Science.gov

Sample records for growth hormone binding

  1. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes.

    PubMed Central

    Barlow, J W; Voz, M L; Eliard, P H; Mathy-Harter, M; De Nayer, P; Economidis, I V; Belayew, A; Martial, J A; Rousseau, G G

    1986-01-01

    The intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cellulose. Restriction fragments of the human growth hormone gene were added to determine their ability to inhibit labeled receptor binding to DNA-cellulose. These fragments encompassed nucleotide sequences from about three kilobase pairs upstream to about four kilobase pairs downstream from the transcription initiation site. The thyroid hormone-receptor complex bound preferentially to the 5'-flanking sequences of the growth hormone gene in a region between nucleotide coordinates -290 and -129. The receptor also bound to an analogous promoter region in the human placental lactogen gene, which has 92% nucleotide sequence homology with the growth hormone gene. These binding regions appear to be distinct from those that are recognized by the receptor for glucocorticoids, which stimulate growth hormone gene expression synergistically with thyroid hormone. The presence of thyroid hormone was required for binding of its receptor to the growth hormone gene promoter, suggesting that thyroid hormone renders the receptor capable of recognizing specific gene regions. PMID:3466175

  2. Thyroid hormone receptors bind to defined regions of the growth hormone and placental lactogen genes.

    PubMed

    Barlow, J W; Voz, M L; Eliard, P H; Mathy-Harter, M; De Nayer, P; Economidis, I V; Belayew, A; Martial, J A; Rousseau, G G

    1986-12-01

    The intracellular receptor for thyroid hormone is a protein found in chromatin. Since thyroid hormone stimulates transcription of the growth hormone gene through an unknown mechanism, the hypothesis that the thyroid hormone-receptor complex interacts with defined regions of this gene has been investigated in a cell-free system. Nuclear extracts from human lymphoblastoid IM-9 cells containing thyroid hormone receptors were incubated with L-3,5,3'-tri[125I]iodothyronine and calf thymus DNA-cellulose. Restriction fragments of the human growth hormone gene were added to determine their ability to inhibit labeled receptor binding to DNA-cellulose. These fragments encompassed nucleotide sequences from about three kilobase pairs upstream to about four kilobase pairs downstream from the transcription initiation site. The thyroid hormone-receptor complex bound preferentially to the 5'-flanking sequences of the growth hormone gene in a region between nucleotide coordinates -290 and -129. The receptor also bound to an analogous promoter region in the human placental lactogen gene, which has 92% nucleotide sequence homology with the growth hormone gene. These binding regions appear to be distinct from those that are recognized by the receptor for glucocorticoids, which stimulate growth hormone gene expression synergistically with thyroid hormone. The presence of thyroid hormone was required for binding of its receptor to the growth hormone gene promoter, suggesting that thyroid hormone renders the receptor capable of recognizing specific gene regions.

  3. Absence of serum growth hormone binding protein in patients with growth hormone receptor deficiency (Laron dwarfism)

    SciTech Connect

    Daughaday, W.H.; Trivedi, B.

    1987-07-01

    It has recently been recognized that human serum contains a protein that specifically binds human growth hormone (hGH). This protein has the same restricted specificity for hGH as the membrane-bound GH receptor. To determine whether the GH-binding protein is a derivative of, or otherwise related to, the GH receptor, the authors have examined the serum of three patients with Laron-type dwarfism, a condition in which GH refractoriness has been attributed to a defect in the GH receptor. The binding of /sup 125/I-labeled hGH incubated with serum has been measured after gel filtration of the serum through an Ultrogel AcA 44 minicolumn. Results are expressed as percent of specifically bound /sup 125/I-hGH and as specific binding relative to that of a reference serum after correction is made for endogenous GH. The mean +/- SEM of specific binding of sera from eight normal adults (26-46 years of age) was 21.6 +/- 0.45%, and the relative specific binding was 101.1 +/- 8.6%. Sera from 11 normal children had lower specific binding of 12.5 +/- 1.95% and relative specific binding of 56.6 +/- 9.1%. Sera from three children with Laron-type dwarfism lacked any demonstrable GH binding, whereas sera from 10 other children with other types of nonpituitary short stature had normal relative specific binding. They suggest that the serum GH-binding protein is a soluble derivative of the GH receptor. Measurement of the serum GH-binding protein may permit recognition of other abnormalities of the GH receptor.

  4. Growth hormone receptor/binding protein: Physiology and function

    SciTech Connect

    Herington, A.C.; Ymer, S.I.; Stevenson, J.L.; Roupas, P.

    1994-12-31

    Soluble truncated forms of the growth hormone receptor (GHR) are present in the circulation of many species and are also produced by many tissues/cell types. The major high-affinity forms of these GH-binding proteins (GHBP) are derived by alternative splicing of GHR mRNA in rodents, but probably by proteolytic cleavage in other species. Questions still remain with respect to the origins, native molecular forms(s), physiology, and function of the GHBPs, however. The observation that GH induces dimerization of the soluble GHBP and a membrane GHR, and that dimerization of GHR appears to be critical for GH bioactivity suggests that the presentation of GH to target cells, in an unbound form or as a monomeric or dimeric complex with GHBP, may have significant implications for the ability of GH to activate specific postreceptor signaling pathways (tyrosine kinase, protein kinase C, G-protein pathways) known to be utilized by GH for its diverse biological effects. This minireview addresses some of these aspects and highlights several new questions which have arisen as a result of recent advances in our understanding of the structure, function, and signaling mechanisms of the membrane bound GHR. 43 refs.

  5. Thyroid Hormone Receptor Binds to a Site in the Rat Growth Hormone Promoter Required for Induction by Thyroid Hormone

    NASA Astrophysics Data System (ADS)

    Koenig, Ronald J.; Brent, Gregory A.; Warne, Robert L.; Reed Larsen, P.; Moore, David D.

    1987-08-01

    Transcription of the rat growth hormone (rGH) gene in pituitary cells is increased by addition of thyroid hormone (T3). This induction is dependent on the presence of specific sequences just upstream of the rGH promoter. We have partially purified T3 receptor from rat liver and examined its interaction with these rGH sequences. We show here that T3 receptor binds specifically to a site just upstream of the basal rGH promoter. This binding site includes two copies of a 7-base-pair direct repeat, the centers of which are separated by 10 base pairs. Deletions that specifically remove the T3 receptor binding site drastically reduce response to T3 in transient transfection experiments. These results demonstrate that T3 receptor can recognize specific DNA sequences and suggest that it can act directly as a positive transcriptional regulatory factor.

  6. Pharmacokinetics and acute lipolytic actions of growth hormone. Impact of age, body composition, binding proteins, and other hormones.

    PubMed

    Hansen, Troels Krarup

    2002-10-01

    The biologic actions of endogeneous growth hormone (GH) depend on its secretion and clearance rates as well as sensitivity at the receptor level. Aberrations in GH pharmacokinetics and pharmacodynamics may occur with increasing age, and have been implicated in diseases such as obesity, diabetes mellitus, and critical illness. In this review, recent insights into the association between GH metabolism and age, body composition, binding proteins and other hormones are discussed.

  7. The first intron of the human growth hormone gene contains a binding site for glucocorticoid receptor.

    PubMed

    Moore, D D; Marks, A R; Buckley, D I; Kapler, G; Payvar, F; Goodman, H M

    1985-02-01

    Glucocorticoid receptor (GCR) protein stimulates transcription from a variety of cellular genes. We show here that GCR partially purified from rat liver binds specifically to a site within the first intron of the human growth hormone (hGH) gene, approximately 100 base pairs downstream from the start of hGH transcription. GCR binding is selectively inhibited by methylation of two short, symmetrically arranged clusters of guanine residues within this site. A cloned synthetic 24-base-pair deoxyoligonucleotide containing the predicted GCR binding sequence interacts specifically with GCR. The hGH binding site shares sequence homology with a GCR binding site upstream from the human metallothionein II gene and a subset of GCR binding sites from mouse mammary tumor virus. All of these binding sites for this eukaryotic transcriptional regulatory protein show remarkable similarity in overall geometry to the binding sites for several prokaryotic transcriptional regulatory proteins.

  8. Cloning and characterization of chicken growth hormone binding protein (cGHBP).

    PubMed

    Lau, J S; Yip, C W; Law, K M; Leung, F C

    2007-07-01

    Growth hormone (GH) is indispensable for the growth of animals and its biological activity is mediated by binding to the growth hormone receptor (GHR) [Harvey S, Scanes CG, Daughaday WH. Growth hormone. Boca Raton: CRC Press; 1995]. GHR is a transmembrane protein responsible for signal transduction upon GH binding. GH also binds to the growth hormone binding protein (GHBP) which is the soluble form of GHR extracellular domain existing in circulation. Actions of GHBP include prolongation of GH bioavailability and prevention of GH signaling system from over-stimulation. To date, little is known about the mechanisms generating the chicken GHBP (cGHBP). Elucidating the genomic structure of cGHR will provide insights into such underlying mechanisms. Using polymerase chain reaction and library screening methods, we have characterized the genomic organization of chicken GHR (cGHR). The full-length coding region of the cGHR transcript is composed of eight exons (exons 2-10), lacking a human homolog exon 3 and spans at least 71 kb on the genome. A novel transcript of size 1.2kb was isolated from chicken liver total RNA using 5' and 3' rapid cDNA ends amplification (RACE). It was generated by utilizing a previously unknown polyadenylation signal located at the intron 6. Semi-quantitative reverse transcription polymerase chain reaction showed that this transcript is widely expressed in a variety of tissues. This transcript has an open reading frame comprising 203 amino acids. In vitro binding assay using ELISA demonstrated that Escherichia coli expressed recombinant protein encoded by this transcript was able to bind with chicken GH. Hence, this transcript is a potential candidate for cGHBP.

  9. Concentration of free growth hormone-binding protein in the serum of mice is not regulated by growth hormone.

    PubMed

    Sotelo, A I; Dominici, F P; Bartke, A; Turyn, D

    1997-05-01

    Ames dwarf mice that do not express growth hormone (GH) or prolactin (PRL) genes were used to study the effects of GH deficiency on the presence and the characteristics of GH-binding protein (GHBP) in serum. Chromatographic techniques were used to allow characterization of biological rather than immunological activity of GHBP. Two GH-binding fractions were found in dwarf mice serum, one with low affinity and high capacity (GHBPI) and one with high affinity, low capacity and lower molecular mass (GHBPII). Serum concentration of the high-affinity GHBP was 0.73 +/- 0.03 nM with a Kd of 6.3 +/- 1.7 nM. Since Ames dwarf mice have no GH in the circulation, all the GHBP is free. Interestingly, the concentration of GHBP in dwarf mice was similar to the levels of free GHBP measured in normal mice from the same line. Moreover, this value (0.7 nM) closely resembles the concentration of free GHBP in the serum of transgenic mice overexpressing GH, in which peripheral GH levels are grossly elevated. These observations can be interpreted as evidence that the levels of free GHBP in mouse serum are independent of GH concentration, and that GH influences only the levels of bound GHBP in peripheral circulation.

  10. Placental growth hormone and growth hormone binding protein are first trimester maternal serum markers of Down syndrome.

    PubMed

    Christiansen, Michael

    2009-12-01

    Placental growth hormone (PGH) is synthesised by the placenta, and its function is modulated by growth hormone binding protein (GHBP). The potential of PGH and GHBP as maternal serum screening markers for Down syndrome (DS) was examined. Maternal serum concentrations of PGH and GHBP were determined by ELISA in 74 DS and 261 control pregnancies in gestational week 8(+0) to 13(+4). Log(10) MoM distributions of the markers were established. The performance of DS screening was estimated by Monte Carlo simulation. PGH log(10) MoM (SD) was decreased (p < 0.001) to -0.201 (0.373) and GHBP log(10) MoM to -0.116 (0.265) (p = 0.04), in DS pregnancies (n = 34) in week 8(+0) to 10(+0). In week 10(+1) to 13(+4), neither PGH (p = 0.16) nor GHBP (p = 0.13) was reduced in DS pregnancies. The detection rate (DR) for PGH in screening for DS in week 8(+0) to 10(+0) was 39% for a false positive rate (FPR) of 5%; increasing to 72% in combination with PAPP-A + hCGbeta. PGH + GHBP in combination with PAPP-A + hCGbeta + nuchal translucency (NT) (CUB test) had a DR of 91% compared with 80% for the CUB test. PGH and GHBP are early first trimester maternal serum markers for DS [Correction made here after initial online publication]. Copyright (c) 2009 John Wiley & Sons, Ltd.

  11. Binding and signalling properties of a growth hormone enhancing monoclonal antibody.

    PubMed

    Beattie, J; Bramani, S; Secchi, C; Mockridge, J

    1999-08-01

    We have used a sequential, qualitative biosensor based assay to demonstrate that OA15, a monoclonal antibody which enhances in vivo the activity of bovine growth hormone (bGH) does not disrupt the interaction between bGH and its cognate receptor (as represented by recombinant bovine GH binding protein -rbGHBP). We have confirmed this using a classical cell-based radio-receptor assay with the GH-responsive mouse pre-adipocyte cell line 3T3-F442A. The fact that OA 15 binding to bGH still allows hormone to interact with its receptor, allows us to test the hypothesis that there is any amplification of signalling events following hormone-MAb treatment of 3T3-F442A cells. We have used as a reporter of GH activity the rapid stimulation of JAK-2 tyrosine phosphorylation which is a critical first step in GH signalling events. We demonstrate that binding of rbGH by OA15 attenuates hormone stimulation of JAK-2 tyrosine phosphorylation. We conclude that although OA15 does not disrupt GH-GH receptor (GHR) interactions it does interfere with subsequent GH activity at the molecular and cellular level. We further speculate therefore that the biological enhancing activity of this antibody is most likely due to an in vivo effect as presentation of antibody-hormone complexes to a GH-target cell inhibits hormone activity.

  12. Growth Hormone

    MedlinePlus

    ... to help diagnose and monitor the treatment of acromegaly and gigantism . Growth hormone is essential for normal ... signs and symptoms of GH excess ( gigantism and acromegaly ). Suppression testing may be done when a pituitary ...

  13. Binding and degradation of (/sup 125/I)human growth hormone in rat adipocytes

    SciTech Connect

    Gorin, E.; Grichting, G.; Goodman, H.M.

    1984-08-01

    Iodinated human growth hormone (( /sup 125/I)hGH) binds to both specific and nonspecific sites on the surface of adipocytes isolated from the epididymal fat of normal rats. When adipocytes were incubated at 37 C with 1 nM (/sup 125/I)hGH, specific binding increased for 30-60 min and thereafter remained approximately constant as long as the hormone was present in the medium. About 90% of the /sup 125/I released was soluble in 5% trichloroacetic acid and was in the form of iodotyrosine. The rate of /sup 125/I release from specific binding sites decreased by a factor of 4 when the temperature was lowered from 37 to 17 C. Replacement of some of the sodium chloride in the buffer with 25 mM ammonium chloride had little or no effect on the amount on /sup 125/I that bound to cells when (/sup 125/I)hGH was present in the medium, but completely blocked the release of /sup 125/I from cells transferred to hormone-free medium. Ammonium chloride also significantly reduced both the release of /sup 125/I from nonspecific binding sites and the amount of /sup 125/I recovered in trichloroacetic acid-soluble form. Cloroquine, leupeptin, or colchicine nearly doubled the specific binding of (/sup 125/I)hGH after 180 min and markedly slowed the release of /sup 125/I when cells were transferred to hormone-free medium. All of these agents also significantly reduced the rate of release of /sup 125/I from nonspecific binding sites. Incubation of adipose tissue from hypophysectomized rats with ammonium chloride, leupeptin, or colchicine failed to alter the ability of GH to increase glucose oxidation, induce refractoriness, or promote lipolysis in the presence of theophylline.

  14. The structure and regulation of expression of the mouse growth hormone receptor and binding protein

    SciTech Connect

    Talamantes, F.

    1994-12-31

    The mouse growth hormone receptor (mGHR) and the mouse growth hormone-binding protein (mGHBP) are products of a single gene which are generated alternative splicing. The factors that regulate the expression of mGHR and mGHBP mRNA and protein during pregnancy in the mouse are incompletely understood. During pregnancy in the mouse, there are parallel increases in circulating mouse growth hormone (mGH), liver mGHR, and serum mGHBP. The increase in both hepatic mGHR and serum mGHBP begins on Day 9 of gestation and by late gestation the hepatic mGHR content has increased 8-fold and serum mGHBP has increased 30-fold compared with values in nonpregnant controls. A parallel increase occurs in the steady state levels of liver GHR and GHBP encoding mRNAs. The increase in both messages begins on Day 9 of gestation; however, the GHR mRNA reaches maximum levels by Day 13, while the GHBP mRNA continues to increase until the end of pregnancy. The magnitude of the increase in the GHR-encoding message is 15- to 20-fold between nonpregnant and late pregnant mice, and the magnitude of the increase in the GHBP-encoding message is 30- to 50-fold. Both pituitary mGH and the number of conceptuses influence the receptors and binding protein for mGH during pregnancy. 22 refs.

  15. A rapid and simple assay for growth hormone-binding protein activity in human plasma.

    PubMed

    Baumann, G; Shaw, M A; Amburn, K

    1988-12-01

    The newly discovered circulating growth hormone binding proteins dictate a re-evaluation of the state of GH in plasma in health and disease as the binding proteins are known to affect GH metabolism and action. We describe a rapid and simple GH-binding assay that allows determination of free and complexed plasma GH, as well as GH-binding protein activity as an index of GH-binding protein levels, with relative ease. The method is based on incubation of plasma with 125I-GH and separation of bound from free GH on small DEAE-cellulose columns; it can be used on a large scale for routine determinations. The results obtained by this method are comparable to those obtained with the previously used slow and more cumbersome gel filtration technique. Initial data obtained in normal subjects and certain disease states show that the bound fraction of plasma GH is similar in men, women and children, is unaffected by pregnancy or acute infection, but is marginally decreased in liver cirrhosis. In acromegaly, binding protein activity also appears normal when allowance is made for partial saturation of the binding proteins by the high prevailing GH levels. The technique we describe should facilitate investigations of normal and abnormal regulation of the GH binding proteins.

  16. Activin inhibits binding of transcription factor Pit-1 to the growth hormone promoter.

    PubMed Central

    Struthers, R S; Gaddy-Kurten, D; Vale, W W

    1992-01-01

    Activin A is a potent growth and differentiation factor related to transforming growth factor beta. In somatotrophs, activin suppresses the biosynthesis and secretion of growth hormone (GH) and cellular proliferation. We report here that, in MtTW15 somatotrophic tumor cells, activin decreased GH mRNA levels and inhibited expression of transfected GH promoter--chloramphenicol acetyltransferase fusion genes. Deletion mapping of nucleotide sequences mediating this inhibition led to the identification of a region that has previously been characterized as binding the pituitary-specific transcription factor Pit-1/GHF-1. Characterization of nuclear factor binding to this region demonstrated that binding of Pit-1 to the GH promoter is lost on activin treatment. These results indicate that activin-induced repression of GH biosynthesis is mediated by the loss of tissue-specific transcription factor binding to the GH promoter and suggest a possible general mechanism for other activin responses, whereby activin regulates the function of other POU- or homeodomain-containing transcription factors. Images PMID:1454833

  17. Recurrent hormone-binding domain truncated ESR1 amplifications in primary endometrial cancers suggest their implication in hormone independent growth

    PubMed Central

    Holst, Frederik; Hoivik, Erling A.; Gibson, William J.; Taylor-Weiner, Amaro; Schumacher, Steven E.; Asmann, Yan W.; Grossmann, Patrick; Trovik, Jone; Necela, Brian M.; Thompson, E. Aubrey; Meyerson, Matthew; Beroukhim, Rameen; Salvesen, Helga B.; Cherniack, Andrew D.

    2016-01-01

    The estrogen receptor alpha (ERα) is highly expressed in both endometrial and breast cancers, and represents the most prevalent therapeutic target in breast cancer. However, anti-estrogen therapy has not been shown to be effective in endometrial cancer. Recently it has been shown that hormone-binding domain alterations of ERα in breast cancer contribute to acquired resistance to anti-estrogen therapy. In analyses of genomic data from The Cancer Genome Atlas (TCGA), we observe that endometrial carcinomas manifest recurrent ESR1 gene amplifications that truncate the hormone-binding domain encoding region of ESR1 and are associated with reduced mRNA expression of exons encoding the hormone-binding domain. These findings support a role for hormone-binding alterations of ERα in primary endometrial cancer, with potentially important therapeutic implications. PMID:27160768

  18. Regulation of growth hormone receptor and binding protein expression in domestic species

    SciTech Connect

    Bingham, B.; Oldham, E.R.; Baumbach, W.R.

    1994-12-31

    Growth hormone receptor (GHR) expression has been analyzed at the RNA level. In the rat, relative expression of the RNA species encoding the GHR and the GH-binding protein (GHBP) appears to be sensitive to endocrine status. Full-length GHR cDNA clones from ovine, porcine, and chicken were used as probes to investigate the existence of unique RNAs for GHBPs in these species. In the sheep and pig, only a single, {approximately}4.5-kb RNA is apparent. Although quite high levels of GH binding activity are found in pig serum, a variety of methods failed to isolate a separate GHBP message, suggesting that porcine GHBP is produced via a mechanism different from that which is known for rat. One class of chicken GHR cDNA, resulting from alternative use of a splice acceptor 17 bases upstream of the intron 6/exon 7 junction, is also presented. 24 refs., 2 figs., 3 tabs.

  19. Insulin-Insulin-like Growth Factors Hybrids as Molecular Probes of Hormone:Receptor Binding Specificity.

    PubMed

    Křížková, Květoslava; Chrudinová, Martina; Povalová, Anna; Selicharová, Irena; Collinsová, Michaela; Vaněk, Václav; Brzozowski, Andrzej M; Jiráček, Jiří; Žáková, Lenka

    2016-05-31

    Insulin, insulin-like growth factors 1 and 2 (IGF-1 and -2, respectively), and their receptors (IR and IGF-1R) are the key elements of a complex hormonal system that is essential for the development and functioning of humans. The C and D domains of IGFs (absent in insulin) likely play important roles in the differential binding of IGF-1 and -2 to IGF-1R and to the isoforms of IR (IR-A and IR-B) and specific activation of these receptors. Here, we attempted to probe the impact of IGF-1 and IGF-2 D domains (DI and DII, respectively) and the IGF-2 C domain (CII) on the receptor specificity of these hormones. For this, we made two types of insulin hybrid analogues: (i) with the C-terminus of the insulin A chain extended by the amino acids from the DI and DII domains and (ii) with the C-terminus of the insulin B chain extended by some amino acids derived from the CII domain. The receptor binding affinities of these analogues and their receptor autophosphorylation potentials were characterized. Our results indicate that the DI domain has a more negative impact than the DII domain does on binding to IR, and that the DI domain Pro-Leu-Lys residues are important factors for a different IR-A versus IR-B binding affinity of IGF-1. We also showed that the additions of amino acids that partially "mimic" the CII domain, to the C-terminus of the insulin B chain, change the binding and autophosphorylation specificity of insulin in favor of the "metabolic" IR-B isoform. This opens new venues for rational enhancement of insulin IR-B specificity by modifications beyond the C-terminus of its B chain.

  20. Growth hormone abuse and biological passport: is mannan-binding lectin a complementary candidate?

    PubMed

    Such-Sanmartín, Gerard; Bosch, Jaume; Segura, Jordi; Gutiérrez-Gallego, Ricardo

    2011-09-01

    In the detection of human growth hormone (GH) abuse, the approach based on altered GH-related biomarkers is also being considered with respect to its application within the context of a biological passport. As a potential biomarker, mannan-binding lectin (MBL), which is reported to respond to recombinant GH (rGH) administration, is evaluated here. Randomized and single blind and approved by the Ethical Committee (Comité Ético de Investigación Clínica-Instituto Municipal de Asistencia Sanitaria). One group of 12 male subjects (24.2 ± 2.2 years; 76.1 ± 6.1 kg) was studied. Mannan-binding lectin concentration was measured in 12 healthy individuals after subcutaneous daily doses of 6 IU of rGH administration. Mannan-binding lectin serum concentration increased after rGH administration. Mannan-binding lectin concentration increases were observed 48 hours after the first administration and remained elevated for several days after the final dose. Mannan-binding lectin concentration increase and elapsed time to recover initial MBL values after the last rGH administration. Absolute values displayed high interindividual variability, and 1 individual did not show any MBL increase (potential MBL deficiency). Mannan-binding lectin protein showed a clear concentration increase after continued rGH administration, despite the high heterogeneity found between individuals. The use of MBL as a complementary GH-related biomarker could be of interest, taking advantage of the high increases (up to 700%) and the relatively slow recovery time.

  1. SHBG (Sex Hormone Binding Globulin)

    MedlinePlus

    ... as: Testosterone-estrogen Binding Globulin; TeBG Formal name: Sex Hormone Binding Globulin Related tests: Testosterone , Free Testosterone, ... I should know? How is it used? The sex hormone binding globulin (SHBG) test may be used ...

  2. Growth hormone deficiency - children

    MedlinePlus

    Growth hormone deficiency means the pituitary gland does not make enough growth hormone. ... The pituitary gland is located at the base of the brain. This gland controls the body's balance of hormones. It ...

  3. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    SciTech Connect

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  4. Multiple antigen peptide dendrimer elicits antibodies for detecting rat and mouse growth hormone binding proteins

    PubMed Central

    Aguilar, Roberto M.; Talamantes, Frank J.; Bustamante, Juan J.; Muñoz, Jesus; Treviño, Lisa R.; Martinez, Andrew O.; Haro, Luis S.

    2009-01-01

    The membrane-bound rat growth hormone receptor (GH-R) and an alternatively spliced isoform, the soluble rat GH binding protein (GH-BP), are comprised of identical N-terminal GH binding domains, however, their C-terminal sequences differ. Immunological reagents are needed to distinguish between the two isoforms in order to understand their respective roles in mediating the actions of GH. Accordingly, a tetravalent multiple antigen peptide (MAP) dendrimer with four identical branches of a C-terminal peptide sequence of the rat GH-BP (GH-BP263-279) was synthesized and used as an immunogen in rabbits. Solid-phase peptide synthesis of four GH-BP263-279 segments onto a tetravalent Lys2-Lys-β-Ala-OH core peptide was carried out using N-(9-fluorenyl)methoxycarbonyl chemistry. The mass of the RP-HPLC purified synthetic product, 8398 Da, determined by ESI-MS, was identical to expected mass. Three anti-rat GH-BP263-279 MAP antisera, BETO-8039, BETO-8040 and BETO-8041, at dilutions of 10-3, recognized both the rat GH-BP263-279 MAP and recombinant mouse GH-BP with ED50s within a range of 5-10 fmol but did not cross-react with BSA in dot blot analyses. BETO-8041 antisera (10-3 dilution) recognized GH-BPs of rat serum and liver having Mrs ranging from 35-130 kDa but did not recognize full-length rat GH-Rs. The antisera also detected recombinant mouse GH-BPs. In summary, the tetravalent rat GH-BP263-279 MAP dendrimer served as an effective immunogenic antigen in eliciting high titer antisera specific for the C-termini of both rat and mouse GH-BPs. The antisera will facilitate studies aimed at improving our understanding of the biology of GH-BPs. PMID:19089805

  5. Growth hormone augments superoxide anion secretion of human neutrophils by binding to the prolactin receptor.

    PubMed Central

    Fu, Y K; Arkins, S; Fuh, G; Cunningham, B C; Wells, J A; Fong, S; Cronin, M J; Dantzer, R; Kelley, K W

    1992-01-01

    Recombinant human growth hormone (HuGH) and human prolactin (HuPRL), but not GH of bovine or porcine origin, prime human neutrophils for enhanced superoxide anion (O2-) secretion. Since HuGH, but not GH of other species, effectively binds to the HuPRL receptor (HuPRL-R), we used a group of HuGH variants created by site-directed mutagenesis to identify the receptor on human neutrophils responsible for HuGH priming. A monoclonal antibody (MAb) directed against the HuPRL-R completely abrogated O2- secretion by neutrophils incubated with either HuGH or HuPRL, whereas a MAb to the HuGH-R had no effect. The HuGH variant K172A/F176A, which has reduced affinity for both the HuGH-binding protein (BP) and the HuPRL-BP, was unable to prime human neutrophils. This indicates that priming is initiated by a ligand-receptor interaction, the affinity of which is near that defined for receptors for PRL and GH. Another HuGH variant, K168A/E174A, which has relatively low affinity for the HuPRL-BP but slightly increased affinity for the HuGH-BP, had much reduced ability to prime neutrophils. In contrast, HuGH variant E56D/R64M, which has a similar affinity as wild-type HuGH for the HuPRL-BP but a lower affinity for the HuGH-BP, primed neutrophils as effectively as the wild-type HuGH. Finally, binding of HuGH to the HuPRL-BP but not to the HuGH-BP has been shown to be zinc dependent, and priming of neutrophils by HuGH was also responsive to zinc. Collectively, these data directly couple the binding of HuGH to the HuPRL-R with one aspect of functional activation of human target cells. Images PMID:1310696

  6. Resistance to juvenile hormone and an insect growth regulator in Drosophila is associated with an altered cytosolic juvenile hormone-binding protein

    SciTech Connect

    Shemshedini, L.; Wilson, T.G. )

    1990-03-01

    The Met mutant of Drosophila melanogaster is highly resistant to juvenile hormone III (JH III) or its chemical analog, methoprene, an insect growth regulator. Five major mechanisms of insecticide resistance were examined in Met and susceptible Met{sup +} flies. These two strains showed only minor differences when penetration, excretion, tissue sequestration, or metabolism of ({sup 3}H)JH III was measured. In contrast, when we examined JH III binding by a cytosolic binding protein from a JH target tissue, Met strains had a 10-fold lower binding affinity than did Met{sup +} strains. Studies using deficiency-bearing chromosomes provide strong evidence that the Met locus controls the binding protein characteristics and may encode the protein. These studies indicate that resistance in Met flies results from reduced binding affinity of a cytosolic binding protein for JH III.

  7. Characterization of hepatic growth hormone binding sites in two fish species, Gillichthys mirabilis (Teleostei) and Acipenser transmontanus (Chondrostei).

    PubMed

    Tarpey, J F; Nicoll, C S

    1985-10-01

    To obtain information on the presence of growth hormone (GH) receptors in liver of nonmammalian vertebrates the specific binding of 125I-bovine growth hormone (bGH) to liver membranes of seven species representing the major groups was studied by radioreceptor assay. A substantial degree of specific binding was detected with sturgeon (Acipenser transmontanus) liver membranes and a much lower amount was detected on hepatic membranes of Gillichthys mirabilis. No significant specific binding was detected on liver membranes of pigeon, turtle, bullfrog, tilapia, or leopard shark. Gillichthys and sturgeon liver membranes were further characterized and compared with hepatic membranes from male rabbits. The sturgeon and Gillichthys membranes showed binding that was dependent upon time, temperature, pH, and membrane concentration. Scatchard analysis of the binding of 125I-bGH to sturgeon and rabbit membranes revealed both high and low affinity binding sites. The high affinity sites had KA values of 3.1 X 10(11) and 1.0 X 10(11) M-1, and capacities of 12 and 50 fmol/mg protein, respectively. Membranes from Gillichthys liver contained only a single class of binding sites with a KA of 6.7 X 10(9) M-1 and a binding capacity of 49 fmol/mg. Hormonal specificity of the sturgeon and Gillichthys hepatic binding sites was studied using methionyl-human GH (met-hGH), ovine prolactin (oPRL), and a crude preparation of sturgeon (st)GH. The met-hGH and stGH inhibited the binding of 125I-bGH to sturgeon liver membranes while only met-hGH displaced labeled bGH from Gillichthys liver membranes. One microgram of oPRL did not significantly inhibit 125I-bGH binding in either membrane assay. Based on these studies, sturgeon hepatic GH receptors seem to be more like those of nonprimate mammals than those of teleosts. Our results, in conjunction with the data of J. N. Fryer (Gen. Comp. Endocrinol. 39, 123-130 (1979)), indicate that considerable evolutionary divergence has occurred among teleost

  8. Influence of Mg2+ on detection of somatogenic and lactogenic components of growth-hormone-binding protein in mammalian sera.

    PubMed Central

    Amit, T; Hochberg, Z; Barkey, R J

    1993-01-01

    We recently classified the growth-hormone (GH)-binding protein (GH-BP) in a wide range of mammalian [including human (h)] sera and reported the existence of a major lactogenic component in GH-BP of type-III sera (rabbit, horse, dog, pig and cat), based on the capacity of bovine (b) and ovine prolactin (PRL) to displace 125I-labelled human growth hormone (hGH) binding and on direct 125I-bPRL binding studies. In this study, we demonstrate the high degree of Mg2+ dependence of the binding of the classically lactogenic hGH and bPRL, but not that of the somatogenic bGH to various mammalian sera (types I-IV). Serum GH-BP was assayed using a previously described and validated charcoal-separation assay. 125I-hGH binding to rat, ovine, bovine, rabbit, horse, dog and human sera was enhanced 1.5-2.5-fold in the presence of 70 mM Mg2+. The Mg2+ effect was concentration-dependent between 3.7 mM and 70 mM, causing a significant and proportional increase in 125I-hGH binding to serum. Like 125I-hGH, 125I-bPRL binding to type-III sera was also Mg(2+)-dependent. In contrast, 125I-bGH binding to all types of serum GH-BP was not affected by Mg2+ concentrations of up to 35 mM, while 70 mM Mg2+ slightly, but significantly, reduced (by approx. 15%) bGH binding to rabbit serum. In keeping with the Mg(2+)-dependent stimulation of lactogenic hormone binding to GH-BP, 70 mM Mg2+ caused a shift to the left in the displacement curves of hGH and bPRL competing with 125I-hGH binding to rabbit, dog, horse and human sera, while the effects of the somatogens bGH and rabbit GH were shifted to the right. Scatchard analysis of hGH displacement curves with sera from various species yielded linear plots and revealed that Mg2+ significantly increased (2.3-3.0-fold) the affinity constants, but not the binding capacities. These results demonstrate the ability of changes in Mg2+ concentration to determine the degree of differential recognition of somatogens versus lactogens by serum GH-BP. It remains to be

  9. Nutritional status and growth hormone regulate insulin-like growth factor binding protein (igfbp) transcripts in Mozambique tilapia

    PubMed Central

    Breves, Jason P.; Tipsmark, Christian K.; Stough, Beth A.; Seale, Andre P.; Flack, Brenda R.; Moorman, Benjamin P.; Lerner, Darren T.; Grau, E. Gordon

    2014-01-01

    Growth in teleosts is controlled in large part by the activities of the growth hormone (Gh)/insulin-like growth factor (Igf) system. In this study, we initially identified igf-binding protein (bp)1b, -2b, -4, -5a and -6b transcripts in a tilapia EST library. In Mozambique tilapia (Oreochromis mossambicus), tissue expression profiling of igfbps revealed that igfbp1b and -2b had the highest levels of expression in liver while igfbp4, -5a and -6b were expressed at comparable levels in most other tissues. We compared changes in hepatic igfbp1b, -2b and -5a expression during catabolic conditions (28 days of fasting) along with key components of the Gh/Igf system, including plasma Gh and Igf1 and hepatic gh receptor (ghr2), igf1 and igf2 expression. In parallel with elevated plasma Gh and decreased Igf1 levels, we found that hepatic igfbp1b increased substantially in fasted animals. We then tested whether systemic Gh could direct the expression of igfbps in liver. A single intraperitoneal injection of ovine Gh into hypophysectomized tilapia specifically stimulated liver igfbp2b expression along with plasma Igf1 and hepatic ghr2 levels. Our collective data suggest that hepatic endocrine signaling during fasting may involve post-translational regulation of plasma Igf1 via a shift towards the expression of igfbp1b. Thus, Igfbp1b may operate as a molecular switch to restrict Igf1 signaling in tilapia; furthermore, we provide new details regarding isoform-specific regulation of igfbp expression by Gh. PMID:24818968

  10. Nutritional status and growth hormone regulate insulin-like growth factor binding protein (igfbp) transcripts in Mozambique tilapia.

    PubMed

    Breves, Jason P; Tipsmark, Christian K; Stough, Beth A; Seale, Andre P; Flack, Brenda R; Moorman, Benjamin P; Lerner, Darren T; Grau, E Gordon

    2014-10-01

    Growth in teleosts is controlled in large part by the activities of the growth hormone (Gh)/insulin-like growth factor (Igf) system. In this study, we initially identified igf-binding protein (bp)1b, -2b, -4, -5a and -6b transcripts in a tilapia EST library. In Mozambique tilapia (Oreochromis mossambicus), tissue expression profiling of igfbps revealed that igfbp1b and -2b had the highest levels of expression in liver while igfbp4, -5a and -6b were expressed at comparable levels in most other tissues. We compared changes in hepatic igfbp1b, -2b and -5a expression during catabolic conditions (28days of fasting) along with key components of the Gh/Igf system, including plasma Gh and Igf1 and hepatic gh receptor (ghr2), igf1 and igf2 expression. In parallel with elevated plasma Gh and decreased Igf1 levels, we found that hepatic igfbp1b increased substantially in fasted animals. We then tested whether systemic Gh could direct the expression of igfbps in liver. A single intraperitoneal injection of ovine Gh into hypophysectomized tilapia specifically stimulated liver igfbp2b expression along with plasma Igf1 and hepatic ghr2 levels. Our collective data suggest that hepatic endocrine signaling during fasting may involve post-translational regulation of plasma Igf1 via a shift towards the expression of igfbp1b. Thus, Igfbp1b may operate as a molecular switch to restrict Igf1 signaling in tilapia; furthermore, we provide new details regarding isoform-specific regulation of igfbp expression by Gh.

  11. Differential effects of octreotide treatment and transsphenoidal surgery on growth hormone-binding protein levels in patients with acromegaly.

    PubMed

    Hernandez, I; Soderlund, D; Espinosa-de-los-Monteros, A L; Ochoa, R; Zarate, A; Mercado, M

    1999-04-01

    The high-affinity growth hormone-binding protein (GHBP) represents the extracellular portion of the growth hormone (GH) receptor, and its serum levels are a reflection of the tissue receptor status. Levels of GHBP are decreased in patients with active acromegaly, probably because of downregulation of GH receptors. However, there are no studies of patients with acromegaly in which the effects of medical (that is, administration of somatostatin analogs) and surgical therapy on GHBP levels have been compared. That is the task the authors set out to accomplish in this study. The authors studied seven patients in whom acromegaly had been recently diagnosed. They examined these patients at baseline, 2 months after octreotide treatment (subcutaneous administration of 100 microg octreotide three times per day), and 1 month after transsphenoidal surgery. Growth hormone-binding activity was measured, as well as the following biochemical markers of the somatotropic axis: GH suppression induced by oral administration of glucose, insulin-like growth factor-I (IGF-I), and insulin-like growth factor-binding protein-3 (IGFBP3). Although octreotide treatment induced a decrease in the levels of GH, IGF-I, and IGFBP3, as well as an increase in the level of GHBP, these biochemical markers did not reach normal levels. On the other hand, after transsphenoidal surgery, GHBP levels became normal, particularly in those patients in whom serum GH could be suppressed to an undetectable level after glucose loading. The authors conclude that persistently low GHBP levels in patients with acromegaly are normalized by successful pituitary surgery and correlate well with disease activity.

  12. [Growth hormone treatment update].

    PubMed

    2014-02-01

    Short stature in children is a common cause for referral to pediatric endocrinologists, corresponding most times to normal variants of growth. Initially growth hormone therapy was circumscribed to children presenting growth hormone deficiency. Since the production of recombinant human hormone its use had spread to other pathologies.

  13. Dermatophyte-hormone relationships: characterization of progesterone-binding specificity and growth inhibition in the genera Trichophyton and Microsporum.

    PubMed Central

    Clemons, K V; Schär, G; Stover, E P; Feldman, D; Stevens, D A

    1988-01-01

    We reported previously that Trichophyton mentagrophytes contains a cytoplasmic macromolecule which specifically binds progesterone. Progesterone is also an effective inhibitor of growth of the fungus. We report here studies which characterize more fully the specific binding properties and the functional responses of T. mentagrophytes and taxonomically related fungi to a series of mammalian steroid hormones. Scatchard analysis of [3H]progesterone binding in both the + and - mating types of Arthroderma benhamiae and in Microsporum canis revealed a single class of binding sites with approximately the same affinity as that in T. mentagrophytes (Kd, 1 X 10(-7) to 2 X 10(-7) M). Trichophyton rubrum had a protein with a higher binding affinity (Kd, 1.6 X 10(-8) M). Characterization of the [3H]progesterone-binding sites in T. mentagrophytes showed the binder to be a protein which was destroyed by trypsin and heating to 56 degrees C. Previous examination of the steroid-binding specificity in T. mentagrophytes had demonstrated that deoxycorticosterone (DOC) and dihydrotestosterone (DHT) were effective competitors for [3H]progesterone binding. Expansion of this study to include other competitors revealed that R5020 (a synthetic progestin), androstenedione, and dehydroepiandosterone possessed relative binding affinities which were 20, 11, and 9% of that of progesterone, respectively. Other ligands tested were less effective. Competition studies for the binder in M. canis resulted in similar findings: DOC and DHT were effective competitors for [3H]progesterone binding. The growth of A. benhamiae + and -, M. canis, and T. rubrum were all inhibited by progesterone in a dose-responsive manner, with 50% inhibition achieved at concentrations of 9.8 x 10(-6), 1.2 x 10(-5), 1.5 x 10(-5), and 2.7 x 10(-6) M. respectively,. PMID:3182998

  14. Presence of growth hormone-binding proteins in cattle plasma and milk.

    PubMed

    Devolder, A; Renaville, R; Sneyers, M; Callebaut, I; Massart, S; Goffinet, A; Burny, A; Portetelle, D

    1993-07-01

    The presence of GH-binding proteins (GHBPs) in the plasma of adult cattle was investigated using Sephadex G-200 filtration, Western ligand blotting and Western blotting. The changes in the concentration of GHBP in the plasma of dairy half-sister heifers during the first year of life as well as the presence of GHBP in milk were also investigated. When analytical chromatography (on a 1.6 x 100 cm column) was performed, five peaks of recombinant bovine GH (rbGH)-associated radioactivity were revealed in cattle plasma; the first peak, which appeared near the void volume, was presumed to represent aggregates, the second (M(r) 290 kDa) and the third peaks (M(r) 75 kDa) corresponded to specific rbGH-GHBP complexes; the last two peaks representing free 125I-labelled rbGH and Na[125I]. Western ligand blotting revealed multiple GHBPs. Three major bands were observed at approximately 190, 58 and 31 kDa; an excess of unlabelled hormone blocked the binding of 125I-labelled rbGH. Minor non-specific binding bands were also detected in cattle plasma with molecular weights between 40 and 136 kDa. One monoclonal antibody (8H7) produced against synthetic peptide (amino acids 54-63 of the extracellular domain of the bovine GH receptor) specifically interacted with 190 and 58 kDa bands while the 31 kDa band was not recognized. Finally, Western ligand blots were performed to evaluate the changes in plasma GHBP during the first year of life in 55 dairy half-sister heifers and to identify GHBP in milk. In plasma, the intensity of the 31 kDa band varied greatly between animals while the other specific bands remained stable.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Merlin inhibits growth hormone-regulated Raf-ERKs pathways by binding to Grb2 protein

    SciTech Connect

    Lim, Jung Yeon; Kim, Hongtae; Jeun, Sin-Soo . E-mail: ssjeun@catholic.ac.kr; Kang, Seok-Gu; Lee, Kyung-Jin

    2006-02-24

    Numerous studies have suggested that the NF2 protein merlin is involved in the regulation of abnormal cell growth and proliferation. In this study, to better understand the merlin's mechanisms that contribute to the inhibition of tumorigenesis, we examined the potential action of merlin on the cell proliferative signaling pathways in response to growth hormone (GH). Merlin effectively attenuated the GH-induced serum response element (SRE) and Elk-1-mediated transcriptional activation, as well as the endogenous SRE-regulated gene c-fos expression in NIH3T3 cells. In addition, merlin prevented the Raf-1 complex activation process, which resulted in the suppression of MAP kinase/ERK, extracellular signal-regulated kinase (ERKs), and Elk-1 phosphorylation, which are the downstream signals of Raf-1. Moreover, it was shown that merlin interacted with endogenous growth factor receptor bound 2 (Grb2) protein and inhibited its expression. These results suggest that merlin contributes, via its protein-to-protein interaction with Grb2 and consequent inhibition of the MAPK pathways, to the regulation of the abnormal cell proliferation, and this provides a further mechanism underlying the tumor suppressor function of merlin.

  16. Growth hormone test

    MedlinePlus

    ... is called acromegaly . In children it is called gigantism . Too little growth hormone can cause a slow ... growth due to excess GH during childhood, called gigantism. (A special test is done to confirm this ...

  17. Growth hormone suppression of apoptosis in preovulatory rat follicles and partial neutralization by insulin-like growth factor binding protein.

    PubMed

    Eisenhauer, K M; Chun, S Y; Billig, H; Hsueh, A J

    1995-07-01

    A growing body of evidence suggests that growth hormone (GH) plays a role in regulating ovarian function by augmenting gonadotropin stimulation of granulosa cell differentiation and folliculogenesis. The majority of follicles in the mammalian ovary do not ovulate, but instead undergo a degenerative process (atresia) involving apoptotic cell death. The objective of the present study was to investigate the role of GH in regulating follicle apoptosis and to determine whether or not insulin-like growth factor-I (IGF-I) mediates GH action in this process. Preovulatory follicles obtained from eCG-primed rats were cultured for 24 h in serum-free conditions with or without hormone treatments. After culture, follicular apoptotic DNA fragmentation was analyzed by autoradiography of size-fractionated DNA labeled at 3' ends with [32P]dideoxy-ATP. Culture of preovulatory follicles resulted in a spontaneous onset of apoptotic DNA fragmentation that was suppressed by ovine GH (oGH) in a dose-dependent manner, reaching a maximum of 65% suppression. To rule out the effect of residual gonadotropin in the oGH preparation, follicles were also cultured with recombinant bovine growth hormone (rbGH). Like oGH, rbGH suppressed apoptotic DNA fragmentation. Our earlier study indicated that hCG and FSH treatment also suppress apoptosis in the present model system, but no additive effect of GH and either hCG or FSH on the suppression of apoptosis was observed. To determine whether the observed effect of GH action on follicle apoptosis is mediated by IGF-I, three types of studies were carried out.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Growth hormone and growth?

    PubMed

    Harvey, Steve

    2013-09-01

    Pituitary GH is obligatory for normal growth in mammals, but the importance of pituitary GH in avian growth is less certain. In birds, pituitary GH is biologically active and has growth promoting actions in the tibia-test bioassay. Its importance in normal growth is indicated by the growth suppression following the surgical removal of the pituitary gland or after the immunoneutralization of endogenous pituitary GH. The partial restoration of growth in some studies with GH-treated hypophysectomized birds also suggests GH dependency in avian growth, as does the dwarfism that occurs in some strains with GHR dysfunctions. Circulating GH concentrations are also correlated with body weight gain, being high in young, rapidly growing birds and low in slower growing older birds. Nevertheless, despite these observations, there is an extensive literature that concludes pituitary GH is not important in avian growth. This is based on numerous studies with hypophysectomized and intact birds that show only slight, transitory or absent growth responses to exogenous GH-treatment. Moreover, while circulating GH levels correlate with weight gain in young birds, this may merely reflect changes in the control of pituitary GH secretion during aging, as numerous studies involving experimental alterations in growth rate fail to show positive correlations between plasma GH concentrations and the alterations in growth rate. Furthermore, growth is known to occur in the absence of pituitary GH, as most embryonic development occurs prior to the ontogenetic appearance of pituitary somatotrophs and the appearance of GH in embryonic circulation. Early embryonic growth is also independent of the endocrine actions of pituitary GH, since removal of the presumptive pituitary gland does not impair early growth. Embryonic growth does, however, occur in the presence of extrapituitary GH, which is produced by most tissues and has autocrine or paracrine roles that locally promote growth and development

  19. [Growth hormone signaling pathways].

    PubMed

    Zych, Sławomir; Szatkowska, Iwona; Czerniawska-Piatkowska, Ewa

    2006-01-01

    The substantial improvement in the studies on a very complicated mechanism-- growth hormone signaling in a cell, has been noted in last decade. GH-induced signaling is characterized by activation of several pathways, including extracellular signal-regulated kinase (ERK), the signal transducer and activator of transcription and phosphatidylinositol-3 kinase (PI3) pathways. This review shows a current model of the growth hormone receptor dimerization, rotation of subunits and JAK2 kinase activation as the initial steps in the cascade of events. In the next stages of the signaling process, the GH-(GHR)2-(JAK2)2 complex may activate signaling molecules such as Stat, IRS-1 and IRS-2, and particularly all cascade proteins that activate MAP kinase. These pathways regulate basal cellular functions including target gene transcription, enzymatic activity and metabolite transport. Therefore growth hormone is considered as a major regulator of postnatal growth and metabolism, probably for mammary gland growth and development too.

  20. Growth hormone signaling pathways.

    PubMed

    Carter-Su, Christin; Schwartz, Jessica; Argetsinger, Lawrence S

    2016-06-01

    Over 20years ago, our laboratory showed that growth hormone (GH) signals through the GH receptor-associated tyrosine kinase JAK2. We showed that GH binding to its membrane-bound receptor enhances binding of JAK2 to the GHR, activates JAK2, and stimulates tyrosyl phosphorylation of both JAK2 and GHR. The activated JAK2/GHR complex recruits a variety of signaling proteins, thereby initiating multiple signaling pathways and cellular responses. These proteins and pathways include: 1) Stat transcription factors implicated in the expression of multiple genes, including the gene encoding insulin-like growth factor 1; 2) Shc adapter proteins that lead to activation of the grb2-SOS-Ras-Raf-MEK-ERK1,2 pathway; 3) insulin receptor substrate proteins implicated in the phosphatidylinositol-3-kinase and Akt pathway; 4) signal regulatory protein α, a transmembrane scaffold protein that recruits proteins including the tyrosine phosphatase SHP2; and 5) SH2B1, a scaffold protein that can activate JAK2 and enhance GH regulation of the actin cytoskeleton. Our recent work has focused on the function of SH2B1. We have shown that SH2B1β is recruited to and phosphorylated by JAK2 in response to GH. SH2B1 localizes to the plasma membrane, cytoplasm and focal adhesions; it also cycles through the nucleus. SH2B1 regulates the actin cytoskeleton and promotes GH-dependent motility of RAW264.7 macrophages. Mutations in SH2B1 have been found in humans exhibiting severe early-onset childhood obesity and insulin resistance. These mutations impair SH2B1 enhancement of GH-induced macrophage motility. As SH2B1 is expressed ubiquitously and is also recruited to a variety of receptor tyrosine kinases, our results raise the possibility that effects of SH2B1 on the actin cytoskeleton in various cell types, including neurons, may play a role in regulating body weight.

  1. Free and total insulin-like growth factors and insulin-like growth factor binding proteins during 14 days of growth hormone administration in healthy adults.

    PubMed

    Skjaerbaek, C; Frystyk, J; Møller, J; Christiansen, J S; Orskov, H

    1996-12-01

    The objective was to investigate the effect of growth hormone (GH) administration on circulating levels of free insulin-like growth factors (IGFs) in healthy adults. Eight healthy male subjects were given placebo and two doses of GH (3 and 6 IU/m2 per day) for 14 days in a double-blind crossover study. Fasting blood samples were obtained every second day. Free IGF-I and IGF-II were determined by ultrafiltration of serum. Total IGF-I and IGF-II were measured after acid-ethanol extraction. In addition, GH, insulin, IGF binding protein 1 (IGFBP-1) and IGFBP-3 were measured. Serum-free and total IGF-I increased in a dose-dependent manner during the 14 days of GH administration. After 14 days, serum-free IGF-I values were 610 +/- 100 ng/l (mean +/- SEM) (placebo), 2760 +/- 190 ng/l (3 IU/ m2) and 3720 +/- 240 ng/l (6 IU/m2) (p = 0.0001 for 3 and 6 IU/m2 vs placebo; p = 0.004 for 3 IU/m2 vs 6 IU/m2). Total IGF-I values were 190 +/- 10 micrograms/l (placebo), 525 +/- 10 (3 IU/m2), and 655 +/- 40 micrograms/l (6 IU/m2) (p < 0.0001 for 3 and 6 IU/m2 vs placebo; p = 0.04 for 3 IU/m2). There were no differences in the levels of free or total IGF-II during the three study periods. Insulin-like growth factor binding protein 1 was decreased during GH administration (p = 0.04 for placebo vs 3 IU/m2; p = 0.006 for placebo vs 6 IU/m2). In conclusion, fasting serum free IGF-I increased dose dependently during GH administration and free IGF-I increased relatively more than total IGF-I. This may partly be due to the decrease in IGFBP-1.

  2. Insulin-like growth factor-1, insulin-like growth factor-binding protein-3, growth hormone, and mammographic density in the Nurses' Health Studies.

    PubMed

    Rice, Megan S; Tworoger, Shelley S; Rosner, Bernard A; Pollak, Michael N; Hankinson, Susan E; Tamimi, Rulla M

    2012-12-01

    Higher circulating insulin-like growth factor I (IGF-1) levels have been associated with higher mammographic density among women in some, but not all studies. Also, few studies have examined the association between mammographic density and circulating growth hormone (GH) in premenopausal women. We conducted a cross-sectional study among 783 premenopausal women and 436 postmenopausal women who were controls in breast cancer case-control studies nested in the Nurses' Health Study (NHS) and NHSII. Participants provided blood samples in 1989-1990 (NHS) or in 1996-1999 (NHSII), and mammograms were obtained near the time of blood draw. Generalized linear models were used to assess the associations of IGF-1, IGF-binding protein-3 (IGFBP-3), IGF-1:IGFBP-3 ratio, and GH with percent mammographic density, total dense area, and total non-dense area. Models were adjusted for potential confounders including age and body mass index (BMI), among others. We also assessed whether the associations varied by age or BMI. In both pre- and postmenopausal women, percent mammographic density was not associated with plasma levels of IGF-1, IGFBP-3, or the IGF-1:IGFBP-3 ratio. In addition, GH was not associated with percent density among premenopausal women in the NHSII. Similarly, total dense area and non-dense area were not significantly associated with any of these analytes. In postmenopausal women, IGF-1 was associated with higher percent mammographic density among women with BMI <25 kg/m(2), but not among overweight/obese women. Overall, plasma IGF-1, IGFBP-3, and GH levels were not associated with mammographic density in a sample of premenopausal and postmenopausal women.

  3. [Hormones and hair growth].

    PubMed

    Trüeb, R M

    2010-06-01

    With respect to the relationship between hormones and hair growth, the role of androgens for androgenetic alopecia (AGA) and hirsutism is best acknowledged. Accordingly, therapeutic strategies that intervene in androgen metabolism have been successfully developed for treatment of these conditions. Clinical observations of hair conditions involving hormones beyond the androgen horizon have determined their role in regulation of hair growth: estrogens, prolactin, thyroid hormone, cortisone, growth hormone (GH), and melatonin. Primary GH resistance is characterized by thin hair, while acromegaly may cause hypertrichosis. Hyperprolactinemia may cause hair loss and hirsutism. Partial synchronization of the hair cycle in anagen during late pregnancy points to an estrogen effect, while aromatase inhibitors cause hair loss. Hair loss in a causal relationship to thyroid disorders is well documented. In contrast to AGA, senescent alopecia affects the hair in a diffuse manner. The question arises, whether the hypothesis that a causal relationship exists between the age-related reduction of circulating hormones and organ function also applies to hair and the aging of hair.

  4. Relationship between serum growth hormone binding protein levels and height in young men.

    PubMed

    Codner, E; Mericq, M V; Maheshwari, H G; Iñguez, G; Capurro, M T; Salazar, T; Baumann, G; Cassorla, F; Codner, D E

    2000-01-01

    The biochemical mediators responsible for variations in stature among normal subjects are largely unknown. To obtain some initial information about potential endocrine factors, we measured the serum concentrations of GH, IGF-1, IGFBP-3 and GHBP in healthy young men shorter than 159 cm and taller than 187 cm. We studied 14 volleyball and basketball players (tall group), and 14 jockey students from a horse racetrack (short group). A careful medical history was taken, including dietary intake, and physical examination with special attention to the possible presence of genetic stigmata was performed. Serum prealbumin was determined as an index of nutritional status. A buccal smear was performed to exclude Klinefelter's syndrome. The BMI and serum prealbumin levels were comparable in both groups of individuals. The nutritional survey, however, revealed that the tall subjects had a higher intake of calories (42.2+/-11.2 vs. 30.1+/-15.15 kcal/kg, p<0.05), and protein (1.5+/-0.6 vs. 0.8+/-0.4 mg/kg, p<0.01). Serum concentrations of GHBP did not differ in the two groups (0.95+/-0.37 nmol/l in the tall, and 0.95+/-0.53 nmol/l in the short group), and did not correlate with height, serum IGF-I levels, or BMI. We observed a significant difference in the serum concentrations of IGF-I in the two groups of individuals (42.02+/-9.37 nmol/l in the tall and 31.79+/-3.18 nmol/l in the short group, p<0.05), and this growth factor showed a positive correlation with height (r = 0.5, p<0.01). These preliminary findings suggest that final height differences in young men do not appear to be mediated by variations in GHBP concentrations.

  5. Effects of oral contraceptives on diurnal profiles of insulin, insulin-like growth factor binding protein-1, growth hormone and cortisol in endurance athletes with menstrual disturbance

    PubMed Central

    Rickenlund, A.; Thorén, M.; Nybacka, Å.; Frystyk, J.; Hirschberg, A. Lindén

    2010-01-01

    BACKGROUND Menstrual disturbances in female athletes are often explained as a consequence of energy deficiency. Oral contraceptive (OC) treatment may have favorable metabolic effects. We evaluated effects of OCs on diurnal secretions of insulin, insulin-like growth factor binding protein 1 (IGFBP-1), growth hormone (GH) and cortisol in relation to changes in body composition in athletes with menstrual disturbance compared with regularly menstruating athletes and controls. METHODS Age- and BMI-matched groups of endurance athletes with menstrual disturbance (OAM, n = 9) and regularly cycling athletes (RM, n = 8) and sedentary controls (CTRL, n = 8) were examined, and hormone levels measured, before and after 8 months of treatment with a low-dose combined OC (30 µg ethinyl estradiol + 150 µg levonorgestrel). RESULTS Before OC treatment, the diurnal profile of insulin was lower (P < 0.01) and levels of IGFBP-1 (P < 0.05) and cortisol (P < 0.05) were higher in OAM athletes than in CTRL, whereas GH secretion was higher than in RM athletes (P < 0.05). After treatment, diurnal secretions of these hormones were similar between groups with an increase of IGFBP-1 in the regularly menstruating subjects only (P < 0.001). OC treatment increased body fat mass in OAM athletes (P < 0.01 versus baseline). The change in total fat mass correlated positively with pretreatment diurnal levels of GH (rs = 0.67, P < 0.01) and cortisol (rs = 0.64, P < 0.01). CONCLUSIONS OC treatment in endurance athletes with menstrual disturbance increases body fat mass and results in diurnal levels of insulin, IGFBP-1, GH and cortisol that are comparable to those in regularly menstruating subjects. These results suggest that OCs improve metabolic balance in OAM athletes. PMID:19840988

  6. Extrapituitary growth hormone and growth?

    PubMed

    Harvey, Steve; Baudet, Marie-Laure

    2014-09-01

    While growth hormone (GH) is obligatory for postnatal growth, it is not required for a number of growth-without-GH syndromes, such as early embryonic or fetal growth. Instead, these syndromes are thought to be dependent upon local growth factors, rather than pituitary GH. The GH gene is, however, also expressed in many extrapituitary tissues, particularly during early development and extrapituitary GH may be one of the local growth factors responsible for embryonic or fetal growth. Moreover, as the expression of the GH receptor (GHR) gene mirrors that of GH in extrapituitary tissues the actions of GH in early development are likely to be mediated by local autocrine or paracrine mechanisms, especially as extrapituitary GH expression occurs prior to the ontogeny of pituitary somatotrophs or the appearance of GH in the circulation. The extrapituitary expression of pituitary somatotrophs or the appearance of GH in the circulation. The extrapituitary expression of GH in embryos has also been shown to be of functional relevance in a number of species, since the immunoneutralization of endogenous GH or the blockade of GH production is accompanied by growth impairment or cellular apoptosis. The extrapituitary expression of the GH gene also persists in some central and peripheral tissues postnatally, which may reflect its continued functional importance and physiological or pathophysiological significance. The expression and functional relevance of extrapituitary GH, particularly during embryonic growth, is the focus of this brief review.

  7. Hormonal Control of Fetal Growth.

    ERIC Educational Resources Information Center

    Cooke, Paul S.; Nicoll, Charles S.

    1983-01-01

    Summarizes recent research on hormonal control of fetal growth, presenting data obtained using a new method for studying the area. Effects of endocrine ablations and congenital deficiencies, studies of hormone/receptor levels, in-vitro techniques, hormones implicated in promoting fetal growth, problems with existing methodologies, and growth of…

  8. Hormonal Control of Fetal Growth.

    ERIC Educational Resources Information Center

    Cooke, Paul S.; Nicoll, Charles S.

    1983-01-01

    Summarizes recent research on hormonal control of fetal growth, presenting data obtained using a new method for studying the area. Effects of endocrine ablations and congenital deficiencies, studies of hormone/receptor levels, in-vitro techniques, hormones implicated in promoting fetal growth, problems with existing methodologies, and growth of…

  9. Growth hormone receptor, insulin-like growth factor (IGF)-1, and IGF-binding protein-2 expression in the reproductive tissues of early postpartum dairy cows.

    PubMed

    Rhoads, M L; Meyer, J P; Kolath, S J; Lamberson, W R; Lucy, M C

    2008-05-01

    The growth hormone/insulin-like growth factor (IGF) system plays a critical endocrine role controlling nutrient metabolism in dairy cattle. In liver, growth hormone receptor (GHR) and IGF-1 are dynamically regulated by lactation and energy balance. Less is known about the regulation of GHR, IGF-1, and IGF-binding protein mRNA in reproductive tissues (uterus, ovarian follicle, and corpus luteum). The objective was to determine expression patterns for GHR, IGF-1, and IGF-binding protein (IGFBP)-2 mRNA in the liver, uterus, dominant follicle, and corpus luteum in Holstein cows (n = 21) sampled at 3 times during early lactation. The first postpartum ovulation was induced with an injection of GnRH within 15 d of calving. Nine days after ovulation [23 +/- 1 d postpartum; 20 d in milk (DIM)], the liver, uterus, dominant follicle, and corpus luteum were biopsied. Prostaglandin F(2alpha) and GnRH were injected 7 and 9 d after each biopsy to synchronize the second (41 +/- 1 d postpartum; 40 DIM) and third (60 +/- 1 d postpartum; 60 DIM) tissue collections. Total RNA was isolated and used for mRNA analysis by real-time quantitative reverse transcription PCR. Liver had more GHR, IGF-1, and IGFBP-2 mRNA than the reproductive tissues that were tested. Gene expression for GHR, IGF-1, and IGFPB-2 within tissues did not change across the sampling interval (20 to 60 DIM). The only detected change in gene expression across days was for cyclophilin in uterus (increased after 20 DIM). Parity had an effect on gene expression for GHR in corpus luteum. Neither level of milk production nor body condition score affected the amount of GHR, IGF-1, or IGFBP-2 mRNA in the respective tissues. The repeatability of gene expression within a tissue was 0.25 to 0.5 for most genes. In most instances, expression of a single gene within a tissue was correlated with other genes in the same tissue but was not correlated with the same gene in a different tissue. We did not find evidence for major changes

  10. Growth hormone regulation of follicular growth.

    PubMed

    Lucy, Matthew C

    2011-01-01

    The somatotropic axis-consisting of growth hormone (GH), the insulin-like growth factors 1 and 2 (IGF1 and IGF2), GH binding protein (GHBP), IGF binding proteins (IGFBPs) 1 to 6, and the cell-surface receptors for GH and the IGFs-has major effects on growth, lactation and reproduction. The primary target tissues for GH are involved in growth and metabolism. The functionality of the somatotropic axis depends in part on the expression of liver GH receptor (GHR), which determines the amount of IGF1 released from the liver in response to GH. The IGF1 acts as a pleiotropic growth factor and also serves as the endocrine negative feedback signal controlling pituitary GH secretion. Growth hormone and IGF1 undergo dynamic changes throughout the life cycle, particularly when animals are either growing, early post partum or lactating. Cells within the reproductive tract can respond directly to GH but to a lesser degree than the primary target tissues. The major impact that GH has on reproduction, therefore, may be secondary to its systemic effects on metabolism (including insulin sensitivity) or secondary to the capacity for GH to control IGF1 secretion. Insulin-like growth factor 1 and IGFBP are also synthesised within the ovary and this local synthesis is a component of the collective IGF1 action on the follicle. Future studies of GH should focus on its direct effects on the follicle as well as its indirect effects mediated by shifts in nutrient metabolism, insulin sensitivity, IGF1 and IGFBP.

  11. Hormones and Human and Nonhuman Primate Growth.

    PubMed

    Bernstein, Robin Miriam

    2017-01-01

    The aim of this paper was to review information pertaining to the hormonal regulation of nonhuman primate growth, with specific focus on the growth hormone (GH)-insulin-like growth factor (IGF) axis and adrenal androgens. Hormones of the GH-IGF axis are consistently associated with measures of growth - linear, weight, or both - during the growth period; in adulthood, concentrations of IGF-I, IGF-binding protein-3, and GH-binding protein are not associated with any measures of size. Comparing patterns of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) may be especially relevant for understanding whether the childhood stage of growth and development is unique to humans and perhaps other apes. Genetic, hormonal, and morphological data on adrenarche in other nonhuman primate species suggest that this endocrine transition is delayed in humans, chimpanzees, and possibly gorillas, while present very early in postnatal life in macaques. This suggests that although perhaps permitted by an extension of the pre-adolescent growth period, childhood builds upon existing developmental substrates rather than having been inserted de novo into an ancestral growth trajectory. Hormones can provide insight regarding the evolution of the human growth trajectory. © 2017 S. Karger AG, Basel.

  12. A nonpeptidyl growth hormone secretagogue.

    PubMed

    Smith, R G; Cheng, K; Schoen, W R; Pong, S S; Hickey, G; Jacks, T; Butler, B; Chan, W W; Chaung, L Y; Judith, F

    1993-06-11

    A nonpeptidyl secretagogue for growth hormone of the structure 3-amino-3-methyl-N-(2,3,4,5-tetrahydro-2-oxo-1-([2'-(1H-tetrazol-5 -yl) (1,1'-biphenyl)-4-yl]methyl)-1H-1-benzazepin-3(R)-yl)-butanamid e (L-692,429) has been identified. L-692,429 synergizes with the natural growth hormone secretagogue growth hormone-releasing hormone and acts through an alternative signal transduction pathway. The mechanism of action of L-692,429 and studies with peptidyl and nonpeptidyl antagonists suggest that this molecule is a mimic of the growth hormone-releasing hexapeptide His-D-Trp-Ala-Trp-D-Phe-Lys-NH2 (GHRP-6). L-692,429 is an example of a nonpeptidyl specific secretagogue for growth hormone.

  13. Growth hormone stimulation test (image)

    MedlinePlus

    ... test is usually performed to identify if hGH (human growth hormone) is deficient. The test is performed by administering the amino acid arginine in a vein to raise hGH levels. The test measures the ability of the pituitary to secrete growth hormone in ...

  14. Enzyme immunoassay for rat growth hormone: applications to the study of growth hormone variants

    SciTech Connect

    Farrington, M.A.; Hymer, W.C.

    1987-06-29

    A sensitive and specific competitive enzyme immunoassay (EIA) for rat growth hormone was developed. In this assay soluble growth hormone and growth hormone adsorbed to a solid-phase support compete for monkey anti-growth hormone antibody binding sites. The immobilized antibody-growth hormone complex is detected and quantified using goat anti-monkey immunoglobin G covalently conjugated to horse radish peroxidase. Therefore, a high concentration of soluble growth hormone in the sample will result in low absorbance detection from the colored products of the enzyme reaction. Assay parameters were optimized by investigating the concentration of reagents and the reaction kinetics in each of the assay steps. The assay can be performed in 27 hours. A sensitivity range of 0.19 ng to 25 ng in the region of 10 to 90% binding was obtained. Near 50% binding (3 ng) the intraassay coefficient of variation (CV) was 5.54% and the interassay CV was 5.33%. The correlation coefficient (r/sup 2/) between radioimmunoassay and EIA was 0.956 and followed the curve Y = 0.78X + 1.0. 9 references, 6 figures.

  15. Dynamic, Sex-Differential STAT5 and BCL6 Binding to Sex-Biased, Growth Hormone-Regulated Genes in Adult Mouse Liver

    PubMed Central

    Zhang, Yijing; Laz, Ekaterina V.

    2012-01-01

    Sex-dependent pituitary growth hormone (GH) secretory patterns determine the sex-biased expression of >1,000 genes in mouse and rat liver, affecting lipid and drug metabolism, inflammation, and disease. A fundamental biological question is how robust differential expression can be achieved for hundreds of sex-biased genes simply based on the GH input signal pattern: pulsatile GH stimulation in males versus near-continuous GH exposure in females. STAT5 is an essential transcriptional mediator of the sex-dependent effects of GH in the liver, but the mechanisms that underlie its sex-dependent actions are obscure. Here we elucidate the dynamic, sex-dependent binding of STAT5 and the GH/STAT5-regulated repressor BCL6 to mouse liver chromatin genome wide, revealing a counteractive interplay between these two regulators of sex differences in liver gene expression. Our findings establish a close correlation between sex-dependent STAT5 binding and sex-biased target gene expression. Moreover, sex-dependent STAT5 binding correlated positively with sex-biased DNase hypersensitivity and H3-K4me1 and H3-K4me3 (activating) marks, correlated negatively with sex-biased H3-K27me3 (repressive) marks, and was associated with sex-differentially enriched motifs for HNF6/CDP factors. Importantly, BCL6 binding was preferentially associated with repression of female-biased STAT5 targets in male liver. Furthermore, BCL6 and STAT5 common targets but not BCL6 unique targets showed strong enrichment for lipid and drug metabolism. These findings provide a comprehensive, genome-wide view of the mechanisms whereby these two GH-regulated transcription factors establish and maintain sex differences affecting liver physiology and disease. The approaches used here to characterize sex-dependent STAT5 and BCL6 binding can be applied to other condition-specific regulatory factors and binding sites and their interplay with cooperative chromatin binding factors. PMID:22158971

  16. Modification of arginine residues in human growth hormone by 1,2-cyclohexanedione: effects on the binding capacity to lactogenic and somatogenic receptors.

    PubMed

    Atlasovich, F M; Caridad, J J; Nowicki, C; Santomé, J A; Wolfenstein-Todel, C

    1990-08-15

    Reactivity of arginine residues in human growth hormone was studied by reaction with 1,2-cyclohexanedione. Kinetic analysis of the data showed a good fit to a pseudo first order curve, with an apparent velocity constant k = 1.26 x 10(-2) min-1 and a maximum modification of 9.6 out of the 11 arginines of the molecule. Modification led to a decrease in binding capacity to both lactogenic and somatogenic rat liver receptors. In either case Tsou plots suggest that the modification of two arginine residues is responsible for this behavior, although it cannot be ascertained whether the two relevant residues are the same for both receptor types. Circular dichroism studies indicated no apparent changes in protein conformation in the modified hormone. Binding capacity was restored upon regeneration of arginines by incubation with Tris-HCl buffer. Only the carboxy-terminal peptide was isolated by HPLC from a tryptic digest of succinylated Arg-modified hGH, indicating that 183 is the nonreacting arginine residue.

  17. Preparation of /sup 125/I-labeled human growth hormone of high quality binding properties endowed with long-term stability

    SciTech Connect

    Biscayart, P.L.; Paladini, A.C.; Vita, N.; Roguin, L.P.

    1989-01-01

    /sup 125/I-labeled human growth hormone (/sup 125/I-labeled.hGH) was prepared by using two variants of the chloramine T labelling procedure and purified by polyacrylamide gel electrophoresis (PAGE) of the reaction mixture. Variant A produced a tracer with high specific activity (100 +/- 10 microCi/microgram), high maximal binding capacity to antibodies (93%) and long-term stability (at least 150 days at -20/degree/C). No diiodinated tyrosil residues could be detected in this tracer. Variant B was devised to obtain higher yields of labeled hormone. The electrophoresis of the iodination mixture revealed two radioactive components with Rm values of 0.49 and 0.55 which result from the iodination of hGH variants preexisting in the starting material. Both tracers had similar specific activities (70 +/- 10 microCi/microgram), high maximal binding capacity to antibodies or receptors (80-100%, after 80 days of their obtention) and high stability (at least 100 days at -20/degree/C). It is concluded that the iododerivatives of hGH obtained by either method are adequate to perform radioimmunoassay and receptor studies and have long-term stability.

  18. Estrogen antagonism on T3 and growth hormone control of the liver microsomal low-affinity glucocorticoid binding site (LAGS).

    PubMed

    López-Guerra, A; Chirino, R; Navarro, D; Fernández, L; Boada, L D; Zumbado, M; Díaz-Chico, B N

    1997-01-01

    Male rat liver microsomes contain a low-affinity glucocorticoid binding site (LAGS) capable of binding all natural glucocorticoids and progesterone with a Kd from 20 to 100 nM. The LAGS level is under endocrine control by T3, glucocorticoids and GH. These hormones act synergistically at physiological concentrations to increase the LAGS level. Since female rats show a LAGS level that is much lower than the males (0.15 vs 23 pmol/mg protein, respectively), here we investigated whether estradiol could decrease the LAGS in the male rat. Orchiectomized (OX) male rats showed a higher LAGS level than intact rats. This effect was reversed by implanting a Sylastic capsule containing testosterone. When the OX rats were implanted for 20 days with estrogen capsules that provided an estradiol level in serum of 40 pg/ml, their LAGS level decreased from 23 to 0.2 pmol/mg protein. This effect was not observed in intact male rats and can be partially reversed by testosterone implants into OX rats. Both hypophysectomized male rats and hypothyroid-orchiectomized male rats showed very low levels of LAGS. Administration of physiological doses of GH and/or T3 to these rats greatly increased their LAGS level (from 0.3 to 15 and 16 pmol/mg protein, respectively). Implantation of estrogen capsules to these rats two weeks prior to starting treatment completely inhibited the increase in the LAGS level in response to T3, and significantly decreased the response to hGH, and to a combination of hGH and T3. These results suggest that physiological estradiol levels can antagonize the LAGS induction by T3 and hGH in the male rat, and could be responsible for the low level of LAGS in the female rat. Moreover, estrogen capsules also inhibited the increase in the body and hepatic weights observed after hGH treatment, which suggests a powerful inhibitory effect of low estradiol levels on the male rat liver functions under regulation by T3 and/or GH.

  19. Effect of zinc binding residues in growth hormone (GH) and altered intracellular zinc content on regulated GH secretion.

    PubMed

    Petkovic, Vibor; Miletta, Maria Consolata; Eblé, Andrée; Iliev, Daniel I; Binder, Gerhard; Flück, Christa E; Mullis, Primus E

    2013-11-01

    Endocrine cells store hormones in concentrated forms (aggregates) in dense-core secretory granules that are released upon appropriate stimulation. Zn(2+) binding to GH through amino acid residues His18, His21, and Glu174 are essential for GH dimerization and might mediate its aggregation and storage in secretory granules. To investigate whether GH-1 gene mutations at these positions interfere with this process, GH secretion and intracellular production were analyzed in GC cells (rat pituitary cell line) transiently expressing wt-GH and/or GH Zn mutant (GH-H18A-H21A-E174A) in forskolin-stimulated vs nonstimulated conditions. Reduced secretion of the mutant variant (alone or coexpressed with wt-GH) compared with wt-GH after forskolin stimulation was observed, whereas an increased intracellular accumulation of GH Zn mutant vs wt-GH correlates with its altered extracellular secretion. Depleting Zn(2+) from culture medium using N,N,N',N'-tetrakis(2-pyridylemethyl)ethylenediamine, a high-affinity Zn(2+) chelator, led to a significant reduction of the stimulated wt-GH secretion. Furthermore, externally added Zn(2+) to culture medium increased intracellular free Zn(2+) levels and recovered wt-GH secretion, suggesting its direct dependence on free Zn(2+) levels after forskolin stimulation. Confocal microscopy analysis of the intracellular secretory pathway of wt-GH and GH Zn mutant indicated that both variants pass through the regulated secretory pathway in a similar manner. Taken together, our data support the hypothesis that loss of affinity of GH to Zn(2+) as well as altering intracellular free Zn(2+) content may interfere with normal GH dimerization (aggregation) and storage of the mutant variant (alone or with wt-GH), which could possibly explain impaired GH secretion.

  20. New active series of growth hormone secretagogues.

    PubMed

    Guerlavais, Vincent; Boeglin, Damien; Mousseaux, Delphine; Oiry, Catherine; Heitz, Annie; Deghenghi, Romano; Locatelli, Vittorio; Torsello, Antonio; Ghé, Corrado; Catapano, Filomena; Muccioli, Giampiero; Galleyrand, Jean-Claude; Fehrentz, Jean-Alain; Martinez, Jean

    2003-03-27

    New growth hormone secretagogue (GHS) analogues were synthesized and evaluated for growth hormone releasing activity. This series derived from EP-51389 is based on a gem-diamino structure. Compounds that exhibited higher in vivo GH-releasing potency than hexarelin in rat (subcutaneous administration) were then tested per os in beagle dogs and for their binding affinity to human pituitary GHS receptors and to hGHS-R 1a. Compound 7 (JMV 1843, H-Aib-(d)-Trp-(d)-gTrp-formyl) showed high potency in these tests and was selected for clinical studies.(1)

  1. Growth Hormone-Releasing Hormone in Diabetes

    PubMed Central

    Fridlyand, Leonid E.; Tamarina, Natalia A.; Schally, Andrew V.; Philipson, Louis H.

    2016-01-01

    Growth hormone-releasing hormone (GHRH) is produced by the hypothalamus and stimulates growth hormone synthesis and release in the anterior pituitary gland. In addition, GHRH is an important regulator of cellular functions in many cells and organs. Expression of GHRH G-Protein Coupled Receptor (GHRHR) has been demonstrated in different peripheral tissues and cell types, including pancreatic islets. Among the peripheral activities, recent studies demonstrate a novel ability of GHRH analogs to increase and preserve insulin secretion by beta-cells in isolated pancreatic islets, which makes them potentially useful for diabetes treatment. This review considers the role of GHRHR in the beta-cell and addresses the unique engineered GHRH agonists and antagonists for treatment of type 2 diabetes mellitus. We discuss the similarity of signaling pathways activated by GHRHR in pituitary somatotrophs and in pancreatic beta-cells and possible ways as to how the GHRHR pathway can interact with glucose and other secretagogues to stimulate insulin secretion. We also consider the hypothesis that novel GHRHR agonists can improve glucose metabolism in Type 2 diabetes by preserving the function and survival of pancreatic beta-cells. Wound healing and cardioprotective action with new GHRH agonists suggest that they may prove useful in ameliorating certain diabetic complications. These findings highlight the future potential therapeutic effectiveness of modulators of GHRHR activity for the development of new therapeutic approaches in diabetes and its complications. PMID:27777568

  2. Prokaryotic soluble overexpression and purification of bioactive human growth hormone by fusion to thioredoxin, maltose binding protein, and protein disulfide isomerase.

    PubMed

    Nguyen, Minh Tan; Koo, Bon-Kyung; Thi Vu, Thu Trang; Song, Jung-A; Chong, Seon-Ha; Jeong, Boram; Ryu, Han-Bong; Moh, Sang-Hyun; Choe, Han

    2014-01-01

    Human growth hormone (hGH) is synthesized by somatotroph cells of the anterior pituitary gland and induces cell proliferation and growth. This protein has been approved for the treatment of various conditions, including hGH deficiency, chronic renal failure, and Turner syndrome. Efficient production of hGH in Escherichia coli (E. coli) has proven difficult because the E. coli-expressed hormone tends to aggregate and form inclusion bodies, resulting in poor solubility. In this study, seven N-terminal fusion partners, hexahistidine (His6), thioredoxin (Trx), glutathione S-transferase (GST), maltose-binding protein (MBP), N-utilization substance protein A (NusA), protein disulfide bond isomerase (PDI), and the b'a' domain of PDI (PDIb'a'), were tested for soluble overexpression of codon-optimized hGH in E. coli. We found that MBP and hPDI tags significantly increased the solubility of the hormone. In addition, lowering the expression temperature to 18°C also dramatically increased the solubility of all the fusion proteins. We purified hGH from MBP-, PDIb'a'-, or Trx-tagged hGH expressed at 18°C in E. coli using simple chromatographic techniques and compared the final purity, yield, and activity of hGH to assess the impact of each partner protein. Purified hGH was highly pure on silver-stained gel and contained very low levels of endotoxin. On average, ∼37 mg, ∼12 mg, and ∼7 mg of hGH were obtained from 500 mL-cell cultures of Trx-hGH, MBP-hGH, and PDIb'a'-hGH, respectively. Subsequently, hGH was analyzed using mass spectroscopy to confirm the presence of two intra-molecular disulfide bonds. The bioactivity of purified hGHs was demonstrated using Nb2-11 cell.

  3. Nuclear factor-I and activator protein-2 bind in a mutually exclusive way to overlapping promoter sequences and trans-activate the human growth hormone gene.

    PubMed Central

    Courtois, S J; Lafontaine, D A; Lemaigre, F P; Durviaux, S M; Rousseau, G G

    1990-01-01

    Transcription of the human growth hormone (hGH) gene and its regulation are controlled by trans-acting factors that bind to hGH gene promoter sequences. Several DNase I footprints have been described within 500 bp of this promoter, one of which (-289 to -267) has not yet been ascribed to a defined factor. By DNase I footprinting, gel mobility shift, and methylation interference assays with extracts from HeLa cells and GH-producing pituitary tumor (GC) cells, we show that this factor belongs to the NF-I family. When NF-I was competed out of the cell extracts, the trans-acting factor AP-2 bound to the same site as NF-I. AP-2 was present not only in HeLa cells, but also in GC cells albeit at a much lower concentration. Consistent with the mutually exclusive binding of NF-I and AP-2, their methylation interference patterns included four guanine residues that were crucial for binding of both NF-I and AP-2. Cell-free transcription from the hGH gene promoter showed that these two factors can transactivate this gene. Images PMID:2308836

  4. [Synthesis and regulation of growth hormone secretion].

    PubMed

    Miyachi, Y; Yakushiji, F; Terazono, T

    1993-10-01

    Human growth hormone (hGH) is a single chain, 22 kd-protein with two intramolecular disulfide bonds. The hGH gene is located on chromosome 17 at band q22-q24 and has four introns separating five coding exons. The expression of hGH is restricted to the pituitary and regulated by GHF-1 which binds to the hGH promoter acting in concert with several other more ubiquitous DNA binding proteins. The secretion of hGH is regulated by GH releasing hormone (GRH) and somatostatin. GRH controls GH synthesis by stimulating transcription of GH mRNA while somatostatin determines the timing and amplitude of GH pulses. Pulsatile GH secretion is influenced by a number of neurogenic, metabolic and hormonal factors.

  5. Growth Hormone Deficiency in Children

    MedlinePlus

    ... brain. In children, GH is essential for normal growth, muscle and bone strength, and distribution of body fat. ... Delayed puberty What are the side effects of growth hormone therapy? Mild to moderate side ... Muscle or joint pain • Mildly underactive thyroid gland • Swelling ...

  6. Growth Hormone: Use and Abuse

    MedlinePlus

    ... GH helps children grow taller (also called linear growth), increases muscle mass, and decreases body fat. In both children ... syndrome In adults, GH is used to treat • Growth hormone deficiency • Muscle wasting (loss of muscle tissue) from HIV • Short ...

  7. Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding.

    PubMed

    Tong, Xin; Muchnik, Marina; Chen, Zheng; Patel, Manish; Wu, Nan; Joshi, Shree; Rui, Liangyou; Lazar, Mitchell A; Yin, Lei

    2010-11-19

    Fibroblast growth factor 21 (FGF21) is a potent antidiabetic and triglyceride-lowering hormone whose hepatic expression is highly responsive to food intake. FGF21 induction in the adaptive response to fasting has been well studied, but the molecular mechanism responsible for feeding-induced repression remains unknown. In this study, we demonstrate a novel link between FGF21 and a key circadian output protein, E4BP4. Expression of Fgf21 displays a circadian rhythm, which peaks during the fasting phase and is anti-phase to E4bp4, which is elevated during feeding periods. E4BP4 strongly suppresses Fgf21 transcription by binding to a D-box element in the distal promoter region. Depletion of E4BP4 in synchronized Hepa1c1c-7 liver cells augments the amplitude of Fgf21 expression, and overexpression of E4BP4 represses FGF21 secretion from primary mouse hepatocytes. Mimicking feeding effects, insulin significantly increases E4BP4 expression and binding to the Fgf21 promoter through AKT activation. Thus, E4BP4 is a novel insulin-responsive repressor of FGF21 expression during circadian cycles and feeding.

  8. Hormonal regulation of fetal growth.

    PubMed

    Gicquel, C; Le Bouc, Y

    2006-01-01

    Fetal growth is a complex process depending on the genetics of the fetus, the availability of nutrients and oxygen to the fetus, maternal nutrition and various growth factors and hormones of maternal, fetal and placental origin. Hormones play a central role in regulating fetal growth and development. They act as maturational and nutritional signals in utero and control tissue development and differentiation according to the prevailing environmental conditions in the fetus. The insulin-like growth factor (IGF) system, and IGF-I and IGF-II in particular, plays a critical role in fetal and placental growth throughout gestation. Disruption of the IGF1, IGF2 or IGF1R gene retards fetal growth, whereas disruption of IGF2R or overexpression of IGF2 enhances fetal growth. IGF-I stimulates fetal growth when nutrients are available, thereby ensuring that fetal growth is appropriate for the nutrient supply. The production of IGF-I is particularly sensitive to undernutrition. IGF-II plays a key role in placental growth and nutrient transfer. Several key hormone genes involved in embryonic and fetal growth are imprinted. Disruption of this imprinting causes disorders involving growth defects, such as Beckwith-Wiedemann syndrome, which is associated with fetal overgrowth, or Silver-Russell syndrome, which is associated with intrauterine growth retardation. Optimal fetal growth is essential for perinatal survival and has long-term consequences extending into adulthood. Given the high incidence of intrauterine growth retardation and the high risk of metabolic and cardiovascular complications in later life, further clinical and basic research is needed to develop accurate early diagnosis of aberrant fetal growth and novel therapeutic strategies.

  9. Growth Hormone Deficiency in Adults

    MedlinePlus

    ... Center Pacientes y Cuidadores Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone ... Learn About Clinical Trials Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone ...

  10. Interactions Between Genome-wide Significant Genetic Variants and Circulating Concentrations of Insulin-like Growth Factor 1, Sex Hormones, and Binding Proteins in Relation to Prostate Cancer Risk in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium

    PubMed Central

    Tsilidis, Konstantinos K.; Travis, Ruth C.; Appleby, Paul N.; Allen, Naomi E.; Lindstrom, Sara; Schumacher, Fredrick R.; Cox, David; Hsing, Ann W.; Ma, Jing; Severi, Gianluca; Albanes, Demetrius; Virtamo, Jarmo; Boeing, Heiner; Bueno-de-Mesquita, H. Bas; Johansson, Mattias; Quirós, J. Ramón; Riboli, Elio; Siddiq, Afshan; Tjønneland, Anne; Trichopoulos, Dimitrios; Tumino, Rosario; Gaziano, J. Michael; Giovannucci, Edward; Hunter, David J.; Kraft, Peter; Stampfer, Meir J.; Giles, Graham G.; Andriole, Gerald L.; Berndt, Sonja I.; Chanock, Stephen J.; Hayes, Richard B.; Key, Timothy J.

    2012-01-01

    Genome-wide association studies (GWAS) have identified many single nucleotide polymorphisms (SNPs) associated with prostate cancer risk. There is limited information on the mechanistic basis of these associations, particularly about whether they interact with circulating concentrations of growth factors and sex hormones, which may be important in prostate cancer etiology. Using conditional logistic regression, the authors compared per-allele odds ratios for prostate cancer for 39 GWAS-identified SNPs across thirds (tertile groups) of circulating concentrations of insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3), testosterone, androstenedione, androstanediol glucuronide, estradiol, and sex hormone-binding globulin (SHBG) for 3,043 cases and 3,478 controls in the Breast and Prostate Cancer Cohort Consortium. After allowing for multiple testing, none of the SNPs examined were significantly associated with growth factor or hormone concentrations, and the SNP-prostate cancer associations did not differ by these concentrations, although 4 interactions were marginally significant (MSMB-rs10993994 with androstenedione (uncorrected P = 0.008); CTBP2-rs4962416 with IGFBP-3 (uncorrected P = 0.003); 11q13.2-rs12418451 with IGF-1 (uncorrected P = 0.006); and 11q13.2-rs10896449 with SHBG (uncorrected P = 0.005)). The authors found no strong evidence that associations between GWAS-identified SNPs and prostate cancer are modified by circulating concentrations of IGF-1, sex hormones, or their major binding proteins. PMID:22459122

  11. Anabolic steroids and growth hormone.

    PubMed

    Haupt, H A

    1993-01-01

    Athletes are generally well educated regarding substances that they may use as ergogenic aids. This includes anabolic steroids and growth hormone. Fortunately, the abuse of growth hormone is limited by its cost and the fact that anabolic steroids are simply more enticing to the athlete. There are, however, significant potential adverse effects regarding its use that can be best understood by studying known growth hormone excess, as demonstrated in the acromegalic syndrome. Many athletes are unfamiliar with this syndrome and education of the potential consequences of growth hormone excess is important in counseling athletes considering its use. While athletes contemplating the use of anabolic steroids may correctly perceive their risks for significant physiologic effects to be small if they use the steroids for brief periods of time, many of these same athletes are unaware of the potential for habituation to the use of anabolic steroids. The result may be incessant use of steroids by an athlete who previously considered only short-term use. As we see athletes taking anabolic steroids for more prolonged periods, we are likely to see more severe medical consequences. Those who eventually do discontinue the steroids are dismayed to find that the improvements made with the steroids generally disappear and they have little to show for hours or even years of intense training beyond the psychological scars inherent with steroid use. Counseling of these athletes should focus on the potential adverse psychological consequences of anabolic steroid use and the significant risk for habituation.

  12. Growth hormone therapy in progeria.

    PubMed

    Sadeghi-Nejad, Ab; Demmer, Laurie

    2007-05-01

    Catabolic processes seen in Hutchinson-Gilford progeria resemble those of normal aging and, in the affected children, usually result in death at an early age. In addition to its growth promoting effects, growth hormone (GH) has potent anabolic properties. Administration of GH ameliorates some of the catabolic effects of normal aging. We report the results of GH treatment in a young child with progeria.

  13. Human Growth Hormone: 45-kDa Isoform with Extraordinarily Stable Interchain Disulfide Links has Attenuated Receptor-Binding and Cell-Proliferative Activities

    PubMed Central

    Bustamante, Juan J.; Grigorian, Alexei L.; Muñoz, Jesus; Aguilar, Roberto M.; Treviño, Lisa R.; Martinez, Andrew O.; Haro, Luis S.

    2010-01-01

    Background Human growth hormone (hGH) is a complex mixture of molecular isoforms. Gaps in our knowledge exist regarding the structures and biological significances of the uncharacterized hGH molecular variants. Mercaptoethanol-resistant 45-kDa human growth hormone (MER-45kDa hGH) is an extraordinarily stable disulfide-linked hGH homodimer whose biological significance is unknown. Objectives To elucidate the pharmacokinetic abilities of dimeric MER-45-kDa hGH to bind to GH and prolactin (PRL) receptors and to elucidate its abilities to stimulate cell-proliferation in lactogen-induced and somatogen-induced in vitro cell proliferation bioassays. Design The binding of MER-45-kDa hGH to GH and PRL receptors was tested in radioreceptorassays (RRAs). Competitive displacements of [125I]-bovine GH from bovine liver membranes, [125I]-ovine PRL from lactating rabbit mammary gland membranes and [125I]-hGH from human IM-9 lymphocytes by unlabelled GHs, PRLs or dimeric MER-45-kDa hGH were evaluated. The abilities of dimeric MER-45-kDa hGH to stimulate proliferation of lactogen-responsive Nb2 lymphoma cells and to stimulate proliferation of somatogen-responsive T47-D human breast cancer cells was assessed by incubation of cells with GHs or PRLs and subsequently measuring growth using the MTS cell proliferation assay. Results Dimeric MER-45-kDa hGH, compared to monomeric hGH, had reduced binding affinities to both GH and prolactin receptors. In a bovine liver GH radioreceptorassay its ED50 (197.5 pM) was 40.8% that of monomeric hGH. In a human IM-9 lymphocyte hGH RRA its ED50 (2.96 nM) was 26.2% that of monomeric hGH. In a lactating rabbit mammary gland prolactin RRA its ED50 (3.56 nM) was 16.8% that of a monomeric hGH. Dimeric MER-45-kDa hGH, compared to monomeric hGH, had a diminished capacity to stimulate proliferation of cells in vitro. In a dose-response relationship assessing proliferation of Nb2 lymphoma cells its ED50 (191 pM) was 18.0% that of monomeric hGH. While

  14. Dimerization of Human Growth Hormone by Zinc

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian C.; Mulkerrin, Michael G.; Wells, James A.

    1991-08-01

    Size-exclusion chromatography and sedimentation equilibrium studies demonstrated that zinc ion (Zn2+) induced the dimerization of human growth hormone (hGH). Scatchard analysis of 65Zn2+ binding to hGH showed that two Zn2+ ions associate per dimer of hGH in a cooperative fashion. Cobalt (II) can substitute for Zn2+ in the hormone dimer and gives a visible spectrum characteristic of cobalt coordinated in a tetrahedral fashion by oxygen- and nitrogen-containing ligands. Replacement of potential Zn2+ ligands (His18, His21, and Glu174) in hGH with alanine weakened both Zn2+ binding and hGH dimer formation. The Zn2+-hGH dimer was more stable than monomeric hGH to denaturation in guanidine-HCl. Formation of a Zn2+-hGH dimeric complex may be important for storage of hGH in secretory granules.

  15. Growth hormone (GH) secretory dynamics in a case of acromegalic gigantism associated with hyperprolactinemia: nonpulsatile secretion of GH may induce elevated insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 levels.

    PubMed

    Yoshida, T; Shimatsu, A; Sakane, N; Hizuka, N; Horikawa, R; Tanaka, T

    1996-01-01

    We describe a case of pituitary gigantism with low levels of growth hormone (GH), elevated insulin-like growth factor-I (IGF-I), and IGF-binding protein-3 (IGF-BP-3). The patient had characteristic clinical features of gigantism and acromegaly. The basal serum GH levels ranged from 1.2-1.9 micrograms/L, which were considered to be within normal limits. Serum GH response to either insulin-induced hypoglycemia or GH-releasing hormone was blunted. Frequent blood samplings during daytime and at night showed nonpulsatile GH secretion. Serum prolactin, IGF-I and IGF-binding protein-3 levels were elevated. After unsuccessful surgery, bromocryptine treatment normalized serum prolactin without affecting serum GH and IGF-I levels. Combined administration of octreotide and bromocryptine reduced serum GH and IGF-I levels. GH bioactivity as measured by Nb2 cell proliferation assay was within reference range. In the present case, nonpulsatile GH secretion and enhanced tissue sensitivity to GH may induce hypersecretion of IGF-I and IGF-BP-3 and cause clinical acromegalic gigantism.

  16. CCAAT-enhancer-binding protein β (C/EBPβ) and downstream human placental growth hormone genes are targets for dysregulation in pregnancies complicated by maternal obesity.

    PubMed

    Vakili, Hana; Jin, Yan; Menticoglou, Savas; Cattini, Peter A

    2013-08-02

    Human chorionic somatomammotropin (CS) and placental growth hormone variant (GH-V) act as metabolic adaptors in response to maternal insulin resistance, which occurs in "normal" pregnancy. Maternal obesity can exacerbate this "resistance," suggesting that CS, GH-V, or transcription factors that regulate their production might be targets. The human CS genes, hCS-A and hCS-B, flank the GH-V gene. A significant decrease in pre-term placental CS/GH-V RNA levels was observed in transgenic mice containing the CS/GH-V genes in a model of high fat diet (HFD)-induced maternal obesity. Similarly, a decrease in CS/GH-V RNA levels was detected in term placentas from obese (body mass index (BMI) ≥ 35 kg/m(2)) versus lean (BMI 20-25 kg/m(2)) women. A specific decrease in transcription factor CCAAT-enhancer-binding protein β (C/EBPβ) RNA levels was also seen with obesity; C/EBPβ is required for mouse placenta development and is expressed, like CS and GH-V, in syncytiotrophoblasts. Binding of C/EBPβ to the CS gene downstream enhancer regions, which by virtue of their position distally flank the GH-V gene, was reduced in placenta chromatin from mice on a HFD and in obese women; a corresponding decrease in RNA polymerase II associated with CS/GH-V promoters was also observed. Detection of decreased endogenous CS/GH-V RNA levels in human placental tumor cells treated with C/EBPβ siRNA is consistent with a direct effect. These data provide evidence for CS/GH-V dysregulation in acute HFD-induced obesity in mouse pregnancy and chronic obesity in human pregnancy and implicate C/EBPβ, a factor associated with CS regulation and placental development.

  17. Genetics Home Reference: isolated growth hormone deficiency

    MedlinePlus

    ... Genetic Testing (4 links) Genetic Testing Registry: Ateleiotic dwarfism Genetic Testing Registry: Autosomal dominant isolated somatotropin deficiency ... in my area? Other Names for This Condition dwarfism, growth hormone deficiency dwarfism, pituitary growth hormone deficiency ...

  18. Reversible Albumin-Binding GH Possesses a Potential Once-Weekly Treatment Profile in Adult Growth Hormone Deficiency.

    PubMed

    Rasmussen, Michael Højby; Janukonyté, Jurgita; Klose, Marianne; Marina, Djordje; Tanvig, Mette; Nielsen, Lene F; Höybye, Charlotte; Andersen, Marianne; Feldt-Rasmussen, Ulla; Christiansen, Jens Sandahl

    2016-03-01

    NNC0195-0092 is a reversible, albumin-binding GH derivative, developed for once-weekly administration. The objective of the study was to evaluate safety, local tolerability, pharmacodynamics, and pharmacokinetics of multiple, once-weekly doses of NNC0195-0092, compared with daily GH. This was a phase 1, randomized, open-label, active-controlled, multiple-dose, dose-escalation trial. Thirty-four GH-treated adult subjects (male, n = 25) with GH deficiency participated in the study. Subjects were sequentially assigned into four cohorts of eight subjects, randomized within each cohort (3:1) to once-weekly NNC0195-0092 (n = 6) for 4 weeks (0.02, 0.04, 0.08, and 0.12 mg/kg) or daily injections of Norditropin NordiFlex (n = 2) for 4 weeks with a dose replicating the pretrial dose of somatropin. A safety assessment was performed prior to initiating treatment at the next dose level of NNC0195-0092. Daily GH treatment was discontinued 14 days before the trial start. Blood samples were drawn for assessment of safety, pharmacokinetics, pharmacodynamics (IGF-1 and IGF-binding protein-3) profiles, and immunogenicity studies. Numbers of adverse events were similar at the dose levels of 0.02, 0.04, and 0.08 mg/kg NNC0195-0092 vs daily injections of Norditropin NordiFlex, whereas the number of adverse events was greater at the highest dose level of NNC0195-0092 (0.12 mg/kg). NNC0195-0092 (area under the curve[0-168h]) and peak plasma concentration) increased in a dose-dependent manner, and a dose-dependent increase in IGF-1 levels was observed. IGF-1 profiles were elevated for at least 1 week, and for the 0.02-mg/kg and 0.04-mg/kg NNC0195-0092 doses, the observed IGF-1 levels were similar to the levels for the active control group. Four once-weekly doses of NNC0195-0092 (dose range 0.02-0.12 mg/kg) administered to adult patients with GH deficiency were well tolerated, and IGF-1 profiles were consistent with a once-weekly treatment profile. No clinically significant safety and

  19. Reversible Albumin-Binding GH Possesses a Potential Once-Weekly Treatment Profile in Adult Growth Hormone Deficiency

    PubMed Central

    Janukonyté, Jurgita; Klose, Marianne; Marina, Djordje; Tanvig, Mette; Nielsen, Lene F.; Höybye, Charlotte; Andersen, Marianne; Feldt-Rasmussen, Ulla; Christiansen, Jens Sandahl

    2016-01-01

    Context: NNC0195-0092 is a reversible, albumin-binding GH derivative, developed for once-weekly administration. Objectives: The objective of the study was to evaluate safety, local tolerability, pharmacodynamics, and pharmacokinetics of multiple, once-weekly doses of NNC0195-0092, compared with daily GH. Design and Setting: This was a phase 1, randomized, open-label, active-controlled, multiple-dose, dose-escalation trial. Patients: Thirty-four GH-treated adult subjects (male, n = 25) with GH deficiency participated in the study. Interventions and Main Outcome Measures: Subjects were sequentially assigned into four cohorts of eight subjects, randomized within each cohort (3:1) to once-weekly NNC0195-0092 (n = 6) for 4 weeks (0.02, 0.04, 0.08, and 0.12 mg/kg) or daily injections of Norditropin NordiFlex (n = 2) for 4 weeks with a dose replicating the pretrial dose of somatropin. A safety assessment was performed prior to initiating treatment at the next dose level of NNC0195-0092. Daily GH treatment was discontinued 14 days before the trial start. Blood samples were drawn for assessment of safety, pharmacokinetics, pharmacodynamics (IGF-1 and IGF-binding protein-3) profiles, and immunogenicity studies. Results: Numbers of adverse events were similar at the dose levels of 0.02, 0.04, and 0.08 mg/kg NNC0195-0092 vs daily injections of Norditropin NordiFlex, whereas the number of adverse events was greater at the highest dose level of NNC0195-0092 (0.12 mg/kg). NNC0195-0092 (area under the curve[0–168h]) and peak plasma concentration) increased in a dose-dependent manner, and a dose-dependent increase in IGF-1 levels was observed. IGF-1 profiles were elevated for at least 1 week, and for the 0.02-mg/kg and 0.04-mg/kg NNC0195-0092 doses, the observed IGF-1 levels were similar to the levels for the active control group. Conclusion: Four once-weekly doses of NNC0195-0092 (dose range 0.02–0.12 mg/kg) administered to adult patients with GH deficiency were well tolerated

  20. Analytical performance and clinical usefulness of two binding assays for growth hormone binding protein (GHBP) measurement: high performance liquid chromatography (HPLC)-gel filtration and dextran-coated charcoal adsorption.

    PubMed

    Llopis, M A; Granada, M L; Audí, L; Sanmartí, A; Bel, J; Sánchez-Planell, L; Formiguera, X; Marin, F; Corominas, A

    1997-11-28

    We compared two binding assays for growth hormone binding protein (GHBP) measurements, which differ in the method of bound and free GH separation: HPLC-gel filtration or dextran coated-charcoal adsorption (DCC). Two pools of sera (high and medium GHBP activity) were used for quality-control assessment. Moreover, 62 samples from 34 children and 28 adults with different nutritional status were studied. Total, between- and intra-iodination coefficients of variation (CVs) from the two methods were not different. Although percentage binding measured in the pool sera significantly differed, the concentrations assessed by Scatchard plot were comparable. Results obtained by the two methods in the 62 sera were significantly correlated (r = 0.77, P < 0.001). With both methods GHBP activity correlated with chronological age and body mass index (BMI) and differed among groups with different nutritional status. Although HPLC and DCC separation methods for GHBP measurement differ in their practicability, our study demonstrates that performance and the clinical usefulness of the two methods are comparable.

  1. Identification of a new hormone-binding site on the surface of thyroid hormone receptor.

    PubMed

    Souza, P C T; Puhl, A C; Martínez, L; Aparício, R; Nascimento, A S; Figueira, A C M; Nguyen, P; Webb, P; Skaf, M S; Polikarpov, I

    2014-04-01

    Thyroid hormone receptors (TRs) are members of the nuclear receptor superfamily of ligand-activated transcription factors involved in cell differentiation, growth, and homeostasis. Although X-ray structures of many nuclear receptor ligand-binding domains (LBDs) reveal that the ligand binds within the hydrophobic core of the ligand-binding pocket, a few studies suggest the possibility of ligands binding to other sites. Here, we report a new x-ray crystallographic structure of TR-LBD that shows a second binding site for T3 and T4 located between H9, H10, and H11 of the TRα LBD surface. Statistical multiple sequence analysis, site-directed mutagenesis, and cell transactivation assays indicate that residues of the second binding site could be important for the TR function. We also conducted molecular dynamics simulations to investigate ligand mobility and ligand-protein interaction for T3 and T4 bound to this new TR surface-binding site. Extensive molecular dynamics simulations designed to compute ligand-protein dissociation constant indicate that the binding affinities to this surface site are of the order of the plasma and intracellular concentrations of the thyroid hormones, suggesting that ligands may bind to this new binding site under physiological conditions. Therefore, the second binding site could be useful as a new target site for drug design and could modulate selectively TR functions.

  2. A Simulated Growth Hormone Analysis

    NASA Astrophysics Data System (ADS)

    Harris, Mary

    1996-08-01

    Growth hormone is a drug that is sometimes abused by amateur or professional athletes for performance-enhancement. This laboratory is a semimicroscale simulation analysis of a sample of "urine" to detect proteins of two very different molecular weights. Gel filtration uses a 10 mL disposable pipette packed with Sephadex. Students analyze the fractions from the filtration by comparing colors of the Brilliant Blue Coomassie Dye as it interacts with the proteins in the sample to a standard set of known concentration of protein with the dye. The simulated analysis of growth hormone is intended to be included in a unit on organic chemistry or in the second year of high school chemistry.

  3. Parathyroid hormone linked to a collagen binding domain promotes hair growth in a mouse model of chemotherapy-induced alopecia in a dose-dependent manner.

    PubMed

    Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Seymour, Andrew; Sakon, Joshua; Gensure, Robert

    2014-08-01

    Chemotherapy-induced alopecia is a major source of psychological stress in patients undergoing cancer chemotherapy, and it can influence treatment decisions. Although there is currently no therapy for alopecia, a fusion protein of parathyroid hormone and collagen binding domain (PTH-CBD) has shown promise in animal models. The aim of this study was to determine whether there are dose-dependent effects of PTH-CBD on chemotherapy-induced alopecia in a mouse model. C57BL/6J mice were waxed to synchronize hair follicles; treated on day 7 with vehicle or PTH-CBD (100, 320, and 1000 mcg/kg subcutaneous injection); and treated on day 9 with vehicle or cyclophosphamide (150 mg/kg intraperitoneally). Mice were photographed every 3-4 days and killed on day 63 for histological analysis. Photographs were quantified by gray scale analysis to assess hair content. Mice not receiving chemotherapy showed regrowth of hair 2 weeks after waxing and normal histology after 2 months. Mice receiving chemotherapy alone showed marked hair loss after chemotherapy, which was sustained for 10 days and was followed by rapid regrowth of a normal coat. Histological analysis revealed rapid cycling dystrophic anagen/catagen follicles. Animals receiving chemotherapy and PTH-CBD showed decreased hair loss and more rapid regrowth of hair than that seen with chemotherapy alone (increased hair growth by gray scale analysis, P<0.05), and the effects were dose dependent. Histologically, hair follicles in animals receiving the highest dose of PTH-CBD were in a quiescent phase, similar to that in mice that did not receive chemotherapy. Single-dose subcutaneous administration of PTH-CBD showed dose-dependent effects in minimizing hair loss and speeding up recovery from chemotherapy-induced alopecia.

  4. Growth and growth hormone: An overview.

    PubMed

    Teran, Enrique; Chesner, Jaclyn; Rapaport, Robert

    2016-06-01

    Growth is a good indicator of a child's health. Growth disturbances, including short stature or growth failure, could be indications of illnesses such as chronic disease, nutritional deficits, celiac disease or hormonal abnormalities. Therefore, a careful assessment of the various requirements for normal growth needs to be done by history, physical examination, and screening laboratory tests. More details will be reviewed about the GH-IGF axis, its abnormalities with special emphasis on GH deficiency, its diagnosis and treatment. GH treatment indications in the US will be reviewed and a few only will be highlighted. They will include GH deficiency, as well as the treatment of children born SGA, including the results of a US study using FDA approved dose of 0.48mg/kg/week. GH deficiency in adults will also be briefly reviewed. Treatment of patients with SHOX deficiency will also be discussed. Possible side effects of GH treatment and the importance of monitoring safety will be highlighted.

  5. Growth hormone deficiency: an update.

    PubMed

    Audí, L; Fernández-Cancio, M; Camats, N; Carrascosa, A

    2013-03-01

    Growth hormone (GH) deficiency (GHD) in humans manifests differently according to the individual developmental stage (early after birth, during childhood, at puberty or in adulthood), the cause or mechanism (genetic, acquired or idiopathic), deficiency intensity and whether it is the only pituitary-affected hormone or is combined with that of other pituitary hormones or forms part of a complex syndrome. Growing knowledge of the genetic basis of GH deficiency continues to provide us with useful information to further characterise mutation types and mechanisms for previously described and new candidate genes. Despite these advances, a high proportion of GH deficiencies with no recognisable acquired basis continue to be labelled as idiopathic, although less frequently when they are congenital and/or familial. The clinical and biochemical diagnoses continue to be a conundrum despite efforts to harmonise biochemical assays for GH and IGF-1 analysis, probably because the diagnosis based on the so-called GH secretion stimulation tests will prove to be of limited usefulness for predicting therapy indications.

  6. An enzyme immunoassay for rat growth hormone - Applications to the study of growth hormone variants

    NASA Technical Reports Server (NTRS)

    Farrington, Marianne A.; Hymer, W. C.

    1987-01-01

    A sensitive and specific competitive enzyme immunoassay for rat growth hormone (GH) is described and its use in the detection of GH variants is demonstrated. In the present assay, soluble GH and GH adsorbed to a solid-phase support compete for monkey anti-GH antibody binding sites. The immobilized antibody-GH complex is detected and quantified using goat antimonkey immunoglobin G covalently conjugated to horseradish peroxidase. It is noted that the assay can be performed in 27 hours and that sensitivities in the range of 0.19 to 25 ng can be obtained in the region of 10 to 90 percent binding.

  7. An enzyme immunoassay for rat growth hormone - Applications to the study of growth hormone variants

    NASA Technical Reports Server (NTRS)

    Farrington, Marianne A.; Hymer, W. C.

    1987-01-01

    A sensitive and specific competitive enzyme immunoassay for rat growth hormone (GH) is described and its use in the detection of GH variants is demonstrated. In the present assay, soluble GH and GH adsorbed to a solid-phase support compete for monkey anti-GH antibody binding sites. The immobilized antibody-GH complex is detected and quantified using goat antimonkey immunoglobin G covalently conjugated to horseradish peroxidase. It is noted that the assay can be performed in 27 hours and that sensitivities in the range of 0.19 to 25 ng can be obtained in the region of 10 to 90 percent binding.

  8. Growth Hormone and Craniofacial Tissues. An update

    PubMed Central

    Litsas, George

    2015-01-01

    Growth hormone is an important regulator of bone homeostasis. In childhood, it determines the longitudinal bone growth, skeletal maturation, and acquisition of bone mass. In adulthood, it is necessary to maintain bone mass throughout life. Although an association between craniofacial and somatic development has been clearly established, craniofacial growth involves complex interactions of genes, hormones and environment. Moreover, as an anabolic hormone seems to have an important role in the regulation of bone remodeling, muscle enhancement and tooth development. In this paper the influence of growth hormone on oral tissues is reviewed. PMID:25674165

  9. Expression of growth hormone and growth hormone receptor in fibroadenomas of the breast.

    PubMed

    Lenicek, Tanja; Kasumović, Dino; Stajduhar, Emil; Dzombeta, Tihana; Jukić, Zoran; Kruslin, Bozo

    2013-06-01

    Fibroadenoma is the most prevalent benign breast tumor. It consists of epithelial and stromal components. In general, breast tumors are highly hormonally dependent and growth hormone by its physiology may have a possible oncogenic potential. Therefore, the aim of this study was to determine the expression of growth hormone and growth hormone receptor in epithelial and stromal components of fibroadenomas. Study group included 30 randomly chosen fibroadenomas from female patients aged between 18 and 69 years. The expression of growth hormone and growth hormone receptor was defined in both histologic components of fibroadenomas. Growth hormone was expressed in 96.7% of both epithelial and stromal components of fibroadenomas, with stronger expression in the stromal component. The same percentage of positive reaction (96.7%) was obtained in the epithelial component of fibroadenomas for growth hormone receptor expression. Only 6.7% of stromal components tested for growth hormone receptor were positive. The high expression of growth hormone and growth hormone receptor in fibroadenoma tissue indicates their possible role in the pathogenesis of this tumor. Follow up of patients with high expression of growth hormone and growth hormone receptor may be suggested.

  10. Effect of a high-protein diet on ghrelin, growth hormone, and insulin-like growth factor-I and binding proteins 1 and 3 in subjects with type 2 diabetes mellitus.

    PubMed

    Gannon, Mary Carol; Nuttall, Frank Quentin

    2011-09-01

    We have developed a diet that over 5 weeks dramatically lowers plasma glucose in people with type 2 diabetes mellitus. This diet consists of 30% carbohydrate, 30% protein, and 40% fat and is referred to as a Low Biologically Available Glucose (LoBAG) diet. The diet also resulted in an approximately 30% increase in fasting insulin-like growth factor-I (IGF-I). Thus, we were interested in determining if the IGF-I elevation was due to an increase in ghrelin and growth hormone (GH) or to a change in IGF-I binding proteins (IGFBPs). Eight men with type 2 diabetes mellitus ingested a control diet (15% protein, 55% carbohydrate, and 30% fat) and a LoBAG(30) diet for 5 weeks in a randomized crossover design with a washout period in between. Before and after each 5-week period, subjects had blood drawn for total glycated hemoglobin and, at several time points over 24 hours, for GH, IGF-I, IGFBP-1, IGFBP-3, ghrelin, glucose, and insulin. Fasting and 24-hour glucose concentrations and total glycated hemoglobin were decreased, as expected (all Ps < .05). Fasting IGF-I increased by approximately 30% (P = .05) and remained unchanged throughout 24 hours. Ghrelin, GH, IGFBP-1, IGFBP-3, and insulin were not different between diets. Insulin and IGFBP-1 concentrations were reciprocal, as expected. Insulin-like growth factor-I binding protein 1 decreased as insulin increased to greater than approximately 30 to 40 μU/mL. Ingestion of a LoBAG(30) diet by weight-stable subjects with type 2 diabetes mellitus resulted in an increase in total IGF-I without an increase in ghrelin, GH, and IGFBP-3 or a change in IGFBP-1 regulation. The mechanism remains to be determined. Published by Elsevier Inc.

  11. Growth hormone doping: a review

    PubMed Central

    Erotokritou-Mulligan, Ioulietta; Holt, Richard IG; Sönksen, Peter H

    2011-01-01

    The use of growth hormone (GH) as a performance enhancing substance was first promoted in lay publications, long before scientists fully acknowledged its benefits. It is thought athletes currently use GH to enhance their athletic performance and to accelerate the healing of sporting injuries. Over recent years, a number of high profile athletes have admitted to using GH. To date, there is only limited and weak evidence for its beneficial effects on performance. Nevertheless the “hype” around its effectiveness and the lack of a foolproof detection methodology that will detect its abuse longer than 24 hours after the last injection has encouraged its widespread use. This article reviews the current evidence of the ergogenic effects of GH along with the risks associated with its use. The review also examines methodologies, both currently available and in development for detecting its abuse. PMID:24198576

  12. Growth hormone and physical performance.

    PubMed

    Birzniece, Vita; Nelson, Anne E; Ho, Ken K Y

    2011-05-01

    There has been limited research and evidence that GH enhances physical performance in healthy adults or in trained athletes. Even so, human growth hormone (GH) is widely abused by athletes. In healthy adults, GH increases lean body mass, although it is possible that fluid retention contributes to this effect. The most recent data indicate that GH does not enhance muscle strength, power, or aerobic exercise capacity, but improves anaerobic exercise capacity. In fact, there are adverse effects of long-term GH excess such that sustained abuse of GH can lead to a state mimicking acromegaly, a condition with increased morbidity and mortality. This review will examine GH effects on body composition and physical performance in health and disease.

  13. [Plant hormones, plant growth regulators].

    PubMed

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.

  14. Neuroprotective Actions of Ghrelin and Growth Hormone Secretagogues

    PubMed Central

    Frago, Laura M.; Baquedano, Eva; Argente, Jesús; Chowen, Julie A.

    2011-01-01

    The brain incorporates and coordinates information based on the hormonal environment, receiving information from peripheral tissues through the circulation. Although it was initially thought that hormones only acted on the hypothalamus to perform endocrine functions, it is now known that they in fact exert diverse actions on many different brain regions including the hypothalamus. Ghrelin is a gastric hormone that stimulates growth hormone secretion and food intake to regulate energy homeostasis and body weight by binding to its receptor, growth hormone secretagogues–GH secretagogue-receptor, which is most highly expressed in the pituitary and hypothalamus. In addition, ghrelin has effects on learning and memory, reward and motivation, anxiety, and depression, and could be a potential therapeutic agent in neurodegenerative disorders where excitotoxic neuronal cell death and inflammatory processes are involved. PMID:21994488

  15. Hormonal and nutritional drivers of intrauterine growth.

    PubMed

    Sferruzzi-Perri, Amanda N; Vaughan, Owen R; Forhead, Alison J; Fowden, Abigail L

    2013-05-01

    Size at birth is critical in determining life expectancy with both small and large neonates at risk of shortened life spans. This review examines the hormonal and nutritional drivers of intrauterine growth with emphasis on the role of foetal hormones as nutritional signals in utero. Nutrients drive intrauterine growth by providing substrate for tissue accretion, whereas hormones regulate nutrient distribution between foetal oxidative metabolism and mass accumulation. The main hormonal drivers of intrauterine growth are insulin, insulin-like growth factors and thyroid hormones. Together with leptin and cortisol, these hormones control cellular nutrient uptake and the balance between accretion and differentiation in regulating tissue growth. They also act indirectly via the placenta to alter the materno-foetal supply of nutrients and oxygen. By responding to nutrient and oxygen availability, foetal hormones optimize the survival and growth of the foetus with respect to its genetic potential, particularly during adverse conditions. However, changes in the intrauterine growth of individual tissues may alter their function permanently. In both normal and compromised pregnancies, intrauterine growth is determined by multiple hormonal and nutritional drivers which interact to produce a specific pattern of intrauterine development with potential lifelong consequences for health.

  16. [Hormones and hair growth in man].

    PubMed

    Moretti, G; Rampini, E; Rebora, A

    1977-12-01

    A literature review tries to diminish the ambiguity between hormones and hairs. Therefore the hormonal action in general (regulation of the protein synthesis indirectly by enzymatical regulation of the AMP-system or directly by hormones as active metabolites) and the methods to explore hormones-hair-interaction are discussed. Hormones pertaining to the pituitary-adrenal-gonadal axis are regarded as the paramount hormones; therefore the results of research in testosterone, 5-alpha-dihydrotestosterone, estrogens, progesterone, glucocorticoids, the hypophysis and its tropins are recapitulated. The main disorders of hair-growth, pattern baldness and "idiopathic" hirsutism, which would be dependent on a similar disturbance of androgen metabolism, are discussed. Pathology in hair-growth may arise in any point of the cascade of hormone action.

  17. Thyroid hormone and the growth plate.

    PubMed

    Shao, Yvonne Y; Wang, Lai; Ballock, R Tracy

    2006-12-01

    Thyroid hormone was first identified as a potent regulator of skeletal maturation at the growth plate more than forty years ago. Since that time, many in vitro and in vivo studies have confirmed that thyroid hormone regulates the critical transition between cell proliferation and terminal differentiation in the growth plate, specifically the maturation of growth plate chondrocytes into hypertrophic cells. However these studies have neither identified the molecular mechanisms involved in the regulation of skeletal maturation by thyroid hormone, nor demonstrated how the systemic actions of thyroid hormone interface with the local regulatory milieu of the growth plate. This article will review our current understanding of the role of thyroid hormone in regulating the process of endochondral ossification at the growth plate, as well as what is currently known about the molecular mechanisms involved in this regulation.

  18. Binding of Thyrotropin-Releasing Hormone to Plasma Membranes of Bovine Anterior Pituitary Gland

    PubMed Central

    Labrie, Fernand; Barden, Nicholas; Poirier, Guy; De Lean, Andre

    1972-01-01

    An assay for the binding of [3H]thyrotropin-releasing hormone ([3H]TRH) is described. Plasma membranes isolated from bovine anterior pituitary gland bind about 600 femtomoles of this hormone per mg of protein, as compared to 15 femtomoles per mg of protein in the total adenohypophyseal homogenate (40-fold purification). The equilibrium constant of membrane receptor-[3H]TRH binding at 0°C is 4.3 × 107 L·M-1, or a half-maximal binding of this hormone at 23 nM. The binding is time-dependent; addition of unlabeled hormone induces dissociation of the receptor-[3H]TRH complex with a half-life of 14 min. The binding of TRH is not altered by 10 μM melanocyte-stimulating hormone-release inhibiting hormone, lysine-vasopressin, adrenocorticotropin, growth hormone, prolactin, luteinizing hormone, insulin, glucagon, L-thyroxine, or L-triiodothyronine. K+ and Mg++ increase formation of the receptor-TRH complex at optimal concentrations of 5-25 mM and 0.5-2.5 mM, respectively, with inhibition at higher concentrations. Ca++ inhibits binding of TRH at all concentrations tested. PMID:4621548

  19. Caloric restriction-associated remodeling of rat white adipose tissue: effects on the growth hormone/insulin-like growth factor-1 axis, sterol regulatory element binding protein-1, and macrophage infiltration.

    PubMed

    Chujo, Yoshikazu; Fujii, Namiki; Okita, Naoyuki; Konishi, Tomokazu; Narita, Takumi; Yamada, Atsushi; Haruyama, Yushi; Tashiro, Kosuke; Chiba, Takuya; Shimokawa, Isao; Higami, Yoshikazu

    2013-08-01

    The role of the growth hormone (GH)-insulin-like growth factor (IGF)-1 axis in the lifelong caloric restriction (CR)-associated remodeling of white adipose tissue (WAT), adipocyte size, and gene expression profiles was explored in this study. We analyzed the WAT morphology of 6-7-month-old wild-type Wistar rats fed ad libitum (WdAL) or subjected to CR (WdCR), and of heterozygous transgenic dwarf rats bearing an anti-sense GH transgene fed ad libitum (TgAL) or subjected to CR (TgCR). Although less effective in TgAL, the adipocyte size was significantly reduced in WdCR compared with WdAL. This CR effect was blunted in Tg rats. We also used high-density oligonucleotide microarrays to examine the gene expression profile of WAT of WdAL, WdCR, and TgAL rats. The gene expression profile of WdCR, but not TgAL, differed greatly from that of WdAL. The gene clusters with the largest changes induced by CR but not by Tg were genes involved in lipid biosynthesis and inflammation, particularly sterol regulatory element binding proteins (SREBPs)-regulated and macrophage-related genes, respectively. Real-time reverse-transcription polymerase chain reaction analysis confirmed that the expression of SREBP-1 and its downstream targets was upregulated, whereas the macrophage-related genes were downregulated in WdCR, but not in TgAL. In addition, CR affected the gene expression profile of Tg rats similarly to wild-type rats. Our findings suggest that CR-associated remodeling of WAT, which involves SREBP-1-mediated transcriptional activation and suppression of macrophage infiltration, is regulated in a GH-IGF-1-independent manner.

  20. Recombinant Bovine Growth Hormone Criticism Grows.

    ERIC Educational Resources Information Center

    Gaard, Greta

    1995-01-01

    Discusses concerns related to the use of recombinant bovine growth hormone in the United States and other countries. Analyses the issue from the perspectives of animal rights, human health, world hunger, concerns of small and organic farmers, costs to the taxpayer, and environmental questions. A sidebar discusses Canadian review of the hormone.…

  1. Recombinant Bovine Growth Hormone Criticism Grows.

    ERIC Educational Resources Information Center

    Gaard, Greta

    1995-01-01

    Discusses concerns related to the use of recombinant bovine growth hormone in the United States and other countries. Analyses the issue from the perspectives of animal rights, human health, world hunger, concerns of small and organic farmers, costs to the taxpayer, and environmental questions. A sidebar discusses Canadian review of the hormone.…

  2. Obesity, growth hormone and exercise.

    PubMed

    Thomas, Gwendolyn A; Kraemer, William J; Comstock, Brett A; Dunn-Lewis, Courtenay; Maresh, Carl M; Volek, Jeff S

    2013-09-01

    Growth hormone (GH) is regulated, suppressed and stimulated by numerous physiological stimuli. However, it is believed that obesity disrupts the physiological and pathological factors that regulate, suppress or stimulate GH release. Pulsatile GH has been potently stimulated in healthy subjects by both aerobic and resistance exercise of the right intensity and duration. GH modulates fuel metabolism, reduces total fat mass and abdominal fat mass, and could be a potent stimulus of lipolysis when administered to obese individuals exogenously. Only pulsatile GH has been shown to augment adipose tissue lipolysis and, therefore, increasing pulsatile GH response may be a therapeutic target. This review discusses the factors that cause secretion of GH, how obesity may alter GH secretion and how both aerobic and resistance exercise stimulates GH, as well as how exercise of a specific intensity may be used as a stimulus for GH release in individuals who are obese. Only five prior studies have investigated exercise as a stimulus of endogenous GH in individuals who are obese. Based on prior literature, resistance exercise may provide a therapeutic target for releasing endogenous GH in individuals who are obese if specific exercise programme variables are utilized. Biological activity of GH indicates that this may be an important precursor to beneficial changes in body fat and lean tissue mass in obese individuals. However, additional research is needed including what molecular GH variants are acutely released and involved at target tissues as a result of different exercise stimuli and what specific exercise programme variables may serve to stimulate GH in individuals who are obese.

  3. Oral manifestations in growth hormone disorders

    PubMed Central

    Atreja, Gaurav; Atreja, Shikha Handa; Jain, Nitul; Sukhija, Urvashi

    2012-01-01

    Growth hormone is of vital importance for normal growth and development. Individuals with growth hormone deficiency develop pituitary dwarfism with disproportionate delayed growth of skull and facial skeleton giving them a small facial appearance for their age. Both hyper and hypopituitarism have a marked effect on development of oro-facial structures including eruption and shedding patterns of teeth, thus giving an opportunity to treating dental professionals to first see the signs and symptoms of these growth disorders and correctly diagnose the serious underlying disease. PMID:22629503

  4. Interrelationships of Prenatal and Postnatal Growth, Hormones, Diet, and Breast Cancer

    DTIC Science & Technology

    2006-03-01

    higher albumin and sex hormone binding globulin among Chinese women could decrease the bioavailability of oestrogens . This may partially explain the...Kohen F, and Nagamani M: De- creased ovarian hormones during a soya diet: implications for breast cancer prevention. Cancer Res 60, 4112–4121, 2000. 22...1-0340 TITLE: Interrelationships of Prenatal and Postnatal Growth, Hormones , Diet, and Breast Cancer PRINCIPAL

  5. [Human growth hormone and Turner syndrome].

    PubMed

    Sánchez Marco, Silvia Beatriz; de Arriba Muñoz, Antonio; Ferrer Lozano, Marta; Labarta Aizpún, José Ignacio; Garagorri Otero, Jesús María

    2017-02-01

    The evaluation of clinical and analytical parameters as predictors of the final growth response in Turner syndrome patients treated with growth hormone. A retrospective study was performed on 25 girls with Turner syndrome (17 treated with growth hormone), followed-up until adult height. Auxological, analytical, genetic and pharmacological parameters were collected. A descriptive and analytical study was conducted to evaluate short (12 months) and long term response to treatment with growth hormone. A favourable treatment response was shown during the first year of treatment in terms of height velocity gain in 66.6% of cases (height-gain velocity >3cm/year). A favourable long-term treatment response was also observed in terms of adult height, which increased by 42.82±21.23cm (1.25±0.76 SDS), with an adult height gain of 9.59±5.39cm (1.68±1.51 SDS). Predictors of good response to growth hormone treatment are: A) initial growth hormone dose, B) time on growth hormone treatment until starting oestrogen therapy, C) increased IGF1 and IGFBP-3 levels in the first year of treatment, and D) height gain velocity in the first year of treatment. Copyright © 2015 Asociación Española de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  6. Growth hormone replacement therapy in Costello syndrome.

    PubMed

    Triantafyllou, Panagiota; Christoforidis, Athanasios; Vargiami, Euthymia; Zafeiriou, Dimitrios I

    2014-12-01

    Costello syndrome (CS) is considered an overgrowth disorder given the macrosomia that is present at birth .However, shortly after birth the weight drops dramatically and the patients are usually referred for failure to thrive. Subsequently, affected patients develop the distinctive coarse facial appearance and are at risk for cardiac anomalies and solid tumor malignancies. Various endocrine disorders, although not very often, have been reported in patients with CS, including growth hormone deficiency, hypoglycemia, ACTH deficiency, cryptorchidism and hypothyroidism. We report a case of Costello syndrome with hypothyroidism, cryptorchidism and growth hormone deficiency and we evaluate the long-term safety and efficacy of growth hormone replacement therapy. The index patient is a paradigm of successful and safe treatment with growth hormone for almost 7 years. Since patients with CS are at increased risk for cardiac myopathy and tumor development they deserve close monitoring during treatment.

  7. Hormone symphony during root growth and development.

    PubMed

    Garay-Arroyo, Adriana; De La Paz Sánchez, María; García-Ponce, Berenice; Azpeitia, Eugenio; Alvarez-Buylla, Elena R

    2012-12-01

    Hormones regulate plant growth and development in response to external environmental stimuli via complex signal transduction pathways, which in turn form complex networks of interaction. Several classes of hormones have been reported, and their activity depends on their biosynthesis, transport, conjugation, accumulation in the vacuole, and degradation. However, the activity of a given hormone is also dependent on its interaction with other hormones. Indeed, there is a complex crosstalk between hormones that regulates their biosynthesis, transport, and/or signaling functionality, although some hormones have overlapping or opposite functions. The plant root is a particularly useful system in which to study the complex role of plant hormones in the plastic control of plant development. Physiological, cellular, and molecular genetic approaches have been used to study the role of plant hormones in root meristem homeostasis. In this review, we discuss recent findings on the synthesis, signaling, transport of hormones and role during root development and examine the role of hormone crosstalk in maintaining homeostasis in the apical root meristem. Copyright © 2012 Wiley Periodicals, Inc.

  8. Obtaining growth hormone from calf blood

    NASA Technical Reports Server (NTRS)

    Kalchev, L. A.; Ralchev, K. K.; Nikolov, I. T.

    1979-01-01

    The preparation of a growth hormone from human serum was used for the isolation of the hormone from calf serum. The preparation was biologically active - it increased the quantity of the free fatty acids released in rat plasma by 36.4 percent. Electrophoresis in Veronal buffer, ph 8.6, showed the presence of a single fraction having mobility intermediate between that of alpha and beta globulins. Gel filtration through Sephadex G 100 showed an elutriation curve identical to that obtained by the growth hormone prepared from pituitary glands.

  9. Growth Hormone Response after Administration of L-dopa, Clonidine, and Growth Hormone Releasing Hormone in Children with Down Syndrome.

    ERIC Educational Resources Information Center

    Pueschel, Seigfried M.

    1993-01-01

    This study of eight growth-retarded children with Down's syndrome (aged 1 to 6.5 years) found that administration of growth hormone was more effective than either L-dopa or clonidine. Results suggest that children with Down's syndrome have both anatomical and biochemical hypothalamic derangements resulting in decreased growth hormone secretion and…

  10. Growth Hormone Response after Administration of L-dopa, Clonidine, and Growth Hormone Releasing Hormone in Children with Down Syndrome.

    ERIC Educational Resources Information Center

    Pueschel, Seigfried M.

    1993-01-01

    This study of eight growth-retarded children with Down's syndrome (aged 1 to 6.5 years) found that administration of growth hormone was more effective than either L-dopa or clonidine. Results suggest that children with Down's syndrome have both anatomical and biochemical hypothalamic derangements resulting in decreased growth hormone secretion and…

  11. [Hormone replacement therapy--growth hormone, melatonin, DHEA and sex hormones].

    PubMed

    Fukai, Shiho; Akishita, Masahiro

    2009-07-01

    The ability to maintain active and independent living as long as possible is crucial for the healthy longevity. Hormones responsible for some of the manifestations associated with aging are growth hormone, insulin-like growth factor-1 (IGF-1), melatonin, dehydroepiandrosterone (DHEA), sex hormones and thyroid hormones. These hormonal changes are associated with changes in body composition, visceral obesity, muscle weakness, osteoporosis, urinary incontinence, loss of cognitive functioning, reduction in well being, depression, as well as sexual dysfunction. With the prolongation of life expectancy, both men and women today live the latter third life with endocrine deficiencies. Hormone replacement therapy may alleviate the debilitating conditions of secondary partial endocrine deficiencies by preventing or delaying some aspects of aging.

  12. Lactam formation increases receptor binding, adenylyl cyclase stimulation and bone growth stimulation by human parathyroid hormone (hPTH)(1-28)NH2.

    PubMed

    Whitfield, J F; Morley, P; Willick, G E; Isaacs, R J; MacLean, S; Ross, V; Barbier, J R; Divieti, P; Bringhurst, F R

    2000-05-01

    Human parathyroid hormone (1-28)NH2 [hPTH(1-28)NH2] is the smallest of the PTH fragments that can fully stimulate adenylyl cyclase in ROS 17/2 rat osteoblast-like osteosarcoma cells. This fragment has an IC50 of 110 nM for displacing 125I-[Nle8,18,Tyr34]bovine PTH(1-34)NH2 from HKRK B7 porcine kidney cells, which stably express 950,000 human type 1 PTH/PTH-related protein (PTHrP) receptors (PTH1Rs) per cell. It also has an EC50 of 23.9 nM for stimulating adenylyl cyclase in ROS 17/2 cells. Increasing the amphiphilicity of the alpha-helix in the residue 17-28 region by replacing Lys27 with Leu and stabilizing the helix by forming a lactam between Glu22 and Lys26 to produce the [Leu27]cyclo(Glu22-Lys26)hPTH(1-28)NH2 analog dramatically reduced the IC50 for displacing 125I-[Nle8,18,Tyr34]bPTH(1-34)NH2 from hPTH1Rs from 110 to 6 nM and dropped the EC50 for adenylyl cyclase stimulation in ROS 17/2 cells from 23.9 to 9.6 nM. These modifications also increased the osteogenic potency of hPTH(1-28)NH2. Thus, hPTH(1-28)NH2 did not significantly stimulate either femoral or vertebral trabecular bone growth in rats when injected daily at a dose of 5 nmol/100 g body weight for 6 weeks, beginning 2 weeks after ovariectomy (OVX), but it strongly stimulated the growth of trabeculae in the cancellous bone of the distal femurs and L5 vertebrae when injected at 25 nmol/100 g body weight. By contrast [Leu27]cyclo(Glu22-Lys26)hPTH(1-28)NH2 significantly stimulated trabecular bone growth when injected at 5 nmol/100 g of body weight. Thus, these modifications have brought the bone anabolic potency of hPTH(1-28)NH2 considerably closer to the potencies of the larger PTH peptides and analogs.

  13. Growth Hormone Research Society perspective on the development of long-acting growth hormone preparations

    USDA-ARS?s Scientific Manuscript database

    The Growth Hormone (GH) Research Society (GRS) convened a workshop to address important issues regarding trial design, efficacy, and safety of long-acting growth hormone preparations (LAGH). A closed meeting of 55 international scientists with expertise in GH, including pediatric and adult endocrino...

  14. Common carp (Cyprinus carpio) insulin-like growth factor binding protein-2 (IGFBP-2): molecular cloning, expression profiles, and hormonal regulation in hepatocytes.

    PubMed

    Chen, Wenbo; Li, Wensheng; Lin, Haoran

    2009-05-01

    In the present study, we cloned IGFBP-2 cDNA from common carp (Cyprinus carpio) liver. The 1879 bp full-length cDNA encodes 274 amino acid residues containing a putative signal peptide of 22 residues. Two IGFBP-2 transcripts with estimated sizes of 2.2 and 1.5 kb have been detected with Northern blot analysis in liver. Relatively high levels of IGFBP-2 mRNA were observed in all regions of brain, liver, pituitary, ovary and testis. Intermediate levels were observed in white muscle, thymus gland and head kidney, while in retina, heart and other tissues IGFBP-2 mRNA levels were very low. A significant level of IGFBP-2 mRNA was firstly detected at lens formation stage, and it continued to increase to the highest level at blood cycling stage, and fell to a relatively high level until hatching. The expression pattern of IGFBP-2 mRNA was similar during different stages of testis and ovary. At recrudescing stage the expression level was extremely low, but it sharply increased to a high level at matured stage, and finally brought back to the very low level at regressed stage. Hepatocytes IGFBP-2 mRNA was greatly reduced by growth hormone but increased by insulin. PD-98059 and LY-294002, the specific inhibitor of MEK and PI3K, increased IGFBP-2 mRNA expression level and completely blocked the inhibitory effect of GH. It is suggested that the MAPK and PI3 kinase-signaling pathways were involved in the decrease of IGFBP-2 mRNA expression induced by GH in primary cultured hepatocytes.

  15. Long-term effects of insulin-like growth factor (IGF)-I on serum IGF-I, IGF-binding protein-3 and acid labile subunit in Laron syndrome patients with normal growth hormone binding protein.

    PubMed

    Kanety, H; Silbergeld, A; Klinger, B; Karasik, A; Baxter, R C; Laron, Z

    1997-12-01

    A minority of patients with Laron syndrome have normal serum GH binding protein (GHBP), indicating that the defect is elsewhere than in the extracellular domain of the GH receptor. We have evaluated the effect of long-term IGF-I treatment on serum IGF-binding protein (IGFBP)-3 and the acid-labile subunit (ALS) in three sibling with Laron syndrome caused by a GH post-receptor defect and with normal GHBP. The children (a boy aged 3 years, a girl aged 4 years and a boy aged 10 years) were treated by daily s.c. injection of IGF-I in a dose of 150 micrograms/kg. IGFBP-3 was measured by RIA and Western ligand blotting, ALS by RIA. Based values of IGFBP-3 and ALS were low. During IGF-I treatment, the IGFBP-3 concentrations in the girl gradually increased, whereas in the boys there was a 60% decrease during the first week, followed by gradual increase towards baseline. The ALS concentrations followed a similar pattern. We conclude that IGF-I treatment induces and initial suppression and then an increase in the IGFBP-3 and ALS concentrations, confirming data from animal experiments that IGFBP-3 synthesis is not solely under GH control. The differences in responsiveness between the female and male siblings may reflect genetic differences, or lower circulating concentrations of IGF-I in the boys compared with the girl.

  16. Sex steroids and growth hormone interactions.

    PubMed

    Fernández-Pérez, Leandro; de Mirecki-Garrido, Mercedes; Guerra, Borja; Díaz, Mario; Díaz-Chico, Juan Carlos

    2016-04-01

    GH and sex hormones are critical regulators of body growth and composition, somatic development, intermediate metabolism, and sexual dimorphism. Deficiencies in GH- or sex hormone-dependent signaling and the influence of sex hormones on GH biology may have a dramatic impact on liver physiology during somatic development and in adulthood. Effects of sex hormones on the liver may be direct, through hepatic receptors, or indirect by modulating endocrine, metabolic, and gender-differentiated functions of GH. Sex hormones can modulate GH actions by acting centrally, regulating pituitary GH secretion, and peripherally, by modulating GH signaling pathways. The endocrine and/or metabolic consequences of long-term exposure to sex hormone-related compounds and their influence on the GH-liver axis are largely unknown. A better understanding of these interactions in physiological and pathological states will contribute to preserve health and to improve clinical management of patients with growth, developmental, and metabolic disorders. Copyright © 2015 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  17. Peripheral activities of growth hormone-releasing hormone.

    PubMed

    Granata, R

    2016-07-01

    Growth hormone (GH)-releasing hormone (GHRH) is produced by the hypothalamus and stimulates GH synthesis and release in the anterior pituitary gland. In addition to its endocrine role, GHRH exerts a wide range of extrapituitary effects which include stimulation of cell proliferation, survival and differentiation, and inhibition of apoptosis. Accordingly, expression of GHRH, as well as the receptor GHRH-R and its splice variants, has been demonstrated in different peripheral tissues and cell types. Among the direct peripheral activities, GHRH regulates pancreatic islet and β-cell survival and function and endometrial cell proliferation, promotes cardioprotection and wound healing, influences the immune and reproductive systems, reduces inflammation, indirectly increases lifespan and adiposity and acts on skeletal muscle cells to inhibit cell death and atrophy. Therefore, it is becoming increasingly clear that GHRH exerts important extrapituitary functions, suggesting potential therapeutic use of the peptide and its analogs in a wide range of medical settings.

  18. Development of codominant follicles in cattle is associated with a follicle-stimulating hormone-dependent insulin-like growth factor binding protein-4 protease.

    PubMed

    Rivera, G M; Fortune, J E

    2001-07-01

    Low molecular weight insulin-like growth factor binding proteins (IGFBPs), particularly IGFBP-4, are believed to inhibit the actions of insulin-like growth factors (IGFs). We showed previously that ovarian follicular dominance in cattle is associated with the presence of a protease that degrades IGFBP-4. To test the hypothesis that specific IGFBP-4 proteolysis is associated with selection of the dominant follicle, we induced codominant follicles (co-DFs) during the first follicular wave of the estrous cycle. The ovaries of Holstein heifers were examined twice daily by ultrasonography; when the largest follicle reached 6 mm in diameter, saline (control, n = 5) or 2 mg of recombinant bovine (rb) FSH (FSH, n = 5) was injected i.m. every 12 h for 48 h. Follicular fluid was collected by aspiration from the two largest follicles/heifer 12 h after the last injection. IGFBPs in follicular fluid were quantified by Western ligand blotting/phosphorimaging. IGFBP-4 protease activity was measured by incubating follicular fluid with recombinant human (rh) IGFBP-4 substrate, followed by ligand blotting/phosphorimaging to quantify the percent of substrate loss and Western immunoblotting to detect specific proteolytic fragments. Co-DFs of FSH heifers did not differ (P > 0.05) from the single dominant follicle of controls in size, or in concentration of progesterone or level of IGFBP-4 in follicular fluid. In contrast, the largest subordinate follicle of control heifers was smaller, with lower progesterone and higher IGFBP-4 in the follicular fluid (P < 0.05). Concentrations of estradiol in follicular fluid were high in dominant follicles, intermediate in co-DFs, and low in subordinate follicles (P < 0.05). IGFBP-4 protease activity in co-DFs was similar (P > 0.05) to that of dominant follicles, but fourfold higher (P < 0.05) than that of subordinate follicles. The results strongly suggest that an FSH-dependent IGFBP-4 protease is associated with selection of the dominant follicle

  19. Ghrelin and obestatin modulate growth hormone-releasing hormone release and synaptic inputs onto growth hormone-releasing hormone neurons.

    PubMed

    Feng, Dan D; Yang, Seung-Kwon; Loudes, Catherine; Simon, Axelle; Al-Sarraf, Tamara; Culler, Michael; Alvear-Perez, Rodrigo; Llorens-Cortes, Catherine; Chen, Chen; Epelbaum, Jacques; Gardette, Robert

    2011-09-01

    Ghrelin, a natural ligand of the growth hormone secretagogue receptor (GHS-R), is synthesized in the stomach but may also be expressed in lesser quantity in the hypothalamus where the GHS-R is located on growth hormone-releasing hormone (GHRH) neurons. Obestatin, a peptide derived from the same precursor as ghrelin, is able to antagonize the ghrelin-induced increase of growth hormone (GH) secretion in vivo but not from pituitary explants in vitro. Thus, the blockade of ghrelin-induced GH release by obestatin could be mediated at the hypothalamic level by the neuronal network that controls pituitary GH secretion. Ghrelin increased GHRH and decreased somatostatin (somatotropin-releasing inhibitory factor) release from hypothalamic explants, whereas obestatin only reduced the ghrelin-induced increase of GHRH release, thus indicating that the effect of ghrelin and obestatin is targeted to GHRH neurons. Patch-clamp recordings on mouse GHRH-enhanced green fluorescent protein neurons indicated that ghrelin and obestatin had no significant effects on glutamatergic synaptic transmission. Ghrelin decreased GABAergic synaptic transmission in 44% of the recorded neurons, an effect blocked in the presence of the GHS-R antagonist BIM28163, and stimulated the firing rate of 78% of GHRH neurons. Obestatin blocked the effects of ghrelin by acting on a receptor different from the GHS-R. These data suggest that: (i) ghrelin increases GHRH neuron excitability by increasing their action potential firing rate and decreasing the strength of GABA inhibitory inputs, thereby leading to an enhanced GHRH release; and (ii) obestatin counteracts ghrelin actions. Such interactions on GHRH neurons probably participate in the control of GH secretion.

  20. IGF-1 and insulin as growth hormones.

    PubMed

    Laron, Zvi

    2004-01-01

    IGF-1 generated in the liver is the anabolic effector and linear growth promoting hormone of the pituitary growth hormone (GH). This is evidenced by dwarfism in states of congenital IGF-1 deficiency, Igf1 gene mutation/deletions or knockouts, and in Laron syndrome (LS), due to GH receptor gene mutations/deletions or IGF-1 receptor blocking. In a positive way, daily IGF-1 administration to stunted patients with LS or hGH gene deletion accelerates linear growth velocity. IGF-1 acts on the proliferative cells of the epiphyseal cartilage. IGF-1 also induces organ and tissue growth; its absence causing organomicria. Insulin shares a common ancestry with IGF-1 and with 45% amino acid homology, as well as very close relationships in the structure of its receptors and post-receptor cascade, also acts as a growth hormone. It has protein anabolic activity and stimulates IGF-1 synthesis. Pancreas agenesis causes short babies, and obese children with hyperinsulinism, with or without pituitary GH, have an accelerated growth rate and skeletal maturation; so do babies with macrosomia. Whether the insulin growth effect is direct, or mediated by IGF-1 or leptin is controversial.

  1. History of growth hormone therapy.

    PubMed

    Blizzard, Robert M

    2012-01-01

    The first human to receive GH therapy was in 1956; it was of bovine origin and was given for 3 wk for metabolic balance studies revealing no effects. By 1958, three separate laboratories utilizing different extraction methods retrieved hGH from human pituitaries, purified it and used for clinical investigation. By 1959 presumed GHD patients were being given native hGH collected and extracted by various methods. Since 1 mg of hGH was needed to treat one patient per day, >360 human pituitaries were needed per patient per year. Thus, the availability of hGH was limited and was awarded on the basis of clinical research protocols approved by the National Pituitary Agency (NPA) established in 1961. hGH was dispensed and injected on a milligram weight basis with varied concentrations between batches from 0.5 units/mg to 2.0 units/mg of hGH. By 1977 a centralized laboratory was established to extract all human pituitaries in the US, this markedly improved the yield of hGH obtained and most remarkably, hGH of this laboratory was never associated with Creutzfeld-Jacob disease (CJD) resulting from the injection of apparently prior- contaminated hGH produced years earlier. However, widespread rhGH use was not possible even if a pituitary from each autopsy performed in the US was collected, this would only permit therapy for about 4,000 patients. Thus, the mass production of rhGH required the identification of the gene structure of the hormone, methodology that began in 1976 to make insulin by recombinant technology. Serendipity was manifest in 1985 when patients who had received hGH years previously were reported to have died of CJD. This led to the discontinuation of the distribution and use of hGH, at a time when a synthetic rhGH became available for clinical use. The creation of a synthetic rhGH was accompanied by unlimited supplies of hGH for investigation and therapy. However, the appropriate use and the potential abuse of this hormone are to be dealt with. The

  2. Nutrient Sensing Overrides Somatostatin and Growth Hormone-Releasing Hormone to Control Pulsatile Growth Hormone Release.

    PubMed

    Steyn, F J

    2015-07-01

    Pharmacological studies reveal that interactions between hypothalamic inhibitory somatostatin and stimulatory growth hormone-releasing hormone (GHRH) govern pulsatile GH release. However, in vivo analysis of somatostatin and GHRH release into the pituitary portal vasculature and peripheral GH output demonstrates that the withdrawal of somatostatin or the appearance of GHRH into pituitary portal blood does not reliably dictate GH release. Consequently, additional intermediates acting at the level of the hypothalamus and within the anterior pituitary gland are likely to contribute to the release of GH, entraining GH secretory patterns to meet physiological demand. The identification and validation of the actions of such intermediates is particularly important, given that the pattern of GH release defines several of the physiological actions of GH. This review highlights the actions of neuropeptide Y in regulating GH release. It is acknowledged that pulsatile GH release may not occur selectively in response to hypothalamic control of pituitary function. As such, interactions between somatotroph networks, the median eminence and pituitary microvasculature and blood flow, and the emerging role of tanycytes and pericytes as critical regulators of pulsatility are considered. It is argued that collective interactions between the hypothalamus, the median eminence and pituitary vasculature, and structural components within the pituitary gland dictate somatotroph function and thereby pulsatile GH release. These interactions may override hypothalamic somatostatin and GHRH-mediated GH release, and modify pulsatile GH release relative to the peripheral glucose supply, and thereby physiological demand.

  3. Growth Hormone Deficiency, Brain Development, and Intelligence

    ERIC Educational Resources Information Center

    Meyer-Bahlburg, Heino F. L.; And Others

    1978-01-01

    Available from: American Medical Association, 535 N. Dearborn Street, Chicago, Illinois 60610. In order to determine what effect, if any, growth hormone (GH) has on human brain development, 29 patients (mean age 11.7 years) with GH deficiency were selected according to the following criteria: no evidence of reversible GH deficiency, onset of…

  4. Human Growth Hormone: The Latest Ergogenic Aid?

    ERIC Educational Resources Information Center

    Cowart, Virginia S.

    1988-01-01

    Believing that synthetic human growth hormone (hGH) will lead to athletic prowess and fortune, some parents and young athletes wish to use the drug to enhance sports performance. Should hGH become widely available, its abuse could present many problems, from potential health risks to the ethics of drug-enhanced athletic performance. (JL)

  5. Growth hormone: health considerations beyond height gain

    USDA-ARS?s Scientific Manuscript database

    The therapeutic benefit of growth hormone (GH) therapy in improving height in short children is widely recognized; however, GH therapy is associated with other metabolic actions that may be of benefit in these children. Beneficial effects of GH on body composition have been documented in several dif...

  6. Growth Hormone Deficiency, Brain Development, and Intelligence

    ERIC Educational Resources Information Center

    Meyer-Bahlburg, Heino F. L.; And Others

    1978-01-01

    Available from: American Medical Association, 535 N. Dearborn Street, Chicago, Illinois 60610. In order to determine what effect, if any, growth hormone (GH) has on human brain development, 29 patients (mean age 11.7 years) with GH deficiency were selected according to the following criteria: no evidence of reversible GH deficiency, onset of…

  7. Human Growth Hormone: The Latest Ergogenic Aid?

    ERIC Educational Resources Information Center

    Cowart, Virginia S.

    1988-01-01

    Believing that synthetic human growth hormone (hGH) will lead to athletic prowess and fortune, some parents and young athletes wish to use the drug to enhance sports performance. Should hGH become widely available, its abuse could present many problems, from potential health risks to the ethics of drug-enhanced athletic performance. (JL)

  8. Growth hormone, growth factors, and acromegaly

    SciTech Connect

    Ludecke, D.K.; Tolis, G.T.

    1987-01-01

    This book contains five sections, each consisting of several papers. The section headings are: Biochemistry and Physiology of GH and Growth Factors, Pathology of Acromegaly, Clinical Endocrinology of Acromegaly, Nonsurgical Therapy of Acromegaly, and Surgical Therapy of Acromegaly.

  9. Growth hormone-releasing hormone is produced by adipocytes and regulates lipolysis through growth hormone receptor.

    PubMed

    Rodríguez-Pacheco, F; Gutierrez-Repiso, C; García-Serrano, S; Ho-Plagaro, A; Gómez-Zumaquero, J M; Valdes, S; Gonzalo, M; Rivas-Becerra, J; Montiel-Casado, C; Rojo-Martínez, G; García-Escobar, E; García-Fuentes, E

    2017-10-01

    Growth hormone-releasing hormone (GHRH) has a crucial role in growth hormone (GH) secretion, but little is known about its production by adipocytes and its involvement in adipocyte metabolism. To determine whether GHRH and its receptor (GHRH-R) are present in human adipocytes and to study their levels in obesity. Also, to analyze the effects of GHRH on human adipocyte differentiation and lipolysis. GHRH/GHRH-R and GH/GH-R mRNA expression levels were analyzed in human mature adipocytes from non-obese and morbidly obese subjects. Human mesenchymal stem cells (HMSC) were differentiated to adipocytes with GHRH (10(-14)-10(-8) M). Adipocyte differentiation, lipolysis and gene expression were measured and the effect of GH-R silencing was determined. Mature adipocytes from morbidly obese subjects showed a higher expression of GHRH and GH-R, and a lower expression of GHRH-R and GH than non-obese subjects (P<0.05). A total of 10(-14)-10(-10) M GHRH induced an inhibition of lipid accumulation and PPAR-γ expression (P<0.05), and an increase in glycerol release and HSL expression (P<0.05) in human differentiated adipocytes. A total of 10(-12)-10(-8) M GHRH decreased GHRH-R expression in human differentiated adipocytes (P<0.05). A total of 10(-10)-10(-8) M GHRH increased GH and GH-R expression in human differentiated adipocytes (P<0.05). The effects of GHRH at 10(-10) M on adipocyte differentiation and lipolysis were blocked when GH-R expression was silenced. GHRH and GHRH-R are expressed in human adipocytes and are negatively associated. GHRH at low doses may exert an anti-obesity effect by inhibiting HMSC differentiation in adipocytes and by increasing adipocyte lipolysis in an autocrine or paracrine pathway. These effects are mediated by GH and GH-R.

  10. Climacteric in untreated isolated growth hormone deficiency

    PubMed Central

    Menezes, Menilson; Salvatori, Roberto; Oliveira, Carla R.P.; Pereira, Rossana M.C.; Souza, Anita H.O.; Nobrega, Luciana M.A.; Cruz, Edla do A.C.; Menezes, Marcos; Alves, Érica O.; Aguiar-Oliveira, Manuel H.

    2008-01-01

    Objective To study the time, intensity of symptoms, hormonal profile, and related morbidity of climacteric in women with untreated isolated growth hormone (GH) deficiency (IGHD). Design Women belonging to a large Brazilian kindred with IGHD due to a homozygous mutation in the GH-releasing hormone receptor gene were studied. None of them had ever received GH replacement therapy. A two-step protocol was performed. In the first case-control experiment, aimed to determine the age at climacteric, we compared eight women with IGHD and 32 normal women between 37 and 55 years of age. In the second cross-sectional experiment, aimed to determine the severity of climacteric symptoms, seven women with IGHD (aged 47-65 y) were compared with 13 controls (aged 44-65 y). The Kupperman Index scores, serum follicle-stimulating hormone, luteinizing hormone, prolactin, and estradiol levels were determined, and pelvic and mammary ultrasonography, mammography, and colpocytology were performed. Results The number of women with follicle-stimulating hormone above 20 mIU/mL was higher in women with IGHD than controls. Kupperman’s Index was not different between the two groups. Menarche had been delayed and parity was lower in women with IGHD. Hormonal profile was similar, but prolactin was lower in women with IGHD. Uterine volume was smaller in women with IGHD, and endometrial thickness and ovarian volume were similar in the two groups. No difference in breast images or in colpocytology was observed between the two groups. Conclusions Menarche was delayed and the beginning of climacteric is anticipated in untreated lifetime IGHD, but menopausal symptoms and hormonal profile resemble the normal climacteric. PMID:18223507

  11. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist.

    PubMed

    Lan, Hainan; Zheng, Xin; Khan, Muhammad Akram; Li, Steven

    2015-11-01

    In general, traditional growth hormone receptor antagonist can be divided into two major classes: growth hormone (GH) analogues and anti-growth hormone receptor (GHR) antibodies. Herein, we tried to explore a new class of growth hormone receptor (GHR) antagonist that may have potential advantages over the traditional antagonists. For this, we developed a monoclonal anti-idiotypic antibody growth hormone, termed CG-86. A series of experiments were conducted to characterize and evaluate this antibody, and the results from a competitive receptor-binding assay, Enzyme Linked Immunosorbent Assays (ELISA) and epitope mapping demonstrate that CG-86 behaved as a typical Ab2β. Next, we examined its antagonistic activity using in vitro cell models, and the results showed that CG-86 could effectively inhibit growth hormone receptor-mediated signalling and effectively inhibit growth hormone-induced Ba/F3-GHR638 proliferation. In summary, these studies show that an anti-idiotypic antibody (CG-86) has promise as a novel growth hormone receptor antagonist. Furthermore, the current findings also suggest that anti-idiotypic antibody may represent a novel strategy to produce a new class of growth hormone receptor antagonist, and this strategy may be applied with other cytokines or growth factors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Diagnostic and therapeutic advances in growth hormone insensitivity.

    PubMed

    David, Alessia; Metherell, Louise A; Clark, Adrian J L; Camacho-Hübner, Cecilia; Savage, Martin O

    2005-09-01

    Diagnostic and therapeutic advances in growth hormone insensitivity (GHI) have occurred principally in two areas: the molecular characterization of patients with GHI and treatment with recombinant human insulin like growth factor-I (IGF-I). This article discusses the current status of molecular diagnosis across the spectrum of the disorder. Treatment with recombinant human IGF-I in classical cases is summarized, and potential new targets for treatment are discussed together with the potential for therapy using the newly developed compound recombinant human IGF-I/IGF binding protein-3.

  13. Specific involvement of gonadal hormones in the functional maturation of growth hormone releasing hormone (GHRH) neurons.

    PubMed

    Gouty-Colomer, Laurie-Anne; Méry, Pierre-François; Storme, Emilie; Gavois, Elodie; Robinson, Iain C; Guérineau, Nathalie C; Mollard, Patrice; Desarménien, Michel G

    2010-12-01

    Growth hormone (GH) is the key hormone involved in the regulation of growth and metabolism, two functions that are highly modulated during infancy. GH secretion, controlled mainly by GH releasing hormone (GHRH), has a characteristic pattern during postnatal development that results in peaks of blood concentration at birth and puberty. A detailed knowledge of the electrophysiology of the GHRH neurons is necessary to understand the mechanisms regulating postnatal GH secretion. Here, we describe the unique postnatal development of the electrophysiological properties of GHRH neurons and their regulation by gonadal hormones. Using GHRH-eGFP mice, we demonstrate that already at birth, GHRH neurons receive numerous synaptic inputs and fire large and fast action potentials (APs), consistent with effective GH secretion. Concomitant with the GH secretion peak occurring at puberty, these neurons display modifications of synaptic input properties, decrease in AP duration, and increase in a transient voltage-dependant potassium current. Furthermore, the modulation of both the AP duration and voltage-dependent potassium current are specifically controlled by gonadal hormones because gonadectomy prevented the maturation of these active properties and hormonal treatment restored it. Thus, GHRH neurons undergo specific developmental modulations of their electrical properties over the first six postnatal weeks, in accordance with hormonal demand. Our results highlight the importance of the interaction between the somatotrope and gonadotrope axes during the establishment of adapted neuroendocrine functions.

  14. Developmental programming: the role of growth hormone.

    PubMed

    Oberbauer, Anita M

    2015-01-01

    Developmental programming of the fetus has consequences for physiologic responses in the offspring as an adult and, more recently, is implicated in the expression of altered phenotypes of future generations. Some phenotypes, such as fertility, bone strength, and adiposity are highly relevant to food animal production and in utero factors that impinge on those traits are vital to understand. A key systemic regulatory hormone is growth hormone (GH), which has a developmental role in virtually all tissues and organs. This review catalogs the impact of GH on tissue programming and how perturbations early in development influence GH function.

  15. Hypopituitarism: growth hormone and corticotropin deficiency.

    PubMed

    Capatina, Cristina; Wass, John A H

    2015-03-01

    This article presents an overview of adult growth hormone deficiency (AGHD) and corticotropin deficiency (central adrenal failure, CAI). Both conditions can result from various ailments affecting the hypothalamus or pituitary gland (most frequently a tumor in the area or its treatment). Clinical manifestations are subtle in AGHD but potentially life-threatening in CAI. The diagnosis needs dynamic testing in most cases. Treatment of AGHD is recommended in patients with documented severe deficiency, and treatment of CAI is mandatory in all cases. Despite significant progress in replacement hormonal therapy, more physiologic treatments and more reliable indicators of treatment adequacy are still needed.

  16. Regulation of insulin-like growth factor-binding protein-4 protease activity by estrogen and parathyroid hormone in SaOS-2 cells: implications for the pathogenesis of postmenopausal osteoporosis.

    PubMed

    Kudo, Y; Iwashita, M; Itatsu, S; Iguchi, T; Takeda, Y

    1996-08-01

    The cellular mechanisms involved in the accelerated bone loss occurring in association with estrogen deprivation as seen following the menopause are not fully understood. Insulin-like growth factor-I (IGF-I) is the local regulator of osteoblasts and one of its binding proteins, insulin-like growth factor-binding protein-4 (IGFBP-4), binds to IGF-I and suppresses biological activity. Previous studies have shown that the binding activity of IGFBP-4 in the conditioned medium of parathyroid hormone (PTH)-treated SaOS-2 osteoblastic-like cells is enhanced twofold and that this PTH-enhanced IGFBP-4 binding activity is abolished by 17 beta-estradiol. Levels of IGFBP-4 in the conditioned medium have been reported to be regulated not only at the level of production but also at the level of degradation which is catalyzed by a protease that specifically cleaves IGFBP-4. We have, therefore, studied the effects of 17 beta-estradiol and PTH on IGFBP-4 protease activity using SaOS-2 cells. SaOS-2 cells produce a protease that specifically cleaves IGFBP-4 into two fragments of approximately 18 and 14 kilodaltons. IGFBP-4 protease activity in the conditioned medium from PTH-treated cells was suppressed, while this PTH-induced suppression of protease activity was reversed by the addition of 17 beta-estradiol to the cultures. IGFBP-4 proteolytic activity was stimulated by IGF-I or IGF-II added exogenously and was inhibited by EDTA or protease inhibitors. IGFBP-4 proteolyzed in the conditioned medium from cells treated with PTH and 17 beta-estradiol was less effective at inhibiting IGF-I-stimulated [3H]thymidine incorporation into DNA compared with that proteolyzed in the conditioned medium from PTH-treated cells. The simplest explanation is that 17 beta-estradiol suppressed the inhibitory effect of PTH on osteoblastic activity by inhibiting the PTH-induced suppression of IGFBP-4 protease activity.

  17. Prolactin and growth hormone in fish osmoregulation

    USGS Publications Warehouse

    Sakamoto, T.; McCormick, S.D.

    2006-01-01

    Prolactin is an important regulator of multiple biological functions in vertebrates, and has been viewed as essential to ion uptake as well as reduction in ion and water permeability of osmoregulatory surfaces in freshwater and euryhaline fish. Prolactin-releasing peptide seems to stimulate prolactin expression in the pituitary and peripheral organs during freshwater adaptation. Growth hormone, a member of the same family of hormones as prolactin, promotes acclimation to seawater in several teleost fish, at least in part through the action of insulin-like growth factor I. In branchial epithelia, development and differentiation of the seawater-type chloride cell (and their underlying biochemistry) is regulated by GH, IGF-I, and cortisol, whereas the freshwater-type chloride cell is regulated by prolactin and cortisol. In the epithelia of gastrointestinal tract, prolactin induces cell proliferation during freshwater adaptation, whereas cortisol stimulates both cell proliferation and apoptosis. We propose that control of salinity acclimation in teleosts by prolactin and growth hormone primarily involves regulation of cell proliferation, apoptosis, and differentiation (the latter including upregulation of specific ion transporters), and that there is an important interaction of these hormones with corticosteroids. ?? 2005 Elsevier Inc. All rights reserved.

  18. Obesity, growth hormone and weight loss.

    PubMed

    Rasmussen, Michael Højby

    2010-03-25

    Growth hormone (GH) is the most important hormonal regulator of postnatal longitudinal growth in man. In adults GH is no longer needed for longitudinal growth. Adults with growth hormone deficiency (GHD) are characterised by perturbations in body composition, lipid metabolism, cardiovascular risk profile and bone mineral density. It is well established that adult GHD usually is accompanied by an increase in fat accumulation and GH replacement in adult patients with GHD results in reduction of fat mass and abdominal fat mass in particular. It is also recognized that obesity and abdominal obesity in particular results in a secondary reduction in GH secretion and subnormal insulin-like growth factor-I (IGF-I) levels. The recovery of the GH IGF-I axis after weight loss suggest an acquired defect, however, the pathophysiologic role of GH in obesity is yet to be fully understood. In clinical studies examining the efficacy of GH in obese subjects very little or no effect are observed with respect to weight loss, whereas GH seems to reduce total and abdominal fat mass in obese subjects. The observed reductions in abdominal fat mass are modest and similar to what can be achieved by diet or exercise interventions.

  19. Human growth hormone (GH) immunoassay: standardization and clinical implications.

    PubMed

    Carrozza, Cinzia; Lapolla, Rosa; Canu, Giulia; Annunziata, Francesca; Torti, Eleonora; Baroni, Silvia; Zuppi, Cecilia

    2011-05-01

    The poor comparability of growth hormone (GH) results obtained using commercially available methods, is partly due to standard preparations used in calibration. The system relies on the use of the International Reference Preparation (IRP) international standard (IS) 80/505, of human pituitary origin, containing all GH isoforms. Recently, a 22K recombinant GH isoform IRP IS 98/574 was commercialized. Our aim was to evaluate the influence of both calibrators on GH results. GH concentration in 97 serum samples from children undergoing a growth hormone releasing hormone+arginine stimulation test was measured using Siemens IMMULITE electro-chemiluminescence method, calibrated with both IS 80/505 and IS 98/574 (GRH Growth hormone-Recombinant 98/574-kit). Comparison of our results obtained with the two sets of calibrators showed good correlation, although we found higher percentage variation (var%) than that stated by Siemens. The mean var% value was confirmed when all results were sub-divided into subgroups based on both high and low GH concentrations. Since the GH assay is influenced by a variety of binding proteins, isoforms and conversion factors, standardization of the assay is strongly required. In Italy, the Agenzia Italiana del Farmaco 39 note provides GH laboratory values which are useful for therapy. On the basis of our results, we therefore propose to adjourn these GH values in order to ensure better management of patients with GH-related disorders.

  20. Effects of aging on pituitary growth hormone-releasing factor receptor binding sites: in vitro mimicry by guanyl nucleotides and reducing agents.

    PubMed

    Lefrançois, L; Boulanger, L; Gaudreau, P

    1995-02-27

    We have investigated the effect of 5'-guanylylimidodiphosphate (Gpp(NH)p) and two disulfide bond reducing agents, reduced glutathione (GSH) and dithiothreitol (DTT), on the modulation of [125I-Tyr10]hGRF(1-44)NH2 binding to GRF receptor binding sites, in pituitaries of young and aging rats. In pituitaries from 2-month-old rats, Gpp(NH)p (0.1-1.0 mM), GSH and DTT (1-50 mM) exhibited a partial but concentration-dependent inhibitory effect on GRF specific binding. These effects were associated with a conversion of the high affinity GRF binding sites to lower affinity sites and to a reduction of the apparent number of total binding sites (high and low). No potentiation of these effects was observed when Gpp(NH)p (1 mM) and DTT (1 mM) were combined. In pituitaries from 14-month-old rats, Gpp(NH)p (1 mM) was capable of modulating GRF binding parameters in a similar fashion to that in pituitaries from 2-month-old rats. In pituitaries from 18-month-old rats, the high affinity GRF binding sites were already blunted and neither Gpp(NH)p nor Gpp(NH)p plus DTT significantly altered GRF binding parameters. In addition, in 20-month-old rats, the affinity of hGRF(1-29)NH2 and that of the full antagonist N alpha-Ac-[D-Arg2,Ala15]rGRF(1-29)NH2 were respectively decreased 9.3- and 9.9-fold. Our results suggest that in aging, alterations of GRF receptor binding sites could involve disulfide bond reduction or other structural modifications leading to conformational changes, similar to those induced by GSH or DTT. Such structural changes may prevent an efficient coupling of the GRF receptor with its ligands and G-protein, leading to a loss of somatotroph responsiveness.

  1. Determination of free growth hormone.

    PubMed

    Frystyk, Jan; Andreasen, Caroline Marie; Fisker, Sanne

    2008-08-01

    Approximately 50% of circulating GH is bound to the high-affinity GH-binding protein (GHBP), which is known to affect the pharmacokinetics, bioactivity, and quantitative determination of GH. Nevertheless, the presence of GHBP is rarely taken into account in the clinical use of GH measurements. Our objective was to develop an assay for free GH in serum. We used ultrafiltration by centrifugation. Due to the small molecular difference between GH and GHBP, the size of GHBP and GHBP-GH complexes was increased by preincubation of serum with a monoclonal GHBP antibody (MAb 263). The ultrafiltration membrane almost completely retained all GHBP (>98.5%) and allowed free passage of unbound GH (>98.4%). Addition of increasing concentrations of GHBP reduced free GH dose dependently, and measured and calculated levels of free GH changed in parallel. During an insulin-tolerance test, free and total GH changed in parallel in all individuals (n = 11) and their peak values as well as area under the curve values were positively correlated (r = 0.89; P < 0.001 and r = 0.92; P < 0.001, respectively). Of note, the relative levels of free GH (calculated as the area under the curve of free to total GH) was inversely correlated with GHBP (r = -0.94; P < 0.001). It is possible to measure free GH in human serum. Free GH correlated positively with total GH and inversely with GHBP. Measurement of free GH may be a helpful future tool in the management of GH disorders and in studies of GH-GHBP interrelationships.

  2. Preventing Growth Hormone Abuse: An Emerging Health Concern.

    ERIC Educational Resources Information Center

    White, George L.; And Others

    1989-01-01

    Facts about growth hormone abuse should be incorporated into substance abuse components of health education curriculums. Sources, uses, and dangers associated with human growth hormones are discussed. A sample lesson plan is included. (IAH)

  3. Gravitational effects on plant growth hormone concentration

    NASA Technical Reports Server (NTRS)

    Bandurski, R. S.; Schulze, A.

    1983-01-01

    Dolk's (1936) finding that more growth hormone diffuses from the lower side of a gravity-stimulated plant shoot than from the upper side is presently confirmed by means of both an isotope dilution assay and selected ion monitoring-gas chromatography-mass spectrometry, and it is established that the asymmetrically distributed hormone is indole-3-acetic acid (IAA). This is the first physicochemical demonstration that there is more IAA on the lower sides of a geostimulated plant shoot. It is also found that free IAA primarily occurs in the conductive vascular tissues of the shoot, while IAA esters predominate in the growing cortical cells. A highly sensitive gas chromatographic isotope dilution assay shows that the hormone asymmetry also occurs in the nonvascular tissue.

  4. Gravitational effects on plant growth hormone concentration

    NASA Technical Reports Server (NTRS)

    Bandurski, R. S.; Schulze, A.

    1983-01-01

    Dolk's (1936) finding that more growth hormone diffuses from the lower side of a gravity-stimulated plant shoot than from the upper side is presently confirmed by means of both an isotope dilution assay and selected ion monitoring-gas chromatography-mass spectrometry, and it is established that the asymmetrically distributed hormone is indole-3-acetic acid (IAA). This is the first physicochemical demonstration that there is more IAA on the lower sides of a geostimulated plant shoot. It is also found that free IAA primarily occurs in the conductive vascular tissues of the shoot, while IAA esters predominate in the growing cortical cells. A highly sensitive gas chromatographic isotope dilution assay shows that the hormone asymmetry also occurs in the nonvascular tissue.

  5. Ontogeny of hepatic bovine growth hormone receptors in cattle.

    PubMed

    Badinga, L; Collier, R J; Thatcher, W W; Wilcox, C J; Head, H H; Bazer, F W

    1991-05-01

    A series of studies examined the binding characteristics and ontogeny of hepatic growth hormone binding sites in dairy bulls on d 2, 30, 180, and 365 of age. Binding of iodinated recombinant bovine growth hormone ([125I]rbGH) to liver membrane receptors was membrane protein-dependent. Receptors were considered growth hormone-specific, because physiological concentrations of bovine prolactin (bPRL) failed to displace [125I]rbGH from bovine hepatocyte membranes. Only 50% of [125I]rbGH was bound reversibly to hepatic microsomes. Addition of dithiothreitol (DTT) to the receptor-assay buffer increased the binding of [125I]rbGH to hepatic membranes in a time-dependent manner. Moderate concentrations of Ca++ and Mg++ in the receptor-assay buffer had no detectable effects on binding of [125I]rbGH to hepatic microsomes. In growing dairy bulls, specific binding of [125I]rbGH per milligram of membrane protein increased from 1.9 +/- 1.8% at d 2 to 14.1 +/- 1.8% at d 180 and then declined to 5.2 +/- 1.6% at d 365. Likewise, concentration of insulin-like growth factor (IGF)-I in serum was low during the 1st mo of age (d 2, 13.3 +/- 8.8 ng/ml; d 30, 9.7 +/- 8.8 ng/ml), but it became maximal at d 180 (151.0 +/- 8.8 ng/ml). Circulating concentrations of IGF-II increased linearly during the 1st yr of growth. Serum concentrations of GH, triiodothyronine, and thyroxine declined from 39.9 +/- 6.5, 2.7 +/- .2, and 75.4 +/- 4.6 ng/ml at d 2 to 16.5 +/- 6.5, 1.3 +/- .2, and 53.4 +/- 4.6 ng/ml at d 30, respectively, and remained low through 1 yr of age. Insulin concentration in serum did not change significantly with development. Results indicated that increasing concentrations of specific bGH receptors in the bovine liver may play a key role in regulating postnatal growth in cattle.

  6. Neither bovine somatotropin nor growth hormone-releasing factor alters expression of thyroid hormone receptors in liver and mammary tissues.

    PubMed

    Capuco, A V; Binelli, M; Tucker, H A

    2011-10-01

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine to specific nuclear receptors. Organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, have been hypothesized to target the action of thyroid hormones on the mammary gland and play a role in mediating or augmenting a galactopoietic response to bovine somatotropin (bST). Additionally, tissue responsiveness to thyroid hormones may be altered by changes in the number or affinity of nuclear receptors for thyroid hormones. In the present study, effects of bST and bovine growth hormone-releasing factor (bGRF) on thyroid hormone receptors in liver and mammary gland were studied. Lactating Holstein cows received continuous infusions of bST or bGRF for 63 d or served as uninfused controls. Nuclei were isolated from harvested mammary and liver tissues and incubated with [(125)I]-triiodothyronine. Treatments did not alter the capacity or affinity of specific binding sites for triiodothyronine in liver or mammary nuclei. Evaluation of transcript abundance for thyroid hormone receptors showed that isoforms of thyroid hormone receptor or retinoid receptor (which may influence thyroid receptor action) expressed in the mammary gland were not altered by bST or bGRF treatment. Data do not support the hypothesis that administration of bST or bGRF alters sensitivity of mammary tissue by changing expression of thyroid hormone receptors.

  7. [Structural characteristics of prolactin, growth hormone and their receptors as determinants of biological actions].

    PubMed

    Sandoval Sánchez, G C; Fonseca, M E; Ochoa Resendiz, R; Zárate Treviño, A

    1998-08-01

    The pituitary hormones prolactin and growth hormone are structurally related. Both hormones exist in the circulation in several molecular forms, differing in aminoacid sequences, posttranslational modifications and fragments produced by proteolytic cleavage. Heterogencity may produce a diversity of inmunological and biological actions. It has been suggested that each of this forms may be a isohormone with a different physiological role. The predominance of one of them in serun could account for the complex and often contradictory actions of the hormones. In addition receptors also have structural homology and so the possibility exist that these hormones share binding affinity to the receptors and can produce endocrinological problems in some special conditions.

  8. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Human growth hormone test system. 862.1370 Section 862.1370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test...

  9. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Human growth hormone test system. 862.1370 Section 862.1370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test...

  10. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Human growth hormone test system. 862.1370 Section 862.1370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Systems § 862.1370 Human growth hormone test system. (a) Identification. A human growth hormone test...

  11. Cortistatin vaccination--a solution to growth hormone deficiency.

    PubMed

    Moaeen-ud-Din, M; Malik, Nosheen; Guo, Yang Li; Ali, Ahmad; Babar, Masroor Ellahi

    2009-12-01

    Cortistatin and somatostatin are neuropeptides which have inhibitory effects on growth hormone through common five receptors. Although, both have inhibitory effects but, only cortistatin has direct inhibitory effects on growth hormone secretagogue and is more potent inhibitor of growth hormone than somatostatin. This control of growth hormone can be manipulated through immunoneutralization of cortistatin through cortistatin DNA vaccine rather than antibodies application. A DNA vaccine of cortistatin can be produced using recombinant DNA technology in a eukaryotic expression system and will serve as a tool not to only alleviate the growth hormone deficiency problems in human but, can also be used to improve growth rate in farm animals.

  12. Growth Hormone Therapy in Children with Chronic Renal Failure

    PubMed Central

    Cayir, Atilla; Kosan, Celalettin

    2015-01-01

    Growth is impaired in a chronic renal failure. Anemia, acidosis, reduced intake of calories and protein, decreased synthesis of vitamin D and increased parathyroid hormone levels, hyperphosphatemia, renal osteodystrophy and changes in growth hormone-insulin-like growth factor and the gonadotropin-gonadal axis are implicated in this study. Growth is adversely affected by immunosuppressives and corticosteroids after kidney transplantation. Treating metabolic disorders using the recombinant human growth hormone is an effective option for patients with inadequate growth rates. PMID:25745347

  13. Growth hormone therapy in children with chronic renal failure.

    PubMed

    Cayir, Atilla; Kosan, Celalettin

    2015-02-01

    Growth is impaired in a chronic renal failure. Anemia, acidosis, reduced intake of calories and protein, decreased synthesis of vitamin D and increased parathyroid hormone levels, hyperphosphatemia, renal osteodystrophy and changes in growth hormone-insulin-like growth factor and the gonadotropin-gonadal axis are implicated in this study. Growth is adversely affected by immunosuppressives and corticosteroids after kidney transplantation. Treating metabolic disorders using the recombinant human growth hormone is an effective option for patients with inadequate growth rates.

  14. Synthetic heparin-binding growth factor analogs

    DOEpatents

    Pena, Louis A.; Zamora, Paul; Lin, Xinhua; Glass, John D.

    2007-01-23

    The invention provides synthetic heparin-binding growth factor analogs having at least one peptide chain that binds a heparin-binding growth factor receptor, covalently bound to a hydrophobic linker, which is in turn covalently bound to a non-signaling peptide that includes a heparin-binding domain. The synthetic heparin-binding growth factor analogs are useful as soluble biologics or as surface coatings for medical devices.

  15. Effect of growth hormone deficiency on brain structure, motor function and cognition.

    PubMed

    Webb, Emma A; O'Reilly, Michelle A; Clayden, Jonathan D; Seunarine, Kiran K; Chong, Wui K; Dale, Naomi; Salt, Alison; Clark, Chris A; Dattani, Mehul T

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone <6.7 µg/l) and idiopathic short stature (peak growth hormone >10 µg/l) underwent cognitive assessment, diffusion tensor imaging and volumetric magnetic resonance imaging prior to commencing growth hormone treatment. Total brain, corpus callosal, hippocampal, thalamic and basal ganglia volumes were determined using Freesurfer. Fractional anisotropy (a marker of white matter structural integrity) images were aligned and tract-based spatial statistics performed. Fifteen children (mean 8.8 years of age) with isolated growth hormone deficiency [peak growth hormone <6.7 µg/l (mean 3.5 µg/l)] and 14 controls (mean 8.4 years of age) with idiopathic short stature [peak growth hormone >10 µg/l (mean 15 µg/l) and normal growth rate] were recruited. Compared with controls, children with isolated growth hormone deficiency had lower Full-Scale IQ (P < 0.01), Verbal Comprehension Index (P < 0.01), Processing Speed Index (P < 0.05) and Movement-Assessment Battery for Children (P < 0.008) scores. Verbal Comprehension Index scores correlated significantly with insulin-like growth factor-1 (P < 0.03) and insulin-like growth factor binding protein-3 (P < 0.02) standard deviation scores in isolated growth hormone deficiency. The splenium of the corpus callosum, left globus pallidum, thalamus and hippocampus (P < 0.01) were significantly smaller; and corticospinal tract (bilaterally; P < 0.045, P < 0.05) and corpus callosum (P < 0.05) fractional anisotropy were significantly lower in the isolated growth hormone deficiency group. Basal ganglia volumes and bilateral corticospinal tract fractional anisotropy correlated significantly with Movement-Assessment Battery for Children scores, and

  16. Growth hormone in chronic renal disease.

    PubMed

    Gupta, Vishal; Lee, Marilyn

    2012-03-01

    Severe growth retardation (below the third percentile for height) is seen in up to one-third children with chronic kidney disease. It is thought to be multifactorial and despite optimal medical therapy most children are unable to reach their normal height. Under-nutrition, anemia, vitamin D deficiency with secondary hyperparathyroidism, metabolic acidosis, hyperphosphatemia, renal osteodystrophy; abnormalities in the growth hormone/insulin like growth factor system and sex steroids, all have been implicated in the pathogenesis of growth failure. Therapy includes optimization of nutritional and metabolic abnormalities. Failure to achieve adequate height despite 3-6 months of optimal medical measures mandates the use of recombinant GH (rGH) therapy, which has shown to result in catch-up growth, anywhere from 2 cm to 10 cm with satisfactory liner, somatic and psychological development.

  17. Growth hormone in chronic renal disease

    PubMed Central

    Gupta, Vishal; Lee, Marilyn

    2012-01-01

    Severe growth retardation (below the third percentile for height) is seen in up to one-third children with chronic kidney disease. It is thought to be multifactorial and despite optimal medical therapy most children are unable to reach their normal height. Under-nutrition, anemia, vitamin D deficiency with secondary hyperparathyroidism, metabolic acidosis, hyperphosphatemia, renal osteodystrophy; abnormalities in the growth hormone/insulin like growth factor system and sex steroids, all have been implicated in the pathogenesis of growth failure. Therapy includes optimization of nutritional and metabolic abnormalities. Failure to achieve adequate height despite 3–6 months of optimal medical measures mandates the use of recombinant GH (rGH) therapy, which has shown to result in catch-up growth, anywhere from 2 cm to 10 cm with satisfactory liner, somatic and psychological development. PMID:22470855

  18. Growth hormone therapy for people with thalassaemia.

    PubMed

    Ngim, Chin Fang; Lai, Nai Ming; Hong, Janet Yh; Tan, Shir Ley; Ramadas, Amutha; Muthukumarasamy, Premala; Thong, Meow-Keong

    2017-09-18

    Thalassaemia is a recessively-inherited blood disorder that leads to anaemia of varying severity. In those affected by the more severe forms, regular blood transfusions are required which may lead to iron overload. Accumulated iron from blood transfusions may be deposited in vital organs including the heart, liver and endocrine organs such as the pituitary glands which can affect growth hormone production. Growth hormone deficiency is one of the factors that can lead to short stature, a common complication in people with thalassaemia. Growth hormone replacement therapy has been used in children with thalassaemia who have short stature and growth hormone deficiency. To assess the benefits and safety of growth hormone therapy in people with thalassaemia. We searched the Cochrane Haemoglobinopathies Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles, reviews and clinical trial registries. Our database and trial registry searches are current to 10 August 2017 and 08 August 2017, respectively. Randomised and quasi-randomised controlled trials comparing the use of growth hormone therapy to placebo or standard care in people with thalassaemia of any type or severity. Two authors independently selected trials for inclusion. Data extraction and assessment of risk of bias were also conducted independently by two authors. The quality of the evidence was assessed using GRADE criteria. One parallel trial conducted in Turkey was included. The trial recruited 20 children with homozygous beta thalassaemia who had short stature; 10 children received growth hormone therapy administered subcutaneously on a daily basis at a dose of 0.7 IU/kg per week and 10 children received standard care. The overall risk of bias in this trial was low except for the selection criteria and attrition bias which were unclear. The quality of the evidence for all major outcomes

  19. Hepatic receptors for homologous growth hormone in the eel

    SciTech Connect

    Hirano, T. )

    1991-03-01

    The specific binding of 125I-labeled eel growth hormone (eGH) to liver membranes of the eel was examined. The specific binding to the 10,000g pellet was greater than that to the 600g pellet. The specific binding was linear up to about 100 mg fresh tissue, and was saturable with increasing amounts of membrane. The specific binding was pH-, temperature-, and time-dependent, with the optimum pH at 7.4, and greater specific binding was obtained at 15 and 25 degrees than at 35 degrees. Scatchard analysis of liver binding gave an association constant of 1.1 x 10(9) M-1 and a capacity of 105 fmol/mg protein. The receptor preparation was highly specific for GHs. Natural and recombinant eel GHs as well as recombinant salmon GH competed equally with 125I-eGH for the receptor sites of the 10,000g liver membrane. Ovine GH was more potent in displacing the labeled eGH than the homologous eel hormone. Tilapia GH and ovine prolactin (PRL) were needed in greater amounts (40 times) than eGH to displace the labeled eGH. Salmon and tilapia PRLs were still less potent (500 times) than eGH. There was no displacement with eel PRL. No significant change in the specific binding was seen 1 week after hypophysectomy, whereas injection of eGH into the hypophysectomized eel caused a significant reduction after 24 hr. The binding to the membrane fractions from gills, kidney, muscle, intestine, and brain was low and exclusively nonspecific, indicating the presence of specific GH receptors predominantly in the liver.

  20. Hormone-binding assay using living bacteria expressing eukaryotic receptors.

    PubMed

    Romanov, Georgy A; Lomin, Sergey N

    2009-01-01

    Studies on hormone-receptor interaction include, as a rule, isolation and extensive purification of the receptor protein or a particular receptor-containing fraction. To bypass these time- and resource-consuming procedures, we proposed a live cell-based assay using transgenic bacteria expressing single eukaryotic receptors. We describe here 3H-cytokinin binding to corresponding plant receptors as an example. The method includes procedures of bacteria growing, incubation with labeled hormone, separation of bound from unbound ligand, determination of radioactivity in bacterial precipitates, and mathematical analysis of primary data. The established simple protocol for specific labeling hormone-binding sites in intact bacteria allows determination of the main parameters of the ligand-receptor interaction.

  1. Multiple Effects of Growth Hormone in the Body: Is it Really the Hormone for Growth?

    PubMed Central

    Devesa, Jesús; Almengló, Cristina; Devesa, Pablo

    2016-01-01

    In this review, we analyze the effects of growth hormone on a number of tissues and organs and its putative role in the longitudinal growth of an organism. We conclude that the hormone plays a very important role in maintaining the homogeneity of tissues and organs during the normal development of the human body or after an injury. Its effects on growth do not seem to take place during the fetal period or during the early infancy and are mediated by insulin-like growth factor I (IGF-I) during childhood and puberty. In turn, IGF-I transcription is dependent on an adequate GH secretion, and in many tissues, it occurs independent of GH. We propose that GH may be a prohormone, rather than a hormone, since in many tissues and organs, it is proteolytically cleaved in a tissue-specific manner giving origin to shorter GH forms whose activity is still unknown. PMID:27773998

  2. IGF-I and IGF Binding Protein-3 Generation Tests and Response to Growth Hormone in Children with Silver-Russell Syndrome

    PubMed Central

    Beserra, Izabel C. R.; Ribeiro, Márcia G.; Collett-Solberg, Paulo F.; Vaisman, Mário; Guimarães, Marília M.

    2010-01-01

    Objectives. To evaluate, in children with Silver-Russell Syndrome, the response to the IGF-I and IGFBP-3 generation test and compare results to the growth response after 6 months of rhGH. Methods. Eight children (6 males), with a mean age of 5.71 ± 2.48 years and height SDS of −3.88 ± 1.28 received rhGH for 6 months. IGF-I and IGFBP-3 were analyzed before and after 4 doses of rhGH. Results. The mean growth velocity (GV) before treatment was 5.28 ± 1.9 cm/year. GV increased after rhGH in five children to a mean GV of 10.3 ± 3.64 cm/year. Six children had normal basal IGF-I levels and two low levels. After 4 doses of rhGH, the IGF-I levels were normal in seven. There was no correlation between the growth response and the IGF-I generation test. Conclusions. Children with SRS have normal IGF-I generation test. There is no correlation between the generation test and the growth velocity after 6 months of rhGH. PMID:21234390

  3. Role of abnormal anterior pituitary hormones-growth hormone and prolactin in active systemic lupus erythematosus

    PubMed Central

    Zhu, Xiaohua; Xu, Jinhua; Li, Shujuan; Huang, Wen; Li, Feng

    2015-01-01

    Background: The role of anterior pituitary hormones in systemic lupus erythematosus (SLE) remains controversial. Aims and Objectives: We determined the expression levels of human growth hormone (GH), prolactin (PRL), and their receptors in subjects presenting with SLE, and modulation of disease severity. Materials and methods: Forty-seven subjects and ten healthy controls were assessed for possible association between SLE disease activity and levels of serum PRL, GH and thyrotropin-releasing hormone (TRH). In peripheral blood mononuclear cells (PBMC), specific binding and mRNA expression of receptors for GH (GHR), and PRL (PRLR) were determined by receptor-ligand binding assay (RLBA) and RT-PCR. PBMC of recruited subjects were treated with hPRL and rhGH to assess IgG production and antibodies against dsDNA. Results: In active SLE subjects we found elevated PRL and GH levels. Study subject PBMCs displayed augmented GHR and PRLR protein and mRNA expression. Study subjects also showed a positive correlation in serum PRL levels and specific antibodies against dsDNA, SLE disease activity index (SLEDAI), and proteinuria. However, a negative correlation was found between serum PRL levels and complement component C3. We found a positive correlation between specific binding rates of PRLR and GHR and both SLE activity and dsDNA antibody titers. Enhanced IgG and anti-dsDNA secretion was observed in cultured PBMC stimulated by PRL or GH with/without PHA, PWM, IL-2 or IL-10. In active SLE, a close association was found between augmented PRL and GH levels, expression and specific binding activities of PRLR and GHR, and changes in the specific titer of anti-dsDNA. Conclusion: Anterior pituitary hormones play an important role in the pathogenesis of SLE. High levels of growth hormone (GH) and prolactin (PRL) play a role in pathogenesis of SLE, which is correlated with SLE disease activity and antibodies against dsDNA. The mechanism of GH and PRL in SLE was complicated and should

  4. Growth hormone (GH)-releasing activity of chicken GH-releasing hormone (GHRH) in chickens.

    PubMed

    Harvey, S; Gineste, C; Gaylinn, B D

    2014-08-01

    Two peptides with sequence similarities to growth hormone releasing hormone (GHRH) have been identified by analysis of the chicken genome. One of these peptides, chicken (c) GHRH-LP (like peptide) was previously found to poorly bind to chicken pituitary membranes or to cloned and expressed chicken GHRH receptors and had little, if any, growth hormone (GH)-releasing activity in vivo or in vitro. In contrast, a second more recently discovered peptide, cGHRH, does bind to cloned and expressed cGHRH receptors and increases cAMP activity in transfected cells. The possibility that this peptide may have in vivo GH-releasing activity was therefore assessed. The intravenous (i.v.) administration of cGHRH to immature chickens, at doses of 3-100 μg/kg, significantly increased circulating GH concentrations within 10 min of injection and the plasma GH levels remained elevated for at least 30 min after the injection of maximally effective doses. The plasma GH responses to cGHRH were comparable with those induced by human (h) or porcine (p) GHRH preparations and to that induced by thyrotropin releasing hormone (TRH). In marked contrast, the i.v. injection of cGHRH-LP had no significant effect on circulating GH concentrations in immature chicks. GH release was also increased from slaughterhouse chicken pituitary glands perifused for 5 min with cGHRH at doses of 0.1 μg/ml or 1.0 μg/ml, comparable with GH responses to hGHRH1-44. In contrast, the perifusion of chicken pituitary glands with cGHRH-LP had no significant effect on GH release. In summary, these results demonstrate that cGHRH has GH-releasing activity in chickens and support the possibility that it is the endogenous ligand of the cGHRH receptor.

  5. Investigation of the solid- and solution-phase binding reactivities of continuous epitopes recognized by polyclonal guinea-pig anti-recombinant bovine growth hormone antisera.

    PubMed

    Beattie, J

    1992-09-01

    We have used the technique of multiple pin peptide synthesis to identify three major continuous epitopes in the recombinant bovine (rb) GH molecule. We have synthesized these peptides, residues 24-40, 139-152 and 179-189, as N-terminally acetylated, C-terminal amides and confirmed their reactivity in a standard solid-phase ELISA. Subsequently, for epitope 139-152, we have synthesized a peptide affinity column and used this to isolate antibodies with this epitope specificity from whole antiserum. In addition, we demonstrate that under native conditions in a liquid phase RIA, these antibodies will precipitate [125I]rbGH. Further, peptide 139-152 itself also cross-reacts in an rbGH RIA inhibiting binding by up to 20%. Our data suggest that during the immune response to rbGH in guinea-pigs a substantial part of the B-cell response is directed to the 139-152 region and that this part of the protein is a native epitope.

  6. Participation of JAK and STAT proteins in growth hormone-induced signaling.

    PubMed

    Han, Y; Leaman, D W; Watling, D; Rogers, N C; Groner, B; Kerr, I M; Wood, W I; Stark, G R

    1996-03-08

    The binding of growth hormone leads to dimerization of its receptor, accompanied by phosphorylation and activation of intracellular tyrosine kinases (JAKs) and the latent cytoplasmic transcriptions factors STAT1, STAT3, and STAT5. Both JAK1 and JAK2 are phosphorylated in response to growth hormone in mouse 3T3 F442A and human HT1080 cells. The roles of JAKs in growth hormone signal transduction were examined by using mutant HT1080 cells missing either JAK1 or JAK2. JAK2 is absolutely required for growth hormone-dependent phosphorylation of the receptor, STAT1 and STAT3, JAK1, and the SH2-containing adaptor molecule Shc. In contrast, JAK1 is not required for any of the above functions. These data indicate that JAK2 is both necessary and sufficient for the growth hormone-dependent phosphorylation events required to couple the receptor both to STAT-dependent signaling pathways and to pathways involving Shc. Furthermore, STAT5 is activated by growth hormone in 3T3 F442A cells, but not in HT1080 cells, revealing that the set of STATs activated by growth hormone can vary, possibly contributing to the specificity of the growth hormone response in different cell types.

  7. The pituitary growth hormone cell in space

    NASA Technical Reports Server (NTRS)

    Hymer, Wesley C.; Grindeland, R.

    1989-01-01

    Growth hormone (GH), produced and secreted from specialized cells in the pituitary gland, controls the metabolism of protein, fat, and carbohydrate. It is also probably involved in the regulation of proper function of bone, muscle and immune systems. The behavior of the GH cell system was studied by flying either isolated pituitary cells or live rats. In the latter case, pituitary GH cells are prepared on return to earth and then either transplanted into hypophysectomized rats or placed into cell culture so that function of GH cells in-vivo vs. in-vitro can be compared. The results from three flights to date (STS-8, 1983; SL-3, 1985; Cosmos 1887, 1987) established that the ability of GH cells to release hormone, on return to earth, is compromised. The mechanism(s) responsible for this attenuation response is unknown. However, the data are sufficiently positive to indicate that the nature of the secretory defect resides directly within the GH cells.

  8. Regulation of bone mass by growth hormone.

    PubMed

    Olney, Robert C

    2003-09-01

    Growth hormone (GH) is a peptide hormone secreted from the pituitary gland under the control of the hypothalamus. It has a many actions in the body, including regulating a number of metabolic pathways. Some, but not all, of its effects are mediated through insulin-like growth factor-I (IGF-I). Both GH and IGF-I play significant roles in the regulation of growth and bone metabolism and hence are regulators of bone mass. Bone mass increases steadily through childhood, peaking in the mid 20s. Subsequently, there is a slow decline that accelerates in late life. During childhood, the accumulation in bone mass is a combination of bone growth and bone remodeling. Bone remodeling is the process of new bone formation by osteoblasts and bone resorption by osteoclasts. GH directly and through IGF-I stimulates osteoblast proliferation and activity, promoting bone formation. It also stimulates osteoclast differentiation and activity, promoting bone resorption. The result is an increase in the overall rate of bone remodeling, with a net effect of bone accumulation. The absence of GH results in a reduced rate of bone remodeling and a gradual loss of bone mineral density. Bone growth primarily occurs at the epiphyseal growth plates and is the result of the proliferation and differentiation of chondrocytes. GH has direct effects on these chondrocytes, but primarily regulates this function through IGF-I, which stimulates the proliferation of and matrix production by these cells. GH deficiency severely limits bone growth and hence the accumulation of bone mass. GH deficiency is not an uncommon complication in oncology and has long-term effects on bone health.

  9. Human Growth Hormone (HGH): Does It Slow Aging?

    MedlinePlus

    ... hormone can: Increase exercise capacity Increase bone density Increase muscle mass Decrease body fat Human growth hormone is also approved to treat ... Although it appears that human growth hormone can increase muscle mass and ... the amount of body fat in healthy older adults, the increase in muscle ...

  10. Novel growth hormone receptor gene mutation in a patient with Laron syndrome.

    PubMed

    Arman, Ahmet; Yüksel, Bilgin; Coker, Ajda; Sarioz, Ozlem; Temiz, Fatih; Topaloglu, Ali Kemal

    2010-04-01

    Growth Hormone (GH) is a 22 kDa protein that has effects on growth and glucose and fat metabolisms. These effects are initiated by binding of growth hormone (GH) to growth hormone receptors (GHR) expressed in target cells. Mutations or deletions in the growth hormone receptor cause an autosomal disorder called Laron-type dwarfism (LS) characterized by high circulating levels of serum GH and low levels of insulin like growth factor-1 (IGF-1). We analyzed the GHR gene for genetic defect in seven patients identified as Laron type dwarfism. We identified two missense mutations (S40L and W104R), and four polymorphisms (S473S, L526I, G168G and exon 3 deletion). We are reporting a mutation (W104R) at exon 5 of GHR gene that is not previously reported, and it is a novel mutation.

  11. Structure-activity relations in binding of perfluoroalkyl compounds to human thyroid hormone T3 receptor.

    PubMed

    Ren, Xiao-Min; Zhang, Yin-Feng; Guo, Liang-Hong; Qin, Zhan-Fen; Lv, Qi-Yan; Zhang, Lian-Ying

    2015-02-01

    Perfluoroalkyl compounds (PFCs) have been shown to disrupt thyroid functions through thyroid hormone receptor (TR)-mediated pathways, but direct binding of PFCs with TR has not been demonstrated. We investigated the binding interactions of 16 structurally diverse PFCs with human TR, their activities on TR in cells, and the activity of perfluorooctane sulfonate (PFOS) in vivo. In fluorescence competitive binding assays, most of the 16 PFCs were found to bind to TR with relative binding potency in the range of 0.0003-0.05 compared with triiodothyronine (T3). A structure-binding relationship for PFCs was observed, where fluorinated alkyl chain length longer than ten, and an acid end group were optimal for TR binding. In thyroid hormone (TH)-responsive cell proliferation assays, PFOS, perfluorohexadecanoic acid, and perfluorooctadecanoic acid exhibited agonistic activity by promoting cell growth. Furthermore, similar to T3, PFOS exposure promoted expression of three TH upregulated genes and inhibited three TH downregulated genes in amphibians. Molecular docking analysis revealed that most of the tested PFCs efficiently fit into the T3-binding pocket in TR and formed a hydrogen bond with arginine 228 in a manner similar to T3. The combined in vitro, in vivo, and computational data strongly suggest that some PFCs disrupt the normal activity of TR pathways by directly binding to TR.

  12. Accumulation of a slowly dissociable peptide hormone binding component by isolated target cells.

    PubMed Central

    Donner, D B; Martin, D W; Sonenberg, M

    1978-01-01

    The overall rate of dissociation and the fraction of bound radioiodinated human growth hormone that dissociated from hepatocytes varied with time of association. A smaller fraction of bound hormone was dissociable from isolated target cells with increased receptor occupancy and increased incubation time prior to the onset of dissociation. The inability of bound label to reequilibrate completely with the medium was demonstrated further by preincubating cells with labeled hormone prior to the initiation of saturation experiments. In such experiments, time-dependent changes in the binding properties of bound label were observed in Scatchard plots, as a result of the inability of prebound label to reequilibrate rapidly with the medium over the time course of such experiments. These data suggest that bound hormone may be distributed between at least two kinetic components. This phenomenon could be interpreted in terms of heterogeneity of sites, a slow conformational change in the receptor, or a model incorporating spatial compartmentalization of sites. PMID:273229

  13. Psychomotor retardation in a girl with complete growth hormone deficiency.

    PubMed

    Dayal, Devi; Malhi, Prabhjot; Kumar Bhalla, Anil; Sachdeva, Naresh; Kumar, Rakesh

    2013-01-01

    Infants with complete growth hormone deficiency may suffer from psychomotor retardation in addition to severe growth failure. Without replacement therapy, they may have a compromised intellectual potential manifesting as learning disabilities and attention-deficit disorders in later life. In this communication, we discuss an infant who showed improvement in physical growth after growth hormone therapy but her psychomotor skills did not improve probably due to late start of treatment. There is a need to start growth hormone therapy as early as possible in infants with complete growth hormone deficiency to avoid adverse effects on psychomotor and brain development.

  14. Growth hormone receptors in ovary and liver during gametogenesis in female rainbow trout (Oncorhynchus mykiss).

    PubMed

    Gomez, J M; Mourot, B; Fostier, A; Le Gac, F

    1999-03-01

    Changes of growth hormone receptivity in the ovary during the reproductive cycle were studied in rainbow trout (Oncorhynchus mykiss). A method for characterizing growth hormone receptors in crude ovary homogenate was required for this. Binding of radiolabelled recombinant rainbow trout growth hormone (125I-labelled rtGH) to crude ovary preparation was dependent on ovarian tissue concentration. The sites were specific to growth hormone, with no affinity for prolactins and gonadotrophins. Similar high affinities for 125I-labelled rtGH were obtained with crude ovary (4.2 x 10(9) +/- 0.3 mol l-1) and crude liver preparations (4.9 x 10(9) +/- 0.1 mol l-1) at all stages of ovogenesis, and with ovarian membrane preparations (8.2 x 10(9) mol l-1) tested at the beginning of vitellogenesis. Ovarian growth hormone receptor concentration was highest during the early phases of follicular development (endogenous vitellogenesis: 315-310 fmol g-1 ovary) and decreased regularly during oocyte and follicular growth (exogenous vitellogenesis) to reach a minimal value at oocyte maturation (42 fmol g-1 ovary). In postovulated fish, binding was at a similar level (297 fmol g-1 ovary) to that found in endogenous vitellogenesis. Conversely, the absolute binding capacity of the whole ovary was low from immaturity to early exogenous vitellogenesis (0.1-0.6 pmol per pair of gonads), increased slowly during vitellogenesis and more markedly during rapid oocyte growth and at the time of final maturation (10.8 pmol per pair of gonads). In postovulated fish, the absolute binding capacity decreased partially (4.4 pmol per pair of gonads). Mean hepatic growth hormone receptor concentration did not vary with the reproductive stage for most of the cycle (3.0-4.5 pmol g-1 liver) except in endogenous vitellogenesis where significantly higher concentrations were observed (6.7 pmol g-1 liver). Individual ovarian growth hormone receptor concentrations were correlated with hepatic growth hormone receptor

  15. Ovine prolactin and human growth hormone derivatives. Specific modification of their alpha-amino groups.

    PubMed

    Caridad, J J; Nowicki, C; Santomé, J A; Wolfenstein-Todel, C

    1988-06-01

    The alpha-amino group of ovine prolactin (oPRL) and human growth hormone (hGH) was selectively modified by transamination with glyoxylic acid. No difference was found in the binding capacity of transaminated oPRL to rat liver lactogenic receptors with respect to its control, although both samples showed a decrease in its binding capacity with reference to the native hormone. This decrease was due to conformational changes caused by the reaction conditions and not by the transamination itself, as shown by the circular dichroism spectra. Transaminated hGH retained the full binding capacity of the hormone. These results suggest that the alpha-amino group is not relevant for the binding to lactogenic liver receptors in both lactogenic hormones.

  16. Effects of ghrelin, growth hormone-releasing peptide-6, and growth hormone-releasing hormone on growth hormone, adrenocorticotropic hormone, and cortisol release in type 1 diabetes mellitus.

    PubMed

    de Sá, Larissa Bianca Paiva Cunha; Nascif, Sergio Oliva; Correa-Silva, Silvia Regina; Molica, Patricia; Vieira, José Gilberto Henriques; Dib, Sergio Atala; Lengyel, Ana-Maria Judith

    2010-10-01

    In type 1 diabetes mellitus (T1DM), growth hormone (GH) responses to provocative stimuli are normal or exaggerated, whereas the hypothalamic-pituitary-adrenal axis has been less studied. Ghrelin is a GH secretagogue that also increases adrenocorticotropic hormone (ACTH) and cortisol levels, similarly to GH-releasing peptide-6 (GHRP-6). Ghrelin's effects in patients with T1DM have not been evaluated. We therefore studied GH, ACTH, and cortisol responses to ghrelin and GHRP-6 in 9 patients with T1DM and 9 control subjects. The GH-releasing hormone (GHRH)-induced GH release was also evaluated. Mean fasting GH levels (micrograms per liter) were higher in T1DM (3.5 ± 1.2) than in controls (0.6 ± 0.3). In both groups, ghrelin-induced GH release was higher than that after GHRP-6 and GHRH. When analyzing Δ area under the curve (ΔAUC) GH values after ghrelin, GHRP-6, and GHRH, no significant differences were observed in T1DM compared with controls. There was a trend (P = .055) to higher mean basal cortisol values (micrograms per deciliter) in T1DM (11.7 ± 1.5) compared with controls (8.2 ± 0.8). No significant differences were seen in ΔAUC cortisol values in both groups after ghrelin and GHRP-6. Mean fasting ACTH values were similar in T1DM and controls. No differences were seen in ΔAUC ACTH levels in both groups after ghrelin and GHRP-6. In summary, patients with T1DM have normal GH responsiveness to ghrelin, GHRP-6, and GHRH. The ACTH and cortisol release after ghrelin and GHRP-6 is also similar to controls. Our results suggest that chronic hyperglycemia of T1DM does not interfere with GH-, ACTH-, and cortisol-releasing mechanisms stimulated by these peptides.

  17. Effects of retinoic acid on growth hormone-releasing hormone receptor, growth hormone secretagogue receptor gene expression and growth hormone secretion in rat anterior pituitary cells.

    PubMed

    Maliza, Rita; Fujiwara, Ken; Tsukada, Takehiro; Azuma, Morio; Kikuchi, Motoshi; Yashiro, Takashi

    2016-06-30

    Retinoic acid (RA) is an important signaling molecule in embryonic development and adult tissue. The actions of RA are mediated by the nuclear receptors retinoic acid receptor (RAR) and retinoid X receptor (RXR), which regulate gene expression. RAR and RXR are widely expressed in the anterior pituitary gland. RA was reported to stimulate growth hormone (GH) gene expression in the anterior pituitary cells. However, current evidence is unclear on the role of RA in gene expression of growth hormone-releasing hormone receptor (Ghrh-r), growth hormone secretagogue receptor (Ghs-r) and somatostatin receptors (Sst-rs). Using isolated anterior pituitary cells of rats, we examined the effects of RA on gene expression of these receptors and GH release. Quantitative real-time PCR revealed that treatment with all-trans retinoic acid (ATRA; 10(-6) M) for 24 h increased gene expression levels of Ghrh-r and Ghs-r; however, expressions of Sst-r2 and Sst-r5 were unchanged. Combination treatment with the RAR-agonist Am80 and RXR-agonist PA024 mimicked the effects of ATRA on Ghrh-r and Ghs-r gene expressions. Exposure of isolated pituitary cells to ATRA had no effect on basal GH release. In contrast, ATRA increased growth hormone-releasing hormone (GHRH)- and ghrelin-stimulated GH release from cultured anterior pituitary cells. Our results suggest that expressions of Ghrh-r and Ghs-r are regulated by RA through the RAR-RXR receptor complex and that RA enhances the effects of GHRH and ghrelin on GH release from the anterior pituitary gland.

  18. Predicting the Probability of Abnormal Stimulated Growth Hormone Response in Children After Radiotherapy for Brain Tumors

    SciTech Connect

    Hua Chiaho; Wu Shengjie; Chemaitilly, Wassim; Lukose, Renin C.; Merchant, Thomas E.

    2012-11-15

    Purpose: To develop a mathematical model utilizing more readily available measures than stimulation tests that identifies brain tumor survivors with high likelihood of abnormal growth hormone secretion after radiotherapy (RT), to avoid late recognition and a consequent delay in growth hormone replacement therapy. Methods and Materials: We analyzed 191 prospectively collected post-RT evaluations of peak growth hormone level (arginine tolerance/levodopa stimulation test), serum insulin-like growth factor 1 (IGF-1), IGF-binding protein 3, height, weight, growth velocity, and body mass index in 106 children and adolescents treated for ependymoma (n = 72), low-grade glioma (n = 28) or craniopharyngioma (n = 6), who had normal growth hormone levels before RT. Normal level in this study was defined as the peak growth hormone response to the stimulation test {>=}7 ng/mL. Results: Independent predictor variables identified by multivariate logistic regression with high statistical significance (p < 0.0001) included IGF-1 z score, weight z score, and hypothalamic dose. The developed predictive model demonstrated a strong discriminatory power with an area under the receiver operating characteristic curve of 0.883. At a potential cutoff point of probability of 0.3 the sensitivity was 80% and specificity 78%. Conclusions: Without unpleasant and expensive frequent stimulation tests, our model provides a quantitative approach to closely follow the growth hormone secretory capacity of brain tumor survivors. It allows identification of high-risk children for subsequent confirmatory tests and in-depth workup for diagnosis of growth hormone deficiency.

  19. Random Secretion of Growth Hormone in Humans

    NASA Astrophysics Data System (ADS)

    Prank, Klaus; Kloppstech, Mirko; Nowlan, Steven J.; Sejnowski, Terrence J.; Brabant, Georg

    1996-08-01

    In normal humans, growth hormone (GH) is secreted from a gland located adjacent to the brain (pituitary) into the blood in distinct pulses, but in patients bearing a tumor within the pituitary (acromegaly) GH is excessively secreted in an irregular manner. It has been hypothesized that GH secretion in the diseased state becomes random. This hypothesis is supported by demonstrating that GH secretion in patients with acromegaly cannot be distinguished from a variety of linear stochastic processes based on the predictability of the fluctuations of GH concentration in the bloodstream.

  20. Gravitational effects on plant growth hormone concentration

    NASA Astrophysics Data System (ADS)

    Bandurski, Robert S.; Schulze, Aga

    Numerous studies, particularly those of H. Dolk in the 1930's, established by means of bio-assay, that more growth hormone diffused from the lower, than from the upper side of a gravity-stimulated plant shoot. Now, using an isotope dilution assay, with 4,5,6,7 tetradeutero indole-3-acetic acid as internal standard, and selected ion monitoring-gas chromatography-mass spectrometry as the method of determination, we have confirmed Dolk's finding and established that the asymmetrically distributed hormone is, in fact, indole-3-acetic acid (IAA). This is the first physico-chemical demonstration that there is more free IAA on the lower sides of a geo-stimulated plant shoot. We have also shown that free IAA occurs primarily in the conductive vascular tissues of the shoot, whereas IAA esters predominate in the growing cortical cells. Now, using an especially sensitive gas chromatographic isotope dilution assay we have found that the hormone asymmetry also occurs in the non-vascular tissue. Currently, efforts are directed to developing isotope dilution assays, with picogram sensitivity, to determine how this asymmetry of IAA distribution is attained so as to better understand how the plant perceives the geo-stimulus.

  1. Thyroid Hormones and Growth in Health and Disease

    PubMed Central

    Tarım, Ömer

    2011-01-01

    Thyroid hormones regulate growth by several mechanisms. In addition to their negative feedback effect on the stimulatory hormones thyrotropin-releasing hormone (TRH) and thyrotropin (TSH), thyroid hormones also regulate their receptors in various physiological and pathological conditions. Up-regulation and down-regulation of the thyroid receptors fine-tune the biological effects exerted by the thyroid hormones. Interestingly, the deiodinase enzyme system is another intrinsic regulator of thyroid physiology that adjusts the availability of thyroid hormones to the tissues, which is essential for normal growth and development. Almost all chronic diseases of childhood impair growth and development. Every disease may have a unique mechanism to halt linear growth, but reduced serum concentration or diminished local availability of thyroid hormones seems to be a common pathway. Therefore, the effects of systemic diseases on thyroid physiology must be taken into consideration in the evaluation of growth retardation in affected children. Conflict of interest:None declared. PMID:21750631

  2. Thyroid hormones and growth in health and disease.

    PubMed

    Tarım, Ömer

    2011-01-01

    Thyroid hormones regulate growth by several mechanisms. In addition to their negative feedback effect on the stimulatory hormones thyrotropin-releasing hormone (TRH) and thyrotropin (TSH), thyroid hormones also regulate their receptors in various physiological and pathological conditions. Up-regulation and down-regulation of the thyroid receptors fine-tune the biological effects exerted by the thyroid hormones. Interestingly, the deiodinase enzyme system is another intrinsic regulator of thyroid physiology that adjusts the availability of thyroid hormones to the tissues, which is essential for normal growth and development. Almost all chronic diseases of childhood impair growth and development. Every disease may have a unique mechanism to halt linear growth, but reduced serum concentration or diminished local availability of thyroid hormones seems to be a common pathway. Therefore, the effects of systemic diseases on thyroid physiology must be taken into consideration in the evaluation of growth retardation in affected children.

  3. Radioiodination of chicken luteinizing hormone without affecting receptor binding potency

    SciTech Connect

    Kikuchi, M.; Ishii, S. )

    1989-12-01

    By improving the currently used lactoperoxidase method, we were able to obtain radioiodinated chicken luteinizing hormone (LH) that shows high specific binding and low nonspecific binding to a crude plasma membrane fraction of testicular cells of the domestic fowl and the Japanese quail, and to the ovarian granulosa cells of the Japanese quail. The change we made from the original method consisted of (1) using chicken LH for radioiodination that was not only highly purified but also retained a high receptor binding potency; (2) controlling the level of incorporation of radioiodine into chicken LH molecules by employing a short reaction time and low temperature; and (3) fractionating radioiodinated chicken LH further by gel filtration using high-performance liquid chromatography. Specific radioactivity of the final {sup 125}I-labeled chicken LH preparation was 14 microCi/micrograms. When specific binding was 12-16%, nonspecific binding was as low as 2-4% in the gonadal receptors. {sup 125}I-Labeled chicken LH was displaced by chicken LH and ovine LH but not by chicken follicle-stimulating hormone. The equilibrium association constant of quail testicular receptor was 3.6 x 10(9) M-1. We concluded that chicken LH radioiodinated by the present method is useful for studies of avian LH receptors.

  4. Skeletal Effects of Growth Hormone and Insulin-like Growth Factor-I Therapy

    PubMed Central

    Lindsey, Richard C.; Mohan, Subburaman

    2015-01-01

    The growth hormone/insulin-like growth factor (GH/IGF) axis is critically important for the regulation of bone formation, and deficiencies in this system have been shown to contribute to the development of osteoporosis and other diseases of low bone mass. The GH/IGF axis is regulated by a complex set of hormonal and local factors which can act to regulate this system at the level of the ligands, receptors, IGF binding proteins (IGFBPs), or IGFBP proteases. A combination of in vitro studies, transgenic animal models, and clinical human investigations has provided ample evidence of the importance of the endocrine and local actions of both GH and IGF-I, the two major components of the GH/IGF axis, in skeletal growth and maintenance. GH- and IGF-based therapies provide a useful avenue of approach for the prevention and treatment of diseases such as osteoporosis. PMID:26408965

  5. Metastatic Pancreatic Neuroendocrine Tumor that Progressed to Ectopic Adrenocorticotropic Hormone (ACTH) Syndrome with Growth Hormone-releasing Hormone (GHRH) Production

    PubMed Central

    Tadokoro, Rie; Sato, Shotaro; Otsuka, Fumiko; Ueno, Makoto; Ohkawa, Shinichi; Katakami, Hideki; Taniyama, Matsuo; Nagasaka, Shoichiro

    2016-01-01

    The patient was a 61-year-old woman who had a well-differentiated pancreatic neuroendocrine tumor (PNET) with lymph node metastasis. After 15 months of octreotide treatment, glucose control deteriorated and pigmentation of the tongue and moon face developed, leading to the diagnosis of ectopic adrenocorticotropic hormone (ACTH) syndrome. An abnormal secretion of growth hormone (GH) was identified, and the plasma growth hormone-releasing hormone (GHRH) level was elevated. A tumor biopsy specimen positively immunostained for ACTH and GHRH. Ectopic hormone secretion seems to have evolved along with the progression of the PNET. PMID:27746436

  6. Metastatic Pancreatic Neuroendocrine Tumor that Progressed to Ectopic Adrenocorticotropic Hormone (ACTH) Syndrome with Growth Hormone-releasing Hormone (GHRH) Production.

    PubMed

    Tadokoro, Rie; Sato, Shotaro; Otsuka, Fumiko; Ueno, Makoto; Ohkawa, Shinichi; Katakami, Hideki; Taniyama, Matsuo; Nagasaka, Shoichiro

    The patient was a 61-year-old woman who had a well-differentiated pancreatic neuroendocrine tumor (PNET) with lymph node metastasis. After 15 months of octreotide treatment, glucose control deteriorated and pigmentation of the tongue and moon face developed, leading to the diagnosis of ectopic adrenocorticotropic hormone (ACTH) syndrome. An abnormal secretion of growth hormone (GH) was identified, and the plasma growth hormone-releasing hormone (GHRH) level was elevated. A tumor biopsy specimen positively immunostained for ACTH and GHRH. Ectopic hormone secretion seems to have evolved along with the progression of the PNET.

  7. Detecting growth hormone misuse in athletes

    PubMed Central

    Holt, Richard I. G.

    2013-01-01

    Athletes have been misusing growth hormone (GH) for its anabolic and metabolic effects since the early 1980s, at least a decade before endocrinologists began to treat adults with GH deficiency. Although there is an ongoing debate about whether GH is performance enhancing, recent studies suggest that GH improves strength and sprint capacity, particularly when combined with anabolic steroids. The detection of GH misuse is challenging because it is an endogenous hormone. Two approaches have been developed to detect GH misuse; the first is based on the measurement of pituitary GH isoforms and the ratio of 22-kDa isoform to total GH. The second is based on the measurement of insulin like growth factor-I (IGF-I) and N-terminal propeptide of type III procollagen (P-III-NP) which increase in a dose-dependent manner in response to GH administration. Both methodologies have been approved by the World Anti-Doping Agency (WADA) and have led to the detection of a number of athletes misusing GH. PMID:24251151

  8. Effect of Growth Hormone Deficiency on Brain Structure, Motor Function and Cognition

    ERIC Educational Resources Information Center

    Webb, Emma A.; O'Reilly, Michelle A.; Clayden, Jonathan D.; Seunarine, Kiran K.; Chong, Wui K.; Dale, Naomi; Salt, Alison; Clark, Chris A.; Dattani, Mehul T.

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone less than 6.7 [micro]g/l) and idiopathic short stature (peak growth hormone greater than 10 [micro]g/l)…

  9. Effect of Growth Hormone Deficiency on Brain Structure, Motor Function and Cognition

    ERIC Educational Resources Information Center

    Webb, Emma A.; O'Reilly, Michelle A.; Clayden, Jonathan D.; Seunarine, Kiran K.; Chong, Wui K.; Dale, Naomi; Salt, Alison; Clark, Chris A.; Dattani, Mehul T.

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone less than 6.7 [micro]g/l) and idiopathic short stature (peak growth hormone greater than 10 [micro]g/l)…

  10. Parathyroid hormone linked to a collagen binding domain (PTH-CBD) promotes hair growth in a mouse model of chemotherapy-induced alopecia in a dose-dependent manner

    PubMed Central

    Katikaneni, Ranjitha; Ponnapakkam, Tulasi; Seymour, Andrew; Sakon, Joshua; Gensure, Robert

    2014-01-01

    Chemotherapy-induced alopecia is a major source of psychological stress in patients undergoing cancer chemotherapy, and can influence treatment decisions. While there is currently no therapy, PTH-CBD, a fusion protein of parathyroid hormone and collagen binding domain, has shown promise in animal models. Objective To determine if there are dose-dependent effects of PTH-CBD on chemotherapy-induced alopecia in a mouse model. Methods C57BL/6J mice were waxed to synchronize hair follicles; treated on day 7 with vehicle or PTH-CBD (100, 320 and 1000 mcg/kg subcutaneous injection); treated on day 9 with vehicle or cyclophosphamide (150 mg/kg i.p.). Mice were photographed every 3–4 days and sacrificed on day 63 for histological analysis. Photographs were quantified by grey scale analysis to assess hair content. Results Mice not receiving chemotherapy showed regrowth of hair 2 weeks following waxing, and normal histology after 2 months. Mice receiving chemotherapy alone showed marked hair loss after chemotherapy, which was sustained for 10 days and was followed by rapid regrowth of a normal coat. Histology revealed rapid cycling dystrophic anagen/catagen follicles. Animals receiving chemotherapy and PTH-CBD showed decreased hair loss and more rapid regrowth of hair than that seen with chemotherapy alone (increased hair growth by grey scale analysis, p<0.05), and the effects were dose dependent. Histologically, hair follicles in animals receiving the highest dose of PTH-CBD were in a quiescent phase, similar to mice which did not receive chemotherapy. Conclusions Single dose subcutaneous administration of PTH-CBD showed dose-dependent effects in minimizing hair loss and speeding recovery from chemotherapy-induced alopecia. PMID:24710191

  11. Hormonal and lactational responses to growth hormone-releasing hormone treatment in lactating Japanese Black cows.

    PubMed

    Shingu, H; Hodate, K; Kushibiki, S; Ueda, Y; Touno, E; Shinoda, M; Ohashi, S

    2004-06-01

    Ten multiparous lactating Japanese Black cows (beef breed) were used to evaluate the effects of bovine growth hormone-releasing hormone (GHRH) analog on milk yield and profiles of plasma hormones and metabolites. The cows received 2 consecutive 21-d treatments (a daily s.c. injection of 3-mg GHRH analog or saline) in a 2 (group) x 2 (period) Latin square crossover design. The 5 cows in group A received GHRH analog during period 1 (from d 22 to 42 postpartum) and saline during period 2 (from d 57 to 77 postpartum), and those in group B received saline and GHRH analog during periods 1 and 2, respectively. Mean milk yield decreased in saline treated compared with that during the 1-wk period before treatment 7.4 and 19.1% during periods 1 (group B) and 2 (group A), respectively. Treatment with GHRH analog increased milk yield 17.4% (period 1, group A) and 6.3% (period 2, group B). Treatment with GHRH analog induced higher basal plasma concentrations of growth hormone (GH), insulin-like growth factor-1 (IGF-1), insulin, and glucose compared with saline-treated cows. In glucose challenge, the GHRH analog-treated beef cows had greater insulin secretion than the saline-treated beef cows. In insulin challenge, however, there were no significant differences in the areas surrounded by hypothetical lines of basal glucose concentrations and glucose response curves between GHRH analog- and saline-treated cows. These results demonstrate that GHRH analog treatment facilitates endogenous GH secretion in lactating Japanese Black cows, leading to increases in milk yield and plasma concentrations of IGF-1, insulin, and glucose.

  12. Effects of Growth Hormone on Bone.

    PubMed

    Tritos, Nicholas A; Klibanski, Anne

    2016-01-01

    Describe the effects of growth hormone (GH) and insulin-like growth factor 1 (IGF-1) on the skeleton. The GH and IGF-1 axis has pleiotropic effects on the skeleton throughout the lifespan by influencing bone formation and resorption. GH deficiency leads to decreased bone turnover, delayed statural growth in children, low bone mass, and increased fracture risk in adults. GH replacement improves adult stature in GH deficient children, increases bone mineral density (BMD) in adults, and helps to optimize peak bone acquisition in patients, during the transition from adolescence to adulthood, who have persistent GH deficiency. Observational studies suggest that GH replacement may mitigate the excessive fracture risk associated with GH deficiency. Acromegaly, a state of GH and IGF-1 excess, is associated with increased bone turnover and decreased BMD in the lumbar spine observed in some studies, particularly in patients with hypogonadism. In addition, patients with acromegaly appear to be at an increased risk of morphometric-vertebral fractures, especially in the presence of active disease or concurrent hypogonadism. GH therapy also has beneficial effects on statural growth in several conditions characterized by GH insensitivity, including chronic renal failure, Turner syndrome, Prader-Willi syndrome, postnatal growth delay in patients with intrauterine growth retardation who do not demonstrate catchup growth, idiopathic short stature, short stature homeobox-containing (SHOX) gene mutations, and Noonan syndrome. GH and IGF-1 have important roles in skeletal physiology, and GH has an important therapeutic role in both GH deficiency and insensitivity states. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Nuclear hormone receptor coregulator: role in hormone action, metabolism, growth, and development.

    PubMed

    Mahajan, Muktar A; Samuels, Herbert H

    2005-06-01

    Nuclear hormone receptor coregulator (NRC) (also referred to as activating signal cointegrator-2, thyroid hormone receptor-binding protein, peroxisome proliferator activating receptor-interacting protein, and 250-kDa receptor associated protein) belongs to a growing class of nuclear cofactors widely known as coregulators or coactivators that are necessary for transcriptional activation of target genes. The NRC gene is also amplified and overexpressed in breast, colon, and lung cancers. NRC is a 2063-amino acid protein that harbors a potent N-terminal activation domain (AD1) and a second more centrally located activation domain (AD2) that is rich in Glu and Pro. Near AD2 is a receptor-interacting domain containing an LxxLL motif (LxxLL-1), which interacts with a wide variety of ligand-bound nuclear hormone receptors with high affinity. A second LxxLL motif (LxxLL-2) located in the C-terminal region of NRC is more restricted in its nuclear hormone receptor specificity. The intrinsic activation potential of NRC is regulated by a C-terminal serine, threonine, leucine-regulatory domain. The potential role of NRC as a cointegrator is suggested by its ability to enhance transcriptional activation of a wide variety of transcription factors and from its in vivo association with a number of known transcriptional regulators including CBP/p300. Recent studies in mice indicate that deletion of both NRC alleles leads to embryonic lethality resulting from general growth retardation coupled with developmental defects in the heart, liver, brain, and placenta. NRC(-/-) mouse embryo fibroblasts spontaneously undergo apoptosis, indicating the importance of NRC as a prosurvival and antiapoptotic gene. Studies with 129S6 NRC(+/-) mice indicate that NRC is a pleiotropic regulator that is involved in growth, development, reproduction, metabolism, and wound healing.

  14. Effect of growth hormone-releasing factor on growth hormone release in children with radiation-induced growth hormone deficiency

    SciTech Connect

    Lustig, R.H.; Schriock, E.A.; Kaplan, S.L.; Grumbach, M.M.

    1985-08-01

    Five male children who received cranial irradiation for extrahypothalamic intracranial neoplasms or leukemia and subsequently developed severe growth hormone (GH) deficiency were challenged with synthetic growth hormone-releasing factor (GRF-44), in an attempt to distinguish hypothalamic from pituitary dysfunction as a cause of their GH deficiency, and to assess the readily releasable GH reserve in the pituitary. In response to a pulse of GRF-44 (5 micrograms/kg intravenously), mean peak GH levels rose to values higher than those evoked by the pharmacologic agents L-dopa or arginine (6.4 +/- 1.3 ng/mL v 1.5 +/- 0.4 ng/mL, P less than .05). The peak GH value occurred at a mean of 26.0 minutes after administration of GRF-44. These responses were similar to those obtained in children with severe GH deficiency due to other etiologies (peak GH 6.3 +/- 1.7 ng/mL, mean 28.0 minutes). In addition, there was a trend toward an inverse relationship between peak GH response to GRF-44 and the postirradiation interval. Prolactin and somatomedin-C levels did not change significantly after the administration of a single dose of GRF-44. The results of this study support the hypothesis that cranial irradiation in children can lead to hypothalamic GRF deficiency secondary to radiation injury of hypothalamic GRF-secreting neurons. This study also lends support to the potential therapeutic usefulness of GRF-44 or an analog for GH deficiency secondary to cranial irradiation.

  15. Purification and properties of reptilian and amphibian growth hormones.

    PubMed

    Farmer, S W; Papkoff, H; Hayashida, T

    1976-09-01

    Highly purified growth hormone was isolated from the pituitaries of two reptilian species, the snapping turtle and the sea turtle, and two amphibian species, the bullfrog and the leopard frog. Characterization studies were performed with these growth hormones in comparison with mammalian and avian growth hormones. Great similarities among these species were found in chromatographic behavior, Ve/Vo ratios (2.0) on gel filtration, disc electrophoretic patterns, terminal amino acid residues and immunochemical reactivity with snapping turtle growth hormone antiserum. Species differences were noted in amino acid composition and immunoactivity measured by rat growth hormone antiserum, and these appeared to reflect the phylogenetic relationships among the four tetrapod species. The turtle and frog growth hormones gave parallel dose responses in the rat tibia assay. All were less potent than the bovine growth hormone standard except the bullfrog growth hormone which was equipotent if not more active. The data indicate that many elements of growth hormone structure have been strongly conserved during evolution.

  16. The role of growth hormone in diabetes mellitus.

    PubMed

    Holly, J M; Amiel, S A; Sandhu, R R; Rees, L H; Wass, J A

    1988-09-01

    The insulin and growth hormone (GH)/insulin-like growth factor-I (IGF-I) axis are two endocrine systems that are interlinked at many levels. GH is one of the glucose counter-regulatory hormones, rising in response to hypoglycaemia, it has both intrinsic hyperglycaemic actions and causes insulin resistance. Both IGF-I and its receptor have high structural and functional homology to insulin and its receptor. Insulin can regulate IGF-I production, acting on the GH receptor or at a post-receptor site. Conversely IGF-I is thought to have a permissive effect on the pancreatic insulin response to glucose. Growth is compromised in poorly controlled diabetic children; however, a causal link with altered GH/IGF-I levels has not been proven. Insulin-dependent diabetes clearly causes derangements in the GH/IGF-I axis. In poorly controlled diabetics GH levels are invariably raised whilst normal or low levels of IGF-I are found, indicating a dissociation between the two factors. Altered IGF-binding protein levels are also found, with high levels of small binding protein and low levels of large binding protein. These derangements are probably the result of interactions at many levels although the exact mechanisms are not fully understood. Raised GH levels could result from altered hypothalamic/pituitary control or reduced feedback inhibition. The latter could, in turn, result from low IGF-I levels, reduced availability of IGF-I to relevant receptors or increased levels of inhibitors (possibly the small binding protein). Low IGF-I levels could be directly due to deficient insulin levels or simply to lack of available circulating binding protein. Alternative or altered molecular forms of circulating GH in diabetes seem unlikely on present evidence. That GH has an effect on glycaemic control is most evident from the abnormal glucose tolerance seen in acromegalics, but is also seen with physiological GH variations such as during the pubertal growth spurt. In diabetics the

  17. A phase 2 trial of long-acting TransCon growth hormone in adult GH deficiency.

    PubMed

    Höybye, Charlotte; Pfeiffer, Andreas F H; Ferone, Diego; Christiansen, Jens Sandahl; Gilfoyle, David; Christoffersen, Eva Dam; Mortensen, Eva; Leff, Jonathan A; Beckert, Michael

    2017-04-01

    TransCon growth hormone is a sustained-release human growth hormone prodrug under development in which unmodified growth hormone is transiently linked to a carrier molecule. It is intended as an alternative to daily growth hormone in the treatment of growth hormone deficiency. This was a multi-center, randomized, open-label, active-controlled trial designed to compare the safety (including tolerability and immunogenicity), pharmacokinetics and pharmacodynamics of three doses of weekly TransCon GH to daily growth hormone (Omnitrope). Thirty-seven adult males and females diagnosed with adult growth hormone deficiency and stable on growth hormone replacement therapy for at least 3 months were, following a wash-out period, randomized (regardless of their pre-study dose) to one of three TransCon GH doses (0.02, 0.04 and 0.08 mg GH/kg/week) or Omnitrope 0.04 mg GH/kg/week (divided into 7 equal daily doses) for 4 weeks. Main outcomes evaluated were adverse events, immunogenicity and growth hormone and insulin-like growth factor 1 levels. TransCon GH was well tolerated; fatigue and headache were the most frequent drug-related adverse events and reported in all groups. No lipoatrophy or nodule formation was reported. No anti-growth hormone-binding antibodies were detected. TransCon GH demonstrated a linear, dose-dependent increase in growth hormone exposure without accumulation. Growth hormone maximum serum concentration and insulin-like growth factor 1 exposure were similar after TransCon GH or Omnitrope administered at comparable doses. The results suggest that long-acting TransCon GH has a profile similar to daily growth hormone but with a more convenient dosing regimen. These findings support further TransCon GH development. © 2017 The authors.

  18. The influence of growth hormone on bone and adipose programming.

    PubMed

    Oberbauer, Anita M

    2014-01-01

    In utero growth hormone exposure is associated with distinct immediate growth responses and long term impacts on adult physiological parameters that include obesity, insulin resistance, and bone function. Growth hormone accelerates cellular proliferation in many tissues but is exemplified by increases in the number of cells within the cartilaginous growth plate of bone. In some cases growth hormone also potentiates differentiation as seen in the differentiation of adipocytes that rapidly fill upon withdrawal of growth hormone. Growth hormone provokes these changes either by direct action or through intermediaries such as insulin-like growth factor-I and other downstream effector molecules. The specific mechanism used by growth hormone in programming tissues is not yet fully characterized and likely represents a multipronged approach involving DNA modification, altered adult hormonal milieu, and the development of an augmented stem cell pool capable of future engagement as is seen in adipose accrual. This review summarizes findings of growth hormone's influence on in utero and neonatal cellular and metabolic profiles related to bone and adipose tissue.

  19. Comparison of renal and osseous binding of parathyroid hormone and hormonal fragments

    SciTech Connect

    Demay, M.; Mitchell, J.; Goltzman, D.

    1985-11-01

    The authors compared receptor binding and adenylate cyclase stimulation of intact bovine parathyroid hormone (bPTH)-(1-84) and the synthetic amino-terminal fragments, bPTH-(1-34) and rat PTH (rPTH)-(1-34). In both canine renal membranes and cloned rat osteosarcoma cells the amino-terminal fragments bound to a single order of sites; the affinity of rPTH-(1-34) exceeded that of bPTH-(1-34), correlating with its higher potency in stimulating adenylate cyclase. In studies with oxidized bPTH-(1--84), the middle and carboxyl regions of intact PTH were found to bind to both tissues but with higher affinity to osteosarcoma cells than to renal membranes. Our results demonstrate that rPTH-(1--34) is the most favorable probe of amino-terminal PTH binding and the most potent of the PTH peptides in stimulating renal and osseous adenylate cyclase. The results also show that midregion and carboxyl determinants within intact PTH contribute to hormone binding, which does not correlate with adenylate cyclase activation and appears more significant for skeletal than for renal binding.

  20. Growth hormone deficiency in treated acromegaly.

    PubMed

    Mazziotti, Gherardo; Marzullo, Paolo; Doga, Mauro; Aimaretti, Gianluca; Giustina, Andrea

    2015-01-01

    Growth hormone deficiency (GHD) of the adult is characterized by reduced quality of life (QoL) and physical fitness, skeletal fragility, and increased weight and cardiovascular risk. Hypopituitarism may develop in patients after definitive treatment of acromegaly, but an exact prevalence of GHD in this population is still uncertain owing to limited awareness and the scarce and conflicting data available on this topic. Because acromegaly and GHD may yield adverse consequences on similar target systems, the final outcomes of some complications of acromegaly may be further affected by the occurrence of GHD. However, it is still largely unknown whether patients with post-acromegaly GHD may benefit from GH replacement. We review the diagnostic, clinical, and therapeutic aspects of GHD in adult patients treated for acromegaly.

  1. Fasting growth hormone levels in diabetes mellitus.

    PubMed

    Nazaimoon, W M; Ng, M L; Khalid, B A

    1993-11-01

    Fasting serum growth hormone (GH) levels of different groups of diabetic patients were measured and compared to age-matched normal subjects. Insulin-dependent diabetes mellitus (IDDM) children (aged 12-17 years) were found to have significantly lower fasting GH levels than age-matched normal children (p < 0.001). In the adult age groups of 18-44 and 45-76 years, the IDDM patients showed increased fasting GH levels compared to age-matched normal subjects (p < 0.06 and p < 0.001 respectively) and non-insulin-dependent diabetes mellitus (NIDDM) patients (p < 0.05 and p < 0.001 respectively). The fasting GH levels of IDDM patients of the age group 18-44 years also showed significant correlations with glycated haemoglobin (r = 0.510, p = 0.002) and fasting blood sugar levels (r = 0.571, p = 0.01).

  2. Model for growth hormone receptor activation based on subunit rotation within a receptor dimer

    SciTech Connect

    Brown, Richard J.; Adams, Julian J.; Pelekanos, Rebecca A.; Wan, Yu; McKinstry, William J.; Palethorpe, Kathryn; Seeber, Ruth M.; Monks, Thea A.; Eidne, Karin A.; Parker, Michael W.; Waters, Michael J.

    2010-07-13

    Growth hormone is believed to activate the growth hormone receptor (GHR) by dimerizing two identical receptor subunits, leading to activation of JAK2 kinase associated with the cytoplasmic domain. However, we have reported previously that dimerization alone is insufficient to activate full-length GHR. By comparing the crystal structure of the liganded and unliganded human GHR extracellular domain, we show here that there is no substantial change in its conformation on ligand binding. However, the receptor can be activated by rotation without ligand by inserting a defined number of alanine residues within the transmembrane domain. Fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET) and coimmunoprecipitation studies suggest that receptor subunits undergo specific transmembrane interactions independent of hormone binding. We propose an activation mechanism involving a relative rotation of subunits within a dimeric receptor as a result of asymmetric placement of the receptor-binding sites on the ligand.

  3. Genome-Wide Binding Patterns of Thyroid Hormone Receptor Beta

    PubMed Central

    Ayers, Stephen; Switnicki, Michal Piotr; Angajala, Anusha; Lammel, Jan; Arumanayagam, Anithachristy S.; Webb, Paul

    2014-01-01

    Thyroid hormone (TH) receptors (TRs) play central roles in metabolism and are major targets for pharmaceutical intervention. Presently, however, there is limited information about genome wide localizations of TR binding sites. Thus, complexities of TR genomic distribution and links between TRβ binding events and gene regulation are not fully appreciated. Here, we employ a BioChIP approach to capture TR genome-wide binding events in a liver cell line (HepG2). Like other NRs, TRβ appears widely distributed throughout the genome. Nevertheless, there is striking enrichment of TRβ binding sites immediately 5′ and 3′ of transcribed genes and TRβ can be detected near 50% of T3 induced genes. In contrast, no significant enrichment of TRβ is seen at negatively regulated genes or genes that respond to unliganded TRs in this system. Canonical TRE half-sites are present in more than 90% of TRβ peaks and classical TREs are also greatly enriched, but individual TRE organization appears highly variable with diverse half-site orientation and spacing. There is also significant enrichment of binding sites for TR associated transcription factors, including AP-1 and CTCF, near TR peaks. We conclude that T3-dependent gene induction commonly involves proximal TRβ binding events but that far-distant binding events are needed for T3 induction of some genes and that distinct, indirect, mechanisms are often at play in negative regulation and unliganded TR actions. Better understanding of genomic context of TR binding sites will help us determine why TR regulates genes in different ways and determine possibilities for selective modulation of TR action. PMID:24558356

  4. Timing of growth hormone treatment affects trabecular bone microarchitecture and mineralization in growth hormone deficient mice.

    PubMed

    Kristensen, Erika; Hallgrímsson, Benedikt; Morck, Douglas W; Boyd, Steven K

    2010-08-01

    Growth hormone (GH) is essential in the development of bone mass, and a growth hormone deficiency (GHD) in childhood is frequently treated with daily injections of GH. It is not clear what effect GHD and its treatment has on bone. It was hypothesized that GHD would result in impaired microarchitecture, and an early onset of treatment would result in a better recovery than late onset. Growth hormone deficient homozygous (lit/lit) mice of both sexes were divided into two treatment groups receiving daily injections of GH, starting at an early (21 days of age) or a late time point (35 days of age, corresponding to the end of puberty). A group of heterozygous mice with normal levels of growth hormone served as controls. In vivo micro-computed tomography scans of the fourth lumbar vertebra were obtained at five time points between 21 and 60 days of age, and trabecular morphology and volumetric BMD were analyzed to determine the effects of GH on bone microarchitecture. Early GH treatment led to significant improvements in bone volume ratio (p=0.006), tissue mineral density (p=0.005), and structure model index (p=0.004) by the study endpoint (day 60), with no detected change in trabecular thickness. Trabecular number increased and trabecular separation decreased in GHD mice regardless of treatment compared to heterozygous mice. This suggests fundamental differences in the structure of trabecular bone in GHD and GH treated mice, reflected by an increased number of thinner trabeculae in these mice compared to heterozygous controls. There were no significant differences between the late treatment group and GHD mice except for connectivity density. Taken together, these results indicate that bone responds to GH treatment initiated before puberty but not to treatment commencing post-puberty, and that GH treatment does not rescue the structure of trabecular bone to that of heterozygous controls. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Hypoglycemia associated with clonidine testing for growth hormone deficiency.

    PubMed

    Huang, C; Banerjee, K; Sochett, E; Perlman, K; Wherrett, D; Daneman, D

    2001-08-01

    We have observed 4 cases of hypoglycemia associated with clonidine stimulation of growth hormone secretion; only one patient had growth hormone deficiency. Significant drowsiness after administration of clonidine may prolong the period of fasting in these children and mask early signs and symptoms, leading to severe hypoglycemia.

  6. Sex Hormone-Binding Globulin in Children and Adolescents.

    PubMed

    Aydın, Banu; Winters, Stephen J

    2016-03-05

    Sex hormone-binding globulin (SHBG) is a circulating glycoprotein that transports testosterone and other steroids in the blood. Interest in SHBG has escalated in recent years because of its inverse association with obesity and insulin resistance, and because many studies have linked lower circulating levels of SHBG to metabolic syndrome, type 2 diabetes, nonalcoholic fatty liver disease, polycystic ovary syndrome, and early puberty. The purpose of this review is to summarize molecular, clinical, endocrine, and epidemiological findings to illustrate how measurement of plasma SHBG may be useful in clinical medicine in children.

  7. Sex Hormone-Binding Globulin in Children and Adolescents

    PubMed Central

    Aydın, Banu; Winters, Stephen J.

    2016-01-01

    Sex hormone-binding globulin (SHBG) is a circulating glycoprotein that transports testosterone and other steroids in the blood. Interest in SHBG has escalated in recent years because of its inverse association with obesity and insulin resistance, and because many studies have linked lower circulating levels of SHBG to metabolic syndrome, type 2 diabetes, nonalcoholic fatty liver disease, polycystic ovary syndrome, and early puberty. The purpose of this review is to summarize molecular, clinical, endocrine, and epidemiological findings to illustrate how measurement of plasma SHBG may be useful in clinical medicine in children. PMID:26761949

  8. Bovine growth hormone: human food safety evaluation.

    PubMed

    Juskevich, J C; Guyer, C G

    1990-08-24

    Scientists in the Food and Drug Administration (FDA), after reviewing the scientific literature and evaluating studies conducted by pharmaceutical companies, have concluded that the use of recombinant bovine growth hormone (rbGH) in dairy cattle presents no increased health risk to consumers. Bovine GH is not biologically active in humans, and oral toxicity studies have demonstrated that rbGH is not orally active in rats, a species responsive to parenterally administered bGH. Recombinant bGH treatment produces an increase in the concentration of insulin-like growth factor-I (IGF-I) in cow's milk. However, oral toxicity studies have shown that bovine IGF-I lacks oral activity in rats. Additionally, the concentration of IGF-I in milk of rbGH-treated cows is within the normal physiological range found in human breast milk, and IGF-I is denatured under conditions used to process cow's milk for infant formula. On the basis of estimates of the amount of protein absorbed intact in humans and the concentration of IGF-I in cow's milk during rbGH treatment, biologically significant levels of intact IGF-I would not be absorbed.

  9. Extrapituitary growth hormone synthesis in humans.

    PubMed

    Pérez-Ibave, Diana Cristina; Rodríguez-Sánchez, Iram Pablo; Garza-Rodríguez, María de Lourdes; Barrera-Saldaña, Hugo Alberto

    2014-01-01

    The gene for pituitary growth hormone (GH-N) in man belongs to a multigene locus located at chromosome 17q24.2, which also harbors four additional genes: one for a placental variant of GH-N (named GH-V) and three of chorionic somatommamotropin (CSH) type. Their tandem arrangement from 5' to 3' is: GH-N, CSH-L, CSH-1, GH-V and CSH-2. GH-N is mainly expressed in the pituitary from birth throughout life, while the remaining genes are expressed in the placenta of pregnant women. Pituitary somatotrophs secrete GH into the bloodstream to act at receptor sites in most tissues. GH participates in the regulation of several complex physiological processes, including growth and metabolism. Recently, the presence of GH has been described in several extrapituitary sites, such as neural, ocular, reproductive, immune, cardiovascular, muscular, dermal and skeletal tissues. It has been proposed that GH has an autocrine action in these tissues. While the body of evidence for its presence is constantly growing, research of its possible function and implications lag behind. In this review we highlight the evidence of extrapituitary synthesis of GH in humans.

  10. Growth hormone (GH) substitution for one year normalizes elevated GH-binding protein levels in GH-deficient adults secondary to a reduction in body fat. A placebo-controlled trial.

    PubMed

    Fisker, S; Vahl, N; Hansen, T B; Jørgensen, J O; Hagen, C; Orskov, H; Christiansen, J S

    1998-04-01

    The high affinity growth hormone binding protein (GHBP) in human serum derives from the extracellular domain of the GH receptor. It is well known that fat mass correlates positively to GHBP levels, but it is uncertain whether GH secretory status influences GHBP levels. Since body composition is known to change during GH substitution in adult GHD patients, we determined the relation between GHBP and body composition during GH substitution in GHD adults. Twenty-five GHD adults aged 45.0 +/- 1.8 years, were examined before and after 12 months of placebo-controlled GH substitution (2 IU/m2) in a parallel design. A group of 27 healthy age- and gender-matched normal-weight adults provided reference data. The participants underwent anthropometric measurements [body mass index (BMI), waist/hip ratio (W/H)], computer-tomography (CT-scan) of femoral and abdominal regions, dual-energy X-ray absorptiometry (DEXA-scan), and bioimpedance (BIA), as well as blood sampling. At baseline, the GHBP levels were increased compared to controls (1.63 +/- 0.14 nmol/l vs 1.12 +/- 0.1 nmol/l, P = 0.01). During 12 months of GH substitution, GHBP levels decreased to the levels of the control subjects. GHBP correlated positively to indices of adiposity in GHD patients at baseline: intra-abdominal fat (r = 0.54, P = 0.005), subcutaneous abdominal fat (r = 0.59, P < 0.002), body fat (BIA) (r= 0.41, P= 0.044), BMI (r= 0.58, P = 0.002), and total body fat (DEXA scan) (r= 0.61, P < 0.001). After 12 months of GH substitution, different estimates of body fat were significantly decreased in the GH treated group, but the positive relationship between GHBP and these estimates of body fat was maintained. In multiple linear regression analyses, fasting insulin levels were also a significant determinant of GHBP levels. We conclude that GHBP levels are increased in GHD patients and decrease to normal levels during 12 months of GH substitution. Furthermore, GHBP is predominantly correlated to indices of

  11. Sex hormones, sex hormone binding globulin, and vertebral fractures in older men.

    PubMed

    Cawthon, Peggy M; Schousboe, John T; Harrison, Stephanie L; Ensrud, Kristine E; Black, Dennis; Cauley, Jane A; Cummings, Steven R; LeBlanc, Erin S; Laughlin, Gail A; Nielson, Carrie M; Broughton, Augusta; Kado, Deborah M; Hoffman, Andrew R; Jamal, Sophie A; Barrett-Connor, Elizabeth; Orwoll, Eric S

    2016-03-01

    The association between sex hormones and sex hormone binding globin (SHBG) with vertebral fractures in men is not well studied. In these analyses, we determined whether sex hormones and SHBG were associated with greater likelihood of vertebral fractures in a prospective cohort study of community dwelling older men. We included data from participants in MrOS who had been randomly selected for hormone measurement (N=1463, including 1054 with follow-up data 4.6years later). Major outcomes included prevalent vertebral fracture (semi-quantitative grade≥2, N=140, 9.6%) and new or worsening vertebral fracture (change in SQ grade≥1, N=55, 5.2%). Odds ratios per SD decrease in sex hormones and per SD increase in SHBG were estimated with logistic regression adjusted for potentially confounding factors, including age, bone mineral density, and other sex hormones. Higher SHBG was associated with a greater likelihood of prevalent vertebral fractures (OR: 1.38 per SD increase, 95% CI: 1.11, 1.72). Total estradiol analyzed as a continuous variable was not associated with prevalent vertebral fractures (OR per SD decrease: 0.86, 95% CI: 0.68 to 1.10). Men with total estradiol values ≤17pg/ml had a borderline higher likelihood of prevalent fracture than men with higher values (OR: 1.46, 95% CI: 0.99, 2.16). There was no association between total testosterone and prevalent fracture. In longitudinal analyses, SHBG (OR: 1.42 per SD increase, 95% CI: 1.03, 1.95) was associated with new or worsening vertebral fracture, but there was no association with total estradiol or total testosterone. In conclusion, higher SHBG (but not testosterone or estradiol) is an independent risk factor for vertebral fractures in older men.

  12. Studies on the nature of plasma growth hormone

    NASA Technical Reports Server (NTRS)

    Ellis, S.; Grindeland, R. E.; Reilly, T. J.; Yang, S. H.

    1976-01-01

    The paper presents further evidence for the existence of two discrete forms of growth hormone in human plasma, one which is detectable by both radioimmunoassay and bioassay and is immunoreactive, and the other, termed 'bioactive', which is detected by tibial bioassay but shows little reactivity with currently available antisera to pituitary growth hormone. The same division of immunoactive and bioactive growth hormone occurs in rats, though with less disparity. Tests on rats indicated that the bioactive hormone is preferentially released into jugular vein plasma and that plasma concentrations of the bioactive hormone can be enhanced by insulin administration. The bioactive hormone was detectable by tibial assays in Cohn fractions IV, IV-1, and IV-4, and could be concentrated about 40-fold by fractionation with (NaPO3)6 and (NH4)2SO4.

  13. Synthesis and binding affinity of an iodinated juvenile hormone

    SciTech Connect

    Prestwich, G.D.; Eng, W.S.; Robles, S.; Vogt, R.G.; Wisniewski, J.R.; Wawrzenczyk, C.

    1988-01-25

    The synthesis of the first iodinated juvenile hormone (JH) in enantiomerically enriched form is reported. This chiral compound, 12-iodo-JH I, has an iodine atom replacing a methyl group of the natural insect juvenile hormone, JH I, which is important in regulating morphogenesis and reproduction in the Lepidoptera. The unlabeled compound shows approximately 10% of the relative binding affinity for the larval hemolymph JH binding protein (JHBP) of Manduca sexta, which specifically binds natural /sup 3/H-10R,11S-JH I (labeled at 58 Ci/mmol) with a KD of 8 X 10(-8) M. It is also approximately one-tenth as biologically active as JH I in the black Manduca and epidermal commitment assays. The 12-hydroxy and 12-oxo compounds are poor competitors and are also biologically inactive. The radioiodinated (/sup 125/I)12-iodo-JH I can be prepared in low yield at greater than 2500 Ci/mmol by nucleophilic displacement using no-carrier-added /sup 125/I-labeled sodium iodide in acetone; however, synthesis using sodium iodide carrier to give the approximately 50 Ci/mmol radioiodinated ligand proceeds in higher radiochemical yield with fewer by-products and provides a radioligand which is more readily handled in binding assays. The KD of (/sup 125/I)12-iodo-JH I was determined for hemolymph JHBP of three insects: M. sexta, 795 nM; Galleria mellonella, 47 nM; Locusta migratoria, 77 nM. The selectivity of 12-iodo-JH I for the 32-kDa JHBP of M. sexta was demonstrated by direct autoradiography of a native polyacrylamide gel electrophoresis gel of larval hemolymph incubated with the radioiodinated ligand. Thus, the in vitro and in vivo activity of 12-iodo-JH I indicate that it can serve as an important new gamma-emitting probe in the search for JH receptor proteins in target tissues.

  14. Synthesis and binding affinity of an iodinated juvenile hormone.

    PubMed

    Prestwich, G D; Eng, W S; Robles, S; Vogt, R G; Wiśniewski, J R; Wawrzeńczyk, C

    1988-01-25

    The synthesis of the first iodinated juvenile hormone (JH) in enantiomerically enriched form is reported. This chiral compound, 12-iodo-JH I, has an iodine atom replacing a methyl group of the natural insect juvenile hormone, JH I, which is important in regulating morphogenesis and reproduction in the Lepidoptera. The unlabeled compound shows approximately 10% of the relative binding affinity for the larval hemolymph JH binding protein (JHBP) of Manduca sexta, which specifically binds natural 3H-10R,11S-JH I (labeled at 58 Ci/mmol) with a KD of 8 X 10(-8) M. It is also approximately one-tenth as biologically active as JH I in the black Manduca and epidermal commitment assays. The 12-hydroxy and 12-oxo compounds are poor competitors and are also biologically inactive. The radioiodinated [125I]12-iodo-JH I can be prepared in low yield at greater than 2500 Ci/mmol by nucleophilic displacement using no-carrier-added 125I-labeled sodium iodide in acetone; however, synthesis using sodium iodide carrier to give the approximately 50 Ci/mmol radioiodinated ligand proceeds in higher radiochemical yield with fewer by-products and provides a radioligand which is more readily handled in binding assays. The KD of [125I]12-iodo-JH I was determined for hemolymph JHBP of three insects: M. sexta, 795 nM; Galleria mellonella, 47 nM; Locusta migratoria, 77 nM. The selectivity of 12-iodo-JH I for the 32-kDa JHBP of M. sexta was demonstrated by direct autoradiography of a native polyacrylamide gel electrophoresis gel of larval hemolymph incubated with the radioiodinated ligand. Thus, the in vitro and in vivo activity of 12-iodo-JH I indicate that it can serve as an important new gamma-emitting probe in the search for JH receptor proteins in target tissues.

  15. In vivo effect of growth hormone on DNA synthesis and expression of milk protein genes in the rabbit mammary gland.

    PubMed

    Zebrowska, T; Siadkowska, E; Zwierzchowski, L; Gajewska, A; Kochman, K

    1997-12-01

    The aim of this work was to show whether growth hormone (GH) is able to directly induce growth and functional differentiation of the mammary gland. We have shown that i.m. injections of prolactin and to lesser extent injections of growth hormone increased DNA synthesis in the mammary gland of pregnant rabbits. Injections of pituitary and recombinant bovine growth hormone (GH), similarly to prolactin, could also induce the expression of milk protein genes--caseins alpha S1 and beta and whey acidic protein (WAP). However, in contrast to prolactin, growth hormone failed to induce the synthesis of casein proteins. Lactogenic hormones act through binding to receptors in target tissues. Prolactin receptors were shown to be abundant in the rabbit mammary glands but no specific binding sites for 125I-labelled GH have been found in membranes isolated from mammary glands of pregnant or lactating rabbits. The specificity of hormone binding was examined using unlabelled hormones as competitive inhibitors of 125I-labelled prolactin. Bovine and recombinant bovine growth hormone did not displace prolactin from its receptors, thus excluding the possibility of action of GH through lactogenic receptors. Our results support the hypothesis that GH may act directly on the mammary gland and independently from prolactin; however, the mechanism of its action is still unknown.

  16. Reevaluation of lipolytic activity of growth hormone in rabbit adipocytes.

    PubMed

    Barenton, B; Batifol, V; Combarnous, Y; Dulor, J P; Durand, P; Vezinhet, A

    1984-07-18

    The lipolytic activities of porcine pituitary fractions and purified growth hormone (GH) from human (h), porcine (p), ovine (o) and rabbit (Rb) origin as well as ovine placental lactogen (oPL), were compared to that of ACTH on rabbit adipocytes. All the GH preparations and oPL were equivalent in inhibiting the binding of labelled oGH to liver plasma membranes from pregnant rabbits. ACTH, and to a lesser extent porcine pituitary fractions and hGH, stimulated free fatty acid production by isolated adipocytes. The sensitivity of the adipocytes to these factors was increased when adenosine deaminase was added to the incubation medium. But, RbGH, pGH, oGH and oPL had no effect. We conclude that GH is not directly involved in the control of lipolysis in rabbit adipocytes and that the effect of hGH is rather due to a contamination of this preparation by other pituitary factors.

  17. MENTAL RETARDATION AND ACCELERATED GROWTH: INAPPROPRIATE SECRETION OF HUMAN GROWTH HORMONE,

    DTIC Science & Technology

    he had periodic elevations of the fasting plasma growth hormone levels and regularly had a paradoxical fall in the hormone level associated with...insulin-induced hypoglycemia. The human growth hormone response to arginine infusion was perfectly normal. It is suggested that the occasional elevations...in human growth hormone under fasting conditions and the paradoxical response to insulin are compatible with the hypothesis that this patient

  18. Recovery responses of testosterone, growth hormone, and IGF-1 after resistance exercise.

    PubMed

    Kraemer, William J; Ratamess, Nicholas A; Nindl, Bradley C

    2017-03-01

    The complexity and redundancy of the endocrine pathways during recovery related to anabolic function in the body belie an oversimplistic approach to its study. The purpose of this review is to examine the role of resistance exercise (RE) on the recovery responses of three major anabolic hormones, testosterone, growth hormone(s), and insulin-like growth factor 1. Each hormone has a complexity related to differential pathways of action as well as interactions with binding proteins and receptor interactions. Testosterone is the primary anabolic hormone, and its concentration changes during the recovery period depending on the upregulation or downregulation of the androgen receptor. Multiple tissues beyond skeletal muscle are targeted under hormonal control and play critical roles in metabolism and physiological function. Growth hormone (GH) demonstrates differential increases in recovery with RE based on the type of GH being assayed and workout being used. IGF-1 shows variable increases in recovery with RE and is intimately linked to a host of binding proteins that are essential to its integrative actions and mediating targeting effects. The RE stress is related to recruitment of muscle tissue with the glandular release of hormones as signals to target tissues to support homeostatic mechanisms for metabolism and tissue repair during the recovery process. Anabolic hormones play a crucial role in the body's response to metabolism, repair, and adaptive capabilities especially in response to anabolic-type RE. Changes of these hormones following RE during recovery in the circulatory biocompartment of blood are reflective of the many mechanisms of action that are in play in the repair and recovery process. Copyright © 2017 the American Physiological Society.

  19. Anthropometric measurements in patients with growth hormone deficiency before treatment with human growth hormone.

    PubMed

    Zachmann, M; Fernandez, F; Tassinari, D; Thakker, R; Prader, A

    1980-05-01

    In 74 children (52 males, 22 females) with growth hormone (GH) deficiency (30 cases with isolated GH-deficiency, two of them familial; 4 familial and one isolated case with tendency for formation of antibodies against hGH; 29 with other pituitary hormone defects; 10 craniopharyngiomas), various anthropometric measurements were analyzed before treatment with hGH. In all groups, standing height, sitting height, and subischial leg height were equally retarded, and bihumeral width was more retarded than biiliac width; the head was relatively large; fat tissue was increased with subscapular skinfolds being greater than triceps skinfolds, indicating relative obestiy of the trunk; muscle and/or bone mass was reduced. In isolated GH-deficiency, head shape was slightly scaphoid; in combined defects, it was round, and in craniopharyngioma cases, it was brachycephalic. It is concluded that antrhopometric measurements may help in differentiating the type of GH-deficiency.

  20. Binding of parathyroid hormone to bovine kidney-cortex plasma membranes

    PubMed Central

    Sutcliffe, H. S.; Martin, T. J.; Eisman, J. A.; Pilczyk, R.

    1973-01-01

    1. Plasma membranes were purified from bovine kidney cortex, with a fourfold increase in specific activity of parathyroid hormone-sensitive adenylate cyclase over that in the crude homogenate. The membranes were characterized by enzyme studies. 2. Parathyroid hormone was labelled with 125I by an enzymic method and the labelled hormone shown to bind to the plasma membranes and to be specifically displaced by unlabelled hormone. Parathyroid hormone labelled by the chloramine-t procedure showed no specific binding. 75Se-labelled human parathyroid hormone, prepared in cell culture, also bound to the membranes. 3. Parathyroid hormone was shown to retain biological activity after iodination by the enzymic method, but no detectable activity remained after chloramine-t treatment. 4. High concentration of pig insulin inhibited binding of labelled parathyroid hormone to plasma membranes and partially inhibited the hormone-sensitive adenylate cyclase activity in a crude kidney-cortex preparation. 5. EDTA enhanced and Ca2+ inhibited binding of labelled parathyroid hormone to plasma membranes. 6. Whereas rat kidney homogenates were capable of degrading labelled parathyroid hormone to trichloroacetic acid-soluble fragments, neither crude homogenates nor purified membranes from bovine kidney showed this property. 7. Binding of parathyroid hormone is discussed in relation to metabolism and initial events in hormone action. PMID:4202755

  1. Growth hormone in the aging male.

    PubMed

    Sattler, Fred R

    2013-08-01

    Secretion of growth hormone (GH) and IGF-1 levels decline during advancing years-of-life. These changes (somatopause) are associated with loss of vitality, muscle mass, physical function, together with the occurrence of frailty, central adiposity, cardiovascular complications, and deterioration of mental function. For GH treatment to be considered for anti-aging, improved longevity, organ-specific function, or quality of life should be demonstrable. A limited number of controlled studies suggest that GH supplementation in older men increases lean mass by ∼2 kg with similar reductions in fat mass. There is little evidence that GH treatment improves muscle strength and performance (e.g. walking speed or ability to climb stairs) or quality of life. The GHRH agonist (tesamorelin) restores normal GH pulsatility and amplitude, selectively reduces visceral fat, intima media thickness and triglycerides, and improves cognitive function in older persons. This report critically reviews the potential for GH augmentation during aging with emphasis on men since women appear more resistant to treatment.

  2. Justified and unjustified use of growth hormone

    PubMed Central

    van der Lely, A J

    2004-01-01

    Growth hormone (GH) replacement therapy for children and adults with proven GH deficiency due to a pituitary disorder has become an accepted therapy with proven efficacy. GH is increasingly suggested, however, as a potential treatment for frailty, osteoporosis, morbid obesity, cardiac failure, and various catabolic conditions. However, the available placebo controlled studies have not reported many significant beneficial effects, and it might even be dangerous to use excessive GH dosages in conditions in which the body has just decided to decrease GH actions. GH can indeed induce changes in body composition that are considered to be advantageous to GH deficient and non-GH deficient subjects. In contrast to GH replacement therapy in GH deficient subjects, however, excessive GH action due to GH misuse seems to be ineffective in improving muscle power. Moreover, there are no available study data to indicate that the use of GH for non-GH deficient subjects should be advocated, especially as animal data suggest that lower GH levels are positively correlated with longevity. PMID:15466991

  3. Human growth hormone doping in sport

    PubMed Central

    Saugy, M; Robinson, N; Saudan, C; Baume, N; Avois, L; Mangin, P

    2006-01-01

    Background and objectives Recombinant human growth hormone (rhGH) has been on the list of forbidden substances since availability of its recombinant form improved in the early 1990s. Although its effectiveness in enhancing physical performance is still unproved, the compound is likely used for its potential anabolic effect on the muscle growth, and also in combination with other products (androgens, erythropoietin, etc.). The degree of similarity between the endogenous and the recombinant forms, the pulsatile secretion and marked interindividual variability makes detection of doping difficult. Two approaches proposed to overcome this problem are: the indirect method, which measures a combination of several factors in the biological cascade affected by administration of GH; and the direct method, which measures the difference between the circulating and the recombinant (represented by the unique 22 kD molecule) forms of GH. This article gives an overview of what is presently known about hGH in relation to sport. The available methods of detection are also evaluated. Methods Review of the literature on GH in relation to exercise, and its adverse effects and methods of detection when used for doping. Results and conclusion The main effects of exercise on hGH production and the use and effects of rhGH in athletes are discussed. Difficulties encountered by laboratories to prove misuse of this substance by both indirect and direct analyses are emphasised. The direct method currently seems to have the best reliability, even though the time window of detection is too short. hGH doping is a major challenge in the fight against doping. The effect of exercise on hGH and its short half‐life are still presenting difficulties during doping analysis. To date the most promising method appears to be the direct approach utilising immunoassays. PMID:16799101

  4. THE RELATIONSHIP BETWEEN SEX HORMONES, SEX HORMONE BINDING GLOBULIN AND PERIPHERAL ARTERY DISEASE IN OLDER PERSONS

    PubMed Central

    Maggio, M; Cattabiani, C; Lauretani, F; Artoni, A; Bandinelli, S; Schiavi, G; Vignali, A; Volpi, R; Ceresini, G; Lippi, G; Aloe, R; De Vita, F; Giallauria, F; McDermott, MM; Ferrucci, L; Ceda, GP

    2014-01-01

    Objective The prevalence of peripheral artery disease (PAD) increases with aging and is higher in persons with metabolic syndrome and diabetes. PAD is associated with adverse outcomes, including frailty and disability. The protective effect of testosterone and sex hormone binding globulin (SHBG) for diabetes in men suggests that the biological activity of sex hormones may affect PAD, especially in older populations. Methods Nine hundred and twenty-one elderly subjects with data on SHBG, testosterone (T), estradiol (E2) were selected from InCHIANTI study. PAD was defined as an Ankle-Brachial Index (ABI) <0.90. Logistic regression models adjusted for age (Model 1), age, BMI, insulin, interleukin-6, physical activity, smoking, chronic diseases including metabolic syndrome (Model 2), and a final model including also sex hormones (Model 3) were performed to test the relationship between SHBG, sex hormones and PAD. Results The mean age (± SD) of the 419 men and 502 women was 75.0 ± 6.8 years (Sixty two participants (41 men, 21 women) had ABI<0.90. Men with PAD had SHBG levels lower than men without PAD (p=0.03). SHBG was negatively and independently associated with PAD in men (p=0.028). but not in women. The relationship was however attenuated after adjusting for sex hormones (p=0.07). The E2 was not significantly associated with PAD in both men and women. In women, but not in men, T was positively associated with PAD, even after adjusting for multiple confounders, including E2 (p=0.01). Conclusions Low SHBG and high T levels are significantly and independently associated with the presence of PAD in older men and women, respectively. PMID:23102785

  5. The relationship between sex hormones, sex hormone binding globulin and peripheral artery disease in older persons.

    PubMed

    Maggio, M; Cattabiani, C; Lauretani, F; Artoni, A; Bandinelli, S; Schiavi, G; Vignali, A; Volpi, R; Ceresini, G; Lippi, G; Aloe, R; De Vita, F; Giallauria, F; McDermott, M M; Ferrucci, L; Ceda, G P

    2012-12-01

    The prevalence of peripheral artery disease (PAD) increases with aging and is higher in persons with metabolic syndrome and diabetes. PAD is associated with adverse outcomes, including frailty and disability. The protective effect of testosterone and sex hormone binding globulin (SHBG) for diabetes in men suggests that the biological activity of sex hormones may affect PAD, especially in older populations. Nine hundred and twenty-one elderly subjects with data on SHBG, testosterone (T), estradiol (E2) were selected from InCHIANTI study. PAD was defined as an Ankle-Brachial Index (ABI) < 0.90. Logistic regression models adjusted for age (Model 1), age, BMI, insulin, interleukin-6, physical activity, smoking, chronic diseases including metabolic syndrome (Model 2), and a final model including also sex hormones (Model 3) were performed to test the relationship between SHBG, sex hormones and PAD. The mean age (±SD) of the 419 men and 502 women was 75.0 ± 6.8 years. Sixty two participants (41 men, 21 women) had ABI < 0.90. Men with PAD had SHBG levels lower than men without PAD (p = 0.03). SHBG was negatively and independently associated with PAD in men (p = 0.028) but not in women. The relationship was however attenuated after adjusting for sex hormones (p = 0.07). The E2 was not significantly associated with PAD in both men and women. In women, but not in men, T was positively associated with PAD, even after adjusting for multiple confounders, including E2 (p = 0.01). Low SHBG and high T levels are significantly and independently associated with the presence of PAD in older men and women, respectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Associations of testosterone and sex hormone binding globulin with adipose tissue hormones in midlife women.

    PubMed

    Wildman, Rachel P; Wang, Dan; Fernandez, Ivonne; Mancuso, Peter; Santoro, Nanette; Scherer, Philipp E; Sowers, MaryFran R

    2013-03-01

    Regulators of adipose tissue hormones remain incompletely understood, but may include sex hormones. As adipose tissue hormones have been shown to contribute to numerous metabolic and cardiovascular disorders, understanding their regulation in midlife women is of clinical importance. Therefore, we assessed the associations between testosterone (T) and sex hormone binding globulin (SHBG) with leptin, high molecular weight (HMW) adiponectin, and the soluble form of the leptin receptor (sOB-R) in healthy midlife women. Cross-sectional analyses were performed using data from 1,881 midlife women (average age 52.6 (±2.7) years) attending the sixth Annual follow-up visit of the multiethnic Study of Women's Health Across the Nation. T was weakly negatively associated with both HMW adiponectin and sOB-R (r = -0.12 and r = -0.10, respectively; P < 0.001 for both), and positively associated with leptin (r = 0.17; P < 0.001). SHBG was more strongly and positively associated with both HMW adiponectin and sOB-R (r = 0.29 and r = 0.24, respectively; P < 0.001 for both), and more strongly and negatively associated with leptin (r = -0.27; P < 0.001). Adjustment for fat mass, insulin resistance, or waist circumference only partially diminished associations with HMW adiponectin and sOB-R, but attenuated associations with leptin. In conclusion, in these midlife women, lower SHBG values, and to a lesser extent, higher T levels, were associated with lower, or less favorable, levels of adiponectin and sOB-R, independent of fat mass. These data suggest that variation in these adipose hormones resulting from lower SHBG levels, and possibly, though less likely, greater androgenicity, may contribute to susceptibility for metabolic and cardiovascular outcomes during midlife in women. Copyright © 2012 The Obesity Society.

  7. Associations of Testosterone and Sex Hormone Binding Globulin with Adipose Tissue Hormones in Midlife Women

    PubMed Central

    Wildman, Rachel P.; Wang, Dan; Fernandez, Ivonne; Mancuso, Peter; Santoro, Nanette; Scherer, Philipp E.; Sowers, MaryFran R.

    2014-01-01

    Objective Regulators of adipose tissue hormones remain incompletely understood, but may include sex hormones. As adipose tissue hormones have been shown to contribute to numerous metabolic and cardiovascular disorders, understanding their regulation in midlife women is of clinical importance. Therefore, we assessed the associations between testosterone (T) and sex hormone binding globulin (SHBG) with leptin, high molecular weight (HMW) adiponectin, and the soluble form of the leptin receptor (sOB-R) in healthy midlife women. Design and Methods Cross-sectional analyses were performed using data from 1,881 midlife women (average age 52.6 (±2.7) years) attending the sixth Annual follow-up visit of the multiethnic Study of Women’s Health Across the Nation. Results T was weakly negatively associated with both HMW adiponectin and sOB-R (r = −0.12 and r = −0.10, respectively; P < 0.001 for both), and positively associated with leptin (r = 0.17; P < 0.001). SHBG was more strongly and positively associated with both HMW adiponectin and sOB-R (r = 0.29 and r = 0.24, respectively; P < 0.001 for both), and more strongly and negatively associated with leptin (r = −0.27; P < 0.001). Adjustment for fat mass, insulin resistance, or waist circumference only partially diminished associations with HMW adiponectin and sOB-R, but attenuated associations with leptin. In conclusion, in these midlife women, lower SHBG values, and to a lesser extent, higher T levels, were associated with lower, or less favorable, levels of adiponectin and sOB-R, independent of fat mass. Conclusions These data suggest that variation in these adipose hormones resulting from lower SHBG levels, and possibly, though less likely, greater androgenicity, may contribute to susceptibility for metabolic and cardiovascular outcomes during midlife in women. PMID:23592672

  8. Towards Engineering Hormone-Binding Globulins as Drug Delivery Agents

    PubMed Central

    Chan, Wee Lee; Zhou, Aiwu; Read, Randy J.

    2014-01-01

    The treatment of many diseases such as cancer requires the use of drugs that can cause severe side effects. Off-target toxicity can often be reduced simply by directing the drugs specifically to sites of diseases. Amidst increasingly sophisticated methods of targeted drug delivery, we observed that Nature has already evolved elegant means of sending biological molecules to where they are needed. One such example is corticosteroid binding globulin (CBG), the major carrier of the anti-inflammatory hormone, cortisol. Targeted release of cortisol is triggered by cleavage of CBG's reactive centre loop by elastase, a protease released by neutrophils in inflamed tissues. This work aimed to establish the feasibility of exploiting this mechanism to carry therapeutic agents to defined locations. The reactive centre loop of CBG was altered with site-directed mutagenesis to favour cleavage by other proteases, to alter the sites at which it would release its cargo. Mutagenesis succeeded in making CBG a substrate for either prostate specific antigen (PSA), a prostate-specific serine protease, or thrombin, a key protease in the blood coagulation cascade. PSA is conspicuously overproduced in prostatic hyperplasia and is, therefore, a good way of targeting hyperplastic prostate tissues. Thrombin is released during clotting and consequently is ideal for conferring specificity to thrombotic sites. Using fluorescence-based titration assays, we also showed that CBG can be engineered to bind a new compound, thyroxine-6-carboxyfluorescein, instead of its physiological ligand, cortisol, thereby demonstrating that it is possible to tailor the hormone binding site to deliver a therapeutic drug. In addition, we proved that the efficiency with which CBG releases bound ligand can be increased by introducing some well-placed mutations. This proof-of-concept study has raised the prospect of a novel means of targeted drug delivery, using the serpin conformational change to combat the problem of

  9. Ontogeny of pituitary growth hormone and growth hormone mRNA in the chicken.

    PubMed

    McCann-Levorse, L M; Radecki, S V; Donoghue, D J; Malamed, S; Foster, D N; Scanes, C G

    1993-01-01

    The changes in pituitary growth hormone (GH) mRNA levels have been determined by Northern blot analysis and laser densitometry during embryonic development and posthatch growth of white Leghorn cockerels. Pituitary GH mRNA levels were observed to progressively increase between 18 days of embryonic development to a maximum at 4 weeks of age (posthatch). Subsequently, pituitary GH mRNA levels declined between 4 and 8 weeks of age, and between 12 weeks of age and adulthood. Pituitary GH contents showed increases during embryonic development and posthatch growth that paralleled the rise in GH mRNA. The decline in pituitary GH mRNA levels between 4 weeks of age and adulthood occurs when GH secretion has been observed previously to decline.

  10. Effectiveness of Recombinant Human Growth Hormone for Pharyngocutaneous Fistula Closure

    PubMed Central

    Sari, Murat; Midi, Ahmet; Yumusakhuylu, Ali Cemal; Findik, Ozan; Binnetoglu, Adem

    2015-01-01

    Objectives In laryngeal cancer, which comprises 25% of head and neck cancer, chemotherapy has come into prominence with the increase in organ-protective treatments. With such treatment, salvage surgery has increased following recurrence; the incidence of pharyngocutaneous fistula has also increased in both respiratory and digestive system surgery. We investigated the effects of recombinant human growth hormone on pharyngocutaneous fistula closure in Sprague-Dawley rats, based on an increase in amino acid uptake and protein synthesis for wound healing, an increase in mitogenesis, and enhancement of collagen formation by recombinant human growth hormone. Methods This study was experimental animal study. Forty Sprague-Dawley rats were separated into two groups, and pharyngoesophagotomy was performed. The pharyngoesophagotomy was sutured with vicryl in both groups. Rats in group 1 (control group) received no treatment, while those in group 2 were administered a subcutaneous injection of recombinant human growth hormone daily. On day 14, the pharynx, larynx, and upper oesophagus were excised and examined microscopically. Results Pharyngocutaneous fistula exhibited better closure macroscopically in the recombinant human growth hormone group. There was a significant difference in collagen formation and epithelisation in the recombinant human growth hormone group compared to the control group. Conclusion This study is believed to be the first in which the effect of recombinant human growth hormone on pharyngocutaneous fistula closure was evaluated, and the findings suggest the potential of use of growth hormone for treatment of pharyngocutaneous fistula. PMID:26622960

  11. Continuous elevation of blood growth hormone concentrations by beeswax implant.

    PubMed

    Davis, S L; Dodson, M V; Ohlson, D L

    1983-09-01

    We examined constancy of release of purified ovine growth hormone from an implant containing soybean oil and beeswax. Implants contained an amount of growth hormone that was sufficient to increase concentrations in blood plasma by 20 and 40 ng/ml and to maintain those concentrations over 1 wk. Growth hormone in plasma increased to approximately 65 ng/ml in lambs receiving low dose implants the 1st day after implantation, returned to 31 ng/ml on day 2, and remained near this concentration for the remainder of the week. Pulse release of growth hormone was not similiar in the high dose lambs where growth hormone concentration in plasma averaged 45 ng/ml 1 day after implantation, then gradually increased to 60 ng/ml on day 6. Unimplanted control lambs had mean growth hormone concentrations of 2.9 to 3.9 ng/ml throughout the 6-day observation. This approach should interest investigators studying the chronic influence of purified or synthetic growth hormone on dairy cows, beef steers, or lambs.

  12. A framework integrating plant growth with hormones and nutrients.

    PubMed

    Krouk, Gabriel; Ruffel, Sandrine; Gutiérrez, Rodrigo A; Gojon, Alain; Crawford, Nigel M; Coruzzi, Gloria M; Lacombe, Benoît

    2011-04-01

    It is well known that nutrient availability controls plant development. Moreover, plant development is finely tuned by a myriad of hormonal signals. Thus, it is not surprising to see increasing evidence of coordination between nutritional and hormonal signaling. In this opinion article, we discuss how nitrogen signals control the hormonal status of plants and how hormonal signals interplay with nitrogen nutrition. We further expand the discussion to include other nutrient-hormone pairs. We propose that nutrition and growth are linked by a multi-level, feed-forward cycle that regulates plant growth, development and metabolism via dedicated signaling pathways that mediate nutrient and hormonal regulation. We believe this model will provide a useful concept for past and future research in this field. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Insulin-like growth factor I (IGF-I) replacement during growth hormone receptor antagonism normalizes serum IGF-binding protein-3 and markers of bone formation in ovariectomized rhesus monkeys.

    PubMed

    Wilson, M E

    2000-04-01

    Previous work from this laboratory has shown that the constant sc infusion of insulin-like growth factor I (IGF-I) to normal pituitary monkeys results in a sustained elevation in circulating concentrations of IGF-binding protein-3 (IGFBP-3), whereas the acute administration of IGF-I to monkeys pretreated with a GH receptor antagonist produces a brief, but significant, elevation in serum IGFBP-3. The present study tested the hypothesis that the constant infusion of IGF-I would normalize serum concentrations of IGFBP-3 in females treated with the GH receptor antagonist. To assess the biological significance of these effects, serum levels of the acid-labile subunit (ALS) and biomarkers for bone formation, osteocalcin, and collagen type I C-terminal propeptide, were also examined. Five female rhesus monkeys were studied over 21 consecutive days involving 7 days of baseline, 7 days of treatment with the GH receptor antagonist (1.0 mg/kg-week, sc), and 7 days of treatment with the GH receptor antagonist supplemented with IGF-I (120 microg/kg x day, sc infusion with osmotic minipump). Within 48 h of the initiation of treatment with the GH receptor antagonist, serum IGF-I and IGFBP-3 were decreased by 40% and 18% from baseline, respectively, and levels continued to decline through the remainder of treatment. However, within 48 h of the initiation of IGF-I administration during GH receptor antagonist treatment, both serum IGF-I and IGFBP-3 were elevated and normalized to baseline values. Serum concentrations of ALS were also decreased by GH antagonism, but levels increased in some (n = 2), but not all, subjects upon administration of IGF-I. Size exclusion ultrafiltration indicated that the amount of IGF-I found in the high molecular mass complex (>100 kDa) decreased significantly during GH antagonism, but was similar during the baseline and IGF-I infusion phases. Finally, treatment with the GH receptor antagonist also significantly reduced serum levels of osteocalcin and

  14. Growth hormone treatment in non-growth hormone-deficient children

    PubMed Central

    Carta, Luisanna; Ibba, Anastasia; Guzzetti, Chiara

    2014-01-01

    Until 1985 growth hormone (GH) was obtained from pituitary extracts, and was available in limited amounts only to treat severe growth hormone deficiency (GHD). With the availability of unlimited quantities of GH obtained from recombinant DNA technology, researchers started to explore new modalities to treat GHD children, as well as to treat a number of other non-GHD conditions. Although with some differences between different countries, GH treatment is indicated in children with Turner syndrome, chronic renal insufficiency, Prader-Willi syndrome, deletions/mutations of the SHOX gene, as well as in short children born small for gestational age and with idiopathic short stature. Available data from controlled trials indicate that GH treatment increases adult height in patients with Turner syndrome, in patients with chronic renal insufficiency, and in short children born small for gestational age. Patients with SHOX deficiency seem to respond to treatment similarly to Turner syndrome. GH treatment in children with idiopathic short stature produces a modest mean increase in adult height but the response in the individual patient is unpredictable. Uncontrolled studies indicate that GH treatment may be beneficial also in children with Noonan syndrome. In patients with Prader-Willi syndrome GH treatment normalizes growth and improves body composition and cognitive function. In any indication the response to GH seems correlated to the dose and the duration of treatment. GH treatment is generally safe with no major adverse effects being recorded in any condition. PMID:24926456

  15. Epiphyseal growth plate growth hormone receptor signaling is decreased in chronic kidney disease-related growth retardation.

    PubMed

    Troib, Ariel; Landau, Daniel; Kachko, Leonid; Rabkin, Ralph; Segev, Yael

    2013-11-01

    Linear growth retardation in children with chronic kidney disease (CKD) has been ascribed to insensitivity to growth hormone. This resistance state has been attributed to impaired growth hormone signaling through the JAK2/STAT5 pathway in liver and skeletal muscle leading to reduced insulin-like growth factor-I (IGF-I). Here we determine whether systemic and growth plate alterations in growth hormone signaling contribute to CKD-induced linear growth retardation using partially nephrectomized and pair-fed control 20-day-old rats. Serum growth hormone did not change in rats with CKD, yet serum IGF-I levels were decreased and growth retarded. The tibial growth plate hypertrophic zone was wider and vascularization at the primary ossification center was reduced in CKD. This was associated with a decrease in growth plate vascular endothelial growth factor (VEGF) mRNA and immunostainable VEGF and IGF-I levels. Growth plate growth hormone receptor and STAT5 protein levels were unchanged, while JAK2 was reduced. Despite comparable growth hormone and growth hormone receptor levels in CKD and control rats, relative STAT5 phosphorylation was significantly depressed in CKD. Of note, the mRNA of SOCS2, an inhibitor of growth hormone signaling, was increased. Thus, linear growth impairment in CKD can in part be explained by impaired long bone growth plate growth hormone receptor signaling through the JAK2/STAT5 pathway, an abnormality that may be caused by an increase in SOCS2 expression.

  16. Growth hormone (GH-1) gene deletions in children with isolated growth hormone deficiency (IGHD).

    PubMed

    Desai, Meena P; Mithbawkar, Shilpa M; Upadhye, Pradnya S; Shalia, Kavita K

    2012-07-01

    To detect growth hormone GH-1 gene deletions (6.7 kb, 7.6 kb, 7 kb) in familial/nonfamilial isolated growth hormone deficiency (IGHD) and note their clinical and investigative profile. Thirty (M16,F14) prepubertal IGHD patients aged 0.25 to 14 y, from 25 families were screened. Duration of growth failure, relevant history, clinical phenotype, and height SDS were recorded. Peak GH response to Clonidine (0.15 mg/m(2)), IGF-1, IGFBP-3 and pituitary/target gland hormones were studied. Genomic DNA of patients and family was analysed by PCR and DNA fragments were visualized on agarose gel electrophoresis. This series was divided into deletion +ve, Group I (n=12,40%) inclusive of six familial/six nonfamilial patients, and deletion -ve Group II (n=18,60%), 5 familial/13 nonfamilial cases; in total 11/30 were familial. Onset of growth failure was earlier in Group I (p<0.001) mean 1.1 vs 4.7 y. Mean height SDS was -7 vs. -4.5 in Groups I/II (p<0.01), age at presentation 5.1 vs 8.6 y. Overhanging forehead, prominent eyes, hypoplastic facies characterized Group I with FBS <50 mg/dl in 50% and very low peak GH <0.04 vs 2.04 ng/ml (p<0.001) in Group II. In both groups IGF-1 and IGFBP3 were low, other hormones were normal and MRI showed hypoplastic adenohypophysis. 40% had GH-1 gene deletion (6.7 kb deletion in 83%, 7.6 kb and a compound heterozygote in 8% each). In this series of 30 IGHD patients, frequency of GH-1 gene deletions (12/30) was 40%, and 54% among familial patients, and 31% with height SDS>-4. 83% had 6.7 kb deletion. Height SDS>-4, clinical phenotype, peak GH<1 ng/ml and hypoglycemia characterised IGHD Type IA.

  17. Regulation of growth hormone secretion by the growth hormone releasing hexapeptide (GHRP-6).

    PubMed

    Micic, D; Mallo, F; Peino, R; Cordido, F; Leal-Cerro, A; Garcia-Mayor, R V; Casanueva, F F

    1993-01-01

    Growth hormone (GH) secretion is regulated by a complex system of central and peripheral signals. Recently, a new GH-releasing hexapeptide (His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) called GHRP-6 which specifically releases GH has been studied. In the present work the mechanism of action of GHRP-6 has been addressed in experimental animal models as well as in obese subjects. GHRP-6 releases GH independently of the hypothalamic factors GHRH and somatostatin and is a powerful GH releaser in obesity.

  18. CCAAT/enhancer binding protein Beta-2 is involved in growth hormone-regulated insulin-like growth factor-II gene expression in the liver of rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    Previously, we showed that levels of different CCAAT/enhancer binding protein (C/EBP) mRNAs in the liver of rainbow trout were modulated by GH and suggested that C/EBPs might be involved in GH induced IGF-II gene expression. As a step toward further investigation, we have developed monospecific poly...

  19. Liquid growth hormone: preservatives and buffers.

    PubMed

    Kappelgaard, Anne-Marie; Bojesen, Anders; Skydsgaard, Karsten; Sjögren, Ingrid; Laursen, Torben

    2004-01-01

    Growth hormone (GH) treatment is a successful medical therapy for children and adults with GH deficiency as well as for growth retardation due to chronic renal disease, Turner syndrome and in children born small for gestational age. For all of these conditions, treatment is long term and patients receive daily subcutaneous injections of GH for many years. Patient compliance is therefore of critical importance to ensure treatment benefit. One of the major factors influencing compliance is injection pain. Besides the injection device used, pain perception and local tissue reaction following injection are dependent on the preservative used in the formulation and the concentration of GH. Injection pain may also be related to the buffer substance and injection volume. A liquid formulation of GH, Norditropi SimpleXx, has been developed that dispenses with the need for reconstitution before administration. The formulation uses phenol (3 mg/ml) as a preservative (to protect product from microbial degradation or contamination) and histidine as a buffer. Alternative preservatives used in other GH formulations include m-cresol (9 mg/ml) and benzyl alcohol (3-9 mg/ml). Buffering agents include citrate and phosphate. Phenol has been successfully used as a preservative in drug formulations for more than 50 years and is considered a safe and effective agent which complies with strict international requirements for preservatives in drug formulations. In toxicological studies, no or only mild local reactions have been observed following subcutaneous administration of phenol (7.5 mg/ml), m-cresol (3-4 mg/ml) and benzyl alcohol (9 mg/ml). No general toxicity reactions were observed after subcutaneous administration of these agents. Clinical evaluation of the preservatives and buffers used in Norditropin SimpleXx showed that pain perception was similar between formulations containing phenol and benzyl alcohol, whereas m-cresol was associated with more painful injections than benzyl

  20. Improved response of growth hormone to growth hormone-releasing hormone and reversible chronic thyroiditis after hydrocortisone replacement in isolated adrenocorticotropic hormone deficiency.

    PubMed

    Inagaki, Miho; Sato, Haruhiro; Miyamoto, Yoshiyasu; Hirukawa, Takashi; Sawaya, Asako; Miyakogawa, Takayo; Tatsumi, Ryoko; Kakuta, Takatoshi

    2009-07-20

    We report a 44-year-old Japanese man who showed a reversible blunted response of growth hormone (GH) to GH-releasing hormone (GRH) stimulation test and reversible chronic thyroiditis accompanied by isolated ACTH deficiency. He was admitted to our hospital because of severe general malaise, hypotension, and hypoglycemia. He showed repeated attacks of hypoglycemia, and his serum sodium level gradually decreased. Finally, he was referred to the endocrinology division, where his adrenocorticotropic hormone (ACTH) and cortisol values were found to be low, and his GH level was slightly elevated. An increased value of thyroid stimulating hormone (TSH) and decreased values of free triidothyronine and free thyroxine were observed along with anti-thyroglobulin antibody, suggesting chronic thyroiditis. Pituitary stimulation tests revealed a blunted response of ACTH and cortisol to corticotropin-releasing hormone, and a blunted response of GH to GRH. Hydrocortisone replacement was then started, and this improved the patient's general condition. His hypothyroid state gradually ameliorated and his titer of anti-thyroglobulin antibody decreased to the normal range. Pituitary function was re-evaluated with GRH stimulation test under a maintenance dose of 20 mg/day hydrocortisone and showed a normal response of GH to GRH. It is suggested that re-evaluation of pituitary and thyroid function is useful for diagnosing isolated ACTH deficiency after starting a maintenance dose of hydrocortisone in order to avoid unnecessary replacement of thyroid hormone.

  1. Concomitant occurrence of Turner syndrome and growth hormone deficiency.

    PubMed

    Yu, Jung; Shin, Ha Young; Lee, Chong Guk; Kim, Jae Hyun

    2016-11-01

    Turner syndrome (TS) is a genetic disorder in phenotypic females that has characteristic physical features and presents as partial or complete absence of the second sex chromosome. Growth hormone deficiency (GHD) is a condition caused by insufficient release of growth hormone from the pituitary gland. The concomitant occurrence of TS and GHD is rare and has not yet been reported in Korea. Here we report 2 cases of TS and GHD. In case 1, GHD was initially diagnosed. Karyotyping was performed because of the presence of the typical phenotype and poor response to growth hormone therapy, which revealed 45,X/45,X+mar. The patient showed increased growth velocity after the growth hormone dose was increased. In case 2, a growth hormone provocation test and chromosomal analysis were performed simultaneously because of decreased growth velocity and the typical TS phenotype, which showed GHD and a mosaic karyotype of 45,X/46,XX. The patient showed spontaneous pubertal development. In female patients with short stature, it is important to perform a throughout physical examination and test for hormonal and chromosomal abnormalities because diagnostic accuracy is important for treatment and prognosis.

  2. Concomitant occurrence of Turner syndrome and growth hormone deficiency

    PubMed Central

    Yu, Jung; Shin, Ha Young; Lee, Chong Guk

    2016-01-01

    Turner syndrome (TS) is a genetic disorder in phenotypic females that has characteristic physical features and presents as partial or complete absence of the second sex chromosome. Growth hormone deficiency (GHD) is a condition caused by insufficient release of growth hormone from the pituitary gland. The concomitant occurrence of TS and GHD is rare and has not yet been reported in Korea. Here we report 2 cases of TS and GHD. In case 1, GHD was initially diagnosed. Karyotyping was performed because of the presence of the typical phenotype and poor response to growth hormone therapy, which revealed 45,X/45,X+mar. The patient showed increased growth velocity after the growth hormone dose was increased. In case 2, a growth hormone provocation test and chromosomal analysis were performed simultaneously because of decreased growth velocity and the typical TS phenotype, which showed GHD and a mosaic karyotype of 45,X/46,XX. The patient showed spontaneous pubertal development. In female patients with short stature, it is important to perform a throughout physical examination and test for hormonal and chromosomal abnormalities because diagnostic accuracy is important for treatment and prognosis. PMID:28018463

  3. Growth hormone receptor polymorphisms and growth hormone response to stimulation test: a pilot study.

    PubMed

    Pagani, Sara; DE Filippo, Gianpaolo; Genoni, Giulia; Rendina, Domenico; Meazza, Cristina; Bozzola, Elena; Bona, Gianni; Bozzola, Mauro

    2016-06-29

    No gold standard pharmacological stimulation test exists for the diagnosis of growth hormone deficiency (GHD). In addition, the genetic factors that influence growth hormone (GH) responses remain unclear. This study aimed to determine whether polymorphisms in exon 6 of the GH receptor gene influence responses to the L-arginine GH stimulation test. This study included 27 prepubertal patients with confirmed GHD. GHD was defined as a peak GH level <8 ng/ml in response to pharmacological stimulation. The mean GH peak after L-arginine stimulation was 2.9 ± 2.9 ng/ml. The included patients had the following genotypes at the third position of codon 168: AA (n=1), AG (n=15) and GG (n=11). Patients carrying the AA and AG genotypes exhibited stronger responses to arginine than patients with the GG genotype (3.1 ± 2.7 vs. 1.5 ± 1.3 ng/ml, p = 0.01). The approach employed in this study could elucidate GH profiles under physiological and pathological conditions, facilitating improved interpretation of pharmacological stimulation tests.

  4. Episodic patterns of growth hormone secretion and growth hormone status of normal and tibial dyschondroplastic chickens.

    PubMed

    Vasilatos-Younken, R; Leach, R M

    1986-01-01

    Growth hormone status of normal and tibial dyschondroplastic (TD) birds was determined in 25 d old male chicks genetically selected for high and low incidence of TD. Birds were surgically prepared with indwelling venous catheters and blood samples remotely removed at 20 min intervals for 6 h to establish secretory patterns. Birds were maintained under a 16L:8D cycle, with free access to feed and water at all times. In a second experiment, secretory capacity was evaluated by administering a 10 micrograms/kg body weight dose of thyrotrophin releasing hormone (TRH). Blood samples were removed at 0, 5, 10, 20, 30, 60 and 120 min post-infusion of either TRH or saline (control). All birds displayed pulsatile patterns of GH secretion, with an average peak duration of 60 min and a 90 min inter-peak interval. Dyschondroplastic birds exhibited 50% higher mean peak amplitudes than normal birds (P less than .06), however, this difference was not translated into overall mean or total (curve area) differences. The magnitude of response to a TRH challenge was greater (P less than .10) for TD than for normal birds. In view of the relationships observed in other species between secretory pattern characteristics such as peak amplitude, and growth characteristics, it is suggested that differences in GH status of dyschondroplastic relative to normal birds may be related to initiation of the TD lesion.

  5. Growth Hormone Research Society perspective on the development of long-acting growth hormone preparations.

    PubMed

    Christiansen, Jens Sandahl; Backeljauw, Philippe F; Bidlingmaier, Martin; Biller, Beverly M K; Boguszewski, Margaret C S; Casanueva, Felipe F; Chanson, Philippe; Chatelain, Pierre; Choong, Catherine S; Clemmons, David R; Cohen, Laurie E; Cohen, Pinchas; Frystyk, Jan; Grimberg, Adda; Hasegawa, Yukihiro; Haymond, Morey W; Ho, Ken; Hoffman, Andrew R; Holly, Jeff M P; Horikawa, Reiko; Höybye, Charlotte; Jorgensen, Jens Otto L; Johannsson, Gudmundur; Juul, Anders; Katznelson, Laurence; Kopchick, John J; Lee, K O; Lee, Kuk-Wha; Luo, Xiaoping; Melmed, Shlomo; Miller, Bradley S; Misra, Madhusmita; Popovic, Vera; Rosenfeld, Ron G; Ross, Judith; Ross, Richard J; Saenger, Paul; Strasburger, Christian J; Thorner, Michael O; Werner, Haim; Yuen, Kevin

    2016-06-01

    The Growth Hormone (GH) Research Society (GRS) convened a workshop to address important issues regarding trial design, efficacy, and safety of long-acting growth hormone preparations (LAGH). A closed meeting of 55 international scientists with expertise in GH, including pediatric and adult endocrinologists, basic scientists, regulatory scientists, and participants from the pharmaceutical industry. Current literature was reviewed for gaps in knowledge. Expert opinion was used to suggest studies required to address potential safety and efficacy issues. Following plenary presentations summarizing the literature, breakout groups discussed questions framed by the planning committee. Attendees reconvened after each breakout session to share group reports. A writing team compiled the breakout session reports into a draft document that was discussed and revised in an open forum on the concluding day. This was edited further and then circulated to attendees from academic institutions for review after the meeting. Participants from pharmaceutical companies did not participate in the planning, writing, or in the discussions and text revision on the final day of the workshop. Scientists from industry and regulatory agencies reviewed the manuscript to identify any factual errors. LAGH compounds may represent an advance over daily GH injections because of increased convenience and differing phamacodynamic properties, providing the potential for improved adherence and outcomes. Better methods to assess adherence must be developed and validated. Long-term surveillance registries that include assessment of efficacy, cost-benefit, disease burden, quality of life, and safety are essential for understanding the impact of sustained exposure to LAGH preparations. © 2016 The authors.

  6. Toward gene therapy for growth hormone deficiency via salivary gland expression of growth hormone.

    PubMed

    Racz, G Z; Zheng, C; Goldsmith, C M; Baum, B J; Cawley, N X

    2015-03-01

    Salivary glands are useful targets for gene therapeutics. After gene transfer into salivary glands, regulated secretory pathway proteins, such as human growth hormone, are secreted into saliva, whereas constitutive secretory pathway proteins, such as erythropoietin, are secreted into the bloodstream. Secretion of human growth hormone (hGH) into the saliva is not therapeutically useful. In this study, we attempted to redirect the secretion of transgenic hGH from the saliva to the serum by site-directed mutagenesis. We tested hGH mutants first in vitro with AtT20 cells, a model endocrine cell line that exhibits polarized secretion of regulated secretory pathway proteins. Selected mutants were further studied in vivo using adenoviral-mediated gene transfer to rat submandibular glands. We identified two mutants with differences in secretion behavior compared to wild-type hGH. One mutant, ΔN1-6 , was detected in the serum of transduced rats, demonstrating that expression of this mutant in the salivary gland resulted in its secretion through the constitutive secretory pathway. This study demonstrates that mutagenesis of therapeutic proteins normally destined for the regulated secretory pathway may result in their secretion via the constitutive secretory pathway into the circulation for potential therapeutic benefit. © Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  7. The response of the hepatic insulin-like growth factor system to growth hormone and dexamethasone in calves.

    PubMed

    Hammon, H M; Zbinden, Y; Sauerwein, H; Breier, B H; Blum, J W; Donkin, S S

    2003-12-01

    Glucocorticoids inhibit postnatal growth and yet can stimulate the somatotropic axis around birth. The aim of the present study was to investigate the effects of dexamethasone on the somatotropic axis and on the responses of the insulin-like growth factor (IGF) system to growth hormone treatment in calves. Calves (n=24) were randomly divided into four groups. Group DX was injected with dexamethasone (30 micro g/kg body weight per day), group GH was injected with 500 mg slow-release bovine growth hormone at 14-day intervals, group GHDX was injected with dexamethasone and bovine growth hormone, and group CNTRL (serving as control) was injected with saline from day 3 to day 42 of life. Blood samples were taken on day 3 and blood and liver samples were obtained on days 7, 14, 28 and 42. Body weight increased in the CNTRL and GH groups up to the end of the study and in the DX and GHDX groups up to the fourth week. Dexamethasone treatment decreased (P<0.05) plasma IGF binding protein (IGFBP)-1 on days 7 and 14, but increased (P<0.05) plasma IGFBP-1, decreased (P<0.05) plasma IGF-I and IGFBP-3, and decreased hepatic mRNA for growth hormone receptor (GHR) and IGF-I on day 42. Growth hormone treatment increased (P<0.05) plasma growth hormone concentrations on days 7 and 14, tended to increase (P<0.1) plasma IGF-I concentrations on day 42, and increased (P<0.05) hepatic mRNA levels of GHR on day 14 and IGF-I mRNA levels on days 7 and 14. The combined dexamethasone and growth hormone treatment increased plasma growth hormone concentrations on day 7 and resulted in the highest plasma concentrations of IGF-I and IGFBP-3 (day 7 to day 28) as well as the greatest abundance of hepatic GHR (day 14) and IGF-I (days 7 and 14) mRNA. Plasma IGFBP-1 concentrations in the GHDX group behaved in a similar manner as in the DX group. In conclusion, the response of the somatotropic axis to growth hormone treatment could be greatly enhanced by dexamethasone treatment during the neonatal and

  8. Growth hormone treatment in young children with Down's syndrome: effects on growth and psychomotor development

    PubMed Central

    Anneren, G; Tuvemo, T; Carlsson-Skwirut, C; Lonnerholm, T; Bang, P; Sara, V; Gustafsson, J

    1999-01-01

    BACKGROUND—Learning disability and short stature are cardinal signs of Down's syndrome. Insulin-like growth factor I (IGF-I), regulated by growth hormone (GH) from about 6 months of age, may be involved in brain development.
AIMS—To study long term effects of GH on linear growth and psychomotor development in young children with Down's syndrome. 
Study design—Fifteen children with Down's syndrome were treated with GH for three years from the age of 6 to 9 months (mean, 7.4). Linear growth, psychomotor development, skeletal maturation, serum concentrations of IGF-I and its binding proteins (BPs), and cerebrospinal fluid (CSF) concentrations of IGF-II were studied.
RESULTS—The mean height of the study group increased from −1.8 to −0.8 SDS (Swedish standard) during treatment, whereas that of a Down's syndrome control group fell from −1.7 to −2.2 SDS. Growth velocity declined after treatment stopped. Head growth did not accelerate during treatment. No significant difference in mental or gross motor development was found. The low concentrations of serum IGF-I and IGFBP-3 became normal during GH treatment.
CONCLUSIONS—GH treatment results in normal growth velocity in Down's syndrome but does not affect head circumference or mental or gross motor development. Growth velocity declines after treatment stops.

 PMID:10086938

  9. Effect of growth hormone on protein phosphorylation in isolated rat hepatocytes

    SciTech Connect

    Yamada, K.; Lipson, K.E.; Marino, M.W.; Donner, D.B.

    1987-02-10

    Hepatocytes from male rats were incubated with (/sup 32/P)P/sub i/ for 40 min at 37/sup 0/C, thereby equilibrating the cellular ATP pool with /sup 32/P. Subsequent exposure to bovine growth hormone for 10 additional min did not change the specific activity of cellular (..gamma..-/sup 32/P)ATP. Two-dimensional gel electrophoresis or chromatofocusing followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was used to fractionate phosphoproteins solubilized from control or hormone-stimulated cells. Stimulation of hepatocytes with 5 nM growth hormone for 10 min at 37/sup 0/C affected the phosphorylation of a number of proteins including an M/sub r/ 46,000 species of pI 4.7 whose phosphorylation was augmented (2.65 +/- 0.50)-fold. A significant fraction of the maximal effect of growth hormone on phosphorylation of the M/sub r/ 46,000 species was elicited by 1-5% receptor occupancy. Bovine growth hormone, which binds to somatogenic receptors with great specificity, or recombinant human growth hormone, which is not contaminated with other hormones, affected phosphorylation of hepatic proteins similarly. The M/sub r/ 46,000 phosphoprotein was isolated in a fraction enriched in cytosol after centrifugation of cellular homogenates. Phosphorylation of the M/sub r/ 46,000 phosphoprotein was also increased (1.75 +/- 0.35)-fold and (2.15 +/- 0.50)-fold by insulin and glucagon, respectively. These observations are consistent with the possibility that selective changes in the phosphorylation state of cellular proteins may mediate growth hormone actions in cells.

  10. CCAAT/enhancer binding protein beta2 is involved in growth hormone-regulated insulin-like growth factor-II gene expression in the liver of rainbow trout (Oncorhynchus mykiss).

    PubMed

    Lo, Jay H; Chen, Thomas T

    2010-05-01

    Previously, we showed that levels of different CCAAT/enhancer binding protein (C/EBP) mRNAs in the liver of rainbow trout were modulated by GH and suggested that C/EBPs might be involved in GH-induced IGF-II gene expression. As a step toward further investigation, we have developed monospecific polyclonal antibodies to detect rainbow trout C/EBPalpha, -beta1, -beta2, and -delta2 isoform proteins. Injection of GH into adult rainbow trout resulted in a significant increase of C/EBPbeta1, C/EBPbeta2, and C/EBPdelta2 proteins in the liver. Chromatin immunoprecipitation analysis revealed that C/EBPbeta2 binds to multiple sites at the 5' promoter/regulatory region, introns, and the 3' untranslated region of the IGF-II gene. GH treatment reduced C/EBPbeta2 binding to several of these regions at 6 h after injection. The decreased occupancy of C/EBPbeta2 coincided well with an increase of histone H4 acetylation at the proximal promoter and elevation of the IGF-II mRNA level. Immunoblotting analysis showed that C/EBPbeta2 existed predominately as a truncated form in the liver, and cotransfection analysis further showed that the truncated C/EBPbeta2 acted as a negative regulator on IGF-II proximal promoter. GH treatment caused deacetylation of C/EBPbeta2 in the liver. In addition, we observed a GH-dependent interaction of C/EBPbeta2 with a complex involving histone H1. All together, these results suggest that C/EBPbeta2 was regulated at multiple levels by GH, and C/EBPbeta2 may play a suppressive role in mediating GH-induced IGF-II expression in the liver of rainbow trout.

  11. Growth hormone positive effects on craniofacial complex in Turner syndrome.

    PubMed

    Juloski, Jovana; Dumančić, Jelena; Šćepan, Ivana; Lauc, Tomislav; Milašin, Jelena; Kaić, Zvonimir; Dumić, Miroslav; Babić, Marko

    2016-11-01

    Turner syndrome occurs in phenotypic females with complete or partial absence of X chromosome. The leading symptom is short stature, while numerous but mild stigmata manifest in the craniofacial region. These patients are commonly treated with growth hormone to improve their final height. The aim of this study was to assess the influence of long-term growth hormone therapy on craniofacial morphology in Turner syndrome patients. In this cross-sectional study cephalometric analysis was performed on 13 lateral cephalograms of patients with 45,X karyotype and the average age of 17.3 years, who have received growth hormone for at least two years. The control group consisted of 13 Turner syndrome patients naive to growth hormone treatment, matched to study group by age and karyotype. Sixteen linear and angular measurements were obtained from standard lateral cephalograms. Standard deviation scores were calculated in order to evaluate influence of growth hormone therapy on craniofacial components. In Turner syndrome patients treated with growth hormone most of linear measurements were significantly larger compared to untreated patients. Growth hormone therapy mainly influenced posterior face height, mandibular ramus height, total mandibular length, anterior face height and maxillary length. While the increase in linear measurements was evident, angular measurements and facial height ratio did not show statistically significant difference. Acromegalic features were not found. Long-term growth hormone therapy has positive influence on craniofacial development in Turner syndrome patients, with the greatest impact on posterior facial height and mandibular ramus. However, it could not compensate X chromosome deficiency and normalize craniofacial features. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Growth hormone is permissive for neoplastic colon growth

    PubMed Central

    Chesnokova, Vera; Zonis, Svetlana; Zhou, Cuiqi; Recouvreux, Maria Victoria; Ben-Shlomo, Anat; Araki, Takako; Barrett, Robert; Workman, Michael; Wawrowsky, Kolja; Ljubimov, Vladimir A.; Uhart, Magdalena; Melmed, Shlomo

    2016-01-01

    Growth hormone (GH) excess in acromegaly is associated with increased precancerous colon polyps and soft tissue adenomas, whereas short-stature humans harboring an inactivating GH receptor mutation do not develop cancer. We show that locally expressed colon GH is abundant in conditions predisposing to colon cancer and in colon adenocarcinoma-associated stromal fibroblasts. Administration of a GH receptor (GHR) blocker in acromegaly patients induced colon p53 and adenomatous polyposis coli (APC), reversing progrowth GH signals. p53 was also induced in skin fibroblasts derived from short-statured humans with mutant GHR. GH-deficient prophet of pituitary-specific positive transcription factor 1 (Prop1)−/− mice exhibited induced colon p53 levels, and cross-breeding them with Apcmin+/− mice that normally develop intestinal and colon tumors resulted in GH-deficient double mutants with markedly decreased tumor number and size. We also demonstrate that GH suppresses p53 and reduces apoptosis in human colon cell lines as well as in induced human pluripotent stem cell-derived intestinal organoids, and confirm in vivo that GH suppresses colon mucosal p53/p21. GH excess leads to decreased colon cell phosphatase and tensin homolog deleted on chromosome 10 (PTEN), increased cell survival with down-regulated APC, nuclear β-catenin accumulation, and increased epithelial–mesenchymal transition factors and colon cell motility. We propose that GH is a molecular component of the “field change” milieu permissive for neoplastic colon growth. PMID:27226307

  13. Growth hormone is permissive for neoplastic colon growth.

    PubMed

    Chesnokova, Vera; Zonis, Svetlana; Zhou, Cuiqi; Recouvreux, Maria Victoria; Ben-Shlomo, Anat; Araki, Takako; Barrett, Robert; Workman, Michael; Wawrowsky, Kolja; Ljubimov, Vladimir A; Uhart, Magdalena; Melmed, Shlomo

    2016-06-07

    Growth hormone (GH) excess in acromegaly is associated with increased precancerous colon polyps and soft tissue adenomas, whereas short-stature humans harboring an inactivating GH receptor mutation do not develop cancer. We show that locally expressed colon GH is abundant in conditions predisposing to colon cancer and in colon adenocarcinoma-associated stromal fibroblasts. Administration of a GH receptor (GHR) blocker in acromegaly patients induced colon p53 and adenomatous polyposis coli (APC), reversing progrowth GH signals. p53 was also induced in skin fibroblasts derived from short-statured humans with mutant GHR. GH-deficient prophet of pituitary-specific positive transcription factor 1 (Prop1)(-/-) mice exhibited induced colon p53 levels, and cross-breeding them with Apc(min+/-) mice that normally develop intestinal and colon tumors resulted in GH-deficient double mutants with markedly decreased tumor number and size. We also demonstrate that GH suppresses p53 and reduces apoptosis in human colon cell lines as well as in induced human pluripotent stem cell-derived intestinal organoids, and confirm in vivo that GH suppresses colon mucosal p53/p21. GH excess leads to decreased colon cell phosphatase and tensin homolog deleted on chromosome 10 (PTEN), increased cell survival with down-regulated APC, nuclear β-catenin accumulation, and increased epithelial-mesenchymal transition factors and colon cell motility. We propose that GH is a molecular component of the "field change" milieu permissive for neoplastic colon growth.

  14. Adrenergic receptor control mechanism for growth hormone secretion.

    PubMed

    Blackard, W G; Heidingsfelder, S A

    1968-06-01

    The influence of catecholamines on growth hormone secretion has been difficult to establish previously, possibly because of the suppressive effect of the induced hyperglycemia on growth hormone concentrations. In this study, an adrenergic receptor control mechanism for human growth hormone (HGH) secretion was uncovered by studying the effects of alpha and beta receptor blockade on insulin-induced growth hormone elevations in volunteer subjects. Alpha adrenergic blockade with phentolamine during insulin hypoglycemia, 0.1 U/kg, inhibited growth hormon elevations to 30-50% of values in the same subjects during insulin hypoglycemia without adrenergic blockade. More complete inhibition by phentolamine could not be demonstrated at a lower dose of insulin (0.05 U/kg). Beta adrenergic blockade with propranolol during insulin hypoglycemia significantly enhanced HGH concentrations in paired experiments. The inhibiting effect of alpha adrenergic receptor blockade on HGH concentrations could not be attributed to differences in blood glucose or free fatty acid values; however, more prolonged hypoglycemia and lower plasma free fatty acid values may have been a factor in the greater HGH concentrations observed during beta blockade. In the absence of insulin induced hypoglycemia, neither alpha nor beta adrenergic receptor blockade had a detectable effect on HGH concentrations. Theophylline, an inhibitor of cyclic 3'5'-AMP phosphodiesterase activity, also failed to alter plasma HGH concentrations. These studies demonstrate a stimulatory effect of alpha receptors and a possible inhibitory effect of beta receptors on growth hormone secretion.

  15. Simplified method for measuring sex-hormone binding globulin

    SciTech Connect

    Fattah, D.I.; Chard, T.

    1981-07-01

    We describe a simple, rapid method for measurement of sex-hormone binding globulin. Serial dilutions of pregnancy serum are prepared in serum from males that has been pre-treated by heating to 60 degrees C for 1 h to destroy endogenous binding globulin, which is then determined by a long-used technique to yield a set of ''standards.'' In the assay itself, a fixed amount of (/sup 3/H)-labeled and unlabeled dihydrotestosterone is incubated with standard or unknown, and the bound fraction precipitated with saturated ammonium sulfate. A plot of percent of the steroid bound vs standard dilution yields a sigmoid curve, from which the results in unknowns can be read by simple extrapolation. Within-assay CVs for pools of serum from men, women, and women in late pregnancy were 6.56, 9.59, and 8.4%, respectively. Between-assay CVs for the same pools were 8.05, 9.5, and 11.5%, respectively. The correlation between results obtained by this method and those of the older technique was 0.95 for samples from non-pregnant subjects and 0.73 for those from pregnant women. Our procedure is simpler and faster than previous methods and accurately measures the differences in the globulin in sera from men, women, and pregnant women. Forty to 50 samples can be assayed in a working day.

  16. Effect of anticonvulsants on plasma testosterone and sex hormone binding globulin levels.

    PubMed Central

    Barragry, J M; Makin, H L; Trafford, D J; Scott, D F

    1978-01-01

    Plasma sex hormone binding globulin (SHBG) and testosterone levels were measured in 29 patients with epilepsy (16 men and 13 women), most of them on chronic therapy with anticonvulsant drugs. Sex hormone binding globulin concentrations were increased in both sexes and testosterone levels in male patients. It is postulated that anticonvulsants may induce hepatic synthesis of SHBG. PMID:569688

  17. A mosquito hemolymph odorant-binding protein family member specifically binds juvenile hormone.

    PubMed

    Kim, Il Hwan; Pham, Van; Jablonka, Willy; Goodman, Walter G; Ribeiro, José M C; Andersen, John F

    2017-09-15

    Juvenile hormone (JH) is a key regulator of insect development and reproduction. In adult mosquitoes, it is essential for maturation of the ovary and normal male reproductive behavior, but how JH distribution and activity is regulated after secretion is unclear. Here, we report a new type of specific JH-binding protein, given the name mosquito juvenile hormone-binding protein (mJHBP), which circulates in the hemolymph of pupal and adult Aedes aegypti males and females. mJHBP is a member of the odorant-binding protein (OBP) family, and orthologs are present in the genomes of Aedes, Culex, and Anopheles mosquito species. Using isothermal titration calorimetry, we show that mJHBP specifically binds JH II and JH III but not eicosanoids or JH derivatives. mJHBP was crystallized in the presence of JH III and found to have a double OBP domain structure reminiscent of salivary "long" D7 proteins of mosquitoes. We observed that a single JH III molecule is contained in the N-terminal domain binding pocket that is closed in an apparent conformational change by a C-terminal domain-derived α-helix. The electron density for the ligand indicated a high occupancy of the natural 10R enantiomer of JH III. Of note, mJHBP is structurally unrelated to hemolymph JHBP from lepidopteran insects. A low level of expression of mJHBP in Ae. aegypti larvae suggests that it is primarily active during the adult stage where it could potentially influence the effects of JH on egg development, mating behavior, feeding, or other processes.

  18. Evolutionary aspects of growth hormones and prolactins and their receptors

    SciTech Connect

    Tarpey, J.F.

    1986-01-01

    The interactions of GH's, PRL's and PL's with receptors for GH and PRL were examined from a comparative and evolutionary viewpoint. The binding of /sup 125/I-bGH to membrane preparations from liver of representatives of the major classes of non-mammalian vertebrates was also studied. Only hepatic membranes from sturgeon and Gillichthys had significant bGH binding and were further characterized and compared with male rabbit liver membranes in terms of time, temperature, pH, and membrane concentration to optimize binding conditions. The binding of several members of the GH, PRL, PL family of hormones to GH receptors from liver of sturgeon, Gillichthys, rabbit, mouse and rat was investigated. in terms of hormonal specificity, the mammalian receptors and the sturgeon binding sites were similar, while Gillichthys receptors had a different pattern of hormonal specificity. The binding of /sup 125/I-oPRL to renal membranes of the turtle, Pseudemys scripta elegans, was characterized and compared to PRL binding sites of kidney membranes of the bullfrog, Rana catesbeiana, and the tiger salamander, Ambystoma tigrinum.

  19. [Successful maintenance hemodialysis therapy with supplemented growth hormone in a diabetic patient with growth hormone insufficiency].

    PubMed

    Tanaka, Tomomi; Yoshida, Sayaka; Nishigaki, Keisuke; Kuyama, Tamaki; Maeda, Yoshitaka

    2013-01-01

    Growth hormone (GH) insufficiency is difficult to identify especially in adults, because its clinical manifestations overlap with metabolic syndrome and diabetes mellitus. We experienced a case of a 38-year-old woman who abruptly gained weight from the age of five, and was diagnosed as type 2 diabetes mellitus (DM) during her 20s. When the patient visited JA Toride Medical Center at age 38, her renal function had been severely damaged, and caused congestive heart failure. Hemodialysis (HD) therapy was introduced, and GH insufficiency was identified, based on her obesity profile since her childhood and hormone surveillance. GH supplementation was initially avoided, because of her concurrent problems of DM and advanced renal failure. However, because of her restricted activities in daily living (ADL) and frequent hypotension episodes, a decision was taken to start supplementary administration of GH, which consequently succeeded in stabilizing blood pressure and extended her ADL. Although GH supplementation has recently been reported to be effective in improving protein energy malnutrition in dialysis patients without GH insufficiency, there is no report concerning GH insufficiency in dialysis patients. This is the first case report of GH insufficiency, in which GH supplementation enabled the patient to continue HD.

  20. Growth hormone replacement therapy reduces risk of cancer in adult with growth hormone deficiency: A meta-analysis

    PubMed Central

    Li, Zhanzhan; Zhou, Qin; Li, Yanyan; Fu, Jun; Huang, Xinqiong; Shen, Liangfang

    2016-01-01

    The risk of growth hormone on cancer in adult with growth hormone deficiency remains unclear. We carried out a meta-analysis to evaluate the risk of cancer in adult with and without growth hormone replacement therapy. We searched PubMed, Web of Science, China National Knowledge Infrastructure, and WanFang databases up to 31 July 2016 for eligible studies. Pooled risk ratio (RR) with 95% confidence interval (CI) was calculated using fixed-or random-effects models if appropriate. The Newcastle-Ottawa Scale was used to assess the study quality. Two retrospective and seven prospective studies with a total of 11191 participants were included in the final analysis. The results from fixed-effects model showed this therapy was associated with the deceased risk of cancer in adult with growth hormone deficiency (RR=0.69, 95%CI: 0.59-0.82), with low heterogeneity within studies (I2=39.0%, P=0.108). We performed sensitivity analyses by sequentially omitting one study each time, and the pooled RRs did not materially change, indicating that our results were statistically stable. Begger's and Egger's tests suggested that there was no publication bias (Z=-0.63, P=0.520; t=0.16, P=0.874). Our study suggests that growth hormone replacement therapy could reduce risk of cancer in adult with growth hormone deficiency. PMID:27835910

  1. Sex Hormone Binding Globulin Modifies Testosterone Action and Metabolism in Prostate Cancer Cells.

    PubMed

    Li, Huika; Pham, Thy; McWhinney, Brett C; Ungerer, Jacobus P; Pretorius, Carel J; Richard, Derek J; Mortimer, Robin H; d'Emden, Michael C; Richard, Kerry

    2016-01-01

    Sex Hormone Binding Globulin (SHBG) is the major serum carrier of sex hormones. However, growing evidence suggests that SHBG is internalised and plays a role in regulating intracellular hormone action. This study was to determine whether SHBG plays a role in testosterone uptake, metabolism, and action in the androgen sensitive LNCaP prostate cancer cell line. Internalisation of SHBG and testosterone, the effects of SHBG on testosterone uptake, metabolism, regulation of androgen responsive genes, and cell growth were assessed. LNCaP cells internalised SHBG by a testosterone independent process. Testosterone was rapidly taken up and effluxed as testosterone-glucuronide; however this effect was reduced by the presence of SHBG. Addition of SHBG, rather than reducing testosterone bioavailability, further increased testosterone-induced expression of prostate specific antigen and enhanced testosterone-induced reduction of androgen receptor mRNA expression. Following 38 hours of testosterone treatment cell morphology changed and growth declined; however, cotreatment with SHBG abrogated these inhibitory effects. These findings clearly demonstrate that internalised SHBG plays an important regulatory and intracellular role in modifying testosterone action and this has important implications for the role of SHBG in health and disease.

  2. Sex Hormone Binding Globulin Modifies Testosterone Action and Metabolism in Prostate Cancer Cells

    PubMed Central

    Li, Huika; Ungerer, Jacobus P.; Pretorius, Carel J.; Mortimer, Robin H.; d'Emden, Michael C.

    2016-01-01

    Sex Hormone Binding Globulin (SHBG) is the major serum carrier of sex hormones. However, growing evidence suggests that SHBG is internalised and plays a role in regulating intracellular hormone action. This study was to determine whether SHBG plays a role in testosterone uptake, metabolism, and action in the androgen sensitive LNCaP prostate cancer cell line. Internalisation of SHBG and testosterone, the effects of SHBG on testosterone uptake, metabolism, regulation of androgen responsive genes, and cell growth were assessed. LNCaP cells internalised SHBG by a testosterone independent process. Testosterone was rapidly taken up and effluxed as testosterone-glucuronide; however this effect was reduced by the presence of SHBG. Addition of SHBG, rather than reducing testosterone bioavailability, further increased testosterone-induced expression of prostate specific antigen and enhanced testosterone-induced reduction of androgen receptor mRNA expression. Following 38 hours of testosterone treatment cell morphology changed and growth declined; however, cotreatment with SHBG abrogated these inhibitory effects. These findings clearly demonstrate that internalised SHBG plays an important regulatory and intracellular role in modifying testosterone action and this has important implications for the role of SHBG in health and disease. PMID:27990161

  3. Diabetes, growth hormone-insulin-like growth factor pathways and association to benign prostatic hyperplasia.

    PubMed

    Wang, Zongwei; Olumi, Aria F

    2011-01-01

    Diabetes significantly increases the risk of benign prostatic hyperplasia (BPH) and low urinary tract symptoms (LUTS). The major endocrine aberration in connection with the metabolic syndrome is hyperinsulinemia. Insulin is an independent risk factor and a promoter of BPH. Insulin resistance may change the risk of BPH through several biological pathways. Hyperinsulinemia stimulates the liver to produce more insulin-like growth factor (IGF), another mitogen and an anti-apoptotic agent which binds insulin receptor/IGF receptor and stimulates prostate growth. The levels of IGFs and IGF binding proteins (IGFBPs) in prostate tissue and in blood are associated with BPH risk, with the regulation of circulating androgen and growth hormone. Stromal-epithelial interactions play a critical role in the development and growth of the prostate gland and BPH. Previously, we have shown that the expression of c-Jun in the fibroblastic stroma can promote secretion of IGF-I, which stimulates prostate epithelial cell proliferation through activating specific target genes. Here, we will review the epidemiologic, clinical, and molecular findings which have evaluated the relation between diabetes and development of BPH.

  4. Adult Growth Hormone Deficiency – Benefits, Side Effects, and Risks of Growth Hormone Replacement

    PubMed Central

    Reed, Mary L.; Merriam, George R.; Kargi, Atil Y.

    2013-01-01

    Deficiency of growth hormone (GH) in adults results in a syndrome characterized by decreased muscle mass and exercise capacity, increased visceral fat, impaired quality of life, unfavorable alterations in lipid profile and markers of cardiovascular risk, decrease in bone mass and integrity, and increased mortality. When dosed appropriately, GH replacement therapy (GHRT) is well tolerated, with a low incidence of side effects, and improves most of the alterations observed in GH deficiency (GHD); beneficial effects on mortality, cardiovascular events, and fracture rates, however, remain to be conclusively demonstrated. The potential of GH to act as a mitogen has resulted in concern over the possibility of increased de novo tumors or recurrence of pre-existing malignancies in individuals treated with GH. Though studies of adults who received GHRT in childhood have produced conflicting reports in this regard, long-term surveillance of adult GHRT has not demonstrated increased cancer risk or mortality. PMID:23761782

  5. Vibrational spectroscopic studies of solid recombinant bovine growth hormone and related growth hormone analogs

    NASA Astrophysics Data System (ADS)

    Thamann, Thomas J.; Chao, Robert S.

    1999-09-01

    Infrared and Raman spectra have been obtained for lyophilized recombinant bovine growth hormone (r-bGH), partially reduced, and completely reduced r-bGH, plus a tryptic digest fragment of r-bGH. Amide I and II data indicate r-bGH to have substantial helical character. Partially reduced r-bGH, in which the carboxyl terminal disulfide bridge (residues 181, 189) has been cleaved, has slightly less helical content than r-bGH. The spectral data indicate that breaking the carboxyl terminal cystine link produces only localized structural alterations. The additional cleavage of the second disulfide bridge (residues 53 164) leads to a further decrease in helix content, accompanied by increases in β-sheet and disordered structures. A tryptic digest r-bGH fragment (residues 96-133), which contains a small amount of biological activity (≈10%), has predominantly helical structure.

  6. Thyroid hormones in fetal growth and prepartum maturation.

    PubMed

    Forhead, A J; Fowden, A L

    2014-06-01

    The thyroid hormones, thyroxine (T4) and triiodothyronine (T3), are essential for normal growth and development of the fetus. Their bioavailability in utero depends on development of the fetal hypothalamic-pituitary-thyroid gland axis and the abundance of thyroid hormone transporters and deiodinases that influence tissue levels of bioactive hormone. Fetal T4 and T3 concentrations are also affected by gestational age, nutritional and endocrine conditions in utero, and placental permeability to maternal thyroid hormones, which varies among species with placental morphology. Thyroid hormones are required for the general accretion of fetal mass and to trigger discrete developmental events in the fetal brain and somatic tissues from early in gestation. They also promote terminal differentiation of fetal tissues closer to term and are important in mediating the prepartum maturational effects of the glucocorticoids that ensure neonatal viability. Thyroid hormones act directly through anabolic effects on fetal metabolism and the stimulation of fetal oxygen consumption. They also act indirectly by controlling the bioavailability and effectiveness of other hormones and growth factors that influence fetal development such as the catecholamines and insulin-like growth factors (IGFs). By regulating tissue accretion and differentiation near term, fetal thyroid hormones ensure activation of physiological processes essential for survival at birth such as pulmonary gas exchange, thermogenesis, hepatic glucogenesis, and cardiac adaptations. This review examines the developmental control of fetal T4 and T3 bioavailability and discusses the role of these hormones in fetal growth and development with particular emphasis on maturation of somatic tissues critical for survival immediately at birth.

  7. Localization and synthesis of the hormone-binding regions of the human thyrotropin receptor

    SciTech Connect

    Atassi, M.Z.; Manshouri, T. ); Sakata, Shigeki )

    1991-05-01

    Two regions of human thyrotropin (thyroid-stimulating hormone, TSH) receptor (TSHR) were selected on the basis that they exhibit no sequence resemblance to luteinizing hormone/chorionic gonadotropin receptor. Five synthetic overlapping peptides (12-30, 24-44, 308-328, 324-344, and 339-364) were studied for their ability to bind {sup 125}I-labeled human TSH (hTSH), its isolated {alpha} and {beta} subunits, bovine TSH, ovine TSH, human luteinizing hormone, and human follicle-stimulating hormone. The human TSHR peptides 12-30 and 324-344 exhibited remarkable binding activity to human, bovine, and ovine TSH and to the {beta} chain of hTSH. Lower binding activity resided in the adjacent overlapping peptides, probably due to the contribution of the shared overlap to the binding. The specificity of TSH binding to these peptides was confirmed by their inability to bind human luteinizing hormone, human follicle-stimulating hormone, and the {alpha} chain of hTSH. Thyrotropins did not bind to bovine serum albumin or to peptide controls unrelated to the TSHR system. It is concluded that the binding of TSH to its receptor involves extensive contacts and that the TSHR peptides 12-30 and 324-344 contain specific binding regions for TSH that might be either independent sites or two faces (subsites) within a large binding site.

  8. Resistance to growth hormone releasing hormone and gonadotropins in Albright's hereditary osteodystrophy.

    PubMed

    Mantovani, Giovanna; Spada, Anna

    2006-05-01

    Heterozygous inactivating mutations in the Gs alpha gene cause Albright's hereditary osteo-dystrophy (AHO). Consistent with the observation that only maternally inherited mutations lead to resistance to hormone action (pseudohypoparathyroidism type Ia [PHP-Ia), recent studies have provided evidence for a predominant maternal origin of Gs alpha transcripts in endocrine organs, such as thyroid, gonad and pituitary. Accordingly, patients with PHP-Ia display variable degrees of resistance to parathyroid hormone (PTH), thyroid stimulating hormone (TSH), gonadotropins and growth hormone (GH) releasing hormone (GHRH). Although the incidence and the clinical and biochemical characteristics of PTH and TSH resistance have been widely investigated and described, the cause and significance of the reproductive dysfunction in AHO is still poorly understood. The clinical finding of alterations of GH secretion in these patients was described for the first time only 2 years ago. The present report briefly reviews the literature focusing on the actual knowledge about these last two subjects.

  9. Growth hormone and the transition from puberty into adulthood.

    PubMed

    Attanasio, Andrea F; Shalet, Stephen M

    2007-03-01

    With modern growth hormone (GH) replacement algorithms, children with a diagnosis of growth hormone deficiency achieve at the end of pediatric GH treatment an adult height that is on the average in the normal range. Recent experience with GH replacement in young adults with childhood-onset growth hormone deficiency, however, has shown that these patients present with variable degrees of somatic immaturity. As childhood GH treatment is discontinued when final height is attained, attention moves to the phase of somatic development that follows the end of longitudinal growth, called ''transition'', which had been excluded previously from consideration for either pediatric or adult GH replacement. This article reviews the changes taking place during this phase of development and their relevance for the attainment of adult body maturation. The critical role of GH in this process is described.

  10. Ethylene and Hormonal Cross Talk in Vegetative Growth and Development.

    PubMed

    Van de Poel, Bram; Smet, Dajo; Van Der Straeten, Dominique

    2015-09-01

    Ethylene is a gaseous plant hormone that most likely became a functional hormone during the evolution of charophyte green algae, prior to land colonization. From this ancient origin, ethylene evolved into an important growth regulator that is essential for myriad plant developmental processes. In vegetative growth, ethylene appears to have a dual role, stimulating and inhibiting growth, depending on the species, tissue, and cell type, developmental stage, hormonal status, and environmental conditions. Moreover, ethylene signaling and response are part of an intricate network in cross talk with internal and external cues. Besides being a crucial factor in the growth control of roots and shoots, ethylene can promote flowering, fruit ripening and abscission, as well as leaf and petal senescence and abscission and, hence, plays a role in virtually every phase of plant life. Last but not least, together with jasmonates, salicylate, and abscisic acid, ethylene is important in steering stress responses.

  11. Plant growth-promoting hormones activate mammalian guanylate cyclase activity.

    PubMed

    Vesely, D L; Hudson, J L; Pipkin, J L; Pack, L D; Meiners, S E

    1985-05-01

    In vivo injections of plant growth-promoting hormones increase the growth of animals as well as plants. Plant growth-promoting hormones and positive plant growth regulators are known to increase RNA and protein synthesis. Since cyclic GMP also increases RNA and protein synthesis, the object of the present investigation was to determine whether physiological levels of plant growth-promoting hormones and positive plant growth regulators have part of their mechanism(s) of action through stimulation of the guanylate cyclase (EC 4.6.1.2)-cyclic GMP system. Representatives of the three classes of growth-promoting hormones were investigated. Thus, auxins (indole-3-acetic acid, indole-3-butyric acid, beta-naphthoxyacetic acid, and 2,4,5-trichlorophenoxy acetic acid), gibberellins (gibberellic acid), and cytokinins [N6-benzyl adenine, kinetin (6-furfuryl aminopurine), and beta-(2-furyl) acrylic acid] all increased rat lung, small intestine, liver, and renal cortex guanylate cyclase activity 2- to 4-fold at the 1 microM concentration. Dose response curves revealed that maximal stimulation of guanylate cyclase by these plant growth regulators was at 1 microM; there was no augmented cyclase activity at 1 nM. The guanylate cyclase cationic cofactor manganese was not essential for augmentation of guanylate cyclase by these plant growth-promoting regulators. The antioxidant butylated hydroxytoluene did not block the enhancement of guanylate cyclase by these plant growth-promoting factors. These data suggest that guanylate cyclase may play a role in the mechanism of action of plant growth-promoting hormones and even of positive plant regulators at the cellular level.

  12. [Fish growth-hormone genes: functionality evidence of paralogous genes in Levanidov's charr].

    PubMed

    Kamenskaya, D N; Pankova, M V; Atopkin, D M; Brykov, V A

    2015-01-01

    In the genome of most vertebrates growth-hormone gene is presented in a single copy, while in salmonids after one of the duplication events many genes were multiplied, including growth hormone gene. In salmonids, the growth-hormone gene exists as two independently inherited functional paralogues, gh1 and gh2. In this study, we performed a comparative analysis of gh1 and gh2 growth-hormone genes and their adjacent sequences in Levanidov's charr Salvelinus levanidovi to determine their functionality and define the potential differences. We found that both genes have the same gene structure and are composed of six exons (I-VI) and five introns (A, B, C, D, E). However, the respective gene sequences differ in length. A comparison of exons showed that the size of each exon is identical in both paralogues. The overall length of genes differs due to the varying lengths of introns. Coding sequence of both genes contains an open reading frame for 210 amino acids. We identified regulatory elements in the promoter region of both genes: TATA box, A/T-rich regions that contain binding sites for pituitary-specific transcriptional activator Pit-1, and regions responsible for interaction with other transcriptional activators and initiators, in particular hormone receptors. The obtained data indicate that both genes are functional.

  13. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1984-01-01

    A multiphase study was conducted to examine the properties of growth hormone cells. Topics investigated included: (1) to determine if growth hormone (GH) cells contained within the rat pituitary gland can be separated from the other hormone producing cell types by continuous flow electrophoresis (CFE); (2) to determine what role, if any, gravity plays in the electrophoretic separation of GH cells; (3) to compare in vitro GH release from rat pituitary cells previously exposed to microgravity conditions vs release from cells not exposed to microgravity; (4) to determine if the frequency of different hormone producing pituitary cell types contained in cell suspensions can be quantitated by flow cytometry; and (5) to determine if GH contained within the human post mortem pituitary gland can be purified by CFE. Specific experimental procedures and results are included.

  14. Growth hormone/insulin-like growth factor system in children with chronic renal failure.

    PubMed

    Tönshoff, Burkhard; Kiepe, Daniela; Ciarmatori, Sonia

    2005-03-01

    Disturbances of the somatotropic hormone axis play an important pathogenic role in growth retardation and catabolism in children with chronic renal failure (CRF). The apparent discrepancy between normal or elevated growth hormone (GH) levels and diminished longitudinal growth in CRF has led to the concept of GH insensitivity, which is caused by multiple alterations in the distal components of the somatotropic hormone axis. Serum levels of IGF-I and IGF-II are normal in preterminal CRF, while in end-stage renal disease (ESRD) IGF-I levels are slightly decreased and IGF-II levels slightly increased. In view of the prevailing elevated GH levels in ESRD, these serum IGF-I levels appear inadequately low. Indeed, there is both clinical and experimental evidence for decreased hepatic production of IGF-I in CRF. This hepatic insensitivity to the action of GH may be partly the consequence of reduced GH receptor expression in liver tissue and partly a consequence of disturbed GH receptor signaling. The actions and metabolism of IGFs are modulated by specific high-affinity IGFBPs. CRF serum has an IGF-binding capacity that is increased by seven- to tenfold, leading to decreased IGF bioactivity of CRF serum despite normal total IGF levels. Serum levels of intact IGFBP-1, -2, -4, -6 and low molecular weight fragments of IGFBP-3 are elevated in CRF serum in relation to the degree of renal dysfunction, whereas serum levels of intact IGFBP-3 are normal. Levels of immunoreactive IGFBP-5 are not altered in CRF serum, but the majority of IGFBP-5 is fragmented. Decreased renal filtration and increased hepatic production of IGFBP-1 and -2 both contribute to high levels of serum IGFBP. Experimental and clinical evidence suggests that these excessive high-affinity IGFBPs in CRF serum inhibit IGF action in growth plate chondrocytes by competition with the type 1 IGF receptor for IGF binding. These data indicate that growth failure in CRF is mainly due to functional IGF deficiency

  15. Sex hormone-binding globulin changes during the menstrual cycle.

    PubMed

    Plymate, S R; Moore, D E; Cheng, C Y; Bardin, C W; Southworth, M B; Levinski, M J

    1985-11-01

    Although sex hormone-binding globulin (SHBG) production is stimulated by estrogen, no change in SHBG has been demonstrated during the menstrual cycle. To further study possible cyclic changes in serum SHBG, 12 women with a normal menstrual and fertility history had daily SHBG measurements during a menstrual cycle. SHBG was measured by dextran-coated charcoal saturation analysis and RIA. Serum LH was measured by mouse Leydig cell bioassay and RIA, and FSH, estradiol (E2), and progesterone were determined by RIA. In 10 women, a significant increase in mean SHBG by both methods occurred during the luteal phase of the cycle, immediately after the preovulatory increase in serum E2 (P less than 0.001). Two women had no SHBG increase; although each had a significant rise in serum E2 before the LH surge, luteal phase E2 levels were similar to those in the early follicular phase. In one of these women, a rise in SHBG was demonstrated by RIA. This study demonstrates that SHBG changes during the menstrual cycle in association with E2 changes, and it appears to be a marker for the endogenous estrogen changes that occur in normal ovulating women.

  16. Growth hormone releasing hormone (GHRH) signaling modulates intermittent hypoxia-induced oxidative stress and cognitive deficits in mouse.

    PubMed

    Nair, Deepti; Ramesh, Vijay; Li, Richard C; Schally, Andrew V; Gozal, David

    2013-11-01

    Intermittent hypoxia (IH) during sleep, such as occurs in obstructive sleep apnea (OSA), leads to degenerative changes in the hippocampus, and is associated with spatial learning deficits in adult mice. In both patients and murine models of OSA, the disease is associated with suppression of growth hormone (GH) secretion, which is actively involved in the growth, development, and function of the central nervous system (CNS). Recent work showed that exogenous GH therapy attenuated neurocognitive deficits elicited by IH during sleep in rats. Here, we show that administration of the Growth Hormone Releasing Hormone (GHRH) agonist JI-34 attenuates IH-induced neurocognitive deficits, anxiety, and depression in mice along with reduction in oxidative stress markers such as MDA and 8-hydroxydeoxyguanosine, and increases in hypoxia inducible factor-1α DNA binding and up-regulation of insulin growth factor-1 and erythropoietin expression. In contrast, treatment with a GHRH antagonist (MIA-602) during intermittent hypoxia did not affect any of the IH-induced deleterious effects in mice. Thus, exogenous GHRH administered as the formulation of a GHRH agonist may provide a viable therapeutic intervention to protect IH-vulnerable brain regions from OSA-associated neurocognitive dysfunction. Sleep apnea, characterized by chronic intermittent hypoxia (IH), is associated with substantial cognitive and behavioral deficits. Here, we show that administration of a GHRH agonist (JI-34) reduces oxidative stress, increases both HIF-1α nuclear binding and downstream expression of IGF1 and erythropoietin (EPO) in hippocampus and cortex, and markedly attenuates water maze performance deficits in mice exposed to intermittent hypoxia during sleep.

  17. Effect of growth hormone therapy on Taiwanese children with growth hormone deficiency.

    PubMed

    Huang, Ying-Hua; Wai, Yau-Yau; Van, Yang-Hau; Lo, Fu-Sung

    2012-07-01

    Human growth hormone (GH) has been successfully used in children with GH deficiency (GHD). However, there are few published data on the effect of GH in Taiwanese children with GHD. We performed a retrospective cohort study to identify factors influencing the effect of GH therapy on ethnic Chinese children with GHD in Taiwan. Idiopathic GHD can be classified into isolated GHD (IGHD) and multiple pituitary hormone deficiency (MPHD). The study looked at the effect of GH on the auxological, biochemical, and imaging parameters of 51 patients (13 girls and 38 boys) in three different diagnostic groups: MPHD (n = 12), IGHD (n = 8), and transient GHD (TGHD; n = 31). TGHD is defined as a GH peak >10 μg/L in re-evaluation by two GH stimulation tests approximately 6 months after discontinuation of GH therapy. The height velocity for first-year GH therapy was 7.61 ± 1.46, 8.14 ± 1.92, and 9.99 ± 2.75 cm/y in the TGHD, IGHD, and MPHD groups, respectively. After post hoc comparison, the MPHD group had a significantly accelerated height velocity in the first year compared to the TGHD group. Correlation analysis showed that a change in height standard deviation score (SDS) in the first year had a significant negative correlation with the following variables: peak GH (r = -0.52, p < 0.001), pretreatment height SDS (r = -0.49, p < 0.001), and height-target height (Ht-TH) SDS (r = -0.49, p < 0.001). Change in height SDS in the first 2 years had a significantly negative correlation with peak GH (r = -0.51, p < 0.001), insulin-like growth factor-1 SDS (r = -0.35, p = 0.022), height SDS (r = -0.60, p < 0.001), difference between bone age and chronological age (r = -0.46, p = 0.001), and Ht-TH SDS (r = -0.50, p = 0.001). After using multiple linear regression, the pretreatment GH peak value was found to be significantly associated with height increments after 1 year of GH treatment (B = -0.07, p = 0.014). The administration of GH to children with GHD results in a pronounced

  18. Replacement treatment with biosynthetic human growth hormone in growth hormone-deficient hypopituitary adults.

    PubMed

    Beshyah, S A; Freemantle, C; Shahi, M; Anyaoku, V; Merson, S; Lynch, S; Skinner, E; Sharp, P; Foale, R; Johnston, D G

    1995-01-01

    The physiological role of growth hormone in adult life has recently attracted increased interest. We have studied the clinical effects and the effects on body composition of prolonged replacement with biosynthetic human GH in a large number of hypopituitary adults. A randomized double blind placebo controlled trial for 6 months followed by an open trial of GH treatment for 12 months. GH daily dose was 0.04 (0.02-0.05) IU/kg s.c. Forty GH deficient hypopituitary patients (19 M, 21 F; aged 19-67 years) on conventional replacement therapy were studied. Serum insulin like growth factor I (IGF-I), skinfold thickness, total body potassium, total body water (TBW), exercise tolerance and muscle strength, and well-being. During the 6-month double blind phase, two GH treated patients withdrew because of adverse events. Lean body mass (LBM) increased and percentage body fat (%BF) decreased on GH but not on placebo (P) (LBM: (GH: from 48.5 +/- 9.6 to 49.6 +/- 9.5 kg; P: from 50.9 +/- 9.2 to 50.1 +/- 9.0 kg, P < 0.05 GH vs P) and %BF (GH: from 34.7 +/- 11.4 to 34.2 +/- 10.7; P: from 37.4 +/- 7.6 to 38.7 +/- 8.1, P < 0.05 GH vs P)). TBW increased on GH (P < 0.01) but not on P. No change was observed in waist-to-hip ratio or in muscle strength. During longer-term follow-up combining the double blind and open phase components of the study, 34, 27 and 11 patients received GH for 6, 12 and 18 months respectively. Patients dropped out because of adverse events or lack of perceived benefit. Skinfold thicknesses decreased significantly at 6 and 12 months and the waist circumference at 6 months. Waist-to-hip ratio decreased significantly on GH at 12 months. LBM increased on GH treatment from 49.6 +/- 9.1 to 51.6 +/- 9.4 kg (P < 0.0006), 51.9 +/- 8.9 kg (P < 0.07) and 53.1 +/- 10.5 kg (P < 0.0001) at 6, 12 and 18 months respectively. Percentage body fat decreased on GH from 37.2 +/- 10.7 to 34.7 +/- 10.1 (P < 0.005), 35.1 +/- 12.8 (NS) and 34.5 +/- 8.6 (P < 0.04) at 6,12 and 18 months

  19. Efficacy and Safety of Sustained-Release Recombinant Human Growth Hormone in Korean Adults with Growth Hormone Deficiency

    PubMed Central

    Kim, Youngsook; Hong, Jae Won; Chung, Yoon-Sok; Kim, Sung-Woon; Cho, Yong-Wook; Kim, Jin Hwa; Kim, Byung-Joon

    2014-01-01

    Purpose The administration of recombinant human growth hormone in adults with growth hormone deficiency has been known to improve metabolic impairment and quality of life. Patients, however, have to tolerate daily injections of growth hormone. The efficacy, safety, and compliance of weekly administered sustained-release recombinant human growth hormone (SR-rhGH, Declage™) supplement in patients with growth hormone deficiency were evaluated. Materials and Methods This trial is 12-week prospective, single-arm, open-label trial. Men and women aged ≥20 years with diagnosed growth hormone deficiency (caused by pituitary tumor, trauma and other pituitary diseases) were eligible for this study. Each subject was given 2 mg (6 IU) of SR-rhGH once a week, subcutaneously for 12 weeks. Efficacy and safety at baseline and within 30 days after the 12th injection were assessed and compared. Score of Assessment of Growth Hormone Deficiency in Adults (AGHDA score) for quality of life and serum IGF-1 level. Results The IGF-1 level of 108.67±74.03 ng/mL was increased to 129.01±68.37 ng/mL (p=0.0111) and the AGHDA QoL score was decreased from 9.80±6.51 to 7.55±5.76 (p<0.0001) at week 12 compared with those at baseline. Adverse events included pain, swelling, erythema, and warmth sensation at the administration site, but many adverse events gradually disappeared during the investigation. Conclusion Weekly administered SR-rhGH for 12 weeks effectively increased IGF-1 level and improved the quality of life in patients with GH deficiency without serious adverse events. PMID:24954335

  20. Hormonal regulation of wheat growth during hydroponic culture

    NASA Technical Reports Server (NTRS)

    Wetherell, Donald

    1988-01-01

    Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.

  1. Impact of growth hormone hypersecretion on the adult human kidney.

    PubMed

    Grunenwald, Solange; Tack, Ivan; Chauveau, Dominique; Bennet, Antoine; Caron, Philippe

    2011-12-01

    Acromegaly is most often secondary to a GH-secreting pituitary adenoma with increased Insulin-like Growth Factor type 1 (IGF-1) level. The consequences of GH/IGF-1 hypersecretion reflect the diversity of action of these hormones. The genes of the GH receptor (GHR), IGF-1, IGF-1 receptor (IGF-1R) and IGF-binding proteins (IGF-BP) are physiologically expressed in the adult kidney, suggesting a potential role of the somatotropic axis on renal structure and functions. The expression of these proteins is highly organized and differs according to the anatomical and functional segments of the nephron suggesting different roles of GH and IGF-1 in these segments. In animals, chronic exposure to high doses of GH induces glomerulosclerosis and increases albuminuria. Studies in patients with GH hypersecretion have identified numerous targets of GH/IGF-1 axis on the kidney: 1) an impact on renal filtration with increased glomerular filtration rate (GFR), 2) a structural impact with an increase in kidney weight and glomerular hypertrophy, and 3) a tubular impact leading to hyperphosphatemia, hypercalciuria and antinatriuretic effects. Despite the increased glomerular filtration rate observed in patients with GH hypersecretion, GH is an inefficient treatment for chronic renal failure. GH and IGF-1 seem to be involved in the physiopathology of diabetic nephropathy; this finding offers the possibility of targeting the GH/IGF-1 axis for the prevention and the treatment of diabetic nephropathy. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  2. Stochastic humoral expression of human growth hormone epitopes.

    PubMed Central

    Etcheverrigaray, M; Paladini, A C; Retegui, L A

    1988-01-01

    Competition experiments between insolubilized monoclonal antibodies (mAb) and polyclonal antisera has led to the description of the humoral expression of human growth hormone (hGH) epitopes. This study was carried out with sera from mice and hamsters submitted to different immunization schedules: chronic administration of the antigen, secondary response and conventional hyperimmunization. The results indicated the absence of a unique immunodominant epitope in hGH; a significant individual variation of antibody (Ab) population titres with time; changes with time in the relative proportion of one Ab population with respect to the others; and the occurrence of Ab enhancing the 125I-hGH binding to five mAb depending upon the individuals and the time of immunization. Heterocliticity towards non-human GH was also detected. Although most of the animals showed cross-reacting Ab, two out of 12 mice, chronically injected, developed heteroclitic Ab. The data suggest that the humoral response to different epitopes of a protein antigen during the maturation of the immune response is a stochastic process leading to transient humoral immunodominance, enhancing Ab populations and heterocliticity, depending upon individual characteristics, either in outbred or inbred populations. PMID:2452789

  3. Myogenic expression of an injectable protease-resistant growth hormone-releasing hormone augments long-term growth in pigs

    NASA Technical Reports Server (NTRS)

    Draghia-Akli, R.; Fiorotto, M. L.; Hill, L. A.; Malone, P. B.; Deaver, D. R.; Schwartz, R. J.

    1999-01-01

    Ectopic expression of a new serum protease-resistant porcine growth hormone-releasing hormone, directed by an injectable muscle-specific synthetic promoter plasmid vector (pSP-HV-GHRH), elicits growth in pigs. A single 10 mg intramuscular injection of pSP-HV-GHRH DNA followed by electroporation in three-week-old piglets elevated serum GHRH levels by twofold to fourfold, enhanced growth hormone secretion, and increased serum insulin-like growth factor-I by threefold to sixfold over control pigs. After 65 days the average body weight of the pigs injected with pSP-HV-GHRH was approximately 37% greater than the placebo-injected controls and resulted in a significant reduction in serum urea concentration, indicating a decrease in amino acid catabolism. Evaluation of body composition indicated a uniform increase in mass, with no organomegaly or associated pathology.

  4. Myogenic expression of an injectable protease-resistant growth hormone-releasing hormone augments long-term growth in pigs

    NASA Technical Reports Server (NTRS)

    Draghia-Akli, R.; Fiorotto, M. L.; Hill, L. A.; Malone, P. B.; Deaver, D. R.; Schwartz, R. J.

    1999-01-01

    Ectopic expression of a new serum protease-resistant porcine growth hormone-releasing hormone, directed by an injectable muscle-specific synthetic promoter plasmid vector (pSP-HV-GHRH), elicits growth in pigs. A single 10 mg intramuscular injection of pSP-HV-GHRH DNA followed by electroporation in three-week-old piglets elevated serum GHRH levels by twofold to fourfold, enhanced growth hormone secretion, and increased serum insulin-like growth factor-I by threefold to sixfold over control pigs. After 65 days the average body weight of the pigs injected with pSP-HV-GHRH was approximately 37% greater than the placebo-injected controls and resulted in a significant reduction in serum urea concentration, indicating a decrease in amino acid catabolism. Evaluation of body composition indicated a uniform increase in mass, with no organomegaly or associated pathology.

  5. Growth Hormone Enhances Arachidonic Acid Metabolites in a Growth Hormone Transgenic Mouse

    PubMed Central

    Oberbauer, A. M.; German, J. B.; Murray, J. D.

    2016-01-01

    In a transgenic growth hormone (GH) mouse model, highly elevated GH increases overall growth and decreases adipose depots while low or moderate circulating GH enhances adipose deposition with differential effects on body growth. Using this model, the effects of low, moderate, and high chronic GH on fatty acid composition were determined for adipose and hepatic tissue and the metabolites of 20:4n-6 (arachidonic acid) were characterized to identify metabolic targets of action of elevated GH. The products of Δ-9 desaturase in hepatic, but not adipose, tissue were reduced in response to elevated GH. Proportional to the level of circulating GH, the products of Δ-5 and Δ-6 were increased in both adipose and hepatic tissue for the omega-6 lipids (e.g., 20:4n-6), while only the hepatic tissues showed an increase for omega-3 lipids (e.g., 22:6n-3). The eicosanoids, PGE2 and 12-HETE, were elevated with high GH but circulating thromboxane was not. Hepatic PTGS1 and 2 (COX1 and COX 2), SOD1, and FADS2 (Δ-6 desaturase) mRNAs were increased with elevated GH while FAS mRNA was reduced; SCD1 (ste-aroyl-coenzyme A desaturase) and SCD2 mRNA did not significantly differ. The present study showed that GH influences the net flux through various aspects of lipid metabolism and especially the desaturase metabolic processes. The combination of altered metabolism and tissue specificity suggest that the regulation of membrane composition and its effects on signaling pathways, including the production and actions of eicosanoids, can be mediated by the GH regulatory axis. PMID:21442273

  6. Growth and anabolic hormones, leptin, and neuromuscular performance in moderately trained prepubescent athletes and untrained boys.

    PubMed

    Tsolakis, Charilaos; Vagenas, George; Dessypris, Athanasios

    2003-02-01

    We investigated hormonal regulators of growth and development, leptin levels, body composition, neuromuscular performance, and the associations among them in trained prepubertal athletes (experimental group [EG]) and an untrained control group (CG). Informed consent was obtained from the children and their parents. Their maturation stage was evaluated according to Tanner's criteria. There were no differences between EG and CG in physical characteristics, body mass index (BMI), lean body mass, testosterone (T), sex hormone-binding globulin, free androgen index, growth hormone (GH), hand grip strength, and jumping performance. Leptin levels and percent fat of the EG were significantly lower than those of the CG (p < 0.05-0.005). Leptin levels were significantly correlated to body fat and BMI for both the EG and the CG (r = 0.51-0.79). There is little evidence that leptin has a positive effect on growth and anabolic factors. Sex hormone-binding globulin and GH may explain the variation of leptin in athletes with low T (R(2) = 0.43) and in CG (R(2) = 0.35), respectively. Leptin seems to be a permissive factor for the onset of puberty, and the training background needs an optimal biological maturation to produce significant differences in muscle and power performance.

  7. Hormonal and nonhormonal factors affecting sex hormone-binding globulin levels in blood.

    PubMed

    Thijssen, J H

    1988-01-01

    Researchers in Utrecht, the Netherlands have studied the effects of different factors, such as oral contraceptives (OCs), on sex hormone binding globulin (SHBG) levels in blood. The SHBG levels in women who continuously used OCs consisting only of .05 mg of ethinyl estradiol (EE2) rose as high as 260% + or - 25% of those in women not using OCs. Further, mean SHBG levels of women using combination OCs of EE2 and levonorgestrel were 10-60% higher than women not using OCs. SHBG levels were significantly higher than the use of a sequential OC containing decreasing amounts of EE2 and increasing amounts of levonorgestrel than those cause by use of a continuous combined OC with .03 mg and .15 mg respectively. As the dosage of EE2 increased in combination OCs with 2.5 mg lynestrenol, the SHBG increased from 20% (.05 mg EE2) to 150% (.75 mg EE2). SHBG levels after taking EE2 and cyproterone acetate increased significantly more (240%) than levels after EE2 and desogestrel (170%), or after EE2 and gestoden (140%) [p.001]. SHBG levels of women who took OCs containing only .03 mg of levonorgestrel daily decreased 35% (p.01). These levels fell by 30% in women who received 150 mg of medroxyprogesterone acetate intramuscularly every 3 months (p.001). SHBG concentrations increased when estrogens were taken orally for noncontraceptive purposes, but they did not change when they were administered percutaneously. As body weight increased the SHBG levels decreased despite hormonal status or sex. Further, the lower the fat content of one's diet the higher the SHBG levels and vice versa. SHBG levels are higher in males with flaccid lungs than they are in males with healthy lungs.

  8. Parathyroid hormone and growth in chronic kidney disease.

    PubMed

    Waller, Simon

    2011-02-01

    Growth failure is common in children with chronic kidney disease, and successful treatment is a major challenge in the management of these children. The aetiology is multi-factorial with "chronic kidney disease-metabolic bone disorder" being a key component that is particularly difficult to manage. Parathyroid hormone is at the centre of this mineral imbalance, consequent skeletal disease and, ultimately, growth failure. When other aetiologies are treated, good growth can be achieved throughout the course of the disease when parathyroid hormone (PTH) levels are in the normal range or slightly elevated. A direct correlation between PTH levels and growth has not been convincingly established, and the direct effect of PTH on growth has not been adequately described; furthermore, direct actions of PTH on the growth plate are unproven. The effects of PTH on growth stem from the pivotal role that PTH plays in the development of renal osteodystrophy. In severe secondary hyperparathyroidism, the growth plate is altered and growth is affected. At the other end of the spectrum, with an over-suppressed parathyroid gland, the rate of bone turnover and remodelling is markedly diminished, and some data suggest this is associated with poor growth. Most of the data available suggests that avoiding the development of significant bone disease through the strict control of PTH levels permits good growth. Absolute optimal ranges for PTH that maximise growth or minimise growth failure are not yet established.

  9. Impaired Hair Growth and Wound Healing in Mice Lacking Thyroid Hormone Receptors

    PubMed Central

    Martínez-Fernández, Mónica; Ruiz-Llorente, Lidia; Paramio, Jesus M.; Aranda, Ana

    2014-01-01

    Both clinical and experimental observations show that the skin is affected by the thyroidal status. In hypothyroid patients the epidermis is thin and alopecia is common, indicating that thyroidal status might influence not only skin proliferation but also hair growth. We demonstrate here that the thyroid hormone receptors (TRs) mediate these effects of the thyroid hormones on the skin. Mice lacking TRα1 and TRβ (the main thyroid hormone binding isoforms) display impaired hair cycling associated to a decrease in follicular hair cell proliferation. This was also observed in hypothyroid mice, indicating the important role of the hormone-bound receptors in hair growth. In contrast, the individual deletion of either TRα1 or TRβ did not impair hair cycling, revealing an overlapping or compensatory role of the receptors in follicular cell proliferation. In support of the role of the receptors in hair growth, TRα1/TRβ-deficient mice developed alopecia after serial depilation. These mice also presented a wound-healing defect, with retarded re-epithelialization and wound gaping, associated to impaired keratinocyte proliferation. These results reinforce the idea that the thyroid hormone nuclear receptors play an important role on skin homeostasis and suggest that they could be targets for the treatment of cutaneous pathologies. PMID:25254665

  10. Impaired hair growth and wound healing in mice lacking thyroid hormone receptors.

    PubMed

    Contreras-Jurado, Constanza; García-Serrano, Laura; Martínez-Fernández, Mónica; Ruiz-Llorente, Lidia; Paramio, Jesus M; Aranda, Ana

    2014-01-01

    Both clinical and experimental observations show that the skin is affected by the thyroidal status. In hypothyroid patients the epidermis is thin and alopecia is common, indicating that thyroidal status might influence not only skin proliferation but also hair growth. We demonstrate here that the thyroid hormone receptors (TRs) mediate these effects of the thyroid hormones on the skin. Mice lacking TRα1 and TRβ (the main thyroid hormone binding isoforms) display impaired hair cycling associated to a decrease in follicular hair cell proliferation. This was also observed in hypothyroid mice, indicating the important role of the hormone-bound receptors in hair growth. In contrast, the individual deletion of either TRα1 or TRβ did not impair hair cycling, revealing an overlapping or compensatory role of the receptors in follicular cell proliferation. In support of the role of the receptors in hair growth, TRα1/TRβ-deficient mice developed alopecia after serial depilation. These mice also presented a wound-healing defect, with retarded re-epithelialization and wound gaping, associated to impaired keratinocyte proliferation. These results reinforce the idea that the thyroid hormone nuclear receptors play an important role on skin homeostasis and suggest that they could be targets for the treatment of cutaneous pathologies.

  11. Growth hormone and the kidney: the use of recombinant human growth hormone (rhGH) in growth-retarded children with chronic renal insufficiency.

    PubMed

    Fine, R N

    1991-04-01

    Hypothalamic production of growth hormone releasing hormone stimulates the anterior pituitary gland to release growth hormone (GH). The clinical manifestations of GH on tissues are either direct or are mediated by insulin-like growth factors (IGF). Both the somatic effects of GH and the renal manifestations of an increase in glomerular filtration rate and renal plasma flow are mediated by IGF. The increase in glomerular filtration rate/renal plasma flow that occurs with either exogenous or endogenous GH is not apparent in patients with chronic renal failure (CRF); therefore, it is unlikely that recombinant human growth hormone (rhGH) treatment of patients with CRF will result in glomerular hyperfiltration. Longitudinal studies are required to determine if the glomerulosclerosis and renal functional impairment occurring in GH and growth hormone releasing hormone transgenic mice occurs after rhGH treatment of growth-retarded uremic rats with GH resulted in an improvement in growth velocity. This led to preliminary studies in growth-retarded children with CRF by using rhGH. The acceleration of growth velocity was dramatic despite the fact that GH levels are elevated in uremia. The elevated IGF carrier proteins in uremic children may contribute to the growth retardation. Treatment with rhGH may be efficacious by stimulating a net increase in the free (unbound) IGF levels. Hyposecretion of GH may contribute to the failure to achieve optimal growth after successful renal transplantation. Treatment with rhGH may be efficacious in improving the growth velocity of renal allograft recipients.

  12. Assessment of insulin like growth factor-1 and IGF binding protein-3 in healthy Indian girls from Delhi and their correlation with age, pubertal status, obesity and thyroid hormonal status.

    PubMed

    Marwaha, Raman K; Garg, M K; Gupta, Sushil; Khurana, A K; Narang, Archna; Shukla, Manoj; Arora, Preeti; Chadha, Aditi; Nayak, Deb Datta; Manchanda, R K

    2017-06-23

    Population specific data and influence of sub-clinical hypothyroidism on insulin like growth factor-1 (IGF-1) and its binding protein-3 (IGFBP-3) in Indian children is lacking. This study was undertaken to evaluate serum IGF-1 and IGFBP-3 and their correlation with age, gender, pubertal status and thyroid functions. A total of 840 apparently healthy school girls aged 6-18 years, were recruited for the study and underwent assessment of height, weight, body mass index, pubertal status and serum T3, T4, TSH, IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio. The mean serum levels of IGF-1, IGFBP-3 levels and IGF-1/IGFBP-3 molar ratio were 381.8±240.5 ng/mL, 4.19±2.08 μg/mL and 40.5±37.2%, respectively. The serum IGF-1 and IGF-1/IGFBP-3 molar ratio increased significantly (p<0.0001) at 11 years followed by a steady yet non-significant rise till 16 years of age. A similar pattern was observed for IGFBP-3 showing a steep rise at 12 years and peaking at 16 years. Likewise, serum levels of IGF-1 and molar ratio of IGF-1/IGFBP-3 increased significantly with pubertal maturation from stage 1 to 3 and were higher in overweight girls compared to normal weight and obese girls. The growth factors were no different in girls with or without subclinical hypothyroidism. There was no significant impact of age on IGF-1 and IGFBP-3 in pre-pubertal girls. A sudden marked increase at 11 years followed by a gradual rise in growth factors till 16 years is indicative of pubertal initiation and maturation. Subclinical hypothyroidism did not influence growth factors in girls.

  13. Assessment of insulin like growth factor-1 and IGF binding protein-3 in healthy Indian girls from Delhi and their correlation with age, pubertal status, obesity and thyroid hormonal status.

    PubMed

    Marwaha, Raman K; Garg, M K; Gupta, Sushil; Khurana, A K; Narang, Archna; Shukla, Manoj; Arora, Preeti; Chadha, Aditi; Nayak, Deb Datta; Manchanda, R K

    2017-07-26

    Population specific data and influence of sub-clinical hypothyroidism on insulin like growth factor-1 (IGF-1) and its binding protein-3 (IGFBP-3) in Indian children is lacking. This study was undertaken to evaluate serum IGF-1 and IGFBP-3 and their correlation with age, gender, pubertal status and thyroid functions. A total of 840 apparently healthy school girls aged 6-18 years, were recruited for the study and underwent assessment of height, weight, body mass index, pubertal status and serum T3, T4, TSH, IGF-1, IGFBP-3 and IGF-1/IGFBP-3 molar ratio. The mean serum levels of IGF-1, IGFBP-3 levels and IGF-1/IGFBP-3 molar ratio were 381.8±240.5 ng/mL, 4.19±2.08 μg/mL and 40.5±37.2%, respectively. The serum IGF-1 and IGF-1/IGFBP-3 molar ratio increased significantly (p<0.0001) at 11 years followed by a steady yet non-significant rise till 16 years of age. A similar pattern was observed for IGFBP-3 showing a steep rise at 12 years and peaking at 16 years. Likewise, serum levels of IGF-1 and molar ratio of IGF-1/IGFBP-3 increased significantly with pubertal maturation from stage 1 to 3 and were higher in overweight girls compared to normal weight and obese girls. The growth factors were no different in girls with or without subclinical hypothyroidism. There was no significant impact of age on IGF-1 and IGFBP-3 in pre-pubertal girls. A sudden marked increase at 11 years followed by a gradual rise in growth factors till 16 years is indicative of pubertal initiation and maturation. Subclinical hypothyroidism did not influence growth factors in girls.

  14. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1978-01-01

    The maintainance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro was studied. The primary approach was the testing of agents which may be expected to increase the release of the human growth hormone (hGH). A procedure for tissue procurement is described along with the methodologies used to dissociate human pituitary tissue (obtained either at autopsy or surgery) into single cell suspensions. The validity of the Biogel cell column perfusion system for studying the dynamics of GH release was developed and documented using a rat pituitary cell system.

  15. Purification and cultivation of human pituitary growth hormone secreting cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1979-01-01

    Efforts were directed towards maintenance of actively secreting human pituitary growth hormone cells (somatotrophs) in vitro. The production of human growth hormone (hGH) by this means would be of benefit for the treatment of certain human hypopituitary diseases such as dwarfism. One of the primary approaches was the testing of agents which may logically be expected to increase hGH release. The progress towards this goal is summarized. Results from preliminary experiments dealing with electrophoresis of pituitary cell for the purpose of somatotroph separation are described.

  16. A new method of detecting hormone-binding proteins electroblotted onto glass fiber filter: juvenile hormone-binding proteins from grasshopper hemolymph.

    PubMed

    Jefferies, L S; Roberts, P E

    1990-03-01

    We have developed a new method to identify juvenile hormone (JH)-binding proteins blotted onto glass fiber filter (GFF) after electrophoretic separation. Insect JH regulates reproduction in the two-striped grasshopper, Melanoplus bivittatus. A number of proteins are involved in the delivery of JH from its site of synthesis to the nuclei of fat body cells where it acts to induce vitellogenesis. To identify JH binding proteins, hemolymph was separated by PAGE, electroblotted onto GFF, and incubated in [10-3H]JH-III. The amount of hormone bound by blotted proteins increased with the amount of protein on the filter, was competitively displaced by excess non-labeled hormone, and was affiliated with individual bands on fluorograms of proteins blotted after electrophoretic separation. GFF etched with trifluoroacetic acid was better than nitrocellulose, Zeta Probe, cellulose acetate or unetched GFF. Phosphate (pH 6.0-7.3) or Tris buffers (pH 7.3-8.0) worked equally well for the procedure. Unbound hormone was easily removed by short washes in buffer, and adequate binding for detection was achieved in a 15 min incubation. Preliminary data suggest that this technique may be used to detect receptors, carriers, and binding proteins of steroid hormones.

  17. Relationship between initial treatment effect of recombinant human growth hormone and exon 3 polymorphism of growth hormone receptor in Chinese children with growth hormone deficiency

    PubMed Central

    Zheng, Zhangqian; Cao, Lingfeng; Pei, Zhou; Zhi, Dijing; Zhao, Zhuhui; Xi, Li; Cheng, Ruoqian; Luo, Feihong

    2015-01-01

    The aim of this study is to investigate the frequency distribution of exon 3 deleted (d3-GHR) genetic polymorphism of growth hormone receptor (GHR) in growth hormone deficient (GHD) Chinese children and to explore the correlation between the growth promoting effects of recombinant human growth hormone (rhGH) and exon 3 genetic polymorphism of GHR in GHD children. In this study, 111 GHD (excluded small for gestational age) children were treated with rhGH (0.20 mg/kg/week) for six months. The body height (Ht), body weight, bone age (BA) and growth velocity (GV) were measured before and after six months of treatment. The d3-GHR and full length GHR (fl-GHR) were analyzed to detect the frequency distribution of two isoforms and their influence on growth promoting effect of rhGH. The results indicated that the frequencies of fl/fl, fl/d3 and d3/d3 GHR genotypes were 67.6%, 18.9% and 13.5%. After six months of GH therapy, there were significant differences of ΔGV (ΔGV: 10.77±3.40 cm/year vs 12.18±3.08 cm/year) (P<0.05) and ΔHt (ΔHt: 5.38±1.70 cm vs 6.09±1.54 cm) (P<0.05) were found among GHD children with different genotypes (fl/fl vs fl/d3 and d3/d3). In conclusion, the frequency distribution of three GHR genotypes in 111 Chinese GHD children was different from that reported in Caucasian, indicating the existence of ethnic difference of exon 3 GHR polymorphism. There was a closely relationship between GHR genotypes and growth-promoting effect of rhGH in Chinese GHD children. PMID:26221355

  18. The haematopoietic effects of growth hormone and insulin-like growth factor-I.

    PubMed

    Merchav, S

    1998-01-01

    The process of haemopoiesis, occurring primarily within the bone marrow, involves the proliferation and differentiation of pluripotent haemopoietic stem cells into committed, or pathway-restricted progenitors /1/. The latter further proliferate and undergo a process of maturation into circulating blood cells of myeloid and erythroid lineages /2/. Haemopoietic cell growth and differentiation is primarily regulated by the local production of various cytokines within the bone marrow micro-environment /3/, as well as by the circulating hormone, erythropoietin (EPO). The formation as well as functional activation of mature blood cells, are also modulated by a variety of hormones and growth peptides, including growth hormone (GH) and insulin-like growth factor-I (IGF-I) /4,5/. Early evidence for the role of GH in modulating haemopoiesis was provided in classical studies in rodents, which showed that removal of the pituitary gland affects blood cell formation and function /6/ and that impairment of the latter can be restored by GH administration /7/. GH exerts its effects on target cells by binding to its own receptor, which belongs to the class I cytokine receptor superfamily /8/. In humans, GH can also bind to and activate the prolactin receptor /9/. Based on the somatomedin hypothesis of Salmon and Daughaday /10/, it is now generally accepted that, in addition to the above, GH exerts many of its effects via autocrine or paracrine IGF-I, as well as via endocrine IGF-I produced in the liver. IGF-I, a small single-chain polypeptide, is one of two highly homologous peptides (IGF-I and IGF-II), that stimulate the proliferation and differentiation of a wide variety of cell types, including bone marrow cells /5,11/. Both IGF-I and IGF-II play an important role in prenatal growth and IGF-I is also essential for postnatal growth and development /12/. Two types of IGF receptors have been described. The type I IGF receptor, a tyrosine kinase receptor highly homologous to the

  19. [Benefits and risks of growth hormone in adults with growth hormone deficiency].

    PubMed

    Díez, Juan J; Cordido, Fernando

    2014-10-21

    Adult growth hormone (GH) deficiency is a well-recognized clinical syndrome with adverse health consequences. Many of these may improve after replacement therapy with recombinant GH. This treatment induces an increase in lean body mass and a decrease in fat mass. In long-term studies, bone mineral density increases and muscle strength improves. Health-related quality of life tends to increase after treatment with GH. Lipid profile and markers of cardiovascular risk also improve with therapy. Nevertheless, GH replacement therapy is not without risk. According to some studies, GH increases blood glucose, body mass index and waist circumference and may promote long-term development of diabetes and metabolic syndrome. Risk of neoplasia does not appear to be increased in adults treated with GH, but there are some high-risk subgroups. Methodological shortcomings and difficulties inherent to long-term studies prevent definitive conclusions about the relationship between GH and survival. Therefore, research in this field should remain active. Copyright © 2013 Elsevier España, S.L.U. All rights reserved.

  20. Growth hormone stimulation test - series (image)

    MedlinePlus

    ... skeletal growth in children. In adults, GH stimulates protein synthesis in muscle and the release of fatty acids ... acids. The amino acids are used in the synthesis of proteins, and the muscle shifts to using fatty acids ...

  1. Growth hormone and HIV infection: contribution to disease manifestations and clinical implications.

    PubMed

    Falutz, Julian

    2011-06-01

    In untreated HIV patients growth hormone deficiency contributes to loss of lean and fat mass. Pharmacologic doses of growth hormone successfully reverse this wasting process. In patients responding to antiretroviral therapies several non AIDS-related complications usually common among older, uninfected persons now occur more frequently in younger HIV patients. Among these conditions are cardiovascular disease and metabolic disorders. Although their etiology is multifactorial, changes in growth hormone biology reflecting relative growth hormone deficiency occur and may be involved. In these patients truncal obesity, and associated dyslipidemia and glucose homeostasis changes contribute to impaired quality of life and increased cardiovascular risk. Treatment with growth hormone and growth hormone releasing factor leads to short-term improvement of some of these abnormalities. This paper will review abnormalities of growth hormone biology and the use of growth hormone and growth hormone releasing factor as therapeutic agents in HIV patients. Copyright © 2010. Published by Elsevier Ltd.

  2. Risk Assessment of Growth Hormones and Antimicrobial Residues in Meat

    PubMed Central

    Jeong, Sang-Hee; Kang, Daejin; Lim, Myung-Woon; Kang, Chang Soo

    2010-01-01

    Growth promoters including hormonal substances and antibiotics are used legally and illegally in food producing animals for the growth promotion of livestock animals. Hormonal substances still under debate in terms of their human health impacts are estradiol-17β, progesterone, testosterone, zeranol, trenbolone, and melengestrol acetate (MGA) . Many of the risk assessment results of natural steroid hormones have presented negligible impacts when they are used under good veterinary practices. For synthetic hormonelike substances, ADIs and MRLs have been established for food safety along with the approval of animal treatment. Small amounts of antibiotics added to feedstuff present growth promotion effects via the prevention of infectious diseases at doses lower than therapeutic dose. The induction of antimicrobial resistant bacteria and the disruption of normal human intestinal flora are major concerns in terms of human health impact. Regulatory guidance such as ADIs and MRLs fully reflect the impact on human gastrointestinal microflora. However, before deciding on any risk management options, risk assessments of antimicrobial resistance require large-scale evidence regarding the relationship between antimicrobial use in food-producing animals and the occurrence of antimicrobial resistance in human pathogens. In this article, the risk profiles of hormonal and antibacterial growth promoters are provided based on recent toxicity and human exposure information, and recommendations for risk management to prevent human health impacts by the use of growth promoters are also presented. PMID:24278538

  3. Risk assessment of growth hormones and antimicrobial residues in meat.

    PubMed

    Jeong, Sang-Hee; Kang, Daejin; Lim, Myung-Woon; Kang, Chang Soo; Sung, Ha Jung

    2010-12-01

    Growth promoters including hormonal substances and antibiotics are used legally and illegally in food producing animals for the growth promotion of livestock animals. Hormonal substances still under debate in terms of their human health impacts are estradiol-17β, progesterone, testosterone, zeranol, trenbolone, and melengestrol acetate (MGA) . Many of the risk assessment results of natural steroid hormones have presented negligible impacts when they are used under good veterinary practices. For synthetic hormonelike substances, ADIs and MRLs have been established for food safety along with the approval of animal treatment. Small amounts of antibiotics added to feedstuff present growth promotion effects via the prevention of infectious diseases at doses lower than therapeutic dose. The induction of antimicrobial resistant bacteria and the disruption of normal human intestinal flora are major concerns in terms of human health impact. Regulatory guidance such as ADIs and MRLs fully reflect the impact on human gastrointestinal microflora. However, before deciding on any risk management options, risk assessments of antimicrobial resistance require large-scale evidence regarding the relationship between antimicrobial use in food-producing animals and the occurrence of antimicrobial resistance in human pathogens. In this article, the risk profiles of hormonal and antibacterial growth promoters are provided based on recent toxicity and human exposure information, and recommendations for risk management to prevent human health impacts by the use of growth promoters are also presented.

  4. [How corticoids, growth hormone and oestrogens influence lipids and atherosclerosis].

    PubMed

    Marek, J; Hána, V; Krsek, M

    2007-04-01

    The hormones with a strong influence on the lipid spectrum and the development of atherosclerosis include cortisol, growth hormone and oestrogens. Cortisol accelerates atherosclerosis both through dyslipidemia and through an increase in visceral fat, hypertension, increased insulin resistance and the development of reduced glucose tolerance which may result in diabetes mellitus. Even when a cortisol excess disappears, as is the case of patients cured of Cushing syndrome, arterial walls remain permanently vulnerable to the atherosclerotic process. In conditions involving a lack of growth hormone, dyslipidemia develops and increases the burden on the cardiovascular system if not treated in a timely manner by the substitution of growth hormone. Oestrogens have a double effect: they have an anti-atherogenic effect on artery walls that are not yet damaged by an atherosclerotic process, but where atherosclerosis has already developed they have a prothrombotic effect and destabilise the atheromatous plaques. If oestrogen is to be used as protection against the onset of atherogenesis, it is necessary to start in a period when the atherosclerotic process has not yet begun to damage the woman's arterial walls and it is best to use natural hormones (estradiol) and to prevent endometriosis it should be combined with crystalline progesterone applied locally--inravaginally. Oestrogens should be given in small doses, preferably parenterally. Even this will not prevent genetic oestrogen effects though.

  5. Hereditary gingival fibromatosis associated with growth hormone deficiency.

    PubMed

    Oikarinen, K; Salo, T; Käär, M L; Lahtela, P; Altonen, M

    1990-10-01

    A case report of gingival fibromatosis in association with growth hormone (GH) deficiency due to a lack of growth hormone releasing factor (GRF) is presented. The girl is the youngest member of a family of eight children, five of whom lack the same hormone and have or have had similar gingival enlargements. After the growth hormone deficiency had been diagnosed and hormone substitute administered the dental age of the girl presented came closer to that of her age and sex-matched controls but did not reach the corresponding values even though the teeth were exposed by excising the overgrown gingiva. Test fibroblasts cultured from the overgrown gingiva proliferated at a slower rate than those cultured from age-matched controls. Total RNA was extracted from the test and three control fibroblasts and examined by Northern hybridisation using cDNAs for pro alpha 1(I) and pro alpha 1(III) chains. The amount of type I and III procollagen mRNAs were lower in the test fibroblasts as compared to the controls.

  6. Hormones and diet: low insulin-like growth factor-I but normal bioavailable androgens in vegan men

    PubMed Central

    Allen, N E; Appleby, P N; Davey, G K; Key, T J

    2000-01-01

    Mean serum insulin-like growth factor-I was 9% lower in 233 vegan men than in 226 meat-eaters and 237 vegetarians (P = 0.002). Vegans had higher testosterone levels than vegetarians and meat-eaters, but this was offset by higher sex hormone binding globulin, and there were no differences between diet groups in free testosterone, androstanediol glucuronide or luteinizing hormone. © 2000 Cancer Research Campaign PMID:10883675

  7. Usability and Tolerability of the Norditropin NordiFlex® Injection Device in Children Never Previously Treated With Growth Hormone

    ClinicalTrials.gov

    2014-06-23

    Growth Hormone Disorder; Growth Hormone Deficiency in Children; Genetic Disorder; Turner Syndrome; Foetal Growth Problem; Small for Gestational Age; Chronic Kidney Disease; Chronic Renal Insufficiency; Delivery Systems

  8. The Physiology of Growth Hormone-Releasing Hormone (GHRH) in Breast Cancer

    DTIC Science & Technology

    2003-06-01

    production of growth hormone-releasing factor by carcinoid and pancreatic islet tumors associated with acromegaly . Prog Clin Biol Res 1981; 74:259-271. (16...promotion of apop- cause of acromegaly . More recently, expression has been tosis. These results indicate that disruption of enaog- demonstrated in tumors

  9. Effects of hypothalamic dopamine on growth hormone-releasing hormone-induced growth hormone secretion and thyrotropin-releasing hormone-induced prolactin secretion in goats.

    PubMed

    Jin, Jin; Hashizume, Tsutomu

    2015-06-01

    The aim of the present study was to clarify the effects of hypothalamic dopamine (DA) on the secretion of growth hormone (GH) in goats. The GH-releasing response to an intravenous (i.v.) injection of GH-releasing hormone (GHRH, 0.25 μg/kg body weight (BW)) was examined after treatments to augment central DA using carbidopa (carbi, 1 mg/kg BW) and L-dopa (1 mg/kg BW) in male and female goats under a 16-h photoperiod (16 h light, 8 h dark) condition. GHRH significantly and rapidly stimulated the release of GH after its i.v. administration to goats (P < 0.05). The carbi and L-dopa treatments completely suppressed GH-releasing responses to GHRH in both male and female goats (P < 0.05). The prolactin (PRL)-releasing response to an i.v. injection of thyrotropin-releasing hormone (TRH, 1 μg/kg BW) was additionally examined in male goats in this study to confirm modifications to central DA concentrations. The treatments with carbi and L-dopa significantly reduced TRH-induced PRL release in goats (P < 0.05). These results demonstrated that hypothalamic DA was involved in the regulatory mechanisms of GH, as well as PRL secretion in goats.

  10. Light-Mediated Hormonal Regulation of Plant Growth and Development.

    PubMed

    de Wit, Mieke; Galvão, Vinicius Costa; Fankhauser, Christian

    2016-04-29

    Light is crucial for plant life, and perception of the light environment dictates plant growth, morphology, and developmental changes. Such adjustments in growth and development in response to light conditions are often established through changes in hormone levels and signaling. This review discusses examples of light-regulated processes throughout a plant's life cycle for which it is known how light signals lead to hormonal regulation. Light acts as an important developmental switch in germination, photomorphogenesis, and transition to flowering, and light cues are essential to ensure light capture through architectural changes during phototropism and the shade avoidance response. In describing well-established links between light perception and hormonal changes, we aim to give insight into the mechanisms that enable plants to thrive in variable light environments.

  11. Effect of growth hormone treatment on craniofacial growth in children: Idiopathic short stature versus growth hormone deficiency.

    PubMed

    Choi, Sung-Hwan; Fan, Dong; Hwang, Mi-Soo; Lee, Hee-Kyung; Hwang, Chung-Ju

    2017-04-01

    Few studies have evaluated craniofacial growth in boys and girls with idiopathic short stature (ISS) during growth hormone (GH) treatment. The aim of this study was to evaluate the effect of GH treatment on craniofacial growth in children with ISS, compared with those with growth hormone deficiency (GHD). This study included 36 children (mean age, 11.3 ± 1.8 years) who were treated with GH consecutively. Lateral cephalograms were analyzed before and 2 years after start of GH treatment. There were no significant differences in age and sex between ISS and GHD groups and the reference group from semilongitudinal study (10 boys and 8 girls from each group). Before treatment, girls with ISS showed a skeletal Class II facial profile compared with the GHD and reference groups (p = 0.003). During GH treatment, the amount of maxillary length increased beyond norm in the ISS and GHD groups in boys (p = 0.035) > 3 standard deviation score (SDS). Meanwhile, mandibular ramus height (p = 0.001), corpus length, and total mandibular length (p = 0.007 for both) increased more in girls with ISS than in girls with GHD. Lower and total anterior facial heights increased more in girls with ISS than in girls with GHD (p = 0.021 and p = 0.007, respectively), > 7-11 SDS. GH should be administered carefully when treating girls with ISS, because GH treatment has great effects on vertical overgrowth of the mandible and can result in longer face. Copyright © 2016. Published by Elsevier B.V.

  12. Saccharin and cyclamate inhibit binding of epidermal growth factor.

    PubMed Central

    Lee, L S

    1981-01-01

    The binding of 125I-labeled mouse epidermal growth factor (EGF) to 18 cell lines, including HeLa (human carcinoma), MDCK (dog kidney cells), HTC (rat hepatoma), K22 (rat liver), HF (human foreskin), GM17 (human skin fibroblasts), XP (human xeroderma pigmentosum fibroblasts), and 3T3-L1 (mouse fibroblasts), was inhibited by saccharin and cyclamate. The human cells were more sensitive to inhibition by these sweeteners than mouse or rat cells. EGF at doses far above the physiological levels reversed the inhibition in rodent cells but not in HeLa cells. In HeLa cells, the doses of saccharin and cyclamate needed for 50% inhibition were 3.5 and 9.3 mg/ml, respectively. Glucose, 2-deoxyglucose, sucrose, and xylitol did not inhibit EGF binding. Previous studies have shown that phorbol esters, strongly potent tumor promoters, also inhibit EGF binding to tissue culture cells. To explain the EGF binding inhibition by such greatly dissimilar molecules as phorbol esters, saccharin, and cyclamate, it is suggested that they operate through the activation of a hormone response control unit. PMID:6262753

  13. Saccharin and Cyclamate Inhibit Binding of Epidermal Growth Factor

    NASA Astrophysics Data System (ADS)

    Lee, L. S.

    1981-02-01

    The binding of 125I-labeled mouse epidermal growth factor (EGF) to 18 cell lines, including HeLa (human carcinoma), MDCK (dog kidney cells), HTC (rat hepatoma), K22 (rat liver), HF (human foreskin), GM17 (human skin fibroblasts), XP (human xeroderma pigmentosum fibroblasts), and 3T3-L1 (mouse fibroblasts), was inhibited by saccharin and cyclamate. The human cells were more sensitive to inhibition by these sweeteners than mouse or rat cells. EGF at doses far above the physiological levels reversed the inhibition in rodent cells but not in HeLa cells. In HeLa cells, the doses of saccharin and cyclamate needed for 50% inhibition were 3.5 and 9.3 mg/ml, respectively. Glucose, 2-deoxyglucose, sucrose, and xylitol did not inhibit EGF binding. Previous studies have shown that phorbol esters, strongly potent tumor promoters, also inhibit EGF binding to tissue culture cells. To explain the EGF binding inhibition by such greatly dissimilar molecules as phorbol esters, saccharin, and cyclamate, it is suggested that they operate through the activation of a hormone response control unit.

  14. Effects of growth hormone on growth performance, haematology, metabolites and hormones in iron-deficient veal calves.

    PubMed

    Ceppi, A; Blum, J W

    1994-08-01

    Effects of subcutaneous (s.c.) administration of 50 micrograms/kg body weight of recombinant bovine growth hormone (rbGH) or saline were studied for 11 weeks in 40 intact male veal calves supplied 50 mg or 10 mg of iron (Fe)/kg of milk replacer (MR). Feed intake, average daily gain and growth: feed ratio were reduced in Fe-deficient calves, but not significantly influenced by rbGH. Plasma Fe and haemoglobin concentration, red-cell number and packed cell volume were decreased in Fe-deficient calves (P < 0.05) and rbGH further reduced red-cell number in Fe-deficient calves (P < 0.05). The age-dependent increase of total Fe binding capacity was greater in Fe-deficient calves and enhanced by rbGH (P < 0.05). Plasma urea concentrations increased, whereas glucose (G) and triiodothyronine (T3) levels decreased in Fe-deficient calves. rbGH significantly increased G in calves fed MR containing 50 mg/kg (P < 0.05) and influenced urea concentrations (P < 0.05). Plasma insulin (I) and IGF-I concentrations were lower in Fe-deficient calves (P < 0.05). Plasma GH in the first hours after rbGH injections increased (P < 0.05) to higher levels in calves fed 10 than in those fed 50 mg Fe/kg MR, but incremental changes were comparable. In conclusion, low Fe intake caused haematologic, metabolic and endocrine changes. Plasma IGF-I, I and T3 concentrations after rbGH administration and effects of rbGH on IGF-I in Fe-deficient calves were reduced, even though plasma GH levels were increased.

  15. Sex Hormones, Gonadotropins, and Sex Hormone-binding Globulin in Infants Fed Breast Milk, Cow Milk Formula, or Soy Formula.

    PubMed

    Fang, Xin; Wang, Lei; Wu, Chunhua; Shi, Huijing; Zhou, Zhijun; Montgomery, Scott; Cao, Yang

    2017-06-28

    Measurement of endogenous hormones in early life is important to investigate the effects of hormonally active environmental compounds. To assess the possible hormonal effects of different feeding regimens in different sample matrices of infants, 166 infants were enrolled from two U.S hospitals between 2006 and 2009. The children were classified into exclusive soy formula, cow milk formula or breast milk regimens. Urine, saliva and blood samples were collected over the first 12 months of life. Estradiol, estrone, testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and sex hormone-binding globulin (SHBG) levels were measured in the three matrices. Lower estradiol and LH levels were found in urine and saliva samples of soy formula-fed boys compared to cow formula-fed boys. Higher LH level was found in urine samples of soy formula-fed girls compared to cow formula-fed girls. However, we found neither a neonatal testosterone rise in the boys nor a gender-specific difference in testosterone levels, which suggests that urinary testosterone levels may not accurately reflect blood levels during mini-puberty. Nevertheless, our study shows that blood, urine and saliva samples are readily collectible and suitable for multi-hormone analyses in children and allow examination of hypotheses concerning endocrine effects from dietary compounds.

  16. Growth hormone benefits children with 18q deletions.

    PubMed

    Cody, Jannine D; Semrud-Clikeman, Margaret; Hardies, L Jean; Lancaster, Jack; Ghidoni, Patricia D; Schaub, Rebecca L; Thompson, Nora M; Wells, Lynda; Cornell, John E; Love, Tanzy M; Fox, Peter T; Leach, Robin J; Kaye, Celia I; Hale, Daniel E

    2005-08-15

    Most individuals with constitutional deletions of chromosome 18q have developmental delays, dysmyelination of the brain, and growth failure due to growth hormone deficiency. We monitored the effects of growth hormone treatment by evaluating 23 individuals for changes in growth, nonverbal intelligence quotient (nIQ), and quantitative brain MRI changes. Over an average of 37 months, the treated group of 13 children had an average nIQ increase of 17 points, an increase in height standard deviation score of 1.7, and significant change in T1 relaxation times in the caudate and frontal white matter. Cognitive changes of this magnitude are clinically significant and are anticipated to have an effect on the long-term outcomes for the treated individuals. Copyright 2005 Wiley-Liss, Inc.

  17. [Use of recombinant Human Growth Hormone (rHGH)].

    PubMed

    Calzada-León, Raúl

    2017-01-01

    Recombinant human growth hormone, synthesized in E.coli or mammalian cells cultures, is since 1985, a useful therapeutic resource to increase growth velocity and final height. In this paper are discussed the four phases (aims, security and efficacy, utility and efficiency) indispensables to define the start of treatment, as well as the absolute, relative and metabolic indications and the transitory and permanent conditions that contraindicate its use. It is commented the way to optimize the results (simple but indispensables indications for the physician, the patients and their family). Finally it is analyzed the results of treatment in patients with growth hormone deficiency, Turner syndrome, chronic renal failure, Prader-Willi syndrome, Noonan syndrome, SHOX deficiency, intrauterine growth retardation and idiopathic short stature.

  18. Molecular cloning and functional analysis of Chinese sturgeon (Acipenser sinensis) growth hormone receptor.

    PubMed

    Liao, ZhiYong; Chen, XiaoLi; Wu, MingJiang

    2009-10-01

    A full length cDNA encoding the growth hormone receptor (GHR) of Chinese sturgeon was cloned in order to investigate the mechanism of growth hormone in regulating the growth of Chinese sturgeon. The open reading frame of the cloned Chinese sturgeon growth hormone receptor (csGHR) cDNA encodes a trans-membrane protein of 611 amino acids containing all the characteristic motifs of GHR. By sequence alignment, substitutions of amino acid residues highly conserved in other species were identified. Using the CHO cell culture system, the function of csGHR and the biological significance of the amino acid substitution in csGHR were examined. The promoter of serine protease inhibitor 2.1 (Spi2.1) was trans-activated upon stimulation of seabream GH (sbGH) in the csGHR-expressing CHO cells. Furthermore, CHO cells stably expressing csGHR were stimulated to proliferate by sbGH. In agreement with our previous report, Chinese sturgeon growth hormone-binding protein (csGHBP) was detected in the culture medium of CHO cells stably expressing csGHR. Mutation of Asp residue in the ligand binding motif in csGHR to Glu significantly enhanced csGHR's biological function, whereas mutation of Asp residue to Ala decreased its biological function. The results demonstrated that the cloned csGHR was of full biological function and the csGHBP could be generated through proteolysis of csGHR. These findings might provide new insights into thoroughly understanding the regulatory mechanism of Chinese sturgeon growth.

  19. Localization and synthesis of the hormone-binding regions of the human thyrotropin receptor.

    PubMed Central

    Atassi, M Z; Manshouri, T; Sakata, S

    1991-01-01

    Two regions of human thyrotropin (thyroid-stimulating hormone, TSH) receptor (TSHR) (residues 12-44 and 308-364) were selected on the basis that they exhibit no sequence resemblance to luteinizing hormone/chorionic gonadotropin receptor. Five synthetic overlapping peptides (12-30, 24-44, 308-328, 324-344, and 339-364) were studied for their ability to bind 125I-labeled human TSH (hTSH), its isolated alpha and beta subunits, bovine TSH, ovine TSH, human luteinizing hormone, and human follicle-stimulating hormone. The human TSHR peptides 12-30 and 324-344 exhibited remarkable binding activity to human, bovine, and ovine TSH and to the beta chain of hTSH. Lower binding activity resided in the adjacent overlapping peptides, probably due to the contribution of the shared overlap to the binding. The specificity of TSH binding to these peptides was confirmed by their inability to bind human luteinizing hormone, human follicle-stimulating hormone, and the alpha chain of hTSH. Thyrotropins did not bind to bovine serum albumin or to peptide controls unrelated to the TSHR system. Furthermore, the binding of hTSH to TSHR peptides 12-30 and 324-344 was almost completely (approximately 90%) inhibited by rabbit antibodies against hTSH but not by antisera against unrelated proteins. It is concluded that the binding of TSH to its receptor involves extensive contacts and that the TSHR peptides 12-30 and 324-344 contain specific binding regions for TSH that might be either independent sites or two faces (subsites) within a large binding site. Images PMID:2023910

  20. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Human growth hormone test system. 862.1370 Section 862.1370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  1. Betaxolol and propranolol in glucagon stimulation of growth hormone.

    PubMed Central

    Colle, M; Battin, J; Coquelin, J P; Rochiccioli, P

    1984-01-01

    Both betaxolol and propranolol, beta blockers with different pharmacological properties, increase the reliability of somatotropic testing with glucagon. The combination of glucagon and betaxolol, however, is much better tolerated than that of glucagon and propranolol. The use of a beta 1 cardioselective adrenoceptor block for growth hormone testing is recommended. PMID:6147121

  2. 21 CFR 862.1370 - Human growth hormone test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Human growth hormone test system. 862.1370 Section 862.1370 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  3. Endocrine changes of Paralichthys olivaceus after oral administration with exogenous growth hormone

    NASA Astrophysics Data System (ADS)

    Liu, Zong-Zhu; Xu, De-Wu; Wang, Yong; Xu, Yong-Li; Zhang, Pei-Jun

    2000-12-01

    Recombinant salmon growth hormone contained in yeast was given for 5 months to flounder in its diet. Both free and total specific binding sites for the growth hormone were examined in liver membranes of control and treated fish. The association constants of both free and total specific binding sites were of the same order (1 nM-1), and no significant difference was found between any two groups in the capacity of their free binding sites. The capacity of total binding sites in the liver of treated fish increased significantly compared with that of control. Insulin-like growth factor I (IGF-I) levels in the plasma of treated fish increased by 22.61% (P<0.05), compared with that of control. While the T4 levels in plasma did not increase significantly (from 1.35±0.91 ng/ml to 2.29±1.13 ng/ml), T3 levels were elevated significantly (from 1.78±1.14 ng/ml to 4.87±1.22 ng/ml, P<0.01), as compared with that of control.

  4. Growth hormone therapy and craniofacial bones: a comprehensive review.

    PubMed

    Litsas, G

    2013-09-01

    Growth hormone (GH) has significant effects on linear bone growth, bone mass and bone metabolism. The primary role of GH supplementation in children with GH deficiency, those born small for gestational age or with other types of disorders in somatic development is to increase linear growth. However, GH therapy seems to elicit varying responses in the craniofacial region. Whereas the effects of GH administration on somatic development are well documented, comparatively little is known of its effects on the craniofacial region. The purpose of this review was to search the literature and compile results from both animal and human studies related to the impact of GH on craniofacial growth.

  5. Development and Characterization of a Novel Anti-idiotypic Monoclonal Antibody to Growth Hormone, Which Can Mimic Physiological Functions of Growth Hormone in Primary Porcine Hepatocytes.

    PubMed

    Lan, Hai-Nan; Jiang, Hai-Long; Li, Wei; Wu, Tian-Cheng; Hong, Pan; Li, Yu Meng; Zhang, Hui; Cui, Huan-Zhong; Zheng, Xin

    2015-04-01

    B-32 is one of a panel of monoclonal anti-idiotypic antibodies to growth hormone (GH) that we developed. To characterize and identify its potential role as a novel growth hormone receptor (GHR) agonist, we determined that B-32 behaved as a typical Ab2β based on a series of enzyme-linked immunosorbent assay assays. The results of fluorescence-activated cell sorting, indirect immunofluorescence and competitive receptor binding assays demonstrated that B-32 specifically binds to the GHR expressed on target cells. Next, we examined the resulting signal transduction pathways triggered by this antibody in primary porcine hepatocytes. We found that B-32 can activate the GHR and Janus kinase (2)/signal transducers and activators of transcription (JAK2/STAT5) signalling pathways. The phosphorylation kinetics of JAK2/STAT5 induced by either GH or B-32 were analysed in dose-response and time course experiments. In addition, B32 could also stimulate porcine hepatocytes to secrete insulin-like growth factors-1. Our work indicates that a monoclonal anti-idiotypic antibody to GH (B-32) can serve as a GHR agonist or GH mimic and has application potential in domestic animal (pig) production.

  6. Secretory pattern and regulatory mechanism of growth hormone in cattle.

    PubMed

    Kasuya, Etsuko

    2016-02-01

    The ultradian rhythm of growth hormone (GH) secretion has been known in several animal species for years and has recently been observed in cattle. Although the physiological significance of the rhythm is not yet fully understood, it appears essential for normal growth. In this review, previous studies concerning the GH secretory pattern in cattle, including its ultradian rhythm, are introduced and the regulatory mechanism is discussed on the basis of recent findings.

  7. Birth weight and early socio-economic disadvantage as predictors of sex hormones and sex hormone binding globulin in men at age 49-51 years.

    PubMed

    Pearce, Mark S; Groom, Alix; Relton, Caroline L; Peaston, Robert T; Pollard, Tessa M; Francis, Roger M

    2011-01-01

    A number of associations have been shown between early growth and later sex hormone levels in women, but less is known about this relationship in men. This study investigated life-course predictors of sex hormones in men in the Newcastle Thousand Families birth cohort. The Newcastle Thousand Families Study is a prospective study initiated in 1947. At age 49-51 years, 574 study members returned detailed self-completion questionnaires and 412 attended for clinical examination, including 172 men in whom blood samples were taken. Estradiol, follicle stimulating hormone (FSH), luteinizing hormone (LH), testosterone, and sex hormone binding globulin (SHBG) were measured. Free testosterone concentrations were also calculated. Social class at birth independently predicted FSH and LH, with higher levels with increasing socioeconomic disadvantage. SHBG was higher with increasing standardized birth weight and lower with increasing contemporary body mass index (BMI). BMI also predicted LH, SHBG, and testosterone. None of the variables included within this analysis were significant predictors of estradiol. No other associations were seen with any of the variables included from across the life-course. Our findings suggest that birth weight may be positively associated with SHBG and early socioeconomic status may be related to FSH and LH in men. These novel findings are independent of contemporary BMI. Given the links between sex hormones, SHBG and disease outcomes such as type II diabetes and osteoporosis, it is possible that sex hormones may play a mediating role in the associations between circumstances in early life and later risk of chronic disease. Copyright © 2010 Wiley-Liss, Inc.

  8. Growth and endocrine effects of recombinant bovine growth hormone treatment in non-transgenic and growth hormone transgenic coho salmon.

    PubMed

    Raven, P A; Sakhrani, D; Beckman, B; Neregård, L; Sundström, L F; Björnsson, B Th; Devlin, R H

    2012-05-15

    To examine the relative growth, endocrine, and gene expression effects of growth hormone (GH) transgenesis vs. GH protein treatment, wild-type non-transgenic and GH transgenic coho salmon were treated with a sustained-release formulation of recombinant bovine GH (bGH; Posilac). Fish size, specific growth rate (SGR), and condition factor (CF) were monitored for 14 weeks, after which endocrine parameters were measured. Transgenic fish had much higher growth, SGR and CF than non-transgenic fish, and bGH injection significantly increased weight and SGR in non-transgenic but not transgenic fish. Plasma salmon GH concentrations decreased with bGH treatment in non-transgenic but not in transgenic fish where levels were similar to controls. Higher GH mRNA levels were detected in transgenic muscle and liver but no differences were observed in GH receptor (GHR) mRNA levels. In non-transgenic pituitary, GH and GHR mRNA levels per mg pituitary decreased with bGH dose to levels seen in transgenic salmon. Plasma IGF-I was elevated with bGH dose only in non-transgenic fish, while transgenic fish maintained an elevated level of IGF-I with or without bGH treatment. A similar trend was seen for liver IGF-I mRNA levels. Thus, bGH treatment increased fish growth and influenced feedback on endocrine parameters in non-transgenic but not in transgenic fish. A lack of further growth stimulation of GH transgenic fish suggests that these fish are experiencing maximal growth stimulation via GH pathways.

  9. Growth hormone treatment in growth hormone-deficient adults. II. Effects on exercise performance.

    PubMed

    Cuneo, R C; Salomon, F; Wiles, C M; Hesp, R; Sönksen, P H

    1991-02-01

    Growth hormone (GH) treatment in adults with GH deficiency increases lean body mass and thigh muscle cross-sectional area. The functional significance of this was examined by incremental cycle ergometry in 24 GH-deficient adults treated in a double-blind placebo-controlled trial with recombinant DNA human GH (rhGH) for 6 mo (0.07 U/kg body wt daily). Compared with placebo, the rhGH group increased mean maximal O2 uptake (VO2max) (+406 +/- 71 vs. +133 +/- 84 ml/min; P = 0.016) and maximal power output (+24.6 +/- 4.3 vs. +9.7 +/- 4.8 W; P = 0.047), without differences in maximal heart rate or ventilation. Forced expiratory volume in 1 s, vital capacity, and corrected CO gas transfer were within normal limits and did not change with treatment. Mean predicted VO2max, based on height and age, increased from 78.9 to 96.0% in the rhGH group (compared with 78.5 and 85.0% for placebo; P = 0.036). The anaerobic ventilatory threshold increased in the rhGH group (+159 +/- 39 vs. +1 +/- 51 ml/min; P = 0.02). The improvement in VO2max was noted when expressed per kilogram body weight but not lean body mass or thigh muscle area. We conclude that rhGH treatment in adults with GH deficiency improves and normalizes maximal exercise performance and improves submaximal exercise performance and that these changes are related to increases in lean body mass and muscle mass. Improved cardiac output may also contribute to the effect of rhGH on exercise performance.

  10. Enhanced basal and disorderly growth hormone secretion distinguish acromegalic from normal pulsatile growth hormone release.

    PubMed Central

    Hartman, M L; Pincus, S M; Johnson, M L; Matthews, D H; Faunt, L M; Vance, M L; Thorner, M O; Veldhuis, J D

    1994-01-01

    Pulses of growth hormone (GH) release in acromegaly may arise from hypothalamic regulation or from random events intrinsic to adenomatous tissue. To distinguish between these possibilities, serum GH concentrations were measured at 5-min intervals for 24 h in acromegalic men and women with active (n = 19) and inactive (n = 9) disease and in normal young adults in the fed (n = 20) and fasted (n = 16) states. Daily GH secretion rates, calculated by deconvolution analysis, were greater in patients with active acromegaly than in fed (P < 0.05) but not fasted normal subjects. Significant basal (nonpulsatile) GH secretion was present in virtually all active acromegalics but not those in remission or in fed and fasted normal subjects. A recently introduced scale- and model-independent statistic, approximate entropy (ApEn), was used to test for regularity (orderliness) in the GH data. All but one acromegalic had ApEn values greater than the absolute range in normal subjects, indicating reduced orderliness of GH release; ApEn distinguished acromegalic from normal GH secretion (fed, P < 10(-12); fasted, P < 10(-7)) with high sensitivity (95%) and specificity (100%). Acromegalics in remission had ApEn scores larger than those of normal subjects (P < 0.0001) but smaller than those of active acromegalics (P < 0.001). The coefficient of variation of successive incremental changes in GH concentrations was significantly lower in acromegalics than in normal subjects (P < 0.001). Fourier analysis in acromegalics revealed reduced fractional amplitudes compared to normal subjects (P < 0.05). We conclude that GH secretion in acromegaly is highly irregular with disorderly release accompanying significant basal secretion. Images PMID:8083369

  11. [Use of growth hormone in children and adolescents].

    PubMed

    Bergadá, Ignacio

    2013-01-01

    Growth hormone treatment for children and adolescents with growth disorders has been used for more than five decades. Since 1985 recombinant human growth hormone (rhGH) is the only drug approved for treatment. In most of the countries rhGH is licensed for the treatment of children with growth hormone deficiency, Turner syndrome, Prader-Willi syndrome, chronic renal failure, and children born small for gestational age. The objective of the treatment is to improve the growth of these patients. The efficacy of rhGH treatment based on auxologic parameters has shown that growth response is variable and mostly dependent on each particular indication. Most of the reports on drug safety obtained from different databases that included thousands of patients, have shown that rhGH is a safe drug and that serious adverse events are rare. Regarding new indications to improve height in children, data on efficacy remains controversial, so we believe their ultimate indication must take into account potential risk versus benefits of this treatment.

  12. [Growth Hormone-Insulin Growth Factor I (GH-IGF-I) axis and growth].

    PubMed

    Castell, A-L; Sadoul, J-L; Bouvattier, C

    2013-10-01

    Normal human linear growth results from an evolutionary process expressing the sum effect of multiple genes. The growth hormone (GH) - insulin like growth factor (IGF)-I axis is one of the main actors in the growth process. Defects in this axis can be responsible for short or tall stature. Short stature is defined as smaller than - 2 standard deviations (SD). It is a very common reason for consultation in pediatrics; indeed, 2.5 % of children are concerned. Multiple causes make diagnosis difficult. In this article, we detail the most common constitutional causes of small size, including those related to a defect in the GH-IGF-I axis. Then, we report, the first results of the clinical and genetic study conducted on 213 patients with gigantism. Tall stature is defined by a height superior to 2 SD. Finally, recent work linking epigenetics and growth - via signaling pathways of GH-IGF-I axis - will be presented.

  13. Covalent coupling of bovine growth hormone to its receptor in bovine liver membranes.

    PubMed

    Badinga, L; Collier, R J; Thatcher, W W; Quintana, S J; Bazer, F W

    1987-07-01

    The structure of bovine somatotropin receptor was examined following covalent coupling of iodinated recombinant bovine growth hormone ([125I]rbGH) to bovine liver membrane receptors using ethylene glycol bis(succinimidyl succinate). Iodinated rbGH was incorporated into a complex of estimated Mr of 140,000 under reducing conditions. Excess unlabeled rbGH, but not bovine prolactin (bPRL), inhibited completely the incorporation of [125I]rbGH into the Mr = 140,000 species. In dairy bulls, the Mr = 140,000 complex was undetectable soon after birth but became predominant at 6 months of age. No evidence was found to support presence of bPRL receptors in steer liver membranes. Assuming a 1:1 stoichiometry of hormone binding to receptor, it appears that bGH binds to a major receptor subunit of Mr = 119,000 which does not recognize bPRL.

  14. Generalized resistance to thyroid hormone associated with a mutation in the ligand-binding domain of the human thyroid hormone receptor. beta

    SciTech Connect

    Sakurai, A.; Takeda, K.; Ain, K.; Ceccarelli, P.; Nakai, A.; Seino, S.; Bell, G.I.; Refetoff, S.; DeGroot, L.J. )

    1989-11-01

    The syndrome of generalized resistance to thyroid hormone is characterized by elevated circulating levels of thyroid hormone in the presence of an overall eumetabolic state and failure to respond normally to triiodothyronine. The authors have evaluated a family with inherited generalized resistance to thyroid hormone for abnormalities in the thyroid hormone nuclear receptors. A single guanine {yields} cytosine replacement in the codon for amino acid 340 resulted in a glycine {yields} arginine substitution in the hormone-binding domain of one of two alleles of the patient's thyroid hormone nuclear receptor {beta} gene. In vitro translation products of this mutant human thyroid hormone nuclear receptor {beta} gene did not bind triiodothyronine. Thus, generalized resistance to thyroid hormone can result from expression of an abnormal thyroid hormone nuclear receptor molecule.

  15. The role of growth hormone in fetal development.

    PubMed

    Waters, M J; Kaye, P L

    2002-06-01

    Studies across several species, particularly the mouse, show that growth hormone (GH, somatotrophin) is an important determinant of litter size, and to a lesser extent, of birth length. GH acts at all stages of development, from ovulation through preimplantation development to the late fetus, with actions on both embryo/fetus and mother contributing to successful fetal development. The fact that these are not more obvious in vivo is likely a result of redundancy of cytokine hormone action, particularly in relation to prolactin, which shares common actions and receptor locations with GH.

  16. [How safe is the recombinant human growth hormone?

    PubMed

    Calzada-León, Raúl

    2017-01-01

    In this paper, several aspects related to the safety of the use of biosynthetic human growth hormone are reviewed. For example, its classification as a biosynthetic drug, the phases that need to be performed in Mexico to verify its safety (obtaining, purification, preclinical studies, clinical trials, and finally observational clinical studies), as well as the evidence that exists in relation to the association of intracranial hypertension, muscular events, scoliosis, slipped capital femoral epiphysis, obstructive sleep apnea, pancreatitis, alterations in cortisol, thyroid hormones alterations, cardiovascular disease, metabolic risk, mortality and cancer, adverse events not related to its use, and finally dosing and safety.

  17. Thyrotrophin-releasing hormone induces growth hormone secretion in adult hypothyroid fowl.

    PubMed

    Harvey, S; Scanes, C G; Klandorf, H

    1988-02-01

    While thyrotrophin-releasing hormone (TRH) stimulated growth hormone (GH) secretion in adult anesthetized cockerels, the GH response was blocked in anesthetized birds pretreated with thyroxine (T4) or triiodothyronine (T3). Moreover, whereas GH secretion in conscious adult birds was poorly responsive to TRH stimulation, conscious birds made hypothyroid by goitrogen pretreatment (with propylthiouracil, methimazole, or thiourea) were responsive to TRH challenge. Basal circulating GH concentrations in the goitrogen-pretreated birds were also higher than in the vehicle-injected controls. Surgical thyroidectomy similarly increased the basal GH concentration in adult birds and promoted TRH-induced GH secretion. These results demonstrate inhibitory effects of the thyroid hormones on basal and stimulated GH secretion in adult domestic fowl and suggest that GH release in adults is partly under tonic thyroidal inhibition.

  18. Growth hormone actions during development influence adult phenotype and longevity.

    PubMed

    Bartke, A; Sun, L; Fang, Y; Hill, C

    2016-12-15

    There is considerable evidence that exposure to undernutrition, overnutrition, stress or endocrine disruptors during fetal development can increase the probability of obesity, hypertension, cardiovascular disease and other problems in adult life. In contrast to these findings, reducing early postnatal growth by altering maternal diet or number of pups in a litter can increase longevity. In hypopituitary Ames dwarf mice, which are remarkably long lived, a brief period of growth hormone therapy starting at 1 or 2weeks of age reduces longevity and normalizes ("rescues") multiple aging-related traits. Collectively, these findings indicate that nutritional and hormonal signals during development can have profound impact on the trajectory of aging. We suspect that altered "programming" of aging during development may represent one of the mechanisms of the Developmental Origins of Health and Disease (DOHaD) and the detrimental effects of "catch-up" growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Effect of sericin on diabetic hippocampal growth hormone/insulin-like growth factor 1 axis

    PubMed Central

    Chen, Zhihong; Yang, Songhe; He, Yaqiang; Song, Chengjun; Liu, Yongping

    2013-01-01

    Previous studies have shown that sericin extracted from silk cocoon significantly reduces blood glucose levels and protects the nervous system against diabetes mellitus. In this study, a rat type 2 diabetes mellitus model was established by intraperitoneal injection of 25 mg/kg streptozotocin for 3 successive days, following which the rats were treated with sericin for 35 days. After treatment, the blood glucose levels of the diabetic rats decreased significantly, the growth hormone level in serum and its expression in the hippocampus decreased significantly, while the insulin-like growth factor-1 level in serum and insulin-like growth factor-1 and growth hormone receptor expression in the hippocampus increased significantly. The experimental findings indicate that sericin improves disorders of the growth hormone/insulin-like growth factor 1 axis to alleviate hippocampal damage in diabetic rats. PMID:25206472

  20. Carboxypeptidase Z (CPZ) links thyroid hormone and Wnt signaling pathways in growth plate chondrocytes.

    PubMed

    Wang, Lai; Shao, Yvonne Y; Ballock, R Tracy

    2009-02-01

    Carboxypeptidase Z (CPZ) removes carboxyl-terminal basic amino acid residues, particularly arginine residues, from proteins. CPZ contains a cysteine-rich domain (CRD) similar to the CRD found in the frizzled family of Wnt receptors. We have previously shown that thyroid hormone regulates terminal differentiation of growth plate chondrocytes through activation of Wnt-4 expression and Wnt/beta-catenin signaling. The Wnt-4 protein contains a C-terminal arginine residue and binds to CPZ through the CRD. The objective of this study was to determine whether CPZ modulates Wnt/beta-catenin signaling and terminal differentiation of growth plate chondrocytes. Our results show that CPZ and Wnt-4 mRNA are co-expressed throughout growth plate cartilage. In primary pellet cultures of rat growth plate chondrocytes, thyroid hormone increases both Wnt-4 and CPZ expression, as well as CPZ enzymatic activity. Knockdown of either Wnt-4 or CPZ mRNA levels using an RNA interference technique or blocking CPZ enzymatic activity with the carboxypeptidase inhibitor GEMSA reduces the thyroid hormone effect on both alkaline phosphatase activity and Col10a1 mRNA expression. Adenoviral overexpression of CPZ activates Wnt/beta-catenin signaling and promotes the terminal differentiation of growth plate cells. Overexpression of CPZ in growth plate chondrocytes also removes the C-terminal arginine residue from a synthetic peptide consisting of the carboxyl-terminal 16 amino acids of the Wnt-4 protein. Removal of the C-terminal arginine residue of Wnt-4 by site-directed mutagenesis enhances the positive effect of Wnt-4 on terminal differentiation. These data indicate that thyroid hormone may regulate terminal differentiation of growth plate chondrocytes in part by modulating Wnt signaling pathways through the induction of CPZ and subsequent CPZ-enhanced activation of Wnt-4.

  1. Genome-wide association study of sex hormones, gonadotropins and sex hormone-binding protein in Chinese men.

    PubMed

    Chen, Zhuo; Tao, Sha; Gao, Yong; Zhang, Ju; Hu, Yanling; Mo, Linjian; Kim, Seong-Tae; Yang, Xiaobo; Tan, Aihua; Zhang, Haiying; Qin, Xue; Li, Li; Wu, Yongming; Zhang, Shijun; Zheng, S Lilly; Xu, Jianfeng; Mo, Zengnan; Sun, Jielin

    2013-12-01

    Sex hormones and gonadotropins exert a wide variety of effects in physiological and pathological processes. Accumulated evidence shows a strong heritable component of circulating concentrations of these hormones. Recently, several genome-wide association studies (GWASs) conducted in Caucasians have identified multiple loci that influence serum levels of sex hormones. However, the genetic determinants remain unknown in Chinese populations. In this study, we aimed to identify genetic variants associated with major sex hormones, gonadotropins, including testosterone, oestradiol, follicle-stimulating hormone (FSH), luteinising hormone (LH) and sex hormone binding globulin (SHBG) in a Chinese population. A two-stage GWAS was conducted in a total of 3495 healthy Chinese men (1999 subjects in the GWAS discovery stage and 1496 in the confirmation stage). We identified a novel genetic region at 15q21.2 (rs2414095 in CYP19A1), which was significantly associated with oestradiol and FSH in the Chinese population at a genome-wide significant level (p=6.54×10(-31) and 1.59×10(-16), respectively). Another single nucleotide polymorphism in CYP19A1 gene was significantly associated with oestradiol level (rs2445762, p=7.75×10(-28)). In addition, we confirmed the previous GWAS-identified locus at 17p13.1 for testosterone (rs2075230, p=1.13×10(-8)) and SHBG level (rs2075230, p=4.75×10(-19)) in the Chinese population. This study is the first GWAS investigation of genetic determinants of FSH and LH. The identification of novel susceptibility loci may provide more biological implications for the synthesis and metabolism of these hormones. More importantly, the confirmation of the genetic loci for testosterone and SHBG suggests common genetic components shared among different ethnicities.

  2. Regulatory mechanisms of growth hormone secretion are sexually dimorphic.

    PubMed Central

    Jaffe, C A; Ocampo-Lim, B; Guo, W; Krueger, K; Sugahara, I; DeMott-Friberg, R; Bermann, M; Barkan, A L

    1998-01-01

    Sexually dimorphic growth hormone (GH) secretory pattern is important in the determination of gender-specific patterns of growth and metabolism in rats. Whether GH secretion in humans is also sexually dimorphic and the neuroendocrine mechanisms governing this potential difference are not fully established. We have compared pulsatile GH secretion profiles in young men and women in the baseline state and during a continuous intravenous infusion of recombinant human insulin-like growth factor I (rhIGF-I). During the baseline study, men had large nocturnal GH pulses and relatively small pulses during the rest of the day. In contrast, women had more continuous GH secretion and more frequent GH pulses that were of more uniform size. The infusion of rhIGF-I (10 microg/kg/h) potently suppressed both spontaneous and growth hormone-releasing hormone (GHRH)-induced GH secretion in men. In women, however, rhIGF-I had less effect on pulsatile GH secretion and did not suppress the GH response to GHRH. These data demonstrate the existence of sexual dimorphism in the regulatory mechanisms involved in GH secretion in humans. The persistence of GH responses to GHRH in women suggests that negative feedback by IGF-I might be expressed, in part, through suppression of hypothalamic GHRH. PMID:9649569

  3. Steroid Sex Hormones, Sex Hormone-Binding Globulin, and Diabetes Incidence in the Diabetes Prevention Program.

    PubMed

    Mather, K J; Kim, C; Christophi, C A; Aroda, V R; Knowler, W C; Edelstein, S E; Florez, J C; Labrie, F; Kahn, S E; Goldberg, R B; Barrett-Connor, E

    2015-10-01

    Steroid sex hormones and SHBG may modify metabolism and diabetes risk, with implications for sex-specific diabetes risk and effects of prevention interventions. This study aimed to evaluate the relationships of steroid sex hormones, SHBG and SHBG single-nucleotide polymorphisms (SNPs) with diabetes risk factors and with progression to diabetes in the Diabetes Prevention Program (DPP). This was a secondary analysis of a multicenter randomized clinical trial involving 27 U.S. academic institutions. The study included 2898 DPP participants: 969 men, 948 premenopausal women not taking exogenous sex hormones, 550 postmenopausal women not taking exogenous sex hormones, and 431 postmenopausal women taking exogenous sex hormones. Participants were randomized to receive intensive lifestyle intervention, metformin, or placebo. Associations of steroid sex hormones, SHBG, and SHBG SNPs with glycemia and diabetes risk factors, and with incident diabetes over median 3.0 years (maximum, 5.0 y). T and DHT were inversely associated with fasting glucose in men, and estrone sulfate was directly associated with 2-hour post-challenge glucose in men and premenopausal women. SHBG was associated with fasting glucose in premenopausal women not taking exogenous sex hormones, and in postmenopausal women taking exogenous sex hormones, but not in the other groups. Diabetes incidence was directly associated with estrone and estradiol and inversely with T in men; the association with T was lost after adjustment for waist circumference. Sex steroids were not associated with diabetes outcomes in women. SHBG and SHBG SNPs did not predict incident diabetes in the DPP population. Estrogens and T predicted diabetes risk in men but not in women. SHBG and its polymorphisms did not predict risk in men or women. Diabetes risk is more potently determined by obesity and glycemia than by sex hormones.

  4. Neither bST nor Growth Hormone Releasing Factor Alter Expression of Thyroid Hormone Receptors in Liver and Mammary Tissues

    USDA-ARS?s Scientific Manuscript database

    Physiological effects of thyroid hormones are mediated primarily by binding of triiodothyronine, to specific nuclear receptors. It has been hypothesized that organ-specific changes in production of triiodothyronine from its prohormone, thyroxine, target the action of thyroid hormones to the mammary...

  5. Hormonal growth promoting agents in food producing animals.

    PubMed

    Stephany, Rainer W

    2010-01-01

    In contrast to the use of hormonal doping agents in sports to enhance the performance of athletes, in the livestock industry hormonal growth promoters ("anabolics") are used to increase the production of muscle meat. This leads to international disputes about the safety of meat originating from animals treated with such anabolics.As a consequence of the total ban in the EU of all hormonal active growth promoters ("hormones") in livestock production, in contrast to their legal use [e.g. of five such hormones (17beta-estradiol, testosterone, progesterone, trenbolone and zeranol) as small solid ear implants and two hormones as feed additives for feedlot heifers (melengestrol acetate) and for swine (ractopamine) in the USA], the regulatory controls also differ sharply between the EU and the USA.In the EU the treatment of slaughter animals is the regulatory offence that has to be controlled in inspection programs. In the USA testing for compliance of a regulatory maximum residue level in the edible product (muscle, fat, liver or kidney) is the purpose of the inspection program (if any).The EU inspection programs focus on sample materials that are more suitable for testing for banned substances, especially if the animals are still on the farm, such as urine and feces or hair. In the case of slaughtered animals, the more favored sample materials are bile, blood, eyes and sometimes liver. Only in rare occasions is muscle meat sampled. This happens only in the case of import controls or in monitoring programs of meat sampled in butcher shops or supermarkets.As a result, data on hormone concentrations in muscle meat samples from the EU market are very rare and are obtained in most cases from small programs on an ad hoc basis. EU data for natural hormones in meat are even rarer because of the absence of "legal natural levels" for these hormones in compliance testing. With the exception of samples from the application sites - in the EU the site of injection of liquid hormone

  6. Turnover of growth hormone receptors in rat adipocytes

    SciTech Connect

    Gorin, E.; Goodman, H.M.

    1985-05-01

    Adipocytes isolated from the epididymal fat pads of normal rats specifically bound (/sup 125/I)human GH (( /sup 125/I)hGH). Preincubation of cells with 20 micrograms/ml cycloheximide, an inhibitor of protein synthesis, produced a progressive loss of ability to bind (/sup 125/I)hGH specifically. Loss of binding sites with time followed first order kinetics and had a half-time of about 45 min regardless of whether GH was present or absent during treatment with cycloheximide. Nonspecific binding of labeled hormone was unchanged by cycloheximide. Similar results were obtained when adipocytes were incubated with 200 micrograms/ml puromycin, another inhibitor of translation, but incubation with 5 micrograms/ml actinomycin D, an inhibitor of transcription, for 2.5 h had no effect on the binding of (/sup 125/I)hGH by adipocytes. The findings are not attributable to cell death, since oxidation of (U-/sup 14/C) glucose to /sup 14/CO/sub 2/ and binding of (/sup 125/I)insulin were unaffected in replicate cell populations exposed to the same treatments. Diminished binding could not be attributed to an effect of cycloheximide to hasten the degradation of receptor-bound hGH. Treatment of adipocytes with 0.1 mg/ml trypsin for 10 min virtually abolished their ability to bind (/sup 125/I)hGH specifically, but binding capability gradually returned after removal of trypsin and was nearly restored to pretrypsin levels by 2 h. Addition of cycloheximide to the incubation medium after removal of trypsin completely prevented recovery of binding capability.

  7. Antagonists of growth hormone-releasing hormone suppress in vivo tumor growth and gene expression in triple negative breast cancers.

    PubMed

    Perez, Roberto; Schally, Andrew V; Vidaurre, Irving; Rincon, Ricardo; Block, Norman L; Rick, Ferenc G

    2012-09-01

    This study evaluated the effects of a modern antagonistic analog of GHRH on tumor growth and on expression of inflammatory cytokine genes in two models of human triple negative breast cancers (TNBC). The TNBC subtype is refractory to the treatment options available for other hormone-independent breast cancers. Inflammatory cytokines play a major role in the cellular signaling associated with breast cancer pathogenesis and enhance epithelial-mesenchymal transitions (EMT), drug resistance, and metastatic potential. Growth hormone-releasing hormone (GHRH) is a hypothalamic neuropeptide which regulates the synthesis and release of growth hormone by the pituitary and is an autocrine/paracrine growth factor for multiple human cancers. The effects of analogs of GHRH on tumoral cytokine expression have not been previously investigated. Animals bearing xenografts of the human TNBC cell lines, HCC1806 and MX-1, were treated with MIA-602, an antagonistic analog of GHRH. Treatment with MIA-602 significantly reduced tumor growth. We quantified transcript levels of the genes for several inflammatory cytokines. Expression of INFγ, IL-1α, IL-4, IL-6, IL-8, IL-10, and TNFα, was significantly reduced by treatment with MIA-602. We conclude that treatment of TNBC with GHRH antagonists reduces tumor growth through an action mediated by tumoral GHRH receptors and produces a suppression of inflammatory cytokine signaling. Silencing of GHRH receptors in vitro with siRNA inhibited the expression of GHRH-R genes and inflammatory cytokine genes in HCC1806 and MX-1 cells. Further studies on GHRH antagonists may facilitate the development of new strategies for the treatment of resistant cancers.

  8. Growth Hormone Response to L-Dopa and Clonidine in Autistic Children.

    ERIC Educational Resources Information Center

    Realmuto, George M.; And Others

    1990-01-01

    Seven medication-free autistic subjects (ages 6-19) were administered clonidine and L-Dopa to investigate neuroendocrine responses through changes in growth hormone levels. Findings showed that, compared to normal controls, the L-Dopa-stimulated growth hormone peak was delayed and the clonidine growth hormone peak was premature. (Author/JDD)

  9. Growth Hormone Response to L-Dopa and Clonidine in Autistic Children.

    ERIC Educational Resources Information Center

    Realmuto, George M.; And Others

    1990-01-01

    Seven medication-free autistic subjects (ages 6-19) were administered clonidine and L-Dopa to investigate neuroendocrine responses through changes in growth hormone levels. Findings showed that, compared to normal controls, the L-Dopa-stimulated growth hormone peak was delayed and the clonidine growth hormone peak was premature. (Author/JDD)

  10. Influence of Dietary Copper on Serum Growth-Related Hormone Levels and Growth Performance of Weanling Pigs.

    PubMed

    Wang, Jianguo; Zhu, Xiaoyan; Guo, Yazhou; Wang, Zhe; Zhao, Baoyu; Yin, Yunhou; Liu, Guowen

    2016-07-01

    To investigate the effect of dietary copper on serum growth-related hormones levels and growth performance, a total of 60 weanling pigs were randomly assigned to six groups each containing 10 pigs, fed on basal diets supplemented with 0 (control), 100, 150, 200, 250, and 300 mg/kg copper sulfate for 80 days, respectively. The average daily gain (ADG), feed to gain ratio (F/G), feed intake and serum growth hormone (GH), insulin (INS), insulin-like growth factor 1 (IGF-1), and insulin-like growth factor-binding protein 3 (IGFBP-3) levels were detected at interval of 20 days. The results revealed that ADG, and serum GH, INS, IGF-1, and IGFBP-3 concentrations were increased significantly in the pigs fed on diets added with 100, 150, 200, 250, and 300 mg/kg copper sulfate. Meanwhile, in the pigs supplemented with 250 mg/kg copper sulfate, ADG was increased significantly from the 40th to the 60th day of the experiment (P < 0.01), and the levels of GH, INS, IGF-1, and IGFBP-3 in serum were elevated significantly from the 20th to the 40th day of the experiment (P < 0.01). It is concluded that effects of copper supplemented in the diet on the growth of pigs were related to the increasing levels of GH, INS, IGF-1, and IGFBP-3 in serum which were induced by copper. High dietary copper increase the concentrations of growth-related hormones in serum, resulting in improving the growth performance of weanling pigs.

  11. [Effects of growth hormone replacement therapy on bone metabolism].

    PubMed

    Yamamoto, Masahiro; Sugimoto, Toshitsugu

    2014-06-01

    Growth hormone (GH) as well as insulin like growth factor-1 (IGF-1) are essential hormones to maintain homeostasis of bone turnover by activating osteoblastogenesis and osteoclastogenesis. Results from GH replacement therapy for primary osteoporosis and adult-onset GH deficiency (AGHD) suggest that one year or more treatment period by this agent is required to gain bone mineral density (BMD) over the basal level after compensating BMD loss caused by dominant increase in bone resorption which was observed at early phase of GH treatment. A recent meta-analysis demonstrates the efficacy of GH replacement therapy on increases in BMD in male patients with AGHD. Additional analyses are needed to draw firm conclusions in female patients with AGHD, because insufficient amounts of GH might be administrated to them without considerations of influence of estrogen replacement therapy on IGF-1 production. Further observational studies are needed to clarify whether GH replacement therapy prevent fracture risk in these patients.

  12. The Growth Hormone Secretagogue Receptor: Its Intracellular Signaling and Regulation

    PubMed Central

    Yin, Yue; Li, Yin; Zhang, Weizhen

    2014-01-01

    The growth hormone secretagogue receptor (GHSR), also known as the ghrelin receptor, is involved in mediating a wide variety of biological effects of ghrelin, including: stimulation of growth hormone release, increase of food intake and body weight, modulation of glucose and lipid metabolism, regulation of gastrointestinal motility and secretion, protection of neuronal and cardiovascular cells, and regulation of immune function. Dependent on the tissues and cells, activation of GHSR may trigger a diversity of signaling mechanisms and subsequent distinct physiological responses. Distinct regulation of GHSR occurs at levels of transcription, receptor interaction and internalization. Here we review the current understanding on the intracellular signaling pathways of GHSR and its modulation. An overview of the molecular structure of GHSR is presented first, followed by the discussion on its signaling mechanisms. Finally, potential mechanisms regulating GHSR are reviewed. PMID:24651458

  13. Recombinant DNA products: Insulin, interferon and growth hormone

    SciTech Connect

    Bollon, A.P.

    1984-01-01

    This book provides the discussion of products of biotechnology of recombinant DNA. The contents include: Recombinant DNA techniques; isolation, cloning, and expression of genes; from somatostatin to human insulin; yeast; an alternative organism for foreign protein production; background in human interferon; preclinical assessment of biological properties of recombinant DNA derived human interferons; human clinical trials of bacteria-derived human ..cap alpha.. interferon.f large scale production of human alpha interferon from bacteria; direct expression of human growth hormone in escherichia coli with the lipoprotein promoter; biological actions in humans of recombinant DNA synthesized human growth hormone; NIH guidelines for research involving recombinant DNA molecules; appendix; viral vectors and the NHY guidelines; FDA's role in approval and regulation of recombinant DNA drugs; and index.

  14. Metabolic clearance rate of radioiodinated human growth hormone in man

    PubMed Central

    Cameron, Donald P.; Burger, Henry G.; Catt, Kevin J.; Doig, Alison

    1969-01-01

    The nature of the disappearance of radioiodinated human growth hormone (HGH) from plasma has been reexamined. The metabolic clearance rate (MCR) was determined both from single injection and constant infusion studies. After single injection of highly purified radioiodinated HGH, the disappearance curve remained multiexponential during the period of study (4 hr). The shape of the curve was independent of the growth hormone preparation used. Similar disappearance curves were obtained with unlabeled HGH. MCR values calculated from constant infusion studies were 203 ±7.8 liters/day per m2 and values derived from single injection studies agreed closely with this. The multiexponential nature of the disappearance curve does not permit meaningful calculation of volume of distribution or half-time of disappearance. PMID:5822572

  15. Focus on growth hormone deficiency and bone in adults.

    PubMed

    Tritos, Nicholas A

    2017-02-01

    Growth hormone (GH) exerts several effects on the skeleton, mediated either directly or indirectly, leading to increased bone formation and resorption rates. Patients with growth hormone deficiency (GHD) of adult onset have decreased bone mineral density (BMD) and increased fracture risk. Some, but not all, studies have found that adults with childhood onset GHD also have lower BMD than healthy controls. Adults with GHD of childhood onset have smaller bone dimensions, leading to possible underestimation of areal BMD (measured by dual energy X-ray absorptiometry), thus potentially confounding the interpretation of densitometric data. Available data suggest that patients with childhood onset GHD are at increased fracture risk. Prospective studies and some clinical trials found that GH replacement for at least 18-24 months leads to increased BMD. Retrospective and prospective data suggest that GH replacement is associated with decreased fracture risk in adults. However, data from randomized clinical trials are lacking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. AAS, growth hormone, and insulin abuse: psychological and neuroendocrine effects

    PubMed Central

    Graham, Michael R; Evans, Peter; Davies, Bruce; Baker, Julien S

    2008-01-01

    The nontherapeutic use of prescription medicines by individuals involved in sport is increasing. Anabolic-androgenic steroids (AAS) are the most widely abused drug. Much of our knowledge of the psychological and physiological effects of human growth hormone (hGH) and insulin has been learned from deficiency states. As a consequence of the Internet revolution, previously unobtainable and expensive designer drugs, particularly recombinant human growth hormone (rhGH) and insulin, have become freely available at ridiculously discounted prices from countries such as China and are being abused. These drugs have various physiological and psychological effects and medical personnel must become aware that such prescription medicine abuse appears to be used not only for performance and cosmetic reasons, but as a consequence of psychological pre-morbidity. PMID:18827854

  17. Insulin-like growth factor (IGF) binding protein enhances the biologic response to IGF-I

    SciTech Connect

    Elgin, R.G.; Busby, H.W. Jr.; Clemmons, D.R.

    1987-05-01

    The insulin-like growth factors IGF-I and IGF-II circulate in blood bound to carrier proteins. The higher molecular mass IGF-binding protein complex (150 kDa) is composed of subunits, and one subunits that forms this complex is growth hormone dependent. In addition, many cell types and tissues secrete another form of IGF binding protein that is not growth hormone dependent. Both forms of the IGF binding protein are believed to inactivate the IGFs and to function as delivery systems to tissues. This conclusion was based on studies that determined the effects of impure preparations of these binding proteins or that examined the effect of these proteins only on the insulin-like actions of the IGFs. The authors report here that a pure preparation of the extracellular form of the IGF binding protein (purified from human amniotic fluid) markedly potentiated replication of several cell types in response to human IGF-I. Secondary cultures of human, mouse, and chicken embryo fibroblasts as well as porcine aortic smooth muscle cells showed marked enhancement of their DNA synthesis response to IGF-I in the presence of this protein. The binding protein not only potentiated the DNA synthesis response but also enhanced the increase in cell number in response to IGF-I. This stimulation is specific for growth factors that bind to the binding protein since incubation with insulin, which binds to the type I IGF receptor but not to the binding protein, did not result in potentiation of this response. They conclude that a form of IGF binding protein that is present in extracellular fluids and is secreted by many types of cells can markedly potentiate the cellular response to IGF-I.

  18. Ontogenic development of antidiuretic hormone receptors in rat kidney: comparison of hormonal binding and adenylate cyclase activation.

    PubMed

    Rajerison, R M; Butlen, D; Jard, S

    1976-03-01

    The development of adenylate cyclase responsiveness to vasopressin and parathyroid hormone was studied using membrane fractions prepared from medullo-papillary and cortical portions of kidneys of 2-46-day-old rats. The development of vasopressin binding capacity was followed on the same preparations, using [3H]vasopressin. The characteristics of medullo-papillary adenylate cyclase response to vasopressin were identical in young and adult control animals as regards apparent Km values for [Lys8]vasopressin (3 X 10(-8) M), specificity towards the natural neurohypophysial peptides and the effects of Mg2+. However, the magnitude of maximal enzyme activation by vasopressin was much lower in very young than adult animals. Accordingly vasopressin responsiveness increased sharply between the 10th and 25th days but the magnitude of the maximal response only reached the adult value between the 30th and 45th days after birth. During both periods basal adenylate cyclase activity was almost independent of age. Specific vasopressin binding sites were detected on kidney medullo-papillary membranes from young animals. Vasopressin binding capacity and adenylate cyclase responsiveness to the hormone followed similar development patterns. However, the appearance of specific binding sites slightly preceded the onset of adenylate cyclase responsiveness. Basal cortical adenylate cyclase activity/mg protein was 12 times higher in 2-day-old rats than in the adult controls. It dropped with age but only fell to the adult value between the 25th and the 35th days after birth. For the youngest animals tested (2 days old), the increase in activity due to parathyroid hormone was about half the increase measured in adults, and gradually rose to about 75% of the adult response between the 2nd and 46th days after birth. Apparent Km values for parathyroid hormone were identical in young and adult animals (3.2 and 3.0 U/ml, respectively).

  19. Regulation of skeletal muscle growth in fish by the growth hormone--insulin-like growth factor system.

    PubMed

    Fuentes, Eduardo N; Valdés, Juan Antonio; Molina, Alfredo; Björnsson, Björn Thrandur

    2013-10-01

    The growth hormone (GH)-insulin-like growth factor (IGF) system is the key promoter of growth in vertebrates; however, how this system modulates muscle mass in fish is just recently becoming elucidated. In fish, the GH induces muscle growth by modulating the expression of several genes belonging to the myostatin (MSTN), atrophy, GH, and IGF systems as well as myogenic regulatory factors (MRFs). The GH controls the expression of igf1 via Janus kinase 2 (JAK2)/signal transducers and activators of the transcription 5 (STAT5) signaling pathway, but it seems that it is not the major regulator. These mild effects of the GH on igf1 expression in fish muscle seem to be related with the presence of higher contents of truncated GH receptor1 (tGHR1) than full length GHR (flGHR1). IGFs in fish stimulate myogenic cell proliferation, differentiation, and protein synthesis through the MAPK/ERK and PI3K/AKT/TOR signaling pathways, concomitant with abolishing protein degradation and atrophy via the PI3K/AKT/FOXO signaling pathway. Besides these signaling pathways control the expression of several genes belonging to the atrophy and IGF systems. Particularly, IGFs and amino acid control the expression of igf1, thus, suggesting other of alternative signaling pathways regulating the transcription of this growth factor. The possible role of IGF binding proteins (IGFBPs) and the contribution of muscle-derived versus hepatic-produced IGF1 on fish muscle growth is also addressed. Thus, a comprehensive overview on the GH-IGF system regulating fish skeletal muscle growth is presented, as well as perspectives for future research in this field. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Plasma concentrations of luteinising hormone, follicle stimulating hormone, androgen, growth hormone, prolactin, thyroxine and triiodothyronine during growth and sexual development in the cockerel.

    PubMed

    Sterling, R J; Sharp, P J; Klandorf, H; Harvey, S; Lea, R W

    1984-07-01

    Changes in concentrations of plasma luteinising hormone (LH), follicle stimulating hormone (FSH), androgen, growth hormone (GH), prolactin (Prl), thyroxine (T4) and triiodothyronine (T3) were measured during growth and sexual maturation in broiler cockerels reared in continuous light to 7 weeks and 14 h light/d thereafter. Concentrations of LH and FSH began to increase between 13 and 15 weeks, while those of androgens increased between 16 and 17 weeks. FSH concentration increased faster than that of LH. Concentrations of GH and Prl were high at 3 weeks; that of GH decreasing progressively between 3 and 14 weeks of age and thereafter remaining low, while that of Prl was low between 5 and 9 weeks, relatively high between 10 and 13 weeks, and then temporarily decreasing before increasing progressively during sexual maturation. Concentrations of T3 and T4 were higher in juvenile than in adult birds.

  1. Prion disease: exponential growth requires membrane binding.

    PubMed

    Cox, Daniel L; Sing, Rajiv R P; Yang, Sichun

    2006-06-01

    A hallmark feature of prions, whether in mammals or yeast and fungi, is exponential growth associated with fission or autocatalysis of protein aggregates. We have employed a rigorous kinetic analysis to recent data from transgenic mice lacking a glycosylphosphatidylinositol membrane anchor to the normal cellular PrP(C) protein, which show that toxicity requires the membrane binding. We find as well that the membrane is necessary for exponential growth of prion aggregates; without it, the kinetics is simply the quadratic-in-time growth characteristic of linear elongation as observed frequently in in vitro amyloid growth experiments with other proteins. This requires both: i), a substantial intercellular concentration of anchorless PrP(C), and ii), a concentration of small scrapies seeding aggregates from the inoculum, which remains relatively constant with time and exceeds the concentration of large polymeric aggregates. We also can explain via this analysis why mice heterozygous for the anchor-full/anchor-free PrP(C) proteins have more rapid incubation than mice heterozygous for anchor-full/null PrP(C), and contrast the mammalian membrane associated fission or autocatalysis with the membrane free fission of yeast and fungal prions.

  2. Allosteric Modulation of Hormone Release from Thyroxine and Corticosteroid-binding Globulins*

    PubMed Central

    Qi, Xiaoqiang; Loiseau, François; Chan, Wee Lee; Yan, Yahui; Wei, Zhenquan; Milroy, Lech-Gustav; Myers, Rebecca M.; Ley, Steven V.; Read, Randy J.; Carrell, Robin W.; Zhou, Aiwu

    2011-01-01

    The release of hormones from thyroxine-binding globulin (TBG) and corticosteroid-binding globulin (CBG) is regulated by movement of the reactive center loop in and out of the β-sheet A of the molecule. To investigate how these changes are transmitted to the hormone-binding site, we developed a sensitive assay using a synthesized thyroxine fluorophore and solved the crystal structures of reactive loop cleaved TBG together with its complexes with thyroxine, the thyroxine fluorophores, furosemide, and mefenamic acid. Cleavage of the reactive loop results in its complete insertion into the β-sheet A and a substantial but incomplete decrease in binding affinity in both TBG and CBG. We show here that the direct interaction between residue Thr342 of the reactive loop and Tyr241 of the hormone binding site contributes to thyroxine binding and release following reactive loop insertion. However, a much larger effect occurs allosterically due to stretching of the connecting loop to the top of the D helix (hD), as confirmed in TBG with shortening of the loop by three residues, making it insensitive to the S-to-R transition. The transmission of the changes in the hD loop to the binding pocket is seen to involve coherent movements in the s2/3B loop linked to the hD loop by Lys243, which is, in turn, linked to the s4/5B loop, flanking the thyroxine-binding site, by Arg378. Overall, the coordinated movements of the reactive loop, hD, and the hormone binding site allow the allosteric regulation of hormone release, as with the modulation demonstrated here in response to changes in temperature. PMID:21325280

  3. Thyroid hormone regulation of epidermal growth factor receptor levels in mouse mammary glands

    SciTech Connect

    Vonderhaar, B.K.; Tang, E.; Lyster, R.R.; Nascimento, M.C.

    1986-08-01

    The specific binding of iodinated epidermal growth factor ((/sup 125/I)iodo-EGF) to membranes prepared from the mammary glands and spontaneous breast tumors of euthyroid and hypothyroid mice was measured in order to determine whether thyroid hormones regulate the EGF receptor levels in vivo. Membranes from hypothyroid mammary glands of mice at various developmental ages bound 50-65% less EGF than those of age-matched euthyroid controls. Treatment of hypothyroid mice with L-T4 before killing restored binding to the euthyroid control level. Spontaneous breast tumors arising in hypothyroid mice also bound 30-40% less EGF than tumors from euthyroid animals even after in vitro desaturation of the membranes of endogenous growth factors with 3 M MgCl2 treatment. The decrease in binding in hypothyroid membranes was due to a decrease in the number of binding sites, not to a change in affinity of the growth factor for its receptor, as determined by Scatchard analysis of the binding data. Both euthyroid and hypothyroid membranes bound EGF primarily to a single class of high affinity sites (dissociation constant (Kd) = 0.7-1.8 nM). Euthyroid membranes bound 28.4 +/- (SE) 0.6 fmol/mg protein, whereas hypothyroid membranes bound 15.5 +/- 1.0 fmol/mg protein. These data indicate that EGF receptor levels in normal mammary glands and spontaneous breast tumors in mice are subject to regulation by thyroid status.

  4. Cancer vaccines for hormone/growth factor immune deprivation: a feasible approach for cancer treatment.

    PubMed

    González, G; Lage, A

    2007-05-01

    One of the older and most validated cancer treatments is endocrine therapy. Some tumors are dependent on hormone stimulation for growth, and therefore therapeutic interventions aiming to deprive the cells of the hormone are feasible and have been successful. Tumor growth also depends in some cases on growth factors, so that the concept of hormone-dependence can be extended to growth factors deprivation. Hormone deprivation has been therapeutically achieved up to now by surgical, radiation and chemical means. However, the immune system usually can be manipulated to recognize hormones and growth factors, and in fact some autoimmune diseases exists involving autoantibodies against hormones. The idea of inducing a deprivation of hormones and growth factors by active immunizations is appealing, and initial evidence about the feasibility of this approach is starting to appear in the literature. Clinical trials have been initiated using immunization with human chorionic gonadotrophin (hCG), gastrin, luteinizing hormone releasing hormone (LHRH) / gonadotropin releasing hormone (GnRH) and epidermal growth factor (EGF). Preliminary data already show that antibody titers can be elicited, which results in a decrease in the concentration of a given hormone or growth factor. Both the antibody titers and the decrease in the hormone level are related to survival. This immunological approach for hormone and growth factor deprivation creates the possibility of chronic management of advanced cancer patients.

  5. Phthalate exposure and reproductive hormones and sex-hormone binding globulin before puberty - Phthalate contaminated-foodstuff episode in Taiwan.

    PubMed

    Wen, Hui-Ju; Chen, Chu-Chih; Wu, Ming-Tsang; Chen, Mei-Lien; Sun, Chien-Wen; Wu, Wen-Chiu; Huang, I-Wen; Huang, Po-Chin; Yu, Tzu-Yun; Hsiung, Chao A; Wang, Shu-Li

    2017-01-01

    In May 2011, a major incident involving phthalates-contaminated foodstuffs occurred in Taiwan. Di-(2-ethylhexyl) phthalate (DEHP) was added to foodstuffs, mainly juice, jelly, tea, sports drink, and dietary supplements. Concerns arose that normal pubertal development, especially reproductive hormone regulation in children, could be disrupted by DEHP exposure. To investigate the association between phthalate exposure and reproductive hormone levels among children following potential exposure to phthalate-tainted foodstuffs. A total of 239 children aged <12 years old were recruited from 3 hospitals in north, central, and south Taiwan after the episode. Structured questionnaires were used to collect the frequency and quantity of exposures to 5 categories of phthalate-contaminated foodstuffs to assess phthalate exposure in children. Urine samples were collected for the measurement of phthalate metabolites. The estimated daily intake of DEHP exposure at the time of the contamination incident occurred was calculated using both questionnaire data and urinary DEHP metabolite concentrations. Multiple regression analyses were applied to assess associations between phthalate exposure and reproductive hormone levels in children. After excluding children with missing data regarding exposure levels and hormone concentrations and girls with menstruation, 222 children were included in the statistical analyses. After adjustment for age and birth weight, girls with above median levels of urinary mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-oxohexyl) phthalate, and sum of mono-(2-ethylhexyl) phthalate concentrations had higher odds of above median follicle-stimulating hormone concentrations. Girls with above median estimated average daily DEHP exposures following the contamination episode also had higher odds of sex hormone-binding globulin above median levels. Phthalate exposure was associated with alterations of reproductive hormone levels in girls.

  6. Regulation of growth hormone secretion by (pro)renin receptor.

    PubMed

    Tani, Yuji; Yamada, Shozo; Inoshita, Naoko; Hirata, Yukio; Shichiri, Masayoshi

    2015-06-03

    (Pro)renin receptor (PRR) has a single transmembrane domain that co-purifies with the vacuolar H(+)-ATPase (V-ATPase). In addition to its role in cellular acidification, V-ATPase has been implicated in membrane fusion and exocytosis via its Vo domain. Results from the present study show that PRR is expressed in pituitary adenoma cells and regulates growth hormone (GH) release via V-ATPase-induced cellular acidification. Positive PRR immunoreactivity was detected more often in surgically resected, growth hormone-producing adenomas (GHomas) than in nonfunctional pituitary adenomas. GHomas strongly expressing PRR showed excess GH secretion, as evidenced by distinctly high plasma GH and insulin-like growth factor-1 levels, as well as an elevated nadir GH in response to the oral glucose tolerance test. Suppression of PRR expression in rat GHoma-derived GH3 cells using PRR siRNA resulted in reduced GH secretion and significantly enhanced intracellular GH accumulation. GH3 treatment with bafilomycin A1, a V-ATPase inhibitor, also blocked GH release, indicating mediation via impaired cellular acidification of V-ATPase. PRR knockdown decreased Atp6l, a subunit of the Vo domain that destabilizes V-ATPase assembly, increased intracellular GH, and decreased GH release. To our knowledge, this is the first report demonstrating a pivotal role for PRR in a pituitary hormone release mechanism.

  7. Growth hormone, enhancement and the pharmaceuticalisation of short stature.

    PubMed

    Morrison, Michael

    2015-04-01

    This paper takes the biological drug human Growth Hormone (hGH) as a case study to investigate processes of pharmaceuticalisation and medicalisation in configuring childhood short stature as a site for pharmaceutical intervention. Human growth hormone is considered to have legitimate applications in treating childhood growth hormone deficiency and short stature associated with other recognised conditions. It is also regarded by bioethicists and others as a form of human biomedical enhancement when applied to children with idiopathic or 'normal' short stature. The purpose of this study is not to evaluate whether treatment of idiopathic short stature is enhancement or not, but to evaluate how some applications of hGH in treating short stature have come to be accepted and stabilised as legitimate 'therapies' while others remain contested as 'enhancements'. A comparative, historical approach is employed, drawing on approaches from medical sociology and Science and Technology Studies (STS) to set out a socio-technical history of hGH in the US and UK. Through this history the relative influence and interplay of drivers of pharmaceuticalisation, including industry marketing and networks of drug distribution, and processes of medicalisation will be employed to address this question and simultaneously query the value of enhancement as a sociological concept.

  8. Isolated growth hormone deficiency type 2: from gene to therapy.

    PubMed

    Miletta, Maria Consolata; Lochmatter, Didier; Pektovic, Vibor; Mullis, Primus-E

    2012-01-01

    Isolated growth hormone deficiency type-2 (IGHD-2), the autosomal-dominant form of GH deficiency, is mainly caused by specific splicing mutations in the human growth hormone (hGH) gene (GH-1). These mutations, occurring in and around exon 3, cause complete exon 3 skipping and produce a dominant-negative 17.5 kD GH isoform that reduces the accumulation and secretion of wild type-GH (wt-GH). At present, patients suffering from IGHD-2 are treated with daily injections of recombinant human GH (rhGH) in order to reach normal height. However, this type of replacement therapy, although effective in terms of growth, does not prevent toxic effects of the 17.5-kD mutant on the pituitary gland, which can eventually lead to other hormonal deficiencies. Considering a well-known correlation between the clinical severity observed in IGHD-2 patients and the increased expression of the 17.5-kD isoform, therapies that specifically target this isoform may be useful in patients with GH-1 splicing defects. This chapter focuses on molecular strategies that could represent future directions for IGHD-2 treatment.

  9. Development of predictive models for predicting binding affinity of endocrine disrupting chemicals to fish sex hormone-binding globulin.

    PubMed

    Liu, Huihui; Yang, Xianhai; Yin, Cen; Wei, Mengbi; He, Xiao

    2017-02-01

    Disturbing the transport process is a crucial pathway for endocrine disrupting chemicals (EDCs) exerting disrupting endocrine function. However, this mechanism has not received enough attention compared with that of hormones receptors and synthetase. Recently, we have explored the interaction between EDCs and sex hormone-binding globulin of human (hSHBG). In this study, interactions between EDCs and sex hormone-binding globulin of eight fish species (fSHBG) were investigated by employing classification methods and quantitative structure-activity relationships (QSAR). In the modeling, the relative binding affinity (RBA) of a chemical with 17β-estradiol binding to fSHBG was selected as the endpoint. Classification models were developed for two fish species, while QSAR models were established for the other six fish species. Statistical results indicated that the models had satisfactory goodness of fit, robustness and predictive ability, and that application domain covered a large number of endogenous and exogenous steroidal and non-steroidal chemicals. Additionally, by comparing the log RBA values, it was found that the same chemical may have different affinities for fSHBG from different fish species, thus species diversity should be taken into account. However, the affinity of fSHBG showed a high correlation for fishes within the same Order (i.e., Salmoniformes, Cypriniformes, Perciformes and Siluriformes), thus the fSHBG binding data for one fish species could be used to extrapolate other fish species in the same Order.

  10. Insulin-like growth factor 1: common mediator of multiple enterotrophic hormones and growth factors

    PubMed Central

    Bortvedt, Sarah F.; Lund, P. Kay

    2013-01-01

    Purpose of review To summarize recent evidence that IGF1 mediates growth effects of multiple trophic factors and discuss clinical relevance. Recent findings Recent reviews and original reports indicate benefits of growth hormone (GH) and long-acting glucagon-like peptide 2 (GLP2) analogues in short bowel syndrome and Crohn’s disease. This review highlights evidence that biomarkers of sustained small intestinal growth or mucosal healing and evaluation of intestinal epithelial stem cell biomarkers may improve clinical measures of intestinal growth or response to trophic hormones. Compelling evidence that IGF1 mediates growth effects of GH and GLP2 on intestine or linear growth in preclinical models of resection or Crohn’s disease is presented, along with a concept that these hormones or IGF1 may enhance sustained growth if given early after bowel resection. Evidence that SOCS protein induction by GH or GLP2 in normal or inflamed intestine, may limit IGF1-induced growth, but protect against risk of dysplasia or fibrosis is reviewed. Whether IGF1 receptor mediates IGF1 action and potential roles of insulin receptors are addressed. Summary IGF1 has a central role in mediating trophic hormone action in small intestine. Better understanding of benefits and risks of IGF1, receptors that mediate IGF1 action, and factors that limit undesirable growth are needed. PMID:22241077

  11. [Growth hormone in adults. An elixir of youth?].

    PubMed

    Rainfray, M; Hamon-Vilcot, B; Cnockaert, X; Pellerin, J; Bouillanne, O; Durand, D; Piette, F

    1995-01-01

    Studies have revealed a partial deficiency of growth hormone (GH) secretion in the elderly. Aging has a central effect on the GH secretion and probably a peripheral effect on insulin-like growth factor 1 (IGF-1) or somatomedin C through changes in body composition. Simultaneously therapeutic efficiency of recombinant GH was confirmed in adults with GH deficiency. These notions have led to some controlled trials of GH treatment in elderly. Further studies of GH replacement are needed, examining issues such as dosage, tolerance (still inadequate) and efficacy before the widespread use of GH or IGH-F 1 in the elderly is advocated.

  12. The contribution of growth hormone to mammary neoplasia

    PubMed Central

    Perry, Jo K; Mohankumar, Kumarasamypet M; Emerald, B Starling; Mertani, Hichem C; Lobie, Peter E

    2008-01-01

    While the effects of growth hormone (GH) on longitudinal growth are well established, the observation that GH contributes to neoplastic progression is more recent. Accumulating literature implicates GH-mediated signal transduction in the development and progression of a wide range malignancies including breast cancer. Recently autocrine human GH been demonstrated to be an orthotopically expressed oncogene for the human mammary gland. This review will highlight recent evidence linking GH and mammary carcinoma and discuss GH-antagonism as a potential therapeutic approach for treatment of breast cancer. PMID:18253708

  13. Initiating growth hormone therapy for children and adolescents.

    PubMed

    Acerini, Carlo; Albanese, Assunta; Casey, Angela; Denvir, Louise; Jones, Julie; Mathew, Verghese; Musson, Pauline; Sparrow, Susan

    It is common for children and adolescents on growth hormone (GH) treatment to miss one or more injections per week, thereby compromising their linear growth outcome. Among factors likely to affect treatment concordance are patient education and support in the selection of the most appropriate GH injection device. The authors discovered inconsistencies in the process of starting patients on GH therapy throughout the UK, and found that there were no clinical recommendations to support health professionals starting patients on treatment. This article describes the issues involved and the development of practical recommendations for use when starting paediatric patients on long-term GH therapy.

  14. Acute handling disturbance modulates plasma insulin-like growth factor binding proteins in rainbow trout (Oncorhynchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    The effects of acute stressor exposure on proximal (growth hormone; GH) and distal (insulin-like growth factor-I; IGF-I and IGF-binding proteins) components of the somatotropic axis are poorly understood in finfish. We exposed rainbow trout (Oncorhynchus mykiss) to a 5-minute handling disturbance to...

  15. Hormonal modulation of brain tumour growth: a cell culture study.

    PubMed

    Gibelli, N; Zibera, C; Butti, G; Assietti, R; Sica, G; Scerrati, M; Iacopino, F; Roselli, R; Paoletti, P; Robustelli della Cuna, G

    1989-01-01

    Tissue samples derived from two neuroepithelial tumours and five meningiomas were obtained at surgery from seven patients and cultured in order to study the effect of dexamethasone (DEX) and testosterone acetate (TA) on cell proliferation. Glucocorticoid and androgen receptors (GR, AR) were determined both on tissue samples (7 cases) and on five out of the seven cell cultures obtained by tumours. GR and AR were present respectively in 5 and in 4 out of the tumour specimens assayed and in 4/5 and 2/3 of the tested cell cultures. DEX activity on cell growth was tested on six cell cultures. Four of them showed a significant growth inhibition at the highest drug concentration. On the contrary, a significant growth stimulation was observed in four out of the five cultures, where GR were present, using low hormone concentrations. Treatment with pharmacological doses of TA caused a significant cytotoxicity in all the tested cultures. Low TA concentrations inhibited cell growth in one out of the two cell cultures which contained AR, but were ineffective in cultures lacking AR. Our preliminary results suggest a possible role in growth regulation by DEX and TA in intracranial tumours, on the basis of the presence of specific hormone receptors.

  16. Ovariectomy attenuates dendritic growth in hormone-sensitive spinal motoneurons.

    PubMed

    Hebbeler, S L; Verhovshek, T; Sengelaub, D R

    2001-09-15

    The lumbar spinal cord of rats contains the sexually dimorphic, steroid-sensitive spinal nucleus of the bulbocavernosus (SNB). Dendritic development of SNB motoneurons in male rats is biphasic, initially showing exuberant growth through 4 weeks of age followed by a retraction to mature lengths by 7 weeks of age. The initial growth is steroid dependent, attenuated by castration or aromatase inhibition, and supported by hormone replacement. Dendritic retraction is also steroid sensitive and can be prevented by testosterone treatment, but is unaffected by aromatase inhibition. Together, these results suggest a role for estrogens during the initial growth phase of SNB development. In this study, we tested whether ovarian hormones could support SNB somal and dendritic development. Motoneuron morphology was assessed in normal males and in females perinatally masculinized with dihydrotestosterone and then either ovariectomized or left intact. SNB motoneurons were retrogradely labeled with cholera toxin-HRP at 4 or 7 weeks of age and reconstructed in three dimensions. Initial growth of SNB dendrites was reduced after ovariectomy in masculinized females. However, no differences in dendritic length were seen at 7 weeks of age between intact and ovariectomized masculinized females, and lengths in both groups were significantly lower than those of normal males. Together with previous findings, these results suggest that estrogens are involved in the early growth of SNB dendrites, but not in their subsequent retraction.

  17. Growth hormone activation of Stat 1, Stat 3, and Stat 5 in rat liver. Differential kinetics of hormone desensitization and growth hormone stimulation of both tyrosine phosphorylation and serine/threonine phosphorylation.

    PubMed

    Ram, P A; Park, S H; Choi, H K; Waxman, D J

    1996-03-08

    Intermittent plasma growth hormone (GH) pulses, which occur in male but not female rats, activate liver Stat 5 by a mechanism that involves tyrosine phosphorylation and nuclear translocation of this latent cytoplasmic transcription factor (Waxman, D. J., Ram, P. A., Park, S. H., and Choi, H. K. (1995) J. Biol. Chem. 270, 13262-13270). We demonstrate that physiological levels of GH can also activate Stat 1 and Stat 3 in liver tissue, but with a dependence on the dose of GH and its temporal plasma profile that is distinct from Stat 5 and with a striking desensitization following a single hormone pulse that is not observed with liver Stat 5. GH activation of the two groups of Stats leads to their selective binding to DNA response elements upstream of the c-fos gene (c-sis-inducible enhancer element; Stat 1 and Stat 3 binding) and the beta-casein gene (mammary gland factor element; liver Stat 5 binding). In addition to tyrosine phosphorylation, GH is shown to stimulate phosphorylation of these Stats on serine or threonine in a manner that either enhances (Stat 1 and Stat 3) or substantially alters (liver Stat 5) the binding of each Stat to its cognate DNA response element. These findings establish the occurrence of multiple, Stat-dependent GH signaling pathways in liver cells that can target distinct genes and thereby contribute to the diverse effects that GH and its sexually dimorphic plasma profile have on liver gene expression.

  18. The glucocorticoid receptor hormone binding domain mediates transcriptional activation in vitro in the absence of ligand.

    PubMed Central

    Schmitt, J; Stunnenberg, H G

    1993-01-01

    We show that recombinant rat glucocorticoid receptor (vvGR) expressed using vaccinia virus is indistinguishable from authentic GR with respect to DNA and hormone binding. In the absence of hormone, vvGR is mainly found in the cytoplasm in a complex with heat shock protein 90. Upon incubation with ligand, vvGR is released from this complex and translocated to the nucleus. Thus, the ligand binding domain displays the known biochemical properties. However, in vitro, transcription from a synthetic promoter and from the mouse mammary tumor virus (MMTV) promoter is enhanced by recombinant GR in a ligand independent manner. Both transactivation domains contribute to the transcriptional activity, additively on a synthetic promoter and cooperatively on the MMTV promoter. We thus provide the first evidence that in vitro the hormone binding domain has a transcriptional activity even in the absence of ligand. Images PMID:8392705

  19. A potassium current evoked by growth hormone-releasing hormone in follicular oocytes of Xenopus laevis.

    PubMed Central

    Yoshida, S; Plant, S

    1991-01-01

    1. Electrophysiological properties of the growth hormone-releasing hormone (GRH) receptor were studied in Xenopus oocytes with an intact follicle cell layer (i.e. follicular oocytes) by measuring whole-cell current using the two-electrode voltage-clamp method. 2. A slow transient outward current was elicited in oocytes, clamped at -60 mV, by the application of rat GRH but not bovine, porcine, or human GRH. 3. The response to GRH was not suppressed by blockers known to inhibit other endogenous receptors present in follicular Xenopus oocytes; blockers used were timolol (2 microM; beta-adrenergic blocker), theophylline (0.1 mM; purinergic blocker) and atropine (100 nM; muscarinic blocker). 4. The current response evoked by rat GRH occurred in a dose-dependent manner. The concentrations of GRH for threshold and maximum responses were 1 and 100 nM respectively and the estimated EC50 (half-maximal effective concentration) was approximately 7 nM. The amplitude and conductance of the response became larger and the latency, time-to-peak and half-decay time were shortened when the concentration of GRH was increased. 5. The GRH response was reversibly inhibited by a K+ channel blocker, tetraethylammonium+ (TEA+; 20 mM). The reversal potential for the GRH response was around -100 mV and was compatible with the reported value for a K+ current in Xenopus oocytes. Furthermore, a depolarizing shift of 40 mV in the reversal potential was observed when the external K+ concentration was increased from 2 to 10 mM, agreeing with the Nernst equation. In contrast, no significant shift in the reversal potential was observed by changing the external concentration of Na+ or Cl-. 6. The GRH response was not suppressed in oocytes treated with an acetoxy-methyl ester of bis-(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA/AM; 10 microM) which penetrates the cell membrane and chelates internal Ca2+. 7. The GRH response was potentiated by pre-treatment with forskolin (0.4 microM; 5 min

  20. Search for novel therapies for triple negative breast cancers (TNBC): analogs of luteinizing hormone-releasing hormone (LHRH) and growth hormone-releasing hormone (GHRH).

    PubMed

    Buchholz, Stefan; Seitz, Stephan; Engel, Jörg B; Montero, Alberto; Ortmann, Olaf; Perez, Roberto; Block, Norman L; Schally, Andrew V

    2012-04-01

    Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype that is clinically negative for the expression of estrogen and progesterone receptors (ER/PR) and human epidermal growth factor receptor-2 (HER2). Patients with TNBC have a worse clinical outcome, as measured by time to metastasis and median overall survival. Chemotherapy has been the mainstay of treatment of TNBC but responses are disappointing. A substantial proportion of TNBC expresses luteinizing hormone-releasing hormone (LHRH), receptors for LHRH, in addition to receptors for growth hormone-releasing hormone (GHRH). These receptors represent potential therapeutic targets. Potent antagonists of GHRH and LHRH receptors have been developed in recent years and these antagonists inhibit the growth, tumorigenicity and metastatic potential of various human experimental malignancies. These antagonists could be utilized for the treatment of TNBC. The targeted cytotoxic analog of LHRH, AN-152 (AEZS-108) containing doxorubicin, must also be strongly considered for therapy of TNBC. Experimental studies suggest the merit of clinical trials with LHRH antagonists and AEZS-108 in TNBC patients.

  1. Evaluation of growth hormone release and human growth hormone treatment in children with cranial irradiation-associated short stature

    SciTech Connect

    Romshe, C.A.; Zipf, W.B.; Miser, A.; Miser, J.; Sotos, J.F.; Newton, W.A.

    1984-02-01

    We studied nine children who had received cranial irradiation for various malignancies and subsequently experienced decreased growth velocity. Their response to standard growth hormone stimulation and release tests were compared with that in seven children with classic GH deficiency and in 24 short normal control subjects. With arginine and L-dopa stimulation, six of nine patients who received radiation had a normal GH response (greater than 7 ng/ml), whereas by design none of the GH deficient and all of the normal children had a positive response. Only two of nine patients had a normal response to insulin hypoglycemia, with no significant differences in the mean maximal response of the radiation and the GH-deficient groups. Pulsatile secretion was not significantly different in the radiation and GH-deficient groups, but was different in the radiation and normal groups. All subjects in the GH-deficient and radiation groups were given human growth hormone for 1 year. Growth velocity increased in all, with no significant difference in the response of the two groups when comparing the z scores for growth velocity of each subject's bone age. We recommend a 6-month trial of hGH in children who have had cranial radiation and are in prolonged remission with a decreased growth velocity, as there is no completely reliable combination of GH stimulation or release tests to determine their response.

  2. Growth hormone-releasing hormone disruption extends lifespan and regulates response to caloric restriction in mice

    PubMed Central

    Sun, Liou Y; Spong, Adam; Swindell, William R; Fang, Yimin; Hill, Cristal; Huber, Joshua A; Boehm, Jacob D; Westbrook, Reyhan; Salvatori, Roberto; Bartke, Andrzej

    2013-01-01

    We examine the impact of targeted disruption of growth hormone-releasing hormone (GHRH) in mice on longevity and the putative mechanisms of delayed aging. GHRH knockout mice are remarkably long-lived, exhibiting major shifts in the expression of genes related to xenobiotic detoxification, stress resistance, and insulin signaling. These mutant mice also have increased adiponectin levels and alterations in glucose homeostasis consistent with the removal of the counter-insulin effects of growth hormone. While these effects overlap with those of caloric restriction, we show that the effects of caloric restriction (CR) and the GHRH mutation are additive, with lifespan of GHRH-KO mutants further increased by CR. We conclude that GHRH-KO mice feature perturbations in a network of signaling pathways related to stress resistance, metabolic control and inflammation, and therefore provide a new model that can be used to explore links between GHRH repression, downregulation of the somatotropic axis, and extended longevity. DOI: http://dx.doi.org/10.7554/eLife.01098.001 PMID:24175087

  3. Clinical practice. Fibroblast growth factor (FGF)23: a new hormone.

    PubMed

    Alon, Uri S

    2011-05-01

    Until a decade ago, two main hormones were recognized as directly affecting phosphate homeostasis and, with that, bone metabolism: parathyroid hormone and 1,25(OH)(2) vitamin D (calcitriol). It was only a decade ago that the third major player hormone was found, linking gut, bone, and kidney. The physiologic role of fibrinogen growth factor (FGF)23 is to maintain serum phosphate concentration within a narrow range. Secreted from osteocytes, it modulates kidney handling of phosphate reabsorption and calcitriol production. Genetic and acquired abnormalities in FGF23 structure and metabolism cause conditions of either hyper-FGF23-manifested by hypophosphatemia, low serum calcitriol, and rickets/osteomalacia-or hypo-FGF23, expressed by hyperphosphatemia, high serum calcitriol, and extra-skeletal calcifications. In patients with chronic renal failure, FGF23 levels increase as kidney functions deteriorate and are under investigation to learn if the hormone actually participates in the pathophysiology of the deranged bone and mineral metabolism typical for these patients and, if so, whether it might serve as a therapeutic target. This review addresses the physiology and pathophysiology of FGF23 and its clinical applications.

  4. Growth Hormone Induces Recurrence of Infantile Hemangiomas After Apparent Involution: Evidence of Growth Hormone Receptors in Infantile Hemangioma.

    PubMed

    Munabi, Naikhoba C O; Tan, Qian Kun; Garzon, Maria C; Behr, Gerald G; Shawber, Carrie J; Wu, June K

    2015-01-01

    Infantile hemangiomas (IHs) are the most common benign tumor of infancy, characterized by a natural history of early proliferation in the first months of life to eventual involution during childhood, often with residual fibrofatty tissue. Once involution has been achieved, IHs do not typically recur. We present two cases of exogenous growth hormone therapy resulting in the recurrence of IHs in late childhood, supported by radiological, immunohistochemical, in vitro, and in vivo evidence.

  5. Gibberellins - a multifaceted hormone in plant growth regulatory network.

    PubMed

    Gantait, Saikat; Sinniah, Uma Rani; Ali, Md Nasim; Sahu, Narayan Chandra

    2015-01-01

    Plants tend to acclimatize to unfavourable environs by integrating growth and development to environmentally activated signals. Phytohormones strongly regulate convergent developmental and stress adaptive procedures and synchronize cellular reaction to the exogenous and endogenous conditions within the adaptive signaling networks. Gibberellins (GA), a group of tetracyclic diterpenoids, being vital regulators of plant growth, are accountable for regulating several aspects of growth and development of higher plants. If the element of reproduction is considered as an absolute requisite then for a majority of the higher plants GA signaling is simply indispensable. Latest reports have revealed unique conflicting roles of GA and other phytohormones in amalgamating growth and development in plants through environmental signaling. Numerous physiological researches have detailed substantial crosstalk between GA and other hormones like abscisic acid, auxin, cytokinin, and jasmonic acid. In this review, a number of explanations and clarifications for this discrepancy are explored based on the crosstalk among GA and other phytohormones.

  6. Growth hormone deficiency in children and young adults.

    PubMed

    Oświęcimska, Joanna; Roczniak, Wojciech; Mikołajczak, Agata; Szymlak, Agnieszka

    2016-09-13

    Growth hormone (GH) is a naturally occurring polypeptide hormone produced by somatotropic cells in the anterior pituitary. The main function of somatotropin is stimulation of linear growth, but it also affects carbohydrate metabolism, increases bone mass and has potent lipolytic, antinatriuretic and antidiuretic effects. Growth hormone deficiency (GHD) may occur both in children and in adults. At the moment there is no gold standard for the diagnosis of GHD, and the diagnosis should take into account clinical, auxological, biochemical and radiological changes and, if necessary, genetic testing. Recent studies have highlighted that the biochemical diagnosis of GH deficiency is still imperfect. Stimuli used in the tests are non-physiological, and various substances are characterized by a different mechanism of action and potency. A few years ago it was thought that GHD treatment in children must be completed at the end of linear growth. Studies performed in the last two decades have shown that GHD deficiency in adults may result in complex clinical problems, and if untreated shortens the life expectancy and worsens its comfort. Discontinuation of GH therapy after the final height has been reached in fact negatively impacts the physiological processes associated with the transition phase, which is the period of human life between achieving the final height and 25-30 years of age. Given the adverse metabolic effects of GH treatment interruption after linear growth has been completed, the latest recommendations propose reassessment of GH secretion in the period at least one month after cessation of treatment and continuation of the therapy in case of persistent deficit.

  7. Dramatic growth of mice that develop from eggs microinjected with metallothionein–growth hormone fusion genes

    PubMed Central

    Palmiter, Richard D.; Brinster, Ralph L.; Hammer, Robert E.; Trumbauer, Myrna E.; Rosenfeld, Michael G.; Birnberg, Neal C.; Evans, Ronald M.

    2016-01-01

    A DNA fragment containing the promoter of the mouse metallothionein-I gene fused to the structural gene of rat growth hormone was microinjected into the pronuclei of fertilized mouse eggs. Of 21 mice that developed from these eggs, seven carried the fusion gene and six of these grew significantly larger than their littermates. Several of these transgenic mice had extraordinarily high levels of the fusion mRNA in their liver and growth hormone in their serum. This approach has implications for studying the biological effects of growth hormone, as a way to accelerate animal growth, as a model for gigantism, as a means of correcting genetic disease, and as a method of farming valuable gene products. PMID:6958982

  8. Effects of growth hormone administration in pediatric renal allograft recipients.

    PubMed

    Bartosh, S; Kaiser, B; Rezvani, I; Polinsky, M; Schulman, S; Palmer, J; Baluarte, H J

    1992-01-01

    The efficacy of recombinant human growth hormone (rGH) was assessed in five pediatric allograft recipients with severe growth retardation despite successful renal transplants. rGH 0.05 mg/kg per dose was given six times weekly by subcutaneous injection to five prepubertal children (mean age 15.2 +/- 2.0 years) all of whom had bone ages less than or equal to 12 years (10.0 +/- 1.4 years), a height standard deviation score of less than -2.5 (-4.9 +/- 1.5), no evidence of catch-up growth, a calculated glomerular filtration rate (GFR) of more than 40 ml/min per 1.73 m2 (51 +/- 6.8 ml/min per 1.73 m2), and stable renal function on alternate-day prednisone (16.7 +/- 2.6 mg/m2 per dose). Growth hormone profiles were abnormal in all children before treatment. rGH administration led to a significant increase in both growth rate (3.5 +/- 1.6 cm/year pre therapy, 8.5 +/- 1.4 cm/year post therapy, P less than 0.001) and percentage of expected growth velocity for bone age (67 +/- 31% pre therapy, 163 +/- 27% post therapy, P less than 0.001) with evidence of true catch-up growth. During the study period, three children had the appearance of secondary sexual characteristics, and one had premature advancement of his bone age. GFR decreased in three children, and in one rGH was discontinued due to a steady rise in serum creatinine. No significant changes were seen in serum calcium, phosphorus, cholesterol, triglycerides, glucose, or thyroid function, although a significant increase in alkaline phosphatase was found. In summary, growth-retarded pediatric renal allograft recipients may have abnormal endogenous GH production and respond favorably to rGH.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. All-atom structural models of insulin binding to the insulin receptor in the presence of a tandem hormone-binding element.

    PubMed

    Vashisth, Harish; Abrams, Cameron F

    2013-06-01

    Insulin regulates blood glucose levels in higher organisms by binding to and activating insulin receptor (IR), a constitutively homodimeric glycoprotein of the receptor tyrosine kinase (RTK) superfamily. Therapeutic efforts in treating diabetes have been significantly impeded by the absence of structural information on the activated form of the insulin/IR complex. Mutagenesis and photo-crosslinking experiments and structural information on insulin and apo-IR strongly suggest that the dual-chain insulin molecule, unlike the related single-chain insulin-like growth factors, binds to IR in a very different conformation than what is displayed in storage forms of the hormone. In particular, hydrophobic residues buried in the core of the folded insulin molecule engage the receptor. There is also the possibility of plasticity in the receptor structure based on these data, which may in part be due to rearrangement of the so-called CT-peptide, a tandem hormone-binding element of IR. These possibilities provide opportunity for large-scale molecular modeling to contribute to our understanding of this system. Using various atomistic simulation approaches, we have constructed all-atom structural models of hormone/receptor complexes in the presence of CT in its crystallographic position and a thermodynamically favorable displaced position. In the "displaced-CT" complex, many more insulin-receptor contacts suggested by experiments are satisfied, and our simulations also suggest that R-insulin potentially represents the receptor-bound form of hormone. The results presented in this work have further implications for the design of receptor-specific agonists/antagonists.

  10. Monoclonal antibodies against rabbit mammary prolactin receptors. Specific antibodies to the hormone binding domain

    SciTech Connect

    Katoh, M.; Djiane, J.; Kelly, P.A.

    1985-09-25

    Three monoclonal antibodies (M110, A82, and A917) were obtained by fusing myeloma cells and spleen cells from mice immunized with partially purified rabbit mammary gland prolactin (PRL) receptors. All 3 antibodies were capable of complete inhibition of SVI-ovine prolactin (oPRL) binding to rabbit mammary PRL receptors in either particulate or soluble form. M110 showed slightly greater potency than oPRL in competing for SVI-oPRL binding. These antibodies also inhibited PRL binding to microsomal fractions from rabbit liver, kidney, adrenal, ovary, and pig mammary gland, although A82 showed poor inhibition in pig mammary gland. There was no cross-reaction of any of the 3 monoclonal antibodies (mAbs) for the other species tested: human (T-47D breast cancer cells) and rat (liver, ovary). In order to confirm that these antibodies are specific to the binding domain, antibodies were purified, iodinated, and binding characteristics were investigated. SVI-M110 and SVI-A82 binding was completely inhibited by lactogenic hormones, whereas nonlactogenic hormones did not cross-react. Competition of 125I-M110 by oPRL was comparable to that of SVI-oPRL by unlabeled oPRL, while SVI-A917 binding was only partially competed (30-60%) by lactogenic hormones. Tissue and species specificity of labeled antibody binding paralleled results of binding inhibition experiments using 125I-oPRL. In addition, A82 and A917 completely inhibited 125I-M110 binding. In contrast, 125I-A82 binding was stimulated by A917 and 125I-A917 binding was stimulated by A82.

  11. Concentrations of triiodothyronine, growth hormone, and luteinizing hormone in the plasma of thyroidectomised fowl (Gallus domesticus).

    PubMed

    Harvey, S; Sterling, R J; Klandorf, H

    1983-05-01

    Surgical thyroidectomy increased (P less than 0.05) the basal concentrations of growth hormone (GH) and luteinizing hormone (LH) in the plasma of 10- to 12-week-old domestic fowl. The administration of thyrotrophin releasing hormone (TRH) (100 micrograms, sc) increased (P less than 0.01) the GH concentration in both intact and thyroidectomised birds. The magnitude of the TRH-induced increase in GH level was greater (P less than 0.01) in thyroidectomised birds than in intact controls. Although TRH had no effect on LH secretion in the controls, it induced a small (P less than 0.05) rise in the plasma LH level in thyroidectomised birds. In both the intact and thyroidectomised birds the LH concentration was enhanced (P less than 0.05) following the administration of LH-releasing hormone (LH-RH) (20 micrograms, sc). The increase in the LH level by LH-RH in the thyroidectomised birds was greater (P less than 0.001) than that in the intact controls. Plasma GH concentrations were unaffected by LH-RH treatment. These results suggest that thyroid hormones inhibit the secretion of LH and GH in birds. In thyroidectomised birds low levels of immunoreactive triiodothyronine (T3)-like material were measurable in the circulation, despite the absence of regenerated thyroid tissue. The administration of TRH (100 micrograms, sc) did not enhance the plasma level of this material in thyroidectomised birds, whereas plasma T3 concentrations were enhanced in intact birds following TRH treatment. These results suggest that the T3 immunoreactive substance in thyroidectomised birds is extrathyroidal in origin.

  12. CORAL: prediction of binding affinity and efficacy of thyroid hormone receptor ligands.

    PubMed

    Toropova, A P; Toropov, A A; Benfenati, E

    2015-08-28

    Quantitative structure - activity relationships (QSARs) for binding affinity of thyroid hormone receptors based on attributes of molecular structure extracted from simplified molecular input-line entry systems (SMILES) are established using the CORAL software (http://www.insilico.eu/coral). The half maximal inhibitory concentration (IC50) is used as the measure of the binding affinity of thyroid hormone receptors. Molecular features which are statistically reliable promoters of increase and decrease for IC50 are suggested. The examples of modifications of molecular structure which lead to the increase or to the decrease of the endpoint are represented. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Plant hormone cross-talk: the pivot of root growth.

    PubMed

    Pacifici, Elena; Polverari, Laura; Sabatini, Sabrina

    2015-02-01

    Root indeterminate growth and its outstanding ability to produce new tissues continuously make this organ a highly dynamic structure able to respond promptly to external environmental stimuli. Developmental processes therefore need to be finely tuned, and hormonal cross-talk plays a pivotal role in the regulation of root growth. In contrast to what happens in animals, plant development is a post-embryonic process. A pool of stem cells, placed in a niche at the apex of the meristem, is a source of self-renewing cells that provides cells for tissue formation. During the first days post-germination, the meristem reaches its final size as a result of a balance between cell division and cell differentiation. A complex network of interactions between hormonal pathways co-ordinates such developmental inputs. In recent years, by means of molecular and computational approaches, many efforts have been made aiming to define the molecular components of these networks. In this review, we focus our attention on the molecular mechanisms at the basis of hormone cross-talk during root meristem size determination.

  14. Detection of recombinant growth hormone by evanescent cascaded waveguide coupler on silica-on-silicon.

    PubMed

    Ozhikandathil, Jayan; Packirisamy, Muthukumaran

    2013-05-01

    An evanescent wave based biosensor is developed on the silica-on-silicon (SOS) with a cascaded waveguide coupler for the detection of recombinant growth hormone. So far, U -bends and tapered waveguides are demonstrated for increasing the penetration depth and enhancing sensitivity of the evanescent wave sensor. In this work, a monolithically integrated sensor platform containing a cascaded waveguide coupler with optical power splitters and combiners designed with S -bends and tapper waveguides is demonstrated for an enhanced detection of recombinant growth hormone. In the cascaded waveguide coupler, a large surface area to bind the antibody with increased penetration depth of evanescent wave to excite the tagged-rbST is obtained by splitting the waveguide into multiple paths using Y splitters designed with s -bends and subsequently combining them back to a single waveguide through tapered waveguide and combiners. Hence a highly sensitive fluoroimmunoassay sensor is realized. Using the 2D FDTD (Finite-difference time-domain method) simulation of waveguide with a point source in Rsoft FullWAVE, the fluorescence coupling efficiency of straight and bend section of waveguide is analyzed. The sensor is demonstrated for the detection of fluorescently-tagged recombinant growth hormone with the detection limit as low as 25 ng/ml. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Growth Hormone-Insulin-Like Growth Factor Axis, Thyroid Axis, Prolactin, and Exercise.

    PubMed

    Hackney, Anthony C; Davis, Hope C; Lane, Amy R

    2016-01-01

    This chapter addresses what is known about the endocrine system components growth hormone (GH)-insulin-like growth factor (IGF) axis, thyroid axis, and prolactin relative to exercise and exercise training. Each one of these hormone axes contributes to the maintenance of homeostasis in the body through impact on a multitude of physiological systems. The homeostatic disruption of exercise causes differing responses in each hormone axis. GH levels increase with sufficient stimulation, and IGFs are released in response to GH from the anterior pituitary providing multiple roles including anabolic properties. Changes in the thyroid hormones T3 and T4 vary greatly with exercise, from increases/decreases to no change in levels across different exercise types, intensities and durations. These ambiguous findings could be due to numerous confounding factors (e.g. nutrition status) within the research. Prolactin increases proportionally to the intensity of the exercise. The magnitude may be augmented with extended durations; conflicting findings have been reported with resistance training. While the responses to exercise vary, it appears there may be overall adaptive and regenerative impacts on the body into recovery by these hormones through immune and tissue inflammatory responses/mediations. Nonetheless, well-designed exercise research studies are still needed on each of these hormones, especially thyroid hormones and prolactin.

  16. Role of growth hormone-releasing hormone in sleep and growth impairments induced by upper airway obstruction in rats.

    PubMed

    Tarasiuk, A; Berdugo-Boura, N; Troib, A; Segev, Y

    2011-10-01

    Upper airway obstruction (UAO) can lead to abnormal growth hormone (GH) homeostasis and growth retardation but the mechanisms are unclear. We explored the effect of UAO on hypothalamic GH-releasing hormone (GHRH), which has a role in both sleep and GH regulation. The tracheae of 22-day-old rats were narrowed; UAO and sham-operated animals were sacrificed 16 days post-surgery. To stimulate slow-wave sleep (SWS) and GH secretion, rats were treated with ritanserin (5-HT(2) receptor antagonist). Sleep was measured with a telemetric system. Hypothalamic GHRH, hypothalamic GHRH receptor (GHRHR) and GH receptor, and orexin were analysed using ELISA, real-time PCR and Western blot. UAO decreased hypothalamic GHRH, GHRHR and GH receptor levels, while orexin mRNA increased (p<0.01). In UAO rats, the duration of wakefulness was elevated and the duration of SWS, paradoxical sleep and slow-wave activity was reduced (p<0.001). Ritanserin alleviated these effects, i.e. normalised hypothalamic GHRH content, decreased wake duration, increased duration and depth of SWS, and attenuated growth impairment (p<0.001). Here, we present evidence that growth retardation in UAO is associated with a reduction in hypothalamic GHRH content. Our findings show that abnormalities in the GHRH/GH axis underlie both growth retardation and SWS-disorder UAO.

  17. Experiment K-7-22: Growth Hormone Regulation Synthesis and Secretion in Microgravity. Part 3; Plasma Analysis Hormone Measurements

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Popova, I. A.; Grossman, E.; Rudolph, I.

    1994-01-01

    Plasma from space flight and tail suspended rats was analyzed for a number of constituents in order to evaluate their metabolic status and endocrine function. The data presented here cover plasma hormone measurements. Corticosterone, thyroxine, and testosterone were measured by radioimmunoassay. Prolactin and growth hormone were measured by double antibody immunoassays using hormones and antisera prepared in house. Data were evaluated by analysis of variance.

  18. Experiment K-7-22: Growth Hormone Regulation Synthesis and Secretion in Microgravity. Part 3; Plasma Analysis Hormone Measurements

    NASA Technical Reports Server (NTRS)

    Grindeland, R. E.; Popova, I. A.; Grossman, E.; Rudolph, I.

    1994-01-01

    Plasma from space flight and tail suspended rats was analyzed for a number of constituents in order to evaluate their metabolic status and endocrine function. The data presented here cover plasma hormone measurements. Corticosterone, thyroxine, and testosterone were measured by radioimmunoassay. Prolactin and growth hormone were measured by double antibody immunoassays using hormones and antisera prepared in house. Data were evaluated by analysis of variance.

  19. Glucocorticoids and the regulation of growth hormone secretion.

    PubMed

    Mazziotti, Gherardo; Giustina, Andrea

    2013-05-01

    Glucocorticoids modulate the secretion of growth hormone (GH) by various and competing effects on the hypothalamus and pituitary gland. The final effects of this modulation depend on hormone concentrations and the duration of exposure. The traditional hypothesis is that chronically raised levels of glucocorticoids suppress the secretion of GH. However, a functional impairment of the GH reserve might also be observed in patients with low levels of glucocorticoids, such as those with secondary hypoadrenalism, which is consistent with the model of biphasic dose-dependent effects of glucocorticoids on the somatotropic axis. This Review updates our current understanding of the mechanisms underlying the effects of glucocorticoids on the secretion of GH and the clinical implications of the dual action of glucocorticoids on the GH reserve in humans. This Review will also address the potential diagnostic and therapeutic implications of GH for patients with a deficiency or excess of glucocorticoids.

  20. Sex hormone-binding globulin regulation of androgen bioactivity in vivo: validation of the free hormone hypothesis

    PubMed Central

    Laurent, Michaël R.; Hammond, Geoffrey L.; Blokland, Marco; Jardí, Ferran; Antonio, Leen; Dubois, Vanessa; Khalil, Rougin; Sterk, Saskia S.; Gielen, Evelien; Decallonne, Brigitte; Carmeliet, Geert; Kaufman, Jean-Marc; Fiers, Tom; Huhtaniemi, Ilpo T.; Vanderschueren, Dirk; Claessens, Frank

    2016-01-01

    Sex hormone-binding globulin (SHBG) is the high-affinity binding protein for androgens and estrogens. According to the free hormone hypothesis, SHBG modulates the bioactivity of sex steroids by limiting their diffusion into target tissues. Still, the in vivo physiological role of circulating SHBG remains unclear, especially since mice and rats lack circulating SHBG post-natally. To test the free hormone hypothesis in vivo, we examined total and free sex steroid concentrations and bioactivity on target organs in mice expressing a human SHBG transgene. SHBG increased total androgen and estrogen concentrations via hypothalamic-pituitary feedback regulation and prolonged ligand half-life. Despite markedly raised total sex steroid concentrations, free testosterone was unaffected while sex steroid bioactivity on male and female reproductive organs was attenuated. This occurred via a ligand-dependent, genotype-independent mechanism according to in vitro seminal vesicle organ cultures. These results provide compelling support for the determination of free or bioavailable sex steroid concentrations in medicine, and clarify important comparative differences between translational mouse models and human endocrinology. PMID:27748448

  1. Sex hormone-binding globulin regulation of androgen bioactivity in vivo: validation of the free hormone hypothesis.

    PubMed

    Laurent, Michaël R; Hammond, Geoffrey L; Blokland, Marco; Jardí, Ferran; Antonio, Leen; Dubois, Vanessa; Khalil, Rougin; Sterk, Saskia S; Gielen, Evelien; Decallonne, Brigitte; Carmeliet, Geert; Kaufman, Jean-Marc; Fiers, Tom; Huhtaniemi, Ilpo T; Vanderschueren, Dirk; Claessens, Frank

    2016-10-17

    Sex hormone-binding globulin (SHBG) is the high-affinity binding protein for androgens and estrogens. According to the free hormone hypothesis, SHBG modulates the bioactivity of sex steroids by limiting their diffusion into target tissues. Still, the in vivo physiological role of circulating SHBG remains unclear, especially since mice and rats lack circulating SHBG post-natally. To test the free hormone hypothesis in vivo, we examined total and free sex steroid concentrations and bioactivity on target organs in mice expressing a human SHBG transgene. SHBG increased total androgen and estrogen concentrations via hypothalamic-pituitary feedback regulation and prolonged ligand half-life. Despite markedly raised total sex steroid concentrations, free testosterone was unaffected while sex steroid bioactivity on male and female reproductive organs was attenuated. This occurred via a ligand-dependent, genotype-independent mechanism according to in vitro seminal vesicle organ cultures. These results provide compelling support for the determination of free or bioavailable sex steroid concentrations in medicine, and clarify important comparative differences between translational mouse models and human endocrinology.

  2. The effects of growth hormone on avian skeletal muscle satellite cell proliferation and differentiation.

    PubMed

    Halevy, O; Hodik, V; Mett, A

    1996-01-01

    Growth hormone receptor (GH-R) mRNA was expressed in avian skeletal muscle tissue and satellite cells in culture, and was capable of binding chicken growth hormone (cGH). In the satellite cells, GH-R gene expression was regulated by cGH in a biphasic manner which correlated with the GH effect on cell proliferation: 2-10 ng/ml of the hormone increased GH-R mRNA and DNA synthesis, whereas higher concentrations attenuated these effects. GH induced insulin-like growth factor I (IGF-I) mRNA, a potential factor for satellite cell proliferation and differentiation. However, GH inhibited the gene expression of myogenin and the expression of muscle-specific proteins in a dose-dependent manner. These results suggest a role of GH for inhibiting satellite cell differentiation in an IGF-I-independent manner. During satellite cell differentiation, both GH-R mRNA expression and cGH binding peaked when cells were still proliferating and beginning to fuse, and then declined as cells fully differentiated. GH-R mRNA expression in muscle tissue and the satellite cell fraction was evaluated during chicken growth. In both fractions, GH-R mRNA peaked at 4 days of age and then declined in correlation with the reduction of muscle regulatory gene expression. Our results are in contrast with previous studies on rat muscle satellite cells, suggesting a difference between mammalian and avian species in the mode of action of GH in these cells. Our notion is that GH, via its own receptor, promotes more satellite cells to proliferate by inhibiting their differentiation, leading to the addition of more nuclei to the growing muscle.

  3. Effect of growth hormone treatment on the adult height of children with chronic renal failure. German Study Group for Growth Hormone Treatment in Chronic Renal Failure.

    PubMed

    Haffner, D; Schaefer, F; Nissel, R; Wühl, E; Tönshoff, B; Mehls, O

    2000-09-28

    Growth hormone treatment stimulates growth in short children with chronic renal failure. However, the extent to which this therapy increases final adult height is not known. We followed 38 initially prepubertal children with chronic renal failure treated with growth hormone for a mean of 5.3 years until they reached their final adult height. The mean (+/-SD) age at the start of treatment was 10.4+/-2.2 years, the mean bone age was 7.1+/-2.3 years, and the mean height was 3.1+/-1.2 SD below normal. Fifty matched children with chronic renal failure who were not treated with growth hormone served as controls. The children treated with growth hormone had sustained catch-up growth, whereas the control children had progressive growth failure. The mean final height of the growth hormone-treated children was 165 cm for boys and 156 cm for girls. The mean final adult height of the growth hormone-treated children was 1.6+/-1.2 SD below normal, which was 1.4 SD above their standardized height at base line (P< 0.001). In contrast, the final height of the untreated children (2.1+/-1.2 SD below normal) was 0.6 SD below their standardized height at base line (P<0.001). Although prepubertal bone maturation was accelerated in growth hormone-treated children, treatment was not associated with a shortening of the pubertal growth spurt. The total height gain was positively associated with the initial target-height deficit and the duration of growth hormone therapy and was negatively associated with the percentage of the observation period spent receiving dialysis treatment. Long-term growth hormone treatment of children with chronic renal failure induces persistent catch-up growth, and the majority of patients achieve normal adult height.

  4. Novel Bioluminescent Binding Assays for Ligand–Receptor Interaction Studies of the Fibroblast Growth Factor Family

    PubMed Central

    Song, Ge; Shao, Xiao-Xia; Wu, Qing-Ping; Xu, Zeng-Guang; Liu, Ya-Li; Guo, Zhan-Yun

    2016-01-01

    We recently developed novel bioluminescent binding assays for several protein/peptide hormones to study their interactions with receptors using the so far brightest NanoLuc reporter. To validate the novel bioluminescent binding assay using a variety of protein/peptide hormones, in the present work we applied it to the fibroblast growth factor (FGF) family using the prototype member FGF2 as an example. A fully active recombinant FGF2 retaining a unique exposed cysteine (Cys) residue was chemically conjugated with an engineered NanoLuc carrying a unique exposed Cys residue at the C-terminus via formation of an intermolecular disulfide linkage. The NanoLuc-conjugated FGF2 (FGF2-Luc) retained high binding affinity to the overexpressed FGFR1 and the endogenous FGF receptor with the calculated dissociation constants of 161 ± 21 pM (n = 3) and 25 ± 4 pM (n = 3), respectively. In competition binding assays using FGF2-Luc as a tracer, receptor-binding potencies of wild-type or mutant FGF2s were accurately quantified. Thus, FGF2-Luc represents a novel non-radioactive tracer for the quantitative measurement of ligand–receptor interactions in the FGF family. These data suggest that the novel bioluminescent binding assay can be applied to a variety of protein/peptide hormones for ligand–receptor interaction studies. PMID:27414797

  5. [Influence of growth hormone (GH) and nutrition on neonatal growth].

    PubMed

    Díaz-Gómez, N M; Doménech Martínez, E; Barroso Guerrero, F; Cortabarria Bayona, C; Rico Sevillano, J

    1997-01-01

    At present, growth regulating factors in the transition from fetal to postnatal life remain unknown. The purpose of this study was to analyze the influence of GH and nutrition on neonatal growth. Serum and 24-hour urine GH levels, various anthopometric variables and daily energy and nutrient intake were measured in appropriate (AGA), large (LGA) and small for gestational age (SGA) newborn infants. These variables were measured at 1 (n = 98), 3 (n = 41) and 5 weeks of postnatal age (n = 8). The highest GH levels at the 1st week of postnatal life were obtained in preterm SGA infants (GHs: 61.4 +/- 20.0 microUI/m; GHu: 18.6 +/- 10.3 ng/kg/24 h). GH levels decreased in preterm infants, so that differences between groups failed to be significant at the third and fifth weeks of postnatal life. Urinary GH excretion did not show significant variations in the control group during the study (1st wk 3.0 +/- 3.5; 3rd wk 2.3 +/- 2.7; 5th wk 3.2 +/- 4.7 ng/kg/24 h). Daily protein intake had a direct relationship with both triceps skinfold and weight and head perimeter increase. SGA preterm infants showed a higher fat increase compared to AGA preterm infants. Serum and urinary GH levels were not related to the anthopometric variables studied. There are differences in GH secretion and body composition between SGA and AGA preterm infants. GH probably does not contribute to neonatal growth.

  6. Growth Hormone-Releasing Hormone and Its Analogues: Significance for MSCs-Mediated Angiogenesis

    PubMed Central

    Tao, Quanwei; Ma, Qunchao; Chen, Huiqiang; Wang, Jian'an

    2016-01-01

    Mesenchymal stromal cells (MSCs) are promising candidates for regenerative medicine because of their multipotency, immune-privilege, and paracrine properties including the potential to promote angiogenesis. Accumulating evidence suggests that the inherent properties of cytoprotection and tissue repair by native MSCs can be enhanced by various preconditioning stimuli implemented prior to cell transplantation. Growth hormone-releasing hormone (GHRH), a stimulator in extrahypothalamus systems including tumors, has attracted great attentions in recent years because GHRH and its agonists could promote angiogenesis in various tissues. GHRH and its agonists are proangiogenic in responsive tissues including tumors, and GHRH antagonists have been tested as antitumor agents through their ability to suppress angiogenesis and cell growth. GHRH-R is expressed by MSCs and evolving work from our laboratory indicates that treatment of MSCs with GHRH agonists prior to cell transplantation markedly enhanced the angiogenic potential and tissue reparative properties of MSCs through a STAT3 signaling pathway. In this review we summarized the possible effects of GHRH analogues on cell growth and development, as well as on the proangiogenic properties of MSCs. We also discussed the relationship between GHRH analogues and MSC-mediated angiogenesis. The analyses provide new insights into molecular pathways of MSCs-based therapies and their augmentation by GHRH analogues. PMID:27774107

  7. Azapeptide analogues of the growth hormone releasing peptide 6 as cluster of differentiation 36 receptor ligands with reduced affinity for the growth hormone secretagogue receptor 1a.

    PubMed

    Proulx, Caroline; Picard, Émilie; Boeglin, Damien; Pohankova, Petra; Chemtob, Sylvain; Ong, Huy; Lubell, William D

    2012-07-26

    The synthetic hexapeptide growth hormone releasing peptide-6 (GHRP-6) exhibits dual affinity for the growth hormone secretagogue receptor 1a (GHS-R1a) and the cluster of differentiation 36 (CD36) receptor. Azapeptide GHRP-6 analogues have been synthesized, exhibiting micromolar affinity to the CD36 receptor with reduced affinity toward the GHS-R1a. A combinatorial split-and-mix approach furnished aza-GHRP-6 leads, which were further examined by alanine scanning. Incorporation of an aza-amino acid residue respectively at the D-Trp(2), Ala(3), or Trp(4) position gave aza-GHRP-6 analogues with reduced affinity toward the GHS-R1a by at least a factor of 100 and in certain cases retained affinity for the CD36 receptor. In the latter cases, the D-Trp(2) residue proved important for CD36 receptor affinity; however, His(1) could be replaced by Ala(1) without considerable loss of binding. In a microvascular sprouting assay using a choroid explant, [azaTyr(4)]-GHRP-6 (15), [Ala(1), azaPhe(2)]-GHRP-6 (16), and [azaLeu(3), Ala(6)]-GHRP-6 (33) all exhibited antiangiogenic activity.

  8. Response of bovine serum prolactin and growth hormone to duodenal, abomasal, and oral administration of thyrotropin-releasing hormone.

    PubMed

    Smith, V G; Hacker, R R; Burton, J H; Veira, D M

    1977-10-01

    Thyrotropin-releasing hormone was injected into the duodenum of two 500-kg steers, placed into the abomasum of two prepubertal bulls, and fed to four bull calves (1 to 3 wk of age) to test the effect on concentrations of prolactin and growth hormone in blood serum. Before 20 and 200 mg of thyrotropin-releasing hormone were injected into the duodenum, prolactin in serum averaged 7.5 and 9.4 ng/ml and increased to 52.5 and 129.6 ng/ml at 45 and 35 min after treatment. Average growth hormone concentration of serum was increased also, but the response was more variable than prolactin. Peak concentrations of prolactin and growth hormone in blood serum were 5 to 10 times greater after treatment with thyrotropin-releasing hormone (40 mg/100 kg body weight into abomasum) than before treatment. Within 30 min after oral administration of thyrotropin-releasing hormone (0, .5, 1, and 2 mg/kg body weight) growth hormone concentration of serum was 30, 306, 356, and 317% greater than pretreatment. Prolactin concentration of serum, however, was increased in only one calf.

  9. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2012-04-24

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  10. Dual chain synthetic heparin-binding growth factor analogs

    DOEpatents

    Zamora, Paul O [Gaithersburg, MD; Pena, Louis A [Poquott, NY; Lin, Xinhua [Plainview, NY

    2009-10-06

    The invention provides synthetic heparin-binding growth factor analogs having two peptide chains each branched from a branch moiety, such as trifunctional amino acid residues, the branch moieties separated by a first linker of from 3 to about 20 backbone atoms, which peptide chains bind a heparin-binding growth factor receptor and are covalently bound to a non-signaling peptide that includes a heparin-binding domain, preferably by a second linker, which may be a hydrophobic second linker. The synthetic heparin-binding growth factor analogs are useful as pharmaceutical agents, soluble biologics or as surface coatings for medical devices.

  11. Growth hormone treatment in short children with chronic kidney disease.

    PubMed

    Mehls, O; Wühl, E; Tönshoff, B; Schaefer, F; Nissel, R; Haffner, D

    2008-09-01

    Growth hormone (GH) has been used for treatment of impaired growth in children with chronic kidney disease (CKD) for nearly 17 years. Controlled and open-label studies have shown that GH is highly effective in improving growth velocity and adult height. The growth response is negatively correlated with age and height at start and time spent on dialysis treatment; it is positively correlated with dose and duration of treatment and the primary renal disease (renal hypodysplasia). In children with renal transplants, corticosteroid treatment is an additional factor negatively influencing spontaneous growth rates. However, GH treatment is able to compensate corticosteroid-induced growth failure. GH treatment improved final height by 0.5-1.7 standard deviation score (SDS) in various studies, whereas the control group lost about 0.5 SDS in comparable time intervals. These variable results are explained in part by the factors mentioned above. The adverse events are comparable to those in non-CKD children treated with GH. GH treatment is safe and highly effective in improving growth and final height of short children with all stages of CKD. The highest treatment success is obtained if treatment is started at an early age and with relatively well-preserved residual renal function and continued until final height.

  12. Thyroid hormone mediates otolith growth and development during flatfish metamorphosis.

    PubMed

    Schreiber, A M; Wang, X; Tan, Y; Sievers, Q; Sievers, B; Lee, M; Burrall, K

    2010-11-01

    Flatfish begin life as bilaterally symmetrical larvae that swim up-right, then abruptly metamorphose into asymmetrically shaped juveniles with lateralized swimming postures. Flatfish metamorphosis is mediated entirely by thyroid hormone (TH). Changes in flatfish swim posture are thought to be regulated via vestibular remodeling, although the influence of TH on teleost inner ear development remains unclear. This study addresses the role of TH on the development of the three otolith end-organs (sacculus, utricle, and lagena) during southern flounder (Paralichthys lethostigma) metamorphosis. Compared with pre-metamorphosis, growth rates of the sacculus and utricle otoliths increase dramatically during metamorphosis in a manner that is uncoupled from general somatic growth. Treatment of P. lethostigma larvae with methimazol (a pharmacological inhibitor of endogenous TH production) inhibits growth of the sacculus and utricle, whereas treatment with TH dramatically accelerates their growth. In contrast with the sacculus and utricle otoliths that begin to form and mineralize during embryogenesis, a non-mineralized lagena otolith is first visible 10-12 days after hatching. The lagena grows during pre- and pro-metamorphosis, then abruptly mineralizes during metamorphic climax. Mineralization of the lagena, but not growth, can be induced with TH treatment, whereas treatment with methimazol completely inhibits lagena mineralization without inhibiting its growth. These findings suggest that during southern flounder metamorphosis TH exerts differential effects on growth and development among the three types of otolith.

  13. Binding properties of solubilized gonadotropin-releasing hormone receptor: role of carboxylic groups

    SciTech Connect

    Hazum, E.

    1987-11-03

    The interaction of /sup 125/I-buserelin, a superactive agonist of gonadotropin-releasing hormone (GnRH), with solubilized GnRH receptor was studied. The highest specific binding of /sup 125/I-buserelin to solubilized GnRH receptor is evident at 4/sup 0/C, and equilibrium is reached after 2 h of incubation. The soluble receptor retained 100% of the original binding activity when kept at 4 or 22/sup 0/C for 60 min. Mono- and divalent cations inhibited, in a concentration-dependent manner, the binding of /sup 125/I-buserelin to solubilized GnRH receptor. Monovalent cations require higher concentrations than divalent cations to inhibit the binding. Since the order of potency with the divalent cations was identical with that of their association constants to dicarboxylic compounds, it is suggested that there are at least two carboxylic groups of the receptor that participate in the binding of the hormone. The carboxyl groups of sialic acid residues are not absolutely required for GnRH binding since the binding of /sup 125/I-buserelin to solubilized GnRH receptor was only slightly affected by pretreatment with neuraminidase and wheat germ agglutinin. The finding that polylysines stimulate luteinizing hormone (LH) release from pituitary cell cultures with the same efficacy as GnRH suggest that simple charge interactions can induce LH release. According to these results, the authors propose that the driving force for the formation of the hormone-receptor complex is an ionic interaction between the positively charged amino acid arginine in position 8 and the carboxyl groups in the binding site.

  14. Role of melatonin in the control of growth and growth hormone secretion in poultry.

    PubMed

    Zeman, M; Buyse, J; Lamosová, D; Herichová, I; Decuypere, E

    1999-10-01

    The pineal hormone melatonin controls reproduction of photoperiodic mammals and is an integral part of the circadian organization in birds. Recent findings indicate an involvement of this hormone also in more basic physiological processes, including growth, development, and aging. Melatonin may modulate growth in poultry through interaction with transcriptional factors, through interaction with hormones involved in growth control, and by modulation of energy metabolism and decreasing physical activity. Our studies showed that a single melatonin injection increased plasma growth hormone (GH) concentrations in the Japanese quail. Specific serotonin receptor blocker ketanserin did not preclude a stimulatory action of melatonin on GH synthesis. Serotonin agonist quipazine increased GH levels but failed to enhance the stimulatory effect of melatonin. Pretreatment with melatonin in drinking water did not affect the magnitude of the GH response to subcutaneous (s.c.) administration of thyrotropin releasing hormone (TRH) that considerably stimulated GH secretion. Present data suggest that melatonin modulates rather central neural pathways involved in the control of GH synthesis at the hypothalamic level than the sensitivity of the pituitary gland.

  15. Mouse hypothalamic growth hormone-releasing hormone and somatostatin responses to probes of signal transduction systems.

    PubMed

    Sato, M; Downs, T R; Frohman, L A

    1993-01-01

    Signal transduction mechanisms involved in mouse growth hormone-releasing hormone (GRH) and somatostatin (SRIH) release were investigated using an in vitro perifusion system. Hypothalamic fragments were exposed to depolarizing agents, protein kinase A and C activators, and a calcium ionophore. The depolarizing agents, KCl (60 mM) and veratridine (50 microM), induced similar patterns of GRH and SRIH release. Somatostatin release in response to both agents was twofold greater than that of GRH. Forskolin (10 microM and 100 microM), an adenylate cyclase activator, stimulated both GRH and SRIH release, though with different secretory profiles. The SRIH response was prolonged and persisted beyond removal of the drug from the system, while the GRH response was brief, ending even prior to forskolin removal. Neither GRH nor SRIH were stimulated by 1,9-dideoxy-forskolin (100 microM), a forskolin analog with cAMP-independent actions. A23187 (5 microM), a calcium ionophore, stimulated the release of SRIH to a much greater extent than that of GRH. The GRH and SRIH secretory responses to PMA (1 microM), a protein kinase C activator, were similar, though delayed. The results suggest that 1) GRH and SRIH secretion are regulated by both protein kinase A and C pathways, and 2) depolarizing agents are important for the release of both hormones.

  16. High specific activity enantiomerically enriched juvenile hormones: synthesis and binding assay

    SciTech Connect

    Prestwich, G.D.; Wawrzenczyk, C.

    1985-08-01

    A stereoselective total synthesis of chiral juvenile hormone I is described that allows stoichiometric introduction of two tritium atoms in the final step. Both optical antipodes of the pivotal epoxy alcohol intermediate were prepared in 95% enantiomeric excess by the Sharpless epoxidation of a (Z)-allylic alcohol. Elaboration of the hydroxy-methyl group to a vinyl group followed by selective homogeneous tritiation affords optically active juvenile hormone I analogs at 58 Ci/mmol. Competitive binding of the labeled 10R, 11S and 10S,11R enantiomers with unlabeled enantiomers to the hemolymph binding protein of Manduca sexta larvae was determined by using a dextran-coated charcoal assay. The natural 10R,11S enantiomer has twice the relative binding affinity of the 10S,11R enantiomer. The availability of such high specific activity optically pure hormones will contribute substantially to the search for high-affinity receptors for juvenile hormones in the nuclei of cells. Moreover, the chiral 12-hydroxy-(10R,11S)-epoxy intermediate allows modification of juvenile hormone for solid-phase biochemical and radioimmunochemical work without altering either the biologically important carbomethoxy or epoxy recognition sites.

  17. High specific activity enantiomerically enriched juvenile hormones: synthesis and binding assay.

    PubMed Central

    Prestwich, G D; Wawrzeńczyk, C

    1985-01-01

    A stereoselective total synthesis of chiral juvenile hormone I is described that allows stoichiometric introduction of two tritium atoms in the final step. Both optical antipodes of the pivotal epoxy alcohol intermediate were prepared in 95% enantiomeric excess by the Sharpless epoxidation of a (Z)-allylic alcohol. Elaboration of the hydroxy-methyl group to a vinyl group followed by selective homogeneous tritiation affords optically active juvenile hormone I analogs at 58 Ci/mmol. Competitive binding of the labeled 10R, 11S and 10S,11R enantiomers with unlabeled enantiomers to the hemolymph binding protein of Manduca sexta larvae was determined by using a dextran-coated charcoal assay. The natural 10R,11S enantiomer has twice the relative binding affinity of the 10S,11R enantiomer. The availability of such high specific activity optically pure hormones will contribute substantially to the search for high-affinity receptors for juvenile hormones in the nuclei of cells. Moreover, the chiral 12-hydroxy-(10R,11S)-epoxy intermediate allows modification of juvenile hormone for solid-phase biochemical and radioimmunochemical work without altering either the biologically important carbomethoxy or epoxy recognition sites. PMID:3860862

  18. High specific activity enantiomerically enriched juvenile hormones: synthesis and binding assay.

    PubMed

    Prestwich, G D; Wawrzeńczyk, C

    1985-08-01

    A stereoselective total synthesis of chiral juvenile hormone I is described that allows stoichiometric introduction of two tritium atoms in the final step. Both optical antipodes of the pivotal epoxy alcohol intermediate were prepared in 95% enantiomeric excess by the Sharpless epoxidation of a (Z)-allylic alcohol. Elaboration of the hydroxy-methyl group to a vinyl group followed by selective homogeneous tritiation affords optically active juvenile hormone I analogs at 58 Ci/mmol. Competitive binding of the labeled 10R, 11S and 10S,11R enantiomers with unlabeled enantiomers to the hemolymph binding protein of Manduca sexta larvae was determined by using a dextran-coated charcoal assay. The natural 10R,11S enantiomer has twice the relative binding affinity of the 10S,11R enantiomer. The availability of such high specific activity optically pure hormones will contribute substantially to the search for high-affinity receptors for juvenile hormones in the nuclei of cells. Moreover, the chiral 12-hydroxy-(10R,11S)-epoxy intermediate allows modification of juvenile hormone for solid-phase biochemical and radioimmunochemical work without altering either the biologically important carbomethoxy or epoxy recognition sites.

  19. Short stature: a psychosocial burden requiring growth hormone therapy?

    PubMed

    Sandberg, D E; Brook, A E; Campos, S P

    1994-12-01

    Changes in the diagnosis of endocrine-based growth disorders and the advent of biosynthetic growth hormone have altered the long-standing policy of treating only those individuals with "classic" growth hormone deficiency. One justification for treating short children is to improve their psychosocial adaptation. The present investigation assessed the positive and negative behavioral adaptation, self-perceptions of domain-specific competencies, and global self-worth of a large, diagnostically heterogeneous sample of children and adolescents referred to pediatric endocrinologists for a growth evaluation. All patients seen in a pediatric endocrine clinic (180 boys and 78 girls; 4 to 18 years) with a height at the fifth percentile or lower were included. Parents of all participating children completed the Child Behavior Checklist. Patients 8 years and older completed the Self-Perception Profile and those 11 years and older, in addition, completed the Youth Self Report. Short-stature (SS) subjects were compared with normative and psychiatric samples. The SS boys were described by parents as being significantly less socially competent and showing more behavioral and emotional problems than a normative sample selected for mental health. However, they were significantly more socially competent and showed fewer psychopathologic symptoms than a psychiatric referred sample of comparable age. The SS boys described themselves as less socially active but did not report more behavior disturbance than the normative sample. The SS boys' self-perceptions of domain-specific competencies and global self-worth were comparable to a normative comparison group with the exception that older subjects (13 years or older) described their athletic abilities more positively and their work competence more negatively. The SS girls were, with few exceptions, indistinguishable from the normal comparison groups on both parent- and self-report measures of social competency and behavior disturbance

  20. [Breast hormones--regulators of energy homeostasis: growth of infants].

    PubMed

    Kon', I Ia; Shilina, N M; Gmoshinskaia, M V; Ivanushkina, T A

    2011-01-01

    Studied the possible relationship between the growth rate of children who are breastfed, and the level of protein, fat, insulin-like growth factor- 1 (IGF-1), ghrelin, leptin, adiponectin in breast milk. Examined 71 pair--a mother and a healthy child, who is breastfed. All infants were divided into 3 groups: low, normal and high weight gain. Daily breast milk intake, the level of fat, protein and hormones proteins regulators of energy homeostasis (adiponectin, grelin, IGF-1 and leptin) in breast milk were measured at 1, 2 and 3 months of lactation. It was found that daily breast milk consumption was higher in the group of infants with high weight gain and the content of protein and fat in it did not differ in three groups. Total daily consumption of protein and fat with breast milk was higher in groups of infants with high weight gain. There was significantly higher IGF-1 level and the tendency to higher grelin level in breast milk of mothers of infants with higher weight gain. The possible link of breast milk hormones with growth velocity of breast-fed infants is discussed.

  1. Understanding the growth hormone therapy adherence paradigm: a systematic review.

    PubMed

    Fisher, Benjamin G; Acerini, Carlo L

    2013-01-01

    Growth hormone (GH) therapy is used to treat a variety of growth disorders in childhood/adolescence. Its efficacy is thought to be dependent on patients' adherence to their treatment regimen. PubMed was searched using the keywords 'growth hormone', 'child'[Mesh], 'adolescent'[Mesh], and 'patient compliance'[Mesh]. Most studies of adherence to paediatric GH therapy have used either issued/encashed GH prescriptions or questionnaires. Estimates of prevalence of non-adherence vary from 5-82%, depending on the methods and definitions used. Different studies have variously demonstrated an association (or lack thereof) between adherence and age, socioeconomic status, treatment duration, injection device used and injection-giver. A number of interventions have been proposed to improve adherence, including offering a choice of injection device, but none are supported by trials. Poor adherence is associated with reduced height velocity and likely increased economic costs; evidence for other effects is circumstantial. Adherence to paediatric GH therapy is suboptimal, which may partially explain why the mean final height attained is below that of the general population. Analysis of the causes of non-adherence is complicated by conflicting evidence from different studies. Multifactorial interventions are most likely to be successful in improving adherence. We make recommendations for further research. Copyright © 2013 S. Karger AG, Basel.

  2. Human Growth Hormone Promotes Corneal Epithelial Cell Migration in Vitro

    PubMed Central

    Ding, Juan; Wirostko, Barbara; Sullivan, David A

    2015-01-01

    Purpose Corneal wound healing is a highly regulated process that requires the proliferation and migration of epithelial cells and interactions between epithelial cells and stromal fibroblasts. Compounds that can be applied topically to the ocular surface and that have the capability of activating corneal epithelial cells to proliferate and/or migrate would be useful to promote corneal wound healing. We hypothesize that human growth hormone (HGH) will activate Signal Transducer and Activators of Transcription-5 (STAT5) signaling and promote corneal wound healing by enhancing corneal epithelial cell and fibroblast proliferation and/or migration in vitro. The purpose of this study is to test these hypotheses. Methods We studied cell signaling, proliferation and migration using an immortalized human corneal epithelial cell line and primary human corneal fibroblasts in vitro. We also examined whether insulin-like growth factor-1 (IGF-1), a hormone known to mediate many of HGH’s growth promoting actions, may play a role in this effect. Results We show that HGH activates STAT5 signaling and promotes corneal epithelial cell migration in vitro. The migratory effect requires an intact communication between corneal epithelia and fibroblasts, and is not mediated by IGF-1. Conclusion HGH may represent a topical therapeutic to promote corneal epithelial wound healing. This warrants further investigation. PMID:25782399

  3. Growth hormone reduces mortality and bacterial translocation in irradiated rats.

    PubMed

    Gómez-de-Segura, I A; Prieto, I; Grande, A G; García, P; Guerra, A; Mendez, J; De Miguel, E

    1998-01-01

    Growth hormone stimulates the growth of intestinal mucosa and may reduce the severity of injury caused by radiation. Male Wistar rats underwent abdominal irradiation (12 Gy) and were treated with either human growth hormone (hGH) or saline, and sacrificed at day 4 or 7 post-irradiation. Bacterial translocation, and the ileal mucosal thickness, proliferation, and disaccharidase activity were assessed. Mortality was 65% in irradiated animals, whereas hGH caused a decrement (29%, p < 0.05). Bacterial translocation was also reduced by hGH (p < 0.05). Treating irradiated rats with hGH prevented body weight loss (p < 0.05). Mucosal thickness increased faster in irradiated hGH-treated animals. The proliferative index showed an increment in hGH-treated animals (p < 0.05). Giving hGH to irradiated rats prevented decrease in sucrose activity, and increment in lactase activity. In conclusion, giving hGH to irradiated rats promotes the adaptative process of the intestine and acute radiation-related negative effects, including mortality, bacterial translocation, and weight loss.

  4. Lead (Pb) attenuation of plasma growth hormone output

    SciTech Connect

    Berry, W.D.; Moriarty, C.M.; Lau, Y.S.; Edwards, G.L.

    1996-03-08

    Lead (Pb) induced growth retardation may occur through disruption of the hypothalamic-pituitary-growth hormone (GH) axis. Episodic GH secretion and GH response to exogenous growth hormone releasing hormone (GHRH) were measured in rats chronically exposed to Pb. Male rats received lead nitrate (1000 ppm) in their drinking water from 21 through 49 days of age gained less weight than non-Pb treated controls (242{plus_minus}3 g vs 309{plus_minus}8 g, P{le}0.01). Mean blood Pb was 40 {plus_minus} 5 ug/dl in Pb treated rats vs. nondetectable in controls. Total food intake was increased by Pb treatment (340 vs 260 g/rat). Mean plasma GH levels were significantly reduced by Pb treatment (40.21 {plus_minus} 7 vs 71.53 {plus_minus} 11 ng/mlP= 0.025). However, the temporal pattern of episodic GH release was maintained in the Pb-treated rats. This indicates that Pb does not disrupt the timing of GHRH and somatostatin (SS) release from the hypothalamus but may alter the relative levels of GHRH and SS released. Pb treated rats also retained the ability to secrete GH in response to exogenous GHRH. However, response to GHRH tended to be lower in the Pb treated rats. The greatest effect of Pb was seen at the highest dose of GHRH 5 {mu}g/kg GHRH dose (485.6 {plus_minus} 103 vs. 870.2 {plus_minus} 317 ng/ml; P =0.2). This suggests that Pb disrupts GH synthesis, signal transduction, or secretory mechanisms in the somatotrope.

  5. Dietary Patterns and Plasma Sex Hormones, Prolactin, and Sex Hormone-Binding Globulin in Premenopausal Women.

    PubMed

    Hirko, Kelly A; Spiegelman, Donna; Barnett, Junaidah B; Cho, Eunyoung; Willett, Walter C; Hankinson, Susan E; Eliassen, A Heather

    2016-05-01

    Sex hormones are important for breast cancer, but it is unclear whether dietary patterns influence hormone concentrations. Dietary pattern adherence scores for the alternate Mediterranean diet (aMED), Dietary Approaches to Stop Hypertension (DASH), and Alternative Healthy Eating Index (AHEI) were calculated from semiquantitative food frequency questionnaires administered in 1995 and 1999. Premenopausal plasma concentrations of sex hormones were measured in samples collected in 1996 to 1999. We used generalized linear models to calculate geometric mean hormone concentrations across quartiles of dietary pattern scores among 1,990 women in the Nurses' Health Study II. We did not observe significant associations between sex hormone concentrations and the DASH pattern and only one suggestive association between follicular estrone concentrations and the aMED pattern [top vs. bottom quartile -4.4%, 95% confidence interval (CI), -10.6% to 2.1%; Ptrend = 0.06]. However, women in the top versus bottom quartile of AHEI score had lower concentrations of follicular (-9.1%; 95% CI, -16.1% to -1.4%; Ptrend = 0.04) and luteal (-7.5%; 95% CI, -13.6% to -0.9%; Ptrend = 0.01) estrone, luteal-free (-9.3%; 95% CI, -16.8% to -1.1%; Ptrend = 0.01) and total (-6.7 %; 95% CI, -14.3% to 1.5%; Ptrend = 0.04) estradiol, follicular estradiol (-14.2%; 95% CI, -24.6% to -2.4%; Ptrend = 0.05), and androstenedione (-7.8%; 95% CI, -15.4% to 0.4%; Ptrend = 0.03). Diet quality measured by the AHEI is inversely associated with premenopausal estrogen concentrations. Given that we did not observe similar associations with the aMED or DASH patterns, our findings should be interpreted with caution. Given the role of estrogens in breast cancer etiology, our findings add to the substantial evidence on the benefits of adhering to a healthy diet. Cancer Epidemiol Biomarkers Prev; 25(5); 791-8. ©2016 AACR. ©2016 American Association for Cancer Research.

  6. Human growth hormone: a case study in treatment priorities.

    PubMed

    Tauer, Carol A

    1995-01-01

    One of the most commonly cited examples of enhancement genetic engineering is insertion of the growth hormone (GH) gene into a medically normal child. At this time, insertion of the gene itself is not planned. However, the modification of height, which is possible through administration of biochemical GH, raises the same questions about therapeutic versus enhancement uses of genetics. While insertion of the gene is a more drastic measure and probably carries more risks, the question of appropriate limits on use of the GH drug raises similar ethical and policy questions.

  7. Insulin and growth hormone secretion in the nephrotic syndrome.

    PubMed

    Bridgman, J F; Summerskill, J; Buckler, J M; Hellman, B; Rosen, S M

    1975-01-01

    Carbohydrate metabolism was studied in a series of patients with the nephrotic syndrome and compared with a similar number of normal controls. The nephrotic syndrome was associated with a smaller secretion of insulin in response to intravenous glucose and tolbutamide than occurred in normals. In the syndrom fasting serum growth hormone (G.H.) concentrations were increased and did not show the characteristic suppression after glucose administration, and the disappearance rate of glucose (k value) was lower. well marked correlation existed between serum G.H. concentrations and the total urinary protein excreted. These abnormal findings returned to normal in a patient who underwent a repeat study when the nephrotic syndrome had resolved.

  8. [Acral acanthosis nigricans associated with taking growth hormone].

    PubMed

    Peña Irún, A

    2014-01-01

    Acanthosis nigricans is a skin lesion characterized by the presence of a hyperpigmented, velvety cutaneous thickening that usually appears in flexural areas. Less frequently, it can occur in other locations, such as the dorsum of hands and feet. In this case it is called acral acanthosis nigricans. It is a dermatological manifestation of systemic disease. It is often associated with insulin resistance-mediated endocrine diseases. A case is presented on a patient with acanthosis nigricans secondary to the use of growth hormone. Copyright © 2013 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  9. Expression of growth hormone receptor in the human brain.

    PubMed

    Castro, J R; Costoya, J A; Gallego, R; Prieto, A; Arce, V M; Señarís, R

    2000-03-10

    This study was designed to investigate the presence of growth hormone receptor (GHR) expression in the human brain tissue, both normal and tumoral, as well as in the human glioblastoma cell line U87MG. Reverse transcription-polymerase chain reaction revealed the presence of GHR mRNA in all brain samples investigated and in U87MG cells. GHR immunoreactivity was also detected in this cell line using both immunocytochemistry and western blotting. All together, our data demonstrate the existence of GHR expression within the central nervous system (CNS), thus supporting a possible role for GH in the CNS physiology.

  10. In vitro binding of steroid hormones by natural and purified fibers

    SciTech Connect

    Shultz, T.D.; Howie, B.J.

    1986-03-01

    The in vitro binding of estrone, estradiol-17..beta.., estriol, testosterone, dihydrotestosterone, and estrone-3-glucuronide by wheat, oat and corn brans, oat hulls, cellulose, lignin, and cholestyramine resin was measured. Steroid binding was carried out by mixing 50 mg of binding substance with varying substrate quantities (0.037 ..mu..Ci; 0.50-2.51 pmol/incubation) of /sup 3/H-estrone, /sup 3/H-estradiol-17..beta.., /sup 3/H-estriol, /sup 3/H-estrone-3-glucuronide, /sup 4/H-testosterone, and /sup 370/C for 1 hr with shaking. Following centrifugation of the reaction mixture, a 1 ml aliquot was analyzed for radioactivity. The extent of steroid sequestration was characteristic and reproducible for each hormone. Cholestyramine bound an average of 90% of all the steroids tested, whereas cellulose bound the least (12%). Of the other substances tested, lignin bound 87%; wheat and oat grans, 45% each; corn bran, 44%; and oat hulls, 32% of the unconjugated hormones. The conjugated steroid was less likely to bind than the unconjugated steroids. Lignin appeared to be an important component in the interaction with steroid hormones. The results support the hydrophobic of nature of adsorption and suggest that the components of the fiber in diet should be considered separately when evaluating in vivo metabolic effects. Implications include the possible modification of hormone-dependent cancer risk through dietary intervention.

  11. MANAGEMENT OF ENDOCRINE DISEASE: Growth and growth hormone therapy in short children born preterm.

    PubMed

    Boguszewski, Margaret Cristina da Silva; Cardoso-Demartini, Adriane de Andre

    2017-03-01

    Approximately 15 million babies are born preterm across the world every year, with less than 37 completed weeks of gestation. Survival rates increased during the last decades with the improvement of neonatal care. With premature birth, babies are deprived of the intense intrauterine growth phase, and postnatal growth failure might occur. Some children born prematurely will remain short at later ages and adult life. The risk of short stature increases if the child is also born small for gestational age. In this review, the effects of being born preterm on childhood growth and adult height and the hormonal abnormalities possibly associated with growth restriction are discussed, followed by a review of current information on growth hormone treatment for those who remain with short stature during infancy and childhood.

  12. Purification and Cultivation of Human Pituitary Growth Hormones Secreting Cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Todd, P.; Grindeland, R.; Lanham, W.; Morrison, D.

    1985-01-01

    The rat and human pituitary gland contains a mixture of hormone producing cell types. The separation of cells which make growth hormone (GH) is attempted for the purpose of understanding how the hormone molecule is made within the pituitary cell; what form(s) it takes within the cell; and what form(s) GH assumes as it leaves the cell. Since GH has a number of biological targets (e.g., muscle, liver, bone), the assessment of the activities of the intracellular/extracellular GH by new and sensitive bioassays. GH cells contained in the mixture was separated by free flow electrophoresis. These experiments show that GH cells have different electrophoretic mobilities. This is relevant to NASA since a lack of GH could be a prime causative factor in muscle atrophy. Further, GH has recently been implicated in the etiology of motion sickness in space. Continous flow electrophoresis experiment on STS-8 showed that GH cells could be partially separated in microgravity. However, definitive cell culture studies could not be done due to insufficient cell recoveries.

  13. Algorithmic complexity of growth hormone release in humans

    SciTech Connect

    Prank, K.; Wagner, M.; Brabant, G.

    1996-12-31

    Most hormones are secreted in an pulsatile rather than in a constant manner. This temporal pattern of pulsatile hormone release plays an important role in the regulation of cellular function and structure. In healthy humans growth hormone (GH) secretion is characterized by distinct pulses whereas patients bearing a GH producing tumor accompanied with excessive secretion (acromegaly) exhibit a highly irregular pattern of GH release. It has been hypothesized that this highly disorderly pattern of GH release in acromegaly arises from random events in the GH-producing tumor under decreased normal control of GH secretion. Using a context-free grammar complexity measure (algorithmic complexity) in conjunction with random surrogate data sets we demonstrate that the temporal pattern of GH release in acromegaly is not significantly different from a variety of stochastic processes. In contrast, normal subjects clearly exhibit deterministic structure in their temporal patterns of GH secretion. Our results support the hypothesis that GH release in acromegaly is due to random events in the GH-producing tumorous cells which might become independent from hypothalamic regulation. 17 refs., 1 fig., 2 tabs.

  14. [New insights in growth hormone physiology and pathophysiology].

    PubMed

    Kamenicky, P; Lombès, M; Chanson, P

    2010-09-01

    This review focuses on new aspects in growth hormone (GH) biology and pathophysiology presented at the Endocrine Society's meeting, in San Diego, in June 2010. First, we will describe recent advances in the understanding of cytokine hormone signaling via STAT5 in mammary gland development, highlighting the primary role of miR193b for differentiation of mammary stem cells into alveolar progenitor cells. We will examine the potential implication of endocrine and autocrine GH for mammary gland carcinogenesis. Three novel murine models bearing tissue-specific inactivation of GH receptor or JAK2 bring new insights into the large spectrum of GH effects on energy homeostasis. We will also report new data supporting a paracrine regulation of GH secretion in women by estrogen's action in the brain. Thereafter we will question the reasons for GH abuse for doping by assessing the hormonal impact on body composition and physical performance in recreational athletes. Finally, we will discuss the controversial issue of GH replacement in acromegalic patients presenting GH deficiency after treatment of acromegaly. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  15. Purification and Cultivation of Human Pituitary Growth Hormones Secreting Cells

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.; Todd, P.; Grindeland, R.; Lanham, W.; Morrison, D.

    1985-01-01

    The rat and human pituitary gland contains a mixture of hormone producing cell types. The separation of cells which make growth hormone (GH) is attempted for the purpose of understanding how the hormone molecule is made within the pituitary cell; what form(s) it takes within the cell; and what form(s) GH assumes as it leaves the cell. Since GH has a number of biological targets (e.g., muscle, liver, bone), the assessment of the activities of the intracellular/extracellular GH by new and sensitive bioassays. GH cells contained in the mixture was separated by free flow electrophoresis. These experiments show that GH cells have different electrophoretic mobilities. This is relevant to NASA since a lack of GH could be a prime causative factor in muscle atrophy. Further, GH has recently been implicated in the etiology of motion sickness in space. Continous flow electrophoresis experiment on STS-8 showed that GH cells could be partially separated in microgravity. However, definitive cell culture studies could not be done due to insufficient cell recoveries.

  16. Growth hormone secretion from chicken adenohypophyseal cells in primary culture: effects of human pancreatic growth hormone-releasing factor, thyrotropin-releasing hormone, and somatostatin on growth hormone release.

    PubMed

    Perez, F M; Malamed, S; Scanes, C G

    1987-03-01

    A primary culture of chicken adenohypophyseal cells has been developed to study the regulation of growth hormone (GH) secretion. Following collagenase dispersion, cells were exposed for 2 hr to vehicle (control) or test agents. Human pancreatic (tumor) growth hormone-releasing factor (hpGRF) and rat hypothalamic growth hormone-releasing factor stimulated GH release to similar levels. GH release was increased by the presence of dibutyryl cyclic AMP. Thyrotropin-releasing hormone (TRH) alone did not influence GH release; however, TRH plus hpGRF together exerted a synergistic (greater than additive) effect, increasing GH release by 100 to 300% over the sum of the values for each secretagogue acting alone. These relationships between TRH and hpGRF were further examined in cultured cells exposed to secretagogues for two consecutive 2-hr incubations. TRH pretreatment enhanced subsequent hpGRF-stimulated GH release by about 80% over that obtained if no secretagogue was present during the first incubation. In other experiments, somatostatin (SRIF) alone did not alter GH secretion. However, SRIF reduced hpGRF-stimulated GH release to levels found in controls. Furthermore, GH release stimulated by the presence of both TRH and hpGRF was lowered to control values by SRIF. The results of these studies demonstrate that a primary culture of chicken adenohypophyseal cells is a useful model for the study of GH secretion. Indeed, these results suggest that TRH and hpGRF regulate GH secretion by mechanisms which are not identical.

  17. Multicenter study on adult growth hormone level in postoperative pituitary tumor patients.

    PubMed

    Cheng, Jing-min; Gu, Jian-wen; Kuang, Yong-qin; Ma, Yuan; Xia, Xun; Yang, Tao; Lu, Min; He, Wei-qi; Sun, Zhi-yong; Zhang, Yan-chao

    2015-03-01

    The objective of this study is to observe the adult growth hormone level in postoperative pituitary tumor patients of multi-centers, and explore the change of hypophyseal hormones in postoperative pituitary tumor patients. Sixty patients with pituitary tumor admitted during March, 2011-March, 2012 were selected. Postoperative hypophyseal hormone deficiency and the change of preoperative, intraoperative, and postoperative growth hormone levels were recorded. Growth hormone hypofunction was the most common hormonal hypofunction, which took up to 85.0 %. Adrenocortical hormone hypofunction was next to it and accounted for 58.33 %. GH + ACTH + TSH + Gn deficiency was the most common in postoperative hormone deficiency, which took up to 40.00 %, and GH + ACTH + TSH + Gn + AVP and GH deficiencies were next to it and accounted for 23.33 and 16.67 %, respectively. The hormone levels in patients after total pituitary tumor resection were significantly lower than those after partial pituitary tumor resection, and the difference was statistically significant; growth hormone and serum prolactin levels after surgery in two groups were decreased, and the difference was statistically significant. The incidence rate of growth hormone deficiency in postoperative pituitary tumor patients is high, which is usually complicated with deficiency of various hypophyseal hormones. In clinical, we should pay attention to the levels of the hypopnyseal hormones, and take timely measures to avoid postoperative complications.

  18. Computational gibberellin-binding channel discovery unraveling the unexpected perception mechanism of hormone signal by gibberellin receptor.

    PubMed

    Hao, Ge-Fei; Yang, Sheng-Gang; Yang, Guang-Fu; Zhan, Chang-Guo

    2013-09-15

    Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. In this work, fundamental mechanism of hormone perception by receptor GID1 has been studied by performing computational simulations, revealing a new GA-binding channel of GID1 and a novel hormone perception mechanism involving only one conformational state of GID1. The novel hormone perception mechanism demonstrated here is remarkably different from the previously proposed/speculated mechanism [Murase et al., Nature 2008, 456, 459] involving two conformational states ("OPEN" and "CLOSED") of GID1. According to the new perception mechanism, GA acts as a "conformational stabilizer," rather than the previously speculated "allosteric inducer," to induce the recognition of protein DELLA by GID1. The novel mechanistic insights obtained in this study provide a new starting point for further studies on the detailed molecular mechanisms of GID1 interacting with DELLA and various hormones and for mechanism-based rational design of novel, potent growth regulators that target crops and ornamental plants.

  19. Growth in children with chronic kidney disease: role of nutrition, growth hormone, dialysis, and steroids.

    PubMed

    Ingulli, Elizabeth G; Mak, Robert H

    2014-04-01

    Children with chronic kidney disease (CKD) have impaired growth that leads to short stature in adulthood. The problem persists even with successful transplantation and steroid withdrawal protocols. The aim of this review is to provide an overview of the pressing issues related to growth failure in children with CKD both before and after transplantation. Although great strides have been made in dialysis and transplantation, the incidence of abnormal adult height in children growing up with CKD remains as high as 45-60%. The lack of catch-up growth and resultant short stature is a critical issue for self-esteem and quality of life in many children with CKD. Aggressive daily dialysis, improved nutrition, treatment of metabolic bone disease, and the use of recombinant human growth hormone provide some hope for catch-up growth in select patients. The causes of growth failure in the setting of CKD are multifactorial. Attention to all the details by optimizing nutritional, bone and mineral metabolism, correcting metabolic acidosis and anemia, achieving excellent blood pressure control, reversing cardiovascular complications such as left ventricular hypertrophy, and minimizing the use of corticosteroids is the current standard of care. Aggressive daily dialysis can reverse many of the uremic derangements. For patients not yet on dialysis or for those after renal transplant, early institution of recombinant human growth hormone can promote growth. Improved understanding of the mechanisms of hormone resistance may offer novel targets or measurements of treatment effectiveness.

  20. Luteinizing hormone-releasing hormone inactivation by purified pituitary plasma membranes: effects of receptor-binding studies.

    PubMed

    Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C

    1979-05-01

    Inactivation of LHRH by purified bovine pituitary plasma membranes was studied in vitro. After incubation of [125I]iodo-LHRH with plasma membranes, the amount of tracer bound to the pellet was measured, and the integrity of the unbound tracer in the supernatant was assessed. Reduction in ability to bind to anti-LHRH serum and to rebind to plasma membranes together with altered electrophoretic mobility on polyacrylamide gels showed that the unbound [125I]iodo-LHRH was inactivated. LHRH inactivation occurred rapidly and was dependent upon membrane concentration and incubation temperature. These results indicate that hormone inactivation must be taken into account in the interpretation of LHRH-receptor interactions. During 37 C incubations, the apparent absence of specific LHRH binding can be explained by inactivation of tracer hormone. Significant LHRH inactivation also occurred at 0 C, which in part explains the insensitivity of LHRH receptor assays. Assessment of LHRH inactivation by different particulate subcellular fractions of pituitary tissue showed that the inactivating enzyme was associated with the plasma membranes; other organelles did not alter LHRH. The enzyme appeared to be an integral part of the plasma membrane structure, since enzymic activity could not be removed by washing without reducing specific LHRH binding. Additionally, reduction of LHRH inactivation by the inhibitors Bacitracin and Trasylol and by magnesium was also accompanied by reduced LHRH binding. Previous studies have shown that the majority of LHRH binding to pituitary plasma membranes is to the low affinity site (approximately 10(-6) M), but the significance of this binding has been uncertain. Our findings indicate that low affinity binding probably represents binding of LHRH to the inactivating enzyme. The LHRH analog, D-Ser6(TBu), des Gly10, ethylamide, has greater biological activity than LHRH and is not inactivated to a significant extent by pituitary plasma membranes. The

  1. Placental Vitamin D-Binding Protein Expression in Human Idiopathic Fetal Growth Restriction

    PubMed Central

    Wookey, Alice F.; Chollangi, Tejasvy; Yong, Hannah E. J.

    2017-01-01

    Vitamin D-binding protein is a multifunctional serum protein with multiple actions related to normal health. Vitamin D-binding protein transports vitamin D and influences the metabolism of this key hormone but it also has additional immunomodulatory and actin-clearing properties. We investigated whether vitamin D-binding protein expression is altered in fetal growth restriction-associated placental dysfunction. Protein was extracted from 35 placentae derived from 17 healthy control subjects and 18 gestation-matched subjects with fetal growth restriction (FGR). FGR subjects were further subdivided as idiopathic (n = 9) and nonidiopathic (n = 9). Vitamin D-binding protein and 25(OH) vitamin D were measured by ELISA and normalized to protein concentration. The results showed significantly reduced levels of placental vitamin D-binding protein (control versus FGR, p < 0.05, Student's t-test) that were strongly associated with idiopathic fetal growth restriction (p < 0.01, Kruskal-Wallis), whereas levels of vitamin D-binding protein were not associated with placental 25(OH) vitamin D stores (p = 0.295, Pearson's correlation). As such, vitamin D-binding protein may be a factor in unexplained placental dysfunction associated with idiopathic fetal growth restriction and may potentially serve as a biomarker of this disease. PMID:28293436

  2. Identification of Growth Hormone Receptor in Plexiform Neurofibromas of Patients with Neurofibromatosis Type 1

    PubMed Central

    Cunha, Karin Soares Gonçalves; Barboza, Eliane Porto; da Fonseca, Eliene Carvalho

    2008-01-01

    OBJECTIVE The aim of this study was to investigate the presence of growth hormone receptor in plexiform neurofibromas of neurofibromatosis type 1 patients. INTRODUCTION The development of multiple neurofibromas is one of the major features of neurofibromatosis type 1. Since neurofibromas commonly grow during periods of hormonal change, especially during puberty and pregnancy, it has been suggested that hormones may influence neurofibromatosis type 1 neurofibromas. A recent study showed that the majority of localized neurofibromas from neurofibromatosis type 1 patients have growth hormone receptor. METHODS Growth hormone receptor expression was investigated in 5 plexiform neurofibromas using immunohistochemistry. RESULTS Four of the 5 plexiform neurofibromas were immunopositive for growth hormone receptor. CONCLUSION This study suggests that growth hormone may influence the development of plexiform neurofibromas in patients with neurofibromatosis type 1. PMID:18297205

  3. Acceleration of wound healing by growth hormone-releasing hormone and its agonists.

    PubMed

    Dioufa, Nikolina; Schally, Andrew V; Chatzistamou, Ioulia; Moustou, Evi; Block, Norman L; Owens, Gary K; Papavassiliou, Athanasios G; Kiaris, Hippokratis

    2010-10-26

    Despite the well-documented action of growth hormone-releasing hormone (GHRH) on the stimulation of production and release of growth hormone (GH), the effects of GHRH in peripheral tissues are incompletely explored. In this study, we show that GHRH plays a role in wound healing and tissue repair by acting primarily on wound-associated fibroblasts. Mouse embryonic fibroblasts (MEFs) in culture and wound-associated fibroblasts in mice expressed a splice variant of the receptors for GHRH (SV1). Exposure of MEFs to 100 nM and 500 nM GHRH or the GHRH agonist JI-38 stimulated the expression of α-smooth muscle actin (αSMA) based on immunoblot analyses as well as the expression of an αSMA-β-galactosidase reporter transgene in primary cultures of fibroblasts isolated from transgenic mice. Consistent with this induction of αSMA expression, results of transwell-based migration assays and in vitro wound healing (scratch) assays showed that both GHRH and GHRH agonist JI-38 stimulated the migration of MEFs in vitro. In vivo, local application of GHRH or JI-38 accelerated healing in skin wounds of mice. Histological evaluation of skin biopsies showed that wounds treated with GHRH and JI-38 were both characterized by increased abundance of fibroblasts during the early stages of wound healing and accelerated reformation of the covering epithelium at later stages. These results identify another function of GHRH in promoting skin tissue wound healing and repair. Our findings suggest that GHRH may have clinical utility for augmenting healing of skin wounds resulting from trauma, surgery, or disease.

  4. Endogenous growth hormone (GH)-releasing hormone is required for GH responses to pharmacological stimuli.

    PubMed Central

    Jaffe, C A; DeMott-Friberg, R; Barkan, A L

    1996-01-01

    The roles of hypothalamic growth hormone-releasing hormone (GHRH) and of somatostatin (SRIF) in pharmacologically stimulated growth hormone (GH) secretion in humans are unclear. GH responses could result either from GHRH release or from acute decline in SRIF secretion. To assess directly the role of endogenous GHRH in human GH secretion, we have used a competitive GHRH antagonist, (N-Ac-Tyr1,D-Arg2)GHRH(1-29)NH2 (GHRH-Ant), which we have previously shown is able to block the GH response to GHRH. We first tested whether an acute decline in SRIF, independent of GHRH action, would release GH. Pretreatment with GHRH-Ant abolished the GH response to exogenous GHRH (0.33 microgram/kg i.v.) but did not modify the GH rise after termination of an SRIF infusion. We then investigated the role of endogenous GHRH in the GH responses to pharmacologic stimuli of GH release. The GH responses to arginine (30 g i.v. over 30 min), L-dopa (0.5 g orally), insulin hypoglycemia (0.1 U/Kg i.v.), clonidine (0.25 mg orally), or pyridostigmine (60 mg orally) were measured in healthy young men after pretreatment with either saline of GHRH-Ant 400 microgram/kg i.v. In every case, GH release was significantly suppressed by GHRH-Ant. We conclude that endogenous GHRH is required for the GH response to each of these pharmacologic stimuli. Acute release of hypothalamic GHRH may be a common mechanism by which these compounds mediate GH secretion. PMID:8613546

  5. Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling

    NASA Astrophysics Data System (ADS)

    Cheng, C.-Y.; Perevedentseva, E.; Tu, J.-S.; Chung, P.-H.; Cheng, C.-L.; Liu, K.-K.; Chao, J.-I.; Chen, P.-H.; Chang, C.-C.

    2007-04-01

    This letter presents direct observation of growth hormone receptor in one single cancer cell using nanodiamond-growth hormone complex as a specific probe. The interaction of surface growth hormone receptor of A549 human lung epithelial cells with growth hormone was observed using nanodiamond's unique spectroscopic signal via confocal Raman mapping. The growth hormone molecules were covalent conjugated to 100nm diameter carboxylated nanodiamonds, which can be recognized specifically by the growth hormone receptors of A549 cell. The Raman spectroscopic signal of diamond provides direct and in vitro observation of growth hormone receptors in physiology condition in a single cell level.

  6. Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production.

    PubMed

    Safaei, Zahra; Karimi, Keikhosro; Golkar, Poorandokht; Zamani, Akram

    2015-07-22

    The objective of this study was to investigate the effects of indole-3-acetic acid (IAA) and kinetin (KIN) on Mucor indicus growth, cell wall composition, and ethanol production. A semi-synthetic medium, supplemented with 0-5 mg/L hormones, was used for the cultivations (at 32 °C for 48 h). By addition of 1 mg/L of each hormone, the biomass and ethanol yields were increased and decreased, respectively. At higher levels, however, an inverse trend was observed. The glucosamine fraction of the cell wall, as a representative for chitosan, followed similar but sharper changes, compared to the biomass. The highest level was 221% higher than that obtained without hormones. The sum of glucosamine and N-acetyl glucosamine (chitin and chitosan) was noticeably enhanced in the presence of the hormones. Increase of chitosan was accompanied by a decrease in the phosphate content, with the lowest phosphate (0.01 g/g cell wall) being obtained when the chitosan was at the maximum (0.45 g/g cell wall). In conclusion, IAA and KIN significantly enhanced the M. indicus growth and chitosan production, while at the same time decreasing the ethanol yield to some extent. This study shows that plant growth hormones have a high potential for the improvement of fungal chitosan production by M. indicus.

  7. Effects of Plant Growth Hormones on Mucor indicus Growth and Chitosan and Ethanol Production

    PubMed Central

    Safaei, Zahra; Karimi, Keikhosro; Golkar, Poorandokht; Zamani, Akram

    2015-01-01

    The objective of this study was to investigate the effects of indole-3-acetic acid (IAA) and kinetin (KIN) on Mucor indicus growth, cell wall composition, and ethanol production. A semi-synthetic medium, supplemented with 0–5 mg/L hormones, was used for the cultivations (at 32 °C for 48 h). By addition of 1 mg/L of each hormone, the biomass and ethanol yields were increased and decreased, respectively. At higher levels, however, an inverse trend was observed. The glucosamine fraction of the cell wall, as a representative for chitosan, followed similar but sharper changes, compared to the biomass. The highest level was 221% higher than that obtained without hormones. The sum of glucosamine and N-acetyl glucosamine (chitin and chitosan) was noticeably enhanced in the presence of the hormones. Increase of chitosan was accompanied by a decrease in the phosphate content, with the lowest phosphate (0.01 g/g cell wall) being obtained when the chitosan was at the maximum (0.45 g/g cell wall). In conclusion, IAA and KIN significantly enhanced the M. indicus growth and chitosan production, while at the same time decreasing the ethanol yield to some extent. This study shows that plant growth hormones have a high potential for the improvement of fungal chitosan production by M. indicus. PMID:26204839

  8. Orthopedic complications related to growth hormone therapy in a pediatric population.

    PubMed

    Haidar, Rachid K; Nasrallah, Mona P; Der-Boghossian, Asdghig H; Ghanem, Ismat B

    2011-01-01

    Since the introduction of recombinant growth hormone, its use has diversified and multiplied. Growth hormone is now the recommended therapy for a growing indication to all forms of short stature because of its direct and indirect role on bone growth. Hereby, we discuss the orthopedic complications associated with growth hormone treatment in pediatric patients. These complications include carpal tunnel syndrome, Legg-Calve-Perthes' disease, scoliosis, and slipped capital femoral epiphysis. Their incidence rates recorded in several growth hormone therapy-related pharmacovigilance studies will be summarized in this study with focused discussion on their occurrence in the pediatric and adolescent age groups. The pathogenesis of these complications is also reviewed.

  9. Effect of prolactin and bromocriptine on growth of transplanted hormone-dependent mouse mammary tumours.

    PubMed Central

    Briand, P.; Thorpe, S. M.; Daehnfeldt, J. L.

    1977-01-01

    Administration of ovine prolactin alone supported growth of hormone-dependent GR mouse mammary tumours. Growth of hormone-independent tumours was not stimulated. Furthermore, administration of bromocriptine, a compound that inhibits release of prolactin from the pituitary gland, was shown to inhibit the growth of hormone-dependent tumours in animals receiving treatment with progesterone + oestrone. Administration of prolactin or bromocriptine to mice bearing tumours that grew independently of progesterone + oestrone treatment had no influence on tumour growth. We conclude that direct as well as indirect evidence has been found for the involvement of prolactin in the growth of transplanted, hormone-dependent GR mouse mammary tumours. PMID:577471

  10. Studies on the bioassayable growth hormone-like activity of plasma

    NASA Technical Reports Server (NTRS)

    Ellis, S.; Vodian, M. A.; Grindeland, R. E.

    1978-01-01

    Evidence supporting the existence of bioassayable growth hormone-like activity in blood plasma distinct from the growth hormone measurable by radioimmunoassay and from somatomedin is presented. Tibial assays of the growth-hormone-like activity of injected, concentrated normal human and rat plasma in hypophysectomized rats reveal 200- and 50-fold activity excesses, respectively, with respect to the amount of growth hormone detected by radioimmunoassay. The origin of this bioassayable plasma hormone has been localized to the region of the pituitary, the origin of growth hormone, a distribution not followed by somatomedin C. Purification of the bioassayable agent indicates that is has a molecular weight of between 60,000 and 80,000, in contrast to that of growth hormone (20,000), and that the bioassayable activity is distinct from that of somatomedin C. Growth hormone-like activity detected in Cohn fraction IV as well as plasma activity, are found to be collectable on Dowex 50 resin, in contrast to somatomedin C and nonsuppressible insulin-like activity. The formation of bioassayable growth hormone-activity agents from radioimmunoassayable growth hormone and directly in the pituitary is suggested.

  11. Characterisation of the affinity of different anabolics and synthetic hormones to the human androgen receptor, human sex hormone binding globulin and to the bovine progestin receptor.

    PubMed

    Bauer, E R; Daxenberger, A; Petri, T; Sauerwein, H; Meyer, H H

    2000-12-01

    For the steroidal growth promoters trenbolone acetate (TBA) and melengestrol acetate (MGA) neither the complete spectrum of biological activities nor the potential endocrine disrupting activity of their excreted metabolites in the environment is fully understood. The potency of these substances in [3H]dihydrotestosterone ([3H]-DHT) displacement from the recombinant human androgen receptor (rhAR) and from human sex-hormone binding globulin (hSHBG) was evaluated. In addition, the potency for [3H]-ORG2058 displacement from the bovine uterine progestin receptor (bPR) was tested. For comparison, different anabolics and synthetic hormones were also tested for their binding affinities. For 17beta-trenbolone (17beta-TbOH), the active compound after TBA administration, an affinity the rhAR similar to dihydrotestosterone (DHT) and a slightly higher affinity to the bPR than progesterone were demonstrated. The affinity of the two major metabolites, 17alpha-trenbolone and trendione, was reduced to less than 5% of the 17beta-TbOH-value. The affinity of these three compounds and of MGA to the hSHBG was much lower compared with DHT. MGA showed a 5.3-fold higher affinity than progesterone to the bPR but only a weak affinity to the rhAR. The major MGA metabolites have an affinity to the bPR between 85% and 28% of the affinity of progesterone. In consequence, MGA and TBA metabolites may be hormonally active substances, which will be present in edible tissues and in manure. We conclude that detailed investigations on biodegradation, distribution and bio-efficacy of these substances are necessary.

  12. Preparation and characterization of recombinant dolphin fish (Coryphaena hippurus) growth hormone.

    PubMed

    Paduel, A; Chapnik-Cohen, N; Gertler, A; Elizur, A

    1999-08-01

    Dolphin fish (Coryphaena hippurus) growth hormone (dfGH) cDNA encoding the mature protein was cloned in a pET11a expression vector and expressed in Escherichia coli BL21 cells upon induction with isopropyl-1-thio-beta-d-galactopyranoside as an insoluble protein. The expressed protein, contained within the inclusion-body pellet, was solubilized in 4.5 M urea, refolded at pH 11.3 in the presence of catalytic amounts of cysteine, and purified to homogeneity, as evidenced by SDS-PAGE. Gel filtration on a Superdex column under nondenaturing conditions and amino-terminal analysis showed the purified protein to be monomeric methionyl-dfGH. Binding assays of the (125)I-labeled dfGH to dolphin fish liver microsomal fraction resulted in high specific binding characterized by a K(a) of 0.77 nM(-1) and a B(max) of 285 fmol/mg microsomal fraction protein. The purified dfGH was capable of stimulating proliferation of FDC-P1-B9 cells transfected with rabbit growth hormone (GH) receptor. The maximal effect of dfGH was identical to that of human GH but their respective EC(50) values were 28 nM versus 0.095 nM.

  13. Central effects of growth hormone-releasing hexapeptide (GHRP-6) on growth hormone release are inhibited by central somatostatin action.

    PubMed

    Fairhall, K M; Mynett, A; Robinson, I C

    1995-03-01

    Growth hormone (GH) release is stimulated by a variety of synthetic secretagogues, of which growth hormone-releasing hexapeptide (GHRP-6) has been most thoroughly studied; it is thought to have actions at both pituitary and hypothalamic sites. To evaluate the central actions of this peptide, we have studied GH release in response to direct i.c.v. injections in anaesthetized guinea pigs. GHRP-6 (0.04-1 microgram) stimulated GH release > 10-fold 30-40 min after i.c.v. injection. The same GH response required > 20-fold more GHRP-6 when given by i.v. injection. GH release could also be elicited by a non-peptide GHRP analogue (L-692,585, 1 microgram i.c.v.), whereas a growth hormone-releasing factor (GRF) analogue (human GRF27Nle(1-29)NH2, 2 micrograms, i.c.v.) was ineffective. A long acting somatostatin analogue (Sandostatin, SMS 201-995, 10 micrograms i.c.v.) (SMS) given 20 min before 200 ng GHRP-6 blocked GH release. This was unlikely to be due to a direct effect of SMS leaking out to the pituitary, since central SMS injections did not affect basal GH release, nor did they block GH release in response to i.v. GRF injections. We conclude that the hypothalamus is a major target for GHRP-6 in vivo. Since the GH release induced by central GHRP-6 injections can be inhibited by a central action of somatostatin, and other data indicate that GHRP-6 activates GRF neurones, we suggest that somatostatin may block this activation via receptors known to be located on or near the GRF cells themselves. Somatostatin may therefore be a functional antagonist of GHRP-6 acting centrally, as well as at the pituitary gland.

  14. The Role of Growth Hormone and Insulin-Like Growth Factor 1 in Human Breast Cancer Growth in a Mouse Xenograft Model

    DTIC Science & Technology

    1998-10-01

    The purpose of this research is to determine the role of human growth hormone (hGH) and insulin-like growth factor 1(IGF-1) in the development of an...progression of tumor growth in the animal model. In addition, growth hormone may be semi-inhibitory to growth for tumors dependent upon estrogen

  15. The Role of Growth Hormone and Insulin-Like Growth Factor-1 in Human Breast Cancer Growth in a Mouse Xenograft Model

    DTIC Science & Technology

    1999-10-01

    The purpose of this research is to determine the role of human growth hormone (hGH) and insulin-like growth factor 1 (IGF- 1) in the development of...the progression of tumor growth in the animal model. In addition growth hormone may be semi-inhibitory to growth for tumors dependent upon estrogen

  16. Sexual hormones modulate compensatory renal growth and function.

    PubMed

    Azurmendi, Pablo J; Oddo, Elisabet M; Toledo, Jorge E; Martin, Rodolfo S; Ibarra, Fernando R; Arrizurieta, Elvira E

    2013-01-01

    The role played by sexual hormones and vasoactive substances in the compensatory renal growth (CRG) that follows uninephrectomy (uNx) is still controversial. Intact and gonadectomized adult Wistar rats of both sexes, with and without uNx, performed at 90 days age, were studied at age 150 days. Daily urine volume, electrolyte excretion and kallikrein activity (UKa) were determined. Afterwards, glomerular filtration rate and blood pressure were measured, the kidneys weighed and DNA, protein and RNA studied to determine nuclei content and cell size. When the remnant kidney weight at age 150 days was compared with the weight of the kidney removed at the time of uNx, male uNx rats showed the greatest CRG (50%) while growth in the other uNx groups was 25%, 15% and 19% in orchidectomized, female and ovariectomized rats, respectively. The small CRG observed in the uNx female rats was accompanied by the lowest glomerular filtration value, 0.56 ± 0.02 ml/ min/g kwt compared, with the other uNx groups, p < 0.05. Cell size (protein or RNA/DNA) was similar for all the groups except for uNx orchidectomized rats. In this group the cytoplasmatic protein or RNA content was lower than in the other groups while DNA (nuclei content) was similar. Some degree of hyperplasia was determined by DNA content in the uNx groups. Male sexual hormones positively influenced CRG and its absence modulated cell size. Female sexual hormones, instead, did not appear to stimulate CRG. The kallikrein kinin system may not be involved in CRG.

  17. Analysis of the hormone-binding domain of steroid receptors using chimeras generated by homologous recombination

    SciTech Connect

    Martinez, Elisabeth D.; Pattabiraman, Nagarajan; Danielsen, Mark . E-mail: dan@bc.georgetown.edu

    2005-08-15

    The glucocorticoid receptor and the mineralocorticoid receptor are members of the steroid receptor family that exhibit ligand cross-reactivity. Specificity of steroid receptor action is investigated in the present work by the construction and characterization of chimeras between the glucocorticoid receptor and the mineralocorticoid receptor. We used an innovative approach to make novel steroid receptor proteins in vivo that in general, contrary to our expectations, show increased ligand specificity compared to the parental receptors. We describe a receptor that is specific for the potent synthetic glucocorticoid triamcinolone acetonide and does not bind aldosterone. A further set of chimeras has an increased ability to discriminate between ligands, responding potently to mineralocorticoids and only very weakly to synthetic glucocorticoids. A chimera with the fusion site in the hinge highlights the importance of the region between the DNA-binding and the hormone-binding domains since, unlike both the glucocorticoid and mineralocorticoid receptors, it only responds to mineralocorticoids. One chimera has reduced specificity in that it acts as a general corticoid receptor, responding to glucocorticoids and mineralocorticoids with similar potency and efficacy. Our data suggest that regions of the glucocorticoid and mineralocorticoid receptor hormone-binding domains are functionally non-reciprocal. We present transcriptional, hormone-binding, and structure-modeling evidence that suggests that receptor-specific interactions within and across domains mediate aspects of specificity in transcriptional responses to steroids.

  18. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant

    PubMed Central

    Charles, Jean-Philippe; Iwema, Thomas; Epa, V. Chandana; Takaki, Keiko; Rynes, Jan; Jindra, Marek

    2011-01-01

    Juvenile hormone (JH) is a sesquiterpenoid of vital importance for insect development, yet the molecular basis of JH signaling remains obscure, mainly because a bona fide JH receptor has not been identified. Mounting evidence points to the basic helix–loop–helix (bHLH)/Per-Arnt-Sim (PAS) domain protein Methoprene-tolerant (Met) as the best JH receptor candidate. However, details of how Met transduces the hormonal signal are missing. Here, we demonstrate that Met specifically binds JH III and its biologically active mimics, methoprene and pyriproxyfen, through its C-terminal PAS domain. Substitution of individual amino acids, predicted to form a ligand-binding pocket, with residues possessing bulkier side chains reduces JH III binding likely because of steric hindrance. Although a mutation that abolishes JH III binding does not affect a Met–Met complex that forms in the absence of methoprene, it prevents both the ligand-dependent dissociation of the Met–Met dimer and the ligand-dependent interaction of Met with its partner bHLH-PAS protein Taiman. These results show that Met can sense the JH signal through direct, specific binding, thus establishing a unique class of intracellular hormone receptors. PMID:22167806

  19. Ligand-binding properties of a juvenile hormone receptor, Methoprene-tolerant.

    PubMed

    Charles, Jean-Philippe; Iwema, Thomas; Epa, V Chandana; Takaki, Keiko; Rynes, Jan; Jindra, Marek

    2011-12-27

    Juvenile hormone (JH) is a sesquiterpenoid of vital importance for insect development, yet the molecular basis of JH signaling remains obscure, mainly because a bona fide JH receptor has not been identified. Mounting evidence points to the basic helix-loop-helix (bHLH)/Per-Arnt-Sim (PAS) domain protein Methoprene-tolerant (Met) as the best JH receptor candidate. However, details of how Met transduces the hormonal signal are missing. Here, we demonstrate that Met specifically binds JH III and its biologically active mimics, methoprene and pyriproxyfen, through its C-terminal PAS domain. Substitution of individual amino acids, predicted to form a ligand-binding pocket, with residues possessing bulkier side chains reduces JH III binding likely because of steric hindrance. Although a mutation that abolishes JH III binding does not affect a Met-Met complex that forms in the absence of methoprene, it prevents both the ligand-dependent dissociation of the Met-Met dimer and the ligand-dependent interaction of Met with its partner bHLH-PAS protein Taiman. These results show that Met can sense the JH signal through direct, specific binding, thus establishing a unique class of intracellular hormone receptors.

  20. Growth hormone and exercise tolerance in patients with cystic fibrosis.

    PubMed

    Hütler, Matthias; Beneke, Ralph

    2004-01-01

    Cystic fibrosis (CF) is a life-limiting inherited disorder characterised by pulmonary disease, pancreatic dysfunction and symptoms of malnutrition that are all interrelated with low exercise capacity and poor survival rate. Therapy with growth hormone (GH) may improve the reduced dimensional and functional capacity associated with poor nutritional status and catabolism and therefore improve exercise tolerance, quality of life and survival rate in patients with CF. The literature about GH treatment and its effect on exercise tolerance are rather limited, not always consistent and methodological concerns restrict further analysis. GH treatment may have beneficial effects on both growth and exercise tolerance without serious complications in prepubertal children with CF. The observed dimensional changes of the muscular, cardiovascular and pulmonary system seem to improve aerobic exercise capacity and respiratory and peripheral muscle strength. The physiological background of the observed changes is not yet fully understood, therefore, larger-scale studies with an optimised design are required.

  1. Effects of growth hormone on female reproductive organs.

    PubMed

    Kaiser, G G; Sinowatz, F; Palma, G A

    2001-10-01

    During the last decade many experiments have been performed to study the effects of growth hormone (GH, somatotropin) on reproductive functions. Most of the studies found only slight or no effects of GH treatment, both on the oestrous cycle and on gonadotropin, progesterone. or oestrogen serum levels. In GH-treated animals, elevated levels of insulin-like growth factor I and GH in the serum could be correlated with an increased number of small (< 5 mm in diameter) ovarian follicles, possibly as a consequence of a reduction of apoptosis and follicular atresia. There is still controversy over the effects of GH on in vivo and in vitro embryo production and on the gestation period. Recent studies produced some evidence that GH-receptor is expressed in ovarian tissue, implying a direct role for GH in the ovary.

  2. Effects of growth hormone and insulin-like growth factor 1 deficiency on ageing and longevity.

    PubMed

    Laron, Zvi

    2002-01-01

    Present knowledge on the effects of growth hormone (GH)/insulin-like growth hormone (IGF)1 deficiency on ageing and lifespan are reviewed. Evidence is presented that isolated GH deficiency (IGHD), multiple pituitary hormone deficiencies (MPHD) including GH, as well as primary IGE1 deficiency (GH resistance, Laron syndrome) present signs of early ageing such as thin and wrinkled skin, obesity, hyperglycemia and osteoporosis. These changes do not seem to affect the lifespan, as patients reach old age. Animal models of genetic MPHD (Ames and Snell mice) and GH receptor knockout mice (primary IGF1 deficiency) also have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting large amounts of GH have premature death. In conclusion longstanding GH/IGF1 deficiency affects several parameters of the ageing process without impairing lifespan, and as shown in animal models prolongs longevity. In contrast high GH/IGF1 levels accelerate death.

  3. Extrapituitary growth hormone in the chicken reproductive system.

    PubMed

    Luna, Maricela; Martínez-Moreno, Carlos G; Ahumada-Solórzano, Marisela S; Harvey, Steve; Carranza, Martha; Arámburo, Carlos

    2014-07-01

    Increasing evidence shows that growth hormone (GH) expression is not limited to the pituitary, as it can be produced in many other tissues. It is known that growth hormone (GH) plays a role in the control of reproductive tract development. Acting as an endocrine, paracrine and/or autocrine regulator, GH influences proliferation, differentiation and function of reproductive tissues. In this review we substantiate the local expression of GH mRNA and GH protein, as well as the GH receptor (GHR) in both male and female reproductive tract, mainly in the chicken. Locally expressed GH was found to be heterogeneous, with a 17 kDa variant being predominant. GH secretagogues, such as GHRH and TRH co-localize with GH expression in the chicken testis and induce GH release. In the ovarian follicular granulosa cells, GH and GHR are co-expressed and stimulate progesterone production, which was neutralized by a specific GH antibody. Both testicular and follicular cells in primary cultures were able to synthesize and release GH to the culture medium. We also characterized GH and GH mRNA expression in the hen's oviduct and showed that it had 99.6% sequence identity with pituitary GH. Data suggest local reproductive GH may have important autocrine/paracrine effects.

  4. Prader-Willi syndrome and growth hormone deficiency.

    PubMed

    Aycan, Zehra; Baş, Veysel Nijat

    2014-01-01

    Prader-Willi syndrome (PWS) is a rare multisystem genetic disorder demonstrating great variability with changing clinical features during patient's life. It is characterized by severe hypotonia with poor sucking and feeding difficulties in early infancy, followed by excessive eating and gradual development of morbid obesity in later infancy or early childhood. The phenotype is most probably due to hypothalamic dysfunction which is also responsible for growth hormone (GH) and thyroid-stimulating hormone (TSH) deficiencies, central adrenal insufficiency and hypogonadism. The multidimensional problems of patients with PWS can be managed with multidisciplinary approach. Reduced GH secretion, low peak GH response to stimulation, decreased spontaneous GH secretion and low serum IGF-1 levels in PWS patients have been documented in many studies. GH therapy has multiple beneficial effects on growth and body composition, motor and mental development in PWS patients. The recommended dosage for GH is 0.5-1 mg/m2/day. GH therapy should not be started in the presence of obstructive sleep apnea syndrome, adenotonsillar hypertrophy, severe obesity and diabetes mellitus. GH treatment should be considered for patients with genetically confirmed PWS in conjunction with dietary, environmental and life-style measures.

  5. Production of recombinant mink growth hormone in E. coli.

    PubMed

    Sereikaite, Jolanta; Statkute, Alina; Morkunas, Mindaugas; Radzevicius, Kostas; Borromeo, Vitaliano; Secchi, Camillo; Bumelis, Vladas-Algirdas

    2007-02-01

    Escherichia coli cells expressing mink (Mustela vison) growth hormone were grown in a batch fermentation process. The expression level was estimated to be 27% of the total cellular protein after 3 h of induction with 1 mM isopropyl beta-D-thiogalactoside (IPTG). If the expression of mink growth hormone (mGH) was induced with 0.2 mM IPTG, the concentration of target protein was slightly lower and was found to be 23% at the same time after induction. mGH expressed as inclusion bodies was solubilized in 8 M urea and renatured by dilution protocol at a protein concentration of 1.4-2.1 mg/ml in the presence of glutathione pair in a final concentration of 11.3 mM. [GSH]/[GSSG] ratio equal to 2/1 was used. Two-step purification process comprising of ion-exchange chromatography on Q-Sepharose and hydrophobic chromatography on Phenyl-Sepharose was developed. Some 25-30 mg of highly purified and biologically active mGH was obtained from 4 g of biomass. The method presented in this study allows producing large quantities of mGH and considering initiation of scientific investigation on mGH effect on mink in vivo and availability in fur industry.

  6. Harmonization of growth hormone measurement results: the empirical approach.

    PubMed

    Ross, H A; Lentjes, E W G M; Menheere, P M M; Sweep, C G J

    2014-05-15

    Growth hormone (hGH) is a measurand belonging to ISO category 4, indicating intrinsic unavailability of a reference measurement procedure and primary standard material. Large between-method differences have been raising confusion, especially in the interpretation of results of stimulation tests for exclusion of juvenile growth hormone deficiency. Within the framework of the external quality assessment scheme (EQAS) of the SKML (Dutch Foundation for Quality Assessment in Clinical Laboratories), attempts to reduce between-method variation of hGH measurements have been made, starting in 1994 with an inter-laboratory comparison of 9 different immunoassays by using a panel of sera and standard materials available at that time. Methods appeared to differ from each other largely in a systematic, sample-independent manner. These systematic differences are reflected in the hGH measurement results obtained in commutable sera. A commutable serum pool was introduced as a consensus reference material, permitting correction of each method's results to a common scale. Pair wise comparisons ("twin studies") were carried out to investigate and corroborate the effectiveness of this material for harmonization. A significant reduction of the between-laboratory coefficient (CV) of variation from 22 to 9.0% was attained.

  7. Baraitser and Winter syndrome with growth hormone deficiency

    PubMed Central

    Chentli, Farida; Zellagui, Hadjer

    2014-01-01

    Baraitser–Winter syndrome (BWS), first reported in 1988, is apparently due to genetic abnormalities that are still not well-defined, although many gene abnormalities are already discovered and de novo missense changes in the cytoplasmic actin-encoding genes (called ACTB and ACTG1) have been recently discovered. The syndrome combines facial and cerebral malformations. Facial malformations totally or partially present in the same patient are: Iris coloboma, bilateral ptosis, hypertelorism, broad nasal bridge, and prominent epicanthic folds. The various brain malformations are probably responsible for growth and mental retardation. To the best of our knowledge, the syndrome is very rare as few cases have been reported so far. Our aim was to describe a child with a phenotype that looks like BWS with proved partial growth hormone (GH) deficiency which was not reported before. A girl aged 7-year-old of consanguineous parents was referred for short stature and mental retardation. Clinical examination showed dwarfism and a delay in her mental development. Other clinical features included: Strabismus, epicanthic folds, broad nasal bridge, and brain anomalies such as lissencephaly, bilateral hygroma, and cerebral atrophy. Hormonal assessment showed partial GH deficiency without other endocrine disorders. Our case looks exactly like BWS. However, apart from facial and cerebral abnormalities, there is a partial GH deficiency which can explain the harmonious short stature. This case seems worth to be reported as it adds GH deficiency to the very rare syndrome. PMID:25624931

  8. Role of sex hormone-binding globulin in the relationship between sex hormones and antisocial and aggressive personality in inmates.

    PubMed

    Aluja, Anton; García, Luis F

    2007-08-30

    Plasma total testosterone (TT), free bioavailable testosterone (BT), sex hormone-binding globulin (SHGB), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) were analysed in a sample of 89 inmates. Also, the tendency towards an Antisocial Personality Disorder (AAPS) and Aggressiveness (based on an index containing three scales of the Buss-Durkee Hostility Inventory; BDHI) was assessed. Results showed strong correlations between SHBG, total testosterone and free bioavailable testosterone. SHBG and total testosterone correlated with Aggressiveness (0.39 and 0.29, respectively), though the latter turned out not to be significant when SHBG level was controlled. The group with a high probability of Antisocial Personality Disorder and the group with high scores in Aggressiveness obtained higher SHBG levels. Recidivists and subjects already sentenced presented higher concentrations of SHBG. No significant relation was found for the free bioavailable testosterone. It is argued that the relationship between testosterone and antisocial personality and aggressiveness is mediated by the role of SHBG. We conclude that subjects with a disinhibited life-style tend to abuse intoxicants affecting the production of SHBG in the liver. This effect is observed in healthy subjects and delinquents, but more strongly in the population of delinquents.

  9. Plasma steroid-binding proteins: primary gatekeepers of steroid hormone action

    PubMed Central

    2016-01-01

    Biologically active steroids are transported in the blood by albumin, sex hormone-binding globulin (SHBG), and corticosteroid-binding globulin (CBG). These plasma proteins also regulate the non-protein-bound or ‘free’ fractions of circulating steroid hormones that are considered to be biologically active; as such, they can be viewed as the ‘primary gatekeepers of steroid action’. Albumin binds steroids with limited specificity and low affinity, but its high concentration in blood buffers major fluctuations in steroid concentrations and their free fractions. By contrast, SHBG and CBG play much more dynamic roles in controlling steroid access to target tissues and cells. They bind steroids with high (~nM) affinity and specificity, with SHBG binding androgens and estrogens and CBG binding glucocorticoids and progesterone. Both are glycoproteins that are structurally unrelated, and they function in different ways that extend beyond their transportation or buffering functions in the blood. Plasma SHBG and CBG production by the liver varies during development and different physiological or pathophysiological conditions, and abnormalities in the plasma levels of SHBG and CBG or their abilities to bind steroids are associated with a variety of pathologies. Understanding how the unique structures of SHBG and CBG determine their specialized functions, how changes in their plasma levels are controlled, and how they function outside the blood circulation provides insight into how they control the freedom of steroids to act in health and disease. PMID:27113851

  10. Regulation of insulin-like growth factor II receptors by growth hormone and insulin in rat adipocytes

    SciTech Connect

    Loennroth, P.; Assmundsson, K.; Eden, S.; Enberg, G.; Gause, I.; Hall, K.; Smith, U.

    1987-06-01

    The acute and long-term effects of growth hormone (GH) on the binding of insulin-like growth factor II (IGF-II) were evaluated in adipose cells from hypophysectomized rats given replacement therapy with thyroxine and hydrocortisone and in cells from their sham-operated littermates. After the cells were incubated with insulin and/or GH, the recycling of /sup 125/I-labeled IGF-II receptors was metabolically inhibited by treating the cells with KCN. IGF-II binding was 100 +/- 20% higher in cells from GH-deficient animals when compared with sham-operated controls. These GH-deficient cells also showed an increased sensitivity for insulin as compared with control cells (the EC/sub 50/ for insulin was 0.06 ng/ml in GH-deficient cells and 0.3 ng/ml in control cells.). However, the maximal incremental effect of insulin on IGH-II binding was reduced approx. = 27% by hypophysectomy. GH added to the incubation medium increased the number of IGF-II binding sites by 100 +/- 18% in cells from hypophysectomized animals. This increase was rapidly induced, but the time course was slower than that for the stimulatory effect of insulin. Half-maximal effect of GH on IGF-II binding was obtained at approx. = 30 ng/ml. Thus, GH added in vitro exerted a rapid insulin-like effect on the number of IGH-II receptors. GH also appears to play a regulating role for maintaining the cellular number of IGH-II receptors and, in addition, modulates the stimulatory effect of insulin on IGF-II binding.

  11. Effect of antibodies against distinctive rat liver estrogen-binding protein on hormone-binding activity of this protein and steroid hormone receptors

    SciTech Connect

    Smirnov, A.N.; Shchelkunova, T.A.; Smirnova, O.V.; Rozen, V.B.

    1986-12-10

    The effect of rabbit polyclonal antibodies (AB) against a distinctive estrogen-binding protein (DEBP) of rat liver, isolated using an immunosorbent, on the interaction of (/sup 3/H)estradiol with the DEBP and estrogen receptors of the uterus and other tissues, as well as of (/sup 3/H)dihydrotestosterone with prostate androgen receptors, (/sup 3/H)progesterone with uterine progesterone receptors, and (/sup 3/H)dexamethasone with rat thymus glucocorticoid receptors was investigated. It was found that preincubation of the cytosol of the tissues under investigation with the antibodies decreases the capacity of the DEBP of the estrogen and androgen receptors to bind the corresponding ligand. The hormone-binding activity of progesterone and the glucocorticoid receptors does not change in the presence of AB. The binding activity of DEBP in the presence of AB decreases as a result of a decrease in the concentration of binding sites of the protein, while that of the estrogen and androgen receptors drops as a result of a decrease in affinity for the ligand, due to a drop in the association rate constant. A cross effect of AB on the activity of uterine estrogen receptors of the rabbit, guinea pig, and mouse was found. It was concluded that there is a definite similarity in the structure of DEBP and sex steroid receptors.

  12. The cardiovascular system in growth hormone excess and growth hormone deficiency.

    PubMed

    Lombardi, G; Di Somma, C; Grasso, L F S; Savanelli, M C; Colao, A; Pivonello, R

    2012-12-01

    The clinical conditions associated with GH excess and GH deficiency (GHD) are known to be associated with an increased risk for the cardiovascular morbidity and mortality, suggesting that either an excess or a deficiency in GH and/or IGF-I is deleterious for cardiovascular system. In patients with acromegaly, chronic GH and IGF-I excess commonly causes a specific cardiomyopathy characterized by a concentric cardiac hypertrophy associated with diastolic dysfunction and, in later stages, with systolic dysfunction ending in heart failure if GH/IGF-I excess is not controlled. Abnormalities of cardiac rhythm and anomalies of cardiac valves can also occur. Moreover, the increased prevalence of cardiovascular risk factors, such as hypertension, diabetes mellitus, and insulin resistance, as well as dyslipidemia, confer an increased risk for vascular atherosclerosis. Successful control of the disease is accompanied by a decrease of the cardiac mass and improvement of cardiac function and an improvement in cardiovascular risk factors. In patients with hypopituitarism, GHD has been considered the under- lying factor of the increased mortality when appropriate standard replacement of the pituitary hormones deficiencies is given. Either childhood-onset or adulthood-onset GHD are characterized by a cluster of abnormalities associated with an increased cardiovascular risk, including altered body composition, unfavorable lipid profile, insulin resistance, endothelial dysfunction and vascular atherosclerosis, a decrease in cardiac mass together with an impairment of systolic function mainly after exercise. Treatment with recombinant GH in patients with GHD is followed by an improvement of the cardiovascular risk factors and an increase in cardiac mass together with an improvement in cardiac performance. In conclusion, acromegaly and GHD are associated with an increased risk for cardiovascular morbidity and mortality, but the control of GH/IGF-I secretion reverses cardiovascular

  13. Effects of recombinant human growth hormone in the treatment of dwarfism and relationship between IGF-1, IGFBP-3 and thyroid hormone

    PubMed Central

    Ren, Shanxiang; Nie, Yuxiang; Wang, Aihong

    2016-01-01

    The effects of recombinant human growth hormone (rhGH) in the treatment of dwarfism and the relationship between insulin-like growth factor (IGF)-1, IGF-binding protein (IGFBP)-3 and thyroid hormone were examined in the present study. For this purpose, 66 patients diagnosed with dwarfism were selected retrospectively, with 36 cases of growth hormone deficiency (GHD) and 30 cases of idiopathic short stature (ISS). The therapeutic dose of GHD 0.10 IU/kg·day and ISS 0.15 IU/kg·day were injected subcutaneously every night before sleep until adulthood. The average follow-up was 5 years, and the results were evaluated and measured every 3 months, including height, BA, secondary test of growth hormone (GH peak), IGF-1, IGFBP-3 and thyroid hormone (FT3, FT4 and TSH). After treatment, the height, BA, GH peak, IGF-A and IGFBP-3 of the GHD group were all increased, and the differences were statistically significant (P<0.05), while FT3, FT4 and TSH had no significant change (P<0.05). The height and BA increased and the differences were statistically significant (P<0.05). The indexes of the ISS group were not statistically significant (P>0.05). The results of the Pearson-related analysis suggested that GH peak of the GHD group, IGF-1 and IGFBP-3 were positively associated with height (P<0.05), and had no relationship with BA (P<0.05). None of the above indexes of the ISS group had an obvious correlation with height and BA (P>0.05). rhGH was effective for GHD and ISS, with the GHD effect being positively associated with the GH peak, IGF-1 and IGFBP-3. ISS had no obvious relationship with GH peak, IGF-1 and IGFBP-3 although other influencing factors may be involved. PMID:28105090

  14. Intronic mutation in the growth hormone (GH) receptor gene from a girl with Laron syndrome and extremely high serum GH binding protein: extended phenotypic study in a very large pedigree.

    PubMed

    Silbergeld, A; Dastot, F; Klinger, B; Kanety, H; Eshet, R; Amselem, S; Laron, Z

    1997-01-01

    Laron syndrome (LS) is a hereditary form of GH resistance due to molecular defects in the GH receptor (GHR). Most of the identified mutations are located in the extracellular domain of the receptor, resulting in a lack of serum GHBP in the majority of LS patients. We present an LS patient with supranormal levels of serum GHBP, in addition to 35 of her relatives. The proband is a 3.5 year-old Druse girl with severe short stature (height SDS -5.1), high GH (250 micrograms/l), low IGF-I (2.7 nmol/l) and IGFBP-3 (410 micrograms/l), both unresponsive to exogenous GH. The binding capacity of the serum GHBP was 22 nM (adult reference serum, 0.7 nM), with an affinity constant Ka = 1.9 x 10(9) M-1 comparable to that of normal sera (Ka = 1.7-2.1 x 10(9) M-1). The apparent MW of the GHBP was approximately 60-80 kDa, similar to that of control sera. In the proband's sister, parents, grandparents and uncles, extremely high GHBP values were observed (43.0 +/- 4.8 RSB, n = 10) compared with normal adults (0.81 +/- 0.06 RSB) (p < 0.001). The remaining subjects had normal or moderately elevated GHBP levels. Serum GH in adults with high GHBP was significantly elevated above control values (6.0 +/- 0.9 micrograms/l vs 0.76 +/- 0.13 microgram/l, p < 0.001). Serum IGF-I and IGFBP-3 levels were normal in all the subjects, with the exception of an aunt (IGF-I 3.9 nmol/l) and the proband's sister (IGFBP-3 460 micrograms/l). All the subjects' heights were within the normal range. Analysis of the GHR gene performed in the proband revealed an as yet undescribed homozygous intronic point mutation. It consists of a G-->T substitution at nucleotide 785-1 preceding exon 8, a sequence that encodes the transmembrane domain. This mutation, which destroys the invariant dinucleotide of the splice acceptor site, is expected to alter GHR mRNA splicing and to be responsible for skipping exon 8. The resulting truncated protein that retains GH binding activity is probably no longer anchored in the cell

  15. Effect of obesity and starvation on thyroid hormone, growth hormone, and cortisol secretion.

    PubMed

    Douyon, Liselle; Schteingart, David E

    2002-03-01

    Obesity and starvation have opposing affects on normal physiology and are associated with adaptive changes in hormone secretion. The effects of obesity and starvation on thyroid hormone, GH, and cortisol secretion are summarized in Table 1. Although hypothyroidism is associated with some weight gain, surveys of obese individuals show that less than 10% are hypothyroid. Discrepancies have been reported in some studies, but in untreated obesity, total and free T4, total and free T3, TSH levels, and the TSH response to TRH are normal. Some reports suggest an increase in total T3 and decrease in rT3 induced by overfeeding. Treatment of obesity with hypocaloric diets causes changes in thyroid function that resembl