth and proliferation through its two Src homology (SH) 2 domains and its single SH3 domain, which interact with signaling molecules in response to various growth factors and hormones. However, the role of the SH domains in the growth factor-induced regulation of PLC-gamma1 is unclear. By peptide-mass fingerprinting analysis we have identified Cbl as a binding protein for the SH3 domain of PLC-gamma1 from rat pheochromatocyte PC12 cells. Association of Cbl with PLC-gamma1 was induced by epidermal growth factor (EGF) but not by nerve growth factor (NGF). Upon EGF stimulation, both Cbl and PLC-gamma1 were recruited to the activated EGF receptor through their SH2 domains. Mutation of the SH2 domains of either Cbl or PLC-gamma1 abrogated the EGF-induced interaction of PLC-gamma1 with Cbl, indicating that SH2-mediated translocation is essential for the association of PLC-gamma1 and Cbl. Overexpression of Cbl attenuated EGF-induced tyrosine phosphorylation and the subsequent activation of PLC-gamma1 by interfering competitively with the interaction between PLC-gamma1 and EGFR. Taken together, these results provide the first indications that Cbl may be a negative regulator of intracellular signaling following EGF-induced PLC-gamma1 activation.

  10. Distinct roles for the two Rho GDP/GTP exchange factor domains of kalirin in regulation of neurite growth and neuronal morphology.

    PubMed

    Penzes, P; Johnson, R C; Kambampati, V; Mains, R E; Eipper, B A

    2001-11-01

    The actin cytoskeleton, essential for neuronal development, is regulated in part by small GTP binding proteins of the Rho subfamily. Kalirin-9, with two Rho subfamily-specific GDP/GTP exchange factor (GEF) domains, localizes to neurites and growth cones of primary cortical neurons. Kalirin-9 overexpression in cultured cortical neurons induces longer neurites and altered neuronal morphology. Expression of the first GEF domain alone results in drastically shortened axons and excessive growth cones, mediated by Rac1. Expression of the second GEF domain alone induces axonal over-elongation and abundant filopodial neurites, mediated by RhoA. Coordination of the actions of the individual GEF domains through their presence in Kalirin-9, with its Sec14p, spectrin, and Src homology domain 3 motifs, is essential for regulating neurite extension and neuronal morphology.

  11. [Progress of study on inhibitory effects of traditional Chinese herbs on growth factor induced proliferation of vascular smooth muscle cells].

    PubMed

    Yang, Guang; Zhang, Min-zhou; Jiang, Wei

    2005-10-01

    This paper sums up some studies in the last decade regarding the inhibitory effects of traditional Chinese herbs on growth factor induced proliferation of vascular smooth muscle cell (VSMC) via directly measuring the mRNA expression of its growth factors and the related receptors by electron microscope, immunohistochemistry, blot and hybridization in situ.

  12. Hyaluronan modulates growth factor induced mammary gland branching in a size dependent manner.

    PubMed

    Tolg, Cornelia; Yuan, Han; Flynn, Sarah M; Basu, Kaustuv; Ma, Jenny; Tse, Kenneth Chor Kin; Kowalska, Beatrice; Vulkanesku, Diana; Cowman, Mary K; McCarthy, James B; Turley, Eva A

    2017-11-01

    Mammary gland morphogenesis begins during fetal development but expansion of the mammary tree occurs postnatally in response to hormones, growth factors and extracellular matrix. Hyaluronan (HA) is an extracellular matrix polysaccharide that has been shown to modulate growth factor-induced branching in culture. Neither the physiological relevance of HA to mammary gland morphogenesis nor the role that HA receptors play in these responses are currently well understood. We show that HA synthase (HAS2) is expressed in both ductal epithelia and stromal cells but HA primarily accumulates in the stroma. HA accumulation and expression of the HA receptors CD44 and RHAMM are highest during gestation when gland remodeling, lateral branch infilling and lobulo-alveoli formation is active. Molecular weight analyses show that approximately 98% of HA at all stages of morphogenesis is >300kDa. Low levels of 7-114kDa HA fragments are also detected and in particular the accumulation of 7-21kDa HA fragments are significantly higher during gestation than other morphogenetic stages (p<0.05). Using these in vivo results as a guide, in culture analyses of mammary epithelial cell lines (EpH4 and NMuMG) were performed to determine the roles of high molecular weight, 7-21kDa (10kDa MWavg) and HA receptors in EGF-induced branching morphogenesis. Results of these assays show that while HA synthesis is required for branching and 10kDa HA fragments strongly stimulate branching, the activity of HA decreases with increasing molecular weight and 500kDa HA strongly inhibits this morphogenetic process. The response to 10kDa HA requires RHAMM function and genetic deletion of RHAMM transiently blunts lateral branching in vivo. Collectively, these results reveal distinct roles for HA polymer size in modulating growth factor induced mammary gland branching and implicates these polymers in both the expansion and sculpting of the mammary tree during gestation. Copyright © 2017 Elsevier B.V. All rights

  13. Interrelationship between growth factor-induced pH changes and intracellular Ca/sup 2 +/

    SciTech Connect

    Ives, H.E.; Daniel, T.O.

    1987-04-01

    Many mitogens cause rapid changes in intracellular pH and Ca/sup 2 +/. The authors studied the patterns of pH and Ca/sup 2 +/ changes after exposure of murine fibroblasts to platelet-derived growth factor (PDGF), bombesin, phorbol 12-myristate 13-acetate (PMA), and the vasoactive peptide bradykinin. Intracellular pH and Ca/sup 2 +/ were measured by using the fluorescent dyes 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein and fura-2. Three distinct patterns of intracellular pH change were observed. (i) PDGF and bombesin caused a rapid cytoplasmic acidification of 0.03 pH unit followed by a slower alkalinization of approx. = 0.11 pH unit above the resting pH of 6.88. (ii) PMA caused alkalinization without causing the early acidification. (iii) Bradykinin caused rapid acidification without the slower net alkalinization. All acidification responses were amiloride resistant. Patterns of intracellular Ca/sup 2 +/ response were also determined for each agent. In Ca/sup 2 +/-buffered cells, PDGF, bombesin, bradykinin, and ionomycin failed to induce cellular acidification, but alkalinization responses to PDGF, bombesin, and PMA persisted. They propose that the transient acidification seen with PDGF, bombesin, and other agents is the result of increased intracellular Ca/sup 2 +/. However, growth factor-induced alkalinization via the Na/sup +//H/sup +/ exchanger is independent of changes in Ca/sup 2 +/.

  14. Synergistic induction of neurite outgrowth by nerve growth factor or epidermal growth factor and interleukin-6 in PC12 cells.

    PubMed

    Wu, Y Y; Bradshaw, R A

    1996-05-31

    Native PC12 cells respond differentially to nerve growth factor (NGF) but not interleukin-6 (IL-6); PC12-E2 cells, a stable variant, respond to both stimuli (and more rapidly to NGF). Neither responds to epidermal growth factor (EGF). NGF primarily induces the RAS/extracellular signal-regulated kinase (ERK) pathway and IL-6 activates a JAK (Janus tyrosine kinase)/STAT (signal transducers and activators of transcription) response. EGF also stimulates RAS/ERK but in a transient manner. When either cell type is treated with combinations of NGF, EGF, and IL-6, at concentrations that produce modest or no response, a substantial augmentation of neurite outgrowth is observed. With PC12-E2 cells, a subthreshold concentration of IL-6 increases NGF response by approximately 2-3-fold after 1-2 days; the increase with EGF is more pronounced. Native PC12 cells show even greater synergistic effects with NGF and IL-6. The most dramatic effect was observed with low levels of EGF, where IL-6 increased the percentage of responsive cells from zero to approximately 60% after 3 days. In addition, two neural-specific transcripts, GAP-43 and SCG-10, are synergistically increased by the combinations of growth factors. Importantly, IL-6 does not enhance ERK phosphorylation in the presence of either NGF or EGF. In contrast, NGF and EGF, in the presence or absence of IL-6, cause mobility shifts of Stat3 that are consistent with serine phosphorylations. Although these modifications do not lead to activation and translocation by themselves, in the presence of the tyrosine phosphorylation induced by IL-6, they may play a role in the synergistic responses. These observations suggest a differentially regulated two-stage mechanism for the differentiative response of PC12 cells to NGF.

  15. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis

    NASA Astrophysics Data System (ADS)

    Zheng, Wenjing; Yang, Licong; Liu, Ying; Qin, Xiuying; Zhou, Yanhui; Zhou, Yunshan; Liu, Jie

    2014-06-01

    Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies.

  16. Control of Retinal Ganglion Cell Positioning and Neurite Growth: Combining 3D Printing with Radial Electrospun Scaffolds.

    PubMed

    Kador, Karl E; Grogan, Shawn P; Dorthé, Erik W; Venugopalan, Praseeda; Malek, Monisha F; Goldberg, Jeffrey L; D'lima, Darryl D

    2016-02-01

    Retinal ganglion cells (RGCs) are responsible for the transfer of signals from the retina to the brain. As part of the central nervous system, RGCs are unable to regenerate following injury, and implanted cells have limited capacity to orient and integrate in vivo. During development, secreted guidance molecules along with signals from extracellular matrix and the vasculature guide cell positioning, for example, around the fovea, and axon outgrowth; however, these changes are temporally regulated and are not the same in the adult. Here, we combine electrospun cell transplantation scaffolds capable of RGC neurite guidance with thermal inkjet 3D cell printing techniques capable of precise positioning of RGCs on the scaffold surface. Optimal printing parameters are developed for viability, electrophysiological function and, neurite pathfinding. Different media, commonly used to promote RGC survival and growth, were tested under varying conditions. When printed in growth media containing both brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), RGCs maintained survival and normal electrophysiological function, and displayed radial axon outgrowth when printed onto electrospun scaffolds. These results demonstrate that 3D printing technology may be combined with complex electrospun surfaces in the design of future retinal models or therapies.

  17. Control of Retinal Ganglion Cell Positioning and Neurite Growth: Combining 3D Printing with Radial Electrospun Scaffolds

    PubMed Central

    Kador, Karl E.; Grogan, Shawn P.; Dorthé, Erik W.; Venugopalan, Praseeda; Malek, Monisha F.

    2016-01-01

    Retinal ganglion cells (RGCs) are responsible for the transfer of signals from the retina to the brain. As part of the central nervous system, RGCs are unable to regenerate following injury, and implanted cells have limited capacity to orient and integrate in vivo. During development, secreted guidance molecules along with signals from extracellular matrix and the vasculature guide cell positioning, for example, around the fovea, and axon outgrowth; however, these changes are temporally regulated and are not the same in the adult. Here, we combine electrospun cell transplantation scaffolds capable of RGC neurite guidance with thermal inkjet 3D cell printing techniques capable of precise positioning of RGCs on the scaffold surface. Optimal printing parameters are developed for viability, electrophysiological function and, neurite pathfinding. Different media, commonly used to promote RGC survival and growth, were tested under varying conditions. When printed in growth media containing both brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), RGCs maintained survival and normal electrophysiological function, and displayed radial axon outgrowth when printed onto electrospun scaffolds. These results demonstrate that 3D printing technology may be combined with complex electrospun surfaces in the design of future retinal models or therapies. PMID:26729061

  18. Arginyltransferase ATE1 is targeted to the neuronal growth cones and regulates neurite outgrowth during brain development.

    PubMed

    Wang, Junling; Pavlyk, Iuliia; Vedula, Pavan; Sterling, Stephanie; Leu, N Adrian; Dong, Dawei W; Kashina, Anna

    2017-10-01

    Arginylation is an emerging protein modification mediated by arginyltransferase ATE1, shown to regulate embryogenesis and actin cytoskeleton, however its functions in different physiological systems are not well understood. Here we analyzed the role of ATE1 in brain development and neuronal growth by producing a conditional mouse knockout with Ate1 deletion in the nervous system driven by Nestin promoter (Nes-Ate1 mice). These mice were weaker than wild type, resulting in low postnatal survival rates, and had abnormalities in the brain that suggested defects in neuronal migration. Cultured Ate1 knockout neurons showed a reduction in the neurite outgrowth and the levels of doublecortin and F-actin in the growth cones. In wild type, ATE1 prominently localized to the growth cones, in addition to the cell bodies. Examination of the Ate1 mRNA sequence reveals the existence of putative zipcode-binding sequences involved in mRNA targeting to the cell periphery and local translation at the growth cones. Fluorescence in situ hybridization showed that Ate1 mRNA localized to the tips of the growth cones, likely due to zipcode-mediated targeting, and this localization coincided with spots of localization of arginylated β-actin, which disappeared in the presence of protein synthesis inhibitors. We propose that zipcode-mediated co-targeting of Ate1 and β-actin mRNA leads to localized co-translational arginylation of β-actin that drives the growth cone migration and neurite outgrowth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Nerve Growth Factor Secretion From Pulp Fibroblasts is Modulated by Complement C5a Receptor and Implied in Neurite Outgrowth

    PubMed Central

    Chmilewsky, Fanny; Ayaz, Warda; Appiah, James; About, Imad; Chung, Seung-Hyuk

    2016-01-01

    Given the importance of sensory innervation in tooth vitality, the identification of signals that control nerve regeneration and the cellular events they induce is essential. Previous studies demonstrated that the complement system, a major component of innate immunity and inflammation, is activated at the injured site of human carious teeth and plays an important role in dental-pulp regeneration via interaction of the active Complement C5a fragment with pulp progenitor cells. In this study, we further determined the role of the active fragment complement C5a receptor (C5aR) in dental nerve regeneration in regards to local secretion of nerve growth factor (NGF) upon carious injury. Using ELISA and AXIS co-culture systems, we demonstrate that C5aR is critically implicated in the modulation of NGF secretion by LTA-stimulated pulp fibroblasts. The NGF secretion by LTA-stimulated pulp fibroblasts, which is negatively regulated by C5aR activation, has a role in the control of the neurite outgrowth length in our axon regeneration analysis. Our data provide a scientific step forward that can guide development of future therapeutic tools for innovative and incipient interventions targeting the dentin-pulp regeneration process by linking the neurite outgrowth to human pulp fibroblast through complement system activation. PMID:27539194

  20. Mathematical Relationships between Neuron Morphology and Neurite Growth Dynamics in Drosophila melanogaster Larva Class IV Sensory Neurons

    NASA Astrophysics Data System (ADS)

    Ganguly, Sujoy; Liang, Xin; Grace, Michael; Lee, Daniel; Howard, Jonathon

    The morphology of neurons is diverse and reflects the diversity of neuronal functions, yet the principles that govern neuronal morphogenesis are unclear. In an effort to better understand neuronal morphogenesis we will be focusing on the development of the dendrites of class IV sensory neuron in Drosophila melanogaster. In particular we attempt to determine how the the total length, and the number of branches of dendrites are mathematically related to the dynamics of neurite growth and branching. By imaging class IV neurons during early embryogenesis we are able to measure the change in neurite length l (t) as a function of time v (t) = dl / dt . We found that the distribution of v (t) is well characterized by a hyperbolic secant distribution, and that the addition of new branches per unit time is well described by a Poisson process. Combining these measurements with the assumption that branching occurs with equal probability anywhere along the dendrite we were able to construct a mathematical model that provides reasonable agreement with the observed number of branches, and total length of the dendrites of the class IV sensory neuron.

  1. Nerve Growth Factor Regulates Transient Receptor Potential Vanilloid 2 via Extracellular Signal-Regulated Kinase Signaling To Enhance Neurite Outgrowth in Developing Neurons

    PubMed Central

    Cohen, Matthew R.; Johnson, William M.; Pilat, Jennifer M.; Kiselar, Janna; DeFrancesco-Lisowitz, Alicia; Zigmond, Richard E.

    2015-01-01

    Neurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca2+-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca2+-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth. TRPV2 colocalized with Rab7, a late endosome protein, in addition to TrkA and activated extracellular signal-regulated kinase (ERK) in neurites, indicating that the channel is closely associated with signaling endosomes. In line with these results, we showed that TRPV2 acts as an ERK substrate and identified the motifs necessary for phosphorylation of TRPV2 by ERK. Furthermore, neurite length, TRPV2 expression, and TRPV2-mediated Ca2+ signals were reduced by mutagenesis of these key ERK phosphorylation sites. Based on these findings, we identified a previously uncharacterized mechanism by which ERK controls TRPV2-mediated Ca2+ signals in developing neurons and further establish TRPV2 as a critical intracellular ion channel in neuronal function. PMID:26416880

  2. Novel degradable co-polymers of polypyrrole support cell proliferation and enhance neurite out-growth with electrical stimulation.

    PubMed

    Durgam, Hymavathi; Sapp, Shawn; Deister, Curt; Khaing, Zin; Chang, Emily; Luebben, Silvia; Schmidt, Christine E

    2010-01-01

    Synthetic polymers such as polypyrrole (PPy) are gaining significance in neural studies because of their conductive properties. We evaluated two novel biodegradable block co-polymers of PPy with poly(epsilon-caprolactone) (PCL) and poly(ethyl cyanoacrylate) (PECA) for nerve regeneration applications. PPy-PCL and PPy-PECA co-polymers can be processed from solvent-based colloidal dispersions and have essentially the same or greater conductivity (32 S/cm for PPy-PCL, 19 S/cm for PPy-PECA) compared to the PPy homo-polymer (22 S/cm). The PPy portions of the co-polymers permit electrical stimulation whereas the PCL or PECA blocks enable degradation by hydrolysis. For in vitro tests, films were prepared on polycarbonate sheets by air brushing layers of dispersions and pressing the films. We characterized the films for hydrolytic degradation, electrical conductivity, cell proliferation and neurite extension. The co-polymers were sufficient to carry out electrical stimulation of cells without the requirement of a metallic conductor underneath the co-polymer film. In vitro electrical stimulation of PPy-PCL significantly increased the number of PC12 cells bearing neurites compared to unstimulated PPy-PCL. For in vivo experiments, the PPy co-polymers were coated onto the inner walls of nerve guidance channels (NGCs) made of the commercially available non-conducting biodegradable polymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-HV). The NGCs were implanted in a 10 mm defect made in the sciatic nerve of rats, and harvested after 8 weeks. Histological staining showed axonal growth. The studies indicated that these new conducting degradable biomaterials have good biocompatibility and support proliferation and growth of PC12 cells in vitro (with and without electrical stimulation) and neurons in vivo (without electrical stimulation).

  3. NeuronGrowth, a software for automatic quantification of neurite and filopodial dynamics from time-lapse sequences of digital images.

    PubMed

    Fanti, Zian; Martinez-Perez, M Elena; De-Miguel, Francisco F

    2011-10-01

    We developed NeuronGrowth, a software for the automatic quantification of extension and retraction of neurites and filopodia, from time-lapse sequences of two-dimensional digital micrographs. NeuronGrowth requires a semiautomatic characterization of individual neurites in a reference frame, which is then used for automatic tracking and measurement of every neurite over the whole image sequence. Modules for sequence alignment, background subtraction, flat field correction, light normalization, and cropping have been integrated to improve the quality of the analysis. Moreover, NeuronGrowth incorporates a deconvolution filter that corrects the shadow-cast effect of differential interference contrast (DIC) images. NeuronGrowth was tested by analyzing the formation of outgrowth patterns by individual leech neurons cultured under two different conditions. Phase contrast images were obtained from neurons plated on CNS homogenates and DIC images were obtained from similar neurons plated on ganglion capsules as substrates. Filopodia were measured from fluorescent growth-cones of chick dorsal root ganglion cells. Quantitative data of neurite extension and retraction obtained by three different users applying NeuronGrowth and two other manually operated software packages were similar. However, NeuronGrowth required less user participation and had a better time performance when compared with the other software packages. NeuronGrowth may be used in general to quantify the dynamics of tubular structures such as blood vessels. NeuronGrowth is a free plug-in for the free software ImageJ and can be downloaded along with a user manual, a troubleshooting section and other information required for its use from http://www.ifc.unam.mx or http://www.ifc.unam.mx/ffm/index.html.

  4. Nerve growth factor-induced changes in the intracellular localization of the protein kinase C substrate B-50 in pheochromocytoma PC12 cells

    PubMed Central

    1989-01-01

    High levels of the neuron-specific protein kinase C substrate, B-50 (= GAP43), are present in neurites and growth cones during neuronal development and regeneration. This suggests a hitherto nonelucidated role of this protein in neurite outgrowth. Comparable high levels of B- 50 arise in the pheochromocytoma PC12 cell line during neurite formation. To get insight in the putative growth-associated function of B-50, we compared its ultrastructural localization in naive PC12 cells with its distribution in nerve growth factor (NGF)- or dibutyryl cyclic AMP (dbcAMP)-treated PC12 cells. B-50 immunogold labeling of cryosections of untreated PC12 cells is mainly associated with lysosomal structures, including multivesicular bodies, secondary lysosomes, and Golgi apparatus. The plasma membrane is virtually devoid of label. However, after 48-h NGF treatment of the cells, B-50 immunoreactivity is most pronounced on the plasma membrane. Highest B- 50 immunoreactivity is observed on plasma membranes surrounding sprouting microvilli, lamellipodia, and filopodia. Outgrowing neurites are scattered with B-50 labeling, which is partially associated with chromaffin granules. In NGF-differentiated PC12 cells, B-50 immunoreactivity is, as in untreated cells, also associated with organelles of the lysosomal family and Golgi stacks. B-50 distribution in dbcAMP-differentiated cells closely resembles that in NGF-treated cells. The altered distribution of B-50 immunoreactivity induced by differentiating agents indicates a shift of the B-50 protein towards the plasma membrane. This translocation accompanies the acquisition of neuronal features of PC12 cells and points to a neurite growth- associated role for B-50, performed at the plasma membrane at the site of protrusion. PMID:2537833

  5. Waves of actin and microtubule polymerization drive microtubule-based transport and neurite growth before single axon formation

    PubMed Central

    Winans, Amy M; Collins, Sean R; Meyer, Tobias

    2016-01-01

    Many developing neurons transition through a multi-polar state with many competing neurites before assuming a unipolar state with one axon and multiple dendrites. Hallmarks of the multi-polar state are large fluctuations in microtubule-based transport into and outgrowth of different neurites, although what drives these fluctuations remains elusive. We show that actin waves, which stochastically migrate from the cell body towards neurite tips, direct microtubule-based transport during the multi-polar state. Our data argue for a mechanical control system whereby actin waves transiently widen the neurite shaft to allow increased microtubule polymerization to direct Kinesin-based transport and create bursts of neurite extension. Actin waves also require microtubule polymerization, arguing that positive feedback links these two components. We propose that actin waves create large stochastic fluctuations in microtubule-based transport and neurite outgrowth, promoting competition between neurites as they explore the environment until sufficient external cues can direct one to become the axon. DOI: http://dx.doi.org/10.7554/eLife.12387.001 PMID:26836307

  6. The Akt-nitric oxide-cGMP pathway contributes to nerve growth factor-mediated neurite outgrowth in apolipoprotein E knockout mice.

    PubMed

    Hashikawa-Hobara, Narumi; Hashikawa, Naoya; Yutani, Chikao; Zamami, Yoshito; Jin, Xin; Takatori, Shingo; Mio, Mitsunobu; Kawasaki, Hiromu

    2011-08-01

    Apolipoprotein E (apo)-deficient [apoE(-/-)] mice have peripheral sensory nerve defects and a reduced and delayed response to noxious thermal stimuli. However, to date, no report has focused on the influence of apoE deficiency on calcitonin gene-related peptide (CGRP)-containing nerve fiber extensions. We have shown that the density of CGRP-containing nerve fibers decreases in mesenteric arteries of apoE(-/-) mice compared with wild-type mice. Here, we investigated whether apoE deficiency is involved in nerve growth factor (NGF)-induced CGRP-containing nerve regeneration using apoE(-/-) mice. NGF-mediated CGRP-like immunoreactivity (LI)-neurite outgrowth in apoE(-/-) cultured dorsal root ganglia (DRG) cells was significantly lower than that in wild-type cultures. However, the level of NGF receptor mRNA in apoE(-/-) DRG cells was similar to that in wild-type mice. To clarify the mechanism of the impaired ability of NGF-mediated neurite outgrowth, we focused on the Akt-nitric oxide (NO)-cGMP pathway. Expression of phosphorylated Akt was significantly reduced in apoE(-/-) DRG. The NO donor, sodium nitroprusside or S-nitroso-N-acetylpenicillamine, did not affect NGF-mediated neurite outgrowth in apoE(-/-) cultured DRG cells. However, 8-bromoguanosine 3',5'-cyclic monophosphate sodium salt n-hydrate, a cGMP analog, induced NGF-mediated nerve facilitation similar to wild-type NGF-mediated neurite outgrowth levels. Furthermore, in apoE(-/-) DRG, soluble guanylate cyclase expression was significantly lower than that in wild-type DRG. These results suggest that in apoE(-/-) mice the Akt-NO-cGMP pathway is impaired, which may be caused by NGF-mediated CGRP-LI-neurite outgrowth defects.

  7. Extracellular Nm23H1 stimulates neurite outgrowth from dorsal root ganglia neurons in vitro independently of nerve growth factor supplementation or its nucleoside diphosphate kinase activity

    SciTech Connect

    Wright, K.T.; Seabright, R.; Logan, A.; Lilly, A.J.; Khanim, F.; Bunce, C.M.; Johnson, W.E.B.

    2010-07-16

    Research highlights: {yields} Extracellular Nm23H1 stimulates nerve growth. {yields} Extracellular Nm23H1 provides pathfinding cues to growth cones. {yields} The neurotrophic activity of Nm23H1 is independent of NDP kinase activity. {yields} The neurotrophic activity of Nm23H1 is independent of NGF. -- Abstract: The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems.

  8. Chronic Neurotrophin Delivery Promotes Ectopic Neurite Growth From the Spiral Ganglion of Deafened Cochleae Without Compromising the Spatial Selectivity of Cochlear Implants

    PubMed Central

    Landry, Thomas G.; Fallon, James B.; Wise, Andrew K.; Shepherd, Robert K.

    2015-01-01

    Cochlear implants restore hearing cues in the severe– profoundly deaf by electrically stimulating spiral ganglion neurons (SGNs). However, SGNs degenerate following loss of cochlear hair cells, due at least in part to a reduction in the endogenous neurotrophin (NT) supply, normally provided by hair cells and supporting cells of the organ of Corti. Delivering exogenous NTs to the cochlea can rescue SGNs from degeneration and can also promote the ectopic growth of SGN neurites. This resprouting may disrupt the cochleotopic organization upon which cochlear implants rely to impart pitch cues. Using retrograde labeling and confocal imaging of SGNs, we determined the extent of neurite growth following 28 days of exogenous NT treatment in deafened guinea pigs with and without chronic electrical stimulation (ES). On completion of this treatment, we measured the spread of neural activation to intracochlear ES by recording neural responses across the cochleotopically organized inferior colliculus using multichannel recording techniques. Although NT treatment significantly increased both the length and the lateral extent of growth of neurites along the cochlea compared with deafened controls, these anatomical changes did not affect the spread of neural activation when examined immediately after 28 days of NT treatment. NT treatment did, however, result in lower excitation thresholds compared with deafened controls. These data support the application of NTs for improved clinical outcomes for cochlear implant patients. PMID:23436344

  9. Chronic neurotrophin delivery promotes ectopic neurite growth from the spiral ganglion of deafened cochleae without compromising the spatial selectivity of cochlear implants.

    PubMed

    Landry, Thomas G; Fallon, James B; Wise, Andrew K; Shepherd, Robert K

    2013-08-15

    Cochlear implants restore hearing cues in the severe-profoundly deaf by electrically stimulating spiral ganglion neurons (SGNs). However, SGNs degenerate following loss of cochlear hair cells, due at least in part to a reduction in the endogenous neurotrophin (NT) supply, normally provided by hair cells and supporting cells of the organ of Corti. Delivering exogenous NTs to the cochlea can rescue SGNs from degeneration and can also promote the ectopic growth of SGN neurites. This resprouting may disrupt the cochleotopic organization upon which cochlear implants rely to impart pitch cues. Using retrograde labeling and confocal imaging of SGNs, we determined the extent of neurite growth following 28 days of exogenous NT treatment in deafened guinea pigs with and without chronic electrical stimulation (ES). On completion of this treatment, we measured the spread of neural activation to intracochlear ES by recording neural responses across the cochleotopically organized inferior colliculus using multichannel recording techniques. Although NT treatment significantly increased both the length and the lateral extent of growth of neurites along the cochlea compared with deafened controls, these anatomical changes did not affect the spread of neural activation when examined immediately after 28 days of NT treatment. NT treatment did, however, result in lower excitation thresholds compared with deafened controls. These data support the application of NTs for improved clinical outcomes for cochlear implant patients.

  10. Chemicals eluting from disposable plastic syringes and syringe filters alter neurite growth, axogenesis and the microtubule cytoskeleton in cultured hippocampal neurons.

    PubMed

    Lee, Tet Woo; Tumanov, Sergey; Villas-Bôas, Silas G; Montgomery, Johanna M; Birch, Nigel P

    2015-04-01

    Cultures of dissociated hippocampal neurons are often used to study neuronal cell biology. We report that the development of these neurons is strongly affected by chemicals leaching from commonly used disposable medical-grade syringes and syringe filters. Contamination of culture medium by bioactive substance(s) from syringes and filters occurred with multiple manufacturing lots and filter types under normal use conditions and resulted in changes to neurite growth, axon formation and the neuronal microtubule cytoskeleton. The effects on neuronal morphology were concentration dependent and significant effects were detected even after substantial dilution of the contaminated medium. Gas chromatography-mass spectrometry analyses revealed many chemicals eluting from the syringes and filters. Three of these chemicals (stearic acid, palmitic acid and 1,2-ethanediol monoacetate) were tested but showed no effects on neurite growth. Similar changes in neuronal morphology were seen with high concentrations of bisphenol A and dibutyl phthalate, two hormonally active plasticisers. Although no such compounds were detected by gas chromatography–mass spectrometry, unknown plasticisers in leachates may affect neurites. This is the first study to show that leachates from laboratory consumables can alter the growth of cultured hippocampal neurons. We highlight important considerations to ensure leachate contamination does not compromise cell biology experiments.

  11. ONTOGENY OF PROTEINS ASSOCIATED WITH NEURITE GROWTH AND SYNAPTOGENESIS IN CEREBELLAR GRANULE CELLS IN VITRO.

    EPA Science Inventory

    In vitro techniques may be useful in screening for effects of developmental neurotoxicants. Previously, we characterized changes in biochemical markers associated with neuronal development in a PC12 cell model of differentiation and growth. The current research extended these stu...

  12. Obesity and Postmenopausal Breast Cancer Risk: Determining the Role of Growth Factor-Induced Aromatase Expression

    DTIC Science & Technology

    2014-03-01

    levels of insulin, insulin-like growth factor 1 (IGF-1), and leptin . These all have significant tumorigenic effects in the breast and are known to...role of obesity-associated growth factor and leptin signaling on aromatase expression and activity, we will also add inhibitors to these different

  13. 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons.

    PubMed

    Brown, Jillanne; Bianco, John I; McGrath, John J; Eyles, Darryl W

    2003-06-05

    There is an accumulation of evidence implicating a role for vitamin D(3) in the developing brain. The receptor for this seco-steroid is expressed in both neurons and glial cells, it induces nerve growth factor (NGF) and it is a potent inhibitor of mitosis and promoter of differentiation in numerous cells. We have therefore assessed the direct effect of vitamin D(3) on mitosis, neurite outgrowth, as well as NGF production as a possible mediator of those effects, in developing neurons. Using cultured embryonic hippocampal cells and explants we found the addition of vitamin D(3) significantly decreases the percentage of cultured hippocampal cells undergoing mitosis in conjunction with increases in both neurite outgrowth and NGF production. The role of vitamin D(3) during brain development warrants closer scrutiny.

  14. Regulation of neurite growth in immortalized mouse hypothalamic neurons and rat hippocampal primary cultures by teneurin C-terminal-associated peptide-1.

    PubMed

    Al Chawaf, A; St Amant, K; Belsham, D; Lovejoy, D A

    2007-02-23

    Teneurins are a highly conserved family of four type II transmembrane proteins that are expressed in the CNS. The protein possesses several functional domains including a unique bioactive 40-41 amino acid sequence at the extracellular terminus. Synthetic versions of this teneurin C-terminal-associated peptide (TCAP) can modulate cyclic AMP accumulation, cell proliferation and teneurin mRNA levels in vitro. Furthermore, i.c.v. injections of TCAP-1 into rat brain induce major changes in acoustic startle response behavior 3 weeks after administration, suggesting that the peptide may act to alter interneuron communication via changes in neurite and axon outgrowth. Synthetic mouse/rat TCAP-1 was used to treat cultured immortalized mouse hypothalamic cells, to determine if TCAP-1 could directly regulate neurite and axon growth. TCAP-1-treated cells showed a significant increase in the length of neurites accompanied by a marked increase in beta-tubulin transcription and translation as determined by real-time PCR and Western blot analysis, respectively. Changes in alpha-actinin-4 transcription and beta-actin protein expression were also noted. Immunofluorescence confocal microscopy using beta-tubulin antiserum showed enhanced resolution of beta-tubulin cytoskeletal elements throughout the cell. In order to determine if the effects of TCAP-1 could be reproduced in primary neuronal cultures, primary cultures of E18 rat hippocampal cells were treated with 100 nM TCAP-1. The TCAP-1-treated hippocampal cultures showed a significant increase in both the number of cells, dendritic branching and the presence of large and fasciculated beta-tubulin immunoreactive axons. These data suggest that TCAP acts, in part, as a functional region of the teneurins to regulate neurite and axonal growth of neurons.

  15. SOXC Transcription Factors Induce Cartilage Growth Plate Formation in Mouse Embryos by Promoting Noncanonical WNT Signaling.

    PubMed

    Kato, Kenji; Bhattaram, Pallavi; Penzo-Méndez, Alfredo; Gadi, Abhilash; Lefebvre, Véronique

    2015-09-01

    Growth plates are specialized cartilage structures that ensure the elongation of most skeletal primordia during vertebrate development. They are made by chondrocytes that proliferate in longitudinal columns and then progress in a staggered manner towards prehypertrophic, hypertrophic and terminal maturation. Complex molecular networks control the formation and activity of growth plates, but remain incompletely understood. We investigated here the importance of the SoxC genes, which encode the SOX4, SOX11 and SOX12 transcription factors, in growth plates. We show that the three genes are expressed robustly in perichondrocytes and weakly in growth plate chondrocytes. SoxC(Prx1Cre) mice, which deleted SoxC genes in limb bud skeletogenic mesenchyme, were born with tiny appendicular cartilage primordia because of failure to form growth plates. In contrast, SoxC(Col2Cre) and SoxC(ATC) mice, which deleted SoxC genes primarily in chondrocytes, were born with mild dwarfism and fair growth plates. Chondrocytes in the latter mutants matured normally, but formed irregular columns, proliferated slowly and died ectopically. Asymmetric distribution of VANGL2 was defective in both SoxC(Prx1Cre) and SoxC(ATC) chondrocytes, indicating impairment of planar cell polarity, a noncanonical WNT signaling pathway that controls growth plate chondrocyte alignment, proliferation and survival. Accordingly, SoxC genes were necessary in perichondrocytes for expression of Wnt5a, which encodes a noncanonical WNT ligand required for growth plate formation, and in chondrocytes and perichondrocytes for expression of Fzd3 and Csnk1e, which encode a WNT receptor and casein kinase-1 subunit mediating planar cell polarity, respectively. Reflecting the differential strengths of the SOXC protein transactivation domains, SOX11 was more powerful than SOX4, and SOX12 interfered with the activity of SOX4 and SOX11. Altogether, these findings provide novel insights into the molecular regulation of skeletal

  16. Protein kinase A regulates 3-phosphatidylinositide dynamics during platelet-derived growth factor-induced membrane ruffling and chemotaxis.

    PubMed

    Deming, Paula B; Campbell, Shirley L; Baldor, Linda C; Howe, Alan K

    2008-12-12

    Spatial regulation of the cAMP-dependent protein kinase (PKA) is required for chemotaxis in fibroblasts; however, the mechanism(s) by which PKA regulates the cell migration machinery remain largely unknown. Here we report that one function of PKA during platelet-derived growth factor (PDGF)-induced chemotaxis was to promote membrane ruffling by regulating phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) dynamics. Inhibition of PKA activity dramatically altered membrane dynamics and attenuated formation of peripheral membrane ruffles in response to PDGF. PKA inhibition also significantly decreased the number and size of PIP(3)-rich membrane ruffles in response to uniform stimulation and to gradients of PDGF. This ruffling defect was quantified using a newly developed method, based on computer vision edge-detection algorithms. PKA inhibition caused a marked attenuation in the bulk accumulation of PIP(3) following PDGF stimulation, without effects on PI3-kinase (PI3K) activity. The deficits in PIP(3) dynamics correlated with a significant inhibition of growth factor-induced membrane recruitment of endogenous Akt and Rac activation in PKA-inhibited cells. Simultaneous inhibition of PKA and Rac had an additive inhibitory effect on growth factor-induced ruffling dynamics. Conversely, the expression of a constitutively active Rac allele was able to rescue the defect in membrane ruffling and restore the localization of a fluorescent PIP(3) marker to membrane ruffles in PKA-inhibited cells, even in the absence of PI3K activity. These data demonstrate that, like Rac, PKA contributes to PIP(3) and membrane dynamics independently of direct regulation of PI3K activity and suggest that modulation of PIP(3)/3-phosphatidylinositol (3-PI) lipids represents a major target for PKA in the regulation of PDGF-induced chemotactic events.

  17. Opposing functions of TFII-I spliced isoforms in growth factor-induced gene expression.

    PubMed

    Hakre, Shweta; Tussie-Luna, María Isabel; Ashworth, Todd; Novina, Carl D; Settleman, Jeffrey; Sharp, Phillip A; Roy, Ananda L

    2006-10-20

    Multifunctional transcription factor TFII-I has two spliced isoforms (Delta and beta) in murine fibroblasts. Here we show that these isoforms have distinct subcellular localization and mutually exclusive transcription functions in the context of growth factor signaling. In the absence of signaling, TFII-Ibeta is nuclear and recruited to the c-fos promoter in vivo. But upon growth factor stimulation, the promoter recruitment is abolished and it is exported out of the nucleus. Moreover, isoform-specific silencing of TFII-Ibeta results in transcriptional activation of the c-fos gene. In contrast, TFII-IDelta is largely cytoplasmic in the resting state but translocates to the nucleus upon growth factor signaling, undergoes signal-induced recruitment to the same site on the c-fos promoter, and activates the gene. Importantly, activated TFII-IDelta interacts with Erk1/2 (MAPK) kinase in the cell cytoplasm and imports the Erk1/2 to the nucleus, thereby transducing growth factor signaling. Our results identify a unique growth factor signaling pathway controlled by opposing activities of two TFII-I spliced isoforms.

  18. 2D protrusion but not motility predicts growth factor-induced cancer cell migration in 3D collagen.

    PubMed

    Meyer, Aaron S; Hughes-Alford, Shannon K; Kay, Jennifer E; Castillo, Amalchi; Wells, Alan; Gertler, Frank B; Lauffenburger, Douglas A

    2012-06-11

    Growth factor-induced migration is a critical step in the dissemination and metastasis of solid tumors. Although differences in properties characterizing cell migration on two-dimensional (2D) substrata versus within three-dimensional (3D) matrices have been noted for particular growth factor stimuli, the 2D approach remains in more common use as an efficient surrogate, especially for high-throughput experiments. We therefore were motivated to investigate which migration properties measured in various 2D assays might be reflective of 3D migratory behavioral responses. We used human triple-negative breast cancer lines stimulated by a panel of receptor tyrosine kinase ligands relevant to mammary carcinoma progression. Whereas 2D migration properties did not correlate well with 3D behavior across multiple growth factors, we found that increased membrane protrusion elicited by growth factor stimulation did relate robustly to enhanced 3D migration properties of the MDA-MB-231 and MDA-MB-157 lines. Interestingly, we observed this to be a more reliable relationship than cognate receptor expression or activation levels across these and two additional mammary tumor lines.

  19. Tropomodulins are negative regulators of neurite outgrowth

    PubMed Central

    Fath, Thomas; Fischer, Robert S.; Dehmelt, Leif; Halpain, Shelley; Fowler, Velia M.

    2010-01-01

    Regulation of the actin cytoskeleton is critical for neurite formation. Tropomodulins (Tmods) regulate polymerization at actin filament pointed ends. Previous experiments using a mouse model deficient for the neuron specific isoform Tmod2 suggested a role for Tmods in neuronal function by impacting processes underlying learning and memory. However, the role of Tmods in neuronal function on the cellular level remains unknown. Immunofluorescence localization of the neuronal isoforms Tmod1 and Tmod2 in cultured rat primary hippocampal neurons revealed that Tmod1 is enriched along the proximal part of F-actin bundles in lamellipodia of spreading cells and in growth cones of extending neurites, while Tmod2 appears largely cytoplasmic. Functional analysis of these Tmod isoforms in a mouse neuroblastoma N2a cell line showed that knockdown of Tmod2 resulted in a significant increase in number of neurite-forming cells and in neurite length. While N2a cells compensated for Tmod2 knockdown by increasing Tmod1 levels, over-expression of exogenous Tmod1 had no effect on neurite outgrowth. Moreover, knockdown of Tmod1 increased the number of neurites formed per cell, without effect on number of neurite-forming cells or neurite length. Taken together, these results indicate that Tmod1 and Tmod2 have mechanistically distinct inhibitory roles in neurite formation, likely mediated via different effects on F-actin dynamics and via differential localizations during early neuritogenesis. PMID:21146252

  20. The role of EGF receptor transmodulation in embryonal carcinoma-derived growth factor-induced mitogenesis.

    PubMed Central

    Heath, J K; Mahadevan, L; Foulkes, J G

    1986-01-01

    Exposure of quiescent 10T1/2 fibroblast cells to embryonal carcinoma-derived growth factor (ECDGF) results in a rapid temperature and ECDGF concentration-dependent inhibition of [125I]EGF binding to the epidermal growth factor (EGF) receptor (transmodulation). ECDGF predominantly inhibits the association of [125I]EGF with a high affinity subclass of EGF receptors, and induces increased phosphorylation of the EGF receptor on serine and threonine residues. No mitogenic effect of EGF can be detected in the presence of ECDGF concentrations which induce maximal EGF receptor transmodulation. ECDGF-induced EGF receptor transmodulation is sensitive to phorbol ester-induced desensitization whereas ECDGF-induced DNA synthesis is unaffected by prolonged pre-treatment with biologically active phorbol ester. These findings suggest that EGF receptor transmodulation is not essential for ECDGF mitogenicity but may inhibit EGF-induced DNA synthesis. Images Fig. 5. PMID:3489616

  1. Mediation of growth factor induced DNA synthesis and calcium mobilization by Gq and Gi2

    PubMed Central

    1993-01-01

    A newly identified subclass of the heterotrimeric GTP binding regulatory protein family, Gq, has been found to be expressed in a diverse range of cell types. We investigated the potential role of this protein in growth factor signal transduction pathways and its potential relationship to the function of other G alpha subclasses. Recent biochemical studies have suggested that Gq regulates the beta 1 isozyme of phospholipase C (PLC beta 1), an effector for some growth factors. By microinjection of inhibitory antibodies specific to distinct G alpha subunits into living cells, we have determined that G alpha q transduces bradykinin- and thrombin-stimulated intracellular calcium transients which are likely to be mediated by PLC beta 1. Moreover, we found that G alpha q function is required for the mitogenic action of both of these growth factors. These results indicate that both thrombin and bradykinin utilize Gq to couple to increases in intracellular calcium, and that Gq is a necessary component of the mitogenic action of these factors. While microinjection of antibodies against G alpha i2 did not abolish calcium transients stimulated by either of these factors, such microinjection prevented DNA synthesis in response to thrombin but not to bradykinin. These data suggest that thrombin- induced mitogenesis requires both Gq and Gi2, whereas bradykinin needs only the former. Thus, different growth factors operating upon the same cell type use overlapping yet distinct sets of G alpha subtypes in mitogenic signal transduction pathways. The direct identification of the coupling of both a pertussis toxin sensitive and insensitive G protein subtype in the mitogenic pathways utilized by thrombin offers an in vivo biochemical clarification of previous results obtained by pharmacologic studies. PMID:8458876

  2. Keratinocyte growth factor induces matrix metalloproteinase-9 expression and correlates with venous invasion in pancreatic cancer

    PubMed Central

    CHO, KAZUMITSU; MATSUDA, YOKO; UEDA, JUNJI; UCHIDA, EIJI; NAITO, ZENYA; ISHIWATA, TOSHIYUKI

    2012-01-01

    Keratinocyte growth factor (KGF), also known as fibroblast growth factor-7, and KGF receptor (KGFR) play important roles in the growth of epithelial cells and are overexpressed in a variety of malignant epithelial tumors, including pancreatic ductal adenocarcinoma (PDAC). We previously reported that co-expression of KGF and KGFR in PDAC is associated with venous invasion, enhanced vascular endothelial growth factor A expression and poor prognosis. Matrix metalloproteinase-9 (MMP-9) is known to participate in the degradation of type IV collagen, which is a primary component of extracellular matrices in the vascular basement membrane. In the present study, we examined the expression and roles of KGF, KGFR and MMP-9 in human PDAC cell lines and tissues. Quantitative real-time polymerase chain reaction analysis demonstrated the expression of MMP-9 mRNA in all eight PDAC cell lines. KGF, KGFR and MMP-9 were, respectively, expressed in 27 (43%), 23 (37%) and 35 (56%) of 63 patients. Each expression of KGF, KGFR or MMP-9 correlated positively with venous invasion. Furthermore, expression of KGF or MMP-9 correlated positively with liver metastasis. KGF-positive cases exhibited shorter survival than KGF-negative cases, while KGFR and MMP-9 expression were unrelated to prognosis. Administration of recombinant human KGF increased MMP-9 expression in PDAC cells, while transient transfection with short hairpin RNAs targeting KGF transcripts reduced MMP-9 expression in PDAC cells. Moreover, recombinant human KGF significantly enhanced migration and invasion of PDAC cells. These findings suggest that KGF and KGFR promote venous invasion via MMP-9 in PDAC, and closely correlate with liver metastasis. The KGF/KGFR pathway may be a critical therapeutic target for PDAC metastasis. PMID:22159401

  3. Brain-derived neurotrophic factor promotes neurite growth and survival of antennal lobe neurons in brain from the silk moth, Bombyx mori in vitro.

    PubMed

    Kim, Jin Hee; Sung, Dong Kyung; Park, Chan Woo; Park, Hun Hee; Park, Cheolin; Jeon, Soung-Hoo; Kang, Pil Don; Kwon, O-Yu; Lee, Bong Hee

    2005-03-01

    This study was conducted to investigate effects of brain-derived neurotrophic factor on the neurite growth and the survival rate of antennal lobe neurons in vitro, and secretion of brain-derived neurotrophic factor-like neuropeptide from brain into hemolymph in the silk moth, Bombyx mori. In primary culture of antennal lobe neurons with brain-derived neurotrophic factor, it promoted both a neurite extension of putative antennal lobe projection neurons and an outgrowth of branches from principal neurites of putative antennal interneurons with significance (p<0.05). Brain-derived neurotrophic factor also increased significantly a survival rate of antennal lobe neurons (p<0.05). Results from immunolabeling of brain and retrocerebral complex, and ELISA assay of hemolymph showed that brain-derived neurotrophic factor-like neuropeptide was synthesized by both median and lateral neurosecretory cells of brain, then transported to corpora allata for storage, and finally secreted into hemolymph for action. These results will provide valuable information for differentiation of invertebrate brain neurons with brain-derived neurotrophic factor.

  4. Keratinocyte growth factor induces proliferation of hepatocytes and epithelial cells throughout the rat gastrointestinal tract.

    PubMed

    Housley, R M; Morris, C F; Boyle, W; Ring, B; Biltz, R; Tarpley, J E; Aukerman, S L; Devine, P L; Whitehead, R H; Pierce, G F

    1994-11-01

    Keratinocyte growth factor (KGF), a member of the fibroblast growth factor (FGF) family, was identified as a specific keratinocyte mitogen after isolation from a lung fibroblast line. Recently, recombinant (r)KGF was found to influence proliferation and differentiation patterns of multiple epithelial cell lineages within skin, lung, and the reproductive tract. In the present study, we designed experiments to identify additional target tissues, and focused on the rat gastrointestinal (GI) system, since a putative receptor, K-sam, was originally identified in a gastric carcinoma. Expression of KGF receptor and KGF mRNA was detected within the entire GI tract, suggesting the gut both synthesized and responded to KGF. Therefore, rKGF was administered to adult rats and was found to induce markedly increased proliferation of epithelial cells from the foregut to the colon, and of hepatocytes, one day after systemic treatment. Daily treatment resulted in the marked selective induction of mucin-producing cell lineages throughout the GI tract in a dose-dependent fashion. Other cell lineages were either unaffected (e.g., Paneth cells), or relatively decreased (e.g., parietal cells, enterocytes) in rKGF-treated rats. The direct effect of rKGF was confirmed by demonstrating markedly increased carcinoembryonic antigen production in a human colon carcinoma cell line, LIM1899. Serum levels of albumin were specifically and significantly elevated after daily treatment. These results demonstrate rKGF can induce epithelial cell activation throughout the GI tract and liver. Further, endogenous KGF may be a normal paracrine mediator of growth within the gut.

  5. Platelet-derived growth factor induces phosphorylation of a 64-kDa nuclear protein

    SciTech Connect

    Shawver, L.K.; Pierce, G.F.; Kawahara, R.S.; Deuel, T.F.

    1989-01-15

    The platelet-derived growth factor (PDGF) stimulated the phosphorylation of a nuclear protein of 64 kDa (pp64) in nuclei of nontransformed normal rat kidney (NRK) cells. Low levels of phosphorylation of pp64 were observed in nuclei of serum-starved NRK cells. Fetal calf serum (FCS), PDGF, and homodimeric v-sis and PDGF A-chain protein enhanced the incorporation of 32P into pp64 over 4-fold within 30 min and over 8-fold within 2 h of exposure of NRK cells to the growth factors. In contrast, constitutive phosphorylation of 32P-labeled pp64 in nuclei of NRK cells transformed by the simian sarcoma virus (SSV) was high and only minimally stimulated by PDGF and FCS. 32P-Labeled pp64 was isolated from nuclei of PDGF-stimulated nontransformed NRK cells; the 32P of pp64 was labile in 1 M KOH, and pp64 was not significantly recognized by anti-phosphotyrosine antisera, suggesting that the PDGF-induced phosphorylation of pp64 occurred on serine or on threonine residues. However, pp64 from SSV-transformed NRK cell nuclei was significantly stable to base hydrolysis and was immunoprecipitated with anti-phosphotyrosine antisera, suggesting that pp64 from SSV-transformed cell nuclei is phosphorylated also on tyrosine. FCS, PDGF, and PDGF A- and B-chain homodimers thus stimulate the rapid time-dependent phosphorylation of a 64-kDa nuclear protein shortly after stimulation of responsive cells. The growth factor-stimulated phosphorylation of pp64 and the constitutive high levels of pp64 phosphorylation in cells transformed by SSV suggest important roles for pp64 and perhaps regulated nuclear protein kinases and phosphatases in cell division and proliferation.

  6. Nerve growth factor induces the expression of chaperone protein calreticulin in human epithelial ovarian cells.

    PubMed

    Vera, C; Tapia, V; Kohan, K; Gabler, F; Ferreira, A; Selman, A; Vega, M; Romero, C

    2012-07-01

    Epithelial ovarian cancer is highly angiogenic and high expression of Nerve Growth Factor (NGF), a proangiogenic protein. Calreticulin is a multifunctional protein with anti-angiogenic properties and its translocation to the tumor cell membrane promotes recognition and engulfment by dendritic cells. The aim of this work was to evaluate calreticulin expression in human normal ovaries, benign and borderline tumors, and epithelial ovarian cancer samples and to evaluate whether NGF regulates calreticulin expression in human ovarian surface epithelium and in epithelial ovarian cancer cell lines. Calreticulin mRNA and protein levels were analyzed using RT-PCR, Western blot and immunohistochemistry in 67 human ovarian samples obtained from our Institution. Calreticulin expression induced by NGF stimulation in cell lines was evaluated using RT-PCR, Western blot and immunocytochemistry. We found a significant increase of calreticulin mRNA levels in epithelial ovarian cancer samples as compared to normal ovaries, benign tumors, and borderline tumors. Calreticulin protein levels, evaluated by Western blot, were also increased in epithelial ovarian cancer with respect to benign and borderline tumors. When HOSE and A2780 cell lines were stimulated with Nerve Growth Factor, we found an increase in calreticulin protein levels compared to controls. This effect was reverted by GW441756, a TRKA specific inhibitor. These results suggest that NGF regulates calreticulin protein levels in epithelial ovarian cells through TRKA receptor activation. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis.

    PubMed

    Cai, Qiangjun; Lanting, Linda; Natarajan, Rama

    2004-09-01

    Adhesive interactions between monocytes and vascular smooth muscle cells (VSMC) may contribute to subendothelial monocyte-macrophage retention in atherosclerosis. We investigated the effects of angiotensin II (ANG II) and platelet-derived growth factor (PDGF)-BB on VSMC-monocyte interactions. Treatment of human aortic VSMC (HVSMC) with ANG II or PDGF-BB significantly increased binding to human monocytic THP-1 cells and to peripheral blood monocytes. This was inhibited by antibodies to monocyte beta(1)- and beta(2)-integrins. The binding was also attenuated by blocking VSMC arachidonic acid (AA) metabolism by inhibitors of 12/15-lipoxygenase (12/15-LO) or cyclooxygenase-2 (COX-2). Conversely, binding was enhanced by overexpression of 12/15-LO or COX-2. Direct treatment of HVSMC with AA or its metabolites also increased binding. Furthermore, VSMC derived from 12/15-LO knockout mice displayed reduced binding to mouse monocytic cells relative to genetic control mice. Using specific signal transduction inhibitors, we demonstrated the involvement of Src, phosphoinositide 3-kinase, and MAPKs in ANG II- or PDGF-BB-induced binding. Interestingly, after coculture with HVSMC, THP-1 cell surface expression of the scavenger receptor CD36 was increased. These results show for the first time that growth factors may play additional roles in atherosclerosis by increasing monocyte binding to VSMC via AA metabolism and key signaling pathways. This can lead to monocyte subendothelial retention, CD36 expression, and foam cell formation.

  8. Nerve growth factor (NGF) and pro-NGF increase low-density lipoprotein (LDL) receptors in neuronal cells partly by different mechanisms: role of LDL in neurite outgrowth.

    PubMed

    Do, Hai Thi; Bruelle, Céline; Pham, Dan Duc; Jauhiainen, Matti; Eriksson, Ove; Korhonen, Laura T; Lindholm, Dan

    2016-01-01

    Low-density lipoprotein receptors (LDLRs) mediate the uptake of lipoprotein particles into cells, as studied mainly in peripheral tissues. Here, we show that nerve growth factor (NGF) increases LDLR levels in PC6.3 cells and in cultured septal neurons from embryonic rat brain. Study of the mechanisms showed that NGF enhanced transcription of the LDLR gene, acting mainly via Tropomyosin receptor kinase A receptors. Simvastatin, a cholesterol-lowering drug, also increased the LDLR expression in PC6.3 cells. In addition, pro-NGF and pro-brain-derived neurotrophic factor, acting via the p75 neurotrophin receptor (p75NTR) also increased LDLRs. We further observed that Myosin Regulatory Light Chain-Interacting Protein/Inducible Degrader of the LDLR (Mylip/Idol) was down-regulated by pro-NGF, whereas the other LDLR regulator, proprotein convertase subtilisin kexin 9 (PCSK9) was not significantly changed. On the functional side, NGF and pro-NGF increased lipoprotein uptake by neuronal cells as shown using diacetyl-labeled LDL. The addition of serum-derived lipoprotein particles in conjunction with NGF or simvastatin enhanced neurite outgrowth. Collectively, these results show that NGF and simvastatin are able to stimulate lipoprotein uptake by neurons with a positive effect on neurite outgrowth. Increases in LDLRs and lipoprotein particles in neurons could play a functional role during brain development, in neuroregeneration and after brain injuries. Nerve growth factor (NGF) and pro-NGF induce the expression of low-density lipoprotein receptors (LDLRs) in neuronal cells leading to increased LDLR levels. Pro-NGF also down-regulated myosin regulatory light chain-interacting protein/inducible degrader of the LDLR (Mylip/Idol) that is involved in the degradation of LDLRs. NGF acts mainly via Tropomyosin receptor kinase A (TrkA) receptors, whereas pro-NGF stimulates p75 neurotrophin receptor (p75NTR). Elevated LDLRs upon NGF and pro-NGF treatments enhanced lipoprotein uptake

  9. Plasticity-related Gene 5 (PRG5) Induces Filopodia and Neurite Growth and Impedes Lysophosphatidic Acid– and Nogo-A–mediated Axonal Retraction

    PubMed Central

    Broggini, Thomas; Nitsch, Robert

    2010-01-01

    Members of the plasticity-related gene (PRG1-4) family are brain-specific integral membrane proteins and implicated in neuronal plasticity, such as filopodia formation and axon growth after brain lesion. Here we report on the cloning of a novel member of the PRG family, PRG5, with high homologies to PRG3. PRG5 is regulated during brain and spinal cord development and is exclusively allocated within the nervous system. When introduced in neurons, PRG5 is distributed in the plasma membrane and induces filopodia as well as axon elongation and growth. Conversely, siRNA mediated knockdown of PRG5 impedes axon growth and disturbs filopodia formation. Here we show that PRG5 induces filopodia growth independently of Cdc42. Moreover, axon collapse and RhoA activation induced by LPA and myelin-associated neurite inhibitor Nogo-A is attenuated in the presence of PRG5, although direct activation of the RhoA-Rho-PIP5K kinase pathway abolishes PRG5 -formed neurites. Thus, we describe here the identification of a novel member of the PRG family that induces filopodia and axon elongation in a Cdc42-independent manner. In addition, PRG5 impedes brain injury-associated growth inhibitory signals upstream of the RhoA-Rho kinase pathway. PMID:20032306

  10. [Sphingosine kinase regulates hepatocyte growth factor-induced migration of endothelial cells].

    PubMed

    Yi, Jun; Lu, Zhuao-Zhuang; Duan, Hai-Feng; Gai, Lu-Yue; Wang, Li-Sheng

    2006-05-01

    To elucidate the effect of sphingosine kinase (SPK) on the hepatocyte growth factor (HGF)-induced migration of endothelial cells. We constructed recombinant adenoviral vectors, which contain SPK gene and its mutant respectively. These adenoviral vectors were packaged and amplified in 293 cells. And intracellular SPK activity was assayed via measurement of [32]P radioisotope labeled S1P; the effect of SPK activation on HGF-induced migration of endothelial cell was observed by Transwell technique. Adenoviral mediated expression of SPK gene increased in ECV 304 cells intracellular SPK activity, which in turn enhanced the HGF-induced migration. Whereas these activities were blocked by the dominant negative SPK gene. These findings show that SPK activation plays important roles in the regulation of HGF-induced migration of endothelial cells.

  11. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation.

    PubMed

    Nagata, Yosuke; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor.

  12. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    SciTech Connect

    Nagata, Yosuke Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  13. Mechanisms of vascular endothelial growth factor-induced pathfinding by endothelial sprouts in biomaterials.

    PubMed

    Shamloo, Amir; Xu, Hui; Heilshorn, Sarah

    2012-02-01

    A critical property of biomaterials for use in regenerative medicine applications is the ability to promote angiogenesis, the formation of new vascular networks, to support regenerating tissues. Recent studies have demonstrated that a complex interplay exists between biomechanical and biochemical regulators of endothelial cell sprouting, an early step in angiogenesis. Here, we use a microfluidic platform to study the pathfinding behaviors induced by various stable vascular endothelial growth factor (VEGF) gradients during sprouting morphogenesis within biomaterials. Quantitative, time-lapse analysis of endothelial sprouting demonstrated that the ability of VEGF to regulate sprout orientation during several stages of sprouting morphogenesis (initiation, elongation, and turning navigation) was biomaterial dependent. Identical VEGF gradients induced different types of coordinated cell movements depending on the density of the surrounding collagen/fibronectin matrix. In denser matrices, sprouts were more likely to have an initial orientation aligned parallel to the VEGF gradient. In contrast, in less dense matrices, sprouts were more likely to initially misalign with the VEGF gradient; however, these sprouts underwent significant turning and navigation to eventually reorient to be parallel to the VEGF gradient. These less dense matrices required shallower VEGF gradients and demonstrated lower activating VEGF thresholds to induce proper sprout alignment and pathfinding. These results encourage the future use of microfluidic platforms to probe fundamental aspects of matrix effects on angiogenesis, to screen biomaterials for angiogenic potential, and to design ex vivo tissues with aligned vascular networks.

  14. Mechanisms of Vascular Endothelial Growth Factor-Induced Pathfinding by Endothelial Sprouts in Biomaterials

    PubMed Central

    Shamloo, Amir; Xu, Hui

    2012-01-01

    A critical property of biomaterials for use in regenerative medicine applications is the ability to promote angiogenesis, the formation of new vascular networks, to support regenerating tissues. Recent studies have demonstrated that a complex interplay exists between biomechanical and biochemical regulators of endothelial cell sprouting, an early step in angiogenesis. Here, we use a microfluidic platform to study the pathfinding behaviors induced by various stable vascular endothelial growth factor (VEGF) gradients during sprouting morphogenesis within biomaterials. Quantitative, time-lapse analysis of endothelial sprouting demonstrated that the ability of VEGF to regulate sprout orientation during several stages of sprouting morphogenesis (initiation, elongation, and turning navigation) was biomaterial dependent. Identical VEGF gradients induced different types of coordinated cell movements depending on the density of the surrounding collagen/fibronectin matrix. In denser matrices, sprouts were more likely to have an initial orientation aligned parallel to the VEGF gradient. In contrast, in less dense matrices, sprouts were more likely to initially misalign with the VEGF gradient; however, these sprouts underwent significant turning and navigation to eventually reorient to be parallel to the VEGF gradient. These less dense matrices required shallower VEGF gradients and demonstrated lower activating VEGF thresholds to induce proper sprout alignment and pathfinding. These results encourage the future use of microfluidic platforms to probe fundamental aspects of matrix effects on angiogenesis, to screen biomaterials for angiogenic potential, and to design ex vivo tissues with aligned vascular networks. PMID:21888475

  15. Epidermal growth factor-induced hydrogen peroxide production is mediated by dual oxidase 1.

    PubMed

    Sirokmány, Gábor; Pató, Anna; Zana, Melinda; Donkó, Ágnes; Bíró, Adrienn; Nagy, Péter; Geiszt, Miklós

    2016-08-01

    Stimulation of mammalian cells by epidermal growth factor (EGF) elicits complex signaling events, including an increase in hydrogen peroxide (H2O2) production. Understanding the significance of this response is limited by the fact that the source of EGF-induced H2O2 production is unknown. Here we show that EGF-induced H2O2 production in epidermal cell lines is dependent on the agonist-induced calcium signal. We analyzed the expression of NADPH oxidase isoforms and found both A431 and HaCaT cells to express the calcium-sensitive NADPH oxidase, Dual oxidase 1 (Duox1) and its protein partner Duox activator 1 (DuoxA1). Inhibition of Duox1 expression by small interfering RNAs eliminated EGF-induced H2O2 production in both cell lines. We also demonstrate that H2O2 production by Duox1 leads to the oxidation of thioredoxin-1 and the cytosolic peroxiredoxins. Our observations provide evidence for a new signaling paradigm in which changes of intracellular calcium concentration are transformed into redox signals through the calcium-dependent activation of Duox1. Copyright © 2016. Published by Elsevier Inc.

  16. Nerve growth factor induced hyperalgesia in the rat hind paw is dependent on circulating neutrophils.

    PubMed

    Bennett, G; al-Rashed, S; Hoult, J R; Brain, S D

    1998-09-01

    The mechanisms by which nerve growth factor (NGF) induces thermal hyperalgesia and neutrophil accumulation have been investigated in the rat. Thermal nociceptive thresholds in rat hind paw were measured as the time taken for paw withdrawal from a heat source and neutrophil accumulation was measured in hind paw and dorsal skin samples using a myeloperoxidase assay. NGF (23-80 pmol intraplantar (i.pl.) injection) induced a significant (P < 0.05, n = 6-16) thermal hyperalgesia at 5 h after injection and significant neutrophil accumulation (P < 0.05, n = 6) was observed with NGF (40 pmol). In dorsal skin, where multiple samples can be assessed, intradermal (i.d.) NGF was 10-30 times less potent than interleukin-1beta in inducing neutrophil accumulation. The 5-lipoxygenase inhibitor ZM230487 (10 nmol co-injected with NGF) significantly attenuated neutrophil accumulation and hyperalgesia induced by NGF; unlike the histamine and 5-hydroxytryptamine antagonists (mepyramine and methysergide) which were without effect at the times measured. Furthermore, depletion of circulating neutrophils (using a rabbit anti-rat neutrophil antibody) abolished NGF induced hyperalgesia. These results indicate that neutrophils, which accumulate in response to a 5-lipoxygenase product, play a crucial role in NGF-induced hyperalgesia.

  17. Flavonoids from the leaves of Carya cathayensis Sarg. inhibit vascular endothelial growth factor-induced angiogenesis.

    PubMed

    Tian, Sha-Sha; Jiang, Fu-Sheng; Zhang, Kun; Zhu, Xue-Xin; Jin, Bo; Lu, Jin-Jian; Ding, Zhi-Shan

    2014-01-01

    The total flavonoids (TFs) were isolated from the leaves of Carya cathayensis Sarg. (LCC), a well-known Chinese medicinal herb commercially cultivated in Tianmu Mountain district, a cross area of Zhejiang and Anhui provinces in China. Five flavonoids, i.e. cardamonin, pinostrobin chalcone (PC), wogonin, chrysin, and pinocembrin were the main components of the TFs. The TFs and these pure compounds suppressed vascular endothelial growth factor (VEGF)-induced angiogenesis as detected in the mouse aortic ring assay, and cardamonin showed the best effect among them. To further elucidate the mechanisms for suppressing angiogenesis of these flavonoids, assays of VEGF-induced proliferation and migration in human umbilical vein endothelial cells (HUVECs) were performed. The TFs, cardamonin, pinocembrin, and chrysin obviously suppressed both VEGF-induced HUVEC proliferation and migration. However, PC and wogonin not only slightly inhibited VEGF-induced proliferation but also remarkably suppressed those of migration in HUVECs. Our further study showed that cardamonin decreased the phosphorylation of ERK and AKT induced by VEGF with a dose-dependent manner in HUVECs. Our findings indicate that the TFs and these pure flavonoids may become potential preventive and/or therapeutic agents against angiogenesis-related diseases.

  18. Abi-1 forms an epidermal growth factor-inducible complex with Cbl: role in receptor endocytosis.

    PubMed

    Tanos, Barbara E; Pendergast, Ann Marie

    2007-07-01

    The Abl-interactor (Abi) proteins are involved in the regulation of actin polymerization and have recently been shown to modulate epidermal growth factor receptor (EGFR) endocytosis. Here we describe the identification of a novel complex between Abi-1 and the Cbl ubiquitin ligase that is induced by stimulation with EGF. Notably, an Abi-1 mutant lacking the SH3 domain (DeltaSH3) fails to interact with Cbl and inhibits EGFR internalization. We show that expression of the Abi-1DeltaSH3 mutant inhibits Cbl accumulation at the plasma membrane after EGF treatment. We have previously shown that the oncogenic Abl tyrosine kinase inhibits EGFR internalization. Here we report that the oncogenic Abl kinase disrupts the EGF-inducible Abi-1/Cbl complex, highlighting the importance of Abl kinases and downstream effectors in the regulation of EGFR internalization. Thus, our work reveals a new role for oncogenic Abl tyrosine kinases in the regulation of the Abi-1/Cbl protein complex and uncovers a role for the Abi-1/Cbl complex in the regulation of EGFR endocytosis.

  19. Nerve growth factor induces sensitization of nociceptors without evidence for increased intraepidermal nerve fiber density.

    PubMed

    Hirth, Michael; Rukwied, Roman; Gromann, Alois; Turnquist, Brian; Weinkauf, Benjamin; Francke, Klaus; Albrecht, Philip; Rice, Frank; Hägglöf, Björn; Ringkamp, Matthias; Engelhardt, Maren; Schultz, Christian; Schmelz, Martin; Obreja, Otilia

    2013-11-01

    Nerve growth factor (NGF) is involved in the long-term sensitization of nociceptive processing linked to chronic pain. Functional and structural ("sprouting") changes can contribute. Thus, humans report long-lasting hyperalgesia to mechanical and electrical stimulation after intradermal NGF injection and NGF-induced sprouting has been reported to underlie cancer bone pain and visceral pain. Using a human-like animal model we investigated the relationship between the structure and function of unmyelinated porcine nociceptors 3 weeks after intradermal NGF treatment. Axonal and sensory characteristics were studied by in vivo single-fiber electrophysiology and immunohistochemistry. C fibers recorded extracellularly were classified based on mechanical response and activity-dependent slowing (ADS) of conduction velocity. Intraepidermal nerve fiber (IENF) densities were assessed by immunohistochemistry in pigs and in human volunteers using the same NGF model. NGF increased conduction velocity and reduced ADS and propagation failure in mechano-insensitive nociceptors. The proportion of mechano-sensitive C nociceptors within NGF-treated skin areas increased from 45.1% (control) to 71% and their median mechanical thresholds decreased from 40 to 20 mN. After NGF application, the mechanical receptive fields of nociceptors increased from 25 to 43 mm(2). At the structural level, however, IENF density was not increased by NGF. In conclusion, intradermal NGF induces long-lasting axonal and mechanical sensitization in porcine C nociceptors that corresponds to hyperalgesia observed in humans. Sensitization is not accompanied by increased IENF density, suggesting that NGF-induced hyperalgesia might not depend on changes in nerve fiber density but could be linked to the recruitment of previously silent nociceptors. Copyright © 2013 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  20. PLEIOTROPHIN, A MULTIFUNCTIONAL CYTOKINE AND GROWTH FACTOR, INDUCES LEUKOCYTE RESPONSES THROUGH THE INTEGRIN MAC-1.

    PubMed

    Shen, Di; Podolnikova, Nataly P; Yakubenko, Valentin P; Ardell, Christopher L; Balabiyev, Arnat; Ugarova, Tatiana P; Wang, Xu

    2017-09-22

    Pleiotrophin (PTN) is a multifunctional, cationic, glycosaminoglycan-binding cytokine and growth factor involved in numerous physiological and pathological processes, including tissue repair and inflammation-related diseases. PTN has been shown to promote leukocyte responses by inducing their migration and expression of inflammatory cytokines. However, the mechanisms through which PTN mediates these responses remain unclear. Here, we identified the integrin Mac-1 (αMβ2, CD11b/CD18) as the receptor mediating macrophage adhesion and migration to PTN. We also found that expression of Mac-1 on the surface of human embryonic kidney (HEK) 293 cells induced their adhesion and migration to PTN. Accordingly, PTN promoted Mac-1-dependent cell spreading and initiated intracellular signaling manifested in phosphorylation of Erk1/2. While binding to PTN, Mac-1 on Mac-1-expressing HEK293 cells appear to cooperate with cell-surface proteoglycans, since both anti-Mac-1 function-blocking mAb and heparin were required to block adhesion. Moreover, biolayer interferometry and NMR indicated a direct interaction between the αMI domain, the major ligand-binding region of Mac-1, and PTN. Using peptide libraries, we found that in PTN, the αMI domain bound sequences enriched in basic and hydrophobic residues, indicating that PTN conforms to the general principle of ligand-recognition specificity of the αMI domain toward cationic proteins/peptides. Finally, using recombinant PTN-derived fragments, we show that PTN contains two distinct Mac-1-binding sites in each of its constitutive domains. Collectively, these results identify PTN as a ligand for the integrin Mac-1 on the surface of leukocytes and suggest that this interaction may play a role in inflammatory responses. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  1. Phosphorylated endothelial nitric oxide synthase mediates vascular endothelial growth factor-induced penile erection.

    PubMed

    Musicki, Biljana; Palese, Michael A; Crone, Julie K; Burnett, Arthur L

    2004-02-01

    The objective of the present study was to evaluate whether vascular endothelial growth factor (VEGF)-induced penile erection is mediated by activation of endothelial nitric oxide synthase (eNOS) through its phosphorylation. We assessed the role of constitutively activated eNOS in VEGF-induced penile erection using wild-type (WT) and eNOS-knockout (eNOS(-/-)) mice with and without vasculogenic erectile dysfunction. Adult WT and eNOS(-/-) mice were subjected to sham operation or bilateral castration to induce vasculogenic erectile dysfunction. At the time of surgery, animals were injected intracavernosally with a replication-deficient adenovirus expressing human VEGF145 (10(9) particle units) or with empty virus (Ad.Null). After 7 days, erectile function was assessed in response to cavernous nerve electrical stimulation. Total and phosphorylated protein kinase B (Akt) as well as total and phosphorylated eNOS were quantitatively assessed in mice penes using Western immunoblot and immunohistochemistry. In intact WT mice, VEGF145 significantly increased erectile responses, and in WT mice after castration, it completely recovered penile erection. However, VEGF145 failed to increase erectile responses in intact eNOS(-/-) mice and only partially recovered erectile function in castrated eNOS(-/-) mice. In addition, VEGF145 significantly increased phosphorylation of eNOS at Serine 1177 by approximately 2-fold in penes of both intact and castrated WT mice. The data provide a molecular explanation for VEGF stimulatory effect on penile erection, which involves phosphorylated eNOS (Serine 1177) mediation.

  2. Sphingosine kinase activation regulates hepatocyte growth factor induced migration of endothelial cells.

    PubMed

    Duan, Hai-Feng; Wu, Chu-Tse; Lu, Ying; Wang, Hua; Liu, Hong-Jun; Zhang, Qun-Wei; Jia, Xiang-Xu; Lu, Zhu-Zhuang; Wang, Li-Sheng

    2004-08-15

    Hepatocyte growth factor (HGF)-induced migration of endothelial cells is critical for angiogenesis. Sphingosine kinase (SPK) is a key enzyme catalyzing the formation of sphingosine-1-phosphate (S1P), a lipid messenger that is implicated in the regulation of a wide variety of important cellular events through both intracellular and extracellular mechanisms. The aim of this study was to investigate whether activation of SPK is involved in the migration of endothelial cells induced by HGF. The biological functions of HGF are mediated through the activation of its high-affinity tyrosine kinase receptor, c-met protooncogene. In the present study, Treatment of ECV304 endothelial cells with HGF resulted in tyrosine phosphorylation of c-Met and activation of SPK in a concentration-dependent manner. Either Ly294002 or PD98059, specific inhibitor of the PI3K and ERK/MAPK pathways, respectively, blocked the HGF-induced activation of SPK. HGF stimulation significantly increased intracellular S1P level, but no detectable secretion of S1P into the cell culture medium was observed. Treatment of ECV304 cells with pertussis toxin (PTX) has no effect on the HGF-induced migration, indicating extracellular S1P is dispensable for this process. Overexpression of wild-type SPK gene in ECV 304 cells increased the intracellular S1P and enhanced the HGF-induced migration, whereas inhibition of cellular SPK activity by N,N-dimethylsphingosine (DMS), a potent inhibitor of SPK, or by expression of a dominant-negative SPK (DN-SK) blocked the HGF-induced migration of ECV 304 cells. It is suggested that PI3K and ERK/MAPK mediated the activation of SPK and would be involved in the HGF-induced migration of endothelial cells. These results elucidate a novel mechanism by which intracellularly generated S1P mediates signaling from HGF/c-Met to the endothelial cell migration.

  3. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses.

    PubMed

    Twu, Olivia; Dessí, Daniele; Vu, Anh; Mercer, Frances; Stevens, Grant C; de Miguel, Natalia; Rappelli, Paola; Cocco, Anna Rita; Clubb, Robert T; Fiori, Pier Luigi; Johnson, Patricia J

    2014-06-03

    The human-infective parasite Trichomonas vaginalis causes the most prevalent nonviral sexually transmitted infection worldwide. Infections in men may result in colonization of the prostate and are correlated with increased risk of aggressive prostate cancer. We have found that T. vaginalis secretes a protein, T. vaginalis macrophage migration inhibitory factor (TvMIF), that is 47% similar to human macrophage migration inhibitory factor (HuMIF), a proinflammatory cytokine. Because HuMIF is reported to be elevated in prostate cancer and inflammation plays an important role in the initiation and progression of cancers, we have explored a role for TvMIF in prostate cancer. Here, we show that TvMIF has tautomerase activity, inhibits macrophage migration, and is proinflammatory. We also demonstrate that TvMIF binds the human CD74 MIF receptor with high affinity, comparable to that of HuMIF, which triggers activation of ERK, Akt, and Bcl-2-associated death promoter phosphorylation at a physiologically relevant concentration (1 ng/mL, 80 pM). TvMIF increases the in vitro growth and invasion through Matrigel of benign and prostate cancer cells. Sera from patients infected with T. vaginalis are reactive to TvMIF, especially in males. The presence of anti-TvMIF antibodies indicates that TvMIF is released by the parasite and elicits host immune responses during infection. Together, these data indicate that chronic T. vaginalis infections may result in TvMIF-driven inflammation and cell proliferation, thus triggering pathways that contribute to the promotion and progression of prostate cancer.

  4. CD11b+GR1+ Myeloid Cells Secrete NGF and Promote Trigeminal Ganglion Neurite Growth: Implications for Corneal Nerve Regeneration

    PubMed Central

    Sarkar, Joy; Chaudhary, Shweta; Jassim, Sarmad H.; Ozturk, Okan; Chamon, Wallace; Ganesh, Balaji; Tibrewal, Sapna; Gandhi, Sonal; Byun, Yong-Soo; Hallak, Joelle; Mahmud, Dolores L.; Mahmud, Nadim; Rondelli, Damiano; Jain, Sandeep

    2013-01-01

    Purpose. We characterized fluorescent bone marrow cells (YFP+ BMCs) in the thy1-YFP mouse and determine if they promote trigeminal ganglion (TG) cell neurite growth. Methods. Excimer laser annular keratectomy was performed in thy1-YFP mice, and corneas were imaged. BMCs were harvested from femur and tibia, and the expression of surface markers on YFP+ BMCs was analyzed by flow cytometry. The immunosuppressive action of BMCs (YFP+ and YFP−) was evaluated in an allogenic mixed lymphocyte reaction (MLR). Neurotrophic action of BMCs (YFP+ and YFP−) was determined in compartmental and transwell cultures of dissociated TG cells. Results. Following annular keratectomy, YFP+ BMCs infiltrated the cornea. YFP+ BMCs shared surface markers (CD11b+Gr1+Ly6C+Ly6G-F4/80low) with monocytic myeloid-derived suppressor cells (MDSCs), had similar morphology, and suppressed T-cell proliferation in allogenic MLR in a dose-dependent manner. YFP+ BMCs, but not YFP− BMCs, significantly increased growth of TG neurites in vitro. When cultured in a transwell with TG neurites, YFP+ BMCs expressed neurotrophins and secreted nerve growth factor (NGF) in conditioned medium. YFP+ BMCs that infiltrated the cornea maintained their phenotype and actions (neuronal and immune). Conclusions. YFP+ BMCs in thy1-YFP mice have immunophenotypic features of MDSCs. They secrete NGF and promote neuroregeneration. Their immunosuppressive and neurotrophic actions are preserved after corneal infiltration. These findings increase our understanding of the beneficial roles played by leukocyte trafficking in the cornea and may lead to therapeutic strategies that use NGF-secreting myeloid cells to repair diseased or injured neurons. PMID:23942970

  5. CD11b+GR1+ myeloid cells secrete NGF and promote trigeminal ganglion neurite growth: implications for corneal nerve regeneration.

    PubMed

    Sarkar, Joy; Chaudhary, Shweta; Jassim, Sarmad H; Ozturk, Okan; Chamon, Wallace; Ganesh, Balaji; Tibrewal, Sapna; Gandhi, Sonal; Byun, Yong-Soo; Hallak, Joelle; Mahmud, Dolores L; Mahmud, Nadim; Rondelli, Damiano; Jain, Sandeep

    2013-09-03

    We characterized fluorescent bone marrow cells (YFP(+) BMCs) in the thy1-YFP mouse and determine if they promote trigeminal ganglion (TG) cell neurite growth. Excimer laser annular keratectomy was performed in thy1-YFP mice, and corneas were imaged. BMCs were harvested from femur and tibia, and the expression of surface markers on YFP(+) BMCs was analyzed by flow cytometry. The immunosuppressive action of BMCs (YFP(+) and YFP(-)) was evaluated in an allogenic mixed lymphocyte reaction (MLR). Neurotrophic action of BMCs (YFP(+) and YFP(-)) was determined in compartmental and transwell cultures of dissociated TG cells. Following annular keratectomy, YFP(+) BMCs infiltrated the cornea. YFP(+) BMCs shared surface markers (CD11b+Gr1+Ly6C+Ly6G-F4/80(low)) with monocytic myeloid-derived suppressor cells (MDSCs), had similar morphology, and suppressed T-cell proliferation in allogenic MLR in a dose-dependent manner. YFP(+) BMCs, but not YFP(-) BMCs, significantly increased growth of TG neurites in vitro. When cultured in a transwell with TG neurites, YFP(+) BMCs expressed neurotrophins and secreted nerve growth factor (NGF) in conditioned medium. YFP(+) BMCs that infiltrated the cornea maintained their phenotype and actions (neuronal and immune). YFP(+) BMCs in thy1-YFP mice have immunophenotypic features of MDSCs. They secrete NGF and promote neuroregeneration. Their immunosuppressive and neurotrophic actions are preserved after corneal infiltration. These findings increase our understanding of the beneficial roles played by leukocyte trafficking in the cornea and may lead to therapeutic strategies that use NGF-secreting myeloid cells to repair diseased or injured neurons.

  6. Neurite growth acceleration of adult Dorsal Root Ganglion neurons illuminated by low-level Light Emitting Diode light at 645 nm.

    PubMed

    Burland, Marion; Paris, Lambert; Quintana, Patrice; Bec, Jean-Michel; Diouloufet, Lucie; Sar, Chamroeun; Boukhaddaoui, Hassan; Charlot, Benoit; Braga Silva, Jefferson; Chammas, Michel; Sieso, Victor; Valmier, Jean; Bardin, Fabrice

    2015-06-01

    The effect of a 645 nm Light Emitting Diode (LED) light irradiation on the neurite growth velocity of adult Dorsal Root Ganglion (DRG) neurons with peripheral axon injury 4-10 days before plating and without previous injury was investigated. The real amount of light reaching the neurons was calculated by taking into account the optical characteristics of the light source and of media in the light path. The knowledge of these parameters is essential to be able to compare results of the literature and a way to reduce inconsistencies. We found that 4 min irradiation of a mean irradiance of 11.3 mW/cm(2) (corresponding to an actual irradiance reaching the neurons of 83 mW/cm(2)) induced a 1.6-fold neurite growth acceleration on non-injured neurons and on axotomized neurons. Although the axotomized neurons were naturally already in a rapid regeneration process, an enhancement was found to occur while irradiating with the LED light, which may be promising for therapy applications. Dorsal Root Ganglion neurons (A) without previous injury and (B) subjected to a conditioning injury.

  7. The effects of gradients of nerve growth factor immobilized PCLA scaffolds on neurite outgrowth in vitro and peripheral nerve regeneration in rats.

    PubMed

    Tang, Shuo; Zhu, Jixiang; Xu, Yangbin; Xiang, Andy Peng; Jiang, Mei Hua; Quan, Daping

    2013-09-01

    Introducing concentration gradients of nerve growth factor (NGF) into conduits for repairing of peripheral nerve injury is crucial for nerve regeneration and guidance. Herein, combining differential adsorption of NGF/silk fibroin (SF) coating, the gradient of NGF-immobilized membranes (G-Ms) and nanofibrous nerve conduits (G-nNCs) were successfully fabricated. The efficacy of NGF gradients was confirmed by a quantitative comparison of dorsal root ganglia (DRG) neurite outgrowth on the G-Ms or uniform NGF-immobilized membranes (U-Ms). Significantly, the neurite turning ratio was 0.48 ± 0.11 for G-M group, but it was close to zero for U-M group. The neurite length of DRGs in the middle of the G-Ms was significantly longer than that of U-M group, even though the average NGF concentration was approximated. Furthermore, 12 weeks after implantation in rats with a 14 mm gap of sciatic nerve injury, G-nNCs achieved satisfying outcomes of nerve regeneration associated with morphological and functional improvements, which was superior to that of the uniform NGF-immobilized nNCs (U-nNCs). Sciatic function index (SFI), compound muscle action potentials (CMAPs), total number of myelinated nerve fibers, thickness of myelin sheath were similar for the G-nNCs and autografts, with the G-nNCs having a higher density of axons than the autografts. Our results demonstrated the significant role of introducing NGF gradients into scaffolds in promoting nerve regeneration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Olfactory ensheathing cell-neurite alignment enhances neurite outgrowth in scar-like cultures

    PubMed Central

    Khankan, Rana R.; Wanner, Ina B.; Phelps, Patricia E.

    2015-01-01

    The regenerative capacity of the adult CNS neurons after injury is strongly inhibited by the spinal cord lesion site environment that is composed primarily of the reactive astroglial scar and invading meningeal fibroblasts. Olfactory ensheathing cell (OEC) transplantation facilitates neuronal survival and functional recovery after a complete spinal cord transection, yet the mechanisms by which this recovery occurs remain unclear. We used a unique multicellular scar-like culture model to test if OECs promote neurite outgrowth in growth inhibitory areas. Astrocytes were mechanically injured and challenged by meningeal fibroblasts to produce key inhibitory elements of a spinal cord lesion. Neurite outgrowth of postnatal cerebral cortical neurons was assessed on three substrates: quiescent astrocyte control cultures, reactive astrocyte scar-like cultures, and scar-like cultures with OECs. Initial results showed that OECs enhanced total neurite outgrowth of cortical neurons in a scar-like environment by 60%. We then asked if the neurite growth-promoting properties of OECs depended on direct alignment between neuronal and OEC processes. Neurites that aligned with OECs were nearly three times longer when they grew on inhibitory meningeal fibroblast areas and twice as long on reactive astrocyte zones compared to neurites not associated with OECs. Our results show that OECs can independently enhance neurite elongation and that direct OEC-neurite cell contact can provide a permissive substrate that overcomes the inhibitory nature of the reactive astrocyte scar border and the fibroblast-rich spinal cord lesion core. PMID:25863021

  9. Characterization of BASP1-mediated neurite outgrowth.

    PubMed

    Korshunova, Irina; Caroni, Pico; Kolkova, Kateryna; Berezin, Vladimir; Bock, Elisabeth; Walmod, Peter S

    2008-08-01

    The brain acid-soluble protein BASP1 (CAP-23, NAP-22) belongs to the family of growth-associated proteins, which also includes GAP-43, a protein recently shown to regulate neural cell adhesion molecule (NCAM)-mediated neurite outgrowth. Here, the effects of BASP1 overexpression were investigated in PC12E2 cells and primary hippocampal neurons. BASP1 overexpression stimulated neurite outgrowth in both cell types. The effects of BASP1 and trans-homophilic NCAM interactions were additive, and BASP1-induced neurite outgrowth was not inhibited by ectopic expression of cytoplasmic NCAM domains. Furthermore, inhibition of signaling via the fibroblast growth factor receptor, Src-family nonreceptor tyrosine kinases, protein kinase C, or GSK3beta, and expression of constructs of the cytoskeletal proteins spectrin and tau inhibited NCAM- but not BASP1-induced neurite outgrowth. Expression of BASP1 mutated at the serine-5 phosphorylation site stimulated neurite outgrowth to a degree comparable to that observed in response to overexpression of wild-type BASP1, whereas expression of BASP1 mutated at the myristoylation site at glycine-1 completely abrogated the stimulatory effects of the protein on neurite outgrowth. Finally, coexpression experiments with dominant negative and wild-type versions of GAP-43 and BASP1 demonstrated that the two proteins could substitute for each other with respect to induction of NCAM-independent neurite outgrowth, whereas BASP1 was unable to replace the stimulatory effect of GAP-43 on NCAM-mediated neurite outgrowth. These observations demonstrate that BASP1 and GAP-43 have overlapping, but not identical, functions in relation to neurite outgrowth and indicate that the main function of BASP1 is to regulate the organization and morphology of the plasma membrane.

  10. C. elegans fmi-1/flamingo and Wnt pathway components interact genetically to control the anteroposterior neurite growth of the VD GABAergic neurons

    PubMed Central

    Ackley, Brian D

    2013-01-01

    During development, multiple environmental cues, e.g., growth factors, cell adhesion molecules, etc., interact to influence the pattern of outgrowth of axons and dendrites in a cell-specific fashion. As a result, individual neurons may receive similar signals, but make unique choices, leading to distinct wiring within the nervous system. C. elegans has been useful in identifying molecular cues that influence neuronal development, as well as the downstream mechanisms that allow individual neurons to make cell-specific responses. Recently, we described a role for the conserved cadherin domain-containing protein, FMI-1/flamingo, in multiple stages of neural development in C. elegans. During the initial phase of neurite outgrowth, FMI-1 seems to have a relatively cell-specific effect on the VD neurons to promote the initial neurite formed to grow toward the anterior. In this capacity, FMI-1 appears to work coordinately with at least two Wnt ligands, EGL-20 and LIN-44, and multiple downstream Wnt signaling components (including LIN-17/Frizzled, DSH-1/Disheveled, and BAR-1/β-catenin). Here I will discuss some of the ideas we considered about how FMI-1 could affect neurons as they acquire their morphology during development. PMID:24778938

  11. C. elegans fmi-1/flamingo and Wnt pathway components interact genetically to control the anteroposterior neurite growth of the VD GABAergic neurons.

    PubMed

    Ackley, Brian D

    2013-07-01

    During development, multiple environmental cues, e.g., growth factors, cell adhesion molecules, etc., interact to influence the pattern of outgrowth of axons and dendrites in a cell-specific fashion. As a result, individual neurons may receive similar signals, but make unique choices, leading to distinct wiring within the nervous system. C. elegans has been useful in identifying molecular cues that influence neuronal development, as well as the downstream mechanisms that allow individual neurons to make cell-specific responses. Recently, we described a role for the conserved cadherin domain-containing protein, FMI-1/flamingo, in multiple stages of neural development in C. elegans. During the initial phase of neurite outgrowth, FMI-1 seems to have a relatively cell-specific effect on the VD neurons to promote the initial neurite formed to grow toward the anterior. In this capacity, FMI-1 appears to work coordinately with at least two Wnt ligands, EGL-20 and LIN-44, and multiple downstream Wnt signaling components (including LIN-17/Frizzled, DSH-1/Disheveled, and BAR-1/β-catenin). Here I will discuss some of the ideas we considered about how FMI-1 could affect neurons as they acquire their morphology during development.

  12. Heparin Inhibits Hepatocyte Growth Factor Induced Motility and Invasion of Hepatocellular Carcinoma Cells through Early Growth Response Protein 1

    PubMed Central

    Ozen, Evin; Gozukizil, Aysim; Erdal, Esra; Uren, Aykut; Bottaro, Donald P.; Atabey, Nese

    2012-01-01

    The Hepatocyte Growth Factor (HGF)/c-Met signaling pathway regulates hepatocyte proliferation, and pathway aberrations are implicated in the invasive and metastatic behaviors of hepatocellular carcinoma (HCC). In addition to c-Met, heparin acts as a co-receptor to modulate pathway activity. Recently, anti-metastatic and anti-cancer effects of heparin have been reported. However, the role of heparin in the regulation of HGF signaling remains controversial and the effects of heparin on HGF-induced biological responses during hepatocarcinogenesis is not yet defined. In this study we determined the effects of heparin on HGF-induced activities of HCC cells and the underlying molecular mechanisms. Here, we report for the first time that heparin inhibits HGF-induced adhesion, motility and invasion of HCC cells. In addition, heparin reduced HGF-induced activation of c-Met and MAPK in a dose-dependent manner, as well as decreased transcriptional activation and expression of Early growth response factor 1 (Egr1). HGF-induced MMP-2 and MMP-9 activation, and MT1-MMP expression, also were inhibited by heparin. Stable knockdown of Egr1 caused a significant decrease in HGF-induced invasion, as well as the activation and expression of MMPs. Parallel to these findings, the overexpression of Egr1 increased the invasiveness of HCC cells. Our results suggest that Egr1 activates HGF-induced cell invasion through the regulation of MMPs in HCC cells and heparin inhibits HGF-induced cellular invasion via the downregulation of Egr1. Therefore, heparin treatment might be a therapeutic approach to inhibit invasion and metastasis of HCC, especially for patients with active HGF/c-Met signaling. PMID:22912725

  13. Asarone from Acori Tatarinowii Rhizoma Potentiates the Nerve Growth Factor-Induced Neuronal Differentiation in Cultured PC12 Cells: A Signaling Mediated by Protein Kinase A

    PubMed Central

    Lam, Kelly Y. C.; Chen, Jianping; Lam, Candy T. W.; Wu, Qiyun; Yao, Ping; Dong, Tina T. X.; Lin, Huangquan; Tsim, Karl W. K.

    2016-01-01

    Acori Tatarinowii Rhizoma (ATR), the rhizome of Acorus tatarinowii Schott, is being used clinically to treat neurological disorders. The volatile oil of ATR is being considered as an active ingredient. Here, α-asarone and β-asarone, accounting about 95% of ATR oil, were evaluated for its function in stimulating neurogenesis. In cultured PC12 cells, application of ATR volatile oil, α-asarone or β-asarone, stimulated the expression of neurofilaments, a bio-marker for neurite outgrowth, in a concentration-dependent manner. The co-treatment of ATR volatile oil, α-asarone or β-asarone, with low concentration of nerve growth factor (NGF) potentiated the NGF-induced neuronal differentiation in cultured PC12 cells. In addition, application of protein kinase A inhibitors, H89 and KT5720, in cultures blocked the ATR-induced neurofilament expression, as well as the phosphorylation of cAMP-responsive element binding protein (CREB). In the potentiation of NGF-induced signaling in cultured PC12 cells, α-asarone and β-asarone showed synergistic effects. These results proposed the neurite-promoting asarone, or ATR volatile oil, could be useful in finding potential drugs for treating various neurodegenerative diseases, in which neurotrophin deficiency is normally involved. PMID:27685847

  14. The ras suppressor, RSU-1, enhances nerve growth factor-induced differentiation of PC12 cells and induces p21CIP expression.

    PubMed

    Masuelli, L; Ettenberg, S; Vasaturo, F; Vestergaard-Sykes, K; Cutler, M L

    1999-08-01

    The Rsu-1 Ras suppressor gene was isolated based on its ability to inhibit v-Ras transformation. Using Rsu-1 transfectants of the pheochromocytoma cell line PC12, we demonstrated previously that Rsu-1 expression inhibited Jun kinase activation but enhanced Erk2 activation in response to epidermal growth factor. In the present study, the Rsu-1 PC12 transfectants were used to investigate the role of Rsu-1 in nerve growth factor (NGF)- and v-Ki-ras-mediated neuronal differentiation. NGF-induced neurite extension was enhanced, not inhibited, by the expression of Rsu-1 in PC12 cells. The activation of Erk kinase activity in response to NGF was sustained longer in the Rsu-1 transfectants compared with the vector control cells. During NGF-mediated differentiation, an increase in the expression of specific mRNAs for the early response genes Fos, cJun, and NGF1a was detected in both the vector control and Rsu-1 transfectants. The expression of the differentiation-specific genes VGF8 and SCG10 was similar in Rsu-1 transfectants compared with the vector control cells. The induction of Rsu-1 expression in these cell lines did not inhibit v-Ki-ras-induced differentiation, as measured by neurite extension. These data suggest that although Rsu-1 blocked some Ras-dependent response(s), these responses were not required for differentiation. Moreover, the induction of Rsu-1 expression in the PC12 clones resulted in growth inhibition and p21(WAF/CIP) expression. Hence, Rsu-1 expression enhances NGF-induced differentiation while inhibiting the growth of cells.

  15. The sodium channel β1 subunit mediates outgrowth of neurite-like processes on breast cancer cells and promotes tumour growth and metastasis.

    PubMed

    Nelson, Michaela; Millican-Slater, Rebecca; Forrest, Lorna C; Brackenbury, William J

    2014-11-15

    Voltage-gated Na(+) channels (VGSCs) are heteromeric proteins composed of pore-forming α subunits and smaller β subunits. The β subunits are multifunctional channel modulators and are members of the immunoglobulin superfamily of cell adhesion molecules (CAMs). β1, encoded by SCN1B, is best characterized in the central nervous system (CNS), where it plays a critical role in regulating electrical excitability, neurite outgrowth and migration during development. β1 is also expressed in breast cancer (BCa) cell lines, where it regulates adhesion and migration in vitro. In the present study, we found that SCN1B mRNA/β1 protein were up-regulated in BCa specimens, compared with normal breast tissue. β1 upregulation substantially increased tumour growth and metastasis in a xenograft model of BCa. β1 over-expression also increased vascularization and reduced apoptosis in the primary tumours, and β1 over-expressing tumour cells had an elongate morphology. In vitro, β1 potentiated outgrowth of processes from BCa cells co-cultured with fibroblasts, via trans-homophilic adhesion. β1-mediated process outgrowth in BCa cells required the presence and activity of fyn kinase, and Na(+) current, thus replicating the mechanism by which β1 regulates neurite outgrowth in CNS neurons. We conclude that when present in breast tumours, β1 enhances pathological growth and cellular dissemination. This study is the first demonstration of a functional role for β1 in tumour growth and metastasis in vivo. We propose that β1 warrants further study as a potential biomarker and targeting β1-mediated adhesion interactions may have value as a novel anti-cancer therapy.

  16. Ubiquitin E3 ligase Nedd4-1 acts as a downstream target of PI3K/PTEN-mTORC1 signaling to promote neurite growth

    PubMed Central

    Hsia, Hung-En; Kumar, Rohit; Luca, Rossella; Takeda, Michiko; Courchet, Julien; Nakashima, Jonathan; Wu, Shumin; Goebbels, Sandra; An, Wenlin; Eickholt, Britta J.; Polleux, Franck; Rotin, Daniela; Wu, Hong; Rossner, Moritz J.; Bagni, Claudia; Rhee, Jeong-Seop; Brose, Nils; Kawabe, Hiroshi

    2014-01-01

    Protein ubiquitination is a core regulatory determinant of neural development. Previous studies have indicated that the Nedd4-family E3 ubiquitin ligases Nedd4-1 and Nedd4-2 may ubiquitinate phosphatase and tensin homolog (PTEN) and thereby regulate axonal growth in neurons. Using conditional knockout mice, we show here that Nedd4-1 and Nedd4-2 are indeed required for axonal growth in murine central nervous system neurons. However, in contrast to previously published data, we demonstrate that PTEN is not a substrate of Nedd4-1 and Nedd4-2, and that aberrant PTEN ubiquitination is not involved in the impaired axon growth upon deletion of Nedd4-1 and Nedd4-2. Rather, PTEN limits Nedd4-1 protein levels by modulating the activity of mTORC1, a protein complex that controls protein synthesis and cell growth. Our data demonstrate that Nedd4-family E3 ligases promote axonal growth and branching in the developing mammalian brain, where PTEN is not a relevant substrate. Instead, PTEN controls neurite growth by regulating Nedd4-1 expression. PMID:25157163

  17. Novel inhibitory action of tunicamycin homologues suggests a role for dynamic protein fatty acylation in growth cone-mediated neurite extension

    PubMed Central

    1994-01-01

    In neuronal growth cones, the advancing tips of elongating axons and dendrites, specific protein substrates appear to undergo cycles of posttranslational modification by covalent attachment and removal of long-chain fatty acids. We show here that ongoing fatty acylation can be inhibited selectively by long-chain homologues of the antibiotic tunicamycin, a known inhibitor of N-linked glycosylation. Tunicamycin directly inhibits transfer of palmitate to protein in a cell-free system, indicating that tunicamycin inhibition of protein palmitoylation reflects an action of the drug separate from its previously established effects on glycosylation. Tunicamycin treatment of differentiated PC12 cells or dissociated rat sensory neurons, under conditions in which protein palmitoylation is inhibited, produces a prompt cessation of neurite elongation and induces a collapse of neuronal growth cones. These growth cone responses are rapidly reversed by washout of the antibiotic, even in the absence of protein synthesis, or by addition of serum. Two additional lines of evidence suggest that the effects of tunicamycin on growth cones arise from its ability to inhibit protein long-chain acylation, rather than its previously established effects on protein glycosylation and synthesis. (a) The abilities of different tunicamycin homologues to induce growth cone collapse very systematically with the length of the fatty acyl side- chain of tunicamycin, in a manner predicted and observed for the inhibition of protein palmitoylation. Homologues with fatty acyl moieties shorter than palmitic acid (16 hydrocarbons), including potent inhibitors of glycosylation, are poor inhibitors of growth cone function. (b) The tunicamycin-induced impairment of growth cone function can be reversed by the addition of excess exogenous fatty acid, which reverses the inhibition of protein palmitoylation but has no effect on the inhibition of protein glycosylation. These results suggest an important role for

  18. Sequential activation of phosphatidylinositol 3-kinase, beta Pix, Rac1, and Nox1 in growth factor-induced production of H2O2.

    PubMed

    Park, Hye Sun; Lee, Seung Hye; Park, Dongeun; Lee, Jun Sung; Ryu, Sung Ho; Lee, Won Jae; Rhee, Sue Goo; Bae, Yun Soo

    2004-05-01

    The generation of reactive oxygen species (ROS) in cells stimulated with growth factors requires the activation of phosphatidylinositol 3-kinase (PI3K) and the Rac protein. We report here that the COOH-terminal region of Nox1, a protein related to gp91(phox) (Nox2) of phagocytic cells, is constitutively associated with beta Pix, a guanine nucleotide exchange factor for Rac. Both growth factor-induced ROS production and Rac1 activation were completely blocked in cells depleted of beta Pix by RNA interference. Rac1 was also shown to bind to the COOH-terminal region of Nox1 in a growth factor-dependent manner. Moreover, the depletion of Nox1 by RNA interference inhibited growth factor-induced ROS generation. These results suggest that ROS production in growth factor-stimulated cells is mediated by the sequential activation of PI3K, beta Pix, and Rac1, which then binds to Nox1 to stimulate its NADPH oxidase activity.

  19. Inhibition of the outgrowth and elongation of neurites from pheochromocytoma cells by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and preventive effects of dimethylsulfoniopropionate in the presence of nerve growth factor.

    PubMed

    Nakajima, Kenji; Minematsu, Masaharu; Miyamoto, Yuuichi

    2008-04-01

    The combined effects of dimethylsulfoniopropionate (DMSP) (10(-3), 10(-4) and 10(-5) M) with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (5 ng/mL) and the nerve growth factor (NGF) (5 ng/mL) on the outgrowth and elongation of neurites from pheochromocytoma (PC12) cells were examined on RPMI medium containing fetal bovine serum and horse serum with penicillin and streptomycin in collagen-coated dishes for 5 d. The growth was higher in increasing order of the DMSP (10(-3) M), MPTP and NGF, the DMSP (10(-5) M), MPTP and NGF, the MPTP and NGF group and the control group up to 3 d, but not in the NGF and the DMSP (10(-4) M), MPTP and NGF groups. The growth in all the experimental groups showed plateaus from days 4 to 5. The appearance of neurites from the cells in all the groups showed maxima on the 3rd day. The administration of NGF significantly stimulated the outgrowth of neurites from the cells, while the supplementation of MPTP noticeably inhibited the appearance of neurites even in the presence of NGF up to 5 d. However, the addition of DMSP (10(-3 )and 10(-4) M) to the latter group completely prevented the inhibition of the MPTP. These facts were significantly supported by the photographs of neurite-bearing cells on the 3rd day and also by the photometric analyses examining the reaction of MPTP to DMSP, NGF or Collagen IV.

  20. cAMP-responsive Element-binding Protein (CREB) and cAMP Co-regulate Activator Protein 1 (AP1)-dependent Regeneration-associated Gene Expression and Neurite Growth*

    PubMed Central

    Ma, Thong C.; Barco, Angel; Ratan, Rajiv R.; Willis, Dianna E.

    2014-01-01

    To regenerate damaged axons, neurons must express a cassette of regeneration-associated genes (RAGs) that increases intrinsic growth capacity and confers resistance to extrinsic inhibitory cues. Here we show that dibutyrl-cAMP or forskolin combined with constitutive-active CREB are superior to either agent alone in driving neurite growth on permissive and inhibitory substrates. Of the RAGs examined, only arginase 1 (Arg1) expression correlated with the increased neurite growth induced by the cAMP/CREB combination, both of which were AP1-dependent. This suggests that cAMP-induced AP1 activity is necessary and interacts with CREB to drive expression of RAGs relevant for regeneration and demonstrates that combining a small molecule (cAMP) with an activated transcription factor (CREB) stimulates the gene expression necessary to enhance axonal regeneration. PMID:25296755

  1. Hydrogel Design for Supporting Neurite Outgrowth and Promoting Gene Delivery to Maximize Neurite Extension

    PubMed Central

    Shepard, Jaclyn A.; Stevans, Alyson C.; Holland, Samantha; Wang, Christine E.; Shikanov, Ariella; Shea, Lonnie D.

    2012-01-01

    Hydrogels capable of gene delivery provide a combinatorial approach for nerve regeneration, with the hydrogel supporting neurite outgrowth and gene delivery inducing the expression of inductive factors. This report investigates the design of hydrogels that balance the requirements for supporting neurite growth with those requirements for promoting gene delivery. Enzymatically-degradable PEG hydrogels encapsulating dorsal root ganglia explants, fibroblasts, and lipoplexes encoding nerve growth factor were gelled within channels that can physically guide neurite outgrowth. Transfection of fibroblasts increased with increasing concentration of Arg-Gly-Asp (RGD) cell adhesion sites and decreasing PEG content. The neurite length increased with increasing RGD concentration within 10% PEG hydrogels, yet was maximal within 7.5% PEG hydrogels at intermediate RGD levels. Delivering lipoplexes within the gel produced longer neurites than culture in NGF-supplemented media or co-culture with cells exposed to DNA prior to encapsulation. Hydrogels designed to support neurite outgrowth and deliver gene therapy vectors locally may ultimately be employed to address multiple barriers that limit regeneration. PMID:22038654

  2. Real-time detection of neurite outgrowth using microfluidic device

    NASA Astrophysics Data System (ADS)

    Kim, Samhwan; Jang, Jongmoon; Choi, Hongsoo; Moon, Cheil

    2013-05-01

    We developed a simple method for real-time detection of the neurite outgrowth using microfluidic device. Our microfluidic device contains three compartmentalized channels which are for cell seeding, hydrogel and growth factors. Collagen gel is filled in the middle channel and pheochromocytoma (PC12) cells are seeded in the left channel. To induce differentiation of PC12 cells, 50 ng/ml to1000 ng/ml of nerve growth factor (NGF) is introduced into the right channel. After three days of NGF treatment, PC12 cells begin to extend neurites and formed neurite network from sixth day. Quantification of neurite outgrowth is analyzed by measuring the total area of neurites. On sixth day, the area is doubled compared to the area on third day and increases by 20 times on ninth day.

  3. Tax and Semaphorin 4D Released from Lymphocytes Infected with Human Lymphotropic Virus Type 1 and Their Effect on Neurite Growth.

    PubMed

    Quintremil, Sebastián; Alberti, Carolina; Rivera, Matías; Medina, Fernando; Puente, Javier; Cartier, Luis; Ramírez, Eugenio; Tanaka, Yuetsu; Valenzuela, M Antonieta

    2016-01-01

    Human lymphotropic virus type 1 (HTLV-1) is a retrovirus causing HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a neurodegenerative central nervous system (CNS) axonopathy. This virus mainly infects CD4(+) T lymphocytes without evidence of neuronal infection. Viral Tax, secreted from infected lymphocytes infiltrated in the CNS, is proposed to alter intracellular pathways related to axonal cytoskeleton dynamics, producing neurological damage. Previous reports showed a higher proteolytic release of soluble Semaphorin 4D (sSEMA-4D) from CD4(+) T cells infected with HTLV-1. Soluble SEMA-4D binds to its receptor Plexin-B1, activating axonal growth collapse pathways in the CNS. In the current study, an increase was found in both SEMA-4D in CD4(+) T cells and sSEMA-4D released to the culture medium of peripheral blood mononuclear cells (PBMCs) from HAM/TSP patients compared to asymptomatic carriers and healthy donors. After a 16-h culture, infected PBMCs showed significantly higher levels of CRMP-2 phosphorylated at Ser(522). The effect was blocked either with anti-Tax or anti-SEMA-4D antibodies. The interaction of Tax and sSEMA-4D was found in secreted medium of PBMCs in patients, which might be associated with a leading role of Tax with the SEMA-4D-Plexin-B1 signaling pathway. In infected PBMCs, the migratory response after transwell assay showed that sSEMA-4D responding cells were CD4(+)Tax(+) T cells with a high CRMP-2 pSer(522) content. In the present study, the participation of Tax-sSEMA-4D in the reduction in neurite growth in PC12 cells produced by MT2 (HTLV-1-infected cell line) culture medium was observed. These results lead to the participation of plexins in the reported effects of infected lymphocytes on neuronal cells.

  4. Protein Kinase A Regulates 3-Phosphatidylinositide Dynamics during Platelet-derived Growth Factor-induced Membrane Ruffling and Chemotaxis*S⃞

    PubMed Central

    Deming, Paula B.; Campbell, Shirley L.; Baldor, Linda C.; Howe, Alan K.

    2008-01-01

    Spatial regulation of the cAMP-dependent protein kinase (PKA) is required for chemotaxis in fibroblasts; however, the mechanism(s) by which PKA regulates the cell migration machinery remain largely unknown. Here we report that one function of PKA during platelet-derived growth factor (PDGF)-induced chemotaxis was to promote membrane ruffling by regulating phosphatidylinositol 3,4,5-trisphosphate (PIP3) dynamics. Inhibition of PKA activity dramatically altered membrane dynamics and attenuated formation of peripheral membrane ruffles in response to PDGF. PKA inhibition also significantly decreased the number and size of PIP3-rich membrane ruffles in response to uniform stimulation and to gradients of PDGF. This ruffling defect was quantified using a newly developed method, based on computer vision edge-detection algorithms. PKA inhibition caused a marked attenuation in the bulk accumulation of PIP3 following PDGF stimulation, without effects on PI3-kinase (PI3K) activity. The deficits in PIP3 dynamics correlated with a significant inhibition of growth factor-induced membrane recruitment of endogenous Akt and Rac activation in PKA-inhibited cells. Simultaneous inhibition of PKA and Rac had an additive inhibitory effect on growth factor-induced ruffling dynamics. Conversely, the expression of a constitutively active Rac allele was able to rescue the defect in membrane ruffling and restore the localization of a fluorescent PIP3 marker to membrane ruffles in PKA-inhibited cells, even in the absence of PI3K activity. These data demonstrate that, like Rac, PKA contributes to PIP3 and membrane dynamics independently of direct regulation of PI3K activity and suggest that modulation of PIP3/3-phosphatidylinositol (3-PI) lipids represents a major target for PKA in the regulation of PDGF-induced chemotactic events. PMID:18936099

  5. Specific changes in circulating cytokines and growth factors induced by exercise stress testing in asymptomatic aortic valve stenosis.

    PubMed

    Kolasa-Trela, Renata; Konieczynska, Malgorzata; Bazanek, Marta; Undas, Anetta

    2017-01-01

    We evaluated exercise-induced changes in the profile of circulating cytokines and growth factors in patients with AS. We studied 32 consecutive asymptomatic moderate-to-severe AS patients and 32 age and sex-matched controls. Plasma levels of interleukin (IL)-6, IL-10, hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-β were measured at 4 time points, i.e. at rest, at peak bicycle exercise, one hour and 24 hours after a symptom-limited exercise. Exercise increased all the 5 markers in both groups (all p<0.0001). The maximum levels of all tested cytokines were higher in the AS group (all p<0.05) compared with controls. In AS patients the highest levels of VEGF, IL-6, and IL-10 were observed one hour after exercise, while in the control group at peak exercise. In both groups maximum TGF- β levels were observed one hour after exercise. HGF levels were higher at peak and one hour after test in the AS group (p = 0.0001), however the maximum value in AS was observed at peak while in controls after test. In both groups TGF-β was the only marker that remained increased 24 hours after exercise compared with the value at rest (p = 0.0001). The cytokines and growth factors showed no association with heart rate and the workload. In asymptomatic patients with moderate-to-severe AS, exercise produces a different pattern of changes in circulating cytokines and growth factors, and maximum levels of all tested cytokines were significantly higher in AS patients compared with the control group.

  6. Specific changes in circulating cytokines and growth factors induced by exercise stress testing in asymptomatic aortic valve stenosis

    PubMed Central

    Kolasa-Trela, Renata; Konieczynska, Malgorzata; Bazanek, Marta; Undas, Anetta

    2017-01-01

    Background We evaluated exercise-induced changes in the profile of circulating cytokines and growth factors in patients with AS. Methods We studied 32 consecutive asymptomatic moderate-to-severe AS patients and 32 age and sex-matched controls. Plasma levels of interleukin (IL)-6, IL-10, hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and transforming growth factor (TGF)-β were measured at 4 time points, i.e. at rest, at peak bicycle exercise, one hour and 24 hours after a symptom-limited exercise. Results Exercise increased all the 5 markers in both groups (all p<0.0001). The maximum levels of all tested cytokines were higher in the AS group (all p<0.05) compared with controls. In AS patients the highest levels of VEGF, IL-6, and IL-10 were observed one hour after exercise, while in the control group at peak exercise. In both groups maximum TGF- β levels were observed one hour after exercise. HGF levels were higher at peak and one hour after test in the AS group (p = 0.0001), however the maximum value in AS was observed at peak while in controls after test. In both groups TGF-β was the only marker that remained increased 24 hours after exercise compared with the value at rest (p = 0.0001). The cytokines and growth factors showed no association with heart rate and the workload. Conclusion In asymptomatic patients with moderate-to-severe AS, exercise produces a different pattern of changes in circulating cytokines and growth factors, and maximum levels of all tested cytokines were significantly higher in AS patients compared with the control group. PMID:28291817

  7. Regulation by intracellular Ca sup 2+ and cyclic AMP of the growth factor-induced ruffling membrane formation and stimulation of fluid-phase endocytosis and exocytosis

    SciTech Connect

    Miyata, Yoshihiko Tokyo Metropolitan Inst. of Medical Science ); Nishida, Eisuke; Sakai, Hikoichi ); Koyasu, Shigeo; Yahara, Ichiro )

    1989-04-01

    Insulin, insulin-like growth factor-I (IGF-I), and epidermal growth factor (EGF) induce formation of ruffling membranes and stimulate the fluid-phase endocytosis and exocytosis in human epidermoid carcinoma KB cells. An increase in intracellular Ca{sup 2+} concentration by treatment with A23187, a calcium ionophore, or an increase in intracellular cAMP level by treatment with dibutyryl cAMP or forskolin almost completely inhibited the insulin-, IGF-I-, or EGF-induced formation of ruffling membranes. Increases in Ca{sup 2+} or cAMP concentration also inhibited almost completely the stimulation of fluid-phase endocytosis and exocytosis elicited by these growth factors. These results suggest that the growth factor-induced ruffling membrane formation and the stimulation of fluid-phase endocytosis and exocytosis have a common regulatory mechanism involving intracellular concentrations of Ca{sup 2+} and cAMP. {sup 125}I-EGF binding assays and immunoprecipitation experiments with anti-phosphotyrosine antibody revealed that treatment of KB cells with A23187, dibutyryl cAMP, or forskolin did not inhibit the EGF binding to the cells nor subsequent tyrosine autophosphorylation of its receptors. These results indicate that Ca{sup 2+}- and/or cAMP-sensitive intracellular reactions exist downstream from the receptor kinase activation in the process of these early cellular responses.

  8. A minority of carcinoma cells producing acidic fibroblast growth factor induces a community effect for tumor progression.

    PubMed Central

    Jouanneau, J; Moens, G; Bourgeois, Y; Poupon, M F; Thiery, J P

    1994-01-01

    It is generally accepted that primary tumors become heterogeneous as a consequence of tumor-cell genetic instability. Clonal dominance has been shown to occur in some experimental models allowing a subpopulation of cells to overgrow the primary heterogeneous tumor and to metastasize. Alternatively, interactions among coexisting tumor subpopulations may contribute to the emergence of a malignant invasive primary solid tumor. We asked the question whether emergence of carcinoma cells producing a growth/dissociating factor within a tumor cell population may be a determinant for tumor progression and for clonal dominance. To mimic such a situation, we have investigated the impact of tumor subpopulation heterogeneity in an in vivo model in which mixtures of carcinoma cells that differ in their ability to produce acidic fibroblast growth factor are injected into nude mice. Our data indicate that a growth-factor-producing cell subpopulation can confer increased tumorigenicity to an entire cell population and subsequently elicit a shorter delay for appearance of metastasis. A community effect via cell interactions may account for a heterogeneous tumor cell population rather than clonal dominance during progression of certain tumor types. Images Fig. 3 PMID:7506417

  9. Mechanisms for growth factor-induced pituitary tumor transforming gene-1 expression in pituitary folliculostellate TtT/GF cells.

    PubMed

    Vlotides, G; Cruz-Soto, M; Rubinek, T; Eigler, T; Auernhammer, C J; Melmed, S

    2006-12-01

    PTTG1, a securin protein, also behaves as a transforming gene and is overexpressed in pituitary tumors. Because pituitary folliculostellate (FS) cells regulate pituitary tumor growth factors by paracrine mechanisms, epidermal growth factor (EGF) receptor (EGFR)-mediated PTTG1 expression and cell proliferation was tested in pituitary FS TtT/GF cells. EGFR ligands caused up to 3-fold induction of Pttg1 mRNA expression, enhanced proliferating cell nuclear antigen, and increased entry of G0/1-arrested cells into S-phase. PTTG binding factor mRNA expression was not altered. EGF-induced Pttg1 expression and cell proliferation was abolished by preincubation of TtT/GF cells with EGFR inhibitors AG1478 and gefitinib. Phosphatidylinositol 3 kinase, protein kinase C, and MAPK, but not c-Jun N-terminal kinase and Janus activating kinase signaling regulated EGF-induced Pttg1, as well as proliferating cell nuclear antigen mRNA expression and entry into S-phase. EGF-induced EGFR and ERK1/2 phosphorylation was followed by rapid MAPK kinase/ERK kinase-dependent activation of Elk-1 and c-Fos. EGF-induced Pttg1 expression peaked at the S-G2 transition and declined thereafter. Pttg1 cell cycle dependency was confirmed by suppression of EGF-induced Pttg1 mRNA by blockade of cells in early S-phase. The results show that PTTG1 and its binding protein PTTG binding factor are expressed in pituitary FS TtT/GF cells. EGFR ligands induce PTTG1 and regulate S-phase, mediated by phosphatidylinositol 3 kinase, protein kinase C, and MAPK pathways. PTTG1 is therefore a target for EGFR-mediated paracrine regulation of pituitary cell growth.

  10. Microscopic analysis of the cellular events during scatter factor/hepatocyte growth factor-induced epithelial tubulogenesis.

    PubMed

    Williams, M J; Clark, P

    2003-11-01

    Scatter factor/hepatocyte growth factor (SF/HGF), a large multifunctional polypeptide growth and motility factor, is known to play important roles during embryonic development, adult tissue growth and repair. In an established three-dimensional type I collagen model, SF/HGF induces Madin-Darby canine kidney (MDCK) epithelial cysts to form long, branching tubules (tubulogenesis). In addition, the composition of the surrounding extracellular matrix (ECM) has been shown to modulate SF/HGF-induced morphogenesis, where tubulogenesis was completely abrogated in Matrigel basement membrane. Many cellular events that occur during SF/HGF-mediated remodelling, and its modulation by the ECM, remain unclear. We have investigated these mechanisms through microscopic examination of the time-course of SF/HGF-induced responses in MDCK cysts cultured in type I collagen or Matrigel. We found that early responses to SF/HGF were matrix-independent. Changes included increased paracellular spacing between normally closely apposed lateral membranes, and the formation of filopodial processes, indicating a partial motile response. Cell-cell contact was maintained, with the persistence of cell junctions. Therefore, while one or a number of ECM components are preventing SF/HGF-primed cells from undergoing an invasive and/or migratory programme, non-permissive matrices are not preventing SF/HGF signalling to the cell. Later matrix-dependent responses, which occurred in type I collagen but not Matrigel, included the formation of basal protrusions that comprise two or more neighbouring cells, which extend to form nascent tubules. Modified polarity of cells comprising the basal protrusions was evident, with a marker for the apical membrane being found in the same region as adherens junctions and desmosomes, typically localized at lateral membranes. We propose a model for SF/HGF-induced tubulogenesis in which tubules form from basal protrusions of adjacent cells. This mechanism of in vitro tubule

  11. Effect of a 5-lipoxygenase inhibitor on nerve growth factor-induced thermal hyperalgesia in the rat.

    PubMed

    Amann, R; Schuligoi, R; Lanz, I; Peskar, B A

    1996-06-13

    Intraplantar injection of mouse beta (2.5S) nerve growth factor (NGF) caused thermal hyperalgesia and stimulated release of immunoreactive leukotriene B4 from the rat paw skin. Both effects of NGF were prevented by the 5-lipoxygenase inhibitor, (R)-2-[4-quinolin-2-yl-methoxy)phenyl]-2-cyclopentyl acetic acid (BAY X1005). BAY X1005 did not affect bradykinin-induced thermal hyperalgesia. These results suggest the participation of 5-lipoxygenase products of arachidonate in NGF-induced local thermal hyperalgesia.

  12. Nerve growth factor induced changes in the Golgi apparatus of PC-12 rat pheochromocytoma cells as studied by ligand endocytosis, cytochemical and morphometric methods.

    PubMed

    Hickey, W F; Stieber, A; Hogue-Angeletti, R; Gonatas, J; GOnatas, N K

    1983-10-01

    Cells of the PC-12 rat pheochromocytoma cell line respond to nerve growth factor (NGF) by sprouting neurites and biochemically differentiating into sympathetic ganglion-like cells. NGF-stimulated ('differentiated') and unstimulated ('undifferentiated') cells were studied by cytochemical techniques for the localization of the enzymes acid phosphatase (ACPase) and thiamine pyrophosphatase (TPPase), and by a morphometric analysis of the distribution of endocytosed wheat-germ agglutinin labelled with horseradish peroxidase (WGA-HRP). Both cytochemical stains showed the enzymes to be distributed in lysosomes and certain cisternae of the Golgi apparatus in both NGF stimulated and unstimulated cells. ACPase was not confined to GERL (Golgi-endoplasmic reticulum-lysosome) as in certain other cells. The morphometric studies demonstrated that the reaction product of the internalized WGA-HRP occupied 4.7% of the cytoplasmic area in unstimulated cells and 4.5% in NGF-stimulated ones. Despite this similarity, the distribution of the WGA-HRP among the studied intracellular compartments in these two cell groups varied. In the NGF-stimulated cells 3.3% of the WGA-HRP reaction product was found in the innermost Golgi cisterna(e) while in unstimulated cells only 0.3% was seen in this compartment. Similarly, 4.3% of the WGA-HRP stain was found in small vesicles at the 'trans' aspect of the Golgi apparatus in stimulated cells, when only 0.3% of the stain occupied this compartment in 'undifferentiated' cells. The morphometric analysis also revealed that when the PC-12 cells were stimulated with NGF, the Golgi apparatus increased in area by approximately 70%. These findings are consistent with the hypothesis that NGF induced differentiation of PC-12 cells is coupled with enhanced endocytosis of WGA and probably of its 'receptor' to the innermost Golgi cisterna(e) and the closely associated vesicles.

  13. Nerve growth factor-induced changes in neural cell adhesion molecule (N-CAM) in PC12 cells.

    PubMed Central

    Prentice, H M; Moore, S E; Dickson, J G; Doherty, P; Walsh, F S

    1987-01-01

    The effects of nerve growth factor (NGF) on the expression of neural cell adhesion molecule (N-CAM) in PC12 cells were determined. A quantitative immunoassay was used to show that NGF induces a 4- to 5-fold increase in relative N-CAM levels over a 3-day period. This increase could not be mimicked by cholera toxin suggesting that it is not a simple consequence of morphological differentiation. The changes in N-CAM levels induced by NGF were accompanied by changes in N-CAM molecular forms. The 140-kd N-CAM species is the major N-CAM expressed by naive PC12 cells, while NGF-treated cultures express N-CAM species of 180 kd and 140 kd. Northern analysis showed that naive cells express a 6.7-kd N-CAM mRNA species only, while NGF-treated cultures express both a 6.7-kb and a 7.2-kb transcript. As the 6.7-kb and 7.2-kb mRNAs are alternative spliced transcripts of a single gene, this result shows that NGF can activate a neuron-specific splicing mechanism. This is the first description of control of N-CAM expression by a growth factor. Images Fig. 3. Fig. 4. Fig. 5. PMID:3308447

  14. A quantitative proteomic analysis of growth factor-induced compositional changes in lipid rafts of human smooth muscle cells.

    PubMed

    MacLellan, Dawn L; Steen, Hanno; Adam, Rosalyn M; Garlick, Monica; Zurakowski, David; Gygi, Steven P; Freeman, Michael R; Solomon, Keith R

    2005-12-01

    Signals that promote proliferation and migration of smooth muscle cells (SMC) have been implicated in pathologic growth of hollow organs. Members of the platelet-derived growth factor (PDGF) family, potent mitogens and motility factors for SMC, have been shown to signal through cholesterol-enriched lipid rafts. We recently demonstrated that PDGF-stimulated DNA synthesis in urinary tract SMC was dependent on the integrity of lipid rafts. Despite its known ability to rapidly alter discrete proteins within rafts, the effect of PDGF on overall raft protein composition is unknown. In this study, we employed isotope coded affinity tag (ICAT) analysis to evaluate PDGF-induced protein changes in lipid rafts of primary culture human SMC. Following acute (i.e., 15 min) exposure of SMC to PDGF, 23 proteins increased in rafts >20%. In contrast, raft localization of only three proteins increased after 12 h of PDGF treatment. Among the proteins that increased at 15 min were the glycophosphatidylinositol-anchored proteins Thy-1, 5'-nucleotidase, and CD55, the cytoskeletal proteins actin, actinin, tropomyosin-3 and -4, and the endocytosis-related proteins clathrin and beta-adaptin. In addition, eight Rho family members were localized to rafts by ICAT analysis. Collectively, these observations suggest a role for lipid rafts in regulation of PDGF-stimulated changes in the cytoskeleton.

  15. Neurite outgrowth inhibitors in gliotic tissue.

    PubMed

    Nieto-Sampedro, M

    1999-01-01

    Gliotic tissue is the major obstacle to axon regeneration after CNS injury. We designed tissue culture assays to search for molecules responsible for neurite outgrowth inhibition in gliotic tissue. All the inhibitory activity in injured brain tissue was located in a plasma membrane heparan-sulphate and condroitin-sulphate type-proteoglycan of apparent molecular weight 200 kDalton. The proteoglycan core protein (apparent MW 48,000 kD) was biologically inactive, whereas the glycosamine-glycan (GAG) chains accounted for the inhibitory activity. Because of its cell location and mode of induction, the inhibitor was called injured membrane proteoglycan, IMP. IMP prevented neurite outgrowth initiation when attached to the culture substrate and caused growth cone collapse when added in solution to neurons with already growing neurites. We concluded that IMP was responsible for preventing injured CNS fibre regeneration. Double-staining immunohistochemistry of normal and gliotic tissue with anti-IMP monoclonal antibodies together with glial and neuronal markers, permitted the unequivocal definition of inhibitor presenting cells by confocal microscopy. IMP-immunostaining in normal CNS was observed exclusively on neurons. However, after a lesion, immunostaining occurred primarily on intensely GFAP-positive reactive astrocytes, but not on OX-42 positive microglia. The availability of antibodies permitted rapid affinity-purification of the neurite inhibitor and comparison with similar molecules possibly expressed during development. IMP itself or a highly related form, was expressed in embryonic brain, reaching maximal expression around postnatal day 3 and decreasing strongly in normal adult tissue. Perinatal rat brain proteoglycans inhibited neurite outgrowth similarly, though not identically, to IMP. Our data suggest that perinatal membrane and injured membrane proteoglycans may differ in GAG composition. IMP-like immunoreactivity was also found in developing brain

  16. Effect of Testosterone on Neuronal Morphology and Neuritic Growth of Fetal Lamb Hypothalamus-Preoptic Area and Cerebral Cortex in Primary Culture

    PubMed Central

    Reddy, Radhika C.; Amodei, Rebecka; Estill, Charles T.; Stormshak, Fred; Meaker, Mary; Roselli, Charles E.

    2015-01-01

    Testosterone plays an essential role in sexual differentiation of the male sheep brain. The ovine sexually dimorphic nucleus (oSDN), is 2 to 3 times larger in males than in females, and this sex difference is under the control of testosterone. The effect of testosterone on oSDN volume may result from enhanced expansion of soma areas and/or dendritic fields. To test this hypothesis, cells derived from the hypothalamus-preoptic area (HPOA) and cerebral cortex (CTX) of lamb fetuses were grown in primary culture to examine the direct morphological effects of testosterone on these cellular components. We found that within two days of plating, neurons derived from both the HPOA and CTX extend neuritic processes and express androgen receptors and aromatase immunoreactivity. Both treated and control neurites continue to grow and branch with increasing time in culture. Treatment with testosterone (10 nM) for 3 days significantly (P < 0.05) increased both total neurite outgrowth (35%) and soma size (8%) in the HPOA and outgrowth (21%) and number of branch points (33%) in the CTX. These findings indicate that testosterone-induced somal enlargement and neurite outgrowth in fetal lamb neurons may contribute to the development of a fully masculine sheep brain. PMID:26053052

  17. Laminin promotes neuritic regeneration from cultured peripheral and central neurons

    PubMed Central

    1983-01-01

    The ability of axons to grow through tissue in vivo during development or regeneration may be regulated by the availability of specific neurite-promoting macromolecules located within the extracellular matrix. We have used tissue culture methods to examine the relative ability of various extracellular matrix components to elicit neurite outgrowth from dissociated chick embryo parasympathetic (ciliary ganglion) neurons in serum-free monolayer culture. Purified laminin from both mouse and rat sources, as well as a partially purified polyornithine-binding neurite promoting factor (PNPF-1) from rat Schwannoma cells all stimulate neurite production from these neurons. Laminin and PNPF-1 are also potent stimulators of neurite growth from cultured neurons obtained from other peripheral as well as central neural tissues, specifically avian sympathetic and sensory ganglia and spinal cord, optic tectum, neural retina, and telencephalon, as well as from sensory ganglia of the neonatal mouse and hippocampal, septal, and striatal tissues of the fetal rat. A quantitative in vitro bioassay method using ciliary neurons was used to (a) measure and compare the specific neurite-promoting activities of these agents, (b) confirm that during the purification of laminin, the neurite-promoting activity co- purifies with the laminin protein, and (c) compare the influences of antilaminin antibodies on the neurite-promoting activity of laminin and PNPF-1. We conclude that laminin and PNPF-1 are distinct macromolecules capable of expressing their neurite-promoting activities even when presented in nanogram amounts. This neurite-promoting bioassay currently represents the most sensitive test for the biological activity of laminin. PMID:6643580

  18. ErbB4 isoforms selectively regulate growth factor induced Madin-Darby canine kidney cell tubulogenesis.

    PubMed

    Zeng, Fenghua; Zhang, Ming-Zhi; Singh, Amar B; Zent, Roy; Harris, Raymond C

    2007-11-01

    ErbB4, a member of the epidermal growth factor (EGF) receptor family that can be activated by heregulin beta1 and heparin binding (HB)-EGF, is expressed as alternatively spliced isoforms characterized by variant extracellular juxtamembrane (JM) and intracellular cytoplasmic (CYT) domains. ErbB4 plays a critical role in cardiac and neural development. We demonstrated that ErbB4 is expressed in the ureteric buds and developing tubules of embryonic rat kidney and in collecting ducts in adult. The predominant isoforms expressed in kidney are JM-a and CYT-2. In ErbB4-transfected MDCK II cells, basal cell proliferation and hepatocyte growth factor (HGF)-induced tubule formation were decreased by all four isoforms. Only JM-a/CYT-2 cells formed tubules upon HB-EGF stimulation. ErbB4 was activated by both HRG-beta1 and HB-EGF stimulation; however, compared with HRG-beta1, HB-EGF induced phosphorylation of the 80-kDa cytoplasmic cleavage fragment of the JM-a/CYT-2 isoform. HB-EGF also induced early activation of ERK1/2 in JM-a/CYT-2 cells and promoted nuclear translocation of the JM-a/CYT-2 cytoplasmic tail. In summary, our data indicate that JM-a/CYT-2, the ErbB4 isoform that is proteinase cleavable but does not contain a PI3K-binding domain in its cytoplasmic tail, mediates important functions in renal epithelial cells in response to HB-EGF.

  19. Mechanisms in decorin regulation of vascular endothelial growth factor-induced human trophoblast migration and acquisition of endothelial phenotype.

    PubMed

    Lala, Neena; Girish, Gannareddy V; Cloutier-Bosworth, Alia; Lala, Peeyush K

    2012-09-01

    Extravillous trophoblast (EVT) cells of the human placenta invade the uterine decidua and utero-placental arteries to establish an efficient exchange of key molecules between maternal and fetal blood. Trophoblast invasion is stringently regulated in situ both positively and negatively by a variety of factors at the fetal-maternal interface to maintain a healthy utero-placental homeostasis. One such factor, decorin, a transforming growth factor (TGF)-beta binding, leucine-rich proteoglycan produced by the decidua, negatively regulates EVT proliferation, migration, and invasiveness independent of TGF-beta. We reported that these decorin actions were mediated by its binding to multiple tyrosine kinase receptors, including vascular endothelial growth factor receptor (VEGFR)-2. The present study explores the mechanisms underlying decorin antagonism of VEGF (VEGF-A) stimulation of endovascular differentiation of EVT using our EVT cell line, HTR-8/SVneo. We observe that decorin inhibits VEGF-induced EVT cell migration and endothelial-like tube formation on matrigel. VEGF activates MAPKs (p38 MAPK, MEK3/6, and ERK1/2) in EVT cells, and the activation is blocked in both cases by decorin. Employing selective MAPK inhibitors, we show that both p38 and ERK pathways contribute independently to VEGF-induced EVT migration and capillary-like tube formation. VEGF upregulates the vascular endothelial (VE) markers VE-cadherin and beta-catenin in EVT and endothelial cells, and this upregulation is blocked by decorin and MAPK inhibitors. These results suggest that decorin inhibits VEGF-A stimulation of trophoblast migration and endovascular differentiation by interfering with p38 MAPK and ERK1/2 activation. Thus decorin-mediated dual impediment of endovascular differentiation of the EVT and angiogenesis may have implications for pathogenesis of preeclampsia, a hypoinvasive trophoblast disorder in pregnancy.

  20. Sphingosine Kinase Mediates Vascular Endothelial Growth Factor-Induced Activation of Ras and Mitogen-Activated Protein Kinases

    PubMed Central

    Shu, Xiaodong; Wu, Weicheng; Mosteller, Raymond D.; Broek, Daniel

    2002-01-01

    Vascular endothelial growth factor (VEGF) signaling is critical to the processes of angiogenesis and tumor growth. Here, evidence is presented for VEGF stimulation of sphingosine kinase (SPK) that affects not only endothelial cell signaling but also tumor cells expressing VEGF receptors. VEGF or phorbol 12-myristate 13-acetate treatment of the T24 bladder tumor cell line resulted in a time- and dose-dependent stimulation of SPK activity. In T24 cells, VEGF treatment reduced cellular sphingosine levels while raising that of sphingosine-1-phosphate. VEGF stimulation of T24 cells caused a slow and sustained accumulation of Ras-GTP and phosphorylated extracellular signal-regulated kinase (phospho-ERK) compared with that after EGF treatment. Small interfering RNA (siRNA) that targets SPK1, but not SPK2, blocks VEGF-induced accumulation of Ras-GTP and phospho-ERK in T24 cells. In contrast to EGF stimulation, VEGF stimulation of ERK1/2 phosphorylation was unaffected by dominant-negative Ras-N17. Raf kinase inhibition blocked both VEGF- and EGF-stimulated accumulation of phospho-ERK1/2. Inhibition of SPK by pharmacological inhibitors, a dominant-negative SPK mutant, or siRNA that targets SPK blocked VEGF, but not EGF, induction of phospho-ERK1/2. We conclude that VEGF induces DNA synthesis in a pathway which sequentially involves protein kinase C (PKC), SPK, Ras, Raf, and ERK1/2. These data highlight a novel mechanism by which SPK mediates signaling from PKC to Ras in a manner independent of Ras-guanine nucleotide exchange factor. PMID:12391145

  1. Liver growth factor induces testicular regeneration in EDS-treated rats and increases protein levels of class B scavenger receptors.

    PubMed

    Lobo, M V T; Arenas, M I; Huerta, L; Sacristán, S; Pérez-Crespo, M; Gutiérrez-Adán, A; Díaz-Gil, J J; Lasunción, M A; Martín-Hidalgo, A

    2015-01-15

    The aim of the present work was to determine the effects of liver growth factor (LGF) on the regeneration process of rat testes after chemical castration induced by ethane dimethanesulfonate (EDS) by analyzing some of the most relevant proteins involved in cholesterol metabolism, such as hormone sensitive lipase (HSL), 3β-hydroxysteroid dehydrogenase (3β-HSD), scavenger receptor SR-BI, and other components of the SR family that could contribute to the recovery of steroidogenesis and spermatogenesis in the testis. Sixty male rats were randomized to nontreated (controls) and LGF-treated, EDS-treated, and EDS + LGF-treated groups. Testes were obtained on days 10 (T1), 21 (T2), and 35 (T3) after EDS treatment, embedded in paraffin, and analyzed by immunohistochemistry and Western blot. LGF improved the recovery of the seminiferous epithelia, the appearance of the mature pattern of Leydig cell interstitial distribution, and the expression of mature SR-BI. Moreover, LGF treatment resulted in partial recovery of HSL expression in Leydig cells and spermatogonia. No changes in serum testosterone were observed in control or LGF-treated rats, but in EDS-castrated animals LGF treatment induced a progressive increase in serum testosterone levels and 3β-HSD expression. Based on the pivotal role of SR-BI in the uptake of cholesteryl esters from HDL, it is suggested that the observed effects of LGF would facilitate the provision of cholesterol for sperm cell growth and Leydig cell recovery. Copyright © 2015 the American Physiological Society.

  2. Distinct growth factor-induced dynamic mass redistribution (DMR) profiles for monitoring oncogenic signaling pathways in various cancer cells.

    PubMed

    Du, Yuhong; Li, Zijian; Li, Lian; Chen, Zhuo Georgia; Sun, Shi-Yong; Chen, Peifang; Shin, Dong M; Khuri, Fadlo R; Fu, Haian

    2009-01-01

    Targeting dysregulated signaling pathways in tumors has led to the development of a novel class of signal transduction inhibitors, including inhibitors of the epidermal growth factor (EGF) receptor (EGFR). To dissect oncogenic pathways, identify key pathway determinants, and evaluate the efficacy of targeted agents, it is vital to develop technologies that allow the detection of temporal signaling events under physiological conditions. Here we report the application of a label-free optical biosensor to reveal the rapid response of cancer cells to EGF, expressed as a dynamic mass redistribution (DMR) signal. In response to EGF, squamous cell carcinoma of the head and neck cells exhibited a rapid rise in DMR signal, whereas lung adenocarcinoma cells showed a biphasic DMR profile, suggesting a cell type-dependent DMR response. Pharmacological studies suggested the importance of EGFR and the phosphatidylinositol-3 kinase pathway in mediating the EGF-induced DMR response. The defined DMR signatures offer a simple yet sensitive tool for evaluating EGFR-targeted agents, as shown with gefitinib and erlotinib. The assay can also be used for cell-based high-throughput screening of EGF pathway inhibitors, as demonstrated by its robust performance in a 384-well plate format (Z' > 0.5). This technology is applicable to other oncogenic pathways for the discovery of novel therapeutic agents for the treatment of various cancers.

  3. Demonstration of inhibitory effect of oral shark cartilage on basic fibroblast growth factor-induced angiogenesis in the rabbit cornea.

    PubMed

    González, R P; Soares, F S; Farias, R F; Pessoa, C; Leyva, A; de Barros Viana, G S; Moraes, M O

    2001-02-01

    Several angiogenic inhibitors have been obtained from shark cartilage, some of these are currently in clinical trials for assessment of safety and therapeutic efficacy in humans. Still, shark cartilage taken orally is commonly used in alternative and complimentary medicine for various ailments including serious diseases such as cancer. However, only few studies of oral shark cartilage have demonstrated pharmacological effects in experimental animals or patients, to indicate safe doses with sufficient bioavailability. In the present study we demonstrated the antiangiogenic properties of oral shark cartilage in the rabbit cornea model. Slow-release, polymethylmetacrylate pellets containing basic fibroblast growth factor (bFGF) were surgically implanted in the rabbit cornea to stimulate neovascularization scored by stereo microscopy. Powdered shark cartilage (PSC; commercial product) was tested orally along with a water-soluble fraction (WSF) of this cartilage product which was tested by local application. Animals were treated with oral dosages of 100 mg/kg PSC or 200 mg/kg thalidomide as positive control. Pellets containing WSF (50, 100 or 200 microg/pellet) or bFGF-inhibitor pentosan polysulfate were implanted adjacent to the bFGF pellet. Oral shark cartilage inhibited bFGF-induced angiogenesis, as did oral thalidomide, in this in vivo model. WSF and pentosan polysulfate was shown to block neovascularization in the cornea when applied locally. This study demonstrates that in the rabbit, oral shark cartilage appears to produce systemic levels of angiogenesis inhibitors that can exert their effect at the cornea.

  4. Intracerebroventricular administration of nerve growth factor induces gliogenesis in sensory ganglia, dorsal root, and within the dorsal root entry zone.

    PubMed

    Schlachetzki, Johannes C M; Pizzo, Donald P; Morrissette, Debbi A; Winkler, Jürgen

    2014-01-01

    Previous studies indicated that intracerebroventricular administration of nerve growth factor (NGF) leads to massive Schwann cell hyperplasia surrounding the medulla oblongata and spinal cord. This study was designed to characterize the proliferation of peripheral glial cells, that is, Schwann and satellite cells, in the trigeminal ganglia and dorsal root ganglia (DRG) of adult rats during two weeks of NGF infusion using bromodeoxyuridine (BrdU) to label dividing cells. The trigeminal ganglia as well as the cervical and lumbar DRG were analyzed. Along the entire neuraxis a small number of dividing cells were observed within these regions under physiological condition. NGF infusion has dramatically increased the generation of new cells in the neuronal soma and axonal compartments of sensory ganglia and along the dorsal root and the dorsal root entry zone. Quantification of BrdU positive cells within sensory ganglia revealed a 2.3- to 3-fold increase in glial cells compared to controls with a similar response to NGF for the different peripheral ganglia examined. Immunofluorescent labeling with S100β revealed that Schwann and satellite cells underwent mitosis after NGF administration. These data indicate that intracerebroventricular NGF infusion significantly induces gliogenesis in trigeminal ganglia and the spinal sensory ganglia and along the dorsal root entry zone as well as the dorsal root.

  5. Nerve growth factor-induced circadian phase shifts and MAP kinase activation in the hamster suprachiasmatic nuclei.

    PubMed

    Pizzio, Gastón A; Hainich, Ernesto C; Plano, Santiago A; Ralph, Martin R; Golombek, Diego A

    2005-08-01

    Circadian rhythms are entrained by light and by several neurochemical stimuli. In hamsters housed in constant darkness, i.c.v. administration of nerve growth factor (NGF) at various times in their circadian cycle produced phase shifts of locomotor activity rhythms that were similar in direction and circadian timing to those produced by brief pulses of light. Moreover, the effect of NGF and light were not additive, indicating signalling points in common. These points include the immediate-early gene c-fos and ERK1/2, a component of the mitogen-activated protein kinases (MAPK) family. NGF activates c-FOS and ERK1/2-MAPK in the suprachiasmatic nuclei, the site of a circadian clock in mammals, when administered during the subjective night but not during the day. The effect of NGF on ERK1/2 activation was not inhibited by the administration of MK-801, a glutamate/NMDA receptor antagonist. These results suggest that NGF, acting through MAPK activation, plays a role in photic entrainment of the mammalian circadian clock.

  6. Critical role of aquaporin-3 in epidermal growth factor-induced migration of colorectal carcinoma cells and its clinical significance.

    PubMed

    Li, Ang; Lu, Dehong; Zhang, Yupeng; Li, Jia; Fang, Yu; Li, Fei; Sun, Jiabang

    2013-02-01

    Aquaporins (AQPs) are a family of small, integral membrane proteins that have been shown to play an important role in tumor development and metastasis. Several studies have demonstrated that expression of AQP3 contributes to the enhanced migration of epithelial cells and is related to differentiation, metastasis and vascular invasion in lung and gastric cancer. Therefore, we investigated whether AQP3 could enhance human colorectal carcinoma cell migration and we examined the role of AQP3 in the prognosis of colorectal carcinoma. Our results showed that human epidermal growth factor (hEGF) increased the expression of AQP3 and, subsequently, the migration ability of human colorectal carcinoma cells HCT116 in a dose- and time-dependent manner. The enhanced migration ability of HCT116 cells was blocked by the AQP3 inhibitor, CuSO(4). Overexpression of AQP3 induced by hEGF was inhibited by a PI3K/AKT inhibitor, LY294002, but the ERK inhibitor U0126 had a minor effect on the hEGF-induced AQP3 upregulation. Immunohistochemical staining of the cancer tissues and corresponding normal tissues showed that AQP3 expression in cancer tissue was higher compared to that in normal tissue. The expression intensity of AQP3 was associated with the differentiation, lymph node and distant metastasis of colorectal carcinoma patients. Our results suggest that AQP3 overexpression could facilitate colorectal carcinoma cell migration and AQP3 may be considered a potential indicator and therapeutic target for colon tumor metastasis and prognosis.

  7. Epidermal growth factor-induced mobilization of a ganglioside-specific sialidase (NEU3) to membrane ruffles

    SciTech Connect

    Yamaguchi, Kazunori; Hata, Keiko; Wada, Tadashi; Moriya, Setsuko; Miyagi, Taeko . E-mail: miyagi-ta173@pref.miyagi.jp

    2006-07-28

    Human ganglioside-specific sialidase, NEU3, localized at cell membranes is thought to regulate various biological processes at cell surfaces. We here explored functional subcellular localization of the sialidase by immunofluorescence and found accumulation at leading edges of cell membranes in the presence of serum in culture. In response to EGF, the sialidase redistributed rapidly to ruffling cell membranes of squamous carcinoma A431 cells and co-localized with Rac-1. NEU3 overexpression enhanced Rac-1 activation and cell migration as compared with controls in HeLa cells as well as in A431 cells. Consistent with co-localization with Rac-1 by immunofluorescence, NEU3 was found to co-precipitate with activated Rac bound to GST-PAK-1 fusion protein. NEU3 silencing by siRNA, in contrast, resulted in inhibition of Rac-1 activation. These results indicate that NEU3 is able to mobilize to membrane ruffles in response to growth stimuli and activate the Rac-1 signaling by co-localization with Rac-1, leading to increased cell motility.

  8. MET inhibitor PHA-665752 suppresses the hepatocyte growth factor-induced cell proliferation and radioresistance in nasopharyngeal carcinoma cells

    SciTech Connect

    Liu, Tongxin; Li, Qi; Sun, Quanquan; Zhang, Yuqin; Yang, Hua; Wang, Rong; Chen, Longhua; Wang, Wei

    2014-06-20

    Highlights: • We demonstrated that irradiation induced MET overexpression and activation. • The aberrant MET signal mediated by HGF induced proliferation and radioresistance of NPC cells. • MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. • PHA-665752 suppressed the three downstream pathway of HGF/MET signal in a dose-dependent manner. - Abstract: Although ionizing radiation (IR) has provided considerable improvements in nasopharyngeal carcinoma (NPC), in subsets of patients, radioresistance is still a major problem in the treatment. In this study, we demonstrated that irradiation induced MET overexpression and activation, and the aberrant MET signal mediated by hepatocyte growth factor (HGF) induced radioresistance. We also found that MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. Further investigation indicated that PHA-665752 suppressed the phosphorylation of the Akt, ERK1/2, and STAT3 proteins in a dose-dependent manner. Our data indicated that the combination of IR with a MET inhibitor, such as PHA-665752, might be a promising therapeutic strategy for NPC.

  9. Nerve growth factor induces rapid increases in functional cell surface low density lipoprotein receptor-related protein.

    PubMed

    Bu, G; Sun, Y; Schwartz, A L; Holtzman, D M

    1998-05-22

    The low density lipoprotein receptor-related protein (LRP) is a large endocytic receptor that binds multiple ligands and is highly expressed in neurons. Several LRP ligands, including apolipoprotein E/lipoproteins and amyloid precursor protein, have been shown to participate either in Alzheimer's disease pathogenesis or pathology. However, factors that regulate LRP expression in neurons are unknown. In the current study, we analyzed the effects of nerve growth factor (NGF) treatment on LRP expression, distribution, and function within neurons in two neuronal cell lines. Our results show that NGF induces a rapid increase of cell surface LRP expression in a central nervous system-derived neuronal cell line, GT1-1 Trk, which was seen within 10 min and reached a maximum at about 1 h of NGF treatment. This increase of cell surface LRP expression is concomitant with an increase in the endocytic activity of LRP as measured via ligand uptake and degradation assays. We also found that the cytoplasmic tail of LRP is phosphorylated and that NGF rapidly increases the amount of phosphorylation. Furthermore, we detected a significant increase of LRP expression at the messenger RNA level following 24 h of NGF treatment. Both rapid and long term induction of LRP expression were also detected in peripheral nervous system-derived PC12 cells following NGF treatment. Taken together, our results demonstrate that NGF regulates LRP expression in neuronal cells.

  10. Nuclear factor-κB mediates placental growth factor induced pro-labour mediators in human placenta.

    PubMed

    Lappas, Martha

    2012-07-01

    Prostaglandins, pro-inflammatory cytokines, extracellular matrix remodelling enzymes and nuclear factor-kappa B (NF-κB) are involved in the mechanisms of term and preterm parturition. Recent studies have reported an increase in angiogenesis-related genes during term and preterm labour, including placental growth factor (PLGF). In non-gestational tissues, PLGF induces inflammation via NF-κB. The aim of this study was to determine the effect of PLGF on the gene expression and release of pro-labour mediators in human placenta. Samples were obtained from normal pregnancies at the time of Caesarean section. Human placenta was incubated in the absence (basal control) or presence of a 10 ng/ml PLGF for 24 h. Inflammatory gene expression was analysed by quantitative RT-PCR, concentration of pro-inflammatory cytokines and prostaglandins was quantified by ELISA, and secretory matrix metalloproteinases (MMPs) activity by zymography. NF-κB DNA-binding activity and IκB-α (inhibitor of NF-κB) protein degradation were analysed by ELISA and Western blotting, respectively. PLGF significantly increased interleukin (IL)-6 and IL-8 gene expression and secretion, cyclooxygenase-2 expression and resultant prostaglandin (PG) E(2) and PGF(2α) release, and MMP-9 gene expression and enzyme production. PLGF induced the degradation of IκB-α whilst increasing NF-κB p65 DNA-binding activity. The PLGF-induced pro-labour responses were abrogated by co-treatment with the NF-κB inhibitor BAY 11-7082. In summary, the pro-inflammatory and pro-labour effects of PLGF in human placenta are mediated by NF-κB.

  11. Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway

    SciTech Connect

    Wu, Jiamin; Wu, Kewen; Lin, Feng; Luo, Qing; Yang, Li; Shi, Yisong; Song, Guanbin; Sung, Kuo-Li Paul

    2013-11-08

    Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study, MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics.

  12. The soluble guanylyl cyclase inhibitor NS-2028 reduces vascular endothelial growth factor-induced angiogenesis and permeability.

    PubMed

    Morbidelli, Lucia; Pyriochou, Anastasia; Filippi, Sandra; Vasileiadis, Ioannis; Roussos, Charis; Zhou, Zongmin; Loutrari, Heleni; Waltenberger, Johannes; Stössel, Anne; Giannis, Athanassios; Ziche, Marina; Papapetropoulos, Andreas

    2010-03-01

    Nitric oxide (NO) is known to promote vascular endothelial growth factor (VEGF)-stimulated permeability and angiogenesis. However, effector molecules that operate downstream of NO in this pathway remain poorly characterized. Herein, we determined the effect of soluble guanylyl cyclase (sGC) inhibition on VEGF responses in vitro and in vivo. Treatment of endothelial cells (EC) with VEGF stimulated eNOS phosphorylation and cGMP accumulation; pretreatment with the sGC inhibitor 4H-8-bromo-1,2,4-oxadiazolo(3,4-d)benz(b)(1,4)oxazin-1-one (NS-2028) blunted cGMP levels without affecting VEGF-receptor phosphorylation. Incubation of cells with NS-2028 blocked the mitogenic effects of VEGF. In addition, cells in which sGC was inhibited exhibited no migration and sprouting in response to VEGF. To study the mechanisms through which NS-2028 inhibits EC migration, we determined the effects of alterations in cGMP levels on p38 MAPK. Initially, we observed that inhibition of sGC attenuated VEGF-stimulated activation of p38. In contrast, the addition of 8-Br-cGMP to EC stimulated p38 phosphorylation. The addition of cGMP elevating agents (BAY 41-2272, DETA NO and YC-1) enhanced EC migration. To test whether sGC also mediated the angiogenic effects of VEGF in vivo, we used the rabbit cornea assay. Animals receiving NS-2028 orally displayed a reduced angiogenic response to VEGF. As increased vascular permeability occurs prior to new blood vessel formation, we determined the effect of NS-2028 in vascular leakage. Using a modified Miles assay, we observed that NS-2028 attenuated VEGF-induced permeability. Overall, we provide evidence that sGC mediates the angiogenic and permeability-promoting activities of VEGF, indicating the significance of sGC as a downstream effector of VEGF-triggered responses.

  13. Neuropilin-1 modulates vascular endothelial growth factor-induced poly(ADP-ribose)-polymerase leading to reduced cerebrovascular apoptosis.

    PubMed

    Mey, Lilli; Hörmann, Mareike; Schleicher, Nadine; Reuter, Peter; Dönges, Simone; Kinscherf, Ralf; Gassmann, Max; Gerriets, Tibo; Al-Fakhri, Nadia

    2013-11-01

    Cerebral ischemia is encompassed by cerebrovascular apoptosis, yet the mechanisms behind apoptosis regulation are not fully understood. We previously demonstrated inhibition of endothelial apoptosis by vascular endothelial growth factor (VEGF) through upregulation of poly(ADP-ribose)-polymerase (PARP) expression. However, PARP overactivation through oxidative stress can lead to necrosis. This study tested the hypothesis that neuropilin-1 (NP-1), an alternative VEGF receptor, regulates the response to cerebral ischemia by modulating PARP expression and, in turn, apoptosis inhibition by VEGF. In endothelial cell culture, NP-1 colocalized with VEGF receptor-2 (VEGFR-2) and acted as its coreceptor. This significantly enhanced VEGF-induced PARP mRNA and protein expression demonstrated by receptor-specific inhibitors and VEGF-A isoforms. NP-1 augmented the inhibitory effect of VEGF/VEGFR-2 interaction on apoptosis induced by adhesion inhibition through the αV-integrin inhibitor cRGDfV. NP-1/VEGFR-2 signal transduction involved JNK and Akt. In rat models of permanent and temporary middle cerebral artery occlusion, the ischemic cerebral hemispheres displayed endothelial and neuronal apoptosis next to increased endothelial NP-1 and VEGFR-2 expression compared to non-ischemic cerebral hemispheres, sham-operated or untreated controls. Increased vascular superoxide dismutase-1 and catalase expression as well as decreased glycogen reserves indicated oxidative stress in the ischemic brain. Of note, protein levels of intact PARP remained stable despite pro-apoptotic conditions through increased PARP mRNA production during cerebral ischemia. In conclusion, NP-1 is upregulated in conditions of imminent cerebrovascular apoptosis to reinforce apoptosis inhibition and modulate VEGF-dependent PARP expression and activation. We propose that NP-1 is a key modulator of VEGF maintaining cerebrovascular integrity during ischemia. Modulating the function of NP-1 to target PARP could help to

  14. NICER elements: a family of nerve growth factor-inducible cAMP-extinguishable retrovirus-like elements.

    PubMed Central

    Cho, K O; Minsk, B; Wagner, J A

    1990-01-01

    We have shown previously that the transcription of the gene designated d5 is induced by nerve growth factor (NGF) in rat adrenal pheochromocytoma PC-12 cells and that this NGF induction is repressed by cAMP. In this paper we demonstrate that d5 is a member of a gene family that contains several hundred members, which is closely related to retroviruses and retrotransposons, as demonstrated by the following observations: (i) the original d5 cDNA hybridized to numerous restriction fragments in genomic DNA; (ii) d5 cDNA hybridized to genomic clones with various intensities, and genomic clones can be isolated with a frequency suggesting that this family includes several hundred members; and (iii) there were minor sequence variations in four independently isolated cDNA clones that were homologous to d5 cDNA. Primer extension studies show that initiation of the 5.7-kilobase d5 mRNA(s) occurs at a unique site relative to a synthetic primer. The 5' end of the cDNA sequence was homologous to Rasheed rat sarcoma virus; and a genomic clone contained several elements that are typical of a long terminal repeat (LTR), including a CCAAT box, a TATA box, a primer binding site, a poly(A) addition signal, and a poly(A) addition site. Furthermore, there is a LTR at the 3' end of at least one of the genes in this family, and there appeared to be a four-base duplication at the probable site of integration into host DNA. Since several members of this family retain responses to NGF and cAMP, we conclude that the regulatory elements present in the LTR have been conserved in many members of this family. We have named this family of genes the NICER elements because they are a family of NGF-inducible cAMP-extinguishable retrovirus-like elements. Images PMID:2160077

  15. Controlled microfluidics to examine growth-factor induced migration of neural progenitors in the Drosophila visual system.

    PubMed

    Beck, Cade; Singh, Tanya; Farooqi, Angela; Venkatesh, Tadmiri; Vazquez, Maribel

    2016-03-15

    The developing visual system in Drosophila melanogaster provides an excellent model with which to examine the effects of changing microenvironments on neural cell migration via microfluidics, because the combined experimental system enables direct genetic manipulation, in vivo observation, and in vitro imaging of cells, post-embryo. Exogenous signaling from ligands such as fibroblast growth factor (FGF) is well-known to control glia differentiation, cell migration, and axonal wrapping central to vision. The current study employs a microfluidic device to examine how controlled concentration gradient fields of FGF are able to regulate the migration of vision-critical glia cells with and without cellular contact with neuronal progenitors. Our findings quantitatively illustrate a concentration-gradient dependent chemotaxis toward FGF, and further demonstrate that glia require collective and coordinated neuronal locomotion to achieve directionality, sustain motility, and propagate long cell distances in the visual system. Conventional assays are unable to examine concentration- and gradient-dependent migration. Our data illustrate quantitative correlations between ligand concentration/gradient and glial cell distance traveled, independent or in contact with neurons. Microfluidic systems in combination with a genetically-amenable experimental system empowers researchers to dissect the signaling pathways that underlie cellular migration during nervous system development. Our findings illustrate the need for coordinated neuron-glia migration in the Drosophila visual system, as only glia within heterogeneous populations exhibited increasing motility along distances that increased with increasing FGF concentration. Such coordinated migration and chemotactic dependence can be manipulated for potential therapeutic avenues for NS repair and/or disease treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Hepatocyte growth factor/scatter factor induces a variety of tissue- specific morphogenic programs in epithelial cells

    PubMed Central

    1995-01-01

    Hepatocyte growth factor/scatter factor (HGF/SF) is the mesenchymal ligand of the epithelial tyrosine kinase receptor c-Met. In vitro, HGF/SF has morphogenic properties, e.g., induces kidney epithelial cells to form branching ducts in collagen gels. Mutation of the HGF/SF gene in mice results in embryonic lethality due to severe liver and placenta defects. Here, we have evaluated the morphogenic activity of HGF/SF with a large variety of epithelial cells grown in three- dimensional collagen matrices. We found that HGF/SF induces SW 1222 colon carcinoma cells to form crypt-like structures. In these organoids, cells exhibit apical/basolateral polarity and build a well- developed brush border towards the lumen. Capan 2 pancreas carcinoma cells, upon addition of HGF/SF, develop large hollow spheroids lined with a tight layer of polarized cells. Collagen inside the cysts is digested and the cells show features of pancreatic ducts. HGF/SF induces EpH4 mammary epithelial cells to form long branches with end- buds that resemble developing mammary ducts. pRNS-1-1 prostate epithelial cells in the presence of HGF/SF develop long ducts with distal branching as found in the prostate. Finally, HGF/SF simulates alveolar differentiation in LX-1 lung carcinoma cells. Expression of transfected HGF/SF cDNA in LX-1 lung carcinoma and EpH4 mammary epithelial cells induce morphogenesis in an autocrine manner. In the cell lines tested, HGF/SF activated the Met receptor by phosphorylation of tyrosine residues. These data show that HGF/SF induces intrinsic, tissue-specific morphogenic activities in a wide variety of epithelial cells. Apparently, HGF/SF triggers respective endogenous programs and is thus an inductive, not an instructive, mesenchymal effector for epithelial morphogenesis. PMID:8522613

  17. Nonsteroidal anti-inflammatory drugs attenuate proliferation of colonic carcinoma cells by blocking epidermal growth factor-induced Ca++ mobilization.

    PubMed

    Kokoska, E R; Smith, G S; Miller, T A

    2000-01-01

    Numerous studies suggest that nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit colorectal carcinogenesis. We have previously reported that NSAIDs, in human colonic carcinoma cells (Caco-2), attenuate epidermal growth factor (EGF)-induced cellular proliferation through a process independent of their inhibitory effects on prostaglandin synthesis. Furthermore, separate studies have also suggested that NSAIDs inhibit EGF-induced store-operated Ca++ influx. Thus we developed the hypothesis that NSAIDs may limit the activity of EGF by altering intracellular Ca++ ([Ca++]i) mobilization. Serum-deprived Caco-2 cells were employed for all experimentation. [Ca++]i was measured with Fluo-3 and extracellular Ca++ influx was monitored by quenching Fluo-3 fluorescence with Mn++. Proliferation was quantitated with two assays: cellular nucleic acid and total protein content. Caco-2 cells exposed to EGF demonstrated an initial increase in [Ca++]i which was blocked by neomycin, an inhibitor of IPsubscript 3 generation, and the phospholipase C inhibitor U73122 but not U73343 (inactive control). This was followed by sustained extracellular Ca++ influx, which was attenuated with calcium-free buffer (-Ca++), the store- operated Ca++ channel blocker lanthanum, indomethacin, ibuprofen, and aspirin. In subsequent studies, cells were treated with either serum-free media or EGF +/- the aforementioned inhibitors, and again serum starved. Cells exposed to EGF +/- the inactive phospholipase C inhibitor U73343 demonstrated a significant increase in nucleic acid and protein. However, proliferation induced by EGF was not observed when [Ca++]i elevation was prevented by blocking either internal Ca++ store release via phospholipase C/IPsubscript 3 or sustained Ca++ influx through store-operated Ca++ channels. Sustained [Ca++]i elevation, as induced by EGF, appears to be required for mitogenesis. These data support our premise that one mechanism whereby NSAIDs may attenuate colonic neoplasia is

  18. Synergistic effects of methylnaltrexone with 5-fluorouracil and bevacizumab on inhibition of vascular endothelial growth factor-induced angiogenesis.

    PubMed

    Singleton, Patrick A; Garcia, Joe G N; Moss, Jonathan

    2008-06-01

    Many patients with cancer receive combinations of drug treatments that include 5-fluorouracil (5-FU) and bevacizumab. Therapeutic doses of 5-FU are often associated with unwanted side effects, and bevacizumab is costly. Therefore, we explored potential agents that can reduce the therapeutic concentration of these drugs. Our data indicate that methylnaltrexone (MNTX), a peripheral antagonist of the mu-opioid receptor, exerts a synergistic effect with 5-FU and bevacizumab on inhibition of vascular endothelial growth factor (VEGF)-induced human pulmonary microvascular endothelial cell (EC) proliferation and migration, two key components in cancer-associated angiogenesis. MNTX inhibited EC proliferation with an IC(50) of approximately 100 nmol/L. Adding 100 nmol/L MNTX to EC shifted the IC(50) of 5-FU from approximately 5 micromol/L to approximately 7 nmol/L. Further, adding 50 ng/mL MNTX shifted the IC(50) of bevacizumab on inhibition of EC migration from approximately 25 to approximately 6 ng/mL. These synergistic effects were not observed with naltrexone, a tertiary mu-opioid receptor antagonist. On a mechanistic level, we observed that treatment of human EC with MNTX, but not naltrexone, increased receptor protein tyrosine phosphatase mu activity, which was independent of mu-opioid receptor expression. Silencing receptor protein tyrosine phosphatase mu expression (small interfering RNA) in human EC inhibited both synergy between MNTX and bevacizumab or 5-FU and increased VEGF-induced tyrosine phosphorylation of Src and p190 RhoGAP with enhanced activation of Akt and the actin cytoskeletal regulatory protein, RhoA, whereas silencing Src, Akt, or RhoA blocked VEGF-induced angiogenic events. Therefore, addition of MNTX could potentially lower the therapeutic doses of 5-FU and bevacizumab, which could improve index.

  19. Astroglial differentiation is required for support of neurite outgrowth.

    PubMed

    Wang, L C; Baird, D H; Hatten, M E; Mason, C A

    1994-05-01

    Models of astrocyte differentiation stress a lineage program that involves a progressive loss of astroglial support of neuronal differentiation. These models predict that astroglial promotion of neurite extension declines with the "age" of the astrocyte. An alternative view is that astroglial support of neurite growth is regulated by epigenetic factors that induce the cells either to differentiate and support neuronal functions or to undergo cell proliferation and fail to support neurons. To compare the contribution of astroglial cell "age" to astroglial support of neurite extension, mouse cerebellar astroglia were maintained in vitro for 3-90 d, and assayed for their ability to support neurite formation. When cultured in isolation, astroglial support of neurite extension declined with time in vitro, as assayed by quantifying outgrowth from explants of pontine nuclei, falling from a robust level just after the astroglia were harvested to negligible levels 21-90 d later. Since previous studies have shown that neurons can change the state of astroglial cells (Hatten, 1985), we tested the neurite promoting activity of astroglia that were cultured for 21-90 d in vitro and subsequently induced to differentiate by the addition of neurons. When granule neurons were added to aged astroglia and pontine explants plated 2 d later, neurite growth from the explants was exuberant, regardless of the time astroglia spent in vitro prior to the addition of neurons. The state of astroglia that were growth promoting or growth inhibiting was examined by bromodeoxyuridine staining and with antisera to glial filament protein. Aged astroglia cultured alone and thus inhibitory to axon growth, proliferated at high rates and had polygonal shapes. In contrast, aged astroglia to which neurons had been added, proliferated at low rates and developed process-bearing stellate shapes. To test further whether proliferation levels related to the growth-supporting properties of astroglia, astroglia

  20. Microwave-assisted synthesis of 4-chloro-N-(naphthalen-1-ylmethyl)-5-(3-(piperazin-1-yl)phenoxy)thiophene-2-sulfonamide (B-355252): a new potentiator of Nerve Growth Factor (NGF)-induced neurite outgrowth

    PubMed Central

    Williams, Alfred L.; Dandepally, Srinivasa R.; Gilyazova, Nailya; Witherspoon, Sam M; Ibeanu, Gordon

    2010-01-01

    The synthesis of 4-chloro-N-(naphthalen-1-ylmethyl)-5-(3-(piperazin-1-yl)phenoxy)thiophene-2-sulfonamide (B-355252) using a MW-assisted nucleophilic aromatic substitution (SNAr) reaction will be discussed. Utilization of this method allowed for the rapid generation of B-355252 heteroaryl ether core structure in the presence of cesium carbonate in dimethylformamide or tripotassium phosphate in N-methyl-2-pyrrolidone in 94% yield. Evaluation of B-355252 enhancement of nerve growth factor’s ability to stimulate neurite outgrowths was determined using NS-1 cells. PMID:22973068

  1. CRMP-5 interacts with actin to regulate neurite outgrowth

    PubMed Central

    GONG, XIAOBING; TAN, MINGHUI; GAO, YUAN; CHEN, KEEN; GUO, GUOQING

    2016-01-01

    CRMP family proteins (CRMPs) are abundantly expressed in the developing nervous system mediating growth cone guidance, neuronal polarity and axon elongation. CRMP-5 has been indicated to serve a critical role in neurite outgrowth. However, the detailed mechanisms of how CRMP-5 regulates neurite outgrowth remain unclear. In the current study, co-immunoprecipitation was used to identify the fact that CRMP-5 interacted with the actin and tubulin cytoskeleton networks in the growth cones of developing hippocampal neurons. CRMP-5 exhibited increased affinity towards actin when compared with microtubules. Immunocytochemistry was used to identify the fact that CRMP-5 colocalized with actin predominantly in the C-domain and T-zone in growth cones. In addition, genetic inhibition of CRMP-5 by siRNA suppressed the expression of actin, growth cone development and neurite outgrowth. Overexpression of CRMP-5 promoted the interaction with actin, growth cone development and hippocampal neurite outgrowth. Taken together, these data suggest that CRMP-5 is able to interact with the actin cytoskeleton network in the growth cone and affect growth cone development and neurite outgrowth via this interaction in developing hippocampal neurons. PMID:26677106

  2. Extracellular matrix allows PC12 neurite elongation in the absence of microtubules.

    PubMed

    Lamoureux, P; Steel, V L; Regal, C; Adgate, L; Buxbaum, R E; Heidemann, S R

    1990-01-01

    Several groups have shown that PC12 will extend microtubule-containing neurites on extracellular matrix (ECM) with no lag period in the absence of nerve growth factor. This is in contrast to nerve growth factor (NGF)-induced neurite outgrowth that occurs with a lag period of several days. During this lag period, increased synthesis or activation of assembly-promoting microtubule-associated proteins (MAPs) occurs and is apparently required for neurite extension. We investigated the growth and microtubule (MT) content of PC12 neurites grown on ECM in the presence or absence of inhibitors of neurite outgrowth. On ECM, neurites of cells with or without prior exposure to NGF contain a normal density of MTs, but frequently contain unusual loops of MTs in their termini that may indicate increased MT assembly. On ECM, neurites extend from PC12 cells in the presence of 10 microM LiCl at significantly higher frequency than on polylysine. On other substrates, LiCl inhibits neurite outgrowth, apparently by inhibiting phosphorylation of particular MAPs (Burstein, D. E., P. J. Seeley, and L. A. Greene. 1985. J. Cell Biol. 101:862-870). Although 35-45% of 60 Li(+)-neurites examined were found to contain a normal array of MTs, 25-30% were found to have a MT density approximately 15% of normal. The remaining 30% of these neurites were found to be nearly devoid of MTs, containing only occasional, ambiguous, short tubular elements. We also found that neurites would extend on ECM in the presence of the microtubule depolymerizing drug, nocodazole. At 0.1 micrograms/ml nocodazole, cells on ECM produce neurites that contain a normal density of MTs. This is in contrast to the lack of neurite outgrowth and retraction of extant neurites that this dose produces in cells grown on polylysine. At 0.2 microgram/ml nocodazole, neurites again grew out in substantial number and four of five neurites examined ultrastructurally were found to be completely devoid of microtubules. We interpret these

  3. Neurite outgrowth of NG108-15 cells induced by heat shock protein 90 inhibitors.

    PubMed

    Jin, Erika; Sano, Mamoru

    2008-12-01

    We previously reported that radicicol (Rad) and geldanamycin (Geld), heat shock protein 90 (Hsp90) inhibitors, potentiate neurite growth of cultured sensory neurons from chick embryo. We now show that the antibiotics induce neurite growth in NG108-15 cells. Treatment of the cells with these drugs caused transient decrease in protein levels of Raf1, ERK1/2, phosphorylated ERK1/2, Akt1, and CDK4. The neurite growth of NG108-15 induced by the inhibitors was blocked by actynomycin D, but the neurite growth stimulated by dbcAMP in the cells was not affected. The neurite growth could be due to a change in the synthesis of some specific protein(s) and is speculated to be due to the transient downregulation of particular-signaling molecules stabilized by Hsp90.

  4. Tumor necrosis factor-like weak inducer of apoptosis and its receptor fibroblast growth factor-inducible 14 are expressed in urticarial vasculitis.

    PubMed

    Li, Mengmeng; Chen, Tao; Guo, Zaipei; Li, Jingyi; Cao, Na

    2013-11-01

    Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), a member of the TNF family, has been implicated as a pro-inflammatory cytokine in many types of autoimmune and infectious diseases. However, information about TWEAK in dermatological diseases is limited. To date, no studies have investigated the roles of TWEAK in patients with urticarial vasculitis (UV). This study aimed to assess serum TWEAK levels, together with TWEAK and fibroblast growth factor-inducible 14 (Fn14) expressions of skin lesions in patients with UV. Serum TWEAK levels in patients with UV, together with patients with cutaneous leukocytoclastic angiitis (CLA) and healthy controls were detected by enzyme-linked immunosorbent assay; TWEAK and Fn14 expressions of skin lesions were analyzed by immunohistochemistry. Results showed that TWEAK and Fn14 were abundantly expressed in the dermal vessel wall of lesional skin in patients with UV but not healthy controls. Serum TWEAK levels in the acute stage in patients with UV were significantly higher than those in the convalescent stage and healthy controls. Serum TWEAK levels were elevated significantly in patients with CLA compared with those in healthy controls. Our previous study indicated that TWEAK may be an important mediator for the development of vascular inflammation in skin. In addition, we also found that TWEAK blockade substantially reduced vascular damage and perivascular leukocyte infiltrates in lipopolysaccharide-induced cutaneous vasculitis. Our study shows that TWEAK may be associated with the pathogenesis of UV; it is therefore suggested that TWEAK may be a potential therapeutic target for UV and other types of cutaneous vasculitis. © 2013 Japanese Dermatological Association.

  5. The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: altering epigenetic marks by immediate-early genes.

    PubMed

    Weaver, Ian C G; D'Alessio, Ana C; Brown, Shelley E; Hellstrom, Ian C; Dymov, Sergiy; Sharma, Shakti; Szyf, Moshe; Meaney, Michael J

    2007-02-14

    Maternal care alters epigenetic programming of glucocorticoid receptor (GR) gene expression in the hippocampus, and increased postnatal maternal licking/grooming (LG) behavior enhances nerve growth factor-inducible protein A (NGFI-A) transcription factor binding to the exon 1(7) GR promoter within the hippocampus of the offspring. We tested the hypothesis that NGFI-A binding to the exon 1(7) GR promoter sequence marks this sequence for histone acetylation and DNA demethylation and that such epigenetic alterations subsequently influence NGFI-A binding and GR transcription. We report that (1) NGFI-A binding to its consensus sequence is inhibited by DNA methylation, (2) NGFI-A induces the activity of exon 1(7) GR promoter in a transient reporter assay, (3) DNA methylation inhibits exon 1(7) GR promoter activity, and (4) whereas NGFI-A interaction with the methylated exon 1(7) GR promoter is reduced, NGFI-A overexpression induces histone acetylation, DNA demethylation, and activation of the exon 1(7) GR promoter in transient transfection assays. Site-directed mutagenesis assays demonstrate that NGFI-A binding to the exon 1(7) GR promoter is required for such epigenetic reprogramming. In vivo, enhanced maternal LG is associated with increased NGFI-A binding to the exon 1(7) GR promoter in the hippocampus of pups, and NGFI-A-bound exon 1(7) GR promoter is unmethylated compared with unbound exon 1(7) GR promoter. Knockdown experiments of NGFI-A in hippocampal primary cell culture show that NGFI-A is required for serotonin-induced DNA demethylation and increased exon 1(7) GR promoter expression. The data are consistent with the hypothesis that NGFI-A participates in epigenetic programming of GR expression.

  6. Lysophosphatidic Acid Induces Neurite Retraction in Differentiated Neuroblastoma Cells via GSK-3β Activation

    PubMed Central

    Sun, Yuanjie; Kim, Nam-Ho; Yang, Haijie; Kim, Seung-Hyuk; Huh, Sung-Oh

    2011-01-01

    Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects, including rapid neurite retraction and cell migration. Alterations in cell morphology, including neurite retraction, in neurodegenerative disorders such as Alzheimer’s disease involve hyperphosphorylation of the cytoskeletal protein tau. Since LPA has been shown to induce neurite retraction in various cultured neural cells and the detailed underlying molecular mechanisms have not yet been elucidated, we investigated whether LPA induced neurite retraction through taumediated signaling pathways in differentiated neuroblastoma cells. When Neuro2a cells differentiated with retinoic acid (RA) were exposed to LPA, cells exhibited neurite retraction in a time-dependent manner. The retraction of neurites was accompanied by the phosphorylation of tau. The LPA-induced neurite retraction and tau phosphorylation in differentiated Neuro2a cells were significantly abolished by the glycogen synthase kinase-3β (GSK-3β) inhibitor lithium chloride. Interestingly, the LPA-stimulated tau phosphorylation and neurite retraction were markedly prevented by the administration of H89, an inhibitor of both cyclic-AMP dependent protein kinase (PKA) and cyclic- AMP response element-binding protein (CREB). Transfection of the dominant-negative CREBs, K-CREB and ACREB, failed to prevent LPA-induced tau phosphorylation and neurite retraction in differentiated Neuro2a cells. Taken together, these results suggest that GSK-3β and PKA, rather than CREB, play important roles in tau phosphorylation and neurite retraction in LPA-stimulated differentiated Neuro2a cells. PMID:21499833

  7. Optimizing neurotrophic factor combinations for neurite outgrowth

    NASA Astrophysics Data System (ADS)

    Deister, C.; Schmidt, C. E.

    2006-06-01

    Most neurotrophic factors are members of one of three families: the neurotrophins, the glial cell-line derived neurotrophic factor family ligands (GFLs) and the neuropoietic cytokines. Each family activates distinct but overlapping cellular pathways. Several studies have shown additive or synergistic interactions between neurotrophic factors from different families, though generally only a single combination has been studied. Because of possible interactions between the neurotrophic factors, the optimum concentration of a factor in a mixture may differ from the optimum when applied individually. Additionally, the effect of combinations of neurotrophic factors from each of the three families on neurite extension is unclear. This study examines the effects of several combinations of the neurotrophin nerve growth factor (NGF), the GFL glial cell-line derived neurotrophic factor (GDNF) and the neuropoietic cytokine ciliary neurotrophic factor (CNTF) on neurite outgrowth from young rat dorsal root ganglion (DRG) explants. The combination of 50 ng ml-1 NGF and 10 ng ml-1 of each GDNF and CNTF induced the highest level of neurite outgrowth at a 752 ± 53% increase over untreated DRGs and increased the longest neurite length to 2031 ± 97 µm compared to 916 ± 64 µm for untreated DRGs. The optimum concentrations of the three factors applied in combination corresponded to the optimum concentration of each factor when applied individually. These results indicate that the efficacy of future therapies for nerve repair would be enhanced by the controlled release of a combination of neurotrophins, GFLs and neuropoietic cytokines at higher concentrations than used in previous conduit designs.

  8. The influence of magnetic fields exposure on neurite outgrowth in PC12 rat pheochromocytoma cells

    NASA Astrophysics Data System (ADS)

    Fan, W.; Ding, J.; Duan, W.; Zhu, Y. M.

    2004-11-01

    The aim of present work was to investigate the influence of magnetic fields exposure on neurite outgrowth in PC12 cells. The neurite number per cell, length of neurites and directions of neurite growth with respect to the direction of the magnetic field were analyzed after exposure to 50 Hz electromagnetic field for 96 h. A promotion was observed under a weak field (0.23 mT), as the average number of neurites per cell increased to 2.38±0.06 compared to 1.91±0.07 neurites/cell of the control dishes, while inhibition and directional outgrowth was evident under a relatively stronger field (1.32 mT). Our work shows that biological systems can be very sensitive to the strength of electromagnetic field.

  9. Na+/Ca2+ exchanger inhibitors inhibit neurite outgrowth in PC12 cells.

    PubMed

    Oda, Toru; Kume, Toshiaki; Izumi, Yasuhiko; Ishihara, Kumatoshi; Sugmimoto, Hachiro; Akaike, Akinori

    2011-01-01

    To elucidate the role of Na(+)/Ca(2+) exchanger (NCX) in neurite outgrowth, we investigated the effects of NCX inhibitors on neurite outgrowth in PC12 cells. KB-R7943 and 3',4'-dichlorobenzamil, NCX inhibitors, inhibited the neurite outgrowth caused by nerve growth factor (NGF). NCX inhibitors inhibited the neurite outgrowth caused by dibutylyl cAMP, which rapidly reorganizes the cytoskeleton. KB-R7943 inhibited the neurite outgrowth caused by Y-27632, an inhibitor of Rho kinase (ROCK) that regulates actin. However, NCX inhibitors did not inhibit NGF-induced phosphorylation of extracellular signal-regulated kinase. These results suggest that NCX inhibitor affects downstream of the Rho-ROCK signal transduction pathways in neurite outgrowth.

  10. Neurites from PC12 cells are connected to each other by synapse-like structures.

    PubMed

    Jeon, Chan-Young; Jin, Jae-Kwang; Koh, Young-Ho; Chun, Wook; Choi, Ihn-Geun; Kown, Hyung-Joo; Kim, Yong-Sun; Park, Jae-Bong

    2010-10-01

    PC12 cells have been used as a model of sympathetic neurons. Nerve growth factor (NGF), basic fibroblast growth factor (bFGF), and cAMP induce neurite outgrowth from PC12 cells. cAMP induced a greater number of neurites than did NGF. In particular, we attempted to elucidate whether PC12 cell neurites, induced by several factors including NGF, bFGF, and cAMP, form synapses, and whether each neurite has presynaptic and postsynaptic properties. Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), we observed that neurites are connected to each other. The connected regions presented dense core vesicles and a clathrin-coated membrane invagination. In addition, typical maker proteins for axon and dendrite were identified by an immuno-staining method. Tau-1, an axonal marker in neurons, was localized at a high concentration in the terminal tips of neurites from PC12 cells, which were connected to neurite processes containing MAP-2, a dendritic marker in neurons. Furthermore, neurites containing SV2 and synaptotagmin, markers of synaptic vesicles, were in contact with neurites harboring drebrin, a marker of the postsynaptic membrane, suggesting that neurites from PC12 cells induced by NGF, bFGF, and cAMP may form synapse-like structures. Tat-C3 toxin, a Rho inhibitor, augmented neurite outgrowth induced by NGF, bFGF, and cAMP. Tat-C3 toxin together with neurotrophins also exhibited synapse-like structures between neurites. However, it remains to be studied whether RhoA inhibition plays a role in the formation of synapse-like structures in PC12 cells. (c) 2010 Wiley-Liss, Inc.

  11. Epidermal growth factor-induced cellular invasion requires sphingosine-1-phosphate/sphingosine-1-phosphate 2 receptor-mediated ezrin activation

    PubMed Central

    Orr Gandy, K. Alexa; Adada, Mohamad; Canals, Daniel; Carroll, Brittany; Roddy, Patrick; Hannun, Yusuf A.; Obeid, Lina M.

    2013-01-01

    Ezrin, radixin, and moesin (ERM) proteins link cortical actin to the plasma membrane and coordinate cellular events that require cytoskeletal rearrangement, including cell division, migration, and invasion. While ERM proteins are involved in many important cellular events, the mechanisms regulating their function are not completely understood. Our laboratory previously identified reciprocal roles for the sphingolipids ceramide and sphingosine-1-phosphate (S1P) in the regulation of ERM proteins. We recently showed that ceramide-induced activation of PP1α leads to dephosphorylation and inactivation of ERM proteins, while S1P results in phosphorylation and activation of ERM proteins. Following these findings, we aimed to examine known inducers of the SK/S1P pathway and evaluate their ability to regulate ERM proteins. We examined EGF, a known inducer of the SK/S1P pathway, for its ability to regulate the ERM family of proteins. We found that EGF induces ERM c-terminal threonine phosphorylation via activation of the SK/S1P pathway, as this was prevented by siRNA knockdown or pharmacological inhibition of SK. Using pharmacological, as well as genetic, knockdown approaches, we determined that EGF induces ERM phosphorylation via activation of S1PR2. In addition, EGF led to cell polarization in the form of lamellipodia, and this occurred through a mechanism involving S1PR2-mediated phosphorylation of ezrin T567. EGF-induced cellular invasion was also found to be dependent on S1PR2-induced T567 ezrin phosphorylation, such that S1PR2 antagonist, JTE-013, and expression of a dominant-negative ezrin mutant prevented cellular invasion toward EGF. In this work, a novel mechanism of EGF-stimulated invasion is unveiled, whereby S1P-mediated activation of S1PR2 and phosphorylation of ezrin T567 is required.—Orr Gandy, K. A., Adada, M., Canals, D., Carroll, B., Roddy, P., Hannun, Y. A., Obeid, L. M. Epidermal growth factor-induced cellular invasion requires sphingosine-1-phosphate

  12. The transcription factor ATF-3 promotes neurite outgrowth.

    PubMed

    Seijffers, Rhona; Allchorne, Andrew J; Woolf, Clifford J

    2006-01-01

    Dorsal root ganglion (DRG) neurons regenerate after a peripheral nerve injury but not after injury to their axons in the spinal cord. A key question is which transcription factors drive the changes in gene expression that increase the intrinsic growth state of peripherally injured sensory neurons? A prime candidate is activating transcription factor-3 (ATF-3), a transcription factor that we find is induced in all DRG neurons after peripheral, but not central axonal injury. Moreover, we show in adult DRG neurons that a preconditioning peripheral, but not central axonal injury, increases their growth, correlating closely with the pattern of ATF-3 induction. Using viral vectors, we delivered ATF-3 to cultured adult DRG neurons and find that ATF-3 enhances neurite outgrowth. Furthermore, ATF-3 promotes long sparsely branched neurites. ATF-3 overexpression did not increase c-Jun expression. ATF-3 may contribute, therefore, to neurite outgrowth by orchestrating the gene expression responses in injured neurons.

  13. Laminin receptors for neurite formation

    SciTech Connect

    Kleinman, H.K.; Ogle, R.C.; Cannon, F.B.; Little, C.D.; Sweeney, T.M.; Luckenbill-Edds, L.

    1988-02-01

    Laminin, a basement membrane glycoprotein promotes both cell attachment and neurite outgrowth. Separate domains on laminin elicit these responses, suggesting that distinct receptors occur on the surface of cells. NG108-15 neuroblastoma-glioma cells rapidly extend long processes in the presence of laminin. The authors report here that /sup 125/I-labeled laminin specifically binds to these cells and to three membrane proteins of 67, 110, and 180 kDa. These proteins were isolated by affinity chromatography on laminin-Sepharose. The 67-kDa protein reacted with antibody to the previously characterized receptor for cell attachment to laminin. Antibodies to the 110-kDa and 180-kDa bands demonstrated that the 110-kDa protein was found in a variety of epithelial cell lines and in brain, whereas the 180-kDa protein was neural specific. Antibodies prepared against the 110-kDa and 180-kDa proteins inhibited neurite outgrowth induced by the neurite-promoting domain of laminin, whereas antibodies to the 67-kDa laminin receptor had no effect on neurite outgrowth. They conclude that neuronal cells have multiple cell-surface laminin receptors and that the 110-kDa and 180-kDa proteins are involved in neurite formation.

  14. Mechanisms of developmental neurite pruning

    PubMed Central

    Schuldiner, Oren; Yaron, Avraham

    2016-01-01

    The precise wiring of the nervous system is a combined outcome of progressive and regressive events during development. Axon guidance and synapse formation intertwined with cell death and neurite pruning sculpt the mature circuitry. It is now well recognized that pruning of dendrites and axons as means to refine neuronal networks, is a wide spread phenomena required for the normal development of vertebrate and invertebrate nervous systems. Here we will review the arising principles of cellular and molecular mechanisms of neurite pruning. We will discuss these principles in light of studies in multiple neuronal systems, and speculate on potential explanations for the emergence of neurite pruning as a mechanism to sculpt the nervous system. PMID:25213356

  15. Nucleocytoplasmic shuttling of the adapter protein SH2B1beta (SH2-Bbeta) is required for nerve growth factor (NGF)-dependent neurite outgrowth and enhancement of expression of a subset of NGF-responsive genes.

    PubMed

    Maures, Travis J; Chen, Linyi; Carter-Su, Christin

    2009-07-01

    The adapter protein SH2B1 (SH2-B, PSM) is recruited to multiple ligand-activated receptor tyrosine kinases, including the receptors for nerve growth factor (NGF), insulin, and IGF-I as well as the cytokine receptor-associated Janus kinase family kinases. In this study, we examine SH2B1's function in NGF signaling. We show that depleting endogenous SH2B1 using short hairpin RNA against SH2B1 inhibits NGF-dependent neurite outgrowth, but not NGF-mediated phosphorylation of Akt or ERKs 1/2. SH2B1 has been hypothesized to localize and function at the plasma membrane. We identify a nuclear localization signal within SH2B1 and show that it is required for nuclear translocation of SH2B1beta. Mutation of the nuclear localization signal has no effect on NGF-induced activation of TrkA and ERKs 1/2 but prevents SH2B1beta from enhancing NGF-induced neurite outgrowth. Disruption of SH2B1beta nuclear import also prevents SH2B1beta from enhancing NGF-induced transcription of genes important for neuronal differentiation, including those encoding urokinase plasminogen activator receptor, and matrix metalloproteinases 3 and 10. Disruption of SH2B1beta nuclear export by mutation of its nuclear export sequence similarly prevents SH2B1beta enhancement of NGF-induced transcription of those genes. Nuclear translocation of the highly homologous family member SH2B2(APS) was not observed. Together, these data suggest that rather than simply acting as an adapter protein linking signaling proteins to the activated TrkA receptor at the plasma membrane, SH2B1beta must shuttle between the plasma membrane and nucleus to function as a critical component of NGF-induced gene expression and neuronal differentiation.

  16. Molecular mechanisms of neurite extension.

    PubMed Central

    Valtorta, F; Leoni, C

    1999-01-01

    The extension of neurites is a major task of developing neurons, requiring a significant metabolic effort to sustain the increase in molecular synthesis necessary for plasma membrane expansion. In addition, neurite extension involves changes in the subsets of expressed proteins and reorganization of the cytomatrix. These phenomena are driven by environmental cues which activate signal transduction processes as well as by the intrinsic genetic program of the cell. The present review summarizes some of the most recent progress made in the elucidation of the molecular mechanisms underlying these processes. PMID:10212488

  17. Positive and negative cues for modulating neurite dynamics and receptor expression.

    PubMed

    Wrobel, Melissa R; Sundararaghavan, Harini G

    2017-03-27

    Many current peripheral nerve repair strategies focus on delivering positive, growth promoting cues (e.g. extracellular matrix, ECM) while eliminating negative, growth inhibiting cues (e.g. chondroitin sulfate proteoglycans, CSPGs) at the injury site. We hypothesized that recapitulating the positive and negative cues of the peripheral nerve injury microenvironment would improve regeneration. First, we tested the effects of a characteristic CSPG, chondroitin sulfate A (CSA) on neurite dynamics of dissociated chick embryo dorsal root ganglion (DRG) neurons using time lapse video microscopy. DRG growth was recorded on different adhesive substrates, including a novel, porcine-derived spinal cord matrix (SCM). The SCM significantly increased frequency of neurite extension coordinated by a significant reduction in the neurites' time spent stalled. The SCM also mitigated inhibitory effects of CSA, producing longer neurites than the controls without CSA treatment. Next we aimed to elucidate receptors involved in mediating this behavior by testing the ability of CSA to upregulate cell-substrate binding receptors using flow cytometry. Our results showed a significant increase in syndecan-3 receptor expression in neurons treated with CSA. Furthermore, syndecans would most likely bind to the sulfated glycosaminoglycans measured in the SCM. Finally, we evaluated neurite growth on biomaterial scaffolds featuring CSA and SCM cues. Our results showed significantly increased neurite outgrowth on electrospun hyaluronic acid fibers with SCM and low levels of CSA. Higher incorporation of CSA maintained its inhibitory properties. Future work will evaluate coupling CSPGs with growth-permissive ECM to assess the combined effect on neurite outgrowth.

  18. Material Stiffness Effects on Neurite Alignment to Photopolymerized Micropatterns

    PubMed Central

    2015-01-01

    The ability to direct neurite growth into a close proximity of stimulating elements of a neural prosthesis, such as a retinal or cochlear implant (CI), may enhance device performance and overcome current spatial signal resolution barriers. In this work, spiral ganglion neurons (SGNs), which are the target neurons to be stimulated by CIs, were cultured on photopolymerized micropatterns with varied matrix stiffnesses to determine the effect of rigidity on neurite alignment to physical cues. Micropatterns were generated on methacrylate thin film surfaces in a simple, rapid photopolymerization step by photomasking the prepolymer formulation with parallel line–space gratings. Two methacrylate series, a nonpolar HMA-co-HDDMA series and a polar PEGDMA-co-EGDMA series, with significantly different surface wetting properties were evaluated. Equivalent pattern periodicity was maintained across each methacrylate series based on photomask band spacing, and the feature amplitude was tuned to a depth of 2 μm amplitude for all compositions using the temporal control afforded by the UV curing methodology. The surface morphology was characterized by scanning electron microscopy and white light interferometry. All micropatterned films adsorb similar amounts of laminin from solution, and no significant difference in SGN survival was observed when the substrate compositions were compared. SGN neurite alignment significantly increases with increasing material modulus for both methacrylate series. Interestingly, SGN neurites respond to material stiffness cues that are orders of magnitude higher (GPa) than what is typically ascribed to neural environments (kPa). The ability to understand neurite response to engineered physical cues and mechanical properties such as matrix stiffness will allow the development of advanced biomaterials that direct de novo neurite growth to address the spatial signal resolution limitations of current neural prosthetics. PMID:25211120

  19. Basic fibroblast growth factor-induced translocation of p21-activated kinase to the membrane is independent of phospholipase C-gamma1 in the differentiation of PC12 cells.

    PubMed

    Shin, Kyung-Sun; Shin, Eun-Young; Lee, Chan-Soo; Quan, Song-Hua; Woo, Kyung-Nam; Soung, Nak-Kyun; Kwak, Sahng-June; Kim, Seung Ryul; Kim, Eung-Gook

    2002-05-31

    p21-activated kinase (PAK) targeting to the plasma membrane is essential for PC12 cell neurite outgrowth. Phospholipase C-gamma1 (PLC-gamma1) can mediate the PAK translocation in response to growth factors, since PLC-gamma1 binds to both tyrosine-phosphorylated receptor tyrosine kinases and PAK through its SH2 and SH3 domain, respectively. In the present study, we examined a potential role for PLC-gamma1 in the basic fibroblast growth factor (bFGF)-induced PAK translocation using stable PC12 cell lines that overexpress in a tetracycline-inducible manner either the wild-type FGFR-1 or the Y766F FGFR-1 mutant. Phosphatidylinositol hydrolysis was increased 6.5-fold in response to bFGF in the wild type cells but negligible in the mutant cells. The recombinant GST-PLC-gamma1 SH3 was able to bind to PAK1 but not GST alone. However, examination of PLC-gamma1 as an adaptor for translocation of PAK1 in cells showed that both cells transfected with pEGFP-PAK1 was able to differentiate for 24 h, as visualized by laser confocal microscopy. Translocation of PAK1 to growth cones occurs at similar levels in both wild and mutant cells. These results suggest that a protein(s) other than PLC-gamma1 is functionally relevant for PAK targeting.

  20. [Neurite-stimulating effect of Hirudo medicinalis salivary gland secreting factors in organotypic culture of the dorsal root ganglia].

    PubMed

    Chalisova, N I; Baskova, I P; Zavalova, L L; Pennijainen, V A

    2001-06-01

    Effects of destabilise, bdellin, bdellin A, eglin were investigated in organotypic tissue culture of dorsal root ganglia (DRG) of 10-11-day old chick embryos. Native destabilase and bdellin A, bdellin B and eglin are more active inducing a more intensive neurite growth in DRG as compared with the control. A neurite-stimulating effect of the drug "pyjavit" seems to be associated with destabilase, bdellins and eglin neurite-stimulating activity.

  1. Intracellular calcium and cyclic nucleotide levels modulate neurite guidance by microtopographical substrate features.

    PubMed

    Li, Shufeng; Tuft, Bradley; Xu, Linjing; Polacco, Marc; Clarke, Joseph C; Guymon, C Allan; Hansen, Marlan R

    2016-08-01

    Micro- and nanoscale surface features have emerged as potential tools to direct neurite growth into close proximity with next generation neural prosthesis electrodes. However, the signaling events underlying the ability of growth cones to respond to topographical features remain largely unknown. Accordingly, this study probes the influence of [Ca(2+) ]i and cyclic nucleotide levels on the ability of neurites from spiral ganglion neurons (SGNs) to precisely track topographical micropatterns. Photopolymerization and photomasking were used to generate micropatterned methacrylate polymer substrates. Dissociated SGN cultures were plated on the micropatterned surfaces. Calcium influx and release from internal stores were manipulated by elevating extracellular K(+) , maintenance in calcium-free media, or bath application of various calcium channel blockers. Cyclic nucleotide activity was increased by application of cpt-cAMP or 8-Br-cGMP. Elevation of [Ca(2+) ]i by treatment of cultures with elevated potassium reduced neurite alignment to physical microfeatures. Maintenance of cultures in Ca(2+) -free medium or treatment with the non-selective voltage-gated calcium channel blocker cadmium or L-type Ca(2+) channel blocker nifedipine did not signficantly alter SGN neurite alignment. By contrast, ryanodine or xestospongin C, which block release of internal calcium stores via ryanodine-sensitive channels or inositol-1,4,5-trisphosphate receptors respectively, each significantly decreased neurite alignment. Cpt-cAMP significantly reduced neurite alignment while 8-Br-cGMP significantly enhanced neurite alignment. Manipulation of [Ca(2+) ]i or cAMP levels significantly disrupts neurite guidance while elevation of cGMP levels increases neurite alignment. The results suggest intracellular signaling pathways similar to those recruited by chemotactic cues are involved in neurite guidance by topographical features. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2037

  2. Mouse Acetylcholinesterase Enhances Neurite Outgrowth of Rat R28 Cells Through Interaction With Laminin-1

    PubMed Central

    Sperling, Laura E.; Klaczinski, Janine; Schütz, Corina; Rudolph, Lydia; Layer, Paul G.

    2012-01-01

    The enzyme acetylcholinesterase (AChE) terminates synaptic transmission at cholinergic synapses by hydrolyzing the neurotransmitter acetylcholine, but can also exert ‘non-classical’, morpho-regulatory effects on developing neurons such as stimulation of neurite outgrowth. Here, we investigated the role of AChE binding to laminin-1 on the regulation of neurite outgrowth by using cell culture, immunocytochemistry, and molecular biological approaches. To explore the role of AChE, we examined fiber growth of cells overexpressing different forms of AChE, and/or during their growth on laminin-1. A significant increase of neuritic growth as compared with controls was observed for neurons over-expressing AChE. Accordingly, addition of globular AChE to the medium increased total length of neurites. Co-transfection with PRIMA, a membrane anchor of AChE, led to an increase in fiber length similar to AChE overexpressing cells. Transfection with an AChE mutant that leads to the retention of AChE within cells had no stimulatory effect on neurite length. Noticeably, the longest neurites were produced by neurons overexpressing AChE and growing on laminin-1, suggesting that the AChE/laminin interaction is involved in regulating neurite outgrowth. Our findings demonstrate that binding of AChE to laminin-1 alters AChE activity and leads to increased neurite growth in culture. A possible mechanism of the AChE effect on neurite outgrowth is proposed due to the interaction of AChE with laminin-1. PMID:22570738

  3. Mechanisms controlling neurite outgrowth in a pheochromocytoma cell line: the role of TRPC channels.

    PubMed

    Kumar, Sanjay; Chakraborty, Saikat; Barbosa, Cindy; Brustovetsky, Tatiana; Brustovetsky, Nickolay; Obukhov, Alexander G

    2012-04-01

    Transient Receptor Potential Canonical (TRPC) channels are implicated in modulating neurite outgrowth. The expression pattern of TRPCs changes significantly during brain development, suggesting that fine-tuning TRPC expression may be important for orchestrating neuritogenesis. To study how alterations in the TRPC expression pattern affect neurite outgrowth, we used nerve growth factor (NGF)-differentiated rat pheochromocytoma 12 (PC12) cells, a model system for neuritogenesis. In PC12 cells, NGF markedly up-regulated TRPC1 and TRPC6 expression, but down-regulated TRPC5 expression while promoting neurite outgrowth. Overexpression of TRPC1 augmented, whereas TRPC5 overexpression decelerated NGF-induced neurite outgrowth. Conversely, shRNA-mediated knockdown of TRPC1 decreased, whereas shRNA-mediated knockdown of TRPC5 increased NGF-induced neurite extension. Endogenous TRPC1 attenuated the anti-neuritogenic effect of overexpressed TRPC5 in part by forming the heteromeric TRPC1-TRPC5 channels. Previous reports suggested that TRPC6 may facilitate neurite outgrowth. However, we found that TRPC6 overexpression slowed down neuritogenesis, whereas dominant negative TRPC6 (DN-TRPC6) facilitated neurite outgrowth in NGF-differentiated PC12 cells. Consistent with these findings, hyperforin, a neurite outgrowth promoting factor, decreased TRPC6 expression in NGF-differentiated PC12 cells. Using pharmacological and molecular biological approaches, we determined that NGF up-regulated TRPC1 and TRPC6 expression via a p75(NTR)-IKK(2)-dependent pathway that did not involve TrkA receptor signaling in PC12 cells. Similarly, NGF up-regulated TRPC1 and TRPC6 via an IKK(2) dependent pathway in primary cultured hippocampal neurons. Thus, our data suggest that a balance of TRPC1, TRPC5, and TRPC6 expression determines neurite extension rate in neural cells, with TRPC6 emerging as an NGF-dependent "molecular damper" maintaining a submaximal velocity of neurite extension.

  4. Erythromycin and clarithromycin modulation of growth factor-induced expression of heparanase mRNA on human lung cancer cells in vitro.

    PubMed Central

    Sasaki, M; Ito, T; Kashima, M; Fukui, S; Izumiyama, N; Watanabe, A; Sano, M; Fujiwara, Y; Miura, M

    2001-01-01

    Heparanase activity is correlated with the metastatic potential of several cancer cells and is a key enzyme in the breakdown of tissue barriers. It is also involved in the regulation of growth factor and cytokine activity. However, little is known about the factors that induce heparanase in cancer cells. We investigated the effect of three growth factors, platelet-derived growth factor (PDGF), hepatocyte growth factor (HGF) and basic fibroblast growth factor (bFGF), on heparanase mRNA induction in lung cancer cells in vitro. In addition, we examined the effect of erythromycin (EM) and clarithromycin (CAM), which are 14-membered ring macrolide antibiotics that act as biological response modifiers, on the expression of heparanase mRNA induced by growth factors. PDGF, HGF and bFGF stimulated cell migration activity and enhanced the expression of heparanase mRNA in the human lung adenocarcinoma cell line A549. Via different mechanisms, EM and CAM modulate the induction by these factors of heparanase mRNA expression on A549 cells. EM also significantly suppressed A549 cell migration induced by PDGF and HGF, and CAM significantly suppressed A549cell migration induced by bFGF. The results suggest that the growth factors PDGF, HGF and bFGF are important inducers of heparanase in potentially invasive and metastatic cancer cells. The suppressive effect of heparanase mRNA expression by EM and CAM may have interestingtherapeutic applications in the prevention of metastasis. PMID:11759110

  5. Uridine from Pleurotus giganteus and Its Neurite Outgrowth Stimulatory Effects with Underlying Mechanism

    PubMed Central

    Phan, Chia-Wei; David, Pamela; Wong, Kah-Hui; Naidu, Murali; Sabaratnam, Vikineswary

    2015-01-01

    Neurodegenerative diseases are linked to neuronal cell death and impairment of neurite outgrowth. An edible mushroom, Pleurotus giganteus was found to stimulate neurite outgrowth in vitro but the chemical constituents and the underlying mechanism is yet to be elucidated. The chemical constituents of P. giganteus (linoleic acid, oleic acid, cinnamic acid, caffeic acid, p-coumaric acid, succinic acid, benzoic acid, and uridine) were tested for neurite outgrowth activity. Uridine (100 μM) was found to increase the percentage of neurite-bearing cells of differentiating neuroblastoma (N2a) cells by 43.1±0.5%, which was 1.8-fold higher than NGF (50 ng/mL)-treated cells. Uridine which was present in P. giganteus (1.80±0.03 g/100g mushroom extract) increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Further, phosphorylation of the mammalian target of rapamycin (mTOR) was also increased. MEK/ERK and PI3K-Akt-mTOR further induced phosphorylation of cAMP-response element binding protein (CREB) and expression of growth associated protein 43 (GAP43); all of which promoted neurite outgrowth of N2a cells. This study demonstrated that P. giganteus may enhance neurite outgrowth and one of the key bioactive molecules responsible for neurite outgrowth is uridine. PMID:26565787

  6. Uridine from Pleurotus giganteus and Its Neurite Outgrowth Stimulatory Effects with Underlying Mechanism.

    PubMed

    Phan, Chia-Wei; David, Pamela; Wong, Kah-Hui; Naidu, Murali; Sabaratnam, Vikineswary

    2015-01-01

    Neurodegenerative diseases are linked to neuronal cell death and impairment of neurite outgrowth. An edible mushroom, Pleurotus giganteus was found to stimulate neurite outgrowth in vitro but the chemical constituents and the underlying mechanism is yet to be elucidated. The chemical constituents of P. giganteus (linoleic acid, oleic acid, cinnamic acid, caffeic acid, p-coumaric acid, succinic acid, benzoic acid, and uridine) were tested for neurite outgrowth activity. Uridine (100 μM) was found to increase the percentage of neurite-bearing cells of differentiating neuroblastoma (N2a) cells by 43.1 ± 0.5%, which was 1.8-fold higher than NGF (50 ng/mL)-treated cells. Uridine which was present in P. giganteus (1.80 ± 0.03 g/100g mushroom extract) increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Further, phosphorylation of the mammalian target of rapamycin (mTOR) was also increased. MEK/ERK and PI3K-Akt-mTOR further induced phosphorylation of cAMP-response element binding protein (CREB) and expression of growth associated protein 43 (GAP43); all of which promoted neurite outgrowth of N2a cells. This study demonstrated that P. giganteus may enhance neurite outgrowth and one of the key bioactive molecules responsible for neurite outgrowth is uridine.

  7. CHLORHEXIDINE INHIBITS L1 CELL ADHESION MOLECULE MEDIATED NEURITE OUTGROWTH IN VITRO

    PubMed Central

    Milstone, Aaron M.; Bamford, Penny; Aucott, Susan W.; Tang, Ningfeng; White, Kimberly R.; Bearer, Cynthia F.

    2013-01-01

    Background Chlorhexidine is a skin disinfectant that reduces skin and mucous membrane bacterial colonization and inhibits organism growth. Despite numerous studies assessing chlorhexidine safety in term infants, residual concerns have limited its use in hospitalized neonates, especially low birth weight preterm infants. The aim of this study was to assess the potential neurotoxicity of chlorhexidine on the developing central nervous system using a well-established in vitro model of neurite outgrowth that includes laminin and L1 cell adhesion molecule (L1) as neurite outgrowth promoting substrates. Methods Cerebellar granule neurons are plated on either poly L-lysine, L1 or laminin. Chlorhexidine, hexachlorophene or their excipients are added to the media. Neurons are grown for 24 h, then fixed and neurite length measured. Results Chlorhexidine significantly reduced the length of neurites grown on L1 but not laminin. Chlorhexidine concentrations as low as 125 ng/ml statistically significantly reduced neurite length on L1. Hexachlorophene did not affect neurite length. Conclusion Chlorhexidine at concentrations detected in the blood following topical applications in preterm infants specifically inhibited L1 mediated neurite outgrowth of cerebellar granule neurons. It is now vital to determine whether the blood brain barrier is permeable to chlorhexidine in preterm infants. PMID:24126818

  8. Microfluidic Gradients Reveal Enhanced Neurite Outgrowth but Impaired Guidance within 3D Matrices with High Integrin Ligand Densities

    PubMed Central

    Romano, Nicole H.; Lampe, Kyle J.; Xu, Hui; Ferreira, Meghaan M.

    2015-01-01

    The density of integrin-binding ligands in an extracellular matrix (ECM) is known to regulate cell migration speed by imposing a balance of traction forces between the leading and trailing edges of the cell, but the effect of cell-adhesive ligands on neurite chemoattraction is not well understood. We present a platform that combines gradient-generating microfluidic devices with three-dimensional (3D) protein-engineered hydrogels to study the effect of RGD ligand density on neurite pathfinding from chick dorsal root ganglia-derived spheroids. Spheroids are encapsulated in elastin-like polypeptide (ELP) hydrogels presenting either 3.2 or 1.6 mM RGD ligands and exposed to a microfluidic gradient of nerve growth factor (NGF). While the higher ligand density matrix enhanced neurite initiation and persistence of neurite outgrowth, the lower ligand density matrix significantly improved neurite pathfinding and increased the frequency of growth cone turning up the NGF gradient. The apparent trade-off between neurite extension and neurite guidance is reminiscent of the well-known parabolic relationship between cell adhesion and migration speed, implying that a similar matrix-mediated balance of forces regulate neurite elongation and growth cone turning. These results have implications in the design of engineered materials for in vitro models of neural tissue and in vivo nerve guidance channels. PMID:25315156

  9. Bifenthrin causes neurite retraction in the absence of cell death: a model for pesticide associated neurodegeneration.

    PubMed

    Nandi, Avishek; Chandil, Daljit; Lechesal, Rethabile; Pryor, Stephen C; McLaughlin, Ashlea; Bonventre, Josephine A; Flynnx, Katherine; Weeks, Benjamin S

    2006-05-01

    Bifenthrin is a synthetic pyrethroid insecticide derivative of naturally occurring pyrethrins from chrysanthemum flowers. Bifenthrin is considered relatively safe and therefore incorporated as the active ingredient in preparations sold over the counter for household use. Recent studies have raised concern that chronic exposure to pesticides in the home setting may increase the risk for neurodegenerative diseases. To address this concer, in the present study, bifenthrin is added to pre-differentiated PC12 and effect of bifenthrin on the retraction of existing neurites is observed a model for neurodegeneration. PC12 cells were differentiated with nerve growth factor for twenty-four hours and then treated with what was determined to be a sublethal dose of bifenthrin for up to an additional 48 hours. The percent of cells with neurites was assessed at various times before and after nerve growth factor treatment. Bifenthrin toxicity was determined using trypan blue exclusion. Bifenthrin was not toxic to PC12 cells at concentrations ranging from 1 x 10(-10) M to 1 x 10(-4) M. Twenty-four hours after nerve growth factor treatment, a maximum percent of cells had formed neurites and with a treatment of 1 x 10(-5) M bifenthrin, approximately 80% of these neurites retracted in within 12 additional hours and almost all neurites had retracted within 48 hours. Trypan exclusion showed that these cells were viable. These data show that bifenthrin can stimulate the retraction of neurites in the absence of frank toxicity.

  10. Glycogen Synthase Kinase 3β Is a Negative Regulator of Growth Factor-induced Activation of the c-Jun N-terminal Kinase*

    PubMed Central

    Liu, Shuying; Yu, Shuangxing; Hasegawa, Yutaka; LaPushin, Ruth; Xu, Hong-Ji; Woodgett, James R.; Mills, Gordon B.; Fang, Xianjun

    2016-01-01

    The c-Jun N-terminal kinase (JNK)/stress activated protein kinase is preferentially activated by stress stimuli. Growth factors, particularly ligands for G protein-coupled receptors, usually induce only modest JNK activation, although they may trigger marked activation of the related extracellular signal-regulated kinase. In the present study, we demonstrated that homozygous disruption of glycogen synthase kinase 3β (GSK-3β) dramatically sensitized mouse embryonic fibroblasts (MEFs) to JNK activation induced by lysophosphatidic acid (LPA) and sphingosine-1-phosphate, two prototype ligands for G protein-coupled receptors. To a lesser degree, a lack of GSK-3β also potentiated JNK activation in response to epidermal growth factor. In contrast, the absence of GSK-3β decreased UV light-induced JNK activation. The increased JNK activation induced by LPA in GSK-3β null MEFs was insufficient to trigger apoptotic cell death or growth inhibition. Instead, the increased JNK activation observed in GSK-3β−/− MEFs was associated with an increased proliferative response to LPA, which was reduced by the inhibition of JNK. Ectopic expression of GSK-3β in GSK-3β-negative MEFs restrained LPA-triggered JNK phosphorylation and induced a concomitant decrease in the mitogenic response to LPA compatible with GSK-3β through the inhibition of JNK activation, thus limiting LPA-induced cell proliferation. Mutation analysis indicated that GSK-3β kinase activity was required for GSK-3β to optimally inhibit LPA-stimulated JNK activation. Thus GSK-3β serves as a physiological switch to specifically repress JNK activation in response to LPA, sphingosine-1-phosphate, or the epidermal growth factor. These results reveal a novel role for GSK-3β in signal transduction and cellular responses to growth factors. PMID:15466414

  11. Grb2 negatively regulates epidermal growth factor-induced phospholipase C-gamma1 activity through the direct interaction with tyrosine-phosphorylated phospholipase C-gamma1.

    PubMed

    Choi, Jang Hyun; Hong, Won-Pyo; Yun, Sanguk; Kim, Hyeon Soo; Lee, Jong-Ryul; Park, Jong Bae; Bae, Yun Soo; Ryu, Sung Ho; Suh, Pann-Ghill

    2005-10-01

    Phospholipase C-gamma1 (PLC-gamma1) plays pivotal roles in cellular growth and proliferation. Upon the stimulation of growth factors and hormones, PLC-gamma1 is rapidly phosphorylated at three known sites; Tyr771, Tyr783 and Tyr1254 and its enzymatic activity is up-regulated. In this study, we demonstrate for the first time that Grb2, an adaptor protein, specifically interacts with tyrosine-phosphorylated PLC-gamma1 at Tyr783. The association of Grb2 with PLC-gamma1 was induced by the treatment with epidermal growth factor (EGF). Replacement of Tyr783 with Phe completely blocked EGF-induced interaction of PLC-gamma1 with Grb2, indicating that tyrosine phosphorylation of PLC-gamma1 at Tyr783 is essential for the interaction with Grb2. Interestingly, the depletion of Grb2 from HEK-293 cells by RNA interference significantly enhanced increased EGF-induced PLC-gamma1 enzymatic activity and mobilization of the intracellular Ca2+, while it did not affect EGF-induced tyrosine phosphorylation of PLC-gamma1. Furthermore, overexpression of Grb2 inhibited PLC-gamma1 enzymatic activity. Taken together, these results suggest Grb2, in addition to its key function in signaling through Ras, may have a negatively regulatory role on EGF-induced PLC-gamma1 activation.

  12. “Spatial Mapping of the Neurite and Soma Proteomes Reveals a Functional Cdc42/Rac Regulatory Network”

    SciTech Connect

    Pertz, Olivier C.; Wang, Yingchun; Yang, Feng; Wang, Wei; gay, laurie J.; Gritsenko, Marina A.; Clauss, Therese RW; Anderson, David J.; Liu, Tao; Auberry, Kenneth J.; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

    2008-02-12

    Neurite extension and growth cone navigation are guided by extracellular cues that control cytoskeletal rearrangements. However, understanding the complex signaling mechanisms that mediate neuritogenesis has been limited by the inability to biochemically separate the neurite and soma for spatial proteomic and bioinformatic analyses. Here, we apply global proteome profiling in combination with a novel neurite purification methodology for comparative analysis of the soma and neurite proteomes of neuroblastoma cells. The spatial relationship of 4855 proteins were mapped revealing networks of signaling proteins that control integrins, the actin cytoskeleton, and axonal guidance in the extending neurite. Bioinformatics and functional analyses revealed a spatially compartmentalized Rac/Cdc42 signaling network that operates in conjunction with multiple GEFs and GAPs to control neurite formation. Interestingly, RNA interference experiments revealed that the different GEFs and GAPs regulate specialized functions during neurite formation including neurite growth and retraction kinetics, cytoskeletal organization, and cell polarity. Our findings provide insight into the spatial organization of signaling networks that enable neuritogenesis and provide a comprehensive system-wide profile of proteins that mediate this process including those that control Rac and Cdc42 signaling.

  13. Superoxide dismutase abolishes the platelet-derived growth factor-induced release of prostaglandin E2 by blocking induction of nitric oxide synthase: role of superoxide.

    PubMed

    Kelner, M J; Uglik, S F

    1995-09-10

    The ability of platelet-derived growth factor (PDGF) to induce prostaglandin E2 (PGE2) release in fibroblasts is abolished when copper-zinc superoxide dismutase activity is increased by transfection of an expression vector. The effect is specific to copper-zinc superoxide dismutase as glutathione peroxidase-overexpressing NIH3T3 cells, again produced by transfection of an expression vector, retain the ability to release PGE2 in response to growth factor stimulation. The defect in PDGF-induced PGE2 release occurs prior to action of prostaglandin H synthase/cyclooxygenase as release of arachadonic acid (in response to PDGF) does not occur in the superoxide dismutase-overexpressing clones. The defect in PDGF-induced release of PGE2 in superoxide dismutase-overexpressing clones differs from the defect found in pEJ-ras-transformed clones. The parent cells, the glutathione peroxidase-expressing cells, and the superoxide dismutase-overexpressing cells all release PGE2 in response to exogenous nitric oxide, whereas the pEJ-ras-transformed cells do not. The glutathione peroxidase-expressing cells also retained the ability to release nitrite in response to PDGF, whereas the superoxide dismutase-expressing clones do not. PDGF stimulates nitric oxide synthase activity in NIH3T3 cells, but not in the superoxide dismutase-expressing clones. These results indicate that superoxide dismutase overexpression blocks the PDGF-induced release of PGE2 by blocking induction of nitric oxide synthase. This indicates that the increase of nitric oxide synthase induced by PDGF is mediated in part by production of superoxide. These findings link cellular oxygen radical homeostasis to three different classes of messenger molecules (growth factors, nitric oxide, and prostaglandins).

  14. Plasminogen activator inhibitor-1 aids survival of neurites on neurons derived from pheochromocytoma (PC-12) cells.

    PubMed

    Soeda, Shinji; Imatoh, Takuya; Ochiai, Takashi; Koyanagi, Satoru; Shimeno, Hiroshi

    2004-04-09

    Plasminogen activator inhibitor-1 is a serpin that regulates the activities of plasminogen activators. However, its physiological roles in the CNS are incompletely understood. We have found that plasminogen activator inhibitor-1 has a novel biological function in the CNS: the contribution to survival of neurites on neurons. PC-12 cells treated with nerve growth factor differentiated into neurons and formed a network of neurites. In a serum-free culture medium, these neurites disappeared within 24 h. The addition of plasminogen activator inhibitor-1 prevented the disintegration of the neuronal networks, while the addition of the serpin inhibitors aprotinin and antipain did not. The plasminogen activator inhibitor-1 maintained or promoted the phosphorylated state of extracellular signal-regulated kinase (ERK), but not of protein kinase B (Akt). These results are the first evidence that plasminogen activator inhibitor-1 in the CNS acts to maintain the morphology of neurites via activation of the ERK-related pathway in the neurons.

  15. BAG-1 enhances cell-cell adhesion, reduces proliferation and induces chaperone-independent suppression of hepatocyte growth factor-induced epidermal keratinocyte migration

    SciTech Connect

    Hinitt, C.A.M.; Wood, J.; Lee, S.S.; Williams, A.C.; Howarth, J.L.; Glover, C.P.; Uney, J.B.; Hague, A.

    2010-08-01

    Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF) in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.

  16. Sulindac sulfide inhibits epidermal growth factor-induced phosphorylation of extracellular-regulated kinase 1/2 and Bad in human colon cancer cells.

    PubMed

    Rice, Pamela L; Washington, Michele; Schleman, Shea; Beard, K Scott; Driggers, Linda J; Ahnen, Dennis J

    2003-02-01

    Colorectal cancer is the second leading cause of cancer death in the United States. Nonsteroidal anti-inflammatory drugs including sulindac are promising chemopreventive agents for colorectal cancer. Sulindac and selective cyclooxygenase (COX)-2 inhibitors cause regression of colonic polyps in familial polyposis patients. Sulindac induces apoptotic cell death in cancer cells in vitro and in vivo. In tumor cells, activation of extracellular-regulated kinase (ERK) 1/2 results in phosphorylation of several ERK1/2 effectors, including the proapoptotic protein Bad. Phosphorylation of Ser112 by ERK1/2 inactivates Bad and protects the tumor cell from apoptosis. Sulindac metabolites and other nonsteroidal anti-inflammatory drugs selectively inhibit ERK1/2 phosphorylation in human colon cancer cells. In this study we show that epidermal growth factor (EGF) strongly induces phosphorylation of ERK1/2 and Bad in HT29 colon cancer cells. EGF-stimulated phosphorylation of ERK and Bad is blocked by pretreatment with U0126, a selective MAP kinase kinase (MKK)1/2 inhibitor. Similarly, pretreatment with sulindac sulfide blocks the ability of EGF to induce ERK1/2 and Bad phosphorylation, but also down-regulates total Bad but not ERK1/2 protein levels. The ability of sulindac to block ERK1/2 signaling by the EGF receptor may account for at least part of its potent growth-inhibitory effects against cancer cells.

  17. Intracellular pH regulation by Na⁺/H⁺ exchanger-1 (NHE1) is required for growth factor-induced mammary branching morphogenesis.

    PubMed

    Jenkins, Edmund C; Debnath, Shawon; Gundry, Stephen; Gundry, Sajini; Uyar, Umit; Fata, Jimmie E

    2012-05-01

    Regulation of intracellular pH (pHi) and protection against cytosolic acidification is primarily a function of the ubiquitous plasma membrane Na+/H+exchanger-1 (NHE1), which uses a highly conserved process to transfer cytosolic hydrogen ions (H+) across plasma membranes in exchange for extracellular sodium ions (Na+). Growth factors, which are essential regulators of morphogenesis, have also been found to be key activators of NHE1 exchanger activity; however, the crosstalk between both has not been fully evaluated during organ development. Here we report that mammary branching morphogenesis induced by transforming growth factor-alpha (TGFα) requires PI3K-dependent NHE1-activation and subsequent pHi alkalization. Inhibiting NHE1 activity after TGFα stimulation with 10 μM of the NHE1-specific inhibitor N-Methyl-N-isobutyl Amiloride (MIA) dramatically disrupted branching morphogenesis, induced extensive proliferation, ectopic expression of the epithelial hyper-proliferative marker Keratin-6 and sustained activation of MAPK. Together these findings indicate a novel developmental signaling cascade involving TGFα>PI3K>NHE1>pHi alkalization, which leads to a permissible environment for MAPK negative feedback inhibition and thus regulated mammary branching morphogenesis.

  18. Real-time imaging elucidates the role of H2O2 in regulating kinetics of epidermal growth factor-induced and Src-mediated tyrosine phosphorylation signaling

    NASA Astrophysics Data System (ADS)

    Su, Ting; Li, Xiangyong; Liu, Nisha; Pan, Shaotao; Lu, Jinling; Yang, Jie; Zhang, Zhihong

    2012-07-01

    Reversible oxidation is emerging as an important regulatory mechanism in protein tyrosine phosphorylation. Generation of hydrogen peroxide (H2O2), upon growth factor stimulation, is hypothesized to inhibit activity of protein tyrosine phosphatases (PTPs). This ensures that protein tyrosine kinases can elevate the steady-state level of protein tyrosine phosphorylation, which then allows propagation of the tyrosine phosphorylation signal. However, the effects of H2O2 on the kinetics of tyrosine phosphorylation signaling remain poorly understood, especially in living cells. Therefore, we used a genetically encoded Src kinase-specific biosensor based on fluorescence resonance energy transfer (FRET) to image the kinetics of the Src-mediated tyrosine phosphorylation signaling (Src signaling) induced by epidermal growth factor (EGF). We examined the kinetics under increased and decreased H2O2 levels. Through a straightforward, quantitative analysis method which characterized the signaling kinetics, we demonstrated that H2O2 modulated the amplitude and duration of the signal by inhibiting PTPs' activity. Our evidence also suggested the effect of H2O2 on Src activation is mediated by H2O2-dependent inhibition of PTPs. Furthermore, we provide evidence showing global elevation of intracellular H2O2 level attenuates EGF-induced Src signaling.

  19. The small GTPase ROP10 of Medicago truncatula is required for both tip growth of root hairs and nod factor-induced root hair deformation.

    PubMed

    Lei, Ming-Juan; Wang, Qi; Li, Xiaolin; Chen, Aimin; Luo, Li; Xie, Yajun; Li, Guan; Luo, Da; Mysore, Kirankumar S; Wen, Jiangqi; Xie, Zhi-Ping; Staehelin, Christian; Wang, Yan-Zhang

    2015-03-01

    Rhizobia preferentially enter legume root hairs via infection threads, after which root hairs undergo tip swelling, branching, and curling. However, the mechanisms underlying such root hair deformation are poorly understood. Here, we showed that a type II small GTPase, ROP10, of Medicago truncatula is localized at the plasma membrane (PM) of root hair tips to regulate root hair tip growth. Overexpression of ROP10 and a constitutively active mutant (ROP10CA) generated depolarized growth of root hairs, whereas a dominant negative mutant (ROP10DN) inhibited root hair elongation. Inoculated with Sinorhizobium meliloti, the depolarized swollen and ballooning root hairs exhibited extensive root hair deformation and aberrant infection symptoms. Upon treatment with rhizobia-secreted nodulation factors (NFs), ROP10 was transiently upregulated in root hairs, and ROP10 fused to green fluorescent protein was ectopically localized at the PM of NF-induced outgrowths and curls around rhizobia. ROP10 interacted with the kinase domain of the NF receptor NFP in a GTP-dependent manner. Moreover, NF-induced expression of the early nodulin gene ENOD11 was enhanced by the overexpression of ROP10 and ROP10CA. These data suggest that NFs spatiotemporally regulate ROP10 localization and activity at the PM of root hair tips and that interactions between ROP10 and NF receptors are required for root hair deformation and continuous curling during rhizobial infection.

  20. Sonic hedgehog stimulates neurite outgrowth in a mechanical stretch model of reactive-astrogliosis.

    PubMed

    Berretta, Antonio; Gowing, Emma K; Jasoni, Christine L; Clarkson, Andrew N

    2016-02-23

    Although recovery following a stroke is limited, undamaged neurons under the right conditions can establish new connections and take on-board lost functions. Sonic hedgehog (Shh) signaling is integral for developmental axon growth, but its role after injury has not been fully examined. To investigate the effects of Shh on neuronal sprouting after injury, we used an in vitro model of glial scar, whereby cortical astrocytes were mechanically traumatized to mimic reactive astrogliosis observed after stroke. This mechanical trauma impaired neurite outgrowth from post-natal cortical neurons plated on top of reactive astrocytes. Addition of Shh to the media, however, resulted in a concentration-dependent increase in neurite outgrowth. This response was inhibited by cyclopamine and activated by oxysterol 20(S)-hydroxycholesterol, both of which modulate the activity of the Shh co-receptor Smoothened (Smo), demonstrating that Shh-mediated neurite outgrowth is Smo-dependent. In addition, neurite outgrowth was not associated with an increase in Gli-1 transcription, but could be inhibited by PP2, a selective inhibitor of Src family kinases. These results demonstrate that neurons exposed to the neurite growth inhibitory environment associated with a glial scar can be stimulated by Shh, with signaling occurring through a non-canonical pathway, to overcome this suppression and stimulate neurite outgrowth.

  1. Neurite outgrowth in cultured mouse pelvic ganglia - Effects of neurotrophins and bladder tissue.

    PubMed

    Ekman, Mari; Zhu, Baoyi; Swärd, Karl; Uvelius, Bengt

    2017-07-01

    Neurotrophic factors regulate survival and growth of neurons. The urinary bladder is innervated via both sympathetic and parasympathetic neurons located in the major pelvic ganglion. The aim of the present study was to characterize the effects of the neurotrophins nerve growth factor (NGF), brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3) on the sprouting rate of sympathetic and parasympathetic neurites from the female mouse ganglion. The pelvic ganglion was dissected out and attached to a petri dish and cultured in vitro. All three factors (BDNF, NT-3 and NGF) stimulated neurite outgrowth of both sympathetic and parasympathetic neurites although BDNF and NT-3 had a higher stimulatory effect on parasympathetic ganglion cells. The neurotrophin receptors TrkA, TrkB and TrkC were all expressed in neurons of the ganglia. Co-culture of ganglia with urinary bladder tissue, but not diaphragm tissue, increased the sprouting rate of neurites. Active forms of BDNF and NT-3 were detected in urinary bladder tissue using western blotting whereas tissue from the diaphragm expressed NGF. Neurite outgrowth from the pelvic ganglion was inhibited by a TrkB receptor antagonist. We therefore suggest that the urinary bladder releases trophic factors, including BDNF and NT-3, which regulate neurite outgrowth via activation of neuronal Trk-receptors. These findings could influence future strategies for developing pharmaceuticals to improve re-innervation due to bladder pathologies. Copyright © 2017. Published by Elsevier B.V.

  2. Ellagitannin-rich cloudberry inhibits hepatocyte growth factor induced cell migration and phosphatidylinositol 3-kinase/AKT activation in colon carcinoma cells and tumors in Min mice

    PubMed Central

    Pajari, Anne-Maria; Päivärinta, Essi; Paavolainen, Lassi; Vaara, Elina; Koivumäki, Tuuli; Garg, Ritu; Heiman-Lindh, Anu; Mutanen, Marja; Marjomäki, Varpu; Ridley, Anne J.

    2016-01-01

    Berries have been found to inhibit colon carcinogenesis in animal models, and thus represent a potential source of compounds for prevention and treatment of colorectal cancer. The mechanistic basis for their effects is not well understood. We used human colon carcinoma cells and Min mice to investigate the effects of ellagitannin-rich cloudberry (Rubus chamaemorus) extract on cancer cell migration and underlying cell signaling. Intrinsic and hepatocyte growth factor (HGF) -induced cell motility in human HT29 and HCA7 colon carcinoma cells was assessed carrying out cell scattering and scratch wound healing assays using time-lapse microscopy. Activation of Met, AKT, and ERK in cell lines and tumors of cloudberry-fed Min mice were determined using immunoprecipitation, Western blot and immunohistochemical analyses. Cloudberry extract significantly inhibited particularly HGF-induced cancer cell migration in both cell lines. Cloudberry extract inhibited the Met receptor tyrosine phosphorylation by HGF and strongly suppressed HGF-induced AKT and ERK activation in both HT29 and HCA7 cells. Consistently, cloudberry feeding (10% w/w freeze-dried berries in diet for 10 weeks) reduced the level of active AKT and prevented phosphoMet localization at the edges in tumors of Min mice. These results indicate that cloudberry reduces tumor growth and cancer cell motility by inhibiting Met signaling and consequent activation of phosphatidylinositol 3-kinase/AKT in vitro and in tumors in vivo. As the Met receptor is recognized to be a major target in cancer treatment, our results suggest that dietary phytochemicals may have therapeutic value in reducing cancer progression and metastasis. PMID:27270323

  3. Epidermal growth factor-induced proliferation of collecting duct cells from Oak Ridge polycystic kidney mice involves activation of Na+/H+ exchanger.

    PubMed

    Coaxum, Sonya D; Blanton, Mary G; Joyner, Alisha; Akter, Tanjina; Bell, P Darwin; Luttrell, Louis M; Raymond, John R; Lee, Mi-Hye; Blichmann, Paul A; Garnovskaya, Maria N; Saigusa, Takamitsu

    2014-09-15

    Epidermal growth factor (EGF) is linked to the pathogenesis of polycystic kidney disease (PKD). We explored signaling pathways activated by EGF in orpk cilia (-) collecting duct cell line derived from a mouse model of PKD (hypomorph of the Tg737/Ift88 gene) with severely stunted cilia, and in a control orpk cilia (+) cell line with normal cilia. RT-PCR demonstrated mRNAs for EGF receptor subunits ErbB1, ErbB2, ErbB3, ErbB4, and mRNAs for Na(+)/H(+) exchangers (NHE), NHE-1, NHE-2, NHE-3, NHE-4, and NHE-5 in both cell lines. EGF stimulated proton efflux in both cell lines. This effect was significantly attenuated by MIA, 5-(n-methyl-N-isobutyl) amiloride, a selective inhibitor of NHE-1 and NHE-2, and orpk cilia (-) cells were more sensitive to MIA than control cells (P < 0.01). EGF significantly induced extracellular signal-regulated kinase (ERK) phosphorylation in both cilia (+) and cilia (-) cells (63.3 and 123.6%, respectively), but the effect was more pronounced in orpk cilia (-) cells (P < 0.01). MIA significantly attenuated EGF-induced ERK phosphorylation only in orpk cilia (-) cells (P < 0.01). EGF increased proliferation of orpk cilia (+) cells and orpk cilia (-) cells, respectively, and MIA at 1-5 μM attenuated EGF-induced proliferation in orpk cilia (-) cells without affecting proliferation of orpk cilia (+) cells. EGF-induced proliferation of both cell lines was significantly decreased by the EGFR tyrosine kinase inhibitor AG1478 and MEK inhibitor PD98059. These results suggest that EGF exerts mitogenic effects in the orpk cilia (-) cells via activation of growth-associated amiloride-sensitive NHEs and ERK.

  4. Prophylactic pretreatment of mice with hematopoietic growth factors induces expansion of primitive cell compartments and results in protection against 5-fluorouracil-induced toxicity.

    PubMed

    de Haan, G; Donte, B; Engel, C; Loeffler, M; Nijhof, W

    1996-06-01

    The aim of this study was to expand the primitive and committed hematopoietic cell compartments in vivo in order to confer resistance of the blood cell forming system against the cytotoxic, cell cycle specific drug 5-fluorouracil (5-FU). Possible chemoprotective effects of such a pretreatment could result from increased numbers of hematopoietic cells, present before 5-FU administration. In addition, we hypothesized that an enhanced number of primitive and progenitor calls would result in a reduced cycling activity, ie, 5-FU sensitivity, of these same cells, due to normal physiological feedback loops. Administration of stem cell factor (SCF) plus interleukin-11 (IL-11) to mice was shown to result in expansion of the various immature cell compartments in marrow and, in particular, spleen. The total body content of the primitive cobblestone area forming cells (CAFC)-day 28 was increased to 140%, whereas the more committed cells (CAFC-day 7, erythroid and granuloid progenitors) were increased to 500%. This in vivo expansion resulted in a decreased 5-FU sensitivity of the hematopoietic system. In particular, mice that had received 5-FU 24 hours after discontinuation of growth factor pretreatment showed significantly less toxicity of committed cell stages. Compared with mice not pretreated, it appeared that in pretreated mice, 24 hours after 5-FU administration, the absolute number, but also the fraction of surviving CAFC, was much higher in both marrow and spleen. This was caused by a decrease in the cycling activity of all primitive cell subsets. To explore the possible use of this finding in a chemotherapeutic setting, we determined the interval between two subsequent doses of 5-FU (160 mg/kg) that was required to prevent drug-induced mortality. When control mice received a second dose of 5-FU 7, 10, or 14 days after the first, respectively 0%, 20%, and 80% survived. In contrast, 40% and 100% of mice that received SCF + IL-11 before the first dose of 5-FU, survived a

  5. Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry.

    PubMed Central

    Brunet, A; Roux, D; Lenormand, P; Dowd, S; Keyse, S; Pouysségur, J

    1999-01-01

    Mitogen-activated protein kinase (MAPK) modules, composed of three protein kinases activated by successive phosphorylation, are involved in the signal transduction of a wide range of extracellular agents. In mammalian cells, mitogenic stimulation triggers the translocation of p42/p44MAPK from the cytoplasm to the nucleus, whereas the other protein kinases of the module remain cytosolic. Since MAPK has been shown to phosphorylate and activate nuclear targets, such as the transcription factor Elk1, it has been proposed, but not yet demonstrated, that MAPK nuclear translocation could represent a critical step in signal transduction. In this study, we sequestered p42/p44MAPK in the cytoplasm by the expression of a catalytically inactive form of cytoplasmic MAP kinase phosphatase (MKP-3/Pyst-1). Sequestering MAPK in the cytoplasm did not alter its activation or its ability to phosphorylate cytoplasmic substrates of MAPK (p90RSK1 or an engineered cytoplasmic form of Elk1). In contrast, prevention of MAPK nuclear translocation strongly inhibited Elk1-dependent gene transcription and the ability of cells to reinitiate DNA replication in response to growth factors. Thus the relocalization of MAPK to the nucleus appears to be an important regulatory step for mitogen-induced gene expression and cell cycle re-entry. PMID:9927426

  6. Basic fibroblast growth factor induces matrix metalloproteinase-13 via ERK MAP kinase-altered phosphorylation and sumoylation of Elk-1 in human adult articular chondrocytes.

    PubMed

    Im, Hee-Jeong; Sharrocks, Andrew D; Lin, Xia; Yan, Dongyao; Kim, Jaesung; van Wijnen, Andre J; Hipskind, Robert A

    2009-01-01

    Degradation of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) and release of basic fibroblast growth factor (bFGF) are principal aspects of the pathology of osteoarthritis (OA). ECM disruption leads to bFGF release, which activates the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway and its downstream target the Ets-like transcription factor Elk-1. Previously we demonstrated that the bFGF-ERK-Elk-1 signaling axis is responsible for the potent induction of MMP-13 in human primary articular chondrocytes. Here we report that, in addition to phosphorylation of Elk-1, dynamic posttranslational modification of Elk-1 by small ubiquitin-related modifier (SUMO) serves as an important mechanism through which MMP-13 gene expression is regulated. We show that bFGF activates Elk-1 mainly through the ERK pathway and that increased phosphorylation of Elk-1 is accompanied by decreased conjugation of SUMO to Elk-1. Reporter gene assays reveal that phosphorylation renders Elk-1 competent for induction of MMP-13 gene transcription, while sumoylation has the opposite effect. Furthermore, we demonstrate that the SUMO-conjugase Ubc9 acts as a key mediator for Elk-1 sumoylation. Taken together, our results suggest that sumoylation antagonizes the phosphorylation-dependent transactivation capacity of Elk-1. This attenuates transcription of its downstream target gene MMP-13 to maintain the integrity of cartilage ECM homeostasis.

  7. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells.

    PubMed

    Hopkins, Mandi M; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E

    2016-01-26

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor.

  8. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    PubMed Central

    Hopkins, Mandi M.; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E.

    2016-01-01

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. PMID:26821052

  9. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    SciTech Connect

    Sahni, Abha; Wang, Nadan; Alexis, Jeffrey

    2013-02-15

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reported that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease.

  10. Dihydroartemisinin inhibits vascular endothelial growth factor-induced endothelial cell migration by a p38 mitogen-activated protein kinase-independent pathway.

    PubMed

    Guo, Ling; Dong, Fengyun; Hou, Yinglong; Cai, Weidong; Zhou, Xia; Huang, Ai-Ling; Yang, Min; Allen, Thaddeus D; Liu, Ju

    2014-12-01

    Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, has been demonstrated to possess a strong antiangiogenic activity. However, the molecular mechanisms underlying this effect remain unclear. Endothelial cell (EC) migration is an essential component of angiogenesis, and the p38 mitogen-activated protein kinase (MAPK) signaling pathway plays a key role in the regulation of migration induced by vascular endothelial growth factor (VEGF). The aim of the present study was to investigate the effects of DHA on EC migration and the p38 MAPK signaling pathway. Human umbilical vein ECs (HUVECs) were treated with DHA and VEGF-induced migration was analyzed. The activation of p38 MAPK was detected by western blot analysis, and the migration assays were performed with a p38-specific inhibitor, SB203850. It was revealed that 20 μM DHA significantly reduced EC migration in the transwell migration assay, wound healing assay and electrical cell-substrate impedance sensing real-time analysis. However, DHA did not affect p38 MAPK phosphorylation or expression. In the absence or presence of SB203850, DHA induced a similar proportional reduction of EC migration in the three migration assays. Therefore, the present study demonstrated that DHA inhibits VEGF-induced EC migration via a p38 MAPK-independent pathway.

  11. Pro-nerve Growth Factor Induces Autocrine Stimulation of Breast Cancer Cell Invasion through Tropomyosin-related Kinase A (TrkA) and Sortilin Protein*

    PubMed Central

    Demont, Yohann; Corbet, Cyril; Page, Adeline; Ataman-Önal, Yasemin; Choquet-Kastylevsky, Genevieve; Fliniaux, Ingrid; Le Bourhis, Xuefen; Toillon, Robert-Alain; Bradshaw, Ralph A.; Hondermarck, Hubert

    2012-01-01

    The precursor of nerve growth factor (proNGF) has been described as a biologically active polypeptide able to induce apoptosis in neuronal cells, via the neurotrophin receptor p75NTR and the sortilin receptor. Herein, it is shown that proNGF is produced and secreted by breast cancer cells, stimulating their invasion. Using Western blotting and mass spectrometry, proNGF was detected in a panel of breast cancer cells as well as in their conditioned media. Immunohistochemical analysis indicated an overproduction of proNGF in breast tumors, when compared with benign and normal breast biopsies, and a relationship to lymph node invasion in ductal carcinomas. Interestingly, siRNA against proNGF induced a decrease of breast cancer cell invasion that was restored by the addition of non-cleavable proNGF. The activation of TrkA, Akt, and Src, but not the MAP kinases, was observed. In addition, the proNGF invasive effect was inhibited by the Trk pharmacological inhibitor K252a, a kinase-dead TrkA, and siRNA against TrkA sortilin, neurotensin, whereas siRNA against p75NTR and the MAP kinase inhibitor PD98059 had no impact. These data reveal the existence of an autocrine loop stimulated by proNGF and mediated by TrkA and sortilin, with the activation of Akt and Src, for the stimulation of breast cancer cell invasion. PMID:22128158

  12. Dual regulation of cofilin activity by LIM kinase and Slingshot-1L phosphatase controls platelet-derived growth factor-induced migration of human aortic smooth muscle cells.

    PubMed

    San Martín, Alejandra; Lee, Moo Yeol; Williams, Holly C; Mizuno, Kensaku; Lassègue, Bernard; Griendling, Kathy K

    2008-02-29

    Platelet-derived growth factor (PDGF) plays a central role in vascular healing, atherosclerosis, and restenosis, partly by stimulating vascular smooth muscle cell (VSMC) migration. Migration requires rapid turnover of actin filaments, which is partially controlled by cofilin. Although cofilin is negatively regulated by Ser3 phosphorylation, the upstream signaling pathways have not been defined, nor has its role in VSMC migration been studied. We hypothesized that PDGF-induced migration of VSMCs involves cofilin activation and that this is regulated by the serine kinase LIM kinase (LIMK) and the novel phosphatase Slingshot (SSH)1L. In human VSMCs, stimulation with PDGF increased G-actin incorporation into the actin cytoskeleton. PDGF transiently activated the cofilin kinase, LIMK, with a peak at 5 minutes. However, cofilin was dephosphorylated between 5 and 45 minutes, with a maximum of 43+/-5% dephosphorylation at 30 minutes, suggesting that PDGF also activates a cofilin phosphatase. We found that VSMCs express SSH1L, which is induced and activated (564+/-73 versus 1021+/-141 picomoles of PO(4); P=0.015) by PDGF. Of importance, small interfering RNA directed against SSH1L blocked cofilin dephosphorylation and decreased migration (528+/-33 versus 318+/-25 cells/field; P<0.01). Taken together, our results suggest that PDGF participates in actin dynamics by dual regulation of cofilin activity via LIMK and SSH1L.

  13. Gelsolin-mediated activation of PI3K/Akt pathway is crucial for hepatocyte growth factor-induced cell scattering in gastric carcinoma

    PubMed Central

    Huang, Baohua; Deng, Shuo; Loo, Ser Yue; Datta, Arpita; Yap, Yan Lin; Yan, Benedict; Ooi, Chia Huey; Dinh, Thuy Duong; Zhuo, Jingli; Tochhawng, Lalchhandami; Gopinadhan, Suma; Jegadeesan, Tamilarasi; Tan, Patrick; Salto-Tellez, Manuel; Yong, Wei Peng; Soong, Richie; Yeoh, Khay Guan; Goh, Yaw Chong; Lobie, Peter E.; Yang, Henry; Kumar, Alan Prem; Maciver, Sutherland K.; So, Jimmy B.Y.; Yap, Celestial T.

    2016-01-01

    In gastric cancer (GC), the main subtypes (diffuse and intestinal types) differ in pathological characteristics, with diffuse GC exhibiting early disseminative and invasive behaviour. A distinctive feature of diffuse GC is loss of intercellular adhesion. Although widely attributed to mutations in the CDH1 gene encoding E-cadherin, a significant percentage of diffuse GC do not harbor CDH1 mutations. We found that the expression of the actin-modulating cytoskeletal protein, gelsolin, is significantly higher in diffuse-type compared to intestinal-type GCs, using immunohistochemical and microarray analysis. Furthermore, in GCs with wild-type CDH1, gelsolin expression correlated inversely with CDH1 gene expression. Downregulating gelsolin using siRNA in GC cells enhanced intercellular adhesion and E-cadherin expression, and reduced invasive capacity. Interestingly, hepatocyte growth factor (HGF) induced increased gelsolin expression, and gelsolin was essential for HGF-medicated cell scattering and E-cadherin transcriptional repression through Snail, Twist and Zeb2. The HGF-dependent effect on E-cadherin was found to be mediated by interactions between gelsolin and PI3K-Akt signaling. This study reveals for the first time a function of gelsolin in the HGF/cMet oncogenic pathway, which leads to E-cadherin repression and cell scattering in gastric cancer. Our study highlights gelsolin as an important pro-disseminative factor contributing to the aggressive phenotype of diffuse GC. PMID:27058427

  14. Hepatocyte growth factor induces glucose uptake in 3T3-L1 adipocytes through A Gab1/phosphatidylinositol 3-kinase/Glut4 pathway.

    PubMed

    Bertola, Adeline; Bonnafous, Stéphanie; Cormont, Mireille; Anty, Rodolphe; Tanti, Jean-François; Tran, Albert; Le Marchand-Brustel, Yannick; Gual, Philippe

    2007-04-06

    Adipose tissue is a source of hepatocyte growth factor (HGF), and circulating HGF levels have been associated with elevated body mass index in human. However, the effects of HGF on adipocyte functions have not yet been investigated. We show here that in 3T3-L1 adipocytes HGF stimulates the phosphatidylinositol (PI) 3-kinase-dependent protein kinase B (PKB) activity, AS160 phosphorylation, Glut4 translocation, and consequently, glucose uptake. The initial steps involved in HGF- and insulin-induced glucose uptake are different. HGF enhanced the tyrosine phosphorylation of Gab1, leading to the recruitment of the p85-regulated subunit of PI 3-kinase, whereas p85 was exclusively recruited by IRS1 in response to insulin. In adipocytes rendered insulin-resistant by a long-lasting tumor necrosis factor alpha treatment, the protein level of Gab1 was strongly decreased, and HGF-stimulated PKB activation and glucose uptake were also altered. Moreover, treatment of 3T3-L1 adipocytes with thiazolidinedione, an anti-diabetic drug, enhanced the expression of both HGF and its receptor. These data provide the first evidence that in vitro HGF promotes glucose uptake through a Gab1/PI 3-kinase/PKB/AS160 pathway which was altered in tumor necrosis factor alpha-treated adipocytes.

  15. The epidermal growth factor-induced migration of rat liver epithelial cells is associated with a transient inhibition of DNA synthesis.

    PubMed

    Geimer, P; Bade, E G

    1991-10-01

    Epidermal growth factor (EGF) is a potent mitogen for most cultured cells and has previously been shown to induce the migration of rat liver epithelial cells. We have now demonstrated that under migration-inducing conditions EGF does not stimulate cell proliferation, but causes instead a transient inhibition of DNA synthesis. Analysis at the single-cell level by [3H]thymidine autoradiography indicated that in 40-50% of the EGF-treated cell population the entry into S phase is delayed. The simultaneous demonstration of migration tracks by laminin immunofluorescence revealed that the transient inhibition of DNA synthesis is not restricted to the migratory cells. The effect is also observed with the stationary subpopulation and appears, therefore, to be independent of the induction of migration. The independence of both processes was further supported by showing that induction of migration by EGF proceeds undisturbed in cells blocked in S phase by aphidicolin. These results indicated that for rat liver epithelial cells the induction of migration by EGF has priority over cell proliferation. The data also emphasize the need for a time-course analysis when studying factors that stimulate or inhibit DNA synthesis or cell proliferation.

  16. Involvement of cysteine-rich protein 61 in the epidermal growth factor-induced migration of human anaplastic thyroid cancer cells.

    PubMed

    Chin, Li-Han; Hsu, Sung-Po; Zhong, Wen-Bin; Liang, Yu-Chih

    2016-05-01

    Anaplastic thyroid cancer (ATC) is among the most aggressive types of malignant cancer. Epidermal growth factor (EGF) plays a crucial role in the pathogenesis of ATC, and patients with thyroid carcinoma typically exhibit increased cysteine-rich protein 61 (Cyr61). In this study, we found that EGF treatment induced cell migration, stress fiber formation, Cyr61 mRNA and protein expressions, and Cyr61 protein secretion in ATC cells. The recombinant Cyr61 protein significantly induced cell migration; however, inhibition of Cyr61 activity by a Cyr61-specific antibody abrogated EGF-induced cell migration. EGF treatment also affected epithelial-to-mesenchymal transition (EMT)-related marker protein expression, as evidenced by an increase in vimentin and a decrease in E-cadherin expression. Inhibition of Cyr61 expression by Cyr61 siRNA decreased cell migration and reversed the EMT-related marker protein expression. EGF treatment increased the phosphorylation of the extracellular signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB), and finally activated Cyr61 promoter plasmid activity. Our results suggest that Cyr61 is induced by EGF through the ERK/CREB signal pathway and that it plays a crucial role in the migration and invasion of ATC cells; moreover, Cyr61 might be a therapeutic target for metastatic ATC.

  17. miR-503 inhibits platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration through targeting the insulin receptor.

    PubMed

    Bi, Rui; Ding, Fangbao; He, Yi; Jiang, Lianyong; Jiang, Zhaolei; Mei, Ju; Liu, Hao

    2016-12-01

    Abnormal proliferation and migration of vascular smooth muscle cells (VSMC) is a common feature of disease progression in atherosclerosis. Here, we investigated the potential role of miR-503 in platelet-derived growth factor (PDGF)-induced proliferation and migration of human aortic smooth muscle cells and the underlying mechanisms of action. miR-503 expression was significantly downregulated in a dose- and time-dependent manner following PDGF treatment. Introduction of miR-503 mimics into cultured SMCs significantly attenuated cell proliferation and migration induced by PDGF. Bioinformatics analyses revealed that the insulin receptor (INSR) is a target candidate of miR-503. miR-503 suppressed luciferase activity driven by a vector containing the 3'-untranslated region of INSR in a sequence-specific manner. Downregulation of INSR appeared critical for miR-503-mediated inhibitory effects on PDGF-induced cell proliferation and migration in human aortic SMCs. Based on the collective data, we suggest a novel role of miR-503 as a regulator of VSMC proliferation and migration through modulating INSR.

  18. Gelsolin-mediated activation of PI3K/Akt pathway is crucial for hepatocyte growth factor-induced cell scattering in gastric carcinoma.

    PubMed

    Huang, Baohua; Deng, Shuo; Loo, Ser Yue; Datta, Arpita; Yap, Yan Lin; Yan, Benedict; Ooi, Chia Huey; Dinh, Thuy Duong; Zhuo, Jingli; Tochhawng, Lalchhandami; Gopinadhan, Suma; Jegadeesan, Tamilarasi; Tan, Patrick; Salto-Tellez, Manuel; Yong, Wei Peng; Soong, Richie; Yeoh, Khay Guan; Goh, Yaw Chong; Lobie, Peter E; Yang, Henry; Kumar, Alan Prem; Maciver, Sutherland K; So, Jimmy B Y; Yap, Celestial T

    2016-05-03

    In gastric cancer (GC), the main subtypes (diffuse and intestinal types) differ in pathological characteristics, with diffuse GC exhibiting early disseminative and invasive behaviour. A distinctive feature of diffuse GC is loss of intercellular adhesion. Although widely attributed to mutations in the CDH1 gene encoding E-cadherin, a significant percentage of diffuse GC do not harbor CDH1 mutations. We found that the expression of the actin-modulating cytoskeletal protein, gelsolin, is significantly higher in diffuse-type compared to intestinal-type GCs, using immunohistochemical and microarray analysis. Furthermore, in GCs with wild-type CDH1, gelsolin expression correlated inversely with CDH1 gene expression. Downregulating gelsolin using siRNA in GC cells enhanced intercellular adhesion and E-cadherin expression, and reduced invasive capacity. Interestingly, hepatocyte growth factor (HGF) induced increased gelsolin expression, and gelsolin was essential for HGF-medicated cell scattering and E-cadherin transcriptional repression through Snail, Twist and Zeb2. The HGF-dependent effect on E-cadherin was found to be mediated by interactions between gelsolin and PI3K-Akt signaling. This study reveals for the first time a function of gelsolin in the HGF/cMet oncogenic pathway, which leads to E-cadherin repression and cell scattering in gastric cancer. Our study highlights gelsolin as an important pro-disseminative factor contributing to the aggressive phenotype of diffuse GC.

  19. Essential role for vav Guanine nucleotide exchange factors in brain-derived neurotrophic factor-induced dendritic spine growth and synapse plasticity.

    PubMed

    Hale, Carly F; Dietz, Karen C; Varela, Juan A; Wood, Cody B; Zirlin, Benjamin C; Leverich, Leah S; Greene, Robert W; Cowan, Christopher W

    2011-08-31

    Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB, regulate a wide range of cellular processes, including dendritic spine formation and functional synapse plasticity. However, the signaling mechanisms that link BDNF-activated TrkB to F-actin remodeling enzymes and dendritic spine morphological plasticity remain poorly understood. We report here that BDNF/TrkB signaling in neurons activates the Vav family of Rac/RhoA guanine nucleotide exchange factors through a novel TrkB-dependent mechanism. We find that Vav is required for BDNF-stimulated Rac-GTP production in cortical and hippocampal neurons. Vav is partially enriched at excitatory synapses in the postnatal hippocampus but does not appear to be required for normal dendritic spine density. Rather, we observe significant reductions in both BDNF-induced, rapid, dendritic spine head growth and in CA3-CA1 theta burst-stimulated long-term potentiation in Vav-deficient mouse hippocampal slices, suggesting that Vav-dependent regulation of dendritic spine morphological plasticity facilitates normal functional synapse plasticity.

  20. Transcriptional mechanism of vascular endothelial growth factor-induced expression of protein kinase CβII in chronic lymphocytic leukaemia cells

    PubMed Central

    Al-Sanabra, Ola; Duckworth, Andrew D.; Glenn, Mark A.; Brown, Benjamin R. B.; Angelillo, Piera; Lee, Kelvin; Herbert, John; Falciani, Francesco; Kalakonda, Nagesh; Slupsky, Joseph R.

    2017-01-01

    A key feature of chronic lymphocytic leukaemia (CLL) cells is overexpressed protein kinase CβII (PKCβII), an S/T kinase important in the pathogenesis of this and other B cell malignancies. The mechanisms contributing to enhanced transcription of the gene coding for PKCβII, PRKCB, in CLL cells remain poorly described, but could be important because of potential insight into how the phenotype of these cells is regulated. Here, we show that SP1 is the major driver of PKCβII expression in CLL cells where enhanced association of this transcription factor with the PRKCB promoter is likely because of the presence of histone marks permissive of gene activation. We also show how vascular endothelial growth factor (VEGF) regulates PRKCB promoter function in CLL cells, stimulating PKCβ gene transcription via increased association of SP1 and decreased association of STAT3. Taken together, these results are the first to demonstrate a clear role for SP1 in the up regulation of PKCβII expression in CLL cells, and the first to link SP1 with the pathogenesis of this and potentially other B cell malignancies where PKCβII is overexpressed. PMID:28233872

  1. Filamin B Plays a Key Role in Vascular Endothelial Growth Factor-induced Endothelial Cell Motility through Its Interaction with Rac-1 and Vav-2*

    PubMed Central

    del Valle-Pérez, Beatriz; Martínez, Vanesa Gabriela; Lacasa-Salavert, Cristina; Figueras, Agnès; Shapiro, Sandor S.; Takafuta, Toshiro; Casanovas, Oriol; Capellà, Gabriel; Ventura, Francesc; Viñals, Francesc

    2010-01-01

    Actin-binding proteins filamin A (FLNA) and B (FLNB) are expressed in endothelial cells and play an essential role during vascular development. In order to investigate their role in adult endothelial cell function, we initially confirmed their expression pattern in different adult mouse tissues and cultured cell lines and found that FLNB expression is concentrated mainly in endothelial cells, whereas FLNA is more ubiquitously expressed. Functionally, small interfering RNA knockdown of endogenous FLNB in human umbilical vein endothelial cells inhibited vascular endothelial growth factor (VEGF)-induced in vitro angiogenesis by decreasing endothelial cell migration capacity, whereas FLNA ablation did not alter these parameters. Moreover, FLNB-depleted cells increased their substrate adhesion with more focal adhesions. The molecular mechanism underlying this effect implicates modulation of small GTP-binding protein Rac-1 localization and activity, with altered activation of its downstream effectors p21 protein Cdc42/Rac-activated kinase (PAK)-4/5/6 and its activating guanine nucleotide exchange factor Vav-2. Moreover, our results suggest the existence of a signaling complex, including FLNB, Rac-1, and Vav-2, under basal conditions that would further interact with VEGFR2 and integrin αvβ5 after VEGF stimulation. In conclusion, our results reveal a crucial role for FLNB in endothelial cell migration and in the angiogenic process in adult endothelial cells. PMID:20110358

  2. The vascular endothelial growth factor-induced disruption of gap junctions is relayed by an autocrine communication via ATP release in coronary capillary endothelium.

    PubMed

    Thuringer, Dominique

    2004-12-01

    Little is known concerning how the coordination of Ca(2+) signaling aids in capillary endothelial cell (CEC) functions, such as microvascular permeability and angiogenesis. Previous reports support the major involvement of gap junction (GJ) channels. However, the cell-to-cell communication may not be straightforward, especially if we consider the participation of active molecules released by CEC. In this study, short-term effects of vascular endothelial growth factor (VEGF-165) were compared with those of bradykinin (BK) on gap junction coupling (GJC) and remodeling of connexin-43 (Cx43) and then analyzed for intercellular Ca(2+) signal in primary cultures of coronary CEC. Dye-coupling experiments revealed that BK or VEGF completely blocked GJC. These effects correlated with the rapid internalization of Cx43 and its tyrosine phosphorylation in part via the phosphatidylinositol 3-kinase/Akt pathway. GJC slowly recovered with BK but not with VEGF in the following hour. In control conditions, mechanical stimulation of a single cell within a confluent monolayer triggered an intercellular Ca(2+) wave that was partially inhibited by GJC blockers or purinergic inhibitors. No wave propagation was observed after blockage of both GJC and purinergic receptors. Cell treatment with VEGF also reduced propagation of the Ca(2+) wave, which was totally prevented by applying a purinergic receptor antagonist but not with a GJC blocker. That excludes purine efflux through Cx hemichannels. We conclude that VEGF-induced disruption of GJC via Cx43 remodeling is relayed by an autocrine communication via secretion of ATP to preserve intercellular Ca(2+) signaling in capillary endothelium.

  3. The role of peroxisome proliferator-activated receptor-{beta}/{delta} in epidermal growth factor-induced HaCaT cell proliferation

    SciTech Connect

    Liang Pengfei; Jiang Bimei; Yang Xinghua; Xiao Xianzhong Huang Xu; Long Jianhong; Zhang Pihong; Zhang Minghua; Xiao Muzhang; Xie Tinghong; Huang Xiaoyuan

    2008-10-15

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, an EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.

  4. The inhibitory effect of dexamethasone on platelet-derived growth factor-induced vascular smooth muscle cell migration through up-regulating PGC-1{alpha} expression

    SciTech Connect

    Xu, Wei; Guo, Ting; Zhang, Yan; Jiang, Xiaohong; Zhang, Yongxian; Zen, Ke; Yu, Bo; Zhang, Chen-Yu

    2011-05-01

    Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPAR{gamma}) coactivator-1 alpha (PGC-1{alpha}) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1{alpha} in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1{alpha} expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1{alpha} mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1{alpha} expression while stimulating VSMC migration. Mechanistic study showed that suppression of PGC-1{alpha} by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1{alpha} had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1{alpha} decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPAR{gamma} activation by a PPAR{gamma} antagonist GW9662 abolished the suppressive effects of PGC-1{alpha} on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1{alpha} were enhanced by a PPAR{gamma} agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1{alpha} expression. PGC-1{alpha} suppresses PDGF-induced VSMC migration through PPAR{gamma} coactivation and, consequently, p38 MAPK inhibition.

  5. Egr-1 mediates epidermal growth factor-induced downregulation of E-cadherin expression via Slug in human ovarian cancer cells.

    PubMed

    Cheng, J-C; Chang, H-M; Leung, P C K

    2013-02-21

    Loss of the cell adhesion protein E-cadherin increases the invasive capability of ovarian cancer cells. We have previously shown that epidermal growth factor (EGF) downregulates E-cadherin and induces ovarian cancer cell invasion through the H(2)O(2)/p38 MAPK-mediated upregulation of the E-cadherin transcriptional repressor Snail. However, the molecular mechanisms underlying the EGF-induced downregulation of E-cadherin are not fully understood. In the current study, we demonstrated that treatment of two ovarian cancer cell lines, SKOV3 and OVCAR5, with EGF induced the expression of the transcription factor Egr-1, and this induction was abolished by small interfering RNA (siRNA)-mediated depletion of the EGF receptor. EGF-induced Egr-1 expression required the activation of the ERK1/2 and PI3K/Akt signaling pathways and was unrelated to EGF-induced H(2)O(2) production and activation of the p38 MAPK pathway. Moreover, depletion of Egr-1 with siRNA abolished the EGF-induced downregulation of E-cadherin and increased cell invasion. Interestingly, siRNA depletion of Egr-1 attenuated the EGF-induced expression of Slug, but not that of Snail. Moreover, chromatin immunoprecipitation (ChIP) analysis showed that Slug is a target gene of Egr-1. These results provide evidence that Egr-1 is a mediator that is involved in the EGF-induced downregulation of E-cadherin and increased cell invasion. Our results also demonstrate that EGF activates two independent signaling pathways, which are the H(2)O(2)/p38 MAPK-mediated upregulation of Snail expression and the Egr-1-mediated upregulation of Slug expression. These two signaling pathways contribute to the EGF-induced downregulation of E-cadherin, which subsequently increases the invasive capability of ovarian cancer cells.

  6. Hypoxia-inducible factor 1 alpha mediates epidermal growth factor-induced down-regulation of E-cadherin expression and cell invasion in human ovarian cancer cells.

    PubMed

    Cheng, Jung-Chien; Klausen, Christian; Leung, Peter C K

    2013-02-28

    Hypoxia-inducible factor 1α (HIF-1α) regulates the transcription of a number of genes under hypoxia and other extracellular stimulations. It has been shown that E-cadherin is down-regulated by epidermal growth factor receptor (EGF) stimulation, and that cells with low E-cadherin expression are more invasive. Our recent study demonstrated a novel mechanism by which EGF down-regulates E-cadherin expression through production of hydrogen peroxide (H(2)O(2)) and the activation of p38 MAPK in human ovarian cancer cells. In this study, we were interested in examining the potential role of HIF-1α in cell invasion under normoxic conditions, specifically when cells are treated with EGF, which is known to down-regulate E-cadherin and increase invasiveness. We show that EGF treatment induces HIF-1α expression in two human ovarian cancer cell lines (SKOV3 and OVCAR5), and that this effect is diminished by treatment with a membrane-permeable H(2)O(2) scavenger, PEG-catalase. However, the induction of HIF-1α by EGF did not require the activation of p38 MAPK. Treatment with siRNA targeting HIF-1α reduces both basal and EGF-induced HIF-1α levels. Importantly, treatment with HIF-1α siRNA diminishes the up-regulation of Snail and Slug as well as the down-regulation of E-cadherin by EGF. The involvement of HIF-1α in the down-regulation of E-cadherin was confirmed with cobalt chloride (CoCl(2)), a hypoxia-mimetic reagent. Finally, we also show that EGF-induced cell invasion is attenuated by treatment with HIF-1α siRNA. This study demonstrates an important role for HIF-1α in mediating the effects of EGF on Snail, Slug and E-cadherin expression as well as invasiveness in human ovarian cancer cells.

  7. 5-Lipoxygenase and cysteinyl leukotriene receptor 1 regulate epidermal growth factor-induced cell migration through Tiam1 upregulation and Rac1 activation.

    PubMed

    Magi, Shigeyuki; Takemoto, Yasushi; Kobayashi, Hiroki; Kasamatsu, Masato; Akita, Takahiro; Tanaka, Ayako; Takano, Kei; Tashiro, Etsu; Igarashi, Yasuhiro; Imoto, Masaya

    2014-03-01

    Cell migration is an essential step for tumor metastasis. The small GTPase Rac1 plays an important role in cell migration. Previously, we reported that epidermal growth factor (EGF) induced two waves of Rac1 activation; namely, at 5 min and 12 h after stimulation. A second wave of EGF-induced Rac1 activation was required for EGF-induced cell migration, however, the spatiotemporal regulation of the second wave of EGF-induced Rac1 activation remains largely unclear. In this study, we found that 5-lipoxygenase (5-LOX) is activated in the process of EGF-induced cell migration, and that leukotriene C4 (LTC4 ) produced by 5-LOX mediated the second wave of Rac1 activation, as well as cell migration. Furthermore, these effects caused by LTC4 were found to be blocked in the presence of the antagonist of cysteinyl leukotriene receptor 1 (CysLT1). This blockage indicates that LTC4 -mediated CysLT1 signaling regulates the second EGF-induced wave of Rac1 activation. We also found that 5-LOX inhibitors, CysLT1 antagonists and the knockdown of CysLT1 inhibited EGF-induced T cell lymphoma invasion and metastasis-inducing protein 1 (Tiam1) expression. Tiam1 expression is required for the second wave of EGF-induced Rac1 activation in A431 cells. Therefore, our results indicate that the 5-LOX/LTC4 /CysLT1 signaling pathway regulates EGF-induced cell migration by increasing Tiam1 expression, leading to a second wave of Rac1 activation. Thus, CysLT1 may serve as a new molecular target for antimetastatic therapy. In addition, the CysLT1 antagonist, montelukast, which is used clinically for allergy treatment, might have great potential as a novel type of antimetastatic agent. © 2013 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  8. Differential Sulfation Remodelling of Heparan Sulfate by Extracellular 6-O-sulfatases Regulates Fibroblast Growth Factor-induced Boundary Formation By Glial Cells: Implications for Glial Cell Transplantation

    PubMed Central

    Higginson, Jennifer R; Thompson, Sophie M; Santos-Silva, Alessandra; Guimond, Scott E; Turnbull, Jeremy E; Barnett, Susan C

    2012-01-01

    Previously, it has been shown that rat Schwann cells (SCs), but not olfactory ensheathing cells (OECs), form a boundary with astrocytes, due to a SC-specific secreted factor. Here, we identify highly sulfated heparan sulfates (HS), and fibroblast growth factors (FGF) 1 and FGF9, as possible determinants of boundary formation induced by rat SCs. Disaccharide analysis of HS in SC and rat OEC conditioned medium showed that SCs secrete more highly sulfated HS than OECs. The dependence of the boundary-forming activity on high levels of sulfation was confirmed using a panel of semi-synthetic modified heparins with variable levels of sulfation. Furthermore, extracellular HS 6-O-endosulfatase enzymes, Sulf 1 and Sulf 2, were expressed at a significantly lower level by SCs compared to OECs and siRNA reduction of Sulfs in OECs was, in itself, sufficient to induce boundary formation. This demonstrates a key role for remodelling (reduction) of HS 6-O-sulfation by OECs to suppress boundary formation, in comparison to SCs. Furthermore, specific anti-FGF1 and FGF9 antibodies disrupted SC/astrocyte boundary formation, supporting a role for an HS sulfation-dependent FGF signalling mechanism via FGF receptors (FGFR) on astrocytes. We propose a model in which FGF1 and FGF9 signalling is differentially modulated by patterns of glial cell HS sulfation, dependent on Sulf 1 and Sulf 2 expression, to control FGFR3-IIIb mediated astrocytic responses. Moreover, these data suggest manipulation of HS sulfation after CNS injury as a potential novel approach for therapeutic intervention in CNS repair. PMID:23136428

  9. Combined Treatment with Troglitazone and Lovastatin Inhibited Epidermal Growth Factor-Induced Migration through the Downregulation of Cysteine-Rich Protein 61 in Human Anaplastic Thyroid Cancer Cells

    PubMed Central

    Chin, Li-Han; Hsu, Sung-Po

    2015-01-01

    Our previous studies have demonstrated that epidermal growth factor (EGF) can induce cell migration through the induction of cysteine-rich protein 61 (Cyr61) in human anaplastic thyroid cancer (ATC) cells. The aim of the present study was to determine the inhibitory effects of combined treatment with the peroxisome proliferator-activated receptor-γ (PPARγ) ligand troglitazone and the cholesterol-lowering drug lovastatin at clinically achievable concentrations on ATC cell migration. Combined treatment with 5 μM troglitazone and 1 μM lovastatin exhibited no cytotoxicity but significantly inhibited EGF-induced migration, as determined using wound healing and Boyden chamber assays. Cotreatment with troglitazone and lovastatin altered the epithelial-to-mesenchymal-transition (EMT) -related marker gene expression of the cells; specifically, E-cadherin expression increased and vimentin expression decreased. In addition, cotreatment reduced the number of filopodia, which are believed to be involved in migration, and significantly inhibited EGF-induced Cyr61 mRNA and protein expression as well as Cyr61 secretion. Moreover, the phosphorylation levels of 2 crucial signal molecules for EGF-induced Cyr61 expression, the cAMP response element-binding protein (CREB) and extracellular signal-regulated kinase (ERK), were decreased in cells cotreated with troglitazone and lovastatin. Performing a transient transfection assay revealed that the combined treatment significantly suppressed Cyr61 promoter activity. These results suggest that combined treatment with low doses of troglitazone and lovastatin effectively inhibits ATC cell migration and may serve as a novel therapeutic strategy for metastatic ATC. PMID:25742642

  10. Combined treatment with troglitazone and lovastatin inhibited epidermal growth factor-induced migration through the downregulation of cysteine-rich protein 61 in human anaplastic thyroid cancer cells.

    PubMed

    Chin, Li-Han; Hsu, Sung-Po; Zhong, Wen-Bin; Liang, Yu-Chih

    2015-01-01

    Our previous studies have demonstrated that epidermal growth factor (EGF) can induce cell migration through the induction of cysteine-rich protein 61 (Cyr61) in human anaplastic thyroid cancer (ATC) cells. The aim of the present study was to determine the inhibitory effects of combined treatment with the peroxisome proliferator-activated receptor-γ (PPARγ) ligand troglitazone and the cholesterol-lowering drug lovastatin at clinically achievable concentrations on ATC cell migration. Combined treatment with 5 μM troglitazone and 1 μM lovastatin exhibited no cytotoxicity but significantly inhibited EGF-induced migration, as determined using wound healing and Boyden chamber assays. Cotreatment with troglitazone and lovastatin altered the epithelial-to-mesenchymal-transition (EMT) -related marker gene expression of the cells; specifically, E-cadherin expression increased and vimentin expression decreased. In addition, cotreatment reduced the number of filopodia, which are believed to be involved in migration, and significantly inhibited EGF-induced Cyr61 mRNA and protein expression as well as Cyr61 secretion. Moreover, the phosphorylation levels of 2 crucial signal molecules for EGF-induced Cyr61 expression, the cAMP response element-binding protein (CREB) and extracellular signal-regulated kinase (ERK), were decreased in cells cotreated with troglitazone and lovastatin. Performing a transient transfection assay revealed that the combined treatment significantly suppressed Cyr61 promoter activity. These results suggest that combined treatment with low doses of troglitazone and lovastatin effectively inhibits ATC cell migration and may serve as a novel therapeutic strategy for metastatic ATC.

  11. Regulation of early neurite morphogenesis by the Na+/H+ exchanger NHE1.

    PubMed

    Sin, Wun-Chey; Moniz, David M; Ozog, Mark A; Tyler, Jessica E; Numata, Masayuki; Church, John

    2009-07-15

    The ubiquitously expressed Na(+)/H(+) exchanger NHE1 plays an important role in regulating polarized membrane protrusion and directional motility in non-neuronal cells. Using NGF-differentiated PC12 cells and murine neocortical neurons in vitro, we now show that NHE1 plays a role in regulating early neurite morphogenesis. NHE1 was expressed in growth cones in which it gave rise to an elevated intracellular pH in actively extending neurites. The NHE1 inhibitor cariporide reversibly reduced growth cone filopodia number and the formation and elongation of neurites, especially branches, whereas the transient overexpression of full-length NHE1, but not NHE1 mutants deficient in either ion translocation activity or actin cytoskeletal anchoring, elicited opposite effects. In addition, compared with neocortical neurons obtained from wild-type littermates, neurons isolated from NHE1-null mice exhibited reductions in early neurite outgrowth, an effect that was rescued by overexpression of full-length NHE1 but not NHE1 mutants. Finally, the growth-promoting effects of netrin-1, but not BDNF or IGF-1, were markedly reduced by cariporide in wild-type neocortical neurons and were not observed in NHE1-null neurons. Although netrin-1 failed to increase growth cone intracellular pH or Na(+)/H(+) exchange activity, netrin-1-induced increases in early neurite outgrowth were restored in NHE1-null neurons transfected with full-length NHE1 but not an ion translocation-deficient mutant. Collectively, the results indicate that NHE1 participates in the regulation of early neurite morphogenesis and identify a novel role for NHE1 in the promotion of early neurite outgrowth by netrin-1.

  12. Type II cGMP-dependent protein kinase inhibits epidermal growth factor-induced phosphatidylinositol-3-kinase/Akt signal transduction in gastric cancer cells.

    PubMed

    Wu, Min; Chen, Yongchang; Jiang, Lu; Li, Yueying; Lan, Ting; Wang, Ying; Qian, Hai

    2013-12-01

    Our previous study revealed that Type II cGMP-dependent protein kinase (PKG II) inhibits epidermal growth factor (EGF)-induced MAPK/ERK and MAPK/JNK-mediated signal transduction through the inhibition of the phosphorylation/activation of the EGF receptor (EGFR). As EGFR also mediates several other signal transduction pathways besides MAPK-mediated pathways, the present study was designed to investigate whether PKG II was able to inhibit EGF/EGFR-induced phosphatidylinositol-3-kinase (PI3K)/Akt-mediated signal transduction. The AGS human gastric cancer cell line was infected with adenoviral constructs encoding a cDNA of PKG II (Ad-PKG II) to increase the expression of PKG II, and treated with 8-pCPT-cGMP to activate the enzyme. Western blotting was used to detect the phosphorylation/activation of the key components of the signal transduction pathway, including EGFR, PI3K, Akt, mTOR and NF-κB. The levels of apoptosis-related proteins, including Bax, Bcl-2, caspase 9 and DNA fragment factor (DFF), were also determined by western blotting. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling staining was used to detect the apoptosis of the AGS cells. The results revealed that EGF treatment increased the phosphorylation (activation) of EGFR, PI3K, Akt and mTOR, and increased the nuclear localization (activation) of NF-κB. EGF treatment also reduced the apoptosis of the AGS cells and increased the expression of the anti-apoptotic protein, Bcl-2, but had no effect on the expression of the pro-apoptotic protein, Bax, and did not alter the levels of caspase 9 and DFF. Increasing the PKG II activity of AGS cells by infecting them with Ad-PKG II and stimulating them with 8-pCPT-cGMP inhibited the EGF-induced activation of EGFR, PI3K, Akt, mTOR and NF-κB; caused an increase in caspase 9 breakdown (activation) and DFF levels; and reversed the anti-apoptotic effect of EGF. The results suggest that PKG II may also inhibit EGF-induced signal transduction of PI3

  13. Zedoarondiol Inhibits Platelet-Derived Growth Factor-Induced Vascular Smooth Muscle Cells Proliferation via Regulating AMP-Activated Protein Kinase Signaling Pathway.

    PubMed

    Mao, Huimin; Tao, Tianqi; Song, Dandan; Liu, Mi; Wang, Xiaoren; Liu, Xiuhua; Shi, Dazhuo

    2016-01-01

    Vascular smooth muscle cells (VSMCs) proliferation contributes significantly to atherosclerosis and in-stent restenosis. Platelet-derived growth factor-BB (PDGF-BB) plays a vital role in VSMCs proliferation. Zedoarondiol, a sesquiterpene lactone compound, has an anti-inflammatory activity. However, the role of zedoarondiol in PDGF-BB-mediated VSMCs proliferation remains unclear. In this study, we investigated the effects of zedoarondiol on PDGF-BB-induced VSMCs proliferation and explored the possible mechanisms. The inhibitory effects of zedoarondiol on PDGF-BB-induced VSMCs proliferation were evaluated by direct cell counting and the Cell Counting Kit-8 (CCK-8) assay. DNA synthesis was examined by bromodeoxyuridine (BrdU) incorporation assay. Cell cycle was assessed by propidium iodide staining. Western blotting was performed to determine the expression of cyclin-dependent kinase 2 (CDK2), cyclin E, p53, p21, total and phosphorylated adenosine monophosphate-activated protein kinase (AMPK), acetyl CoA carboxylase (ACC), mammalian target of rapamycin (mTOR), and p70 ribosomal protein S6 kinase (p70S6K). Zedoarondiol suppressed PDGF-BB-induced VSMCs proliferation and DNA synthesis, and induced cell cycle arrest in G0/G1 phase. In addition, zedoarondiol activated AMPK and ACC, inhibited the phosphorylation of mTOR and p70S6K, increased the expression of p53 and p21, and decreased the expression of CDK2 and cyclin E. Compound C (an AMPK inhibitor) abrogated, whereas 5-aminoimidazole-4-carboxamide 1-β-ribofuranoside (AICAR, an AMPK activator) enhanced zedoarondiol-mediated inhibition of VSMCs proliferation and DNA synthesis. Zedoarondiol inhibits PDGF-BB-induced VSMCs proliferation via AMPK-mediated down-regulation of the mTOR/p70S6K pathway and up-regulation of the p53/p21 pathway. These findings suggest that zedoarondiol might be a promising compound against atherosclerosis and in-stent restenosis. © 2016 The Author(s) Published by S. Karger AG, Basel.

  14. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity

    NASA Astrophysics Data System (ADS)

    Leach, Jennie B.; Brown, Xin Q.; Jacot, Jeffrey G.; Di Milla, Paul A.; Wong, Joyce Y.

    2007-06-01

    Rationally designed matrices for nerve tissue engineering and encapsulated cell therapies critically rely on a comprehensive understanding of neural response to biochemical as well as biophysical cues. Whereas biochemical cues are established mediators of neuronal behavior (e.g., outgrowth), physical cues such as substrate stiffness have only recently been recognized to influence cell behavior. In this work, we examine the response of PC12 neurites to substrate stiffness. We quantified and controlled fibronectin density on the substrates and measured multiple neurite behaviors (e.g., growth, branching, neurites per cell, per cent cells expressing neurites) in a large sample population. We found that PC12 neurons display a threshold response to substrate stiffness. On the softest substrates tested (shear modulus ~10 Pa), neurites were relatively few, short in length and unbranched. On stiffer substrates (shear modulus ~102-104 Pa), neurites were longer and more branched and a greater percentage of cells expressed neurites; significant differences in these measures were not found on substrates with a shear modulus >102 Pa. Based on these data and comparisons with published neurobiology and neuroengineering reports of neurite mechanotransduction, we hypothesize that results from studies of neuronal response to compliant substrates are cell-type dependent and sensitive to ligand density, sample size and the range of stiffness investigated.

  15. Epidermal growth factor-induced selective phosphorylation of cultured rat hepatocyte 55-kD cytokeratin before filament reorganization and DNA synthesis

    PubMed Central

    1989-01-01

    We have reported previously that the addition of dexamethasone to cultured quiescent suckling rat hepatocytes in the presence of insulin, a culture condition which does not cause growth activation, induces a selective increase in the synthesis of the 49-kD/55-kD cytokeratin (CK49/CK55) pair over a 24-h period. This increased synthesis coincides with the formation of dense filament networks reminiscent of those observed in situ at the cell periphery (Marceau, N., H. Baribault, and I. Leroux-Nicollet. 1985. Can. J. Biochem. Cell Biol. 63:448-457). We show here for the first time that when EGF is added 48 h after insulin and dexamethasone, there is an early preferential phosphorylation of the CK55 of the CK49/CK55 pair, an induced filament rearrangement from the cell periphery to the cytoplasm, and a subsequent entry into S phase and mitosis after a lag period of 8 h. Indirect immunofluorescence microscopy with monoclonal antibodies to CK49 and CK55 indicate that, while before EGF treatment the cytokeratin filaments were mainly distributed near the cell periphery, the addition of EGF resulted in their reorganization to a predominantly cytoplasmic localization within less than 3 h. Antitubulin and anti-actin antibodies showed no detectable alteration in the distribution of microtubules and microfilaments. Pulse-chase measurements with [35S]methionine showed no apparent change in the turnover of either CK49 or CK55 during the period that precedes the initiation of DNA synthesis. 32P-labeling in vivo followed by SDS-PAGE demonstrated that CK55 was phosphorylated at a much higher level than CK49 in nonstimulated hepatocytes, and that the addition of EGF resulted in a selective stimulation of 32P-CK55 labeling within less than 30 min. Comparative analyses by two-dimensional PAGE of [35S]methionine and 32P- labeled cytokeratins at various times after EGF stimulation demonstrated a rapid increase in a first phosphorylated form of CK55 and the appearance of a second

  16. Adiponectin Is Involved in Connective Tissue Growth Factor-Induced Proliferation, Migration and Overproduction of the Extracellular Matrix in Keloid Fibroblasts.

    PubMed

    Luo, Limin; Li, Jun; Liu, Han; Jian, Xiaoqing; Zou, Qianlei; Zhao, Qing; Le, Qu; Chen, Hongdou; Gao, Xinghua; He, Chundi

    2017-05-12

    Adiponectin, an adipocyte-derived hormone, exerts pleiotropic biological effects on metabolism, inflammation, vascular homeostasis, apoptosis and immunity. Recently, adiponectin has been suggested to attenuate the progression of human dermal fibrosis. Connective tissue growth factor (CTGF) is induced in keloids and is thought to be participated in the formation of keloid fibrosis. However, the roles played by adiponectin in keloids remain unclear. In this study, we explored the effects of adiponectin on CTGF-induced cell proliferation, migration and the deposition of extracellular matrix (ECM) and their associated intracellular signalling pathways in keloid fibroblasts (KFs). We also explored possible mechanisms of keloid pathogenesis. Primary fibroblast cultures were established from foreskin biopsies and skin biopsies from patients with keloids. The expression of adiponectin and adiponectin receptors (adipoRs) was evaluated by reverse transcription-PCR (RT-PCR), quantitative real-time RT-PCR, immunofluorescence staining, and immunohistochemical analysis. Next, KFs and normal dermal fibroblasts (NFs) were treated with CTGF in the presence or absence of adiponectin. A cell counting kit-8 (CCK-8) and the Transwell assay were used to examine cell proliferation and migration. The level of the collagen I, fibronectin (FN) and α-smooth muscle actin (α-SMA) mRNAs and proteins were determined by quantitative real-time RT-PCR and western blotting. The effects of RNA interference (RNAi) targeting the adipoR genes were detected. Phosphorylation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase-protein kinase (PI3K-Akt) were examined by western blotting to further investigate the signalling pathways. Furthermore, inhibitors of signal transduction pathways were investigated. The expression levels of adiponectin and adipoRs were significantly decreased in keloids compared with those

  17. The impact of laminin on 3D neurite extension in collagen gels

    NASA Astrophysics Data System (ADS)

    Swindle-Reilly, Katelyn E.; Papke, Jason B.; Kutosky, Hannah P.; Throm, Allison; Hammer, Joshua A.; Harkins, Amy B.; Kuntz Willits, Rebecca

    2012-08-01

    The primary goal of this research was to characterize the effect of laminin on three-dimensional (3D) neurite growth. Gels were formed using type I collagen at concentrations of 0.4-2.0 mg mL-1 supplemented with laminin at concentrations of 0, 1, 10, or 100 µg mL-1. When imaged with confocal microscopy, laminin was shown to follow the collagen fibers; however, the addition of laminin had minimal effect on the stiffness of the scaffolds at any concentration of collagen. Individual neurons dissociated from E9 chick dorsal root ganglia were cultured in the gels for 24 h, and neurite lengths were measured. For collagen gels without laminin, a typical bimodal response of neurite outgrowth was observed, with increased growth at lower concentrations of collagen gel. However, alteration of the chemical nature of the collagen gel by the laminin additive shifted, or completely mitigated, the bimodal neurite growth response seen in gels without laminin. Expression of integrin subunits, α1, α3, α6 and β1, were confirmed by PCR and immunolabeling in the 3D scaffolds. These results provide insight into the interplay between mechanical and chemical environment to support neurite outgrowth in 3D. Understanding the relative impact of environmental factors on 3D nerve growth may improve biomaterial design for nerve cell regeneration.

  18. VANG-1 and PRKL-1 Cooperate to Negatively Regulate Neurite Formation in Caenorhabditis elegans

    PubMed Central

    Su, Anna; Imai, Janice H.; Colavita, Antonio

    2011-01-01

    Neuritogenesis is a critical early step in the development and maturation of neurons and neuronal circuits. While extracellular directional cues are known to specify the site and orientation of nascent neurite formation in vivo, little is known about the genetic pathways that block inappropriate neurite emergence in order to maintain proper neuronal polarity. Here we report that the Caenorhabditis elegans orthologues of Van Gogh (vang-1), Prickle (prkl-1), and Dishevelled (dsh-1), core components of planar cell polarity (PCP) signaling, are required in a subset of peripheral motor neurons to restrict neurite emergence to a specific organ axis. In loss-of-function mutants, neurons display supernumerary neurites that extend inappropriately along the orthogonal anteroposterior (A/P) body axis. We show that autonomous and non-autonomous gene activities are required early and persistently to inhibit the formation or consolidation of growth cone protrusions directed away from organ precursor cells. Furthermore, prkl-1 overexpression is sufficient to suppress neurite formation and reorient neuronal polarity in a vang-1– and dsh-1–dependent manner. Our findings suggest a novel role for a PCP–like pathway in maintaining polarized neuronal morphology by inhibiting neuronal responses to extrinsic or intrinsic cues that would otherwise promote extraneous neurite formation. PMID:21912529

  19. Ca2+ transients are not required as signals for long-term neurite outgrowth from cultured sympathetic neurons

    PubMed Central

    1990-01-01

    A method for clamping cytosolic free Ca2+ ([Ca2+]i) in cultures of rat sympathetic neurons at or below resting levels for several days was devised to determine whether Ca2+ signals are required for neurite outgrowth from neurons that depend on Nerve Growth Factor (NGF) for their growth and survival. To control [Ca2+]i, normal Ca2+ influx was eliminated by titration of extracellular Ca2+ with EGTA and reinstated through voltage-sensitive Ca2+ channels. The rate of neurite outgrowth and the number of neurites thus became dependent on the extent of depolarization by KCl, and withdrawal of KCl caused an immediate cessation of growth. Neurite outgrowth was completely blocked by the L type Ca2+ channel antagonists nifedipine, nitrendipine, D600, or diltiazem at sub- or micromolar concentrations. Measurement of [Ca2+]i in cell bodies using the fluorescent Ca2+ indicator fura-2 established that optimal growth, similar to that seen in normal medium, was obtained when [Ca2+]i was clamped at resting levels. These levels of [Ca2+]i were set by serum, which elevated [Ca2+]i by integral of 30 nM, whereas the addition of NGF had no effect on [Ca2+]i. The reduction of [Ca2+]o prevented neurite fasciculation but this had no effect on the rate of neurite elongation or on the number of extending neurites. These results show that neurite outgrowth from NGF-dependent neurons occurs over long periods in the complete absence of Ca2+ signals, suggesting that Ca2+ signals are not necessary for operating the basic machinery of neurite outgrowth. PMID:2324199

  20. Differential intensity-dependent effects of magnetic stimulation on the longest neurites and shorter dendrites in neuroscreen-1 cells

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Yi; Huang, Whitney J.; Li, Kevin; Swanson, Roy; Cheung, Brian; Lin, Vernon W.; Lee, Yu-Shang

    2015-04-01

    Objective. Magnetic stimulation (MS) is a potential treatment for neuropsychiatric disorders. This study investigates whether MS-regulated neuronal activity can translate to specific changes in neuronal arborization and thus regulate synaptic activity and function. Approach. To test our hypotheses, we examined the effects of MS on neurite growth of neuroscreen-1 (NS-1) cells over the pulse frequencies of 1, 5 and 10 Hz at field intensities controlled via machine output (MO). Cells were treated with either 30% or 40% MO. Due to the nature of circular MS coils, the center region of the gridded coverslip (zone 1) received minimal (∼5%) electromagnetic current density while the remaining area (zone 2) received maximal (∼95%) current density. Plated NS-1 cells were exposed to MS twice per day for three days and then evaluated for length and number of neurites and expression of brain-derived neurotrophic factor (BDNF). Main results. We show that MS dramatically affects the growth of the longest neurites (axon-like) but does not significantly affect the growth of shorter neurites (dendrite-like). Also, MS-induced changes in the longest neurite growth were most evident in zone 1, but not in zone 2. MS effects were intensity-dependent and were most evident in bolstering longest neurite outgrowth, best seen in the 10 Hz MS group. Furthermore, we found that MS-increased BDNF expression and secretion was also frequency-dependent. Taken together, our results show that MS exerts distinct effects when different frequencies and intensities are applied to the neuritic compartments (longest neurite versus shorter dendrite(s)) of NS-1 cells. Significance. These findings support the concept that MS increases BDNF expression and signaling, which sculpts longest neurite arborization and connectivity by which neuronal activity is regulated. Understanding the mechanisms underlying MS is crucial for efficiently incorporating its use into potential therapeutic strategies.

  1. Stimulation of neuronal neurite outgrowth using functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Sato, C.; Naka, Y.; Whitby, R.; Shimizu, N.

    2010-03-01

    Low concentrations (0.11-1.7 µg ml - 1) of functionalized carbon nanotubes (CNTs), which are multi-walled CNTs modified by amino groups, when added with nerve growth factor (NGF), promoted outgrowth of neuronal neurites in dorsal root ganglion (DRG) neurons and rat pheochromocytoma cell line PC12h cells in culture media. The quantity of active extracellular signal-regulated kinase (ERK) was higher after the addition of both 0.85 µg ml - 1 CNTs and NGF than that with NGF alone. CNTs increased the number of cells with neurite outgrowth in DRG neurons and PC12h cells after the inhibition of the ERK signaling pathway using a mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor. Active ERK proteins were detected in MEK inhibitor-treated neurons after the addition of CNTs to the culture medium. These results demonstrate that CNTs may stimulate neurite outgrowth by activation of the ERK signaling pathway. Thus, CNTs are biocompatible and are promising candidates for biological applications and devices.

  2. Oriented Schwann cell monolayers for directed neurite outgrowth.

    PubMed

    Thompson, Deanna M; Buettner, Helen M

    2004-08-01

    Schwann cells are an important component of the peripheral nervous system and participate in peripheral nerve regeneration. They create a supportive environment for neurite outgrowth by releasing trophic factors and up-regulating permissive molecules on their surface. In addition, Schwann cells are able to self-organize into linear arrays in vitro and in vivo, suggesting a possible role in neurite guidance. Previously, we showed that Schwann cell placement and orientation in subconfluent cultures can be controlled using microlithographically patterned laminin substrates (Thompson, D. M., and H. M. Buettner. Tissue Eng. 7(3):247-266, 2001). In the current study, these substrates were used to create oriented Schwann cell monolayers. Both Schwann cell orientation and coverage were quantified in response to seeding density, culture medium, and micropattern dimensions. In serum-free medium, increasing the seeding density yielded a linear increase in coverage of the substrate area but decreased cell alignment. In an alternate approach, Schwann cells were first seeded in serum-free medium at moderate seeding density, allowed to align, then expanded in serum-containing growth medium. This produced complete coverage without large seeding densities while preserving alignment to the micropattern. Alignment and coverage were unaffected by micropattern dimensions. This work provides a useful methodology for investigating Schwann cell guidance effects on growing neurites.

  3. Tension and compression in the cytoskeleton of PC-12 neurites. II: Quantitative measurements

    PubMed Central

    1988-01-01

    We assessed the mechanical properties of PC-12 neurites by applying a force with calibrated glass needles and measured resulting changes in neurite length and deflection of the needle. We observed a linear relationship between force and length change that was not affected by multiple distensions and were thus able to determine neurite spring constants and initial, nondistended, rest tensions. 81 out of 82 neurites showed positive rest tensions ranging over three orders of magnitude with most values clustering around 30-40 mu dynes. Treatment with cytochalasin D significantly reduced neurite rest tensions to an average compression equal to 14% of the former tension and spring constants to an average of 17% of resting values. Treatment with nocodazole increased neurite rest tensions to an average of 282% of resting values but produced no change in spring constant. These observations suggest a particular type of complementary force interaction underlying axonal shape; the neurite actin network under tension and neurite microtubules under compression. Thermodynamics suggests that microtubule (MT) assembly may be regulated by changes in compressive load. We tested this effect by releasing neurite attachment to a polylysine-coated surface with polyaspartate, thus shifting external compressive support onto internal elements, and measuring the relative change in MT polymerization using quantitative Western blotting. Neurons grown on polylysine or collagen without further treatment had a 1:2 ratio of soluble to polymerized tubulin. When neurites grown on polylysine were treated with 1% polyaspartate for 15- 30 min, 80% of neurites retracted, shifting the soluble: polymerized tubulin ratio to 1:1. Polyaspartate treatment of cells grown on collagen, or grown on polylysine but treated with cytochalasin to reduce tension, caused neither retraction nor a change in the soluble:polymerized tubulin ratio. We suggest that the release of adhesion to the dish shifted the compressive

  4. Neurite Outgrowth at the Biomimetic Interface

    PubMed Central

    Kofron, Celinda M.; Liu, Yu-Ting; López-Fagundo, Cristina Y.; Mitchel, Jennifer A.; Hoffman-Kim, Diane

    2010-01-01

    Understanding the cues that guide axons and how we can optimize these cues to achieve directed neuronal growth is imperative for neural tissue engineering. Cells in the local environment influence neurons with a rich combination of cues. This study deconstructs the complex mixture of guidance cues by working at the biomimetic interface - isolating the topographical information presented by cells and determining its capacity to guide neurons. We generated replica materials presenting topographies of oriented astrocytes (ACs), endothelial cells (ECs), and Schwann cells (SCs) as well as computer-aided design materials inspired by the contours of these cells (bioinspired-CAD). These materials presented distinct topographies and anisotropies and in all cases were sufficient to guide neurons. Dorsal root ganglia (DRG) cells and neurites demonstrated the most directed response on bioinspired-CAD materials which presented anisotropic features with 90° edges. DRG alignment was strongest on SC bioinspired-CAD materials followed by AC bioinspired-CAD materials, with more uniform orientation to EC bioinspired-CAD materials. Alignment was strongest on SC replica materials followed by AC and EC replicas. These results suggest that the topographies of anisotropic tissue structures are sufficient for neuronal guidance. This work is discussed in the context of feature dimensions, morphology, and guidepost hypotheses. PMID:20440561

  5. Munc18 and Munc13 regulate early neurite outgrowth

    PubMed Central

    Broeke, Jurjen H.P.; Roelandse, Martijn; Luteijn, Maartje J.; Boiko, Tatiana; Matus, Andrew; Toonen, Ruud F.; Verhage, Matthijs

    2010-01-01

    Background information. During development, growth cones of outgrowing neurons express proteins involved in vesicular secretion, such as SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) proteins, Munc13 and Munc18. Vesicles are known to fuse in growth cones prior to synapse formation, which may contribute to outgrowth. Results. We tested this possibility in dissociated cell cultures and organotypic slice cultures of two release-deficient mice (Munc18-1 null and Munc13-1/2 double null). Both types of release-deficient neurons have a decreased outgrowth speed and therefore have a smaller total neurite length during early development [DIV1–4 (day in vitro 1–4)]. In addition, more filopodia per growth cone were observed in Munc18-1 null, but not WT (wild-type) or Munc13-1/2 double null neurons. The smaller total neurite length during early development was no longer observed after synaptogenesis (DIV14–23). Conclusion. These data suggest that the inability of vesicle fusion in the growth cone affects outgrowth during the initial phases when outgrowth speed is high, but not during/after synaptogenesis. Overall, the outgrowth speed is probably not rate-limiting during neuronal network formation, at least in vitro. In addition, Munc18, but not Munc13, regulates growth cone filopodia, potentially via its previously observed effect on filamentous actin. PMID:20497124

  6. DNA methyltransferase 3a and mitogen-activated protein kinase signaling regulate the expression of fibroblast growth factor-inducible 14 (Fn14) during denervation-induced skeletal muscle atrophy.

    PubMed

    Tajrishi, Marjan M; Shin, Jonghyun; Hetman, Michal; Kumar, Ashok

    2014-07-18

    The TWEAK-fibroblast growth factor-inducible 14 (Fn14) system is a critical regulator of denervation-induced skeletal muscle atrophy. Although the expression of Fn14 is a rate-limiting step in muscle atrophy on denervation, mechanisms regulating gene expression of Fn14 remain unknown. Methylation of CpG sites within promoter region is an important epigenetic mechanism for gene silencing. Our study demonstrates that Fn14 promoter contains a CpG island close to transcription start site. Fn14 promoter also contains multiple consensus DNA sequence for transcription factors activator protein 1 (AP1) and specificity protein 1 (SP1). Denervation diminishes overall genomic DNA methylation and causes hypomethylation at specific CpG sites in Fn14 promoter leading to the increased gene expression of Fn14 in skeletal muscle. Abundance of DNA methyltransferase 3a (Dnmt3a) and its interaction with Fn14 promoter are repressed in denervated skeletal muscle of mice. Overexpression of Dnmt3a inhibits the gene expression of Fn14 and attenuates skeletal muscle atrophy upon denervation. Denervation also causes the activation of ERK1/2, JNK1/2, and ERK5 MAPKs and AP1 and SP1, which stimulate the expression of Fn14 in skeletal muscle. Collectively, our study provides novel evidence that Dnmt3a and MAPK signaling regulate the levels of Fn14 in skeletal muscle on denervation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. GEFs and Rac GTPases control directional specificity of neurite extension along the anterior–posterior axis

    PubMed Central

    Zheng, Chaogu; Diaz-Cuadros, Margarete; Chalfie, Martin

    2016-01-01

    Although previous studies have identified many extracellular guidance molecules and intracellular signaling proteins that regulate axonal outgrowth and extension, most were conducted in the context of unidirectional neurite growth, in which the guidance cues either attract or repel growth cones. Very few studies addressed how intracellular signaling molecules differentially specify bidirectional outgrowth. Here, using the bipolar PLM neurons in Caenorhabditis elegans, we show that the guanine nucleotide exchange factors (GEFs) UNC-73/Trio and TIAM-1 promote anterior and posterior neurite extension, respectively. The Rac subfamily GTPases act downstream of the GEFs; CED-10/Rac1 is activated by TIAM-1, whereas CED-10 and MIG-2/RhoG act redundantly downstream of UNC-73. Moreover, these two pathways antagonize each other and thus regulate the directional bias of neuritogenesis. Our study suggests that directional specificity of neurite extension is conferred through the intracellular activation of distinct GEFs and Rac GTPases. PMID:27274054

  8. Identification of ganglion cell neurites in human subretinal and epiretinal membranes

    PubMed Central

    Lewis, Geoffrey P; Betts, Kellen E; Sethi, Charanjit S; Charteris, David G; Lesnik‐Oberstein, Sarit Y; Avery, Robert L; Fisher, Steven K

    2007-01-01

    Aim To determine whether neural elements are present in subretinal and epiretinal proliferative vitreoretinopathy (PVR) membranes as well as in diabetic, fibrovascular membranes removed from patients during vitrectomy surgery. Methods Human subretinal and epiretinal membranes of varying durations were immunolabelled with different combinations of antibodies to glial fibrillary acidic protein, vimentin, neurofilament protein and laminin. Results Anti‐neurofilament‐labelled neurites from presumptive ganglion cells were frequently found in epiretinal membranes and occasionally found in subretinal membranes. In addition, the neurites were only observed in regions that also contained glial processes. Conclusions These data demonstrate that neuronal processes are commonly found in human peri‐retinal cellular membranes similar to that demonstrated in animal models. These data also suggest that glial cells growing out of the neural retina form a permissive substrate for neurite growth and thus may hold clues to factors that support this growth. PMID:17108012

  9. Immunosuppressant FK506 promotes neurite outgrowth in cultures of PC12 cells and sensory ganglia.

    PubMed

    Lyons, W E; George, E B; Dawson, T M; Steiner, J P; Snyder, S H

    1994-04-12

    The immunosuppressant drug FK506 acts by binding to receptor proteins, FK506-binding proteins (FKBPs), which in turn can bind to and regulate a Ca(2+)-dependent phosphatase, calcineurin, and a Ca2+ release channel, the ryanodine receptor. Based on our findings in regeneration models that levels of FKBPs during neural regeneration parallel those of growth-associated protein GAP43, a calcineurin substrate that regulates neurite extension, we examined effects of FK506 in PC12 rat pheochromocytoma cells and in rat sensory ganglia. FK506 enhances neurite outgrowth in both systems by increasing sensitivity to nerve growth factor. Blockade of FK506 actions in sensory ganglia by rapamycin, an FK506 antagonist, establishes that these effects involve FKBPs. Rapamycin itself stimulates neurite outgrowth in PC12 cells. These drug effects are detected at subnanomolar concentrations, suggesting therapeutic application in diseases involving neural degeneration.

  10. Experimental and computational models of neurite extension at a choice point in response to controlled diffusive gradients

    NASA Astrophysics Data System (ADS)

    Catig, G. C.; Figueroa, S.; Moore, M. J.

    2015-08-01

    Ojective. Axons are guided toward desired targets through a series of choice points that they navigate by sensing cues in the cellular environment. A better understanding of how microenvironmental factors influence neurite growth during development can inform strategies to address nerve injury. Therefore, there is a need for biomimetic models to systematically investigate the influence of guidance cues at such choice points. Approach. We ran an adapted in silico biased turning axon growth model under the influence of nerve growth factor (NGF) and compared the results to corresponding in vitro experiments. We examined if growth simulations were predictive of neurite population behavior at a choice point. We used a biphasic micropatterned hydrogel system consisting of an outer cell restrictive mold that enclosed a bifurcated cell permissive region and placed a well near a bifurcating end to allow proteins to diffuse and form a gradient. Experimental diffusion profiles in these constructs were used to validate a diffusion computational model that utilized experimentally measured diffusion coefficients in hydrogels. The computational diffusion model was then used to establish defined soluble gradients within the permissive region of the hydrogels and maintain the profiles in physiological ranges for an extended period of time. Computational diffusion profiles informed the neurite growth model, which was compared with neurite growth experiments in the bifurcating hydrogel constructs. Main results. Results indicated that when applied to the constrained choice point geometry, the biased turning model predicted experimental behavior closely. Results for both simulated and in vitro neurite growth studies showed a significant chemoattractive response toward the bifurcated end containing an NGF gradient compared to the control, though some neurites were found in the end with no NGF gradient. Significance. The integrated model of neurite growth we describe will allow

  11. Dynamic peripheral traction forces balance stable neurite tension in regenerating Aplysia bag cell neurons.

    PubMed

    Hyland, Callen; Mertz, Aaron F; Forscher, Paul; Dufresne, Eric

    2014-05-14

    Growth cones of elongating neurites exert force against the external environment, but little is known about the role of force in outgrowth or its relationship to the mechanical organization of neurons. We used traction force microscopy to examine patterns of force in growth cones of regenerating Aplysia bag cell neurons. We find that traction is highest in the peripheral actin-rich domain and internal stress reaches a plateau near the transition between peripheral and central microtubule-rich domains. Integrating stress over the area of the growth cone reveals that total scalar force increases with area but net tension on the neurite does not. Tensions fall within a limited range while a substantial fraction of the total force can be balanced locally within the growth cone. Although traction continuously redistributes during extension and retraction of the peripheral domain, tension is stable over time, suggesting that tension is a tightly regulated property of the neurite independent of growth cone dynamics. We observe that redistribution of traction in the peripheral domain can reorient the end of the neurite shaft. This suggests a role for off-axis force in growth cone turning and neuronal guidance.

  12. Dynamic peripheral traction forces balance stable neurite tension in regenerating Aplysia bag cell neurons

    PubMed Central

    Hyland, Callen; Mertz, Aaron F.; Forscher, Paul; Dufresne, Eric

    2014-01-01

    Growth cones of elongating neurites exert force against the external environment, but little is known about the role of force in outgrowth or its relationship to the mechanical organization of neurons. We used traction force microscopy to examine patterns of force in growth cones of regenerating Aplysia bag cell neurons. We find that traction is highest in the peripheral actin-rich domain and internal stress reaches a plateau near the transition between peripheral and central microtubule-rich domains. Integrating stress over the area of the growth cone reveals that total scalar force increases with area but net tension on the neurite does not. Tensions fall within a limited range while a substantial fraction of the total force can be balanced locally within the growth cone. Although traction continuously redistributes during extension and retraction of the peripheral domain, tension is stable over time, suggesting that tension is a tightly regulated property of the neurite independent of growth cone dynamics. We observe that redistribution of traction in the peripheral domain can reorient the end of the neurite shaft. This suggests a role for off-axis force in growth cone turning and neuronal guidance. PMID:24825441

  13. Ginsenoside-Rd Promotes Neurite Outgrowth of PC12 Cells through MAPK/ERK- and PI3K/AKT-Dependent Pathways

    PubMed Central

    Wu, Song-Di; Xia, Feng; Lin, Xue-Mei; Duan, Kang-Li; Wang, Fang; Lu, Qing-Li; Cao, Huan; Qian, Yi-Hua; Shi, Ming

    2016-01-01

    Panax ginseng is a famous herbal medicine widely used in Asia. Ginsenosides have been identified as the principle active ingredients for Panax ginseng’s biological activity, among which ginsenoside Rd (Rd) attracts extensive attention for its obvious neuroprotective activities. Here we investigated the effect of Rd on neurite outgrowth, a crucial process associated with neuronal repair. PC12 cells, which respond to nerve growth factor (NGF) and serve as a model for neuronal cells, were treated with different concentrations of Rd, and then their neurite outgrowth was evaluated. Our results showed that 10 μM Rd significantly increased the percentages of long neurite- and branching neurite-bearing cells, compared with respective controls. The length of the longest neurites and the total length of neurites in Rd-treated PC12 cells were much longer than that of respective controls. We also showed that Rd activated ERK1/2 and AKT but not PKC signalings, and inhibition of ERK1/2 by PD98059 or/and AKT by LY294002 effectively attenuated Rd-induced neurite outgrowth. Moreover, Rd upregulated the expression of GAP-43, a neuron-specific protein involved in neurite outgrowth, while PD98059 or/and LY294002 decreased Rd-induced increased GAP-43 expression. Taken together, our results provided the first evidence that Rd may promote the neurite outgrowth of PC12 cells by upregulating GAP-43 expression via ERK- and ARK-dependent signaling pathways. PMID:26840295

  14. DA-9801 promotes neurite outgrowth via ERK1/2-CREB pathway in PC12 cells.

    PubMed

    Won, Jong Hoon; Ahn, Kyong Hoon; Back, Moon Jung; Ha, Hae Chan; Jang, Ji Min; Kim, Ha Hyung; Choi, Sang-Zin; Son, Miwon; Kim, Dae Kyong

    2015-01-01

    In the present study, we examined the mechanisms underlying the effect of DA-9801 on neurite outgrowth. We found that DA-9801 elicits its effects via the mitogen-activated protein kinase (MEK) extracellular signal-regulated kinase (ERK)1/2-cAMP response element-binding protein (CREB) pathway. DA-9801, an extract from a mixture of Dioscorea japonica and Dioscorea nipponica, was reported to promote neurite outgrowth in PC12 cells. The effects of DA-9801 on cell viability and expression of neuronal markers were evaluated in PC12 cells. To investigate DA-9801 action, specific inhibitors targeting the ERK signaling cascade were used. No cytotoxicity was observed in PC12 cells at DA-9801 concentrations of less than 30 µg/mL. In the presence of nerve growth factor (NGF, 2 ng/mL), DA-9801 promoted neurite outgrowth and increased the relative mRNA levels of neurofilament-L (NF-L), a marker of neuronal differentiation. The Raf-1 inhibitor GW5074 and MEK inhibitor PD98059 significantly attenuated DA-9801-induced neurite outgrowth. Additionally, the MEK1 and MEK2 inhibitor SL327 significantly attenuated the increase in the percentage of neurite-bearing PC12 cells induced by DA-9801 treatment. Conversely, the selective p38 mitogen-activated protein kinase inhibitor SB203580 did not attenuate the DA-9801 treatment-induced increase in the percentage of neurite-bearing PC12 cells. DA-9801 enhanced the phosphorylation of ERK1/2 and CREB in PC12 cells incubated with and without NGF. Pretreatment with PD98059 blocked the DA-9801-induced phosphorylation of ERK1/2 and CREB. In conclusion, DA-9801 induces neurite outgrowth by affecting the ERK1/2-CREB signaling pathway. Insights into the mechanism underlying this effect of DA-9801 may suggest novel potential strategies for the treatment of peripheral neuropathy.

  15. Postnatal expression of the plasticity-related nerve growth factor-induced gene A (NGFI-A) protein in the superficial layers of the rat superior colliculus: relation to N-methyl-D-aspartate receptor function.

    PubMed

    Giraldi-Guimarães, A; de Bittencourt-Navarrete, R E; Nascimento, I C C; Salazar, P R; Freitas-Campos, D; Mendez-Otero, R

    2004-01-01

    Immediate early gene expression in the CNS is induced by sensory stimulation and seems to be involved in long-term synaptic plasticity. We have used an immunohistochemical method to detect the nerve growth factor-induced gene A (NGFI-A) protein expression in the superficial layers of the rat superior colliculus during postnatal development. Our goal was to correlate the expression of this candidate plasticity protein with developmental events, especially the activity-dependent refinement of the retinocollicular and corticocollicular pathways. We have also investigated the N-methyl-D-aspartate (NMDA)-receptor dependence of the NGFI-A expression. Animals of various postnatal ages were used. Postnatal day (P) 12 and older animals were submitted to a protocol of dark adaptation followed by light stimulation. NGFI-A expression was never observed during the first 2 postnatal weeks. The first stained cells were observed at P15, 2 days after eye opening (P13). The highest number of stained cells was observed at the end of the third postnatal week (P22). Adult-like level of expression was reached at P30, since at this age, the number of stained cells was comparable to that found in adult rats (P90). Both P22 animals submitted to an acute treatment with MK-801 (i.p. injection) and adult animals submitted to chronic intracranial infusion of a MK-801 presented a clear decrease in the NGFI-A expression in response to light stimulation. These results suggest that the NGFI-A expression is dependent on the NMDA receptor activation, and the observed pattern of expression is in close agreement with previous descriptions of the changes in the NMDA receptor-mediated visual activity in the developing rat superior colliculus (SC). Our results suggest that the plasticity-related NGFI-A protein might play a role in the developmental plasticity of the superficial layers of the rat SC after eye opening.

  16. Pure neuritic leprosy: Current status and relevance.

    PubMed

    Rao, P Narasimha; Suneetha, Sujai

    2016-01-01

    Pure neuritic leprosy has always been an enigma due to its clinical and management ambiguities. Although only the Indian Association of Leprologist's classification recognizes 'pure neuritic leprosy' as a distinct sub group of leprosy, cases nonetheless are reported from various countries of Asia, Africa, South America and Europe, indicating its global relevance. It is important to maintain pure neuritic leprosy as a subgroup as it constitutes a good percentage of leprosy cases reported from India, which contributes to more than half of global leprosy numbers. Unfortunately, a high proportion of these patients present with Grade 2 disability at the time of initial reporting itself due to the early nerve involvement. Although skin lesions are absent by definition, when skin biopsies were performed from the skin along the distribution of the affected nerve, a proportion of patients demonstrated leprosy pathology, revealing sub-clinical skin involvement. In addition on follow-up, skin lesions are noted to develop in up to 20% of pure neuritic leprosy cases, indicating its progression to manifest cutaneous disease. Over the decades, the confirmation of diagnosis of pure neuritic leprosy has been subjective, however, with the arrival and use of high-resolution ultrasonography (HRUS) for nerve imaging, we have a tool not only to objectively measure and record the nerve thickening but also to assess the morphological alterations in the nerve including echo texture, fascicular pattern and vascularity. Management of pure neuritic leprosy requires multidrug therapy along with appropriate dose of systemic corticosteroids, for both acute and silent neuritis. Measures for pain relief, self-care of limbs and physiotherapy are important to prevent as well as manage disabilities in this group of patients.

  17. Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth.

    PubMed

    Lopez-Verrilli, M A; Caviedes, A; Cabrera, A; Sandoval, S; Wyneken, U; Khoury, M

    2016-04-21

    Mesenchymal stem cells (MSCs) obtained from bone marrow (BM) have been shown to promote neuronal growth and survival. However, the comparative effects of MSCs of different sources, including menstrual MSCs (MenSCs), BM, umbilical cord and chorion stem cells on neurite outgrowth have not yet been explored. Moreover, the modulatory effects of MSCs may be mediated by paracrine mechanisms, i.e. by molecules contained in the MSC secretome that includes soluble factors and extracellular vesicles such as microvesicles and/or exosomes. The biogenesis of microvesicles, characterized by a vesicle diameter of 50 to 1000 nm, involves membrane shedding while exosomes, of 30 to 100 nm in diameter, originate in the multivesicular bodies within cells. Both vesicle types, which can be harvested from the conditioned media of cell cultures by differential centrifugation steps, regulate the function of target cells due to their molecular content of microRNA, mRNA, proteins and lipids. Here, we compared the effect of human menstrual MSCs (MenSCs) mediated by cell-cell contact, by their total secretome or by secretome-derived extracellular vesicles on neuritic outgrowth in primary neuronal cultures. The contact of MenSCs with cortical neurons inhibited neurite outgrowth while their total secretome enhanced it. The extracellular vesicle fractions showed a distinctive effect: while the exosome-enriched fraction enhanced neurite outgrowth, the microvesicle-enriched fraction displayed an inhibitory effect. When we compared exosome fractions of different human MSC sources, MenSC exosomes showed superior effects on the growth of the longest neurite in cortical neurons and had a comparable effect to BM-SC exosomes on neurite outgrowth in dorsal root ganglia neurons. Thus, the growth-stimulating effects of exosomes derived from MenSCs as well as the opposing effects of both extracellular vesicle fractions provide important information regarding the potential use of MenSCs as therapeutic

  18. Synergistic Effects of 3D ECM and Chemogradients on Neurite Outgrowth and Guidance: A Simple Modeling and Microfluidic Framework

    PubMed Central

    Srinivasan, Parthasarathy; Zervantonakis, Ioannis K.; Kothapalli, Chandrasekhar R.

    2014-01-01

    During nervous system development, numerous cues within the extracellular matrix microenvironment (ECM) guide the growing neurites along specific pathways to reach their intended targets. Neurite motility is controlled by extracellular signal sensing through the growth cone at the neurite tip, including chemoattractive and repulsive cues. However, it is difficult to regenerate and restore neurite tracts, lost or degraded due to an injury or disease, in the adult central nervous system. Thus, it is important to evaluate the dynamic interplay between ECM and the concentration gradients of these cues, which would elicit robust neuritogenesis. Such information is critical in understanding the processes involved in developmental biology, and in developing high-fidelity neurite regenerative strategies post-injury, and in drug discovery and targeted therapeutics for neurodegenerative conditions. Here, we quantitatively investigated this relationship using a combination of mathematical modeling and in vitro experiments, and determined the synergistic role of guidance cues and ECM on neurite outgrowth and turning. Using a biomimetic microfluidic system, we have shown that cortical neurite outgrowth and turning under chemogradients (IGF-1 or BDNF) within 3D scaffolds is highly regulated by the source concentration of the guidance cue and the physical characteristics of the scaffold. A mechanistic-driven partial differential equation model of neurite outgrowth has been proposed, which could also be used prospectively as a predictive tool. The parameters for the chemotaxis term in the model are determined from the experimental data using our microfluidic assay. Resulting model simulations demonstrate how neurite outgrowth was critically influenced by the experimental variables, which was further supported by experimental data on cell-surface-receptor expressions. The model results are in excellent agreement with the experimental findings. This integrated approach represents a

  19. Essential role of NKCC1 in NGF-induced neurite outgrowth

    SciTech Connect

    Nakajima, Ken-ichi; Miyazaki, Hiroaki; Niisato, Naomi; Marunaka, Yoshinori . E-mail: marunaka@koto.kpu-m.ac.jp

    2007-08-03

    The Na{sup +}/K{sup +}/2Cl{sup -} cotransporter (NKCC) mediates electroneutral transport of 2Cl{sup -} coupled with Na{sup +} and K{sup +} across the plasma membrane, and plays crucial roles in Cl{sup -} uptake into the cells, homeostasis of cellular Cl{sup -}, and cell volume regulation. However, we have very limited information on the roles of ion transporters in neurite outgrowth in neuronal cells. In the present study, we report the role of NKCC1 (an isoform of NKCC) in NGF-induced neurite outgrowth of rat pheochromocytoma PC12D cells. The expression level of NKCC1 protein was increased by NGF treatment. Knock-down of NKCC1 by RNA interference (RNAi) drastically diminished the NGF-induced neurite outgrowth. Transfection of enhanced green fluorescent protein (EGFP)-tagged rat NKCC1 into cells for clarification of intracellular localization of NKCC1 revealed that the EGFP-rNKCC1 was mainly localized in the plasma membrane at growth cone during neurite outgrowth. These observations suggest that NKCC1 plays a fundamental role in NGF-induced neurite outgrowth of PC12D cells.

  20. The role of bioactive compounds on the promotion of neurite outgrowth.

    PubMed

    More, Sandeep Vasant; Koppula, Sushruta; Kim, In-Su; Kumar, Hemant; Kim, Byung-Wook; Choi, Dong-Kug

    2012-06-04

    Neurite loss is one of the cardinal features of neuronal injury. Apart from neuroprotection, reorganization of the lost neuronal network in the injured brain is necessary for the restoration of normal physiological functions. Neuritogenic activity of endogenous molecules in the brain such as nerve growth factor is well documented and supported by scientific studies which show innumerable compounds having neurite outgrowth activity from natural sources. Since the damaged brain lacks the reconstructive capacity, more efforts in research are focused on the identification of compounds that promote the reformation of neuronal networks. An abundancy of natural resources along with the corresponding activity profiles have shown promising results in the field of neuroscience. Recently, importance has also been placed on understanding neurite formation by natural products in relation to neuronal injury. Arrays of natural herbal products having plentiful active constituents have been found to enhance neurite outgrowth. They act synergistically with neurotrophic factors to promote neuritogenesis in the diseased brain. Therefore use of natural products for neuroregeneration provides new insights in drug development for treating neuronal injury. In this study, various compounds from natural sources with potential neurite outgrowth activity are reviewed in experimental models.

  1. Inhibition of Nischarin Expression Promotes Neurite Outgrowth through Regulation of PAK Activity

    PubMed Central

    Ding, Yuemin; Li, Yuying; Lu, Lingchao; Zhang, Ruyi; Zeng, Linghui; Wang, Linlin; Zhang, Xiong

    2015-01-01

    Nischarin is a cytoplasmic protein expressed in various organs that plays an inhibitory role in cell migration and invasion and the carcinogenesis of breast cancer cells. We previously reported that Nischarin is highly expressed in neuronal cell lines and is differentially expressed in the brain tissue of adult rats. However, the physiological function of Nischarin in neural cells remains unknown. Here, we show that Nischarin is expressed in rat primary cortical neurons but not in astrocytes. Nischarin is localized around the nucleus and dendrites. Using shRNA to knockdown the expression of endogenous Nischarin significantly increases the percentage of neurite-bearing cells, remarkably increases neurite length, and accelerates neurite extension in neuronal cells. Silencing Nischarin expression also promotes dendrite elongation in rat cortical neurons where Nischarin interacts with p21-activated kinase 1/2 (PAK1/2) and negatively regulates phosphorylation of both PAK1 and PAK2. The stimulation of neurite growth observed in cells with decreased levels of Nischarin is partially abolished by IPA3-mediated inhibition of PAK1 activity. Our findings indicate that endogenous Nischarin inhibits neurite outgrowth by blocking PAK1 activation in neurons. PMID:26670864

  2. Rab22 controls NGF signaling and neurite outgrowth in PC12 cells.

    PubMed

    Wang, Liang; Liang, Zhimin; Li, Guangpu

    2011-10-01

    Rab22 is a small GTPase that is localized on early endosomes and regulates early endosomal sorting. This study reports that Rab22 promotes nerve growth factor (NGF) signaling-dependent neurite outgrowth and gene expression in PC12 cells by sorting NGF and the activated/phosphorylated receptor (pTrkA) into signaling endosomes to sustain signal transduction in the cell. NGF binding induces the endocytosis of pTrkA into Rab22-containing endosomes. Knockdown of Rab22 via small hairpin RNA (shRNA) blocks NGF-induced pTrkA endocytosis into the endosomes and gene expression (VGF) and neurite outgrowth. Overexpression of human Rab22 can rescue the inhibitory effects of the Rab22 shRNA, suggesting a specific Rab22 function in NGF signal transduction, rather than off-target effects. Furthermore, the Rab22 effector, Rabex-5, is necessary for NGF-induced neurite outgrowth and gene expression, as evidenced by the inhibitory effect of shRNA-mediated knockdown of Rabex-5. Disruption of the Rab22-Rabex-5 interaction via overexpression of the Rab22-binding domain of Rabex-5 in the cell also blocks NGF-induced neurite outgrowth, suggesting a critical role of Rab22-Rabex-5 interaction in the biogenesis of NGF-signaling endosomes to sustain the signal for neurite outgrowth. These data provide the first evidence for an early endosomal Rab GTPase as a positive regulator of NGF signal transduction and cell differentiation.

  3. APP independent and dependent effects on neurite outgrowth are modulated by the receptor associated protein, RAP

    PubMed Central

    Billnitzer, Andrew J.; Barskaya, Irina; Yin, Cailing; Perez, Ruth G.

    2013-01-01

    Amyloid precursor protein (APP) and its secreted form, sAPP, contribute to the development of neurons in hippocampus, a brain region critical for learning and memory. Full-length APP binds the low-density lipoprotein receptor-related protein (LRP), which stimulates APP endocytosis. LRP also contributes to neurite growth. Furthermore, the receptor associated protein (RAP) binds LRP in a manner that blocks APP-LRP interactions. To elucidate APP contributions to neurite growth for full-length APP and sAPP, we cultured wild type (WT) and APP knockout (KO) neurons in sAPPα and/or RAP and measured neurite outgrowth at 1 day in vitro. Our data reveal that WT neurons had less axonal outgrowth including less axon branching. RAP treatment potentiated the inhibitory effects of APP. KO neurons had significantly more outgrowth and branching, especially in response to RAP, effects which were also associated with ERK2 activation. Our results affirm a major inhibitory role by full-length APP on all aspects of axonal and dendritic outgrowth, and show that RAP-LRP binding stimulated axon growth independently of APP. These findings support a major role for APP as an inhibitor of neurite growth and reveal novel signaling functions for LRP that may be disrupted by Alzheimer’s pathology or therapies aimed at APP processing. PMID:23061396

  4. APP independent and dependent effects on neurite outgrowth are modulated by the receptor associated protein (RAP).

    PubMed

    Billnitzer, Andrew J; Barskaya, Irina; Yin, Cailing; Perez, Ruth G

    2013-01-01

    Amyloid precursor protein (APP) and its secreted form, sAPP, contribute to the development of neurons in hippocampus, a brain region critical for learning and memory. Full-length APP binds the low-density lipoprotein receptor-related protein (LRP), which stimulates APP endocytosis. LRP also contributes to neurite growth. Furthermore, the receptor associated protein (RAP) binds LRP in a manner that blocks APP-LRP interactions. To elucidate APP contributions to neurite growth for full-length APP and sAPP, we cultured wild type (WT) and APP knockout (KO) neurons in sAPPα and/or RAP and measured neurite outgrowth at 1 day in vitro. Our data reveal that WT neurons had less axonal outgrowth including less axon branching. RAP treatment potentiated the inhibitory effects of APP. KO neurons had significantly more outgrowth and branching, especially in response to RAP, effects which were also associated with ERK2 activation. Our results affirm a major inhibitory role by full-length APP on all aspects of axonal and dendritic outgrowth, and show that RAP-LRP binding stimulated axon growth independently of APP. These findings support a major role for APP as an inhibitor of neurite growth and reveal novel signaling functions for LRP that may be disrupted by Alzheimer's pathology or therapies aimed at APP processing. © 2012 International Society for Neurochemistry.

  5. Intracellular Nogo-A facilitates initiation of neurite formation in mouse midbrain neurons in vitro.

    PubMed

    Kurowska, Z; Brundin, P; Schwab, M E; Li, J-Y

    2014-01-03

    Nogo-A is a transmembrane protein originally discovered in myelin, produced by postnatal CNS oligodendrocytes. Nogo-A induces growth cone collapse and inhibition of axonal growth in the injured adult CNS. In the intact CNS, Nogo-A functions as a negative regulator of growth and plasticity. Nogo-A is also expressed by certain neurons. Neuronal Nogo-A depresses long-term potentiation in the hippocampus and modulates neurite adhesion and fasciculation during development in mice. Here we show that Nogo-A is present in neurons derived from human midbrain (Lund human mesencephalic (LUHMES) cell line), as well as in embryonic and postnatal mouse midbrain (dopaminergic) neurons. In LUHMES cells, Nogo-A was upregulated threefold upon differentiation and neurite extension. Nogo-A was localized intracellularly in differentiated LUHMES cells. Cultured midbrain (dopaminergic) neurons from Nogo-A knock-out mice exhibited decreased numbers of neurites and branches when compared with neurons from wild-type (WT) mice. However, this phenotype was not observed when the cultures from WT mice were treated with an antibody neutralizing plasma membrane Nogo-A. In vivo, neither the regeneration of nigrostriatal tyrosine hydroxylase fibers, nor the survival of nigral dopaminergic neurons after partial 6-hydroxydopamine lesions was affected by Nogo-A deletion. These results indicate that during maturation of cultured midbrain (dopaminergic) neurons, intracellular Nogo-A supports neurite growth initiation and branch formation. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Neurite outgrowth on electrospun PLLA fibers is enhanced by exogenous electrical stimulation.

    PubMed

    Koppes, A N; Zaccor, N W; Rivet, C J; Williams, L A; Piselli, J M; Gilbert, R J; Thompson, D M

    2014-08-01

    Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from dorsal root ganglia neurons than the presence of electrical stimulation or aligned topography alone. To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide films or electrospun fibers (2 µm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurites, indicating topographical cues are responsible for guiding neurite extension. Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury.

  7. Neurite outgrowth on electrospun PLLA fibers is enhanced by exogenous electrical stimulation

    NASA Astrophysics Data System (ADS)

    Koppes, A. N.; Zaccor, N. W.; Rivet, C. J.; Williams, L. A.; Piselli, J. M.; Gilbert, R. J.; Thompson, D. M.

    2014-08-01

    Objective. Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from dorsal root ganglia neurons than the presence of electrical stimulation or aligned topography alone. Approach. To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide films or electrospun fibers (2 µm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Main Results. Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurites, indicating topographical cues are responsible for guiding neurite extension. Significance. Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury.

  8. Bcl-xL Is Necessary for Neurite Outgrowth in Hippocampal Neurons

    PubMed Central

    Park, Han-A; Licznerski, Pawel; Alavian, Kambiz N.; Shanabrough, Marya

    2015-01-01

    Abstract Aims: B-cell lymphoma-extra large (Bcl-xL) protects survival in dividing cells and developing neurons, but was not known to regulate growth. Growth and synapse formation are indispensable for neuronal survival in development, inextricably linking these processes. We have previously shown that, during synaptic plasticity, Bcl-xL produces changes in synapse number, size, activity, and mitochondrial metabolism. In this study, we determine whether Bcl-xL is required for healthy neurite outgrowth and whether neurite outgrowth is necessary for survival in developing neurons in the presence or absence of stress. Results: Depletion of endogenous Bcl-xL impairs neurite outgrowth in hippocampal neurons followed by delayed cell death which is dependent on upregulation of death receptor 6 (DR6), a molecule that regulates axonal pruning. Under hypoxic conditions, Bcl-xL-depleted neurons demonstrate increased vulnerability to neuronal process loss and to death compared with hypoxic controls. Endogenous DR6 expression and upregulation during hypoxia are associated with worsened neurite damage; depletion of DR6 partially rescues neuronal process loss, placing DR6 downstream of the effects of Bcl-xL on neuronal process outgrowth and protection. In vivo ischemia produces early increases in DR6, suggesting a role for DR6 in brain injury. Innovation: We suggest that DR6 levels are usually suppressed by Bcl-xL; Bcl-xL depletion leads to upregulation of DR6, failure of neuronal outgrowth in nonstressed cells, and exacerbation of hypoxia-induced neuronal injury. Conclusion: Bcl-xL regulates neuronal outgrowth during development and protects neurites from hypoxic insult, as opposed by DR6. Factors that enhance neurite formation may protect neurons against hypoxic injury or neurodegenerative stimuli. Antioxid. Redox Signal. 22, 93–108. PMID:24787232

  9. Acetylcholinesterase modulates neurite outgrowth on fibronectin.

    PubMed

    Giordano, C; Poiana, G; Augusti-Tocco, G; Biagioni, S

    2007-05-04

    Acetylcholinesterase (AChE) has been reported to be involved in the modulation of neurite outgrowth. To understand the role played by different domains, we transfected neuroblastoma cells with three constructs containing the invariant region of AChE, differing in the exon encoding the C-terminus and therefore in AChE cellular fate and localization. All isoforms increased neurite extension, suggesting the involvement of the invariant domain [A. De Jaco, G. Augusti-Tocco, S. Biagioni, Alternative AChE molecular forms exhibit similar ability to induce neurite outgrowth, J. Neurosci. Res. 70 (2002) 756-765]. The peripheral anionic site (PAS) is encoded by invariant exons and represents the domain involved in non-cholinergic functions of AChE. Masking of PAS with fasciculin results in a significant decrease of neurite outgrowth in all clones overexpressing AChE. A strong reduction was also observed when clones were cultured on fibronectin. Treatment of clones with fasciculin, therefore masking PAS, abolished the fibronectin-induced reduction. The inhibition of the catalytic site cannot revert the fibronectin effect. Finally, when clones were cultured on fibronectin in the presence of heparin, a ligand of fibronectin, the inhibitory effect was completely reversed. Our results indicate that PAS could directly or indirectly mediate AChE/fibronectin interactions.

  10. NIF (neurite-inducing factor): a novel peptide inducing neurite formation in PC12 cells.

    PubMed

    Wagner, J A

    1986-01-01

    Neurite-inducing factor (NIF) is a novel protein that has been partially purified from mouse submaxillary glands. NIF induces neurite formation in PC12 pheochromocytoma cells, and the NIF-induced neurites are indistinguishable from NGF-induced neurites in both their morphology and the time course of their formation. Neurite-inducing activity can be recovered at a position corresponding to a molecular weight of 20,000 Da after fractionation of partially purified preparations via SDS-PAGE. Partially purified preparations of NIF are about half as potent as pure beta NGF, and since the neurite-inducing activity does not correspond to any of the major proteins in this fraction, specific activity of purified NIF will probably be significantly greater than the 60 ng/ml found for our partially purified material. NIF is distinct from beta NGF by four criteria: (1) antibodies to beta NGF can block the activity of beta NGF, but not the activity of NIF; (2) beta NGF can induce ornithine decarboxylase (ODC) in PC12 cells at concentrations significantly below those required to induce neurites, while NIF induces ODC only at concentrations greatly in excess of those required to induce neurite formation; (3) by the criterion of SDS-PAGE, there is insufficient beta NGF in our partially purified preparations of NIF to explain the biological activity of this fraction; and (4) the biological activity of NIF has a molecular weight (20,000 Da) that is distinct from beta NGF (13,000 Da). We conclude that NIF is probably a novel peptide that is very active in promoting morphological differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Heat shock induces neurite outgrowth in PC12m3 cells via the p38 mitogen-activated protein kinase pathway.

    PubMed

    Kano, Yoshio; Nakagiri, Sachiko; Nohno, Tsutomu; Hiragami, Fukumi; Kawamura, Kenji; Kadota, Michiyo; Numata, Keizo; Koike, Yoshihisa; Furuta, Tomohisa

    2004-11-12

    We investigated the role of the p38 mitogen-activated protein kinase (MAPK) pathway in heat-shock-induced neurite outgrowth of PC12 mutant cells in which nerve growth factor (NGF)-induced neurite outgrowth is impaired. When cultures of the PC12 mutant (PC12m3) cells were exposed to heat stress at 44 degrees C for 10 min, activity of p38 MAPK increased and neurite outgrowth was greatly enhanced. The neurite extension was inhibited by the p38 MAPK inhibitor BS203580. Longer heat treatment of PC12m3 cells provoked cell death, which was enhanced by SB203580. These findings suggest that heat-induced activation of p38 MAPK is responsible for the neurite outgrowth and survival of PC12m3 cells.

  12. Teneurin-4 promotes cellular protrusion formation and neurite outgrowth through focal adhesion kinase signaling

    PubMed Central

    Suzuki, Nobuharu; Numakawa, Tadahiro; Chou, Joshua; de Vega, Susana; Mizuniwa, Chihiro; Sekimoto, Kaori; Adachi, Naoki; Kunugi, Hiroshi; Arikawa-Hirasawa, Eri; Yamada, Yoshihiko; Akazawa, Chihiro

    2014-01-01

    Teneurin-4 (Ten-4), a transmembrane protein, is highly expressed in the central nervous system; however, its cellular and molecular function in neuronal differentiation remains unknown. In this study, we aimed to elucidate the function of Ten-4 in neurite outgrowth. Ten-4 expression was induced during neurite outgrowth of the neuroblastoma cell line Neuro-2a. Ten-4 protein was localized at the neurite growth cones. Knockdown of Ten-4 expression in Neuro-2a cells decreased the formation of the filopodia-like protrusions and the length of individual neurites. Conversely, overexpression of Ten-4 promoted filopodia-like protrusion formation. In addition, knockdown and overexpression of Ten-4 reduced and elevated the activation of focal adhesion kinase (FAK) and Rho-family small GTPases, Cdc42 and Rac1, key molecules for the membranous protrusion formation downstream of FAK, respectively. Inhibition of the activation of FAK and neural Wiskott-Aldrich syndrome protein (N-WASP), which is a downstream regulator of FAK and Cdc42, blocked protrusion formation by Ten-4 overexpression. Further, Ten-4 colocalized with phosphorylated FAK in the filopodia-like protrusion regions. Together, our findings show that Ten-4 is a novel positive regulator of cellular protrusion formation and neurite outgrowth through the FAK signaling pathway.—Suzuki, N., Numakawa, T., Chou, J., de Vega, S., Mizuniwa, C., Sekimoto, K., Adachi, N., Kunugi, H., Arikawa-Hirasawa, E., Yamada, Y., Akazawa, C. Teneurin-4 promotes cellular protrusion formation and neurite outgrowth through focal adhesion kinase signaling. PMID:24344332

  13. SCG10, a microtubule destabilizing factor, stimulates the neurite outgrowth by modulating microtubule dynamics in rat hippocampal primary cultured neurons.

    PubMed

    Morii, Hiroshi; Shiraishi-Yamaguchi, Yoko; Mori, Nozomu

    2006-09-01

    Microtubule dynamics, one of the key elements in neurite outgrowth, is regulated by various regulatory factors to determine the behavior of the neuronal growth cone and to form the specialized neuronal shape. SCG10 is a neuron-specific stathmin protein with a potent microtubule destabilizing factor and is enriched in the growth cones of the developing neurons. We investigated the functional role of SCG10 in neurite outgrowth using rat hippocampal primary cultured neurons. Genetic manipulation of SCG10 using a short-interfering RNA duplex markedly decreased the SCG10 expression level and significantly suppressed neurite outgrowth. This result was confirmed by immunodepletion experiments. On the other hand, the protein transduction of SCG10 using a polyarginine tag stimulated neurite outgrowth. Such manipulation of the SCG10 expression level affected microtubule morphology within the growth cones. A decrease in the SCG10 level converted the morphology to a more stable state, while an increase converted the morphology to a more dynamic state. However, an excess of SCG10 induced neurite retraction due to an excess of microtubule disassembly. These results suggest that SCG10 serves as an important regulatory factor of growth cone motility by enhancing microtubule dynamics, possibly through increasing the catastrophe frequency.

  14. Effect of viscosity on neurite outgrowth and fractal dimension.

    PubMed

    Caserta, F; Hausman, R E; Eldred, W D; Kimmel, C; Stanley, H E

    1992-03-02

    The growth mechanism by which neurons achieve their characteristic ramified morphology has long been of interest, but determining whether physical parameters, such as viscosity, are important has been difficult due to a lack of useful hypotheses and standard reproducible techniques. We have recently shown that neurons exhibit fractal behavior and that their fractal dimension (df) is consistent with a physical process called diffusion-limited aggregation (DLA). We suggested that this DLA behavior might stem from viscosity differences, chemical gradients or electrical fields (Caserta et al., Phys. Rev. Lett., 64 (1990) 95-98). DLA is a model for a large family of growth processes. In order for a process to fit the DLA model, the growth rate must be proportional to the gradient of a field at a point on the growing structure (Feder, Plenum, New York, 1988, Ch. 4). Chemical, electrical, or fluid pressure fields can fit the model depending on the particular physical system under study. Here, we studied growth of retinal neurons from chick embryos in culture media of various fluid viscosities. Thus, we test whether DLA in this system was based on a fluid pressure field. As viscosity was increased from 1 to 4.3 cps, the number of neurite branches decreased 98%. However, there was no effect on df. Over this range of viscosities, total cellular protein synthesis decreased only 17%. The results indicate that, while differences in viscosity between the interior and exterior of the cell affect neurite outgrowth, they do not affect the fractal behavior of neurons. Thus, viscosity differences are not the basis for the DLA pattern of neuronal arborization.

  15. Ethanol-induced disruption of Golgi apparatus morphology, primary neurite number and cellular orientation in developing cortical neurons.

    PubMed

    Powrozek, Teresa A; Olson, Eric C

    2012-11-01

    Prenatal ethanol exposure disrupts cortical neurite initiation and outgrowth, but prior studies have reported both ethanol-dependent growth promotion and inhibition. To resolve this ambiguity and better approximate in vivo conditions, we quantitatively analyzed neuronal morphology using a new, whole hemisphere explant model. In this model, Layer 6 (L6) cortical neurons migrate, laminate and extend neurites in an organotypic fashion. To selectively label L6 neurons, we performed ex utero electroporation of a GFP expression construct at embryonic day 13 and allowed the explants to develop for 2 days in vitro. Explants were exposed to (400 mg/dL) ethanol for either 4 or 24 h prior to fixation. Complete 3-D reconstructions were made of >80 GFP-positive neurons in each experimental condition. Acute responses to ethanol exposure included compaction of the Golgi apparatus accompanied by elaboration of supernumerary primary apical neurites, as well as a modest (∼15%) increase in higher order apical neurite length. With longer exposure time, ethanol exposure leads to a consistent, significant disorientation of the cell (cell body, primary apical neurite, and Golgi) with respect to the pial surface. The effects on cellular orientation were accompanied by decreased expression of cytoskeletal elements, microtubule-associated protein 2 and F-actin. These findings indicate that upon exposure to ethanol, developing L6 neurons manifest disruptions in Golgi apparatus and cytoskeletal elements which may in turn trigger selective and significant perturbations to primary neurite formation and neuronal polarity.

  16. Olanzapine Prevents the PCP-induced Reduction in the Neurite Outgrowth of Prefrontal Cortical Neurons via NRG1

    PubMed Central

    Zhang, Qingsheng; Yu, Yinghua; Huang, Xu-Feng

    2016-01-01

    Accumulating evidence suggests that reducing neurite outgrowth and synaptic plasticity plays a critical role in the pathology of cognitive deficits in schizophrenia. The N-methyl-D-aspartate receptor antagonist phencyclidine (PCP) can induce symptoms of schizophrenia as well as reduce dendritic spine density and neurite growth. The antipsychotic drug olanzapine may improve these deficits. This study aimed to investigate: (1) if olanzapine prevents PCP-induced suppression of neurite outgrowth and synaptic protein expression; (2) if olanzapine affects the Akt-GSK3 signaling pathway; and (3) the role of neuregulin 1 (NRG1) in this process. Immunofluorescence revealed that PCP treatment for 24 hours reduces both neurite length (28.5%) and the number of neurite branches (35.6%) in primary prefrontal cortical neuron cultures. PCP reduced protein and mRNA expressions of synaptophysin (24.9% and 23.2%, respectively) and PSD95 (31.5% and 21.4%, respectively), and the protein expression of p-Akt (26.7%) and p-GSK3β (35.2%). Olanzapine co-treatment prevented these PCP-induced effects in normal neurons but not in neurons from NRG1-knockout mice. These results indicate that NRG1 mediates the preventive effects of olanzapine on the PCP-induced impairment of neurite outgrowth and synaptic protein expression. This study provides potential targets for interventions on improving the efficacy of olanzapine on preventing cognitive deficits in schizophrenia. PMID:26781398

  17. Olanzapine Prevents the PCP-induced Reduction in the Neurite Outgrowth of Prefrontal Cortical Neurons via NRG1.

    PubMed

    Zhang, Qingsheng; Yu, Yinghua; Huang, Xu-Feng

    2016-01-19

    Accumulating evidence suggests that reducing neurite outgrowth and synaptic plasticity plays a critical role in the pathology of cognitive deficits in schizophrenia. The N-methyl-D-aspartate receptor antagonist phencyclidine (PCP) can induce symptoms of schizophrenia as well as reduce dendritic spine density and neurite growth. The antipsychotic drug olanzapine may improve these deficits. This study aimed to investigate: (1) if olanzapine prevents PCP-induced suppression of neurite outgrowth and synaptic protein expression; (2) if olanzapine affects the Akt-GSK3 signaling pathway; and (3) the role of neuregulin 1 (NRG1) in this process. Immunofluorescence revealed that PCP treatment for 24 hours reduces both neurite length (28.5%) and the number of neurite branches (35.6%) in primary prefrontal cortical neuron cultures. PCP reduced protein and mRNA expressions of synaptophysin (24.9% and 23.2%, respectively) and PSD95 (31.5% and 21.4%, respectively), and the protein expression of p-Akt (26.7%) and p-GSK3β (35.2%). Olanzapine co-treatment prevented these PCP-induced effects in normal neurons but not in neurons from NRG1-knockout mice. These results indicate that NRG1 mediates the preventive effects of olanzapine on the PCP-induced impairment of neurite outgrowth and synaptic protein expression. This study provides potential targets for interventions on improving the efficacy of olanzapine on preventing cognitive deficits in schizophrenia.

  18. Screening of natural medicines that efficiently activate neurite outgrowth in PC12 cells in C2C12-cultured medium.

    PubMed

    Uezato, Tadayoshi; Sato, Eiji; Miura, Naoyuki

    2012-02-01

    We have studied the effects of natural medicines on neurite outgrowth in PC12D cells in a cultured medium of C2C12 cells. Derived from mouse myoblasts, the C2C12 cells secrete neurotrophic factors including nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3). The secretion of these neurotrophins from C2C12 cells stimulate neurite outgrowth in PC12D cells. We have screened a total of 120 samples and found five natural medicines: Trichosanthes Root, Asiasarum Root, Lycium Bark, Sinomenium Stem, and Dictamni radicis Cortex, that enhance the activity of C2C12-cultured medium to stimulate neurite outgrowth in PC12D cells. These natural medicines promoted not only neurite outgrowth but also stabilized the neurite formation in PC12D cells for several days. RT-PCR analysis showed that NGF was significantly increased with Trichosanthes and Lycium Bark. However, BDNF was slightly decreased with Lycium Bark, Sinomenium Stem, and Dictamni radicis Cortex. NT-3 was increased slightly by all of these natural medicines except Sinomenium Stem. All these five natural medicines significantly increased the number and length of neurites in PC12D cells in co-culture with C2C12 cells.

  19. Fibroblast Growth Factor Receptor-2 Contributes to the Basic Fibroblast Growth Factor-Induced Neuronal Differentiation in Canine Bone Marrow Stromal Cells via Phosphoinositide 3-Kinase/Akt Signaling Pathway

    PubMed Central

    Nakano, Rei; Edamura, Kazuya; Nakayama, Tomohiro; Narita, Takanori; Okabayashi, Ken; Sugiya, Hiroshi

    2015-01-01

    Bone marrow stromal cells (BMSCs) are considered as candidates for regenerative therapy and a useful model for studying neuronal differentiation. The role of basic fibroblast growth factor (bFGF) in neuronal differentiation has been previously studied; however, the signaling pathway involved in this process remains poorly understood. In this study, we investigated the signaling pathway in the bFGF-induced neuronal differentiation of canine BMSCs. bFGF induced the mRNA expression of the neuron marker, microtubule associated protein-2 (MAP2) and the neuron-like morphological change in canine BMSCs. In the presence of inhibitors of fibroblast growth factor receptors (FGFR), phosphatidylinositol 3-kinase (PI3K) and Akt, i.e., SU5402, LY294002, and MK2206, respectively, bFGF failed to induce the MAP2 mRNA expression and the neuron-like morphological change. bFGF induced Akt phosphorylation, but it was attenuated by the FGFR inhibitor SU5402 and the PI3K inhibitor LY294002. In canine BMSCs, expression of FGFR-1 and FGFR-2 was confirmed, but only FGFR-2 activation was detected by cross-linking and immunoprecipitation analysis. Small interfering RNA-mediated knockdown of FGFR-2 in canine BMSCs resulted in the attenuation of bFGF-induced Akt phosphorylation. These results suggest that the FGFR-2/PI3K/Akt signaling pathway is involved in the bFGF-induced neuronal differentiation of canine BMSCs. PMID:26523832

  20. An algorithm for neurite outgrowth reconstruction

    NASA Technical Reports Server (NTRS)

    Weaver, Christina M.; Pinezich, John D.; Lindquist, W. Brent; Vazquez, Marcelo E.

    2003-01-01

    We present a numerical method which provides the ability to analyze digitized microscope images of retinal explants and quantify neurite outgrowth. Few parameters are required as input and limited user interaction is necessary to process an entire experiment of images. This eliminates fatigue related errors and user-related bias common to manual analysis. The method does not rely on stained images and handles images of variable quality. The algorithm is used to determine time and dose dependent, in vitro, neurotoxic effects of 1 GeV per nucleon iron particles in retinal explants. No neurotoxic effects are detected until 72 h after exposure; at 72 h, significant reductions of neurite outgrowth occurred at doses higher than 10 cGy.

  1. A New Role for TIMP-1 in Modulating Neurite Outgrowth and Morphology of Cortical Neurons

    PubMed Central

    Ould-yahoui, Adlane; Tremblay, Evelyne; Sbai, Oualid; Ferhat, Lotfi; Bernard, Anne; Charrat, Eliane; Gueye, Yatma; Lim, Ngee Han; Brew, Keith; Risso, Jean-Jacques; Dive, Vincent; Khrestchatisky, Michel; Rivera, Santiago

    2009-01-01

    Background Tissue inhibitor of metalloproteinases-1 (TIMP-1) displays pleiotropic activities, both dependent and independent of its inhibitory activity on matrix metalloproteinases (MMPs). In the central nervous system (CNS), TIMP-1 is strongly upregulated in reactive astrocytes and cortical neurons following excitotoxic/inflammatory stimuli, but no information exists on its effects on growth and morphology of cortical neurons. Principal Findings We found that 24 h incubation with recombinant TIMP-1 induced a 35% reduction in neurite length and significantly increased growth cones size and the number of F-actin rich microprocesses. TIMP-1 mediated reduction in neurite length affected both dendrites and axons after 48 h treatment. The effects on neurite length and morphology were not elicited by a mutated form of TIMP-1 inactive against MMP-1, -2 and -3, and still inhibitory for MMP-9, but were mimicked by a broad spectrum MMP inhibitor. MMP-9 was poorly expressed in developing cortical neurons, unlike MMP-2 which was present in growth cones and whose selective inhibition caused neurite length reductions similar to those induced by TIMP-1. Moreover, TIMP-1 mediated changes in cytoskeleton reorganisation were not accompanied by modifications in the expression levels of actin, βIII-tubulin, or microtubule assembly regulatory protein MAP2c. Transfection-mediated overexpression of TIMP-1 dramatically reduced neuritic arbour extension in the absence of detectable levels of released extracellular TIMP-1. Conclusions Altogether, TIMP-1 emerges as a modulator of neuronal outgrowth and morphology in a paracrine and autrocrine manner through the inhibition, at least in part, of MMP-2 and not MMP-9. These findings may help us understand the role of the MMP/TIMP system in post-lesion pre-scarring conditions. PMID:20011518

  2. Synchronous symmetry breaking in neurons with different neurite counts.

    PubMed

    Wissner-Gross, Zachary D; Scott, Mark A; Steinmeyer, Joseph D; Yanik, Mehmet Fatih

    2013-01-01

    As neurons develop, several immature processes (i.e., neurites) grow out of the cell body. Over time, each neuron breaks symmetry when only one of its neurites grows much longer than the rest, becoming an axon. This symmetry breaking is an important step in neurodevelopment, and aberrant symmetry breaking is associated with several neuropsychiatric diseases, including schizophrenia and autism. However, the effects of neurite count in neuronal symmetry breaking have never been studied. Existing models for neuronal polarization disagree: some predict that neurons with more neurites polarize up to several days later than neurons with fewer neurites, while others predict that neurons with different neurite counts polarize synchronously. We experimentally find that neurons with different neurite counts polarize synchronously. We also show that despite the significant differences among the previously proposed models, they all agree with our experimental findings when the expression levels of the proteins responsible for symmetry breaking increase with neurite count. Consistent with these results, we observe that the expression levels of two of these proteins, HRas and shootin1, significantly correlate with neurite count. This coordinated symmetry breaking we observed among neurons with different neurite counts may be important for synchronized polarization of neurons in developing organisms.

  3. Synchronous Symmetry Breaking in Neurons with Different Neurite Counts

    PubMed Central

    Wissner-Gross, Zachary D.; Scott, Mark A.; Steinmeyer, Joseph D.; Yanik, Mehmet Fatih

    2013-01-01

    As neurons develop, several immature processes (i.e., neurites) grow out of the cell body. Over time, each neuron breaks symmetry when only one of its neurites grows much longer than the rest, becoming an axon. This symmetry breaking is an important step in neurodevelopment, and aberrant symmetry breaking is associated with several neuropsychiatric diseases, including schizophrenia and autism. However, the effects of neurite count in neuronal symmetry breaking have never been studied. Existing models for neuronal polarization disagree: some predict that neurons with more neurites polarize up to several days later than neurons with fewer neurites, while others predict that neurons with different neurite counts polarize synchronously. We experimentally find that neurons with different neurite counts polarize synchronously. We also show that despite the significant differences among the previously proposed models, they all agree with our experimental findings when the expression levels of the proteins responsible for symmetry breaking increase with neurite count. Consistent with these results, we observe that the expression levels of two of these proteins, HRas and shootin1, significantly correlate with neurite count. This coordinated symmetry breaking we observed among neurons with different neurite counts may be important for synchronized polarization of neurons in developing organisms. PMID:23408951

  4. Induction of Neurite Outgrowth through Contactin and Nr-CAM by Extracellular Regions of Glial Receptor Tyrosine Phosphatase β

    PubMed Central

    Sakurai, Takeshi; Lustig, Marc; Nativ, Moshe; Hemperly, John J.; Schlessinger, Joseph; Peles, Elior; Grumet, Martin

    1997-01-01

    Receptor protein tyrosine phosphatase β (RPTPβ) is expressed as soluble and receptor forms with common extracellular regions consisting of a carbonic anhydrase domain (C), a fibronectin type III repeat (F), and a unique region called S. We showed previously that a recombinant Fc fusion protein with the C domain (βC) binds to contactin and supports neuronal adhesion and neurite growth. As a substrate, βCFS was less effective in supporting cell adhesion, but it was a more effective promoter of neurite outgrowth than βCF. βS had no effect by itself, but it potentiated neurite growth when mixed with βCF. Neurite outgrowth induced by βCFS was inhibited by antibodies against Nr-CAM and contactin, and these cell adhesion molecules formed a complex that bound βCFS. NIH3T3 cells transfected to express βCFS on their surfaces induced neuronal differentiation in culture. These results suggest that binding of glial RPTPβ to the contactin/Nr-CAM complex is important for neurite growth and neuronal differentiation. PMID:9049255

  5. 7, 8, 3'-Trihydroxyflavone Promotes Neurite Outgrowth and Protects Against Bupivacaine-Induced Neurotoxicity in Mouse Dorsal Root Ganglion Neurons.

    PubMed

    Shi, Haohong; Luo, Xingjing

    2016-07-02

    BACKGROUND 7, 8, 3'-trihydroxyflavone (THF) is a novel pro-neuronal small molecule that acts as a TrkB agonist. In this study, we examined the effect of THF on promoting neuronal growth and protecting anesthetics-induced neurotoxicity in dorsal root ganglion (DRG) neurons in vitro. MATERIAL AND METHODS Neonatal mouse DRG neurons were cultured in vitro and treated with various concentrations of THF. The effect of THF on neuronal growth was investigated by neurite outgrowth assay and Western blot. In addition, the protective effects of THF on bupivacaine-induced neurotoxicity were investigated by apoptosis TUNEL assay, neurite outgrowth assay, and Western blot, respectively. RESULTS THF promoted neurite outgrowth of DRG neurons in dose-dependent manner, with an EC50 concentration of 67.4 nM. Western blot analysis showed THF activated TrkB signaling pathway by inducing TrkB phosphorylation. THF also rescued bupivacaine-induced neurotoxicity by reducing apoptosis and protecting neurite retraction in DRG neurons. Furthermore, the protection of THF in bupivacaine-injured neurotoxicity was directly associated with TrkB phosphorylation in a concentration-dependent manner in DRG neurons. CONCLUSIONS THF has pro-neuronal effect on DRG neurons by promoting neurite growth and protecting against bupivacaine-induced neurotoxicity, likely through TrkB activation.

  6. A study of the effects of flux density and frequency of pulsed electromagnetic field on neurite outgrowth in PC12 cells.

    PubMed

    Zhang, Yang; Ding, Jun; Duan, Wei

    2006-01-01

    The aim of this study was to investigate the influence of pulsed electromagnetic fields with various flux densities and frequencies on neurite outgrowth in PC12 rat pheochromocytoma cells. We have studied the percentage of neurite-bearing cells, average length of neurites and directivity of neurite outgrowth in PC12 cells cultured for 96 hours in the presence of nerve growth factor (NGF). PC12 cells were exposed to 50 Hz pulsed electromagnetic fields with a flux density of 1.37 mT, 0.19 mT and 0.016 mT respectively. The field was generated through a Helmholtz coil pair housed in one incubator and the control samples were placed in another identical incubator. It was found that exposure to both a relatively high flux density (1.37 mT) and a medium flux density (0.19 mT) inhibited the percentage of neurite-bearing cells and promoted neurite length significantly. Exposure to high flux density (1.37 mT) also resulted in nearly 20% enhancement of neurite directivity along the field direction. However, exposure to low flux density field (0.016 mT) had no detectable effect on neurite outgrowth. We also studied the effect of frequency at the constant flux density of 1.37 mT. In the range from 1 approximately 100 Hz, only 50 and 70 Hz pulse frequencies had significant effects on neurite outgrowth. Our study has shown that neurite outgrowth in PC12 cells is sensitive to flux density and frequency of pulsed electromagnetic field.

  7. Nitric oxide acts as a slow-down and search signal in developing neurites.

    PubMed

    Trimm, Kevin R; Rehder, Vincent

    2004-02-01

    Nitric oxide (NO) has been demonstrated to act as a signaling molecule during neuronal development, but its precise function is unclear. Here we investigate whether NO might function at the neuronal growth cone to affect growth cone motility. We have previously demonstrated that growth cones of identified neurons from the snail Helisoma trivolvis show a rapid and transient increase in filopodial length in response to NO, which was regulated by soluble guanylyl cyclase (sGC) [S. Van Wagenen and V. Rehder (1999) J. Neurobiol., 39, 168-185]. Because in vivo studies have demonstrated that growth cones have longer filopodia and advance more slowly in regions where pathfinding decisions are being made, this study aimed to establish whether NO could function as a combined 'slow-down and search signal' for growth cones by decreasing neurite outgrowth. In the presence of the NO donor NOC-7, neurites of B5 neurons showed a concentration-dependent effect on neurite outgrowth, ranging from slowing at low, stopping at intermediate and collapsing at high concentrations. The effects of the NO donor were mimicked by directly activating sGC with YC-1, or by increasing its product with 8-bromo-cGMP. In addition, blocking sGC in the presence of NO with NS2028 blocked the effect of NO, suggesting that NO affected outgrowth via sGC. Ca2+ imaging of growth cones with Fura-2 indicated that [Ca2+]i increased transiently in the presence of NOC-7. These results support the hypothesis that NO can function as a potent slow/stop signal for developing neurites. When coupled with transient filopodia elongation, this phenomenon emulates growth cone searching behavior.

  8. Epidermal Growth Factor Induces Proliferation of Hair Follicle-Derived Mesenchymal Stem Cells Through Epidermal Growth Factor Receptor-Mediated Activation of ERK and AKT Signaling Pathways Associated with Upregulation of Cyclin D1 and Downregulation of p16.

    PubMed

    Bai, Tingting; Liu, Feilin; Zou, Fei; Zhao, Guifang; Jiang, Yixu; Liu, Li; Shi, Jiahong; Hao, Deshun; Zhang, Qi; Zheng, Tong; Zhang, Yingyao; Liu, Mingsheng; Li, Shilun; Qi, Liangchen; Liu, Jin Yu

    2017-01-15

    The maintenance of highly proliferative capacity and full differentiation potential is a necessary step in the initiation of stem cell-based regenerative medicine. Our recent study showed that epidermal growth factor (EGF) significantly enhanced hair follicle-derived mesenchymal stem cell (HF-MSC) proliferation while maintaining the multilineage differentiation potentials. However, the underlying mechanism remains unclear. Herein, we investigated the role of EGF in HF-MSC proliferation. HF-MSCs were isolated and cultured with or without EGF. Immunofluorescence staining, flow cytometry, cytochemistry, and western blotting were used to assess proliferation, cell signaling pathways related to the EGF receptor (EGFR), and cell cycle progression. HF-MSCs exhibited surface markers of mesenchymal stem cells and displayed trilineage differentiation potentials toward adipocytes, chondrocytes, and osteoblasts. EGF significantly increased HF-MSC proliferation as well as EGFR, ERK1/2, and AKT phosphorylation (p-EGFR, p-ERK1/2, and p-AKT) in a time- and dose-dependent manner, but not STAT3 phosphorylation. EGFR inhibitor (AG1478), PI3K-AKT inhibitor (LY294002), ERK inhibitor (U0126), and STAT3 inhibitor (STA-21) significantly blocked EGF-induced HF-MSC proliferation. Moreover, AG1478, LY294002, and U0126 significantly decreased p-EGFR, p-AKT, and p-ERK1/2 expression. EGF shifted HF-MSCs at the G1 phase to the S and G2 phase. Concomitantly, cyclinD1, phosphorylated Rb, and E2F1expression increased, while that of p16 decreased. In conclusion, EGF induces HF-MSC proliferation through the EGFR/ERK and AKT pathways, but not through STAT-3. The G1/S transition was stimulated by upregulation of cyclinD1 and inhibition of p16 expression.

  9. Scatter factor induces blood vessel formation in vivo.

    PubMed Central

    Grant, D S; Kleinman, H K; Goldberg, I D; Bhargava, M M; Nickoloff, B J; Kinsella, J L; Polverini, P; Rosen, E M

    1993-01-01

    Scatter factor (also known as hepatocyte growth factor) is a glycoprotein secreted by stromal cells that stimulates cell motility and proliferation. In vitro, scatter factor stimulates vascular endothelial cell migration, proliferation, and organization into capillary-like tubes. Using two different in vivo assays, we showed that physiologic quantities of purified native mouse scatter factor and recombinant human hepatocyte growth factor induce angiogenesis (the formation of new blood vessels). The angiogenic activity was blocked by specific anti-scatter factor antibodies. Scatter factor induced cultured microvascular endothelial cells to accumulate and secrete significantly increased quantities of urokinase, an enzyme associated with development of an invasive endothelial phenotype during angiogenesis. We further showed that immunoreactive scatter factor is present surrounding sites of blood vessel formation in psoriatic skin. These findings suggest that scatter factor may act as a paracrine mediator in pathologic angiogenesis associated with human inflammatory disease. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:7680481

  10. Scatter Factor Induces Blood Vessel Formation in vivo

    NASA Astrophysics Data System (ADS)

    Grant, Derrick S.; Kleinman, Hynda K.; Goldberg, Itzhak D.; Bhargava, Mahdu M.; Nickoloff, Brian J.; Kinsella, James L.; Polverini, Peter; Rosen, Eliot M.

    1993-03-01

    Scatter factor (also known as hepatocyte growth factor) is a glycoprotein secreted by stromal cells that stimulates cell motility and proliferation. In vitro, scatter factor stimulates vascular endothelial cell migration, proliferation, and organization into capillary-like tubes. Using two different in vivo assays, we showed that physiologic quantities of purified native mouse scatter factor and recombinant human hepatocyte growth factor induce angiogenesis (the formation of new blood vessels). The angiogenic activity was blocked by specific anti-scatter factor antibodies. Scatter factor induced cultured microvascular endothelial cells to accumulate and secrete significantly increased quantities of urokinase, an enzyme associated with development of an invasive endothelial phenotype during angiogenesis. We further showed that immunoreactive scatter factor is present surrounding sites of blood vessel formation in psoriatic skin. These findings suggest that scatter factor may act as a paracrine mediator in pathologic angiogenesis associated with human inflammatory disease.

  11. Reelin Prevents Apical Neurite Retraction during Terminal Translocation and Dendrite Initiation

    PubMed Central

    O'Dell, Ryan S.; Cameron, David A.; Zipfel, Warren R.

    2015-01-01

    The mechanisms controlling cortical dendrite initiation and targeting are poorly understood. Multiphoton imaging of developing mouse cortex reveals that apical dendrites emerge by direct transformation of the neuron's leading process during the terminal phase of neuronal migration. During this ∼110 min period, the dendritic arbor increases ∼2.5-fold in size and migration arrest occurs below the first stable branch point in the developing arbor. This dendritic outgrowth is triggered at the time of leading process contact with the marginal zone (MZ) and occurs primarily by neurite extension into the extracellular matrix of the MZ. In reeler cortices that lack the secreted glycoprotein Reelin, a subset of neurons completed migration but then retracted and reorganized their arbor in a tangential direction away from the MZ soon after migration arrest. For these reeler neurons, the tangential oriented primary neurites were longer lived than the radially oriented primary neurites, whereas the opposite was true of wild-type (WT) neurons. Application of Reelin protein to reeler cortices destabilized tangential neurites while stabilizing radial neurites and stimulating dendritic growth in the MZ. Therefore, Reelin functions as part of a polarity signaling system that links dendritogenesis in the MZ with cellular positioning and cortical lamination. SIGNIFICANCE STATEMENT Whether the apical dendrite emerges by transformation of the leading process of the migrating neuron or emerges de novo after migration is completed is unclear. Similarly, it is not clear whether the secreted glycoprotein Reelin controls migration and dendritic growth as related or separate processes. Here, multiphoton microscopy reveals the direct transformation of the leading process into the apical dendrite. This transformation is coupled to the successful completion of migration and neuronal soma arrest occurs below the first stable branch point of the nascent dendrite. Deficiency in Reelin causes

  12. Micropatterning of Neurite Outgrowth in vitro Using Micropipette Drawing

    NASA Astrophysics Data System (ADS)

    Goto, Miho; Moriguchi, Hiroyuki; Takayama, Yuzo; Kotani, Kiyoshi; Jimbo, Yasuhiko

    To understand the relationship between neuronal-network functions and single-neuron activity, construction of artificial neuronal network is one of the promising approaches. Cell patterning is a useful technique to get single-neuron-based networks in vitro. Here in this work, we propose a simple method to get simple neuronal networks, based on neurite-outgrowth guidance. Our method, referred to as “micropipette drawing” is a quite simple photomask-free technique. Growth-guiding patterns are drawn with a micropipette containing cell-adhesive solution on non-adhesive substrates. Guiding structures of approximately 10 μm width were successfully drawn and rat hippocampal neurons were cultured on the patterns. The patterned neuronal networks could be maintained for more than a week.

  13. Notch activation induces neurite remodeling and functional modifications in SH-SY5Y neuronal cells.

    PubMed

    Ferrari-Toninelli, Giulia; Bonini, Sara Anna; Uberti, Daniela; Napolitano, Francesco; Stante, Maria; Santoro, Federica; Minopoli, Giuseppina; Zambrano, Nicola; Russo, Tommaso; Memo, Maurizio

    2009-05-01

    Notch proteins are definitely recognized as key regulators of the neuronal fate during embryo development, but their function in the adult brain is still largely unknown. We have previously demonstrated that Notch pathway stimulation increases microtubules stability followed by the remodeling of neuronal morphology with neurite varicosities loss, thicker neuritis, and enlarged growth cones. Here we show that the neurite remodeling is a dynamic event, dependent on transcription and translation, and with functional implications. Exposure of differentiated human SH-SY5Y neuroblastoma cells to the Notch ligand Jagged1 induces varicosities loss all along the neurites, accompanied by the redistribution of presynaptic vesicles and the decrease in neurotransmitters release. As evaluated by time lapse digital imaging, dynamic changes in neurite morphology were rapidly reversible and dependent on the activation of the Notch signaling pathway. In fact, it was prevented by the inhibition of the proteolytic gamma-secretase enzyme or the transcription machinery, and was mimicked by the transfection of the intracellular domain of Notch. One hour after treatment with Jagged1, several genes were downregulated. Many of these genes encode proteins that are known to be involved in protein synthesis. These data suggest that in adult neurons, Notch pathway activates a transcriptional program that regulates the equilibrium between varicosities formation and varicosities loss in the neuronal presynaptic compartment involving the expression and redistribution of both structural and functional proteins.

  14. Oriented collagen as a potential cochlear implant electrode surface coating to achieve directed neurite outgrowth.

    PubMed

    Volkenstein, Stefan; Kirkwood, John E; Lai, Edwina; Dazert, Stefan; Fuller, Gerald G; Heller, Stefan

    2012-04-01

    In patients with severe to profound hearing loss, cochlear implants (CIs) are currently the only therapeutic option when the amplification with conventional hearing aids does no longer lead to a useful hearing experience. Despite its great success, there are patients in which benefit from these devices is rather limited. One reason may be a poor neuron-device interaction, where the electric fields generated by the electrode array excite a wide range of tonotopically organized spiral ganglion neurons at the cost of spatial resolution. Coating of CI electrodes to provide a welcoming environment combined with suitable surface chemistry (e.g. with neurotrophic factors) has been suggested to create a closer bioelectrical interface between the electrode array and the target tissue, which might lead to better spatial resolution, better frequency discrimination, and ultimately may improve speech perception in patients. Here we investigate the use of a collagen surface with a cholesteric banding structure, whose orientation can be systemically controlled as a guiding structure for neurite outgrowth. We demonstrate that spiral ganglion neurons survive on collagen-coated surfaces and display a directed neurite growth influenced by the direction of collagen fibril deposition. The majority of neurites grow parallel to the orientation direction of the collagen. We suggest collagen coating as a possible future option in CI technology to direct neurite outgrowth and improve hearing results for affected patients.

  15. Saccharin enhances neurite extension by regulating organization of the microtubules.

    PubMed

    Yamashita, Hiroo; Muroi, Yoshikage; Ishii, Toshiaki

    2013-11-06

    In the present study, we found that saccharin, an artificial calorie-free sweetener, promotes neurite extension in the cultured neuronal cells. The purposes of this study are to characterize the effect of saccharine on neurite extension and to determine how saccharin enhances neurite extension. The analyses were performed using mouse neuroblastoma N1E-115 cells and rat pheochromocytoma PC12 cells. Neurite extension was evaluated by counting the cells bearing neurites and measuring the length of neurites. Formation, severing and transportation of the microtubules were evaluated by immunostaining and western blotting analysis. Deprivation of glucose increased the number of N1E-115 cells bearing long processes. And the effect was inhibited by addition of glucose. Saccharin increased the number of these cells bearing long processes in a dose-dependent manner and total neurite length and longest neurite length in each cell. Saccharin also had a similar effect on NGF-treated PC12 cells. Saccharin increased the amount of the microtubules reconstructed after treatment with nocodazole, a disruptor of microtubules. The effect of saccharin on microtubule reconstruction was not influenced by dihydrocytochalasin B, an inhibitor of actin polymerization, indicating that saccharin enhances microtubule formation without requiring actin dynamics. In the cells treated with vinblastine, an inhibitor of microtubule polymerization, after microtubule reorganization, filamentous microtubules were observed more distantly from the centrosome in saccharin-treated cells, indicating that saccharin enhances microtubule severing and/or transportation. These results suggest that saccharin enhances neurite extension by promoting microtubule organization. © 2013.

  16. Activation of Aplysia ARF6 induces neurite outgrowth and is sequestered by the overexpression of the PH domain of Aplysia Sec7 proteins.

    PubMed

    Jang, Deok-Jin; Jun, Yong-Woo; Shim, Jaehoon; Sim, Su-Eon; Lee, Jin-A; Lim, Chae-Seok; Kaang, Bong-Kiun

    2017-02-01

    ADP-ribosylation factors (ARFs) are small guanosine triphosphatases of the Ras superfamily involved in membrane trafficking and regulation of the actin cytoskeleton. Aplysia Sec7 protein (ApSec7), a guanine nucleotide exchange factor for ARF1 and ARF6, induces neurite outgrowth and plays a key role in 5-hydroxyltryptamine-induced neurite growth and synaptic facilitation in Aplysia sensory-motor synapses. However, the specific role of ARF6 signaling on neurite outgrowth in Aplysia neurons has not been examined. In the present study, we cloned Aplysia ARF6 (ApARF6) and revealed that an overexpression of enhanced green fluorescent protein (EGFP)-fused constitutively active ApARF6 (ApARF6-Q67L-EGFP) could induce neurite outgrowth in Aplysia sensory neurons. Further, we observed that ApARF6-induced neurite outgrowth was inhibited by the co-expression of a Sec7 activity-deficient mutant of ApSec7 (ApSec7-E159K). The pleckstrin homology domain of ApSec7 may bind to active ApARF6 at the plasma membrane and prevent active ApARF6-induced functions, including intracellular vacuole formation in HEK293T cells. The results of the present study suggest that activation of ARF6 signaling could induce neurite outgrowth in Aplysia neurons and may be involved in downstream signaling of ApSec7-induced neurite outgrowth in Aplysia neurons.

  17. Potentiation of NGF-induced neurite outgrowth in PC12 cells by papaverine: role played by PLC-γ, IP3 receptors.

    PubMed

    Itoh, Kanako; Ishima, Tamaki; Kehler, Jan; Hashimoto, Kenji

    2011-03-04

    Papaverine, an inhibitor of phosphodiesterase (PDE) 10A, is gaining attention for its potential in the treatment of neuropsychiatric diseases such as schizophrenia. However, the precise mechanisms underlying the putative neuroprotective/neurotrophic actions of papaverine remain unclear. Thus, we investigated the effects of papaverine on nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. Papaverine potentiated NGF-induced neurite outgrowth in PC12 cells in a concentration-dependent manner. In contrast, the selective PDE10A inhibitor MP-10 had no effect on NGF-induced neurite outgrowth. The potentiation of NGF-induced neurite outgrowth by papaverine was blocked by the PLC-γ inhibitor U73122. Furthermore, papaverine's potentiation of NGF-induced neurite outgrowth was also blocked by the co-administration of inositol 1,4,5-trisphosphate (IP(3)) receptor antagonists (xestospongin C and 2-aminoethoxydiphenyl borate (2-APB)) and by reduced expression of IP(3) receptor gene (i.e., itpr1 and itpr3) by siRNA. Our findings suggest that papaverine could potentiate NGF-induced neurite outgrowth, and that activation of PLC-γ and IP(3) receptors might be involved in the mechanism underlying papaverine's potentiation of neurite outgrowth in PC12 cells.

  18. Hydrocortisone Stimulates Neurite Outgrowth from Mouse Retinal Explants by Modulating Macroglial Activity

    PubMed Central

    Toops, Kimberly A.; Berlinicke, Cynthia; Zack, Donald J.; Nickells, Robert W.

    2012-01-01

    Purpose There is mounting evidence that retinal ganglion cells (RGCs) require a complex milieu of trophic factors to enhance cell survival and axon regeneration after optic nerve injury. The authors' goal was to examine the contribution of components of a combination of hormones, growth factors, steroids, and small molecules to creating a regenerative environment and to determine if any of these components modulated macroglial behavior to aid in regeneration. Methods Postnatal day 7 mouse retinal explants embedded in collagen were used as an in vitro model of neurite regeneration. Explants were treated with the culture supplements fetal bovine serum, N2, and G5 and a mixture of G5 and N2 components, designated enhanced N2 (EN2). Explants were evaluated for neurite outgrowth over 7 days in culture. The effects of each treatment were also evaluated on cultured RGCs purified by Thy1 immunopanning. Immunohistochemistry and qPCR analysis were used to evaluate differences in gene expression in the explants due to different treatments. Results EN2 stimulated significant neurite outgrowth from explants but not from purified RGCs. Elimination of hydrocortisone (HC) from EN2 reduced the mean neurites per explant by 37%. EN2-treated explants demonstrated increased expression of Gfap, Glul, Glt1, Cntf, Pedf, and VegfA compared with explants treated with EN2 without HC. Subsequent experiments showed that increased expression of Cntf and Glul was critical to the trophic effect of HC. Conclusions These data suggest that the HC in EN2 indirectly contributed to neurite outgrowth by activating macroglia to produce neurotrophic and neuroprotective molecules. PMID:22395888

  19. A clinico-pathological study of primary neuritic leprosy.

    PubMed

    Pannikar, V K; Arunthathi, S; Chacko, C J; Fritschi, E P

    1983-04-01

    Normally neural involvement in leprosy is an ascending neuritis from the nerve involvement in the dermal lesions. However, in some cases neural involvement is seen in the absence of any dermal lesions. In some of these pure neuritic cases, dermal lesions appear sometime later. It is, therefore, more appropriate to designate such cases as 'primary neuritic' cases. This study is aimed at diagnosing primary neuritic leprosy among patients presenting with only neuritic symptoms. An attempt is also made to classify primary neuritic leprosy on a clinical and histopathological basis. During the period 1979-80, 30 patients reported to the out patient department of Schieffelin Leprosy Research and Training Centre, Karigiri with complaints of neuritic origin. In addition to clinical examination and routine skin smears, investigations such as skin, nerve and nasal biopsies, nerve conduction velocity and lepromin testing were carried out where feasible. 17 of these patients were diagnosed as primary neuritic leprosy and in 7 patients other neurological conditions were diagnosed. The remaining 6 patients were kept under observation and have not shown evidence of leprosy during a two year period of following-up. It is interesting that 4 of the 17 primary neuritic cases developed patches during follow-up period of two years. In the final analysis 7 patients (41.2%) were classified into the lepromatous group and 10 patients (58.8%) in the non-lepromatous group (Table-6). This classification will have a bearing on duration of treatment and for their subsequent release from control.

  20. Effects of avermectins on neurite outgrowth in differentiating mouse neuroblastoma N2a cells.

    PubMed

    Sun, Ying-Jian; Long, Ding-Xin; Li, Wei; Hou, Wei-Yuan; Wu, Yi-Jun; Shen, Jian-Zhong

    2010-02-01

    Avermectins (AVMs) are macrocyclic lactone compounds that have been widely used as parasiticides in veterinary and human medicine and as pesticides in agriculture and horticulture. The multidrug resistance transporter, P-glycoprotein (P-gp), is associated with the efflux transport of AVMs and other drugs across the blood-brain and placental barrier, and plays an important role in attenuating the neurotoxicity and developmental toxicity of AVMs. In this study, the mouse neuroblastoma N2a cell line was used to investigate the neurotoxicity of two AVM derivatives: abamectin (ABM) and doramectin (DOR). We found that both these compounds caused significant dose-dependent inhibition of neurite growth in differentiating N2a cells. In addition, Western blotting analysis showed that ABM and DOR significantly inhibited the expression of not only P-gp but also the cytoskeletal proteins, beta-actin and beta-tubulin. This suggests ABM and DOR may inhibit neurite growth by down-regulating the expression of P-gp and cytoskeletal proteins. Furthermore, knockdown of P-gp expression by RNA interference in N2a cells reduced neurite growth even in the absence of ABM and DOR, and reduced it even more in the presence of low levels of these compounds. These results suggest that even subcytotoxic levels of ABM and DOR can be neurotoxic in differentiating cells and that this neurotoxicity may, at least in part, be the result of the down-regulation of P-gp and cytoskeletal proteins.

  1. Runx1 contributes to the functional switching of bone morphogenetic protein 4 (BMP4) from neurite outgrowth promoting to suppressing in dorsal root ganglion.

    PubMed

    Yoshikawa, Masaaki; Masuda, Tomoyuki; Kobayashi, Azusa; Senzaki, Kouji; Ozaki, Shigeru; Aizawa, Shin; Shiga, Takashi

    2016-04-01

    The runt-related transcription factor Runx1 regulates cell-type specification and axonal projections of nociceptive dorsal root ganglion (DRG) neurons, whereas bone morphogenetic protein 4 (BMP4) is required for axonal growth during neuronal development. Although Runx1 has been shown to be involved in BMP4 signaling in non-neural tissues, the Runx1 function in BMP4-dependent regulation of neuronal development is unclear. To investigate interactions between Runx1 and BMP4 in neurite outgrowth, we cultured DRGs from wild-type and Runx1-deficient mouse embryos in the presence or absence of BMP4. Neurite outgrowth was decreased in BMP4-treated wild-type DRGs and untreated Runx1-deficient DRGs, suggesting the inhibitory effect of BMP4 and facilitatory effect of Runx1 on neurite outgrowth. In addition, the combination of BMP4 treatment and Runx1 deficiency increased neurite outgrowth, suggesting that Runx1 is required for BMP4-induced suppression of neurite outgrowth and that the loss of Runx1 results in a functional switch of BMP4 from neurite growth suppressing to neurite growth promoting. Both BMP4 treatment and Runx1 deficiency increased calcitonin gene-related peptide (CGRP)-positive neurons, and CGRP expression was not increased by BMP4 treatment in Runx1-deficient mice, suggesting that Runx1 contributes to BMP4-induced CGRP expression in DRG neurons. Thus, Runx1 contributes to BMP4 regulation of neurite outgrowth and CGRP expression in DRG and may control BMP4 functional switching during embryogenesis.

  2. GSK-3β activation mediates Nogo-66-induced inhibition of neurite outgrowth in N2a cells.

    PubMed

    Shen, Jian-ying; Yi, Xu-xia; Xiong, Nan-xiang; Wang, Hai-jun; Duan, Xiao-wei; Zhao, Hong-yang

    2011-11-14

    The axons of the adult mammalian brain and spinal cord fail to regenerate after injury, and it has been suggested that Nogo-66 could prevent CNS axon repair. However, the mechanism of Nogo-66 inhibiting neurite outgrowth remains unknown. Our previous results indicated that protein kinase B (PKB) is involved in the inhibition of the neurite outgrowth by Nogo-66. Glycogen synthase kinase-3β (GSK-3β) is implicated in many processes in the nervous system, including differentiation, specification, polarity, plasticity and axon growth. In addition, GSK-3β is one of the most important molecules downstream of PKB. In the present study, we report on the role of GSK-3β signaling on Nogo-66-treated mouse neuroblastoma N2a cells. Nogo-66 reduced the phosphorylation of GSK-3β at Ser9 in N2a cells. In contrast, pretreatment with SB216763, a specific inhibitor of GSK-3β, resulted in an amelioration of neurite outgrowth by Nogo-66, compared with the Nogo-66 alone group (P<0.05). Moreover, we performed RNA interference experiments to knock down GSK-3β expression levels in N2a cells via transient transfection of shRNA plasmids. The inhibition of neurite outgrowth by Nogo-66 was subdued in shRNA cells, compared to the non-RNAi cells (P<0.05). Taken together, these data suggest that GSK-3β is involved in the inhibition by Nogo-66 of neurite outgrowth in N2a cells.

  3. Signal transduction pathway regulating prostaglandin EP3 receptor-induced neurite retraction: requirement for two different tyrosine kinases.

    PubMed Central

    Aoki, J; Katoh, H; Yasui, H; Yamaguchi, Y; Nakamura, K; Hasegawa, H; Ichikawa, A; Negishi, M

    1999-01-01

    We reported previously that activation of the prostaglandin E receptor EP3 subtype triggered neurite retraction through the small GTPase Rho-, and its target, RhoA-binding kinase alpha (ROKalpha)-, dependent pathway in EP3 receptor-expressing PC12 cells. Here we examined the involvement of tyrosine kinases in this pathway in nerve growth factor-differentiated PC12 cells. Tyrphostin A25, a tyrosine kinase inhibitor, blocked neurite retraction and cell rounding induced by activation of the EP3 receptor, however, it failed to block neurite retraction and cell rounding induced by microinjection of constitutively active RhoA, RhoAV14, indicating that a tyrphostin-sensitive tyrosine kinase was involved in the pathway from the EP3 receptor to Rho activation. On the other hand, genistein, another tyrosine kinase inhibitor, blocked neurite retraction and cell rounding induced by both activation of the EP3 receptor and microinjection of RhoAV14. However, genistein did not block neuronal morphological changes induced by microinjection of a constitutively active mutant of ROKalpha. These results indicate that two different tyrosine kinases, tyrphostin A25-sensitive and genistein-sensitive kinases, are involved in the EP3 receptor-mediated neurite retraction acting upstream and downstream of Rho, respectively. PMID:10333476

  4. Enhancement of neurite adhesion, alignment and elongation on conductive polypyrrole-poly(lactide acid) fibers with cell-derived extracellular matrix.

    PubMed

    Zhou, Xingxing; Yang, Anneng; Huang, Zhongbing; Yin, Guangfu; Pu, Ximing; Jin, Juan

    2017-01-01

    Extracellular matrix (ECM) can promote peripheral nerve repair. In this study, a conductive fiber-film (CFF) with core-sheath structure and conductivity of ∼10Scm(-1) was prepared by electrospinning of aligned poly(l-lactide acid) (PLLA) fibers and electrochemical deposition of polypyrole (PPy) nanoparticles. Then the multiple components of ECM, including laminin, fibronectin and collagen, were coated on the surface of CFF by culturing and lysing L929 cells to fabricate the bioactive scaffold of ECM-linked CFF (ECM-CFF). The electrical stimulation (ES) of 100mV/cm for 14days and 2h per day did not significantly decrease the conductivity of ECM-CFF. The results of PC12 cells test indicated that, cells adhesion rate, neurite-bearing cell rate and neurite alignment rate on ECM-CFF were ∼95%, ∼77%, ∼70%, respectively, significantly larger than the corresponding values on bare CFF (17%, 29% and 14%, respectively). The neurites length on ECM-CFF (∼79mm) was also larger than that on bare CFF (∼25mm). ES of 100mV/cm onto PC12 cells through ECM-CFF could significantly promote neurite extension in first 3days of the neurite growth. These results indicated that, the combination of ECM-CFF with ES could improve the nerve regeneration by encouraging neural-cell adhesion, neurite growth and extension. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Active Achilles tendon kinesitherapy accelerates Achilles tendon repair by promoting neurite regeneration☆

    PubMed Central

    Jielile, Jiasharete; Aibai, Minawa; Sabirhazi, Gulnur; Shawutali, Nuerai; Tangkejie, Wulanbai; Badelhan, Aynaz; Nuerduola, Yeermike; Satewalede, Turde; Buranbai, Darehan; Hunapia, Beicen; Jialihasi, Ayidaer; Bai, Jingping; Kizaibek, Murat

    2012-01-01

    Active Achilles tendon kinesitherapy facilitates the functional recovery of a ruptured Achilles tendon. However, protein expression during the healing process remains a controversial issue. New Zealand rabbits, aged 14 weeks, underwent tenotomy followed immediately by Achilles tendon microsurgery to repair the Achilles tendon rupture. The tendon was then immobilized or subjected to postoperative early motion treatment (kinesitherapy). Mass spectrography results showed that after 14 days of motion treatment, 18 protein spots were differentially expressed, among which, 12 were up-regulated, consisting of gelsolin isoform b and neurite growth-related protein collapsing response mediator protein 2. Western blot analysis showed that gelsolin isoform b was up-regulated at days 7–21 of motion treatment. These findings suggest that active Achilles tendon kinesitherapy promotes the neurite regeneration of a ruptured Achilles tendon and gelsolin isoform b can be used as a biomarker for Achilles tendon healing after kinesitherapy. PMID:25317130

  6. Terpenoids with neurite outgrowth-promoting activity from the branches and leaves of Illicium merrillianum.

    PubMed

    Tian, Xin-Hui; Yue, Rong-Cai; Fang, Xin; Zhang, Jian-Ping; Wang, Guo-Wei; Shan, Lei; Zhang, Wei-Dong; Shen, Yun-Heng

    2016-05-01

    Eighteen terpenoids (1-18) were isolated from Illicium merrillianum. Compound 1 was identified as new compound, and its structure was established by comprehensive spectroscopic analysis and single-crystal X-ray diffraction. All compounds were evaluated for nerve growth factor (NGF)-mediated neurite outgrowth activity using rat pheochromocytoma (PC12) cells as a model system of neuronal differentiation. Compounds 1, 3, 18 showed significant neurite outgrowth-promoting activity in the presence of 20 ng/ml NGF in a dose-dependent manner at concentrations of 1-100 μM after 24-h treatment. Subtle difference of functional groups at C-2 position in hopane-type triterpene resulted in enormous bioactivity difference, compound 1 was neurotrophic but 2 was cytotoxic.

  7. Experimental microembolism induces localized neuritic pathology in guinea pig cerebrum.

    PubMed

    Li, Jian-Ming; Cai, Yan; Liu, Fei; Yang, La; Hu, Xia; Patrylo, Peter R; Cai, Huaibin; Luo, Xue-Gang; Xiao, Dong; Yan, Xiao-Xin

    2015-05-10

    Microbleeds are a common finding in aged human brains. In Alzheimer's disease (AD), neuritic plaques composed of β-amyloid (Aβ) deposits and dystrophic neurites occur frequently around cerebral vasculature, raising a compelling question as to whether, and if so, how, microvascular abnormality and amyloid/neuritic pathology might be causally related. Here we used a guinea pig model of cerebral microembolism to explore a potential inductive effect of vascular injury on neuritic and amyloid pathogenesis. Brains were examined 7-30 days after experimental microvascular embolization occupying ~0.5% of total cortical area. Compared to sham-operated controls, glial fibrillary acidic protein immunoreactivity was increased in the embolized cerebrum, evidently around intracortical vasculature. Swollen/sprouting neurites exhibiting increased reactivity of nicotinamide adenine dinucleotide phosphate diaphorase, parvalbumin, vesicular glutamate transporter 1 and choline acetyltransferase appeared locally in the embolized brains in proximity to intracortical vasculature. The embolization-induced swollen/sprouting neurites were also robustly immunoreactive for β-amyloid precursor protein and β-secretase-1, the substrate and initiating enzyme for Aβ genesis. These experimental data suggest that microvascular injury can induce multisystem neuritic pathology associated with an enhanced amyloidogenic potential in wild-type mammalian brain.

  8. Experimental microembolism induces localized neuritic pathology in guinea pig cerebrum

    PubMed Central

    Li, Jian-Ming; Cai, Yan; Liu, Fei; Yang, La; Hu, Xia; Patrylo, Peter R.; Cai, Huaibin; Luo, Xue-Gang; Xiao, Dong; Yan, Xiao-Xin

    2015-01-01

    Microbleeds are a common finding in aged human brains. In Alzheimer's disease (AD), neuritic plaques composed of β-amyloid (Aβ) deposits and dystrophic neurites occur frequently around cerebral vasculature, raising a compelling question as to whether, and if so, how, microvascular abnormality and amyloid/neuritic pathology might be causally related. Here we used a guinea pig model of cerebral microembolism to explore a potential inductive effect of vascular injury on neuritic and amyloid pathogenesis. Brains were examined 7-30 days after experimental microvascular embolization occupying ~0.5% of total cortical area. Compared to sham-operated controls, glial fibrillary acidic protein immunoreactivity was increased in the embolized cerebrum, evidently around intracortical vasculature. Swollen/sprouting neurites exhibiting increased reactivity of nicotinamide adenine dinucleotide phosphate diaphorase, parvalbumin, vesicular glutamate transporter 1 and choline acetyltransferase appeared locally in the embolized brains in proximity to intracortical vasculature. The embolization-induced swollen/sprouting neurites were also robustly immunoreactive for β-amyloid precursor protein and β-secretase-1, the substrate and initiating enzyme for Aβ genesis. These experimental data suggest that microvascular injury can induce multisystem neuritic pathology associated with an enhanced amyloidogenic potential in wild-type mammalian brain. PMID:25871402

  9. Cyclic AMP stimulates neurite outgrowth of lamprey reticulospinal neurons without substantially altering their biophysical properties.

    PubMed

    Pale, T; Frisch, E B; McClellan, A D

    2013-08-15

    Reticulospinal (RS) neurons are critical for initiation of locomotor behavior, and following spinal cord injury (SCI) in the lamprey, the axons of these neurons regenerate and restore locomotor behavior within a few weeks. For lamprey RS neurons in culture, experimental induction of calcium influx, either in the growth cone or cell body, is inhibitory for neurite outgrowth. Following SCI, these neurons partially downregulate calcium channel expression, which would be expected to reduce calcium influx and possibly provide supportive conditions for axonal regeneration. In the present study, it was tested whether activation of second messenger signaling pathways stimulates neurite outgrowth of lamprey RS neurons without altering their electrical properties (e.g. spike broadening) so as to possibly increase calcium influx and compromise axonal growth. First, activation of cAMP pathways with forskolin or dbcAMP stimulated neurite outgrowth of RS neurons in culture in a PKA-dependent manner, while activation of cGMP signaling pathways with dbcGMP inhibited outgrowth. Second, neurophysiological recordings from uninjured RS neurons in isolated lamprey brain-spinal cord preparations indicated that dbcAMP or dbcGMP did not significantly affect any of the measured electrical properties. In contrast, for uninjured RS neurons, forskolin increased action potential duration, which might have increased calcium influx, but did not significantly affect most other electrical properties. Importantly, for injured RS neurons during the period of axonal regeneration, forskolin did not significantly alter their electrical properties. Taken together, these results suggest that activation of cAMP signaling by dbcAMP stimulates neurite outgrowth, but does not alter the electrical properties of lamprey RS neurons in such a way that would be expected to induce calcium influx. In conclusion, our results suggest that activation of cAMP pathways alone, without compensation for possible

  10. Cyclic AMP Stimulates Neurite Outgrowth of Lamprey Reticulospinal Neurons without Substantially Altering Their Biophysical Properties

    PubMed Central

    Pale, Timothée; Frisch, Emily B.; McClellan, Andrew D.

    2013-01-01

    Reticulospinal (RS) neurons are critical for initiation of locomotor behavior, and following spinal cord injury (SCI) in the lamprey, the axons of these neurons regenerate and restore locomotor behavior within a few weeks. For lamprey RS neurons in culture, experimental induction of calcium influx, either in the growth cone or cell body, is inhibitory for neurite outgrowth. Following SCI, these neurons partially downregulate calcium channel expression, which would be expected to reduce calcium influx and possibly provide supportive conditions for axonal regeneration. In the present study, it was tested whether activation of second messenger signaling pathways stimulates neurite outgrowth of lamprey RS neurons without altering their electrical properties (e.g. spike broadening) so as to possibly increase calcium influx and compromise axonal growth. First, activation of cAMP pathways with forskolin or dbcAMP stimulated neurite outgrowth of RS neurons in culture in a PKA-dependent manner, while activation of cGMP signaling pathways with dbcGMP inhibited outgrowth. Second, neurophysiological recordings from uninjured RS neurons in isolated lamprey brain-spinal cord preparations indicated that dbcAMP or dbcGMP did not significantly affect any of the measured electrical properties. In contrast, for uninjured RS neurons, forskolin increased action potential duration, which might have increased calcium influx, but did not significantly affect most other electrical properties. Importantly, for injured RS neurons during the period of axonal regeneration, forskolin did not significantly alter their electrical properties. Taken together, these results suggest that activation of cAMP signaling by dbcAMP stimulates neurite outgrowth, but does not alter the electrical properties of lamprey RS neurons in such a way that would be expected to induce calcium influx. In conclusion, our results suggest that activation of cAMP pathways alone, without compensation for possible

  11. Knockdown of pre-mRNA cleavage factor Im 25 kDa promotes neurite outgrowth

    SciTech Connect

    Fukumitsu, Hidefumi; Soumiya, Hitomi; Furukawa, Shoei

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer CFIm25 knockdown promoted NGF-induced neurite out growth from PC12 cells. Black-Right-Pointing-Pointer Depletion of CFIm25 did not influence the morphology of proliferating PC12 cells. Black-Right-Pointing-Pointer CFIm regulated NGF-induced neurite outgrowth via coordinating RhoA activity. Black-Right-Pointing-Pointer CFIm25 knockdown increase the number of primary dendrites of hippocampal neurons. -- Abstract: Mammalian precursor mRNA (pre-mRNA) cleavage factor I (CFIm) plays important roles in the selection of poly(A) sites in a 3 Prime -untranslated region (3 Prime -UTR), producing mRNAs with variable 3 Prime ends. Because 3 Prime -UTRs often contain cis elements that impact stability or localization of mRNA or translation, alternative polyadenylation diversifies utilization of primary transcripts in mammalian cells. However, the physiological role of CFIm remains unclear. CFIm acts as a heterodimer comprising a 25 kDa subunit (CFIm25) and one of the three large subunits-CFIm59, CFIm68, or CFIm72. CFIm25 binds directly to RNA and introduces and anchors the larger subunit. To examine the physiological roles of CFIm, we knocked down the CFIm25 gene in neuronal cells using RNA interference. Knockdown of CFIm25 increased the number of primary dendrites of developing hippocampal neurons and promoted nerve growth factor (NGF)-induced neurite extension from rat pheochromocytoma PC12 cells without affecting the morphology of proliferating PC12 cells. On the other hand, CFIm25 knockdown did not influence constitutively active or dominantly negative RhoA suppression or promotion of NGF-induced neurite extension from PC12 cells, respectively. Taken together, our results indicate that endogenous CFIm may promote neuritogenesis in developing neurons by coordinating events upstream of NGF-induced RhoA inactivation.

  12. Calcium entry through L-type calcium channels is essential for neurite regeneration in cultured sympathetic neurons.

    PubMed

    Kulbatski, Iris; Cook, Douglas J; Tator, Charles H

    2004-03-01

    Previous work showed that a post-neuritotomy rise in [Ca2+]i is required for regeneration. We tested the following hypotheses in cultured sympathetic neurons: (1) blocking L-type channels at the time of injury inhibits regeneration; (2) enhancing Ca2+ entry through L-type Ca2+ channels enhances regeneration; (3) L-type Ca2+ channel distribution is predominantly on the soma and proximal neurites of uninjured and injured neurons. To visualize L-type Ca2+ channels and block Ca2+ influx, the fluorescent dihydropyridine antagonist, DM-BODIPY, was used. Our results show that regeneration is markedly inhibited by the antagonist when administered 20 min. prior to injury, in the presence or absence of nerve growth factor (NGF) (p < 0.0001). Severe degeneration of proximal and distal neurites was seen 48 h after injury. Regeneration was minimally inhibited by the antagonist when administered 5 min after injury (p < 0.05), but not inhibited when administered 2 or 24 h after injury (p > 0.05). We found that L-type channels are distributed ubiquitously on the soma and neurites of uninjured and injured cells, and on regenerating neurites. The addition of the L-type channel agonist, BayK8644, (1 microM) 20 min prior to injury enhanced neurite length at 24 h post-injury (p = 0.002). Blocking L-type channels did not affect the viability of uninjured or injured cells. For the first time, it has been shown that Ca2+ entry through L-type Ca2+ channels is essential for post-neuritotomy sympathetic neurite regeneration, and that this effect shows a strict temporal dependency. We also demonstrated that regeneration can be enhanced by increasing Ca2+ influx through L-type channels.

  13. The death receptor antagonist FAIM promotes neurite outgrowth by a mechanism that depends on ERK and NF-κB signaling

    PubMed Central

    Sole, Carme; Dolcet, Xavier; Segura, Miguel F.; Gutierrez, Humberto; Diaz-Meco, Maria-Teresa; Gozzelino, Raffaella; Sanchis, Daniel; Bayascas, Jose R.; Gallego, Carme; Moscat, Jorge; Davies, Alun M.; Comella, Joan X.

    2004-01-01

    Fas apoptosis inhibitory molecule (FAIM) is a protein identified as an antagonist of Fas-induced cell death. We show that FAIM overexpression fails to rescue neurons from trophic factor deprivation, but exerts a marked neurite growth–promoting action in different neuronal systems. Whereas FAIM overexpression greatly enhanced neurite outgrowth from PC12 cells and sympathetic neurons grown with nerve growth factor (NGF), reduction of endogenous FAIM levels by RNAi decreased neurite outgrowth in these cells. FAIM overexpression promoted NF-κB activation, and blocking this activation by using a super-repressor IκBα or by carrying out experiments using cortical neurons from mice that lack the p65 NF-κB subunit prevented FAIM-induced neurite outgrowth. The effect of FAIM on neurite outgrowth was also blocked by inhibition of the Ras–ERK pathway. Finally, we show that FAIM interacts with both Trk and p75 neurotrophin receptor NGF receptors in a ligand-dependent manner. These results reveal a new function of FAIM in promoting neurite outgrowth by a mechanism involving activation of the Ras–ERK pathway and NF-κB. PMID:15520226

  14. Neurite Mistargeting and Inverse Order of Intraretinal Vascular Plexus Formation Precede Subretinal Vascularization in Vldlr Mutant Mice

    PubMed Central

    Johnson, Verity; Xiang, Mengqing; Chen, Zhe; Junge, Harald J.

    2015-01-01

    In the retina blood vessels are required to support a high metabolic rate, however, uncontrolled vascular growth can lead to impaired vision and blindness. Subretinal vascularization (SRV), one type of pathological vessel growth, occurs in retinal angiomatous proliferation and proliferative macular telangiectasia. In these diseases SRV originates from blood vessels within the retina. We use mice with a targeted disruption in the Vldl-receptor (Vldlr) gene as a model to study SRV with retinal origin. We find that Vldlr mRNA is strongly expressed in the neuroretina, and we observe both vascular and neuronal phenotypes in Vldlr-/- mice. Unexpectedly, horizontal cell (HC) neurites are mistargeted prior to SRV in this model, and the majority of vascular lesions are associated with mistargeted neurites. In Foxn4-/- mice, which lack HCs and display reduced amacrine cell (AC) numbers, we find severe defects in intraretinal capillary development. However, SRV is not suppressed in Foxn4-/-;Vldlr-/- mice, which reveals that mistargeted HC neurites are not required for vascular lesion formation. In the absence of VLDLR, the intraretinal capillary plexuses form in an inverse order compared to normal development, and subsequent to this early defect, vascular proliferation is increased. We conclude that SRV in the Vldlr-/- model is associated with mistargeted neurites and that SRV is preceded by altered retinal vascular development. PMID:26177550

  15. Neurotrophin Promotes Neurite Outgrowth by Inhibiting Rif GTPase Activation Downstream of MAPKs and PI3K Signaling

    PubMed Central

    Tian, Xiaoxia; Yan, Huijuan; Li, Jiayi; Wu, Shuang; Wang, Junyu; Fan, Lifei

    2017-01-01

    Members of the well-known semaphorin family of proteins can induce both repulsive and attractive signaling in neural network formation and their cytoskeletal effects are mediated in part by small guanosine 5’-triphosphatase (GTPases). The aim of this study was to investigate the cellular role of Rif GTPase in the neurotrophin-induced neurite outgrowth. By using PC12 cells which are known to cease dividing and begin to show neurite outgrowth responding to nerve growth factor (NGF), we found that semaphorin 6A was as effective as nerve growth factor at stimulating neurite outgrowth in PC12 cells, and that its neurotrophic effect was transmitted through signaling by mitogen-activated protein kinases (MAPKs) and phosphatidylinositol-3-kinase (PI3K). We further found that neurotrophin-induced neurite formation in PC12 cells could be partially mediated by inhibition of Rif GTPase activity downstream of MAPKs and PI3K signaling. In conclusion, we newly identified Rif as a regulator of the cytoskeletal rearrangement mediated by semaphorins. PMID:28098758

  16. Neurotrophin Promotes Neurite Outgrowth by Inhibiting Rif GTPase Activation Downstream of MAPKs and PI3K Signaling.

    PubMed

    Tian, Xiaoxia; Yan, Huijuan; Li, Jiayi; Wu, Shuang; Wang, Junyu; Fan, Lifei

    2017-01-13

    Members of the well-known semaphorin family of proteins can induce both repulsive and attractive signaling in neural network formation and their cytoskeletal effects are mediated in part by small guanosine 5'-triphosphatase (GTPases). The aim of this study was to investigate the cellular role of Rif GTPase in the neurotrophin-induced neurite outgrowth. By using PC12 cells which are known to cease dividing and begin to show neurite outgrowth responding to nerve growth factor (NGF), we found that semaphorin 6A was as effective as nerve growth factor at stimulating neurite outgrowth in PC12 cells, and that its neurotrophic effect was transmitted through signaling by mitogen-activated protein kinases (MAPKs) and phosphatidylinositol-3-kinase (PI3K). We further found that neurotrophin-induced neurite formation in PC12 cells could be partially mediated by inhibition of Rif GTPase activity downstream of MAPKs and PI3K signaling. In conclusion, we newly identified Rif as a regulator of the cytoskeletal rearrangement mediated by semaphorins.

  17. Effects of borate-based bioactive glass on neuron viability and neurite extension.

    PubMed

    Marquardt, Laura M; Day, Delbert; Sakiyama-Elbert, Shelly E; Harkins, Amy B

    2014-08-01

    Bioactive glasses have recently been shown to promote regeneration of soft tissues by positively influencing tissue remodeling during wound healing. We were interested to determine whether bioactive glasses have the potential for use in the treatment of peripheral nerve injury. In these experiments, degradable bioactive borate glass was fabricated into rods and microfibers. To study the compatibility with neurons, embryonic chick dorsal root ganglia (DRG) were cultured with different forms of bioactive borate glass. Cell viability was measured with no media exchange (static condition) or routine media exchange (transient condition). Neurite extension was measured within fibrin scaffolds with embedded glass microfibers or aligned rod sheets. Mixed cultures of neurons, glia, and fibroblasts growing in static conditions with glass rods and microfibers resulted in decreased cell viability. However, the percentage of neurons compared with all cell types increased by the end of the culture protocol compared with culture without glass. Furthermore, bioactive glass and fibrin composite scaffolds promoted neurite extension similar to that of control fibrin scaffolds, suggesting that glass does not have a significant detrimental effect on neuronal health. Aligned glass scaffolds guided neurite extension in an oriented manner. Together these findings suggest that bioactive glass can provide alignment to support directed axon growth.

  18. Propolis Inhibits Neurite Outgrowth in Differentiating SH-SY5Y Human Neuroblastoma Cells

    PubMed Central

    Kim, Han Bit; Yoo, Byung Sun

    2016-01-01

    Propolis is a multicomponent, active, complex resinous substance collected by honeybees from a variety of plant sources. We have studied the effect of propolis on neurite outgrowth of SH-SY5Y human neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Propolis, at a concentration of 3 μg/mL, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells treated with propolis (0.3~3 μg/mL) for 48 hr was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 0.3 to 3 μg/mL propolis resulted in decreased level of transglutaminase and 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The results indicate that propolis is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells. PMID:27437091

  19. LINGO-1 interacts with WNK1 to regulate nogo-induced inhibition of neurite extension.

    PubMed

    Zhang, Zhaohuan; Xu, Xiaohui; Zhang, Yong; Zhou, Jianfeng; Yu, Zhongwang; He, Cheng

    2009-06-05

    LINGO-1 is a component of the tripartite receptor complexes, which act as a convergent mediator of the intracellular signaling in response to myelin-associated inhibitors and lead to collapse of growth cone and inhibition of neurite extension. Although the function of LINGO-1 has been intensively studied, its downstream signaling remains elusive. In the present study, a novel interaction between LINGO-1 and a serine-threonine kinase WNK1 was identified by yeast two-hybrid screen. The interaction was further validated by fluorescence resonance energy transfer and co-immunoprecipitation, and this interaction was intensified by Nogo66 treatment. Morphological evidences showed that WNK1 and LINGO-1 were co-localized in cortical neurons. Furthermore, either suppressing WNK1 expression by RNA interference or overexpression of WNK1-(123-510) attenuated Nogo66-induced inhibition of neurite extension and inhibited the activation of RhoA. Moreover, WNK1 was identified to interact with Rho-GDI1, and this interaction was attenuated by Nogo66 treatment, further indicating its regulatory effect on RhoA activation. Taken together, our results suggest that WNK1 is a novel signaling molecule involved in regulation of LINGO-1 mediated inhibition of neurite extension.

  20. Schwann cell migration and neurite outgrowth are influenced by media conditioned by epineurial fibroblasts.

    PubMed

    van Neerven, S G A; Pannaye, P; Bozkurt, A; Van Nieuwenhoven, F; Joosten, E; Hermans, E; Taccola, G; Deumens, R

    2013-11-12

    The regenerative capacity of the peripheral nervous system is largely related to Schwann cells undergoing proliferation and migration after injury and forming growth-supporting substrates for severed axons. Novel data show that fibroblasts to a certain extent regulate the pro-regenerative behavior of Schwann cells. In the setting of peripheral nerve injury, the fibroblasts that form the epineurium come into close contact with both Schwann cells and peripheral axons, but the potential influence on these latter two cell types has not been studied yet. In the present study we explored whether culture media, conditioned by epineurial fibroblasts can influence Schwann cells and/or neurite outgrowth from dorsal root ganglia neurons in vitro. Our data indicate that epineurial fibroblast-conditioned culture media substantially increase Schwann cell migration and the outgrowth of neurites. Schwann cell proliferation remained largely unaffected. These same read-out parameters were assayed in a condition where epineurial fibroblasts were subjected to stretch-cell-stress, a mechanical stressor that plays an important role in traumatic peripheral nerve injuries. Stretch-cell-stress of epineurial fibroblasts did not further change the positive effects of conditioned media on Schwann cell migration and neurite outgrowth. From these data we conclude that an as yet unknown pro-regenerative role can be attributed to epineurial fibroblasts, implying that such cells may affect the outcome of severe peripheral nerve injury. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Gab1 mediates neurite outgrowth, DNA synthesis, and survival in PC12 cells.

    PubMed

    Korhonen, J M; Saïd, F A; Wong, A J; Kaplan, D R

    1999-12-24

    The Gab1-docking protein has been shown to regulate phosphatidylinositol 3-kinase PI3K activity and potentiate nerve growth factor (NGF)-induced survival in PC12 cells. Here, we investigated the potential of Gab1 to induce neurite outgrowth and DNA synthesis, two other important aspects of NGF-induced neuronal differentiation of PC12 cells and NGF-independent survival. We generated a recombinant adenovirus encoding hemagglutinin (HA)-epitope-tagged Gab1 and expressed this protein in PC12 cells. HA-Gab1 was constitutively tyrosine-phosphorylated in PC12 cells and induced the phosphorylation of Akt/protein kinase B and p44/42 mitogen-activated protein kinase. HA-Gab1-stimulated a 10-fold increase in neurite outgrowth in the absence of NGF and a 5-fold increase in NGF-induced neurite outgrowth. HA-Gab1 also stimulated DNA synthesis and caused NGF-independent survival in PC12 cells. Finally, we found that HA-Gab1-induced neuritogenesis was completely suppressed by pharmacological inhibition of mitogen-activated protein kinase kinase (MEK) activity and 50% suppressed by inhibition of PI3K activity. In contrast, HA-Gab1-stimulated cell survival was efficiently suppressed only by inhibition of both PI3K and MEK activities. These results indicate that Gab1 is capable of mediating differentiation, DNA synthesis, and cell survival and uses both PI3K and MEK signaling pathways to achieve its effects.

  2. Protein Kinase MARK/PAR-1 Is Required for Neurite Outgrowth and Establishment of Neuronal Polarity

    PubMed Central

    Biernat, Jacek; Wu, Yong-Zhong; Timm, Thomas; Zheng-Fischhöfer, Qingyi; Mandelkow, Eckhard; Meijer, Laurent; Mandelkow, Eva-Maria

    2002-01-01

    Protein kinases of the microtubule affinity-regulating kinase (MARK) family were originally discovered because of their ability to phosphorylate certain sites in tau protein (KXGS motifs in the repeat domain). This type of phosphorylation is enhanced in abnormal tau from Alzheimer brain tissue and causes the detachment of tau from microtubules. MARK-related kinases (PAR-1 and KIN1) occur in various organisms and are involved in establishing and maintaining cell polarity. Herein, we report the ability of MARK2 to affect the differentiation and outgrowth of cell processes from neuroblastoma and other cell models. MARK2 phosphorylates tau protein at the KXGS motifs; this results in the detachment of tau from microtubules and their destabilization. The formation of neurites in N2a cells is blocked if MARK2 is inactivated, either by transfecting a dominant negative mutant, or by MARK2 inhibitors such as hymenialdisine. Alternatively, neurites are blocked if the target KXGS motifs on tau are rendered nonphosphorylatable by point mutations. The results suggest that MARK2 contributes to the plasticity of microtubules needed for neuronal polarity and the growth of neurites. PMID:12429843

  3. Methylmercury decreases NGF-induced TrkA autophosphorylation and neurite outgrowth in PC12 cells.

    PubMed

    Parran, Damani K; Barone, Stanley; Mundy, William R

    2003-03-14

    Neurotrophin signaling through Trk receptors is important for differentiation and survival in the developing nervous system. The present study examined the effects of CH(3)Hg on (125)I-nerve growth factor (NGF) binding to the TrkA receptor, NGF-induced activation of the TrkA receptor, and neurite outgrowth in an in vitro model of differentiation using PC12 cells. Whole-cell binding assays using (125)I-NGF revealed a single binding site with a K(d) of approximately 1 nM. Methylmercury (CH(3)Hg) at 30 nM (EC(50) for neurite outgrowth inhibition) did not affect NGF binding to TrkA. TrkA autophosphorylation was measured by immunoblotting with a phospho-specific antibody. TrkA autophosphorylation peaked between 2.5 and 5 min of exposure and then decreased but was still detectable at 60 min. Concurrent exposure to CH(3)Hg and NGF for 2.5 min resulted in a concentration-dependent decrease in TrkA autophosphorylation, which was significant at 100 nM CH(3)Hg. To determine whether the observed inhibition of TrkA was sufficient to alter cell differentiation, NGF-stimulated neurite outgrowth was examined in PC12 cells after exposure to 30 nM CH(3)Hg, a concentration that inhibited TrkA autophosphorylation by approximately 50%. For comparison, a separate group of PC12 cells were exposed to a concentration of the selective Trk inhibitor K252a (30 nM), which had been shown to produce significant inhibition of TrkA autophosphorylation. Twenty-four hour exposure to either CH(3)Hg or K252a reduced neurite outgrowth to a similar degree. Our results suggest that CH(3)Hg may inhibit differentiation of PC12 cells by interfering with NGF-stimulated TrkA autophosphorylation.

  4. Pulsed electromagnetic fields potentiate neurite outgrowth in the dopaminergic MN9D cell line.

    PubMed

    Lekhraj, Rukmani; Cynamon, Deborah E; DeLuca, Stephanie E; Taub, Eric S; Pilla, Arthur A; Casper, Diana

    2014-06-01

    Pulsed electromagnetic fields (PEMF) exert biological effects and are in clinical use to facilitate bone repair and wound healing. Research has demonstrated that PEMF can induce signaling molecules and growth factors, molecules that play important roles in neuronal differentiation. Here, we tested the effects of a low-amplitude, nonthermal, pulsed radiofrequency signal on morphological neuronal differentiation in MN9D, a dopaminergic cell line. Cells were plated in medium with 10% fetal calf serum. After 1 day, medium was replaced with serum-containing medium, serum-free medium, or medium supplemented with dibutyryl cyclic adenosine monophosphate (Bt2 cAMP), a cAMP analog known to induce neurite outgrowth. Cultures were divided into groups and treated with PEMF signals for either 30 min per day or continuously for 15 min every hour for 3 days. Both serum withdrawal and Bt2 cAMP significantly increased neurite length. PEMF treatment similarly increased neurite length under both serum-free and serum-supplemented conditions, although to a lesser degree in the presence of serum, when continuous treatments had greater effects. PEMF signals also increased cell body width, indicating neuronal maturation, and decreased protein content, suggesting that this treatment was antimitotic, an effect reversed by the inhibitor of cAMP formation dideoxyadenosine. Bt2 cAMP and PEMF effects were not additive, suggesting that neurite elongation was achieved through a common pathway. PEMF signals increased cAMP levels from 3 to 5 hr after treatment, supporting this mechanism of action. Although neuritogenesis is considered a developmental process, it may also represent the plasticity required to form and maintain synaptic connections throughout life. Copyright © 2014 Wiley Periodicals, Inc.

  5. Calcineurin-dependent cofilin activation and increased retrograde actin flow drive 5-HT-dependent neurite outgrowth in Aplysia bag cell neurons.

    PubMed

    Zhang, Xiao-Feng; Hyland, Callen; Van Goor, David; Forscher, Paul

    2012-12-01

    Neurite outgrowth in response to soluble growth factors often involves changes in intracellular Ca(2+); however, mechanistic roles for Ca(2+) in controlling the underlying dynamic cytoskeletal processes have remained enigmatic. Bag cell neurons exposed to serotonin (5-hydroxytryptamine [5-HT]) respond with a threefold increase in neurite outgrowth rates. Outgrowth depends on phospholipase C (PLC) → inositol trisphosphate → Ca(2+) → calcineurin signaling and is accompanied by increased rates of retrograde actin network flow in the growth cone P domain. Calcineurin inhibitors had no effect on Ca(2+) release or basal levels of retrograde actin flow; however, they completely suppressed 5-HT-dependent outgrowth and F-actin flow acceleration. 5-HT treatments were accompanied by calcineurin-dependent increases in cofilin activity in the growth cone P domain. 5-HT effects were mimicked by direct activation of PLC, suggesting that increased actin network treadmilling may be a widespread mechanism for promoting neurite outgrowth in response to neurotrophic factors.

  6. The role of serotonin in axon and dendrite growth.

    PubMed

    Trakhtenberg, Ephraim F; Goldberg, Jeffrey L

    2012-01-01

    The neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) plays multiple roles in the enteric, peripheral, and central nervous systems (CNS). Although its most prominent biological function is as a signal transmission messenger from pre- to postsynaptic neurons, other roles such as shaping brain development and regulating neurite growth have also been described. Here, we review the less well-studied role of 5-HT as a modulator of neurite growth. 5-HT has been shown to regulate neurite growth in multiple systems and species, including in the mammalian CNS. 5-HT predominantly appears to suppress neurite growth, but depending on the model system and 5-HT receptor subtype, in rare cases, it may promote neurite outgrowth and elongation. Failure of axon regeneration in the adult mammalian CNS is a major problem in multiple diseases, and understanding how 5-HT receptors signal opposing effects on neurite growth may lead to novel neuroregenerative therapies, by targeting either 5-HT receptors or their downstream signaling pathways.

  7. Induction of Neurite Outgrowth in PC12 Cells Treated with Temperature-Controlled Repeated Thermal Stimulation

    PubMed Central

    Kudo, Tada-aki; Kanetaka, Hiroyasu; Mochizuki, Kentaro; Tominami, Kanako; Nunome, Shoko; Abe, Genji; Kosukegawa, Hiroyuki; Abe, Toshihiko; Mori, Hitoshi; Mori, Kazumi; Takagi, Toshiyuki; Izumi, Shin-ichi

    2015-01-01

    To promote the functional restoration of the nervous system following injury, it is necessary to provide optimal extracellular signals that can induce neuronal regenerative activities, particularly neurite formation. This study aimed to examine the regulation of neuritogenesis by temperature-controlled repeated thermal stimulation (TRTS) in rat PC12 pheochromocytoma cells, which can be induced by neurotrophic factors to differentiate into neuron-like cells with elongated neurites. A heating plate was used to apply thermal stimulation, and the correlation of culture medium temperature with varying surface temperature of the heating plate was monitored. Plated PC12 cells were exposed to TRTS at two different temperatures via heating plate (preset surface temperature of the heating plate, 39.5°C or 42°C) in growth or differentiating medium for up to 18 h per day. We then measured the extent of growth, neuritogenesis, or acetylcholine esterase (AChE) activity (a neuronal marker). To analyze the mechanisms underlying the effects of TRTS on these cells, we examined changes in intracellular signaling using the following: tropomyosin-related kinase A inhibitor GW441756; p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580; and MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor U0126 with its inactive analog, U0124, as a control. While a TRTS of 39.5°C did not decrease the growth rate of cells in the cell growth assay, it did increase the number of neurite-bearing PC12 cells and AChE activity without the addition of other neuritogenesis inducers. Furthermore, U0126, and SB203580, but not U0124 and GW441756, considerably inhibited TRTS-induced neuritogenesis. These results suggest that TRTS can induce neuritogenesis and that participation of both the ERK1/2 and p38 MAPK signaling pathways is required for TRTS-dependent neuritogenesis in PC12 cells. Thus, TRTS may be an effective technique for regenerative neuromedicine. PMID:25879210

  8. MARK2 Rescues Nogo-66-Induced Inhibition of Neurite Outgrowth via Regulating Microtubule-Associated Proteins in Neurons In Vitro.

    PubMed

    Zuo, Yu-Chao; Xiong, Nan-Xiang; Shen, Jian-Ying; Yu, Hua; Huang, Yi-Zhi; Zhao, Hong-Yang

    2016-11-01

    The ability of neurons in the adult mammalian central nervous system (CNS) to regenerate after injury is limited by inhibitors in CNS myelin. Nogo-66 is the most important myelin inhibitor but the mechanisms of Nogo-66 inhibition of neurite outgrowth remain poorly understood. Particularly, the relationship between Nogo-66 and microtubule-affinity regulating kinase 2 (MARK2) has not been examined. This study investigated the role of MARK2 in Nogo-66 inhibition and the function of MARK2 in neurite elongation in neurons in vitro. MARK2 and phosphorylated MARK2 at Ser212 (p-Ser212) alterations in Neuro 2a cells were assessed at different Nogo-66 exposure times; the relationships between MARK2 and microtubule-associated proteins (MAPs) were determined via the overexpression or interference of MARK2. Our study reports that Nogo-66 inhibited the expression of total MARK2 but also reduced Ser212 phosphorylation of MARK2, whereas levels of MAP1-b and tau varied depending on MARK2 overexpression or reduced expression. Furthermore, MARK2 increased the proportion of tyrosinated α-tubulin, thereby disrupting the stability of tubulin, most likely affecting axonal growth. In line with these results, overexpression of MARK2 promoted neurite elongation and therefore is able to rescue the inhibitory effect of Nogo-66 on neurite growth. In conclusion, the intracellular PKB/MARK2/MAPs/α-tubulin pathway appears to be essential for neurite elongation in neurons in vitro. These results suggest a critical role for MARK2 in overcoming Nogo-66-induced inhibition of axon outgrowth in neurons. Pharmacological activators of MARK2 may be applicable to promote successful axonal outgrowth following many types of CNS injuries.

  9. A Wnt-planar polarity pathway instructs neurite branching by restricting F-actin assembly through endosomal signaling

    PubMed Central

    Chen, Chun-Hao; Liao, Chien-Po

    2017-01-01

    Spatial arrangement of neurite branching is instructed by both attractive and repulsive cues. Here we show that in C. elegans, the Wnt family of secreted glycoproteins specify neurite branching sites in the PLM mechanosensory neurons. Wnts function through MIG-1/Frizzled and the planar cell polarity protein (PCP) VANG-1/Strabismus/Vangl2 to restrict the formation of F-actin patches, which mark branching sites in nascent neurites. We find that VANG-1 promotes Wnt signaling by facilitating Frizzled endocytosis and genetically acts in a common pathway with arr-1/β-arrestin, whose mutation results in defective PLM branching and F-actin patterns similar to those in the Wnt, mig-1 or vang-1 mutants. On the other hand, the UNC-6/Netrin pathway intersects orthogonally with Wnt-PCP signaling to guide PLM branch growth along the dorsal-ventral axis. Our study provides insights for how attractive and repulsive signals coordinate to sculpt neurite branching patterns, which are critical for circuit connectivity. PMID:28384160

  10. Neurite, a Finite Difference Large Scale Parallel Program for the Simulation of Electrical Signal Propagation in Neurites under Mechanical Loading

    PubMed Central

    García-Grajales, Julián A.; Rucabado, Gabriel; García-Dopico, Antonio; Peña, José-María; Jérusalem, Antoine

    2015-01-01

    With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite—explicit and implicit—were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented

  11. Impairments in brain-derived neurotrophic factor-induced glutamate release in cultured cortical neurons derived from rats with intrauterine growth retardation: possible involvement of suppression of TrkB/phospholipase C-γ activation.

    PubMed

    Numakawa, Tadahiro; Matsumoto, Tomoya; Ooshima, Yoshiko; Chiba, Shuichi; Furuta, Miyako; Izumi, Aiko; Ninomiya-Baba, Midori; Odaka, Haruki; Hashido, Kazuo; Adachi, Naoki; Kunugi, Hiroshi

    2014-04-01

    Low birth weight due to intrauterine growth retardation (IUGR) is suggested to be a risk factor for various psychiatric disorders such as schizophrenia. It has been reported that developmental cortical dysfunction and neurocognitive deficits are observed in individuals with IUGR, however, the underlying molecular mechanisms have yet to be elucidated. Brain-derived neurotrophic factor (BDNF) and its receptor TrkB are associated with schizophrenia and play a role in cortical development. We previously demonstrated that BDNF induced glutamate release through activation of the TrkB/phospholipase C-γ (PLC-γ) pathway in developing cultured cortical neurons, and that, using a rat model for IUGR caused by maternal administration of thromboxane A2, cortical levels of TrkB were significantly reduced in IUGR rats at birth. These studies prompted us to hypothesize that TrkB reduction in IUGR cortex led to impairment of BDNF-dependent glutamatergic neurotransmission. In the present study, we found that BDNF-induced glutamate release was strongly impaired in cultured IUGR cortical neurons where TrkB reduction was maintained. Impairment of BDNF-induced glutamate release in IUGR neurons was ameliorated by transfection of human TrkB (hTrkB). Although BDNF-stimulated phosphorylation of TrkB and of PLC-γ was decreased in IUGR neurons, the hTrkB transfection recovered the deficits in their phosphorylation. These results suggest that TrkB reduction causes impairment of BDNF-stimulated glutamatergic function via suppression of TrkB/PLC-γ activation in IUGR cortical neurons. Our findings provide molecular insights into how IUGR links to downregulation of BDNF function in the cortex, which might be involved in the development of IUGR-related diseases such as schizophrenia.

  12. Non-GABA(A)-mediated effects of lindane on neurite development and intracellular free calcium ion concentration in cultured rat hippocampal neurons.

    PubMed

    Ferguson, C A; Audesirk, G

    1995-04-01

    Changes in transmembrane Ca(2+) fluxes and intracellular free Ca(2+) ion concentrations ([Ca(2+)](in)) regulate many aspects of neurite development in cultured neurons. Lindane has been shown to increase [Ca(2+)](in) in several cell types. It was therefore hypothesized that lindane exposure would increase [Ca(2+)](in) and thereby alter neurite development in cultured rat hippocampal neurons. The study reported here showed that lindane (50-100 muM) increased [Ca(2+)](in) during short-term exposure (up to 4 hr); in contrast, with long-term exposure (24-48 hr) lindane (1-50 mum) decreased [Ca(2+)](in) significantly below control levels. Lindane decreased neurite initiation at high concentrations (25 mum or above). Lindane increased dendrite number at low concentrations (0.5-1 muM), but decreased dendrite number at high concentrations (50 mum or above). Lindane decreased axon and dendrite elongation and branching at 50 mum. Loading neurons with 1 mum 1,2-bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA), a calcium chelator that partially 'clamps' [Ca(2+)](in), eliminated the effects of 50 mum lindane on [Ca(2+)](in) in short-term exposures. BAPTA did not significantly reverse the inhibition of neurite initiation or axonal elongation caused by 50 mum lindane. However, BAPTA partially reversed the inhibition of dendrite elongation and completely reversed the inhibition of axon and dendrite branching caused by 50 mum lindane. Therefore, some, but not all, of lindane's effects on neurite development may be due to changes in [Ca(2+)](in). Picrotoxin, a gamma-aminobutyric acid A (GABA(A))-associated chloride channel antagonist, had no effect on [Ca(2+)](in) or any parameters of neurite growth, suggesting that the effects of lindane on neurite development and [Ca(2+)](in) were not mediated through actions on GABA(A)-associated chloride channels.

  13. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    SciTech Connect

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R.

    2011-11-15

    There is a need for rapid, efficient and cost-effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be used as screening tools to identify potential developmental neurotoxicants. The present study compared primary rat cortical cultures and human embryonic stem cell-derived neural cultures in terms of: 1) reproducibility of high content image analysis based neurite outgrowth measurements, 2) dynamic range of neurite outgrowth measurements and 3) sensitivity to chemicals which have been shown to inhibit neurite outgrowth. There was a large increase in neurite outgrowth between 2 and 24 h in both rat and human cultures. Image analysis data collected across multiple cultures demonstrated that neurite outgrowth measurements in rat cortical cultures were more reproducible and had higher dynamic range as compared to human neural cultures. Human neural cultures were more sensitive than rat cortical cultures to chemicals previously shown to inhibit neurite outgrowth. Parallel analysis of morphological (neurite count, neurite length) and cytotoxicity (neurons per field) measurements were used to detect selective effects on neurite outgrowth. All chemicals which inhibited neurite outgrowth in rat cortical cultures did so at concentrations which did not concurrently affect the number of neurons per field, indicating selective effects on neurite outgrowth. In contrast, more than half the chemicals which inhibited neurite outgrowth in human neural cultures did so at concentrations which concurrently decreased the number of neurons per field, indicating that effects on neurite outgrowth were secondary to cytotoxicity. Overall, these data demonstrate that the culture models performed differently in terms of reproducibility, dynamic range and sensitivity to neurite outgrowth inhibitors. While human neural

  14. Pleurotus giganteus (Berk.) Karunarathna & K.D. Hyde: Nutritional value and in vitro neurite outgrowth activity in rat pheochromocytoma cells

    PubMed Central

    2012-01-01

    Background Drugs dedicated to alleviate neurodegenerative diseases like Parkinson’s and Alzheimer’s have always been associated with debilitating side effects. Medicinal mushrooms which harness neuropharmacological compounds offer a potential possibility for protection against such diseases. Pleurotus giganteus (formerly known as Panus giganteus) has been consumed by the indigenous people in Peninsular Malaysia for many years. Domestication of this wild mushroom is gaining popularity but to our knowledge, medicinal properties reported for this culinary mushroom are minimal. Methods The fruiting bodies P. giganteus were analysed for its nutritional values. Cytotoxicity of the mushroom’s aqueous and ethanolic extracts towards PC12, a rat pheochromocytoma cell line was assessed by using 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Neurite outgrowth stimulation assay was carried out with nerve growth factor (NGF) as control. To elucidate signaling mechanisms involved by mushroom extract-induced neurite outgrowth, treatment of specific inhibitor for MEK/ERK and PI3K signalling pathway was carried out. Results The fruiting bodies of P. giganteus were found to have high carbohydrate, dietary fibre, potassium, phenolic compounds and triterpenoids. Both aqueous and ethanolic extracts induced neurite outgrowth of PC12 cells in a dose- and time-dependant manner with no detectable cytotoxic effect. At day 3, 25 μg/ml of aqueous extract and 15 μg/ml of ethanolic extract showed the highest percentage of neurite-bearing cells, i.e. 31.7 ± 1.1% and 33.3 ± 0.9%; respectively. Inhibition treatment results suggested that MEK/ERK and PI3K/Akt are responsible for neurite outgrowth of PC12 cells stimulated by P. giganteus extract. The high potassium content (1345.7 mg/100 g) may be responsible for promoting neurite extension, too. Conclusions P. giganteus contains bioactive compounds that mimic NGF and are responsible for neurite

  15. Pleurotus giganteus (Berk.) Karunarathna & K.D. Hyde: Nutritional value and in vitro neurite outgrowth activity in rat pheochromocytoma cells.

    PubMed

    Phan, Chia-Wei; Wong, Wei-Lun; David, Pamela; Naidu, Murali; Sabaratnam, Vikineswary

    2012-07-19

    Drugs dedicated to alleviate neurodegenerative diseases like Parkinson's and Alzheimer's have always been associated with debilitating side effects. Medicinal mushrooms which harness neuropharmacological compounds offer a potential possibility for protection against such diseases. Pleurotus giganteus (formerly known as Panus giganteus) has been consumed by the indigenous people in Peninsular Malaysia for many years. Domestication of this wild mushroom is gaining popularity but to our knowledge, medicinal properties reported for this culinary mushroom are minimal. The fruiting bodies P. giganteus were analysed for its nutritional values. Cytotoxicity of the mushroom's aqueous and ethanolic extracts towards PC12, a rat pheochromocytoma cell line was assessed by using 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Neurite outgrowth stimulation assay was carried out with nerve growth factor (NGF) as control. To elucidate signaling mechanisms involved by mushroom extract-induced neurite outgrowth, treatment of specific inhibitor for MEK/ERK and PI3K signalling pathway was carried out. The fruiting bodies of P. giganteus were found to have high carbohydrate, dietary fibre, potassium, phenolic compounds and triterpenoids. Both aqueous and ethanolic extracts induced neurite outgrowth of PC12 cells in a dose- and time-dependant manner with no detectable cytotoxic effect. At day 3, 25 μg/ml of aqueous extract and 15 μg/ml of ethanolic extract showed the highest percentage of neurite-bearing cells, i.e. 31.7 ± 1.1% and 33.3 ± 0.9%; respectively. Inhibition treatment results suggested that MEK/ERK and PI3K/Akt are responsible for neurite outgrowth of PC12 cells stimulated by P. giganteus extract. The high potassium content (1345.7 mg/100 g) may be responsible for promoting neurite extension, too. P. giganteus contains bioactive compounds that mimic NGF and are responsible for neurite stimulation. Hence, this mushroom may be

  16. Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells.

    PubMed

    Ishima, Tamaki; Fujita, Yuko; Hashimoto, Kenji

    2014-03-15

    The sigma-1 receptor chaperone located in the endoplasmic reticulum (ER) may be implicated in the mechanistic action of some antidepressants. The present study was undertaken to examine whether new antidepressant drugs interact with the sigma-1 receptor chaperone. First, we examined the effects of selective serotonin reuptake inhibitors (SSRIs) (fluvoxamine, paroxetine, sertraline, citalopram and escitalopram), serotonin and noradrenaline reuptake inhibitors (SNRIs) (duloxetine, venlafaxine, milnacipran), and mirtazapine, a noradrenaline and specific serotonergic antidepressant (NaSSA), on [(3)H](+)-pentazocine binding to rat brain membranes. Then, we examined the effects of these drugs on nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. The order of potency for drugs at the sigma-1 receptor chaperone was as follows: fluvoxamine>sertraline>fluoxetine>escitalopram>citalopram>paroxetine>duoxetine. Venlafaxine, milnacipran, and mirtazapine showed very weak affinity for this chaperone. Furthermore, fluvoxamine, fluoxetine, escitalopram, and mirtazapine significantly potentiated NGF-induced neurite outgrowth in cell assays, and the effects of all these drugs, excluding mirtazapine, were antagonized by NE-100, a selective antagonist of the sigma-1 receptor chaperone. Moreover, the effects of fluvoxamine and fluoxetine on neurite outgrowth were also antagonized by sertraline, indicating that sertraline may be an antagonist at the sigma-1 receptor chaperone. The effect of mirtazapine on neurite outgrowth was antagonized by the selective 5-hydroxytryptamine1A receptor antagonist WAY-100635. These findings suggest that activation at the sigma-1 receptor chaperone may be involved in the action of some SSRIs, such as fluvoxamine, fluoxetine and escitalopram. In contrast, mirtazapine independently potentiated neurite outgrowth in PC12 cells, indicating that this beneficial effect may mediate its pharmacological effect. Copyright © 2014 Elsevier B.V. All

  17. Neurite-promoting activity from fetal skeletal muscle: partial purification of a high-molecular-weight form.

    PubMed

    Steele, J G; Hoffman, H

    1986-01-01

    Neurite extension from sensory neuroblasts dissociated from chick embryo dorsal root ganglia can be stimulated by precoating the polylysine culture surface with extracts of skeletal muscle from bovine fetuses. The active factor(s) may be partially purified from cytosolic extracts of muscle by chromatography on Sepharose 6B and affinity chromatography on wheat germ agglutinin or Helix pomatia agglutinin columns. Extract concentrations of 10-50 micrograms protein per 1 ml were active in promoting neurite extension when the neurons were cultured without serum or nerve growth factor (beta NGF). However, levels of 1-10 micrograms/ml produced dramatic neurite extension when 10% (v/v) fetal or newborn calf serum or 0.5 ng/ml beta NGF was added to the medium. The biological activity was not blocked by antiserum that was raised against purified mouse laminin and that abolished the neurite-promoting activity of mouse laminin. The activity of the muscle extract was destroyed by trypsin or heparitinase, in contrast to the biological activity of purified mouse laminin, which was not abolished by heparitinase treatment. The activity could be resolved into two broad peaks on a Sepharose 2B column (apparent Mr between 2 X 10(6) and in 10 X 10(6) in native form). Treatment with dithiothreitol was necessary to dissociate the factor for electrophoresis in 4.25% polyacrylamide-SDS gels, revealing three major polypeptide bands at Mr = 160,000, 195,000 and 200,000. This preliminary characterization indicates that the neurite-promoting activity from bovine skeletal muscle tissue consists of a high-molecular-weight complex, one essential component of which is a heparan sulfate.

  18. Oligodendrocyte precursor cells differentially expressing Nogo-A but not MAG are more permissive to neurite outgrowth than mature oligodendrocytes.

    PubMed

    Ma, Zhengwen; Cao, Qilin; Zhang, Liqun; Hu, Jianguo; Howard, Russell M; Lu, Peihua; Whittemore, Scott R; Xu, Xiao-Ming

    2009-05-01

    Grafting oligodendrocyte precursor cells (OPCs) has been used as a strategy to repair demyelination of the central nervous system (CNS). Whether OPCs can promote CNS axonal regeneration remains to be tested. If so, they should be permissive to axonal growth and may express less inhibitory molecules on their surface. Here we examined the expression of two oligodendrocyte-associated myelin inhibitors Nogo-A and myelin-associated glycoprotein (MAG) during oligodendrogliogenesis and tested their abilities to promote neurite outgrowth in vitro. Whereas the intracellular domain of Nogo-A was consistently expressed throughout oligodendrocyte differentiation, MAG was expressed only at later stages. Furthermore, the membrane-associated extracellular domain of Nogo-A was not expressed in OPCs but expressed in mature oligodendrocytes. In a dorsal root ganglion (DRG) and OPC/oligodendrocyte co-culture model, significantly greater DRG neurite outgrowth onto OPC monolayer than mature oligodendrocyte was found (1042+/-123 vs. 717+/-342 micrometer; p=0.011). Moreover, DRG neurites elongated as fasciculated fiber tracts and contacted directly on OPCs (133+/-37 cells/fascicle). In contrast, few, if any, direct contacts were found between DRG neurites and mature oligodendrocytes (5+/-3 cells/fascicle, p<0.001). In fact, acellular spaces were found between neurites and surrounding mature oligodendrocytes in contrast to the lack of such spaces in OPC/DRG coculture (51.1+/-16.5 vs. 2.4+/-3.9 micrometer; p<0.001). Thus, OPCs expressing neither extracellular domain of Nogo-A nor MAG are significantly more permissive than mature oligodendrocytes expressing both. Grafting OPCs may thus represent a feasible strategy to foster CNS axonal regeneration.

  19. Sulforaphane inhibits platelet-derived growth factor-induced vascular smooth muscle cell proliferation by targeting mTOR/p70S6kinase signaling independent of Nrf2 activation.

    PubMed

    Shawky, Noha M; Segar, Lakshman

    2017-02-14

    Activation of nuclear factor erythroid 2-related factor 2 (Nrf2, a transcription factor) and/or inhibition of mammalian target of rapamycin (mTOR) are implicated in the suppression of vascular smooth muscle cell (VSMC) proliferation. The present study has examined the likely regulatory effects of sulforaphane (SFN, an antioxidant) on Nrf2 activation and platelet-derived growth factor (PDGF)-induced mTOR signaling in VSMCs. Using human aortic VSMCs, nuclear extraction and siRNA-mediated downregulation studies were performed to determine the role of Nrf2 on SFN regulation of PDGF-induced proliferative signaling. Immunoprecipitation and/or immunoblot studies were carried out to determine how SFN regulates PDGF-induced mTOR/p70S6K/S6 versus ERK and Akt signaling. Immunohistochemical analysis was performed to determine SFN regulation of S6 phosphorylation in the injured mouse femoral artery. SFN (5μM) inhibits PDGF-induced activation of mTOR without affecting mTOR association with raptor in VSMCs. While SFN inhibits PDGF-induced phosphorylation of p70S6K and 4E-BP1 (downstream targets of mTOR), it does not affect ERK or Akt phosphorylation. In addition, SFN diminishes exaggerated phosphorylation of S6 ribosomal protein (a downstream target of p70S6K) in VSMCs in vitro and in the neointimal layer of injured artery in vivo. Although SFN promotes Nrf2 accumulation to upregulate cytoprotective genes (e.g., heme oxygenase-1 and thioredoxin-1), downregulation of endogenous Nrf2 by target-specific siRNA reveals an Nrf2-independent effect for SFN-mediated inhibition of mTOR/p70S6K/S6 signaling and suppression of VSMC proliferation. Strategies that utilize local delivery of SFN at the lesion site may limit restenosis after angioplasty by targeting mTOR/p70S6K/S6 axis in VSMCs independent of Nrf2 activation.

  20. Shoc2/Sur8 Protein Regulates Neurite Outgrowth

    PubMed Central

    Leon, Gonzalo; Sanchez-Ruiloba, Lucia; Perez-Rodriguez, Andrea; Gragera, Teresa; Martinez, Natalia; Hernandez, Silvia; Anta, Berta; Calero, Olga; Garcia-Dominguez, Carlota A.; Dura, Lara M.; Peña-Jimenez, Daniel; Castro, Judit; Zarich, Natasha; Sanchez-Gomez, Pilar; Calero, Miguel; Iglesias, Teresa; Oliva, Jose L.; Rojas, Jose M.

    2014-01-01

    The Shoc2 protein has been implicated in the positive regulation of the Ras-ERK pathway by increasing the functional binding interaction between Ras and Raf, leading to increased ERK activity. Here we found that Shoc2 overexpression induced sustained ERK phosphorylation, notably in the case of EGF stimulation, and Shoc2 knockdown inhibited ERK activation. We demonstrate that ectopic overexpression of human Shoc2 in PC12 cells significantly promotes neurite extension in the presence of EGF, a stimulus that induces proliferation rather than differentiation in these cells. Finally, Shoc2 depletion reduces both NGF-induced neurite outgrowth and ERK activation in PC12 cells. Our data indicate that Shoc2 is essential to modulate the Ras-ERK signaling outcome in cell differentiation processes involved in neurite outgrowth. PMID:25514808

  1. Shoc2/Sur8 protein regulates neurite outgrowth.

    PubMed

    Leon, Gonzalo; Sanchez-Ruiloba, Lucia; Perez-Rodriguez, Andrea; Gragera, Teresa; Martinez, Natalia; Hernandez, Silvia; Anta, Berta; Calero, Olga; Garcia-Dominguez, Carlota A; Dura, Lara M; Peña-Jimenez, Daniel; Castro, Judit; Zarich, Natasha; Sanchez-Gomez, Pilar; Calero, Miguel; Iglesias, Teresa; Oliva, Jose L; Rojas, Jose M

    2014-01-01

    The Shoc2 protein has been implicated in the positive regulation of the Ras-ERK pathway by increasing the functional binding interaction between Ras and Raf, leading to increased ERK activity. Here we found that Shoc2 overexpression induced sustained ERK phosphorylation, notably in the case of EGF stimulation, and Shoc2 knockdown inhibited ERK activation. We demonstrate that ectopic overexpression of human Shoc2 in PC12 cells significantly promotes neurite extension in the presence of EGF, a stimulus that induces proliferation rather than differentiation in these cells. Finally, Shoc2 depletion reduces both NGF-induced neurite outgrowth and ERK activation in PC12 cells. Our data indicate that Shoc2 is essential to modulate the Ras-ERK signaling outcome in cell differentiation processes involved in neurite outgrowth.

  2. Fine Needle Aspiration Cytology in Diagnosis of Pure Neuritic Leprosy

    PubMed Central

    Kumar, Bipin; Pradhan, Anju

    2011-01-01

    Leprosy is a chronic infection affecting mainly the skin and peripheral nerve. Pure neuritic form of this disease manifests by involvement of the nerve in the absence of skin lesions. Therefore, it can sometimes create a diagnostic problem. It often requires a nerve biopsy for diagnosis, which is an invasive procedure and may lead to neural deficit. Fine needle aspiration cytology (FNAC) of an affected nerve can be a valuable and less invasive procedure for the diagnosis of such cases. We report five suspected cases of pure neuritic Hansen's disease involving the common and superficial peroneal, ulnar, and median nerve, who underwent FNAC. Smears revealed nerve fibers infiltrated by chronic inflammatory cells in all cases, presence of epithelioid cells granulomas, and Langhans giant cells in three cases, and acid fast bacilli in two cases. In conclusion, FNAC is a safe, less invasive, and time saving procedure for the diagnosis of pure neuritic leprosy. PMID:21660285

  3. Neuroprotective copper bis(thiosemicarbazonato) complexes promote neurite elongation.

    PubMed

    Bica, Laura; Liddell, Jeffrey R; Donnelly, Paul S; Duncan, Clare; Caragounis, Aphrodite; Volitakis, Irene; Paterson, Brett M; Cappai, Roberto; Grubman, Alexandra; Camakaris, James; Crouch, Peter J; White, Anthony R

    2014-01-01

    Abnormal biometal homeostasis is a central feature of many neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and motor neuron disease. Recent studies have shown that metal complexing compounds behaving as ionophores such as clioquinol and PBT2 have robust therapeutic activity in animal models of neurodegenerative disease; however, the mechanism of neuroprotective action remains unclear. These neuroprotective or neurogenerative processes may be related to the delivery or redistribution of biometals, such as copper and zinc, by metal ionophores. To investigate this further, we examined the effect of the bis(thiosemicarbazonato)-copper complex, Cu(II)(gtsm) on neuritogenesis and neurite elongation (neurogenerative outcomes) in PC12 neuronal-related cultures. We found that Cu(II)(gtsm) induced robust neurite elongation in PC12 cells when delivered at concentrations of 25 or 50 nM overnight. Analogous effects were observed with an alternative copper bis(thiosemicarbazonato) complex, Cu(II)(atsm), but at a higher concentration. Induction of neurite elongation by Cu(II)(gtsm) was restricted to neurites within the length range of 75-99 µm with a 2.3-fold increase in numbers of neurites in this length range with 50 nM Cu(II)(gtsm) treatment. The mechanism of neurogenerative action was investigated and revealed that Cu(II)(gtsm) inhibited cellular phosphatase activity. Treatment of cultures with 5 nM FK506 (calcineurin phosphatase inhibitor) resulted in analogous elongation of neurites compared to 50 nM Cu(II)(gtsm), suggesting a potential link between Cu(II)(gtsm)-mediated phosphatase inhibition and neurogenerative outcomes.

  4. Neuroprotective Copper Bis(thiosemicarbazonato) Complexes Promote Neurite Elongation

    PubMed Central

    Bica, Laura; Liddell, Jeffrey R.; Donnelly, Paul S.; Duncan, Clare; Caragounis, Aphrodite; Volitakis, Irene; Paterson, Brett M.; Cappai, Roberto; Grubman, Alexandra; Camakaris, James; Crouch, Peter J.; White, Anthony R.

    2014-01-01

    Abnormal biometal homeostasis is a central feature of many neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and motor neuron disease. Recent studies have shown that metal complexing compounds behaving as ionophores such as clioquinol and PBT2 have robust therapeutic activity in animal models of neurodegenerative disease; however, the mechanism of neuroprotective action remains unclear. These neuroprotective or neurogenerative processes may be related to the delivery or redistribution of biometals, such as copper and zinc, by metal ionophores. To investigate this further, we examined the effect of the bis(thiosemicarbazonato)-copper complex, CuII(gtsm) on neuritogenesis and neurite elongation (neurogenerative outcomes) in PC12 neuronal-related cultures. We found that CuII(gtsm) induced robust neurite elongation in PC12 cells when delivered at concentrations of 25 or 50 nM overnight. Analogous effects were observed with an alternative copper bis(thiosemicarbazonato) complex, CuII(atsm), but at a higher concentration. Induction of neurite elongation by CuII(gtsm) was restricted to neurites within the length range of 75–99 µm with a 2.3-fold increase in numbers of neurites in this length range with 50 nM CuII(gtsm) treatment. The mechanism of neurogenerative action was investigated and revealed that CuII(gtsm) inhibited cellular phosphatase activity. Treatment of cultures with 5 nM FK506 (calcineurin phosphatase inhibitor) resulted in analogous elongation of neurites compared to 50 nM CuII(gtsm), suggesting a potential link between CuII(gtsm)-mediated phosphatase inhibition and neurogenerative outcomes. PMID:24587210

  5. Drag force as a tool to test the active mechanical response of PC12 neurites.

    PubMed

    Bernal, Roberto; Melo, Francisco; Pullarkat, Pramod A

    2010-02-17

    We investigate the mechanical response of PC12 neurites subjected to a drag force imposed by a laminar flow perpendicular to the neurite axis. The curvature of the catenary shape acquired by an initially straight neurite under the action of the drag force provides information on both elongation and tension of the neurite. This method allows us to measure the rest tension and viscoelastic parameters of PC12 neurites and active behavior of neurites. Measurement of oscillations in the strain rate of neurites at constant flow rate provides insight on the response of molecular motors and additional support for the presence of a negative strain-rate sensitivity region in the global mechanical response of PC12 neurites. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Micropatterned coumarin polyester thin films direct neurite orientation.

    PubMed

    McCormick, Aleesha M; Maddipatla, Murthy V S N; Shi, Shuojia; Chamsaz, Elaheh A; Yokoyama, Hiroshi; Joy, Abraham; Leipzig, Nic D

    2014-11-26

    Guidance and migration of cells in the nervous system is imperative for proper development, maturation, and regeneration. In the peripheral nervous system (PNS), it is challenging for axons to bridge critical-sized injury defects to achieve repair and the central nervous system (CNS) has a very limited ability to regenerate after injury because of its innate injury response. The photoreactivity of the coumarin polyester used in this study enables efficient micropatterning using a custom digital micromirror device (DMD) and has been previously shown to be biodegradable, making these thin films ideal for cell guidance substrates with potential for future in vivo applications. With DMD, we fabricated coumarin polyester thin films into 10×20 μm and 15×50 μm micropatterns with depths ranging from 15 to 20 nm to enhance nervous system cell alignment. Adult primary neurons, oligodendrocytes, and astrocytes were isolated from rat brain tissue and seeded onto the polymer surfaces. After 24 h, cell type and neurite alignment were analyzed using phase contrast and fluorescence imaging. There was a significant difference (p<0.0001) in cell process distribution for both emergence angle (from the body of the cell) and orientation angle (at the tip of the growth cone) confirming alignment on patterned surfaces compared to control substrates (unpatterned polymer and glass surfaces). The expected frequency distribution for parallel alignment (≤15°) is 14% and the two micropatterned groups ranged from 42 to 49% alignment for emergence and orientation angle measurements, where the control groups range from 12 to 22% for parallel alignment. Despite depths being 15 to 20 nm, cell processes could sense these topographical changes and preferred to align to certain features of the micropatterns like the plateau/channel interface. As a result this initial study in utilizing these new DMD micropatterned coumarin polyester thin films has proven beneficial as an axon guidance platform

  7. Automatic quantification of neurite outgrowth by means of image analysis

    NASA Astrophysics Data System (ADS)

    Van de Wouwer, Gert; Nuydens, Rony; Meert, Theo; Weyn, Barbara

    2004-07-01

    A system for quantification of neurite outgrowth in in-vitro experiments is described. The system is developed for routine use in a high-throughput setting and is therefore needs fast, cheap, and robust. It relies on automated digital microscopical imaging of microtiter plates. Image analysis is applied to extract features for characterisation of neurite outgrowth. The system is tested in a dose-response experiment on PC12 cells + Taxol. The performance of the system and its ability to measure changes on neuronal morphology is studied.

  8. Neuronal Cell Shape and Neurite Initiation Are Regulated by the Ndr Kinase SAX-1, a Member of the Orb6/COT-1/Warts Serine/Threonine Kinase Family

    PubMed Central

    Zallen, Jennifer A.; Peckol, Erin L.; Tobin, David M.; Bargmann, Cornelia I.

    2000-01-01

    The Caenorhabditis elegans sax-1 gene regulates several aspects of neuronal cell shape. sax-1 mutants have expanded cell bodies and ectopic neurites in many classes of neurons, suggesting that SAX-1 functions to restrict cell and neurite growth. The ectopic neurites in sensory neurons of sax-1 mutants resemble the defects caused by decreased sensory activity. However, the activity-dependent pathway, mediated in part by the UNC-43 calcium/calmodulin-dependent kinase II, functions in parallel with SAX-1 to suppress neurite initiation. sax-1 encodes a serine/threonine kinase in the Ndr family that is related to the Orb6 (Schizosaccharomyces pombe), Warts/Lats (Drosophila), and COT-1 (Neurospora) kinases that function in cell shape regulation. These kinases have similarity to Rho kinases but lack consensus Rho-binding domains. Dominant negative mutations in the C. elegans RhoA GTPase cause neuronal cell shape defects similar to those of sax-1 mutants, and genetic interactions between rhoA and sax-1 suggest shared functions. These results suggest that SAX-1/Ndr kinases are endogenous inhibitors of neurite initiation and cell spreading. PMID:10982409

  9. The role of calsyntenin-3 in dystrophic neurite formation in Alzheimer's disease brain.

    PubMed

    Uchida, Yoko; Gomi, Fujiya

    2016-03-01

    β-Amyloid (Aβ) oligomers may play an important role in the early pathogenesis of Alzheimer's disease: cognitive impairment caused by synaptic dysfunction. Dystrophic neurites surrounding Aβ plaques, another pathological feature of Alzheimer's disease, are plaque-associated neuritic alterations preceding the appearance of synaptic loss. In the present review, we focus on the mechanism of dystrophic neurite formation by Aß oligomers, and discuss the neurotoxic role of Aβ-induced calsyntenin-3 in mediating dystrophic neurite formation.

  10. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth

    SciTech Connect

    Hsu, Ya-Yun; Tseng, Yu-Ting; Lo, Yi-Ching

    2013-11-01

    Reactive oxygen intermediates production and apoptotic damage induced by high glucose are major causes of neuronal damage in diabetic neuropathy. Berberine (BBR), a natural antidiabetes drug with PI3K-activating activity, holds promise for diabetes because of its dual antioxidant and anti-apoptotic activities. We have previously reported that BBR attenuated H{sub 2}O{sub 2} neurotoxicity via activating the PI3K/Akt/Nrf2-dependent pathway. In this study, we further explored the novel protective mechanism of BBR on high glucose-induced apoptotic death and neurite damage of SH-SY5Y cells. Results indicated BBR (0.1–10 nM) significantly attenuated reactive oxygen species (ROS) production, nucleus condensation, and apoptotic death in high glucose-treated cells. However, AG1024, an inhibitor of insulin growth factor-1 (IGF-1) receptor, significantly abolished BBR protection against high glucose-induced neuronal death. BBR also increased Bcl-2 expression and decreased cytochrome c release. High glucose down-regulated IGF-1 receptor and phosphorylation of Akt and GSK-3β, the effects of which were attenuated by BBR treatment. BBR also activated nuclear erythroid 2-related factor 2 (Nrf2), the key antioxidative transcription factor, which is accompanied with up-regulation of hemeoxygenase-1 (HO-1). Furthermore, BBR markedly enhanced nerve growth factor (NGF) expression and promoted neurite outgrowth in high glucose-treated cells. To further determine the role of the Nrf2 in BBR neuroprotection, RNA interference directed against Nrf2 was used. Results indicated Nrf2 siRNA abolished BBR-induced HO-1, NGF, neurite outgrowth and ROS decrease. In conclusion, BBR attenuated high glucose-induced neurotoxicity, and we are the first to reveal this novel mechanism of BBR as an Nrf2 activator against glucose neurotoxicity, providing another potential therapeutic use of BBR on the treatment of diabetic complications. - Highlights: • BBR attenuates high glucose-induced ROS

  11. The effect of gallium nitride on long-term culture induced aging of neuritic function in cerebellar granule cells.

    PubMed

    Chen, Chi-Ruei; Young, Tai-Horng

    2008-04-01

    Gallium nitride (GaN) has been developed for a variety of microelectronic and optical applications due to its unique electric property and chemical stability. In the present study, n-type and p-type GaN were used as substrates to culture cerebellar granule neurons to examine the effect of GaN on cell response for a long-term culture period. It was found that GaN could rapidly induce cultured neurons to exhibit a high phosphorylated Akt level after 20h of incubation. It was assumed that the anti-apoptotic effect of Akt phosphorylation could be correlated with cell survival, neurite growth and neuronal function for up to 35 days of incubation. Morphological studies showed GaN induced larger neuronal aggregates and neurite fasciculation to exhibit a dense fiber network after 8 days of incubation. Western blot analysis and immunocytochemical characterization showed that GaN still exhibited the expression of neurite growth and function, such as high levels of GAP-43, synapsin I and synaptophysin even after 35 days of incubation. In addition, survival of cerebellar granule neurons on GaN was improved by the analysis of lactate dehydrogenase (LDH) release from damaged cells. These results indicated that neuronal connections were formed on GaN by a gradual process from Akt activation and cell aggregation to develop neurite growth, fasciculation and function. Therefore, GaN offers a good model system to identify a well-characterized pattern of neuronal behavior for a long-term culture period, consistent with the development of a neurochip requiring the integration of biological system and semiconductor material.

  12. Spatial gene's (Tbata) implication in neurite outgrowth and dendrite patterning in hippocampal neurons.

    PubMed

    Yammine, Miriam; Saade, Murielle; Chauvet, Sophie; Nguyen, Catherine

    2014-03-01

    The unique architecture of neurons requires the establishment and maintenance of polarity, which relies in part on microtubule-based kinesin motor transport to deliver essential cargo into axons and dendrites. In developing neurons, kinesin trafficking is essential for delivering organelles and molecules that are crucial for elongation and guidance of the growing axonal and dendritic termini. In mature neurons, kinesin cargo delivery is essential for neuron dynamic physiological functions which are critical in brain development. In this work, we followed Spatial (Tbata) gene expression during primary hippocampal neuron development and showed that it is highly expressed during dendrite formation. Spatial protein exhibits a somatodendritic distribution and we show that the kinesin motor Kif17, among other dendrite specific kinesins, is crucial for Spatial localization to dendrites of hippocampal neurons. Furthermore, Spatial down regulation in primary hippocampal cells revealed a role for Spatial in maintaining neurons' polarity by ensuring proper neurite outgrowth. This polarity is specified by intrinsic and extracellular signals that allow neurons to determine axon and dendrite fate during development. Neurotrophic factors, such as the Nerve Growth Factor (NGF), are candidate extracellular polarity-regulating cues which are proposed to accelerate neuronal polarization by enhancing dendrite growth. Here, we show that NGF treatment increases Spatial expression in hippocampal neurons. Altogether, these data suggest that Spatial, in response to NGF and through its transport by Kif17, is crucial for neuronal polarization and can be a key regulator of neurite outgrowth.

  13. Comparison of the Effects of Curcumin and RG108 on NGF-Induced PC-12 Adh Cell Differentiation and Neurite Outgrowth.

    PubMed

    Dikmen, Miriş

    2017-04-01

    DNA methyltransferases (DNMTs) are promising epigenetic targets for the development of novel drugs, especially for neurodegenerative disorders. In recent years, there has been increased interest in small molecules that can cross the blood-brain barrier for the treatment of neurodegenerative diseases. Therefore, comparing the neuronal differentiative effects of a natural compound curcumin and a synthetic small molecule RG108 was the aim of this study. The effects of curcumin and RG108 on neuronal differentiation and neurite outgrowth were investigated in the PC-12 Adh cell line. First, a nontoxic concentration was determined to be 100 nM with WST-1 assay. Subsequently, cells were treated with 100 nM curcumin and RG108 alone or in combination with 50 nM nerve growth factor (NGF). Cell differentiations were evaluated by a real-time cell analyzer system. Neurite outgrowth was determined and morphologically shown by immunofluorescence staining with anti-beta III tubulin antibody on PC-12 Adh cells. Also, growth-associated protein-43 (GAP-43) and β-tubulin III mRNA expression levels, associated with neurite outgrowth promotion, were determined with real-time polymerase chain reaction (RT-PCR). According to our results, 100 nM curcumin and RG108 significantly induced neurite outgrowth of PC-12 Adh cells with 50 nM NGF. Curcumin + NGF combination further increased cell differentiations and total neurite lengths more than curcumin alone and RG108 + NGF combination groups. Strikingly, curcumin and NGF combination upregulated GAP-43 and β-tubulin mRNA expression levels excessively. In conclusion, curcumin was found to be more effective than RG108 on neuronal differentiation and neurite outgrowth of PC-12 Adh cells in a combination with NGF. Therefore, natural DNMT1 inhibitors, such as curcumin, can be a novel approach for the neurodegenerative disorders treatment.

  14. Tenascin-C contains distinct adhesive, anti-adhesive, and neurite outgrowth promoting sites for neurons

    PubMed Central

    1996-01-01

    The glia-derived extracellular matrix glycoprotein tenascin-C (TN-C) is transiently expressed in the developing CNS and may mediate neuron-glia interactions. Perturbation experiments with specific monoclonal antibodies suggested that TN-C functions for neural cells are encoded by distinct sites of the glycoprotein (Faissner, A., A. Scholze, and B. Gotz. 1994. Tenascin glycoproteins in developing neural tissues--only decoration? Persp. Dev. Neurobiol. 2:53-66). To characterize these further, bacterially expressed recombinant domains were generated and used for functional studies. Several short-term-binding sites for mouse CNS neurons could be assigned to the fibronectin type III (FNIII) domains. Of these, the alternatively spliced insert TNfnA1,2,4,B,D supported initial attachment for both embryonic day 18 (E18) rat and postnatal day 6 (P6) mouse neurons. Only TNfn1-3 supported binding and growth of P6 mouse cerebellar neurons after 24 h, whereas attachment to the other domains proved reversible and resulted in cell detachment or aggregation. In choice assays on patterned substrates, repulsive properties could be attributed to the EGF-type repeats TNegf, and to TNfnA1,2,4. Finally, neurite outgrowth promoting properties for E18 rat hippocampal neurons and P0 mouse DRG explants could be assigned to TNfnB,D, TNfnD,6, and TNfn6. The epitope of mAb J1/tn2 which abolishes the neurite outgrowth inducing effect of intact TN-C could be allocated to TNfnD. These observations suggest that TN-C harbors distinct cell- binding, repulsive, and neurite outgrowth promoting sites for neurons. Furthermore, the properties of isoform-specific TN-C domains suggest functional significance of the alternative splicing of TN-C glycoproteins. PMID:8647898

  15. Prevention of posttraumatic axon sprouting by blocking CRMP2-mediated neurite outgrowth and tubulin polymerization

    PubMed Central

    Wilson, Sarah M.; Xiong, Wenhui; Wang, Yuying; Ping, Xingjie; Head, Jessica D.; Brittain, Joel M.; Gagare, Pravin D.; Ramachandran, P. Veeraraghavan; Jin, Xiaoming; Khanna, Rajesh

    2012-01-01

    Epileptogenesis following traumatic brain injury (TBI) is likely due to a combination of increased excitability, disinhibition, and increased excitatory connectivity via aberrant axon sprouting. Targeting these pathways could be beneficial in the prevention and treatment of posttraumatic epilepsy. Here, we tested this possibility using the novel anticonvulsant (R)-N-benzyl 2-acetamido-3-methoxypropionamide ((R)-lacosamide (LCM) which acts on both voltage-gated sodium channels and collapsin response mediator protein 2 (CRMP2), an axonal growth/guidance protein. LCM inhibited CRMP2-mediated neurite outgrowth, an effect phenocopied by CRMP2 knockdown. Mutation of LCM binding sites in CRMP2 reduced the neurite inhibitory effect of LCM by ~8-fold. LCM also reduced CRMP2-mediated tubulin polymerization. Thus, LCM selectively impairs CRMP2-mediated microtubule polymerization which underlies its neurite outgrowth and branching. To determine whether LCM inhibits axon sprouting in vivo, LCM was injected into rats subjected to partial cortical isolation, an animal model of posttraumatic epileptogenesis that exhibits axon sprouting in cortical pyramidal neurons. Two weeks following injury, excitatory synaptic connectivity of cortical layer V pyramidal neurons was mapped using patch clamp recordings and laser scanning photostimulation of caged glutamate. In comparison to injured control animals, there was a significant decrease in the map size of excitatory synaptic connectivity in LCM-treated rats, suggesting that LCM treatment prevented enhanced excitatory synaptic connectivity due to posttraumatic axon sprouting. These findings suggest, for the first time, that LCM’s mode of action involves interactions with CRMP2 to inhibit posttraumatic axon sprouting. PMID:22433297

  16. L-type calcium channels may regulate neurite initiation in cultured chick embryo brain neurons and N1E-115 neuroblastoma cells.

    PubMed

    Audesirk, G; Audesirk, T; Ferguson, C; Lomme, M; Shugarts, D; Rosack, J; Caracciolo, P; Gisi, T; Nichols, P

    1990-08-01

    The intracellular free Ca2+ concentration, [Ca2+]i, plays an important role in regulating neurite growth in cultured neurons. Insofar as [Ca2+]i is partly a function of Ca2+ influx through voltage-sensitive calcium channels (VSCC), Ca2+ entry through VSCC should influence neurite growth. Vertebrate neurons may possess several types of VSCC. The most frequently described VSCC types are usually designated L, T and N. In most preparations, these VSCC types respond differently to certain pharmacological agents, including Cd2+, Ni2+, the dihydropyridines nifedipine and BAY K8644, and the aminoglycoside antibiotics. We used these agents to study the role of Ca2+ influx in regulating neurite initiation and length in cultures of chick embryo brain neurons and N1E-115 mouse neuroblastoma cells. In chick neurons, nifedipine and Cd2+ (less than 50 microM), which have been reported to inhibit L-type channels, reduced neurite initiation, but not mean neurite length. Ni2+ (less than 100 microM), reported to inhibit T-type channels, had no effect on either initiation or length. Low concentrations of most aminoglycosides (less than 300 microM), reported to inhibit N-type channels, had no effect on neurite initiation, but high concentrations of streptomycin (great than 300 microM), reported to inhibit both L- and N-type channels, reduced neurite initiation. BAY K8644, which enhances current flow through L-type channels, had no effect except at high concentration (50 microM), which inhibited initiation. N1E-115 neuroblastoma cells have been reported to contain L-type and T-type channels, but thus far no channel similar to the N-type has been described. In cultured N1E-115 cells, nifedipine (5 microM), Cd2+ (5 microM), and streptomycin (200 microM) reduced neurite initiation, while nickel (50 microM) and neomycin (100 microM) did not affect initiation. None of these agents altered neurite length. In N1E-115 cells, whole-cell voltage clamp recordings showed that nifedipine and Cd2

  17. Reactive oxygen species induce neurite degeneration before induction of cell death

    PubMed Central

    Fukui, Koji

    2016-01-01

    Reactive oxygen species (ROS) induce neuronal cell death in a time- and concentration-dependent manner. Treatment of cultured cells with a low concentration of hydrogen peroxide induces neurite degeneration, but not cell death. Neurites (axons and dendrites) are vulnerable to ROS. Neurite degeneration (shrinkage, accumulation, and fragmentation) has been found in neurodegenerative disorders, such as Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease. However, the mechanism of ROS-related neurite degeneration is not fully understood. Many studies have demonstrated the relationship between mitochondrial dysfunction and microtubule destabilization. These dysfunctions are deeply related to changes in calcium homeostasis and ROS production in neurites. Treatment with antioxidant substances, such as vitamin E, prevents neurite degeneration in cultured cells. This review describes the possibility that ROS induces neurite degeneration before the induction of cell death. PMID:27895381

  18. Sonic Hedgehog Promotes Neurite Outgrowth of Primary Cortical Neurons Through Up-Regulating BDNF Expression.

    PubMed

    He, Weiliang; Cui, Lili; Zhang, Cong; Zhang, Xiangjian; He, Junna; Xie, Yanzhao

    2016-04-01

    Sonic hedgehog (Shh), a secreted glycoprotein factor, can activate the Shh pathway, which has been implicated in neuronal polarization involving neurite outgrowth. However, little evidence is available about the effect of Shh on neurite outgrowth in primary cortical neurons and its potential mechanism. Here, we revealed that Shh increased neurite outgrowth in primary cortical neurons, while the Shh pathway inhibitor (cyclopamine, CPM) partially suppressed Shh-induced neurite outgrowth. Similar results were found for the expressions of Shh and Patched genes in Shh-induced primary cortical neurons. Moreover, Shh increased the levels of brain-derived neurotrophic factor (BDNF) not only in lysates and in culture medium but also in the longest neurites of primary cortical neurons, which was partially blocked by CPM. In addition, blocking of BDNF action suppressed Shh-mediated neurite elongation in primary cortical neurons. In conclusion, these findings suggest that Shh promotes neurite outgrowth in primary cortical neurons at least partially through modulating BDNF expression.

  19. The Coffin-Lowry syndrome-associated protein RSK2 regulates neurite outgrowth through phosphorylation of phospholipase D1 (PLD1) and synthesis of phosphatidic acid.

    PubMed

    Ammar, Mohamed-Raafet; Humeau, Yann; Hanauer, André; Nieswandt, Bernard; Bader, Marie-France; Vitale, Nicolas

    2013-12-11

    More than 80 human X-linked genes have been associated with mental retardation and deficits in learning and memory. However, most of the identified mutations induce limited morphological alterations in brain organization and the molecular bases underlying neuronal clinical features remain elusive. We show here that neurons cultured from mice lacking ribosomal S6 kinase 2 (Rsk2), a model for the Coffin-Lowry syndrome (CLS), exhibit a significant delay in growth in a similar way to that shown by neurons cultured from phospholipase D1 (Pld1) knock-out mice. We found that gene silencing of Pld1 or Rsk2 as well as acute pharmacological inhibition of PLD1 or RSK2 in PC12 cells strongly impaired neuronal growth factor (NGF)-induced neurite outgrowth. Expression of a phosphomimetic PLD1 mutant rescued the inhibition of neurite outgrowth in PC12 cells silenced for RSK2, revealing that PLD1 is a major target for RSK2 in neurite formation. NGF-triggered RSK2-dependent phosphorylation of PLD1 led to its activation and the synthesis of phosphatidic acid at sites of neurite growth. Additionally, total internal reflection fluorescence microscopy experiments revealed that RSK2 and PLD1 positively control fusion of tetanus neurotoxin insensitive vesicle-associated membrane protein (TiVAMP)/VAMP-7 vesicles at sites of neurite outgrowth. We propose that the loss of function mutations in RSK2 that leads to CLS and neuronal deficits are related to defects in neuronal growth due to impaired RSK2-dependent PLD1 activity resulting in a reduced vesicle fusion rate and membrane supply.

  20. Regulation of Rap2A by the Ubiquitin Ligase Nedd4-1 Controls Neurite Development

    PubMed Central

    Kawabe, Hiroshi; Neeb, Antje; Dimova, Kalina; Young, Samuel M.; Takeda, Michiko; Katsurabayashi, Shutaro; Mitkovski, Miso; Malakhova, Oxana A.; Zhang, Dong-Er; Umikawa, Masato; Kariya, Ken-ichi; Goebbels, Sandra; Nave, Klaus-Armin; Rosenmund, Christian; Jahn, Olaf; Rhee, JeongSeop; Brose, Nils

    2010-01-01

    Summary Nedd4-1 is a ‘Neuronal Precursor Cell Expressed and Developmentally Downregulated Protein’ and among the most abundant E3 ubiquitin ligases in mammalian neurons. In analyses of conventional and conditional Nedd4-1 deficient mice, we found that Nedd4-1 plays a critical role in dendrite formation. Nedd4-1, the serine/threonine kinase TNIK, and Rap2A form a complex that controls Nedd4-1-mediated ubiquitination of Rap2A. Ubiquitination by Nedd4-1 inhibits Rap2A function, which reduces the activity of Rap2 effector kinases of the TNIK family and promotes dendrite growth. We conclude that a Nedd4-1/Rap2A/TNIK signaling pathway regulates neurite growth and arborization in mammalian neurons. PMID:20159449

  1. Neurite-promoting factor in conditioned medium from RN22 Schwannoma cultures: bioassay, fractionation, and properties.

    PubMed

    Manthorpe, M; Varon, S; Adler, R

    1981-09-01

    On polyornithine (PORN) substrata dissociated 8-day chick embryo ciliary ganglionic neurons will survive if the culture medium is supplemented with Ciliary neuronotrophic Factor. However, neuritic growth will not occur unless the substratum is derivatized with a PORN-bindable Neurite Promoting Factor (PNPF). In this preliminary study we report that soluble PNPF can be (1) assayed by a convenient in vitro system; (2) obtained in relatively large amounts from serum-free media conditioned over RN22 Schwannoma cultures; (3) concentrated by using Amicon XM100 ultrafiltration; and (4) separated from nearly all of the non-active protein by using ion-exchange chromatography. The partially purified PNPF can be concentrated using XM100 and is heat- and protease-sensitive. In the course of these fractionation studies we observed in some cases a concentration-dependent interference with the expression of PNPF activity in the bioassay; we propose graphical methods to permit the simultaneous determination of PNPF and the extent of such interference. Different treatments that affected the interference property did not always affect PNPF activity in a reciprocal manner, leaving open the possibility that the interference with PNPF activity results from reversible alteration of the PNPF molecule, or that there exists a separate interfering agent.

  2. Plexin B3 promotes neurite outgrowth, interacts homophilically, and interacts with Rin

    PubMed Central

    Hartwig, Christine; Veske, Andres; Krejcova, Sarka; Rosenberger, Georg; Finckh, Ulrich

    2005-01-01

    Background Plexins, known to date as receptors of semaphorins, are implicated in semaphorin-mediated axon repulsion and growth cone collapse. However, subtype-specific functions of the majority of the nine members of the mammalian plexin family are largely unknown. In order to investigate functional properties of B-plexins, we analyzed the expression of human and murine plexin B3 and expressed full-length human plexins B2 (B2) and B3 (B3) in NIH-3T3 cells. Results Unexpectedly, B3 strongly and B2 moderately stimulate neurite outgrowth of primary murine cerebellar neurons. Both plexins mediate Ca2+/Mg2+-dependent cell aggregation due to homophilic trans-interaction, which is strong in the case of B3 and moderate for B2. Using different deletion constructs we show that the sema domain of B3 is essential for homophilic interaction. Using yeast two-hybrid analysis, we identified the neuron-specific and calmodulin-binding Ras-related GTPase Rin as an interaction partner of the intracellular part of B3, but not of B2. Rin, also known for its neurite outgrowth-inducing characteristics, co-localizes and co-immunoprecipitates with B3 in co-transfected COS-7 cells. Conclusion Our data suggest an involvement of homophilic interaction of B3 in semaphorin-independent signaling mechanisms positively influencing neuronal morphogenesis or function. Furthermore the neuron-specific small GTPase Rin is involved in downstream signaling of plexin B3. PMID:16122393

  3. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields.

    PubMed

    Koppes, Abigail N; Seggio, Angela M; Thompson, Deanna M

    2011-08-01

    Axonal extension is influenced by a variety of external guidance cues; therefore, the development and optimization of a multi-faceted approach is probably necessary to address the intricacy of functional regeneration following nerve injury. In this study, primary dissociated neonatal rat dorsal root ganglia neurons and Schwann cells were examined in response to an 8 h dc electrical stimulation (0-100 mV mm(-1)). Stimulated samples were then fixed immediately, immunostained, imaged and analyzed to determine Schwann cell orientation and characterize neurite outgrowth relative to electric field strength and direction. Results indicate that Schwann cells are viable following electrical stimulation with 10-100 mV mm(-1), and retain a normal morphology relative to unstimulated cells; however, no directional bias is observed. Neurite outgrowth was significantly enhanced by twofold following exposure to either a 50 mV mm(-1) electric field (EF) or co-culture with unstimulated Schwann cells by comparison to neurons cultured alone. Neurite outgrowth was further increased in the presence of simultaneously applied cues (Schwann cells + 50 mV mm(-1) dc EF), exhibiting a 3.2-fold increase over unstimulated control neurons, and a 1.2-fold increase over either neurons cultured with unstimulated Schwann cells or the electrical stimulus alone. These results indicate that dc electric stimulation in combination with Schwann cells may provide synergistic guidance cues for improved axonal growth relevant to nerve injuries in the peripheral nervous system.

  4. Protective Effects of Rosa damascena and Its Active Constituent on Aβ(25–35)-Induced Neuritic Atrophy

    PubMed Central

    Awale, Suresh; Tohda, Chihiro; Tezuka, Yasuhiro; Miyazaki, Makoto; Kadota, Shigetoshi

    2011-01-01

    Dementia is a clinical syndrome characterized by multiple cognitive deficits and causes progressive neurodegeneration leading eventually to death. The incidence of dementia is increasing worldwide with the increase in ageing population. However, no effective treatment is available yet. It has been hypothesized that drugs activating neurite outgrowth might induce neuronal reconstruction and help in the recovery of brain function. Working on this hypothesis, we recently observed that the chloroform extract of the Rosa damascena significantly induced the neurite outgrowth activity and inhibited the Aβ(25–35)-induced atrophy and cell death. Further workup led the isolation of a very long polyunsaturated fatty acid having molecular formula C37H64O2 as an active constituent. The structure of this compound was established by extensive analysis of fragmentations observed in EI-MS mode. The isolated compound protected Aβ(25–35)-induced atrophy and displayed strong neurite outgrowth activity. The length of dendrite in the cells treated with this compound were comparable to those of nerve growth factor (NGF) treated cells. PMID:19789212

  5. Regulation of NGF-driven neurite outgrowth by Ins(1,4,5)P3 kinase is specifically associated with the two isoenzymes Itpka and Itpkb in a model of PC12 cells.

    PubMed

    Koenig, Sandra; Moreau, Colette; Dupont, Geneviève; Scoumanne, Ariane; Erneux, Christophe

    2015-07-01

    Four inositol phosphate kinases catalyze phosphorylation of the second messenger inositol 1,4,5-trisphosphate [Ins(1,4,5)P3 ] to inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4 ]: these enzymes comprise three isoenzymes of inositol 1,4,5-trisphosphate 3-kinase (Itpk), referred to as Itpka, Itpkb and Itpkc, and the inositol polyphosphate multikinase (IPMK). The four enzymes that act on Ins(1,4,5)P3 are all expressed in rat pheochromocytoma PC12 cells, a model that is used to study neurite outgrowth induced by nerve growth factor (NGF). We compared the effect of over-expression of the four GFP-tagged kinases on NGF-induced neurite outgrowth. Our data show that over-expression of the Itpka and Itpkb isoforms inhibits NGF-induced neurite outgrowth, but over-expression of Itpkc and IPMK does not. Surprisingly, over-expression of the N-terminal F-actin binding domain of Itpka, which lacks catalytic activity, was as effective at inhibiting neurite outgrowth as the full-length enzyme. Neurite length was also significantly decreased in cells over-expressing Itpka and Itpkb but not Itpkc or IPMK. This result did not depend on the over-expression level of any of the kinases. PC12 cells over-expressing GFP-tagged kinase-dead mutants Itpka/b have shorter neurites than GFP control cells. The decrease in neurite length was never as pronounced as observed with wild-type GFP-tagged Itpka/b. Finally, the percentage of neurite-bearing cells was increased in cells over-expressing the membranous type I Ins(1,4,5)P3 5-phosphatase. We conclude that Itpka and Itpkb inhibit neurite outgrowth through both F-actin binding and localized Ins(1,4,5)P3 3-kinase activity. Itpkc and IPMK do not influence neurite outgrowth or neurite length in this model.

  6. Neurite outgrowth mediated by the heat shock protein Hsp90α: a novel target for the antipsychotic drug aripiprazole

    PubMed Central

    Ishima, T; Iyo, M; Hashimoto, K

    2012-01-01

    Aripiprazole is an atypical antipsychotic drug approved for the treatment of psychiatric disorders such as schizophrenia, bipolar disorder, major depressive disorder and autism. The drug shows partial agonistic activity at dopamine D2 receptors and 5-hydroxytryptamine (5-HT) 5-HT1A receptors, and antagonistic activity at 5-HT2A receptors. However, the precise mechanistic pathways remain unclear. In this study, we examined the effects of aripiprazole on neurite outgrowth. Aripiprazole significantly potentiated nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells, in a concentration-dependent manner. The 5-HT1A receptor antagonist WAY-100635, but not the dopamine D2 receptor antagonist sulpiride, blocked the effects of aripiprazole, although, only partially. Specific inhibitors of inositol 1,4,5-triphosphate (IP3) receptors and BAPTA-AM, a chelator of intracellular Ca2+, blocked the effects of aripiprazole. Moreover, specific inhibitors of several common signaling pathways phospholipase C-γ (PLC-γ), phosphatidylinositol-3 kinase (PI3K), mammalian target of rapamycin, p38 MAPK, c-Jun N-terminal kinase, Akt, Ras, Raf, ERK, MAPK) also blocked the effects of aripiprazole. Using proteomic analysis, we found that aripiprazole significantly increased levels of the heat shock protein Hsp90α in cultured cells. The effects of aripiprazole on NGF-induced neurite outgrowth were significantly attenuated by treatment with Hsp90α RNA interference, but not by the negative control of Hsp90α. These findings suggest that both 5-HT1A receptor activation and Ca2+ signaling via IP3 receptors, as well as their downstream cellular signaling pathways play a role in the promotion of aripiprazole-induced neurite outgrowth. Furthermore, aripiprazole-induced increases in Hsp90α protein expression may form part of the therapeutic mechanism for this drug. PMID:23047241

  7. Automated quantification of neurite outgrowth orientation distributions on patterned surfaces

    NASA Astrophysics Data System (ADS)

    Payne, Matthew; Wang, Dadong; Sinclair, Catriona M.; Kapsa, Robert M. I.; Quigley, Anita F.; Wallace, Gordon G.; Razal, Joselito M.; Baughman, Ray H.; Münch, Gerald; Vallotton, Pascal

    2014-08-01

    Objective. We have developed an image analysis methodology for quantifying the anisotropy of neuronal projections on patterned substrates. Approach. Our method is based on the fitting of smoothing splines to the digital traces produced using a non-maximum suppression technique. This enables precise estimates of the local tangents uniformly along the neurite length, and leads to unbiased orientation distributions suitable for objectively assessing the anisotropy induced by tailored surfaces. Main results. In our application, we demonstrate that carbon nanotubes arrayed in parallel bundles over gold surfaces induce a considerable neurite anisotropy; a result which is relevant for regenerative medicine. Significance. Our pipeline is generally applicable to the study of fibrous materials on 2D surfaces and should also find applications in the study of DNA, microtubules, and other polymeric materials.

  8. Peripheral Nerve Regeneration and NGF-Dependent Neurite Outgrowth of Adult Sensory Neurons Converge on STAT3 Phosphorylation Downstream of Neuropoietic Cytokine Receptor gp130

    PubMed Central

    Quarta, Serena; Baeumer, Bastian E.; Scherbakov, Nadja; Andratsch, Manfred; Rose-John, Stefan; Dechant, Georg; Bandtlow, Christine E.

    2014-01-01

    After nerve injury, adult sensory neurons can regenerate peripheral axons and reconnect with their target tissue. Initiation of outgrowth, as well as elongation of neurites over long distances, depends on the signaling of receptors for neurotrophic growth factors. Here, we investigated the importance of gp130, the signaling subunit of neuropoietic cytokine receptors in peripheral nerve regeneration. After sciatic nerve crush, functional recovery in vivo was retarded in SNS-gp130−/− mice, which specifically lack gp130 in sensory neurons. Correspondingly, a significantly reduced number of free nerve endings was detected in glabrous skin from SNS-gp130−/− compared with control mice after nerve crush. Neurite outgrowth and STAT3 activation in vitro were severely reduced in cultures in gp130-deficient cultured neurons. Surprisingly, in neurons obtained from SNS-gp130−/− mice the increase in neurite length was reduced not only in response to neuropoietic cytokine ligands of gp130 but also to nerve growth factor (NGF), which does not bind to gp130-containing receptors. Neurite outgrowth in the absence of neurotrophic factors was partially rescued in gp130-deficient neurons by leptin, which activates STAT3 downstream of leptic receptor and independent of gp130. The neurite outgrowth response of gp130-deficient neurons to NGF was fully restored in the presence of leptin. Based on these findings, gp130 signaling via STAT3 activation is suggested not only to be an important regulator of peripheral nerve regeneration in vitro and in vivo, but as determining factor for the growth promoting action of NGF in adult sensory neurons. PMID:25253866

  9. Peripheral nerve regeneration and NGF-dependent neurite outgrowth of adult sensory neurons converge on STAT3 phosphorylation downstream of neuropoietic cytokine receptor gp130.

    PubMed

    Quarta, Serena; Baeumer, Bastian E; Scherbakov, Nadja; Andratsch, Manfred; Rose-John, Stefan; Dechant, Georg; Bandtlow, Christine E; Kress, Michaela

    2014-09-24

    After nerve injury, adult sensory neurons can regenerate peripheral axons and reconnect with their target tissue. Initiation of outgrowth, as well as elongation of neurites over long distances, depends on the signaling of receptors for neurotrophic growth factors. Here, we investigated the importance of gp130, the signaling subunit of neuropoietic cytokine receptors in peripheral nerve regeneration. After sciatic nerve crush, functional recovery in vivo was retarded in SNS-gp130(-/-) mice, which specifically lack gp130 in sensory neurons. Correspondingly, a significantly reduced number of free nerve endings was detected in glabrous skin from SNS-gp130(-/-) compared with control mice after nerve crush. Neurite outgrowth and STAT3 activation in vitro were severely reduced in cultures in gp130-deficient cultured neurons. Surprisingly, in neurons obtained from SNS-gp130(-/-) mice the increase in neurite length was reduced not only in response to neuropoietic cytokine ligands of gp130 but also to nerve growth factor (NGF), which does not bind to gp130-containing receptors. Neurite outgrowth in the absence of neurotrophic factors was partially rescued in gp130-deficient neurons by leptin, which activates STAT3 downstream of leptic receptor and independent of gp130. The neurite outgrowth response of gp130-deficient neurons to NGF was fully restored in the presence of leptin. Based on these findings, gp130 signaling via STAT3 activation is suggested not only to be an important regulator of peripheral nerve regeneration in vitro and in vivo, but as determining factor for the growth promoting action of NGF in adult sensory neurons. Copyright © 2014 the authors 0270-6474/14/3413222-12$15.00/0.

  10. Human Umbilical Tissue-Derived Cells Promote Synapse Formation and Neurite Outgrowth via Thrombospondin Family Proteins

    PubMed Central

    Koh, Sehwon; Kim, Namsoo; Yin, Henry H.; Harris, Ian R.; Dejneka, Nadine S.

    2015-01-01

    Cell therapy demonstrates great potential for the treatment of neurological disorders. Human umbilical tissue-derived cells (hUTCs) were previously shown to have protective and regenerative effects in animal models of stroke and retinal degeneration, but the underlying therapeutic mechanisms are unknown. Because synaptic dysfunction, synapse loss, degeneration of neuronal processes, and neuronal death are hallmarks of neurological diseases and retinal degenerations, we tested whether hUTCs contribute to tissue repair and regeneration by stimulating synapse formation, neurite outgrowth, and neuronal survival. To do so, we used a purified rat retinal ganglion cell culture system and found that hUTCs secrete factors that strongly promote excitatory synaptic connectivity and enhance neuronal survival. Additionally, we demonstrated that hUTCs support neurite outgrowth under normal culture conditions and in the presence of the growth-inhibitory proteins chondroitin sulfate proteoglycan, myelin basic protein, or Nogo-A (reticulon 4). Furthermore, through biochemical fractionation and pharmacology, we identified the major hUTC-secreted synaptogenic factors as the thrombospondin family proteins (TSPs), TSP1, TSP2, and TSP4. Silencing TSP expression in hUTCs, using small RNA interference, eliminated both the synaptogenic function of these cells and their ability to promote neurite outgrowth. However, the majority of the prosurvival functions of hUTC-conditioned media was spared after TSP knockdown, indicating that hUTCs secrete additional neurotrophic factors. Together, our findings demonstrate that hUTCs affect multiple aspects of neuronal health and connectivity through secreted factors, and each of these paracrine effects may individually contribute to the therapeutic function of these cells. SIGNIFICANCE STATEMENT Human umbilical tissue-derived cells (hUTC) are currently under clinical investigation for the treatment of geographic atrophy secondary to age-related macular

  11. Rho kinase regulates neurite outgrowth of hippocampal neurons via calcium dependent cytoskeleton regulation

    PubMed Central

    Ji, Zhisheng; Cai, Zhenbin; Zhang, Jifeng; Liu, Nannuan; Chen, Jing; Tan, Minghui; Lin, Hongsheng; Guo, Guoqing

    2017-01-01

    Objective: To investigate whether calcium is involved in downstream signal transduction in neurite outgrowth regulated by Rho kinase. Methods: In vitro primary hippocampal neurons were cultured and treated with Rho kinase agonist (LPA) or antagonist (Y-27632). Then, the cytoskeleton and neurite outgrowth were observed. After addition of calcium antagonist BAPTA/AM to reduce intracellular calcium, the cytoskeleton distribution and neurite outgrowth were observed. Results: The activation or inhibition of Rho kinase could significantly alter the number and length of neurites of hippocampal neurons. Rho kinase regulated the cytoskeleton to regulate the neurite outgrowth, and LPA could significantly increase intracellular calcium. After BAPTA/AM treatment, the length and branch number of neurites of neurons reduced markedly. BAPTA/AM was able to reduce intracellular calcium and decrease neuronal cytoskeleton. Treatment with both BAPTA/AM and LPA could stop the retraction of neurites, but the length and branch number of neurites remained unchanged after treatment with Y-27632 and LPA. Conclusion: Calcium may affect the cytoskeleton arrangement to regulate neurite outgrowth, and calcium is involved in the downstream signal transduction of Rho kinase regulated neurite outgrowth of hippocampal neurons. PMID:28337305

  12. Neurite outgrowth is driven by actin polymerization even in the presence of actin polymerization inhibitors

    PubMed Central

    Chia, Jonathan X.; Efimova, Nadia; Svitkina, Tatyana M.

    2016-01-01

    Actin polymerization is a universal mechanism to drive plasma membrane protrusion in motile cells. One apparent exception to this rule is continuing or even accelerated outgrowth of neuronal processes in the presence of actin polymerization inhibitors. This fact, together with the key role of microtubule dynamics in neurite outgrowth, led to the concept that microtubules directly drive plasma membrane protrusion either in the course of polymerization or by motor-driven sliding. The possibility that unextinguished actin polymerization drives neurite outgrowth in the presence of actin drugs was not explored. We show that cultured hippocampal neurons treated with cytochalasin D or latrunculin B contained dense accumulations of branched actin filaments at ∼50% of neurite tips at all tested drug concentrations (1–10 μM). Actin polymerization is required for neurite outgrowth because only low concentrations of either inhibitor increased the length and/or number of neurites, whereas high concentrations inhibited neurite outgrowth. Of importance, neurites undergoing active elongation invariably contained a bright F-actin patch at the tip, whereas actin-depleted neurites never elongated, even though they still contained dynamic microtubules. Stabilization of microtubules by Taxol treatment did not stop elongation of cytochalasin–treated neurites. We conclude that actin polymerization is indispensable for neurite elongation. PMID:27682586

  13. Studies of Schwann cell proliferation. III. Evidence for the surface localization of the neurite mitogen

    PubMed Central

    1980-01-01

    In the preceding paper (Salzer et al., 1980, J. Cell Biol. 84:753-- 766), evidence was presented that a neurite membrane fraction could be used to stimulate Schwann cell proliferation in culture. In this study, we present evidence that the mitogenic signal by which intact neurites or neurite membranes stimulate Schwann cell proliferation is located at the neurite surface. This conclusion is based on the following observations: (a) stimulation of Schwann cell proliferation by neurons requires direct contact between neurites and Schwann cells, separation of the two cells by a permeable collagen diaphragm 6 microns thick prevents Schwann cell proliferation; (b) treatment of intact neurites with trypsin before preparation of neurite membranes abolishes the ability of these membranes to be mitogenic for Schwann cells; and (c) the mitogenic activity of neurite homogenates is exclusively localized in the particulate rather than the soluble fraction of the homogenate. The mitogenic component on the neurite surface is heat labile, and is inactivated by aldehyde fixation. Preliminary data suggest that the mitogenic effect of neurite on Schwann cells is not mediated by 3',5'- cyclic AMP. PMID:6153659

  14. Neurite outgrowth in human iPSC-derived neurons

    EPA Pesticide Factsheets

    Data on morphology of rat and human neurons in cell cultureThis dataset is associated with the following publication:Druwe, I., T. Freudenrich , K. Wallace , T. Shafer , and W. Mundy. Comparison of Human Induced PluripotentStem Cell-Derived Neurons and Rat Primary CorticalNeurons as In Vitro Models of Neurite Outgrowth. Applied In vitro Toxicology. Mary Ann Liebert, Inc., Larchmont, NY, USA, 2(1): 26-36, (2016).

  15. Axonal shearing in mature cortical neurons induces attempted regeneration and the reestablishment of neurite polarity.

    PubMed

    Blizzard, Catherine A; King, Anna E; Haas, Matilda A; O'Toole, David A; Vickers, James C; Dickson, Tracey C

    2009-12-01

    While functional recovery after injury is limited, it has become evident that the mature central nervous system does retain some ability to regenerate. This study investigated the intrinsic capacity of relatively mature cortical neurons (21 days in vitro) to respond to axonal loss. Neurons, growing as clusters on poly-L-lysine, were completely sheared of axons through chemical and mechanical disruption and transferred to either an intact astrocyte monolayer or a substrate of poly-L-lysine. Injured neurons exhibited a regenerative sprouting response that was independent of neuronal cell division or neural progenitors, as demonstrated by negative bromodeoxyuridine (BrdU) and the neuronal precursor intermediate filament nestin, labeling. At 24 h after injury, neurons had extended appropriately polarized neurites, demonstrated by compartmentalized microtubule-associated proteins MAP2 and tau immunolabeling. Newly sprouting axons were tipped by growth cones; however, growth cones on the tips of sprouting axons (mean area, 26.32 +/- 2.20 microm) were significantly (p<0.05) smaller than their developmental counterparts (mean area, 48.64 +/- 5.9 microm), independent of substrate. Furthermore, live imaging indicated that regenerating neurons exhibited distinct axonal dynamics, with a significant (p<0.05) reduction (70%) in pausing, considered vital for interstitial branching and pathfinding, relative to developmental growth cones. This study indicates that mature cultured cortical pyramidal and interneurons have the intrinsic potential to survive, extend processes, and reestablish neurite polarity following significant physical damage. These results may aid in defining the cellular basis of neuronal structural plasticity and defining the role of astrocyte reactivity in the response to trauma.

  16. Neurite outgrowth on cultured spiral ganglion neurons induced by erythropoietin.

    PubMed

    Berkingali, Nurdanat; Warnecke, Athanasia; Gomes, Priya; Paasche, Gerrit; Tack, Jan; Lenarz, Thomas; Stöver, Timo

    2008-09-01

    The morphological correlate of deafness is the loss of hair cells with subsequent degeneration of spiral ganglion neurons (SGN). Neurotrophic factors have a neuroprotective effect, and especially brain-derived neurotrophic factor (BDNF) has been demonstrated to protect SGN in vitro and after ototoxic trauma in vivo. Erythropoietin (EPO) attenuates hair cell loss in rat cochlea explants that were treated with gentamycin. Recently, it has also been shown that EPO reduces the apoptose rate in hippocampal neurons. Therefore, the aim of the study was to examine the effects of EPO on SGN in vitro. Spiral ganglion cells were isolated from neonatal rats and cultured for 48 h in serum-free medium supplemented with EPO and/or BDNF. Results showed that survival rates of SGN were not significantly improved when cultivated with EPO alone. Also, EPO did not further increase BDNF-induced survival of SGN. However, significant elongation of neurites was determined when SGN were cultivated with EPO alone. Even though a less than additive effect was observed, combined treatment with BDNF and EPO led to a significant elongation of neurites when compared to individual treatment with BDNF or EPO. It can be concluded that EPO induces neurite outgrowth rather than promoting survival. Thus, EPO presents as an interesting candidate to enhance and modulate the regenerative effect of BDNF on SGN.

  17. Non-cytotoxic Concentration of Cisplatin Decreases Neuroplasticity-Related Proteins and Neurite Outgrowth Without Affecting the Expression of NGF in PC12 Cells.

    PubMed

    Ferreira, Rafaela Scalco; Dos Santos, Neife Aparecida Guinaim; Martins, Nádia Maria; Fernandes, Laís Silva; Dos Santos, Antonio Cardozo

    2016-11-01

    Cisplatin is the most effective and neurotoxic platinum chemotherapeutic agent. It induces a peripheral neuropathy characterized by distal axonal degeneration that might progress to degeneration of cell bodies and apoptosis. Most symptoms occur nearby distal axonal branches and axonal degeneration might induce peripheral neuropathy regardless neuronal apoptosis. The toxic mechanism of cisplatin has been mainly associated with DNA damage, but cisplatin might also affect neurite outgrowth. Nevertheless, the neurotoxic mechanism of cisplatin remains unclear. We investigated the early effects of cisplatin on axonal plasticity by using non-cytotoxic concentrations of cisplatin and PC12 cells as a model of neurite outgrowth and differentiation. PC12 cells express NGF-receptors (trkA) and respond to NGF by forming neurites, branches and synaptic vesicles. For comparison, we used a neuronal model (SH-SY5Y cells) that does not express trkA nor responds to NGF. Cisplatin did not change NGF expression in PC12 cells and decreased neurite outgrowth in both models, suggesting a NGF/trkA independent mechanism. It also reduced axonal growth (GAP-43) and synaptic (synapsin I and synaptophysin) proteins in PC12 cells, without inducing mitochondrial damage or apoptosis. Therefore, cisplatin might affect axonal plasticity before DNA damage, NGF/trkA down-regulation, mitochondrial damage or neuronal apoptosis. This is the first study to show that neuroplasticity-related proteins might be early targets of the neurotoxic action of cisplatin and their role on cisplatin-induced peripheral neuropathy should be investigated in vivo.

  18. Minocycline Promotes Neurite Outgrowth of PC12 Cells Exposed to Oxygen-Glucose Deprivation and Reoxygenation Through Regulation of MLCP/MLC Signaling Pathways.

    PubMed

    Tao, Tao; Feng, Jin-Zhou; Xu, Guang-Hui; Fu, Jie; Li, Xiao-Gang; Qin, Xin-Yue

    2017-04-01

    Minocycline, a semi-synthetic second-generation derivative of tetracycline, has been reported to exert neuroprotective effects both in animal models and in clinic trials of neurological diseases. In the present study, we first investigated the protective effects of minocycline on oxygen-glucose deprivation and reoxygenation-induced impairment of neurite outgrowth and its potential mechanism in the neuronal cell line, PC12 cells. We found that minocycline significantly increased cell viability, promoted neurite outgrowth and enhanced the expression of growth-associated protein-43 (GAP-43) in PC12 cells exposed to oxygen-glucose deprivation/reoxygenation injury. In addition, immunoblots revealed that minocycline reversed the overexpression of phosphorylated myosin light chain (MLC) and the suppression of activated extracellular signal-regulated kinase 1/2 (ERK1/2) caused by oxygen-glucose deprivation/reoxygenation injury. Moreover, the minocycline-induced neurite outgrowth was significantly blocked by Calyculin A (1 nM), an inhibitor of myosin light chain phosphatase (MLCP), but not by an ERK1/2 inhibitor (U0126; 10 μM). These findings suggested that minocycline activated the MLCP/MLC signaling pathway in PC12 cells after oxygen-glucose deprivation/reoxygenation injury, which resulted in the promotion of neurite outgrowth.

  19. The adhesion molecule KAL-1/anosmin-1 regulates neurite branching through a SAX-7/L1CAM–EGL-15/FGFR receptor complex

    PubMed Central

    Díaz-Balzac, Carlos A.; Lázaro-Peña, María I.; Ramos-Ortiz, Gibram A.; Bülow, Hannes E.

    2015-01-01

    Summary Neurite branching is essential for correct assembly of neural circuits, yet remains a poorly understood process. For example, the neural cell adhesion molecule KAL-1/anosmin-1, which is mutated in Kallmann Syndrome regulates neurite branching through mechanisms largely unknown. Here we show that KAL-1/anosmin-1 mediates neurite branching as an autocrine co-factor with EGL-17/FGF through a receptor complex consisting of the conserved cell adhesion molecule SAX-7/L1CAM and the fibroblast growth factor receptor EGL-15/FGFR. This protein complex, which appears conserved in humans, requires the immunoglobulin (Ig) domains of SAX-7/L1CAM and the FN(III) domains of KAL-1/anosmin-1 for formation in vitro as well as function in vivo. The kinase domain of the EGL-15/FGFR is required for branching, and genetic evidence suggests that ras-mediated signaling downstream of EGL-15/FGFR is necessary to effect branching. Our studies establish a molecular pathway that regulates neurite branching during development of the nervous system. PMID:26004184

  20. Inhibition of mTOR by Rapamycin Results in Auditory Hair Cell Damage and Decreased Spiral Ganglion Neuron Outgrowth and Neurite Formation In Vitro

    PubMed Central

    Leitmeyer, Katharina; Glutz, Andrea; Radojevic, Vesna; Setz, Cristian; Huerzeler, Nathan; Bumann, Helen; Bodmer, Daniel; Brand, Yves

    2015-01-01

    Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR) by blocking the mTOR complex 1 (mTORC1). mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp.) are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation. PMID:25918725

  1. Sodium channel activation augments NMDA receptor function and promotes neurite outgrowth in immature cerebrocortical neurons

    PubMed Central

    George, Joju; Dravid, Shashank M.; Prakash, Anand; Xie, Jun; Peterson, Jennifer; Jabba, Sairam V.; Baden, Daniel G.; Murray, Thomas F.

    2009-01-01

    A range of extrinsic signals, including afferent activity, affect neuronal growth and plasticity. Neuronal activity regulates intracellular Ca2+ and activity-dependent calcium signaling has been shown to regulate dendritic growth and branching (Konur and Ghosh, 2005). NMDA receptor (NMDAR) stimulation of Ca2+/calmodulin-dependent protein kinase signaling cascades has moreover been demonstrated to regulate neurite/axonal outgrowth (Wayman et al., 2004). We used a sodium channel activator, brevetoxin (PbTx-2), to explore the relationship between intracellular [Na+] and NMDAR-dependent development. PbTx-2 alone, at a concentration of 30 nM, did not affect Ca2+ dynamics in DIV-2 cerebrocortical neurons; however, this treatment robustly potentiated NMDA-induced Ca2+ influx. The 30 nM PbTx-2 treatment produced a maximum [Na+]i of 16.9 ± 1.5 mM representing an increment of 8.8 ± 1.8 mM over basal. The corresponding membrane potential change produced by 30 nM PbTx-2 was modest and therefore insufficient to relieve the voltage-dependent Mg2+ block of NMDARs. To unambiguously demonstrate the enhancement of NMDA receptor function by PbTx-2, we recorded single-channel currents from cell-attached patches. PbTx-2 treatment was found to increase both the mean open time and open probability of NMDA receptors. These effects of PbTx-2 on NMDA receptor function were dependent on extracellular Na+ and activation of Src kinase. The functional consequences of PbTx-2-induced enhancement of NMDAR function were evaluated in immature cerebrocortical neurons. PbTx-2 concentrations between 3 and 300 nM enhanced neurite outgrowth. Voltage-gated sodium channel activators may accordingly represent a novel pharmacologic strategy to regulate neuronal plasticity through an NMDA receptor and Src family kinase-dependent mechanism. PMID:19279266

  2. The conditioning lesion effect on sympathetic neurite outgrowth is dependent on gp130 cytokines

    PubMed Central

    Sachs, H. Hyatt; Rohrer, H.; Zigmond, R.E.

    2010-01-01

    Sympathetic neurons, like sensory neurons, increase neurite outgrowth after a conditioning lesion. Studies in leukemia inhibitory factor (LIF) knockout animals showed that the conditioning lesion effect in sensory neurons is dependent in part on this cytokine; however, similar studies on sympathetic neurons revealed no such effect. Comparable studies with sensory neurons taken from mice lacking the related cytokine interleukin-6 (IL-6) have yielded conflicting results. LIF and IL-6 belong to a family of cytokines known as the gp130 family because they act on receptors containing the subunit gp130. In sympathetic ganglia, axotomy leads to increases in mRNA for four of these cytokines (LIF, IL-6, IL-11, and on-costatin M). To test the role of this family of cytokines as a whole in the conditioning lesion response in sympathetic neurons, mice in which gp130 was selectively eliminated in noradrenergic neurons were studied. The postganglionic axons of the SCG were transected, and seven days later the ganglia were removed and neurite outgrowth was measured in explant and dissociated cell cultures. In both systems, neurons from wild type animals showed enhanced growth after a conditioning lesion. In contrast, no enhancement occurred in neurons from mutant animals. This lack of stimulation of outgrowth occurred despite an increase in expression of activating transcription factor 3 (ATF3) in the mutant mice. These studies demonstrate that stimulation of enhanced growth of sympathetic neurons after a conditioning lesion is dependent on gp130 cytokine signaling and is blocked in the absence of signaling by these cytokines in spite of an increase in ATF3. PMID:20144891

  3. The Pseudophosphatase MK-STYX Induces Neurite-Like Outgrowths in PC12 Cells

    PubMed Central

    Flowers, Brittany M.; Rusnak, Lauren E.; Wong, Kristen E.; Banks, Dallas A.; Munyikwa, Michelle R.; McFarland, Alexander G.; Hinton, Shantá D.

    2014-01-01

    The rat pheochromocytoma PC12 cell line is a widely used system to study neuronal differentiation for which sustained activation of the extracellular signaling related kinase (ERK) pathway is required. Here, we investigate the function of MK-STYX [MAPK (mitogen-activated protein kinase) phosphoserine/threonine/tyrosine-binding protein] in neuronal differentiation. MK-STYX is a member of the MAPK phosphatase (MKP) family, which is generally responsible for dephosphorylating the ERKs. However, MK-STYX lacks catalytic activity due to the absence of the nucleophilic cysteine in the active site signature motif HC(X5)R that is essential for phosphatase activity. Despite being catalytically inactive, MK-STYX has been shown to play a role in important cellular pathways, including stress responses. Here we show that PC12 cells endogenously express MK-STYX. In addition, MK-STYX, but not its catalytically active mutant, induced neurite-like outgrowths in PC12 cells. Furthermore, MK-STYX dramatically increased the number of cells with neurite extensions in response to nerve growth factor (NGF), whereas the catalytically active mutant did not. MK-STYX continued to induce neurites in the presence of a MEK (MAP kinase kinase) inhibitor suggesting that MK-STYX does not act through the Ras-ERK/MAPK pathway but is involved in another pathway whose inactivation leads to neuronal differentiation. RhoA activity assays indicated that MK-STYX induced extensions through the Rho signaling pathway. MK-STYX decreased RhoA activation, whereas RhoA activation increased when MK-STYX was down-regulated. Furthermore, MK-STYX affected downstream players of RhoA such as the actin binding protein cofilin. The presence of MK-STYX decreased the phosphorylation of cofilin in non NGF stimulated cells, but increased its phosphorylation in NGF stimulated cells, whereas knocking down MK-STYX caused an opposite effect. Taken together our data suggest that MK-STYX may be a regulator of RhoA signaling, and

  4. Stimulation of neurite outgrowth using an electrically conducting polymer

    PubMed Central

    Schmidt, Christine E.; Shastri, Venkatram R.; Vacanti, Joseph P.; Langer, Robert

    1997-01-01

    Damage to peripheral nerves often cannot be repaired by the juxtaposition of the severed nerve ends. Surgeons have typically used autologous nerve grafts, which have several drawbacks including the need for multiple surgical procedures and loss of function at the donor site. As an alternative, the use of nerve guidance channels to bridge the gap between severed nerve ends is being explored. In this paper, the electrically conductive polymer—oxidized polypyrrole (PP)—has been evaluated for use as a substrate to enhance nerve cell interactions in culture as a first step toward potentially using such polymers to stimulate in vivo nerve regeneration. Image analysis demonstrates that PC-12 cells and primary chicken sciatic nerve explants attached and extended neurites equally well on both PP films and tissue culture polystyrene in the absence of electrical stimulation. In contrast, PC-12 cells interacted poorly with indium tin oxide (ITO), poly(l-lactic acid) (PLA), and poly(lactic acid-co-glycolic acid) surfaces. However, PC-12 cells cultured on PP films and subjected to an electrical stimulus through the film showed a significant increase in neurite lengths compared with ones that were not subjected to electrical stimulation through the film and tissue culture polystyrene controls. The median neurite length for PC-12 cells grown on PP and subjected to an electrical stimulus was 18.14 μm (n = 5643) compared with 9.5 μm (n = 4440) for controls. Furthermore, animal implantation studies reveal that PP invokes little adverse tissue response compared with poly(lactic acid-co-glycolic acid). PMID:9256415

  5. Stimulation of Neurite Outgrowth Using an Electrically Conducting Polymer

    NASA Astrophysics Data System (ADS)

    Schmidt, Christine E.; Shastri, Venkatram R.; Vacanti, Joseph P.; Langer, Robert

    1997-08-01

    Damage to peripheral nerves often cannot be repaired by the juxtaposition of the severed nerve ends. Surgeons have typically used autologous nerve grafts, which have several drawbacks including the need for multiple surgical procedures and loss of function at the donor site. As an alternative, the use of nerve guidance channels to bridge the gap between severed nerve ends is being explored. In this paper, the electrically conductive polymer--oxidized polypyrrole (PP)--has been evaluated for use as a substrate to enhance nerve cell interactions in culture as a first step toward potentially using such polymers to stimulate in vivo nerve regeneration. Image analysis demonstrates that PC-12 cells and primary chicken sciatic nerve explants attached and extended neurites equally well on both PP films and tissue culture polystyrene in the absence of electrical stimulation. In contrast, PC-12 cells interacted poorly with indium tin oxide (ITO), poly(L-lactic acid) (PLA), and poly(lactic acid-coglycolic acid) surfaces. However, PC-12 cells cultured on PP films and subjected to an electrical stimulus through the film showed a significant increase in neurite lengths compared with ones that were not subjected to electrical stimulation through the film and tissue culture polystyrene controls. The median neurite length for PC-12 cells grown on PP and subjected to an electrical stimulus was 18.14 μ m (n = 5643) compared with 9.5 μ m (n = 4440) for controls. Furthermore, animal implantation studies reveal that PP invokes little adverse tissue response compared with poly(lactic acid-coglycolic acid).

  6. Nebulized solvent ablation of aligned PLLA fibers for the study of neurite response to anisotropic-to-isotropic fiber/film transition (AFFT) boundaries in astrocyte–neuron co-cultures

    PubMed Central

    Zuidema, Jonathan M.; Desmond, Gregory P.; Rivet, Christopher J.; Kearns, Kathryn R.; Thompso, Deanna M.; Gilbert, Ryan J.

    2015-01-01

    Developing robust in vitro models of in vivo environments has the potential to reduce costs and bring new therapies from the bench top to the clinic more efficiently. This study aimed to develop a biomaterial platform capable of modeling isotropic-to-anisotropic cellular transitions observed in vivo, specifically focusing on changes in cellular organization following spinal cord injury. In order to accomplish this goal, nebulized solvent patterning of aligned, electrospun poly-l-lactic acid (PLLA) fiber substrates was developed. This method produced a clear topographic transitional boundary between aligned PLLA fibers and an isotropic PLLA film region. Astrocytes were then seeded on these scaffolds, and a shift between oriented and non-oriented astrocytes was created at the anisotropic-to-isotropic fiber/film transition (AFFT) boundary. Orientation of chondroitin sulfate proteoglycans (CSPGs) and fibronectin produced by these astrocytes was analyzed, and it was found that astrocytes growing on the aligned fibers produced aligned arrays of CSPGs and fibronectin, while astrocytes growing on the isotropic film region produced randomly-oriented CSPG and fibronectin arrays. Neurite extension from rat dissociated dorsal root ganglia (DRG) was studied on astrocytes cultured on anisotropic, aligned fibers, isotropic films, or from fibers to films. It was found that neurite extension was oriented and longer on PLLA fibers compared to PLLA films. When dissociated DRG were cultured on the astrocytes near the AFFT boundary, neurites showed directed orientation that was lost upon growth into the isotropic film region. The AFFT boundary also restricted neurite extension, limiting the extension of neurites once they grew from the fibers and into the isotropic film region. This study reveals the importance of anisotropic-to-isotropic transitions restricting neurite outgrowth by itself. Furthermore, we present this scaffold as an alternative culture system to analyze neurite

  7. PACAP induces neurite outgrowth in cultured trigeminal ganglion cells and recovery of corneal sensitivity after flap surgery in rabbits.

    PubMed

    Fukiage, Chiho; Nakajima, Takeshi; Takayama, Yoshiko; Minagawa, Yoko; Shearer, Thomas R; Azuma, Mitsuyoshi

    2007-02-01

    To evaluate the ability of pituitary adenylate cyclase-activating polypeptide (PACAP) to induce growth of neuronal processes in cultured trigeminal ganglion cells, and to accelerate neurite outgrowth and recovery of corneal sensitivity after creation of a corneal flap in a rabbit model of laser-assisted in situ keratomileusis (LASIK) surgery. Animal study. The cDNA of rabbit PACAP was sequenced, and the expression of PACAP receptors in the trigeminal ganglia from rabbits was quantified by quantitative real-time polymerase chain reaction. Trigeminal ganglion cells were isolated from rabbits and cultured for 48 hours with or without PACAP27 (bioactive N-terminal peptide from PACAP). Cells were stained with antibody against neurofilaments, and neurite outgrowth was quantified by cell counting. In the rabbit LASIK model, a corneal flap with a planned thickness of 130 microm and 8.5 mm diameter was created with a microkeratome. The rabbits then received eyedrops containing PACAP27 four times a day for eight weeks, and corneal sensitivity was measured. Neurite outgrowth was assessed by staining histologic sections of the flap area for cholinesterase. The deduced amino acid sequence of PACAP in rabbit was identical to that of human. PACAP receptor, PAC1, was highly expressed in trigeminal ganglia from newborn and adult rabbits. PACAP27 at 1 microM induced growth of neuronal processes in cultured primary trigeminal ganglion cells. In the LASIK model, extensions of neuronal processes from amputated nerve trunks in cornea were observed after administration of eyedrops containing 1 or 10 microM PACAP27. The 10 microM PACAP27 treatment also greatly accelerated recovery of corneal sensitivity. PACAP may be a candidate drug for ameliorating dry eye after LASIK surgery.

  8. Astrocytic αVβ3 Integrin Inhibits Neurite Outgrowth and Promotes Retraction of Neuronal Processes by Clustering Thy-1

    PubMed Central

    Herrera-Molina, Rodrigo; Frischknecht, Renato; Maldonado, Horacio; Seidenbecher, Constanze I.; Gundelfinger, Eckart D.; Hetz, Claudio; Aylwin, María de la Luz; Schneider, Pascal; Quest, Andrew F. G.; Leyton, Lisette

    2012-01-01

    Thy-1 is a membrane glycoprotein suggested to stabilize or inhibit growth of neuronal processes. However, its precise function has remained obscure, because its endogenous ligand is unknown. We previously showed that Thy-1 binds directly to αVβ3 integrin in trans eliciting responses in astrocytes. Nonetheless, whether αVβ3 integrin might also serve as a Thy-1-ligand triggering a neuronal response has not been explored. Thus, utilizing primary neurons and a neuron-derived cell line CAD, Thy-1-mediated effects of αVβ3 integrin on growth and retraction of neuronal processes were tested. In astrocyte-neuron co-cultures, endogenous αVβ3 integrin restricted neurite outgrowth. Likewise, αVβ3-Fc was sufficient to suppress neurite extension in Thy-1(+), but not in Thy-1(−) CAD cells. In differentiating primary neurons exposed to αVβ3-Fc, fewer and shorter dendrites were detected. This effect was abolished by cleavage of Thy-1 from the neuronal surface using phosphoinositide-specific phospholipase C (PI-PLC). Moreover, αVβ3-Fc also induced retraction of already extended Thy-1(+)-axon-like neurites in differentiated CAD cells as well as of axonal terminals in differentiated primary neurons. Axonal retraction occurred when redistribution and clustering of Thy-1 molecules in the plasma membrane was induced by αVβ3 integrin. Binding of αVβ3-Fc was detected in Thy-1 clusters during axon retraction of primary neurons. Moreover, αVβ3-Fc-induced Thy-1 clustering correlated in time and space with redistribution and inactivation of Src kinase. Thus, our data indicates that αVβ3 integrin is a ligand for Thy-1 that upon binding not only restricts the growth of neurites, but also induces retraction of already existing processes by inducing Thy-1 clustering. We propose that these events participate in bi-directional astrocyte-neuron communication relevant to axonal repair after neuronal damage. PMID:22479590

  9. c-Jun Gene-Modified Schwann Cells: Upregulating Multiple Neurotrophic Factors and Promoting Neurite Outgrowth

    PubMed Central

    Huang, Liangliang; Quan, Xin; Liu, Zhongyang; Ma, Teng; Wu, Yazhen; Ge, Jun; Zhu, Shu; Yang, Yafeng; Liu, Liang; Sun, Zhen

    2015-01-01

    Genetically modified Schwann cells (SCs) that overexpress neurotrophic factors (NFs), especially those that overexpress multiple NFs, hold great potential for promoting nerve regeneration. Currently, only one NF can be upregulated in most genetically modified SCs, and simultaneously upregulating multiple NFs in SCs remains challenging. In this study, we found that the overexpression of c-Jun, a component of the AP-1 transcription factor, effectively upregulated the expression and secretion of multiple NFs, including glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, artemin, leukemia inhibitory factor, and nerve growth factor. The c-Jun gene-modified SCs showed a normal morphology in scanning electron microscopy and fluorescent staining analysis. In addition, the c-Jun-modified SCs showed enhanced proliferation and migration abilities compared with vector control cells. We used transwell chambers to establish coculture systems imitating the in vivo conditions in which transplanted SCs might influence native SCs and neurons. We found that the c-Jun-modified SCs enhanced native SC migration and promoted the proliferation of native SCs in the presence of axons. Further analysis revealed that in the c-Jun group, the average length and the total area of neurites divided by the total area of the explant body were μm 1180±25 and 6.4±0.4, respectively, which were significantly greater compared with the other groups. These findings raise the possibility of constructing an optimal therapeutic alternative for nerve repair using c-Jun-modified SCs, which have the potential to promote axonal regeneration and functional recovery by upregulating multiple NFs. In addition, these cells exhibit enhanced migration and proliferation abilities, enhance the biological functions of native SCs, and promote neurite outgrowth. PMID:25588149

  10. Phosphate glass fibres promote neurite outgrowth and early regeneration in a peripheral nerve injury model.

    PubMed

    Kim, Young-Phil; Lee, Gil-Su; Kim, Jong-Wan; Kim, Min Soo; Ahn, Hong-Sun; Lim, Jae-Young; Kim, Hae-Won; Son, Young-Jin; Knowles, Jonathan C; Hyun, Jung Keun

    2015-03-01

    Three-dimensional (3D) scaffolds, which are bioactive and aid in neuronal guidance, are essential in the repair and regeneration of injured peripheral nerves. In this study, we used novel inorganic microfibres guided by phosphate glass (PG). PG fibres (PGfs) were aligned on compressed collagen that was rolled into a nerve conduit. In vitro tests confirmed that adult dorsal root ganglion (DRG) neurons showed active neurite outgrowth along the fibres, with a maximum number and length of neurites being significantly higher than those cultured on tissue culture plastic. In vivo experiments with nerve conduits that either contained PGfs (PGf/Col) or lacked them (Col) were conducted on transected sciatic nerves of rats for up to 12 weeks. One week after implantation, the PGf/Col group showed many axons extending along the scaffold, whereas the Col group showed none. Eight weeks after implantation, the PGf/Col group exhibited greater recovery of plantar muscle atrophy than the Col group. Electrophysiological studies revealed that some animals in the PGf/Col group at 6 and 7 weeks post-implantation (5.3% and 15.8%, respectively) showed compound muscle action potential. The Col group over the same period showed no response. Motor function also showed faster recovery in the PGf/Col group compared to the Col group up to 7 weeks. However, there was no significant difference in the number of axons, muscle atrophy or motor and sensory functions between the two groups at 12 weeks post-implantation. In summary, phosphate glass fibres can promote directional growth of axons in cases of peripheral nerve injury by acting as physical guides. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Repeated, intermittent treatment with amphetamine induces neurite outgrowth in rat pheochromocytoma cells (PC12 cells).

    PubMed

    Park, Yang Hae; Kantor, Lana; Wang, Kevin K W; Gnegy, Margaret E

    2002-09-27

    Repeated, intermittent treatment with amphetamine (AMPH) leads to long-term neurobiological adaptations in rat brain including an increased number and branching of dendritic spines. This effect depends upon several different cell types in the intact brain. Here we demonstrate that repeated, intermittent AMPH treatment induces neurite outgrowth in cultured PC12 cells without the requirement for integrated synaptic pathways. PC12 cells were treated with 1 micro M AMPH for 5 min a day, for 5 days. After 10 days of withdrawal, there was an increase in the percentage of cells with neurites ( approximately 30%) and the length of neurites as well as an increase in the level of GAP-43 and neurofilament-M. Neurite outgrowth was enhanced as withdrawal time was increased. Neurite outgrowth was much greater following repeated, intermittent treatment with AMPH compared to continuous or single treatment with AMPH. Pretreatment with cocaine, a monoamine transporter blocker, inhibited the AMPH-mediated increase in neurite outgrowth. Neither NGF antibody nor DA receptor antagonists blocked AMPH-induced neurite outgrowth, demonstrating that AMPH-induced neurite outgrowth is not dependent on endogenous NGF release or DA receptors. Thus we have demonstrated that repeated, intermittent treatment with AMPH has a neurotrophic effect in PC12 cells. The effect requires the action of AMPH on the norepinephrine transporter, and shares characteristics in its development with other forms of sensitization but does not require an intact neuroanatomy.

  12. Light-Mediated Kinetic Control Reveals the Temporal Effect of the Raf/MEK/ERK Pathway in PC12 Cell Neurite Outgrowth

    PubMed Central

    Zhang, Kai; Duan, Liting; Ong, Qunxiang; Lin, Ziliang; Varman, Pooja Mahendra; Sung, Kijung; Cui, Bianxiao

    2014-01-01

    It has been proposed that differential activation kinetics allows cells to use a common set of signaling pathways to specify distinct cellular outcomes. For example, nerve growth factor (NGF) and epidermal growth factor (EGF) induce different activation kinetics of the Raf/MEK/ERK signaling pathway and result in differentiation and proliferation, respectively. However, a direct and quantitative linkage between the temporal profile of Raf/MEK/ERK activation and the cellular outputs has not been established due to a lack of means to precisely perturb its signaling kinetics. Here, we construct a light-gated protein-protein interaction system to regulate the activation pattern of the Raf/MEK/ERK signaling pathway. Light-induced activation of the Raf/MEK/ERK cascade leads to significant neurite outgrowth in rat PC12 pheochromocytoma cell lines in the absence of growth factors. Compared with NGF stimulation, light stimulation induces longer but fewer neurites. Intermittent on/off illumination reveals that cells achieve maximum neurite outgrowth if the off-time duration per cycle is shorter than 45 min. Overall, light-mediated kinetic control enables precise dissection of the temporal dimension within the intracellular signal transduction network. PMID:24667437

  13. Staurosporin induces neurite outgrowth through ROS generation in HN33 hippocampal cell lines.

    PubMed

    Min, J Y; Park, M H; Park, M K; Park, K W; Lee, N W; Kim, T; Kim, H J; Lee, D H

    2006-11-01

    Staurosporin, a specific inhibitor of PKC, is widely used in studies of signal transduction pathways. Previous studies have shown that staurosporin induces neurite outgrowth, but the underlying mechanisms remain unclear. Here we report that staurosporin induces neurite outgrowth in HN33 hippocampal cells. Two other PKC inhibitors, Go 6976 (specific for alpha- and beta-isoforms) and rotterlin (a selective inhibitor of PKC delta), have no neuritogenic effect. In addition, staurosporin specifically increases ROS generation. NAC, which inhibits the generation of ROS, suppresses the staurosporin-induced neurite outgrowth in HN33 cells. Further, H(2)O(2) causes neurite outgrowth. Taken together, these results confirm a neuritogenic effect of staurosporin and point to ROS as the signal mediator of staurosporin-induced neurite outgrowth in HN33 hippocampal cells. Theme: Development and regeneration Topic: Neurotrophic factors: receptors and cellular mechanisms.

  14. PAK–PIX interactions regulate adhesion dynamics and membrane protrusion to control neurite outgrowth

    PubMed Central

    Santiago-Medina, Miguel; Gregus, Kelly A.; Gomez, Timothy M.

    2013-01-01

    Summary The roles of P21-activated kinase (PAK) in the regulation of axon outgrowth downstream of extracellular matrix (ECM) proteins are poorly understood. Here we show that PAK1–3 and PIX are expressed in the developing spinal cord and differentially localize to point contacts and filopodial tips within motile growth cones. Using a specific interfering peptide called PAK18, we found that axon outgrowth is robustly stimulated on laminin by partial inhibition of PAK–PIX interactions and PAK function, whereas complete inhibition of PAK function stalls axon outgrowth. Furthermore, modest inhibition of PAK–PIX stimulates the assembly and turnover of growth cone point contacts, whereas strong inhibition over-stabilizes adhesions. Point mutations within PAK confirm the importance of PIX binding. Together our data suggest that regulation of PAK–PIX interactions in growth cones controls neurite outgrowth by influencing the activity of several important mediators of actin filament polymerization and retrograde flow, as well as integrin-dependent adhesion to laminin. PMID:23321640

  15. PAK-PIX interactions regulate adhesion dynamics and membrane protrusion to control neurite outgrowth.

    PubMed

    Santiago-Medina, Miguel; Gregus, Kelly A; Gomez, Timothy M

    2013-03-01

    The roles of P21-activated kinase (PAK) in the regulation of axon outgrowth downstream of extracellular matrix (ECM) proteins are poorly understood. Here we show that PAK1-3 and PIX are expressed in the developing spinal cord and differentially localize to point contacts and filopodial tips within motile growth cones. Using a specific interfering peptide called PAK18, we found that axon outgrowth is robustly stimulated on laminin by partial inhibition of PAK-PIX interactions and PAK function, whereas complete inhibition of PAK function stalls axon outgrowth. Furthermore, modest inhibition of PAK-PIX stimulates the assembly and turnover of growth cone point contacts, whereas strong inhibition over-stabilizes adhesions. Point mutations within PAK confirm the importance of PIX binding. Together our data suggest that regulation of PAK-PIX interactions in growth cones controls neurite outgrowth by influencing the activity of several important mediators of actin filament polymerization and retrograde flow, as well as integrin-dependent adhesion to laminin.

  16. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth

    NASA Astrophysics Data System (ADS)

    Yao, Shenglian; Liu, Xi; Yu, Shukui; Wang, Xiumei; Zhang, Shuming; Wu, Qiong; Sun, Xiaodan; Mao, Haiquan

    2016-05-01

    The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ~1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration.The development of novel biomaterials that deliver precise regulatory signals to

  17. Role of glutamate in the regulation of the outgrowth and motility of neurites from mouse spinal cord neurons in culture

    PubMed Central

    OWEN, ALUN D.; BIRD, MARGARET M.

    1997-01-01

    The excitatory amino acid glutamate has been shown to be toxic to a number of neuronal cell types both in vitro and in vivo. It has also been shown to be capable of controlling the development of neurons grown in vitro. Using time-lapse video microscopy techniques the effects of glutamate on the rate of neurite outgrowth and growth cone motility were examined on cultured mouse spinal cord neurons. Concentrations in the range of 1 to 100 µ M caused a significant inhibition of neurite outgrowth and concentrations of 10 and 100 µ M significantly inhibited growth cone activity. In addition it was shown that the kainate/AMPA receptor antagonist (±)3-(2-carbvoxypiperazin-4-yl)-propyl-l-phosphonic acid, but not the NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione, was capable of blocking the inhibitory actions of glutamate on both outgrowth and motility. These results show that, at least in the culture system employed, glutamate might have a role in regulating neuronal development and function. PMID:9306206

  18. Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in-vitro.

    PubMed

    Soumyanath, Amala; Zhong, Yong-Ping; Gold, Sandra A; Yu, Xiaolin; Koop, Dennis R; Bourdette, Dennis; Gold, Bruce G

    2005-09-01

    Axonal regeneration is important for functional recovery following nerve damage. Centella asiatica Urban herb, also known as Hydrocotyle asiatica L., has been used in Ayurvedic medicine for centuries as a nerve tonic. Here, we show that Centella asiatica ethanolic extract (100 microg mL-1) elicits a marked increase in neurite outgrowth in human SH-SY5Y cells in the presence of nerve growth factor (NGF). However, a water extract of Centella was ineffective at 100 microg mL-1. Sub-fractions of Centella ethanolic extract, obtained through silica-gel chromatography, were tested (100 microg mL-1) for neurite elongation in the presence of NGF. Greatest activity was found with a non-polar fraction (GKF4). Relatively polar fractions (GKF10 to GKF13) also showed activity, albeit less than GKF4. Thus, Centella contains more than one active component. Asiatic acid (AA), a triterpenoid compound found in Centella ethanolic extract and GKF4, showed marked activity at 1 microM (microg mL-1). AA was not present in GKF10 to GKF13, further indicating that other active components must be present. Neurite elongation by AA was completely blocked by the extracellular-signal-regulated kinase (ERK) pathway inhibitor PD 098059 (10 microM). Male Sprague-Dawley rats given Centella ethanolic extract in their drinking water (300-330 mg kg-1 daily) demonstrated more rapid functional recovery and increased axonal regeneration (larger calibre axons and greater numbers of myelinated axons) compared with controls, indicating that the axons grew at a faster rate. Taken together, our findings indicate that components in Centella ethanolic extract may be useful for accelerating repair of damaged neurons.

  19. Respective roles of neurofilaments, microtubules, MAP1B, and tau in neurite outgrowth and stabilization.

    PubMed Central

    Shea, T B; Beermann, M L

    1994-01-01

    The respective roles of neurofilaments (NFs), microtubules (MTs), and the microtubule-associated proteins (MAPs) MAP 1B and tau on neurite outgrowth and stabilization were probed by the intracellular delivery of specific antisera into transiently permeabilized NB2a/d1 cells during treatment with dbcAMP. Intracellular delivery of antisera specific for the low (NF-L), middle (NF-M), or extensively phosphorylated high (NF-H) molecular weight subunits did not prevent initial neurite elaboration, nor did it induce retraction of existing neurites elaborated by cells that had been previously treated for 1 d with dbcAMP. By contrast, intracellular delivery of antisera directed against tubulin reduced the percentage of cells with neurites at both these time points. Intracellular delivery of anti-NF-L and anti-NF-M antisera did not induce retraction in cells treated with dbcAMP for 3 d. However, intracellular delivery of antisera directed against extensively phosphorylated NF-H, MAP1B, tau, or tubulin induced similar levels of neurite retraction at this time. Intracellular delivery of monoclonal antibodies (RT97 or SMI-31) directed against phosphorylated NF-H induced neurite retraction in cell treated with dbcAMP for 3 d; a monoclonal antibody (SMI-32) directed against nonphosphorylated NF-H did not induce neurite retraction at this time. By contrast, none of the above antisera induced retraction of neurites in cells treated with dbcAMP for 7 d. Neurites develop resistance to retraction by colchicine, first detectable in some neurites after 3 d and in the majority of neurites after 7 d of dbcAMP treatment. We therefore examined whether or not colchicine resistance was compromised by intracellular delivery of the above antisera. Colchicine treatment resulted in rapid neurite retraction after intracellular delivery of antisera directed against extensively phosphorylated NF-H, MAP1B, or tau into cells that had previously been treated with dbcAMP for 7 d. By contrast, colchicine

  20. NGF induces the expression of group IIA secretory phospholipase A2 in PC12 cells: the newly synthesized enzyme is addressed to growing neurites.

    PubMed

    Nardicchi, Vincenza; Ferrini, Monica; Pilolli, Francesca; Angeli, Emanuela Biagioni; Persichetti, Emanuele; Beccari, Tommaso; Mannucci, Roberta; Arcuri, Cataldo; Donato, Rosario; Dorman, Robert V; Goracci, Gianfrancesco

    2014-08-01

    We proposed that group IIA secretory phospholipase A(2) (GIIA) participates in neuritogenesis based on our observations that the enzyme migrates to growth cones and neurite tips when PC12 cells are induced to differentiate by nerve growth factor (NGF) (Ferrini et al., Neurochem Res 35:2168-2174, 2010). The involvement of other secretory PLA(2) isoforms in neuronal development has been suggested by others but through different mechanisms. In the present study, we compared the subcellular distribution of GIIA and group X sPLA(2) (GX) after stimulation of PC12 cells with NGF. We found that GIIA, but not GX, localized at the neuritic tips after treatment with NGF, as demonstrated by immunofluorescence analysis. We also found that NGF stimulated the expression and the activity of GIIA. In addition, NGF induced the expressed myc-tagged GIIA protein to migrate to neurite tips in its active form. We propose that GIIA expression, activity, and subcellular localization is regulated by NGF and that the enzyme may participate in neuritogenesis through intracellular mechanisms, most likely by facilitating the remodelling of glycerophospholipid molecular species by deacylation-reacylation reactions necessary for the incorporation of polyunsaturated fatty acids.

  1. Rabies virus neuritic paralysis: immunopathogenesis of nonfatal paralytic rabies.

    PubMed Central

    Weiland, F; Cox, J H; Meyer, S; Dahme, E; Reddehase, M J

    1992-01-01

    Two pathogenetically distinct disease manifestations are distinguished in a murine model of primary rabies virus infection with the Evelyn-Rokitnicky-Abelseth strain, rabies virus neuritic paralysis (RVNP) and fatal encephalopathogenic rabies. RVNP develops with high incidence in immunocompetent mice after intraplantar infection as a flaccid paralysis restricted to the infected limb. The histopathologic correlate of this monoplegia is a degeneration of the myelinated motor neurons of the peripheral nerve involved. While, in this model, fatal encephalopathogenic rabies develops only after depletion of the CD4 subset of T lymphocytes and without contribution of the CD8 subset, RVNP is identified as an immunopathological process in which both the CD4 and CD8 subsets of T lymphocytes are critically implicated. Images PMID:1629964

  2. Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling

    PubMed Central

    Fusco, Ludovico; Lefort, Riwal; Smith, Kevin; Benmansour, Fethallah; Gonzalez, German; Barillari, Caterina; Rinn, Bernd; Fleuret, Francois; Fua, Pascal

    2016-01-01

    Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth. PMID:26728857

  3. Long-term neurite orientation on astrocyte monolayers aligned by microtopography.

    PubMed

    Sørensen, Annette; Alekseeva, Tijna; Katechia, Kashyap; Robertson, Mary; Riehle, Mathis O; Barnett, Susan C

    2007-12-01

    After spinal cord injury neuronal connections are not easily re-established. Success has been hampered by the lack of orientation of neurites inside scar tissue and a lack of neurites crossing out of the site of injury. Oriented scaffolds in biodegradable polymers could be an excellent way to support both the orientation of neurites within the injury site as well as aiding their crossing out of the lesion. To establish the validity of using grooved micro-topography in polycaprolactone in combination with glia we have studied the long-term (3 weeks) orientation of neuronal cells on monolayers of astrocytes on the top of grooved topographies of various dimensions. We find that neurites are significantly aligned by groove/ridge type topographies which are "buried" under a monolayer of astrocytes for up to 3 weeks. This alignment is significantly lower than that of neurites growing directly on the topography, but these neurons do not survive on the poly-l-lysine coated polymer for more than a week. The alignment of neurites on the astrocyte layer to the underlying topography decreases over time, and with groove width. Topographies with 12.5 or 25 microm lateral dimension appear optimal for the long-term alignment and can support myelination. We have shown for the first time that micro-topography can act through an overlaid astrocyte layer and results in aligned neurites in long-term culture and that these can be myelinated by endogenous oligodendrocytes.

  4. Triggering of high-speed neurite outgrowth using an optical microheater.

    PubMed

    Oyama, Kotaro; Zeeb, Vadim; Kawamura, Yuki; Arai, Tomomi; Gotoh, Mizuho; Itoh, Hideki; Itabashi, Takeshi; Suzuki, Madoka; Ishiwata, Shin'ichi

    2015-11-16

    Optical microheating is a powerful non-invasive method for manipulating biological functions such as gene expression, muscle contraction, and cell excitation. Here, we demonstrate its potential usage for regulating neurite outgrowth. We found that optical microheating with a water-absorbable 1,455-nm laser beam triggers directional and explosive neurite outgrowth and branching in rat hippocampal neurons. The focused laser beam under a microscope rapidly increases the local temperature from 36 °C to 41 °C (stabilized within 2 s), resulting in the elongation of neurites by more than 10 μm within 1 min. This high-speed, persistent elongation of neurites was suppressed by inhibitors of both microtubule and actin polymerization, indicating that the thermosensitive dynamics of these cytoskeletons play crucial roles in this heat-induced neurite outgrowth. Furthermore, we showed that microheating induced the regrowth of injured neurites and the interconnection of neurites. These results demonstrate the efficacy of optical microheating methods for the construction of arbitrary neural networks.

  5. Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology?

    PubMed

    Grussu, Francesco; Schneider, Torben; Tur, Carmen; Yates, Richard L; Tachrount, Mohamed; Ianuş, Andrada; Yiannakas, Marios C; Newcombe, Jia; Zhang, Hui; Alexander, Daniel C; DeLuca, Gabriele C; Gandini Wheeler-Kingshott, Claudia A M

    2017-09-01

    Conventional magnetic resonance imaging (MRI) of the multiple sclerosis spinal cord is limited by low specificity regarding the underlying pathological processes, and new MRI metrics assessing microscopic damage are required. We aim to show for the first time that neurite orientation dispersion (i.e., variability in axon/dendrite orientations) is a new biomarker that uncovers previously undetected layers of complexity of multiple sclerosis spinal cord pathology. Also, we validate against histology a clinically viable MRI technique for dispersion measurement (neurite orientation dispersion and density imaging, NODDI), to demonstrate the strong potential of the new marker. We related quantitative metrics from histology and MRI in four post mortem spinal cord specimens (two controls; two progressive multiple sclerosis cases). The samples were scanned at high field, obtaining maps of neurite density and orientation dispersion from NODDI and routine diffusion tensor imaging (DTI) indices. Histological procedures provided markers of astrocyte, microglia, myelin and neurofilament density, as well as neurite dispersion. We report from both NODDI and histology a trend toward lower neurite dispersion in demyelinated lesions, indicative of reduced neurite architecture complexity. Also, we provide unequivocal evidence that NODDI-derived dispersion matches its histological counterpart (P < 0.001), while DTI metrics are less specific and influenced by several biophysical substrates. Neurite orientation dispersion detects a previously undescribed and potentially relevant layer of microstructural complexity of multiple sclerosis spinal cord pathology. Clinically feasible techniques such as NODDI may play a key role in clinical trial and practice settings, as they provide histologically meaningful dispersion indices.

  6. A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells

    SciTech Connect

    Sharma, Aarti; Lambrechts, Anja