Science.gov

Sample records for growth factor-induced neurite

  1. Frequency-dependent interference by magnetic fields of nerve growth factor-induced neurite outgrowth in PC-12 cells

    SciTech Connect

    Blackman, C.F.; Benane, S.G.; House, D.E.

    1995-12-31

    The authors have shown that 50 Hz sinusoidal magnetic fields within the 5--10 microTesla ({micro}T) rms range cause an intensity-dependent reduction in nerve growth factor (NGF) stimulation of neurite outgrowth (NO) in PC12- cells. Here they report on the frequency dependence of this response over the 15--70 Hz range at 5 Hz intervals. Primed PC-12 cells were plated in collagen-coated, 60 mm plastic petri dishes with or without 5 ng/ml NGF and were exposed to sinusoidal magnetic fields for 22 h in a CO{sub 2} incubator at 37 C. One 1,000-turn coil, 20 cm in diameter, generated vertically oriented magnetic fields. The dishes were stacked on the center axis of the coil to provide a range of intensities between 3.5 and 9.0 {micro}T rms. The flux density of the ambient DC magnetic field was 37 {micro}T vertical and 29 {micro}T horizontal. The assay consisted of counting over 100 cells in the central portion (radius {le}0.3 cm) of each dish and scoring cells positive for NO. Sham exposure of cells treated identically with NGF demonstrated no difference in the percentage of cells with NO between exposed and magnetically shielded locations within the incubator. Analysis of variance demonstrated flux density-dependent reductions in NGF-stimulated NO over the 35--70 Hz frequency range, whereas frequencies between 15 Hz and 30 Hz produced no obvious reduction. The results also demonstrated a relative maximal sensitivity of cells at 40 Hz with a possible additional sensitivity region at or above 70 Hz. These findings suggest a biological influence of perpendicular AC/DC magnetic fields different from those identified by the ion parametric resonance model, which uses strictly parallel AC/DC fields.

  2. Distinctive effect on nerve growth factor-induced PC12 cell neurite outgrowth by two unique neolignan enantiomers from Illicium merrillianum

    PubMed Central

    Tian, Xinhui; Yue, Rongcai; Zeng, Huawu; Li, Honglin; Shan, Lei; He, Weiwei; Shen, Yunheng; Zhang, Weidong

    2015-01-01

    Merrillianoid (1), a racemic neolignan possessing the characteristic benzo-2,7-dioxabicyclo[3.2.1]octane moiety, was isolated from the branches and leaves of Illicium merrillianum. Chiral separation of 1 gave two enantiomers (+)−1 and (−)−1. The structure of 1 was established by comprehensive spectroscopic analysis and single crystal X-ray diffraction. The absolute configurations of enantiomers were determined by quantum mechanical calculation. Compound (+)−1 exhibited a better neurotrophic activity than racemate 1 by promoting nerve growth factor (NGF) induced PC12 cell neurite outgrowth, while (−)−1 showed a distinctive inhibitory effect. Furthermore, a mechanism study indicated that the two enantiomers influenced NGF-induced neurite outgrowth of PC12 cells possibly by interacting with the trkA receptor, and extracellular signal regulated kinases 1/2 (ERK1/2) and mitogen-activated protein kinase (MEK) in Ras/ERK signal cascade. But the phosphorylation level of serine/threonine kinase Akt1 and Akt2 in PI3K/Akt signal pathway showed no significant difference between (+)−1 and (−)−1. PMID:26585042

  3. Distinctive effect on nerve growth factor-induced PC12 cell neurite outgrowth by two unique neolignan enantiomers from Illicium merrillianum

    NASA Astrophysics Data System (ADS)

    Tian, Xinhui; Yue, Rongcai; Zeng, Huawu; Li, Honglin; Shan, Lei; He, Weiwei; Shen, Yunheng; Zhang, Weidong

    2015-11-01

    Merrillianoid (1), a racemic neolignan possessing the characteristic benzo-2,7-dioxabicyclo[3.2.1]octane moiety, was isolated from the branches and leaves of Illicium merrillianum. Chiral separation of 1 gave two enantiomers (+)-1 and (-)-1. The structure of 1 was established by comprehensive spectroscopic analysis and single crystal X-ray diffraction. The absolute configurations of enantiomers were determined by quantum mechanical calculation. Compound (+)-1 exhibited a better neurotrophic activity than racemate 1 by promoting nerve growth factor (NGF) induced PC12 cell neurite outgrowth, while (-)-1 showed a distinctive inhibitory effect. Furthermore, a mechanism study indicated that the two enantiomers influenced NGF-induced neurite outgrowth of PC12 cells possibly by interacting with the trkA receptor, and extracellular signal regulated kinases 1/2 (ERK1/2) and mitogen-activated protein kinase (MEK) in Ras/ERK signal cascade. But the phosphorylation level of serine/threonine kinase Akt1 and Akt2 in PI3K/Akt signal pathway showed no significant difference between (+)-1 and (-)-1.

  4. Preparation of embryonic retinal explants to study CNS neurite growth.

    PubMed

    Hanea, Sonia T; Shanmugalingam, Ushananthini; Fournier, Alyson E; Smith, Patrice D

    2016-05-01

    This protocol outlines the preparation of embryonic mouse retinal explants, which provides an effective technique to analyze neurite outgrowth in central nervous system (CNS) neurons. This validated ex vivo system, which displays limited neuronal death, is highly reproducible and particularly amenable to manipulation. Our previously published studies involving embryonic chick or adult mouse retinal explants were instrumental in the preparation of this protocol; aspects of these previous techniques were combined, adopted and optimized. This protocol thus permits more efficient analysis of neurite growth. Briefly, the retina is dissected from the embryonic mouse eye using precise techniques that take into account the small size of the embryonic eye. The approach applied ensures that the retinal ganglion cell (RGC) layer faces the adhesion substrate on coated cover slips. Neurite growth is clear, well-delineated and readily quantifiable. These retinal explants can therefore be used to examine the neurite growth effects elicited by potential therapeutic agents. PMID:27072342

  5. Serum- and substratum-dependent modulation of neuritic growth.

    PubMed

    Skaper, S D; Selak, I; Varon, S

    1983-01-01

    Explants of embryonic day 8 (E8) chicken dorsal root ganglia (DRG) have been cultured with medium containing serum or the serum-free supplement N1 on one of three substrata: collagen, polyornithine (PORN), or PORN exposed to a polyornithine-binding neurite-promoting factor (PNPF-PORN). Replicate cultures were maintained with or without nerve growth factor (NGF). NGF elicited its classical neuritic outgrowth on all three substrata in serum-containing or serum-free medium. In the absence of NGF, however, a gradation of increasing neurite growth was seen with: PNPF-PORN greater than PORN greater than collagen. This response occurred in both media. In addition, the neuritic halo in each instance was markedly more developed in the absence of serum, especially on PNPF-PORN. Nonneuronal behaviors reflected both serum and substratum influences: thus, nonneuronal outgrowth consisted mainly of flat cells with serum and collagen, was nonexistent with serum and PORN or PNPF-PORN, and involved mostly Schwann-like scattered cells in the absence of serum on any one substratum. The serum-dependent behaviors of ganglionic neurites were examined further with explants from chicken E11 sympathetic ganglia. A single substratum was used (PORN), without exogenous trophic factor. Neurite outgrowth was depressed by the presence of fetal calf serum, thus supporting the generality of this phenomenon. Lastly, PC12 cells, a clonal line of rat pheochromocytoma, will grow neurites in the presence of NGF after 48 hr in serum-free, but not serum-containing media. Addition of serum to serum-free cultures at this time results in the rapid and complete retraction of neurites.

  6. Serum- and substratum-dependent modulation of neuritic growth.

    PubMed

    Skaper, S D; Selak, I; Varon, S

    1983-01-01

    Explants of embryonic day 8 (E8) chicken dorsal root ganglia (DRG) have been cultured with medium containing serum or the serum-free supplement N1 on one of three substrata: collagen, polyornithine (PORN), or PORN exposed to a polyornithine-binding neurite-promoting factor (PNPF-PORN). Replicate cultures were maintained with or without nerve growth factor (NGF). NGF elicited its classical neuritic outgrowth on all three substrata in serum-containing or serum-free medium. In the absence of NGF, however, a gradation of increasing neurite growth was seen with: PNPF-PORN greater than PORN greater than collagen. This response occurred in both media. In addition, the neuritic halo in each instance was markedly more developed in the absence of serum, especially on PNPF-PORN. Nonneuronal behaviors reflected both serum and substratum influences: thus, nonneuronal outgrowth consisted mainly of flat cells with serum and collagen, was nonexistent with serum and PORN or PNPF-PORN, and involved mostly Schwann-like scattered cells in the absence of serum on any one substratum. The serum-dependent behaviors of ganglionic neurites were examined further with explants from chicken E11 sympathetic ganglia. A single substratum was used (PORN), without exogenous trophic factor. Neurite outgrowth was depressed by the presence of fetal calf serum, thus supporting the generality of this phenomenon. Lastly, PC12 cells, a clonal line of rat pheochromocytoma, will grow neurites in the presence of NGF after 48 hr in serum-free, but not serum-containing media. Addition of serum to serum-free cultures at this time results in the rapid and complete retraction of neurites. PMID:6876195

  7. Piezoelectric substrates promote neurite growth in rat spinal cord neurons.

    PubMed

    Royo-Gascon, Núria; Wininger, Michael; Scheinbeim, Jerry I; Firestein, Bonnie L; Craelius, William

    2013-01-01

    We tested the possibility that exogenous electrical activity from a piezoelectric substrate could influence neuronal structure in cultured spinal cord neurons. Oscillating electrical fields were delivered to rat neurons via substrates consisting of poly(vinylidene fluoride) film, both in its piezoelectric (PZ) and non-piezoelectric (PV) forms. To induce oscillating electrical fields at the film surfaces, a 50 Hz mechanical vibration was applied. After 4 days of mechano-electrical stimulation, neuronal densities were increased by 115% and neurons grew 79% more neurites, with more than double the branch points, compared with neurons grown on non-stimulated PZ films (p < 0.001). The effects were due to electrical field, because vibration applied to non-PZ films did not increase neurite growth. We conclude that the oscillating electric fields produced from PZ polymer substrates can induce plastic changes in neurons of the central nervous system and herein we show its influence on neurite growth and branching. PMID:22864823

  8. Fetal calf serum-mediated inhibition of neurite growth from ciliary ganglion neurons in vitro.

    PubMed

    Davis, G E; Skaper, S D; Manthorpe, M; Moonen, G; Varon, S

    1984-01-01

    Embryonic chick ciliary ganglion (CG) neurons cultured in fetal calf serum-containing medium have been previously reported to extend neurites on polyornithine (PORN) substrata precoated with a neurite-promoting factor (PNPF) from rat schwannoma-conditioned medium. On PORN substrata alone, however, no neuritic growth occurred. This was interpreted as evidence that PORN was an incompetent substratum for ciliary neuritic growth. In this study, we now find that an untreated PORN substratum allows neuritic growth in serum-free defined medium. When PNPF was added to PORN, a more rapid and extensive neuritic response occurred. After 5 hr of culture, a 60% neuritic response occurred on PNPF/PORN, whereas no neurons initiated neurites until 10-12 hr on PORN. The inhibitory effect of fetal calf serum noted above on PORN could be obtained in part by pretreating the substratum with serum for 1 hr. Maximal inhibitory effects in the PORN pretreatment were achieved after 30 min and were not further improved by treatments up to 4 hr. Bovine serum albumin was also found to inhibit neurite growth on PORN to about 60% of the inhibition obtained by an equivalent amount of serum protein. Fetal calf serum was shown to cause a 15% reduction in the percentage of neurons bearing neurites after its addition to 18-hr serum-free PORN cultures and to cause statistically significant reductions in neurite lengths measured 2 hr later.

  9. Fetal calf serum-mediated inhibition of neurite growth from ciliary ganglion neurons in vitro.

    PubMed

    Davis, G E; Skaper, S D; Manthorpe, M; Moonen, G; Varon, S

    1984-01-01

    Embryonic chick ciliary ganglion (CG) neurons cultured in fetal calf serum-containing medium have been previously reported to extend neurites on polyornithine (PORN) substrata precoated with a neurite-promoting factor (PNPF) from rat schwannoma-conditioned medium. On PORN substrata alone, however, no neuritic growth occurred. This was interpreted as evidence that PORN was an incompetent substratum for ciliary neuritic growth. In this study, we now find that an untreated PORN substratum allows neuritic growth in serum-free defined medium. When PNPF was added to PORN, a more rapid and extensive neuritic response occurred. After 5 hr of culture, a 60% neuritic response occurred on PNPF/PORN, whereas no neurons initiated neurites until 10-12 hr on PORN. The inhibitory effect of fetal calf serum noted above on PORN could be obtained in part by pretreating the substratum with serum for 1 hr. Maximal inhibitory effects in the PORN pretreatment were achieved after 30 min and were not further improved by treatments up to 4 hr. Bovine serum albumin was also found to inhibit neurite growth on PORN to about 60% of the inhibition obtained by an equivalent amount of serum protein. Fetal calf serum was shown to cause a 15% reduction in the percentage of neurons bearing neurites after its addition to 18-hr serum-free PORN cultures and to cause statistically significant reductions in neurite lengths measured 2 hr later. PMID:6481819

  10. Insulin signaling regulates neurite growth during metamorphic neuronal remodeling.

    PubMed

    Gu, Tingting; Zhao, Tao; Hewes, Randall S

    2014-01-15

    Although the growth capacity of mature neurons is often limited, some neurons can shift through largely unknown mechanisms from stable maintenance growth to dynamic, organizational growth (e.g. to repair injury, or during development transitions). During insect metamorphosis, many terminally differentiated larval neurons undergo extensive remodeling, involving elimination of larval neurites and outgrowth and elaboration of adult-specific projections. Here, we show in the fruit fly, Drosophila melanogaster (Meigen), that a metamorphosis-specific increase in insulin signaling promotes neuronal growth and axon branching after prolonged stability during the larval stages. FOXO, a negative effector in the insulin signaling pathway, blocked metamorphic growth of peptidergic neurons that secrete the neuropeptides CCAP and bursicon. RNA interference and CCAP/bursicon cell-targeted expression of dominant-negative constructs for other components of the insulin signaling pathway (InR, Pi3K92E, Akt1, S6K) also partially suppressed the growth of the CCAP/bursicon neuron somata and neurite arbor. In contrast, expression of wild-type or constitutively active forms of InR, Pi3K92E, Akt1, Rheb, and TOR, as well as RNA interference for negative regulators of insulin signaling (PTEN, FOXO), stimulated overgrowth. Interestingly, InR displayed little effect on larval CCAP/bursicon neuron growth, in contrast to its strong effects during metamorphosis. Manipulations of insulin signaling in many other peptidergic neurons revealed generalized growth stimulation during metamorphosis, but not during larval development. These findings reveal a fundamental shift in growth control mechanisms when mature, differentiated neurons enter a new phase of organizational growth. Moreover, they highlight strong evolutionarily conservation of insulin signaling in neuronal growth regulation.

  11. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements

    NASA Astrophysics Data System (ADS)

    Wood, Matthew D.; Willits, Rebecca Kuntz

    2009-08-01

    Electrical therapies have been found to aid repair of nerve injuries and have been shown to increase and direct neurite outgrowth during stimulation. This enhanced neural growth existed even after the electric field (EF) or stimulation was removed, but the factors that may influence the enhanced growth, such as stimulation media or surface coating, have not been fully investigated. This study characterized neurite outgrowth and branching under various conditions: EF magnitude and application time, ECM surface coating, medium during EF application and growth supplements. A uniform, low-magnitude EF (24 or 44 V m-1) was applied to dissociated chick embryo dorsal root ganglia seeded on collagen or laminin-coated surfaces. During the growth period, cells were either exposed to NGF or N2, and during stimulation cells were exposed to either unsupplemented media (Ca2+) or PBS (no Ca2+). Parallel controls for each experiment included cells exposed to the chamber with no stimulation and cells remaining outside the chamber. After brief electrical stimulation (10 min), neurite length significantly increased 24 h after application for all conditions studied. Of particular interest, increased stimulation time (10-100 min) further enhanced neurite length on laminin but not on collagen surfaces. Neurite branching was not affected by stimulation on any surface, and no preferential growth of neurites was noted after stimulation. Overall, the results of this report suggest that short-duration electric stimulation is sufficient to enhance neurite length under a variety of conditions. While further data are needed to fully elucidate a mechanism for this increased growth, these data suggest that one focus of those investigations should be the interaction between the growth cone and the substrata.

  12. Neurite outgrowth at the interface of 2D and 3D growth environments

    NASA Astrophysics Data System (ADS)

    Kofron, Celinda M.; Fong, Vivian J.; Hoffman-Kim, Diane

    2009-02-01

    Growing neurons navigate complex environments, but in vitro systems for studying neuronal growth typically limit the cues to flat surfaces or a single type of cue, thereby limiting the resulting growth. Here we examined the growth of neurons presented with two-dimensional (2D) substrate-bound cues when these cues were presented in conjunction with a more complex three-dimensional (3D) architecture. Dorsal root ganglia (DRG) explants were cultured at the interface between a collagen I matrix and a glass coverslip. Laminin (LN) or chondroitin sulfate proteoglycans (CSPG) were uniformly coated on the surface of the glass coverslip or patterned in 50 µm tracks by microcontact printing. Quantitative analysis of neurite outgrowth with a novel grid system at multiple depths in the gel revealed several interesting trends. Most of the neurites extended at the surface of the gel when LN was presented whereas more neurites extended into the gel when CSPG was presented. Patterning of cues did not affect neurite density or depth of growth. However, neurite outgrowth near the surface of the gel aligned with LN patterns, and these extensions were significantly longer than neurites extended in other cultures. In interface cultures, DRG growth patterns varied with the type of cue where neurite density was higher in cultures presenting LN than in cultures presenting CSPG. These results represent an important step toward understanding how neurons integrate local structural and chemical cues to make net growth decisions.

  13. Mechanical tension applied to substrate films specifies location of neuritogenesis and promotes major neurite growth at the expense of minor neurite development.

    PubMed

    Feng, Zhang-Qi; Franz, Eric W; Leach, Michelle K; Winterroth, Frank; White, Christina M; Rastogi, Arjun; Gu, Zhong-Ze; Corey, Joseph M

    2016-04-01

    One obstacle in neural repair is facilitating axon growth long enough to reach denervated targets. Recent studies show that axonal growth is accelerated by applying tension to bundles of neurites, and additional studies show that mechanical tension is critical to all neurite growth. However, no studies yet describe how individual neurons respond to tensile forces applied to cell bodies and neurites simultaneously; neither do any test motor neurons, a phenotype critical to neural repair. Here we examine the growth of dissociated motor neurons on stretchable substrates. E15 spinal motor neurons were cultured on poly-lactide-co-glycolide films stretched at 4.8, 9.6, or 14.3 mm day(-1). Morphological analysis revealed that substrate stretching has profound effects on developing motor neurons. Stretching increases major neurite length; it also forces neuritogenesis to occur nearest poles of the cell closest to the sources of tension. Stretching also reduces the number of neurites per neuron. These data show that substrate stretching affects neuronal morphology by specifying locations on the cell where neuritogenesis occurs and favoring major neurite growth at the expense of minor neurites. These results serve as a building block for development of new techniques to control and improve the growth of neurons for nerve repair purposes.

  14. Growth, collapse, and stalling in a mechanical model for neurite motility

    NASA Astrophysics Data System (ADS)

    Recho, Pierre; Jerusalem, Antoine; Goriely, Alain

    2016-03-01

    Neurites, the long cellular protrusions that form the routes of the neuronal network, are capable of actively extending during early morphogenesis or regenerating after trauma. To perform this task, they rely on their cytoskeleton for mechanical support. In this paper, we present a three-component active gel model that describes neurites in the three robust mechanical states observed experimentally: collapsed, static, and motile. These states arise from an interplay between the physical forces driven by growth of the microtubule-rich inner core of the neurite and the acto-myosin contractility of its surrounding cortical membrane. In particular, static states appear as a mechanical traction or compression balance of these two parallel structures. The model predicts how the response of a neurite to a towing force depends on the force magnitude and recovers the response of neurites to several drug treatments that modulate the cytoskeleton active and passive properties.

  15. Survival and neurite growth of chick embryo spinal cord cells in serum-free culture.

    PubMed

    Tanaka, H; Obata, K

    1982-07-01

    Cell survival and neurite growth were investigated in serum-free spinal cord cell cultures on polyornithine coating (PORN). Cells were obtained from 6- or 7-day-old chick embryos. Isolated spinal cord cells required promoting factors for their survival and neurite growth. The survival-promoting factors were initially present in spinal cord cells. High density cultures, co-cultures with spinal cord explants, and spinal cord extract promoted survival of isolated spinal cord cells in MEM with no additives. Other tissue extracts (brain, liver, heart and skeletal muscle), serum, and serum-free conditioned medium (SF-CM) of muscle or glioma C6 cells also promoted survival. The active substances in the brain extract and SF-CM were shown to be protein and were separated into 3 fractions (approximately molecular weight 150,000, 70,000, 40,000) by gel filtration chromatography. Survival and neurite growth were suggested to be promoted by different factors because: (1) survival was promoted by both tissue extract and SF-CM, but neurite growth was promoted only by SF-CM; (2) the neurite growth-stimulating activity of SF-CM was lost following dialysis and heat (100 degrees C, 2 min) treatment; however, the survival-promoting activity was not. It was also suggested that spinal cord cells produce neurite growth promoting factors, but did not initially contain these factors.

  16. Survival and neurite growth of chick embryo spinal cord cells in serum-free culture.

    PubMed

    Tanaka, H; Obata, K

    1982-07-01

    Cell survival and neurite growth were investigated in serum-free spinal cord cell cultures on polyornithine coating (PORN). Cells were obtained from 6- or 7-day-old chick embryos. Isolated spinal cord cells required promoting factors for their survival and neurite growth. The survival-promoting factors were initially present in spinal cord cells. High density cultures, co-cultures with spinal cord explants, and spinal cord extract promoted survival of isolated spinal cord cells in MEM with no additives. Other tissue extracts (brain, liver, heart and skeletal muscle), serum, and serum-free conditioned medium (SF-CM) of muscle or glioma C6 cells also promoted survival. The active substances in the brain extract and SF-CM were shown to be protein and were separated into 3 fractions (approximately molecular weight 150,000, 70,000, 40,000) by gel filtration chromatography. Survival and neurite growth were suggested to be promoted by different factors because: (1) survival was promoted by both tissue extract and SF-CM, but neurite growth was promoted only by SF-CM; (2) the neurite growth-stimulating activity of SF-CM was lost following dialysis and heat (100 degrees C, 2 min) treatment; however, the survival-promoting activity was not. It was also suggested that spinal cord cells produce neurite growth promoting factors, but did not initially contain these factors. PMID:7104764

  17. Enhanced Neurite Growth from Mammalian Neurons in Three-Dimensional Salmon Fibrin Gels

    PubMed Central

    Ju, Yo-El; Janmey, Paul A.; McCormick, Margaret; Sawyer, Evelyn S.; Flanagan, Lisa A.

    2007-01-01

    Three-dimensional fibrin matrices have been used as cellular substrates in vitro and as bridging materials for central nervous system repair. Cells can be embedded within fibrin gels since the polymerization process is non-toxic, making fibrin an attractive scaffold for transplanted cells. Most studies have utilized fibrin prepared from human or bovine blood proteins. However, fish fibrin may be well suited for neuronal growth since fish undergo remarkable central nervous system regeneration and molecules implicated in this process are present in fibrin. We assessed the growth of mammalian central nervous system neurons in bovine, human, and salmon fibrin and found that salmon fibrin gels encouraged the greatest degree of neurite (dendrite and axon) growth and were the most resistant to degradation by cellular proteases. The neurite growth-promoting effect was not due to the thrombin used to polymerize the gels or to any copurifying plasminogen. Co-purified fibronectin partially accounted for the effect on neurites, and blockade of fibrinogen/fibrin-binding integrins markedly decreased neurite growth. Anion exchange chromatography revealed different elution profiles for salmon and mammalian fibrinogens. These data demonstrate that salmon fibrin encourages the growth of neurites from mammalian neurons and suggest that salmon fibrin may be a beneficial scaffold for neuronal regrowth after CNS injury. PMID:17258313

  18. Influence of bone morphogenetic protein-2 on spiral ganglion neurite growth in vitro.

    PubMed

    Volkenstein, Stefan; Brors, D; Hansen, S; Minovi, A; Laub, M; Jennissen, H P; Dazert, S; Neumann, A

    2009-09-01

    Recombinant human bone morphogenetic protein-2 (rhBMP-2) is a growth factor of the transforming growth factor-beta superfamily. Members of this protein family are involved in the development of various mammalian tissues, including the inner ear. As their notations indicate, they also have well-known effects on bone formation and regeneration. In this study, we examined the influence of rhBMP-2 on spiral ganglion (SG) neurite growth in vitro and showed the presence of its most preferred receptor BMPR-IB in spiral ganglion cells both in vitro and in vivo. SG explants of postnatal day 4 rats were analysed for neurite length and number after organotypical cell culture for 72 h, fixation and immunolabeling. Different concentrations of rhBMP-2 were used in a serum-free culture media. Neurite growth was compared with control groups that lacked stimulative effects; with neutrophin-3 (NT-3), which is a well-established positive stimulus on neurite length and number; and with combinations of these parameters. The results display that neurite number and total neurite length per explant in particular concentrations of rhBMP-2 increased by a maximum factor of two, while the mean neurite length was not affected. NT-3 demonstrated a much more potent effect, delivering a maximum increase of a factor of five. Furthermore, a combination of both growth factors shows a predominant effect on NT-3. Immunohistological detection of BMPR-IB was successful both in cell culture explants and in paraffin-embedded sections of animals of different ages. The results show that rhBMP-2 is, among other growth factors, a positive stimulus for SG neurite growth in vitro. Most growth factors are unstable and cannot be attached to surfaces without loss of their biological function. In contrast, rhBMP-2 can be attached to metal surfaces without loss of activity. Our findings suggest in vivo studies and a future clinical application of rhBMP-2 in cochlear implant technology to improve the tissue

  19. Increase in Growth Cone Size Correlates with Decrease in Neurite Growth Rate

    PubMed Central

    Ren, Yuan

    2016-01-01

    Several important discoveries in growth cone cell biology were made possible by the use of growth cones derived from cultured Aplysia bag cell neurons, including the characterization of the organization and dynamics of the cytoskeleton. The majority of these Aplysia studies focused on large growth cones induced by poly-L-lysine substrates at early stages in cell culture. Under these conditions, the growth cones are in a steady state with very little net advancement. Here, we offer a comprehensive cellular analysis of the motile behavior of Aplysia growth cones in culture beyond this pausing state. We found that average growth cone size decreased with cell culture time whereas average growth rate increased. This inverse correlation of growth rate and growth cone size was due to the occurrence of large growth cones with a peripheral domain larger than 100 μm2. The large pausing growth cones had central domains that were less consistently aligned with the direction of growth and could be converted into smaller, faster-growing growth cones by addition of a three-dimensional collagen gel. We conclude that the significant lateral expansion of lamellipodia and filopodia as observed during these culture conditions has a negative effect on neurite growth. PMID:27274874

  20. Controlled neuronal cell patterning and guided neurite growth on micropatterned nanofiber platforms

    NASA Astrophysics Data System (ADS)

    Malkoc, Veysi; Gallego-Perez, Daniel; Nelson, Tyler; Lannutti, John J.; Hansford, Derek J.

    2015-12-01

    Patterning neuronal cells and guiding neurite growth are important for applications such as prosthetics, cell based biosensors, and tissue engineering. In this paper, a microdevice is presented that provides neuronal cell patterning and guided neurite growth on a collagen coated gelatin/PCL nanofiber mat. The pattern consisted of a grid of polystyrene microwells/nodes to confine the cell bodies and orthogonal grooves to guide neurite growth from each node. Vacuum assisted cell seeding was used to localize cell bodies in the microwells and physically separate the cells during seeding. The electrospun nanofiber mats under the polystyrene microstructures were coated with collagen to enhance the cellular attachment and enhance differentiation. We evaluated the performance of our device using adhesion, viability, and differentiation assays of neuron-like PC12 cells compared to controls for vacuum seeding, spatial isolation and guidance, and collagen coating of the fibers. The device provided PC12 cell patterning with increased adhesion, differentiation, and guided neurite outgrowth compared to controls, demonstrating its potential for in vitro neuronal cell patterning studies.

  1. Effects of nerve growth factor and heart cell conditioned medium on neurite regeneration of aged sympathetic neurons in culture.

    PubMed

    Uchida, Y; Tomonaga, M

    1985-11-25

    The effects of nerve growth factor (NGF) and heart-cell-conditioned medium (HCM) on the neurite regeneration of aged sympathetic neurons were investigated in culture. Investigation of HCM was carried out by two different methods: one was the use of whole HCM on collagen substratum, which reflected component(s) effective in solution (HCM-S); the other was the use of polyornithine (PORN)-binding component(s) (P-HCM). Superior cervical ganglion neurons prepared from male mice from 6 to 30 months of age were cultured in MEM-10% FCS on collagen or gelatin-PORN substratum for 3 days. The number of neurons with neurites and the length of neurites were quantified as neurite production and elongation, respectively. Neuronal survival was not affected by addition of NGF, HCM-S or P-HCM. Neurite production of early adult neurons was enhanced by NGF, HCM-S or P-HCM. In contrast, neurite production of aged neurons was enhanced by only HCM-S, but not NGF or P-HCM. HCM-S did not promote neurite elongation in neurons at any age. Neurite elongation of early adult neurons was enhanced by NGF or P-HCM. Neurite elongation of aged neurons was enhanced by P-HCM. However, responsiveness of NGF for neurite elongation varied according to substrata. No age-related difference was found in neurite production and elongation in the absence of NGF, HCM-S or P-HCM. These results indicate that responsiveness of aged sympathetic neurons is various in different growth factors.

  2. Tissue kallikrein mediates neurite outgrowth through epidermal growth factor receptor and flotillin-2 pathway in vitro.

    PubMed

    Lu, Zhengyu; Cui, Mei; Zhao, Hong; Wang, Tao; Shen, Yan; Dong, Qiang

    2014-02-01

    Tissue kallikrein (TK) was previously shown to take most of its biological effects through bradykinin receptors. In this study, we assumed that TK mediated neurite outgrowth was independent of bradykinin receptors. To test the hypothesis, we investigated TK-induced neurite outgrowth and its signaling mechanisms in cultured primary neurons and human SH-SY5Y cells. We found that TK stimulation could increase the number of processes and mean process length of primary neurons, which were blocked by epidermal growth factor receptor (EGFR) inhibitor or down-regulation, small interfering RNA for flotillin-2 and extracellular signal-regulated kinase (ERK) 1/2 inhibitor. Moreover, TK-induced neurite outgrowth was associated with EGFR and ERK1/2 activation, which were inhibited by EGFR antagonist or RNA interference and flotillin-2 knockdown. Interestingly, inhibition of bradykinin receptors had no significant effects on EGFR and ERK1/2 phosphorylation. In the present research, our data also suggested that EGFR and flotillin-2 formed constitutive complex that translocated to around the nuclei in the TK stimulation. In sum, our findings provided evidence that TK could promote neurite outgrowth via EGFR, flotillin-2 and ERK1/2 signaling pathway in vitro. PMID:24211626

  3. Effects of a synthetic bioactive peptide on neurite growth and nerve growth factor release in chondroitin sulfate hydrogels.

    PubMed

    Conovaloff, Aaron W; Beier, Brooke L; Irazoqui, Pedro P; Panitch, Alyssa

    2011-01-01

    Previous work has revealed robust dorsal root ganglia neurite growth in hydrogels of chondroitin sulfate. In the current work, it was determined whether addition of a synthetic bioactive peptide could augment neurite growth in these matrices via enhanced binding and sequestering of growth factors. Fluorescence recovery after photobleaching studies revealed that addition of peptide slowed nerve growth factor diffusivity in chondroitin sulfate gels, but not in control gels of hyaluronic acid. Furthermore, cultures of chick dorsal root ganglia in gels of hyaluronic acid or chondroitin sulfate revealed enhanced growth in chondroitin sulfate gels only upon addition of peptide. Taken together, these results suggest a synergistic nerve growth factor-binding activity between this peptide and chondroitin sulfate. PMID:23507745

  4. Microtopographical features generated by photopolymerization recruit RhoA/ROCK through TRPV1 to direct cell and neurite growth

    PubMed Central

    Li, Shufeng; Tuft, Bradley; Xu, Linjing; Polacco, Marc; Clarke, Joseph C.; Guymon, C. Allan; Hansen, Marlan R.

    2015-01-01

    Cell processes, including growth cones, respond to biophysical cues in their microenvironment to establish functional tissue architecture and intercellular networks. The mechanisms by which cells sense and translate biophysical cues into directed growth are unknown. We used photopolymerization to fabricate methacrylate platforms with patterned microtopographical features that precisely guide neurite growth and Schwann cell alignment. Pharmacologic inhibition of the transient receptor potential cation channel subfamily V member 1 (TRPV1) or reduced expression of TRPV1 by RNAi significantly disrupts neurite guidance by these microtopographical features. Exogenous expression of TRPV1 induces alignment of NIH3T3 fibroblasts that fail to align in the absence of TRPV1, further implicating TRPV1 channels as critical mediators of cellular responses to biophysical cues. Microtopographic features increase RhoA activity in growth cones and in TRPV1-expressing NIH3T3 cells. Further, Rho-associated kinase (ROCK) phosphorylation is elevated in growth cones and neurites on micropatterned surfaces. Inhibition of RhoA/ROCK by pharmacological compounds or reduced expression of either ROCKI or ROCKII isoforms by RNAi abolishes neurite and cell alignment, confirming that RhoA/ROCK signaling mediates neurite and cell alignment to microtopographic features. These studies demonstrate that microtopographical cues recruit TRPV1 channels and downstream signaling pathways, including RhoA and ROCK, to direct neurite and cell growth. PMID:25890710

  5. Hearing development and spiral ganglion neurite growth in VASP deficient mice.

    PubMed

    Dazert, Stefan; Schick, Bernhard; Hartensuer, Rene; Volkenstein, Stefan; Aletsee, Christoph; Hansen, Stefan; Shehata-Dieler, Wafaa E; Eigenthaler, Martin; Walter, Ulrich; Ryan, Allen F; Brors, Dominik

    2007-10-31

    Vasodilator-stimulated phosphoprotein (VASP) has been found to be involved in intracellular signalling pathways and to play an important role in the actin associated organization and formation of the cytoskeleton. Since differential VASP expression was noted in inner ear tissues, the present study was performed to investigate the hearing development in VASP deficient mice. Hearing development in VASP-/- mice and wild type animals was investigated by auditory brain stem (ABR) measurements. In addition, inner ear tissues of wild type animals were tested for VASP expression using PCR, Western blot analysis, in situ hybridisation, and immunohistochemistry. To compare spiral ganglion (SG) neurite growth, SG explants from VASP-/- and wild type mice were analyzed under cell culture conditions. The electroacoustical results of the present study indicate that VASP deficient mice present with a later onset of hearing during postnatal development compared to wild type animals. Transient VASP expression was detected in neonatal SG of wild type mice. Tissue culture experiments with SG explants from VASP-/- animals revealed significant alterations in SG neurite extension compared to wild types. The present findings suggest a role for VASP during neonatal development of the mammalian cochlea and allow speculation on a possible delayed innervation of cochlear hair cells due to changes in SG neurite growth in VASP-deficient mice. Temporary VASP deficits in the neonatal inner ear may be compensated by related proteins like MENA leading to a delayed but complete development of hearing function in VASP-/- animals.

  6. Spatial Phosphoprotein Profiling Reveals a Compartmentalized Extracellular Signal-regulated Kinase Switch Governing Neurite Growth and Retraction

    SciTech Connect

    Wang, Yingchun; Yang, Feng; Fu, Yi; Huang, Xiahe; Wang, Wei; Jiang, Xining; Gritsenko, Marina A.; Zhao, Rui; Monroe, Matthew E.; Pertz, Olivier C.; Purvine, Samuel O.; Orton, Daniel J.; Jacobs, Jon M.; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

    2011-05-20

    Abstract - Brain development and spinal cord regeneration require neurite sprouting and growth cone navigation in response to extension and collapsing factors present in the extracellular environment. These external guidance cues control neurite growth cone extension and retraction processes through intracellular protein phosphorylation of numerous cytoskeletal, adhesion, and polarity complex signaling proteins. However, the complex kinase/substrate signaling networks that mediate neuritogenesis have not been investigated. Here, we compare the neurite phosphoproteome under growth and retraction conditions using neurite purification methodology combined with mass spectrometry. More than 4000 non-redundant phosphorylation sites from 1883 proteins have been annotated and mapped to signaling pathways that control kinase/phosphatase networks, cytoskeleton remodeling, and axon/dendrite specification. Comprehensive informatics and functional studies revealed a compartmentalized ERK activation/deactivation cytoskeletal switch that governs neurite growth and retraction, respectively. Our findings provide the first system-wide analysis of the phosphoprotein signaling networks that enable neurite growth and retraction and reveal an important molecular switch that governs neuritogenesis.

  7. CSK negatively regulates nerve growth factor induced neural differentiation and augments AKT kinase activity

    SciTech Connect

    Dey, Nandini . E-mail: Don_Durden@oz.ped.emory.edu

    2005-07-01

    Src family kinases are involved in transducing growth factor signals for cellular differentiation and proliferation in a variety of cell types. The activity of all Src family kinases (SFKs) is controlled by phosphorylation at their C-terminal 527-tyrosine residue by C-terminal SRC kinase, CSK. There is a paucity of information regarding the role of CSK and/or specific Src family kinases in neuronal differentiation. Pretreatment of PC12 cells with the Src family kinase inhibitor, PP1, blocked NGF-induced activation of SFKs and obliterated neurite outgrowth. To confirm a role for CSK and specific isoforms of SFKs in neuronal differentiation, we overexpressed active and catalytically dead CSK in the rat pheochromocytoma cell line, PC12. CSK overexpression caused a profound inhibition of NGF-induced activation of FYN, YES, RAS, and ERK and inhibited neurite outgrowth, NGF-stimulated integrin-directed migration and blocked the NGF-induced conversion of GDP-RAC to its GTP-bound active state. CSK overexpression markedly augmented the activation state of AKT following NGF stimulation. In contrast, kinase-dead CSK augmented the activation of FYN, RAS, and ERK and increased neurite outgrowth. These data suggest a distinct requirement for CSK in the regulation of NGF/TrkA activation of RAS, RAC, ERK, and AKT via the differential control of SFKs in the orchestration of neuronal differentiation.

  8. Attenuation of actinomyosinII contractile activity in growth cones accelerates filopodia-guided and microtubule-based neurite elongation.

    PubMed

    Rösner, Harald; Möller, Wolfgang; Wassermann, Torsten; Mihatsch, Julia; Blum, Martin

    2007-10-24

    The myosinII-specific inhibitor blebbistatin was used to attenuate actinomyosinII contractility in E7-chicken retina explant, medulla and spinal cord neuronal cell cultures. Addition of 20-100 microM blebbistatin, a concentration range that reversibly disrupts actin stress fibers, led to a reduction of growth cone lamellipodial areas and to an elongation of filopodia within 5 to 10 min. These morphological changes were completely reversed after removing the inhibitor. In the continued presence of blebbistatin for several hours, a dose-dependent acceleration (up to 6-fold) of neurite outgrowth was observed. The rapidly elongating neuritic processes displayed narrowed growth cones with one to three long filopodia at the leading edge. At the same time, thin neuritic branches emerged in a "push"-like fashion guided by filopodial extensions. Immunocytochemical characterization of these thin sprouts revealed that they contained actin filaments, myosinIIA, phosphorylated neurofilament/tau epitopes, MAP2, NCAM-PSA, and microtubules, demonstrating that these processes presented neurites and not filopodia. The crucial involvement of microtubules in blebbistatin-induced accelerated neurite extension was confirmed by its inhibition in the presence of nocodazole or taxol. The promotion by blebbistatin of neurite outgrowth occurred on polylysine, laminin, as well as on fibronectin as substrate. The presence of the Rho/ROCK-inhibitor Y-27632 also caused a dose-dependent promotion of neurite growth which was, however, 3-fold less pronounced as compared to blebbistatin. In contrast to blebbistatin, Y-27632 led to the enlargement of growth cone lamellipodial extensions. Our data demonstrate that neurite outgrowth and branching are inversely correlated with the degree of actinomyosinII contractility which determines the speed of retrograde flow and turnover of actin filaments and, by this, microtubule extension.

  9. Connective tissue growth factor induces cardiac hypertrophy through Akt signaling

    SciTech Connect

    Hayata, Nozomi; Fujio, Yasushi; Yamamoto, Yasuhiro; Iwakura, Tomohiko; Obana, Masanori; Takai, Mika; Mohri, Tomomi; Nonen, Shinpei; Maeda, Makiko; Azuma, Junichi

    2008-05-30

    In the process of cardiac remodeling, connective tissue growth factor (CTGF/CCN2) is secreted from cardiac myocytes. Though CTGF is well known to promote fibroblast proliferation, its pathophysiological effects in cardiac myocytes remain to be elucidated. In this study, we examined the biological effects of CTGF in rat neonatal cardiomyocytes. Cardiac myocytes stimulated with full length CTGF and its C-terminal region peptide showed the increase in cell surface area. Similar to hypertrophic ligands for G-protein coupled receptors, such as endothelin-1, CTGF activated amino acid uptake; however, CTGF-induced hypertrophy is not associated with the increased expression of skeletal actin or BNP, analyzed by Northern-blotting. CTGF treatment activated ERK1/2, p38 MAPK, JNK and Akt. The inhibition of Akt by transducing dominant-negative Akt abrogated CTGF-mediated increase in cell size, while the inhibition of MAP kinases did not affect the cardiac hypertrophy. These findings indicate that CTGF is a novel hypertrophic factor in cardiac myocytes.

  10. Effect of human skin explants on the neurite growth of the PC12 cell line.

    PubMed

    Lebonvallet, Nicolas; Pennec, Jean-Pierre; Le Gall, Christelle; Pereira, Ulysse; Boulais, Nicholas; Cheret, Jeremy; Jeanmaire, Christine; Danoux, Louis; Pauly, Gilles; Misery, Laurent

    2013-03-01

    The skin is a densely innervated organ. After a traumatic injury, such as an amputation, burn or skin graft, nerve growth and the recovery of sensitivity take a long time and are often incomplete. The roles played by growth factors and the process of neuronal growth are crucial. We developed an in vitro model of human skin explants co-cultured with a rat pheochromocytoma cell line differentiated in neuron in presence of nerve growth factor (NGF). This model allowed the study of the influence of skin explants on nerve cells and nerve fibre growth, probably through mediators produced by the explant, in a simplified manner. The neurite length of differentiated PC12 cells co-cultured with skin explants increased after 6 days. These observations demonstrated the influence of trophic factors produced by skin explants on PC12 cells.

  11. Identification of a peripheral nerve neurite growth-promoting activity by development and use of an in vitro bioassay.

    PubMed Central

    Sandrock, A W; Matthew, W D

    1987-01-01

    The effective regeneration of severed neuronal axons in the peripheral nerves of adult mammals may be explained by the presence of molecules in situ that promote the effective elongation of neurites. The absence of such molecules in the central nervous system of these animals may underlie the relative inability of axons to regenerate in this tissue after injury. In an effort to identify neurite growth-promoting molecules in tissues that support effective axonal regeneration, we have developed an in vitro bioassay that is sensitive to substrate-bound factors of peripheral nerve that influence the growth of neurites. In this assay, neonatal rat superior cervical ganglion explants are placed on longitudinal cryostat sections of fresh-frozen sciatic nerve, and the regrowing axons are visualized by catecholamine histofluorescence. Axons are found to regenerate effectively over sciatic nerve tissue sections. When ganglia are similarly explanted onto cryostat sections of adult rat central nervous system tissue, however, axonal regeneration is virtually absent. We have begun to identify the molecules in peripheral nerve that promote effective axonal regeneration by examining the effect of antibodies that interfere with the activity of previously described neurite growth-promoting factors. Axonal elongation over sciatic nerve tissue was found to be sensitive to the inhibitory effects of INO (for inhibitor of neurite outgrowth), a monoclonal antibody that recognizes and inhibits a neurite growth-promoting activity from PC-12 cell-conditioned medium. The INO antigen appears to be a molecular complex of laminin and heparan sulfate proteoglycan. In contrast, a rabbit antiserum that recognizes laminin purified from mouse Engelbreth-Holm-Swarm (EHS) sarcoma, stains the Schwann cell basal lamina of peripheral nerve, and inhibits neurite growth over purified laminin substrata has no detectable effect on the rate of axonal regeneration in our assay. Images PMID:3477817

  12. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    SciTech Connect

    Chen, Chih-Hao; Kuo, Shyh Ming; Liu, Guei-Sheung; Chen, Wan-Nan U.; Chuang, Chin-Wen; Liu, Li-Feng

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  13. 5-Hydroxytryptamine 1A and 2B serotonin receptors in neurite outgrowth: involvement of early growth response protein 1.

    PubMed

    Anelli, Tonino; Cardarelli, Silvia; Ori, Michela; Nardi, Irma; Biagioni, Stefano; Poiana, Giancarlo

    2013-01-01

    Neurotransmitters play important roles in neurogenesis; in particular, acetylcholine and serotonin may regulate neurite elongation. Acetylcholine may also activate transcription factors such as early growth response protein 1 (EGR-1), which plays a role in neurite extension. N18TG2 neuroblastoma cells (which do not produce neurotransmitters and constitutively express muscarinic acetylcholine receptors) were transfected with constructs containing the cDNA for choline acetyltransferase, 5-hydroxytryptamine 1A (5-HT1A) and 5-HT2B serotonin receptors to study acetylcholine and serotonin interplay in neurite outgrowth. 5-HT1A receptor stimulation causes a decrease in EGR-1 levels and inhibition of neurite outgrowth; 5-HT2B stimulation, however, has no effect. Muscarinic cholinergic stimulation, on the other end, increases EGR-1 levels and fiber outgrowth. Inhibition of EGR-1 binding reduces fiber outgrowth activity. When both cholinergic and 5-HT1A receptors are stimulated, fiber outgrowth is restored; therefore, acetylcholine counterbalances the inhibitory effect of serotonin on neurite outgrowth. These results suggest that EGR-1 plays a role in the interplay of acetylcholine and serotonin in the regulation of neurite extension during development. PMID:24158140

  14. 5-Hydroxytryptamine 1A and 2B serotonin receptors in neurite outgrowth: involvement of early growth response protein 1.

    PubMed

    Anelli, Tonino; Cardarelli, Silvia; Ori, Michela; Nardi, Irma; Biagioni, Stefano; Poiana, Giancarlo

    2013-01-01

    Neurotransmitters play important roles in neurogenesis; in particular, acetylcholine and serotonin may regulate neurite elongation. Acetylcholine may also activate transcription factors such as early growth response protein 1 (EGR-1), which plays a role in neurite extension. N18TG2 neuroblastoma cells (which do not produce neurotransmitters and constitutively express muscarinic acetylcholine receptors) were transfected with constructs containing the cDNA for choline acetyltransferase, 5-hydroxytryptamine 1A (5-HT1A) and 5-HT2B serotonin receptors to study acetylcholine and serotonin interplay in neurite outgrowth. 5-HT1A receptor stimulation causes a decrease in EGR-1 levels and inhibition of neurite outgrowth; 5-HT2B stimulation, however, has no effect. Muscarinic cholinergic stimulation, on the other end, increases EGR-1 levels and fiber outgrowth. Inhibition of EGR-1 binding reduces fiber outgrowth activity. When both cholinergic and 5-HT1A receptors are stimulated, fiber outgrowth is restored; therefore, acetylcholine counterbalances the inhibitory effect of serotonin on neurite outgrowth. These results suggest that EGR-1 plays a role in the interplay of acetylcholine and serotonin in the regulation of neurite extension during development.

  15. Role of Varp, a Rab21 exchange factor and TI-VAMP/VAMP7 partner, in neurite growth

    PubMed Central

    Burgo, Andrea; Sotirakis, Emmanuel; Simmler, Marie-Christine; Verraes, Agathe; Chamot, Christophe; Simpson, Jeremy C; Lanzetti, Letizia; Proux-Gillardeaux, Véronique; Galli, Thierry

    2009-01-01

    The vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP/VAMP7) was previously shown to mediate an exocytic pathway involved in neurite growth, but its regulation is still largely unknown. Here we show that TI-VAMP interacts with the Vps9 domain and ankyrin-repeat-containing protein (Varp), a guanine nucleotide exchange factor (GEF) of the small GTPase Rab21, through a specific domain herein called the interacting domain (ID). Varp, TI-VAMP and Rab21 co-localize in the perinuclear region of differentiating hippocampal neurons and transiently in transport vesicles in the shaft of neurites. Silencing the expression of Varp by RNA interference or expressing ID or a form of Varp deprived of its Vps9 domain impairs neurite growth. Furthermore, the mutant form of Rab21, defective in GTP hydrolysis, enhances neurite growth. We conclude that Varp is a positive regulator of neurite growth through both its GEF activity and its interaction with TI-VAMP. PMID:19745841

  16. Role of Varp, a Rab21 exchange factor and TI-VAMP/VAMP7 partner, in neurite growth.

    PubMed

    Burgo, Andrea; Sotirakis, Emmanuel; Simmler, Marie-Christine; Verraes, Agathe; Chamot, Christophe; Simpson, Jeremy C; Lanzetti, Letizia; Proux-Gillardeaux, Véronique; Galli, Thierry

    2009-10-01

    The vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP/VAMP7) was previously shown to mediate an exocytic pathway involved in neurite growth, but its regulation is still largely unknown. Here we show that TI-VAMP interacts with the Vps9 domain and ankyrin-repeat-containing protein (Varp), a guanine nucleotide exchange factor (GEF) of the small GTPase Rab21, through a specific domain herein called the interacting domain (ID). Varp, TI-VAMP and Rab21 co-localize in the perinuclear region of differentiating hippocampal neurons and transiently in transport vesicles in the shaft of neurites. Silencing the expression of Varp by RNA interference or expressing ID or a form of Varp deprived of its Vps9 domain impairs neurite growth. Furthermore, the mutant form of Rab21, defective in GTP hydrolysis, enhances neurite growth. We conclude that Varp is a positive regulator of neurite growth through both its GEF activity and its interaction with TI-VAMP.

  17. Channeling of developing rat corticospinal tract axons by myelin-associated neurite growth inhibitors

    SciTech Connect

    Schwab, M.E.; Schnell, L. )

    1991-03-01

    CNS myelin contains 2 membrane proteins that are potent inhibitors of neurite growth (NI-35 and NI-250). Because myelin formation starts at different times in different regions and tracts of the CNS, this inhibitory property of myelin could serve boundary and guidance functions for late-growing fiber tracts. In the rat, the corticospinal tract (CST) grows into and down the spinal cord during the first 10 postnatal days, in close proximity to the sensory tracts fasciculus cuneatus and gracilis. Immunofluorescence for myelin constituents showed that, in the rostral half of the spinal cord, the myelinating tissue of these ascending tracts surrounds the growing, myelin-free CST in a channellike fashion. Elimination of oligodendrocytes by x-irradiation of the newborn rats, or application of antibody IN-1, which neutralizes the inhibitory substrate property of CNS myelin, resulted in significant anatomical aberration of CST fibers. In particular, the tract was larger in cross-section, and aberrant CST fibers and fascicles intermixed with the neighboring sensory ascending tracts. These results assign an important channeling and guard-rail function to the oligodendrocyte-associated neurite growth inhibitors for the developing CST in the rat spinal cord.

  18. Nerve growth factor-treated, neurite-bearing PC12 cells continue to synthesize DNA

    SciTech Connect

    Ignatius, M.J.; Chandler, C.R.; Shooter, E.M.

    1985-02-01

    Cultures of rat pheochromocytoma (PC12) cells treated with beta-nerve growth factor (NGF) for up to 15 days continue to synthesize DNA. The present study compares the extent of maintained DNA synthesis in cells with and without processes and asks whether the observed DNA synthesis in differentiated PC12 cells reflects either the continued division of the cells or the formation of polyploid cells, or both. PC12 cells were grown on tissue coverslips for various lengths of time with or without 50 ng/ml of beta-NGF and then assayed for DNA synthesis by (/sup 3/H)thymidine labeling and autoradiography. In 8-day-old control cultures (no NGF), 30% of the cells had labeled nuclei after a 2-hr (/sup 3/H)thymidine pulse. In contrast, in cultures treated for 8 days with NGF, only 7% of the cells were labeled (i.e., still synthesizing DNA). The fractions of process-bearing and non-process-bearing cells with labeled nuclei were identical. Even after 14 days in NGF, 7% of the cells with neurites were still synthesizing DNA during any 2-hr period. With continuous (/sup 3/H)thymidine labeling in the presence of NGF from 8 to 13 days, nearly 70% of the cells with neurites were labeled. The presence of neurites induced by NGF does not preclude continued (albeit reduced) DNA synthesis in these PC12 cells. To determine the fate of this newly synthesized DNA, nuclei extracted from NGF-treated PC12 cells were analyzed for the cellular distribution of DNA by combined propidium iodine staining and flow microfluorimetry. NGF treatment resulted in a 3-fold increase in the number of G2+M/4N cells along with the appearance of 8N cells.

  19. Influence of micro and submicro poly(lactic-glycolic acid) fibers on sensory neural cell locomotion and neurite growth.

    PubMed

    Binder, Carmen; Milleret, Vincent; Hall, Heike; Eberli, Daniel; Lühmann, Tessa

    2013-10-01

    For successful peripheral nerve regeneration, a complex interplay of growth factors, topographical guidance structure by cells and extracellular matrix proteins, are needed. Aligned fibrous biomaterials with a wide variety in fiber diameter have been used successfully to support neuronal guidance. To better understand the importance of size of the topographical features, we investigated the directionality of neuronal migration of sensory ND7/23 cells on aligned electrospun poly(lactic-glycolic acid) PLGA fibers in the range of micrometer and submicrometer diameters by time-lapse microscopy. Cell trajectories of single ND7/23 cells were found to significantly follow topographies of PLGA fibers with micrometer dimensions in contrast to PLGA fibers within the submicrometer range, where cell body movement was observed to be independent of fibrous structures. Moreover, neurite alignment of ND7/23 cells on various topographies was assessed. PLGA fibers with micrometer dimensions significantly aligned 83.3% of all neurites after 1 day of differentiation compared to similar submicrometer structures, which orientated 25.8% of all neurites. Interestingly, after 7 days of differentiation ND7/23 cells on submicrometer PLGA fibers increased their alignment of neurites to 52.5%. Together, aligned PLGA fibers with micrometer dimensions showed a superior influence on directionality of neuronal migration and neurite outgrowth of sensory ND7/23 cells, indicating that electrospun micro-PLGA fibers might represent a potential material to induce directionality of neuronal growth in engineering applications for sensory nerve regeneration.

  20. Imaging growth of neurites in conditioned hydrogel by coherent anti-stokes raman scattering microscopy.

    PubMed

    Conovaloff, Aaron; Wang, Han-Wei; Cheng, Ji-Xin; Panitch, Alyssa

    2009-10-01

    Cultured DRGs in different gel scaffolds were analyzed using CA RS microscopy to determine its possible use as a label-free imaging option for tracking cellular growth in a gel scaffold. This study demonstrates for the first time the applicability of CA RS microscopy to the imaging of live neuronal cells in GAG hydrogels. By tuning the laser beating frequency, omega(p)-omega(s), to match the vibration of C-H bonds in the cell membrane, the CA RS signal yields detailed, high-quality images of neurites with single membrane detection sensitivity. The results demonstrate that CA RS imaging allows monitoring of cellular growth in a tissue scaffold over time, with a contrast that shows comparable cellular structures to those obtained using standard fluorescent staining techniques. These findings show the potential of CARS microscopy to assist in the understanding of organogenesis processes in a tissue scaffold. PMID:20539743

  1. Interfering polysialyltransferase ST8SiaII/STX mRNA inhibits neurite growth during early hippocampal development.

    PubMed

    Brocco, Marcela A; Frasch, Alberto C C

    2006-08-21

    Polysialic acid (PSA) attached to NCAM is involved in cell-cell interactions participating in structural and functional plasticity of neuronal circuits. Two polysialyltransferases, ST8SiaII/STX and ST8SiaIV/PST, polysialylate NCAM. We previously suggested that ST8SiaII/STX is the key enzyme for polysialylation in hippocampus. Here, polysialyltransferase mRNA interference experiments showed that, knock down of ST8SiaIV/PST transcripts did not affect PSA expression, but PSA was almost absent from neuronal surfaces when ST8SiaII/STX mRNA was interfered. Non-polysialylated neurons bore a similar number of neurites per cell than polysialylated neurons. However, non-polysialylated processes were shorter and a lower density of synaptophysin clusters accompanied this reduced neuritic growth. Therefore, ST8SiaII/STX expression is essential to allow a correct neuritic development at initial stages of hippocampus ontogeny.

  2. Glial cell line-derived neurotrophic factor (GDNF) enhances sympathetic neurite growth in rat hearts at early developmental stages.

    PubMed

    Miwa, Keiko; Lee, Jong-Kook; Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Kodama, Itsuo

    2010-12-01

    Molecular signaling of sympathetic innervation of myocardium is an unresolved issue. The purpose of this study was to investigate the effect of neurotrophic factors on sympathetic neurite growth towards cardiomyocytes. Cardiomyocytes (CMs) and sympathetic neurons (SNs) were isolated from neonatal rat hearts and superior cervical ganglia, and were co-cultured, either in a random or localized way. Neurite growth from SNs toward CMs was assessed by immunohistochemistry for neurofilament M and α-actinin in response to neurotrophic factors-nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), ciliary neurotrophic factor (CNTF) and a chemical repellent, semaphorin 3A. As a result, GDNF as well as NGF and BDNF stimulated neurite growth. GDNF enhanced neurite outgrowth even under the NGF-depleted culture condition, excluding an indirect effect of GDNF via NGF. Quantification of mRNA and protein by real-time PCR and immunohistochemistry at different developmental stages revealed that GDNF is abundantly expressed in the hearts of embryos and neonates, but not in adult hearts. GDNF plays an important role in inducing cardiac sympathetic innervation at the early developmental stages. A possible role in (re)innervation of injured or transplanted or cultured and transplanted myocardium may deserve investigation.

  3. Bone morphogenetic protein-4 strongly potentiates growth factor-induced proliferation of mammary epithelial cells

    SciTech Connect

    Montesano, Roberto Sarkoezi, Rita; Schramek, Herbert

    2008-09-12

    Bone morphogenetic proteins (BMPs) are multifunctional cytokines that elicit pleiotropic effects on biological processes such as cell proliferation, cell differentiation and tissue morphogenesis. With respect to cell proliferation, BMPs can exert either mitogenic or anti-mitogenic activities, depending on the target cells and their context. Here, we report that in low-density cultures of immortalized mammary epithelial cells, BMP-4 did not stimulate cell proliferation by itself. However, when added in combination with suboptimal concentrations of fibroblast growth factor (FGF)-2, FGF-7, FGF-10, epidermal growth factor (EGF) or hepatocyte growth factor (HGF), BMP-4 potently enhanced growth factor-induced cell proliferation. These results reveal a hitherto unsuspected interplay between BMP-4 and growth factors in the regulation of mammary epithelial cell proliferation. We suggest that the ability of BMP-4 to potentiate the mitogenic activity of multiple growth factors may contribute to mammary gland ductal morphogenesis as well as to breast cancer progression.

  4. In vitro growth factor-induced bio engineering of mature articular cartilage

    PubMed Central

    Khan, Ilyas M.; Francis, Lewis; Theobald, Peter S.; Perni, Stefano; Young, Robert D.; Prokopovich, Polina; Conlan, R. Steven; Archer, Charles W.

    2013-01-01

    Articular cartilage maturation is the postnatal development process that adapts joint surfaces to their site-specific biomechanical demands. Maturation involves gross morphological changes that occur through a process of synchronised growth and resorption of cartilage and generally ends at sexual maturity. The inability to induce maturation in biomaterial constructs designed for cartilage repair has been cited as a major cause for their failure in producing persistent cell-based repair of joint lesions. The combination of growth factors FGF2 and TGFβ1 induces accelerated articular cartilage maturation in vitro such that many molecular and morphological characteristics of tissue maturation are observable. We hypothesised that experimental growth factor-induced maturation of immature cartilage would result in a biophysical and biochemical composition consistent with a mature phenotype. Using native immature and mature cartilage as reference, we observed that growth factor-treated immature cartilages displayed increased nano-compressive stiffness, decreased surface adhesion, decreased water content, increased collagen content and smoother surfaces, correlating with a convergence to the mature cartilage phenotype. Furthermore, increased gene expression of surface structural protein collagen type I in growth factor-treated explants compared to reference cartilages demonstrates that they are still in the dynamic phase of the postnatal developmental transition. These data provide a basis for understanding the regulation of postnatal maturation of articular cartilage and the application of growth factor-induced maturation in vitro and in vivo in order to repair and regenerate cartilage defects. PMID:23182922

  5. Effect of basic fibroblast growth factor released from chitosan-fucoidan nanoparticles on neurite extension.

    PubMed

    Huang, Yi-Cheng; Yang, Ya-Ting

    2016-05-01

    Exogenous growth factors are an integral part of an effective nerve tissue-engineering strategy. Basic fibroblast growth factor (bFGF) has a marked positive effect on angiogenesis and neuronal cell survival. However, bFGF is limited by its short half-life and easy degradation by enzymes. Therefore, in this study novel biodegradable chitosan-fucoidan nanoparticles (CS-F NPs) were designed to carry bFGFs and maintain their activities. The experimental results indicated that chitosan and fucoidan form stable nanoparticles approximately 200 nm in size via electrostatic interactions. Additionally, the effectiveness of nanoparticles is related to their chitosan:fucoidan weight ratio. The CS-F NPs control the release of bFGFs and protect bFGF from deactivation by heat and enzymes. In vitro cell studies demonstrate that CS-F NPs have no cytotoxicity to PC12 cells, as the concentration of NPs is 125 ng/ml. Moreover, the CS-F NPs significantly decrease the amount of bFGF needed for neurite extension. The cumulative release of bFGF from CS-F NPs at 24 h is 0.168 ng/ml, markedly lower than that in solution (4.2 ng/ml). Importantly, CS-F NPs are potential carriers for delivering bFGFs for nerve tissue engineering. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Cytotoxic effects of acrylamide in nerve growth factor or fibroblast growth factor 1-induced neurite outgrowth in PC12 cells.

    PubMed

    Chen, Jong-Hang; Lee, Don-Ching; Chiu, Ing-Ming

    2014-03-01

    Acrylamide is a neurological and reproductive toxicant in humans and laboratory animals; however, the neuron developmental toxicity of acrylamide remains unclear. The aims of this study are to investigate the cytotoxicity and neurite outgrowth inhibition of acrylamide in nerve growth factor (NGF)- or fibroblast growth factor 1 (FGF1)-mediated neural development of PC12 cells. MTS assay showed that acrylamide treatment suppresses NGF- or FGF1-induced PC12 cell proliferation in a time- and dose-dependent manner. Quantification of neurite outgrowth demonstrated that 0.5 mM acrylamide treatment resulted in significant decrease in differentiation of NGF- or FGF1-stimulated PC12 cells. This decrease is accompanied with the reduced expression of growth-associated protein-43, a neuronal marker. Moreover, relative levels of pERK, pAKT, pSTAT3 and pCREB were increased within 5-10 min when PC12 cells were treated with NGF or FGF1. Acrylamide (0.5 mM) decreases the NGF-induced activation of AKT-CREB but not ERK-STAT3 within 20 min. Similarly, acrylamide (0.5 mM) decreases the FGF1-induced activation of AKT-CREB within 20 min. In contrast to the NGF treatment, the ERK-STAT3 activation that was induced by FGF1 was slightly reduced by 0.5 mM acrylamide. We further showed that PI3K inhibitor (LY294002), but not MEK inhibitor (U0126), could synergize with acrylamide (0.5 mM) to reduce the cell viability and neurite outgrowth in NGF- or FGF1-stimulated PC12 cells. Moreover, acrylamide (0.5 mM) increased reactive oxygen species (ROS) activities in NGF- or FGF1-stimulated PC12 cells. This increase was reversed by Trolox (an ROS scavenging agent) co-treatment. Together, our findings reveal that NGF- or FGF1-stimulation of the neuronal differentiation of PC12 cells is attenuated by acrylamide through the inhibition of PI3K-AKT-CREB signaling, along with the production of ROS.

  7. Acetylation of RNA Polymerase II Regulates Growth-Factor-Induced Gene Transcription in Mammalian Cells

    PubMed Central

    Schröder, Sebastian; Herker, Eva; Itzen, Friederike; He, Daniel; Thomas, Sean; Gilchrist, Daniel A.; Kaehlcke, Katrin; Cho, Sungyoo; Pollard, Katherine S.; Capra, John A.; Schnölzer, Martina; Cole, Philip A.; Geyer, Matthias; Bruneau, Benoit G.; Adelman, Karen; Ott, Melanie

    2014-01-01

    SUMMARY Lysine acetylation regulates transcription by targeting histones and nonhistone proteins. Here we report that the central regulator of transcription, RNA polymerase II, is subject to acetylation in mammalian cells. Acetylation occurs at eight lysines within the C-terminal domain (CTD) of the largest polymerase subunit and is mediated by p300/KAT3B. CTD acetylation is specifically enriched downstream of the transcription start sites of polymerase-occupied genes genome-wide, indicating a role in early stages of transcription initiation or elongation. Mutation of lysines or p300 inhibitor treatment causes the loss of epidermal growth-factor-induced expression of c-Fos and Egr2, immediate-early genes with promoter-proximally paused polymerases, but does not affect expression or polymerase occupancy at housekeeping genes. Our studies identify acetylation as a new modification of the mammalian RNA polymerase II required for the induction of growth factor response genes. PMID:24207025

  8. Growth cone collapse and inhibition of neurite growth by Botulinum neurotoxin C1: a t-SNARE is involved in axonal growth

    PubMed Central

    1996-01-01

    The growth cone is responsible for axonal growth, where membrane expansion is most likely to occur. Several recent reports have suggested that presynaptic proteins are involved in this process; however, the molecular mechanism details are unclear. We suggest that by cleaving a presynaptic protein syntaxin, which is essential in targeting synaptic vesicles as a target SNAP receptor (t-SNARE), neurotoxin C1 of Clostridium botulinum causes growth cone collapse and inhibits axonal growth. Video-enhanced microscopic studies showed (a) that neurotoxin C1 selectively blocked the activity of the central domain (the vesicle-rich region) at the initial stage, but not the lamellipodia in the growth cone; and (b) that large vacuole formation occurred probably through the fusion of smaller vesicles from the central domain to the most distal segments of the neurite. The total surface area of the accumulated vacuoles could explain the membrane expansion of normal neurite growth. The gradual disappearance of the surface labeling by FITC-WGA on the normal growth cone, suggesting membrane addition, was inhibited by neurotoxin C1. The experiments using the peptides derived from syntaxin, essential for interaction with VAMP or alpha-SNAP, supported the results using neurotoxin C1. Our results demonstrate that syntaxin is involved in axonal growth and indicate that syntaxin may participate directly in the membrane expansion that occurs in the central domain of the growth cone, probably through association with VAMP and SNAPs, in a SNARE-like way. PMID:8698815

  9. Monocarboxylate transporter 1 contributes to growth factor-induced tumor cell migration independent of transporter activity

    PubMed Central

    Gray, Alana L.; Coleman, David T.; Shi, Runhua; Cardelli, James A.

    2016-01-01

    Tumor progression to metastatic disease contributes to the vast majority of incurable cancer. Understanding the processes leading to advanced stage cancer is important for the development of future therapeutic strategies. Here, we establish a connection between tumor cell migration, a prerequisite to metastasis, and monocarboxylate transporter 1 (MCT1). MCT1 transporter activity is known to regulate aspects of tumor progression and, as such, is a clinically relevant target for treating cancer. Knockdown of MCT1 expression caused decreased hepatocyte growth factor (HGF)-induced as well as epidermal growth factor (EGF)-induced tumor cell scattering and wound healing. Western blot analysis suggested that MCT1 knockdown (KD) hinders signaling through the HGF receptor (c-Met) but not the EGF receptor. Exogenous, membrane-permeable MCT1 substrates were not able to rescue motility in MCT1 KD cells, nor was pharmacologic inhibition of MCT1 able to recapitulate decreased cell motility as seen with MCT1 KD cells, indicating transporter activity of MCT1 was dispensable for EGF- and HGF-induced motility. These results indicate MCT1 expression, independent of transporter activity, is required for growth factor-induced tumor cell motility. The findings presented herein suggest a novel function for MCT1 in tumor progression independent of its role as a monocarboxylate transporter. PMID:27127175

  10. Posttranscriptional changes in growth factor-inducible gene regulation caused by antiproliferative interferons.

    PubMed Central

    Levine, R A; Seshadri, T; Hann, S R; Campisi, J

    1990-01-01

    Growth factors stimulate quiescent fibroblasts to progress through G0/G1, in part by inducing the expression of genes whose products are necessary or permissive for cell proliferation. Interferons, by contrast, inhibit progress through G0/G1 by mechanisms that are poorly understood. We show, in BALB/c murine 3T3 fibroblasts (A31 cells), that alpha/beta-interferon (IFN) had no effect the growth factor-dependent induction of several messenger ribonucleic acids (mRNAs), including those encoding ornithine decarboxylase (odc), fibronectin and the c-fos and c-myc protooncogenes. However, IFN caused an abnormal accumulation of fibronectin and c-myc mRNA on polysomes and markedly increased the stability of c-myc mRNA. Moreover, despite high, induced levels of mRNA, IFN inhibited the serum-stimulated rise in odc enzyme activity and the increased rate of fibronectin protein synthesis. By contrast, IFN had no effect on c-fos protein synthesis, nor did it affect the synthesis of most, but not all, proteins detectable by two-dimensional gel electrophoresis. The data suggest IFN inhibits proliferation by suppressing the expression of a subset of growth factor-inducible genes through a selective, posttranscriptional mechanism. Images PMID:2100198

  11. Nerve growth factor induces survival and differentiation through two distinct signaling cascades in PC12 cells.

    PubMed

    Klesse, L J; Meyers, K A; Marshall, C J; Parada, L F

    1999-03-25

    Nerve growth factor induces differentiation and survival of rat PC12 pheochromocytoma cells. The activation of the erk cascade has been implicated in transducing the multitude of signals induced by NGF. In order to explore the role of this signaling cascade in NGF mediated survival, differentiation and proliferation, we generated recombinant adenoviruses which express the intermediates of the erk cascade in their wild type, dominant negative and constitutively activated forms. We show that differentiation of PC12 cells requires activity of the ras/erk pathway, whereas inhibition of this pathway had no effect on survival or proliferation. Constitutively active forms of ras, raf and mek induced PC12 cell differentiation, while dominant interfering forms inhibited differentiation. Survival of PC12 cells in serum-free medium did not require activity of the ras/erk pathway. Instead, PI3 Kinase signaling was necessary for PC12 cell survival. Interestingly, constitutively activated versions of raf and mek were able to promote survival, but again this was dependent on activation of PI3 Kinase. Therefore, at least two distinct signaling pathways are required in PC12 cells for mediation of NGF functions.

  12. Selective translocation of protein kinase C-delta in PC12 cells during nerve growth factor-induced neuritogenesis.

    PubMed Central

    O'Driscoll, K R; Teng, K K; Fabbro, D; Greene, L A; Weinstein, I B

    1995-01-01

    The specific intracellular signals initiated by nerve growth factor (NGF) that lead to neurite formation in PC12 rat pheochromocytoma cells are as of yet unclear. Protein kinase C-delta (PKC delta) is translocated from the soluble to the particulate subcellular fraction during NGF-induced-neuritogenesis; however, this does not occur after treatment with the epidermal growth factor, which is mitogenic but does not induce neurite formation. PC12 cells also contain both Ca(2+)-sensitive and Ca(2+)-independent PKC enzymatic activities, and express mRNA and immunoreactive proteins corresponding to the PKC isoforms alpha, beta, delta, epsilon, and zeta. There are transient decreases in the levels of immunoreactive PKCs alpha, beta, and epsilon after 1-3 days of NGF treatment, and after 7 days there is a 2.5-fold increase in the level of PKC alpha, and a 1.8-fold increase in total cellular PKC activity. NGF-induced PC12 cell neuritogenesis is enhanced by 12-O-tetradecanoyl phorbol-13-acetate (TPA) in a TPA dose- and time-dependent manner, and this differentiation coincides with abrogation of the down-regulation of PKC delta and other PKC isoforms, when the cells are treated with TPA. Thus a selective activation of PKC delta may play a role in neuritogenic signals in PC12 cells. Images PMID:7626808

  13. Mathematical Relationships between Neuron Morphology and Neurite Growth Dynamics in Drosophila melanogaster Larva Class IV Sensory Neurons

    NASA Astrophysics Data System (ADS)

    Ganguly, Sujoy; Liang, Xin; Grace, Michael; Lee, Daniel; Howard, Jonathon

    The morphology of neurons is diverse and reflects the diversity of neuronal functions, yet the principles that govern neuronal morphogenesis are unclear. In an effort to better understand neuronal morphogenesis we will be focusing on the development of the dendrites of class IV sensory neuron in Drosophila melanogaster. In particular we attempt to determine how the the total length, and the number of branches of dendrites are mathematically related to the dynamics of neurite growth and branching. By imaging class IV neurons during early embryogenesis we are able to measure the change in neurite length l (t) as a function of time v (t) = dl / dt . We found that the distribution of v (t) is well characterized by a hyperbolic secant distribution, and that the addition of new branches per unit time is well described by a Poisson process. Combining these measurements with the assumption that branching occurs with equal probability anywhere along the dendrite we were able to construct a mathematical model that provides reasonable agreement with the observed number of branches, and total length of the dendrites of the class IV sensory neuron.

  14. Nerve Growth Factor Secretion From Pulp Fibroblasts is Modulated by Complement C5a Receptor and Implied in Neurite Outgrowth.

    PubMed

    Chmilewsky, Fanny; Ayaz, Warda; Appiah, James; About, Imad; Chung, Seung-Hyuk

    2016-01-01

    Given the importance of sensory innervation in tooth vitality, the identification of signals that control nerve regeneration and the cellular events they induce is essential. Previous studies demonstrated that the complement system, a major component of innate immunity and inflammation, is activated at the injured site of human carious teeth and plays an important role in dental-pulp regeneration via interaction of the active Complement C5a fragment with pulp progenitor cells. In this study, we further determined the role of the active fragment complement C5a receptor (C5aR) in dental nerve regeneration in regards to local secretion of nerve growth factor (NGF) upon carious injury. Using ELISA and AXIS co-culture systems, we demonstrate that C5aR is critically implicated in the modulation of NGF secretion by LTA-stimulated pulp fibroblasts. The NGF secretion by LTA-stimulated pulp fibroblasts, which is negatively regulated by C5aR activation, has a role in the control of the neurite outgrowth length in our axon regeneration analysis. Our data provide a scientific step forward that can guide development of future therapeutic tools for innovative and incipient interventions targeting the dentin-pulp regeneration process by linking the neurite outgrowth to human pulp fibroblast through complement system activation. PMID:27539194

  15. Nerve Growth Factor Secretion From Pulp Fibroblasts is Modulated by Complement C5a Receptor and Implied in Neurite Outgrowth

    PubMed Central

    Chmilewsky, Fanny; Ayaz, Warda; Appiah, James; About, Imad; Chung, Seung-Hyuk

    2016-01-01

    Given the importance of sensory innervation in tooth vitality, the identification of signals that control nerve regeneration and the cellular events they induce is essential. Previous studies demonstrated that the complement system, a major component of innate immunity and inflammation, is activated at the injured site of human carious teeth and plays an important role in dental-pulp regeneration via interaction of the active Complement C5a fragment with pulp progenitor cells. In this study, we further determined the role of the active fragment complement C5a receptor (C5aR) in dental nerve regeneration in regards to local secretion of nerve growth factor (NGF) upon carious injury. Using ELISA and AXIS co-culture systems, we demonstrate that C5aR is critically implicated in the modulation of NGF secretion by LTA-stimulated pulp fibroblasts. The NGF secretion by LTA-stimulated pulp fibroblasts, which is negatively regulated by C5aR activation, has a role in the control of the neurite outgrowth length in our axon regeneration analysis. Our data provide a scientific step forward that can guide development of future therapeutic tools for innovative and incipient interventions targeting the dentin-pulp regeneration process by linking the neurite outgrowth to human pulp fibroblast through complement system activation. PMID:27539194

  16. Nerve Growth Factor Regulates Transient Receptor Potential Vanilloid 2 via Extracellular Signal-Regulated Kinase Signaling To Enhance Neurite Outgrowth in Developing Neurons

    PubMed Central

    Cohen, Matthew R.; Johnson, William M.; Pilat, Jennifer M.; Kiselar, Janna; DeFrancesco-Lisowitz, Alicia; Zigmond, Richard E.

    2015-01-01

    Neurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca2+-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca2+-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth. TRPV2 colocalized with Rab7, a late endosome protein, in addition to TrkA and activated extracellular signal-regulated kinase (ERK) in neurites, indicating that the channel is closely associated with signaling endosomes. In line with these results, we showed that TRPV2 acts as an ERK substrate and identified the motifs necessary for phosphorylation of TRPV2 by ERK. Furthermore, neurite length, TRPV2 expression, and TRPV2-mediated Ca2+ signals were reduced by mutagenesis of these key ERK phosphorylation sites. Based on these findings, we identified a previously uncharacterized mechanism by which ERK controls TRPV2-mediated Ca2+ signals in developing neurons and further establish TRPV2 as a critical intracellular ion channel in neuronal function. PMID:26416880

  17. Photopolymerized microfeatures for directed spiral ganglion neurite and Schwann cell growth

    PubMed Central

    Tuft, Bradley W.; Li, Shufeng; Xu, Linjing; Clarke, Joseph C.; White, Scott P.; Guymon, Bradley A.; Perez, Krystian X.; Hansen, Marlan R.; Guymon, C. Allan

    2015-01-01

    Cochlear implants (CIs) provide auditory perception to individuals with severe hearing impairment. However, their ability to encode complex auditory stimuli is limited due, in part, to poor spatial resolution caused by electrical current spread in the inner ear. Directing nerve cell processes towards target electrodes may reduce the problematic current spread and improve stimulatory specificity. In this work, photopolymerization was used to fabricate micro- and nano-patterned methacrylate polymers to probe the extent of spiral ganglion neuron (SGN) neurite and Schwann cell (SGSC) contact guidance based on variations in substrate topographical cues. Micropatterned substrates are formed in a rapid, single-step reaction by selectively blocking light with photomasks which have parallel line-space gratings with periodicities of 10 – 100 μm. Channel amplitudes of 250 nm – 10 μm are generated by modulating UV exposure time, light intensity, and photoinitiator concentration. Gradual transitions are observed between ridges and grooves using scanning electron and atomic force microscopy. The transitions stand in contrast to vertical features generated via etching lithographic techniques. Alignment of neural elements increases significantly with increasing feature amplitude and constant periodicity, as well as with decreasing periodicity and constant amplitude. SGN neurite alignment strongly correlates (r = 0.93) with maximum feature slope. Multiple neuronal and glial types orient to the patterns with varying degrees of alignment. This work presents a method to fabricate gradually-sloping micropatterns for cellular contact guidance studies and demonstrates spatial control of inner ear neural elements in response to micro- and nano-scale surface topography. PMID:23069708

  18. A bacterial artificial chromosome transgenic mouse model for visualization of neurite growth.

    PubMed

    Tao, Tao; Chen, Chen; Sun, Jie; Peng, YaJing; Zhu, MinSheng

    2015-04-01

    Class III β-tubulin (Tubb3) is a component of the microtubules in neurons and contributes to microtubule dynamics that are required for axon outgrowth and guidance during neuronal development. We here report a novel bacterial artificial chromosome (BAC) transgenic mouse line that expresses Class III β-tubulin fused to mCherry, an improved monomeric red fluorescent protein, for the visualization of microtubules during neuronal development. A BAC containing Tubb3 gene was modified by insertion of mCherry complementary DNA downstream of Tubb3 coding sequence via homologous recombination. mCherry fusion protein was expressed in the nervous system and testis of the transgenic animal, and the fluorescent signal was observed in the neurons that located in the olfactory bulb, cerebral cortex, hippocampal formation, cerebellum, as well as the retina. Besides, Tubb3-mCherry fusion protein mainly distributed in neurites and colocalized with endogenous Class III β-tubulin. The fusion protein labels Purkinje cell dendrites during cerebellar circuit formation. Therefore, this transgenic line might be a novel tool for scientific community to study neuronal development both in vitro and in vivo.

  19. The intracellular portion of GITR enhances NGF-promoted neurite growth through an inverse modulation of Erk and NF-κB signalling.

    PubMed

    McKelvey, Laura; Gutierrez, Humberto; Nocentini, Giuseppe; Crampton, Sean J; Davies, Alun M; Riccardi, Carlo R; O'keeffe, Gerard W

    2012-10-15

    NF-κB transcription factors play a key role in regulating the growth of neural processes in the developing PNS. Although several secreted proteins have been shown to activate NF-κB to inhibit the growth of developing sympathetic neurons, it is unknown how the endogenous level of NF-κB activity present in these neurons is restricted to allow neurite growth to occur during their normal development. Here we show that activation of the glucocorticoid-induced tumour necrosis factor receptor (GITR) inhibits NF-κB activation while promoting the activation of Erk in developing sympathetic neurons. Conversely, inhibition of GITR results in an increase in NF-κB dependent gene transcription and a decrease in Erk activation leading to a reduction in neurite growth. These findings show that GITR signalling can regulate the extent of sympathetic neurite growth through an inverse modulation of Erk and NF-κB signalling, which provides an optimal environment for NGF-promoted growth.

  20. Waves of actin and microtubule polymerization drive microtubule-based transport and neurite growth before single axon formation

    PubMed Central

    Winans, Amy M; Collins, Sean R; Meyer, Tobias

    2016-01-01

    Many developing neurons transition through a multi-polar state with many competing neurites before assuming a unipolar state with one axon and multiple dendrites. Hallmarks of the multi-polar state are large fluctuations in microtubule-based transport into and outgrowth of different neurites, although what drives these fluctuations remains elusive. We show that actin waves, which stochastically migrate from the cell body towards neurite tips, direct microtubule-based transport during the multi-polar state. Our data argue for a mechanical control system whereby actin waves transiently widen the neurite shaft to allow increased microtubule polymerization to direct Kinesin-based transport and create bursts of neurite extension. Actin waves also require microtubule polymerization, arguing that positive feedback links these two components. We propose that actin waves create large stochastic fluctuations in microtubule-based transport and neurite outgrowth, promoting competition between neurites as they explore the environment until sufficient external cues can direct one to become the axon. DOI: http://dx.doi.org/10.7554/eLife.12387.001 PMID:26836307

  1. H4 Histamine Receptors Mediate Cell Cycle Arrest in Growth Factor-Induced Murine and Human Hematopoietic Progenitor Cells

    PubMed Central

    Petit-Bertron, Anne-France; Machavoine, François; Defresne, Marie Paule; Gillard, Michel; Chatelain, Pierre; Mistry, Prakash

    2009-01-01

    The most recently characterized H4 histamine receptor (H4R) is expressed preferentially in the bone marrow, raising the question of its role during hematopoiesis. Here we show that both murine and human progenitor cell populations express this receptor subtype on transcriptional and protein levels and respond to its agonists by reduced growth factor-induced cell cycle progression that leads to decreased myeloid, erythroid and lymphoid colony formation. H4R activation prevents the induction of cell cycle genes through a cAMP/PKA-dependent pathway that is not associated with apoptosis. It is mediated specifically through H4R signaling since gene silencing or treatment with selective antagonists restores normal cell cycle progression. The arrest of growth factor-induced G1/S transition protects murine and human progenitor cells from the toxicity of the cell cycle-dependent anticancer drug Ara-C in vitro and reduces aplasia in a murine model of chemotherapy. This first evidence for functional H4R expression in hematopoietic progenitors opens new therapeutic perspectives for alleviating hematotoxic side effects of antineoplastic drugs. PMID:19662098

  2. Extracellular Nm23H1 stimulates neurite outgrowth from dorsal root ganglia neurons in vitro independently of nerve growth factor supplementation or its nucleoside diphosphate kinase activity

    SciTech Connect

    Wright, K.T.; Seabright, R.; Logan, A.; Lilly, A.J.; Khanim, F.; Bunce, C.M.; Johnson, W.E.B.

    2010-07-16

    Research highlights: {yields} Extracellular Nm23H1 stimulates nerve growth. {yields} Extracellular Nm23H1 provides pathfinding cues to growth cones. {yields} The neurotrophic activity of Nm23H1 is independent of NDP kinase activity. {yields} The neurotrophic activity of Nm23H1 is independent of NGF. -- Abstract: The nucleoside diphosphate (NDP) kinase, Nm23H1, is a highly expressed during neuronal development, whilst induced over-expression in neuronal cells results in increased neurite outgrowth. Extracellular Nm23H1 affects the survival, proliferation and differentiation of non-neuronal cells. Therefore, this study has examined whether extracellular Nm23H1 regulates nerve growth. We have immobilised recombinant Nm23H1 proteins to defined locations of culture plates, which were then seeded with explants of embryonic chick dorsal root ganglia (DRG) or dissociated adult rat DRG neurons. The substratum-bound extracellular Nm23H1 was stimulatory for neurite outgrowth from chick DRG explants in a concentration-dependent manner. On high concentrations of Nm23H1, chick DRG neurite outgrowth was extensive and effectively limited to the location of the Nm23H1, i.e. neuronal growth cones turned away from adjacent collagen-coated substrata. Nm23H1-coated substrata also significantly enhanced rat DRG neuronal cell adhesion and neurite outgrowth in comparison to collagen-coated substrata. These effects were independent of NGF supplementation. Recombinant Nm23H1 (H118F), which does not possess NDP kinase activity, exhibited the same activity as the wild-type protein. Hence, a novel neuro-stimulatory activity for extracellular Nm23H1 has been identified in vitro, which may function in developing neuronal systems.

  3. Neuroligin-1 induces neurite outgrowth through interaction with neurexin-1β and activation of fibroblast growth factor receptor-1.

    PubMed

    Gjørlund, Michelle D; Nielsen, Janne; Pankratova, Stanislava; Li, Shizhong; Korshunova, Irina; Bock, Elisabeth; Berezin, Vladimir

    2012-10-01

    Neurexin-1 (NRXN1) and neuroligin-1 (NLGN1) are synaptic cell adhesion molecules that connect pre- and postsynaptic neurons at synapses and mediate signaling across the synapse, which modulates synaptic activity and determines the properties of neuronal networks. Defects in the genes encoding NLGN1 have been linked to cognitive diseases such as autism. The roles of both NRXN1 and NLGN1 during synaptogenesis have been studied extensively, but little is known about the role of these molecules in neuritogenesis, which eventually results in neuronal circuitry formation. The present study investigated the neuritogenic effect of NLGN1 in cultures of hippocampal neurons. Our results show that NLGN1, both in soluble and membrane-bound forms, induces neurite outgrowth that depends on the interaction with NRXN1β and on activation of fibroblast growth factor receptor-1. In addition, we demonstrate that a synthetic peptide, termed neurolide, which is modeled after a part of the binding interface of NLGN1 for NRXN1β, can bind to NRXN1β and mimic the biological properties of NLGN1 in vitro.

  4. Chemicals eluting from disposable plastic syringes and syringe filters alter neurite growth, axogenesis and the microtubule cytoskeleton in cultured hippocampal neurons.

    PubMed

    Lee, Tet Woo; Tumanov, Sergey; Villas-Bôas, Silas G; Montgomery, Johanna M; Birch, Nigel P

    2015-04-01

    Cultures of dissociated hippocampal neurons are often used to study neuronal cell biology. We report that the development of these neurons is strongly affected by chemicals leaching from commonly used disposable medical-grade syringes and syringe filters. Contamination of culture medium by bioactive substance(s) from syringes and filters occurred with multiple manufacturing lots and filter types under normal use conditions and resulted in changes to neurite growth, axon formation and the neuronal microtubule cytoskeleton. The effects on neuronal morphology were concentration dependent and significant effects were detected even after substantial dilution of the contaminated medium. Gas chromatography-mass spectrometry analyses revealed many chemicals eluting from the syringes and filters. Three of these chemicals (stearic acid, palmitic acid and 1,2-ethanediol monoacetate) were tested but showed no effects on neurite growth. Similar changes in neuronal morphology were seen with high concentrations of bisphenol A and dibutyl phthalate, two hormonally active plasticisers. Although no such compounds were detected by gas chromatography–mass spectrometry, unknown plasticisers in leachates may affect neurites. This is the first study to show that leachates from laboratory consumables can alter the growth of cultured hippocampal neurons. We highlight important considerations to ensure leachate contamination does not compromise cell biology experiments.

  5. Hepatocyte growth factor induces tubulogenesis of primary renal proximal tubular epithelial cells.

    PubMed

    Bowes, R C; Lightfoot, R T; Van De Water, B; Stevens, J L

    1999-07-01

    Hepatocyte growth factor (HGF)-induced tubulogenesis has been demonstrated with renal epithelial cell lines grown in collagen gels but not with primary cultured renal proximal tubular epithelial cells (RPTEs). We show that HGF selectively induces proliferation and branching morphogenesis of primary cultured rat RPTEs. Additional growth factors including fibroblast growth factor (FGF)-1, epidermal growth factor (EGF), FGF-7, or insulin-like growth factor-1 (IGF-1) did not selectively induce tubulogenesis. However, when administered in combination, these factors initiated branching morphogenesis comparable to HGF alone and greatly augmented HGF-induced proliferation and branching. Microscopic analysis revealed that branching RPTEs were undergoing tubulogenesis and formed a polarized epithelium. TGF-beta1 blocked HGF- or growth factor cocktail (GFC; HGF, FGF-1, EGF, IGF-1)-induced proliferation and branching morphogenesis. Adding TGF-beta1 after GFC-induced tubulogenesis had occurred caused a progressive regression of the tubular structures, a response associated with an increase in apoptosis of the RPTEs. Primary cultured RPTEs are capable of undergoing HGF-induced tubulogenesis. Unlike cell lines, combinations of growth factors differentially augment the response. PMID:10362020

  6. Protein kinase A regulates 3-phosphatidylinositide dynamics during platelet-derived growth factor-induced membrane ruffling and chemotaxis.

    PubMed

    Deming, Paula B; Campbell, Shirley L; Baldor, Linda C; Howe, Alan K

    2008-12-12

    Spatial regulation of the cAMP-dependent protein kinase (PKA) is required for chemotaxis in fibroblasts; however, the mechanism(s) by which PKA regulates the cell migration machinery remain largely unknown. Here we report that one function of PKA during platelet-derived growth factor (PDGF)-induced chemotaxis was to promote membrane ruffling by regulating phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) dynamics. Inhibition of PKA activity dramatically altered membrane dynamics and attenuated formation of peripheral membrane ruffles in response to PDGF. PKA inhibition also significantly decreased the number and size of PIP(3)-rich membrane ruffles in response to uniform stimulation and to gradients of PDGF. This ruffling defect was quantified using a newly developed method, based on computer vision edge-detection algorithms. PKA inhibition caused a marked attenuation in the bulk accumulation of PIP(3) following PDGF stimulation, without effects on PI3-kinase (PI3K) activity. The deficits in PIP(3) dynamics correlated with a significant inhibition of growth factor-induced membrane recruitment of endogenous Akt and Rac activation in PKA-inhibited cells. Simultaneous inhibition of PKA and Rac had an additive inhibitory effect on growth factor-induced ruffling dynamics. Conversely, the expression of a constitutively active Rac allele was able to rescue the defect in membrane ruffling and restore the localization of a fluorescent PIP(3) marker to membrane ruffles in PKA-inhibited cells, even in the absence of PI3K activity. These data demonstrate that, like Rac, PKA contributes to PIP(3) and membrane dynamics independently of direct regulation of PI3K activity and suggest that modulation of PIP(3)/3-phosphatidylinositol (3-PI) lipids represents a major target for PKA in the regulation of PDGF-induced chemotactic events.

  7. ONTOGENY OF PROTEINS ASSOCIATED WITH NEURITE GROWTH AND SYNAPTOGENESIS IN CEREBELLAR GRANULE CELLS IN VITRO.

    EPA Science Inventory

    In vitro techniques may be useful in screening for effects of developmental neurotoxicants. Previously, we characterized changes in biochemical markers associated with neuronal development in a PC12 cell model of differentiation and growth. The current research extended these stu...

  8. Growth factor induced proliferation, migration, and lumen formation of rat endometrial epithelial cells in vitro

    PubMed Central

    ISLAM, Md. Rashedul; YAMAGAMI, Kazuki; YOSHII, Yuka; YAMAUCHI, Nobuhiko

    2016-01-01

    Endometrial modulation is essential for the preservation of normal uterine physiology, and this modulation is driven by a number of growth factors. The present study investigated the mitogenic, motogenic, and morphogenic effects of epidermal growth factor (EGF) and hepatocyte growth factor (HGF) on rat endometrial epithelial (REE) cells. The REE cells were isolated and cultured and then characterized based on their morphology and their expression of epithelial cell markers. The MTT assay revealed that EGF and HGF induce proliferation of REE cells. Consistent with increased proliferation, we found that the cell cycle regulatory factor Cyclin D1 was also upregulated upon EGF and HGF addition. REE cell migration was prompted by EGF, as observed with the Oris Cell Migration Assay. The morphogenic impact of growth factors on REE cells was studied in a three-dimensional BD Matrigel cell culture system, wherein these growth factors also increased the frequency of lumen formation. In summary, we show that EGF and HGF have a stimulatory effect on REE cells, promoting proliferation, cell migration, and lumen formation. Our findings provide important insights that further the understanding of endometrial regeneration and its regulation. PMID:26946922

  9. Structure, mapping and expression of a growth factor inducible gene encoding a putative nuclear hormonal binding receptor.

    PubMed Central

    Ryseck, R P; Macdonald-Bravo, H; Mattéi, M G; Ruppert, S; Bravo, R

    1989-01-01

    We have characterized a growth factor inducible gene, N10, encoding a nuclear protein of 601 amino acids with a significant similarity to members of the steroid and thyroid hormone receptor families. The gene is rapidly but transiently induced by several mitogens. Immunoprecipitation studies show that the N10 protein is transiently expressed after stimulation of quiescent cells, presenting a half-life of approximately 30 min. The N10 transcription unit is 8 kb in length, split into seven exons. The exon-intron distribution is in general similar to that of other members of the nuclear receptor superfamily, but presents some differences which suggest that N10 belongs to a new family of these molecules. The 5' flanking region contains one DSE which could explain its immediate response to external stimulus. The N10 gene is located in the [F1-F3] region of mouse chromosome 15. Images PMID:2555161

  10. The matricellular protein Cyr61 is a key mediator of platelet-derived growth factor-induced cell migration.

    PubMed

    Zhang, Fuqiang; Hao, Feng; An, Dong; Zeng, Linlin; Wang, Yi; Xu, Xuemin; Cui, Mei-Zhen

    2015-03-27

    Platelet-derived growth factor (PDGF), a potent chemoattractant, induces cell migration via the MAPK and PI3K/Akt pathways. However, the downstream mediators are still elusive. In particular, the role of extracellular mediators is largely unknown. In this study, we identified the matricellular protein Cyr61, which is de novo synthesized in response to PDGF stimulation, as the key downstream mediator of the ERK and JNK pathways, independent of the p38 MAPK and AKT pathways, and, thereby, it mediates PDGF-induced smooth muscle cell migration but not proliferation. Our results revealed that, when Cyr61 was newly synthesized by PDGF, it was promptly translocated to the extracellular matrix and physically interacted with the plasma membrane integrins α6β1 and αvβ3. We further demonstrate that Cyr61 and integrins are integral components of the PDGF signaling pathway via an "outside-in" signaling route to activate intracellular focal adhesion kinase (FAK), leading to cell migration. Therefore, this study provides the first evidence that the PDGF-induced endogenous extracellular matrix component Cyr61 is a key mediator in modulating cell migration by connecting intracellular PDGF-ERK and JNK signals with integrin/FAK signaling. Therefore, extracellular Cyr61 convergence with growth factor signaling and integrin/FAK signaling is a new concept of growth factor-induced cell migration. The discovered signaling pathway may represent an important therapeutic target in growth factor-mediated cell migration/invasion-related vascular diseases and tumorigenesis.

  11. ASSESSMENT OF PC12 CELL DIFFERENTIATION AND NEURITE GROWTH: A COMPARISON OF MORPHOLOGICAL AND NEUROCHEMICAL MEASURES.

    EPA Science Inventory

    In order to screen large numbers of chemicals for their potential to produce developmental neurotoxicity new, in vitro methods are needed. One approach is to develop methods based on the biologic processes which underlie brain development including the growth and maturation of ce...

  12. Hepatocyte growth factor induces proliferation and differentiation of multipotent and erythroid hemopoietic progenitors

    PubMed Central

    1994-01-01

    Hepatocyte growth factor (HGF) is a mesenchymal derived growth factor known to induce proliferation and "scattering" of epithelial and endothelial cells. Its receptor is the tyrosine kinase encoded by the c- MET protooncogene. Here we show that highly purified recombinant HGF stimulates hemopoietic progenitors to form colonies in vitro. In the presence of erythropoietin, picomolar concentrations of HGF induced the formation of erythroid burst-forming unit colonies from CD34-positive cells purified from human bone marrow, peripheral blood, or umbilical cord blood. The growth stimulatory activity was restricted to the erythroid lineage. HGF also stimulated the formation of multipotent CFU- GEMM colonies. This effect is synergized by stem cell factor, the ligand of the tyrosine kinase receptor encoded by the c-KIT protooncogene, which is active on early hemopoietic progenitors. By flow cytometry analysis, the receptor for HGF was found to be expressed on the cell surface in a fraction of CD34+ progenitors. Moreover, in situ hybridization experiments showed that HGF receptor mRNA is highly expressed in embryonic erythroid cells (megaloblasts). HGF mRNA was also found to be produced in the embryonal liver. These data show that HGF plays a direct role in the control of proliferation and differentiation of erythroid progenitors, and they suggest that it may be one of the long-sought mediators of paracrine interactions between stromal and hemopoietic cells within the hemopoietic microenvironment. PMID:7528222

  13. Nuclear localization of Src-family tyrosine kinases is required for growth factor-induced euchromatinization

    SciTech Connect

    Takahashi, Akinori; Obata, Yuuki; Fukumoto, Yasunori; Nakayama, Yuji; Kasahara, Kousuke; Kuga, Takahisa; Higashiyama, Yukihiro; Saito, Takashi; Yokoyama, Kazunari K.; Yamaguchi, Naoto

    2009-04-15

    Src-family kinases (SFKs), which participate in various signaling events, are found at not only the plasma membrane but also several subcellular compartments, including the nucleus. Nuclear structural changes are frequently observed during transcription, cell differentiation, senescence, tumorigenesis, and cell cycle. However, little is known about signal transduction in the alteration of chromatin texture. Here, we develop a pixel imaging method for quantitatively evaluating chromatin structural changes. Growth factor stimulation increases euchromatic hypocondensation and concomitant heterochromatic hypercondensation in G{sub 1} phase, and the levels reach a plateau by 30 min, sustain for at least 5 h and return to the basal levels after 24 h. Serum-activated SFKs in the nucleus were more frequently detected in the euchromatin areas than the heterochromatin areas. Nuclear expression of kinase-active SFKs, but not unrelated Syk kinase, drastically increases both euchromatinization and heterochromatinization in a manner dependent on the levels of nuclear tyrosine phosphorylation. However, growth factor stimulation does not induce chromatin structural changes in SYF cells lacking SFKs, and reintroduction of one SFK member into SYF cells can, albeit insufficiently, induce chromatin structural changes. These results suggest that nuclear tyrosine phosphorylation by SFKs plays an important role in chromatin structural changes upon growth factor stimulation.

  14. NOVEL ATYPICAL PKC INHIBITORS PREVENT VASCULAR ENDOTHELIAL GROWTH FACTOR-INDUCED BLOOD-RETINAL BARRIER DYSFUNCTION

    PubMed Central

    Titchenell, Paul M.; Lin, Cheng-Mao; Keil, Jason M.; Sundstrom, Jeffrey M.; Smith, Charles D.; Antonetti, David A.

    2013-01-01

    SYNOPSIS Pro-inflammatory cytokines and growth factors such as vascular endothelial growth factor (VEGF) contribute to the loss of the blood-retinal barrier (BRB) and subsequent macular edema in various retinal pathologies. VEGF signaling requires conventional PKC (PKCβ) activity; however, PKCβ inhibition only partially prevents VEGF-induced endothelial permeability and does not affect pro-inflammatory cytokine-induced permeability suggesting the involvement of alternative signaling pathways. Here, we provide evidence for the involvement of atypical protein kinase C (aPKC) signaling in VEGF-induced endothelial permeability and identify a novel class of inhibitors of aPKC that prevent BRB breakdown in vivo. Genetic and pharmacological manipulations of aPKC isoforms were used to assess their contribution to endothelial permeability in culture. A chemical library was screened using an in vitro kinase assay to identify novel small molecule inhibitors and further medicinal chemistry was performed to delineate a novel pharmacophore. We demonstrate that aPKC isoforms are both sufficient and required for VEGF-induced endothelial permeability. Furthermore, these specific, potent, non-competitive, small molecule inhibitors prevented VEGF-induced tight junction internalization and retinal endothelial permeability in response to VEGF in both primary culture and in rodent retina. These data suggest that aPKC inhibition with 2-amino-4-phenyl-thiophene derivatives may be developed to preserve the BRB in retinal diseases such as diabetic retinopathy or uveitis and the blood-brain barrier (BBB) in the presence of brain tumors. PMID:22721706

  15. Epidermal growth factor induces tyrosine hydroxylase in a clonal pheochromocytoma cell line, PC-G2

    SciTech Connect

    Goodman, R.; Slater, E.; Herschman, H.R.

    1980-03-01

    We have previously described the isolation of a clonal cell line (PC-G2) in which the level of tyrosine hydroxylase (TH), the rate-limiting step in the synthesis of the catecholamine neurotransmitters, is induced by nerve growth factor (NGF). We now report that epidermal growth factor (EGF) also induces TH in the PC-G2 cell line. Although EFG has been shown to be mitogenic for many cultured cells, no neuronal function has been previously reported for this protein. The TH response to EGF is elicited in a dose-dependent fashion at concentrations as low as 0.1 ng/ml and is maximal at 10 ng/ml EGF. The maximal response is observed after 3 to 4 d of exposure to 10 ng/ml EGF. The induction by NGF and EGF is inhibited by their respective antisera. Dexamethasone, a synthetic glucocorticoid which we have previously shown modulates the response of PC-G2 cells to NGF, also modulates the TH induction elicited by EGF.

  16. High butyric acid amounts induce oxidative stress, alter calcium homeostasis, and cause neurite retraction in nerve growth factor-treated PC12 cells.

    PubMed

    Cueno, Marni E; Kamio, Noriaki; Seki, Keisuke; Kurita-Ochiai, Tomoko; Ochiai, Kuniyasu

    2015-07-01

    Butyric acid (BA) is a common secondary metabolite by-product produced by oral pathogenic bacteria and is detected in high amounts in the gingival tissue of patients with periodontal disease. Previous works have demonstrated that BA can cause oxidative stress in various cell types; however, this was never explored using neuronal cells. Here, we exposed nerve growth factor (NGF)-treated PC1(2) cells to varying BA concentrations (0.5, 1.0, 5.0 mM). We measured total heme, H(2)O(2), catalase, and calcium levels through biochemical assays and visualized the neurite outgrowth after BA treatment. Similarly, we determined the effects of other common periodontal short-chain fatty acids (SCFAs) on neurite outgrowth for comparison. We found that high (1.0 and 5.0 mM) BA concentrations induced oxidative stress and altered calcium homeostasis, whereas low (0.5 mM) BA concentration had no significant effect. Moreover, compared to other SCFAs, we established that only BA was able to induce neurite retraction.

  17. [Factors inducing transition from growth to dormancy in rhizobacteria Azospirillum brasilense].

    PubMed

    Kushneruk, M A; Tugarova, A V; Il'chukova, A V; Slavkina, E A; Starichkova, N I; Bogatyrev, V A; Antoniuk, L P

    2013-01-01

    The factors suppressing division of the cells of the rhizobacterium Azospirillum brasilense and inducing their transition to a dormant state were analyzed. These included the presence of hexylresorcinol or heavy metals (Cu and Co) in the medium, oxygen stress, and transfer of the cells into the physiological saline or phosphate buffer solution. The results were used to develop a protocol for obtaining of uncultured cells of A. brasilense Sp245, a natural symbiont of wheat. The cells lost their ability to grow on synthetic agar medium, but could revert to growth when incubated in freshly prepared liquid medium. Needle-shaped crystals differing from struvite, which has been previously reported for this strain, were found in the dormant culture of A. brasilense Sp245.

  18. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation.

    PubMed

    Nagata, Yosuke; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor.

  19. Oxymetazoline enhances epidermal- and platelet-derived growth factor-induced DNA synthesis.

    PubMed

    Nickenig, G; Ko, Y; Nettekoven, W; Appenheimer, M; Schiermeyer, B; Vetter, H; Sachinidis, A

    1994-01-01

    In the present study, the effect of 10(-9) to 10(-6) M epinephrine (alpha- and beta-agonist), norepinephrine (alpha- and beta 1-antagonist) isoproterenol (beta-agonist) salbutamol (beta 2-agonist), phenylephrine (alpha 1-agonist) and oxymetazoline (mainly alpha 2-agonist) on DNA synthesis in vascular smooth muscle cells (VSMCs) from rat aorta has been investigated. Our results show that only oxymetazoline induced a moderate dose-dependent elevation of [3H]thymidine incorporation into cell DNA (10(-6) M, 100-300%). Epidermal growth factor (EGF) (50 ng/ml) and platelet-derived growth factor (PDGF)-BB induced an elevation of the [3H]thymidine incorporation into cell DNA from 154 +/- 7 (basal value) to 1270 +/- 95 and 1552 +/- 178 cpm/microgram protein (mean +/- S.D., n = 3). Oxymetazoline (10(-6) M) and phenylephrine induced an increase of [3H]thymidine incorporation to 368 +/- 53 and 205 +/- 27 cpm/microgram protein, respectively. In contrast to phenylephrine, oxymetazoline caused an elevation of the PDGF-BB- and EGF-induced [3H]thymidine incorporation to 1561 +/- 143 and 2086 +/- 235 (means S.D., n = 3), respectively. In addition, EGF (1 to 50 ng/ml) induced a dose-dependent increase of [3H]thymidine incorporation from 154 +/- 7 (basal value) to 486 +/- 35 (1 ng/ml), 912 +/- 74 (5 ng/ml), 1019 +/- 40 (25 ng/ml) and 1270 +/- 95 (50 ng/ml) cpm/microgram protein (mean +/- S.D.). In the presence of 10(-6) M oxymetazoline, 1, 5, 25 and 50 ng/ml EGF caused an increase of [3H]thymidine incorporation to 633 +/- 101, 1124 +/- 87, 1231 +/- 101, and 1561 +/- 89 cpm/microgram protein (mean +/- S.D.).(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    SciTech Connect

    Nagata, Yosuke Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  1. Occludin S490 Phosphorylation Regulates Vascular Endothelial Growth Factor-Induced Retinal Neovascularization.

    PubMed

    Liu, Xuwen; Dreffs, Alyssa; Díaz-Coránguez, Monica; Runkle, E Aaron; Gardner, Thomas W; Chiodo, Vince A; Hauswirth, William W; Antonetti, David A

    2016-09-01

    Occludin is a transmembrane tight junction protein that contributes to diverse cellular functions, including control of barrier properties, cell migration, and proliferation. Vascular endothelial growth factor (VEGF) induces phosphorylation of occludin at S490, which is required for VEGF-induced endothelial permeability. Herein, we demonstrate that occludin S490 phosphorylation also regulates VEGF-induced retinal endothelial cell proliferation and neovascularization. Using a specific antibody, phospho-occludin was located in centrosomes in endothelial cell cultures, animal models, and human surgical samples of retinal neovessels. Occludin S490 phosphorylation was found to increase with endothelial tube formation in vitro and in vivo during retinal neovascularization after induction of VEGF expression. More important, expression of occludin mutated at S490 to Ala, completely inhibited angiogenesis in cell culture models and in vivo. Collectively, these data suggest a novel role for occludin in regulation of endothelial proliferation and angiogenesis in a phosphorylation-dependent manner. These findings may lead to methods of regulating pathological neovascularization by specifically targeting endothelial cell proliferation. PMID:27423695

  2. A growth factor-induced, spatially organizing cytoskeletal module enables rapid and persistent fibroblast migration

    PubMed Central

    Martin, Katrin; Vilela, Marco; Jeon, Noo Li; Danuser, Gaudenz; Pertz, Olivier

    2015-01-01

    Summary Directional migration requires robust front/back polarity. We find that fibroblasts treated with platelet-derived growth factor (PDGF) and pre-polarized by plating on a fibronectin line substrate, exhibit persistent migration for hours. This does not occur in the absence of PDGF, or on uniformly-coated fibronectin substrates. Persistent migration arises from establishment of two functional modules at cell front and back. At the front, formation of a zone containing podosome-like structures (PLS), dynamically correlates with low RhoA and myosin activity, and absence of a contractile lamella. At the back, myosin contractility specifically controls tail retraction with minimal crosstalk to the front module. The PLS zone is maintained in a dynamic steady state that preserves size and position relative to the cell front, allowing for long term coordination of front and back modules. We propose that front/back uncoupling achieved by the PLS zone is crucial for persistent migration in absence of directional cues. PMID:25268172

  3. Exogenous vascular endothelial growth factor induces malformed and hyperfused vessels during embryonic neovascularization.

    PubMed Central

    Drake, C J; Little, C D

    1995-01-01

    Vascular endothelial growth factor (VEGF) is a potent and specific endothelial mitogen that is able to induce angiogenesis in vivo [Leung, D. W., Cachianes, G., Kuang, W.-J., Goeddel, D. V. & Ferrara, N. (1989) Science 246 1306-1309]. To determine if VEGF also influences the behavior of primordial endothelial cells, we used an in vivo vascular assay based on the de novo formation of vessels. Japanese quail embryos injected with nanomolar quantities of the 165-residue form of VEGF at the onset of vasculogenesis exhibited profoundly altered vessel development. In fact, the overall patterning of the vascular network was abnormal in all VEGF-injected embryos. The malformations were attributable to two specific endothelial cell activities: (i) inappropriate neovascularization in normally avascular areas and (ii) the unregulated, excessive fusion of vessels. In the first instance, supernumerary vessels directly linked the inflow channel of the heart to the aortic outflow channel. The second aberrant activity led to the formation of vessels with abnormally large lumens. Ultimately, unregulated vessel fusion generated massive vascular sacs that obliterated the identity of individual vessels. These observations show that exogenous VEGF has an impact on the behavior of primordial endothelial cells engaged in vasculogenesis, and they strongly suggest that endogenous VEGF is important in vascular patterning and regulation of vessel size (lumen formation). Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:7543999

  4. A novel compound, NP-184, inhibits the vascular endothelial growth factor induced angiogenesis.

    PubMed

    Lin, Kuan-Ting; Lien, Jin-Cherng; Chung, Ching-Hu; Kuo, Sheng-Chu; Huang, Tur-Fu

    2010-03-25

    Angiogenesis is observed in many diseases, such as tumor progression, diabetes and rheumatoid arthritis; it is a process that involves proliferation, migration, differentiation and tube formation of endothelial cells. Vascular endothelial growth factor (VEGF) plays an important role in angiogenesis by induction of these endothelial functions. Thus, inhibition of these critical angiogenic steps is a practical therapeutic strategy for those diseases. NP-184 is a substituted benzimidazole analogue which exhibits a potent anti-thrombotic activity. In this report, NP-184 inhibited the viability of human umbilical vascular endothelial cells (HUVEC) in a concentration-dependent manner, and caused cell apoptosis as examined by cell-cycle analysis and Annexin V staining with flow cytometry. NP-184 also concentration-dependently inhibited the HUVEC migration, tube formation on Matrigel, and rat aortic ring sprouting stimulated by VEGF. Regarding the intracellular signal transduction, NP-184 concentration-dependently interfered with the activation of AKT, ERK and the nuclear translocation of NF-kappaB. In vivo study showed that NP-184 dose-dependently reduced angiogenesis in Matrigel plug assay. These results indicate that NP-184 is a potential candidate for developing the treatment of angiogenesis related-diseases. PMID:20067787

  5. Phosphorylated endothelial nitric oxide synthase mediates vascular endothelial growth factor-induced penile erection.

    PubMed

    Musicki, Biljana; Palese, Michael A; Crone, Julie K; Burnett, Arthur L

    2004-02-01

    The objective of the present study was to evaluate whether vascular endothelial growth factor (VEGF)-induced penile erection is mediated by activation of endothelial nitric oxide synthase (eNOS) through its phosphorylation. We assessed the role of constitutively activated eNOS in VEGF-induced penile erection using wild-type (WT) and eNOS-knockout (eNOS(-/-)) mice with and without vasculogenic erectile dysfunction. Adult WT and eNOS(-/-) mice were subjected to sham operation or bilateral castration to induce vasculogenic erectile dysfunction. At the time of surgery, animals were injected intracavernosally with a replication-deficient adenovirus expressing human VEGF145 (10(9) particle units) or with empty virus (Ad.Null). After 7 days, erectile function was assessed in response to cavernous nerve electrical stimulation. Total and phosphorylated protein kinase B (Akt) as well as total and phosphorylated eNOS were quantitatively assessed in mice penes using Western immunoblot and immunohistochemistry. In intact WT mice, VEGF145 significantly increased erectile responses, and in WT mice after castration, it completely recovered penile erection. However, VEGF145 failed to increase erectile responses in intact eNOS(-/-) mice and only partially recovered erectile function in castrated eNOS(-/-) mice. In addition, VEGF145 significantly increased phosphorylation of eNOS at Serine 1177 by approximately 2-fold in penes of both intact and castrated WT mice. The data provide a molecular explanation for VEGF stimulatory effect on penile erection, which involves phosphorylated eNOS (Serine 1177) mediation. PMID:14522830

  6. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses.

    PubMed

    Twu, Olivia; Dessí, Daniele; Vu, Anh; Mercer, Frances; Stevens, Grant C; de Miguel, Natalia; Rappelli, Paola; Cocco, Anna Rita; Clubb, Robert T; Fiori, Pier Luigi; Johnson, Patricia J

    2014-06-01

    The human-infective parasite Trichomonas vaginalis causes the most prevalent nonviral sexually transmitted infection worldwide. Infections in men may result in colonization of the prostate and are correlated with increased risk of aggressive prostate cancer. We have found that T. vaginalis secretes a protein, T. vaginalis macrophage migration inhibitory factor (TvMIF), that is 47% similar to human macrophage migration inhibitory factor (HuMIF), a proinflammatory cytokine. Because HuMIF is reported to be elevated in prostate cancer and inflammation plays an important role in the initiation and progression of cancers, we have explored a role for TvMIF in prostate cancer. Here, we show that TvMIF has tautomerase activity, inhibits macrophage migration, and is proinflammatory. We also demonstrate that TvMIF binds the human CD74 MIF receptor with high affinity, comparable to that of HuMIF, which triggers activation of ERK, Akt, and Bcl-2-associated death promoter phosphorylation at a physiologically relevant concentration (1 ng/mL, 80 pM). TvMIF increases the in vitro growth and invasion through Matrigel of benign and prostate cancer cells. Sera from patients infected with T. vaginalis are reactive to TvMIF, especially in males. The presence of anti-TvMIF antibodies indicates that TvMIF is released by the parasite and elicits host immune responses during infection. Together, these data indicate that chronic T. vaginalis infections may result in TvMIF-driven inflammation and cell proliferation, thus triggering pathways that contribute to the promotion and progression of prostate cancer.

  7. Phosphorylated endothelial nitric oxide synthase mediates vascular endothelial growth factor-induced penile erection.

    PubMed

    Musicki, Biljana; Palese, Michael A; Crone, Julie K; Burnett, Arthur L

    2004-02-01

    The objective of the present study was to evaluate whether vascular endothelial growth factor (VEGF)-induced penile erection is mediated by activation of endothelial nitric oxide synthase (eNOS) through its phosphorylation. We assessed the role of constitutively activated eNOS in VEGF-induced penile erection using wild-type (WT) and eNOS-knockout (eNOS(-/-)) mice with and without vasculogenic erectile dysfunction. Adult WT and eNOS(-/-) mice were subjected to sham operation or bilateral castration to induce vasculogenic erectile dysfunction. At the time of surgery, animals were injected intracavernosally with a replication-deficient adenovirus expressing human VEGF145 (10(9) particle units) or with empty virus (Ad.Null). After 7 days, erectile function was assessed in response to cavernous nerve electrical stimulation. Total and phosphorylated protein kinase B (Akt) as well as total and phosphorylated eNOS were quantitatively assessed in mice penes using Western immunoblot and immunohistochemistry. In intact WT mice, VEGF145 significantly increased erectile responses, and in WT mice after castration, it completely recovered penile erection. However, VEGF145 failed to increase erectile responses in intact eNOS(-/-) mice and only partially recovered erectile function in castrated eNOS(-/-) mice. In addition, VEGF145 significantly increased phosphorylation of eNOS at Serine 1177 by approximately 2-fold in penes of both intact and castrated WT mice. The data provide a molecular explanation for VEGF stimulatory effect on penile erection, which involves phosphorylated eNOS (Serine 1177) mediation.

  8. c-Abl is an effector of Src for growth factor-induced c-myc expression and DNA synthesis

    PubMed Central

    Furstoss, Olivia; Dorey, Karel; Simon, Valérie; Barilà, Daniela; Superti-Furga, Giulio; Roche, Serge

    2002-01-01

    The mechanism by which the ubiquitously expressed Src family kinases regulate mitogenesis is not well understood. Here we report that cytoplasmic tyrosine kinase c-Abl is an important effector of c-Src for PDGF- and serum-induced DNA synthesis. Inactivation of cytoplasmic c-Abl by the kinase- inactive Abl-PP-K– (AblP242E/P249E/K290M) or by microinjection of Abl neutralizing antibodies inhibited mitogenesis. The kinase-inactive SrcK295M induced a G1 block that was overcome by the constitutively active Abl-PP (AblP242E/P249E). Conversely, the inhibitory effect of Abl-PP-K– was not compensated by Src. c-Src-induced c-Abl activation involves phosphorylation of Y245 and Y412, two residues required for c-Abl mitogenic function. Finally, we found that p53 inactivation and c-myc expression, two cell cycle events regulated by Src during mitogenesis, also implied c-Abl: c-Abl function was dispensable in cells deficient in active p53 and inhibition of c-Abl reduced mitogen-induced c-myc expression. These data identify a novel function of cytoplasmic c-Abl in the signalling pathways regulating growth factor-induced c-myc expression and we propose the existence of a tyro sine kinase signalling cascade (PDGFR/c-Src/c-Abl) important for mitogenesis. PMID:11847100

  9. Insulin-like growth factor II mediates epidermal growth factor-induced mitogenesis in cervical cancer cells.

    PubMed Central

    Steller, M A; Delgado, C H; Zou, Z

    1995-01-01

    There is increasing evidence that activation of the insulin-like growth factor I (IGF-I) receptor plays a major role in the control of cellular proliferation of many cell types. We studied the mitogenic effects of IGF-I, IGF-II, and epidermal growth factor (EGF) on growth-arrested HT-3 cells, a human cervical cancer cell line. All three growth factors promoted dose-dependent increases in cell proliferation. In untransformed cells, EGF usually requires stimulation by a "progression" factor such as IGF-I, IGF-II, or insulin (in supraphysiologic concentrations) in order to exert a mitogenic effect. Accordingly, we investigated whether an autocrine pathway involving IGF-I or IGF-II participated in the EGF-induced mitogenesis of HT-3 cells. With the RNase protection assay, IGF-I mRNA was not detected. However, IGF-II mRNA increased in a time-dependent manner following EGF stimulation. The EGF-induced mitogenesis was abrogated in a dose-dependent manner by IGF-binding protein 5 (IGFBP-5), which binds to IGF-II and neutralizes it. An antisense oligonucleotide to IGF-II also inhibited the proliferative response to EGF. In addition, prolonged, but not short-term, stimulation with EGF resulted in autophosphorylation of the IGF-I receptor, and coincubations with both EGF and IGFBP-5 attenuated this effect. These data demonstrate that autocrine secretion of IGF-II in HT-3 cervical cancer cells can participate in EGF-induced mitogenesis and suggest that autocrine signals involving the IGF-I receptor occur "downstream" of competence growth factor receptors such as the EGF receptor. Images Fig. 1 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8618825

  10. Olfactory ensheathing cell-neurite alignment enhances neurite outgrowth in scar-like cultures

    PubMed Central

    Khankan, Rana R.; Wanner, Ina B.; Phelps, Patricia E.

    2015-01-01

    The regenerative capacity of the adult CNS neurons after injury is strongly inhibited by the spinal cord lesion site environment that is composed primarily of the reactive astroglial scar and invading meningeal fibroblasts. Olfactory ensheathing cell (OEC) transplantation facilitates neuronal survival and functional recovery after a complete spinal cord transection, yet the mechanisms by which this recovery occurs remain unclear. We used a unique multicellular scar-like culture model to test if OECs promote neurite outgrowth in growth inhibitory areas. Astrocytes were mechanically injured and challenged by meningeal fibroblasts to produce key inhibitory elements of a spinal cord lesion. Neurite outgrowth of postnatal cerebral cortical neurons was assessed on three substrates: quiescent astrocyte control cultures, reactive astrocyte scar-like cultures, and scar-like cultures with OECs. Initial results showed that OECs enhanced total neurite outgrowth of cortical neurons in a scar-like environment by 60%. We then asked if the neurite growth-promoting properties of OECs depended on direct alignment between neuronal and OEC processes. Neurites that aligned with OECs were nearly three times longer when they grew on inhibitory meningeal fibroblast areas and twice as long on reactive astrocyte zones compared to neurites not associated with OECs. Our results show that OECs can independently enhance neurite elongation and that direct OEC-neurite cell contact can provide a permissive substrate that overcomes the inhibitory nature of the reactive astrocyte scar border and the fibroblast-rich spinal cord lesion core. PMID:25863021

  11. Asarone from Acori Tatarinowii Rhizoma Potentiates the Nerve Growth Factor-Induced Neuronal Differentiation in Cultured PC12 Cells: A Signaling Mediated by Protein Kinase A

    PubMed Central

    Lam, Kelly Y. C.; Chen, Jianping; Lam, Candy T. W.; Wu, Qiyun; Yao, Ping; Dong, Tina T. X.; Lin, Huangquan; Tsim, Karl W. K.

    2016-01-01

    Acori Tatarinowii Rhizoma (ATR), the rhizome of Acorus tatarinowii Schott, is being used clinically to treat neurological disorders. The volatile oil of ATR is being considered as an active ingredient. Here, α-asarone and β-asarone, accounting about 95% of ATR oil, were evaluated for its function in stimulating neurogenesis. In cultured PC12 cells, application of ATR volatile oil, α-asarone or β-asarone, stimulated the expression of neurofilaments, a bio-marker for neurite outgrowth, in a concentration-dependent manner. The co-treatment of ATR volatile oil, α-asarone or β-asarone, with low concentration of nerve growth factor (NGF) potentiated the NGF-induced neuronal differentiation in cultured PC12 cells. In addition, application of protein kinase A inhibitors, H89 and KT5720, in cultures blocked the ATR-induced neurofilament expression, as well as the phosphorylation of cAMP-responsive element binding protein (CREB). In the potentiation of NGF-induced signaling in cultured PC12 cells, α-asarone and β-asarone showed synergistic effects. These results proposed the neurite-promoting asarone, or ATR volatile oil, could be useful in finding potential drugs for treating various neurodegenerative diseases, in which neurotrophin deficiency is normally involved. PMID:27685847

  12. C. elegans fmi-1/flamingo and Wnt pathway components interact genetically to control the anteroposterior neurite growth of the VD GABAergic neurons

    PubMed Central

    Ackley, Brian D

    2013-01-01

    During development, multiple environmental cues, e.g., growth factors, cell adhesion molecules, etc., interact to influence the pattern of outgrowth of axons and dendrites in a cell-specific fashion. As a result, individual neurons may receive similar signals, but make unique choices, leading to distinct wiring within the nervous system. C. elegans has been useful in identifying molecular cues that influence neuronal development, as well as the downstream mechanisms that allow individual neurons to make cell-specific responses. Recently, we described a role for the conserved cadherin domain-containing protein, FMI-1/flamingo, in multiple stages of neural development in C. elegans. During the initial phase of neurite outgrowth, FMI-1 seems to have a relatively cell-specific effect on the VD neurons to promote the initial neurite formed to grow toward the anterior. In this capacity, FMI-1 appears to work coordinately with at least two Wnt ligands, EGL-20 and LIN-44, and multiple downstream Wnt signaling components (including LIN-17/Frizzled, DSH-1/Disheveled, and BAR-1/β-catenin). Here I will discuss some of the ideas we considered about how FMI-1 could affect neurons as they acquire their morphology during development. PMID:24778938

  13. Dendrite and Axon Specific Geometrical Transformation in Neurite Development

    PubMed Central

    Mironov, Vasily I.; Semyanov, Alexey V.; Kazantsev, Victor B.

    2016-01-01

    We propose a model of neurite growth to explain the differences in dendrite and axon specific neurite development. The model implements basic molecular kinetics, e.g., building protein synthesis and transport to the growth cone, and includes explicit dependence of the building kinetics on the geometry of the neurite. The basic assumption was that the radius of the neurite decreases with length. We found that the neurite dynamics crucially depended on the relationship between the rate of active transport and the rate of morphological changes. If these rates were in the balance, then the neurite displayed axon specific development with a constant elongation speed. For dendrite specific growth, the maximal length was rapidly saturated by degradation of building protein structures or limited by proximal part expansion reaching the characteristic cell size. PMID:26858635

  14. The sodium channel β1 subunit mediates outgrowth of neurite-like processes on breast cancer cells and promotes tumour growth and metastasis.

    PubMed

    Nelson, Michaela; Millican-Slater, Rebecca; Forrest, Lorna C; Brackenbury, William J

    2014-11-15

    Voltage-gated Na(+) channels (VGSCs) are heteromeric proteins composed of pore-forming α subunits and smaller β subunits. The β subunits are multifunctional channel modulators and are members of the immunoglobulin superfamily of cell adhesion molecules (CAMs). β1, encoded by SCN1B, is best characterized in the central nervous system (CNS), where it plays a critical role in regulating electrical excitability, neurite outgrowth and migration during development. β1 is also expressed in breast cancer (BCa) cell lines, where it regulates adhesion and migration in vitro. In the present study, we found that SCN1B mRNA/β1 protein were up-regulated in BCa specimens, compared with normal breast tissue. β1 upregulation substantially increased tumour growth and metastasis in a xenograft model of BCa. β1 over-expression also increased vascularization and reduced apoptosis in the primary tumours, and β1 over-expressing tumour cells had an elongate morphology. In vitro, β1 potentiated outgrowth of processes from BCa cells co-cultured with fibroblasts, via trans-homophilic adhesion. β1-mediated process outgrowth in BCa cells required the presence and activity of fyn kinase, and Na(+) current, thus replicating the mechanism by which β1 regulates neurite outgrowth in CNS neurons. We conclude that when present in breast tumours, β1 enhances pathological growth and cellular dissemination. This study is the first demonstration of a functional role for β1 in tumour growth and metastasis in vivo. We propose that β1 warrants further study as a potential biomarker and targeting β1-mediated adhesion interactions may have value as a novel anti-cancer therapy.

  15. cpg15 and cpg15-2 constitute a family of activity-regulated ligands expressed differentially in the nervous system to promote neurite growth and neuronal survival.

    PubMed

    Fujino, Tadahiro; Wu, Zhen; Lin, Walter C; Phillips, Marnie A; Nedivi, Elly

    2008-04-10

    Many ligands that affect nervous system development are members of gene families that function together to coordinate the assembly of complex neural circuits. cpg15/neuritin encodes an extracellular ligand that promotes neurite growth, neuronal survival, and synaptic maturation. Here we identify cpg15-2 as the only paralogue of cpg15 in the mouse and human genome. Both genes are expressed predominantly in the nervous system, where their expression is regulated by activity. cpg15-2 expression increases by more than twofold in response to kainate-induced seizures and nearly fourfold in the visual cortex in response to 24 hours of light exposure following dark adaptation. cpg15 and cpg15-2 diverge in their spatial and temporal expression profiles. cpg15-2 mRNA is most abundant in the retina and the olfactory bulb, as opposed to the cerebral cortex and the hippocampus for cpg15. In the retina, they differ in their cell-type specificity. cpg15 is expressed in retinal ganglion cells, whereas cpg15-2 is predominantly in bipolar cells. Developmentally, onset of cpg15-2 expression is delayed compared with cpg15 expression. CPG15-2 is glycosylphosphatidylinositol (GPI) anchored to the cell membrane and, like CPG15, can be released in a soluble-secreted form, but with lower efficiency. CPG15 and CPG15-2 were found to form homodimers and heterodimers with each other. In hippocampal explants and dissociated cultures, CPG15 and CPG15-2 promote neurite growth and neuronal survival with similar efficacy. Our findings suggest that CPG15 and CPG15-2 perform similar cellular functions but may play distinct roles in vivo through their cell-type- and tissue-specific transcriptional regulation. PMID:18265009

  16. Patient Mutations of the Intellectual Disability Gene KDM5C Downregulate Netrin G2 and Suppress Neurite Growth in Neuro2a Cells.

    PubMed

    Wei, Gengze; Deng, Xinxian; Agarwal, Saurabh; Iwase, Shigeki; Disteche, Christine; Xu, Jun

    2016-09-01

    The X-linked lysine (K)-specific demethylase 5C (KDM5C) gene plays an important role in brain development and behavior. It encodes a histone demethylase that is involved in gene regulation in neuronal differentiation and morphogenesis. When mutated, it causes neuropsychiatric symptoms, such as intellectual disability, delayed language development, epilepsy, and impulsivity. To better understand how the patient mutations affect neuronal development, we expressed KDM5C mutants in Neuro2a cells, a mouse neuroblastoma cell line. Retinoic acid (RA)-induced neurite growth was suppressed by the mutation KDM5C (Y751C) , KDM5C (H514A) , and KDM5C (F642L) , but not KDM5C (D87G) or KDM5C (A388P) . RNA-seq analysis indicated an upregulation of genes important for neuronal development, such as Ntng2, Enah, Gas1, Slit2, and Dscam, in response to the RA treatment in control Neuro2a cells transfected with GFP or wild-type KDM5C. In contrast, in cells transfected with KDM5C (Y751C) , these genes were not upregulated by RA. Ntng2 was downregulated in cells with KDM5C mutations, concordant with the lower levels of H3K4 methylation at its promoter. Moreover, knocking down Ntng2 in control Neuro2a cells led to the phenotype of short neurites similar to that of cells with KDM5C (Y751C) , whereas Ntng2 overexpression in the mutant cells rescued the morphological phenotype. These findings provide new insight into the pathogenesis of phenotypes associated with KDM5C mutations. PMID:27421841

  17. Novel inhibitory action of tunicamycin homologues suggests a role for dynamic protein fatty acylation in growth cone-mediated neurite extension

    PubMed Central

    1994-01-01

    In neuronal growth cones, the advancing tips of elongating axons and dendrites, specific protein substrates appear to undergo cycles of posttranslational modification by covalent attachment and removal of long-chain fatty acids. We show here that ongoing fatty acylation can be inhibited selectively by long-chain homologues of the antibiotic tunicamycin, a known inhibitor of N-linked glycosylation. Tunicamycin directly inhibits transfer of palmitate to protein in a cell-free system, indicating that tunicamycin inhibition of protein palmitoylation reflects an action of the drug separate from its previously established effects on glycosylation. Tunicamycin treatment of differentiated PC12 cells or dissociated rat sensory neurons, under conditions in which protein palmitoylation is inhibited, produces a prompt cessation of neurite elongation and induces a collapse of neuronal growth cones. These growth cone responses are rapidly reversed by washout of the antibiotic, even in the absence of protein synthesis, or by addition of serum. Two additional lines of evidence suggest that the effects of tunicamycin on growth cones arise from its ability to inhibit protein long-chain acylation, rather than its previously established effects on protein glycosylation and synthesis. (a) The abilities of different tunicamycin homologues to induce growth cone collapse very systematically with the length of the fatty acyl side- chain of tunicamycin, in a manner predicted and observed for the inhibition of protein palmitoylation. Homologues with fatty acyl moieties shorter than palmitic acid (16 hydrocarbons), including potent inhibitors of glycosylation, are poor inhibitors of growth cone function. (b) The tunicamycin-induced impairment of growth cone function can be reversed by the addition of excess exogenous fatty acid, which reverses the inhibition of protein palmitoylation but has no effect on the inhibition of protein glycosylation. These results suggest an important role for

  18. The type 1 cannabinoid receptor is highly expressed in embryonic cortical projection neurons and negatively regulates neurite growth in vitro.

    PubMed

    Vitalis, Tania; Lainé, Jeanne; Simon, Anne; Roland, Alexandre; Leterrier, Christophe; Lenkei, Zsolt

    2008-11-01

    In the rodent and human embryonic brains, the cerebral cortex and hippocampus transiently express high levels of type 1 cannabinoid receptors (CB(1)Rs), at a developmental stage when these areas are composed mainly of glutamatergic neurons. However, the precise cellular and subcellular localization of CB(1)R expression as well as effects of CB(1)R modulation in this cell population remain largely unknown. We report that, starting from embryonic day 12.5, CB(1)Rs are strongly expressed in both reelin-expressing Cajal-Retzius cells and newly differentiated postmitotic glutamatergic neurons of the mouse telencephalon. CB(1)R protein is localized first to somato-dendritic endosomes and at later developmental stages it localizes mostly to developing axons. In young axons, CB(1)Rs are localized both to the axolemma and to large, often multivesicular endosomes. Acute maternal injection of agonist CP-55940 results in the relocation of receptors from axons to somato-dendritic endosomes, indicating the functional competence of embryonic CB(1)Rs. The adult phenotype of CB(1)R expression is established around postnatal day 5. By using pharmacological and mutational modulation of CB(1)R activity in isolated cultured rat hippocampal neurons, we also show that basal activation of CB(1)R acts as a negative regulatory signal for dendritogenesis, dendritic and axonal outgrowth, and branching. Together, the overall negative regulatory role in neurite development suggests that embryonic CB(1)R signaling may participate in the correct establishment of neuronal connectivity and suggests a possible mechanism for the development of reported glutamatergic dysfunction in the offspring following maternal cannabis consumption.

  19. Real-time detection of neurite outgrowth using microfluidic device

    NASA Astrophysics Data System (ADS)

    Kim, Samhwan; Jang, Jongmoon; Choi, Hongsoo; Moon, Cheil

    2013-05-01

    We developed a simple method for real-time detection of the neurite outgrowth using microfluidic device. Our microfluidic device contains three compartmentalized channels which are for cell seeding, hydrogel and growth factors. Collagen gel is filled in the middle channel and pheochromocytoma (PC12) cells are seeded in the left channel. To induce differentiation of PC12 cells, 50 ng/ml to1000 ng/ml of nerve growth factor (NGF) is introduced into the right channel. After three days of NGF treatment, PC12 cells begin to extend neurites and formed neurite network from sixth day. Quantification of neurite outgrowth is analyzed by measuring the total area of neurites. On sixth day, the area is doubled compared to the area on third day and increases by 20 times on ninth day.

  20. Locomotor recovery in spinal cord-injured rats treated with an antibody neutralizing the myelin-associated neurite growth inhibitor Nogo-A.

    PubMed

    Merkler, D; Metz, G A; Raineteau, O; Dietz, V; Schwab, M E; Fouad, K

    2001-05-15

    The limited plastic and regenerative capabilities of axons in the adult mammalian CNS can be enhanced by the application of a monoclonal antibody (mAb), IN-1, raised against the myelin-associated neurite growth inhibitor Nogo-A. The aim of the present study was to investigate the effects of this treatment on the functional recovery of adult rats with a dorsal over-hemisection of the spinal cord. Directly after injury, half of the animals were implanted with mAb IN-1-secreting hybridoma cells, whereas the others received cells secreting a control antibody (anti-HRP). A broad spectrum of locomotor tests (open field locomotor) score, grid walk, misstep withdrawal response, narrow-beam crossing) was used to characterize locomotor recovery during the 5 weeks after the injury. In all behavioral tests, the recovery in the mAb IN-1-treated group was significantly augmented compared with the control antibody-treated rats. EMG recordings of flexor and extensor muscles during treadmill walking confirmed the improvement of the locomotor pattern in the mAb IN-1-treated rats; step-cycle duration, rhythmicity, and coupling of the hindlimbs were significantly improved. No differences between the two groups with regard to nociception were observed in the tail flick test 5 weeks after the operation. These results indicating improved functional recovery suggest that the increased plastic and regenerative capabilities of the CNS after Nogo-A neutralization result in a functionally meaningful rewiring of the motor systems. PMID:11331396

  1. Protein Kinase A Regulates 3-Phosphatidylinositide Dynamics during Platelet-derived Growth Factor-induced Membrane Ruffling and Chemotaxis*S⃞

    PubMed Central

    Deming, Paula B.; Campbell, Shirley L.; Baldor, Linda C.; Howe, Alan K.

    2008-01-01

    Spatial regulation of the cAMP-dependent protein kinase (PKA) is required for chemotaxis in fibroblasts; however, the mechanism(s) by which PKA regulates the cell migration machinery remain largely unknown. Here we report that one function of PKA during platelet-derived growth factor (PDGF)-induced chemotaxis was to promote membrane ruffling by regulating phosphatidylinositol 3,4,5-trisphosphate (PIP3) dynamics. Inhibition of PKA activity dramatically altered membrane dynamics and attenuated formation of peripheral membrane ruffles in response to PDGF. PKA inhibition also significantly decreased the number and size of PIP3-rich membrane ruffles in response to uniform stimulation and to gradients of PDGF. This ruffling defect was quantified using a newly developed method, based on computer vision edge-detection algorithms. PKA inhibition caused a marked attenuation in the bulk accumulation of PIP3 following PDGF stimulation, without effects on PI3-kinase (PI3K) activity. The deficits in PIP3 dynamics correlated with a significant inhibition of growth factor-induced membrane recruitment of endogenous Akt and Rac activation in PKA-inhibited cells. Simultaneous inhibition of PKA and Rac had an additive inhibitory effect on growth factor-induced ruffling dynamics. Conversely, the expression of a constitutively active Rac allele was able to rescue the defect in membrane ruffling and restore the localization of a fluorescent PIP3 marker to membrane ruffles in PKA-inhibited cells, even in the absence of PI3K activity. These data demonstrate that, like Rac, PKA contributes to PIP3 and membrane dynamics independently of direct regulation of PI3K activity and suggest that modulation of PIP3/3-phosphatidylinositol (3-PI) lipids represents a major target for PKA in the regulation of PDGF-induced chemotactic events. PMID:18936099

  2. Basic fibroblast growth factor induces VEGF expression in chondrosarcoma cells and subsequently promotes endothelial progenitor cell-primed angiogenesis.

    PubMed

    Tzeng, Huey-En; Chen, Po-Chun; Lin, Kai-Wei; Lin, Chih-Yang; Tsai, Chun-Hao; Han, Shao-Min; Teng, Chieh-Lin; Hwang, Wen-Li; Wang, Shih-Wei; Tang, Chih-Hsin

    2015-07-01

    Chondrosarcoma, a common malignant tumour, develops in bone. Effective adjuvant therapy remains inadequate for treatment, meaning poor prognosis. It is imperative to explore novel remedies. Angiogenesis is a rate-limiting step in progression that explains neovessel formation for blood supply in the tumour microenvironment. Numerous studies indicate that EPCs (endothelial progenitor cells) promote angiogenesis and contribute to tumour growth. bFGF (basic fibroblast growth factor), a secreted cytokine, regulates biological activity, including angiogenesis, and correlates with tumorigenesis. However, the role of bFGF in angiogenesis-related tumour progression by recruiting EPCs in human chondrosarcoma is rarely discussed. In the present study, we found that bFGF induced VEGF (vascular endothelial growth factor) expression via the FGFR1 (fibroblast growth factor receptor 1)/c-Src/p38/NF-κB (nuclear factor κB) signalling pathway in chondrosarcoma cells, thereby triggering angiogenesis of endothelial progenitor cells. Our in vivo data revealed that tumour-secreted bFGF promotes angiogenesis in both mouse plug and chick CAM (chorioallantoic membrane) assays. Xenograft mouse model data, due to bFGF-regulated angiogenesis, showed the bFGF regulates angiogenesis-linked tumour growth. Finally, bFGF was highly expressed in chondrosarcoma patients compared with normal cartilage, positively correlating with VEGF expression and tumour stage. The present study reveals a novel therapeutic target for chondrosarcoma progression.

  3. Tax and Semaphorin 4D Released from Lymphocytes Infected with Human Lymphotropic Virus Type 1 and Their Effect on Neurite Growth.

    PubMed

    Quintremil, Sebastián; Alberti, Carolina; Rivera, Matías; Medina, Fernando; Puente, Javier; Cartier, Luis; Ramírez, Eugenio; Tanaka, Yuetsu; Valenzuela, M Antonieta

    2016-01-01

    Human lymphotropic virus type 1 (HTLV-1) is a retrovirus causing HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP), a neurodegenerative central nervous system (CNS) axonopathy. This virus mainly infects CD4(+) T lymphocytes without evidence of neuronal infection. Viral Tax, secreted from infected lymphocytes infiltrated in the CNS, is proposed to alter intracellular pathways related to axonal cytoskeleton dynamics, producing neurological damage. Previous reports showed a higher proteolytic release of soluble Semaphorin 4D (sSEMA-4D) from CD4(+) T cells infected with HTLV-1. Soluble SEMA-4D binds to its receptor Plexin-B1, activating axonal growth collapse pathways in the CNS. In the current study, an increase was found in both SEMA-4D in CD4(+) T cells and sSEMA-4D released to the culture medium of peripheral blood mononuclear cells (PBMCs) from HAM/TSP patients compared to asymptomatic carriers and healthy donors. After a 16-h culture, infected PBMCs showed significantly higher levels of CRMP-2 phosphorylated at Ser(522). The effect was blocked either with anti-Tax or anti-SEMA-4D antibodies. The interaction of Tax and sSEMA-4D was found in secreted medium of PBMCs in patients, which might be associated with a leading role of Tax with the SEMA-4D-Plexin-B1 signaling pathway. In infected PBMCs, the migratory response after transwell assay showed that sSEMA-4D responding cells were CD4(+)Tax(+) T cells with a high CRMP-2 pSer(522) content. In the present study, the participation of Tax-sSEMA-4D in the reduction in neurite growth in PC12 cells produced by MT2 (HTLV-1-infected cell line) culture medium was observed. These results lead to the participation of plexins in the reported effects of infected lymphocytes on neuronal cells. PMID:26389656

  4. Regulation by intracellular Ca sup 2+ and cyclic AMP of the growth factor-induced ruffling membrane formation and stimulation of fluid-phase endocytosis and exocytosis

    SciTech Connect

    Miyata, Yoshihiko Tokyo Metropolitan Inst. of Medical Science ); Nishida, Eisuke; Sakai, Hikoichi ); Koyasu, Shigeo; Yahara, Ichiro )

    1989-04-01

    Insulin, insulin-like growth factor-I (IGF-I), and epidermal growth factor (EGF) induce formation of ruffling membranes and stimulate the fluid-phase endocytosis and exocytosis in human epidermoid carcinoma KB cells. An increase in intracellular Ca{sup 2+} concentration by treatment with A23187, a calcium ionophore, or an increase in intracellular cAMP level by treatment with dibutyryl cAMP or forskolin almost completely inhibited the insulin-, IGF-I-, or EGF-induced formation of ruffling membranes. Increases in Ca{sup 2+} or cAMP concentration also inhibited almost completely the stimulation of fluid-phase endocytosis and exocytosis elicited by these growth factors. These results suggest that the growth factor-induced ruffling membrane formation and the stimulation of fluid-phase endocytosis and exocytosis have a common regulatory mechanism involving intracellular concentrations of Ca{sup 2+} and cAMP. {sup 125}I-EGF binding assays and immunoprecipitation experiments with anti-phosphotyrosine antibody revealed that treatment of KB cells with A23187, dibutyryl cAMP, or forskolin did not inhibit the EGF binding to the cells nor subsequent tyrosine autophosphorylation of its receptors. These results indicate that Ca{sup 2+}- and/or cAMP-sensitive intracellular reactions exist downstream from the receptor kinase activation in the process of these early cellular responses.

  5. An Id-related helix-loop-helix protein encoded by a growth factor-inducible gene.

    PubMed Central

    Christy, B A; Sanders, L K; Lau, L F; Copeland, N G; Jenkins, N A; Nathans, D

    1991-01-01

    An mRNA encoding a helix-loop-helix protein that we have named HLH462 is induced in mouse 3T3 cells as part of the immediate early transcriptional response to growth factors and other signaling agents. The RNA is present in a number of mouse tissues and in the developing mouse fetus. The HLH462 gene has been mapped by interspecific backcross analysis to the distal region of mouse chromosome 4. In its helix-loop-helix region HLH462 is closely related to the Id protein and the Drosophila emc protein. Like Id, HLH462 lacks a basic region required for DNA binding, and it inhibits the DNA-binding activities of other helix-loop-helix proteins. On the basis of its structural and functional similarity to Id, we suggest that HLH462 may inhibit the activities of helix-loop-helix transcription factors during the cellular growth response and during development. Images PMID:2000388

  6. The macrophage-colony stimulating factor gene is a growth factor-inducible immediate early gene in fibroblasts.

    PubMed

    Ryseck, R P; Macdonald-Bravo, H; Bravo, R

    1991-02-01

    Polypeptide growth factors rapidly induce the expression of a group of genes during the onset of cell proliferation. We report that one of these genes, which is induced by several mitogens in NIH 3T3 cells, is identical to the gene for macrophage-colony stimulating factor (M-CSF). In contrast to other immediate early genes, the expression of the M-CSF gene lasted for several hours. Run-on assays demonstrated that the increased level of M-CSF mRNA following stimulation was mainly due to transcriptional activation. Our results support the notion that the products of the immediate early genes are not all mediators of fibroblasts growth but that some play an important role in other physiological responses such as wound repair. PMID:1712227

  7. Corallocins A-C, Nerve Growth and Brain-Derived Neurotrophic Factor Inducing Metabolites from the Mushroom Hericium coralloides.

    PubMed

    Wittstein, Kathrin; Rascher, Monique; Rupcic, Zeljka; Löwen, Eduard; Winter, Barbara; Köster, Reinhard W; Stadler, Marc

    2016-09-23

    Three new natural products, corallocins A-C (1-3), along with two known compounds were isolated from the mushroom Hericium coralloides. Their benzofuranone and isoindolinone structures were elucidated by spectral methods. All corallocins induced nerve growth factor and/or brain-derived neurotrophic factor expression in human 1321N1 astrocytes. Furthermore, corallocin B showed antiproliferative activity against HUVEC and human cancer cell lines MCF-7 and KB-3-1. PMID:27588730

  8. Negative guidance factor-induced macropinocytosis in the growth cone plays a critical role in repulsive axon turning

    PubMed Central

    Kolpak, Adrianne L.; Jiang, Jun; Guo, Daorong; Standley, Clive; Bellve, Karl; Fogarty, Kevin; Bao, Zheng-Zheng

    2009-01-01

    Macropinocytosis is a type of poorly characterized fluid-phase endocytosis which results in formation of relatively large vesicles. We report that Sonic hedgehog (Shh) protein induces macropinocytosis in the axons, through activation of a noncanonical signaling pathway including Rho GTPase and nonmuscle myosin II. Macropinocytosis induced by Shh is independent of clathrin-mediated endocytosis, but dependent on dynamin, myosin II and Rho GTPase activities. Inhibitors of macropinocytosis also abolished the negative effects of Shh on axonal growth including growth cone collapse and chemorepulsive axon turning, but not turning per se. On the other hand, activation of myosin II or treatment of phorbol ester induces macropinocytosis in the axons, elicits growth cone collapse and repulsive axon turning. Furthermore, macropinocytosis is also induced by ephrin-A2 and inhibition of dynamin abolished repulsive axon turning induced by ephrin-A2. Macropinocytosis can be induced ex vivo by high Shh, correlating with axon retraction. These results demonstrate that macropinocytosis-mediated membrane trafficking is an important cellular mechanism involved in axon chemorepulsion induced by negative guidance factors. PMID:19710302

  9. In vitro angiogenesis on the human amniotic membrane: requirement for basic fibroblast growth factor-induced proteinases

    PubMed Central

    1989-01-01

    The role of basic fibroblast growth factor-(bFGF) induced proteinases in basement membrane (BM) invasion by bovine capillary endothelial (BCE) cells was studied using a quantitative in vitro assay previously described (Mignatti et al., 1986). 125I-iododeoxyuridine-labeled BCE cells were grown for 72 h on the human amnion BM, and cell invasion was determined by measuring the radioactivity associated with the tissue after removal of the noninvasive cell layer. BCE cells were noninvasive under normal conditions. Addition of human bFGF to either the BM or to the stromal aspect of the amnion induced BCE cell invasion with a dose- dependent response. This effect was maximal in the presence of 70 ng/ml bFGF, and was inhibited by anti-FGF antibody. Transforming growth factor beta, as well as plasmin inhibitors and anti-tissue type plasminogen activator antibody inhibited BCE cell invasion. The tissue inhibitor of metalloproteinases, 1-10 phenanthroline, anti-type IV and anti-interstitial collagenase antibodies had the same effect. On the contrary, anti-stromelysin antibody and Eglin, an inhibitor of elastase, were ineffective. The results obtained show that both the plasminogen activator-plasmin system and specific collagenases are involved in the invasive process occurring during angiogenesis. PMID:2465298

  10. SCAFFOLDING PROTEIN GAB1 SUSTAINS EPIDERMAL GROWTH FACTOR-INDUCED MITOGENIC AND SURVIVAL SIGNALING BY MULTIPLE POSITIVE FEEDBACK LOOPS

    PubMed Central

    Kiyatkin, Anatoly; Aksamitiene, Edita; Markevich, Nick I.; Borisov, Nikolay M.; Hoek, Jan B.; Kholodenko, Boris N.

    2008-01-01

    Grb2-associated binder 1 (GAB1) is a scaffold protein involved in numerous interactions that propagate signaling by growth factor and cytokine receptors. Here we explore in silico and validate in vivo the role of GAB1 in the control of mitogenic (Ras/MAPK) and survival (PI3K/Akt) signaling stimulated by epidermal growth factor (EGF). We built a comprehensive mechanistic model that allows for reliable predictions of temporal patterns of cellular responses to EGF under diverse perturbations, including different EGF doses, GAB1 suppression, expression of mutant proteins and pharmacological inhibitors. We show that the temporal dynamics of GAB1 tyrosine phosphorylation is significantly controlled by positive GAB1-PI3K feedback and negative MAPK-GAB1 feedback. Our experimental and computational results demonstrate that the essential function of GAB1 is to enhance PI3K/Akt activation and extend the duration of Ras/MAPK signaling. By amplifying positive interactions between survival and mitogenic pathways, GAB1 plays the critical role in cell proliferation and tumorigenesis. PMID:16687399

  11. Platelet-released growth factors induce the antimicrobial peptide human beta-defensin-2 in primary keratinocytes.

    PubMed

    Bayer, Andreas; Lammel, Justus; Rademacher, Franziska; Groß, Justus; Siggelkow, Markus; Lippross, Sebastian; Klüter, Tim; Varoga, Deike; Tohidnezhad, Mersedeh; Pufe, Thomas; Cremer, Jochen; Gläser, Regine; Harder, Jürgen

    2016-06-01

    Platelet-released growth factors (PRGF) and its related clinically used formulations [e.g. Vivostat platelet-rich fibrin (PRF(®) )] are thrombocyte concentrate lysates that support healing of chronic, hard-to-heal and infected wounds. Human beta-defensin-2 (hBD-2) is an antimicrobial peptide expressed in human keratinocytes exhibiting potent antimicrobial activity against wound-related bacteria. In this study, we analysed the influence of PRGF on hBD-2 expression in human primary keratinocytes and the influence of Vivostat PRF(®) on hBD-2 expression in experimentally generated skin wounds in vivo. Treatment of primary keratinocytes with PRGF caused a significant increase in hBD-2 gene and protein expressions in a concentration- and time-dependent manner. The use of blocking antibodies revealed that the PRGF-mediated hBD-2 induction was partially mediated by the epidermal growth factor receptor and the interleukin-6 receptor (IL-6R). Luciferase gene reporter assays indicated that the hBD-2 induction through PRGF required activation of the transcription factor activator protein 1 (AP-1), but not of NF-kappaB. In concordance with these cell culture data, Vivostat PRF(®) induced hBD-2 expression when applied to experimentally generated skin wounds. Together, our results indicate that the induction of hBD-2 by thrombocyte concentrate lysates can contribute to the observed beneficial effects in the treatment of chronic and infected wounds. PMID:26843467

  12. Epidermal growth factor-induced stimulation of proliferation and gene expression changes in the hypotrichous ciliate, Stylonychia lemnae.

    PubMed

    Mu, Weijie; Wang, Qi; Bourland, William A; Jiang, Chuanqi; Yuan, Dongxia; Pan, Xuming; Miao, Wei; Chen, Ying; Xiong, Jie

    2016-10-30

    Epidermal growth factor (EGF) induces proliferation of epidermal and epithelial tissues in mammals. However, the effect of EGF on the single-celled eukaryotes is not well characterized, especially in the protists. Ciliates, an important group of protists, are well characterized as both pollution indicators and model organisms for research. Stylonychia lemnae, is one of the most common free-living ciliates, widely distributed in ponds, rivers and marshes. Here, we report the role of EGF on cell proliferation stimulation in S. lemnae. The growth curve of S. lemnae was established, and the stimulation effect of EGF on the proliferation of S. lemnae was investigated. Based on the results, potential EGF receptors were identified in S. lemnae according to the conserved domains and gene expression. Differential gene expression revealed that EGF-induced genes in other organisms (e.g. antioxidant) also up-regulated in S. lemnae cells at propagation stages. In addition, our results showed that EGF could up-regulate the signal transduction-related processes in the decline stage of S. lemnae cells, indicating its potential function in apoptosis inhibition. In summary, this study reports findings of the first investigation of EGF effects in hypotrich ciliates, and establishes an additional system for the study of the molecular mechanisms of EGF actions in eukaryotic cell division and proliferation. PMID:27506312

  13. Liver growth factor induces testicular regeneration in EDS-treated rats and increases protein levels of class B scavenger receptors.

    PubMed

    Lobo, M V T; Arenas, M I; Huerta, L; Sacristán, S; Pérez-Crespo, M; Gutiérrez-Adán, A; Díaz-Gil, J J; Lasunción, M A; Martín-Hidalgo, A

    2015-01-15

    The aim of the present work was to determine the effects of liver growth factor (LGF) on the regeneration process of rat testes after chemical castration induced by ethane dimethanesulfonate (EDS) by analyzing some of the most relevant proteins involved in cholesterol metabolism, such as hormone sensitive lipase (HSL), 3β-hydroxysteroid dehydrogenase (3β-HSD), scavenger receptor SR-BI, and other components of the SR family that could contribute to the recovery of steroidogenesis and spermatogenesis in the testis. Sixty male rats were randomized to nontreated (controls) and LGF-treated, EDS-treated, and EDS + LGF-treated groups. Testes were obtained on days 10 (T1), 21 (T2), and 35 (T3) after EDS treatment, embedded in paraffin, and analyzed by immunohistochemistry and Western blot. LGF improved the recovery of the seminiferous epithelia, the appearance of the mature pattern of Leydig cell interstitial distribution, and the expression of mature SR-BI. Moreover, LGF treatment resulted in partial recovery of HSL expression in Leydig cells and spermatogonia. No changes in serum testosterone were observed in control or LGF-treated rats, but in EDS-castrated animals LGF treatment induced a progressive increase in serum testosterone levels and 3β-HSD expression. Based on the pivotal role of SR-BI in the uptake of cholesteryl esters from HDL, it is suggested that the observed effects of LGF would facilitate the provision of cholesterol for sperm cell growth and Leydig cell recovery.

  14. Epidermal growth factor-induced stimulation of proliferation and gene expression changes in the hypotrichous ciliate, Stylonychia lemnae.

    PubMed

    Mu, Weijie; Wang, Qi; Bourland, William A; Jiang, Chuanqi; Yuan, Dongxia; Pan, Xuming; Miao, Wei; Chen, Ying; Xiong, Jie

    2016-10-30

    Epidermal growth factor (EGF) induces proliferation of epidermal and epithelial tissues in mammals. However, the effect of EGF on the single-celled eukaryotes is not well characterized, especially in the protists. Ciliates, an important group of protists, are well characterized as both pollution indicators and model organisms for research. Stylonychia lemnae, is one of the most common free-living ciliates, widely distributed in ponds, rivers and marshes. Here, we report the role of EGF on cell proliferation stimulation in S. lemnae. The growth curve of S. lemnae was established, and the stimulation effect of EGF on the proliferation of S. lemnae was investigated. Based on the results, potential EGF receptors were identified in S. lemnae according to the conserved domains and gene expression. Differential gene expression revealed that EGF-induced genes in other organisms (e.g. antioxidant) also up-regulated in S. lemnae cells at propagation stages. In addition, our results showed that EGF could up-regulate the signal transduction-related processes in the decline stage of S. lemnae cells, indicating its potential function in apoptosis inhibition. In summary, this study reports findings of the first investigation of EGF effects in hypotrich ciliates, and establishes an additional system for the study of the molecular mechanisms of EGF actions in eukaryotic cell division and proliferation.

  15. Epidermal growth factor induces biphasic activation of ornithine decarboxylase in human stomach-derived KATO-III cells.

    PubMed

    Ishikawa, T; Mitsuhashi, M; Ichikawa, Y; Tarnawski, A

    1994-01-01

    Effect of epidermal growth factor (EGF) on ornithine decarboxylase (ODC) was examined in human gastric cancer-derived KATO-III cells, because 125I-EGF binding studies indicated a presence of specific binding sites for EGF on these cells. Upon stimulation with EGF, both ODC mRNA expression and ODC enzyme activity were significantly increased in KATO-III cells. However, unlike in other cellular systems, both EGF-induced ODC mRNA expression and ODC enzyme activation were biphasic with the peaks at 15 +/- 10 min and 2.1 +/- 1.5 hrs (mean +/- SE) for mRNA, and 3.1 +/- 1.5 and 7.7 +/- 1.8 hrs (mean +/- SE) for enzyme activity, respectively. Therefore, KATO-III cell line may provide a unique model for the biochemical analysis of EGF action on ODC activation. PMID:8190004

  16. Platelet-activating factor induces ovine fetal pulmonary venous smooth muscle cell proliferation: role of epidermal growth factor receptor transactivation.

    PubMed

    Zhou, Weilin; Ibe, Basil O; Raj, J Usha

    2007-06-01

    We have previously reported that platelet-activating factor (PAF) is present in very high levels in the ovine fetal lung and circulation and that PAF serves as an important physiological vasoconstrictor of the pulmonary circulation in utero. However, it is not known whether PAF stimulates pulmonary vascular smooth muscle cell (SMC) proliferation. In this study, we used ovine fetal pulmonary venous SMCs as our model system to study the effects and mechanisms of action of PAF on SMC proliferation. We found that PAF induced SMC proliferation in a dose-dependent manner. PAF also stimulated activation of both ERK and p38 but not c-Jun NH(2) terminal kinase (JNK) mitogen-activated protein (MAP) kinase pathways. PAF (10 nM) induced phosphorylation of epidermal growth factor receptor (EGFR). Specific inhibition of EGFR by AG-1478 and by the expression of a dominant-negative EGFR mutant in SMCs attenuated PAF-stimulated cell proliferation. Inhibition of heparin-binding EGF-like growth factor (HB-EGF) release by CRM-197 and inhibition of matrix metalloproteinases (MMP) by GM-6001 abolished PAF-induced MAP kinase activation and cell proliferation. Increased alkaline phosphatase (AP) activity after PAF treatment in AP-HB-EGF fusion construct-transfected SMCs indicated that PAF induced the release of HB-EGF within 1 min. Gelatin zymography data showed that PAF stimulated MMP-2 activity and MMP-9 activity within 1 min. These results suggest that PAF promotes pulmonary vascular SMC proliferation via transactivation of EGFR through MMP activation and HB-EGF, resulting in p38 and ERK activation and that EGFR transactivation is essential for the mitogenic effect of PAF in pulmonary venous SMC. PMID:17322418

  17. Matrix interactions modulate neurotrophin-mediated neurite outgrowth and pathfinding.

    PubMed

    Madl, Christopher M; Heilshorn, Sarah C

    2015-04-01

    Both matrix biochemistry and neurotrophic factors are known to modulate neurite outgrowth and pathfinding; however, the interplay between these two factors is less studied. While previous work has shown that the biochemical identity of the matrix can alter the outgrowth of neurites in response to neurotrophins, the importance of the concentration of cell-adhesive ligands is unknown. Using engineered elastin-like protein matrices, we recently demonstrated a synergistic effect between matrix-bound cell-adhesive ligand density and soluble nerve growth factor treatment on neurite outgrowth from dorsal root ganglia. This synergism was mediated by Schwann cell-neurite contact through L1CAM. Cell-adhesive ligand density was also shown to alter the pathfinding behavior of dorsal root ganglion neurites in response to a gradient of nerve growth factor. While more cell-adhesive matrices promoted neurite outgrowth, less cell-adhesive matrices promoted more faithful neurite pathfinding. These studies emphasize the importance of considering both matrix biochemistry and neurotrophic factors when designing biomaterials for peripheral nerve regeneration. PMID:26170800

  18. Matrix interactions modulate neurotrophin-mediated neurite outgrowth and pathfinding

    PubMed Central

    Madl, Christopher M.; Heilshorn, Sarah C.

    2015-01-01

    Both matrix biochemistry and neurotrophic factors are known to modulate neurite outgrowth and pathfinding; however, the interplay between these two factors is less studied. While previous work has shown that the biochemical identity of the matrix can alter the outgrowth of neurites in response to neurotrophins, the importance of the concentration of cell-adhesive ligands is unknown. Using engineered elastin-like protein matrices, we recently demonstrated a synergistic effect between matrix-bound cell-adhesive ligand density and soluble nerve growth factor treatment on neurite outgrowth from dorsal root ganglia. This synergism was mediated by Schwann cell-neurite contact through L1CAM. Cell-adhesive ligand density was also shown to alter the pathfinding behavior of dorsal root ganglion neurites in response to a gradient of nerve growth factor. While more cell-adhesive matrices promoted neurite outgrowth, less cell-adhesive matrices promoted more faithful neurite pathfinding. These studies emphasize the importance of considering both matrix biochemistry and neurotrophic factors when designing biomaterials for peripheral nerve regeneration. PMID:26170800

  19. αvβ3 Integrin Limits the Contribution of Neuropilin-1 to Vascular Endothelial Growth Factor-induced Angiogenesis*

    PubMed Central

    Robinson, Stephen D.; Reynolds, Louise E.; Kostourou, Vassiliki; Reynolds, Andrew R.; da Silva, Rita Graça; Tavora, Bernardo; Baker, Marianne; Marshall, John F.; Hodivala-Dilke, Kairbaan M.

    2009-01-01

    Both vascular endothelial growth factor receptors (VEGFR) and integrins are major regulators of VEGF-induced angiogenesis. Previous work has shown that β3 integrin can regulate negatively VEGFR2 expression. Here we show that β3 integrin can regulate negatively VEGF-mediated angiogenesis by limiting the interaction of the co-receptor NRP1 (neuropilin-1) with VEGFR2. In the presence of αvβ3 integrin, NRP1 contributed minimally to VEGF-induced angiogenic processes in vivo, ex vivo, and in vitro. Conversely, when β3 integrin expression is absent or low or its function is blocked with RGD-mimetic inhibitors, VEGF-mediated responses became NRP1-dependent. Indeed, combined inhibition of β3 integrin and NRP1 decreased VEGF-mediated angiogenic responses further than individual inhibition of these receptors. We also show that αvβ3 integrin can associate with NRP1 in a VEGF-dependent fashion. Our data suggest that β3 integrin may, in part, negatively regulate VEGF signaling by sequestering NRP1 and preventing it from interacting with VEGFR2. PMID:19837659

  20. The growth factor-inducible immediate-early gene 3CH134 encodes a protein-tyrosine-phosphatase.

    PubMed Central

    Charles, C H; Sun, H; Lau, L F; Tonks, N K

    1993-01-01

    Stimulation of fibroblasts with serum growth factors results in the rapid activation of a set of immediate-early genes, among them 3CH134. We have purified a bacterially expressed form of the 3CH134-encoded polypeptide and demonstrated that it has intrinsic protein-tyrosine-phosphatase (PTPase; protein-tyrosine-phosphate phosphohydrolase, EC 3.1.3.48) activity in vitro. This activity is optimal at pH 7.5, is sensitive to vanadate and cysteinyl modifying agents, and is insensitive to a panel of serine/threonine phosphatase inhibitors. Purified 3CH134 protein displays a high degree of selectivity among the tyrosine-phosphorylated polypeptide substrates tested. Under our assay conditions, the rates of dephosphorylation are in the order EDNDYINASL peptide < myelin basic protein < reduced, carboxyamidomethylated, and maleylated lysozyme (RCML) < p42mapk. There is a 200-fold range in rates for these substrates, with p42mapk dephosphorylated 15-fold more rapidly than RCML. Although 3CH134 is most closely related to the tyrosine/serine dual-specificity phosphatase VH1, we failed to detect any 3CH134-directed activity on casein or RCML phosphorylated on serine/threonine residues by cAMP-dependent protein kinase. Since 3CH134 expression is controlled transcriptionally and posttranscriptionally, it may represent a class of PTPases whose activity is regulated at the level of protein synthesis and degradation. Images Fig. 1 Fig. 4 Fig. 5 Fig. 6 PMID:8389479

  1. Vascular endothelial growth factor-induced elimination of the type 1 interferon receptor is required for efficient angiogenesis.

    PubMed

    Zheng, Hui; Qian, Juan; Carbone, Christopher J; Leu, N Adrian; Baker, Darren P; Fuchs, Serge Y

    2011-10-01

    Angiogenesis is stimulated by vascular endothelial growth factor (VEGF) and antagonized by type 1 interferons, including IFN-α/β. On engaging their respective receptors (VEGFR2 and IFNAR), both stimuli activate protein kinase D2 (PKD2) and type 1 IFNs require PKD2 activation and recruitment to IFNAR1 to promote the phosphorylation-dependent ubiquitination, down-regulation, and degradation of the cognate receptor chain, IFNAR1. Data reveal that PKD2 activity is dispensable for VEGF-stimulated down-regulation of VEGFR2. Remarkably, VEGF treatment promotes the recruitment of PKD2 to IFNAR1 as well as ensuing phosphorylation, ubiquitination, and degradation of IFNAR1. In cells exposed to VEGF, phosphorylation-dependent degradation of IFNAR1 leads to an inhibition of type 1 IFN signaling and is required for efficient VEGF-stimulated angiogenesis. Importance of this mechanism for proangiogenic or antiangiogenic responses in cells exposed to counteracting stimuli and the potential medical significance of this regulation are discussed. PMID:21832278

  2. MET inhibitor PHA-665752 suppresses the hepatocyte growth factor-induced cell proliferation and radioresistance in nasopharyngeal carcinoma cells

    SciTech Connect

    Liu, Tongxin; Li, Qi; Sun, Quanquan; Zhang, Yuqin; Yang, Hua; Wang, Rong; Chen, Longhua; Wang, Wei

    2014-06-20

    Highlights: • We demonstrated that irradiation induced MET overexpression and activation. • The aberrant MET signal mediated by HGF induced proliferation and radioresistance of NPC cells. • MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. • PHA-665752 suppressed the three downstream pathway of HGF/MET signal in a dose-dependent manner. - Abstract: Although ionizing radiation (IR) has provided considerable improvements in nasopharyngeal carcinoma (NPC), in subsets of patients, radioresistance is still a major problem in the treatment. In this study, we demonstrated that irradiation induced MET overexpression and activation, and the aberrant MET signal mediated by hepatocyte growth factor (HGF) induced radioresistance. We also found that MET inhibitor PHA-665752 effectively suppressed HGF induced cell proliferation and radioresistance in NPC cells. Further investigation indicated that PHA-665752 suppressed the phosphorylation of the Akt, ERK1/2, and STAT3 proteins in a dose-dependent manner. Our data indicated that the combination of IR with a MET inhibitor, such as PHA-665752, might be a promising therapeutic strategy for NPC.

  3. Essential Role of Transglutaminase 2 in Vascular Endothelial Growth Factor-Induced Vascular Leakage in the Retina of Diabetic Mice.

    PubMed

    Lee, Yeon-Ju; Jung, Se-Hui; Kim, Su-Hyeon; Kim, Min-Soo; Lee, Sungeun; Hwang, JongYun; Kim, Soo-Youl; Kim, Young-Myeong; Ha, Kwon-Soo

    2016-08-01

    Diabetic retinopathy is predominantly caused by vascular endothelial growth factor (VEGF)-induced vascular leakage; however, the underlying mechanism is unclear. Here we designed an in vivo transglutaminase (TGase) activity assay in mouse retina and demonstrated that hyperglycemia induced vascular leakage by activating TGase2 in diabetic retina. VEGF elevated TGase2 activity through sequential elevation of intracellular Ca(2+) and reactive oxygen species (ROS) concentrations in endothelial cells. The TGase inhibitors cystamine and monodansylcadaverin or TGase2 small interfering RNA (siRNA) prevented VEGF-induced stress fiber formation and vascular endothelial (VE)-cadherin disruption, which play a critical role in modulating endothelial permeability. Intravitreal injection of two TGase inhibitors or TGase2 siRNA successfully inhibited hyperglycemia-induced TGase activation and microvascular leakage in the retinas of diabetic mice. C-peptide or ROS scavengers also inhibited TGase activation in diabetic mouse retinas. The role of TGase2 in VEGF-induced vascular leakage was further supported using diabetic TGase2(-/-) mice. Thus, our findings suggest that ROS-mediated activation of TGase2 plays a key role in VEGF-induced vascular leakage by stimulating stress fiber formation and VE-cadherin disruption. PMID:27207524

  4. Genetic delivery of bevacizumab to suppress vascular endothelial growth factor-induced high-permeability pulmonary edema.

    PubMed

    Watanabe, Masaki; Boyer, Julie L; Crystal, Ronald G

    2009-06-01

    High-permeability pulmonary edema causing acute respiratory distress syndrome is associated with high mortality. Using a model of intratracheal adenovirus (Ad)-mediated overexpression of human vascular endothelial growth factor (VEGF)-A(165) in mouse lung to induce alveolar permeability and consequent pulmonary edema, we hypothesized that systemic administration of a second adenoviral vector expressing an anti-VEGF antibody (AdalphaVEGFAb) would protect the lung from pulmonary edema. Pulmonary edema was induced in mice by intratracheal administration of AdVEGFA165. To evaluate anti-VEGF antibody therapy, the mice were treated intravenously with AdalphaVEGFAb, an adenoviral vector encoding the light and heavy chains of an anti-human VEGF antibody with the bevacizumab (Avastin) antigen-binding site. Lung VEGF-A(165) and phosphorylated VEGF receptor (VEGFR)-2 levels, histology, lung wet-to-dry weight ratios, and bronchoalveolar lavage fluid (BALF) levels of total protein were assessed. Administration of AdalphaVEGFAb to mice decreased AdVEGFA165-induced levels of human VEGF-A(165) and phosphorylated VEGFR-2 in the lung. Histological analysis of AdalphaVEGFAb-treated mice demonstrated a reduction of edema fluid in the lung tissue that correlated with a reduction of lung wet-to-dry ratios and BALF total protein levels. Importantly, administration of AdalphaVEGFAb 48 hr after induction of pulmonary edema with AdVEGFA165 was effective in suppressing pulmonary edema. Administration of an adenoviral vector encoding an anti-VEGF antibody that is the equivalent of bevacizumab effectively suppresses VEGF-A(165)-induced high-permeability pulmonary edema, suggesting that anti-VEGF antibody therapy may represent a novel therapy for high-permeability pulmonary edema.

  5. RhoD activated by fibroblast growth factor induces cytoneme-like cellular protrusions through mDia3C

    PubMed Central

    Koizumi, Kazuhisa; Takano, Kazunori; Kaneyasu, Akiko; Watanabe-Takano, Haruko; Tokuda, Emi; Abe, Tomoyuki; Watanabe, Naoki; Takenawa, Tadaomi; Endo, Takeshi

    2012-01-01

    The small GTPase RhoD regulates actin cytoskeleton to collapse actin stress fibers and focal adhesions, resulting in suppression of cell migration and cytokinesis. It also induces alignment of early endosomes along actin filaments and reduces their motility. We show here that a constitutively activated RhoD generated two types of actin-containing thin peripheral cellular protrusions distinct from Cdc42-induced filopodia. One was longer, almost straight, immotile, and sensitive to fixation, whereas the other was shorter, undulating, motile, and resistant to fixation. Moreover, cells expressing wild-type RhoD extended protrusions toward fibroblast growth factor (FGF) 2/4/8–coated beads. Stimulation of wild-type RhoD-expressing cells with these FGFs also caused formation of cellular protrusions. Nodules moved through the RhoD-induced longer protrusions, mainly toward the cell body. Exogenously expressed FGF receptor was associated with these moving nodules containing endosome-like vesicles. These results suggest that the protrusions are responsible for intercellular communication mediated by FGF and its receptor. Accordingly, the protrusions are morphologically and functionally equivalent to cytonemes. RhoD was activated by FGF2/4/8. Knockdown of RhoD interfered with FGF-induced protrusion formation. Activated RhoD specifically bound to mDia3C and facilitated actin polymerization together with mDia3C. mDia3C was localized to the tips or stems of the protrusions. In addition, constitutively activated mDia3C formed protrusions without RhoD or FGF stimulation. Knockdown of mDia3 obstructed RhoD-induced protrusion formation. These results imply that RhoD activated by FGF signaling forms cytoneme-like protrusions through activation of mDia3C, which induces actin filament formation. PMID:23034183

  6. Inhibitory effects of tetrandrine on epidermal growth factor-induced invasion and migration in HT29 human colorectal adenocarcinoma cells.

    PubMed

    Horng, Chi-Ting; Yang, Jai-Sing; Chiang, Jo-Hua; Lu, Chi-Cheng; Lee, Chiu-Fang; Chiang, Ni-Na; Chen, Fu-An

    2016-01-01

    Tetrandrine has been shown to reduce cancer cell proliferation and to inhibit metastatic effects in multiple cancer models in vitro and in vivo. However, the effects of tetrandrine on the underlying mechanism of HT29 human colorectal adenocarcinoma cell metastasis remain to be fully elucidated. The aim of the present study was focused on tetrandrine‑treated HT29 cells following epidermal growth factor (EGF) treatment, and Transwell, gelatin zymography, gene expression and immunoblotting assays were performed to investigate metastatic effects in vitro. Tetrandrine was observed to dose‑dependently inhibit EGF‑induced HT29 cell invasion and migration, however, no effect on cell viability occurred following exposure to tetradrine between 0.5 and 2 µM. Tetrandrine treatment inhibited the enzymatic activity of matrix metalloprotease (MMP)‑2 and MMP‑9 in a concentration‑dependent manner. The present study also found a reduction in the mRNA expression levels of MMP‑2 and MMP‑9 in the tetrandrine‑treated HT29 cells. Tetrandrine also suppressed the phosphorylation of EGF receptor (EGFR) and its downstream pathway, including phosphoinositide‑dependent kinase 1, phosphatidylinositol 3‑kinase and phosphorylated AKT, suppressing the gene expression of MMP‑2 and MMP‑9. Furthermore, tetrandrine triggered mitogen‑activated protein kinase signaling through the suppressing the activation of phosphorylated extracellular signal‑regulated protein kinase. These data suggested that targeting EGFR signaling and its downstream molecules contributed to the inhibition of EGF‑induced HT29 cell metastasis caused by tetrandrine, eventually leading to a reduction in the mRNA and gelatinase activities of MMP-2 and MMP-9, respectively. PMID:26648313

  7. Mechano-growth factor induces migration of rat mesenchymal stem cells by altering its mechanical properties and activating ERK pathway

    SciTech Connect

    Wu, Jiamin; Wu, Kewen; Lin, Feng; Luo, Qing; Yang, Li; Shi, Yisong; Song, Guanbin; Sung, Kuo-Li Paul

    2013-11-08

    Highlights: •MGF induced the migration of rat MSC in a concentration-dependent manner. •MGF enhanced the mechanical properties of rMSC in inducing its migration. •MGF activated the ERK 1/2 signaling pathway of rMSC in inducing its migration. •rMSC mechanics may synergy with ERK 1/2 pathway in MGF-induced rMSC migration. -- Abstract: Mechano-growth factor (MGF) generated by cells in response to mechanical stimulation has been identified as a mechano effector molecule, playing a key role in regulating mesenchymal stem cell (MSC) function, including proliferation and migration. However, the mechanism(s) underlying how MGF-induced MSC migration occurs is still unclear. In the present study, MGF motivated migration of rat MSCs (rMSCs) in a concentration-dependent manner and optimal concentration of MGF at 50 ng/mL (defined as MGF treatment in this paper) was demonstrated. Notably, enhancement of mechanical properties that is pertinent to cell migration, such as cell traction force and cell stiffness were found to respond to MGF treatment. Furthermore, MGF increased phosphorylation of extracellular signal-regulated kinase (ERK), ERK inhibitor (i.e., PD98059) suppressed ERK phosphorylation, and abolished MGF-induced rMSC migration were found, demonstrating that ERK is involved molecule for MGF-induced rMSC migration. These in vitro evidences of MGF-induced rMSC migration and its direct link to altering rMSC mechanics and activating the ERK pathway, uncover the underlying biomechanical and biological mechanisms of MGF-induced rMSC migration, which may help find MGF-based application of MSC in clinical therapeutics.

  8. Hepatocyte growth factor induces Mcl-1 in primary human hepatocytes and inhibits CD95-mediated apoptosis via Akt.

    PubMed

    Schulze-Bergkamen, Henning; Brenner, Dirk; Krueger, Andreas; Suess, Dorothee; Fas, Stefanie C; Frey, Christian R; Dax, Andreas; Zink, Dorothea; Büchler, Peter; Müller, Martina; Krammer, Peter H

    2004-03-01

    CD95 (APO-1/Fas)-mediated apoptosis of hepatocytes plays a central role in the pathophysiology of various human liver diseases. Hepatocyte growth factor (HGF) was shown to exert antiapoptotic functions in rodent hepatocytes. We previously showed that primary human hepatocytes (PHH) are a valuable tool for the investigation of apoptotic processes in liver cells. In this study, we analyzed the influence of HGF on CD95-mediated apoptosis of PHH and its molecular determinants. HGF significantly inhibited CD95-mediated apoptosis of PHH as well as cleavage of caspase-8 and poly (ADP-ribose)polymerase. HGF transcriptionally induced the expression of the anti-apoptotic Bcl-2 family member myeloid cell leukemia-1 (Mcl-1). In contrary, HGF did not alter the expression levels of Bcl-2 or Bcl-x(L). HGF activated survival pathways such as the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase/ERK and the signal transducer and activator of transcription 3 (STAT3) pathway. Notably, HGF triggered serine(727)--but not tyrosine(705)--phosphorylation of STAT3. Pretreatment of PHH with the PI3K inhibitor LY294002 as well as adenoviral transduction of dominant negative Akt1 prevented HGF-mediated Mcl-1 induction and reversed the antiapoptotic effects of HGF. In conclusion, HGF confers survival of PHH by activation of the PI3K/Akt pathway. PI3K/Akt activation by HGF results in the induction of antiapoptotic proteins such as Mcl-1. Thus, application of HGF may be a therapeutic approach to prevent CD95-mediated hepatocellular damage in human liver diseases. PMID:14999683

  9. Effect of Testosterone on Neuronal Morphology and Neuritic Growth of Fetal Lamb Hypothalamus-Preoptic Area and Cerebral Cortex in Primary Culture

    PubMed Central

    Reddy, Radhika C.; Amodei, Rebecka; Estill, Charles T.; Stormshak, Fred; Meaker, Mary; Roselli, Charles E.

    2015-01-01

    Testosterone plays an essential role in sexual differentiation of the male sheep brain. The ovine sexually dimorphic nucleus (oSDN), is 2 to 3 times larger in males than in females, and this sex difference is under the control of testosterone. The effect of testosterone on oSDN volume may result from enhanced expansion of soma areas and/or dendritic fields. To test this hypothesis, cells derived from the hypothalamus-preoptic area (HPOA) and cerebral cortex (CTX) of lamb fetuses were grown in primary culture to examine the direct morphological effects of testosterone on these cellular components. We found that within two days of plating, neurons derived from both the HPOA and CTX extend neuritic processes and express androgen receptors and aromatase immunoreactivity. Both treated and control neurites continue to grow and branch with increasing time in culture. Treatment with testosterone (10 nM) for 3 days significantly (P < 0.05) increased both total neurite outgrowth (35%) and soma size (8%) in the HPOA and outgrowth (21%) and number of branch points (33%) in the CTX. These findings indicate that testosterone-induced somal enlargement and neurite outgrowth in fetal lamb neurons may contribute to the development of a fully masculine sheep brain. PMID:26053052

  10. Planar polarity genes and inhibition of supernumerary neurites.

    PubMed

    Colavita, Antonio

    2012-04-01

    Planar cell polarity (PCP) genes have recently emerged as important players in sculpting neuronal connections. The bipolar VC neurons display stereotypical differences in axon extension along the anterior-posterior (AP) body axis: VC1-3 and VC6 polarize along the AP axis while VC4 and VC5 polarize along the orthogonal left-right (LR) axis generated by the developing vulva. vang-1 and prkl-1, the worm orthologs of Van Gogh and Prickle, are required to restrict the polarity of neurite emergence to a specific tissue axis. vang-1 and prkl-1 loss results in ectopic VC4 and VC5 neurites extending inappropriately along the AP axis. Conversely, prkl-1 overexpression in VC neurons suppresses neurite formation. These findings suggest that a PCP-like pathway acts to silence or antagonize neuronal responses to polarity cues that would otherwise be permissive for neurite growth.

  11. Magnetic NGF-releasing PLLA/iron oxide nanoparticles direct extending neurites and preferentially guide neurites along aligned electrospun microfibers.

    PubMed

    Zuidema, Jonathan M; Provenza, Christina; Caliendo, Tyler; Dutz, Silvio; Gilbert, Ryan J

    2015-11-18

    Nerve growth factor releasing composite nanoparticles (NGF-cNPs) were developed to direct the extension of neurite outgrowth from dorsal root ganglia (DRG). Iron oxide magnetic nanoparticles were incorporated into poly-l-lactic acid (PLLA) nanoparticles in order to position the NGF-cNPs in a culture dish. Neurites growing from DRG extended toward the NGF released from the NGF-cNPs. DRG were then cultured on aligned PLLA microfibers in the presence of NGF-cNPs, and these biomaterials combined to align DRG neurite extension along one axis and preferentially toward the NGF-cNPs. This combinatorial biomaterial approach shows promise as a strategy to direct the extension of regenerating neurites. PMID:26322376

  12. Fibroblast growth factor-inducible 14 (Fn14) is expressed in the lower genital tract and may play a role in amplifying inflammation during infection.

    PubMed

    Han, Eugene S; Mekasha, Samrawit; Ingalls, Robin R

    2010-01-01

    TNF-like weak inducer of apoptosis (TWEAK) is a member of the tumor necrosis factor (TNF) cytokine superfamily which regulates a number of cellular responses, including inflammation and proliferation. TWEAK is primarily secreted by phagocytic cells and its receptor, fibroblast growth factor-inducible 14 (Fn14), is expressed on non-lymphoid cells, including epithelial, endothelial and mesenchymal cells. The TWEAK/Fn14 pathway is highly conserved from an evolutionary standpoint, and has been shown to play a role in tissue regeneration and inflammation in the liver, kidney, lung and skeletal muscle. We hypothesized that TWEAK/Fn14 might have a physiological role in regulating infection-induced inflammation in the lower female genital tract. To test this hypothesis, we examined expression of the receptor Fn14 in relevant cells and tissue. Receptor function was tested by treating cells with recombinant TWEAK, with and without other known proinflammatory stimuli. Flow cytometric analysis of vaginal and cervical epithelial cells revealed that Fn14 was highly expressed at the cell surface. We also detected both Fn14 and TWEAK in whole cervical tissue by RT-PCR. Treatment of vaginal and cervical epithelial cells with recombinant TWEAK led to a weak induction of the chemokine IL-8. However, TWEAK potentiated the effects of IL-1ss, the TLR2 ligand Pam(3)CysSK(4), and live Neisseria gonorrhoeae in a synergistic manner. These data reveal a novel pathway for regulation of microbial-induced inflammation in the female reproductive tract and suggest that interference with the TWEAK/Fn14 pathway might be an approach to abrogate excessive infection-induced inflammation caused by sexually transmitted pathogens. PMID:19963275

  13. MicroRNA-145 regulates platelet-derived growth factor-induced human aortic vascular smooth muscle cell proliferation and migration by targeting CD40

    PubMed Central

    Li, Yumei; Huang, Jiangnan; Jiang, Zhiyuan; Zhong, Yuanli; Xia, Mingjie; Wang, Hui; Jiao, Yang

    2016-01-01

    The objective of this study is to investigate the expression of microRNA (miR)-145 in human aortic vascular smooth muscle cells (VSMCs) and the effect of miR-145 in the biological behavior and expression of CD40 in VSMCs. Cells were treated with either miR-145 or miR-145 inhibitor. Cell proliferation was analyzed by a colony formation assay and a methyl thiazolyl tetrazolium assay. Cell migration and invasion were assessed using a transwell assay, an invasion assay, and a wound healing assay. A luciferase reporter assay was used to detect the interaction between miR-145 and CD40. Expression of α-SMA, calponin, osteopontin (OPN), epiregulin, activator protein-1 (AP-1) and CD40 was measured using real-time RT-PCR for mRNA levels and Western blotting for protein levels. Overexpression of miR-145 significantly inhibited VSMC proliferation, invasion and migration. Furthermore, OPN, epiregulin, AP-1 and CD40 expression at the mRNA and protein levels was down-regulated by overexpression of miR-145. However, α-SMA and calponin expression at the mRNA and protein levels was up-regulated by overexpression of miR-145. In addition, the luciferase reporter assay showed that CD40 may be a direct target gene of miR-145 in VSMC initiation and development. Moreover, these data demonstrate that the up-regulation of CD40 is critical for miR-145-mediated inhibitory effects on platelet-derived growth factor-induced cell proliferation and migration in human VSMCs. In summary, CD40, a direct target of miR-145, reverses the inhibitory effects of miR-145. These results suggest that the specific modulation of miR-145 in human VSMCs may be an attractive approach for the treatment of proliferative vascular diseases. PMID:27186305

  14. The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: altering epigenetic marks by immediate-early genes.

    PubMed

    Weaver, Ian C G; D'Alessio, Ana C; Brown, Shelley E; Hellstrom, Ian C; Dymov, Sergiy; Sharma, Shakti; Szyf, Moshe; Meaney, Michael J

    2007-02-14

    Maternal care alters epigenetic programming of glucocorticoid receptor (GR) gene expression in the hippocampus, and increased postnatal maternal licking/grooming (LG) behavior enhances nerve growth factor-inducible protein A (NGFI-A) transcription factor binding to the exon 1(7) GR promoter within the hippocampus of the offspring. We tested the hypothesis that NGFI-A binding to the exon 1(7) GR promoter sequence marks this sequence for histone acetylation and DNA demethylation and that such epigenetic alterations subsequently influence NGFI-A binding and GR transcription. We report that (1) NGFI-A binding to its consensus sequence is inhibited by DNA methylation, (2) NGFI-A induces the activity of exon 1(7) GR promoter in a transient reporter assay, (3) DNA methylation inhibits exon 1(7) GR promoter activity, and (4) whereas NGFI-A interaction with the methylated exon 1(7) GR promoter is reduced, NGFI-A overexpression induces histone acetylation, DNA demethylation, and activation of the exon 1(7) GR promoter in transient transfection assays. Site-directed mutagenesis assays demonstrate that NGFI-A binding to the exon 1(7) GR promoter is required for such epigenetic reprogramming. In vivo, enhanced maternal LG is associated with increased NGFI-A binding to the exon 1(7) GR promoter in the hippocampus of pups, and NGFI-A-bound exon 1(7) GR promoter is unmethylated compared with unbound exon 1(7) GR promoter. Knockdown experiments of NGFI-A in hippocampal primary cell culture show that NGFI-A is required for serotonin-induced DNA demethylation and increased exon 1(7) GR promoter expression. The data are consistent with the hypothesis that NGFI-A participates in epigenetic programming of GR expression.

  15. Pleiotrophin induces neurite outgrowth and up-regulates growth-associated protein (GAP)-43 mRNA through the ALK/GSK3beta/beta-catenin signaling in developing mouse neurons.

    PubMed

    Yanagisawa, Hiroko; Komuta, Yukari; Kawano, Hitoshi; Toyoda, Masashi; Sango, Kazunori

    2010-01-01

    Pleiotrophin (PTN) is highly expressed in the nervous system during embryogenesis; however, little is known about its functional role in neural development. By using whole mount in situ hybridization, we observed that the expression pattern of PTN was similar to that of Wnt3a; PTN mRNA was abundant in the nervous tissue along the dorsal midline and in the forelimb and hindlimb buds of embryonic mice (E8.5-E12.5). Treatment with recombinant PTN (100ng/ml) induced phosphorylation of glycogen synthase kinase 3beta (GSK3beta), nuclear localization of beta-catenin and up-regulation of growth-associated protein (GAP)-43 mRNA in cultured embryonic mouse (E14.5) neurons. Furthermore, recombinant PTN enhanced neurite outgrowth from cortical explants embedded in Matrigel. These PTN-induced biochemical changes and neurite outgrowth were attenuated by the co-treatment with anti-anaplastic lymphoma kinase (ALK) antibodies, but not with anti-protein tyrosine phosphatase (PTP)zeta antibodies. These findings imply that ALK is involved in the PTN signaling on neural development.

  16. The influence of magnetic fields exposure on neurite outgrowth in PC12 rat pheochromocytoma cells

    NASA Astrophysics Data System (ADS)

    Fan, W.; Ding, J.; Duan, W.; Zhu, Y. M.

    2004-11-01

    The aim of present work was to investigate the influence of magnetic fields exposure on neurite outgrowth in PC12 cells. The neurite number per cell, length of neurites and directions of neurite growth with respect to the direction of the magnetic field were analyzed after exposure to 50 Hz electromagnetic field for 96 h. A promotion was observed under a weak field (0.23 mT), as the average number of neurites per cell increased to 2.38±0.06 compared to 1.91±0.07 neurites/cell of the control dishes, while inhibition and directional outgrowth was evident under a relatively stronger field (1.32 mT). Our work shows that biological systems can be very sensitive to the strength of electromagnetic field.

  17. Optimizing neurotrophic factor combinations for neurite outgrowth

    NASA Astrophysics Data System (ADS)

    Deister, C.; Schmidt, C. E.

    2006-06-01

    Most neurotrophic factors are members of one of three families: the neurotrophins, the glial cell-line derived neurotrophic factor family ligands (GFLs) and the neuropoietic cytokines. Each family activates distinct but overlapping cellular pathways. Several studies have shown additive or synergistic interactions between neurotrophic factors from different families, though generally only a single combination has been studied. Because of possible interactions between the neurotrophic factors, the optimum concentration of a factor in a mixture may differ from the optimum when applied individually. Additionally, the effect of combinations of neurotrophic factors from each of the three families on neurite extension is unclear. This study examines the effects of several combinations of the neurotrophin nerve growth factor (NGF), the GFL glial cell-line derived neurotrophic factor (GDNF) and the neuropoietic cytokine ciliary neurotrophic factor (CNTF) on neurite outgrowth from young rat dorsal root ganglion (DRG) explants. The combination of 50 ng ml-1 NGF and 10 ng ml-1 of each GDNF and CNTF induced the highest level of neurite outgrowth at a 752 ± 53% increase over untreated DRGs and increased the longest neurite length to 2031 ± 97 µm compared to 916 ± 64 µm for untreated DRGs. The optimum concentrations of the three factors applied in combination corresponded to the optimum concentration of each factor when applied individually. These results indicate that the efficacy of future therapies for nerve repair would be enhanced by the controlled release of a combination of neurotrophins, GFLs and neuropoietic cytokines at higher concentrations than used in previous conduit designs.

  18. Laminin receptors for neurite formation

    SciTech Connect

    Kleinman, H.K.; Ogle, R.C.; Cannon, F.B.; Little, C.D.; Sweeney, T.M.; Luckenbill-Edds, L.

    1988-02-01

    Laminin, a basement membrane glycoprotein promotes both cell attachment and neurite outgrowth. Separate domains on laminin elicit these responses, suggesting that distinct receptors occur on the surface of cells. NG108-15 neuroblastoma-glioma cells rapidly extend long processes in the presence of laminin. The authors report here that /sup 125/I-labeled laminin specifically binds to these cells and to three membrane proteins of 67, 110, and 180 kDa. These proteins were isolated by affinity chromatography on laminin-Sepharose. The 67-kDa protein reacted with antibody to the previously characterized receptor for cell attachment to laminin. Antibodies to the 110-kDa and 180-kDa bands demonstrated that the 110-kDa protein was found in a variety of epithelial cell lines and in brain, whereas the 180-kDa protein was neural specific. Antibodies prepared against the 110-kDa and 180-kDa proteins inhibited neurite outgrowth induced by the neurite-promoting domain of laminin, whereas antibodies to the 67-kDa laminin receptor had no effect on neurite outgrowth. They conclude that neuronal cells have multiple cell-surface laminin receptors and that the 110-kDa and 180-kDa proteins are involved in neurite formation.

  19. Material Stiffness Effects on Neurite Alignment to Photopolymerized Micropatterns

    PubMed Central

    2015-01-01

    The ability to direct neurite growth into a close proximity of stimulating elements of a neural prosthesis, such as a retinal or cochlear implant (CI), may enhance device performance and overcome current spatial signal resolution barriers. In this work, spiral ganglion neurons (SGNs), which are the target neurons to be stimulated by CIs, were cultured on photopolymerized micropatterns with varied matrix stiffnesses to determine the effect of rigidity on neurite alignment to physical cues. Micropatterns were generated on methacrylate thin film surfaces in a simple, rapid photopolymerization step by photomasking the prepolymer formulation with parallel line–space gratings. Two methacrylate series, a nonpolar HMA-co-HDDMA series and a polar PEGDMA-co-EGDMA series, with significantly different surface wetting properties were evaluated. Equivalent pattern periodicity was maintained across each methacrylate series based on photomask band spacing, and the feature amplitude was tuned to a depth of 2 μm amplitude for all compositions using the temporal control afforded by the UV curing methodology. The surface morphology was characterized by scanning electron microscopy and white light interferometry. All micropatterned films adsorb similar amounts of laminin from solution, and no significant difference in SGN survival was observed when the substrate compositions were compared. SGN neurite alignment significantly increases with increasing material modulus for both methacrylate series. Interestingly, SGN neurites respond to material stiffness cues that are orders of magnitude higher (GPa) than what is typically ascribed to neural environments (kPa). The ability to understand neurite response to engineered physical cues and mechanical properties such as matrix stiffness will allow the development of advanced biomaterials that direct de novo neurite growth to address the spatial signal resolution limitations of current neural prosthetics. PMID:25211120

  20. Stimulation of neurite outgrowth in PC12 cells by EGF and KCl depolarization: a Ca(2+)-independent phenomenon

    PubMed Central

    1995-01-01

    MAP kinase activity is necessary for growth factor induction of neurite outgrowth in PC12 cells. Although NGF and EGF both stimulate MAP kinase activity, EGF does not stimulate neurite extension. We report that EGF, in combination with KCl, stimulates neurite outgrowth in PC12 cells. This phenomenon was independent of intracellular Ca2+ increases and not due to enhancement of MAP kinase activity over that seen with EGF alone. However, EGF plus KCl increased intracellular cAMP, and other cAMP elevating agents acted synergistically with EGF to promote neurite outgrowth. Stimulation of neurite outgrowth by cAMP and EGF was blocked by inhibitors of transcription suggesting that synergistic regulation of transcription by the cAMP and MAP kinase pathways may stimulate neurite growth. PMID:7622569

  1. VAMP-2 promotes neurite elongation and SNAP-25A increases neurite sprouting in PC12 cells.

    PubMed

    Shirasu, M; Kimura, K; Kataoka, M; Takahashi, M; Okajima, S; Kawaguchi, S; Hirasawa, Y; Ide, C; Mizoguchi, A

    2000-08-01

    Recent studies suggest that the soluble N-ethylmaleimide-sensitive factor attached protein (SNAP) receptor (SNARE)-mediated membrane fusion system is involved in vesicle fusion in the plasma membrane that allows expansion for neurite elongation. There have been several reports analyzing the effects of neurite outgrowth by inhibition of SNAREs. In this study, we took the opposite approach by overexpressing green fluorescent protein (GFP)-fusion SNAREs, including VAMP-2, SNAP-25A, and syntaxin1A, in PC12 cells to investigate the role of SNAREs in the neurite outgrowth of PC12 cells. Neurite outgrowth analysis demonstrated that: (1) GFP-VAMP-2 increased the length of individual neurites, without changing the number of neurites per cell; (2) GFP-SNAP-25A increased the number of neurites per cell, with no change in the length of the individual neurites. In both cases, the total length of neurites per cell was increased; (3) GFP-syntaxin1A resulted in no significant change, either in neurite length, or in the number of neurites per cell. These findings suggest that when overexpressed in PC12 cells, VAMP-2 can promote neurite elongation, while SNAP-25A can stimulate neurite sprouting. On the other hand, overexpression of syntaxin1A neither promotes nor inhibits neurite outgrowth. Thus VAMP-2 and SNAP-25A play different roles in neurite elongation and sprouting.

  2. Outgrowth of neurites is a dual process.

    PubMed

    D'Alessandro, Rosalba; Racchetti, Gabriella; Meldolesi, Jacopo

    2010-11-01

    In neurons and neurosecretory (nerve) cells, neurite outgrowth requires the enlargement of the plasma membrane sustained by the exocytosis of specific vesicles. The well known, slow canonical form of outgrowth induced in pheochromocytoma PC12 cells by NGF, as well as the outgrowth taking place in neurons, involve vesicles positive for the vSNARE Ti-VAMP. Working in defective PC12 clones expressing high levels of the transcriptional repressor REST, we have identified now a new, rapid form of outgrowth, triggered by activation of a small GTPase, Rac1. This form is sustained by the exocytosis of another type of vesicles, taking place locally at the tip of neurite growth cones, the enlargeosomes (vSNARE: VAMP4). This new form, which is positively controlled by REST, requires the dynamics of microtubules, but not of microfilaments. Its signaling remains undefined because established second messengers, (Ca(2+), DAG, cAMP) seem not involved. Using a high REST/enlargeosome-rich PC12 clone transfected with TrkA we have found that the NGF-induced outgrowth is not always slow, but can be fast in cells expressing high levels of the receptor involved, TrkA; that PC12 can express together the two distinct forms of outgrowth, canonical and new, activated independently from each other. Their comparative characterization in terms of changes in the cytoskeleton has now been initiated. The two forms are present also in neurons where the new one seems to predominate in the initial phases of development, the canonical one later on. Our results identify a new aspect of the REST impact in nerve cell specificity/function. The existence of two distinct forms of neurite outgrowth may cope better than a single form with the variable needs of nerve cells in the subsequent stages of their development. PMID:21331244

  3. Rabin8 regulates neurite outgrowth in both GEF activity–dependent and –independent manners

    PubMed Central

    Homma, Yuta; Fukuda, Mitsunori

    2016-01-01

    Many aspects of membrane-trafficking events are regulated by Rab-family small GTPases. Neurite outgrowth requires massive addition of proteins and lipids to the tips of growing neurites by membrane trafficking, and although several Rabs, including Rab8, Rab10, and Rab11, have been implicated in this process, their regulatory mechanisms during neurite outgrowth are poorly understood. Here, we show that Rabin8, a Rab8-guanine nucleotide exchange factor (GEF), regulates nerve growth factor (NGF)–induced neurite outgrowth of PC12 cells. Knockdown of Rabin8 results in inhibition of neurite outgrowth, whereas overexpression promotes it. We also find that Rab10 is a novel substrate of Rabin8 and that both Rab8 and Rab10 function during neurite outgrowth downstream of Rabin8. Surprisingly, however, a GEF activity–deficient isoform of Rabin8 also promotes neurite outgrowth, indicating the existence of a GEF activity–independent role of Rabin8. The Arf6/Rab8-positive recycling endosomes (Arf6/Rab8-REs) and Rab10/Rab11-positive REs (Rab10/Rab11-REs) in NGF-stimulated PC12 cells are differently distributed. Rabin8 localizes on both RE populations and appears to activate Rab8 and Rab10 there. These localizations and functions of Rabin8 are Rab11 dependent. Thus Rabin8 regulates neurite outgrowth both by coordinating with Rab8, Rab10, and Rab11 and by a GEF activity–independent mechanism. PMID:27170183

  4. A rapid, inexpensive high throughput screen method for neurite outgrowth.

    PubMed

    Yeyeodu, Susan T; Witherspoon, Sam M; Gilyazova, Nailya; Ibeanu, Gordon C

    2010-01-01

    Neurite outgrowth assays are the most common phenotypic screen to assess chemical effects on neuronal cells. Current automated assays involve expensive equipment, lengthy sample preparation and handling, costly reagents and slow rates of data acquisition and analysis. We have developed a high throughput screen (HTS) for neurite outgrowth using a robust neuronal cell model coupled to fast and inexpensive visualization methods, reduced data volume and rapid data analysis. Neuroscreen-1 (NS-1) cell, a subclone of PC12, possessing rapid growth and enhanced sensitivity to NGF was used as a model neuron. This method reduces preparation time by using cells expressing GFP or native cells stained with HCS CellMask(™) Red in a multiplexed 30 min fixation and staining step. A 2x2 camera binning process reduced both image data files and analysis times by 75% and 60% respectively, compared to current protocols. In addition, eliminating autofocus steps during montage generation reduced data collection time. Pharmacological profiles for stimulation and inhibition of neurite outgrowth by NGF and SU6656 were comparable to current standard method utilizing immunofluorescence detection of tubulin. Potentiation of NGF-induced neurite outgrowth by members of a 1,120-member Prestwick compound library as assayed using this method identified six molecules, including etoposide, isoflupredone acetate, fludrocortisone acetate, thioguanosine, oxyphenbutazone and gibberellic acid, that more than doubled the neurite mass primed by 2 ng/ml NGF. This simple procedure represents an important routine approach in high throughput screening of large chemical libraries using the neurite outgrowth phenotype as a measure of the effects of chemical molecules on neuronal cells. PMID:21347208

  5. Absence of persistent spreading, branching, and adhesion in GAP-43- depleted growth cones

    PubMed Central

    1995-01-01

    The growth-associated protein GAP-43 is a major protein kinase C substrate of growth cones and developing nerve terminals. In the growth cone, it accumulates near the plasma membrane, where it associates with the cortical cytoskeleton and membranes. The role of GAP-43 in neurite outgrowth is not yet clear, but recent findings suggest that it may be a crucial competence factor in this process. To define the role of GAP- 43 in growth cone activity, we have analyzed neurite outgrowth and growth cone activity in primary sensory neurons depleted of GAP-43 by a specific antisense oligonucleotide procedure. Under optimal culture conditions, but in the absence of GAP-43, growth cones adhered poorly, displayed highly dynamic but unstable lamellar extensions, and were strikingly devoid of local f-actin concentrations. Upon stimulation, they failed to produce NGF-induced spreading or insulin-like growth factor-1-induced branching, whereas growth factor-induced phosphotyrosine immunoreactivity and acceleration of neurite elongation were not impaired. Unlike their GAP-43-expressing counterparts, they readily retracted when exposed to inhibitory central nervous system myelin-derived liposomes. Frequency and extent of induced retraction were attenuated by NGF. Our results indicate that GAP-43 can promote f- actin accumulation, evoked morphogenic activity, and resistance to retraction of the growth cone, suggesting that it may promote regulated neurite outgrowth during development and regeneration. PMID:7860637

  6. Influence of cAMP and protein kinase A on neurite length from spiral ganglion neurons

    PubMed Central

    Xu, Ningyong; Engbers, Jonathan; Khaja, Sobia; Xu, Linjing; Clark, J. Jason; Hansen, Marlan R.

    2011-01-01

    Regrowth of peripheral spiral ganglion neuron (SGN) fibers is a primary objective in efforts to improve cochlear implant outcomes and to potentially reinnervate regenerated hair cells. Cyclic adenosine monophosphate (cAMP) regulates neurite growth and guidance via activation of protein kinase A (PKA) and Exchange Protein directly Activated by Cylic AMP (Epac). Here we explored the effects of cAMP signaling on SGN neurite length in vitro. We find that the cAMP analog, cpt-cAMP, exerts a biphasic effect on neurite length; increasing length at lower concentrations and reducing length at higher concentrations. This biphasic response occurs in cultures plated on laminin, fibronectin, or tenascin C suggesting that it is not substrate dependent. cpt-cAMP also reduces SGN neurite branching. The Epac-specific agonist, 8-pCPT-2’-O-Me-cAMP, does not alter SGN neurite length. Constitutively active PKA isoforms strongly inhibit SGN neurite length similar to higher levels of cAMP. Chronic membrane depolarization activates PKA in SGNs and also inhibits SGN neurite length. However, inhibition of PKA fails to rescue neurite length in depolarized cultures implying that activation of PKA is not necessary for the inhibition of SGN neurite length by chronic depolarization. Expression of constitutively active phosphatidylinositol 3-kinase, but not c-Jun N-terminal kinase, isoforms partially rescues SGN neurite length in the presence of activated PKA. Taken together, these results suggest that activation of cAMP/PKA represents a potential strategy to enhance SGN fiber elongation following deafness; however such therapies will likely require careful titration so as to simultaneously promote rather than inhibit nerve fiber regeneration. PMID:22154930

  7. The cytoskeleton and neurite initiation

    PubMed Central

    Flynn, Kevin C

    2013-01-01

    Neurons begin their life as simple spheres, but can ultimately assume an elaborate morphology with numerous, highly arborized dendrites, and long axons. This is achieved via an astounding developmental progression which is dependent upon regulated assembly and dynamics of the cellular cytoskeleton. As neurites emerge out of the soma, neurons break their spherical symmetry and begin to acquire the morphological features that define their structure and function. Neurons regulate their cytoskeleton to achieve changes in cell shape, velocity, and direction as they migrate, extend neurites, and polarize. Of particular importance, the organization and dynamics of actin and microtubules directs the migration and morphogenesis of neurons. This review focuses on the regulation of intrinsic properties of the actin and microtubule cytoskeletons and how specific cytoskeletal structures and dynamics are associated with the earliest phase of neuronal morphogenesis—neuritogenesis. PMID:24002528

  8. Consequences of Neurite Transection In Vitro

    PubMed Central

    Cengiz, Nurettin; Erdoğan, Ender; Him, Aydın; Oğuz, Elif Kaval

    2012-01-01

    Abstract In order to quantify degenerative and regenerative changes and analyze the contribution of multiple factors to the outcome after neurite transection, we cultured adult mouse dorsal root ganglion neurons, and with a precise laser beam, we transected the nerve fibers they extended. Cell preparations were continuously visualized for 24 h with time-lapse microscopy. More distal cuts caused a more elongated field of degeneration, while thicker neurites degenerated faster than thinner ones. Transected neurites degenerated more if the uncut neurites of the same neuron simultaneously degenerated. If any of these uncut processes regenerated, the transected neurites underwent less degeneration. Regeneration of neurites was limited to distal cuts. Unipolar neurons had shorter regeneration than multipolar ones. Branching slowed the regenerative process, while simultaneous degeneration of uncut neurites increased it. Proximal lesions, small neuronal size, and extensive and rapid neurite degeneration were predictive of death of an injured neuron, which typically displayed necrotic rather than apoptotic form. In conclusion, this in vitro model proved useful in unmasking many new aspects and correlates of mechanically-induced neurite injury. PMID:20121423

  9. Immobilized laminin concentration gradients on electrospun fiber scaffolds for controlled neurite outgrowth.

    PubMed

    Zander, Nicole E; Beebe, Thomas P

    2014-03-01

    Neuronal process growth is guided by extrinsic environmental cues such as extracellular matrix (ECM) proteins. Recent reports have described that the growth cone extension is superior across gradients of the ECM protein laminin compared to growth across uniformly distributed laminin. In this work, the authors have prepared gradients of laminin on aligned electrospun nanofibers for use as substrates for neuronal growth. The substrates therefore presented both topographical and chemical guidance cues. Step gradients were prepared by the controlled robotic immersion of plasma-treated polycaprolactone fibers reacted with N-hydroxysuccinimide into the protein solution. The gradients were analyzed using x-ray photoelectron spectroscopy and confocal laser scanning microscopy. Gradients with a dynamic range of protein concentrations were successfully generated and neurite outgrowth was evaluated using neuronlike pheochromocytoma cell line 12 (PC12) cells. After 10 days of culture, PC12 neurite lengths varied from 32.7 ± 14.2 μm to 76.3 ± 9.1 μm across the protein concentration gradient. Neurite lengths at the highest concentration end of the gradient were significantly longer than neurite lengths observed for cells cultured on samples with uniform protein coverage. Gradients were prepared both in the fiber direction and transverse to the fiber direction. Neurites preferentially aligned with the fiber direction in both cases indicating that fiber alignment has a more dominant role in controlling neurite orientation, compared to the chemical gradient. PMID:24739010

  10. In vitro neurite guidance effects induced by polylysine pinstripe micropatterns with polylysine background.

    PubMed

    Joo, Sunghoon; Kang, Kyungtae; Nam, Yoonkey

    2015-08-01

    Engineered culture substrates with chemical neurite guidance cues have been used for studying the mechanism of axon pathfinding at cellular level. In this study, we designed a novel poly-l-lysine (PLL) micropattern ("pinstripe micropattern") to investigate how the same biomolecules with slightly different surface concentration can affect in vitro neuronal growth. The pinstripe micropattern was fabricated by stamping PLL on a PLL-coated glass coverslip, which resulted in denser PLL lines and a less-dense PLL background. There were two effects of the substrate on cultured primary hippocampal neuron: neurite initiation and growth cone turning. Although the whole surface was permissive for neurite outgrowth, we observed that the growth direction of neurites had a strong tendency to follow the stamped PLL line patterns with PLL background. However, the micropattern did not affect the spreading of cell body on the substrate. According to these investigations, we concluded that the PLL pinstripe pattern with PLL background, which had the step difference of polylysine concentrations, would be very useful for designing novel cell assays for the investigation of neurite guidance mechanisms, and suggested it as a new design method for controlling the direction of neurite growth on in vitro neural network.

  11. The neurite-initiating effect of microbial extracellular glycolipids in PC12 cells.

    PubMed

    Isoda, H; Shinmoto, H; Matsumura, M; Nakahara, T

    1999-09-01

    The effects of several kinds of microbial extracellular glycolipids on neurite initiation in PC12 cells were examined. Addition of mannosylerythritol lipid-A (MEL-A), MEL-B, and sophorose lipid (SL) to PC12 cells caused significant neurite outgrowth. Other glycolipids, such as polyol lipid (PL), rhamnose lipid (RL), succinoyl trehalose lipid-A (STL-A) and STL-B caused no neurite-initiation. MEL-A increased acetylcholine esterase (AChE) activity to an extent similar to nerve growth factor (NGF). However, MEL-A induced one or two long neurites from the cell body, while NGF induced many neurites. In addition, MEL-A-induced differentiation was transient, and after 48 h, percentage of cells with neurites started to decrease in contrast to neurons induced by NGF, which occurred in a time-dependent manner. MEL-A could induce neurite outgrowth after treatment of PC12 cells with an anti-NGF receptor antibody that obstructed NGF action. These results indicate that MEL-A and NGF induce differentiation of PC12 cells through different mechanisms. PMID:19003137

  12. Neurite Outgrowth on Nanofiber Scaffolds with Different Orders, Structures, and Surface Properties

    PubMed Central

    Xie, Jingwei; MacEwan, Matthew R.; Li, Xiaoran; Sakiyama-Elbert, Shelly E.; Xia, Younan

    2009-01-01

    Electrospun nanofibers can be readily assembled into various types of scaffolds for applications in neural tissue engineering. The objective of this study is to examine and understand the unique patterns of neurite outgrowth from primary dorsal root ganglia (DRG) cultured on scaffolds of electrospun nanofibers having different orders, structures, and surface properties. We found that the neurites extended radially outward from the DRG main body without specific directionality when cultured on a nonwoven mat of randomly oriented nanofibers. In contrast, the neurites preferentially extended along the long axis of fiber when cultured on a parallel array of aligned nanofibers. When seeded at the border between regions of aligned and random nanofibers, the same DRG simultaneously expressed aligned and random neurite fields in response to the underlying nanofibers. When cultured on a double-layered scaffold where the nanofibers in each layer were aligned along a different direction, the neurites were found to be dependent on the fiber density in both layers. This bi-axial pattern clearly demonstrates that neurite outgrowth can be influenced by nanofibers in different layers of a scaffold, rather than the topmost layer only. Taken together, these results will provide valuable information pertaining to the design of nanofiber scaffolds for neuroregenerative applications, as well as the effects of topology on neurite outgrowth, growth cone guidance, and axonal regeneration. PMID:19397333

  13. CHLORHEXIDINE INHIBITS L1 CELL ADHESION MOLECULE MEDIATED NEURITE OUTGROWTH IN VITRO

    PubMed Central

    Milstone, Aaron M.; Bamford, Penny; Aucott, Susan W.; Tang, Ningfeng; White, Kimberly R.; Bearer, Cynthia F.

    2013-01-01

    Background Chlorhexidine is a skin disinfectant that reduces skin and mucous membrane bacterial colonization and inhibits organism growth. Despite numerous studies assessing chlorhexidine safety in term infants, residual concerns have limited its use in hospitalized neonates, especially low birth weight preterm infants. The aim of this study was to assess the potential neurotoxicity of chlorhexidine on the developing central nervous system using a well-established in vitro model of neurite outgrowth that includes laminin and L1 cell adhesion molecule (L1) as neurite outgrowth promoting substrates. Methods Cerebellar granule neurons are plated on either poly L-lysine, L1 or laminin. Chlorhexidine, hexachlorophene or their excipients are added to the media. Neurons are grown for 24 h, then fixed and neurite length measured. Results Chlorhexidine significantly reduced the length of neurites grown on L1 but not laminin. Chlorhexidine concentrations as low as 125 ng/ml statistically significantly reduced neurite length on L1. Hexachlorophene did not affect neurite length. Conclusion Chlorhexidine at concentrations detected in the blood following topical applications in preterm infants specifically inhibited L1 mediated neurite outgrowth of cerebellar granule neurons. It is now vital to determine whether the blood brain barrier is permeable to chlorhexidine in preterm infants. PMID:24126818

  14. A comparison of the effects of unfractionated heparin, dalteparin and danaparoid on vascular endothelial growth factor-induced tumour angiogenesis and heparanase activity.

    PubMed

    Takahashi, Hidenori; Ebihara, Satoru; Okazaki, Tatsuma; Asada, Masanori; Sasaki, Hidetada; Yamaya, Mutsuo

    2005-10-01

    Disseminated intravascular coagulation (DIC) is the most common complication of solid tumours. In this study, the effectiveness of three polysaccharide anticoagulants (PSAs), at therapeutic doses, at inhibiting solid tumour growth was investigated. Mice with tumour xenografts were subcutaneously injected with either unfractionated heparin (UFH; 200 units kg(-1) day(-1)), dalteparin (75 units kg(-1) day(-1)) or danaparoid (50 units kg(-1) day(-1)). At these concentrations, these PSAs are equieffective at inhibiting blood coagulation activated factor X. In mice with Lewis lung carcinoma (LLC) tumours dalteparin and, to a lesser extent, UFH inhibited both tumour growth and angiogenesis, whereas danaparoid did not. In contrast, in mice with KLN205 tumours, all the PSAs inhibited tumour growth and angiogenesis. All the PSAs significantly inhibited proliferation, migration of endothelial cells and vessel formation in matrigel plugs containing vascular endothelial growth factor (VEGF) and there were no significant differences between these effects of the PSAs. The PSAs had no effect on endothelial cell tubular formation in vitro. Although all the PSAs inhibited VEGF production in KLN205 tumours in vivo and cells in vitro, in LLC tumours and cells only UFH and dalteparin inhibited VEGF production, whereas danaparoid did not. In both LLC and KLN205 tumours in vivo, heparanase activity was inhibited by UFH and dalteparin, but not by danaparoid. Hence, UFH and dalteparin may be more effective than danaparoid at inhibiting cancer progression in DIC patients with solid tumours, due at least in part to their ability to suppress VEGF and heparanase in tumours.

  15. Myoblasts and myoblast-conditioned medium attract the earliest spinal neurites from frog embryos.

    PubMed Central

    McCaig, C D

    1986-01-01

    A study was made of the capacity of newly segmented somites, unsegmented mesoderm and medium conditioned by each of these tissues to attract the growth of the earliest spinal neurites from the neural tube of Xenopus laevis in tissue culture. When presented with segmented somitic myoblasts or sheets of skin, spinal neurites grew selectively towards the somitic myoblasts. Neurites were not attracted specifically to somitic myoblasts from their own rostrocaudal level. A variable proportion of myoblasts from unsegmented caudal mesoderm differentiated and elongated in co-culture with neural tube and skin. These myoblasts also attracted neural outgrowths, but only if present in sufficient numbers. An agar slab containing medium conditioned by the presence of segmented myoblasts for 1 day attracted neurite outgrowths. A source of medium conditioned by the presence of undifferentiated, unsegmented myotomal mesoderm alone did not attract neurite outgrowths. Nerve growth factor (NGF) at a range of concentrations in the agar source (500-10,000 ng/ml) did not attract the earliest neurite outgrowths. It is concluded that the earliest skeletal myoblasts from Xenopus laevis embryos may attract neural outgrowths by releasing a soluble factor. Myoblasts may have to develop to the stage of somite segmentation before secretion of such an agent begins. The release of a myoblast-derived factor so early in development may assist directed nerve growth in vivo. Images Plate 1 Plate 2 PMID:3795063

  16. A comparison of the effects of unfractionated heparin, dalteparin and danaparoid on vascular endothelial growth factor-induced tumour angiogenesis and heparanase activity

    PubMed Central

    Takahashi, Hidenori; Ebihara, Satoru; Okazaki, Tatsuma; Asada, Masanori; Sasaki, Hidetada; Yamaya, Mutsuo

    2005-01-01

    Disseminated intravascular coagulation (DIC) is the most common complication of solid tumours. In this study, the effectiveness of three polysaccharide anticoagulants (PSAs), at therapeutic doses, at inhibiting solid tumour growth was investigated. Mice with tumour xenografts were subcutaneously injected with either unfractionated heparin (UFH; 200 units kg−1 day−1), dalteparin (75 units kg−1 day−1) or danaparoid (50 units kg−1 day−1). At these concentrations, these PSAs are equieffective at inhibiting blood coagulation activated factor X. In mice with Lewis lung carcinoma (LLC) tumours dalteparin and, to a lesser extent, UFH inhibited both tumour growth and angiogenesis, whereas danaparoid did not. In contrast, in mice with KLN205 tumours, all the PSAs inhibited tumour growth and angiogenesis. All the PSAs significantly inhibited proliferation, migration of endothelial cells and vessel formation in matrigel plugs containing vascular endothelial growth factor (VEGF) and there were no significant differences between these effects of the PSAs. The PSAs had no effect on endothelial cell tubular formation in vitro. Although all the PSAs inhibited VEGF production in KLN205 tumours in vivo and cells in vitro, in LLC tumours and cells only UFH and dalteparin inhibited VEGF production, whereas danaparoid did not. In both LLC and KLN205 tumours in vivo, heparanase activity was inhibited by UFH and dalteparin, but not by danaparoid. Hence, UFH and dalteparin may be more effective than danaparoid at inhibiting cancer progression in DIC patients with solid tumours, due at least in part to their ability to suppress VEGF and heparanase in tumours. PMID:16041398

  17. A comparison of the effects of unfractionated heparin, dalteparin and danaparoid on vascular endothelial growth factor-induced tumour angiogenesis and heparanase activity.

    PubMed

    Takahashi, Hidenori; Ebihara, Satoru; Okazaki, Tatsuma; Asada, Masanori; Sasaki, Hidetada; Yamaya, Mutsuo

    2005-10-01

    Disseminated intravascular coagulation (DIC) is the most common complication of solid tumours. In this study, the effectiveness of three polysaccharide anticoagulants (PSAs), at therapeutic doses, at inhibiting solid tumour growth was investigated. Mice with tumour xenografts were subcutaneously injected with either unfractionated heparin (UFH; 200 units kg(-1) day(-1)), dalteparin (75 units kg(-1) day(-1)) or danaparoid (50 units kg(-1) day(-1)). At these concentrations, these PSAs are equieffective at inhibiting blood coagulation activated factor X. In mice with Lewis lung carcinoma (LLC) tumours dalteparin and, to a lesser extent, UFH inhibited both tumour growth and angiogenesis, whereas danaparoid did not. In contrast, in mice with KLN205 tumours, all the PSAs inhibited tumour growth and angiogenesis. All the PSAs significantly inhibited proliferation, migration of endothelial cells and vessel formation in matrigel plugs containing vascular endothelial growth factor (VEGF) and there were no significant differences between these effects of the PSAs. The PSAs had no effect on endothelial cell tubular formation in vitro. Although all the PSAs inhibited VEGF production in KLN205 tumours in vivo and cells in vitro, in LLC tumours and cells only UFH and dalteparin inhibited VEGF production, whereas danaparoid did not. In both LLC and KLN205 tumours in vivo, heparanase activity was inhibited by UFH and dalteparin, but not by danaparoid. Hence, UFH and dalteparin may be more effective than danaparoid at inhibiting cancer progression in DIC patients with solid tumours, due at least in part to their ability to suppress VEGF and heparanase in tumours. PMID:16041398

  18. Overexpression of granulocyte-macrophage colony-stimulating factor induces pulmonary granulation tissue formation and fibrosis by induction of transforming growth factor-beta 1 and myofibroblast accumulation.

    PubMed Central

    Xing, Z.; Tremblay, G. M.; Sime, P. J.; Gauldie, J.

    1997-01-01

    We have previously reported that transfer to rat lung of the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene leads to high expression of GM-CSF between days 1 and 4 and granulation tissue formation followed by an irreversible fibrotic response starting from day 12 onward. In the current study, we investigated the underlying mechanisms. We found that GM-CSF overexpression did not enhance production of tumor necrosis factor-alpha in a significant manner at any time after GM-CSF gene transfer. However, the content of transforming growth factor-beta 1 in bronchoalveolar lavage fluid was markedly induced at day 4 and appeared to be maximal around day 7 and remained high at day 12. Macrophages purified from bronchoalveolar lavage fluid 7 days after GM-CSF gene transfer spontaneously released significant quantities of transforming growth factor-beta 1 protein in vitro. After peak transforming growth factor-beta 1 production was the emergence of alpha-smooth muscle actin-rich myofibroblasts. Accumulation of these cells was most prominent at day 12 within the granulation tissues and they were still present in fibrotic areas between days 12 and 24 and diminished markedly afterward. Thus, we provide the first in vivo evidence that tumor necrosis factor-alpha may be dissociated from participation in a fibrotic process in the lung and GM-CSF may play a more direct role in pulmonary fibrogenesis at least in part through its capability to induce transforming growth factor-beta 1 in macrophages and the subsequent emergence of myofibroblast phenotypes. This GM-CSF transgene lung model is useful for a stepwise dissection of both cellular and molecular events involved in pulmonary fibrosis. Images Figure 2 Figure 5 Figure 6 PMID:9006322

  19. L- and D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) inhibit neurite outgrowth from SH-SY5Y cells.

    PubMed

    Hynds, D L; Takehana, A; Inokuchi, J; Snow, D M

    2002-01-01

    Gangliosides and extracellular matrix molecules influence neurite outgrowth, but the combinatorial effects of these endogenous agents on outgrowth are unclear. Exogenous gangliosides inhibit neurite outgrowth from SH-SY5Y cells stimulated with platelet-derived growth factor-BB, and different isoforms of the ceramide analog threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) stimulate (L-PDMP) or inhibit (D-PDMP) glycosphingolipid biosynthesis. In this study, we determined whether altering the endogenous ganglioside levels with PDMP in SH-SY5Y cells regulates neurite outgrowth on the outgrowth-supporting extracellular matrix molecule, laminin. In cells stimulated with 20 ng/ml platelet-derived growth factor-BB to promote outgrowth, we used image analysis to evaluate neurite outgrowth from SH-SY5Y cells grown on endogenous matrix or laminin and exposed to L- or D-PDMP. Both L- and D-PDMP decreased neurite initiation (the number of neurites/cell, the percent of neurite-bearing cells), elongation (the length of the longest neurite/cell, the total neurite length/cell), and branching (the number of branch points/neurite) from SH-SY5Y cells on endogenous matrix or laminin in a dose-dependent manner in serum-free or serum-containing medium. The inhibitory effects of each PDMP isoform were reversible. Inhibition of neurite outgrowth by L-PDMP could be mimicked by addition of exogenous gangliosides or C2-ceramide. Our analyses of neurite outgrowth in SH-SY5Y cells, a model of developing or regenerating noradrenergic neurons, demonstrate that increasing or decreasing endogenous ganglioside levels decreases neurite outgrowth. These results may indicate that SH-SY5Y cells undergo tight regulation by gangliosides, possibly through modulation of growth/trophic factor- and/or extracellular matrix-activated signaling cascades.

  20. “Spatial Mapping of the Neurite and Soma Proteomes Reveals a Functional Cdc42/Rac Regulatory Network”

    SciTech Connect

    Pertz, Olivier C.; Wang, Yingchun; Yang, Feng; Wang, Wei; gay, laurie J.; Gritsenko, Marina A.; Clauss, Therese RW; Anderson, David J.; Liu, Tao; Auberry, Kenneth J.; Camp, David G.; Smith, Richard D.; Klemke, Richard L.

    2008-02-12

    Neurite extension and growth cone navigation are guided by extracellular cues that control cytoskeletal rearrangements. However, understanding the complex signaling mechanisms that mediate neuritogenesis has been limited by the inability to biochemically separate the neurite and soma for spatial proteomic and bioinformatic analyses. Here, we apply global proteome profiling in combination with a novel neurite purification methodology for comparative analysis of the soma and neurite proteomes of neuroblastoma cells. The spatial relationship of 4855 proteins were mapped revealing networks of signaling proteins that control integrins, the actin cytoskeleton, and axonal guidance in the extending neurite. Bioinformatics and functional analyses revealed a spatially compartmentalized Rac/Cdc42 signaling network that operates in conjunction with multiple GEFs and GAPs to control neurite formation. Interestingly, RNA interference experiments revealed that the different GEFs and GAPs regulate specialized functions during neurite formation including neurite growth and retraction kinetics, cytoskeletal organization, and cell polarity. Our findings provide insight into the spatial organization of signaling networks that enable neuritogenesis and provide a comprehensive system-wide profile of proteins that mediate this process including those that control Rac and Cdc42 signaling.

  1. TGF-β1, in association with the increased expression of connective tissue growth factor, induce the hypertrophy of the ligamentum flavum through the p38 MAPK pathway

    PubMed Central

    Cao, Yan-Lin; Duan, Yang; Zhu, Li-Xin; Zhan, Ye-Nan; Min, Shao-Xiong; Jin, An-Min

    2016-01-01

    Hypertrophy of the ligamentum flavum (LF) is one of the key pathomechanisms of lumbar spinal stenosis (LSS). Transforming growth factor (TGF)-β1 is abundantly expressed in hypertrophied degenerative LF tissues from LSS. However, the molecular mechanisms underling the association between TGF-β1 and LF hypertrophy have not yet been fully elucidated. In this study, we investigated the important role of the mitogen-activated protein kinase (MAPK) pathway in the pathogenesis of LSS by analyzing the expression of connective tissue growth factor (CTGF) and extracellular matrix (ECM) components (collagen I and collagen III) in TGF-β1-treated LF cells. Cell growth assay revealed that TGF-β1, in association with CTGF, enhanced the the proliferation of LF cells, and we found that TGF-β1 also elevated CTGF expression and subsequently enhanced the mRNA expression of collagen I and collagen III. The increased mRNA expression levels of CTGF, collagen I and collagen III were abolished by p38 inhibitors. Both immunofluorescence imaging and western blot analysis of p38 and p-p38 revealed the increased expression and phosphorylation of p38. Silencing the expression of p38 by siRNA in LF cells decreased the protein expression of p38, p-p38 and CTGF, as well as the mRNA expression of CTGF, collagen I and collagen III. Taken together, our findings indicate that TGF-β1, in association with the increased expression of CTGF, contribute to the homeostasis of the ECM and to the hypertrophy of LF through the p38 MAPK pathway. PMID:27279555

  2. Activation of H-Ras and Rac1 correlates with epidermal growth factor-induced invasion in Hs578T and MDA-MB-231 breast carcinoma cells.

    PubMed

    Koh, Min-Soo; Moon, Aree

    2011-03-01

    There is considerable experimental evidence that hyperactive Ras proteins promote breast cancer growth and development including invasiveness, despite the low frequency of mutated forms of Ras in breast cancer. We have previously shown that H-Ras, but not N-Ras, induces an invasive phenotype mediated by small GTPase Rac1 in MCF10A human breast epithelial cells. Epidermal growth factor (EGF) plays an important role in aberrant growth and metastasis formation of many tumor types including breast cancer. The present study aims to investigate the correlation between EGF-induced invasiveness and Ras activation in four widely used breast cancer cell lines. Upon EGF stimulation, invasive abilities and H-Ras activation were significantly increased in Hs578T and MDA-MB-231 cell lines, but not in MDA-MB-453 and T47D cell lines. Using small interfering RNA (siRNA) to target H-Ras, we showed a crucial role of H-Ras in the invasive phenotype induced by EGF in Hs578T and MDA-MB-231 cells. Moreover, siRNA-knockdown of Rac1 significantly inhibited the EGF-induced invasiveness in these cells. Taken together, this study characterized human breast cancer cell lines with regard to the relationship between H-Ras activation and the invasive phenotype induced by EGF. Our data demonstrate that the activation of H-Ras and the downstream molecule Rac1 correlates with EGF-induced breast cancer cell invasion, providing important information on the regulation of malignant progression in mammary carcinoma cells.

  3. Neurite Tracing With Object Process.

    PubMed

    Basu, Sreetama; Ooi, Wei Tsang; Racoceanu, Daniel

    2016-06-01

    In this paper we present a pipeline for automatic analysis of neuronal morphology: from detection, modeling to digital reconstruction. First, we present an automatic, unsupervised object detection framework using stochastic marked point process. It extracts connected neuronal networks by fitting special configuration of marked objects to the centreline of the neurite branches in the image volume giving us position, local width and orientation information. Semantic modeling of neuronal morphology in terms of critical nodes like bifurcations and terminals, generates various geometric and morphology descriptors such as branching index, branching angles, total neurite length, internodal lengths for statistical inference on characteristic neuronal features. From the detected branches we reconstruct neuronal tree morphology using robust and efficient numerical fast marching methods. We capture a mathematical model abstracting out the relevant position, shape and connectivity information about neuronal branches from the microscopy data into connected minimum spanning trees. Such digital reconstruction is represented in standard SWC format, prevalent for archiving, sharing, and further analysis in the neuroimaging community. Our proposed pipeline outperforms state of the art methods in tracing accuracy and minimizes the subjective variability in reconstruction, inherent to semi-automatic methods. PMID:26742129

  4. GDF11 forms a bone morphogenetic protein 1-activated latent complex that can modulate nerve growth factor-induced differentiation of PC12 cells.

    PubMed

    Ge, Gaoxiang; Hopkins, Delana R; Ho, Wen-Bin; Greenspan, Daniel S

    2005-07-01

    All transforming growth factor beta (TGF-beta) superfamily members are synthesized as precursors with prodomain sequences that are proteolytically removed by subtilisin-like proprotein convertases (SPCs). For most superfamily members, this is believed sufficient for activation. Exceptions are TGF-betas 1 to 3 and growth differentiation factor 8 (GDF8), also known as myostatin, which form noncovalent, latent complexes with their SPC-cleaved prodomains. Sequence similarities between TGF-betas 1 to 3, myostatin, and superfamily member GDF11, also known as bone morphogenetic protein 11 (BMP11), prompted us to examine whether GDF11 might be capable of forming a latent complex with its cleaved prodomain. Here we demonstrate that GDF11 forms a noncovalent latent complex with its SPC-cleaved prodomain and that this latent complex is activated via cleavage at a single specific site by members of the developmentally important BMP1/Tolloid family of metalloproteinases. Evidence is provided for a molecular model whereby formation and activation of this complex may play a general role in modulating neural differentiation. In particular, mutant GDF11 prodomains impervious to cleavage by BMP1/Tolloid proteinases are shown to be potent stimulators of neurodifferentiation, with potential for therapeutic applications.

  5. GDF11 Forms a Bone Morphogenetic Protein 1-Activated Latent Complex That Can Modulate Nerve Growth Factor-Induced Differentiation of PC12 Cells

    PubMed Central

    Ge, Gaoxiang; Hopkins, Delana R.; Ho, Wen-Bin; Greenspan, Daniel S.

    2005-01-01

    All transforming growth factor β (TGF-β) superfamily members are synthesized as precursors with prodomain sequences that are proteolytically removed by subtilisin-like proprotein convertases (SPCs). For most superfamily members, this is believed sufficient for activation. Exceptions are TGF-βs 1 to 3 and growth differentiation factor 8 (GDF8), also known as myostatin, which form noncovalent, latent complexes with their SPC-cleaved prodomains. Sequence similarities between TGF-βs 1 to 3, myostatin, and superfamily member GDF11, also known as bone morphogenetic protein 11 (BMP11), prompted us to examine whether GDF11 might be capable of forming a latent complex with its cleaved prodomain. Here we demonstrate that GDF11 forms a noncovalent latent complex with its SPC-cleaved prodomain and that this latent complex is activated via cleavage at a single specific site by members of the developmentally important BMP1/Tolloid family of metalloproteinases. Evidence is provided for a molecular model whereby formation and activation of this complex may play a general role in modulating neural differentiation. In particular, mutant GDF11 prodomains impervious to cleavage by BMP1/Tolloid proteinases are shown to be potent stimulators of neurodifferentiation, with potential for therapeutic applications. PMID:15988002

  6. The Small GTPase ROP10 of Medicago truncatula Is Required for Both Tip Growth of Root Hairs and Nod Factor-Induced Root Hair Deformation

    PubMed Central

    Lei, Ming-Juan; Wang, Qi; Li, Xiaolin; Chen, Aimin; Luo, Li; Xie, Yajun; Li, Guan; Luo, Da; Mysore, Kirankumar S.; Wen, Jiangqi; Xie, Zhi-Ping; Staehelin, Christian; Wang, Yan-Zhang

    2015-01-01

    Rhizobia preferentially enter legume root hairs via infection threads, after which root hairs undergo tip swelling, branching, and curling. However, the mechanisms underlying such root hair deformation are poorly understood. Here, we showed that a type II small GTPase, ROP10, of Medicago truncatula is localized at the plasma membrane (PM) of root hair tips to regulate root hair tip growth. Overexpression of ROP10 and a constitutively active mutant (ROP10CA) generated depolarized growth of root hairs, whereas a dominant negative mutant (ROP10DN) inhibited root hair elongation. Inoculated with Sinorhizobium meliloti, the depolarized swollen and ballooning root hairs exhibited extensive root hair deformation and aberrant infection symptoms. Upon treatment with rhizobia-secreted nodulation factors (NFs), ROP10 was transiently upregulated in root hairs, and ROP10 fused to green fluorescent protein was ectopically localized at the PM of NF-induced outgrowths and curls around rhizobia. ROP10 interacted with the kinase domain of the NF receptor NFP in a GTP-dependent manner. Moreover, NF-induced expression of the early nodulin gene ENOD11 was enhanced by the overexpression of ROP10 and ROP10CA. These data suggest that NFs spatiotemporally regulate ROP10 localization and activity at the PM of root hair tips and that interactions between ROP10 and NF receptors are required for root hair deformation and continuous curling during rhizobial infection. PMID:25794934

  7. BAG-1 enhances cell-cell adhesion, reduces proliferation and induces chaperone-independent suppression of hepatocyte growth factor-induced epidermal keratinocyte migration

    SciTech Connect

    Hinitt, C.A.M.; Wood, J.; Lee, S.S.; Williams, A.C.; Howarth, J.L.; Glover, C.P.; Uney, J.B.; Hague, A.

    2010-08-01

    Cell motility is important in maintaining tissue homeostasis, facilitating epithelial wound repair and in tumour formation and progression. The aim of this study was to determine whether BAG-1 isoforms regulate epidermal cell migration in in vitro models of wound healing. In the human epidermal cell line HaCaT, endogenous BAG-1 is primarily nuclear and increases with confluence. Both transient and stable p36-Bag-1 overexpression resulted in increased cellular cohesion. Stable transfection of either of the three human BAG-1 isoforms p36-Bag-1 (BAG-1S), p46-Bag-1 (BAG-1M) and p50-Bag-1 (BAG-1L) inhibited growth and wound closure in serum-containing medium. However, in response to hepatocyte growth factor (HGF) in serum-free medium, BAG-1S/M reduced communal motility and colony scattering, but BAG-1L did not. In the presence of HGF, p36-Bag-1 transfectants retained proliferative response to HGF with no change in ERK1/2 activation. However, the cells retained E-cadherin localisation at cell-cell junctions and exhibited pronounced cortical actin. Point mutations in the BAG domain showed that BAG-1 inhibition of motility is independent of its function as a chaperone regulator. These findings are the first to suggest that BAG-1 plays a role in regulating cell-cell adhesion and suggest an important function in epidermal cohesion.

  8. Hepatocyte growth factor-induced up-regulation of Twist drives epithelial-mesenchymal transition in a canine mammary tumour cell line.

    PubMed

    Yoshida, Kota; Choisunirachon, Nan; Saito, Tomochika; Matsumoto, Kaori; Saeki, Kohei; Mochizuki, Manabu; Nishimura, Ryohei; Sasaki, Nobuo; Nakagawa, Takayuki

    2014-12-01

    Epithelial-mesenchymal transition (EMT) is a crucial step in tumour progression. However, the molecular mechanisms underlying EMT in canine tumours remain to be elucidated. In this study, the similarity or difference in the molecular mechanism of EMT in canine cells was evaluated and compared with that reported in human and mouse cells. We used eight cell lines derived from canine mammary cancers. Stimulation with hepatocyte growth factor (HGF) increased cell motility and changed EMT-related markers towards mesenchyme in CHMm cell line. These changes were accompanied by an increase in Twist expression and did not occur in CHMm transfected with Twist siRNA, indicating that Twist plays a key role in this phenomenon in CHMm. However, the down-regulation of E-cadherin was not observed by HGF stimulation. Further studies are required to elucidate the difference between human and canine Twist.

  9. c-Jun N-terminal kinase negatively regulates epidermal growth factor-induced cyclooxygenase-2 expression in oral squamous cell carcinoma cell lines.

    PubMed

    Husvik, Camilla; Bryne, Magne; Halstensen, Trond S

    2009-12-01

    Epidermal growth factor (EGF)-induced cyclooxygenase-2 (COX-2) expression in squamous cell carcinomas is mediated through the extracellular signal-regulated kinase 1/2 and p38 pathways. Examination of a basaloid and a conventional oral squamous cell carcinoma cell line revealed that inhibition of c-Jun N-terminal kinase (JNK) with SP600125 increased EGF-induced (but not basal) COX-2 transcription 1.5-1.9-fold in extracellular signal-regulated kinase 1/2 and p38 pathway-dependent manners. Although JNK may phosphorylate the cyclosporine A-sensitive transcription factor, nuclear factor of activated T cells c3, it was seemingly not involved because cyclosporine A did not reduce EGF-induced COX-2 expression. Thus, JNK negatively regulated EGF-induced extracellular signal-regulated kinase 1/2 and/or p38-mediated COX-2 transcription, presumably through activating an unidentified phosphatase. PMID:20121928

  10. Growth factor-induced activation of a kinase activity which causes regulatory phosphorylation of p42/microtubule-associated protein kinase.

    PubMed Central

    L'Allemain, G; Her, J H; Wu, J; Sturgill, T W; Weber, M J

    1992-01-01

    p42/microtubule-associated protein kinase (p42mapk) is activated by tyrosine and threonine phosphorylation, and its regulatory phosphorylation is likely to be important in signalling pathways involved in growth control, secretion, and differentiation. Here we show that treatment of quiescent 3T3 cells with diverse agonists results in the appearance of an activity capable of causing the in vitro phosphorylation of p42mapk on the regulatory tyrosine and to a lesser extent on the regulatory threonine, resulting in enzymatic activation of the p42mapk. This p42mapk-activating activity is capable of phosphorylating a kinase-defective p42mapk mutant, thus confirming its activity as a kinase. Images PMID:1314951

  11. Epidermal growth factor induces WISP-2/CCN5 expression in estrogen receptor-alpha-positive breast tumor cells through multiple molecular cross-talks.

    PubMed

    Banerjee, Snigdha; Sengupta, Krishanu; Saxena, Neela K; Dhar, Kakali; Banerjee, Sushanta K

    2005-03-01

    Epidermal growth factor (EGF) is a mitogen for estrogen receptor (ER)-positive breast tumor cells, and it has been proven that EGF occasionally mimicked estrogen action and cross-talks with ER-alpha to exert its activity. Therefore, the present study was undertaken to explore whether EGF is able to modulate the expression of Wnt-1-induced signaling protein-2/connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed 5 (WISP-2/CCN5), an estrogen-responsive gene, in normal and transformed cell lines of the human breast and, if so, whether this induction is critical for EGF mitogenesis and what downstream signaling pathways are associated with this event. Here, we show that EGF-induced WISP-2 expression in ER- and EGF receptor-positive noninvasive MCF-7 breast tumor cells was dose and time dependent and that expression was modulated at transcription level. A synergism was seen in combination with estrogen. Moreover, small interfering RNA-mediated inhibition of WISP-2/CCN5 activity in MCF-7 cells resulted in abrogation of proliferation by EGF. The multiple molecular cross-talks, including the interactions between phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase signaling pathways and two diverse receptors (i.e., ER-alpha and EGFR), were essential in the event of EGF-induced WISP-2/CCN5 up-regulation in MCF-7 cells. Moreover, EGF action on WISP-2/CCN5 is restricted to ER- and EGFR-positive noninvasive breast tumor cells, and this effect of EGF cannot be instigated in ER-alpha-negative and EGFR-positive normal or invasive breast tumor cells by introducing ER-alpha. Finally, regulation of phosphorylation of ER-alpha and EGFR may play critical roles in EGF-induced transcriptional activation of WISP-2 gene in breast tumor cells.

  12. Protein Disulfide Isomerase Is Required for Platelet-derived Growth Factor-induced Vascular Smooth Muscle Cell Migration, Nox1 NADPH Oxidase Expression, and RhoGTPase Activation

    PubMed Central

    Pescatore, Luciana A.; Bonatto, Diego; Forti, Fábio L.; Sadok, Amine; Kovacic, Hervé; Laurindo, Francisco R. M.

    2012-01-01

    Vascular Smooth Muscle Cell (VSMC) migration into vessel neointima is a therapeutic target for atherosclerosis and postinjury restenosis. Nox1 NADPH oxidase-derived oxidants synergize with growth factors to support VSMC migration. We previously described the interaction between NADPH oxidases and the endoplasmic reticulum redox chaperone protein disulfide isomerase (PDI) in many cell types. However, physiological implications, as well as mechanisms of such association, are yet unclear. We show here that platelet-derived growth factor (PDGF) promoted subcellular redistribution of PDI concomitant to Nox1-dependent reactive oxygen species production and that siRNA-mediated PDI silencing inhibited such reactive oxygen species production, while nearly totally suppressing the increase in Nox1 expression, with no change in Nox4. Furthermore, PDI silencing inhibited PDGF-induced VSMC migration assessed by distinct methods, whereas PDI overexpression increased spontaneous basal VSMC migration. To address possible mechanisms of PDI effects, we searched for PDI interactome by systems biology analysis of physical protein-protein interaction networks, which indicated convergence with small GTPases and their regulator RhoGDI. PDI silencing decreased PDGF-induced Rac1 and RhoA activities, without changing their expression. PDI co-immunoprecipitated with RhoGDI at base line, whereas such association was decreased after PDGF. Also, PDI co-immunoprecipitated with Rac1 and RhoA in a PDGF-independent way and displayed detectable spots of perinuclear co-localization with Rac1 and RhoGDI. Moreover, PDI silencing promoted strong cytoskeletal changes: disorganization of stress fibers, decreased number of focal adhesions, and reduced number of RhoGDI-containing vesicular recycling adhesion structures. Overall, these data suggest that PDI is required to support Nox1/redox and GTPase-dependent VSMC migration. PMID:22773830

  13. Matrix RGD ligand density and L1CAM-mediated Schwann cell interactions synergistically enhance neurite outgrowth.

    PubMed

    Romano, Nicole H; Madl, Christopher M; Heilshorn, Sarah C

    2015-01-01

    The innate biological response to peripheral nerve injury involves a complex interplay of multiple molecular cues to guide neurites across the injury gap. Many current strategies to stimulate regeneration take inspiration from this biological response. However, little is known about the balance of cell-matrix and Schwann cell-neurite dynamics required for regeneration of neural architectures. We present an engineered extracellular matrix (eECM) microenvironment with tailored cell-matrix and cell-cell interactions to study their individual and combined effects on neurite outgrowth. This eECM regulates cell-matrix interactions by presenting integrin-binding RGD (Arg-Gly-Asp) ligands at specified densities. Simultaneously, the addition or exclusion of nerve growth factor (NGF) is used to modulate L1CAM-mediated Schwann cell-neurite interactions. Individually, increasing the RGD ligand density from 0.16 to 3.2mM resulted in increasing neurite lengths. In matrices presenting higher RGD ligand densities, neurite outgrowth was synergistically enhanced in the presence of soluble NGF. Analysis of Schwann cell migration and co-localization with neurites revealed that NGF enhanced cooperative outgrowth between the two cell types. Interestingly, neurites in NGF-supplemented conditions were unable to extend on the surrounding eECM without the assistance of Schwann cells. Blocking studies revealed that L1CAM is primarily responsible for these Schwann cell-neurite interactions. Without NGF supplementation, neurite outgrowth was unaffected by L1CAM blocking or the depletion of Schwann cells. These results underscore the synergistic interplay between cell-matrix and cell-cell interactions in enhancing neurite outgrowth for peripheral nerve regeneration. PMID:25308870

  14. Analysis of the action of euxanthone, a plant-derived compound that stimulates neurite outgrowth.

    PubMed

    Naidu, M; Kuan, C-Y K; Lo, W-L; Raza, M; Tolkovsky, A; Mak, N-K; Wong, R N-S; Keynes, R

    2007-09-21

    We have investigated the neurite growth-stimulating properties of euxanthone, a xanthone derivative isolated from the Chinese medicinal plant Polygala caudata. Euxanthone was shown to exert a marked stimulatory action on neurite outgrowth from chick embryo dorsal root ganglia explanted in collagen gels, in the absence of added neurotrophins. It was also shown to promote cell survival in explanted chick embryo ganglia, and to stimulate neurite outgrowth from isolated adult rat primary sensory neurons in vitro. The further finding that euxanthone stimulates neurite outgrowth from explants of chick embryo retina and ventral spinal cord suggests an action on signaling pathways downstream of neuronal receptors for specific neurotrophic factors. Consistent with this, euxanthone did not promote neurite outgrowth from non-transfected PC12 cells, or from PC12 cells transfected with TrkB or TrkC, under conditions in which these cells extended neurites in response to, respectively, the neurotrophins nerve growth factor, brain-derived neurotrophic factor and neurotrophin 3. Western blot analysis of euxanthone-stimulated dorsal root ganglion explants showed that expression of phospho-mitogen-activated protein (MAP) kinase was up-regulated after 1 h of euxanthone-treatment. Inhibition of the MAP kinase pathway using PD98059, a specific inhibitor of MAP kinase kinase, blocked all euxanthone-stimulated neurite outgrowth. However, analysis of phospho-Akt expression indicated that the phosphatidylinositol-3 kinase-Akt pathway, another major signaling pathway engaged by neurotrophins, is not significantly activated by euxanthone. These results suggest that euxanthone promotes neurite outgrowth by selectively activating the MAP kinase pathway.

  15. Semi-automatic quantification of neurite fasciculation in high-density neurite images by the Neurite Directional Distribution Analysis (NDDA)

    PubMed Central

    Hopkins, Amy M; Wheeler, Brandon; Staii, Cristian; Kaplan, David L.; Atherton, Timothy J.

    2014-01-01

    Background Bundling of neurite extensions occur during nerve development and regeneration. Understanding the factors that drive neurite bundling is important for designing biomaterials for nerve regeneration toward the innervation target and preventing nociceptive collateral sprouting. High-density neuron cultures including dorsal root ganglia explants are employed for in vitro screening of biomaterials designed to control directional outgrowth. Although some semiautomated image processing methods exist for quantification of neurite outgrowth, methods to quantify axonal fasciculation in terms of direction of neurite outgrowth are lacking. New Method This work presents a semi-automated program to analyze micrographs of high-density neurites; the program aims to quantify axonal fasciculation by determining the orientational distribution function of the tangent vectors of the neurites and calculating its Fourier series coefficients (‘c’ values). Results We found that neurite directional distribution analysis (NDDA) of fasciculated neurites yielded ‘c’ values of ≥ ~0.25 whereas branched outgrowth led to statistically significant lesser values of <~0.2. The ‘c’ values correlated directly to the width of neurite bundles and indirectly to the number of branching points. Comparison with Existing Methods Information about the directional distribution of outgrowth is lost in simple counting methods or achieved laboriously through manual analysis. The NDDA supplements previous quantitative analyses of axonal bundling using a vector-based approach that captures new information about the directionality of outgrowth. Conclusion The NDDA is a valuable addition to open source image processing tools available to biomedical researchers offering a robust, precise approach to quantification of imaged features important in tissue development, disease, and repair. PMID:24680908

  16. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    SciTech Connect

    Sahni, Abha; Wang, Nadan; Alexis, Jeffrey

    2013-02-15

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reported that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease.

  17. Interleukin 1 beta suppresses transforming growth factor-induced inorganic pyrophosphate (PPi) production and expression of the PPi-generating enzyme PC-1 in human chondrocytes.

    PubMed Central

    Lotz, M; Rosen, F; McCabe, G; Quach, J; Blanco, F; Dudler, J; Solan, J; Goding, J; Seegmiller, J E; Terkeltaub, R

    1995-01-01

    Articular cartilage chondrocytes have the unique ability to elaborate large amounts of extracellular pyrophosphate (PPi), and transforming growth factor beta (TGF beta) appears singular among cartilage regulatory factors in stimulating PPi production. TGF beta caused a time and dose-dependent increase in intracellular and extracellular PPi in human articular chondrocyte cultures. TGF beta and interleukin 1 beta (IL-1 beta) antagonistically regulate certain chondrocyte functions. IL-1 beta profoundly inhibited basal and TGF beta-induced PPi elaboration. To address mechanisms involved with the regulation of PPi synthesis by IL-1 beta and TGF beta, we analyzed the activity of the PPi-generating enzyme NTP pyrophosphohydrolase (NTPPPH) and the PPi-hydrolyzing enzyme alkaline phosphatase. Human chondrocyte NTPPPH activity was largely attributable to plasma cell membrane glycoprotein 1, PC-1. Furthermore, TGF beta induced comparable increases in the activity of extracellular PPi, intracellular PPi, and cellular NTPPPH and in the levels of PC-1 protein and mRNA in chondrocytes as well as a decrease in alkaline phosphatase. All of these TGF beta-induced responses were completely blocked by IL-1 beta. Thus, IL-1 beta may be an important regulator of mineralization in chondrocytes by inhibiting TGF beta-induced PPi production and PC-1 expression. Images Fig. 4 Fig. 5 PMID:7479785

  18. Gelsolin-mediated activation of PI3K/Akt pathway is crucial for hepatocyte growth factor-induced cell scattering in gastric carcinoma

    PubMed Central

    Huang, Baohua; Deng, Shuo; Loo, Ser Yue; Datta, Arpita; Yap, Yan Lin; Yan, Benedict; Ooi, Chia Huey; Dinh, Thuy Duong; Zhuo, Jingli; Tochhawng, Lalchhandami; Gopinadhan, Suma; Jegadeesan, Tamilarasi; Tan, Patrick; Salto-Tellez, Manuel; Yong, Wei Peng; Soong, Richie; Yeoh, Khay Guan; Goh, Yaw Chong; Lobie, Peter E.; Yang, Henry; Kumar, Alan Prem; Maciver, Sutherland K.; So, Jimmy B.Y.; Yap, Celestial T.

    2016-01-01

    In gastric cancer (GC), the main subtypes (diffuse and intestinal types) differ in pathological characteristics, with diffuse GC exhibiting early disseminative and invasive behaviour. A distinctive feature of diffuse GC is loss of intercellular adhesion. Although widely attributed to mutations in the CDH1 gene encoding E-cadherin, a significant percentage of diffuse GC do not harbor CDH1 mutations. We found that the expression of the actin-modulating cytoskeletal protein, gelsolin, is significantly higher in diffuse-type compared to intestinal-type GCs, using immunohistochemical and microarray analysis. Furthermore, in GCs with wild-type CDH1, gelsolin expression correlated inversely with CDH1 gene expression. Downregulating gelsolin using siRNA in GC cells enhanced intercellular adhesion and E-cadherin expression, and reduced invasive capacity. Interestingly, hepatocyte growth factor (HGF) induced increased gelsolin expression, and gelsolin was essential for HGF-medicated cell scattering and E-cadherin transcriptional repression through Snail, Twist and Zeb2. The HGF-dependent effect on E-cadherin was found to be mediated by interactions between gelsolin and PI3K-Akt signaling. This study reveals for the first time a function of gelsolin in the HGF/cMet oncogenic pathway, which leads to E-cadherin repression and cell scattering in gastric cancer. Our study highlights gelsolin as an important pro-disseminative factor contributing to the aggressive phenotype of diffuse GC. PMID:27058427

  19. 3BP-1, an SH3 domain binding protein, has GAP activity for Rac and inhibits growth factor-induced membrane ruffling in fibroblasts.

    PubMed Central

    Cicchetti, P; Ridley, A J; Zheng, Y; Cerione, R A; Baltimore, D

    1995-01-01

    The SH3 binding protein, 3BP-1, was originally cloned as a partial cDNA from an expression library using the Abl SH3 domain as a probe. In addition to an SH3 binding domain, 3BP-1 displayed homology to a class of GTPase activating proteins (GAPs) active against Rac and Rho proteins. We report here a full length cDNA of 3BP-1 which extends the homology to GAP proteins previously noted. 3BP-1 functions in vitro as a GAP with a specificity for Rac-related G proteins. Microinjection of the 3BP-1 protein into serum-starved fibroblasts produces an inhibition of platelet-derived growth factor (PDGF)-induced membrane ruffling mediated by Rac. Co-injection of 3BP-1 with an activated Rac mutant that is unresponsive to GAPs, counter-acts this inhibition. 3BP-1 does not show in vitro activity towards Rho and, in agreement with this finding, microinjection of 3BP-1 into fibroblasts has no effect on lysophosphatidic acid (LPA)-induced stress fiber assembly mediated by Rho. Thus 3BP-1 is a new and specific Rac GAP that can act in cells to counter Rac-mediated membrane ruffling. How its SH3 binding site interacts with its GAP activity remains to be understood. Images PMID:7621827

  20. Basic fibroblast growth factor induces matrix metalloproteinase-13 via ERK MAP kinase-altered phosphorylation and sumoylation of Elk-1 in human adult articular chondrocytes

    PubMed Central

    Im, Hee-Jeong; Sharrocks, Andrew D; Lin, Xia; Yan, Dongyao; Kim, Jaesung; van Wijnen, Andre J; Hipskind, Robert A

    2009-01-01

    Degradation of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) and release of basic fibroblast growth factor (bFGF) are principal aspects of the pathology of osteoarthritis (OA). ECM disruption leads to bFGF release, which activates the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway and its downstream target the Ets-like transcription factor Elk-1. Previously we demonstrated that the bFGF-ERK-Elk-1 signaling axis is responsible for the potent induction of MMP-13 in human primary articular chondrocytes. Here we report that, in addition to phosphorylation of Elk-1, dynamic posttranslational modification of Elk-1 by small ubiquitin-related modifier (SUMO) serves as an important mechanism through which MMP-13 gene expression is regulated. We show that bFGF activates Elk-1 mainly through the ERK pathway and that increased phosphorylation of Elk-1 is accompanied by decreased conjugation of SUMO to Elk-1. Reporter gene assays reveal that phosphorylation renders Elk-1 competent for induction of MMP-13 gene transcription, while sumoylation has the opposite effect. Furthermore, we demonstrate that the SUMO-conjugase Ubc9 acts as a key mediator for Elk-1 sumoylation. Taken together, our results suggest that sumoylation antagonizes the phosphorylation-dependent transactivation capacity of Elk-1. This attenuates transcription of its downstream target gene MMP-13 to maintain the integrity of cartilage ECM homeostasis.

  1. Gelsolin-mediated activation of PI3K/Akt pathway is crucial for hepatocyte growth factor-induced cell scattering in gastric carcinoma.

    PubMed

    Huang, Baohua; Deng, Shuo; Loo, Ser Yue; Datta, Arpita; Yap, Yan Lin; Yan, Benedict; Ooi, Chia Huey; Dinh, Thuy Duong; Zhuo, Jingli; Tochhawng, Lalchhandami; Gopinadhan, Suma; Jegadeesan, Tamilarasi; Tan, Patrick; Salto-Tellez, Manuel; Yong, Wei Peng; Soong, Richie; Yeoh, Khay Guan; Goh, Yaw Chong; Lobie, Peter E; Yang, Henry; Kumar, Alan Prem; Maciver, Sutherland K; So, Jimmy B Y; Yap, Celestial T

    2016-05-01

    In gastric cancer (GC), the main subtypes (diffuse and intestinal types) differ in pathological characteristics, with diffuse GC exhibiting early disseminative and invasive behaviour. A distinctive feature of diffuse GC is loss of intercellular adhesion. Although widely attributed to mutations in the CDH1 gene encoding E-cadherin, a significant percentage of diffuse GC do not harbor CDH1 mutations. We found that the expression of the actin-modulating cytoskeletal protein, gelsolin, is significantly higher in diffuse-type compared to intestinal-type GCs, using immunohistochemical and microarray analysis. Furthermore, in GCs with wild-type CDH1, gelsolin expression correlated inversely with CDH1 gene expression. Downregulating gelsolin using siRNA in GC cells enhanced intercellular adhesion and E-cadherin expression, and reduced invasive capacity. Interestingly, hepatocyte growth factor (HGF) induced increased gelsolin expression, and gelsolin was essential for HGF-medicated cell scattering and E-cadherin transcriptional repression through Snail, Twist and Zeb2. The HGF-dependent effect on E-cadherin was found to be mediated by interactions between gelsolin and PI3K-Akt signaling. This study reveals for the first time a function of gelsolin in the HGF/cMet oncogenic pathway, which leads to E-cadherin repression and cell scattering in gastric cancer. Our study highlights gelsolin as an important pro-disseminative factor contributing to the aggressive phenotype of diffuse GC.

  2. Eicosopentaneoic Acid and Other Free Fatty Acid Receptor Agonists Inhibit Lysophosphatidic Acid- and Epidermal Growth Factor-Induced Proliferation of Human Breast Cancer Cells

    PubMed Central

    Hopkins, Mandi M.; Zhang, Zhihong; Liu, Ze; Meier, Kathryn E.

    2016-01-01

    Many key actions of ω-3 (n-3) fatty acids have recently been shown to be mediated by two G protein-coupled receptors (GPCRs) in the free fatty acid receptor (FFAR) family, FFA1 (GPR40) and FFA4 (GPR120). n-3 Fatty acids inhibit proliferation of human breast cancer cells in culture and in animals. In the current study, the roles of FFA1 and FFA4 were investigated. In addition, the role of cross-talk between GPCRs activated by lysophosphatidic acid (LPA), and the tyrosine kinase receptor activated by epidermal growth factor (EGF), was examined. In MCF-7 and MDA-MB-231 human breast cancer cell lines, both LPA and EGF stimulated proliferation, Erk activation, Akt activation, and CCN1 induction. LPA antagonists blocked effects of LPA and EGF on proliferation in MCF-7 and MDA-MB-231, and on cell migration in MCF-7. The n-3 fatty acid eicosopentaneoic acid inhibited LPA- and EGF-induced proliferation in both cell lines. Two synthetic FFAR agonists, GW9508 and TUG-891, likewise inhibited LPA- and EGF-induced proliferation. The data suggest a major role for FFA1, which was expressed by both cell lines. The results indicate that n-3 fatty acids inhibit breast cancer cell proliferation via FFARs, and suggest a mechanism involving negative cross-talk between FFARS, LPA receptors, and EGF receptor. PMID:26821052

  3. Pro-nerve growth factor induces autocrine stimulation of breast cancer cell invasion through tropomyosin-related kinase A (TrkA) and sortilin protein.

    PubMed

    Demont, Yohann; Corbet, Cyril; Page, Adeline; Ataman-Önal, Yasemin; Choquet-Kastylevsky, Genevieve; Fliniaux, Ingrid; Le Bourhis, Xuefen; Toillon, Robert-Alain; Bradshaw, Ralph A; Hondermarck, Hubert

    2012-01-13

    The precursor of nerve growth factor (proNGF) has been described as a biologically active polypeptide able to induce apoptosis in neuronal cells, via the neurotrophin receptor p75(NTR) and the sortilin receptor. Herein, it is shown that proNGF is produced and secreted by breast cancer cells, stimulating their invasion. Using Western blotting and mass spectrometry, proNGF was detected in a panel of breast cancer cells as well as in their conditioned media. Immunohistochemical analysis indicated an overproduction of proNGF in breast tumors, when compared with benign and normal breast biopsies, and a relationship to lymph node invasion in ductal carcinomas. Interestingly, siRNA against proNGF induced a decrease of breast cancer cell invasion that was restored by the addition of non-cleavable proNGF. The activation of TrkA, Akt, and Src, but not the MAP kinases, was observed. In addition, the proNGF invasive effect was inhibited by the Trk pharmacological inhibitor K252a, a kinase-dead TrkA, and siRNA against TrkA sortilin, neurotensin, whereas siRNA against p75(NTR) and the MAP kinase inhibitor PD98059 had no impact. These data reveal the existence of an autocrine loop stimulated by proNGF and mediated by TrkA and sortilin, with the activation of Akt and Src, for the stimulation of breast cancer cell invasion.

  4. The inhibitory effect of dexamethasone on platelet-derived growth factor-induced vascular smooth muscle cell migration through up-regulating PGC-1{alpha} expression

    SciTech Connect

    Xu, Wei; Guo, Ting; Zhang, Yan; Jiang, Xiaohong; Zhang, Yongxian; Zen, Ke; Yu, Bo; Zhang, Chen-Yu

    2011-05-01

    Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPAR{gamma}) coactivator-1 alpha (PGC-1{alpha}) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1{alpha} in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1{alpha} expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1{alpha} mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1{alpha} expression while stimulating VSMC migration. Mechanistic study showed that suppression of PGC-1{alpha} by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1{alpha} had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1{alpha} decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPAR{gamma} activation by a PPAR{gamma} antagonist GW9662 abolished the suppressive effects of PGC-1{alpha} on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1{alpha} were enhanced by a PPAR{gamma} agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1{alpha} expression. PGC-1{alpha} suppresses PDGF-induced VSMC migration through PPAR{gamma} coactivation and, consequently, p38 MAPK inhibition.

  5. Epidermal growth factor induces Ca(2+) sensitization through Rho-kinase-dependent phosphorylation of myosin phosphatase target subunit 1 in vascular smooth muscle.

    PubMed

    Sasahara, Tomoya; Okamoto, Hiroshi; Ohkura, Natsumi; Kobe, Asami; Yayama, Katsutoshi

    2015-09-01

    We previously found that the protein tyrosine phosphatase inhibitor orthovanadate evoked a vasoconstrictor effect in rat aortas via Rho-kinase-dependent inactivation of myosin light chain phosphatase (MLCP) downstream of epidermal growth factor (EGF) receptor signaling. To determine whether the direct activation of EGF receptor by EGF also induces Rho-kinase-dependent vasoconstriction, isometric tension changes were measured in rat aortic rings without endothelium. Although EGF did not produce a contractile effect, the Ca(2+)-induced force in Ca(2+)-depleted rings significantly increased after treatment with 100nM EGF, suggesting that EGF induces Ca(2+) sensitization by MLCP inactivation. In addition, EGF induced the activation of Rho-kinase and phosphorylation of myosin phosphatase target subunit 1 (MYPT1) in rat aortic smooth muscle cells (VSMCs). The effects of EGF on Ca(2+) sensitivity in aortas and MYPT1 phosphorylation in VSMCs were blocked by inhibitors of EGF receptor (AG1478), Rho-kinase (Y27632), extracellular signal-regulated kinase 1/2 (Erk1/2; FR180204), and mitogen/extracellular signal-regulated kinase (MEK; PD98059), but not by inhibitors of p38 kinase (SB203580) and c-Jun amino-terminal kinase (AS601245). EGF-induced Erk1/2 phosphorylation was not abrogated by the Rho-kinase inhibitor, suggesting that Rho-kinase-dependent phosphorylation of MYPT1 is downstream of EGF receptor/MEK/Erk1/2 signaling. These results suggest that EGF induces Ca(2+) sensitization in vascular smooth muscle by Rho-kinase-dependent inactivation of MLCP mediated by the EGF receptor/MEK/Erk1/2 pathway.

  6. Nuclear factor kappaB/p49 is a negative regulatory factor in nerve growth factor-induced choline acetyltransferase promoter activity in PC12 cells.

    PubMed

    Toliver-Kinsky, T; Wood, T; Perez-Polo, J R

    2000-12-01

    Anovel nuclear factor kappaB (NF-kappaB) binding site has been identified within the promoter region of the mouse gene encoding choline acetyltransferase (ChAT), the enzyme that synthesizes acetylcholine and has been implicated in the cognitive deficits associated with aging and Alzheimer's disease. This binding site, which is located within the nerve growth factor (NGF)-responsive enhancer element, was recognized by the NF-kappaB protein p49 but not p65 or p50. p49 from both basal forebrain and PC12 nuclear extracts interacted with this specific sequence in electrophoretic mobility shift assays. Mutation of the NF-kappaB site caused an increase in NGF-induced promoter activation, whereas overexpression of p49 in NGF-differentiated PC12 cells caused a decrease in endogenous ChAT enzyme activity and a decrease in promoter activity that was specifically mediated through this NF-kappaB binding site. Treatment of PC12 cells with NGF resulted in a drastic reduction in nuclear p49 binding to the ChAT NF-kappaB site after 24 h, but nuclear p49 levels were not altered, suggesting that late NGF-mediated events prevent binding of p49 to the ChAT promoter by an unknown mechanism other than nuclear translocation. Decreased ChAT expression and increased NF-kappaB activity in the brain are associated with aging and Alzheimer's disease. These data indicate that p49 is a negative regulator of ChAT expression and suggest a possible mechanism for aging-associated declines in cholinergic function.

  7. Matriptase is required for the active form of hepatocyte growth factor induced Met, focal adhesion kinase and protein kinase B activation on neural stem/progenitor cell motility.

    PubMed

    Fang, Jung-Da; Lee, Sheau-Ling

    2014-07-01

    Hepatocyte growth factor (HGF) is a chemoattractant and inducer for neural stem/progenitor (NS/P) cell migration. Although the type II transmembrane serine protease, matriptase (MTP) is an activator of the latent HGF, MTP is indispensable on NS/P cell motility induced by the active form of HGF. This suggests that MTP's action on NS/P cell motility involves mechanisms other than proteolytic activation of HGF. In the present study, we investigate the role of MTP in HGF-stimulated signaling events. Using specific inhibitors of phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) or focal adhesion kinase (FAK), we demonstrated that in NS/P cells HGF-activated c-Met induces PI3k-Akt signaling which then leads to FAK activation. This signaling pathway ultimately induces MMP2 expression and NS/P cell motility. Knocking down of MTP in NS/P cells with specific siRNA impaired HGF-stimulation of c-Met, Akt and FAK activation, blocked HGF-induced production of MMP2 and inhibited HGF-stimulated NS/P cell motility. MTP-knockdown NS/P cells cultured in the presence of recombinant protein of MTP protease domain or transfected with the full-length wild-type but not the protease-defected MTP restored HGF-responsive events in NS/P cells. In addition to functioning as HGF activator, our data revealed novel function of MTP on HGF-stimulated c-Met signaling activation.

  8. Nerve growth factor-induced derepression of peripherin gene expression is associated with alterations in proteins binding to a negative regulatory element.

    PubMed Central

    Thompson, M A; Lee, E; Lawe, D; Gizang-Ginsberg, E; Ziff, E B

    1992-01-01

    The peripherin gene, which encodes a neuronal-specific intermediate filament protein, is transcriptionally induced with a late time course when nerve growth factor (NGF) stimulates PC12 cells to differentiate into neurons. We have studied its transcriptional regulation in order to better understand the neuronal-specific end steps of the signal transduction pathway of NGF. By 5' deletion mapping of the peripherin promoter, we have localized two positive regulatory elements necessary for full induction by NGF: a distal positive element and a proximal constitutive element within 111 bp of the transcriptional start site. In addition, there is a negative regulatory element (NRE; -179 to -111), the deletion of which results in elevated basal expression of the gene. Methylation interference footprinting of the NRE defined a unique sequence, GGCAGGGCGCC, as the binding site for proteins present in nuclear extracts from both undifferentiated and differentiated PC12 cells. However, DNA mobility shift assays using an oligonucleotide probe containing the footprinted sequence demonstrate a prominent retarded complex in extracts from undifferentiated PC12 cells which migrates with slower mobility than do the complexes produced by using differentiated PC12 cell extract. Transfection experiments using peripherin-chloramphenicol acetyltransferase constructs in which the footprinted sequence has been mutated confirm that the NRE has a functional, though not exclusive, role in repressing peripherin expression in undifferentiated and nonneuronal cells. We propose a two-step model of activation of peripherin by NGF in which dissociation of a repressor from the protein complex at the NRE, coupled with a positive signal from the distal positive element, results in depression of the gene. Images PMID:1588954

  9. Involvement of an SHP-2-Rho small G protein pathway in hepatocyte growth factor/scatter factor-induced cell scattering.

    PubMed

    Kodama, A; Matozaki, T; Fukuhara, A; Kikyo, M; Ichihashi, M; Takai, Y

    2000-08-01

    Hepatocyte growth factor/scatter factor (HGF/SF) induces cell scattering through the tyrosine kinase-type HGF/SF receptor c-Met. We have previously shown that Rho small G protein (Rho) is involved in the HGF/SF-induced scattering of Madin-Darby canine kidney (MDCK) cells by regulating at least the assembly and disassembly of stress fibers and focal adhesions, but it remains unknown how c-Met regulates Rho activity. We have found here a novel signaling pathway of c-Met consisting of SHP-2-Rho that regulates the assembly and disassembly of stress fibers and focal adhesions in MDCK cells. SHP-2 is a protein-tyrosine phosphatase that contains src homology-2 domains. Expression of a dominant negative mutant of SHP-2 (SHP-2-C/S) markedly increased the formation of stress fibers and focal adhesions in MDCK cells and inhibited their scattering. C3, a Clostridium botulinum ADP-ribosyltransferase, and Y-27632, a specific inhibitor for ROCK, reversed the stimulatory effect of SHP-2-C/S on stress fiber formation and the inhibitory effect on cell scattering. Vav2 is a GDP/GTP exchange protein for Rho. Expression of a dominant negative mutant of Vav2 blocked the stimulatory effect of SHP-2-C/S on stress fiber formation. Conversely, expression of mutants of Vav2 that increased stress fiber formation inhibited HGF/SF-induced cell scattering. These results indicate that SHP-2 physiologically modulates the activity of Rho to form stress fibers and focal adhesions and thereby regulates HGF/SF-induced cell scattering. In addition, Vav2 may be involved in the SHP-2-Rho pathway.

  10. The role of peroxisome proliferator-activated receptor-{beta}/{delta} in epidermal growth factor-induced HaCaT cell proliferation

    SciTech Connect

    Liang Pengfei; Jiang Bimei; Yang Xinghua; Xiao Xianzhong Huang Xu; Long Jianhong; Zhang Pihong; Zhang Minghua; Xiao Muzhang; Xie Tinghong; Huang Xiaoyuan

    2008-10-15

    Epidermal growth factor (EGF) has been shown to be a potent mitogen for epidermal cells both in vitro and in vivo, thus contributing to the development of an organism. It has recently become clear that peroxisome proliferator-activated receptor-{beta}/{delta} (PPAR{beta}/{delta}) expression and activation is involved in the cell proliferation. However, little is known about the role of PPAR{beta}/{delta} in EGF-induced proliferation of HaCaT keratinocytes. In this study, HaCaT cells were cultured in the presence and absence of EGF and we identified that EGF induced an increase of PPAR{beta}/{delta} mRNA and protein level expression in time-dependent and dose-dependent manner, and AG1487, an EGF receptor (EGFR) special inhibitor, caused attenuation of PPAR{beta}/{delta} protein expression. Electrophoretic mobility shift assay (EMSA) revealed that EGF significantly increased PPAR{beta}/{delta} binding activity in HaCaT keratinocytes. Antisense phosphorothioate oligonucleotides (asODNs) against PPAR{beta}/{delta} caused selectively inhibition of PPAR{beta}/{delta} protein content induced by EGF and significantly attenuated EGF-mediated cell proliferation. Treatment of the cells with L165041, a specific synthetic ligand for PPAR{beta}/{delta}, significantly enhanced EGF-mediated cell proliferation. Finally, c-Jun ablation inhibited PPAR{beta}/{delta} up-regulation induced by EGF, and chromatin immunoprecipitation (ChIP) showed that c-Jun bound to the PPAR{beta}/{delta} promoter and the binding increased in EGF-stimulated cells. These results demonstrate that EGF induces PPAR{beta}/{delta} expression in a c-Jun-dependent manner and PPAR{beta}/{delta} plays a vital role in EGF-stimulated proliferation of HaCaT cells.

  11. Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity

    NASA Astrophysics Data System (ADS)

    Leach, Jennie B.; Brown, Xin Q.; Jacot, Jeffrey G.; Di Milla, Paul A.; Wong, Joyce Y.

    2007-06-01

    Rationally designed matrices for nerve tissue engineering and encapsulated cell therapies critically rely on a comprehensive understanding of neural response to biochemical as well as biophysical cues. Whereas biochemical cues are established mediators of neuronal behavior (e.g., outgrowth), physical cues such as substrate stiffness have only recently been recognized to influence cell behavior. In this work, we examine the response of PC12 neurites to substrate stiffness. We quantified and controlled fibronectin density on the substrates and measured multiple neurite behaviors (e.g., growth, branching, neurites per cell, per cent cells expressing neurites) in a large sample population. We found that PC12 neurons display a threshold response to substrate stiffness. On the softest substrates tested (shear modulus ~10 Pa), neurites were relatively few, short in length and unbranched. On stiffer substrates (shear modulus ~102-104 Pa), neurites were longer and more branched and a greater percentage of cells expressed neurites; significant differences in these measures were not found on substrates with a shear modulus >102 Pa. Based on these data and comparisons with published neurobiology and neuroengineering reports of neurite mechanotransduction, we hypothesize that results from studies of neuronal response to compliant substrates are cell-type dependent and sensitive to ligand density, sample size and the range of stiffness investigated.

  12. Inhibition of epidermal growth factor-induced mitogenesis by amiloride and an analog: evidence against a requirement for Na+/H+ exchange.

    PubMed Central

    Besterman, J M; Tyrey, S J; Cragoe, E J; Cuatrecasas, P

    1984-01-01

    We have tested the hypothesis that the rapid stimulation of Na+/H+ exchange by epidermal growth factor (EGF) is a requirement for induction of mitogenesis. BALB/c 3T3 cells exposed for 4 hr at 37 degrees C to both EGF at 1 ng/ml and either 0.2-1 mM amiloride (an inhibitor of Na+/H+ exchange) or 10 microM MK-685 (an amiloride analog and more potent inhibitor of Na+/H+ exchange) incorporated no less [methyl-3H]thymidine during a 1-hr pulse 20 hr later than did cells exposed for 4 hr to EGF alone. Control experiments utilizing low external pH (to dissociate EGF from its receptor) and anti-EGF antibodies indicated that the failure of amiloride to inhibit mitogenesis when copresent with EGF during the first 4 hr was not due to incomplete removal of EGF and complete removal of amiloride at t4. Cells incubated with 200 microM amiloride for 24 hr showed nearly complete inhibition of stimulation by EGF. In comparison, cells incubated with 10 microM MK-685 for 24 hr showed only a slight inhibition of stimulation by EGF. Incubations with amiloride or MK-685 for shorter periods of time indicated that only amiloride inhibited mitogenesis and that this inhibition happened between 4 (t4) and 10(t10) hr after EGF addition, during which time increases in RNA and protein synthesis (required for mitogenesis) occurred. Amiloride inhibited both RNA and protein syntheses in intact cells during this prereplicative period, while MK-685 was without effect. We conclude that (i) inhibition of EGF-induced mitogenesis by amiloride is due not to inhibition of EGF-stimulated Na+/H+ exchange but rather to inhibition of necessary events occurring during the hours immediately prior to the onset of DNA synthesis, these events probably being RNA and protein synthesis and (ii) in cell culture medium buffered with CO2/HCO3-, complete inhibition of EGF-stimulated Na+/H+ exchange does not inhibit EGF-induced mitogenesis and, thus, stimulation of Na+/H+ exchange is not necessary for induction of

  13. Electrical and Neurotrophin Enhancement of Neurite Outgrowth within a 3D Collagen Scaffold

    PubMed Central

    Adams, Robert D.; Rendell, Sara R.; Counts, Lauren R.; Papke, Jason B.; Willits, Rebecca K.; Harkins, Amy B.

    2016-01-01

    Electrical and chemical stimulation have been studied as potent mechanisms of enhancing nerve regeneration and wound healing. However, it remains unclear how electrical stimuli affect nerve growth, particularly in the presence of neurotrophic factors. The objective of this study was to explore (1) the effect of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) supplementation to support neurite outgrowth in a 3D scaffold, and (2) the effect of brief, low voltage, electrical stimulation (ES) on neurite outgrowth prior to neurotrophin supplementation. Dissociated E11 chick dorsal root ganglia (DRG) were seeded within a 1.5 mg/mL type-I collagen scaffold. For neurotrophin treatments, scaffolds were incubated for 24 hrs in culture media containing nerve growth factor (NGF, 10 ng/mL) or BDNF (200 ng/mL), or both. For ES groups, scaffolds containing neurons were stimulated for 10 min at 8–10 V/m DC, then incubated for 24 hrs with neurotrophin. Fixed and labeled neurons were imaged to measure neurite growth and directionality. BDNF supplementation was not as effective as NGF at supporting DRG neurite outgrowth. ES prior to NGF supplementation improved DRG neurite outgrowth compared to NGF alone. This combination of brief ES with NGF treatment was the most effective treatment compared to NGF or BDNF alone. Brief ES had no impact on neurite directionality in the 3D scaffolds. These results demonstrate that ES improves neurite outgrowth in the presence of neurotrophins, and could provide a potential therapeutic approach to improve nerve regeneration when coupled with neurotrophin treatment. PMID:24710795

  14. Epidermal growth factor-induced selective phosphorylation of cultured rat hepatocyte 55-kD cytokeratin before filament reorganization and DNA synthesis

    PubMed Central

    1989-01-01

    We have reported previously that the addition of dexamethasone to cultured quiescent suckling rat hepatocytes in the presence of insulin, a culture condition which does not cause growth activation, induces a selective increase in the synthesis of the 49-kD/55-kD cytokeratin (CK49/CK55) pair over a 24-h period. This increased synthesis coincides with the formation of dense filament networks reminiscent of those observed in situ at the cell periphery (Marceau, N., H. Baribault, and I. Leroux-Nicollet. 1985. Can. J. Biochem. Cell Biol. 63:448-457). We show here for the first time that when EGF is added 48 h after insulin and dexamethasone, there is an early preferential phosphorylation of the CK55 of the CK49/CK55 pair, an induced filament rearrangement from the cell periphery to the cytoplasm, and a subsequent entry into S phase and mitosis after a lag period of 8 h. Indirect immunofluorescence microscopy with monoclonal antibodies to CK49 and CK55 indicate that, while before EGF treatment the cytokeratin filaments were mainly distributed near the cell periphery, the addition of EGF resulted in their reorganization to a predominantly cytoplasmic localization within less than 3 h. Antitubulin and anti-actin antibodies showed no detectable alteration in the distribution of microtubules and microfilaments. Pulse-chase measurements with [35S]methionine showed no apparent change in the turnover of either CK49 or CK55 during the period that precedes the initiation of DNA synthesis. 32P-labeling in vivo followed by SDS-PAGE demonstrated that CK55 was phosphorylated at a much higher level than CK49 in nonstimulated hepatocytes, and that the addition of EGF resulted in a selective stimulation of 32P-CK55 labeling within less than 30 min. Comparative analyses by two-dimensional PAGE of [35S]methionine and 32P- labeled cytokeratins at various times after EGF stimulation demonstrated a rapid increase in a first phosphorylated form of CK55 and the appearance of a second

  15. Amyloid β-Protein as a Substrate Interacts with Extracellular Matrix to Promote Neurite Outgrowth

    NASA Astrophysics Data System (ADS)

    Koo, Edward H.; Park, Lisa; Selkoe, Dennis J.

    1993-05-01

    Progressive deposition of amyloid β-protein (Aβ) in brain parenchyma and blood vessels is a characteristic feature of Alzheimer disease. Recent evidence suggests that addition of solubilized synthetic Aβ to medium may produce toxic or trophic effects on cultured hippocampal neurons. Because soluble Aβ may not accumulate in significant quantities in brain, we asked whether immobilized Aβ peptide as a substrate alters neurite outgrowth from cultured rat peripheral sensory neurons. This paradigm may closely mimic the conditions in Alzheimer disease brain tissue, in which neurites contact insoluble, extracellular aggregates of β-amyloid. We detected no detrimental effects of Aβ substrate on neurite outgrowth. Rather, Aβ in combination with low doses of laminin or fibronectin enhanced neurite out-growth from these neuronal explants. Our results suggest that insoluble Aβ in the cerebral neuropil may serve as a neurite-promoting matrix, perhaps explaining the apparent regenerative response of neurites observed around amyloid plaques in Alzheimer disease. Moreover, in concert with the recent discovery of Aβ production by cultured neurons, our data suggest that Aβ plays a normal physiological role in brain by complexing with the extracellular matrix.

  16. VANG-1 and PRKL-1 cooperate to negatively regulate neurite formation in Caenorhabditis elegans.

    PubMed

    Sanchez-Alvarez, Leticia; Visanuvimol, Jiravat; McEwan, Andrea; Su, Anna; Imai, Janice H; Colavita, Antonio

    2011-09-01

    Neuritogenesis is a critical early step in the development and maturation of neurons and neuronal circuits. While extracellular directional cues are known to specify the site and orientation of nascent neurite formation in vivo, little is known about the genetic pathways that block inappropriate neurite emergence in order to maintain proper neuronal polarity. Here we report that the Caenorhabditis elegans orthologues of Van Gogh (vang-1), Prickle (prkl-1), and Dishevelled (dsh-1), core components of planar cell polarity (PCP) signaling, are required in a subset of peripheral motor neurons to restrict neurite emergence to a specific organ axis. In loss-of-function mutants, neurons display supernumerary neurites that extend inappropriately along the orthogonal anteroposterior (A/P) body axis. We show that autonomous and non-autonomous gene activities are required early and persistently to inhibit the formation or consolidation of growth cone protrusions directed away from organ precursor cells. Furthermore, prkl-1 overexpression is sufficient to suppress neurite formation and reorient neuronal polarity in a vang-1- and dsh-1-dependent manner. Our findings suggest a novel role for a PCP-like pathway in maintaining polarized neuronal morphology by inhibiting neuronal responses to extrinsic or intrinsic cues that would otherwise promote extraneous neurite formation.

  17. The impact of laminin on 3D neurite extension in collagen gels

    NASA Astrophysics Data System (ADS)

    Swindle-Reilly, Katelyn E.; Papke, Jason B.; Kutosky, Hannah P.; Throm, Allison; Hammer, Joshua A.; Harkins, Amy B.; Kuntz Willits, Rebecca

    2012-08-01

    The primary goal of this research was to characterize the effect of laminin on three-dimensional (3D) neurite growth. Gels were formed using type I collagen at concentrations of 0.4-2.0 mg mL-1 supplemented with laminin at concentrations of 0, 1, 10, or 100 µg mL-1. When imaged with confocal microscopy, laminin was shown to follow the collagen fibers; however, the addition of laminin had minimal effect on the stiffness of the scaffolds at any concentration of collagen. Individual neurons dissociated from E9 chick dorsal root ganglia were cultured in the gels for 24 h, and neurite lengths were measured. For collagen gels without laminin, a typical bimodal response of neurite outgrowth was observed, with increased growth at lower concentrations of collagen gel. However, alteration of the chemical nature of the collagen gel by the laminin additive shifted, or completely mitigated, the bimodal neurite growth response seen in gels without laminin. Expression of integrin subunits, α1, α3, α6 and β1, were confirmed by PCR and immunolabeling in the 3D scaffolds. These results provide insight into the interplay between mechanical and chemical environment to support neurite outgrowth in 3D. Understanding the relative impact of environmental factors on 3D nerve growth may improve biomaterial design for nerve cell regeneration.

  18. Ca2+ transients are not required as signals for long-term neurite outgrowth from cultured sympathetic neurons

    PubMed Central

    1990-01-01

    A method for clamping cytosolic free Ca2+ ([Ca2+]i) in cultures of rat sympathetic neurons at or below resting levels for several days was devised to determine whether Ca2+ signals are required for neurite outgrowth from neurons that depend on Nerve Growth Factor (NGF) for their growth and survival. To control [Ca2+]i, normal Ca2+ influx was eliminated by titration of extracellular Ca2+ with EGTA and reinstated through voltage-sensitive Ca2+ channels. The rate of neurite outgrowth and the number of neurites thus became dependent on the extent of depolarization by KCl, and withdrawal of KCl caused an immediate cessation of growth. Neurite outgrowth was completely blocked by the L type Ca2+ channel antagonists nifedipine, nitrendipine, D600, or diltiazem at sub- or micromolar concentrations. Measurement of [Ca2+]i in cell bodies using the fluorescent Ca2+ indicator fura-2 established that optimal growth, similar to that seen in normal medium, was obtained when [Ca2+]i was clamped at resting levels. These levels of [Ca2+]i were set by serum, which elevated [Ca2+]i by integral of 30 nM, whereas the addition of NGF had no effect on [Ca2+]i. The reduction of [Ca2+]o prevented neurite fasciculation but this had no effect on the rate of neurite elongation or on the number of extending neurites. These results show that neurite outgrowth from NGF-dependent neurons occurs over long periods in the complete absence of Ca2+ signals, suggesting that Ca2+ signals are not necessary for operating the basic machinery of neurite outgrowth. PMID:2324199

  19. Differential intensity-dependent effects of magnetic stimulation on the longest neurites and shorter dendrites in neuroscreen-1 cells

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Yi; Huang, Whitney J.; Li, Kevin; Swanson, Roy; Cheung, Brian; Lin, Vernon W.; Lee, Yu-Shang

    2015-04-01

    Objective. Magnetic stimulation (MS) is a potential treatment for neuropsychiatric disorders. This study investigates whether MS-regulated neuronal activity can translate to specific changes in neuronal arborization and thus regulate synaptic activity and function. Approach. To test our hypotheses, we examined the effects of MS on neurite growth of neuroscreen-1 (NS-1) cells over the pulse frequencies of 1, 5 and 10 Hz at field intensities controlled via machine output (MO). Cells were treated with either 30% or 40% MO. Due to the nature of circular MS coils, the center region of the gridded coverslip (zone 1) received minimal (∼5%) electromagnetic current density while the remaining area (zone 2) received maximal (∼95%) current density. Plated NS-1 cells were exposed to MS twice per day for three days and then evaluated for length and number of neurites and expression of brain-derived neurotrophic factor (BDNF). Main results. We show that MS dramatically affects the growth of the longest neurites (axon-like) but does not significantly affect the growth of shorter neurites (dendrite-like). Also, MS-induced changes in the longest neurite growth were most evident in zone 1, but not in zone 2. MS effects were intensity-dependent and were most evident in bolstering longest neurite outgrowth, best seen in the 10 Hz MS group. Furthermore, we found that MS-increased BDNF expression and secretion was also frequency-dependent. Taken together, our results show that MS exerts distinct effects when different frequencies and intensities are applied to the neuritic compartments (longest neurite versus shorter dendrite(s)) of NS-1 cells. Significance. These findings support the concept that MS increases BDNF expression and signaling, which sculpts longest neurite arborization and connectivity by which neuronal activity is regulated. Understanding the mechanisms underlying MS is crucial for efficiently incorporating its use into potential therapeutic strategies.

  20. Stimulation of neuronal neurite outgrowth using functionalized carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Sato, C.; Naka, Y.; Whitby, R.; Shimizu, N.

    2010-03-01

    Low concentrations (0.11-1.7 µg ml - 1) of functionalized carbon nanotubes (CNTs), which are multi-walled CNTs modified by amino groups, when added with nerve growth factor (NGF), promoted outgrowth of neuronal neurites in dorsal root ganglion (DRG) neurons and rat pheochromocytoma cell line PC12h cells in culture media. The quantity of active extracellular signal-regulated kinase (ERK) was higher after the addition of both 0.85 µg ml - 1 CNTs and NGF than that with NGF alone. CNTs increased the number of cells with neurite outgrowth in DRG neurons and PC12h cells after the inhibition of the ERK signaling pathway using a mitogen-activated protein kinase (MAPK)/ERK kinase (MEK) inhibitor. Active ERK proteins were detected in MEK inhibitor-treated neurons after the addition of CNTs to the culture medium. These results demonstrate that CNTs may stimulate neurite outgrowth by activation of the ERK signaling pathway. Thus, CNTs are biocompatible and are promising candidates for biological applications and devices.

  1. c-Fos activated phospholipid synthesis is required for neurite elongation in differentiating PC12 cells.

    PubMed

    Gil, Germán A; Bussolino, Daniela F; Portal, Maximiliano M; Alfonso Pecchio, Adolfo; Renner, Marianne L; Borioli, Graciela A; Guido, Mario E; Caputto, Beatriz L

    2004-04-01

    We have previously shown that c-Fos activates phospholipid synthesis through a mechanism independent of its genomic AP-1 activity. Herein, using PC12 cells induced to differentiate by nerve growth factor, the genomic effect of c-Fos in initiating neurite outgrowth is shown as distinct from its nongenomic effect of activating phospholipid synthesis and sustaining neurite elongation. Blocking c-Fos expression inhibited differentiation, phospholipid synthesis activation, and neuritogenesis. In cells primed to grow, blocking c-Fos expression determined neurite retraction. However, transfected cells expressing c-Fos or c-Fos deletion mutants with capacity to activate phospholipid synthesis sustain neurite outgrowth and elongation in the absence of nerve growth factor. Results disclose a dual function of c-Fos: it first releases the genomic program for differentiation and then associates to the endoplasmic reticulum and activates phospholipid synthesis. Because phospholipids are key membrane components, we hypothesize this latter phenomenon as crucial to support membrane genesis demands required for cell growth and neurite elongation. PMID:14767061

  2. Neurite outgrowth at the biomimetic interface.

    PubMed

    Kofron, Celinda M; Liu, Yu-Ting; López-Fagundo, Cristina Y; Mitchel, Jennifer A; Hoffman-Kim, Diane

    2010-06-01

    Understanding the cues that guide axons and how we can optimize these cues to achieve directed neuronal growth is imperative for neural tissue engineering. Cells in the local environment influence neurons with a rich combination of cues. This study deconstructs the complex mixture of guidance cues by working at the biomimetic interface--isolating the topographical information presented by cells and determining its capacity to guide neurons. We generated replica materials presenting topographies of oriented astrocytes (ACs), endothelial cells (ECs), and Schwann cells (SCs) as well as computer-aided design materials inspired by the contours of these cells (bioinspired-CAD). These materials presented distinct topographies and anisotropies and in all cases were sufficient to guide neurons. Dorsal root ganglia (DRG) cells and neurites demonstrated the most directed response on bioinspired-CAD materials which presented anisotropic features with 90 degrees edges. DRG alignment was strongest on SC bioinspired-CAD materials followed by AC bioinspired-CAD materials, with more uniform orientation to EC bioinspired-CAD materials. Alignment on replicas was strongest on SC replica materials followed by AC and EC replicas. These results suggest that the topographies of anisotropic tissue structures are sufficient for neuronal guidance. This work is discussed in the context of feature dimensions, morphology, and guidepost hypotheses.

  3. Experimental and computational models of neurite extension at a choice point in response to controlled diffusive gradients

    NASA Astrophysics Data System (ADS)

    Catig, G. C.; Figueroa, S.; Moore, M. J.

    2015-08-01

    Ojective. Axons are guided toward desired targets through a series of choice points that they navigate by sensing cues in the cellular environment. A better understanding of how microenvironmental factors influence neurite growth during development can inform strategies to address nerve injury. Therefore, there is a need for biomimetic models to systematically investigate the influence of guidance cues at such choice points. Approach. We ran an adapted in silico biased turning axon growth model under the influence of nerve growth factor (NGF) and compared the results to corresponding in vitro experiments. We examined if growth simulations were predictive of neurite population behavior at a choice point. We used a biphasic micropatterned hydrogel system consisting of an outer cell restrictive mold that enclosed a bifurcated cell permissive region and placed a well near a bifurcating end to allow proteins to diffuse and form a gradient. Experimental diffusion profiles in these constructs were used to validate a diffusion computational model that utilized experimentally measured diffusion coefficients in hydrogels. The computational diffusion model was then used to establish defined soluble gradients within the permissive region of the hydrogels and maintain the profiles in physiological ranges for an extended period of time. Computational diffusion profiles informed the neurite growth model, which was compared with neurite growth experiments in the bifurcating hydrogel constructs. Main results. Results indicated that when applied to the constrained choice point geometry, the biased turning model predicted experimental behavior closely. Results for both simulated and in vitro neurite growth studies showed a significant chemoattractive response toward the bifurcated end containing an NGF gradient compared to the control, though some neurites were found in the end with no NGF gradient. Significance. The integrated model of neurite growth we describe will allow

  4. DA-9801 promotes neurite outgrowth via ERK1/2-CREB pathway in PC12 cells.

    PubMed

    Won, Jong Hoon; Ahn, Kyong Hoon; Back, Moon Jung; Ha, Hae Chan; Jang, Ji Min; Kim, Ha Hyung; Choi, Sang-Zin; Son, Miwon; Kim, Dae Kyong

    2015-01-01

    In the present study, we examined the mechanisms underlying the effect of DA-9801 on neurite outgrowth. We found that DA-9801 elicits its effects via the mitogen-activated protein kinase (MEK) extracellular signal-regulated kinase (ERK)1/2-cAMP response element-binding protein (CREB) pathway. DA-9801, an extract from a mixture of Dioscorea japonica and Dioscorea nipponica, was reported to promote neurite outgrowth in PC12 cells. The effects of DA-9801 on cell viability and expression of neuronal markers were evaluated in PC12 cells. To investigate DA-9801 action, specific inhibitors targeting the ERK signaling cascade were used. No cytotoxicity was observed in PC12 cells at DA-9801 concentrations of less than 30 µg/mL. In the presence of nerve growth factor (NGF, 2 ng/mL), DA-9801 promoted neurite outgrowth and increased the relative mRNA levels of neurofilament-L (NF-L), a marker of neuronal differentiation. The Raf-1 inhibitor GW5074 and MEK inhibitor PD98059 significantly attenuated DA-9801-induced neurite outgrowth. Additionally, the MEK1 and MEK2 inhibitor SL327 significantly attenuated the increase in the percentage of neurite-bearing PC12 cells induced by DA-9801 treatment. Conversely, the selective p38 mitogen-activated protein kinase inhibitor SB203580 did not attenuate the DA-9801 treatment-induced increase in the percentage of neurite-bearing PC12 cells. DA-9801 enhanced the phosphorylation of ERK1/2 and CREB in PC12 cells incubated with and without NGF. Pretreatment with PD98059 blocked the DA-9801-induced phosphorylation of ERK1/2 and CREB. In conclusion, DA-9801 induces neurite outgrowth by affecting the ERK1/2-CREB signaling pathway. Insights into the mechanism underlying this effect of DA-9801 may suggest novel potential strategies for the treatment of peripheral neuropathy.

  5. Synergistic Effects of 3D ECM and Chemogradients on Neurite Outgrowth and Guidance: A Simple Modeling and Microfluidic Framework

    PubMed Central

    Srinivasan, Parthasarathy; Zervantonakis, Ioannis K.; Kothapalli, Chandrasekhar R.

    2014-01-01

    During nervous system development, numerous cues within the extracellular matrix microenvironment (ECM) guide the growing neurites along specific pathways to reach their intended targets. Neurite motility is controlled by extracellular signal sensing through the growth cone at the neurite tip, including chemoattractive and repulsive cues. However, it is difficult to regenerate and restore neurite tracts, lost or degraded due to an injury or disease, in the adult central nervous system. Thus, it is important to evaluate the dynamic interplay between ECM and the concentration gradients of these cues, which would elicit robust neuritogenesis. Such information is critical in understanding the processes involved in developmental biology, and in developing high-fidelity neurite regenerative strategies post-injury, and in drug discovery and targeted therapeutics for neurodegenerative conditions. Here, we quantitatively investigated this relationship using a combination of mathematical modeling and in vitro experiments, and determined the synergistic role of guidance cues and ECM on neurite outgrowth and turning. Using a biomimetic microfluidic system, we have shown that cortical neurite outgrowth and turning under chemogradients (IGF-1 or BDNF) within 3D scaffolds is highly regulated by the source concentration of the guidance cue and the physical characteristics of the scaffold. A mechanistic-driven partial differential equation model of neurite outgrowth has been proposed, which could also be used prospectively as a predictive tool. The parameters for the chemotaxis term in the model are determined from the experimental data using our microfluidic assay. Resulting model simulations demonstrate how neurite outgrowth was critically influenced by the experimental variables, which was further supported by experimental data on cell-surface-receptor expressions. The model results are in excellent agreement with the experimental findings. This integrated approach represents a

  6. Pure neuritic leprosy: Current status and relevance.

    PubMed

    Rao, P Narasimha; Suneetha, Sujai

    2016-01-01

    Pure neuritic leprosy has always been an enigma due to its clinical and management ambiguities. Although only the Indian Association of Leprologist's classification recognizes 'pure neuritic leprosy' as a distinct sub group of leprosy, cases nonetheless are reported from various countries of Asia, Africa, South America and Europe, indicating its global relevance. It is important to maintain pure neuritic leprosy as a subgroup as it constitutes a good percentage of leprosy cases reported from India, which contributes to more than half of global leprosy numbers. Unfortunately, a high proportion of these patients present with Grade 2 disability at the time of initial reporting itself due to the early nerve involvement. Although skin lesions are absent by definition, when skin biopsies were performed from the skin along the distribution of the affected nerve, a proportion of patients demonstrated leprosy pathology, revealing sub-clinical skin involvement. In addition on follow-up, skin lesions are noted to develop in up to 20% of pure neuritic leprosy cases, indicating its progression to manifest cutaneous disease. Over the decades, the confirmation of diagnosis of pure neuritic leprosy has been subjective, however, with the arrival and use of high-resolution ultrasonography (HRUS) for nerve imaging, we have a tool not only to objectively measure and record the nerve thickening but also to assess the morphological alterations in the nerve including echo texture, fascicular pattern and vascularity. Management of pure neuritic leprosy requires multidrug therapy along with appropriate dose of systemic corticosteroids, for both acute and silent neuritis. Measures for pain relief, self-care of limbs and physiotherapy are important to prevent as well as manage disabilities in this group of patients. PMID:27088926

  7. Neurite-outgrowth regulating functions of the amyloid protein precursor of Alzheimer's disease.

    PubMed

    Small, D H; Clarris, H L; Williamson, T G; Reed, G; Key, B; Mok, S S; Beyreuther, K; Masters, C L; Nurcombe, V

    1999-11-01

    Many studies have shown that breakdown of the amyloid protein precursor (APP) to produce the amyloid protein is an important step in the pathogenic mechanism which causes Alzheimer's disease (AD). However, little is known about the normal function of APP. Developmental studies show that APP expression increases during the period of brain development when neurite outgrowth and synaptogenesis is maximal. APP is expressed highly within growing neurites and in growth cones, and purified APP has been shown to stimulate neurite outgrowth from cells in culture. Thus APP may regulate neurite outgrowth or synaptogenesis in vivo. APP is actively secreted from many cells, and the C-terminally secreted APP has been shown to associate with components of the extracellular matrix, such as the heparan sulphate proteoglycans (HSPGs). Two putative heparin-binding domains on APP have been reported. Binding of HSPGs to an N-terminal heparin-binding domain (HBD-1) stimulates the effect of substrate-bound APP on neurite outgrowth. In the mature nervous system, APP may play an important role in the regulation of wound repair. It is highly likely that studies on the normal functions of APP will shed further light on aspects of the pathogenesis of AD.

  8. Essential role of NKCC1 in NGF-induced neurite outgrowth

    SciTech Connect

    Nakajima, Ken-ichi; Miyazaki, Hiroaki; Niisato, Naomi; Marunaka, Yoshinori . E-mail: marunaka@koto.kpu-m.ac.jp

    2007-08-03

    The Na{sup +}/K{sup +}/2Cl{sup -} cotransporter (NKCC) mediates electroneutral transport of 2Cl{sup -} coupled with Na{sup +} and K{sup +} across the plasma membrane, and plays crucial roles in Cl{sup -} uptake into the cells, homeostasis of cellular Cl{sup -}, and cell volume regulation. However, we have very limited information on the roles of ion transporters in neurite outgrowth in neuronal cells. In the present study, we report the role of NKCC1 (an isoform of NKCC) in NGF-induced neurite outgrowth of rat pheochromocytoma PC12D cells. The expression level of NKCC1 protein was increased by NGF treatment. Knock-down of NKCC1 by RNA interference (RNAi) drastically diminished the NGF-induced neurite outgrowth. Transfection of enhanced green fluorescent protein (EGFP)-tagged rat NKCC1 into cells for clarification of intracellular localization of NKCC1 revealed that the EGFP-rNKCC1 was mainly localized in the plasma membrane at growth cone during neurite outgrowth. These observations suggest that NKCC1 plays a fundamental role in NGF-induced neurite outgrowth of PC12D cells.

  9. MiR-124 is differentially expressed in derivatives of the sympathoadrenal cell lineage and promotes neurite elongation in chromaffin cells.

    PubMed

    Shtukmaster, Stella; Narasimhan, Priyanka; El Faitwri, Tehani; Stubbusch, Jutta; Ernsberger, Uwe; Rohrer, Hermann; Unsicker, Klaus; Huber, Katrin

    2016-08-01

    The neural-crest-derived sympathoadrenal cell lineage gives rise to sympathetic neurons and to endocrine chromaffin cells of the adrenal medulla. Both cell types express a largely overlapping set of genes, including those coding for the molecular machinery related to the synthesis and exocytotic release of catecholamines. During their early development, sympathetic neurons and chromaffin cells rely on a shared transcription factor network that controls the establishment of these common features. Despite many similarities, mature sympathetic neurons and chromaffin cells significantly differ regarding their morphology and function. Most prominently, sympathetic neurons possess axons that are absent in mammalian adrenal chromaffin cells. The molecular mechanism underlying the divergent development of sympathoadrenal cells into neuronal and endocrine cells remains elusive. Mutational inactivation of the ribonuclease dicer hints at the importance of microRNAs in this diversification. We show here that miR-124 is detectable in developing sympathetic neurons but absent in chromaffin cell precursors. We further demonstrate that miR-124 promotes neurite elongation when transfected into cultured chromaffin cells indicating its capability to support the establishment of a neuronal morphology in non-neuronal sympathoadrenal cells. Our results also show that treatment of PC12 cells with the neurotrophin nerve growth factor leads to an upregulation of miR-124 expression and that inhibition of miR-124 reduces nerve-growth-factor-induced neurite outgrowth in PC12 cells. Thus, our data indicate that miR-124 contributes to the establishment of specific neuronal features in developing sympathoadrenal cells. PMID:27094431

  10. Neurite outgrowth enhancement by jiadifenolide: possible targets.

    PubMed

    Shenvi, R A

    2016-04-01

    Covering: 1860-2016A mechanistic link may exist between convulsant plant substances typified by picrotoxinin, and 'neurotrophic' sesquiterpenes like jiadifenolide. Picrotoxinin elicits convulsion by anion blockade of the Cys-loop family of neurotransmitter-gated ion channels. These same receptors mediate neuronal development and neurite outgrowth prior to synapse formation. Due to its structural homology with picrotoxin and anisatin, it is possible that jiadifenolide enhances NGF-stimulated neurite outgrowth by modulation of the Cys-loop family of receptors. PMID:26891462

  11. Enhanced Neurite Outgrowth of Human Model (NT2) Neurons by Small-Molecule Inhibitors of Rho/ROCK Signaling

    PubMed Central

    Roloff, Frank; Scheiblich, Hannah; Dewitz, Carola; Dempewolf, Silke; Stern, Michael; Bicker, Gerd

    2015-01-01

    Axonal injury in the adult human central nervous system often results in loss of sensation and motor functions. Promoting regeneration of severed axons requires the inactivation of growth inhibitory influences from the tissue environment and stimulation of the neuron intrinsic growth potential. Especially glial cell derived factors, such as chondroitin sulfate proteoglycans, Nogo-A, myelin-associated glycoprotein, and myelin in general, prevent axon regeneration. Most of the glial growth inhibiting factors converge onto the Rho/ROCK signaling pathway in neurons. Although conditions in the injured nervous system are clearly different from those during neurite outgrowth in vitro, here we use a chemical approach to manipulate Rho/ROCK signalling with small-molecule agents to encourage neurite outgrowth in cell culture. The development of therapeutic treatments requires drug testing not only on neurons of experimental animals, but also on human neurons. Using human NT2 model neurons, we demonstrate that the pain reliever Ibuprofen decreases RhoA (Ras homolog gene family, member A GTPase) activation and promotes neurite growth. Inhibition of the downstream effector Rho kinase by the drug Y-27632 results in a strong increase in neurite outgrowth. Conversely, activation of the Rho pathway by lysophosphatidic acid results in growth cone collapse and eventually to neurite retraction. Finally, we show that blocking of Rho kinase, but not RhoA results in an increase in neurons bearing neurites. Due to its anti-inflammatory and neurite growth promoting action, the use of a pharmacological treatment of damaged neural tissue with Ibuprofen should be explored. PMID:25714396

  12. APP independent and dependent effects on neurite outgrowth are modulated by the receptor associated protein (RAP).

    PubMed

    Billnitzer, Andrew J; Barskaya, Irina; Yin, Cailing; Perez, Ruth G

    2013-01-01

    Amyloid precursor protein (APP) and its secreted form, sAPP, contribute to the development of neurons in hippocampus, a brain region critical for learning and memory. Full-length APP binds the low-density lipoprotein receptor-related protein (LRP), which stimulates APP endocytosis. LRP also contributes to neurite growth. Furthermore, the receptor associated protein (RAP) binds LRP in a manner that blocks APP-LRP interactions. To elucidate APP contributions to neurite growth for full-length APP and sAPP, we cultured wild type (WT) and APP knockout (KO) neurons in sAPPα and/or RAP and measured neurite outgrowth at 1 day in vitro. Our data reveal that WT neurons had less axonal outgrowth including less axon branching. RAP treatment potentiated the inhibitory effects of APP. KO neurons had significantly more outgrowth and branching, especially in response to RAP, effects which were also associated with ERK2 activation. Our results affirm a major inhibitory role by full-length APP on all aspects of axonal and dendritic outgrowth, and show that RAP-LRP binding stimulated axon growth independently of APP. These findings support a major role for APP as an inhibitor of neurite growth and reveal novel signaling functions for LRP that may be disrupted by Alzheimer's pathology or therapies aimed at APP processing.

  13. Nimodipine enhances neurite outgrowth in dopaminergic brain slice co-cultures.

    PubMed

    Sygnecka, Katja; Heine, Claudia; Scherf, Nico; Fasold, Mario; Binder, Hans; Scheller, Christian; Franke, Heike

    2015-02-01

    Calcium ions (Ca(2+)) play important roles in neuroplasticity and the regeneration of nerves. Intracellular Ca(2+) concentrations are regulated by Ca(2+) channels, among them L-type voltage-gated Ca(2+) channels, which are inhibited by dihydropyridines like nimodipine. The purpose of this study was to investigate the effect of nimodipine on neurite growth during development and regeneration. As an appropriate model to study neurite growth, we chose organotypic brain slice co-cultures of the mesocortical dopaminergic projection system, consisting of the ventral tegmental area/substantia nigra and the prefrontal cortex from neonatal rat brains. Quantification of the density of the newly built neurites in the border region (region between the two cultivated slices) of the co-cultures revealed a growth promoting effect of nimodipine at concentrations of 0.1μM and 1μM that was even more pronounced than the effect of the growth factor NGF. This beneficial effect was absent when 10μM nimodipine were applied. Toxicological tests revealed that the application of nimodipine at this higher concentration slightly induced caspase 3 activation in the cortical part of the co-cultures, but did neither affect the amount of lactate dehydrogenase release or propidium iodide uptake nor the ratio of bax/bcl-2. Furthermore, the expression levels of different genes were quantified after nimodipine treatment. The expression of Ca(2+) binding proteins, immediate early genes, glial fibrillary acidic protein, and myelin components did not change significantly after treatment, indicating that the regulation of their expression is not primarily involved in the observed nimodipine mediated neurite growth. In summary, this study revealed for the first time a neurite growth promoting effect of nimodipine in the mesocortical dopaminergic projection system that is highly dependent on the applied concentrations.

  14. Nimodipine enhances neurite outgrowth in dopaminergic brain slice co-cultures.

    PubMed

    Sygnecka, Katja; Heine, Claudia; Scherf, Nico; Fasold, Mario; Binder, Hans; Scheller, Christian; Franke, Heike

    2015-02-01

    Calcium ions (Ca(2+)) play important roles in neuroplasticity and the regeneration of nerves. Intracellular Ca(2+) concentrations are regulated by Ca(2+) channels, among them L-type voltage-gated Ca(2+) channels, which are inhibited by dihydropyridines like nimodipine. The purpose of this study was to investigate the effect of nimodipine on neurite growth during development and regeneration. As an appropriate model to study neurite growth, we chose organotypic brain slice co-cultures of the mesocortical dopaminergic projection system, consisting of the ventral tegmental area/substantia nigra and the prefrontal cortex from neonatal rat brains. Quantification of the density of the newly built neurites in the border region (region between the two cultivated slices) of the co-cultures revealed a growth promoting effect of nimodipine at concentrations of 0.1μM and 1μM that was even more pronounced than the effect of the growth factor NGF. This beneficial effect was absent when 10μM nimodipine were applied. Toxicological tests revealed that the application of nimodipine at this higher concentration slightly induced caspase 3 activation in the cortical part of the co-cultures, but did neither affect the amount of lactate dehydrogenase release or propidium iodide uptake nor the ratio of bax/bcl-2. Furthermore, the expression levels of different genes were quantified after nimodipine treatment. The expression of Ca(2+) binding proteins, immediate early genes, glial fibrillary acidic protein, and myelin components did not change significantly after treatment, indicating that the regulation of their expression is not primarily involved in the observed nimodipine mediated neurite growth. In summary, this study revealed for the first time a neurite growth promoting effect of nimodipine in the mesocortical dopaminergic projection system that is highly dependent on the applied concentrations. PMID:25447789

  15. Neurite outgrowth on electrospun PLLA fibers is enhanced by exogenous electrical stimulation

    NASA Astrophysics Data System (ADS)

    Koppes, A. N.; Zaccor, N. W.; Rivet, C. J.; Williams, L. A.; Piselli, J. M.; Gilbert, R. J.; Thompson, D. M.

    2014-08-01

    Objective. Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from dorsal root ganglia neurons than the presence of electrical stimulation or aligned topography alone. Approach. To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide films or electrospun fibers (2 µm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Main Results. Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurites, indicating topographical cues are responsible for guiding neurite extension. Significance. Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury.

  16. Neurite Outgrowth On Electrospun PLLA Fibers Is Enhanced By Exogenous Electrical Stimulation

    PubMed Central

    Koppes, A. N.; Zaccor, N. W.; Rivet, C. J.; Williams, L. A.; Piselli, J. M.; Gilbert, R. J.; Thompson, D. M.

    2014-01-01

    Objective Both electrical stimuli (endogenous and exogenous) and topographical cues are instructive to axonal extension. This report, for the first time, investigated the relative dominance of directional topographical guidance cues and directional electrical cues to enhance and/or direct primary neurite extension. We hypothesized the combination of electrical stimulation with electrospun fiber topography would induce longer neurite extension from DRG neurons than the presence of electrical stimulation or aligned topography alone. Approach To test the hypothesis, neurite outgrowth was examined on laminin-coated poly-L-lactide (PLLA) films or electrospun fibers (2 μm in diameter) in the presence or absence of electrical stimulation. Immunostained neurons were semi-automatically traced using Neurolucida software and morphology was evaluated. Results Neurite extension increased 74% on the aligned fibers compared to film controls. Stimulation alone increased outgrowth by 32% on films or fibers relative to unstimulated film controls. The co-presentation of topographical (fibers) with biophysical (electrical stimulation) cues resulted in a synergistic 126% increase in outgrowth relative to unstimulated film controls. Field polarity had no influence on the directionality of neurite, indicating topographical cues are responsible to guide neurite extension. Significance Both cues (electrical stimulation and fiber geometry) are modular in nature and can be synergistically applied in conjunction with other common methods in regenerative medicine such as controlled release of growth factors to further influence axonal growth in vivo. The combined application of electrical and aligned fiber topographical guidance cues described herein, if translated in vivo, could provide a more supportive environment for directed and robust axonal regeneration following peripheral nerve injury. PMID:24891494

  17. The cytokine tumor necrosis factor-like weak inducer of apoptosis and its receptor fibroblast growth factor-inducible 14 have a neuroprotective effect in the central nervous system

    PubMed Central

    2012-01-01

    Background Cerebral cortical neurons have a high vulnerability to the harmful effects of hypoxia. However, the brain has the ability to detect and accommodate to hypoxic conditions. This phenomenon, known as preconditioning, is a natural adaptive process highly preserved among species whereby exposure to sub-lethal hypoxia promotes the acquisition of tolerance to a subsequent lethal hypoxic injury. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) are found in neurons and their expression is induced by exposure to sub-lethal hypoxia. Accordingly, in this work we tested the hypothesis that the interaction between TWEAK and Fn14 induces tolerance to lethal hypoxic and ischemic conditions. Methods Here we used in vitro and in vivo models of hypoxic and ischemic preconditioning, an animal model of transient middle cerebral artery occlusion and mice and neurons genetically deficient in TWEAK, Fn14, or tumor necrosis factor alpha (TNF-α) to investigate whether treatment with recombinant TWEAK or an increase in the expression of endogenous TWEAK renders neurons tolerant to lethal hypoxia. We used enzyme-linked immunosorbent assay to study the effect of TWEAK on the expression of neuronal TNF-α, Western blot analysis to investigate whether the effect of TWEAK was mediated by activation of mitogen-activated protein kinases and immunohistochemical techniques and quantitative real-time polymerase chain reaction analysis to study the effect of TWEAK on apoptotic cell death. Results We found that either treatment with recombinant TWEAK or an increase in the expression of TWEAK and Fn14 induce hypoxic and ischemic tolerance in vivo and in vitro. This protective effect is mediated by neuronal TNF-α and activation of the extracellular signal-regulated kinases 1 and 2 pathway via phosphorylation and inactivation of the B-cell lymphoma 2-associated death promoter protein. Conclusions Our work

  18. RTN/Nogo in forming Alzheimer’s neuritic plaques

    PubMed Central

    Prior, Marguerite; Shi, Qi; Hu, Xiangyou; He, Wanxia; Levey, Allan; Yan, Riqiang

    2010-01-01

    SUMMARY One of the pathological hallmarks in brains of patients with Alzheimer’s disease (AD) is the presence of neuritic plaques, in which amyloid deposits are surrounded by reactive gliosis and dystrophic neurites. Within neuritic plaques, reticulon 3 (RTN3), a homolog of Nogo protein, appears to regulate the formation of both amyloid deposition via negative modulation of BACE1 activity and dystrophic neurites via the formation of RTN3 aggregates. Transgenic mice over-expressing RTN3, but not the other known markers of dystrophic neurites in AD brain, spontaneously develop RTN3-immunoreactive dystrophic neurites. The presence of dystrophic neurites impairs cognition. Blocking abnormal RTN3 aggregation will increase the available RTN3 monomer and is therefore a promising potential therapeutic strategy for enhancing cognitive function in AD patients. PMID:20144652

  19. Evidence for direct effect of magnetic fields on neurite outgrowth

    SciTech Connect

    Blackman, C.F. ); Benane, S.G.; House, D.E. )

    1993-06-01

    Electric fields can cause changes in cell responses both in vitro and in vivo. Alternating magnetic fields have been proposed to act through the electric fields induced in the conducting medium surrounding the cells. We have used a simple exposure system to test the relative contribution of magnetic fields compared to induced electric fields in a standard PC-12 cell culture assay, in which cells respond to nerve growth factor by producing neurites. This response to stimulation by nerve growth factor is inhibited by sinusoidal, 50-Hz magnetic fields at field strengths below 10 [mu]T (100 mG). A standard procedure to distinguish magnetic- vs. electric-field effects demonstrates that the induced electric field is not involved. Additional work is necessary to identify the critical reaction site (or sites), and to establish the molecular mechanisms responsible for these result, 27 refs., 5 figs.

  20. Fibroblast Growth Factor Receptor-2 Contributes to the Basic Fibroblast Growth Factor-Induced Neuronal Differentiation in Canine Bone Marrow Stromal Cells via Phosphoinositide 3-Kinase/Akt Signaling Pathway

    PubMed Central

    Nakano, Rei; Edamura, Kazuya; Nakayama, Tomohiro; Narita, Takanori; Okabayashi, Ken; Sugiya, Hiroshi

    2015-01-01

    Bone marrow stromal cells (BMSCs) are considered as candidates for regenerative therapy and a useful model for studying neuronal differentiation. The role of basic fibroblast growth factor (bFGF) in neuronal differentiation has been previously studied; however, the signaling pathway involved in this process remains poorly understood. In this study, we investigated the signaling pathway in the bFGF-induced neuronal differentiation of canine BMSCs. bFGF induced the mRNA expression of the neuron marker, microtubule associated protein-2 (MAP2) and the neuron-like morphological change in canine BMSCs. In the presence of inhibitors of fibroblast growth factor receptors (FGFR), phosphatidylinositol 3-kinase (PI3K) and Akt, i.e., SU5402, LY294002, and MK2206, respectively, bFGF failed to induce the MAP2 mRNA expression and the neuron-like morphological change. bFGF induced Akt phosphorylation, but it was attenuated by the FGFR inhibitor SU5402 and the PI3K inhibitor LY294002. In canine BMSCs, expression of FGFR-1 and FGFR-2 was confirmed, but only FGFR-2 activation was detected by cross-linking and immunoprecipitation analysis. Small interfering RNA-mediated knockdown of FGFR-2 in canine BMSCs resulted in the attenuation of bFGF-induced Akt phosphorylation. These results suggest that the FGFR-2/PI3K/Akt signaling pathway is involved in the bFGF-induced neuronal differentiation of canine BMSCs. PMID:26523832

  1. Scatter factor induces blood vessel formation in vivo.

    PubMed Central

    Grant, D S; Kleinman, H K; Goldberg, I D; Bhargava, M M; Nickoloff, B J; Kinsella, J L; Polverini, P; Rosen, E M

    1993-01-01

    Scatter factor (also known as hepatocyte growth factor) is a glycoprotein secreted by stromal cells that stimulates cell motility and proliferation. In vitro, scatter factor stimulates vascular endothelial cell migration, proliferation, and organization into capillary-like tubes. Using two different in vivo assays, we showed that physiologic quantities of purified native mouse scatter factor and recombinant human hepatocyte growth factor induce angiogenesis (the formation of new blood vessels). The angiogenic activity was blocked by specific anti-scatter factor antibodies. Scatter factor induced cultured microvascular endothelial cells to accumulate and secrete significantly increased quantities of urokinase, an enzyme associated with development of an invasive endothelial phenotype during angiogenesis. We further showed that immunoreactive scatter factor is present surrounding sites of blood vessel formation in psoriatic skin. These findings suggest that scatter factor may act as a paracrine mediator in pathologic angiogenesis associated with human inflammatory disease. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:7680481

  2. A study of the effects of flux density and frequency of pulsed electromagnetic field on neurite outgrowth in PC12 cells.

    PubMed

    Zhang, Yang; Ding, Jun; Duan, Wei

    2006-01-01

    The aim of this study was to investigate the influence of pulsed electromagnetic fields with various flux densities and frequencies on neurite outgrowth in PC12 rat pheochromocytoma cells. We have studied the percentage of neurite-bearing cells, average length of neurites and directivity of neurite outgrowth in PC12 cells cultured for 96 hours in the presence of nerve growth factor (NGF). PC12 cells were exposed to 50 Hz pulsed electromagnetic fields with a flux density of 1.37 mT, 0.19 mT and 0.016 mT respectively. The field was generated through a Helmholtz coil pair housed in one incubator and the control samples were placed in another identical incubator. It was found that exposure to both a relatively high flux density (1.37 mT) and a medium flux density (0.19 mT) inhibited the percentage of neurite-bearing cells and promoted neurite length significantly. Exposure to high flux density (1.37 mT) also resulted in nearly 20% enhancement of neurite directivity along the field direction. However, exposure to low flux density field (0.016 mT) had no detectable effect on neurite outgrowth. We also studied the effect of frequency at the constant flux density of 1.37 mT. In the range from 1 approximately 100 Hz, only 50 and 70 Hz pulse frequencies had significant effects on neurite outgrowth. Our study has shown that neurite outgrowth in PC12 cells is sensitive to flux density and frequency of pulsed electromagnetic field.

  3. Reelin Prevents Apical Neurite Retraction during Terminal Translocation and Dendrite Initiation

    PubMed Central

    O'Dell, Ryan S.; Cameron, David A.; Zipfel, Warren R.

    2015-01-01

    The mechanisms controlling cortical dendrite initiation and targeting are poorly understood. Multiphoton imaging of developing mouse cortex reveals that apical dendrites emerge by direct transformation of the neuron's leading process during the terminal phase of neuronal migration. During this ∼110 min period, the dendritic arbor increases ∼2.5-fold in size and migration arrest occurs below the first stable branch point in the developing arbor. This dendritic outgrowth is triggered at the time of leading process contact with the marginal zone (MZ) and occurs primarily by neurite extension into the extracellular matrix of the MZ. In reeler cortices that lack the secreted glycoprotein Reelin, a subset of neurons completed migration but then retracted and reorganized their arbor in a tangential direction away from the MZ soon after migration arrest. For these reeler neurons, the tangential oriented primary neurites were longer lived than the radially oriented primary neurites, whereas the opposite was true of wild-type (WT) neurons. Application of Reelin protein to reeler cortices destabilized tangential neurites while stabilizing radial neurites and stimulating dendritic growth in the MZ. Therefore, Reelin functions as part of a polarity signaling system that links dendritogenesis in the MZ with cellular positioning and cortical lamination. SIGNIFICANCE STATEMENT Whether the apical dendrite emerges by transformation of the leading process of the migrating neuron or emerges de novo after migration is completed is unclear. Similarly, it is not clear whether the secreted glycoprotein Reelin controls migration and dendritic growth as related or separate processes. Here, multiphoton microscopy reveals the direct transformation of the leading process into the apical dendrite. This transformation is coupled to the successful completion of migration and neuronal soma arrest occurs below the first stable branch point of the nascent dendrite. Deficiency in Reelin causes

  4. Oriented collagen as a potential cochlear implant electrode surface coating to achieve directed neurite outgrowth.

    PubMed

    Volkenstein, Stefan; Kirkwood, John E; Lai, Edwina; Dazert, Stefan; Fuller, Gerald G; Heller, Stefan

    2012-04-01

    In patients with severe to profound hearing loss, cochlear implants (CIs) are currently the only therapeutic option when the amplification with conventional hearing aids does no longer lead to a useful hearing experience. Despite its great success, there are patients in which benefit from these devices is rather limited. One reason may be a poor neuron-device interaction, where the electric fields generated by the electrode array excite a wide range of tonotopically organized spiral ganglion neurons at the cost of spatial resolution. Coating of CI electrodes to provide a welcoming environment combined with suitable surface chemistry (e.g. with neurotrophic factors) has been suggested to create a closer bioelectrical interface between the electrode array and the target tissue, which might lead to better spatial resolution, better frequency discrimination, and ultimately may improve speech perception in patients. Here we investigate the use of a collagen surface with a cholesteric banding structure, whose orientation can be systemically controlled as a guiding structure for neurite outgrowth. We demonstrate that spiral ganglion neurons survive on collagen-coated surfaces and display a directed neurite growth influenced by the direction of collagen fibril deposition. The majority of neurites grow parallel to the orientation direction of the collagen. We suggest collagen coating as a possible future option in CI technology to direct neurite outgrowth and improve hearing results for affected patients.

  5. Neurite outgrowth resistance to rho kinase inhibitors in PC12 Adh cell.

    PubMed

    Yin, Hua; Hou, Xiaolin; Tao, Tingrui; Lv, Xiaoman; Zhang, Luyong; Duan, Weigang

    2015-05-01

    Rho kinase (ROCK) inhibitor is a promising agent for neural injury disorders, which mechanism is associated with neurite outgrowth. However, neurite outgrowth resistance occurred when PC12 Adh cell was treated with ROCK inhibitors for a longer time. PC12 Adh cells were treated with ROCK inhibitor Y27632 or NGF for different durations. Neurite outgrowth resistance occurred when PC12 Adh cell exposed to Y27632 (33 µM) for 3 or more days, but not happen when exposed to nerve growth factor (NGF, 100 ng/mL). The gene expression in the PC12 Adh cells treated with Y27632 (33 µM) or NGF (100 ng/mL) for 2 or 4 days was assayed by gene microarray, and the reliability of the results were confirmed by real-time RT-PCR. Cluster analysis proved that the gene expression profile of PC12 Adh cell treated with Y27632 for 4 days was different from that treated with Y27632 for 2 days and those treated with NGF for 2 and 4 days, respectively. Pathway analysis hinted that the neurite outgrowth resistance could be associated with up-regulation of inflammatory pathways, especially rno04610 (complement and coagulation cascades), and down-regulation of cell cycle pathways, especially rno04110.

  6. Lithium Alters the Morphology of Neurites Regenerating from Cultured Adult Spiral Ganglion Neurons

    PubMed Central

    Shah, S. M.; Patel, C. H.; Feng, A. S.; Kollmar, R.

    2013-01-01

    The small-molecule drug lithium (as a monovalent ion) promotes neurite regeneration and functional recovery, is easy to administer, and is approved for human use to treat bipolar disorder. Lithium exerts its neuritogenic effect mainly by inhibiting glycogen synthase kinase 3, a constitutively-active serine/threonine kinase that is regulated by neurotrophin and “wingless-related MMTV integration site” (Wnt) signaling. In spiral ganglion neurons of the cochlea, the effects of lithium and the function of glycogen synthase kinase 3 have not been investigated. We, therefore, set out to test whether lithium modulates neuritogenesis from adult spiral ganglion neurons. Primary cultures of dissociated spiral ganglion neurons from adult mice were exposed to lithium at concentrations between 0 and 12.5 mM. The resulting neurite morphology and growth-cone appearance were measured in detail by using immunofluorescence microscopy and image analysis. We found that lithium altered the morphology of regenerating neurites and their growth cones in a differential, concentration-dependent fashion. Low concentrations of 0.5 to 2.5 mM (around the half-maximal inhibitory concentration for glycogen synthase kinase 3 and the recommended therapeutic serum concentration for bipolar disorder) enhanced neurite sprouting and branching. A high concentration of 12.5 mM, in contrast, slowed elongation. As the lithium concentration rose from low to high, the microtubules became increasingly disarranged and the growth cones more arborized. Our results demonstrate that lithium selectively stimulates phases of neuritogenesis that are driven by microtubule reorganization. In contrast, most other drugs that have previously been tested on spiral ganglion neurons are reported to inhibit neurite outgrowth or affect only elongation. Lithium sensitivity is a necessary, but not sufficient condition for the involvement of glycogen synthase kinase 3. Our results are, therefore, consistent with, but do not

  7. Hydrocortisone Stimulates Neurite Outgrowth from Mouse Retinal Explants by Modulating Macroglial Activity

    PubMed Central

    Toops, Kimberly A.; Berlinicke, Cynthia; Zack, Donald J.; Nickells, Robert W.

    2012-01-01

    Purpose There is mounting evidence that retinal ganglion cells (RGCs) require a complex milieu of trophic factors to enhance cell survival and axon regeneration after optic nerve injury. The authors' goal was to examine the contribution of components of a combination of hormones, growth factors, steroids, and small molecules to creating a regenerative environment and to determine if any of these components modulated macroglial behavior to aid in regeneration. Methods Postnatal day 7 mouse retinal explants embedded in collagen were used as an in vitro model of neurite regeneration. Explants were treated with the culture supplements fetal bovine serum, N2, and G5 and a mixture of G5 and N2 components, designated enhanced N2 (EN2). Explants were evaluated for neurite outgrowth over 7 days in culture. The effects of each treatment were also evaluated on cultured RGCs purified by Thy1 immunopanning. Immunohistochemistry and qPCR analysis were used to evaluate differences in gene expression in the explants due to different treatments. Results EN2 stimulated significant neurite outgrowth from explants but not from purified RGCs. Elimination of hydrocortisone (HC) from EN2 reduced the mean neurites per explant by 37%. EN2-treated explants demonstrated increased expression of Gfap, Glul, Glt1, Cntf, Pedf, and VegfA compared with explants treated with EN2 without HC. Subsequent experiments showed that increased expression of Cntf and Glul was critical to the trophic effect of HC. Conclusions These data suggest that the HC in EN2 indirectly contributed to neurite outgrowth by activating macroglia to produce neurotrophic and neuroprotective molecules. PMID:22395888

  8. Mechanisms involved in the regulation of neuropeptide-mediated neurite outgrowth: a minireview.

    PubMed

    Lestanova, Z; Bacova, Z; Bakos, Jan

    2016-04-01

    The present knowledge, regarding the neuronal growth and neurite extension, includes neuropeptide action in the central nervous system. Research reports have brought much information about the multiple intracellular signaling pathways of neuropeptides. However, regardless of the differences in the local responses elicited by neuropeptides, there exist certain functional similarities in the effects of neuropeptides, mediated by their receptors. In the present review, data of the relevant studies, focused on G protein-coupled receptors activated by neuropeptides, are summarized. Particularly, receptors that activate phosphatidylinositol-calcium system and protein kinase C pathways, resulting in the reorganization of the neuronal cytoskeleton and changes in the neuronal morphology, are discussed. Based on our data received, we are showing that oxytocin increases the gene expression of GTPase cell division cycle protein 42 (Cdc42), implicated in many aspects of the neuronal growth and morphology. We are also paying a special attention to neurite extension and retraction in the context of neuropeptide regulation. PMID:27560639

  9. Pea3 transcription factor promotes neurite outgrowth

    PubMed Central

    Kandemir, Basak; Caglayan, Berrak; Hausott, Barbara; Erdogan, Burcu; Dag, Ugur; Demir, Ozlem; Sogut, Melis S.; Klimaschewski, Lars; Kurnaz, Isil A.

    2014-01-01

    Pea3 subfamily of E–twenty six transcription factors consist of three major -exhibit branching morphogenesis, the function of Pea3 family in nervous system development and regeneration is only beginning to unfold. In this study, we provide evidence that Pea3 can directs neurite extension and axonal outgrowth in different model systems, and that Serine 90 is important for this function. We have also identified neurofilament-L and neurofilament-M as two putative novel targets for Pea3. PMID:25018694

  10. The combinatorics of neurite self-avoidance.

    PubMed

    Forbes, Elizabeth M; Hunt, Jonathan J; Goodhill, Geoffrey J

    2011-11-01

    During neural development in Drosophila, the ability of neurite branches to recognize whether they are from the same or different neurons depends crucially on the molecule Dscam1. In particular, this recognition depends on the stochastic acquisition of a unique combination of Dscam1 isoforms out of a large set of possible isoforms. To properly interpret these findings, it is crucial to understand the combinatorics involved, which has previously been attempted only using stochastic simulations for some specific parameter combinations. Here we present closed-form solutions for the general case. These reveal the relationships among the key variables and how these constrain possible biological scenarios.

  11. The combinatorics of neurite self-avoidance.

    PubMed

    Forbes, Elizabeth M; Hunt, Jonathan J; Goodhill, Geoffrey J

    2011-11-01

    During neural development in Drosophila, the ability of neurite branches to recognize whether they are from the same or different neurons depends crucially on the molecule Dscam1. In particular, this recognition depends on the stochastic acquisition of a unique combination of Dscam1 isoforms out of a large set of possible isoforms. To properly interpret these findings, it is crucial to understand the combinatorics involved, which has previously been attempted only using stochastic simulations for some specific parameter combinations. Here we present closed-form solutions for the general case. These reveal the relationships among the key variables and how these constrain possible biological scenarios. PMID:21732864

  12. The effects of neurotrophin-3 and brain-derived neurotrophic factor on cerebellar granule cell movement and neurite extension in vitro.

    PubMed

    Tanaka, S; Sekino, Y; Shirao, T

    2000-01-01

    Migration of the granule cells is a major stage of cerebellar maturation. Granule cells express neurotrophins and their receptors; however, their role in cell migration has not been defined. In this study we investigated the effects of exogenous neurotrophins on the movement and neurite extension of granule cells from glial-free cerebellar cell reaggregates in vitro. Our results provide direct evidence that neurotrophin-3 and brain-derived neurotrophic factor differentially affect the granule cells. Neurotrophin-3 significantly affected granule cell movements by decreasing the migration index (the ratio of the number of cells that moved further than half the neurite length) and the speed of cell soma movement, but did not affect neurite length or growth cone migration. In contrast, brain-derived neurotrophic factor and neurotrophin-4 acted on growing neurites and growth cones by significantly increasing neurite length and the speed of growth cone migration, but had no effect either on the migration index or on the speed of the cell soma movement. The results suggest that neurotrophins differentially affect neurite extension and the movements of cerebellar granule cells. PMID:10842017

  13. Zonisamide Enhances Neurite Elongation of Primary Motor Neurons and Facilitates Peripheral Nerve Regeneration In Vitro and in a Mouse Model

    PubMed Central

    Yagi, Hideki; Ohkawara, Bisei; Nakashima, Hiroaki; Ito, Kenyu; Tsushima, Mikito; Ishii, Hisao; Noto, Kimitoshi; Ohta, Kyotaro; Masuda, Akio; Imagama, Shiro; Ishiguro, Naoki; Ohno, Kinji

    2015-01-01

    No clinically applicable drug is currently available to enhance neurite elongation after nerve injury. To identify a clinically applicable drug, we screened pre-approved drugs for neurite elongation in the motor neuron-like NSC34 cells. We found that zonisamide, an anti-epileptic and anti-Parkinson’s disease drug, promoted neurite elongation in cultured primary motor neurons and NSC34 cells in a concentration-dependent manner. The neurite-scratch assay revealed that zonisamide enhanced neurite regeneration. Zonisamide was also protective against oxidative stress-induced cell death of primary motor neurons. Zonisamide induced mRNA expression of nerve growth factors (BDNF, NGF, and neurotrophin-4/5), and their receptors (tropomyosin receptor kinase A and B). In a mouse model of sciatic nerve autograft, intragastric administration of zonisamide for 1 week increased the size of axons distal to the transected site 3.9-fold. Zonisamide also improved the sciatic function index, a marker for motor function of hindlimbs after sciatic nerve autograft, from 6 weeks after surgery. At 8 weeks after surgery, zonisamide was protective against denervation-induced muscle degeneration in tibialis anterior, and increased gene expression of Chrne, Colq, and Rapsn, which are specifically expressed at the neuromuscular junction. We propose that zonisamide is a potential therapeutic agent for peripheral nerve injuries as well as for neuropathies due to other etiologies. PMID:26571146

  14. Induction of neurite outgrowth in 3D hydrogel-based environments.

    PubMed

    Assunção-Silva, Rita C; Oliveira, Cátia Costa; Ziv-Polat, Ofra; Gomes, Eduardo D; Sahar, Abraham; Sousa, Nuno; Silva, Nuno A; Salgado, António J

    2015-09-01

    The ability of peripheral nervous system (PNS) axons to regenerate and re-innervate their targets after an injury has been widely recognized. However, despite the considerable advances made in microsurgical techniques, complete functional recovery is rarely achieved, especially for severe peripheral nerve injuries (PNIs). Therefore, alternative therapies that can successfully repair peripheral nerves are still essential. In recent years the use of biodegradable hydrogels enriched with growth-supporting and guidance cues, cell transplantation, and biomolecular therapies have been explored for the treatment of PNIs. Bearing this in mind, the aim of this study was to assess whether Gly-Arg-Gly-Asp-Ser synthetic peptide (GRGDS)-modified gellan gum (GG) based hydrogels could foster an amenable environment for neurite/axonal growth. Additionally, strategies to further improve the rate of neurite outgrowth were also tested, namely the use of adipose tissue derived stem cells (ASCs), as well as the glial derived neurotrophic factor (GDNF). In order to increase its stability and enhance its bioactivity, the GDNF was conjugated covalently to iron oxide nanoparticles (IONPs). The impact of hydrogel modification as well as the effect of the GDNF-IONPs on ASC behavior was also screened. The results revealed that the GRGDS-GG hydrogel was able to support dorsal root ganglia (DRG)-based neurite outgrowth, which was not observed for non-modified hydrogels. Moreover, the modified hydrogels were also able to support ASCs attachment. In contrast, the presence of the GDNF-IONPs had no positive or negative impact on ASC behavior. Further experiments revealed that the presence of ASCs in the hydrogel improved axonal growth. On the other hand, GDNF-IONPs alone or combined with ASCs significantly increased neurite outgrowth from DRGs, suggesting a beneficial role of the proposed strategy for future applications in PNI regenerative medicine. PMID:26480959

  15. Induction of neurite outgrowth in 3D hydrogel-based environments.

    PubMed

    Assunção-Silva, Rita C; Oliveira, Cátia Costa; Ziv-Polat, Ofra; Gomes, Eduardo D; Sahar, Abraham; Sousa, Nuno; Silva, Nuno A; Salgado, António J

    2015-09-01

    The ability of peripheral nervous system (PNS) axons to regenerate and re-innervate their targets after an injury has been widely recognized. However, despite the considerable advances made in microsurgical techniques, complete functional recovery is rarely achieved, especially for severe peripheral nerve injuries (PNIs). Therefore, alternative therapies that can successfully repair peripheral nerves are still essential. In recent years the use of biodegradable hydrogels enriched with growth-supporting and guidance cues, cell transplantation, and biomolecular therapies have been explored for the treatment of PNIs. Bearing this in mind, the aim of this study was to assess whether Gly-Arg-Gly-Asp-Ser synthetic peptide (GRGDS)-modified gellan gum (GG) based hydrogels could foster an amenable environment for neurite/axonal growth. Additionally, strategies to further improve the rate of neurite outgrowth were also tested, namely the use of adipose tissue derived stem cells (ASCs), as well as the glial derived neurotrophic factor (GDNF). In order to increase its stability and enhance its bioactivity, the GDNF was conjugated covalently to iron oxide nanoparticles (IONPs). The impact of hydrogel modification as well as the effect of the GDNF-IONPs on ASC behavior was also screened. The results revealed that the GRGDS-GG hydrogel was able to support dorsal root ganglia (DRG)-based neurite outgrowth, which was not observed for non-modified hydrogels. Moreover, the modified hydrogels were also able to support ASCs attachment. In contrast, the presence of the GDNF-IONPs had no positive or negative impact on ASC behavior. Further experiments revealed that the presence of ASCs in the hydrogel improved axonal growth. On the other hand, GDNF-IONPs alone or combined with ASCs significantly increased neurite outgrowth from DRGs, suggesting a beneficial role of the proposed strategy for future applications in PNI regenerative medicine.

  16. The death receptor antagonist FAIM promotes neurite outgrowth by a mechanism that depends on ERK and NF-kapp B signaling.

    PubMed

    Sole, Carme; Dolcet, Xavier; Segura, Miguel F; Gutierrez, Humberto; Diaz-Meco, Maria-Teresa; Gozzelino, Raffaella; Sanchis, Daniel; Bayascas, Jose R; Gallego, Carme; Moscat, Jorge; Davies, Alun M; Comella, Joan X

    2004-11-01

    Fas apoptosis inhibitory molecule (FAIM) is a protein identified as an antagonist of Fas-induced cell death. We show that FAIM overexpression fails to rescue neurons from trophic factor deprivation, but exerts a marked neurite growth-promoting action in different neuronal systems. Whereas FAIM overexpression greatly enhanced neurite outgrowth from PC12 cells and sympathetic neurons grown with nerve growth factor (NGF), reduction of endogenous FAIM levels by RNAi decreased neurite outgrowth in these cells. FAIM overexpression promoted NF-kappa B activation, and blocking this activation by using a super-repressor I kappa B alpha or by carrying out experiments using cortical neurons from mice that lack the p65 NF-kappa B subunit prevented FAIM-induced neurite outgrowth. The effect of FAIM on neurite outgrowth was also blocked by inhibition of the Ras-ERK pathway. Finally, we show that FAIM interacts with both Trk and p75 neurotrophin receptor NGF receptors in a ligand-dependent manner. These results reveal a new function of FAIM in promoting neurite outgrowth by a mechanism involving activation of the Ras-ERK pathway and NF-kappa B.

  17. Active Achilles tendon kinesitherapy accelerates Achilles tendon repair by promoting neurite regeneration☆

    PubMed Central

    Jielile, Jiasharete; Aibai, Minawa; Sabirhazi, Gulnur; Shawutali, Nuerai; Tangkejie, Wulanbai; Badelhan, Aynaz; Nuerduola, Yeermike; Satewalede, Turde; Buranbai, Darehan; Hunapia, Beicen; Jialihasi, Ayidaer; Bai, Jingping; Kizaibek, Murat

    2012-01-01

    Active Achilles tendon kinesitherapy facilitates the functional recovery of a ruptured Achilles tendon. However, protein expression during the healing process remains a controversial issue. New Zealand rabbits, aged 14 weeks, underwent tenotomy followed immediately by Achilles tendon microsurgery to repair the Achilles tendon rupture. The tendon was then immobilized or subjected to postoperative early motion treatment (kinesitherapy). Mass spectrography results showed that after 14 days of motion treatment, 18 protein spots were differentially expressed, among which, 12 were up-regulated, consisting of gelsolin isoform b and neurite growth-related protein collapsing response mediator protein 2. Western blot analysis showed that gelsolin isoform b was up-regulated at days 7–21 of motion treatment. These findings suggest that active Achilles tendon kinesitherapy promotes the neurite regeneration of a ruptured Achilles tendon and gelsolin isoform b can be used as a biomarker for Achilles tendon healing after kinesitherapy. PMID:25317130

  18. Experimental microembolism induces localized neuritic pathology in guinea pig cerebrum.

    PubMed

    Li, Jian-Ming; Cai, Yan; Liu, Fei; Yang, La; Hu, Xia; Patrylo, Peter R; Cai, Huaibin; Luo, Xue-Gang; Xiao, Dong; Yan, Xiao-Xin

    2015-05-10

    Microbleeds are a common finding in aged human brains. In Alzheimer's disease (AD), neuritic plaques composed of β-amyloid (Aβ) deposits and dystrophic neurites occur frequently around cerebral vasculature, raising a compelling question as to whether, and if so, how, microvascular abnormality and amyloid/neuritic pathology might be causally related. Here we used a guinea pig model of cerebral microembolism to explore a potential inductive effect of vascular injury on neuritic and amyloid pathogenesis. Brains were examined 7-30 days after experimental microvascular embolization occupying ~0.5% of total cortical area. Compared to sham-operated controls, glial fibrillary acidic protein immunoreactivity was increased in the embolized cerebrum, evidently around intracortical vasculature. Swollen/sprouting neurites exhibiting increased reactivity of nicotinamide adenine dinucleotide phosphate diaphorase, parvalbumin, vesicular glutamate transporter 1 and choline acetyltransferase appeared locally in the embolized brains in proximity to intracortical vasculature. The embolization-induced swollen/sprouting neurites were also robustly immunoreactive for β-amyloid precursor protein and β-secretase-1, the substrate and initiating enzyme for Aβ genesis. These experimental data suggest that microvascular injury can induce multisystem neuritic pathology associated with an enhanced amyloidogenic potential in wild-type mammalian brain.

  19. Sharpening of neurite morphology using complex coherence enhanced diffusion.

    PubMed

    Mustaffa, Izadora; Trenado, Carlos; Rahim, Hazli Rafis Abd; Schafer, Karl-Herbert; Strauss, Daniel J

    2009-01-01

    The study of the molecular mechanisms involved in neurite outgrowth and differentiation, requires essential accurate and reproducible segmentation and quantification of neuronal processes. The common method used in this study is to detect and trace individual neurites, i.e. neurite tracing. The challenge comes mainly from the morphological problem in which these images contains ambiguities such as neurites discontinuities and intensity differences. In our work, we encounter a bigger challenge as the neurites in our images have a higher density of neurites. In this paper, we present a hybrid complex coherence-enhanced method for sharpening the morphology of neurons from such images. Coherence-enhanced diffusion (CED) is used to enhance the flowlike structures of the neurites, while the imaginary part of the complex nonlinear diffusion of the image cancels the appearance of 'clouds'. We also describe an elementary method for estimating the density of neuritis based on the obtained images. Our preliminary results show that the proposed methodology is a step ahead toward an effective neuronal morphology algorithm.

  20. Knockdown of pre-mRNA cleavage factor Im 25 kDa promotes neurite outgrowth

    SciTech Connect

    Fukumitsu, Hidefumi; Soumiya, Hitomi; Furukawa, Shoei

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer CFIm25 knockdown promoted NGF-induced neurite out growth from PC12 cells. Black-Right-Pointing-Pointer Depletion of CFIm25 did not influence the morphology of proliferating PC12 cells. Black-Right-Pointing-Pointer CFIm regulated NGF-induced neurite outgrowth via coordinating RhoA activity. Black-Right-Pointing-Pointer CFIm25 knockdown increase the number of primary dendrites of hippocampal neurons. -- Abstract: Mammalian precursor mRNA (pre-mRNA) cleavage factor I (CFIm) plays important roles in the selection of poly(A) sites in a 3 Prime -untranslated region (3 Prime -UTR), producing mRNAs with variable 3 Prime ends. Because 3 Prime -UTRs often contain cis elements that impact stability or localization of mRNA or translation, alternative polyadenylation diversifies utilization of primary transcripts in mammalian cells. However, the physiological role of CFIm remains unclear. CFIm acts as a heterodimer comprising a 25 kDa subunit (CFIm25) and one of the three large subunits-CFIm59, CFIm68, or CFIm72. CFIm25 binds directly to RNA and introduces and anchors the larger subunit. To examine the physiological roles of CFIm, we knocked down the CFIm25 gene in neuronal cells using RNA interference. Knockdown of CFIm25 increased the number of primary dendrites of developing hippocampal neurons and promoted nerve growth factor (NGF)-induced neurite extension from rat pheochromocytoma PC12 cells without affecting the morphology of proliferating PC12 cells. On the other hand, CFIm25 knockdown did not influence constitutively active or dominantly negative RhoA suppression or promotion of NGF-induced neurite extension from PC12 cells, respectively. Taken together, our results indicate that endogenous CFIm may promote neuritogenesis in developing neurons by coordinating events upstream of NGF-induced RhoA inactivation.

  1. Nerve abscess in primary neuritic leprosy.

    PubMed

    Rai, Dheeraj; Malhotra, Hardeep Singh; Garg, Ravindra Kumar; Goel, Madhu Mati; Malhotra, Kiran Preet; Kumar, Vijay; Singh, Arun Kumar; Jain, Amita; Kohli, Neera; Singh, Shailesh Kumar

    2013-06-01

    Nerve abscess is an infrequently reported complication of leprosy. We describe a patient with a pure neuritic type of leprosy with multiple nerve abscesses, who presented with tingling and numbness in the medial aspect of his right forearm and hand. Subsequently he developed pain, redness and swelling over the medial side of his right elbow and the flexor aspect of his right wrist. High-resolution ultrasound showed diffuse thickening of the right ulnar nerve with hypoechoic texture housing a cystic lesion with internal debris suggesting an abscess, at the cubital tunnel. Histopathological examination of the pus and tissue obtained from the abscess revealed presence of granulomas with lepra bacilli. The patient responded to surgery and multidrug therapy. In conclusion, the nerve abscess as the first manifestation of leprosy is uncommon and a high index of suspicion is required to make a correct diagnosis. PMID:24171239

  2. Mechanical stress activates neurites and somata of myenteric neurons

    PubMed Central

    Kugler, Eva M.; Michel, Klaus; Zeller, Florian; Demir, Ihsan E.; Ceyhan, Güralp O.; Schemann, Michael; Mazzuoli-Weber, Gemma

    2015-01-01

    The particular location of myenteric neurons, sandwiched between the 2 muscle layers of the gut, implies that their somata and neurites undergo mechanical stress during gastrointestinal motility. Existence of mechanosensitive enteric neurons (MEN) is undoubted but many of their basic features remain to be studied. In this study, we used ultra-fast neuroimaging to record activity of primary cultured myenteric neurons of guinea pig and human intestine after von Frey hair evoked deformation of neurites and somata. Independent component analysis was applied to reconstruct neuronal morphology and follow neuronal signals. Of the cultured neurons 45% (114 out of 256, 30 guinea pigs) responded to neurite probing with a burst spike frequency of 13.4 Hz. Action potentials generated at the stimulation site invaded the soma and other neurites. Mechanosensitive sites were expressed across large areas of neurites. Many mechanosensitive neurites appeared to have afferent and efferent functions as those that responded to deformation also conducted spikes coming from the soma. Mechanosensitive neurites were also activated by nicotine application. This supported the concept of multifunctional MEN. 14% of the neurons (13 out of 96, 18 guinea pigs) responded to soma deformation with burst spike discharge of 17.9 Hz. Firing of MEN adapted rapidly (RAMEN), slowly (SAMEN), or ultra-slowly (USAMEN). The majority of MEN showed SAMEN behavior although significantly more RAMEN occurred after neurite probing. Cultured myenteric neurons from human intestine had similar properties. Compared to MEN, dorsal root ganglion neurons were activated by neurite but not by soma deformation with slow adaptation of firing. We demonstrated that MEN exhibit specific features very likely reflecting adaptation to their specialized functions in the gut. PMID:26441520

  3. The functionalized amino acid (S)-Lacosamide subverts CRMP2-mediated tubulin polymerization to prevent constitutive and activity-dependent increase in neurite outgrowth

    PubMed Central

    Wilson, Sarah M.; Moutal, Aubin; Melemedjian, Ohannes K.; Wang, Yuying; Ju, Weina; François-Moutal, Liberty; Khanna, May; Khanna, Rajesh

    2014-01-01

    Activity-dependent neurite outgrowth is a highly complex, regulated process with important implications for neuronal circuit remodeling in development as well as in seizure-induced sprouting in epilepsy. Recent work has linked outgrowth to collapsin response mediator protein 2 (CRMP2), an intracellular phosphoprotein originally identified as axon guidance and growth cone collapse protein. The neurite outgrowth promoting function of CRMP2 is regulated by its phosphorylation state. In this study, depolarization (potassium chloride)-driven activity increased the level of active CRMP2 by decreasing its phosphorylation by GSK3β via a reduction in priming by Cdk5. To determine the contribution of CRMP2 in activity-driven neurite outgrowth, we screened a limited set of compounds for their ability to reduce neurite outgrowth but not modify voltage-gated sodium channel (VGSC) biophysical properties. This led to the identification of (S)-lacosamide ((S)-LCM), a stereoisomer of the clinically used antiepileptic drug (R)-LCM (Vimpat®), as a novel tool for preferentially targeting CRMP2-mediated neurite outgrowth. Whereas (S)-LCM was ineffective in targeting VGSCs, the presumptive pharmacological targets of (R)-LCM, (S)-LCM was more efficient than (R)-LCM in subverting neurite outgrowth. Biomolecular interaction analyses revealed that (S)-LCM bound to wildtype CRMP2 with low micromolar affinity, similar to (R)-LCM. Through the use of this novel tool, the activity-dependent increase in neurite outgrowth observed following depolarization was characterized to be reliant on CRMP2 function. Knockdown of CRMP2 by siRNA in cortical neurons resulted in reduced CRMP2-dependent neurite outgrowth; incubation with (S)-LCM phenocopied this effect. Other CRMP2-mediated processes were unaffected. (S)-LCM subverted neurite outgrowth not by affecting the canonical CRMP2-tubulin association but rather by impairing the ability of CRMP2 to promote tubulin polymerization, events that are

  4. Neurite Mistargeting and Inverse Order of Intraretinal Vascular Plexus Formation Precede Subretinal Vascularization in Vldlr Mutant Mice

    PubMed Central

    Johnson, Verity; Xiang, Mengqing; Chen, Zhe; Junge, Harald J.

    2015-01-01

    In the retina blood vessels are required to support a high metabolic rate, however, uncontrolled vascular growth can lead to impaired vision and blindness. Subretinal vascularization (SRV), one type of pathological vessel growth, occurs in retinal angiomatous proliferation and proliferative macular telangiectasia. In these diseases SRV originates from blood vessels within the retina. We use mice with a targeted disruption in the Vldl-receptor (Vldlr) gene as a model to study SRV with retinal origin. We find that Vldlr mRNA is strongly expressed in the neuroretina, and we observe both vascular and neuronal phenotypes in Vldlr-/- mice. Unexpectedly, horizontal cell (HC) neurites are mistargeted prior to SRV in this model, and the majority of vascular lesions are associated with mistargeted neurites. In Foxn4-/- mice, which lack HCs and display reduced amacrine cell (AC) numbers, we find severe defects in intraretinal capillary development. However, SRV is not suppressed in Foxn4-/-;Vldlr-/- mice, which reveals that mistargeted HC neurites are not required for vascular lesion formation. In the absence of VLDLR, the intraretinal capillary plexuses form in an inverse order compared to normal development, and subsequent to this early defect, vascular proliferation is increased. We conclude that SRV in the Vldlr-/- model is associated with mistargeted neurites and that SRV is preceded by altered retinal vascular development. PMID:26177550

  5. Propolis Inhibits Neurite Outgrowth in Differentiating SH-SY5Y Human Neuroblastoma Cells.

    PubMed

    Kim, Han Bit; Yoo, Byung Sun

    2016-07-01

    Propolis is a multicomponent, active, complex resinous substance collected by honeybees from a variety of plant sources. We have studied the effect of propolis on neurite outgrowth of SH-SY5Y human neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Propolis, at a concentration of 3 μg/mL, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells treated with propolis (0.3~3 μg/mL) for 48 hr was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 0.3 to 3 μg/mL propolis resulted in decreased level of transglutaminase and 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The results indicate that propolis is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells. PMID:27437091

  6. Propolis Inhibits Neurite Outgrowth in Differentiating SH-SY5Y Human Neuroblastoma Cells.

    PubMed

    Kim, Han Bit; Yoo, Byung Sun

    2016-07-01

    Propolis is a multicomponent, active, complex resinous substance collected by honeybees from a variety of plant sources. We have studied the effect of propolis on neurite outgrowth of SH-SY5Y human neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Propolis, at a concentration of 3 μg/mL, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells treated with propolis (0.3~3 μg/mL) for 48 hr was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 0.3 to 3 μg/mL propolis resulted in decreased level of transglutaminase and 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The results indicate that propolis is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells.

  7. Cadmium inhibits neurite outgrowth in differentiating human SH-SY5Y neuroblastoma cells.

    PubMed

    Pak, Eun Joo; Son, Gi Dong; Yoo, Byung Sun

    2014-01-01

    Cadmium, a highly ubiquitous heavy metal, is well known to induce neurotoxicity. However, the underlying mechanism of cadmium-mediated neurotoxicity remains unclear. We have studied cadmium inhibition of neurite outgrowth using human SH-SY5Y neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Cadmium, at a concentration of 3 μmol/L, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells 48 hours after cadmium treatment (1-3 μmol/L cadmium) was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 1 to 3 μmol/L cadmium resulted in decreased level of cross-reactivities with 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The reactive oxygen species (ROS) scavenger, NAC (N-acetyl-l-cysteine), recovered the expression of GAP-43 in cadmium-treated cells. The results indicate that cadmium is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells and that this effect might result from ROS generation by cadmium.

  8. Spatial confinement of neurite regrowth from dorsal root ganglia within nonporous microconduits.

    PubMed

    Pearson, Richard G; Molino, Yves; Williams, Philip M; Tendler, Saul J B; Davies, Martyn C; Roberts, Clive J; Shakesheff, Kevin M

    2003-04-01

    Tissue engineering is founded on the concept of controlling the behavior of individual cells to stimulate tissue formation. This control is achieved by mimicking signals that manage natural tissue development or repair. These interdependent signals include cytokine delivery, extracellular matrix interactions, and cell-cell communication. Here, we report on the effect of spatial guidance as a signal for nerve tissue regeneration, using a simple in vitro model. We observe the acceleration of neurite extension from rat dorsal root ganglia within micron-scale tubes. Within these hydrogel-filled conduits, neurites were observed to extend more rapidly than when cultured within the hydrogel alone. The spatial cue also induced a change in tissue architecture, with the cabling of cells within the microconduit. The acceleration of neurite extension was found to be independent of conduit diameter within the range of 200 to 635 microm. Finally, our in vitro model enabled quantification of the effect of combining spatial control and localized nerve growth factor delivery.

  9. Propolis Inhibits Neurite Outgrowth in Differentiating SH-SY5Y Human Neuroblastoma Cells

    PubMed Central

    Kim, Han Bit; Yoo, Byung Sun

    2016-01-01

    Propolis is a multicomponent, active, complex resinous substance collected by honeybees from a variety of plant sources. We have studied the effect of propolis on neurite outgrowth of SH-SY5Y human neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Propolis, at a concentration of 3 μg/mL, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells treated with propolis (0.3~3 μg/mL) for 48 hr was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 0.3 to 3 μg/mL propolis resulted in decreased level of transglutaminase and 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The results indicate that propolis is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells. PMID:27437091

  10. Influence of micro-patterned PLLA membranes on outgrowth and orientation of hippocampal neurites.

    PubMed

    Morelli, Sabrina; Salerno, Simona; Piscioneri, Antonella; Papenburg, Bernke J; Di Vito, Anna; Giusi, Giuseppina; Canonaco, Marcello; Stamatialis, Dimitrios; Drioli, Enrico; De Bartolo, Loredana

    2010-09-01

    In neuronal tissue engineering many efforts are focused on creating biomaterials with physical and chemical pathways for controlling cellular proliferation and orientation. Neurons have the ability to respond to topographical features in their microenvironment causing among others, axons to proliferate along surface features such as substrate grooves in micro-and nanoscales. As a consequence these neuronal elements are able to correctly adhere, migrate and orient within their new environment during growth. Here we explored the polarization and orientation of hippocampal neuronal cells on nonpatterned and micro-patterned biodegradable poly(l-lactic acid) (PLLA) membranes with highly selective permeable properties. Dense and porous nonpatterned and micro-patterned membranes were prepared from PLLA by Phase Separation Micromolding. The micro-patterned membranes have a three-dimensional structure consisting of channels and ridges and of bricks of different widths. Nonpatterned and patterned membranes were used for hippocampal neuronal cultures isolated from postnatal days 1-3 hamsters and the neurite length, orientation and specific functions of cells were investigated up to 12 days of culture. Neurite outgrowth, length plus orientation tightly overlapped the pattern of the membrane surface. Cell distribution occurred only in correspondence to membrane grooves characterized by continuous channels whereas on membranes with interconnected channels, cells not only adhered to and elongated their cellular processes in the grooves but also in the breaking points. High orientation degrees of cells were determined particularly on the patterned porous membranes with channel width of 20 mum and ridges of 17 mum whereas on dense nonpatterned membranes as well as on polystyrene culture dish (PSCD) controls, a larger number of primary developed neurites were distributed. Based on these results, PLLA patterned membranes may directly improve the guidance of neurite extension and

  11. Transgenic mice overexpressing reticulon 3 develop neuritic abnormalities

    PubMed Central

    Hu, Xiangyou; Shi, Qi; Zhou, Xiangdong; He, Wanxia; Yi, Hong; Yin, Xinghua; Gearing, Marla; Levey, Allan; Yan, Riqiang

    2007-01-01

    Dystrophic neurites are swollen dendrites or axons recognizable near amyloid plaques as a part of important pathological feature of Alzheimer's disease (AD). We report herein that reticulon 3 (RTN3) is accumulated in a distinct population of dystrophic neurites named as RTN3 immunoreactive dystrophic neurites (RIDNs). The occurrence of RIDNs is concomitant with the formation of high-molecular-weight RTN3 aggregates in brains of AD cases and mice expressing mutant APP. Ultrastructural analysis confirms accumulation of RTN3-containing aggregates in RIDNs. It appears that the protein level of RTN3 governs the formation of RIDNs because transgenic mice expressing RTN3 will develop RIDNs, initially in the hippocampal CA1 region, and later in other hippocampal and cortical regions. Importantly, we show that the presence of dystrophic neurites in Tg-RTN3 mice causes impairments in spatial learning and memory, as well as synaptic plasticity, implying that RIDNs potentially contribute to AD cognitive dysfunction. Together, we demonstrate that aggregation of RTN3 contributes to AD pathogenesis by inducing neuritic dystrophy. Inhibition of RTN3 aggregation is likely a therapeutic approach for reducing neuritic dystrophy. PMID:17476306

  12. Neurite, a finite difference large scale parallel program for the simulation of electrical signal propagation in neurites under mechanical loading.

    PubMed

    García-Grajales, Julián A; Rucabado, Gabriel; García-Dopico, Antonio; Peña, José-María; Jérusalem, Antoine

    2015-01-01

    With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite--explicit and implicit--were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented

  13. Suppressor of Cytokine Signalling-6 Promotes Neurite Outgrowth via JAK2/STAT5-Mediated Signalling Pathway, Involving Negative Feedback Inhibition

    PubMed Central

    Gupta, Sakshi; Mishra, Kanchan; Surolia, Avadhesha; Banerjee, Kakoli

    2011-01-01

    Background Suppressors of cytokine signalling (SOCS) protein family are key regulators of cellular responses to cytokines and play an important role in the nervous system. The SOCS6 protein, a less extensively studied SOCS family member, has been shown to induce insulin resistance in the retina and promote survival of the retinal neurons. But no reports are available about the role of SOCS6 in neuritogenesis. In this study, we examined the role of SOCS6 in neurite outgrowth and neuronal cell signalling. Methodology/Principal Findings The effect of SOCS6 in neural stem cells differentiation was studied in neural stem cells and PC12 cell line. Highly elevated levels of SOCS6 were found upon neural cell differentiation both at the mRNA and protein level. Furthermore, SOCS6 over-expression lead to increase in neurite outgrowth and degree of branching, whereas SOCS6 knockdown with specific siRNAs, lead to a significant decrease in neurite initiation and extension. Insulin-like growth factor-1 (IGF-1) stimulation which enhanced neurite outgrowth of neural cells resulted in further enhancement of SOCS6 expression. Jak/Stat (Janus Kinase/Signal Transducer And Activator Of Transcription) pathway was found to be involved in the SOCS6 mediated neurite outgrowth. Bioinformatics study revealed presence of putative Stat binding sites in the SOCS6 promoter region. Transcription factors Stat5a and Stat5b were involved in SOCS6 gene upregulation leading to neuronal differentiation. Following differentiation, SOCS6 was found to form a ternary complex with IGFR (Insulin Like Growth Factor-1 Receptor) and JAK2 which acted in a negative feedback loop to inhibit pStat5 activation. Conclusion/Significance The current paradigm for the first time states that SOCS6, a SOCS family member, plays an important role in the process of neuronal differentiation. These findings define a novel molecular mechanism for Jak2/Stat5 mediated SOCS6 signalling. PMID:22125600

  14. Inhibitory effects of a luteinizing hormone-releasing hormone agonist on basal and epidermal growth factor-induced cell proliferation and metastasis-associated properties in human epidermoid carcinoma A431 cells.

    PubMed

    Huang, Ying-Tang; Hwang, Jiuan-Jiuan; Lee, Lung-Ta; Liebow, Charles; Lee, Ping-Ping H; Ke, Ferng-Chun; Lo, Tung-Bin; Schally, Andrew V; Lee, Ming-Ting

    2002-06-01

    The purpose of this study was to investigate the effects of a potent LHRH agonist, [D-Trp(6)]LHRH on the basal and EGF-induced cell proliferation and the metastasis-associated properties in A431 human epidermoid carcinoma. [D-Trp(6)]LHRH time-dependently inhibited the basal and EGF-stimulated growth of A431 cancer cells. It is assumed that phosphorylation/dephosphorylation of cellular proteins is highly related to cell growth. This study demonstrates that [D-Trp(6)]LHRH decreased the basal and EGF-induced total cellular kinase activity, particularly the tyrosine phosphorylation of several cellular proteins including the EGFR. In contrast, [D-Trp(6)]LHRH did not cause detectable changes in basal and EGF-stimulated serine/threonine phosphorylation of A431 cellular proteins. The inhibitory effect of [D-Trp(6)]LHRH on A431 cell proliferation was associated with apoptosis as evidenced by the cell morphology and DNA integrity (ladder pattern), the expression of interleukin 1beta-converting enzyme (ICE) and activation of caspase. Furthermore, EGF could rescue the remaining attached A431 cells following [D-Trp(6)]LHRH treatment for 48 hr, which suggests that limited exposure to [D-Trp(6)]LHRH did not channel all cells to irreversible apoptotic process. We also determined the effects of [D-Trp(6)]LHRH on metastasis-associated properties in A431 cells. [D-Trp(6)]LHRH reduced both basal and EGF-stimulated secretion of MMP-9 and MMP-2. In addition, [D-Trp(6)]LHRH suppressed the basal and EGF-induced invasive activity of A431 cells based on an in vitro invasion assay. In conclusion, this study indicates that [D-Trp(6)]LHRH may act partly through activating tyrosine phosphatase activity to inhibit cell proliferation and the metastasis-associated properties of A431 cancer cells. Our work suggests that [D-Trp(6)]LHRH may be therapeutically useful in limiting the tumor growth and metastasis of some neoplasms.

  15. White Matter Changes of Neurite Density and Fiber Orientation Dispersion during Human Brain Maturation.

    PubMed

    Chang, Yi Shin; Owen, Julia P; Pojman, Nicholas J; Thieu, Tony; Bukshpun, Polina; Wakahiro, Mari L J; Berman, Jeffrey I; Roberts, Timothy P L; Nagarajan, Srikantan S; Sherr, Elliott H; Mukherjee, Pratik

    2015-01-01

    Diffusion tensor imaging (DTI) studies of human brain development have consistently shown widespread, but nonlinear increases in white matter anisotropy through childhood, adolescence, and into adulthood. However, despite its sensitivity to changes in tissue microstructure, DTI lacks the specificity to disentangle distinct microstructural features of white and gray matter. Neurite orientation dispersion and density imaging (NODDI) is a recently proposed multi-compartment biophysical model of brain microstructure that can estimate non-collinear properties of white matter, such as neurite orientation dispersion index (ODI) and neurite density index (NDI). In this study, we apply NODDI to 66 healthy controls aged 7-63 years to investigate changes of ODI and NDI with brain maturation, with comparison to standard DTI metrics. Using both region-of-interest and voxel-wise analyses, we find that NDI exhibits striking increases over the studied age range following a logarithmic growth pattern, while ODI rises following an exponential growth pattern. This novel finding is consistent with well-established age-related changes of FA over the lifespan that show growth during childhood and adolescence, plateau during early adulthood, and accelerating decay after the fourth decade of life. Our results suggest that the rise of FA during the first two decades of life is dominated by increasing NDI, while the fall in FA after the fourth decade is driven by the exponential rise of ODI that overcomes the slower increases of NDI. Using partial least squares regression, we further demonstrate that NODDI better predicts chronological age than DTI. Finally, we show excellent test-retest reliability of NODDI metrics, with coefficients of variation below 5% in all measured regions of interest. Our results support the conclusion that NODDI reveals biologically specific characteristics of brain development that are more closely linked to the microstructural features of white matter than are

  16. Epidermal growth factor-induced cyclooxygenase-2 expression in oral squamous cell carcinoma cell lines is mediated through extracellular signal-regulated kinase 1/2 and p38 but is Src and nuclear factor-kappa B independent.

    PubMed

    Husvik, Camilla; Bryne, Magne; Halstensen, Trond S

    2009-10-01

    The intracellular signalling cascade(s) mediating epidermal growth factor (EGF)-induced cyclooxygenase-2 (COX-2) expression is poorly defined in oral carcinomas. Investigation of two different oral squamous cell carcinoma (OSCC) cell lines with high EGF-induced COX-2 expression revealed, however, that this expression was dependent on two mitogen-activated protein kinase (MAPK) pathways [extracellular signal-regulated kinase 1/2 (ERK1/2) and p38] because combined inhibition of these pathways was needed to abolish EGF-induced COX-2 expression. Surprisingly, inhibition of phosphoinositide-3 kinase (PI3K) increased EGF-induced COX-2 expression in the basaloid OSCC cell line (C12), suggesting a PI3K-controlled, inhibitory COX-2-regulating pathway. Neither the transcription factor nuclear factor-kappaB (NF-kappaB), nor Src, was involved in EGF-induced COX-2 expression. The results suggest that EGF-induced COX-2 expression is regulated by several pathways, and emphasizes that individual tumors use different strategies for intracellular signalling. PMID:19758248

  17. Phosphoinositide-specific phospholipase Cbeta1 expression is not linked to nerve growth factor-induced differentiation, cell survival or cell cycle control in PC12 rat pheocromocytoma cells.

    PubMed

    Bortul, R; Aluigi, M; Tazzari, P L; Tabellini, G; Baldini, G; Bareggi, R; Narducci, P; Martelli, A M

    2001-01-01

    Recent reports have highlighted that phosphoinositide-specific phospholipase Cbeta1 expression is linked to neuronal differentiation in different experimental models. We sought to determine whether or not this is also true for nerve growth factor (NGF)-induced neuronal differentiation of rat PC12 cells. However, we did not find differences in the expression of both the forms of phosphoinositide-specific phospholipase Cbeta1 (a and b) during sympathetic differentiation of these cells. Also, PC12 cell clones stably overexpressing phosphoinositide-specific phospholipase Cbeta1 were not more susceptible to the differentiating effect of NGF. Furthermore, since it is well established that phosphoinositide-specific phospholipase Cbeta1 affects cell proliferation, we investigated whether or not PC12 cell clones stably overexpressing phosphoinositide-specific phospholipase Cbeta1 showed differences in survival to serum deprivation and cell cycle, when compared to wild type cells. Nevertheless, we did not find any differences in these parameters between wild type cells and the overexpressing clones. Interestingly, in PC12 cells the overexpressed phosphoinositide-specific phospholipase Cbeta1 did not localize to the nucleus, but by immunofluorescence analysis, was detected in the cytoplasm. Therefore, our findings may represent another important clue to the fact that only when it is located within the nucleus phosphoinositide-specific phospholipase Cbeta1 is able to influence cell proliferation.

  18. β2-Glycoprotein I Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis by Suppressing the Phosphorylation of Extracellular Signal-Regulated Kinase 1/2, Akt, and Endothelial Nitric Oxide Synthase.

    PubMed

    Chiu, Wen-Chin; Chiou, Tzeon-Jye; Chung, Meng-Ju; Chiang, An-Na

    2016-01-01

    Angiogenesis is the process of new blood vessel formation, and it plays a key role in various physiological and pathological conditions. The β2-glycoprotein I (β2-GPI) is a plasma glycoprotein with multiple biological functions, some of which remain to be elucidated. This study aimed to identify the contribution of 2-GPI on the angiogenesis induced by vascular endothelial growth factor (VEGF), a pro-angiogenic factor that may regulate endothelial remodeling, and its underlying mechanism. Our results revealed that β2-GPI dose-dependently decreased the VEGF-induced increase in endothelial cell proliferation, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the bromodeoxyuridine (BrdU) incorporation assays. Furthermore, incubation with both β2-GPI and deglycosylated β2-GPI inhibited the VEGF-induced tube formation. Our results suggest that the carbohydrate residues of β2-GPI do not participate in the function of anti-angiogenesis. Using in vivo Matrigel plug and angioreactor assays, we show that β2-GPI remarkably inhibited the VEGF-induced angiogenesis at a physiological concentration. Moreover, β2-GPI inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and endothelial nitric oxide synthase (eNOS). In summary, our in vitro and in vivo data reveal for the first time that β2-GPI inhibits the VEGF-induced angiogenesis and highlights the potential for β2-GPI in anti-angiogenic therapy. PMID:27579889

  19. Vascular endothelial growth factor induces anti‑Müllerian hormone receptor 2 overexpression in ovarian granulosa cells of in vitro fertilization/intracytoplasmic sperm injection patients.

    PubMed

    Fang, Yanqiu; Lu, Xiaodan; Liu, Lei; Lin, Xiuying; Sun, Munan; Fu, Jianhua; Xu, Shufen; Tan, Yan

    2016-06-01

    Misregulation of vascular endothelial growth factor A (VEGF‑A) has been implicated in numerous types of ovarian disease, such as polycystic ovarian syndrome, ovarian hyperstimulation syndrome, endometriosis and ovarian cancer. VEGF regulates blood vessel permeability and angiogenesis. In our previous study, VEGF‑regulated gene expression was profiled in the uterus of a transgenic mouse model with repressed VEGF expression, which indicated that VEGF is an important regulator in controlling gene expression in the uterus. The anti‑Müllerian hormone (AMH) is expressed by ovarian granulosa cells (GCs) and acts through its type 2 receptor, AMH receptor 2 (AMHR2). Serum AMH levels are used to predict ovarian reserves and the small antral follicles contribute markedly to the serum AMH level. AMH recruits primordial follicles and inhibits excessive follicular development by follicular stimulating hormone (FSH). However, AMH may be influenced by suppression of gonadotrophin secretion and VEGF inhibition. In the current study, human primary ovarian GCs were isolated from ovarian follicle fluid of in vitro fertilization/intracytoplasmic sperm injection cycles (IVF/ICSI). It was identified that the FSH receptor was consistently expressed in the isolated cells. VEGF‑A treatment stimulated AMHR2 overexpression at the gene and protein levels. In addition, VEGF induced AMHR2 expression on the surface of the isolated GCs from mature follicles. The VEGF treatment was also performed in an ovarian granulosa‑like cell line, KGN. AMH and AMHR2 are co‑expressed in normal GCs; however, as a result of VEGF misregulation, AMHR2 overexpression increases AMH binding, which may attenuate follicular or oocyte maturation. However, the associated function and underlying mechanism requires further investigation. PMID:27109000

  20. 7,3',4'-Trihydroxyisoflavone inhibits epidermal growth factor-induced proliferation and transformation of JB6 P+ mouse epidermal cells by suppressing cyclin-dependent kinases and phosphatidylinositol 3-kinase.

    PubMed

    Lee, Dong Eun; Lee, Ki Won; Song, Nu Ry; Seo, Sang Kwon; Heo, Yong-Seok; Kang, Nam Joo; Bode, Ann M; Lee, Hyong Joo; Dong, Zigang

    2010-07-01

    Numerous in vitro and in vivo studies have shown that isoflavones exhibit anti-proliferative activity against epidermal growth factor (EGF) receptor-positive malignancies of the breast, colon, skin, and prostate. 7,3',4'-Trihydroxyisoflavone (7,3',4'-THIF) is one of the metabolites of daidzein, a well known soy isoflavone, but its chemopreventive activity and the underlying molecular mechanisms are poorly understood. In this study, 7,3',4'-THIF prevented EGF-induced neoplastic transformation and proliferation of JB6 P+ mouse epidermal cells. It significantly blocked cell cycle progression of EGF-stimulated cells at the G(1) phase. As shown by Western blot, 7,3',4'-THIF suppressed the phosphorylation of retinoblastoma protein at Ser-795 and Ser-807/Ser-811, which are the specific sites of phosphorylation by cyclin-dependent kinase (CDK) 4. It also inhibited the expression of G(1) phase-regulatory proteins, including cyclin D1, CDK4, cyclin E, and CDK2. In addition to regulating the expression of cell cycle-regulatory proteins, 7,3',4'-THIF bound to CDK4 and CDK2 and strongly inhibited their kinase activities. It also bound to phosphatidylinositol 3-kinase (PI3K), strongly inhibiting its kinase activity and thereby suppressing the Akt/GSK-3beta/AP-1 pathway and subsequently attenuating the expression of cyclin D1. Collectively, these results suggest that CDKs and PI3K are the primary molecular targets of 7,3',4'-THIF in the suppression of EGF-induced cell proliferation. These insights into the biological actions of 7,3',4'-THIF provide a molecular basis for the possible development of new chemoprotective agents. PMID:20444693

  1. β2-Glycoprotein I Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis by Suppressing the Phosphorylation of Extracellular Signal-Regulated Kinase 1/2, Akt, and Endothelial Nitric Oxide Synthase

    PubMed Central

    Chiu, Wen-Chin; Chiou, Tzeon-Jye; Chung, Meng-Ju; Chiang, An-Na

    2016-01-01

    Angiogenesis is the process of new blood vessel formation, and it plays a key role in various physiological and pathological conditions. The β2-glycoprotein I (β2-GPI) is a plasma glycoprotein with multiple biological functions, some of which remain to be elucidated. This study aimed to identify the contribution of 2-GPI on the angiogenesis induced by vascular endothelial growth factor (VEGF), a pro-angiogenic factor that may regulate endothelial remodeling, and its underlying mechanism. Our results revealed that β2-GPI dose-dependently decreased the VEGF-induced increase in endothelial cell proliferation, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the bromodeoxyuridine (BrdU) incorporation assays. Furthermore, incubation with both β2-GPI and deglycosylated β2-GPI inhibited the VEGF-induced tube formation. Our results suggest that the carbohydrate residues of β2-GPI do not participate in the function of anti-angiogenesis. Using in vivo Matrigel plug and angioreactor assays, we show that β2-GPI remarkably inhibited the VEGF-induced angiogenesis at a physiological concentration. Moreover, β2-GPI inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and endothelial nitric oxide synthase (eNOS). In summary, our in vitro and in vivo data reveal for the first time that β2-GPI inhibits the VEGF-induced angiogenesis and highlights the potential for β2-GPI in anti-angiogenic therapy. PMID:27579889

  2. Neurite, a Finite Difference Large Scale Parallel Program for the Simulation of Electrical Signal Propagation in Neurites under Mechanical Loading

    PubMed Central

    García-Grajales, Julián A.; Rucabado, Gabriel; García-Dopico, Antonio; Peña, José-María; Jérusalem, Antoine

    2015-01-01

    With the growing body of research on traumatic brain injury and spinal cord injury, computational neuroscience has recently focused its modeling efforts on neuronal functional deficits following mechanical loading. However, in most of these efforts, cell damage is generally only characterized by purely mechanistic criteria, functions of quantities such as stress, strain or their corresponding rates. The modeling of functional deficits in neurites as a consequence of macroscopic mechanical insults has been rarely explored. In particular, a quantitative mechanically based model of electrophysiological impairment in neuronal cells, Neurite, has only very recently been proposed. In this paper, we present the implementation details of this model: a finite difference parallel program for simulating electrical signal propagation along neurites under mechanical loading. Following the application of a macroscopic strain at a given strain rate produced by a mechanical insult, Neurite is able to simulate the resulting neuronal electrical signal propagation, and thus the corresponding functional deficits. The simulation of the coupled mechanical and electrophysiological behaviors requires computational expensive calculations that increase in complexity as the network of the simulated cells grows. The solvers implemented in Neurite—explicit and implicit—were therefore parallelized using graphics processing units in order to reduce the burden of the simulation costs of large scale scenarios. Cable Theory and Hodgkin-Huxley models were implemented to account for the electrophysiological passive and active regions of a neurite, respectively, whereas a coupled mechanical model accounting for the neurite mechanical behavior within its surrounding medium was adopted as a link between electrophysiology and mechanics. This paper provides the details of the parallel implementation of Neurite, along with three different application examples: a long myelinated axon, a segmented

  3. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    SciTech Connect

    Harrill, Joshua A.; Freudenrich, Theresa M.; Robinette, Brian L.; Mundy, William R.

    2011-11-15

    There is a need for rapid, efficient and cost-effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be used as screening tools to identify potential developmental neurotoxicants. The present study compared primary rat cortical cultures and human embryonic stem cell-derived neural cultures in terms of: 1) reproducibility of high content image analysis based neurite outgrowth measurements, 2) dynamic range of neurite outgrowth measurements and 3) sensitivity to chemicals which have been shown to inhibit neurite outgrowth. There was a large increase in neurite outgrowth between 2 and 24 h in both rat and human cultures. Image analysis data collected across multiple cultures demonstrated that neurite outgrowth measurements in rat cortical cultures were more reproducible and had higher dynamic range as compared to human neural cultures. Human neural cultures were more sensitive than rat cortical cultures to chemicals previously shown to inhibit neurite outgrowth. Parallel analysis of morphological (neurite count, neurite length) and cytotoxicity (neurons per field) measurements were used to detect selective effects on neurite outgrowth. All chemicals which inhibited neurite outgrowth in rat cortical cultures did so at concentrations which did not concurrently affect the number of neurons per field, indicating selective effects on neurite outgrowth. In contrast, more than half the chemicals which inhibited neurite outgrowth in human neural cultures did so at concentrations which concurrently decreased the number of neurons per field, indicating that effects on neurite outgrowth were secondary to cytotoxicity. Overall, these data demonstrate that the culture models performed differently in terms of reproducibility, dynamic range and sensitivity to neurite outgrowth inhibitors. While human neural

  4. Pleurotus giganteus (Berk.) Karunarathna & K.D. Hyde: Nutritional value and in vitro neurite outgrowth activity in rat pheochromocytoma cells

    PubMed Central

    2012-01-01

    Background Drugs dedicated to alleviate neurodegenerative diseases like Parkinson’s and Alzheimer’s have always been associated with debilitating side effects. Medicinal mushrooms which harness neuropharmacological compounds offer a potential possibility for protection against such diseases. Pleurotus giganteus (formerly known as Panus giganteus) has been consumed by the indigenous people in Peninsular Malaysia for many years. Domestication of this wild mushroom is gaining popularity but to our knowledge, medicinal properties reported for this culinary mushroom are minimal. Methods The fruiting bodies P. giganteus were analysed for its nutritional values. Cytotoxicity of the mushroom’s aqueous and ethanolic extracts towards PC12, a rat pheochromocytoma cell line was assessed by using 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Neurite outgrowth stimulation assay was carried out with nerve growth factor (NGF) as control. To elucidate signaling mechanisms involved by mushroom extract-induced neurite outgrowth, treatment of specific inhibitor for MEK/ERK and PI3K signalling pathway was carried out. Results The fruiting bodies of P. giganteus were found to have high carbohydrate, dietary fibre, potassium, phenolic compounds and triterpenoids. Both aqueous and ethanolic extracts induced neurite outgrowth of PC12 cells in a dose- and time-dependant manner with no detectable cytotoxic effect. At day 3, 25 μg/ml of aqueous extract and 15 μg/ml of ethanolic extract showed the highest percentage of neurite-bearing cells, i.e. 31.7 ± 1.1% and 33.3 ± 0.9%; respectively. Inhibition treatment results suggested that MEK/ERK and PI3K/Akt are responsible for neurite outgrowth of PC12 cells stimulated by P. giganteus extract. The high potassium content (1345.7 mg/100 g) may be responsible for promoting neurite extension, too. Conclusions P. giganteus contains bioactive compounds that mimic NGF and are responsible for neurite

  5. Interaction of new antidepressants with sigma-1 receptor chaperones and their potentiation of neurite outgrowth in PC12 cells.

    PubMed

    Ishima, Tamaki; Fujita, Yuko; Hashimoto, Kenji

    2014-03-15

    The sigma-1 receptor chaperone located in the endoplasmic reticulum (ER) may be implicated in the mechanistic action of some antidepressants. The present study was undertaken to examine whether new antidepressant drugs interact with the sigma-1 receptor chaperone. First, we examined the effects of selective serotonin reuptake inhibitors (SSRIs) (fluvoxamine, paroxetine, sertraline, citalopram and escitalopram), serotonin and noradrenaline reuptake inhibitors (SNRIs) (duloxetine, venlafaxine, milnacipran), and mirtazapine, a noradrenaline and specific serotonergic antidepressant (NaSSA), on [(3)H](+)-pentazocine binding to rat brain membranes. Then, we examined the effects of these drugs on nerve growth factor (NGF)-induced neurite outgrowth in PC12 cells. The order of potency for drugs at the sigma-1 receptor chaperone was as follows: fluvoxamine>sertraline>fluoxetine>escitalopram>citalopram>paroxetine>duoxetine. Venlafaxine, milnacipran, and mirtazapine showed very weak affinity for this chaperone. Furthermore, fluvoxamine, fluoxetine, escitalopram, and mirtazapine significantly potentiated NGF-induced neurite outgrowth in cell assays, and the effects of all these drugs, excluding mirtazapine, were antagonized by NE-100, a selective antagonist of the sigma-1 receptor chaperone. Moreover, the effects of fluvoxamine and fluoxetine on neurite outgrowth were also antagonized by sertraline, indicating that sertraline may be an antagonist at the sigma-1 receptor chaperone. The effect of mirtazapine on neurite outgrowth was antagonized by the selective 5-hydroxytryptamine1A receptor antagonist WAY-100635. These findings suggest that activation at the sigma-1 receptor chaperone may be involved in the action of some SSRIs, such as fluvoxamine, fluoxetine and escitalopram. In contrast, mirtazapine independently potentiated neurite outgrowth in PC12 cells, indicating that this beneficial effect may mediate its pharmacological effect. PMID:24508523

  6. Iridoids and sesquiterpenoids of Valeriana stenoptera and their effects on NGF-induced neurite outgrowth in PC12 cells.

    PubMed

    Dong, Fa-Wu; Wu, Zhi-Kun; Yang, Liu; Zi, Chen-Ting; Yang, Dan; Ma, Rui-Jing; Liu, Zhen-Hua; Luo, Huai-Rong; Zhou, Jun; Hu, Jiang-Miao

    2015-10-01

    Twenty-one compounds (nine iridoids and twelve sesquiterpenoids), including ten previously unknown (five iridoids and five sesquiterpenoids) were isolated from whole dried material of Valeriana stenoptera. Structures were established on the basis of extensive spectroscopic analysis and the relative stereochemistry of 13-hydroxypatchoulol A was further confirmed by X-ray crystallographic data. All isolates were evaluated for their effects on nerve growth factor (NGF)-mediated neurite outgrowth in pheochromocytoma (PC12) cells and seven compounds showed potent promoting effects.

  7. Drag force as a tool to test the active mechanical response of PC12 neurites.

    PubMed

    Bernal, Roberto; Melo, Francisco; Pullarkat, Pramod A

    2010-02-17

    We investigate the mechanical response of PC12 neurites subjected to a drag force imposed by a laminar flow perpendicular to the neurite axis. The curvature of the catenary shape acquired by an initially straight neurite under the action of the drag force provides information on both elongation and tension of the neurite. This method allows us to measure the rest tension and viscoelastic parameters of PC12 neurites and active behavior of neurites. Measurement of oscillations in the strain rate of neurites at constant flow rate provides insight on the response of molecular motors and additional support for the presence of a negative strain-rate sensitivity region in the global mechanical response of PC12 neurites.

  8. Neuroprotective Copper Bis(thiosemicarbazonato) Complexes Promote Neurite Elongation

    PubMed Central

    Bica, Laura; Liddell, Jeffrey R.; Donnelly, Paul S.; Duncan, Clare; Caragounis, Aphrodite; Volitakis, Irene; Paterson, Brett M.; Cappai, Roberto; Grubman, Alexandra; Camakaris, James; Crouch, Peter J.; White, Anthony R.

    2014-01-01

    Abnormal biometal homeostasis is a central feature of many neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and motor neuron disease. Recent studies have shown that metal complexing compounds behaving as ionophores such as clioquinol and PBT2 have robust therapeutic activity in animal models of neurodegenerative disease; however, the mechanism of neuroprotective action remains unclear. These neuroprotective or neurogenerative processes may be related to the delivery or redistribution of biometals, such as copper and zinc, by metal ionophores. To investigate this further, we examined the effect of the bis(thiosemicarbazonato)-copper complex, CuII(gtsm) on neuritogenesis and neurite elongation (neurogenerative outcomes) in PC12 neuronal-related cultures. We found that CuII(gtsm) induced robust neurite elongation in PC12 cells when delivered at concentrations of 25 or 50 nM overnight. Analogous effects were observed with an alternative copper bis(thiosemicarbazonato) complex, CuII(atsm), but at a higher concentration. Induction of neurite elongation by CuII(gtsm) was restricted to neurites within the length range of 75–99 µm with a 2.3-fold increase in numbers of neurites in this length range with 50 nM CuII(gtsm) treatment. The mechanism of neurogenerative action was investigated and revealed that CuII(gtsm) inhibited cellular phosphatase activity. Treatment of cultures with 5 nM FK506 (calcineurin phosphatase inhibitor) resulted in analogous elongation of neurites compared to 50 nM CuII(gtsm), suggesting a potential link between CuII(gtsm)-mediated phosphatase inhibition and neurogenerative outcomes. PMID:24587210

  9. Neuronal Cell Shape and Neurite Initiation Are Regulated by the Ndr Kinase SAX-1, a Member of the Orb6/COT-1/Warts Serine/Threonine Kinase Family

    PubMed Central

    Zallen, Jennifer A.; Peckol, Erin L.; Tobin, David M.; Bargmann, Cornelia I.

    2000-01-01

    The Caenorhabditis elegans sax-1 gene regulates several aspects of neuronal cell shape. sax-1 mutants have expanded cell bodies and ectopic neurites in many classes of neurons, suggesting that SAX-1 functions to restrict cell and neurite growth. The ectopic neurites in sensory neurons of sax-1 mutants resemble the defects caused by decreased sensory activity. However, the activity-dependent pathway, mediated in part by the UNC-43 calcium/calmodulin-dependent kinase II, functions in parallel with SAX-1 to suppress neurite initiation. sax-1 encodes a serine/threonine kinase in the Ndr family that is related to the Orb6 (Schizosaccharomyces pombe), Warts/Lats (Drosophila), and COT-1 (Neurospora) kinases that function in cell shape regulation. These kinases have similarity to Rho kinases but lack consensus Rho-binding domains. Dominant negative mutations in the C. elegans RhoA GTPase cause neuronal cell shape defects similar to those of sax-1 mutants, and genetic interactions between rhoA and sax-1 suggest shared functions. These results suggest that SAX-1/Ndr kinases are endogenous inhibitors of neurite initiation and cell spreading. PMID:10982409

  10. The role of calsyntenin-3 in dystrophic neurite formation in Alzheimer's disease brain.

    PubMed

    Uchida, Yoko; Gomi, Fujiya

    2016-03-01

    β-Amyloid (Aβ) oligomers may play an important role in the early pathogenesis of Alzheimer's disease: cognitive impairment caused by synaptic dysfunction. Dystrophic neurites surrounding Aβ plaques, another pathological feature of Alzheimer's disease, are plaque-associated neuritic alterations preceding the appearance of synaptic loss. In the present review, we focus on the mechanism of dystrophic neurite formation by Aß oligomers, and discuss the neurotoxic role of Aβ-induced calsyntenin-3 in mediating dystrophic neurite formation. PMID:27018282

  11. Automatic quantification of neurite outgrowth by means of image analysis

    NASA Astrophysics Data System (ADS)

    Van de Wouwer, Gert; Nuydens, Rony; Meert, Theo; Weyn, Barbara

    2004-07-01

    A system for quantification of neurite outgrowth in in-vitro experiments is described. The system is developed for routine use in a high-throughput setting and is therefore needs fast, cheap, and robust. It relies on automated digital microscopical imaging of microtiter plates. Image analysis is applied to extract features for characterisation of neurite outgrowth. The system is tested in a dose-response experiment on PC12 cells + Taxol. The performance of the system and its ability to measure changes on neuronal morphology is studied.

  12. The effect of gallium nitride on long-term culture induced aging of neuritic function in cerebellar granule cells.

    PubMed

    Chen, Chi-Ruei; Young, Tai-Horng

    2008-04-01

    Gallium nitride (GaN) has been developed for a variety of microelectronic and optical applications due to its unique electric property and chemical stability. In the present study, n-type and p-type GaN were used as substrates to culture cerebellar granule neurons to examine the effect of GaN on cell response for a long-term culture period. It was found that GaN could rapidly induce cultured neurons to exhibit a high phosphorylated Akt level after 20h of incubation. It was assumed that the anti-apoptotic effect of Akt phosphorylation could be correlated with cell survival, neurite growth and neuronal function for up to 35 days of incubation. Morphological studies showed GaN induced larger neuronal aggregates and neurite fasciculation to exhibit a dense fiber network after 8 days of incubation. Western blot analysis and immunocytochemical characterization showed that GaN still exhibited the expression of neurite growth and function, such as high levels of GAP-43, synapsin I and synaptophysin even after 35 days of incubation. In addition, survival of cerebellar granule neurons on GaN was improved by the analysis of lactate dehydrogenase (LDH) release from damaged cells. These results indicated that neuronal connections were formed on GaN by a gradual process from Akt activation and cell aggregation to develop neurite growth, fasciculation and function. Therefore, GaN offers a good model system to identify a well-characterized pattern of neuronal behavior for a long-term culture period, consistent with the development of a neurochip requiring the integration of biological system and semiconductor material.

  13. Berberine, a natural antidiabetes drug, attenuates glucose neurotoxicity and promotes Nrf2-related neurite outgrowth

    SciTech Connect

    Hsu, Ya-Yun; Tseng, Yu-Ting; Lo, Yi-Ching

    2013-11-01

    Reactive oxygen intermediates production and apoptotic damage induced by high glucose are major causes of neuronal damage in diabetic neuropathy. Berberine (BBR), a natural antidiabetes drug with PI3K-activating activity, holds promise for diabetes because of its dual antioxidant and anti-apoptotic activities. We have previously reported that BBR attenuated H{sub 2}O{sub 2} neurotoxicity via activating the PI3K/Akt/Nrf2-dependent pathway. In this study, we further explored the novel protective mechanism of BBR on high glucose-induced apoptotic death and neurite damage of SH-SY5Y cells. Results indicated BBR (0.1–10 nM) significantly attenuated reactive oxygen species (ROS) production, nucleus condensation, and apoptotic death in high glucose-treated cells. However, AG1024, an inhibitor of insulin growth factor-1 (IGF-1) receptor, significantly abolished BBR protection against high glucose-induced neuronal death. BBR also increased Bcl-2 expression and decreased cytochrome c release. High glucose down-regulated IGF-1 receptor and phosphorylation of Akt and GSK-3β, the effects of which were attenuated by BBR treatment. BBR also activated nuclear erythroid 2-related factor 2 (Nrf2), the key antioxidative transcription factor, which is accompanied with up-regulation of hemeoxygenase-1 (HO-1). Furthermore, BBR markedly enhanced nerve growth factor (NGF) expression and promoted neurite outgrowth in high glucose-treated cells. To further determine the role of the Nrf2 in BBR neuroprotection, RNA interference directed against Nrf2 was used. Results indicated Nrf2 siRNA abolished BBR-induced HO-1, NGF, neurite outgrowth and ROS decrease. In conclusion, BBR attenuated high glucose-induced neurotoxicity, and we are the first to reveal this novel mechanism of BBR as an Nrf2 activator against glucose neurotoxicity, providing another potential therapeutic use of BBR on the treatment of diabetic complications. - Highlights: • BBR attenuates high glucose-induced ROS

  14. Tenascin-C contains distinct adhesive, anti-adhesive, and neurite outgrowth promoting sites for neurons

    PubMed Central

    1996-01-01

    The glia-derived extracellular matrix glycoprotein tenascin-C (TN-C) is transiently expressed in the developing CNS and may mediate neuron-glia interactions. Perturbation experiments with specific monoclonal antibodies suggested that TN-C functions for neural cells are encoded by distinct sites of the glycoprotein (Faissner, A., A. Scholze, and B. Gotz. 1994. Tenascin glycoproteins in developing neural tissues--only decoration? Persp. Dev. Neurobiol. 2:53-66). To characterize these further, bacterially expressed recombinant domains were generated and used for functional studies. Several short-term-binding sites for mouse CNS neurons could be assigned to the fibronectin type III (FNIII) domains. Of these, the alternatively spliced insert TNfnA1,2,4,B,D supported initial attachment for both embryonic day 18 (E18) rat and postnatal day 6 (P6) mouse neurons. Only TNfn1-3 supported binding and growth of P6 mouse cerebellar neurons after 24 h, whereas attachment to the other domains proved reversible and resulted in cell detachment or aggregation. In choice assays on patterned substrates, repulsive properties could be attributed to the EGF-type repeats TNegf, and to TNfnA1,2,4. Finally, neurite outgrowth promoting properties for E18 rat hippocampal neurons and P0 mouse DRG explants could be assigned to TNfnB,D, TNfnD,6, and TNfn6. The epitope of mAb J1/tn2 which abolishes the neurite outgrowth inducing effect of intact TN-C could be allocated to TNfnD. These observations suggest that TN-C harbors distinct cell- binding, repulsive, and neurite outgrowth promoting sites for neurons. Furthermore, the properties of isoform-specific TN-C domains suggest functional significance of the alternative splicing of TN-C glycoproteins. PMID:8647898

  15. Mechanosensitive currents in the neurites of cultured mouse sensory neurones

    PubMed Central

    Hu, Jing; Lewin, Gary R

    2006-01-01

    Almost all sensory neurones in the dorsal root ganglia have a mechanosensory function. The transduction of mechanical stimuli in vivo takes place exclusively at the sensory ending. For cutaneous sensory receptors it has so far proved impossible to directly record the mechanically gated receptor potential because of the small size and inaccessibility of the sensory ending. Here we investigate whether mechanosensitive currents are present in the neurites of freshly isolated adult mouse sensory neurones in culture. Amost all sensory neurone neurites possess currents gated by submicrometre displacement stimuli (92%). Three types of mechanically activated conductance were characterized based on different inactivation kinetics. A rapidly adapting conductance was found in larger sensory neurones with narrow action potentials characteristic of mechanoreceptors. Slowly and intermediate adapting conductances were found exclusively in putative nociceptive neurones. Mechanically activated currents with similar kinetics were found also after stimulating the cell soma. However, soma currents were only observed in around 60% of cells tested and the displacement threshold was several times larger than for the neurite (∼6 μm). The reversal potential of the rapidly adapting current indicated that this current is largely selective for sodium ions whereas the slowly adapting current is non-selective. It is likely that distinct ion channel entities underlie these two currents. In summary, our data suggest that the high sensitivity and robustness of mechanically gated currents in the sensory neurite make this a useful in vitro model for the mechanosensitive sensory endings in vivo. PMID:17038434

  16. Neurite-promoting factor in conditioned medium from RN22 Schwannoma cultures: bioassay, fractionation, and properties.

    PubMed

    Manthorpe, M; Varon, S; Adler, R

    1981-09-01

    On polyornithine (PORN) substrata dissociated 8-day chick embryo ciliary ganglionic neurons will survive if the culture medium is supplemented with Ciliary neuronotrophic Factor. However, neuritic growth will not occur unless the substratum is derivatized with a PORN-bindable Neurite Promoting Factor (PNPF). In this preliminary study we report that soluble PNPF can be (1) assayed by a convenient in vitro system; (2) obtained in relatively large amounts from serum-free media conditioned over RN22 Schwannoma cultures; (3) concentrated by using Amicon XM100 ultrafiltration; and (4) separated from nearly all of the non-active protein by using ion-exchange chromatography. The partially purified PNPF can be concentrated using XM100 and is heat- and protease-sensitive. In the course of these fractionation studies we observed in some cases a concentration-dependent interference with the expression of PNPF activity in the bioassay; we propose graphical methods to permit the simultaneous determination of PNPF and the extent of such interference. Different treatments that affected the interference property did not always affect PNPF activity in a reciprocal manner, leaving open the possibility that the interference with PNPF activity results from reversible alteration of the PNPF molecule, or that there exists a separate interfering agent.

  17. Neurite-promoting factor in conditioned medium from RN22 Schwannoma cultures: bioassay, fractionation, and properties.

    PubMed

    Manthorpe, M; Varon, S; Adler, R

    1981-09-01

    On polyornithine (PORN) substrata dissociated 8-day chick embryo ciliary ganglionic neurons will survive if the culture medium is supplemented with Ciliary neuronotrophic Factor. However, neuritic growth will not occur unless the substratum is derivatized with a PORN-bindable Neurite Promoting Factor (PNPF). In this preliminary study we report that soluble PNPF can be (1) assayed by a convenient in vitro system; (2) obtained in relatively large amounts from serum-free media conditioned over RN22 Schwannoma cultures; (3) concentrated by using Amicon XM100 ultrafiltration; and (4) separated from nearly all of the non-active protein by using ion-exchange chromatography. The partially purified PNPF can be concentrated using XM100 and is heat- and protease-sensitive. In the course of these fractionation studies we observed in some cases a concentration-dependent interference with the expression of PNPF activity in the bioassay; we propose graphical methods to permit the simultaneous determination of PNPF and the extent of such interference. Different treatments that affected the interference property did not always affect PNPF activity in a reciprocal manner, leaving open the possibility that the interference with PNPF activity results from reversible alteration of the PNPF molecule, or that there exists a separate interfering agent. PMID:7276956

  18. A role for the cytoskeleton-associated protein palladin in neurite outgrowth.

    PubMed

    Boukhelifa, M; Parast, M M; Valtschanoff, J G; LaMantia, A S; Meeker, R B; Otey, C A

    2001-09-01

    The outgrowth of neurites is a critical step in neuronal maturation, and it is well established that the actin cytoskeleton is involved in this process. Investigators from our laboratory recently described a novel protein named palladin, which has been shown to play an essential role in organizing the actin cytoskeleton in cultured fibroblasts. We investigated the expression of palladin in the developing rat brain by Western blot and found that the E18 brain contained a unique variant of palladin that is significantly smaller (approximately 85 kDa) than the common form found in other developing tissues (90-92 kDa). Because the expression of a tissue-specific isoform suggests the possibility of a cell type-specific function, we investigated the localization and function of palladin in cultured cortical neurons. Palladin was found preferentially targeted to the developing axon but not the dendrites and was strongly localized to the axonal growth cone. When palladin expression was attenuated by transfection with antisense constructs in both the B35 neuroblastoma cell line and in primary cortical neurons, a reduction in the expression of palladin resulted in a failure of neurite outgrowth. These results implicate palladin as a critical component of the developing nervous system, with an important role in axonal extension.

  19. A Role for the Cytoskeleton-associated Protein Palladin in Neurite Outgrowth

    PubMed Central

    Boukhelifa, Malika; Parast, Mana M.; Valtschanoff, Juli G.; LaMantia, Anthony S.; Meeker, Rick B.; Otey, Carol A.

    2001-01-01

    The outgrowth of neurites is a critical step in neuronal maturation, and it is well established that the actin cytoskeleton is involved in this process. Investigators from our laboratory recently described a novel protein named palladin, which has been shown to play an essential role in organizing the actin cytoskeleton in cultured fibroblasts. We investigated the expression of palladin in the developing rat brain by Western blot and found that the E18 brain contained a unique variant of palladin that is significantly smaller (∼85 kDa) than the common form found in other developing tissues (90–92 kDa). Because the expression of a tissue-specific isoform suggests the possibility of a cell type-specific function, we investigated the localization and function of palladin in cultured cortical neurons. Palladin was found preferentially targeted to the developing axon but not the dendrites and was strongly localized to the axonal growth cone. When palladin expression was attenuated by transfection with antisense constructs in both the B35 neuroblastoma cell line and in primary cortical neurons, a reduction in the expression of palladin resulted in a failure of neurite outgrowth. These results implicate palladin as a critical component of the developing nervous system, with an important role in axonal extension. PMID:11553711

  20. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields

    NASA Astrophysics Data System (ADS)

    Koppes, Abigail N.; Seggio, Angela M.; Thompson, Deanna M.

    2011-08-01

    Axonal extension is influenced by a variety of external guidance cues; therefore, the development and optimization of a multi-faceted approach is probably necessary to address the intricacy of functional regeneration following nerve injury. In this study, primary dissociated neonatal rat dorsal root ganglia neurons and Schwann cells were examined in response to an 8 h dc electrical stimulation (0-100 mV mm-1). Stimulated samples were then fixed immediately, immunostained, imaged and analyzed to determine Schwann cell orientation and characterize neurite outgrowth relative to electric field strength and direction. Results indicate that Schwann cells are viable following electrical stimulation with 10-100 mV mm-1, and retain a normal morphology relative to unstimulated cells; however, no directional bias is observed. Neurite outgrowth was significantly enhanced by twofold following exposure to either a 50 mV mm-1 electric field (EF) or co-culture with unstimulated Schwann cells by comparison to neurons cultured alone. Neurite outgrowth was further increased in the presence of simultaneously applied cues (Schwann cells + 50 mV mm-1 dc EF), exhibiting a 3.2-fold increase over unstimulated control neurons, and a 1.2-fold increase over either neurons cultured with unstimulated Schwann cells or the electrical stimulus alone. These results indicate that dc electric stimulation in combination with Schwann cells may provide synergistic guidance cues for improved axonal growth relevant to nerve injuries in the peripheral nervous system.

  1. AlphaII-spectrin participates in the surface expression of cell adhesion molecule L1 and neurite outgrowth.

    PubMed

    Trinh-Trang-Tan, Marie-Marcelle; Bigot, Sylvain; Picot, Julien; Lecomte, Marie-Christine; Kordeli, Ekaterini

    2014-04-01

    AlphaII-spectrin, a basic component of the spectrin-based scaffold which organizes and stabilizes membrane microdomains in most animal cells, has been recently implicated in cell adherence and actin dynamics. Here we investigated the contribution of αΙΙ-spectrin to neuritogenesis, a highly complex cellular process which requires continuous actin cytoskeleton remodeling and cross-talk between extracellular cues and their cell surface receptors, including cell adhesion molecules. Using RNA interference-mediated gene silencing to down-regulate αΙΙ-spectrin expression in human neuroblastoma SH-SY5Y cells, we observed major changes in neurite morphology and cell shape: (1) reduced mean length and a higher number of neurites per cell; occasional long neurites were thinner and displayed abnormal adhesiveness during cell migration resulting in frequent breaks; similar persisting adhesiveness and breaks were also observed in trailing edges of cell bodies; (2) irregular polygonal cell shape in parallel with loss of cortical F-actin from neuronal cell bodies; (3) reduction in protein levels of αΙ- and βΙ-spectrins, but not βΙΙ-spectrin (4) decreased global expression of adhesion molecule L1 and spectrin-binding adapter ankyrin-B, which links L1 to the plasma membrane. Remarkably, αΙΙ-spectrin depletion affected L1 - but not NCAM - cell surface expression, and L1 clustering at growth cones. This study demonstrates that αΙΙ-spectrin is implicated in normal morphology and adhesive properties of neuron cell bodies and neurites, and in cell surface expression and organization of adhesion molecule L1. PMID:24462599

  2. Cell adhesion molecules NgCAM and axonin-1 form heterodimers in the neuronal membrane and cooperate in neurite outgrowth promotion

    PubMed Central

    1996-01-01

    The axonal surface glycoproteins neuronglia cell adhesion molecule (NgCAM) and axonin-1 promote cell-cell adhesion, neurite outgrowth and fasciculation, and are involved in growth cone guidance. A direct binding between NgCAM and axonin-1 has been demonstrated using isolated molecules conjugated to the surface of fluorescent microspheres. By expressing NgCAM and axonin-1 in myeloma cells and performing cell aggregation assays, we found that NgCAM and axonin-1 cannot bind when present on the surface of different cells. In contrast, the cocapping of axonin-1 upon antibody-induced capping of NgCAM on the surface of CV- 1 cells coexpressing NgCAM and axonin-1 and the selective chemical cross-linking of the two molecules in low density cultures of dorsal root ganglia neurons indicated a specific and direct binding of axonin- 1 and Ng-CAM in the plane of the same membrane. Suppression of the axonin-1 translation by antisense oligonucleotides prevented neurite outgrowth in dissociated dorsal root ganglia neurons cultured on an NgCAM substratum, indicating that neurite outgrowth on NgCAM substratum requires axonin-1. Based on these and previous results, which implicated NgCAM as the neuronal receptor involved in neurite outgrowth on NgCAM substratum, we concluded that neurite outgrowth on an NgCAM substratum depends on two essential interactions of growth cone NgCAM: a trans-interaction with substratum NgCAM and a cis-interaction with axonin-1 residing in the same growth cone membrane. PMID:8978825

  3. Automated quantification of neurite outgrowth orientation distributions on patterned surfaces

    NASA Astrophysics Data System (ADS)

    Payne, Matthew; Wang, Dadong; Sinclair, Catriona M.; Kapsa, Robert M. I.; Quigley, Anita F.; Wallace, Gordon G.; Razal, Joselito M.; Baughman, Ray H.; Münch, Gerald; Vallotton, Pascal

    2014-08-01

    Objective. We have developed an image analysis methodology for quantifying the anisotropy of neuronal projections on patterned substrates. Approach. Our method is based on the fitting of smoothing splines to the digital traces produced using a non-maximum suppression technique. This enables precise estimates of the local tangents uniformly along the neurite length, and leads to unbiased orientation distributions suitable for objectively assessing the anisotropy induced by tailored surfaces. Main results. In our application, we demonstrate that carbon nanotubes arrayed in parallel bundles over gold surfaces induce a considerable neurite anisotropy; a result which is relevant for regenerative medicine. Significance. Our pipeline is generally applicable to the study of fibrous materials on 2D surfaces and should also find applications in the study of DNA, microtubules, and other polymeric materials.

  4. Human Umbilical Tissue-Derived Cells Promote Synapse Formation and Neurite Outgrowth via Thrombospondin Family Proteins

    PubMed Central

    Koh, Sehwon; Kim, Namsoo; Yin, Henry H.; Harris, Ian R.; Dejneka, Nadine S.

    2015-01-01

    Cell therapy demonstrates great potential for the treatment of neurological disorders. Human umbilical tissue-derived cells (hUTCs) were previously shown to have protective and regenerative effects in animal models of stroke and retinal degeneration, but the underlying therapeutic mechanisms are unknown. Because synaptic dysfunction, synapse loss, degeneration of neuronal processes, and neuronal death are hallmarks of neurological diseases and retinal degenerations, we tested whether hUTCs contribute to tissue repair and regeneration by stimulating synapse formation, neurite outgrowth, and neuronal survival. To do so, we used a purified rat retinal ganglion cell culture system and found that hUTCs secrete factors that strongly promote excitatory synaptic connectivity and enhance neuronal survival. Additionally, we demonstrated that hUTCs support neurite outgrowth under normal culture conditions and in the presence of the growth-inhibitory proteins chondroitin sulfate proteoglycan, myelin basic protein, or Nogo-A (reticulon 4). Furthermore, through biochemical fractionation and pharmacology, we identified the major hUTC-secreted synaptogenic factors as the thrombospondin family proteins (TSPs), TSP1, TSP2, and TSP4. Silencing TSP expression in hUTCs, using small RNA interference, eliminated both the synaptogenic function of these cells and their ability to promote neurite outgrowth. However, the majority of the prosurvival functions of hUTC-conditioned media was spared after TSP knockdown, indicating that hUTCs secrete additional neurotrophic factors. Together, our findings demonstrate that hUTCs affect multiple aspects of neuronal health and connectivity through secreted factors, and each of these paracrine effects may individually contribute to the therapeutic function of these cells. SIGNIFICANCE STATEMENT Human umbilical tissue-derived cells (hUTC) are currently under clinical investigation for the treatment of geographic atrophy secondary to age-related macular

  5. Inhibition of mTOR by Rapamycin Results in Auditory Hair Cell Damage and Decreased Spiral Ganglion Neuron Outgrowth and Neurite Formation In Vitro.

    PubMed

    Leitmeyer, Katharina; Glutz, Andrea; Radojevic, Vesna; Setz, Cristian; Huerzeler, Nathan; Bumann, Helen; Bodmer, Daniel; Brand, Yves

    2015-01-01

    Rapamycin is an antifungal agent with immunosuppressive properties. Rapamycin inhibits the mammalian target of rapamycin (mTOR) by blocking the mTOR complex 1 (mTORC1). mTOR is an atypical serine/threonine protein kinase, which controls cell growth, cell proliferation, and cell metabolism. However, less is known about the mTOR pathway in the inner ear. First, we evaluated whether or not the two mTOR complexes (mTORC1 and mTORC2, resp.) are present in the mammalian cochlea. Next, tissue explants of 5-day-old rats were treated with increasing concentrations of rapamycin to explore the effects of rapamycin on auditory hair cells and spiral ganglion neurons. Auditory hair cell survival, spiral ganglion neuron number, length of neurites, and neuronal survival were analyzed in vitro. Our data indicates that both mTOR complexes are expressed in the mammalian cochlea. We observed that inhibition of mTOR by rapamycin results in a dose dependent damage of auditory hair cells. Moreover, spiral ganglion neurite number and length of neurites were significantly decreased in all concentrations used compared to control in a dose dependent manner. Our data indicate that the mTOR may play a role in the survival of hair cells and modulates spiral ganglion neuronal outgrowth and neurite formation.

  6. The Adhesion Molecule KAL-1/anosmin-1 Regulates Neurite Branching through a SAX-7/L1CAM-EGL-15/FGFR Receptor Complex.

    PubMed

    Díaz-Balzac, Carlos A; Lázaro-Peña, María I; Ramos-Ortiz, Gibram A; Bülow, Hannes E

    2015-06-01

    Neurite branching is essential for correct assembly of neural circuits, yet it remains a poorly understood process. For example, the neural cell adhesion molecule KAL-1/anosmin-1, which is mutated in Kallmann syndrome, regulates neurite branching through mechanisms largely unknown. Here, we show that KAL-1/anosmin-1 mediates neurite branching as an autocrine co-factor with EGL-17/FGF through a receptor complex consisting of the conserved cell adhesion molecule SAX-7/L1CAM and the fibroblast growth factor receptor EGL-15/FGFR. This protein complex, which appears conserved in humans, requires the immunoglobulin (Ig) domains of SAX-7/L1CAM and the FN(III) domains of KAL-1/anosmin-1 for formation in vitro as well as function in vivo. The kinase domain of the EGL-15/FGFR is required for branching, and genetic evidence suggests that ras-mediated signaling downstream of EGL-15/FGFR is necessary to effect branching. Our studies establish a molecular pathway that regulates neurite branching during development of the nervous system. PMID:26004184

  7. Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration.

    PubMed

    Wang, Han Bing; Mullins, Michael E; Cregg, Jared M; McCarthy, Connor W; Gilbert, Ryan J

    2010-08-01

    Aligned, electrospun fibers have shown great promise in facilitating directed neurite outgrowth within cell and animal models. While electrospun fiber diameter does influence cellular behavior, it is not known how aligned, electrospun fiber scaffolds of differing diameter influence neurite outgrowth and Schwann cell (SC) migration. Thus, the goal of this study was to first create highly aligned, electrospun fiber scaffolds of varying diameter and then assess neurite and SC behavior from dorsal root ganglia (DRG) explants. Three groups of highly aligned, electrospun poly-l-lactic acid (PLLA) fibers were created (1325+383 nm, large diameter fibers; 759+179 nm, intermediate diameter fibers; and 293+65 nm, small diameter fibers). Embryonic stage nine (E9) chick DRG were cultured on fiber substrates for 5 days and then the explants were stained against neurofilament and S100. DAPI stain was used to assess SC migration. Neurite length and SC migration distance were determined. In general, the direction of neurite extension and SC migration were guided along the aligned fibers. On the small diameter fiber substrate, the neurite length was 42% and 36% shorter than those on the intermediate and large fiber substrates, respectively. Interestingly, SC migration did not correlate with that of neurite extension in all situations. SCs migrated equivalently with extending neurites in both the small and large diameter scaffolds, but lagged behind neurites on the intermediate diameter scaffolds. Thus, in some situations, topography alone is sufficient to guide neurites without the leading support of SCs. Scanning electron microscopy images show that neurites cover the fibers and do not reside exclusively between fibers. Further, at the interface between fibers and neurites, filopodial extensions grab and attach to nearby fibers as they extend down the fiber substrate. Overall, the results and observations suggest that fiber diameter is an important parameter to consider when

  8. ProNGF derived from rat sciatic nerves downregulates neurite elongation and axon specification in PC12 cells

    PubMed Central

    Trigos, Anna Sofía; Longart, Marines; García, Lisbeth; Castillo, Cecilia; Forsyth, Patricia; Medina, Rafael

    2015-01-01

    Several reports have shown that a sciatic nerve conditioned media (CM) causes neuronal-like differentiation in PC12 cells. This differentiation is featured by neurite outgrowth, which are exclusively dendrites, without axon or sodium current induction. In previous studies, our group reported that the CM supplemented with a generic inhibitor for tyrosine kinase receptors (k252a) enhanced the CM-induced morphological differentiation upregulating neurite outgrowth, axonal formation and sodium current elicitation. Sodium currents were also induced by depletion of endogenous precursor of nerve growth factorr (proNGF) from the CM (pNGFd-CM). Given that sodium currents, neurite outgrowth and axon specification are important features of neuronal differentiation, in the current manuscript, first we investigated if proNGF was hindering the full PC12 cell neuronal-like differentiation. Second, we studied the effects of exogenous wild type (pNGFwt) and mutated (pNGFmut) proNGF isoforms over sodium currents and whether or not their addition to the pNGFd-CM would prevent sodium current elicitation. Third, we investigated if proNGF was exerting its negative regulation through the sortilin receptor, and for this, the proNGF action was blocked with neurotensin (NT), a factor known to compete with proNGF for sortilin. Thereby, here we show that pNGFd-CM enhanced cell differentiation, cell proportion with long neurites, total neurite length, induced axonal formation and sodium current elicitation. Interestingly, treatment of PC12 cells with wild type or mutated proNGF isoforms elicited sodium currents. Supplementing pNGFd-CM with pNGFmut reduced 35% the sodium currents. On the other hand, pNGFd-CM+pNGFwt induced larger sodium currents than pNGFd-CM. Finally, treatments with CM supplemented with NT showed that sortilin was mediating proNGF negative regulation, since its blocking induced similar effects than the pNGFd-CM treatment. Altogether, our results suggest that proNGF within the

  9. Galanin stimulates neurite outgrowth from sensory neurons by inhibition of Cdc42 and Rho GTPases and activation of cofilin

    PubMed Central

    Hobson, Sally-Ann; Vanderplank, Penny A; Pope, Robert J P; Kerr, Niall C H; Wynick, David

    2013-01-01

    We and others have previously shown that the neuropeptide galanin modulates neurite outgrowth from adult sensory neurons via activation of the second galanin receptor; however, the intracellular signalling pathways that mediate this neuritogenic effect have yet to be elucidated. Here, we demonstrate that galanin decreases the activation state in adult sensory neurons and PC12 cells of Rho and Cdc42 GTPases, both known regulators of filopodial and growth cone motility. Consistent with this, activated levels of Rho and Cdc42 levels are increased in the dorsal root ganglion of adult galanin knockout animals compared with wildtype controls. Furthermore, galanin markedly increases the activation state of cofilin, a downstream effector of many of the small GTPases, in the cell bodies and growth cones of sensory neurons and in PC12 cells. We also demonstrate a reduction in the activation of cofilin, and alteration in growth cone motility, in cultured galanin knockout neurons compared with wildtype controls. These data provide the first evidence that galanin regulates the Rho family of GTPases and cofilin to stimulate growth cone dynamics and neurite outgrowth in sensory neurons. These findings have important therapeutic implications for the treatment of peripheral sensory neuropathies. PMID:23895321

  10. Iridoids and sesquiterpenoids of Valeriana stenoptera and their effects on NGF-induced neurite outgrowth in PC12 cells.

    PubMed

    Dong, Fa-Wu; Wu, Zhi-Kun; Yang, Liu; Zi, Chen-Ting; Yang, Dan; Ma, Rui-Jing; Liu, Zhen-Hua; Luo, Huai-Rong; Zhou, Jun; Hu, Jiang-Miao

    2015-10-01

    Twenty-one compounds (nine iridoids and twelve sesquiterpenoids), including ten previously unknown (five iridoids and five sesquiterpenoids) were isolated from whole dried material of Valeriana stenoptera. Structures were established on the basis of extensive spectroscopic analysis and the relative stereochemistry of 13-hydroxypatchoulol A was further confirmed by X-ray crystallographic data. All isolates were evaluated for their effects on nerve growth factor (NGF)-mediated neurite outgrowth in pheochromocytoma (PC12) cells and seven compounds showed potent promoting effects. PMID:26343415

  11. Nebulized solvent ablation of aligned PLLA fibers for the study of neurite response to anisotropic-to-isotropic fiber/film transition (AFFT) boundaries in astrocyte–neuron co-cultures

    PubMed Central

    Zuidema, Jonathan M.; Desmond, Gregory P.; Rivet, Christopher J.; Kearns, Kathryn R.; Thompso, Deanna M.; Gilbert, Ryan J.

    2015-01-01

    Developing robust in vitro models of in vivo environments has the potential to reduce costs and bring new therapies from the bench top to the clinic more efficiently. This study aimed to develop a biomaterial platform capable of modeling isotropic-to-anisotropic cellular transitions observed in vivo, specifically focusing on changes in cellular organization following spinal cord injury. In order to accomplish this goal, nebulized solvent patterning of aligned, electrospun poly-l-lactic acid (PLLA) fiber substrates was developed. This method produced a clear topographic transitional boundary between aligned PLLA fibers and an isotropic PLLA film region. Astrocytes were then seeded on these scaffolds, and a shift between oriented and non-oriented astrocytes was created at the anisotropic-to-isotropic fiber/film transition (AFFT) boundary. Orientation of chondroitin sulfate proteoglycans (CSPGs) and fibronectin produced by these astrocytes was analyzed, and it was found that astrocytes growing on the aligned fibers produced aligned arrays of CSPGs and fibronectin, while astrocytes growing on the isotropic film region produced randomly-oriented CSPG and fibronectin arrays. Neurite extension from rat dissociated dorsal root ganglia (DRG) was studied on astrocytes cultured on anisotropic, aligned fibers, isotropic films, or from fibers to films. It was found that neurite extension was oriented and longer on PLLA fibers compared to PLLA films. When dissociated DRG were cultured on the astrocytes near the AFFT boundary, neurites showed directed orientation that was lost upon growth into the isotropic film region. The AFFT boundary also restricted neurite extension, limiting the extension of neurites once they grew from the fibers and into the isotropic film region. This study reveals the importance of anisotropic-to-isotropic transitions restricting neurite outgrowth by itself. Furthermore, we present this scaffold as an alternative culture system to analyze neurite

  12. GTP hydrolysis of TC10 promotes neurite outgrowth through exocytic fusion of Rab11- and L1-containing vesicles by releasing exocyst component Exo70.

    PubMed

    Fujita, Akane; Koinuma, Shingo; Yasuda, Sayaka; Nagai, Hiroyuki; Kamiguchi, Hiroyuki; Wada, Naoyuki; Nakamura, Takeshi

    2013-01-01

    The use of exocytosis for membrane expansion at nerve growth cones is critical for neurite outgrowth. TC10 is a Rho family GTPase that is essential for specific types of vesicular trafficking to the plasma membrane. Recent studies have shown that TC10 and its effector Exo70, a component of the exocyst tethering complex, contribute to neurite outgrowth. However, the molecular mechanisms of the neuritogenesis-promoting functions of TC10 remain to be established. Here, we propose that GTP hydrolysis of vesicular TC10 near the plasma membrane promotes neurite outgrowth by accelerating vesicle fusion by releasing Exo70. Using Förster resonance energy transfer (FRET)-based biosensors, we show that TC10 activity at the plasma membrane decreased at extending growth cones in hippocampal neurons and nerve growth factor (NGF)-treated PC12 cells. In neuronal cells, TC10 activity at vesicles was higher than its activity at the plasma membrane, and TC10-positive vesicles were found to fuse to the plasma membrane in NGF-treated PC12 cells. Therefore, activity of TC10 at vesicles is presumed to be inactivated near the plasma membrane during neuronal exocytosis. Our model is supported by functional evidence that constitutively active TC10 could not rescue decrease in NGF-induced neurite outgrowth induced by TC10 depletion. Furthermore, TC10 knockdown experiments and colocalization analyses confirmed the involvement of Exo70 in TC10-mediated trafficking in neuronal cells. TC10 frequently resided on vesicles containing Rab11, which is a key regulator of recycling pathways and implicated in neurite outgrowth. In growth cones, most of the vesicles containing the cell adhesion molecule L1 had TC10. Exocytosis of Rab11- and L1-positive vesicles may play a central role in TC10-mediated neurite outgrowth. The combination of this study and our previous work on the role of TC10 in EGF-induced exocytosis in HeLa cells suggests that the signaling machinery containing TC10 proposed here may be

  13. The Pseudophosphatase MK-STYX Induces Neurite-Like Outgrowths in PC12 Cells

    PubMed Central

    Flowers, Brittany M.; Rusnak, Lauren E.; Wong, Kristen E.; Banks, Dallas A.; Munyikwa, Michelle R.; McFarland, Alexander G.; Hinton, Shantá D.

    2014-01-01

    The rat pheochromocytoma PC12 cell line is a widely used system to study neuronal differentiation for which sustained activation of the extracellular signaling related kinase (ERK) pathway is required. Here, we investigate the function of MK-STYX [MAPK (mitogen-activated protein kinase) phosphoserine/threonine/tyrosine-binding protein] in neuronal differentiation. MK-STYX is a member of the MAPK phosphatase (MKP) family, which is generally responsible for dephosphorylating the ERKs. However, MK-STYX lacks catalytic activity due to the absence of the nucleophilic cysteine in the active site signature motif HC(X5)R that is essential for phosphatase activity. Despite being catalytically inactive, MK-STYX has been shown to play a role in important cellular pathways, including stress responses. Here we show that PC12 cells endogenously express MK-STYX. In addition, MK-STYX, but not its catalytically active mutant, induced neurite-like outgrowths in PC12 cells. Furthermore, MK-STYX dramatically increased the number of cells with neurite extensions in response to nerve growth factor (NGF), whereas the catalytically active mutant did not. MK-STYX continued to induce neurites in the presence of a MEK (MAP kinase kinase) inhibitor suggesting that MK-STYX does not act through the Ras-ERK/MAPK pathway but is involved in another pathway whose inactivation leads to neuronal differentiation. RhoA activity assays indicated that MK-STYX induced extensions through the Rho signaling pathway. MK-STYX decreased RhoA activation, whereas RhoA activation increased when MK-STYX was down-regulated. Furthermore, MK-STYX affected downstream players of RhoA such as the actin binding protein cofilin. The presence of MK-STYX decreased the phosphorylation of cofilin in non NGF stimulated cells, but increased its phosphorylation in NGF stimulated cells, whereas knocking down MK-STYX caused an opposite effect. Taken together our data suggest that MK-STYX may be a regulator of RhoA signaling, and

  14. Assessment of TTX-s and TTX-r Action Potential Conduction along Neurites of NGF and GDNF Cultured Porcine DRG Somata

    PubMed Central

    Jonas, Robin; Klusch, Andreas; Schmelz, Martin; Petersen, Marlen; Carr, Richard W.

    2015-01-01

    Nine isoforms of voltage-gated sodium channels (NaV) have been characterized and in excitable tissues they are responsible for the initiation and conduction of action potentials. For primary afferent neurons residing in dorsal root ganglia (DRG), individual neurons may express multiple NaV isoforms extending the neuron’s functional capabilities. Since expression of NaV isoforms can be differentially regulated by neurotrophic factors we have examined the functional consequences of exposure to either nerve growth factor (NGF) or glial cell line-derived neurotrophic factor (GDNF) on action potential conduction in outgrowing cultured porcine neurites of DRG neurons. Calcium signals were recorded using the exogenous intensity based calcium indicator Fluo-8®, AM. In 94 neurons, calcium signals were conducted along neurites in response to electrical stimulation of the soma. At an image acquisition rate of 25 Hz it was possible to discern calcium transients in response to individual electrical stimuli. The peak amplitude of electrically-evoked calcium signals was limited by the ability of the neuron to follow the stimulus frequency. The stimulus frequency required to evoke a half-maximal calcium response was approximately 3 Hz at room temperature. In 13 of 14 (93%) NGF-responsive neurites, TTX-r NaV isoforms alone were sufficient to support propagated signals. In contrast, calcium signals mediated by TTX-r NaVs were evident in only 4 of 11 (36%) neurites from somata cultured in GDNF. This establishes a basis for assessing action potential signaling using calcium imaging techniques in individual cultured neurites and suggests that, in the pig, afferent nociceptor classes relying on the functional properties of TTX-r NaV isoforms, such as cold-nociceptors, most probably derive from NGF-responsive DRG neurons. PMID:26407014

  15. Human umbilical cord Wharton's jelly-derived mesenchymal stem cells differentiate into a Schwann-cell phenotype and promote neurite outgrowth in vitro.

    PubMed

    Peng, Jiang; Wang, Yu; Zhang, Li; Zhao, Bin; Zhao, Zhe; Chen, JiFeng; Guo, QuanYi; Liu, ShuYun; Sui, Xiang; Xu, WenJing; Lu, ShiBi

    2011-02-28

    Cell-based therapy has achieved promising functional recovery for peripheral nerve repair. Although Schwann cells (SCs) and bone marrow derived mesenchymal stromal cells (BM-MSCs) are the main cell source for nerve tissue engineering, the clinical application is limited because of donor site morbidity, the invasive procedure, and the decreased number of SCs and BM-MSCs. Wharton's jelly-derived mesenchymal stem cells (WJMSCs) could be a promising cell source for nerve tissue engineering because they are easily accessible and their use has no ethical issues. We investigated the phenotypic, molecular and functional characteristics of WJMSCs differentiated along a Schwann-cell lineage. Cultured WJMSCs were isolated from human umbilical cord, and the undifferentiated WJMSCs were confirmed by the detection of MSC-specific cell-surface markers. WJMSCs treated with a mixture of glial growth factors (basic fibroblast growth factor, platelet-derived growth factor and forskolin) adopted a spindle-like morphology similar to SCs. Immunocytochemical staining, RT-PCR analysis, and Western blot analysis revealed that the treated cells expressed the glial markers glial fibrillary acidic protein, p75, S100 and P0 and indicative of differentiation. On co-culture with dorsal root ganglia neurons, the differentiated WJMSCs enhanced the number of sprouting neurites and neurite length in dorsal root ganglia neurons. Furthermore, using enzyme-linked immunosorbent assay and RT-PCR methodology, we found differentiated WJMSCs secrete and express neurotrophic factors, including brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), and neurotrophin-3 (NT-3). Quantification of neurite outgrowth from PC12 cells grown in differentiated WJMSCs-conditioned media demonstrates that the neurite length is significantly more than control medium and undifferentiated WJMSCs group. WJMSCs can be differentiated into cells that are Schwann-like in terms of morphologic features, phenotype, and

  16. γ-Enolase C-terminal peptide promotes cell survival and neurite outgrowth by activation of the PI3K/Akt and MAPK/ERK signalling pathways.

    PubMed

    Hafner, Anja; Obermajer, Nataša; Kos, Janko

    2012-04-15

    γ-Enolase, a glycolytic enzyme, is expressed specifically in neurons. It exerts neurotrophic activity and has been suggested to regulate growth, differentiation, survival and regeneration of neurons. In the present study, we investigated the involvement of γ-enolase in PI3K (phosphoinositide 3-kinase)/Akt and MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) signalling, the two pathways triggered predominantly by neurotrophic factors. Whereas the PI3K/Akt pathway, rather than the MAPK/ERK pathway, is involved in γ-enolase-enhanced cell survival, γ-enolase-stimulated neurite outgrowth requires both pathways, i.e. the activation of both PI3K and ERK1/2, leading to subsequent expression of the growth-cone-specific protein GAP-43 (growth-associated protein of 43 kDa). MEK (MAPK/ERK kinase) and PI3K inhibition blocked or attenuated the neurite outgrowth associated with dynamic remodelling of the actin-based cytoskeleton. We show that γ-enolase-mediated PI3K activation regulates RhoA kinase, a key regulator of actin cytoskeleton organization. Moreover, the inhibition of RhoA downstream effector ROCK (Rho-associated kinase) results in enhanced γ-enolase-induced neurite outgrowth, accompanied by actin polymerization and its redistribution to growth cones. Our results show that γ-enolase controls neuronal survival, differentiation and neurite regeneration by activating the PI3K/Akt and MAPK/ERK signalling pathways, resulting in downstream regulation of the molecular and cellular processes of cytoskeleton reorganization and cell remodelling, activation of transcriptional factors and regulation of the cell cycle.

  17. Astrocytic αVβ3 Integrin Inhibits Neurite Outgrowth and Promotes Retraction of Neuronal Processes by Clustering Thy-1

    PubMed Central

    Herrera-Molina, Rodrigo; Frischknecht, Renato; Maldonado, Horacio; Seidenbecher, Constanze I.; Gundelfinger, Eckart D.; Hetz, Claudio; Aylwin, María de la Luz; Schneider, Pascal; Quest, Andrew F. G.; Leyton, Lisette

    2012-01-01

    Thy-1 is a membrane glycoprotein suggested to stabilize or inhibit growth of neuronal processes. However, its precise function has remained obscure, because its endogenous ligand is unknown. We previously showed that Thy-1 binds directly to αVβ3 integrin in trans eliciting responses in astrocytes. Nonetheless, whether αVβ3 integrin might also serve as a Thy-1-ligand triggering a neuronal response has not been explored. Thus, utilizing primary neurons and a neuron-derived cell line CAD, Thy-1-mediated effects of αVβ3 integrin on growth and retraction of neuronal processes were tested. In astrocyte-neuron co-cultures, endogenous αVβ3 integrin restricted neurite outgrowth. Likewise, αVβ3-Fc was sufficient to suppress neurite extension in Thy-1(+), but not in Thy-1(−) CAD cells. In differentiating primary neurons exposed to αVβ3-Fc, fewer and shorter dendrites were detected. This effect was abolished by cleavage of Thy-1 from the neuronal surface using phosphoinositide-specific phospholipase C (PI-PLC). Moreover, αVβ3-Fc also induced retraction of already extended Thy-1(+)-axon-like neurites in differentiated CAD cells as well as of axonal terminals in differentiated primary neurons. Axonal retraction occurred when redistribution and clustering of Thy-1 molecules in the plasma membrane was induced by αVβ3 integrin. Binding of αVβ3-Fc was detected in Thy-1 clusters during axon retraction of primary neurons. Moreover, αVβ3-Fc-induced Thy-1 clustering correlated in time and space with redistribution and inactivation of Src kinase. Thus, our data indicates that αVβ3 integrin is a ligand for Thy-1 that upon binding not only restricts the growth of neurites, but also induces retraction of already existing processes by inducing Thy-1 clustering. We propose that these events participate in bi-directional astrocyte-neuron communication relevant to axonal repair after neuronal damage. PMID:22479590

  18. Early expression of the high molecular weight neurofilament subunit attenuates axonal neurite outgrowth.

    PubMed

    Boumil, Edward; Vohnoutka, Rishel; Lee, Sangmook; Shea, Thomas B

    2015-09-14

    Phospho-dependent interactions of the C-terminal region of the high molecular weight NF subunit (NF-H) with each other and with other cytoskeletal elements stabilize the axonal cytoskeleton and contribute to an increase in axonal caliber. The same kinase cascades that mediate axonal pathfinding via growth cone dynamics are those that foster NF-mediated axonal stabilization, yet there is a developmental delay in the accumulation of NF C-terminal phosphorylation. Moreover, the phospho-mediated C-terminal NF-H interactions that stabilize the axonal cytoskeleton also inhibit axonal elongation. We hypothesized that a delay in expression and/or accumulation of NF-H within developing axons is essential to allow axonal elongation and pathfinding. We tested this hypothesis in differentiating NB2a/d1 cells. The first 3 days of differentiation of NB2a/d1 cells is normally accompanied by rapid elongation of axonal neurites. This period is followed by the accumulation of C-terminally phosphorylated NF-H, cessation of axonal elongation and an increase in axonal caliber. Herein, overexpression of GFP-tagged NF-H simultaneously with induction of differentiation fostered accumulation of C-terminally phosphorylated NF-H within developing axonal neurites within 48hr, which was accompanied by retardation of axonal elongation and a hastened increase in caliber. These effects were prevented by treatment with inhibitors of kinases that mediate the association of NFs with other cytoskeletal elements. Overexpression of GFP-NF-H lacking the C-terminal 187 amino acids (which mediate NF-NF interactions) did not retard elongation nor increase caliber. These findings support the hypothesis that a developmental delay in NF-H C-terminal phosphorylation is essential to allow appropriate axonal elongation prior to stabilization. PMID:26225928

  19. Slit2 inactivates GSK3β to signal neurite outgrowth inhibition.

    PubMed

    Byun, Justin; Kim, Bo Taek; Kim, Yun Tai; Jiao, Zhongxian; Hur, Eun-Mi; Zhou, Feng-Quan

    2012-01-01

    Slit molecules comprise one of the four canonical families of axon guidance cues that steer the growth cone in the developing nervous system. Apart from their role in axon pathfinding, emerging lines of evidence suggest that a wide range of cellular processes are regulated by Slit, ranging from branch formation and fasciculation during neurite outgrowth to tumor progression and to angiogenesis. However, the molecular and cellular mechanisms downstream of Slit remain largely unknown, in part, because of a lack of a readily manipulatable system that produces easily identifiable traits in response to Slit. The present study demonstrates the feasibility of using the cell line CAD as an assay system to dissect the signaling pathways triggered by Slit. Here, we show that CAD cells express receptors for Slit (Robo1 and Robo2) and that CAD cells respond to nanomolar concentrations of Slit2 by markedly decelerating the rate of process extension. Using this system, we reveal that Slit2 inactivates GSK3β and that inhibition of GSK3β is required for Slit2 to inhibit process outgrowth. Furthermore, we show that Slit2 induces GSK3β phosphorylation and inhibits neurite outgrowth in adult dorsal root ganglion neurons, validating Slit2 signaling in primary neurons. Given that CAD cells can be conveniently manipulated using standard molecular biological methods and that the process extension phenotype regulated by Slit2 can be readily traced and quantified, the use of a cell line CAD will facilitate the identification of downstream effectors and elucidation of signaling cascade triggered by Slit.

  20. The neuritic plaque facilitates pathological conversion of tau in an Alzheimer's disease mouse model

    PubMed Central

    Li, Tong; Braunstein, Kerstin E.; Zhang, Juhong; Lau, Ashley; Sibener, Leslie; Deeble, Christopher; Wong, Philip C.

    2016-01-01

    A central question in Alzheimer's Disease (AD) is whether the neuritic plaque is necessary and sufficient for the development of tau pathology. Hyperphosphorylation of tau is found within dystrophic neurites surrounding β-amyloid deposits in AD mouse models but the pathological conversion of tau is absent. Likewise, expression of a human tau repeat domain in mice is insufficient to drive the pathological conversion of tau. Here we developed an Aβ-amyloidosis mouse model that expresses the human tau repeat domain and show that in these mice, the neuritic plaque facilitates the pathological conversion of wild-type tau. We show that this tau fragment seeds the neuritic plaque-dependent pathological conversion of wild-type tau that spreads from the cortex and hippocampus to the brain stem. These results establish that in addition to the neuritic plaque, a second determinant is required to drive the conversion of wild-type tau. PMID:27373369

  1. A Farnesyltransferase Acts to Inhibit Ectopic Neurite Formation in C. elegans

    PubMed Central

    Carr, David; Sanchez-Alvarez, Leticia; Imai, Janice H.; Slatculescu, Cristina; Noblett, Nathaniel; Mao, Lei; Beese, Lorena; Colavita, Antonio

    2016-01-01

    Genetic pathways that regulate nascent neurite formation play a critical role in neuronal morphogenesis. The core planar cell polarity components VANG-1/Van Gogh and PRKL-1/Prickle are involved in blocking inappropriate neurite formation in a subset of motor neurons in C. elegans. A genetic screen for mutants that display supernumerary neurites was performed to identify additional factors involved in this process. This screen identified mutations in fntb-1, the β subunit of farnesyltransferase. We show that fntb-1 is expressed in neurons and acts cell-autonomously to regulate neurite formation. Prickle proteins are known to be post-translationally modified by farnesylation at their C-terminal CAAX motifs. We show that PRKL-1 can be recruited to the plasma membrane in both a CAAX-dependent and CAAX-independent manner but that PRKL-1 can only inhibit neurite formation in a CAAX-dependent manner. PMID:27300162

  2. A Farnesyltransferase Acts to Inhibit Ectopic Neurite Formation in C. elegans.

    PubMed

    Carr, David; Sanchez-Alvarez, Leticia; Imai, Janice H; Slatculescu, Cristina; Noblett, Nathaniel; Mao, Lei; Beese, Lorena; Colavita, Antonio

    2016-01-01

    Genetic pathways that regulate nascent neurite formation play a critical role in neuronal morphogenesis. The core planar cell polarity components VANG-1/Van Gogh and PRKL-1/Prickle are involved in blocking inappropriate neurite formation in a subset of motor neurons in C. elegans. A genetic screen for mutants that display supernumerary neurites was performed to identify additional factors involved in this process. This screen identified mutations in fntb-1, the β subunit of farnesyltransferase. We show that fntb-1 is expressed in neurons and acts cell-autonomously to regulate neurite formation. Prickle proteins are known to be post-translationally modified by farnesylation at their C-terminal CAAX motifs. We show that PRKL-1 can be recruited to the plasma membrane in both a CAAX-dependent and CAAX-independent manner but that PRKL-1 can only inhibit neurite formation in a CAAX-dependent manner.

  3. Absence of aluminium in neuritic plaque cores in Alzheimer's disease.

    PubMed

    Landsberg, J P; McDonald, B; Watt, F

    1992-11-01

    Controversy exists over whether aluminium has a role in the aetiology of Alzheimer's disease. Alzheimer's disease is neuropathologically characterized by the occurrence of a minimum density of neurofibrillary tangles and neuritic plaques in the hippocampus and the association cortex of the brain. The purported association of aluminium with Alzheimer's disease is based on: (1) the experimental induction of fibrillary changes in the neurons of animals by the injection of aluminium salts into brain tissue; (2) reported detection of aluminium in neuritic plaques and tangle-bearing neurons; (3) epidemiological studies linking aluminium levels in the environment, notably water supplies, with an increased prevalence of dementia; and (4) a reported decrease in the rate of disease progression following the administration of desferroxamine, an aluminium chelator, to clinically diagnosed sufferers of Alzheimer's disease. Here we use nuclear microscopy, a new analytical technique involving million-volt nuclear particles, to identify and analyse plaques in postmortem tissue from patients with Alzheimer's disease without using chemical staining techniques and fail to demonstrate the presence of aluminium in plaque cores in untreated tissue. PMID:1436075

  4. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth

    NASA Astrophysics Data System (ADS)

    Yao, Shenglian; Liu, Xi; Yu, Shukui; Wang, Xiumei; Zhang, Shuming; Wu, Qiong; Sun, Xiaodan; Mao, Haiquan

    2016-05-01

    The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ~1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration.The development of novel biomaterials that deliver precise regulatory signals to

  5. PAK–PIX interactions regulate adhesion dynamics and membrane protrusion to control neurite outgrowth

    PubMed Central

    Santiago-Medina, Miguel; Gregus, Kelly A.; Gomez, Timothy M.

    2013-01-01

    Summary The roles of P21-activated kinase (PAK) in the regulation of axon outgrowth downstream of extracellular matrix (ECM) proteins are poorly understood. Here we show that PAK1–3 and PIX are expressed in the developing spinal cord and differentially localize to point contacts and filopodial tips within motile growth cones. Using a specific interfering peptide called PAK18, we found that axon outgrowth is robustly stimulated on laminin by partial inhibition of PAK–PIX interactions and PAK function, whereas complete inhibition of PAK function stalls axon outgrowth. Furthermore, modest inhibition of PAK–PIX stimulates the assembly and turnover of growth cone point contacts, whereas strong inhibition over-stabilizes adhesions. Point mutations within PAK confirm the importance of PIX binding. Together our data suggest that regulation of PAK–PIX interactions in growth cones controls neurite outgrowth by influencing the activity of several important mediators of actin filament polymerization and retrograde flow, as well as integrin-dependent adhesion to laminin. PMID:23321640

  6. Co-effects of matrix low elasticity and aligned topography on stem cell neurogenic differentiation and rapid neurite outgrowth.

    PubMed

    Yao, Shenglian; Liu, Xi; Yu, Shukui; Wang, Xiumei; Zhang, Shuming; Wu, Qiong; Sun, Xiaodan; Mao, Haiquan

    2016-05-21

    The development of novel biomaterials that deliver precise regulatory signals to direct stem cell fate for nerve regeneration is the focus of current intensive research efforts. In this study, a hierarchically aligned fibrillar fibrin hydrogel (AFG) that was fabricated through electrospinning and the concurrent molecular self-assembly process mimics both the soft and oriented features of nerve tissue, thus providing hybrid biophysical cues to instruct cell behavior in vitro and in vivo. The electrospun hydrogels were examined by scanning electron microscopy (SEM), polarized light microscopy, small angle X-ray scattering assay and atomic force microscopy (AFM), showing a hierarchically linear-ordered structure from the nanoscale to the macroscale with a soft elastic character (elasticity ∼1 kPa). We found that this low elasticity and aligned topography of AFG exhibit co-effects on promoting the neurogenic differentiation of human umbilical cord mesenchymal stem cells (hUMSCs) in comparison to random fibrin hydrogel (RFG) and tissue culture plate (TCP) control after two week cell culture in growth medium lacking supplementation with soluble neurogenic induction factors. In addition, AFG also induces dorsal root ganglion (DRG) neurons to rapidly project numerous long neurite outgrowths longitudinally along the AFG fibers for a total neurite extension distance of 1.96 mm in three days in the absence of neurotrophic factor supplementation. Moreover, the AFG implanted in a rat T9 dorsal hemisection spinal cord injury model was found to promote endogenous neural cell fast migration and axonal invasion along AFG fibers, resulting in aligned tissue cables in vivo. Our results suggest that matrix stiffness and aligned topography may instruct stem cell neurogenic differentiation and rapid neurite outgrowth, providing great promise for biomaterial design for applications in nerve regeneration. PMID:27124547

  7. Computer vision profiling of neurite outgrowth dynamics reveals spatiotemporal modularity of Rho GTPase signaling

    PubMed Central

    Fusco, Ludovico; Lefort, Riwal; Smith, Kevin; Benmansour, Fethallah; Gonzalez, German; Barillari, Caterina; Rinn, Bernd; Fleuret, Francois; Fua, Pascal

    2016-01-01

    Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth. PMID:26728857

  8. Triggering of high-speed neurite outgrowth using an optical microheater

    PubMed Central

    Oyama, Kotaro; Zeeb, Vadim; Kawamura, Yuki; Arai, Tomomi; Gotoh, Mizuho; Itoh, Hideki; Itabashi, Takeshi; Suzuki, Madoka; Ishiwata, Shin’ichi

    2015-01-01

    Optical microheating is a powerful non-invasive method for manipulating biological functions such as gene expression, muscle contraction, and cell excitation. Here, we demonstrate its potential usage for regulating neurite outgrowth. We found that optical microheating with a water-absorbable 1,455-nm laser beam triggers directional and explosive neurite outgrowth and branching in rat hippocampal neurons. The focused laser beam under a microscope rapidly increases the local temperature from 36 °C to 41 °C (stabilized within 2 s), resulting in the elongation of neurites by more than 10 μm within 1 min. This high-speed, persistent elongation of neurites was suppressed by inhibitors of both microtubule and actin polymerization, indicating that the thermosensitive dynamics of these cytoskeletons play crucial roles in this heat-induced neurite outgrowth. Furthermore, we showed that microheating induced the regrowth of injured neurites and the interconnection of neurites. These results demonstrate the efficacy of optical microheating methods for the construction of arbitrary neural networks. PMID:26568288

  9. A role for complexes of survival of motor neurons (SMN) protein with gemins and profilin in neurite-like cytoplasmic extensions of cultured nerve cells

    SciTech Connect

    Sharma, Aarti; Lambrechts, Anja; Le thi Hao; Le, Thanh T.; Sewry, Caroline A.; Ampe, Christophe; Burghes, Arthur H.M.; Morris, Glenn E. . E-mail: glenn.morris@rjah.nhs.uk

    2005-09-10

    Spinal muscular atrophy (SMA) is caused by reduced levels of SMN (survival of motor neurons protein) and consequent loss of motor neurons. SMN is involved in snRNP transport and nuclear RNA splicing, but axonal transport of SMN has also been shown to occur in motor neurons. SMN also binds to the small actin-binding protein, profilin. We now show that SMN and profilin II co-localise in the cytoplasm of differentiating rat PC12 cells and in neurite-like extensions, especially at their growth cones. Many components of known SMN complexes were also found in these extensions, including gemin2 (SIP-1), gemin6, gemin7 and unrip (unr-interacting protein). Coilin p80 and Sm core protein immunoreactivity, however, were seen only in the nucleus. SMN is known to associate with {beta}-actin mRNA and specific hnRNPs in axons and in neurite extensions of cultured nerve cells, and SMN also stimulates neurite outgrowth in cultures. Our results are therefore consistent with SMN complexes, rather than SMN alone, being involved in the transport of actin mRNPs along the axon as in the transport of snRNPs into the nucleus by similar SMN complexes. Antisense knockdown of profilin I and II isoforms inhibited neurite outgrowth of PC12 cells and caused accumulation of SMN and its associated proteins in cytoplasmic aggregates. BIAcore studies demonstrated a high affinity interaction of SMN with profilin IIa, the isoform present in developing neurons. Pathogenic missense mutations in SMN, or deletion of exons 5 and 7, prevented this interaction. The interaction is functional in that SMN can modulate actin polymerisation in vitro by reducing the inhibitory effect of profilin IIa. This suggests that reduced SMN in SMA might cause axonal pathfinding defects by disturbing the normal regulation of microfilament growth by profilins.

  10. Rabies virus neuritic paralysis: immunopathogenesis of nonfatal paralytic rabies.

    PubMed Central

    Weiland, F; Cox, J H; Meyer, S; Dahme, E; Reddehase, M J

    1992-01-01

    Two pathogenetically distinct disease manifestations are distinguished in a murine model of primary rabies virus infection with the Evelyn-Rokitnicky-Abelseth strain, rabies virus neuritic paralysis (RVNP) and fatal encephalopathogenic rabies. RVNP develops with high incidence in immunocompetent mice after intraplantar infection as a flaccid paralysis restricted to the infected limb. The histopathologic correlate of this monoplegia is a degeneration of the myelinated motor neurons of the peripheral nerve involved. While, in this model, fatal encephalopathogenic rabies develops only after depletion of the CD4 subset of T lymphocytes and without contribution of the CD8 subset, RVNP is identified as an immunopathological process in which both the CD4 and CD8 subsets of T lymphocytes are critically implicated. Images PMID:1629964

  11. Tissue-specific neuro-glia interactions determine neurite differentiation in ganglion cells.

    PubMed

    Steinbach, K; Bauch, H; Stier, H; Schlosshauer, B

    2001-03-01

    Guided formation and extension of axons versus dendrites is considered crucial for structuring the nervous system. In the chick visual system, retinal ganglion cells (RGCs) extend their axons into the tectum opticum, but not into glial somata containing retina layers. We addressed the question whether the different glia of retina and tectum opticum differentially affect axon growth. Glial cells were purified from retina and tectum opticum by complement-mediated cytolysis of non-glial cells. RGCs were purified by enzymatic delayering from flat mounted retina. RGCs were seeded onto retinal versus tectal glia monolayers. Subsequent neuritic differentiation was analysed by immunofluorescence microscopy and scanning electron microscopy. Qualitative and quantitative evaluation revealed that retinal glia somata inhibited axons. Time-lapse video recording indicated that axonal inhibition was based on the collapse of lamellipodia- and filopodia-rich growth cones of axons. In contrast to retinal glia, tectal glia supported axonal extension. Notably, retinal glia were not inhibitory for neurons in general, because in control experiments axon extension of dorsal root ganglia was not hampered. Therefore, the axon inhibition by retinal glia was neuron type-specific. In summary, the data demonstrate that homotopic (retinal) glia somata inhibit axonal outgrowth of RGCs, whereas heterotopic (tectal) glia of the synaptic target area support RGC axon extension. The data underscore the pivotal role of glia in structuring the developing nervous system. PMID:11322389

  12. Morphine Enhances HIV-1SF162-Mediated Neuron Death and Delays Recovery of Injured Neurites

    PubMed Central

    Masvekar, Ruturaj R.; El-Hage, Nazira; Hauser, Kurt F.; Knapp, Pamela E.

    2014-01-01

    HIV-1 enters the CNS soon after initial systemic infection; within the CNS parenchyma infected and/or activated perivascular macrophages, microglia and astrocytes release viral and cellular toxins that drive secondary toxicity in neurons and other cell types. Our previous work has largely modeled HIV-neuropathology using the individual viral proteins Tat or gp120, with murine striatal neurons as targets. To model disease processes more closely, the current study uses supernatant from HIV-1-infected cells. Supernatant from HIV-1SF162-infected differentiated-U937 cells (HIV+sup) was collected and p24 level was measured by ELISA to assess the infection. Injection drug abuse is a significant risk factor for HIV-infection, and opiate drug abusers show increased HIV-neuropathology, even with anti-retroviral treatments. We therefore assessed HIV+sup effects on neuronal survival and neurite growth/pruning with or without concurrent exposure to morphine, an opiate that preferentially acts through µ-opioid receptors. Effects of HIV+sup ± morphine were assessed on neuronal populations, and also by time-lapse imaging of individual cells. HIV+sup caused dose-dependent toxicity over a range of p24 levels (10–500 pg/ml). Significant interactions occurred with morphine at lower p24 levels (10 and 25 pg/ml), and GSK3β was implicated as a point of convergence. In the presence of glia, selective neurotoxic measures were significantly enhanced and interactions with morphine were also augmented, perhaps related to a decreased level of BDNF. Importantly, the arrest of neurite growth that occurred with exposure to HIV+sup was reversible unless neurons were continuously exposed to morphine. Thus, while reducing HIV-infection levels may be protective, ongoing exposure to opiates may limit recovery. Opiate interactions observed in this HIV-infective environment were similar, though not entirely concordant, with Tat/gp120 interactions reported previously, suggesting unique interactions

  13. Major Vault Protein is Expressed along the Nucleus–Neurite Axis and Associates with mRNAs in Cortical Neurons

    PubMed Central

    Paspalas, Constantinos D.; Perley, Casey C.; Venkitaramani, Deepa V.; Goebel-Goody, Susan M.; Zhang, YongFang; Kurup, Pradeep; Mattis, Joanna H.

    2009-01-01

    Major Vault Protein (MVP), the main constituent of the vault ribonucleoprotein particle, is highly conserved in eukaryotic cells and upregulated in a variety of tumors. Vaults have been speculated to function as cargo transporters in several cell lines, yet no work to date has characterized the protein in neurons. Here we first describe the cellular and subcellular expression of MVP in primate and rodent cerebral cortex, and in cortical neurons in vitro. In prefrontal, somatosensory and hippocampal cortices, MVP was predominantly expressed in pyramidal neurons. Immunogold labeled free and attached ribosomes, and structures reminiscent of vaults on the rough endoplasmic reticulum and the nuclear envelope. The nucleus was immunoreactive in association with nucleopores. Axons and particularly principal dendrites expressed MVP along individual microtubules, and in pre- and postsynaptic structures. Synapses were not labeled. Colocalization with microtubule-associated protein-2, tubulin, tau, and phalloidin was observed in neurites and growth cones in culture. Immunoprecipitation coupled with reverse transcription PCR showed that MVP associates with mRNAs that are known to be translated in response to synaptic activity. Taken together, our findings provide the first characterization of neuronal MVP along the nucleus–neurite axis and may offer new insights into its possible function(s) in the brain. PMID:19029061

  14. Effects of 60-GHz millimeter waves on neurite outgrowth in PC12 cells using high-content screening.

    PubMed

    Haas, Alexis J; Le Page, Yann; Zhadobov, Maxim; Sauleau, Ronan; Le Dréan, Yves

    2016-04-01

    Technologies for wireless telecommunication systems using millimeter waves (MMW) will be widely deployed in the near future. Forthcoming applications in this band, especially around 60GHz, are mainly developed for high data-rate local and body-centric telecommunications. At those frequencies, electromagnetic radiations have a very shallow penetration into biological tissues, making skin keratinocytes, and free nerve endings of the upper dermis the main targets of MMW. Only a few studies assessed the impact of MMW on neuronal cells, and none of them investigated a possible effect on neuronal differentiation. We used a neuron-like cell line (PC12), which undergoes neuronal differentiation when treated with the neuronal growth factor (NGF). PC12 cells were exposed at 60.4GHz for 24h, at an incident power density averaged over the cell monolayer of 10mW/cm(2). Using a large scale cell-by-cell analysis based on high-content screening microscopy approach, we assessed potential effects of MMW on PC12 neurite outgrowth and cytoskeleton protein expression. No differences were found in protein expression of the neuronal marker β3-tubulin nor in internal expression control β-tubulin. On the other hand, our data showed a slight increase, although insignificant, in neurite outgrowth, induced by MMW exposure. However, experimental controls demonstrated that this increase was related to heating. PMID:26921450

  15. Effects of 60-GHz millimeter waves on neurite outgrowth in PC12 cells using high-content screening.

    PubMed

    Haas, Alexis J; Le Page, Yann; Zhadobov, Maxim; Sauleau, Ronan; Le Dréan, Yves

    2016-04-01

    Technologies for wireless telecommunication systems using millimeter waves (MMW) will be widely deployed in the near future. Forthcoming applications in this band, especially around 60GHz, are mainly developed for high data-rate local and body-centric telecommunications. At those frequencies, electromagnetic radiations have a very shallow penetration into biological tissues, making skin keratinocytes, and free nerve endings of the upper dermis the main targets of MMW. Only a few studies assessed the impact of MMW on neuronal cells, and none of them investigated a possible effect on neuronal differentiation. We used a neuron-like cell line (PC12), which undergoes neuronal differentiation when treated with the neuronal growth factor (NGF). PC12 cells were exposed at 60.4GHz for 24h, at an incident power density averaged over the cell monolayer of 10mW/cm(2). Using a large scale cell-by-cell analysis based on high-content screening microscopy approach, we assessed potential effects of MMW on PC12 neurite outgrowth and cytoskeleton protein expression. No differences were found in protein expression of the neuronal marker β3-tubulin nor in internal expression control β-tubulin. On the other hand, our data showed a slight increase, although insignificant, in neurite outgrowth, induced by MMW exposure. However, experimental controls demonstrated that this increase was related to heating.

  16. Complement Protein C1q Modulates Neurite Outgrowth In Vitro and Spinal Cord Axon Regeneration In Vivo

    PubMed Central

    Peterson, Sheri L.; Nguyen, Hal X.; Mendez, Oscar A.

    2015-01-01

    Traumatic injury to CNS fiber tracts is accompanied by failure of severed axons to regenerate and results in lifelong functional deficits. The inflammatory response to CNS trauma is mediated by a diverse set of cells and proteins with varied, overlapping, and opposing effects on histological and behavioral recovery. Importantly, the contribution of individual inflammatory complement proteins to spinal cord injury (SCI) pathology is not well understood. Although the presence of complement components increases after SCI in association with axons and myelin, it is unknown whether complement proteins affect axon growth or regeneration. We report a novel role for complement C1q in neurite outgrowth in vitro and axon regrowth after SCI. In culture, C1q increased neurite length on myelin. Protein and molecular assays revealed that C1q interacts directly with myelin associated glycoprotein (MAG) in myelin, resulting in reduced activation of growth inhibitory signaling in neurons. In agreement with a C1q-outgrowth-enhancing mechanism in which C1q binding to MAG reduces MAG signaling to neurons, complement C1q blocked both the growth inhibitory and repulsive turning effects of MAG in vitro. Furthermore, C1q KO mice demonstrated increased sensory axon turning within the spinal cord lesion after SCI with peripheral conditioning injury, consistent with C1q-mediated neutralization of MAG. Finally, we present data that extend the role for C1q in axon growth and guidance to include the sprouting patterns of descending corticospinal tract axons into spinal gray matter after dorsal column transection SCI. PMID:25762679

  17. Up-regulation of miR-26a promotes neurite outgrowth and ameliorates apoptosis by inhibiting PTEN in bupivacaine injured mouse dorsal root ganglia.

    PubMed

    Cui, Changlei; Xu, Gong; Qiu, Jinpeng; Fan, Xiushuang

    2015-08-01

    Local anesthetic of bupivacaine may inhibit neurite outgrowth and induce apoptosis in mouse dorsal root ganglia (DRG) neurons. In this work, we intended to investigate the functional role of microRNA 26a (miR-26a) in regulating bupivacaine-induced nerve injury in DRG neurons. DRG neurons were extracted from C57BL/6 mice and cultured in vitro. Bupivacaine was applied in vitro and it induced apoptosis, inhibited neurite growth, and significantly down-regulated miR-26a gene in DRG neurons. MiR-26a mimic was then used to up-regulate miR-26a expression in DRG neurons. We found that miR-26a up-regulation promoted neurite outgrowth and reduced apoptosis in bupivacaine-injured DRG neurons. Luciferase assay and Western blot confirmed that Phosphatase and tensin homolog (PTEN) was down-stream target of miR-26a in DRG neurons. Ectopic PTEN up-regulation was then able to reverse the protective effect of miR-26a overexpression on bupivacaine-induced nerve injury in DRG neurons. Overall, this work demonstrated that miR-26a had a functional role in regulating bupivacaine-induced nerve injury in DRG neurons. Up-regulating miR-26a to suppress PTEN signaling pathway may be an effective method to protect local anesthetic-induced nerve injury in spinal cord.

  18. ROCK inhibition enhances neurite outgrowth in neural stem cells by upregulating YAP expression in vitro.

    PubMed

    Jia, Xu-Feng; Ye, Fei; Wang, Yan-Bo; Feng, Da-Xiong

    2016-06-01

    Spontaneous axonal regeneration of neurons does not occur after spinal cord injury because of inhibition by myelin and other inhibitory factors. Studies have demonstrated that blocking the Rho/Rho-kinase (ROCK) pathway can promote neurite outgrowth in spinal cord injury models. In the present study, we investigated neurite outgrowth and neuronal differentiation in neural stem cells from the mouse subventricular zone after inhibition of ROCK in vitro. Inhibition of ROCK with Y-27632 increased neurite length, enhanced neuronal differentiation, and upregulated the expression of two major signaling pathway effectors, phospho-Akt and phospho-mitogen-activated protein kinase, and the Hippo pathway effector YAP. These results suggest that inhibition of ROCK mediates neurite outgrowth in neural stem cells by activating the Hippo signaling pathway. PMID:27482229

  19. ROCK inhibition enhances neurite outgrowth in neural stem cells by upregulating YAP expression in vitro

    PubMed Central

    Jia, Xu-feng; Ye, Fei; Wang, Yan-bo; Feng, Da-xiong

    2016-01-01

    Spontaneous axonal regeneration of neurons does not occur after spinal cord injury because of inhibition by myelin and other inhibitory factors. Studies have demonstrated that blocking the Rho/Rho-kinase (ROCK) pathway can promote neurite outgrowth in spinal cord injury models. In the present study, we investigated neurite outgrowth and neuronal differentiation in neural stem cells from the mouse subventricular zone after inhibition of ROCK in vitro. Inhibition of ROCK with Y-27632 increased neurite length, enhanced neuronal differentiation, and upregulated the expression of two major signaling pathway effectors, phospho-Akt and phospho-mitogen-activated protein kinase, and the Hippo pathway effector YAP. These results suggest that inhibition of ROCK mediates neurite outgrowth in neural stem cells by activating the Hippo signaling pathway. PMID:27482229

  20. ANALYSIS OF THE STRUCTURE OF MAGNETIC FIELDS THAT INDUCED INHIBITION OF STIMULATED NEURITE OUTGROWTH

    EPA Science Inventory

    The important experiments showing nonlinear amplitude dependences of the neurite outgrowth in pheochromocytoma nerve cells due to ELF magnetic field exposure had been carried out in a nonuniform ac magnetic field. The nonuniformity entailed larger than expected variances in magne...

  1. Effects of serum, tissue extract, conditioned medium, and culture substrata on neurite appearance from spinal cord explants of chick embryo.

    PubMed

    Tanaka, H; Sakai, M; Obata, K

    1982-07-01

    The effects of serum, tissue extracts, conditioned medium, (CM), and culture substrata on neurite appearance from spinal cord explants of 6- to 8-day-old chick embryos were investigated. In Eagle's minimum essential medium (MEM) with no supplement neurites from explants did not appear on collagen coating but on polyornithine coating (PORN). It is concluded that cell-to-substratum interaction is important in neurite appearance. CM, serum and tissue extract potentiated neurite appearance, but their activities were highly dependent on the coating. The amount of collagen was also crucial. On collagen, neurite appearance was observed only when promoting substances were present. CM and serum contained at least two components; one affected neurite appearance after deposition on collagen and the other affected neurite appearance when present in the culture medium. The former was included also in tissue extracts. Both of adsorbable and non-adsorbable components from any origin were necessary for effective induction of neurite appearance. Heat treatment and dialysis differentiated these active components. On PORN, CM highly potentiated neurite appearance. The activity of the CM was reproduced by its low molecular weight fraction. Serum also promoted neurite appearance, but to a lesser extent than CM. The effect of tissue extract was not remarkable.

  2. Self-aligned Schwann cell monolayers demonstrate an inherent ability to direct neurite outgrowth

    NASA Astrophysics Data System (ADS)

    Seggio, A. M.; Narayanaswamy, A.; Roysam, B.; Thompson, D. M.

    2010-08-01

    In vivo nerve guidance channel studies have identified Schwann cell (SC) presence as an integral factor in axonal number and extension in an injury site, and in vitro studies have provided evidence that oriented SCs can direct neurite outgrowth. However, traditional methods used to create oriented SC monolayers (e.g. micropatterns/microtopography) potentially introduce secondary guidance cues to the neurons that are difficult to de-couple. Although SCs expanded on uniform laminin-coated coverslips lack a global orientation, the monolayers contain naturally formed regions of locally oriented cells that can be used to investigate SC-mediated neurite guidance. In this work, novel image analysis techniques have been developed to quantitatively assess local neurite orientation with respect to the underlying regional orientation of the Schwann cell monolayer. Results confirm that, in the absence of any secondary guidance cues, a positive correlation exists between neurite outgrowth and regional orientation of the SC monolayer. Thus, SCs alone possess an inherent ability to direct neurite outgrowth, and expansion of the co-culture-based quantitative method described can be used to further deconstruct specific biomolecular mechanisms of neurite guidance.

  3. Multiscale Analysis of Neurite Orientation and Spatial Organization in Neuronal Images.

    PubMed

    Singh, Pankaj; Negi, Pooran; Laezza, Fernanda; Papadakis, Manos; Labate, Demetrio

    2016-10-01

    The spatial organization of neurites, the thin processes (i.e., dendrites and axons) that stem from a neuron's soma, conveys structural information required for proper brain function. The alignment, direction and overall geometry of neurites in the brain are subject to continuous remodeling in response to healthy and noxious stimuli. In the developing brain, during neurogenesis or in neuroregeneration, these structural changes are indicators of the ability of neurons to establish axon-to-dendrite connections that can ultimately develop into functional synapses. Enabling a proper quantification of this structural remodeling would facilitate the identification of new phenotypic criteria to classify developmental stages and further our understanding of brain function. However, adequate algorithms to accurately and reliably quantify neurite orientation and alignment are still lacking. To fill this gap, we introduce a novel algorithm that relies on multiscale directional filters designed to measure local neurites orientation over multiple scales. This innovative approach allows us to discriminate the physical orientation of neurites from finer scale phenomena associated with local irregularities and noise. Building on this multiscale framework, we also introduce a notion of alignment score that we apply to quantify the degree of spatial organization of neurites in tissue and cultured neurons. Numerical codes were implemented in Python and released open source and freely available to the scientific community. PMID:27369547

  4. Design of Hyaluronic Acid Hydrogels to Promote Neurite Outgrowth in Three Dimensions.

    PubMed

    Tarus, Dominte; Hamard, Lauriane; Caraguel, Flavien; Wion, Didier; Szarpak-Jankowska, Anna; van der Sanden, Boudewijn; Auzély-Velty, Rachel

    2016-09-28

    A hyaluronic acid (HA)-based extracellular matrix (ECM) platform with independently tunable stiffness and density of cell-adhesive peptide (RGD, arginine-glycine-aspartic acid) that mimics key biochemical and mechanical features of brain matrix has been designed. We demonstrated here its utility in elucidating ECM regulation of neural progenitor cell behavior and neurite outgrowth. The analysis of neurite outgrowth in 3-D by two-photon microscopy showed several important results in the development of these hydrogels. First, the ability of neurites to extend deeply into these soft HA-based matrices even in the absence of cell-adhesive ligand further confirms the potential of HA hydrogels for central nervous system (CNS) regeneration. Second, the behavior of hippocampal neural progenitor cells differed markedly between the hydrogels with a storage modulus of 400 Pa and those with a modulus of 800 Pa. We observed an increased outgrowth and density of neurites in the softest hydrogels (G' = 400 Pa). Interestingly, cells seeded on the surface of the hydrogels functionalized with the RGD ligand experienced an optimum in neurite outgrowth as a function of ligand density. Surprinsingly, neurites preferentially progressed inside the gels in a vertical direction, suggesting that outgrowth is directed by the hydrogel structure. This work may provide design principles for the development of hydrogels to facilitate neuronal regeneration in the adult brain.

  5. Design of Hyaluronic Acid Hydrogels to Promote Neurite Outgrowth in Three Dimensions.

    PubMed

    Tarus, Dominte; Hamard, Lauriane; Caraguel, Flavien; Wion, Didier; Szarpak-Jankowska, Anna; van der Sanden, Boudewijn; Auzély-Velty, Rachel

    2016-09-28

    A hyaluronic acid (HA)-based extracellular matrix (ECM) platform with independently tunable stiffness and density of cell-adhesive peptide (RGD, arginine-glycine-aspartic acid) that mimics key biochemical and mechanical features of brain matrix has been designed. We demonstrated here its utility in elucidating ECM regulation of neural progenitor cell behavior and neurite outgrowth. The analysis of neurite outgrowth in 3-D by two-photon microscopy showed several important results in the development of these hydrogels. First, the ability of neurites to extend deeply into these soft HA-based matrices even in the absence of cell-adhesive ligand further confirms the potential of HA hydrogels for central nervous system (CNS) regeneration. Second, the behavior of hippocampal neural progenitor cells differed markedly between the hydrogels with a storage modulus of 400 Pa and those with a modulus of 800 Pa. We observed an increased outgrowth and density of neurites in the softest hydrogels (G' = 400 Pa). Interestingly, cells seeded on the surface of the hydrogels functionalized with the RGD ligand experienced an optimum in neurite outgrowth as a function of ligand density. Surprinsingly, neurites preferentially progressed inside the gels in a vertical direction, suggesting that outgrowth is directed by the hydrogel structure. This work may provide design principles for the development of hydrogels to facilitate neuronal regeneration in the adult brain. PMID:27598554

  6. Use of conducting polymers to facilitate neurite branching in schizophrenia-related neuronal development.

    PubMed

    Stewart, Elise M; Wu, Zhixiang; Huang, Xu Feng; Kapsa, Robert M I; Wallace, Gordon G

    2016-07-19

    Schizophrenia (SCZ) is a debilitating mental disorder which results in high healthcare and loss of productivity costs to society. This disease remains poorly understood, however there is increasing evidence suggesting a role for oxidative damage in the disease etiology. We aimed to examine the effect of the conducting polymer polypyrrole on the growth and morphology of both wildtype and neuregulin-1 knock out (NRG-1 +/-) explant cells. Polypyrrole is an organic conducting polymer known to be cytocompatible and capable of acting as a platform for effective stimulation of neurons. Here we demonstrate for the first time the ability of this material to mediate processes occurring in disease affected neurons: schizophrenic model cortical neurons. Prefrontal cortical cells were grown on conducting polymer scaffolds of specific composition and showed significantly increased neurite branching and outgrowth length on the polymers compared to controls. Concurrently, a more significant enhancement was seen in both parameters in the NRG-1 +/- model cells. This finding implies that conducting polymers such as polypyrrole may be utilised to overcome neuro-functional deficits associated with neurological disease in humans. PMID:27376413

  7. Salubrinal inhibits the expression of proteoglycans and favors neurite outgrowth from cortical neurons in vitro.

    PubMed

    Barreda-Manso, M Asunción; Yanguas-Casás, Natalia; Nieto-Sampedro, Manuel; Romero-Ramírez, Lorenzo

    2015-07-01

    After CNS injury, astrocytes and mesenchymal cells attempt to restore the disrupted glia limitans by secreting proteoglycans and extracellular matrix proteins (ECMs), forming the so-called glial scar. Although the glial scar is important in sealing the lesion, it is also a physical and functional barrier that prevents axonal regeneration. The synthesis of secretory proteins in the RER is under the control of the initiation factor of translation eIF2α. Inhibiting the synthesis of secretory proteins by increasing the phosphorylation of eIF2α, might be a pharmacologically efficient way of reducing proteoglycans and other profibrotic proteins present in the glial scar. Salubrinal, a neuroprotective drug, decreased the expression and secretion of proteoglycans and other profibrotic proteins induced by EGF or TGFβ, maintaining eIF2α phosphorylated. Besides, Salubrinal also reduced the transcription of proteoglycans and other profibrotic proteins, suggesting that it induced the degradation of non-translated mRNA. In a model in vitro of the glial scar, cortical neurons grown on cocultures of astrocytes and fibroblasts with TGFβ treated with Salubrinal, showed increased neurite outgrowth compared to untreated cells. Our results suggest that Salubrinal may be considered of therapeutic value facilitating axonal regeneration, by reducing overproduction and secretion of proteoglycans and profibrotic protein inhibitors of axonal growth. PMID:25882497

  8. Neuritic regeneration and synaptic reconstruction induced by withanolide A

    PubMed Central

    Kuboyama, Tomoharu; Tohda, Chihiro; Komatsu, Katsuko

    2005-01-01

    We investigated whether withanolide A (WL-A), isolated from the Indian herbal drug Ashwagandha (root of Withania somnifera), could regenerate neurites and reconstruct synapses in severely damaged neurons. We also investigated the effect of WL-A on memory-deficient mice showing neuronal atrophy and synaptic loss in the brain. Axons, dendrites, presynapses, and postsynapses were visualized by immunostaining for phosphorylated neurofilament-H (NF-H), microtubule-associated protein 2 (MAP2), synaptophysin, and postsynaptic density-95 (PSD-95), respectively. Treatment with Aβ(25–35) (10 μM) induced axonal and dendritic atrophy, and pre- and postsynaptic loss in cultured rat cortical neurons. Subsequent treatment with WL-A (1 μM) induced significant regeneration of both axons and dendrites, in addition to the reconstruction of pre- and postsynapses in the neurons. WL-A (10 μmol kg−1 day−1, for 13 days, p.o.) recovered Aβ(25–35)-induced memory deficit in mice. At that time, the decline of axons, dendrites, and synapses in the cerebral cortex and hippocampus was almost recovered. WL-A is therefore an important candidate for the therapeutic treatment of neurodegenerative diseases, as it is able to reconstruct neuronal networks. PMID:15711595

  9. Gene dosage-dependent rescue of HSP neurite defects in SPG4 patients’ neurons

    PubMed Central

    Havlicek, Steven; Kohl, Zacharias; Mishra, Himanshu K.; Prots, Iryna; Eberhardt, Esther; Denguir, Naime; Wend, Holger; Plötz, Sonja; Boyer, Leah; Marchetto, Maria C.N.; Aigner, Stefan; Sticht, Heinrich; Groemer, Teja W.; Hehr, Ute; Lampert, Angelika; Schlötzer-Schrehardt, Ursula; Winkler, Jürgen; Gage, Fred H.; Winner, Beate

    2014-01-01

    The hereditary spastic paraplegias (HSPs) are a heterogeneous group of motorneuron diseases characterized by progressive spasticity and paresis of the lower limbs. Mutations in Spastic Gait 4 (SPG4), encoding spastin, are the most frequent cause of HSP. To understand how mutations in SPG4 affect human neurons, we generated human induced pluripotent stem cells (hiPSCs) from fibroblasts of two patients carrying a c.1684C>T nonsense mutation and from two controls. These SPG4 and control hiPSCs were able to differentiate into neurons and glia at comparable efficiency. All known spastin isoforms were reduced in SPG4 neuronal cells. The complexity of SPG4 neurites was decreased, which was paralleled by an imbalance of axonal transport with less retrograde movement. Prominent neurite swellings with disrupted microtubules were present in SPG4 neurons at an ultrastructural level. While some of these swellings contain acetylated and detyrosinated tubulin, these tubulin modifications were unchanged in total cell lysates of SPG4 neurons. Upregulation of another microtubule-severing protein, p60 katanin, may partially compensate for microtubuli dynamics in SPG4 neurons. Overexpression of the M1 or M87 spastin isoforms restored neurite length, branching, numbers of primary neurites and reduced swellings in SPG4 neuronal cells. We conclude that neurite complexity and maintenance in HSP patient-derived neurons are critically sensitive to spastin gene dosage. Our data show that elevation of single spastin isoform levels is sufficient to restore neurite complexity and reduce neurite swellings in patient cells. Furthermore, our human model offers an ideal platform for pharmacological screenings with the goal to restore physiological spastin levels in SPG4 patients. PMID:24381312

  10. Activation of Rac1-dependent redox signaling is critically involved in staurosporine-induced neurite outgrowth in PC12 cells.

    PubMed

    Kim, Du Sik; An, Jeong Mi; Lee, Han Gil; Seo, Su Ryeon; Kim, Seon Sook; Kim, Ju Yeon; Kang, Jeong Wan; Bae, Yun Soo; Seo, Jeong Taeg

    2013-02-01

    Staurosporine, a non-specific protein kinase inhibitor, has been shown to induce neurite outgrowth in PC12 cells, but the mechanism by which staurosporine induces neurite outgrowth is still obscure. In the present study, we investigated whether the activation of Rac1 was responsible for the neurite outgrowth triggered by staurosporine. Staurosporine caused rapid neurite outgrowth independent of the ERK signaling pathways. In contrast, neurite outgrowth in response to staurosporine was accompanied by activation of Rac1, and the Rac1 inhibitor NSC23766 attenuated the staurosporine-induced neurite outgrowth in a concentration-dependent manner. In addition, suppression of Rac1 activity by expression of the dominant negative mutant Rac1N17 also blocked the staurosporine-induced morphological differentiation of PC12 cells. Staurosporine caused an activation of NADPH oxidase and increased the production of reactive oxygen species (ROS), which was prevented by NSC23766 and diphenyleneiodonium (DPI), an NADPH oxidase inhibitor. Staurosporine-induced neurite outgrowth was attenuated by pretreatment with DPI and exogenous addition of sublethal concentration of H2O2 accelerated neurite outgrowth triggered by staurosporine. These results indicate that activation of Rac1, which leads to ROS generation, is required for neurite outgrowth induced by staurosporine in PC12 cells.

  11. Curcuminoids promote neurite outgrowth in PC12 cells through MAPK/ERK- and PKC-dependent pathways.

    PubMed

    Liao, Kuo-Kai; Wu, Ming-Jiuan; Chen, Pei-Yi; Huang, Szu-Wei; Chiu, Shu-Jun; Ho, Chi-Tang; Yen, Jui-Hung

    2012-01-11

    Curcuminoids, the predominant polyphenolic compounds in the rhizome of Curcuma longa Linn., consist of curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC). They exhibit multiple desirable characteristics for a neuroprotective agent including antioxidant, anti-inflammatory, and antiamyloid activities. In this work, we report the first investigation of the neurotrophic action and mechanism of curcuminoids in PC12 cells, which respond to nerve growth factor (NGF) and therefore serve as a model system for primary neuronal cells. The percentages of neurite-bearing cells for those treated with 20 μM curcumin, DMC, and BDMC for 72 h reached 21.6 ± 2.0%, 16.3 ± 2.4%, and 19.9 ± 2.5%, respectively, and were significantly higher than that of the negative control (2.0 ± 0.3%, p < 0.05). In parallel, increased expression of the neuronal differentiation markers, growth-associated protein-43 (GAP-43), and neurofilament-L (NF-L) was found in curcuminoid-treated cells. All three curcuminoids (20 μM) activated extracellular signal-regulated protein kinase 1/2 (ERK1/2) and protein kinase C (PKC) signalings, and inhibition of these kinases with the respective pharmacological inhibitors effectively attenuated curcuminoid-induced neurite outgrowth. Furthermore, our results show that both curcumin and DMC, but not BDMC, induced phosphorylation of cAMP response element-binding protein (CREB) and CRE-reporter gene activity significantly (p < 0.05). These inductions were markedly attenuated by the addition of MEK/ERK or PKC inhibitor; as a consequence, ERK- and PKC-dependent pathways may be involved in curcuminoid-mediated neuritogenesis in PC12 cells. Moreover, activation of CREB coupling with CRE-dependent gene transcription may play a vital role for curcumin- or DMC-induced PC12 differentiation. PMID:22145830

  12. The atRA-responsive gene neuron navigator 2 functions in neurite outgrowth and axonal elongation.

    PubMed

    Muley, P D; McNeill, E M; Marzinke, M A; Knobel, K M; Barr, M M; Clagett-Dame, M

    2008-11-01

    Neuron navigator 2 (Nav2) was first identified as an all-trans retinoic acid (atRA)-responsive gene in human neuroblastoma cells (retinoic acid-induced in neuroblastoma 1, RAINB1) that extend neurites after exposure to atRA. It is structurally related to the Caenorhabditis elegans unc-53 gene that is required for cell migration and axonal outgrowth. To gain insight into NAV2 function, the full-length human protein was expressed in C. elegans unc-53 mutants under the control of a mechanosensory neuron promoter. Transgene expression of NAV2 rescued the defects in unc-53 mutant mechanosensory neuron elongation, indicating that Nav2 is an ortholog of unc-53. Using a loss-of-function approach, we also show that Nav2 induction is essential for atRA to induce neurite outgrowth in SH-SY5Y cells. The NAV2 protein is located both in the cell body and along the length of the growing neurites of SH-SY5Y cells in a pattern that closely mimics that of neurofilament and microtubule proteins. Transfection of Nav2 deletion constructs in Cos-1 cells reveals a region of the protein (aa 837-1065) that directs localization with the microtubule cytoskeleton. Collectively, this work supports a role for NAV2 in neurite outgrowth and axonal elongation and suggests this protein may act by facilitating interactions between microtubules and other proteins such as neurofilaments that are key players in the formation and stability of growing neurites.

  13. Polystyrene replicas of neuronal basal lamina act as excellent guides for regenerating neurites.

    PubMed

    Karlsson, Martin; Johansson, Fredrik; Kanje, Martin

    2011-07-01

    Various scaffolds, natural or artificial, have been used for neural repair, including basal lamina scaffolds obtained through extraction of nerves. Here we tested whether plastic casts of such preparations could be used for neurite guidance. To this end, longitudinal micron thick sections of rat sciatic nerve were extracted with detergents and treated with Dnase, yielding an acellular basal lamina master. From the basal lamina master a polydimethylsiloxane (PDMS) mold was made. Then a polystyrene replica was made using the PDMS mold as the master. The polystyrene replica showed high similarity to the master within nanometer resolution as revealed by scanning electron microscopy. Organ cultured mouse dorsal root ganglia grown on the polystyrene replica and the master preparation exhibited guided outgrowth of neurites as assayed by two-dimensional fast Fourier transform analysis on preparations, where the neurites had been visualized by β-III-tubulin staining. The neurites aligned longitudally in the direction of the original basal lamina tubes. Thus, using inexpensive methods it is possible to make replicas of basal lamina which can be used for neurite guidance. This opens a new avenue for nerve reconstruction.

  14. Berberine regulates neurite outgrowth through AMPK-dependent pathways by lowering energy status

    SciTech Connect

    Lu, Jiaqi; Cao, Yuanzhao; Cheng, Kuoyuan; Xu, Bo; Wang, Tianchang; Yang, Qi; Yang, Qin; Feng, Xudong; Xia, Qing

    2015-06-10

    As a widely used anti-bacterial agent and a metabolic inhibitor as well as AMP-activated protein kinase (AMPK) activator, berberine (BBR) has been shown to cross the blood–brain barrier. Its efficacy has been investigated in various disease models of the central nervous system. Neurite outgrowth is critical for nervous system development and is a highly energy-dependent process regulated by AMPK-related pathways. In the present study, we aimed to investigate the effects of BBR on AMPK activation and neurite outgrowth in neurons. The neurite outgrowth of primary rat cortical neurons at different stages of polarization was monitored after exposure of BBR. Intracellular energy level, AMPK activation and polarity-related pathways were also inspected. The results showed that BBR suppressed neurite outgrowth and affected cytoskeleton stability in the early stages of neuronal polarization, which was mediated by lowered energy status and AMPK activation. Liver kinase B1 and PI3K–Akt–GSK3β signaling pathways were also involved. In addition, mitochondrial dysfunction and endoplasmic reticulum stress contributed to the lowered energy status induced by BBR. This study highlighted the knowledge of the complex activities of BBR in neurons and corroborated the significance of energy status during the neuronal polarization. - Highlights: • BBR inhibited neurite outgrowth in early stages of neuronal development. • Lowered neuronal energy status was induced by BBR treatment. • Neuronal energy stress induced by BBR activated AMPK-related pathways. • BBR induced mitochondrial dysfunction and endoplasmic reticulum stress.

  15. Mutations changing tropomodulin affinity for tropomyosin alter neurite formation and extension.

    PubMed

    Moroz, Natalia; Guillaud, Laurent; Desai, Brinda; Kostyukova, Alla S

    2013-01-01

    Assembly of the actin cytoskeleton is an important part of formation of neurites in developing neurons. Tropomodulin, a tropomyosin-dependent capping protein for the pointed end of the actin filament, is one of the key players in this process. Tropomodulin binds tropomyosin in two binding sites. Tmod1 and Tmod2, tropomodulin isoforms found in neurons, were overexpressed in PC12 cells, a model system for neuronal differentiation. Tmod1 did not affect neuronal differentiation; while cells expressing Tmod2 showed a significant reduction in the number and the length of neurites. Both tropomodulins bind short α-, γ- and δ-tropomyosin isoforms. Mutations in one of the tropomyosin-binding sites of Tmod1, which increased its affinity to short γ- and δ-tropomyosin isoforms, caused a decrease in binding short α-tropomyosin isoforms along with a 2-fold decrease in the length of neurites. Our data demonstrate that Tmod1 is involved in neuronal differentiation for proper neurite formation and outgrowth, and that Tmod2 inhibits these processes. The mutations in the tropomyosin-binding site of Tmod1 impair neurite outgrowth, suggesting that the integrity of this binding site is critical for the proper function of Tmod1 during neuronal differentiation.

  16. Tiam1 mediates neurite outgrowth induced by ephrin-B1 and EphA2

    PubMed Central

    Tanaka, Masamitsu; Ohashi, Riuko; Nakamura, Ritsuko; Shinmura, Kazuya; Kamo, Takaharu; Sakai, Ryuichi; Sugimura, Haruhiko

    2004-01-01

    Bidirectional signals mediated by Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, play pivotal roles in the formation of neural networks by induction of both collapse and elongation of neurites. However, the downstream molecular modules to deliver these cues are largely unknown. We report here that the interaction of a Rac1-specific guanine nucleotide-exchanging factor, Tiam1, with ephrin-B1 and EphA2 mediates neurite outgrowth. In cells coexpressing Tiam1 and ephrin-B1, Rac1 is activated by the extracellular stimulation of clustered soluble EphB2 receptors. Similarly, soluble ephrin-A1 activates Rac1 in cells coexpressing Tiam1 and EphA2. Cortical neurons from the E14 mouse embryos and neuroblastoma cells significantly extend neurites when placed on surfaces coated with the extracellular domain of EphB2 or ephrin-A1, which were abolished by the forced expression of the dominant-negative mutant of ephrin-B1 or EphA2. Furthermore, the introduction of a dominant-negative form of Tiam1 also inhibits neurite outgrowth induced by the ephrin-B1 and EphA2 signals. These results indicate that Tiam1 is required for neurite outgrowth induced by both ephrin-B1-mediated reverse signaling and EphA2-mediated forward signaling. PMID:14988728

  17. Two stages in neurite formation distinguished by differences in tubulin metabolism.

    PubMed

    Sekimoto, S; Tashiro, T; Komiya, Y

    1995-01-01

    Changes in tubulin solubility during neurite formation were studied biochemically using rat dorsal root ganglion neurons in culture. When fractionated with Ca(2+)-containing buffer at low temperature, a considerable proportion of total cellular tubulin was recovered in the insoluble fraction. We designated this cold/Ca(2+)-insoluble tubulin (InsT) and distinguished it from cold/Ca(2+)-soluble tubulin (SoIT). From the relative amount of InsT, neurite formation was found to proceed through two distinct stages. The first 6 days after plating (stage 1) in which the proportion of InsT increased dramatically (from 5 to 60%) coincided with neurite outgrowth. In the following period (stage 2), a constant level of InsT was maintained, whereas neurite maturation took place. Pulse-labeling experiments further revealed that the two stages differed significantly in terms of tubulin metabolism. High rates of synthesis as well as conversion from SoIT to InsT were observed in stage 1, whereas stage 2 was characterized by a decrease in both of these rates and an increase in the rate of degradation. The results show for the first time the coordinated changes in tubulin metabolism that underlie the process of neurite formation. PMID:7798932

  18. Cholinergic neuronotrophic factors: V. Segregation of survival- and neurite-promoting activities in heart-conditioned media.

    PubMed

    Adler, R; Varon, S

    1980-04-28

    Chick embryo ciliary ganglionic (CG) neurons will not survive in monolayer culture unless special supplements are provided in the medium. We have previously reported that two such supplements, chick embryo extract and medium conditioned over chick heart cell cultures (HCM) share the capacity to support survival of CG neurons but differ in their neurite-promoting effects. Thus, embryo extract elicited neuritic outgrowth only on collagen and HCM did so only on polyornithine (PORN), although both agents supported neuronal survival on both substrata. We report here the separation and quantitation of two different HCM components. One is a trophic agent which supports survival of CG neurons on either collagen or PORN, but does not seem to adsorb to either substratum. The other is a neurite-promoting factor (NPF) which adsorbs to PORN but not to collagen. Overnight incubation of HCM on PORN yields two products: (i) an NPF-deprived HCM, that has no neurite-promoting activity and (ii) an NPF-coated PORN, that promotes neuritic development of CG neurons trophically supported by either embryo extract or NPF-deprived HCM. CG requirements for neuritic outgrowth were also examined in explant cultures. No neurites were present after 24 h when explants were cultured in plain medium on PORN. Very extensive radial neuritic outgrowth was observed when explants were cultured in HCM on fresh PORN, or in NPF-deprived HCM on NPF-derivatized PORN. In contrast to what happens with dissociated cells, neuritic outgrowth was also present when ganglia were cultured in NPF-deprived HCM on fresh PORN. However, neurites grew radially only to a limited extent, after which they adopted a circular pattern grossly concentric to the ganglionic explant. It is proposed that explanted ciliary ganglia produce a neurite-promoting factor that coats the PORN substratum in widening circles.

  19. The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells

    SciTech Connect

    Marzinke, Mark A.; Clagett-Dame, Margaret

    2012-01-01

    The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21{sup Cip1}, a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G{sub 1}/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer Calmin is a retinoic acid-responsive gene. Black-Right-Pointing-Pointer Calmin promotes cell cycle exit in N2A cells. Black-Right-Pointing-Pointer Calmin overexpression increases p21Cip1 and decreases cyclin D1. Black-Right-Pointing-Pointer Calmin is required for RA-induced growth inhibition and neurite outgrowth.

  20. Bioassay, isolation and studies on the mechanism of action of neurite extension factor

    NASA Technical Reports Server (NTRS)

    Kligman, D.

    1984-01-01

    The identification and purification of molecules active in promoting neurite outgrowth requires a sensitive reproducible bioassay. A quantitative bioassay was utilized to purify a neurite extension factor (NEF) based on counting the number of phase bright neurons with processes at least equal to one cell body diameter after 20 hrs. in culture is defined, serum free medium. Using a combination of heat treatment DEAE cellulose chromatography and gel filtration, an acidic protein of M sub r = 75,000 was highly purified. Upon reduction, it yields subunits of M sub r = 37,000. Purified fractions are active half maximally at 100 ng/ml in inducing neurite outgrowth in this bioassay. Currently, monoclonal antibodies to NEF are being produced. Female Balb C mice were immunized with the antigen and fusions with mouse myeloma cells will be performed to yield hybridoma cells.

  1. Reduced Neurite Density in Neuronal Cell Cultures Exposed to Serum of Patients with Bipolar Disorder

    PubMed Central

    Wollenhaupt-Aguiar, Bianca; Pfaffenseller, Bianca; Chagas, Vinicius de Saraiva; Castro, Mauro A A; Passos, Ives Cavalcante; Kauer-Sant’Anna, Márcia; Kapczinski, Flavio

    2016-01-01

    Background: Increased inflammatory markers and oxidative stress have been reported in serum among patients with bipolar disorder (BD). The aim of this study is to assess whether biochemical changes in the serum of patients induces neurotoxicity in neuronal cell cultures. Methods: We challenged the retinoic acid-differentiated human neuroblastoma SH-SY5Y cells with the serum of BD patients at early and late stages of illness and assessed neurite density and cell viability as neurotoxic endpoints. Results: Decreased neurite density was found in neurons treated with the serum of patients, mostly patients at late stages of illness. Also, neurons challenged with the serum of late-stage patients showed a significant decrease in cell viability. Conclusions: Our findings showed that the serum of patients with bipolar disorder induced a decrease in neurite density and cell viability in neuronal cultures. PMID:27207915

  2. Inhibition of dynein but not kinesin induces aberrant focal accumulation of neurofilaments within axonal neurites.

    PubMed

    Motil, Jennifer; Dubey, Maya; Chan, Walter K-H; Shea, Thomas B

    2007-08-20

    Studies from several laboratories indicate that the microtubule motors kinesin and dynein respectively participate in anterograde and retrograde axonal transport of neurofilaments. Inhibition of dynein function by transfection with a construct expressing dynamitin or intracellular delivery of anti-dynein antibodies accelerates anterograde transport, which has been interpreted to indicate that the opposing action of both motors mediates the normal distribution of neurofilaments along axons. Herein, we demonstrate that, while expression of relatively low levels of exogenous dynamitin indeed accelerated anterograde neurofilament transport along axonal neurites in culture, expression of progressively increasing levels of dynamitin induced focal accumulation of neurofilaments within axonal neurites and eventually caused neurite retraction. Inhibition of kinesin inhibited anterograde transport, but did not induce similar focal accumulations. These findings are consistent with studies indicating that perturbations in dynein activity can contribute to the aberrant accumulations of neurofilaments that accompany ALS/motor neuron disease.

  3. MicroRNA miR-124 Regulates Neurite Outgrowth during Neuronal Differentiation

    PubMed Central

    Yu, Jenn-Yah; Chung, Kwan-Ho; Deo, Monika; Thompson, Robert C.; Turner, David L.

    2008-01-01

    MicroRNAs (miRNAs) are small RNAs with diverse regulatory roles. The miR-124 miRNA is expressed in neurons in the developing and adult nervous system. Here we show that overexpression of miR-124 in differentiating mouse P19 cells promotes neurite outgrowth, while blocking miR-124 function delays neurite outgrowth and decreases acetylated α-tubulin. Altered neurite outgrowth also was observed in mouse primary cortical neurons when miR-124 expression was increased, or when miR-124 function was blocked. In uncommitted P19 cells, miR-124 expression led to disruption of actin filaments and stabilization of microtubules. Expression of miR-124 also decreased Cdc42 protein and affected the subcellular localization of Rac1, suggesting that miR-124 may act in part via alterations to members of the Rho GTPase family. Furthermore, constitutively active Cdc42 or Rac1 attenuated neurite outgrowth promoted by miR-124. To obtain a broader perspective, we identified mRNAs downregulated by miR-124 in P19 cells using microarrays. mRNAs for proteins involved in cytoskeletal regulation were enriched among mRNAs downregulated by miR-124. A miR-124 variant with an additional 5’ base failed to promote neurite outgrowth and downregulated substantially different mRNAs. These results indicate that miR-124 contributes to the control of neurite outgrowth during neuronal differentiation, possibly by regulation of the cytoskeleton. PMID:18619591

  4. Diazinon and diazoxon impair the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons

    SciTech Connect

    Pizzurro, Daniella M.; Dao, Khoi; Costa, Lucio G.

    2014-02-01

    Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial–neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons. - Highlights: • DZ and DZO inhibit astrocyte-mediated neurite outgrowth in rat hippocampal neurons. • Oxidative stress is involved in inhibition of neuritogenesis by DZ and DZO. • DZ and DZO decrease expression of the neuritogenic

  5. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    SciTech Connect

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee; Jun, Mi-Hee; Ban, Byung-Kwan; Jang, Deok-Jin; Lee, Jin-A

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalized to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.

  6. Arylsulfatase B modulates neurite outgrowth via astrocyte chondroitin-4-sulfate: dysregulation by ethanol.

    PubMed

    Zhang, Xiaolu; Bhattacharyya, Sumit; Kusumo, Handojo; Goodlett, Charles R; Tobacman, Joanne K; Guizzetti, Marina

    2014-02-01

    In utero ethanol exposure causes fetal alcohol spectrum disorders, associated with reduced brain plasticity; the mechanisms of these effects are not well understood, particularly with respect to glial involvement. Astrocytes release factors that modulate neurite outgrowth. We explored the hypothesis that ethanol inhibits neurite outgrowth by increasing the levels of inhibitory chondroitin sulfate proteoglycans (CSPGs) in astrocytes. Astrocyte treatment with ethanol inhibited the activity of arylsulfatase B (ARSB), the enzyme that removes sulfate groups from chondroitin-4-sulfate (C4S) and triggers the degradation of C4S, increased total sulfated glycosaminoglycans (GAGs), C4S, and neurocan core-protein content and inhibited neurite outgrowth in neurons cocultured with ethanol-treated astrocytes in vitro, effects reversed by treatment with recombinant ARSB. Ethanol also inhibited ARSB activity and increased sulfate GAG and neurocan levels in the developing hippocampus after in vivo ethanol exposure. ARSB silencing increased the levels of sulfated GAGs, C4S, and neurocan in astrocytes and inhibited neurite outgrowth in cocultured neurons, indicating that ARSB activity directly regulates C4S and affects neurocan expression. In summary, this study reports two major findings: ARSB modulates sulfated GAG and neurocan levels in astrocytes and astrocyte-mediated neurite outgrowth in cocultured neurons; and ethanol inhibits the activity of ARSB, increases sulfated GAG, C4S, and neurocan levels, and thereby inhibits astrocyte-mediated neurite outgrowth. An unscheduled increase in CSPGs in the developing brain may lead to altered brain connectivity and to premature decrease in neuronal plasticity and therefore represents a novel mechanism by which ethanol can exert its neurodevelopmental effects.

  7. Secreted glypican binds to the amyloid precursor protein of Alzheimer's disease (APP) and inhibits APP-induced neurite outgrowth.

    PubMed

    Williamson, T G; Mok, S S; Henry, A; Cappai, R; Lander, A D; Nurcombe, V; Beyreuther, K; Masters, C L; Small, D H

    1996-12-01

    The amyloid precursor protein (APP) of Alzheimer's disease has been shown to stimulate neurite outgrowth in vitro. The effect of APP on neurite outgrowth can be enhanced if APP is presented to neurons in substrate-bound form, in the presence of heparan sulfate proteoglycans. To identify specific heparan sulfate proteoglycans that bind to APP, conditioned medium from neonatal mouse brain cells was subjected to affinity chromatography with recombinant APP695 as a ligand. Glypican bound strongly to the APP affinity column. Purified glypican bound to APP with an equilibrium dissociation constant of 2.8 nM and inhibited APP-induced neurite outgrowth from chick sympathetic neurons. The effect of glypican was specific for APP, as glypican did not inhibit laminin-induced neurite outgrowth. Furthermore, treatment of cultures with 4-methylumbelliferyl-beta-D-xyloside, a competitive inhibitor of proteoglycan glycanation, inhibited APP-induced neurite outgrowth but did not inhibit laminin-induced neurite outgrowth. This result suggests that endogenous proteoglycans are required for substrate-bound APP to stimulate neurite outgrowth. Secreted glypican may act to inhibit APP-induced neurite outgrowth in vivo by competing with endogenous proteoglycans for binding to APP.

  8. Preparation of Primary Neurons for Visualizing Neurites in a Frozen-hydrated State Using Cryo-Electron Tomography

    PubMed Central

    Shahmoradian, Sarah H.; Galiano, Mauricio R.; Wu, Chengbiao; Chen, Shurui; Rasband, Matthew N.; Mobley, William C.; Chiu, Wah

    2014-01-01

    Neurites, both dendrites and axons, are neuronal cellular processes that enable the conduction of electrical impulses between neurons. Defining the structure of neurites is critical to understanding how these processes move materials and signals that support synaptic communication. Electron microscopy (EM) has been traditionally used to assess the ultrastructural features within neurites; however, the exposure to organic solvent during dehydration and resin embedding can distort structures. An important unmet goal is the formulation of procedures that allow for structural evaluations not impacted by such artifacts. Here, we have established a detailed and reproducible protocol for growing and flash-freezing whole neurites of different primary neurons on electron microscopy grids followed by their examination with cryo-electron tomography (cryo-ET). This technique allows for 3-D visualization of frozen, hydrated neurites at nanometer resolution, facilitating assessment of their morphological differences. Our protocol yields an unprecedented view of dorsal root ganglion (DRG) neurites, and a visualization of hippocampal neurites in their near-native state. As such, these methods create a foundation for future studies on neurites of both normal neurons and those impacted by neurological disorders. PMID:24561719

  9. A simplified micropatterning method for straight-line neurite extension of cultured hippocampal neurons.

    PubMed

    Suzuki, Ikuro; Nakamura, Kosuke; Odawara, Aoi; Alhebshi, Amani; Gotoh, Masao

    2013-01-01

    We report a simplified micropatterning method for the straight-line extension of the neurites of cultured neurons. We prepared a poly-D-lysine (PDL)-patterned surface using a polydimethylsiloxane microfluidic stamp. Hippocampal neurons were cultured on the PDL-bound substrate with the stamp removed, allowing for conventional cell seeding and detailed optical observation without fluorescent label. Cultured neurons elongated neurites along straight lines at the single-cell level and displayed spontaneous firing as detected by time-lapse imaging and Ca(2+) imaging.

  10. Neuritic Plaques and Cerebrovascular Amyloid in Alzheimer Disease are Antigenically Related

    NASA Astrophysics Data System (ADS)

    Wong, Caine W.; Quaranta, Vito; Glenner, George G.

    1985-12-01

    A synthetic peptide (Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr), homologous to the amino terminus of a protein purified from cerebrovascular amyloid (β protein), induced antibodies in BALB/c mice that were used immunohistochemically to stain not only amyloid-laden cerebral vessels but neuritic plaques as well. These findings suggest that the amyloid in neuritic plaques shares antigenic determinants with β protein of cerebral vessels. Since the amino acid compositions of plaque amyloid and cerebrovascular amyloid are similar, it is likely that plaque amyloid also consists of β protein. This possibility suggests a model for the pathogenesis of Alzheimer disease involving β protein.

  11. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    SciTech Connect

    Permana, Paska A. . E-mail: Paska.Permana@med.va.gov; Menge, Christopher; Reaven, Peter D.

    2006-03-10

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-{kappa}B) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-{kappa}B inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity.

  12. Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells

    SciTech Connect

    Flaskos, J.; Nikolaidis, E.; Harris, W.; Sachana, M.; Hargreaves, A.J.

    2011-11-15

    Previous work in our laboratory has shown that sub-lethal concentrations (1-10 {mu}M) of chlorpyrifos (CPF), diazinon (DZ) and diazinon oxon (DZO) inhibit the outgrowth of axon-like neurites in differentiating mouse N2a neuroblastoma cells concomitant with altered levels and/or phosphorylation state of axonal cytoskeleton and growth-associated proteins. The aim of the present work was to determine whether chlorpyrifos oxon (CPO) was capable of inhibiting N2a cell differentiation in a similar manner. Using experimental conditions similar to our previous work, sub-lethal concentrations (1-10 {mu}M) of CPO were found to inhibit N2a cell differentiation. However, unlike previous studies with DZ and DZO, there was a high level of sustained inhibition of acetylcholinesterase (AChE) in CPO treated cells. Impairment of neurite outgrowth was also associated with reduced levels of growth associated protein-43 and neurofilament heavy chain (NFH), and the distribution of NFH in cells stained by indirect immunofluorescence was disrupted. However, in contrast to previous findings for DZO, the absolute level of phosphorylated NFH was unaffected by CPO exposure. Taken together, the findings suggest that sub-lethal concentrations of CPO inhibit axon outgrowth in differentiating N2a cells and that this effect involves reduced levels of two proteins that play key roles in axon outgrowth and maintenance. Although the inhibition of neurite outgrowth is unlikely to involve AChE inhibition directly, further work will help to determine whether the persistent inhibition of AChE by CPO can account for the different effects induced by CPO and DZO on the levels of total and phosphorylated NFH. -- Highlights: Black-Right-Pointing-Pointer Sub-lethal levels of chlorpyrifos oxon inhibit neurite outgrowth in N2a cells Black-Right-Pointing-Pointer Acetylcholinesterase exhibits sustained inhibition throughout exposure Black-Right-Pointing-Pointer The levels of neurofilament heavy chain and GAP-43

  13. Thiazolidinediones inhibit the growth of PC12 cells both in vitro and in vivo

    SciTech Connect

    Kim, Sang Wan; Choi, Ok Kyung; Chang, Mee Soo; Shin, Chan Soo; Park, Kyong Soo; Kim, Seong Yeon

    2008-06-27

    Thiazolidinediones (TZDs) have recently been proposed as a therapy for PPAR{gamma}-expressing tumors. Pheochromocytoma (PHEO) is associated with high morbidity and mortality due to excess catecholamine production, and few effective drug therapies currently exist. We investigated the effects of TZDs on PHEO both in vitro and in vivo. PPAR{gamma} protein was expressed in human adrenal PHEO tissues as well as in rat PHEO cells, PC12. TZDs, including rosiglitazone (RGZ) and pioglitazone (PGZ), inhibited proliferation of PC12 cells in a dose-dependent manner and increased casapse-3 expression of PC12 cells. TZDs also reduced expression of cyclin E and cyclin-dependent kinase2. RGZ inhibited nerve growth factor-induced neurite outgrowth and reduced expression of catecholamine-synthesizing enzymes. Finally, rat PHEO growth generated by subcutaneous injection of PC12 cells was slowed in an RGZ-treated mouse. These data suggest that TZDs may be a promising therapeutic approach for medical treatment for PHEO.

  14. Structure-function analyses of the small GTPase Rab35 and its effector protein centaurin-β2/ACAP2 during neurite outgrowth of PC12 cells.

    PubMed

    Etoh, Kan; Fukuda, Mitsunori

    2015-04-01

    The small GTPase Rab35 is a molecular switch for membrane trafficking that regulates a variety of cellular events. We previously showed that Rab35 promotes neurite outgrowth of nerve growth factor-stimulated PC12 cells through interaction with centaurin-β2 (also called ACAP2). Centaurin-β2 is the only Rab35-binding protein reported thus far that exclusively recognizes Rab35 and does not recognize any of the other 59 Rabs identified in mammals, but the molecular basis for the exclusive specificity of centaurin-β2 for Rab35 has remained completely unknown. In this study, we performed deletion and mutation analyses and succeeded in identifying the residues of Rab35 and centaurin-β2 that are crucial for formation of a Rab35·centaurin-β2 complex. We found that two threonine residues (Thr-76 and Thr-81) in the switch II region of Rab35 are responsible for binding centaurin-β2 and that the same residues are dispensable for Rab35 recognition by other Rab35-binding proteins. We also determined the minimal Rab35-binding site of centaurin-β2 and identified two asparagine residues (Asn-610 and Asn-691) in the Rab35-binding site as key residues for its specific Rab35 recognition. We further showed by knockdown-rescue approaches that neither a centaurin-β2 binding-deficient Rab35(T76S/T81A) mutant nor a Rab35 binding-deficient centaurin-β2(N610A/N691A) mutant supported neurite outgrowth of PC12 cells, thereby demonstrating the functional significance of the Rab35/centaurin-β2 interaction during neurite outgrowth of PC12 cells.

  15. Engineered N-cadherin and L1 biomimetic substrates concertedly promote neuronal differentiation, neurite extension and neuroprotection of human neural stem cells.

    PubMed

    Cherry, Jocie F; Bennett, Neal K; Schachner, Melitta; Moghe, Prabhas V

    2014-10-01

    We investigated the design of neurotrophic biomaterial constructs for human neural stem cells, guided by neural developmental cues of N-cadherin and L1 adhesion molecules. Polymer substrates fabricated either as two-dimensional (2-D) films or three-dimensional (3-D) microfibrous scaffolds were functionalized with fusion chimeras of N-cadherin-Fc alone and in combination with L1-Fc, and the effects on differentiation, neurite extension and survival of H9 human-embryonic-stem-cell-derived neural stem cells (H9-NSCs) were quantified. Combinations of N-cadherin and L1-Fc co-operatively enhanced neuronal differentiation profiles, indicating the critical nature of the two complementary developmental cues. Notably, substrates presenting low levels of N-cadherin-Fc concentrations, combined with proportionately higher L1-Fc concentration, most enhanced neurite outgrowth and the degree of MAP2+ and neurofilament-M+ H9-NSCs. Low N-cadherin-Fc alone promoted improved cell survival following oxidative stress, compared to higher concentrations of N-cadherin-Fc alone or combinations with L1-Fc. Pharmacological and antibody blockage studies revealed that substrates presenting low levels of N-cadherin are functionally competent so long as they elicit a threshold signal mediated by homophilic N-cadherin and fibroblast growth factor signaling. Overall, these studies highlight the ability of optimal combinations of N-cadherin and L1 to recapitulate a "neurotrophic" microenvironment that enhances human neural stem cell differentiation and neurite outgrowth. Additionally, 3-D fibrous scaffolds presenting low N-cadherin-Fc further enhanced the survival of H9-NSCs compared to equivalent 2-D films. This indicates that similar biofunctionalization approaches based on N-cadherin and L1 can be translated to 3-D "transplantable" scaffolds with enhanced neurotrophic behaviors. Thus, the insights from this study have fundamental and translational impacts for neural-stem-cell-based regenerative

  16. Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control

    NASA Astrophysics Data System (ADS)

    McMurtrey, Richard J.

    2014-12-01

    Objective. Neural tissue engineering holds incredible potential to restore functional capabilities to damaged neural tissue. It was hypothesized that patterned and functionalized nanofiber scaffolds could control neurite direction and enhance neurite outgrowth. Approach. A method of creating aligned electrospun nanofibers was implemented and fiber characteristics were analyzed using environmental scanning electron microscopy. Nanofibers were composed of polycaprolactone (PCL) polymer, PCL mixed with gelatin, or PCL with a laminin coating. Three-dimensional hydrogels were then integrated with embedded aligned nanofibers to support neuronal cell cultures. Microscopic images were captured at high-resolution in single and multi-focal planes with eGFP-expressing neuronal SH-SY5Y cells in a fluorescent channel and nanofiber scaffolding in another channel. Neuronal morphology and neurite tracking of nanofibers were then analyzed in detail. Main results. Aligned nanofibers were shown to enable significant control over the direction of neurite outgrowth in both two-dimensional (2D) and three-dimensional (3D) neuronal cultures. Laminin-functionalized nanofibers in 3D hyaluronic acid (HA) hydrogels enabled significant alignment of neurites with nanofibers, enabled significant neurite tracking of nanofibers, and significantly increased the distance over which neurites could extend. Specifically, the average length of neurites per cell in 3D HA constructs with laminin-functionalized nanofibers increased by 66% compared to the same laminin fibers on 2D laminin surfaces, increased by 59% compared to 2D laminin-coated surface without fibers, and increased by 1052% compared to HA constructs without fibers. Laminin functionalization of fibers also doubled average neurite length over plain PCL fibers in the same 3D HA constructs. In addition, neurites also demonstrated tracking directly along the fibers, with 66% of neurite lengths directly tracking laminin-coated fibers in 3D HA

  17. Studies on nerve growth and repair

    SciTech Connect

    Ignatius, M.J.

    1985-01-01

    The transition of nerve cell from a dividing undifferentiated cell to a morphologically differentiated nondividing cell was studied. Pheochromocytoma (PC12) cells respond to nerve growth factor (NGF) by extending electrically excitable neurites. Yet by labeling these cells with /sup 3/H-thymidine and examining them autoradiographically, evidence for continued DNA replication in neurite bearing neurons was found. NGF receptors of two classes are expressed on PC12 cells and other NGF dependent neurons. By labeling differentiated PC12s in culture with /sup 125/I-NGF and examining them autoradiographically both receptor classes were found evenly distributed on the growth cones, neurites and cell bodies. Cytoskeletal associated receptors were found in these areas as well. The purification and identification of a soluble, extracellular protein of 37,000 molecular weight whose synthesis and accumulation is increased after injury of a rat sciatic nerve is described.

  18. Neurite outgrowth of neuroblastoma cells: dependence on adhesion surface--cell surface interactions

    PubMed Central

    1984-01-01

    Neurite outgrowth of C 1300 neuroblastoma cells, which were dispersed from adherent cultures or grown in suspension, was studied on different protein-coated surfaces. Of 29 different surface structures studied, including surfaces treated with various fibronectins, lectins, glycosidases, or glycosyltransferases capable of stimulating fibroblast spreading, only the surfaces coated with plasma fibronectin or with a protein mixture secreted by C6 glioma cells displayed an extensive activity in the sprouting assay. Neurite outgrowth was inhibited by brain gangliosides and by colominic acid (a sialic acid polymer). A 50% inhibition of neurite outgrowth of N18 neuroblasts induced by the glioma cell proteins was observed at the following approximate concentration: 100 microM (0.2 mg/ml) GD1A ganglioside, 20 microM (0.04 mg/ml) GT1B ganglioside, and 5 mg/ml colominic acid. Specificity of inhibition was suggested by the finding that a few polyanionic substances tested were not inhibitory in the sprouting assay, and that the type of gangliosides inhibiting sprouting were found to be major sialoglycolipids of the neuroblasts. A hypothesis is discussed, according to which neurite outgrowth of neuroblasts is stimulated by adhesion involving interactions of the adhesion-mediating protein with cell surface carbohydrates characteristic of brain gangliosides. PMID:6699078

  19. Androgen-induced neurite outgrowth is mediated by neuritin in motor neurones.

    PubMed

    Marron, T U; Guerini, V; Rusmini, P; Sau, D; Brevini, T A L; Martini, L; Poletti, A

    2005-01-01

    In the brain, the spinal cord motor neurones express the highest levels of the androgen receptor (AR). Experimental data have suggested that neurite outgrowth in these neurones may be regulated by testosterone or its derivative 5alpha-dihydrotestosterone (DHT), formed by the 5alpha-reductase type 2 enzyme. In this study we have produced and characterized a model of immortalized motor neuronal cells expressing the mouse AR (mAR) [neuroblastoma-spinal cord (NSC) 34/mAR] and analysed the role of androgens in motor neurones. Androgens either activated or repressed several genes; one has been identified as the mouse neuritin, a protein responsible for neurite elongation. Real-time PCR analysis has shown that the neuritin gene is expressed in the basal condition in immortalized motor neurones and is selectively up-regulated by androgens in NSC34/mAR cells; the DHT effect is counteracted by the anti-androgen Casodex. Moreover, DHT induced neurite outgrowth in NSC34/mAR, while testosterone was less effective and its action was counteracted by the 5alpha-reductase type 2 enzyme inhibitor finasteride. Finally, the androgenic effect on neurite outgrowth was abolished by silencing neuritin with siRNA. Therefore, the trophic effects of androgens in motor neurones may be explained by the androgenic regulation of neuritin, a protein linked to neurone development, elongation and regeneration. PMID:15606892

  20. Pale neurites, premature α-synuclein aggregates with centripetal extension from axon collaterals.

    PubMed

    Kanazawa, Toshiro; Adachi, Eijiro; Orimo, Satoshi; Nakamura, Ayako; Mizusawa, Hidehiro; Uchihara, Toshiki

    2012-01-01

    Progressive aggregation of α-synuclein (αS) from pale bodies (PBs) and extension from Lewy neurites (LNs) are candidate mechanisms for Lewy body (LB) formation. To identify how aggregation of αS is related to its extension along neurites, 60-µm-thick brainstem sections of Parkinson disease (PD) patients were prepared for three-dimensional (3D) reconstruction of αS-positive neurites with neurofilament (NF) and thiazin red (TR), a fluorochrome with an affinity to solid aggregates. This demonstrated 3D layering of αS surrounded by NF with the aggregates probed by TR in the center, corresponding to the eosinophilic core of mature LBs. This eosinophilic/TR-positive profile, characteristically absent in PBs, premature counterpart of LBs, was similarly absent in some LNs. We would like to refer these premature LNs as "pale neurites" (PNs). Their premature nature was evidenced by 3D fluoroprofiling with quantum dots (QDs) and subsequent electron microscopic identification (3D-oriented immunoelectron microscopy) as loosely packed αS (QDs)-positive filaments. Quantification of LNs, frequently extended around branching axons, demonstrated that LNs are initiated at axon collaterals to extend centripetally into proximal segments. This branching-oriented extension of αS is related to its selective predisposition to systems with highly divergent axons, preferentially affected in PD, which may explain barely somatotopic manifestations of PD.

  1. Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth

    EPA Science Inventory

    There is a need for rapid, efficient and cost effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be...

  2. SCIRR39 promotes neurite extension via RhoA in NGF-induced PC12 cells.

    PubMed

    Zhao, C F; Liu, Y; Ni, Y L; Yang, J W; Hui, H D; Sun, Z B; Liu, S J

    2013-01-01

    SCIRR39 is an identified upregulated gene in rat primary neuron injury and/or regeneration process with roles largely unexplored. Using real-time quantitative PCR, Western blotting and immunofluorescence, SCIRR39 expression was detected in normal PC12 cells and upregulated in differentiated cells. The results of cell proliferation by Cell Counting Kit and cell cycle by flow cytometry indicated that SCIRR39 inhibited cell proliferation and induced the decrease in S phase. Importantly, immunofluorescent and RhoA pull-down assays showed that SCIRR39 strongly affected the neurite extension of NGF-treated PC12 cells through a RhoA-dependent mechanism, but the truncated mutants of SCIRR39 containing a truncation from 141AA to 211AA or from 397AA to 424AA failed to mock the SCIRR39 effect on neurite extension. Moreover, change of SCIRR39 expression in NGF-treated PC12 cells regulated the expression and phosphorylation of Fyn, a regulator of RhoA activity, but not the expression of ROCK II protein. Finally, immunofluorescence and RhoA pull-down assays revealed that obvious inhibition of neurite extension by SCIRR39 shRNA was reversed by RhoA inhibitor C3-transferase. Our results indicated that SCIRR39 increased the neurite extension in NGF-treated PC12 cells via RhoA, suggesting that SCIRR39 contributes to the regeneration of neuron injury by specifically altering the differentiation program.

  3. Inhibition of neurite outgrowth and alteration of cytoskeletal gene expression by sodium arsenite.

    PubMed

    Aung, Kyaw Htet; Kurihara, Ryohei; Nakashima, Shizuka; Maekawa, Fumihiko; Nohara, Keiko; Kobayashi, Tetsuya; Tsukahara, Shinji

    2013-01-01

    Arsenic compounds that are often found in drinking water increase the risk of developmental brain disorders. In this study, we performed live imaging analyses of Neuro-2a cells expressing SCAT3, a caspase-3 cleavage peptide sequence linking two fluorescent proteins; enhanced cyan fluorescence protein (ECFP) and Venus, to determine whether sodium arsenite (NaAsO(2); 0, 1, 5, or 10 μM) affects both neurite outgrowth and/or induces apoptosis with the same doses and in the same cell cultures. We observed that the area ratio of neurite to cell body in SCAT3-expressing cells was significantly reduced by 5 and 10 μM NaAsO(2), but not by 1 μM, although the emission ratio of ECFP to Venus, an endpoint of caspase-3 activity, was not changed. However, cytological assay using apoptotic and necrotic markers resulted in that apoptosis, but not necrosis, was significantly induced in Neuro-2a cells when NaAsO(2) exposure continued after the significant effects of NaAsO(2) on neurite outgrowth were found by live imaging. These results suggested that neurite outgrowth was suppressed by NaAsO(2) prior to NaAsO(2)-induced apoptosis. Next, we examined the effects of NaAsO(2) on cytoskeletal gene expression in Neuro-2a cells. NaAsO(2) increased the mRNA levels of the light and medium subunits of neurofilament and decreased the mRNA levels of tau and tubulin in a dose-dependent manner; no significant effect was found in the mRNA levels of the heavy subunit of neurofilament, microtubule-associated protein 2, or actin. The changes in cytoskeletal gene expression are likely responsible for the inhibitory effects of NaAsO(2) on neurite outgrowth.

  4. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain.

    PubMed

    Zhang, Hui; Schneider, Torben; Wheeler-Kingshott, Claudia A; Alexander, Daniel C

    2012-07-16

    This paper introduces neurite orientation dispersion and density imaging (NODDI), a practical diffusion MRI technique for estimating the microstructural complexity of dendrites and axons in vivo on clinical MRI scanners. Such indices of neurites relate more directly to and provide more specific markers of brain tissue microstructure than standard indices from diffusion tensor imaging, such as fractional anisotropy (FA). Mapping these indices over the whole brain on clinical scanners presents new opportunities for understanding brain development and disorders. The proposed technique enables such mapping by combining a three-compartment tissue model with a two-shell high-angular-resolution diffusion imaging (HARDI) protocol optimized for clinical feasibility. An index of orientation dispersion is defined to characterize angular variation of neurites. We evaluate the method both in simulation and on a live human brain using a clinical 3T scanner. Results demonstrate that NODDI provides sensible neurite density and orientation dispersion estimates, thereby disentangling two key contributing factors to FA and enabling the analysis of each factor individually. We additionally show that while orientation dispersion can be estimated with just a single HARDI shell, neurite density requires at least two shells and can be estimated more accurately with the optimized two-shell protocol than with alternative two-shell protocols. The optimized protocol takes about 30 min to acquire, making it feasible for inclusion in a typical clinical setting. We further show that sampling fewer orientations in each shell can reduce the acquisition time to just 10 min with minimal impact on the accuracy of the estimates. This demonstrates the feasibility of NODDI even for the most time-sensitive clinical applications, such as neonatal and dementia imaging.

  5. Effects of Extremely Low Frequency Magnetic Field on Neurite Outgrowth of PC12 and PC12D Cells and Evaluation by Image Analysis

    NASA Astrophysics Data System (ADS)

    Sakanishi, Akio; Takatsuki, Hideyo; Yoshikoshi, Akio; Fujiwara, Yasuyoshi

    2004-05-01

    A pheochromocytoma cell (PC12), and its derivative (PC12D), differentiate to nervelike cells in culture with the nerve growth factor (NGF) and forskolin respectively. We introduced a morphological factor σ=L/2(π A)1/2 for quantitating neurite outgrowth under a microscope in the presence of extremely low-frequency (ELF) magnetic fields for 22 hours, where L and A are the contour length and the area of the cells in clump determined using an image-analysis system. ELF magnetic fields B1 were generated with a single coil or double coils in Helmholtz configuration together with static fields B0 of -53, -20 and 67 μT. σ increased with increasing NGF or forskolin level at B0=-53 μT (geomagnetism), in agreement with the cytometric observation of micrographs. With the addition of an AC field B1 at 60 Hz (100 μT > B1 > 3 μT rms) to B0, neurite outgrowth represented by σ was depressed for PC12 and stimulated for PC12D. We discuss the cyclotron resonance and the ion parametric resonance models.

  6. Neurite outgrowth of PC12 cells by 4'-O-β-D-glucopyranosyl-3',4-dimethoxychalcone from Brassica rapa L. 'hidabeni' was enhanced by pretreatment with p38MAPK inhibitor.

    PubMed

    Nishina, Atsuyoshi; Kimura, Hirokazu; Tsukagoshi, Hiroyuki; Kozawa, Kunihisa; Koketsu, Mamoru; Ninomiya, Masayuki; Sato, Daisuke; Obara, Yutaro; Furukawa, Shoei

    2013-11-01

    The cellular effects of eleven compounds including chalcone glycosides isolated from Brassica rapa L. 'hidabeni' and their synthetic derivatives were studied in rat pheochromocytoma PC12 cells. Of the compounds tested, 4'-O-β-D-glucopyranosyl-3',4-dimethoxychalcone (A2) significantly increased the levels of the phosphorylated forms of extracellular signal-regulated kinases 1/2 (ERK 1/2), p38 mitogen-activated protein kinase (p38MAPK), and stress-activated protein kinases/Jun amino-terminal kinases (JNK/SAPK), but it did not affect Akt. Nerve growth factor (NGF), a well-known neurotrophic factor, increased the levels of phosphorylated ERK1/2, JNK/SAPK, and Akt but not p38MAPK, which may mediate marked neurite outgrowth. Signals evoked by A2 shared common characteristics with those induced by NGF; therefore, we evaluated the neuritogenic activity of A2 and found it induced only weak neurite outgrowth. However, this effect was enhanced by pre-treatment with a p38MAPK inhibitor, suggesting that the phosphorylation of p38MAPK down-regulated neurite outgrowth. From the results of this study, it was found that A2 in combination with a p38MAPK inhibitor can induce NGF-like effects. Hence, a combination of chalcone glycosides containing A2 and a p38MAPK inhibitor increases the likelihood that chalcone glycosides could be put to practical use in the form of drugs or alternative medicines to maintain neural health.

  7. Dilysine motifs in exon 2b of SMN protein mediate binding to the COPI vesicle protein α-COP and neurite outgrowth in a cell culture model of spinal muscular atrophy.

    PubMed

    Custer, Sara K; Todd, Adrian G; Singh, Natalia N; Androphy, Elliot J

    2013-10-15

    Spinal muscular atrophy (SMA) is a devastating neuromuscular disorder that stems from low levels of survival of motor neuron (SMN) protein. The processes that cause motor neurons and muscle cells to become dysfunctional are incompletely understood. We are interested in neuromuscular homeostasis and the stresses put upon that system by loss of SMN. We recently reported that α-COP, a member of the coatomer complex of coat protein I (COPI) vesicles, is an SMN-binding partner, implicating this protein complex in normal SMN function. To investigate the functional significance of the interaction between α-COP and SMN, we constructed an inducible NSC-34 cell culture system to model the consequences of SMN depletion and find that depletion of SMN protein results in shortened neurites. Heterologous expression of human SMN, and interestingly over-expression of α-COP, restores normal neurite length and morphology. Mutagenesis of the canonical COPI dilysine motifs in exon 2b results in failure to bind to α-COP and abrogates the ability of human SMN to restore neurite outgrowth in SMN-depleted motor neuron-like NSC-34 cells. We conclude that the interaction between SMN and α-COP serves an important function in the growth and maintenance of motor neuron processes and may play a significant role in the pathogenesis of SMA. PMID:23727837

  8. Quantitative assessment of neurite outgrowth in human embryonic stem-cell derived neurons using automated high-content image analysis

    EPA Science Inventory

    During development neurons undergo a number of morphological changes including neurite outgrowth from the cell body. Exposure to neurotoxicants that interfere with this process may cause in permanent deficits in nervous system function. While many studies have used rodent primary...

  9. Guaifenesin derivatives promote neurite outgrowth and protect diabetic mice from neuropathy.

    PubMed

    Hadimani, Mallinath B; Purohit, Meena K; Vanampally, Chandrashaker; Van der Ploeg, Randy; Arballo, Victor; Morrow, Dwane; Frizzi, Katie E; Calcutt, Nigel A; Fernyhough, Paul; Kotra, Lakshmi P

    2013-06-27

    In diabetic patients, an early index of peripheral neuropathy is the slowing of conduction velocity in large myelinated neurons and a lack of understanding of the basic pathogenic mechanisms hindered therapeutics development. Racemic (R/S)-guaifenesin (1) was identified as a potent enhancer of neurite outgrowth using an in vitro screen. Its R-enantiomer (R)-1 carried the most biological activity, whereas the S-enantiomer (S)-1 was inactive. Focused structural variations to (R/S)-1 was conducted to identify potentially essential groups for the neurite outgrowth activity. In vivo therapeutic studies indicated that both (R/S)-1 and (R)-1 partially prevented motor nerve conduction velocity slowing in a mouse model of type 1 diabetes. In vitro microsomal assays suggested that compounds (R)-1 and (S)-1 are not metabolized rapidly, and PAMPA assay indicated moderate permeability through the membrane. Findings revealed here could lead to the development of novel drugs for diabetic neuropathy. PMID:23758573

  10. Anisotropic three-dimensional peptide channels guide neurite outgrowth within a biodegradable hydrogel matrix.

    PubMed

    Musoke-Zawedde, Patricia; Shoichet, Molly S

    2006-09-01

    The objective of this study was to investigate the neurite guidance potential of concentration gradients of glycine-arginine-glycine-aspartic acid-serine (GRGDS) oligopeptides immobilized within three-dimensional patterned cylindrical volumes created in a biodegradable nerve guidance matrix. This was achieved using ultraviolet (UV) laser micropatterning of a hyaluronan (HA) hydrogel matrix modified with S-2-nitrobenzyl cysteine. Upon exposure to focused laser light, the 2-nitrobenzyl group was cleaved, exposing thiol groups which reacted with maleimide-terminated GRGDS exclusively within these laser-defined volumes. We show that the UV laser micropatterning technique can be used to create GRGDS peptide concentration gradients within the oligopeptide channels and that these channels guide neurite outgrowth from primary neural cells. PMID:18458398

  11. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer.

    PubMed

    Zhu, Bo; Luo, Shyh-Chyang; Zhao, Haichao; Lin, Hsing-An; Sekine, Jun; Nakao, Aiko; Chen, Chi; Yamashita, Yoshiro; Yu, Hsiao-Hua

    2014-01-01

    Although electrically stimulated neurite outgrowth on bioelectronic devices is a promising means of nerve regeneration, immunogenic scar formation can insulate electrodes from targeted cells and tissues, thereby reducing the lifetime of the device. Ideally, an electrode material capable of electrically interfacing with neurons selectively and efficiently would be integrated without being recognized by the immune system and minimize its response. Here we develop a cell membrane-mimicking conducting polymer possessing several attractive features. This polymer displays high resistance towards nonspecific enzyme/cell binding and recognizes targeted cells specifically to allow intimate electrical communication over long periods of time. Its low electrical impedance relays electrical signals efficiently. This material is capable to integrate biochemical and electrical stimulation to promote neural cellular behaviour. Neurite outgrowth is enhanced greatly on this new conducting polymer; in addition, electrically stimulated secretion of proteins from primary Schwann cells can also occur on it. PMID:25060339

  12. Role of tetanus neurotoxin insensitive vesicle-associated membrane protein (TI-VAMP) in vesicular transport mediating neurite outgrowth.

    PubMed

    Martinez-Arca, S; Alberts, P; Zahraoui, A; Louvard, D; Galli, T

    2000-05-15

    How vesicular transport participates in neurite outgrowth is still poorly understood. Neurite outgrowth is not sensitive to tetanus neurotoxin thus does not involve synaptobrevin-mediated vesicular transport to the plasma membrane of neurons. Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) is a vesicle-SNARE (soluble N-ethylmaleimide-sensitive fusion protein [NSF] attachment protein [SNAP] receptor), involved in transport to the apical plasma membrane in epithelial cells, a tetanus neurotoxin-resistant pathway. Here we show that TI-VAMP is essential for vesicular transport-mediating neurite outgrowth in staurosporine-differentiated PC12 cells. The NH(2)-terminal domain, which precedes the SNARE motif of TI-VAMP, inhibits the association of TI-VAMP with synaptosome-associated protein of 25 kD (SNAP25). Expression of this domain inhibits neurite outgrowth as potently as Botulinum neurotoxin E, which cleaves SNAP25. In contrast, expression of the NH(2)-terminal deletion mutant of TI-VAMP increases SNARE complex formation and strongly stimulates neurite outgrowth. These results provide the first functional evidence for the role of TI-VAMP in neurite outgrowth and point to its NH(2)-terminal domain as a key regulator in this process.

  13. Role of Tetanus Neurotoxin Insensitive Vesicle-Associated Membrane Protein (Ti-Vamp) in Vesicular Transport Mediating Neurite Outgrowth

    PubMed Central

    Martinez-Arca, Sonia; Alberts, Philipp; Zahraoui, Ahmed; Louvard, Daniel; Galli, Thierry

    2000-01-01

    How vesicular transport participates in neurite outgrowth is still poorly understood. Neurite outgrowth is not sensitive to tetanus neurotoxin thus does not involve synaptobrevin-mediated vesicular transport to the plasma membrane of neurons. Tetanus neurotoxin-insensitive vesicle-associated membrane protein (TI-VAMP) is a vesicle-SNARE (soluble N-ethylmaleimide-sensitive fusion protein [NSF] attachment protein [SNAP] receptor), involved in transport to the apical plasma membrane in epithelial cells, a tetanus neurotoxin-resistant pathway. Here we show that TI-VAMP is essential for vesicular transport-mediating neurite outgrowth in staurosporine-differentiated PC12 cells. The NH2-terminal domain, which precedes the SNARE motif of TI-VAMP, inhibits the association of TI-VAMP with synaptosome-associated protein of 25 kD (SNAP25). Expression of this domain inhibits neurite outgrowth as potently as Botulinum neurotoxin E, which cleaves SNAP25. In contrast, expression of the NH2-terminal deletion mutant of TI-VAMP increases SNARE complex formation and strongly stimulates neurite outgrowth. These results provide the first functional evidence for the role of TI-VAMP in neurite outgrowth and point to its NH2-terminal domain as a key regulator in this process. PMID:10811829

  14. NeuriteQuant: An open source toolkit for high content screens of neuronal Morphogenesis

    PubMed Central

    2011-01-01

    Background To date, some of the most useful and physiologically relevant neuronal cell culture systems, such as high density co-cultures of astrocytes and primary hippocampal neurons, or differentiated stem cell-derived cultures, are characterized by high cell density and partially overlapping cellular structures. Efficient analytical strategies are required to enable rapid, reliable, quantitative analysis of neuronal morphology in these valuable model systems. Results Here we present the development and validation of a novel bioinformatics pipeline called NeuriteQuant. This tool enables fully automated morphological analysis of large-scale image data from neuronal cultures or brain sections that display a high degree of complexity and overlap of neuronal outgrowths. It also provides an efficient web-based tool to review and evaluate the analysis process. In addition to its built-in functionality, NeuriteQuant can be readily extended based on the rich toolset offered by ImageJ and its associated community of developers. As proof of concept we performed automated screens for modulators of neuronal development in cultures of primary neurons and neuronally differentiated P19 stem cells, which demonstrated specific dose-dependent effects on neuronal morphology. Conclusions NeuriteQuant is a freely available open-source tool for the automated analysis and effective review of large-scale high-content screens. It is especially well suited to quantify the effect of experimental manipulations on physiologically relevant neuronal cultures or brain sections that display a high degree of complexity and overlap among neurites or other cellular structures. PMID:21989414

  15. Optogenetic control of nerve growth

    PubMed Central

    Park, Seongjun; Koppes, Ryan A.; Froriep, Ulrich P.; Jia, Xiaoting; Achyuta, Anil Kumar H.; McLaughlin, Bryan L.; Anikeeva, Polina

    2015-01-01

    Due to the limited regenerative ability of neural tissue, a diverse set of biochemical and biophysical cues for increasing nerve growth has been investigated, including neurotrophic factors, topography, and electrical stimulation. In this report, we explore optogenetic control of neurite growth as a cell-specific alternative to electrical stimulation. By investigating a broad range of optical stimulation parameters on dorsal root ganglia (DRGs) expressing channelrhodopsin 2 (ChR2), we identified conditions that enhance neurite outgrowth by three-fold as compared to unstimulated or wild-type (WT) controls. Furthermore, optogenetic stimulation of ChR2 expressing DRGs induces directional outgrowth in WT DRGs co-cultured within a 10 mm vicinity of the optically sensitive ganglia. This observed enhancement and polarization of neurite growth was accompanied by an increased expression of neural growth and brain derived neurotrophic factors (NGF, BDNF). This work highlights the potential for implementing optogenetics to drive nerve growth in specific cell populations. PMID:25982506

  16. Morphology and Nanomechanics of Sensory Neurons Growth Cones following Peripheral Nerve Injury

    PubMed Central

    Szabo, Vivien; Végh, Attila-Gergely; Lucas, Olivier; Cloitre, Thierry; Scamps, Frédérique; Gergely, Csilla

    2013-01-01

    A prior peripheral nerve injury in vivo, promotes a rapid elongated mode of sensory neurons neurite regrowth in vitro. This in vitro model of conditioned axotomy allows analysis of the cellular and molecular mechanisms leading to an improved neurite re-growth. Our differential interference contrast microscopy and immunocytochemistry results show that conditioned axotomy, induced by sciatic nerve injury, did not increase somatic size of adult lumbar sensory neurons from mice dorsal root ganglia sensory neurons but promoted the appearance of larger neurites and growth cones. Using atomic force microscopy on live neurons, we investigated whether membrane mechanical properties of growth cones of axotomized neurons were modified following sciatic nerve injury. Our data revealed that neurons having a regenerative growth were characterized by softer growth cones, compared to control neurons. The increase of the growth cone membrane elasticity suggests a modification in the ratio and the inner framework of the main structural proteins. PMID:23418549

  17. Regulation of microglial migration, phagocytosis, and neurite outgrowth by HO-1/CO signaling.

    PubMed

    Scheiblich, Hannah; Bicker, Gerd

    2015-08-01

    Clearance of infected and apoptotic neuronal corpses during inflammatory conditions is a fundamental process to create a favorable environment for neuronal recovery. Microglia are the resident immune cells and the predominant phagocytic cells of the CNS, showing a multitude of cellular responses upon activation. Here, we investigated in functional assays how the CO generating enzyme heme oxygenase 1 (HO-1) influences BV-2 microglial migration, clearance of debris, and neurite outgrowth of human NT2 neurons. Stimulation of HO-1 activity attenuated microglial migration in a scratch wound assay, and phagocytosis in a cell culture model of acute inflammation comprising lipopolysaccharide (LPS)-activated microglia and apoptosis-induced neurons. Application of a CO donor prevented the production of NO during LPS stimulation, and reduced microglial migration and engulfment of neuronal debris. LPS-activated microglia inhibited neurite elongation of human neurons without requiring direct cell-cell surface contact. The inhibition of neurite outgrowth was totally reversed by application of exogenous CO or increased internal CO production through supply of the substrate hemin to HO. Our results point towards a vital cytoprotective role of HO-1/CO signaling after microglial activation. In addition, they support a therapeutic potential of CO releasing chemical agents in the treatment of excessive inflammatory conditions in the CNS.

  18. Nonbinomial distribution of relative neurite outgrowth in PC-12 cells

    SciTech Connect

    Blackman, C.F.; House, D.E.; Blanchard, J.P.

    1996-12-31

    Previously the authors reported the results of a series of experimental tests using PC-12 cells to examine the biological effects of prescribed combinations of both nerve growth factor and magnetic fields. Because the assay of the PC-12 cells is based on a binary classification of the cells following treatment, the data might be expected to have a binomial distribution. However, the data consistently show a smaller variability than that predicted by the binomial distribution model. In this paper, they examine some possible reasons for this reduction in variability in the results.

  19. Integrin-mediated neurite outgrowth in neuroblastoma cells depends on the activation of potassium channels

    PubMed Central

    1993-01-01

    Electrical signals elicited by integrin interaction with ECM components and their role in neurite outgrowth were studied in two clones (N1 and N7) isolated from 41A3 murine neuroblastoma cell line. Although the two clones similarly adhered to fibronectin (FN) and vitronectin (VN), this adhesion induced neurite outgrowth in N1 but not in N7 cells. Patch clamp recordings in whole cell configuration showed that, upon adhesion to FN or VN but not to platelet factor 4 (PF4), N1 cells undergo a marked (approximately equal to 20 mV) hyperpolarization of the resting potential (Vrest) that occurred within the first 20 min after cell contact with ECM, and persisted for approximately 1 h before reverting to the time zero values. This hyperpolarization was totally absent in N7 cells. A detailed analysis of the molecular mechanisms involved in N1 and N7 cell adhesion to ECM substrata was performed by using antibodies raised against the FN receptor and synthetic peptides variously competing with the FN or VN binding to integrin receptor (GRGDSP and GRGESP). Antibodies, as well as GRGDSP, abolished adhesion of N1 and N7 clones to FN and VN, revealing a similar implication of integrins in the adhesion of these clones to the ECM proteins. However, these anti-adhesive treatments, while ineffective on Vrest of N7 cells, abolished in N1 cells the FN- or VN-induced hyperpolarization and neurite outgrowth, that appeared therefore strictly associated and integrin-mediated phenomena. The nature of this association was deepened through a comparative analysis of the integrin profiles and the ion channels of N1 and N7 cells. The integrin immunoprecipitation profile resulted very similarly in the two clones, with only minor differences concerning the alpha V containing complexes. Both clones possessed Ca2+ and K+ delayed rectifier (KDR) channels, while only N1 cells were endowed with inward rectifier K+ (KIR) channels. The latter governed the Vrest, and, unlike KDR channels, were blocked by

  20. Alpha-Synuclein affects neurite morphology, autophagy, vesicle transport and axonal degeneration in CNS neurons

    PubMed Central

    Koch, J C; Bitow, F; Haack, J; d'Hedouville, Z; Zhang, J-N; Tönges, L; Michel, U; Oliveira, L M A; Jovin, T M; Liman, J; Tatenhorst, L; Bähr, M; Lingor, P

    2015-01-01

    Many neuropathological and experimental studies suggest that the degeneration of dopaminergic terminals and axons precedes the demise of dopaminergic neurons in the substantia nigra, which finally results in the clinical symptoms of Parkinson disease (PD). The mechanisms underlying this early axonal degeneration are, however, still poorly understood. Here, we examined the effects of overexpression of human wildtype alpha-synuclein (αSyn-WT), a protein associated with PD, and its mutant variants αSyn-A30P and -A53T on neurite morphology and functional parameters in rat primary midbrain neurons (PMN). Moreover, axonal degeneration after overexpression of αSyn-WT and -A30P was analyzed by live imaging in the rat optic nerve in vivo. We found that overexpression of αSyn-WT and of its mutants A30P and A53T impaired neurite outgrowth of PMN and affected neurite branching assessed by Sholl analysis in a variant-dependent manner. Surprisingly, the number of primary neurites per neuron was increased in neurons transfected with αSyn. Axonal vesicle transport was examined by live imaging of PMN co-transfected with EGFP-labeled synaptophysin. Overexpression of all αSyn variants significantly decreased the number of motile vesicles and decelerated vesicle transport compared with control. Macroautophagic flux in PMN was enhanced by αSyn-WT and -A53T but not by αSyn-A30P. Correspondingly, colocalization of αSyn and the autophagy marker LC3 was reduced for αSyn-A30P compared with the other αSyn variants. The number of mitochondria colocalizing with LC3 as a marker for mitophagy did not differ among the groups. In the rat optic nerve, both αSyn-WT and -A30P accelerated kinetics of acute axonal degeneration following crush lesion as analyzed by in vivo live imaging. We conclude that αSyn overexpression impairs neurite outgrowth and augments axonal degeneration, whereas axonal vesicle transport and autophagy are severely altered. PMID:26158517

  1. Mycolactone-mediated neurite degeneration and functional effects in cultured human and rat DRG neurons

    PubMed Central

    Sinisi, M; Fox, M; MacQuillan, A; Quick, T; Korchev, Y; Bountra, C; McCarthy, T; Anand, P

    2016-01-01

    Background Mycolactone is a polyketide toxin secreted by the mycobacterium Mycobacterium ulcerans, responsible for the extensive hypoalgesic skin lesions characteristic of patients with Buruli ulcer. A recent pre-clinical study proposed that mycolactone may produce analgesia via activation of the angiotensin II type 2 receptor (AT2R). In contrast, AT2R antagonist EMA401 has shown analgesic efficacy in animal models and clinical trials for neuropathic pain. We therefore investigated the morphological and functional effects of mycolactone in cultured human and rat dorsal root ganglia (DRG) neurons and the role of AT2R using EMA401. Primary sensory neurons were prepared from avulsed cervical human DRG and rat DRG; 24 h after plating, neurons were incubated for 24 to 96 h with synthetic mycolactone A/B, followed by immunostaining with antibodies to PGP9.5, Gap43, β tubulin, or Mitotracker dye staining. Acute functional effects were examined by measuring capsaicin responses with calcium imaging in DRG neuronal cultures treated with mycolactone. Results Morphological effects: Mycolactone-treated cultures showed dramatically reduced numbers of surviving neurons and non-neuronal cells, reduced Gap43 and β tubulin expression, degenerating neurites and reduced cell body diameter, compared with controls. Dose-related reduction of neurite length was observed in mycolactone-treated cultures. Mitochondria were distributed throughout the length of neurites and soma of control neurons, but clustered in the neurites and soma of mycolactone-treated neurons. Functional effects: Mycolactone-treated human and rat DRG neurons showed dose-related inhibition of capsaicin responses, which were reversed by calcineurin inhibitor cyclosporine and phosphodiesterase inhibitor 3-isobutyl-1-Methylxanthine, indicating involvement of cAMP/ATP reduction. The morphological and functional effects of mycolactone were not altered by Angiotensin II or AT2R antagonist EMA401. Conclusion Mycolactone

  2. Fabrication of Aligned Conducting PPy-PLLA Fiber Films and Their Electrically Controlled Guidance and Orientation for Neurites.

    PubMed

    Zou, Yuanwen; Qin, Jiabang; Huang, Zhongbing; Yin, Guangfu; Pu, Ximing; He, Da

    2016-05-25

    Electrically conductive biomaterial scaffolds have great potential in neural tissue regeneration. In this work, an aligned conductive fibrous scaffold was prepared by electrospinning PLLA on rotating collector and chemical oxidation polymerization of pyrrole (PPy) codoped with poly(glutamic acid)/dodecyl benzenesulfonic acid sodium. The characterization results of composition, structure and mechanics of fiber films show that the existence of weak polar van der Waals' force between PPy coating and PLLA fibers. The resistivity of aligned rough PPy-PLLA fiber film (about 800 nm of fiber diameter) at the perpendicular and parallel directions is 0.971 and 0.874 Ω m, respectively. Aligned rough PPy-PLLA fiber film could guide the extension of 68% PC12 neurites along the direction of fiber axis. Under electrostimulation (ES) of 100, 200, and 400 mV/cm, median neurite lengths of differentiated PC12 on aligned fiber-films are 128, 149, and 141 μm, respectively. Furthermore, under ES of 100, 200, and 400 mV/cm, the alignment rate of neurite along the electropotential direction (angle between neurite and electropotential direction ≤10°) on random fibers film are 17, 23, and 28%, respectively, and the alignment rate of neurites along the fiber axis (angle between neurite and fiber axis ≤10°) on aligned fibers film reach to 76, 83, and 79%, respectively, indicating that the combination of ES and rough conducting aligned structure could adjust the alignment of cellular neurites along the direction of the fiber axis or electropotential. PMID:27172537

  3. The Susd2 protein regulates neurite growth and excitatory synaptic density in hippocampal cultures.

    PubMed

    Nadjar, Yann; Triller, Antoine; Bessereau, Jean-Louis; Dumoulin, Andrea

    2015-03-01

    Complement control protein (CCP) domains have adhesion properties and are commonly found in proteins that control the complement immune system. However, an increasing number of proteins containing CCP domains have been reported to display neuronal functions. Susd2 is a transmembrane protein containing one CCP domain. It was previously identified as a tumor-reversing protein, but has no characterized function in the CNS. The present study investigates the expression and function of Susd2 in the rat hippocampus. Characterization of Susd2 during development showed a peak in mRNA expression two weeks after birth. In hippocampal neuronal cultures, the same expression profile was observed at 15days in vitro for both mRNA and protein, a time consistent with synaptogenesis in our model. At the subcellular level, Susd2 was located on the soma, axons and dendrites, and appeared to associate preferentially with excitatory synapses. Inhibition of Susd2 by shRNAs led to decreased numbers of excitatory synaptic profiles, exclusively. Also, morphological parameters were studied on young (5DIV) developing neurons. After Susd2 inhibition, an increase in dendritic tree length but a decrease in axon elongation were observed, suggesting changes in adhesion properties. Our results demonstrate a dual role for Susd2 at different developmental stages, and raise the question whether Susd2 and other CCP-containing proteins expressed in the CNS could be function-related. PMID:25724483

  4. Thrombin Enhances NGF-Mediated Neurite Extension via Increased and Sustained Activation of p44/42 MAPK and p38 MAPK

    PubMed Central

    Mufti, Rania E.; Sarker, Krishna; Jin, Yan; Fu, Songbin; Rosales, Jesusa L.; Lee, Ki-Young

    2014-01-01

    Rapid neurite remodeling is fundamental to nervous system development and plasticity. It involves neurite extension that is regulated by NGF through PI3K/AKT, p44/42 MAPK and p38 MAPK. It also involves neurite retraction that is regulated by the serine protease, thrombin. However, the intracellular signaling pathway by which thrombin causes neurite retraction is unknown. Using the PC12 neuronal cell model, we demonstrate that thrombin utilizes the PI3K/AKT pathway for neurite retraction in NGF-differentiated cells. Interestingly, however, we found that thrombin enhances NGF-induced neurite extension in differentiating cells. This is achieved through increased and sustained activation of p44/42 MAPK and p38 MAPK. Thus, thrombin elicits opposing effects in differentiated and differentiating cells through activation of distinct signaling pathways: neurite retraction in differentiated cells via PI3K/AKT, and neurite extension in differentiating cells via p44/42 MAPK and p38 MAPK. These findings, which also point to a novel cooperative role between thrombin and NGF, have significant implications in the development of the nervous system and the disease processes that afflicts it as well as in the potential of combined thrombin and NGF therapy for impaired learning and memory, and spinal cord injury which all require neurite extension and remodeling. PMID:25061982

  5. Downregulation of the Ras–Mitogen-Activated Protein Kinase Pathway by the EphB2 Receptor Tyrosine Kinase Is Required for Ephrin-Induced Neurite Retraction

    PubMed Central

    Elowe, Sabine; Holland, Sacha J.; Kulkarni, Sarang; Pawson, Tony

    2001-01-01

    Activation of the EphB2 receptor tyrosine kinase by clustered ephrin-B1 induces growth cone collapse and neurite retraction in differentiated NG108 neuronal cells. We have investigated the cytoplasmic signaling events associated with EphB2-induced cytoskeletal reorganization in these neuronal cells. We find that unlike other receptor tyrosine kinases, EphB2 induces a pronounced downregulation of GTP-bound Ras and consequently of the extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) pathway. A similar inhibition of the Ras-MAPK pathway was observed on stimulation of endogenous EphB2 in COS-1 cells. Inactivation of Ras, induced by ephrin B1 stimulation of NG108 neuronal cells, requires EphB2 tyrosine kinase activity and is blocked by a truncated form of p120-Ras GTPase-activating protein (p120-RasGAP), suggesting that EphB2 signals through the SH2 domain protein p120-RasGAP to inhibit the Ras-MAPK pathway. Suppression of Ras activity appears functionally important, since expression of a constitutively active variant of Ras impaired the ability of EphB2 to induce neurite retraction. In addition, EphB2 attenuated the elevation in ERK activation induced by attachment of NG108 cells to fibronectin, indicating that the EphB2 receptor can modulate integrin signaling to the Ras GTPase. These results suggest that a primary function of EphB2, a member of the most populous family of receptor tyrosine kinases, is to inactivate the Ras-MAPK pathway in a fashion that contributes to cytoskeletal reorganization and adhesion responses in neuronal growth cones. PMID:11585923

  6. Cortex Mori Radicis Extract induces neurite outgrowth in PC12 cells activating ERK signaling pathway via inhibiting Ca2+ influx

    PubMed Central

    Yin, Nina; Hong, Xiaoping; Han, Yongming; Duan, Yanjun; Zhang, Yanhong; Chen, Zebin

    2015-01-01

    Cortex Mori Radicis is a traditional Chinese herbal medicine which has a long history of use for the treatment of headaches, cough, edema and diabetes. However, its function and mode of action within nervous system remain largely unclear. In the present study, we have attempted to determine the effects of Cortex Mori Radicis Extract (CMRE) on neuronal differentiation. Here, we reported that CMRE induces the neurite outgrowth in pheochromocytoma PC12 cells and primary cortical neuron. Following the generation of neurite outgrowth, extracellular Ca2+ influx was inhibited and intracellular Ca2+ decreased. In addition, CMRE induced the extracellular signal-regulated kinase 1/2 (ERK1/2) activation and also stimulated the Rap1-GTP expression, which is closely linked to neuritogenesis. Moreover, the neurite outgrowth induced by CMRE was antagonized to a marked degree by suppressing activation of p-ERK1/2 with the specific ERK1/2 inhibitor (PD98059), suggesting the involvement of Rap1-GTP and ERK1/2 in CMRE-induced neurite outgrowth. Taken together, these results demonstrate that CMRE induces neurite outgrowth of PC12 cells through Rap1-ERK signaling pathway via inhibiting Ca2+ influx, and provide a novel insight into the manner in which CMRE participates in neuritogenesis. PMID:26131075

  7. Organic Photovoltaics and Bioelectrodes Providing Electrical Stimulation for PC12 Cell Differentiation and Neurite Outgrowth.

    PubMed

    Hsiao, Yu-Sheng; Liao, Yan-Hao; Chen, Huan-Lin; Chen, Peilin; Chen, Fang-Chung

    2016-04-13

    Current bioelectronic medicines for neurological therapies generally involve treatment with a bioelectronic system comprising a power supply unit and a bioelectrode device. Further integration of wireless and self-powered units is of practical importance for implantable bioelectronics. In this study, we developed biocompatible organic photovoltaics (OPVs) for serving as wireless electrical power supply units that can be operated under illumination with near-infrared (NIR) light, and organic bioelectronic interface (OBEI) electrode devices as neural stimulation electrodes. The OPV/OBEI integrated system is capable to provide electrical stimulation (ES) as a means of enhancing neuron-like PC12 cell differentiation and neurite outgrowth. For the OPV design, we prepared devices incorporating two photoactive material systems--β-carotene/N,N'-dioctyl-3,4,9,10-perylenedicarboximide (β-carotene/PTCDI-C8) and poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM)--that exhibited open circuit voltages of 0.11 and 0.49 V, respectively, under NIR light LED (NLED) illumination. Then, we connected OBEI devices with different electrode gaps, incorporating biocompatible poly(hydroxymethylated-3,4-ethylenedioxythiophene), to OPVs to precisely tailor the direct current electric field conditions during the culturing of PC12 cells. This NIR light-driven OPV/OBEI system could be engineered to provide tunable control over the electric field (from 220 to 980 mV mm(-1)) to promote 64% enhancement in the neurite length, direct the neurite orientation on chips, or both. The OPV/OBEI integrated systems under NIR illumination appear to function as effective power delivery platforms that should meet the requirements for wirelessly offering medical ES to a portion of the nervous system; they might also be a key technology for the development of next-generation implantable bioelectronics. PMID:26999636

  8. β-Hydroxy-β-Methylbutyrate (HMB) Promotes Neurite Outgrowth in Neuro2a Cells

    PubMed Central

    Girón, María D.; Cabrera, Elena; Campos, Nefertiti; Manzano, Manuel; Rueda, Ricardo; López-Pedrosa, Jose M.

    2015-01-01

    β-Hydroxy-β-methylbutyrate (HMB) has been shown to enhance cell survival, differentiation and protein turnover in muscle, mainly activating phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinases/ extracellular-signal-regulated kinases (MAPK/ERK) signaling pathways. Since these two pathways are related to neuronal survival and differentiation, in this study, we have investigated the neurotrophic effects of HMB in mouse neuroblastoma Neuro2a cells. In Neuro2a cells, HMB promotes differentiation to neurites independent from any effects on proliferation. These effects are mediated by activation of both the PI3K/Akt and the extracellular-signal-regulated kinases (ERK1/2) signaling as demonstrated by the use of specific inhibitors of these two pathways. As myocyte-enhancer factor 2 (MEF2) family of transcription factors are involved in neuronal survival and plasticity, the transcriptional activity and protein levels of MEF2 were also evaluated. HMB promoted MEF2-dependent transcriptional activity mediated by the activation of Akt and ERK1/2 pathways. Furthermore, HMB increases the expression of brain glucose transporters 1 (GLUT1) and 3 (GLUT3), and mTOR phosphorylation, which translates in a higher protein synthesis in Neuro2a cells. Furthermore, Torin1 and rapamycin effects on MEF2 transcriptional activity and HMB-dependent neurite outgrowth support that HMB acts through mTORC2. Together, these findings provide clear evidence to support an important role of HMB in neurite outgrowth. PMID:26267903

  9. Functional Consequences of Neurite Orientation Dispersion and Density in Humans across the Adult Lifespan

    PubMed Central

    Nazeri, Arash; Chakravarty, M. Mallar; Rotenberg, David J.; Rajji, Tarek K.; Rathi, Yogesh; Michailovich, Oleg V.

    2015-01-01

    As humans age, a characteristic pattern of widespread neocortical dendritic disruption coupled with compensatory effects in hippocampus and other subcortical structures is shown in postmortem investigations. It is now possible to address age-related effects on gray matter (GM) neuritic organization and density in humans using multishell diffusion-weighted MRI and the neurite-orientation dispersion and density imaging (NODDI) model. In 45 healthy individuals across the adult lifespan (21–84 years), we used a multishell diffusion imaging and the NODDI model to assess the intraneurite volume fraction and neurite orientation-dispersion index (ODI) in GM tissues. We also determined the functional correlates of variations in GM microstructure by obtaining resting-state fMRI and behavioral data. We found a significant age-related deficit in neocortical ODI (most prominently in frontoparietal regions), whereas increased ODI was observed in hippocampus and cerebellum with advancing age. Neocortical ODI outperformed cortical thickness and white matter fractional anisotropy for the prediction of chronological age in the same individuals. Higher GM ODI sampled from resting-state networks with known age-related susceptibility (default mode and visual association networks) was associated with increased functional connectivity of these networks, whereas the task-positive networks tended to show no association or even decreased connectivity. Frontal pole ODI mediated the negative relationship of age with executive function, whereas hippocampal ODI mediated the positive relationship of age with executive function. Our in vivo findings align very closely with the postmortem data and provide evidence for vulnerability and compensatory neural mechanisms of aging in GM microstructure that have functional and cognitive impact in vivo. PMID:25632148

  10. Organic Photovoltaics and Bioelectrodes Providing Electrical Stimulation for PC12 Cell Differentiation and Neurite Outgrowth.

    PubMed

    Hsiao, Yu-Sheng; Liao, Yan-Hao; Chen, Huan-Lin; Chen, Peilin; Chen, Fang-Chung

    2016-04-13

    Current bioelectronic medicines for neurological therapies generally involve treatment with a bioelectronic system comprising a power supply unit and a bioelectrode device. Further integration of wireless and self-powered units is of practical importance for implantable bioelectronics. In this study, we developed biocompatible organic photovoltaics (OPVs) for serving as wireless electrical power supply units that can be operated under illumination with near-infrared (NIR) light, and organic bioelectronic interface (OBEI) electrode devices as neural stimulation electrodes. The OPV/OBEI integrated system is capable to provide electrical stimulation (ES) as a means of enhancing neuron-like PC12 cell differentiation and neurite outgrowth. For the OPV design, we prepared devices incorporating two photoactive material systems--β-carotene/N,N'-dioctyl-3,4,9,10-perylenedicarboximide (β-carotene/PTCDI-C8) and poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PCBM)--that exhibited open circuit voltages of 0.11 and 0.49 V, respectively, under NIR light LED (NLED) illumination. Then, we connected OBEI devices with different electrode gaps, incorporating biocompatible poly(hydroxymethylated-3,4-ethylenedioxythiophene), to OPVs to precisely tailor the direct current electric field conditions during the culturing of PC12 cells. This NIR light-driven OPV/OBEI system could be engineered to provide tunable control over the electric field (from 220 to 980 mV mm(-1)) to promote 64% enhancement in the neurite length, direct the neurite orientation on chips, or both. The OPV/OBEI integrated systems under NIR illumination appear to function as effective power delivery platforms that should meet the requirements for wirelessly offering medical ES to a portion of the nervous system; they might also be a key technology for the development of next-generation implantable bioelectronics.

  11. Transthyretin provides trophic support via megalin by promoting neurite outgrowth and neuroprotection in cerebral ischemia

    PubMed Central

    Gomes, J R; Nogueira, RS; Vieira, M; Santos, SD; Ferraz-Nogueira, J P; Relvas, J B; Saraiva, M J

    2016-01-01

    Transthyretin (TTR) is a protein whose function has been associated to binding and distribution of thyroid hormones in the body and brain. However, little is known regarding the downstream signaling pathways triggered by wild-type TTR in the CNS either in neuroprotection of cerebral ischemia or in physiological conditions. In this study, we investigated how TTR affects hippocampal neurons in physiologic/pathologic conditions. Recombinant TTR significantly boosted neurite outgrowth in mice hippocampal neurons, both in number and length, independently of its ligands. This TTR neuritogenic activity is mediated by the megalin receptor and is lost in megalin-deficient neurons. We also found that TTR activates the mitogen-activated protein kinase (MAPK) pathways (ERK1/2) and Akt through Src, leading to the phosphorylation of transcription factor CREB. In addition, TTR promoted a transient rise in intracellular calcium through NMDA receptors, in a Src/megalin-dependent manner. Moreover, under excitotoxic conditions, TTR stimulation rescued cell death and neurite loss in TTR KO hippocampal neurons, which are more sensitive to excitotoxic degeneration than WT neurons, in a megalin-dependent manner. CREB was also activated by TTR under excitotoxic conditions, contributing to changes in the balance between Bcl2 protein family members, toward anti-apoptotic proteins (Bcl2/BclXL versus Bax). Finally, we clarify that TTR KO mice subjected to pMCAO have larger infarcts than WT mice, because of TTR and megalin neuronal downregulation. Our results indicate that TTR might be regarded as a neurotrophic factor, because it stimulates neurite outgrowth under physiological conditions, and promotes neuroprotection in ischemic conditions. PMID:27518433

  12. Exposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of embryonic neural stem cells.

    PubMed

    Chen, Chunhai; Ma, Qinlong; Liu, Chuan; Deng, Ping; Zhu, Gang; Zhang, Lei; He, Mindi; Lu, Yonghui; Duan, Weixia; Pei, Liping; Li, Min; Yu, Zhengping; Zhou, Zhou

    2014-05-29

    A radiofrequency electromagnetic field (RF-EMF) of 1800 MHz is widely used in mobile communications. However, the effects of RF-EMFs on cell biology are unclear. Embryonic neural stem cells (eNSCs) play a critical role in brain development. Thus, detecting the effects of RF-EMF on eNSCs is important for exploring the effects of RF-EMF on brain development. Here, we exposed eNSCs to 1800 MHz RF-EMF at specific absorption rate (SAR) values of 1, 2, and 4 W/kg for 1, 2, and 3 days. We found that 1800 MHz RF-EMF exposure did not influence eNSC apoptosis, proliferation, cell cycle or the mRNA expressions of related genes. RF-EMF exposure also did not alter the ratio of eNSC differentiated neurons and astrocytes. However, neurite outgrowth of eNSC differentiated neurons was inhibited after 4 W/kg RF-EMF exposure for 3 days. Additionally, the mRNA and protein expression of the proneural genes Ngn1 and NeuroD, which are crucial for neurite outgrowth, were decreased after RF-EMF exposure. The expression of their inhibitor Hes1 was upregulated by RF-EMF exposure. These results together suggested that 1800 MHz RF-EMF exposure impairs neurite outgrowth of eNSCs. More attention should be given to the potential adverse effects of RF-EMF exposure on brain development.

  13. A subset of chicken statoacoustic ganglion neurites are repelled by Slit1 and Slit2

    PubMed Central

    Battisti, Andrea C.; Fantetti, Kristen N.; Moyers, Bryan A.; Fekete, Donna M.

    2014-01-01

    Mechanosensory hair cells in the chicken inner ear are innervated by bipolar afferent neurons of the statoacoustic ganglion (SAG). During development, individual SAG neurons project their peripheral process to only one of eight distinct sensory organs. These neuronal subtypes may respond differently to guidance cues as they explore the periphery in search of their target. Previous gene expression data suggested that Slit repellants might channel SAG neurites into the sensory primordia, based on the presence of robo transcripts in the neurons and the confinement of slit transcripts to the flanks of the prosensory domains. This led to the prediction that excess Slit proteins would impede the outgrowth of SAG neurites. As predicted, axonal projections to the primordium of the anterior crista were reduced 2-3 days after electroporation of either slit1 or slit2 expression plasmids into the anterior pole of the otocyst on embryonic day 3 (E3). The posterior crista afferents, which normally grow through and adjacent to slit expression domains as they are navigating towards the posterior pole of the otocyst, did not show Slit responsiveness when similarly challenged by ectopic delivery of slit to their targets. The sensitivity to ectopic Slits shown by the anterior crista afferents was more the exception than the rule: responsiveness to Slits was not observed when the entire E4 SAG was challenged with Slits for 40 hours in vitro. The corona of neurites emanating from SAG explants was unaffected by the presence of purified human Slit1 and Slit2 in the culture medium. Reduced axon outgrowth from E8 olfactory bulbs cultured under similar conditions for 24 hours confirmed bioactivity of purified human Slits on chicken neurons. In summary, differential sensitivity to Slit repellents may influence the directional outgrowth of otic axons toward either the anterior or posterior otocyst. PMID:24456709

  14. Suppression of Radixin and Moesin Alters Growth Cone Morphology, Motility, and Process Formation In Primary Cultured Neurons

    PubMed Central

    Paglini, Gabriela; Kunda, Patricia; Quiroga, Santiago; Kosik, Kenneth; Cáceres, Alfredo

    1998-01-01

    In this study we have examined the cellular functions of ERM proteins in developing neurons. The results obtained indicate that there is a high degree of spatial and temporal correlation between the expression and subcellular localization of radixin and moesin with the morphological development of neuritic growth cones. More importantly, we show that double suppression of radixin and moesin, but not of ezrin–radixin or ezrin–moesin, results in reduction of growth cone size, disappearance of radial striations, retraction of the growth cone lamellipodial veil, and disorganization of actin filaments that invade the central region of growth cones where they colocalize with microtubules. Neuritic tips from radixin–moesin suppressed neurons displayed high filopodial protrusive activity; however, its rate of advance is 8–10 times slower than the one of growth cones from control neurons. Radixin–moesin suppressed neurons have short neurites and failed to develop an axon-like neurite, a phenomenon that appears to be directly linked with the alterations in growth cone structure and motility. Taken collectively, our data suggest that by regulating key aspects of growth cone development and maintenance, radixin and moesin modulate neurite formation and the development of neuronal polarity. PMID:9786954

  15. Angiotensin II AT2 receptors regulate NGF-mediated neurite outgrowth via the NO-cGMP pathway.

    PubMed

    Hashikawa-Hobara, Narumi; Hashikawa, Naoya

    2016-09-16

    We investigated whether Angiotensin II type 2 (AT2) receptor activation was involved in NGF-induced nerve regeneration. NGF-mediated neurite outgrowth in cultured dorsal root ganglia (DRG) cells was significantly inhibited by AT2 receptor antagonist (PD123,319) treatment. AT2 receptor knockdown also inhibited NGF-mediated neurite outgrowth. To determine the mechanisms, we analyzed the NO-cGMP pathway. The cGMP analog increased NGF-mediated nerve elongation, which inhibited by PD123,319. Furthermore, soluble guanylate cyclase expression was significantly less in NGF and PD123,319 treatment DRG than in NGF treatment alone. These results suggest that NGF-mediated neurite outgrowth is suppressed by AT2 receptor signaling via the NO-cGMP-PKG pathway. PMID:27524238

  16. The Effect of Surface Modification of Aligned Poly-L-Lactic Acid Electrospun Fibers on Fiber Degradation and Neurite Extension

    PubMed Central

    Schaub, Nicholas J.; Le Beux, Clémentine; Miao, Jianjun; Linhardt, Robert J.; Alauzun, Johan G.; Laurencin, Danielle; Gilbert, Ryan J.

    2015-01-01

    The surface of aligned, electrospun poly-L-lactic acid (PLLA) fibers was chemically modified to determine if surface chemistry and hydrophilicity could improve neurite extension from chick dorsal root ganglia. Specifically, diethylenetriamine (DTA, for amine functionalization), 2-(2-aminoethoxy)ethanol (AEO, for alcohol functionalization), or GRGDS (cell adhesion peptide) were covalently attached to the surface of electrospun fibers. Water contact angle measurements revealed that surface modification of electrospun fibers significantly improved fiber hydrophilicity compared to unmodified fibers (p < 0.05). Scanning electron microscopy (SEM) of fibers revealed that surface modification changed fiber topography modestly, with DTA modified fibers displaying the roughest surface structure. Degradation of chemically modified fibers revealed no change in fiber diameter in any group over a period of seven days. Unexpectedly, neurites from chick DRG were longest on fibers without surface modification (1651 ± 488 μm) and fibers containing GRGDS (1560 ± 107 μm). Fibers modified with oxygen plasma (1240 ± 143 μm) or DTA (1118 ± 82 μm) produced shorter neurites than the GRGDS or unmodified fibers, but were not statistically shorter than unmodified and GRGDS modified fibers. Fibers modified with AEO (844 ± 151 μm) were significantly shorter than unmodified and GRGDS modified fibers (p<0.05). Based on these results, we conclude that fiber hydrophilic enhancement alone on electrospun PLLA fibers does not enhance neurite outgrowth. Further work must be conducted to better understand why neurite extension was not improved on more hydrophilic fibers, but the results presented here do not recommend hydrophilic surface modification for the purpose of improving neurite extension unless a bioactive ligand is used. PMID:26340351

  17. The Effect of Surface Modification of Aligned Poly-L-Lactic Acid Electrospun Fibers on Fiber Degradation and Neurite Extension.

    PubMed

    Schaub, Nicholas J; Le Beux, Clémentine; Miao, Jianjun; Linhardt, Robert J; Alauzun, Johan G; Laurencin, Danielle; Gilbert, Ryan J

    2015-01-01

    The surface of aligned, electrospun poly-L-lactic acid (PLLA) fibers was chemically modified to determine if surface chemistry and hydrophilicity could improve neurite extension from chick dorsal root ganglia. Specifically, diethylenetriamine (DTA, for amine functionalization), 2-(2-aminoethoxy)ethanol (AEO, for alcohol functionalization), or GRGDS (cell adhesion peptide) were covalently attached to the surface of electrospun fibers. Water contact angle measurements revealed that surface modification of electrospun fibers significantly improved fiber hydrophilicity compared to unmodified fibers (p < 0.05). Scanning electron microscopy (SEM) of fibers revealed that surface modification changed fiber topography modestly, with DTA modified fibers displaying the roughest surface structure. Degradation of chemically modified fibers revealed no change in fiber diameter in any group over a period of seven days. Unexpectedly, neurites from chick DRG were longest on fibers without surface modification (1651 ± 488 μm) and fibers containing GRGDS (1560 ± 107 μm). Fibers modified with oxygen plasma (1240 ± 143 μm) or DTA (1118 ± 82 μm) produced shorter neurites than the GRGDS or unmodified fibers, but were not statistically shorter than unmodified and GRGDS modified fibers. Fibers modified with AEO (844 ± 151 μm) were significantly shorter than unmodified and GRGDS modified fibers (p<0.05). Based on these results, we conclude that fiber hydrophilic enhancement alone on electrospun PLLA fibers does not enhance neurite outgrowth. Further work must be conducted to better understand why neurite extension was not improved on more hydrophilic fibers, but the results presented here do not recommend hydrophilic surface modification for the purpose of improving neurite extension unless a bioactive ligand is used. PMID:26340351

  18. Effect of Cell Adhesion Molecules on the Neurite Outgrowth of Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons.

    PubMed

    Peng, Su-Ping; Schachner, Melitta; Boddeke, Erik; Copray, Sjef

    2016-04-01

    Intrastriatal transplantation of dopaminergic neurons has been shown to be a potentially very effective therapeutic approach for the treatment of Parkinson's disease (PD). With the detection of induced pluripotent stem cells (iPSCs), an unlimited source of autologous dopaminergic (DA) neurons became available. Although the iPSC-derived dopaminergic neurons exhibited most of the fundamental dopaminergic characteristics, detailed analysis and comparison with primary DA neurons have shown some aberrations in the expression of genes involved in neuronal development and neurite outgrowth. The limited outgrowth of the iPSC-derived DA neurons may hamper their potential application in cell transplantation therapy for PD. In the present study, we examined whether the forced expression of L1 cell adhesion molecule (L1CAM) and polysialylated neuronal cell adhesion molecule (PSA-NCAM), via gene transduction, can promote the neurite formation and outgrowth of iPSC-derived DA neurons. In cultures on astrocyte layers, both adhesion factors significantly increased neurite formation of the adhesion factor overexpressing iPSC-derived DA neurons in comparison to control iPSC-derived DA neurons. The same tendency was observed when the DA neurons were plated on postnatal organotypic striatal slices; however, this effect did not reach statistical significance. Next, we examined the neurite outgrowth of the L1CAM- or PSA-NCAM-overexpressing iPSC-derived DA neurons after implantation in the striatum of unilaterally 6-hydroxydopamine (6-OHDA)-lesioned rats, the animal model for PD. Like the outgrowth on the organotypic striatal slices, no significant L1CAM- and PSA-NCAM-enforced neurite outgrowth of the implanted DA neurons was observed. Apparently, induced expression of L1CAM or PSA-NCAM in the iPSC-derived DA neurons cannot completely restore the neurite outgrowth potential that was reduced in these DA neurons as a consequence of epigenetic aberrations resulting from the i

  19. Diacylglycerol lipase-alpha and -beta control neurite outgrowth in neuro-2a cells through distinct molecular mechanisms.

    PubMed

    Jung, Kwang-Mook; Astarita, Giuseppe; Thongkham, Dean; Piomelli, Daniele

    2011-07-01

    The endocannabinoid 2-arachidonoyl-sn-glycerol (2-AG) is produced through hydrolysis of 1,2-diacyl-sn-glycerol (DAG), which is catalyzed by DAG lipase (DGL). Two DGL isoforms have been molecularly cloned, but their respective roles in endocannabinoid signaling have not been fully elucidated. Here, we report that DGL-α and DGL-β may contribute to all-trans-retinoic acid (RA)-induced neurite outgrowth in neuroblastoma Neuro-2a cells through distinct mechanisms. RA-induced differentiation of Neuro-2a cells was associated with elevations of cellular 2-AG levels and DGL activity, which were accompanied by temporally separated transcription of DGL-α and DGL-β mRNA. Knockdown of either DGL-α or DGL-β expression attenuated neurite outgrowth, which indicates that both isoforms contribute to neuritogenesis. Immunostaining experiments showed that DGL-β is localized to perinuclear lipid droplets, whereas DGL-α is found on plasma membranes. After RA-induced differentiation, both DGL-α- and DGL-β-green fluorescent protein were distributed also in neurites but in distinguishable patterns. Overexpression of either DGL-α or DGL-β increased the number of neurite-bearing cells, but DGL-β caused substantially larger morphological changes than DGL-α did. Finally, the cannabinoid-1 antagonist rimonabant (1 μM) inhibited DGL-α-induced neuritogenesis, whereas it had no such effect on DGL-β-induced morphological differentiation. The results indicate that RA-induced DGL expression is required for neurite outgrowth of Neuro-2a cells. The findings further suggest that DGL-α and -β may regulate neurite outgrowth by engaging temporally and spatially distinct molecular pathways.

  20. Non-prenylatable, cytosolic Rac1 alters neurite outgrowth while retaining the ability to be activated.

    PubMed

    Reddy, Jairus M; Samuel, Filsy G; McConnell, Jordan A; Reddy, Cristina P; Beck, Brian W; Hynds, DiAnna L

    2015-03-01

    Rac1 is an important regulator of axon extension, cell migration and actin reorganization. Like all Rho guanine triphosphatases (GTPases), Rac1 is targeted to the membrane by the addition of a geranylgeranyl moiety, an action thought to result in Rac1 guanosine triphosphate (GTP) binding. However, the role that Rac1 localization plays in its activation (GTP loading) and subsequent activation of effectors is not completely clear. To address this, we developed a non-prenylatable emerald green fluorescent protein (EmGFP)-Rac1 fusion protein (EmGFP-Rac1(C189A)) and assessed how expressing this construct affected neurite outgrowth, Rac1 localization and activation in neuroblastoma cells. Expression of EmGFP-Rac1(C189A) increased localization to the cytosol and induced cell clustering while increasing neurite initiation. EmGFP-Rac1(C189A) expression also increased Rac1 activation in the cytosol, compared to cells expressing wild-type Rac1 (EmGFP-Rac1). These results suggest that activation of Rac1 may not require plasma membrane localization, potentially leading to differential activation of cytosolic signaling pathways that alter cell morphology. Understanding the consequences of differential localization and activation of Rho GTPases, including Rac1, could lead to new therapeutic targets for treating neurological disorders. PMID:25479592

  1. Effects of 4-aminopyridine on organelle movement in cultured mouse dorsal root ganglion neurites.

    PubMed

    Hiruma, Hiromi; Kawakami, Tadashi

    2010-03-01

    Aminopyridines, widely used as a K(+) channel blocker, are membrane-permeable weak bases and have the ability to form vacuoles in the cytoplasm. The vacuoles originate from acidic organelles such as lysosomes. Here, we investigated the effects of 4-aminopyridine (4-AP) on organelle movement in neurites of cultured mouse dorsal root ganglion (DRG) neurons by using video-enhanced microscopy. Some experiments were carried out using fluorescent dyes for lysosomes and mitochondria and confocal microscopy. Treatment of DRG neurons with 4 mM 4-AP caused Brownian movement of some lysosomes within 5 min. The Brownian movement gradually became rapid and vacuoles were formed around individual lysosomes 10-20 min after the start of treatment. Axonal transport of organelles was inhibited by 4-AP. Lysosomes showing Brownian movement were not transported in longitudinal direction of the neurite and the transport of mitochondria was interrupted by vacuoles. The 4-AP-induced Brownian movement of lysosomes with vacuole formation and inhibition of axonal transport were prevented by the simultaneous treatment with vacuolar H(+) ATPase inhibitor bafilomycin A1 or in Cl(-)-free SO(4)(2-) medium. These results indicate that changes in organelle movement by 4-AP are related to vacuole formation and the vacuolar H(+) ATPase and Cl(-) are required for the effects of 4-AP.

  2. Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain.

    PubMed

    Vernes, Sonja C; Oliver, Peter L; Spiteri, Elizabeth; Lockstone, Helen E; Puliyadi, Rathi; Taylor, Jennifer M; Ho, Joses; Mombereau, Cedric; Brewer, Ariel; Lowy, Ernesto; Nicod, Jérôme; Groszer, Matthias; Baban, Dilair; Sahgal, Natasha; Cazier, Jean-Baptiste; Ragoussis, Jiannis; Davies, Kay E; Geschwind, Daniel H; Fisher, Simon E

    2011-07-01

    Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP-chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections.

  3. Neuroprotective and neuroregenerative effects of nimodipine in a model system of neuronal differentiation and neurite outgrowth.

    PubMed

    Bork, Kaya; Wurm, Franziska; Haller, Hannes; Strauss, Christian; Scheller, Christian; Gnanapragassam, Vinayaga S; Horstkorte, Rüdiger

    2015-01-09

    Nimodipine is a Ca2+-channel antagonist mainly used for the management of aneurysmal subarachnoid hemorrhage (aSAH) to prevent cerebral vasospasms. However, it is not clear if the better outcome of nimodipine-treated patients is mainly due to vasodilatation or whether other cellular neuroprotective or neuregenerative effects of nimodipine are involved. We analysed PC12 cells after different stress stimuli with or without nimodipine pretreatment. Cytotoxicity of 200 mM EtOH and osmotic stress (450 mosmol/L) was significantly reduced with nimodipine pretreatment, while nimodipine has no influence on the hypoxia-induced cytotoxicity in PC12 cells. The presence of nimodipine also increased the NGF-induced neurite outgrowth in PC12 cells. However, nimodipine alone was not able to induce neurite outgrowth in PC12 cells. These results support the idea that nimodipine has general neuroprotective or neuregenerative effect beside its role in vasodilatation and is maybe useful also in other clinical applications beside aSAH.

  4. Study of laser uncaging induced morphological alteration of rat cortical neurites using atomic force microscopy.

    PubMed

    Tian, Jian; Tu, Chunlong; Liang, Yitao; Zhou, Jian; Ye, Xuesong

    2015-09-30

    Activity-dependent structural remodeling is an important aspect of neuronal plasticity. In the previous researches, neuronal structure variations resulting from external interventions were detected by the imaging instruments such as the fluorescence microscopy, the scanning/transmission electron microscopy (SEM/TEM) and the laser confocal microscopy. In this article, a new platform which combined the photochemical stimulation with atomic force microscopy (AFM) was set up to detect the activity-dependent structural remodeling. In the experiments, the cortical neurites on the glass coverslips were stimulated by locally uncaged glutamate under the ultraviolet (UV) laser pulses, and a calcium-related structural collapse of neurites (about 250 nm height decrease) was observed by an AFM. This was the first attempt to combine the laser uncaging with AFM in living cell researches. With the advantages of highly localized stimulation (<5 μm), super resolution imaging (<3.8 nm), and convenient platform building, this system was suitable for the quantitative observation of the neuron mechanical property variations and morphological alterations modified by neural activities under different photochemical stimulations, which would be helpful for studying physiological and pathological mechanisms of structural and functional changes induced by the biomolecule acting.

  5. Effects of DS-modified agarose gels on neurite extension in 3D scaffold through mechanisms other than changing the pore radius of the gels.

    PubMed

    Peng, Jin; Pan, Qian; Zhang, Wei; Yang, Hao; Zhou, Xue; Jiang, Hua

    2014-07-01

    Dermatan sulfate is widely distributed as glycosaminoglycan side chains of proteoglycans, which are the main components of glial scar and inhibit neurite regeneration after nerve injury. However its role in the inhibiting process is not clear. Understanding neurite extension in three-dimensional scaffolds is critical for neural tissue engineering. This study used agarose gels modified with dermatan sulfate as the three-dimensional culture scaffold. We explored structure-function relationship between the three-dimensional scaffold and neurite extension and examined the role of dermatan sulfate on neurite extension in the three-dimensional scaffold. A range of agarose concentrations was used to generate varied gel physical structures and the corresponding neurite extension of embryonic day (E9) chick dorsal root ganglia was examined. We measured gel stiffness and gel pore size to determine whether dermatan sulfate changed the gels' conformation. As gel concentration increased, neurite length and gel pore size decreased, and gel stiffness increased. At 1.00 and 1.25% (wt/vol) concentrations, dermatan sulfates both immobilized with agarose gels and dissolved in culture medium inhibit neurite extension. While at 1.50 and 1.75% (wt/vol) concentrations, only immobilized dermatan sulfate worked. Immobilized dermatan sulfate could modify molecular shape of agarose gels, decrease gel pore size statistically, but did not influence gel stiffness. We have proved that the decrease of gel pore size is insufficient to inhibit neurite extension. These results indicate that dermatan sulfate inhibits neurite extension not through forming a mechanical barrier. Maybe its interaction with neuron membrane is the key factor in neurite extension.

  6. Growth

    NASA Astrophysics Data System (ADS)

    Waag, Andreas

    This chapter is devoted to the growth of ZnO. It starts with various techniques to grow bulk samples and presents in some detail the growth of epitaxial layers by metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and pulsed laser deposition (PLD). The last section is devoted to the growth of nanorods. Some properties of the resulting samples are also presented. If a comparison between GaN and ZnO is made, very often the huge variety of different growth techniques available to fabricate ZnO is said to be an advantage of this material system. Indeed, growth techniques range from low cost wet chemical growth at almost room temperature to high quality MOCVD growth at temperatures above 1, 000∘C. In most cases, there is a very strong tendency of c-axis oriented growth, with a much higher growth rate in c-direction as compared to other crystal directions. This often leads to columnar structures, even at relatively low temperatures. However, it is, in general, not straight forward to fabricate smooth ZnO thin films with flat surfaces. Another advantage of a potential ZnO technology is said to be the possibility to grow thin films homoepitaxially on ZnO substrates. ZnO substrates are mostly fabricated by vapor phase transport (VPT) or hydrothermal growth. These techniques are enabling high volume manufacturing at reasonable cost, at least in principle. The availability of homoepitaxial substrates should be beneficial to the development of ZnO technology and devices and is in contrast to the situation of GaN. However, even though a number of companies are developing ZnO substrates, only recently good quality substrates have been demonstrated. However, these substrates are not yet widely available. Still, the situation concerning ZnO substrates seems to be far from low-cost, high-volume production. The fabrication of dense, single crystal thin films is, in general, surprisingly difficult, even when ZnO is grown on a ZnO substrate. However

  7. Comparison of PC12 and Cerebellar Granule Cell Cultures for Evaluating Neurite Outgrowth Using High Content Screening

    EPA Science Inventory

    Development of high-throughput assays for chemical screening and hazard identification is a pressing priority worldwide. One approach uses in vitro, cell-based assays which recapitulate biological events observed in vivo. Neurite outgrowth is one such critical cellular process un...

  8. Extracellularly Recorded Somatic and Neuritic Signal Shapes and Classification Algorithms for High-Density Microelectrode Array Electrophysiology

    PubMed Central

    Deligkaris, Kosmas; Bullmann, Torsten; Frey, Urs

    2016-01-01

    High-density microelectrode arrays (HDMEA) have been recently introduced to study principles of neural function at high spatial resolution. However, the exact nature of the experimentally observed extracellular action potentials (EAPs) is still incompletely understood. The soma, axon and dendrites of a neuron can all exhibit regenerative action potentials that could be sensed with HDMEA electrodes. Here, we investigate the contribution of distinct neuronal sources of activity in HDMEA recordings from low-density neuronal cultures. We recorded EAPs with HDMEAs having 11,011 electrodes and then fixed and immunostained the cultures with β3-tubulin for high-resolution fluorescence imaging. Immunofluorescence images overlaid with the activity maps showed EAPs both at neuronal somata and distal neurites. Neuritic EAPs had mostly narrow triphasic shapes, consisting of a positive, a pronounced negative peak and a second positive peak. EAPs near somata had wide monophasic or biphasic shapes with a main negative peak, and following optional positive peak. We show that about 86% of EAP recordings consist of somatic spikes, while the remaining 14% represent neuritic spikes. Furthermore, the adaptation of the waveform shape during bursts of these neuritic spikes suggested that they originate from axons, rather than from dendrites. Our study improves the understanding of HDMEA signals and can aid in the identification of the source of EAPs.

  9. MAGNETIC FIELD INFLUENCE ON NGF-STIMULATED NEURITE OUTGROWTH IN PC-12 CELLS: EFFECT OF PAINT FUMES

    EPA Science Inventory

    MAGNETIC FIELD INFLUENCE ON NGF-STIMULATED NEURITE OUTGROWTH IN PC-12 CELLS: EFFECT OF PAINT FUMES. C. F. Blackman1, D. E. House2*, S. G. Benane3*, A. Ubeda4, M.A. TrilIo4. 1 National Health and Environmental Effects Research Laboratory, EPA,
    Research Triangle Park, North Caro...

  10. Extracellularly Recorded Somatic and Neuritic Signal Shapes and Classification Algorithms for High-Density Microelectrode Array Electrophysiology

    PubMed Central

    Deligkaris, Kosmas; Bullmann, Torsten; Frey, Urs

    2016-01-01

    High-density microelectrode arrays (HDMEA) have been recently introduced to study principles of neural function at high spatial resolution. However, the exact nature of the experimentally observed extracellular action potentials (EAPs) is still incompletely understood. The soma, axon and dendrites of a neuron can all exhibit regenerative action potentials that could be sensed with HDMEA electrodes. Here, we investigate the contribution of distinct neuronal sources of activity in HDMEA recordings from low-density neuronal cultures. We recorded EAPs with HDMEAs having 11,011 electrodes and then fixed and immunostained the cultures with β3-tubulin for high-resolution fluorescence imaging. Immunofluorescence images overlaid with the activity maps showed EAPs both at neuronal somata and distal neurites. Neuritic EAPs had mostly narrow triphasic shapes, consisting of a positive, a pronounced negative peak and a second positive peak. EAPs near somata had wide monophasic or biphasic shapes with a main negative peak, and following optional positive peak. We show that about 86% of EAP recordings consist of somatic spikes, while the remaining 14% represent neuritic spikes. Furthermore, the adaptation of the waveform shape during bursts of these neuritic spikes suggested that they originate from axons, rather than from dendrites. Our study improves the understanding of HDMEA signals and can aid in the identification of the source of EAPs. PMID:27683541

  11. Extracellularly Recorded Somatic and Neuritic Signal Shapes and Classification Algorithms for High-Density Microelectrode Array Electrophysiology.

    PubMed

    Deligkaris, Kosmas; Bullmann, Torsten; Frey, Urs

    2016-01-01

    High-density microelectrode arrays (HDMEA) have been recently introduced to study principles of neural function at high spatial resolution. However, the exact nature of the experimentally observed extracellular action potentials (EAPs) is still incompletely understood. The soma, axon and dendrites of a neuron can all exhibit regenerative action potentials that could be sensed with HDMEA electrodes. Here, we investigate the contribution of distinct neuronal sources of activity in HDMEA recordings from low-density neuronal cultures. We recorded EAPs with HDMEAs having 11,011 electrodes and then fixed and immunostained the cultures with β3-tubulin for high-resolution fluorescence imaging. Immunofluorescence images overlaid with the activity maps showed EAPs both at neuronal somata and distal neurites. Neuritic EAPs had mostly narrow triphasic shapes, consisting of a positive, a pronounced negative peak and a second positive peak. EAPs near somata had wide monophasic or biphasic shapes with a main negative peak, and following optional positive peak. We show that about 86% of EAP recordings consist of somatic spikes, while the remaining 14% represent neuritic spikes. Furthermore, the adaptation of the waveform shape during bursts of these neuritic spikes suggested that they originate from axons, rather than from dendrites. Our study improves the understanding of HDMEA signals and can aid in the identification of the source of EAPs. PMID:27683541

  12. Propofol treatment modulates neurite extension regulated by immunologically challenged rat primary astrocytes: a possible role of PAI-1.

    PubMed

    Ko, Hyun Myung; Joo, So Hyun; Lee, Sung Hoon; Kim, Hee Jin; Lee, Seung-Hyun; Cheong, Jae Hoon; Ryu, Jong Hoon; Kim, Jeong Min; Koo, Bon-Nyeo; Shin, Chan Young

    2015-04-01

    Propofol, a widely used anesthetic, regulates neurological processes including neurotoxicity, neuroprotection, glial activation, synaptic plasticity and neuronal maturation. Tissue plasminogen activator/tissue plasminogen activator inhibitor-1 (tPA/PAI-1) in CNS acts as a neuromodulator regulating synaptic plasticity, neurite outgrowth, seizure spreading and cell survival. Here, we investigated the effects of propofol on tPA/PAI-1 system using cultured neurons and astrocytes and their role in the regulation of neurite extension. Cultured rat primary astrocytes were treated with propofol (1-10 µM) and LPS (10 ng/ml). The expression of functional tPA/PAI-1 was examined by casein zymography, Western blot and RT-PCR. Alternatively, culture supernatants were added to cultured rat primary neuron to investigate the effects on neurite extension. Propofol alone did not affect tPA activity in rat primary cortical neuron. Similarly, propofol alone changed neither tPA nor PAI-1 activity in rat primary astrocytes. In immunologically challenged situation using LPS, propofol synergistically increased expression of PAI-1 in rat primary astrocytes without affecting tPA expression in a manner dependent on MAPKs activation. Increased expression of PAI-1 reduced tPA activity in LPS plus propofol-treated rat primary astrocytes. Consistent with the critical role of tPA activity in the regulation of neurite extension (Cho et al. 2013), the diminished tPA activity in astrocyte culture supernatants resulted in decreased neurite extension when administered to cultured rat primary cortical neuron. The results from the present study suggest that propofol, especially in immunologically-challenged situation, dysregulates tPA/PAI-1 system in brain. Whether the dysregulated tPA/PAI-1 activity adversely affects neural differentiation as well as regeneration of neuron in vivo should be empirically determined in the future.

  13. Nuclear kinesis, neurite sprouting and abnormal axonal projections of cone photoreceptors in the aged and AMD-afflicted human retina.

    PubMed

    Pow, David V; Sullivan, Robert K P

    2007-05-01

    Tissues often respond to damage by recapitulating developmental programs. We have investigated whether anatomical signs of developmental recapitulation are evident in cone photoreceptors of the aged and AMD-afflicted human retina. Radial migration of cell nuclei mediated by microtubules is a characteristic feature of cells in the developing retina. Similarly, neurite outgrowth is a feature of developing neurons. We have examined whether nuclear kinesis and neurite outgrowth from cone photoreceptors is evident. Calbindin-positive cone photoreceptor nuclei are normally positioned as a single layer of somata at the outer border of the outer nuclear layer. In AMD-afflicted retinae, many nuclei are translocated, with some somata abutting the outer plexiform layer (OPL) and others outside the outer limiting membrane whilst many nuclei are present at intermediate levels. The axonal processes of many cones were also aberrant, displaying tortuous pathways as they projected to the OPL, with occasional evidence for bifurcation at points where the axon changed direction. We suggest that tangential extension of collateral neurites and the rapid retraction of the original process may give rise to the tortuous axonal projections observed. Since microtubules are key mediators of both neurite extension and nuclear kinesis we examined expression of microtubule associated protein 2 (MAP2) which is an important regulator of neurite extension. The strong expression of MAP2 observed in those cells with aberrant morphologies supports the notion that abnormal microtubule-mediated remodelling events are present in the AMD retina and to a lesser extent in normal aged retinas, allowing cone photoreceptors to recapitulate two key features of development.

  14. The Adhesion and Neurite Outgrowth of Neurons on Poly(D-lysine)/Hyaluronan Multilayer Films.

    PubMed

    Shi, Haifei; Sheng, Guoping

    2016-06-01

    Poly(D-lysine)/hyaluronan (PDL/HA) films were prepared using layer-by-layer assembly technique and chemically cross-linked with a water soluble carbodiimide (EDC) in combination with N-hydroxysuccinimide (NHS) through formation of amide bonds. Quartz crystal microbalance with dissipation (QCM-D) was used to follow the cross-linking reaction. Atomic force measurement, ellipsometry, and Fourier transform infrared (FTIR) spectroscopy were performed to study the chemical structure, topography, thickness and mechanical properties of the cross-linked films. QCM-D and Frictional force study were used to reveal the viscoelasticity of the films after cross-linking treatment. The stability of the films was studied via incubating the films in physiological environment. Finally, the neurons were used to evaluate the interaction between films and cells. The results indicated that the neurons were preferably proliferating and outgrowth neurite on cross-linked films while uncross-linked films are highly cell resistant. PMID:27427590

  15. Centlein, a novel microtubule-associated protein stabilizing microtubules and involved in neurite formation.

    PubMed

    Jing, Zhenli; Yin, Huilong; Wang, Pan; Gao, Juntao; Yuan, Li

    2016-04-01

    We have previously reported that the centriolar protein centlein functions as a molecular link between C-Nap1 and Cep68 to maintain centrosome cohesion [1]. In this study, we identified centlein as a novel microtubule-associated protein (MAP), directly binding to purified microtubules (MTs) via its longest coiled-coil domain. Overexpression of centlein caused profound nocodazole- and cold-resistant MT bundles, which also relied on its MT-binding domain. siRNA-mediated centlein depletion resulted in a significant reduction in tubulin acetylation level and overall fluorescence intensity of cytoplasmic MT acetylation. Centlein was further characterized in neurons. We found that centlein overexpression inhibited neurite formation in retinoic acid (RA)-induced SH-SY5Y and N2a cells. Taken together, we propose that centlein is involved in MT stability and neuritogenesis in vivo. PMID:26915804

  16. Neuronal plasticity after spinal cord injury: identification of a gene cluster driving neurite outgrowth.

    PubMed

    Di Giovanni, Simone; Faden, Alan I; Yakovlev, Alexander; Duke-Cohan, Jonathan S; Finn, Tom; Thouin, Melissa; Knoblach, Susan; De Biase, Andrea; Bregman, Barbara S; Hoffman, Eric P

    2005-01-01

    Functional recovery after spinal cord injury (SCI) may result in part from axon outgrowth and related plasticity through coordinated changes at the molecular level. We employed microarray analysis to identify a subset of genes the expression patterns of which were temporally coregulated and correlated to functional recovery after SCI. Steady-state mRNA levels of this synchronously regulated gene cluster were depressed in both ventral and dorsal horn neurons within 24 h after injury, followed by strong re-induction during the following 2 wk, which paralleled functional recovery. The identified cluster includes neuritin, attractin, microtubule-associated protein 1a, and myelin oligodendrocyte protein genes. Transcriptional and protein regulation of this novel gene cluster was also evaluated in spinal cord tissue and in single neurons and was shown to play a role in axonal plasticity. Finally, in vitro transfection experiments in primary dorsal root ganglion cells showed that cluster members act synergistically to drive neurite outgrowth. PMID:15522907

  17. Mannosylerythritol lipid increases levels of galactoceramide in and neurite outgrowth from PC12 pheochromocytoma cells.

    PubMed

    Shibahara, M; Zhao, X; Wakamatsu, Y; Nomura, N; Nakahara, T; Jin, C; Nagaso, H; Murata, T; Yokoyama, K K

    2000-07-01

    We report here that a microbial extracellular glycolipid,mannosylerythritol lipid (MEL), induces the outgrowth ofneurites from and enhances the activity of acetylcholinesterase(AChE) in PC12 pheochromocytoma cells. Furthermore, treatment ofPC12 cells with MEL increased levels of galactosylceramide(Galbeta1-1'Cer; GalCer). Exposure of PC12 cells to exogenous GalCer caused the dose-dependent outgrowth ofneurites. By contrast, treatment of PC12 cells with nerve growthfactor (NGF) did not increase the level of GalCer in the cells. The neurite-related morphological changes induced by GalCerdifferend from those induced by NGF, indicating differencesbetween the signal transduction pathways triggered by NGF and by GalCer. PMID:19002832

  18. Neurotransmitters and synaptic components in the Merkel cell-neurite complex, a gentle touch receptor

    PubMed Central

    Maksimovic, Srdjan; Baba, Yoshichika; Lumpkin, Ellen A.

    2013-01-01

    Merkel cells are an enigmatic group of rare cells found in the skin of vertebrates. Most make contacts with somatosensory afferents to form Merkel cell-neurite complexes, which are gentle-touch receptors that initiate slowly adapting type I responses. The function of Merkel cells within the complex remains debated despite decades of research. Numerous anatomical studies demonstrate that Merkel cells form synaptic-like contacts with sensory afferent terminals. Moreover, recent molecular analysis reveals that Merkel cells express dozens of presynaptic molecules that are essential for synaptic vesicle release in neurons. Merkel cells also produce a host of neuro-active substances that can act as fast excitatory neurotransmitters or neuromodulators. Here, we review the major neurotransmitters found in Merkel cells and discuss these findings in relation to the potential function of Merkel cells in touch reception. PMID:23530998

  19. Carbon disulfide inhibits neurite outgrowth and neuronal migration of dorsal root ganglion in vitro.

    PubMed

    Ding, Ning; Xiang, Yujuan; Jiang, Hao; Zhang, Weiwei; Liu, Huaxiang; Li, Zhenzhong

    2011-12-01

    Carbon disulfide (CS₂) is a neurotoxic industrial solvent and widely used in the vulcanization of rubber, rayon, cellophane, and adhesives. Although the neurotoxicity of CS₂ has been recognized for over a century, the precise mechanism of neurotoxic action of CS₂ remains unknown. In the present study, a embryonic rat dorsal root ganglia (DRG) explants culture model was established. Using the organotypic DRG cultures, the direct neurotoxic effects of CS₂ on outgrowth of neurites and migration of neurons from DRG explants were investigated. The organotypic DRG cultures were exposed to different concentrations of CS₂ (0.01 mmol/L, 0.1 mmol/L, 1 mmol/L). The number of nerve fiber bundles extended from DRG explants decreased significantly in the presence of CS₂ (0.01 mmol/L, 15.00 ± 2.61, p < .05; 0.1 mmol/L, 11.17 ± 1.47, p < .001; 1 mmol/L, 8.00 ± 1.41, p < .001) as compared with that in the absence of CS₂ (17.83 ± 2.48). The number of neurons migrated from DRG explants decreased significantly in the presence of CS₂ (0.01 mmol/L, 79.50 ± 9.40, p < .01; 0.1 mmol/L, 62.50 ± 14.15, p < .001; 1 mmol/L, 34.67 ± 7.58, p < .001) as compared with that in the absence of CS₂ (99.33 ± 15.16). And also, the decreases in the number of nerve fiber bundles and migrated DRG neurons were in a dose-dependent manner of CS₂. These data implicated that CS₂ could inhibit neurite outgrowth and neuronal migration from DRG explants in vitro. PMID:21777162

  20. Novel genes that mediate nuclear respiratory factor 1-regualted neurite outgrowth in neuroblastoma IMR-32 cells.

    PubMed

    Tong, Chih-Wei; Wang, Jen-Ling; Jiang, Mei-Sian; Hsu, Chia-Hao; Chang, Wen-Teng; Huang, A-Min

    2013-02-15

    Nuclear respiratory factor-1 (NRF-1) is a transcription factor that functions in neurite outgrowth; however, the genes downstream from NRF-1 that mediate this function remain largely unknown. This study employs a genome-wide analysis approach to identify NRF-1-targeted genes in human neuroblastoma IMR-32 cells. A total of 916 human genes containing the putative NRF-1 response element (NRE) in their promoter regions were identified using a cutoff score determined by results from electrophoretic mobility shift assays (EMSA). Seventy-four NRF-1 target genes were listed according to the typical locations and high conservation of NREs. Fifteen genes, MAPRE3, NPDC1, RAB3IP, TRAPPC3, SMAD5, PIP5K1A, USP10, SPRY4, GTF2F2, NR1D1, SUV39H2, SKA3, RHOA, RAPGEF6, and SMAP1 were selected for biological confirmation. EMSA and chromatin immunoprecipitation confirmed that all NREs of these fifteen genes are critical for NRF-1 binding. Quantitative RT-PCR demonstrated that mRNA levels of 12 of these genes are regulated by NRF-1. Overexpression or knockdown of candidate genes demonstrated that MAPRE3, NPDC1, SMAD5, USP10, SPRY4, GTF2F2, SKA3, SMAP1 positively regulated, and RHOA and RAPGEF6 negatively regulated neurite outgrowth. Overall, our data showed that the combination of genome-wide bioinformatic analysis and biological experiments helps to identify the novel NRF-1-regulated genes, which play roles in differentiation of neuroblastoma cells.

  1. Whole-exome sequencing and neurite outgrowth analysis in autism spectrum disorder.

    PubMed

    Hashimoto, Ryota; Nakazawa, Takanobu; Tsurusaki, Yoshinori; Yasuda, Yuka; Nagayasu, Kazuki; Matsumura, Kensuke; Kawashima, Hitoshi; Yamamori, Hidenaga; Fujimoto, Michiko; Ohi, Kazutaka; Umeda-Yano, Satomi; Fukunaga, Masaki; Fujino, Haruo; Kasai, Atsushi; Hayata-Takano, Atsuko; Shintani, Norihito; Takeda, Masatoshi; Matsumoto, Naomichi; Hashimoto, Hitoshi

    2016-03-01

    Autism spectrum disorder (ASD) is a complex group of clinically heterogeneous neurodevelopmental disorders with unclear etiology and pathogenesis. Genetic studies have identified numerous candidate genetic variants, including de novo mutated ASD-associated genes; however, the function of these de novo mutated genes remains unclear despite extensive bioinformatics resources. Accordingly, it is not easy to assign priorities to numerous candidate ASD-associated genes for further biological analysis. Here we developed a convenient system for identifying an experimental evidence-based annotation of candidate ASD-associated genes. We performed trio-based whole-exome sequencing in 30 sporadic cases of ASD and identified 37 genes with de novo single-nucleotide variations (SNVs). Among them, 5 of those 37 genes, POGZ, PLEKHA4, PCNX, PRKD2 and HERC1, have been previously reported as genes with de novo SNVs in ASD; and consultation with in silico databases showed that only HERC1 might be involved in neural function. To examine whether the identified gene products are involved in neural functions, we performed small hairpin RNA-based assays using neuroblastoma cell lines to assess neurite development. Knockdown of 8 out of the 14 examined genes significantly decreased neurite development (P<0.05, one-way analysis of variance), which was significantly higher than the number expected from gene ontology databases (P=0.010, Fisher's exact test). Our screening system may be valuable for identifying the neural functions of candidate ASD-associated genes for further analysis and a substantial portion of these genes with de novo SNVs might have roles in neuronal systems, although further detailed analysis might eliminate false positive genes from identified candidate ASD genes.

  2. Statistical study of biomechanics of living brain cells during growth and maturation on artificial substrates.

    PubMed

    Chen, La; Li, Wenfang; Maybeck, Vanessa; Offenhäusser, Andreas; Krause, Hans-Joachim

    2016-11-01

    There is increasing evidence that mechanical issues play a vital role in neuron growth and brain development. The importance of this grows as novel devices, whose material properties differ from cells, are increasingly implanted in the body. In this work, we studied the mechanical properties of rat brain cells over time and on different materials by using a high throughput magnetic tweezers system. It was found that the elastic moduli of both neurite and soma in networked neurons increased with growth. However, neurites at DIV4 exhibited a relatively high stiffness, which could be ascribed to the high outgrowth tension. The power-law exponents (viscoelasticity) of both neurites and somas of neurons decreased with culture time. On the other hand, the stiffness of glial cells also increased with maturity. Furthermore, both neurites and glia become softer when cultured on compliant substrates. Especially, the glial cells cultured on a soft substrate obviously showed a less dense and more porous actin and GFAP mesh. In addition, the viscoelasticity of both neurites and glia did not show a significant dependence on the substrates' stiffness. PMID:27573132

  3. Quantitative assessment of neurite outgrowth in human embryonic stem cell derived hN2 cells using automated high-content image analysis

    EPA Science Inventory

    Throughout development neurons undergo a number of morphological changes including neurite outgrowth from the cell body. Exposure to neurotoxic chemicals that interfere with this process may result in permanent deficits in nervous system function. Traditionally, rodent primary ne...

  4. Neurite Outgrowth in PC12 Cells Stimulated by Components from Dendranthema × grandiflorum cv. “Mottenohoka” Is Enhanced by Suppressing Phosphorylation of p38MAPK

    PubMed Central

    Kimura, Hirokazu; Tsukagoshi, Hiroyuki; Kozawa, Kunihisa; Koketsu, Mamoru; Ninomiya, Masayuki; Furukawa, Shoei

    2013-01-01

    Components from Dendranthema × grandiflorum cv. “Mottenohoka” that promote neurite outgrowth of PC12 cells were identified and the mechanism of neurite outgrowth stimulated by isolated components was studied. Components that promoted the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2) of PC12 cells were isolated. From various structural analyses, the active components were identified as acacetin and luteolin. The effects of acacetin or luteolin on PC12 cells were evaluated by electro-blotting and immunostaining. Slight neurite outgrowth in PC12 cells was observed within 2 days of culture after stimulation by luteolin or acacetin. However, NGF-stimulation induced remarkable neurite outgrowth in comparison. Neurite outgrowth by luteolin or acacetin was significantly enhanced by pretreatment with SB203580 (a p38MAPK inhibitor). The results of this study into the phosphorylation of ERK 1/2 and p38MAPK by flavonoids suggest that the inhibition of p38MAPK phosphorylation may effectively enhance neurite outgrowth. PMID:23554829

  5. Characterization of the role of full-length CRMP3 and its calpain-cleaved product in inhibiting microtubule polymerization and neurite outgrowth

    SciTech Connect

    Aylsworth, Amy; Jiang, Susan X.; Desbois, Angele; Hou, Sheng T.

    2009-10-01

    Collapsin response mediator proteins (CRMPs) are key modulators of cytoskeletons during neurite outgrowth in response to chemorepulsive guidance molecules. However, their roles in adult injured neurons are not well understood. We previously demonstrated that CRMP3 underwent calcium-dependent N-terminal protein cleavage during excitotoxicity-induced neurite retraction and neuronal death. Here, we report findings that the full-length CRMP3 inhibits tubulin polymerization and neurite outgrowth in cultured mature cerebellar granule neurons, while the N-terminal truncated CRMP3 underwent nuclear translocation and caused a significant nuclear condensation. The N-terminal truncated CRMP3 underwent nuclear translocation through nuclear pores. Nuclear protein pull-down assay and mass spectrometry analysis showed that the N-terminal truncated CRMP3 was associated with nuclear vimentin. In fact, nuclear-localized CRMP3 co-localized with vimentin during glutamate-induced excitotoxicity. However, the association between the truncated CRMP3 and vimentin was not critical for nuclear condensation and neurite outgrowth since over-expression of truncated CRMP3 in vimentin null neurons did not alleviate nuclear condensation and neurite outgrowth inhibition. Together, these studies showed CRMP3's role in attenuating neurite outgrowth possibility through inhibiting microtubule polymerization, and also revealed its novel association with vimentin during nuclear condensation prior to neuronal death.

  6. Tenascin promotes cerebellar granule cell migration and neurite outgrowth by different domains in the fibronectin type III repeats

    PubMed Central

    1992-01-01

    The extracellular matrix molecule tenascin has been implicated in neuron-glia recognition in the developing central and peripheral nervous system and in regeneration. In this study, its role in Bergmann glial process-mediated neuronal migration was assayed in vitro using tissue explants of the early postnatal mouse cerebellar cortex. Of the five mAbs reacting with nonoverlapping epitopes on tenascin, mAbs J1/tn1, J1/tn4, and J1/tn5, but not mAbs J1/tn2 and J1/tn3 inhibited granule cell migration. Localization of the immunoreactive domains by EM of rotary shadowed tenascin molecules revealed that the mAbs J1/tn4 and J1/tn5, like the previously described J1/tn1 antibody, bound between the third and fifth fibronectin type III homologous repeats and mAb J1/tn3 bound between the third and fifth EGF-like repeats. mAb J1/tn2 had previously been found to react between fibronectin type III homologous repeats 10 and 11 of the mouse molecule (Lochter, A., L. Vaughan, A. Kaplony, A. Prochiantz, M. Schachner, and A. Faissner. 1991. J. Cell Biol. 113:1159-1171). When postnatal granule cell neurons were cultured on tenascin adsorbed to polyornithine, both the percentage of neurite-bearing cells and the length of outgrowing neurites were increased when compared to neurons growing on polyornithine alone. This neurite outgrowth promoting effect of tenascin was abolished only by mAb J1/tn2 or tenascin added to the culture medium in soluble form. The other antibodies did not modify the stimulatory or inhibitory effects of the molecule. These observations indicate that tenascin influences neurite outgrowth and migration of cerebellar granule cells by different domains in the fibronectin type III homologous repeats. PMID:1371773

  7. The importance of EHD1 in neurite outgrowth contributing to the functional recovery after spinal cord injury.

    PubMed

    Wu, Chunshuai; Cui, Zhiming; Liu, Yonghua; Zhang, Jinlong; Ding, Wensen; Wang, Song; Bao, Guofeng; Xu, Guanhua; Sun, Yuyu; Chen, Jiajia

    2016-08-01

    Traumatic spinal cord injury is one of the most common and severe problems for using NGF to promote the neurite outgrowth of survival neurons. EHD1 regulates and controls the endocytosis and transportation of neurotrophins and transmembrane cargo via recycling endosome for neurite outgrowth. TrkA is particularly considered to be a functional specific recepter in the cell membrane for NGF and is activated upon NGF binding. The transcytosis of TrkA is dependent on Rab11 recycling endosomes and is promoted by NGF signaling itself at the axon terminal. In this study, we established an acute spinal cord contusion injury model in adult rats to investigate the potential role of EHD1 during the pathological process of SCI. Western blot analysis suggested that EHD1 expression was low in the sham-operated adult rat spinal cords and was significantly up-regulated 1d after injury. Immunohistochemical staining detected the general distribution of EHD1 protein in both the gray and white matter of adult rat spinal cords. Double immunofluorescent staining indicated that EHD1 was expressed in neurons, astrocytes and microglias in the adult rat spinal cord, and obvious changes of EHD1 expression occurred in neurons during SCI pathological process. Significant up-regulation of EHD1 expression was observed in MAP2 positive neurons at 1 day after SCI, in comparison with the sham-operated control, which indicated that EHD1 might play a vital role in neurite outgrowth. Our data indicated that EHD1 could interact with TrkA, and is in the upstream of TrkA. EHD1 up-regulated the expression of TrkA in the glutamate stimulated primary neurons. Based on our experimental data, we boldly conclude that EHD1 regulates the recycling of TrkA back to cell membrane, improving the utilization efficiency of the NGF, which is vital for neurite outgrowth and functional recovery after spinal cord injury. PMID:27211346

  8. Magnetic fields at resonant conditions for the hydrogen ion affect neurite outgrowth in PC-12 cells: A test of the ion parametric resonance model

    SciTech Connect

    Trillo, M.A.; Ubeda, A.; Blanchard, J.P.; House, D.E.; Blackman, C.F.

    1996-04-01

    PC-12 cells primed with nerve growth factor (NGF) were exposed to sinusoidal extremely-low-frequency (ELF) magnetic fields (MFs) selected to test the predictions of the ion parametric resonance (IPR) model under resonance conditions for a single ion (hydrogen). The authors examined the field effects on the neurite outgrowth (NO) induced by NGF using three different combinations of flux densities of the parallel components of the AC MF (B{sub ac}) and the static MF (B{sub dc}). The first test examined the NO response in cells exposed to 45 Hz at a B{sub dc} of 2.96 {micro}T with resonant conditions for H{sup +} according to the model. The B{sub ac} values ranged from 0.29 to 4.11 {micro}T root-mean-square (rms). In the second test, the MF effects at off-resonance conditions (i.e., no biologically significant ion at resonance) were examined using the frequency of 45 Hz with a B{sub dc} of 1.97 {micro}T and covering a B{sub ac} range between 0.79 and 2.05 {micro}T rms. In the third test, the Ac frequency was changed to 30 Hz with the subsequent change in B{sub dc} to 1.97 {micro}T to tune for H{sup +} as in the first test. The B{sub ac} values ranged from 0.79 to 2.05 {micro}T rms. After a 23 h incubation and exposure to the MF in the presence of NGF (5 ng/ml), the NO was analyzed using a stereoscopic microscope. The results showed that the NGF stimulation of neurite outgrowth (NSNO) was affected by MF combinations over most of the B{sub ac} exposure range generally consistent with the predictions of the IPR model. However, for a distinct range of B{sub ac} where the IPR model predicted maximal ionic influence, the observed pattern of NSNO contrasted sharply with those predictions. The symmetry of this response suggests that values of B{sub ac} within this distinct range may trigger alternate or additional cellular mechanisms that lead to an apparent lack of response to the MF stimulus.

  9. Peripheral Nervous System Genes Expressed in Central Neurons Induce Growth on Inhibitory Substrates

    PubMed Central

    Buchser, William J.; Smith, Robin P.; Pardinas, Jose R.; Haddox, Candace L.; Hutson, Thomas; Moon, Lawrence; Hoffman, Stanley R.; Bixby, John L.; Lemmon, Vance P.

    2012-01-01

    Trauma to the spinal cord and brain can result in irreparable loss of function. This failure of recovery is in part due to inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans (CSPGs). Peripheral nervous system (PNS) neurons exhibit increased regenerative ability compared to central nervous system neurons, even in the presence of inhibitory environments. Previously, we identified over a thousand genes differentially expressed in PNS neurons relative to CNS neurons. These genes represent intrinsic differences that may account for the PNS’s enhanced regenerative ability. Cerebellar neurons were transfected with cDNAs for each of these PNS genes to assess their ability to enhance neurite growth on inhibitory (CSPG) or permissive (laminin) substrates. Using high content analysis, we evaluated the phenotypic profile of each neuron to extract meaningful data for over 1100 genes. Several known growth associated proteins potentiated neurite growth on laminin. Most interestingly, novel genes were identified that promoted neurite growth on CSPGs (GPX3, EIF2B5, RBMX). Bioinformatic approaches also uncovered a number of novel gene families that altered neurite growth of CNS neurons. PMID:22701605

  10. Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy: a new experimental model of diabetic autonomic neuropathy.

    PubMed

    Schmidt, Robert E; Dorsey, Denise A; Beaudet, Lucie N; Frederick, Kathy E; Parvin, Curtis A; Plurad, Santiago B; Levisetti, Matteo G

    2003-11-01

    To address the pathogenesis of diabetic autonomic neuropathy, we have examined the sympathetic nervous system in non-obese diabetic (NOD) and streptozotocin (STZ)-induced diabetic mice, two models of type 1 diabetes, and the db/db mouse, a model of type 2 diabetes. After only 3 to 5 weeks of diabetes, NOD mice developed markedly swollen axons and dendrites ("neuritic dystrophy") in the prevertebral superior mesenteric and celiac ganglia (SMG-CG), similar to the pathology described in diabetic STZ- and BBW-rat and man. Comparable changes failed to develop in the superior cervical ganglia of the NOD mouse or in the SMG-CG of non-diabetic NOD siblings. STZ-induced diabetic mice develop identical changes, although at a much slower pace and to a lesser degree than NOD mice. NOD-SCID mice, which are genetically identical to NOD mice except for the absence of T and B cells, do not develop diabetes or neuropathology comparable to diabetic NOD mice. However, STZ-treated NOD-SCID mice develop severe neuritic dystrophy, evidence against an exclusively autoimmune pathogenesis for autonomic neuropathy in this model. Chronically diabetic type 2 db/db mice fail to develop neuritic dystrophy, suggesting that hyperglycemia alone may not be the critical and sufficient element. The NOD mouse appears to be a valuable model of diabetic sympathetic autonomic neuropathy with unambiguous, rapidly developing neuropathology which corresponds closely to the characteristic pathology of other rodent models and man. PMID:14578206

  11. Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics

    PubMed Central

    Speranza, Luisa; Giuliano, Teresa; Volpicelli, Floriana; De Stefano, M. Egle; Lombardi, Loredana; Chambery, Angela; Lacivita, Enza; Leopoldo, Marcello; Bellenchi, Gian C.; di Porzio, Umberto; Crispino, Marianna; Perrone-Capano, Carla

    2015-01-01

    Recent studies have indicated that the serotonin receptor subtype 7 (5-HT7R) plays a crucial role in shaping neuronal morphology during embryonic and early postnatal life. Here we show that pharmacological stimulation of 5-HT7R using a highly selective agonist, LP-211, enhances neurite outgrowth in neuronal primary cultures from the cortex, hippocampus and striatal complex of embryonic mouse brain, through multiple signal transduction pathways. All these signaling systems, involving mTOR, the Rho GTPase Cdc42, Cdk5, and ERK, are known to converge on the reorganization of cytoskeletal proteins that subserve neurite outgrowth. Indeed, our data indicate that neurite elongation stimulated by 5-HT7R is modulated by drugs affecting actin polymerization. In addition, we show, by 2D Western blot analyses, that treatment of neuronal cultures with LP-211 alters the expression profile of cofilin, an actin binding protein involved in microfilaments dynamics. Furthermore, by using microfluidic chambers that physically separate axons from the soma and dendrites, we demonstrate that agonist-dependent activation of 5-HT7R stimulates axonal elongation. Our results identify for the first time several signal transduction pathways, activated by stimulation of 5-HT7R, that converge to promote cytoskeleton reorganization and consequent modulation of axonal elongation. Therefore, the activation of 5-HT7R might represent one of the key elements regulating CNS connectivity and plasticity during development. PMID:25814944

  12. Bioluminescence imaging of mitochondrial Ca2+ dynamics in soma and neurites of individual adult mouse sympathetic neurons

    PubMed Central

    Núñez, Lucía; Senovilla, Laura; Sanz-Blasco, Sara; Chamero, Pablo; Alonso, María T; Villalobos, Carlos; García-Sancho, Javier

    2007-01-01

    Changes in the cytosolic Ca2+ concentration ([Ca2+]c) are essential for triggering neurotransmitter release from presynaptic nerve terminals. Calcium-induced Ca2+ release (CICR) from the endoplasmic reticulum (ER) may amplify the [Ca2+]c signals and facilitate neurotransmitter release in sympathetic neurons. In adrenal chromaffin cells, functional triads are formed by voltage-operated Ca2+ channels (VOCCs), CICR sites and mitochondria. In fact, mitochondria take up most of the Ca2+ load entering the cells and are essential for shaping [Ca2+]c signals and exocytosis. Here we have investigated the existence of such functional triads in sympathetic neurons. The mitochondrial Ca2+ concentration ([Ca2+]m) in soma and neurites of individual mouse superior cervical ganglion (SCG) neurons was monitored by bioluminescence imaging of targeted aequorins. In soma, Ca2+ entry through VOCCs evoked rapid, near millimolar [Ca2+]m increases in a subpopulation of mitochondria containing about 40% of the aequorin. Caffeine evoked a similar [Ca2+]m increase in a mitochondrial pool containing about 30% of the aequorin and overlapping with the VOCC-sensitive pool. These observations suggest the existence of functional triads similar to the ones described in chromaffin cells. In neurites, mitochondria were able to buffer [Ca2+]c increases resulting from activation of VOCCs but not those mediated by caffeine-induced Ca2+ release from the ER. The weaker Ca2+ buffering by mitochondria in neurites could contribute to facilitate Ca2+-induced exocytosis at the presynaptic sites. PMID:17234693

  13. [Inhibitory proteins of neuritic regeneration in the extracellular matrix: structure, molecular interactions and their functions. Mechanisms of extracellular balance].

    PubMed

    Vargas, Javier; Uribe-Escamilla, Rebeca; Alfaro-Rodríguez, Alfonso

    2013-01-01

    After injury of the central nervous system (CNS) in higher vertebrates, neurons neither grow nor reconnect with their targets because their axons or dendrites cannot regenerate within the injured site. In the CNS, the signal from the environment regulating neurite regeneration is not exclusively generated by one molecular group. This signal is generated by the interaction of various types of molecules such as extracellular matrix proteins, soluble factors and surface membrane molecules; all these elements interact with one another generating the matrix's biological state: the extracellular balance. Proteins in the balanced extracellular matrix, support and promote cellular physiological states, including neuritic regeneration. We have reviewed three types of proteins of the extracellular matrix possessing an inhibitory effect and that are determinant of neuritic regeneration failure in the CNS: chondroitin sulfate proteoglycans, keratan sulfate proteoglycans and tenascin. We also review some of the mechanisms involved in the balance of extracellular proteins such as isomerization, epimerization, sulfation and glycosylation as well as the assemblage of the extracellular matrix, the interaction between the matrix and soluble factors and its proteolytic degradation. In the final section, we have presented some examples of the matrix's role in development and in tumor propagation.

  14. IL-10 Protects Neurites in Oxygen-Glucose-Deprived Cortical Neurons through the PI3K/Akt Pathway

    PubMed Central

    Zhang, Yixian; Lin, Wei; Liu, Yong; Li, Tin; Zeng, Yongping; Chen, Jianhao; Du, Houwei; Chen, Ronghua; Tan, Yi; Liu, Nan

    2015-01-01

    IL-10, as a cytokine, has an anti-inflammatory cascade following various injuries, but it remains blurred whether IL-10 protects neurites of cortical neurons after oxygen-glucose deprivation injury. Here, we reported that IL-10, in a concentration-dependent manner, reduced neuronal apoptosis and increased neuronal survival in oxygen-glucose-deprived primary cortical neurons, producing an optimal protective effect at 20ng/ml. After staining NF-H and GAP-43, we found that IL-10 significantly protected neurites in terms of axon length and dendrite number by confocal microscopy. Furthermore, it induced the phosphorylation of AKT, suppressed the activation of caspase-3, and up-regulated the protein expression of GAP-43. In contrast, LY294002, a specific inhibitor of PI3K/AKT, reduced the level of AKT phosphorylation and GAP-43 expression, increased active caspase-3 expression and thus significantly weakened IL-10-mediated protective effect in the OGD-induced injury model. IL-10NA, the IL-10 neutralizing antibody, reduced the level of p-PI3K phosphorylation and increased the expression of active caspase-3. These findings suggest that IL-10 provides neuroprotective effects by protecting neurites through PI3K/AKT signaling pathway in oxygen-glucose-deprived primary cortical neurons. PMID:26366999

  15. Non-obese diabetic mice rapidly develop dramatic sympathetic neuritic dystrophy: a new experimental model of diabetic autonomic neuropathy.

    PubMed

    Schmidt, Robert E; Dorsey, Denise A; Beaudet, Lucie N; Frederick, Kathy E; Parvin, Curtis A; Plurad, Santiago B; Levisetti, Matteo G

    2003-11-01

    To address the pathogenesis of diabetic autonomic neuropathy, we have examined the sympathetic nervous system in non-obese diabetic (NOD) and streptozotocin (STZ)-induced diabetic mice, two models of type 1 diabetes, and the db/db mouse, a model of type 2 diabetes. After only 3 to 5 weeks of diabetes, NOD mice developed markedly swollen axons and dendrites ("neuritic dystrophy") in the prevertebral superior mesenteric and celiac ganglia (SMG-CG), similar to the pathology described in diabetic STZ- and BBW-rat and man. Comparable changes failed to develop in the superior cervical ganglia of the NOD mouse or in the SMG-CG of non-diabetic NOD siblings. STZ-induced diabetic mice develop identical changes, although at a much slower pace and to a lesser degree than NOD mice. NOD-SCID mice, which are genetically identical to NOD mice except for the absence of T and B cells, do not develop diabetes or neuropathology comparable to diabetic NOD mice. However, STZ-treated NOD-SCID mice develop severe neuritic dystrophy, evidence against an exclusively autoimmune pathogenesis for autonomic neuropathy in this model. Chronically diabetic type 2 db/db mice fail to develop neuritic dystrophy, suggesting that hyperglycemia alone may not be the critical and sufficient element. The NOD mouse appears to be a valuable model of diabetic sympathetic autonomic neuropathy with unambiguous, rapidly developing neuropathology which corresponds closely to the characteristic pathology of other rodent models and man.

  16. Automated imaging system for fast quantitation of neurons, cell morphology and neurite morphometry in vivo and in vitro

    PubMed Central

    Tapias, Victor; Greenamyre, J. Timothy; Watkins, Simon C.

    2012-01-01

    Quantitation of neurons using stereologic approaches reduces bias and systematic error, but is time-consuming and labor-intensive. Accurate methods for quantifying neurons in vitro are lacking; conventional methodologies are limited in reliability and application. The morphological properties of the soma and neurites are a key aspect of neuronal phenotype and function, but the assays commonly used in such evaluations are beset with several methodological drawbacks. Herein we describe automated techniques to quantify the number and morphology of neurons (or any cell type, e.g., astrocytes) and their processes with high speed and accuracy. Neuronal quantification from brain tissue using a motorized stage system yielded results that were statistically comparable to those generated by stereology. The approach was then adapted for in vitro neuron and neurite outgrowth quantification. To determine the utility of our methods, rotenone was used as a neurotoxicant leading to morphological changes in neurons and cell death, astrocytic activation, and loss of neurites. Importantly, our technique counted about 8 times as many neurons in less than 5–10% of the time taken by manual stereological analysis. PMID:23220621

  17. Activation of 5-HT7 receptor stimulates neurite elongation through mTOR, Cdc42 and actin filaments dynamics.

    PubMed

    Speranza, Luisa; Giuliano, Teresa; Volpicelli, Floriana; De Stefano, M Egle; Lombardi, Loredana; Chambery, Angela; Lacivita, Enza; Leopoldo, Marcello; Bellenchi, Gian C; di Porzio, Umberto; Crispino, Marianna; Perrone-Capano, Carla

    2015-01-01

    Recent studies have indicated that the serotonin receptor subtype 7 (5-HT7R) plays a crucial role in shaping neuronal morphology during embryonic and early postnatal life. Here we show that pharmacological stimulation of 5-HT7R using a highly selective agonist, LP-211, enhances neurite outgrowth in neuronal primary cultures from the cortex, hippocampus and striatal complex of embryonic mouse brain, through multiple signal transduction pathways. All these signaling systems, involving mTOR, the Rho GTPase Cdc42, Cdk5, and ERK, are known to converge on the reorganization of cytoskeletal proteins that subserve neurite outgrowth. Indeed, our data indicate that neurite elongation stimulated by 5-HT7R is modulated by drugs affecting actin polymerization. In addition, we show, by 2D Western blot analyses, that treatment of neuronal cultures with LP-211 alters the expression profile of cofilin, an actin binding protein involved in microfilaments dynamics. Furthermore, by using microfluidic chambers that physically separate axons from the soma and dendrites, we demonstrate that agonist-dependent activation of 5-HT7R stimulates axonal elongation. Our results identify for the first time several signal transduction pathways, activated by stimulation of 5-HT7R, that converge to promote cytoskeleton reorganization and consequent modulation of axonal elongation. Therefore, the activation of 5-HT7R might represent one of the key elements regulating CNS connectivity and plasticity during development.

  18. Development of a cell permeable competitive antagonist of RhoA and CRMP4 binding, TAT-C4RIP, to promote neurite outgrowth.

    PubMed

    Khazaei, Mohammad R; Montcalm, Samuel; Di Polo, Adriana; Fournier, Alyson E; Durocher, Yves; Ong Tone, Stephan

    2015-02-01

    Neurons fail to re-extend their processes within the central nervous system environment in vivo, and this is partly because of inhibitory proteins expressed within myelin debris and reactive astrocytes that actively signal to the injured nerve cells to limit their growth. The ability of the trans-acting activator of transcription (TAT) protein transduction domain (PTD) to transport macromolecules across biological membranes raises the possibility of developing it as a therapeutic delivery tool for nerve regeneration. Most studies have produced TAT PTD fusion protein in bacteria, which can result in problems such as protein solubility, the formation of inclusion bodies and the lack of eukaryotic posttranslational modifications. While some groups have investigated the production of TAT PTD fusion protein in mammalian cells, these strategies are focused on generating TAT PTD fusions that are targeted to the secretory pathway, where furin protease as well as other proteases can cleave the TAT PTD. As an alternative to mutating the furin cleavage site in the TAT PTD, we describe a novel method to generate cytosolic TAT PTD fusion proteins and purify them from cell lysates. Here, we use this method to generate TAT-C4RIP, a cell permeable competitive antagonist of binding between the small GTPase RhoA and the cytosolic phosphoprotein Collapsin response mediator protein 4 (CRMP4). We demonstrate that TAT-C4RIP transduces cells in vitro and in vivo and retains its biological activity to attenuate myelin inhibition in an in vitro neurite outgrowth assay.

  19. Isolation of a neural chondroitin sulfate proteoglycan with neurite outgrowth promoting properties

    PubMed Central

    1994-01-01

    Proteoglycans are expressed in various tissues on cell surfaces and in the extracellular matrix and display substantial heterogeneity of both protein and carbohydrate constituents. The functions of individual proteoglycans of the nervous system are not well characterized, partly because specific reagents which would permit their isolation are missing. We report here that the monoclonal antibody 473HD, which binds to the surface of early differentiation stages of murine astrocytes and oligodendrocytes, reacts with the chondroitin sulfate/dermatan sulfate hybrid epitope DSD-1 expressed on a central nervous system chondroitin sulfate proteoglycan designated DSD-1-PG. When purified from detergent- free postnatal days 7 to 14 mouse brain extracts, DSD-1-PG displays an apparent molecular mass between 800-1,000 kD with a prominent core glycoprotein of 350-400 kD. Polyclonal anti-DSD-1-PG antibodies and monoclonal antibody 473HD react with the same molecular species as shown by immunocytochemistry and sequential immunoprecipitation performed on postnatal mouse cerebellar cultures, suggesting that the DSD-1 epitope is restricted to one proteoglycan. DSD-1-PG promotes neurite outgrowth of embryonic day 14 mesencephalic and embryonic day 18 hippocampal neurons from rat, a process which can be blocked by monoclonal antibody 473HD and by enzymatic removal of the DSD-1- epitope. These results show that the hybrid glycosaminoglycan structure DSD-1 supports the morphological differentiation of central nervous system neurons. PMID:7519189

  20. Short Report: Olfactory Ensheathing Cells Promote Differentiation of Neural Stem Cells and Robust Neurite Extension

    PubMed Central

    Sethi, Rosh; Sethi, Roshan; Redmond, Andy

    2014-01-01

    Aims The goal of this study was to gain insight into the signaling between olfactory ensheathing cells (OECs) and neural stem cells (NSCs). We sought to understand the impact of OECs on NSC differentiation and neurite extension and to begin to elucidate the factors involved in these interactions to provide new targets for therapeutic interventions. Materials and Methods We utilized lines of OECs that have been extremely well characterized in vitro and in vivo along with well studied NSCs in gels to determine the impact of the coculture in three dimensions. To further elucidate the signaling, we used conditioned media from the OECs as well as fractioned components on NSCs to determine the molecular weight range of the soluble factors that was most responsible for the NSC behavior. Results We found that the coculture of NSCs and OECs led to robust NSC differentiation and extremely long neural processes not usually seen with NSCs in three dimensional gels in vitro. Through culture of NSCs with fractioned OEC media, we determined that molecules larger than 30 kDa have the greatest impact on the NSC behavior. Conclusions Overall, our findings suggest that cocultures of NSCs and OECs may be a novel combination therapy for neural injuries including spinal cord injury (SCI). Furthermore, we have identified a class of molecules which plays a substantial role in the behavior that provides new targets for investigating pharmacological therapies. PMID:24996386

  1. NRC-interacting factor directs neurite outgrowth in an activity-dependent manner.

    PubMed

    Zhao, X-S; Fu, W-Y; Hung, K-W; Chien, W W Y; Li, Z; Fu, A K; Ip, N Y

    2015-03-19

    Nuclear hormone receptor coregulator-interacting factor 1 (NIF-1) is a zinc finger nuclear protein that was initially identified to enhance nuclear hormone receptor transcription via its interaction with nuclear hormone receptor coregulator (NRC). NIF-1 may regulate gene transcription either by modulating general transcriptional machinery or remodeling chromatin structure through interactions with specific protein partners. We previously reported that the cytoplasmic/nuclear localization of NIF-1 is regulated by the neuronal Cdk5 activator p35, suggesting potential neuronal functions for NIF-1. The present study reveals that NIF-1 plays critical roles in regulating neuronal morphogenesis at early stages. NIF-1 was prominently expressed in the nuclei of developing rat cortical neurons. Knockdown of NIF-1 expression attenuated both neurite outgrowth in cultured cortical neurons and retinoic acid (RA)-treated Neuro-2a neuroblastoma cells. Furthermore, activity-induced Ca(2+) influx, which is critical for neuronal morphogenesis, stimulated the nuclear localization of NIF-1 in cortical neurons. Suppression of NIF-1 expression reduced the up-regulation of neuronal activity-dependent gene transcription. These findings collectively suggest that NIF-1 directs neuronal morphogenesis during early developmental stages through modulating activity-dependent gene transcription.

  2. Diffusion Tensor Imaging Tractography in Pure Neuritic Leprosy: First Experience Report and Review of the Literature

    PubMed Central

    Tallarida, Giuseppe; d'Alcontres, Francesco Stagno; Noto, Salvatore; Parodi, Aurora; Tagliafico, Alberto

    2016-01-01

    Five years after both right ulnar and median nerve decompression for paraesthesias and palsy, a patient, coming from Nigeria but living in Italy, came to our unit claiming to have persistent pain and combined median and ulnar palsy. Under suspicion of leprosy, skin and left sural nerve biopsy were performed. Skin tests were negative, but Schwann cells resulted as positive for acid-fast bacilli (AFB), leading to the diagnosis of Pure Neuritic Leprosy (PNL). The patient was given PB multidrug therapy and recovered from pain in two months. After nine months both High Resolution Ultrasonography (HRUS) and Magnetic Resonance Imaging (MRI) were performed, revealing thickening of the nerves. Since demyelination is common in PNL, the Authors started to use Diffusion Tensor Imaging Tractography (DTIT) to get better morphological and functional data about myelination than does the traditional imaging. DTIT proved successful in showing myelin discontinuity, reorganization, and myelination, and the Authors suggest that it can give more information about the evolution of the disease, as well as further indications for surgery (nerve decompression, nerve transfers, and babysitting for distal effector protection), and should be added to traditional imaging tools in leprosy. PMID:27738537

  3. Dishevelled attenuates the repelling activity of Wnt signaling during neurite outgrowth in Caenorhabditis elegans

    PubMed Central

    Zheng, Chaogu; Diaz-Cuadros, Margarete; Chalfie, Martin

    2015-01-01

    Wnt proteins regulate axonal outgrowth along the anterior–posterior axis, but the intracellular mechanisms that modulate the strength of Wnt signaling in axon guidance are largely unknown. Using the Caenorhabditis elegans mechanosensory PLM neurons, we found that posteriorly enriched LIN-44/Wnt acts as a repellent to promote anteriorly directed neurite outgrowth through the LIN-17/Frizzled receptor, instead of controlling neuronal polarity as previously thought. Dishevelled (Dsh) proteins DSH-1 and MIG-5 redundantly mediate the repulsive activity of the Wnt signals to induce anterior outgrowth, whereas DSH-1 also provides feedback inhibition to attenuate the signaling to allow posterior outgrowth against the Wnt gradient. This inhibitory function of DSH-1, which requires its dishevelled, Egl-10, and pleckstrin (DEP) domain, acts by promoting LIN-17 phosphorylation and is antagonized by planar cell polarity signaling components Van Gogh (VANG-1) and Prickle (PRKL-1). Our results suggest that Dsh proteins both respond to Wnt signals to shape neuronal projections and moderate its activity to fine-tune neuronal morphology. PMID:26460008

  4. Dishevelled attenuates the repelling activity of Wnt signaling during neurite outgrowth in Caenorhabditis elegans.

    PubMed

    Zheng, Chaogu; Diaz-Cuadros, Margarete; Chalfie, Martin

    2015-10-27

    Wnt proteins regulate axonal outgrowth along the anterior-posterior axis, but the intracellular mechanisms that modulate the strength of Wnt signaling in axon guidance are largely unknown. Using the Caenorhabditis elegans mechanosensory PLM neurons, we found that posteriorly enriched LIN-44/Wnt acts as a repellent to promote anteriorly directed neurite outgrowth through the LIN-17/Frizzled receptor, instead of controlling neuronal polarity as previously thought. Dishevelled (Dsh) proteins DSH-1 and MIG-5 redundantly mediate the repulsive activity of the Wnt signals to induce anterior outgrowth, whereas DSH-1 also provides feedback inhibition to attenuate the signaling to allow posterior outgrowth against the Wnt gradient. This inhibitory function of DSH-1, which requires its dishevelled, Egl-10, and pleckstrin (DEP) domain, acts by promoting LIN-17 phosphorylation and is antagonized by planar cell polarity signaling components Van Gogh (VANG-1) and Prickle (PRKL-1). Our results suggest that Dsh proteins both respond to Wnt signals to shape neuronal projections and moderate its activity to fine-tune neuronal morphology.

  5. AMPK over-activation leads to accumulation of α-synuclein oligomers and decrease of neurites

    PubMed Central

    Jiang, Peizhou; Gan, Ming; Ebrahim, Abdul Shukkur; Castanedes-Casey, Monica; Dickson, Dennis W.; Yen, Shu-Hui C.

    2012-01-01

    Neuronal inclusions of α-synuclein (α-syn), termed Lewy bodies, are a hallmark of Parkinson disease (PD). Increased α-syn levels can occur in brains of aging human and neurotoxin treated mice. Since previous studies have shown increased brain lactate levels in aging brains, in PD affected subjects when compared to age-matched controls, and in mice treated with MPTP, we tested the effects of lactate exposure on α-syn in a cell based-study. We demonstrated that (i) lactate treatment led to α-syn accumulation and oligomerization in a time- and concentration-dependent manner, (ii) such alterations were mediated via adenosine-monophosphate activated protein kinase (AMPK) and associated with increasing cytoplasmic phosphorylated AMPK levels, (iii) AMPK activation facilitated α-syn accumulation and phosphorylation, (iv) lactate treatment or overexpression of active form of AMPK decreased α-syn turnover and neurite outgrowth and (v) Lewy body-bearing neurons displayed abnormal cytoplasmic distribution of phosphorylated AMPK, which normally is located in nuclei. Together, our results suggest that chronic neuronal accumulation of α-syn induced by lactate-triggered AMPK activation in aging brains may be a novel mechanism underlying α-synucleionpathies in PD and related disorders. PMID:23200460

  6. Novel High Content Screen Detects Compounds That Promote Neurite Regeneration from Cochlear Spiral Ganglion Neurons

    PubMed Central

    Whitlon, Donna S.; Grover, Mary; Dunne, Sara F.; Richter, Sonja; Luan, Chi-Hao; Richter, Claus-Peter

    2015-01-01

    The bipolar spiral ganglion neurons (SGN) carry sound information from cochlear hair cells to the brain. After noise, antibiotic or toxic insult to the cochlea, damage to SGN and/or hair cells causes hearing impairment. Damage ranges from fiber and synapse degeneration to dysfunction and loss of cells. New interventions to regenerate peripheral nerve fibers could help reestablish transfer of auditory information from surviving or regenerated hair cells or improve results from cochlear implants, but the biochemical mechanisms to target are largely unknown. Presently, no drugs exist that are FDA approved to stimulate the regeneration of SGN nerve fibers. We designed an original phenotypic assay to screen 440 compounds of the NIH Clinical Collection directly on dissociated mouse spiral ganglia. The assay detected one compound, cerivastatin, that increased the length of regenerating neurites. The effect, mimicked by other statins at different optimal concentrations, was blocked by geranylgeraniol. These results demonstrate the utility of screening small compound libraries on mixed cultures of dissociated primary ganglia. The success of this screen narrows down a moderately sized library to a single compound which can be elevated to in-depth in vivo studies, and highlights a potential new molecular pathway for targeting of hearing loss drugs. PMID:26521685

  7. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth.

    PubMed

    Mattson, M P; Haddon, R C; Rao, A M

    2000-06-01

    Carbon nanotubes are strong, flexible, conduct electrical current, and can be functionalized with different molecules, properties that may be useful in basic and applied neuroscience research. We report the first application of carbon nanotube technology to neuroscience research. Methods were developed for growing embryonic rat-brain neurons on multiwalled carbon nanotubes. On unmodified nanotubes, neurons extend only one or two neurites, which exhibit very few branches. In contrast, neurons grown on nanotubes coated with the bioactive molecule 4-hydroxynonenal elaborate multiple neurites, which exhibit extensive branching. These findings establish the feasability of using nanotubes as substrates for nerve cell growth and as probes of neuronal function at the nanometer scale.

  8. Lysophospholipid receptors LPA1–3 are not required for the inhibitory effects of LPA on mouse retinal growth cones

    PubMed Central

    Birgbauer, Eric; Chun, Jerold

    2016-01-01

    One of the major requirements in the development of the visual system is axonal guidance of retinal ganglion cells toward correct targets in the brain. A novel class of extracellular lipid signaling molecules, lysophospholipids, may serve as potential axon guidance cues. They signal through cognate G protein-coupled receptors, at least some of which are expressed in the visual system. Here we show that in the mouse visual system, a lysophospholipid known as lysophosphatidic acid (LPA) is inhibitory to retinal neurites in vitro when delivered extracellularly, causing growth cone collapse and neurite retraction. This inhibitory effect of LPA is both active in the nanomolar range and specific compared to the related lysophospholipid, sphingosine 1-phosphate (S1P). Knockout mice lacking three of the five known LPA receptors, LPA1–3, continue to display retinal growth cone collapse and neurite retraction in response to LPA, demonstrating that these three receptors are not required for these inhibitory effects and indicating the existence of one or more functional LPA receptors expressed on mouse retinal neurites that can mediate neurite retraction. PMID:26966392

  9. Bidirectional interactions between NOX2-type NADPH oxidase and the F-actin cytoskeleton in neuronal growth cones.

    PubMed

    Munnamalai, Vidhya; Weaver, Cory J; Weisheit, Corinne E; Venkatraman, Prahatha; Agim, Zeynep Sena; Quinn, Mark T; Suter, Daniel M

    2014-08-01

    NADPH oxidases are important for neuronal function but detailed subcellular localization studies have not been performed. Here, we provide the first evidence for the presence of functional NADPH oxidase 2 (NOX2)-type complex in neuronal growth cones and its bidirectional relationship with the actin cytoskeleton. NADPH oxidase inhibition resulted in reduced F-actin content, retrograde F-actin flow, and neurite outgrowth. Stimulation of NADPH oxidase via protein kinase C activation increased levels of hydrogen peroxide in the growth cone periphery. The main enzymatic NADPH oxidase subunit NOX2/gp91(phox) localized to the growth cone plasma membrane and showed little overlap with the regulatory subunit p40(phox) . p40(phox) itself exhibited colocalization with filopodial actin bundles. Differential subcellular fractionation revealed preferential association of NOX2/gp91(phox) and p40(phox) with the membrane and the cytoskeletal fraction, respectively. When neurite growth was evoked with beads coated with the cell adhesion molecule apCAM, we observed a significant increase in colocalization of p40(phox) with NOX2/gp91(phox) at apCAM adhesion sites. Together, these findings suggest a bidirectional functional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones, which contributes to the control of neurite outgrowth. We have previously shown that reactive oxygen species (ROS) are critical for actin organization and dynamics in neuronal growth cones as well as neurite outgrowth. Here, we report that the cytosolic subunit p40(phox) of the NOX2-type NADPH oxidase complex is partially associated with F-actin in neuronal growth cones, while ROS produced by this complex regulates F-actin dynamics and neurite growth. These findings provide evidence for a bidirectional relationship between NADPH oxidase activity and the actin cytoskeleton in neuronal growth cones. PMID:24702317

  10. Neurite-specific Ca2+ dynamics underlying sound processing in an auditory interneurone.

    PubMed

    Baden, T; Hedwig, B

    2007-01-01

    Concepts on neuronal signal processing and integration at a cellular and subcellular level are driven by recording techniques and model systems available. The cricket CNS with the omega-1-neurone (ON1) provides a model system for auditory pattern recognition and directional processing. Exploiting ON1's planar structure we simultaneously imaged free intracellular Ca(2+) at both input and output neurites and recorded the membrane potential in vivo during acoustic stimulation. In response to a single sound pulse the rate of Ca(2+) rise followed the onset spike rate of ON1, while the final Ca(2+) level depended on the mean spike rate. Ca(2+) rapidly increased in both dendritic and axonal arborizations and only gradually in the axon and the cell body. Ca(2+) levels were particularly high at the spike-generating zone. Through the activation of a Ca(2+)-sensitive K(+) current this may exhibit a specific control over the cell's electrical response properties. In all cellular compartments presentation of species-specific calling song caused distinct oscillations of the Ca(2+) level in the chirp rhythm, but not the faster syllable rhythm. The Ca(2+)-mediated hyperpolarization of ON1 suppressed background spike activity between chirps, acting as a noise filter. During directional auditory processing, the functional interaction of Ca(2+)-mediated inhibition and contralateral synaptic inhibition was demonstrated. Upon stimulation with different sound frequencies, the dendrites, but not the axonal arborizations, demonstrated a tonotopic response profile. This mirrored the dominance of the species-specific carrier frequency and resulted in spatial filtering of high frequency auditory inputs. PMID:17443773

  11. Flavonoids isolated from Rumex aquaticus exhibit neuroprotective and neurorestorative properties by enhancing neurite outgrowth and synaptophysin.

    PubMed

    Orbán-Gyapai, Orsolya; Raghavan, Aparna; Vasas, Andrea; Forgo, Peter; Hohmann, Judit; Shah, Zahoor A

    2014-01-01

    There is heightened interest in the field of stroke recovery as there is need for agents that would prevent the debilitating effects of the disorder, thereby tremendously reducing the societal and economic costs associated with it. In this study, the isolation of two flavonoids--quercetin-3-O-galactoside (1) and quercetin-3-O-arabinoside (2)--from Rumex aquaticus (western dock) and their neuroprotective effects were reported in the oxygen-glucose deprivation (OGD) model of in vitro ischemia using rat pheochromocytoma (PC12) cell line. Bioassay-guided fractionation of the ethyl-acetate extract of Rumex aquaticus L. afforded the isolation of compounds 1 and 2. The structures of compounds were established on the basis of spectroscopic analyses (UV, mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR). Both compounds were isolated for the first time from this species. In the course of the pharmacological experiments it was detected that these flavonoids at 10 µM concentration significantly improved cell survival in the oxygen-glucose deprivation model of ischemia. Moreover, they also increased neurite outgrowth in differentiated PC12 cells subjected to ischemic insult. Investigations on the cellular mechanism for the observed effect revealed that compound 1 (10 µM) enhances the expression of synaptophysin - a marker of synapses, and an indicator of synaptic plasticity. Rapid restoration of neurological function following injury is paramount to the prevention of debilitating consequences of ischemic stroke. This combination of neuroprotection and neuritogenic potential could be particularly useful in the recovery phase of stroke.

  12. Neurite-specific Ca2+ dynamics underlying sound processing in an auditory interneurone.

    PubMed

    Baden, T; Hedwig, B

    2007-01-01

    Concepts on neuronal signal processing and integration at a cellular and subcellular level are driven by recording techniques and model systems available. The cricket CNS with the omega-1-neurone (ON1) provides a model system for auditory pattern recognition and directional processing. Exploiting ON1's planar structure we simultaneously imaged free intracellular Ca(2+) at both input and output neurites and recorded the membrane potential in vivo during acoustic stimulation. In response to a single sound pulse the rate of Ca(2+) rise followed the onset spike rate of ON1, while the final Ca(2+) level depended on the mean spike rate. Ca(2+) rapidly increased in both dendritic and axonal arborizations and only gradually in the axon and the cell body. Ca(2+) levels were particularly high at the spike-generating zone. Through the activation of a Ca(2+)-sensitive K(+) current this may exhibit a specific control over the cell's electrical response properties. In all cellular compartments presentation of species-specific calling song caused distinct oscillations of the Ca(2+) level in the chirp rhythm, but not the faster syllable rhythm. The Ca(2+)-mediated hyperpolarization of ON1 suppressed background spike activity between chirps, acting as a noise filter. During directional auditory processing, the functional interaction of Ca(2+)-mediated inhibition and contralateral synaptic inhibition was demonstrated. Upon stimulation with different sound frequencies, the dendrites, but not the axonal arborizations, demonstrated a tonotopic response profile. This mirrored the dominance of the species-specific carrier frequency and resulted in spatial filtering of high frequency auditory inputs.

  13. Neurite guidance and three-dimensional confinement via compliant semiconductor scaffolds.

    PubMed

    Cavallo, Francesca; Huang, Yu; Dent, Erik W; Williams, Justin C; Lagally, Max G

    2014-12-23

    Neurons are often cultured in vitro on a flat, open, and rigid substrate, a platform that does not reflect well the native microenvironment of the brain. To address this concern, we have developed a culturing platform containing arrays of microchannels, formed in a crystalline-silicon nanomembrane (NM) resting on polydimethylsiloxane; this platform will additionally enable active sensing and stimulation at the local scale, via devices fabricated in the silicon. The mechanical properties of the composite Si/compliant substrate nanomaterial approximate those of neural tissue. The microchannels, created in the NM by strain engineering, demonstrate strong guidance of neurite outgrowth. Using plasma techniques, we developed a means to coat just the inside surface of these channels with an adhesion promoter (poly-d-lysine). For NM channels with openings larger than the cross-sectional area of a single axon, strong physical confinement and guidance of axons through the channels are observed. Imaging of axons that grow in channels with openings that approximate the size of an axon suggests that a tight seal exists between the cell membrane and the inner surface of the channel, mimicking a myelin sheath. Such a tight seal of the cell membrane with the channel surface would make this platform an attractive candidate for future neuronal repair. Results of measurements of impedance and photoluminescence of bare NM channels are comparable to those on a flat NM, demonstrating electrical and optical modalities of our platform and suggesting that this scaffold can be expanded for active sensing and monitoring of neuron cellular processes in conditions in which they exist naturally.

  14. CaMKII-Mediated CREB Phosphorylation Is Involved in Ca2+-Induced BDNF mRNA Transcription and Neurite Outgrowth Promoted by Elec